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ABSTRACT 

Nanostructured bioscaffolds and biosensors are evolving as popular and 

powerful tools in life science and biotechnology, due to the possible control of 

their surface and structural properties at the nm-scale. Being seldom discussed in 

literature and long-underexploited in materials and biomedical sciences, 

development of nanofiber-based sensory bioscaffolds has great promises and 

grand challenges in finding an ideal platform for low-cost quantifications of 

biological and chemical species in real-time, label-free, and ultrasensitive fashion. 

In this study, titanate nanobelts were first of all synthesized, from 

hydrothermal reactions of a NaOH (or KOH solution) with TiO2 powder, to 

possess underexploited structure and surface vital to the rapid and label-free 

electrochemical detections of protein (cytochrome c) and neurotransmitter 

(dopamine). This work is based on a suite of new physical and chemical 

properties on the titanate nanobelt in water, including high surface area, 

zwitterionic surface, chemical- and photochemical-durability, cation-exchange 

and anion- and cation-sorption capacities, protein- and cell-compatibility, 

thermal-stability, and charge conductivity.  

The Fourier transform infrared (FTIR) was used for identifying any 

denaturing of the cytochrome c pre-immobilized on the titanate nanobelts. On that 

basis, the pheochromocytoma cells (PC-12 cell) were chosen to grow on the 

titanate nanobelts. These experiments prove that the sensory bioscaffolds of 

titanate nanobelt-membrane is a multiplex platform for developing new tools for 

energy, environmental and life sciences.  



This dissertation is approved for  
Recommendation to the  
Graduate Council 
 
 
Dissertation Director:  
 
 
 
Dr. Z. Ryan Tian 
 
 
 
 
Dissertation Committee: 
 
 
 
Dr. Jingyi Chen 
 
 
 
Dr. Derek Sears  
 
 
 
Dr. Bill Durham 
 



DUPLICATION RELEASE 
 

 I hereby authorize the University of Arkansas Libraries to duplicate this 
dissertation when needed for research and /or scholarship. 
 
 
 
Agreed   
 
                                        Feng Chen 
 
Refused  
                         
                                        Feng Chen 

 
 



v 
 

ACKNOWLEDGEMENTS 
 

I give the special appreciation to the Lord who is taking care of me. 

I would like to thank my advisor, Professor Z Ryan Tian, for providing me 

opportunities to learn nanomaterial’s syntheses, characterizations and applications 

in his Lab, and for encouraging me to become a good scientist.   

I greatly appreciate Professor Bill Durham for his endless help without 

which I would never have finished my PhD, and Dr. Sears, Dr. Li, and Dr. Jingyi 

Chen for inspiring me to do research independently. I give special thanks to Prof. 

J. Li who offered me a wonderful opportunity to work at NASA Ames Research 

Center in California, and to Drs. Charles L Wilkins, Jack Lay and Rohana 

Liyanage who kindly taught me the mass spectrometry.  

Many thanks to staff members on campus including Drs. Wenjun Dong, 

Tierui Zhang, Jining Xie, Myeong Lee, and Huajun Zhou for their kind 

assistances in my graduate researches, and to group members in Dr. Tian’s lab for 

helping and encouraging me throughout my studies in the lab. I would like to 

thank Professor Xiaogan Peng and his group members including Drs. Yongfen 

Chen and Mike Rutherford for helping me in my FTIR and TGA experiments. 

Special Thanks to my parents, my husband, and my son for always being 

there to support me and encourage me. 



vi 
 

TABLE OF CONTENTS 

Acknowledgements                                                                                                 v 

Table of Contents                                                                                                 vi 

List of Figures                                                                                                       x 

List of Schemes                                                                                                   xiii 

List of Abbreviations                                                                                           xiv 

 

PART-I 

 

INTRODUCTION 

 

1 

 Chapter 1.  Overview of Nanostructured Biomaterials 1 

             1.1  Nanostructured Fibrous Materials 1 

             1.2   Neuron-regenerative Nanofibrous Bioscaffolds  2 

  1.2.1. Nanofibrous Scaffolds as Extracellular Matrix 

Analogues 

3 

  1.2.2. Growth of  Neural Stem Cell and Nanofibrous 

Scaffolds 

4 

             1.3  TiO2-based Nanostructured Biomaterials 6 

                 1.3.1. Syntheses of TiO2–based Nanostructured Materials 6 

     1.3.2. Properties and Applications of  TiO2–based 

Nanomaterials                                                             

7 

             1.4  Multifunctional Membrane of Zwitterionic Titanate  

Nanobelts 

9 

Chapter 2.  Overview of  Biosensors Based on 1D Nanostructures  12 

             2.1  Biosensors Based on 1D Nanostructures 12 



vii 
 

             2.2  Biosensors Based on TiO2-based Nanostructures 14 

Chapter 3.   Motivations 18 

                  3.1 Underexploited Issues Regarding the Titanate Nanofibers 18 

                  3.2 New Basic and Applied Interfacial Nanochemistry to Be 

Expected 

19 

  Chapter 4.  Characterization Methods  20 

               4.1  Power X-Ray Diffraction (XRD) 20 

             4.2  Scanning Electron Microscopy (SEM) 21 

             4.3  Transmission Electron Microscopy (TEM)  22 

             4.4  High Resolution Transmission Electron Microscopy 

(HRTEM) 

23 

             4.5           Thermogravimetric Analysis (TGA) 24 

             4.6    Fourier-Transform Infrared Spectroscopy (FTIR) 25 

             4.7   Electrochemical Methods 26 

                 4.7.1 Cyclic Voltammetry (CV) 26 

                 4.7.2 Differential Pulse Voltammetry (DPV) 28 

               4.7.3 Square Wave Voltammetry (SWV) 30 

   

  PART II  EXPERIMENTAL 32  

Chapter 5.  Materials and Instrumentations 32 

5.1  Chemicals 32 

5.2  Instrumentations 32 

Chapter 6.  Preparing, Characterizing H-Nanobelt’s Membrane 34 



viii 
 

             6.1  Syntheses  34 

             6.2  Ion-Exchange  34 

             6.3  Preparation of Cyt c and Dopamine Solutions 34 

             6.4  Fabrication and Characterization of the Nanobelt-

Membrane   Modified Electrodes (ITO, Glassy-Carbon) 

35 

                6.4.1. Preparation of ITO Electrodes That Are Modified by 

Nanobelt-Membrane and then Immobilized by Cyt c  

35 

  6.4.2. Preparation of Glassy-Carbon Electrodes That Are 

Modified by Nanobelt-Membrane and Immobilized by DA  

35 

Chapter 7.  Interfacial Characterizations of Nanobelt-Membranes 37 

             7.1  Electrical and Ionic Conductions 37 

             7.2  Biocompatibility to Cytochrome c (cyt c) 37 

             7.3  Point-of-Zero-Change on H-Titanate Nanobelt Membranes 38 

Chapter 8.  Neuroregeneration and Biosensing on H-Nanobelt 

Membrane 

39 

             8.1  Pheochromocytoma  (PC-12) Cell Culture 39 

             8.2  Electrochemical Sensing of Cytochrome c (cyt  c) 39 

             8.3 

 

 Electrochemical Sensing of  Dopamine (DA) 

 

40 

 

  PART III  RESULTS AND DISCUSSIONS 41 

Chapter 9. 

 

 Structures and Surfaces of Intercalated Titanate 

Nanobelts 

41 

             9.1 Crystal-Lattices of the Intercalated Titanate Nanobelts 41 



ix 
 

             9.2  

             9.3 

               9.4 

                9.5 

 Thermal Stability of Intercalated Nanobelt  

 Surfaces of Intercalated Nanobelts  

 Ion Conductivity of Intercalated Nanobelts 

 Conclusion 

48 

50 

53 

56 

Chapter  10  Biosensory Membrane-bioscaffolds of H-Titante    

Nanobelts 

57 

           10.1 

           10.2 

           10.3   

               

10.4 

           10.5 

              10.6  

 FT-IR Characterization for Cyt c on the H-Nanibelts 

 Neuron Cells Growth on H-Titanate Nanobelt Scaffolds 

 Greatly Enhanced Electron Transfer on the Nanobelt 

Scaffolds 

 Sensing Cyt c by Square-Wave Voltammetry (SWV) 

 The Lattice-Intercalation Effect on Detecting Protein Cyt c 

 Conclusion 

57 

58 

60 

 

64 

67 

69 

Chapter 11.  Sensing DA on Membrane Scaffolds of H-Titanate 

Nanobelts 

70 

              11.1 

               

11.2 

 Sensing Dopamine (DA) on H-Titanate Nanobelts  Using                

Cyclic Voltammetry (CV) 

 Sensing DA by Differential Pulse Voltammetry (DPV) 

70 

 

76 

               11.3   Conclusion 79 

   References   80 

 



x 
 

LIST OF FIGURES 

Figure 4.1  (a) The applied potential, and (b) the curve of CV                                          26 

Figure 4.2 (a) The applied potential wave form, and (b) the resultant 
differential pulse voltammogram                                                                                

 

29 

Figure 4.3 (a) The applied potential wave form, and (b) the resultant 
square-wave pulse voltammogram                                                                                        

31 

 

 
 

Figure 10.1 

 
 
(a) FT-IR spectra. black for cyt c/titanate nanobelts mixed 
with KBr, pink for cyt c in the pH 6.8 buffer solution and 
blue for cyt c in pH ~2.5 buffer solution. (b) SEM image of 
PC-12 cells grown for 72 h on H-titanate nanobelts 
scaffolds.  

 
 

59 

Figure 9.1 (a) XRD patterns of titanate nanobelts: blue color is for H+–, 
green for Li+–, and red for Na+–nanobelt membranes. (b)  
H+– nanobelt TEM image 

 

44 

Figure 9.2 HRTEM lattice-fringe image for a H+–nanobelt.  45 

Figure 9.3 Nanobelt Characterizations. (a). A cross-section SEM image 
of a 36-μm-thick H-nanobelt membrane on an indium-tin-
oxide (ITO) substrate. (b) An SEM image of titanate 
nanobelts synthesized from hydrothermal method. 

 

47 

Figure 9.4  TGA analysis for H+–exchanged  (upper) and Na+–
exchanged (lower) nanobelt-membranes obtained at 10 
K/min under flowing N2 from room temperature to 500 ̊C ; 
Black color is for weight loss (%), blue or red for derivative 
of the weight loss (%). 

 

49 

Figure 9.5 The measurement of pH change for cation exchanged 
titanate nanobelts in various pH solutions/suspensions; red: 
Na+– exchanged titanate nanobelt; blue: H+– exchanged 
titanate nanobelt.   

 

52 

Figure 9.6 Correlations between the ion-concentrations and the ionic 
currents. The black curve: H+ across an H-nanobelt 
membrane, blue for H+ across a Na-nanobelt membrane, red 
for Na+ across a Na-nanobelt membrane, and green for Na+ 
across the H-nanobelt membrane. 

55 



xi 
 

 
Figure 10.2 CV plots at pH 6.8 buffer solution from the ITO glass 

electrodes modified with titanate-nanobelts (red), 450 
picomoles of cyt c on the titanate-nanobelts (blue). Scan 
rate: 0.2 V/s. 
 

62 

Figure 10.3  (a) Scan rates (V/s) for the cyt c 450 (picomoles).  Red, 0.2; 
Blue, 0.15; Dark red, 0.1; Green, 0.05; Dark blue, 0.01 in 
buffer solution at pH of 6.8 (b) the relationship between the 
scan rate and the ipc (blue spotted line) and ipa (black spotted 
line)                                                                               

 

63 

Figure 10.4 (a) CV (scan rate of 0.2 Vs -1) obtained from various cyt c     
concentrations in the pH 6.8 buffer. dark blue, 450 
picomoles; green, 347 picomoles; dark red, 243 picomoles; 
blue, 122 picomoles; and red, 45 picomoles. (b) The 
relationship between the concentrations and the ipa. 
 

65 

Figure 10.5  Square-wave voltammogram (SWV) study. (a). SWV of the 
450 picomoles cyt c/ titinate nanobelt in the pH 6.8 buffer 
solution.; Pink for 75 Hz and blue for 100 Hz. (b). The 
correlation between the frequencies and ip data.                                                           
 

66 

Figure 10.6  A linear relationship between the formal potential of the cyt 
c on the various cation exchanged nanobelt membrane and 
the XRD d-space of the intercalated nanobelts   

68 

 

 

Figure 11.1 CV plots at pH 6.78 PBF from the GC electrodes modified 
with titanate-nanobelts (blue, without DA) and 0.21mM DA 
on the titanate nanobelts (red). scan rate: 0.1V/s 

 

71 

Figure 11.2  (a) Scan rate (V/s) changes for the sample of 0.21mM DA on 
the nanobelt modified GC electrodes. red, 0.2; blue, 0.15; 
dark red, 0.1; green, 0.05; dark blue, 0.01 at pH of 6.78  (b) 
The relationship between the square root of scan rate and the 
ipc and ipa at pH 6.78 PBS                                             
 

74 

Figure 11.3 The CV of DA / H-titanate nanobelt / GC electrodes at 
different pH: red: pH 5.48; blue: pH 6.78; dark red: 7.39 at 
0.21mM DA  (b) the relationship between pH and formal 
potentials 
 

75 



xii 
 

Figure 11.4 

 

 (a) CV obtained from various DA concentrations on the 
nanobelt modified GC electrodes in the pH 6.78 BF at scan 
rate of 0.1 Vs -1. dark red: 42.2 μM; blue: 0.11 mM; red: 0.21 
mM  (b) Relationship between concentration and ipa and ipc 
 

77 

Figure 11.5 (a) DPV studied on the nanobelt modified GC electrodes in 
pH 6.78 BF solution at various concentrations: green: 21.1 
μM; dark red: 42.2 μM; blue: 0.11 mM; red: 0.21 mM.  
DPV conditions: amplitude = 0.05 V; pulse width = 0.05 s: 
sample width = 0.0167 s; pulse period = 0.2 s. (b) The 
relationship between the concentrations and the ip                                                                                                                   

78 

 



xiii 
 

LIST OF SCHEMES  

Scheme 1 The nanobelt’s lattice and facets                                         43 

Scheme 2 ORTEP illustration for titanate crystal structure                 43



xiv 
 

LIST OF ABBREVIATIONS 

 2D 

 3D 

Two-dimensional  

Three-dimensional  

 AFM Atomic force microscopy 

 Cyt.c Cytochrome c 

 DA 

 DDI 

 DPV 

e 

Dopamine  

Distilled deionized  

Differential pulse voltammetry 

electron charge (1.6 ×10-19 C) 

 E 

 Eº 

 ΔE  

 E½ 

 EDX 

 Ep 

 Epa 

 Epc 

Applied potential 

Formal potential 

Difference of the peak potentials  

Half peak potential 

Energy dispersive x-ray  

peak potential  

Anodic peak potential 

Cathodic peak potential 

 FET  

 FTIR 

Field-effect transistor 

Fourier transformation infrared spectroscope   

 GE 

 k 

Graphite electrode  

 The Boltzman constant 

PC-12 cells Pheochromocytoma cells  
 

 QD Quantum Dots 



xv 
 

 RE 

 RT 

 SAM  

 SEM  

 SWV 

Reference electrode  

Room temperature 

Self-assembled monolayer 

Scanning electron microscopy 

Square wave voltammetry 

 TGA 

 T 

Thermogravimetric analyses 

absolute temperature 

 TEM Transmission electron microscopy 

 WE Working electrode 

 XRD 

 ψ0 

X-ray diffraction 

the surface potential 

 

 

 

      

      

 

 

 



1 
 

PART I.  INTRODUCTION 

 
 

Chapter 1. 

Overview of Nanostructured Biomaterials 

 

1.1.  Nanostructured Fibrous Materials 

 One-dimensional (1D) nanomaterials usually refer to nanostructured 

fibrous materials including nanorods, nanobelts and nanotubes, each with one 

dimension between 1 and 100 nm. These nanomaterials, compared to their bulk 

counterparts, can offer unique opportunities for developing new devices in 

important applications ranging from space exploration to our daily life. For 

example, carbon nanotubes have been used in air revitalization to reduce the 

system-volume and increase the working efficiency for space-shuttle.

1

In recent years, enormous numbers of new properties and structures for a 

large variety of 1D nanomaterials (e.g. nanowire2,

 

3,4 and carbon nanotubes5) have 

been exploited in search for new nanotechnologies. However, developments of 

truly industry-viable nanotechnologies for advancing, especially, aerospace, 

energy, environmental, and life sciences still possess some long-unmet 

challenges. Much of the problems are due to the lack of understanding and control 

of interfacial properties at the nanoscales, especially at the nanomaterials-water 

interface. Growing demands for removing these technological roadblocks have 

been inspiring people worldwide to work hard on studying new basic and applied 

nanoscale interfacial properties along with developing new 1D nanomaterials. In 
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this end, there will be a growing need for exploiting new interfacial 

nanochemistry, and in turn for design and development of the new 1D 

nanomaterials and nanotechnologies.  

 

1.2 Neuron-regenerative Nanofibrous Bioscaffolds  

Nanomaterials in biomedical applications have been extensively studied 

lately because of their tremendous potentials in developing new drug delivery 

mechanisms and tissue engineering scaffolds,6,7

 Recent advances in bionanomaterials science offer a broad range of 

promising applications in neural tissue-engineering including promoting brain-

protection and repairing neural regeneration.8,

 on the basis of their unique 

nanoscale physical, mechanical, and chemical properties. These bionanomaterials 

are required to mimic the cellular microenvironment in biological systems and to 

provide the properties including biocompatibility, programmable degradability, 

inert immunity, high porosity, and low-cost.  

9 The advancement of the 

regenerative neural science has imposed a great demand for highly selective 

nanofibrous bioscaffolds due to the neuron-cell’s vulnerability to the environment 

change. To achieve this goal, numerous strategies for developing new fabrication 

processes and achieving desired properties have been investigated for DNA-, 

protein-, and polymer-based nanofibrous bioscaffolds. These synthetic 

nanofibrous bioscaffolds have been found good for neural tissue engineering 

because their properties are analogous to the natural extracellular matrix (ECM) 

in supporting the neuron-regenerative processes. 
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1.2.1 Nanofibrous Scaffolds as Extracellular Matrix Analogues.  

The nanofibrous scaffolds provide a promising framework to support cells 

in neural reconstruction.10,11

11

 The surface of nanofibrous scaffolds can be modified 

by native extracellular matrix (ECM) proteins and nucleic acids to offer the 

suitable microenvironment for promoting cell adhesion, proliferation, 

differentiation,  and growth. ,12,13

Other strategies for fast neurite outgrowth used a nanofibrous scaffold 

functionalized with bioactive molecules such as ECM proteins, neuroactive 

peptides and growth factors. Laminin, one of the ECM proteins, has been 

incorporated with poly (L-Lactic acid) (PLLA) nanofiber by electrospinning 

procedure.

  

The desired self-assembling peptide nanofiber bioscaffolds have been 

successfully implanted into the lesion site in the hamster superior colliculus and 

physically mimicked the ECM.14 This bioscaffold consists of entangled 

nanofibers which were made through ionic L-amino acid and self-assembled 

highly hydrated scaffolds in the presence of physiological solutions. The 

experimental results illustrated that the bioscaffolds provided the permissive 

environment, and not only significantly regenerated the axons but also 

reconnected the disconnected damaged brain tissue. The specific structure of this 

bioscaffold connected the two extents of the lesion, and then the cells could move 

into the scaffold. This promoted the interaction between the scaffolds and the 

ECM and neural tissue on both sides of the lesion cavity.   

15 This modified nanofibrous scaffold created the biomimic 

environment and promoted cell adhesion, proliferation, and differentiation. The 
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aligned PLLA nanofibrous scaffold immobilized with laminin and basic 

fibronectin growth factor using di-amino poly(ethylene glycol) as connector 

which enhanced the bioactivities of the bioscaffold and promoted and guided the 

neurite outgrowth.16  

Many studies have demonstrated that neural behaviors have been affected 

by the various nanoscale morphologies and the microscale alignments of 

nanofibrous scaffolds produced by electrospinning.16 The aligned electrospun 

nanofibrous scaffold served as nerve guidance channels and could direct the 

dorsal root gangia (DRG) neurite growth compared with intermediate and random 

aligned scaffolds.17

1.2.2 Growth of  Neural Stem Cell and Nanofibrous Scaffolds  

 The DRG neurite growth on nanofibrous scaffolds coated 

with laminin in different orders, structures, and surface properties has been 

extensively studied.18 The results demonstrated that the DRG neurite outgrowth 

expressed either the aligned or random neurite fields depended on the orientation 

of the underlying nanofibers.   

 

The nanofibrous scaffolds could be used as the substrate to support neural 

stem cells for brain repair. This is because the desired nanofibrous scaffolds 

promoted the attachment, growth, and differentiation of neural stem cells. Many 

strategies to modify and functionalize the scaffolds include the change of the 

surface morphologies, modification of the surface with bioactive molecules, and 

variation of the cell seeding densities.  
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The mouse embryonic stem cells (ESCs) have been seeded on both 

random and aligned nanofibrous scaffolds modified with retinoic acid.19

The surface modifications of nanofibrous scaffolds with bioactive 

molecules physically mimicked the architecture of the extracellular matrix and 

 The 

significant results demonstrated that the aligned nanofibrous scaffolds not only 

enhanced the differentiation of ESCs into neural lineage cells but also guided the 

direction of neuritis outgrowth, in comparison to the random nanofibrous 

scaffolds.  The proliferation and differentiation of neural stem cells (NSCs) could 

be affected by various biochemical and topographical cues.20 The rat 

hippocampus-derived adult NSCs have been cultured on the nanofibrous and 

microfibrous polyethersulfone (PES) scaffolds coated with laminin. The rat NSCs 

represented less cell spreading, migration, and proliferation with increasing 

diameters of nanofibrous scaffolds under the proliferation condition (serum free 

medium and fibroblast growth factor-2 (FGF-2). The results also demonstrated 

that the rat NSCs had a faster proliferation rate and a higher percentage of 

proliferative rat NSCs on a two dimensional (2D) substrate compared with that on 

the increasing diameters of nanofibrous scaffolds. Under the differentiation 

condition (1 mM retinoic acid and 1% fetal bovine serum (FBS), the rat NSCs 

differentiated into oligodendrocytes on the 2D substrate and smaller diameters’ 

nanofibrous scaffolds. For large diameter scaffolds, they differentiated into 

neuronal lineage. These evidences suggested that the topographical cues of 

nanofibrous scaffolds and biochemical conditions have great influenced the 

differentiation and the proliferation on the stem cells.   
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offered opportunities for guiding and promoting the neurite outgrowth.  The 

desired composition, morphology, and structure of the nanofibers could impact 

the cellular adhesion, spreading, migration, proliferation, and lineage specification 

as applied in conjunction with targeted biochemical signals. These results 

suggested the nanofibrous scaffolds have significant potential in application to the 

neural tissue engineering.  

 

1.3 TiO2-based Nanostructured Biomaterials 

Titanium dioxide (TiO2) has been widely used in photocatalysis,21, 22 

catalysis,23 hydrogen storage,24  and lithium battery.25

To synthesize TiO2 nanostructured materials, the main methods are 

template synthesis, electrochemical synthesis, and hydrothermal syntheses. The 

template synthesis includes a polymer mold,

,26 TiO2 nanomaterials have 

emerged as a very useful nanomaterials because of their unique chemical and 

physical properties. These include a large surface area, optical transparencey, 

low-toxicity, high thermal stability, and chemical and photochemical stabilities.  

 

1.3.1 Syntheses of TiO2–based Nanostructured  

27 direct deposition technique,28 sol-

gel template preparation,29 supermolecular assembled processes,30 and sol-gel 

coating.31  The electrochemical synthesis includes direct anodization of Ti foil in 

an H2O–HF electrolyte at room temperature.32 The other fluoride-ion-containing 

electrolytes were also available for this purpose.33,34  The products of template 

and electrochemical synthesis were TiO2 nanotubes. For the alkaline 
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hydrothermal synthesis, the raw TiO2 powder reacts with high concentrations of 

10M NaOH (or KOH) solution at various temperatures (60 ─ 240 ºC) and can be 

converted titanate nanomaterials such as nanoparticles, nanotubes, and 

nanobelts/nanoribbons. The nanostructure of the products depends on the 

temperature and time. Based on the examination of transmission electron 

microscopy (TEM), scanning electron microscopy (SEM), and x-ray diffraction 

(XRD) data, the crystal structure of titanate nanomaterial consists of layered TiO6 

edge and corner sharing octahedron and cations separated between layers.35

The thermal stabilities were different for nanofibers and nanotubes. 

During calcination, Na-titanate nanofibers were consecutively transformed to 

TiO2-B at 400 ºC, anatase at 700 ºC, and rutile at 1000 ºC, and then the 

nanofibrous morphology disappears.

, 36   

 

1.3.2 Properties and Applications of TiO2–based Nanomaterials                                                             

36 The Na-nanotubes was stable until 600 ºC, 

but it changed to TiO2-B with some rutile after heating over 800 ºC.35 It was 

found that the amount of sodium cations separated between the interlayers 

affected the thermal stability of titanate nanotube.     

The absorption and magnetic properties could be changed through 

intercalating Fe atom into proton (H+) titanate nanotubes (H2Ti3O7) under 

hydrothermal synthesis.37 The experimental result showed the improved 

efficiency of photoabsorpation because the absorption edge was shifted from 

ultraviolet to the visible region after doping Fe into the nanotubes. It was 

supported by the theoretical calculation which demonstrated that the band gap of 
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Fe intercalated titanate nanobelts decreased dramatically compared with that of 

titanate nanobelts because of introducing the inter gap band.  The magnetic 

property of also changed based on the inter gap band.   

The layered titanate nanomaterials have the property of cation 

intercalation. The process of ion exchange had been studied by using alkali metals 

cation38 and transition-metal ions.39

38

  The interlayer distance of the nanotube was 

unchanged after intercalating with alkali metal cations (Li, Na, K, Rb, Cs) in 

aqueous solution.  The optical and magnetic properties can be modified by 

intercalating with different transition-metal cations (Cd2+, Zn2+, Co2+, Ni2+, Cu2+, 

Ag+) by stirring the nanotubes in the transition-metal solutions.39 The H+ may 

intercalate with other alkali and transition cations, but it found that the reversed 

reaction was difficult.   

 For photocatalysis application, both H-titanate nanofibers and its 

composite structure, H-titanate nanofiber covered with anatase nanocrystals, had 

photocatalytic activity.  The synthetic dyes degraded this photoactivity under UV 

light irradiation.40 After decorating with CdS nanoparticles, the cation exchanged 

titanate nanotubes demonstrated the photochemical activity.41

The titanate nanotubes synthesized through hydrothermal reaction showed 

good catalytic properties and was a novel, inert, and versatile substrate for both 

inorganic and biomolecules.42 The Ru(III) hydrated oxide highly loaded on both 

the inner and outer surface of the titanate nanotubes and exhibited the selective 

oxidation of alcohols. The catalyst of Ru(III)/nanotube demonstrated high 
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selectivity and  improved activity compared with Ru(III)/Al2O3, and good 

stability.43

Developing new advanced materials for hydrogen storage is one of the 

most challenging barriers for researchers because hydrogen can be used as an 

energy carrier, hydrogen fuel cell, and an environmentally clean energy. The TiO2 

nanotubes were found to reproducibly store hydrogen up to ~2 wt% at room 

temperature and 6 MPa.

   

43 The 75% of stored hydrogen from physisorption can be 

released at ambient pressure.  The 13% stored hydrogen weakly chemisorbed 

could be released at 70ºC. The other 12% is hydrogen bonded to oxide ions as 

water and can be released at 120ºC.  A similar result was found that hydrogen was 

reversibly accumulated on the multilayer titanate nanotube through sorption in the 

temperature range from -195 – 200ºC and pressure from 0 – 6 bar.44  

 

1.4 Multifunctional Membrane of Zwitterionic Titanate Nanobelts 

The unique chemical and physical properties of nanostructured materials 

have attacked novel attentions today due to the emerging applications in the life 

science and medicine,45, 46, 47, 48 photocatalysis,49 solar cell,50 lithium batteries51, 

52 and self-powered nanosystems.53 The diameter of nanobelts54 and /or nanowires 

is compatible with biological molecules, protein and viruses. The label-free and 

direct detection of single viruses using functionalized silicon nanoire has been 

first achieved in Liber’s group.55

45

 The real-time and selective measurements of 

multiple cancer marker proteins on functionalized silicon nanowire surface  have 

been developed in recent years. The remarkable example for multifunctional 
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semiconductor quantum dots was that used in cancer targeting and imaging in 

vivo conditions.48 

 Layered nanostructured titanate provided the opportunities to change the 

electrical conductivity, magnetic and optical properties through controlling the 

composition and crystal structure.56, 57

56

, 58 The intensity of photoluminescence was 

dramatically increased by using cation (Na+) exchanged layered titanate 

nanosheets.  The cation size and location in the interlayer space were believed 

the major influenced parameters that changed the electronic and geometric 

structure of the [TiO6] octahedron.  The transition-metal ions of Fe and Ni 

intercalated into layered titanate nanotube H2Ti3O7, the band gap of the Fe- and 

Ni- intercalated titanate nanotube were considerably shifted to the visible 

region.57 The experiment data was agreed with simulation model in this 

experiment.  From the calculating electron density maps, the researchers found 

the band gap was reduced based on the overlapping the 3d electrons of transition-

metal cation of Fe or Ni in the interlayer with electron clouds of two [TiO6] 

octahedral layers.  

The selectively chosen cation to functionalize the nanostructure titanate 

may change the physical property of nanomaterials such as magnetism.58 After 

intercalating the transition-metal ion Co2+ to the titanate nanotube (NaxH2-xTi3O7) 

by simply stirring in the ammonia solution at room temperature, the Co-

substituted titanate nanotube was converted to the magnetic semiconductor.  

The layered titanate nanobelt is promising in rechargeable lithium 

batteries due to its unique layered lattice and cation exchangeable property. To 
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improve the capacity of rechargeable lithium batteries, the intercalation of lithium 

cation into layered nanostructured titanate was developed.59, 60  The electrode 

using lithium cation intercalated titanate Nanobelt exhibited high 

discharge/charge rate capacity, large lithium intercalation capacity, and great 

cycling stability.  

 To develop the electrochemical sensors for chemical and biological 

targets, the sensitivity and selectivity of electrodes are the most important 

parameters that have challenge to improve. The modified electrodes for 

electrochemical sensing have been used to reach the required goals.61,62,63,64,65,66 

The ideal structure and properties of material for modified electrode to detect 

biological targets are biomembrane-like, biocompatibility, and minimized 

degradation during the monitoring. The sensitivity and selectivity are enhanced at 

same time.   

The heme protein cytochrime c (cyt.c) has been widely investigated since 

the function of cyt. c is a mobile shuttle for electron transition from cytochrome 

bc1 complex to cytochrome oxidase in the mitochondrial respiratory chain.67 To 

study electron transfer of cyt.c, the modified electrodes using conducting 

polymer, carbon nanotube, and clay materials have been developed.68,69,70 

Compared with conducting polymer, carbon nanotube, and clay materials, the 

nanostructured titanate has the advantages of intrinsic structure and properties as 

mentioned before. 
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Chapter 2. 

Overview of Biosensors Based on 1D Nanostructures 

 

2.1  Biosensors Based on 1D Nanostructures.  

  Nanostructured sensors (e.g. silicon nanowire- and carbon nanotube-

based sensors) are being explored as new and potential tools for studying 

medicine and life sciences. Silicon-nanowire sensors offer a powerful and general 

platform for direct, ultrasensitive and real-time detections in future diagnosing 

and treating diseases.71

 The working principle of silicon nanobelt-base sensors is the field-effect 

transistor (FET) in which the conductivities of silicon nanowire will be monitored 

corresponding to the variation of the electric field or potential at the surface of the 

device. The silicon-nanowire sensors modified with the specific receptor can be 

used to detect cancer marker protein and single viruses.

   

71 The capabilities of 

nanowire / neuron device have many advantages over microfabricated electrodes 

and planar FET.  The advantages included the differences of array geometry and 

addressable separations, association of n- and p- type elements in well-defined 

positions, differences in the spatial and number location for the hybrid nanowire / 

neuron injections, the smaller active junction area (~20 nm wide), simulation of 

action potential spikes in the soma, and highly integrated system for investigation 

of synaptic processing in neural networks. The silicon nanowire-based devices 

represented the specific advantages which related to the structure, size, and 
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electronic properties of the silicon nanowires. These properties are the key 

elements for applying to detection of a broad range of medicine and life sciences. 

However, the Si-nanowire based FET sensors are costly to make and demand 

special training for users. 

   The intrinsic chemical and physical properties of carbon nanotubes can 

offer the unique opportunities to modify the surface of the carbon nanotures. The 

modified carbon nanotubes may be used as gas sensors72,73,74 and 

biosensors75,76,77

 The functionalized SWNT can afford biosensing applications. For 

example, the single-walled carbon nanotube-field effect transistors (SWNT–FET) 

detected the conductance changes for the processes of specific proteins bonding in 

aqueous solutions. The proteins (e.g. biotin, staphylococcal protein, (SpA), and 

UIA antigen) conjugated to the SWNT selectively bound to the target proteins 

among the other proteins in the solution though the direct electrical conductance 

,  depending on the surface coverage of analytes. For instance, the 

carbon nanotubes assembled a network or mesh on the interdigitated electrodes 

(IDE) surface using a solution casting process which provided the condensed 

nanotubes performance for gas sensing. The gas-sensing has achieved by 

monitoring the change of the electrical resistance. The good accessibility for 

adsorption of gas vapor onto single wall carbon nanotubes (SWNTs) had also 

been fulfilled at the same time. Based on the theoretical calculation and 

experiment results, the resistances had been changed due to the mobile number of 

charge carries that came from charge transfer between absorbed molecules and 

the SWNT valence band.  
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without the labeling. This capability offers opportunities for clinic applications 

and fabrication of high-density nanotube device. By increasing the contact area of 

the devices, the detected concentration of specific bonding of protein was reached 

at 1 pM.77 

 The optical properties (e.g. Roman scattering and photoluminescence) of 

carbon nanotubes may be not only applicable to the imaging applications,78,79

 TiO2 based chemical and biochemical sensors are one branch of the 

sensors’ family of nanostructured materials. Like quantum dots, carbon nanotube, 

and silicon nanowire, TiO2 based nanostructured materials such as 

nanoparticles,

 but 

also providing a powerful tool to selectively and sensitively detect proteins.80 The 

unique optical properties of SWCNT are high Roman scattering cross-section 

based on resonance enhancement at near-IR absorption transitions and extremely 

photostable fluorescence. These properties offer easy and unmistakable detection, 

no blink, and no diminishment during the period of experiment, with one problem 

that the detection may not be that portable in field detections. 

  

2.2  Biosensors based on TiO2-Based Nanostructures 

81 nanotubes,82,83 nanofibers84,85 and nanpsheets86,87

 Nanoparticles of TiO2, sized around 45 Å, can be combined with 

oligonucleotide DNA to form the nanocomposites via covalent bonding.

  have been 

explored the novel applications for sensing.    The gas sensors using flame-made 

TiO2 anatase nanoparticles were also developed which can be used to analyze the 

volatile organic compound and CO at 500 ºC.88 

81These 
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nanocomposites presented both TiO2 nanoparticles property (e.g., intrinsic 

photocatalytic capacity) and DNA bioactivity. The nanocomposites as the 

vehicles can be introduced into mammalian cells in vitro for initiate intracellular 

processes and biochemical reactions to express biochemical properties. This 

method provides a new possibility for medical biotechnology as well as chemistry 

and material sciences. The exciting and unique property of light-inducible nucleic 

acid endonuclease is also possessed by the TiO2-oligonucleotide nanocomposites. 

The great potential for this technique could become a powerful tool for gene 

therapy. 

 The lactate biosensor was illustrated by using hydrogen titanate nanotubes 

as a promoter for electron transfer.82 The hydrogen titanate nanotubes not only 

offered the 3-D porous network for immobilizing lactate oxidase (LOx) as a 

promoter, but also retained the substrate-specific catalytic activity of enzyme.  

The advantages of lactate biosensor are lowered the redox potential, removed the 

oxygen influence from the signal, improved response for lactate acid, and 

increased the sensitivity.  

 The titanate nanotubes modified electrodes were used to selectively 

detecting dopamine (DA) in the presence of ascorbate acid (AA), uric acid (UA), 

heme protein, and nitrate.83 The experiments demonstrated the titanate nanotube 

modified glassy carbon electrode may distinctively separate redox potential for 

DA from the large excess of AA and UA in pH buffer 7.4. The possible reason 

was due to the electrostatic reaction between titanate nanotubes and DA, AA and 

UA. The negatively charged surface of titanate nanotubes would favor positive 
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cation DA and attracted DA to its surface. On the other hand, the AA and UA 

would be absorbed by interaction with hydrophilic oxygen-rich groups and caused 

the electron repulsion, AA and UA rejected for the nanotubes’ surface. 

 The interactions between protein and membrane were studied by using 

electrochemistry of heme protein, myoglobin (Mb), immobilized on the hydrogen 

titanate nanotubes. The experimental results illustrated that the protein Mb was 

not denatured after immobilization on the titanate nanotube modified pyrolytic 

graphite electrode (PGE) and observed the direct electron transfer from heme 

center to the electrode.  The enzymatic activity of Mb was analyzed by using 

same electrode in the presence of H2O2. The result suggested the excellent 

catalytic performance such as the lower detection limit and wider liner range. 

 To monitor nitrate in the water, the titanate nanotube modified electrode 

were developed to measure 8 mM nitrate in 0.1 M acetate buffer solution. The 

modified electrode can perform many cycles as switch with on/off function in the 

acetate buffer solution with and without detected nitrate. This phenomenon 

offered the potential application for novel nitrate sensors.  

 The TiO2 nanofiber doped with LiCl prepared though electrospun was 

used to detect the humidity.84 The sensitivity and stability of as-prepared humidity 

nanosensors improved dramatically compared with that of previous reported in 

the literatures. The humidity nanosensors explored excellent sensing 

characteristics such as ultrafast response time (≤ 3s), recovery time (≤ 7s), good 

reproducibility, and linearity.  The oxygen gas sensor based on titanate Nanobelts 
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synthesized using hydrothermal method exhibited the linear responses for 

resistance and improved the sensitivity.85 

 The heme proteins, myoglobin and horseradish, may intercalate with 

titanate nanosheets and maintain in the interlayers of titanate nanosheets.86, 87 The 

titanate nanosheets was prepared by solid-state reaction that heated Cs2CO3 and 

TiO2 at 1027K and exchanged cation to produce HxTi2-x/4O4•H2O. The UV-vis 

experiment demonstrated the good biocompatibility of titanate nanosheets 

immobilized heme proteins.  The heme proteins immobilized on the titanate 

nanosheet exhibited the fast electron transfer and the good enzymatic activity for 

H2O2 with high sensitivity. The wide linear range and low detection also achieved 

at same time.  

 TiO2 based titanate nanotube is an n-type semiconductor. The biosensors 

based on the titanate nanotube, like biosensors based on the semiconductor silicon 

nanowires, have great potentials in developing the nanofibrous electronic devices 

for direct and label-free detection and sensing that are attractive for medicine and 

life sciences. Comparing with the synthesized silicon nanowires, the hydrothermal 

synthesis of the titanate nanofibers is simple, cheap, reproducible, and sensitive to 

cations present in the system. Thus, a systemically study on the structure of 

titanate nanofiber would help to well understand interfacial chemical and physical 

properties and in turn to fully control the electric and optical features. 
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Chapter 3.  

Motivation 

 

3.1  Underexploited Issues Regarding the Titanate Nanofibers:  

It was believed that we could use cation exchangeability to study cation 

intercalated layered titanate nanobelt and electrochemical effect of protein cyt.c 

on modified electrodes using cation exchanged titanate nanobelts. The layered 

structure of titanate nanobelts could be characterized using selected area electron 

diffraction (SAED), high resolution transmission electron microscopy (HRTEM) 

and X-ray diffraction (XRD). The XRD patterns could show that different cations 

(H+, Li+, Na+) occupied the interlay space inside the nanobelt and exhibited the 

various distance between the layers. Thermalgravimetric analysis (TGA) and pH 

titration may help us reveal the stabilities of structures and surface properties of 

cation exchanged titanate nanobelts. The measurements of ionic conductivities 

may show the various surface properties of cation exchanged titanate nanobelts. 

The electrochemical method could demonstrate that the redox reaction of cyt.c on 

the modified electrodes using different cation exchanged titanate nanobelts could 

result in more negative formal potential as cation sizes increase. Presumably, the 

formal potential of cyt.c might be in the order E˚(Na–nanobelt membrane) > E˚ 

(Li–nanobelt membrane) > E˚ (H–nanobelt membrane). Such results may 

represent that the proton exchanged titanate nanobelts could be more sensitive for 

redox reaction of protein cyt.c.   
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 3.2.  New Basic and Applied Interfacial Nanochemistry to Be Expected: 

The cyt.c sits in the inter-membrane space of mitochondria, behaving as 

an electron carrier in the electron transport chain, thus being redox active and in 

turn ideal for electrochemical study.89 Therefore, simply, quickly, and sensitively 

detecting cyt.c is important. In order to develop multiplexed electrochemical 

biosensor on bioscaffold, it is crucial to prove a quick electron transfer across the 

nanobelt-membrane between the redox protein and the solid electrode surface, 

which defines the need of this work to precisely nanoengineer and chemically 

modify the nanobelt-membrane on the electrode surface. 

 One of applications of titanate nanobelt bioscaffold was the controlled 

drug release.90 The released chemical species can be detected by using 

electrochemical methods if electrons can be transferred between species. 

Dopamine is one of the neurotransmitters in the mammalian central nervous 

system and has been studied by using microelectrodes for many years.91 The 

detection of dopamine released from the synapses has challenges because of the 

spatial problem and minimal perturbation. Therefore discoveries of new 

biomaterials of self-assembling 3D scaffold to support the neuron cells growth 

and detections of the released dopamine become important. Titanate nanobelt 

bioscaffolds is one of the promising biological materials to study neurochemistry 

based on its intrinsic physical and chemical properties. The developments of easy 

to make, cheaper, and disposable biosensors based on titanate nanobelt 

bioscaffold for clinic use and commercials available are the tasks for the 

researchers.  
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Chapter 4. 

Characterization Methods 

 

4.1  Powder X-Ray Diffraction (XRD)92: 

 The applications of XRD are determination of crystalline phases and 

orientation, illustration of lattice parameters, identification of crystallinity and 

components of a sample. The advantages of XRD are simplicity of sample 

preparation, rapidity of measurement, and nondestructive. The unique XRD 

pattern can be a fingerprint of a pure material.    

  XRD instrument consists of X-ray tube, substrate and detector. The 

monochromatic X-ray produced from the X-ray tube strikes the sample. The 

diffraction follows Bragg’ law:  

2d sinθ = nλ 

In the equation of Bragg’s law, λ is the wavelength of incident beams; d is 

the distance of two atomic planes; θ is the angle between incident beam and 

atomic plane in the 0-180˚ arrangement and n is integer. The angle θ collected 

from the diffraction pattern is known. The d space can be calculated by using 

Bragg’s law. For identification of unknown sample and phase of known sample, 

using experimental data compare with standards in Joint Committee on Power 

Diffraction Standers (JCPDS) or International Center for Diffraction Data (ICDF), 

the information of sample such as crystallographic data, chemical formula, and 

chemical name can be found. 
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4.2. Scanning Electron Microscopy (SEM): 

 The advantages of SEM over the optical microscope are high 

magnification (10,000 × plus), three dimensional (3D) image, large depth of field, 

and higher resolution. SEMs imitated the reflecting light microscopes and provide 

similar information as the light microscopes. SEM can be used to characterize 

topography and morphology of materials. The topography presented the 

relationship between surface features and the properties of materials. The 

morphology showed the shape and size of the sample and demonstrated the 

relationship between the structure and properties of materials.  

SEM may also afford us to characterize the chemical composition and 

crystallinity of materials. The SEM equipped with energy dispersive x-ray (EDX) 

analysis may perform the compositional analysis. It provides the ratio of elements 

and compounds of materials and the relationship between the composition and 

properties of the material.  For single-crystals, SEM illustrates the arrangement of 

atoms and degree of order of material crystallinity to certain extent.  

SEM has three components: electron optical column, vacuum system, and 

signal detection & display.93 The function of electron optical column is to 

produce electrons from the electron source, to form thin, tight, and coherent 

electronic beam through magnetic lenses, to control and modify the beam from 

magnetic coils, and to define the beam and prevent electron spray through 

apertures, etc. The vacuum system consists of a chamber, vacuum pumps, valves, 

and gauges. The detection system has the secondary detector, and the EDX 
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detector.  The secondary detector provides 3D image with a large depth of field of 

the sample. 

The electron optical column includes first condenser lens, condenser 

aperture, second condenser lens, objective aperture, scan coils, and objective lens.  

The general working principle of SEM is that an electron beam is produced by 

virtual source under high voltage and vacuum. The electron beam is condensed by 

first condenser lens to form the beam and limit the amount the current in the 

beam. The condenser aperture constricts the beam and eliminates some high angle 

electrons. The beam becomes thin, tight, and coherent as it passes through the 

second condenser lens. The high-angle electrons in the beam are eliminated 

further from object aperture. The set of scan coils sweep the beam and dwell it. 

The objective lens focuses the scanning beam onto the part of sample. The 

interactions between beam and inside sample94 occur after the beam strikes the 

sample. The backscattered electrons, secondary electrons, and x-rays are produced 

from the sample and collected for detection. 

 

4.3  Transmission Electron Microscopy (TEM): 

TEM can provide information such as morphologic, crystallographic, and 

compositional information for a solid sample as small as in atomic scale. The 

detections of the atomic arrangement and their degrees of ordering for 

crystallography of the sample are in a few nanometers in diameter. TEM may 

offer compositional information since it is usually equipped with the EDX.  



23 
 

The great advantage of TEM over SEM is that the observed 

crystallographic information can be coupled with the image in atomic scale.  TEM 

consists of the following major parts.95

TEM has three imaging formations. They are mass-thickness contrast, 

diffraction contrast, and phase contrast. The mechanisms for both mass-thickness 

and diffraction contrast are based on change amplitude of the electron waves. 

 The illumination system includes electron 

gun and condensers. The objective lens belongs to the image system. The 

projective system has several projector lenses. The apertures influence the 

formation of images and diffraction patterns.  

In experiment, the electron-gun produces a stream of monochromatic 

electrons. The first condenser lens show the spot size of electron beam. The 

second condenser lens changes the size of the spot from a wide dispersed spot to a 

pinpoint beam on the specimen. The condenser aperture restricts the beam and 

knocks out the high angle electrons. The beam hits the sample and parts of it are 

transmitted. The first intermediate image and diffraction pattern are 

simultaneously produced by focusing the transmitted beam through objective 

lens; the electron diffraction pattern is focused on the back focal plane. The image 

formed by objective lens is enlarged through the intermediate and projector lenses 

all the way. The optional objective aperture may enhance the contrast since it 

blocks the high angle diffracted electrons. The function of selected area aperture 

enables the user to get diffraction pattern from a specific area.  

 

4.4   High Resolution Transmission Electron Microscopy (HRTEM)96: 



24 
 

However, the phase contrast does not need the objective aperture or use a very 

large objective aperture to ensure that all the beams (transmitted and diffracted 

beams) are contributed to form an image. HRTEM can demonstrate the imaging 

of lattice fringes in which the spacing and interaction angles are same to those of 

specific planes in the crystal. It helps users to illustrate how the atoms in a 

specific structure are periodically arranged. 

 

4.5  Thermogravimetric Analysis (TGA)97 

TGA is an analytic technique that characterizes a material’s thermal 

stability associated to decomposition, dehydration, oxidation or reduction, phase 

transformation, etc. TGA monitors these properties though the weight loss or gain 

of the sample as a function of temperature in a controlled atmosphere.  

 The analyzer of TGA has a high-precision balance and a small pan for 

loading the sample. The pan is in the electrically heated oven which has a 

temperature controller. The temperature in the oven routinely reaches 1000̊C or 

higher. The oven is insulated greatly in order to keep the system away from any 

change in the environmental temperatures. The inert or desired gas is purged to 

the oven so as to avoid undesired redox reactions or other chemical and physical 

changes during the testing.  The weight, temperature, and temperature changes are 

measured in TGA measurements with a high degree of precision. The weight loss 

curve represents the relationship between the weight loss and the heated 

temperature; however the derivative curve of the weight loss provides the points 

at which the more accurate temperature for weight loss is identified. 



25 
 

4.6  Fourier-Transform Infrared spectroscopy (FTIR): 

The wavenumber (cm-1) of mid infrared (IR) spectroscopy in 

electromagnetic spectrum is from 4000 to 400 cm-1.98 Usually organic molecules 

absorb infrared radiation and convert the absorbed energy to the energy of 

molecular vibration. IR can be served as a fingerprint for chemical components 

because the absorption occurs just as the radiation energy is matched the energy 

of the specific molecular radiation.  

IR can be used to monitor chemical reactions in-situ, identify an unknown 

compound, determine chemical groups in a specific compound, and characterize 

optical conductivity. IR method may measure samples, such as solids, liquids, and 

gases. IR is a quick and cheaper spectroscopic technique comparing with nuclear 

magnetic resonance spectroscopy (NMR) and mass spectroscopy (MS).  

FTIR instrument includes the source, the interferometer, the sample hold, 

the detector and the computer.99 The source emits the infrared energy and the 

beam passes through an aperture that controls the portion of energy transferred to 

the sample. The function of the interferometer is to convert the beam into the 

interferogram signal which passes the sample. The beam transmits through or 

reflects off from the sample surface depending on the type of analysis and   

measures from the detector. The measured signal transfers to the computer to 

produce the final infrared spectrum for the sample.  
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4.7  Electrochemical Methods100: 

4.7.1 Cyclic Voltammetry (CV).  

CV is an important and common analytic method in electrochemistry. CV 

can be used to find the information about the electroactivity of compounds, to 

monitor coupled chemical reactions, to determine the mechanisms and rates of 

oxidation/reduction reactions, to study the electrode surfaces, etc. 

 

 

Figure 4.1 (a) The applied the potential (b) the curve of CV100 

 

The electrochemical cell for CV usually has three electrodes: working 

electrodes (WE), counter electrode (CE), and reference electrode (RE). In the CV 

experiment, the applied potential is needed to desire levels depending on the 

electroactive species. The potential of WE is linearly changed as the applied 

potentials sweep back and forth with time, as shown in Figure 4.1(a). The current 

passes through a WE and a CE in an electrolyte solution, and the current of the 

working electrode is measured as a function of potential. The potential of the WE 

is measured with respect to the RE during the potential scan.  
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As the potential increases during the scan, as shown in Figure 4.1(b), the 

electroactive specie (A) will gain an electron. In a reduction reaction, the A will 

be reduced to A– at the WE, resulting in a cathodic current. As the potential scans 

to the opposite direction in an oxidation reaction, the A– will lose an electron and 

be oxidized to the A at the WE, resulting in an anodic current. 

For the electrochemically reversible (Nernstian) redox reaction, the 

important parameters are peak potential (Ep), half wave potential (E½), anodic 

peak potential (Epa ), cathodic peak potential (Epc), the difference of the peak 

potentials (ΔE), and peak currents (ipa and ipc).  For the reversible (Nemstian) 

reaction, the peak potential does not change for the various scan rate and 

concentrations. The peak separation (ΔE) is 59 / n (mv). Ip depends on the square 

root of the scan rate. The calculation equations are listed below. 

Ep = E½ +/– 1.109 (RT/nF) 

ΔE = | Epa –Epc | = 2.3 (RT/nF) = 59 / n (mV) (at 25 ºC)  

ip = k n(2/3) A D(1/2) c v(1/2)  

E = E˚ + (RT/nF) ln[Co]/[CR] 

where, T:  temperature (K) 

n: the number of electrons (eq/mol) 

F: Faraday’s constant (96,485 e/eq) 

A: electrode area (cm2) 

D: diffusion constant (cm2/s) 

c: the bulk concentration (mol/cm3) of the redox species 
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[Co] ([CR]): the concentration of oxidized (reduced) specie at the electrode 

surface 

E˚: the formal electrode potential of redox specie 

E: the applied potential 

v: scan rate (V/s) 

k: Randles-Ševcik-constant (2.69*105 A.s.V-1/2 mol-1 at 25 ˚C) 

 

 

4.7.2 Differential Pulse Voltammetry (DPV).  

Pulse methods included  DPV and Square Wave Voltammetry (SWV) 

have many advantages over cyclic voltammetry such as minimizing background 

charging current and enhancing sensitivity and speed. For DPV, the potential 

wave form applied to the working electrode is a sequence of pulse showed in 

Figure 4.2(a). The pulse period, pulse width, pulse amplitude, step E, and sample 

period are parameters of the DPV. The current is measured at the points of the 

beginning and end of the each pulse period. The selected sampling points are 

allowed for the decay of nonfaradaic current. The resulting differential pulse 

voltammogram is presented in Figure 4.2b.  

 

 

 

 

 



29 
 

 

 

 

 

 

 

                                          Figure 4.2 (a) The applied the potential wave form   

                                            (b) The resulting differential pulse voltammogram100 
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4.7.3 Square Wave Voltammetry (SWV).  

The advantages of SWV are high sensitivity, rejection of background 

current, high signal to noise ratio, and lower detection limit (as low as 10-8 M).   

The applied excitation signal in SWV is a symmetrical square-wave pulse 

showed in Figure 4.3(a). The amplitude (∆Ep) is superimposed on a staircase 

waveform of step height ΔEs. The tp is a pulse width.  The net current is produced 

by taking the difference between the forward (i2 at point 2) and reversed current 

(i1 at point 1).  The peak height (ip) showed in Figure 4.3(b) is increased as the 

concentration of the redox species increases.  
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    Figure 4.3 (a) The applied potential wave form 

                           (b)  The resulting square wave pulse100 
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Part II.  EXPERIMENTAL 

 
 

Chapter 5. 
 

Materials and Instrumentations 
 

 
5.1.   Chemicals.  

Horse-heart cytochrome c (cyt c) was purchased from Sigma, and used 

without further purification. Dopamine and ascorbic acid were purchased from 

Sigma and used without further purification. NaOH, KOH, K2HPO4, KH2PO4, 

and H3PO4 were of analytic grade, purchased from VWR. TiO2 powder (Degussa 

P25) was used as received. 

Three phosphate buffer solutions were prepared from K2HPO4 and 

KH2PO4. The pH values adjusted using KOH and H3PO4 were prepared to 5.5, 

6.8, and 9.0 in distilled deionized water (DDI water, pH ~ 6.5), respectively. The 

concentrations of buffers were 0.04 M. 

 

 

5.2.   Instrumentations  

The XRD is a Rigaku Miniflex X-ray diffractometer using as radiation 

source the Cu Kα (λ = 1.5405 Å).  The range of 2θ was 5 -15˚ with a 0.02˚ step 

and a step time 1.25 s.   
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XRD sample preparation was done typically by dropping the sample on 

the surface of the silicon wafer (111) or a glass micro slide to make an area of 

sample in 1 cm×1 cm and then drying the sample at room temperature.   

 

The size and morphology of titanate-nanobelts were analyzed by using 

SEM (Philips ESEM XL30) and TEM (JEOL X-100). The structure of layered 

titanate nanobelts was characterized by using HRTEM (Titan 80-300S).  

SEM sample preparation was done typically by taking a piece of carbon 

conductive tape and putting it on a clean specimen stub first. Then, the sample 

was dropped on the surface of carbon conductive tape and dried in air at room 

temperature, and finally coated with Ag in a sputtering coater. HRTEM sample, 

however, was prepared by dropping the samples on the surface of the TEM holder 

and then drying the sample at room temperature.   

TGA study was carried out using STA 409 PC LuXX® . The temperature 

range was from room temperature to 500 ˚C with a heating rate of 10 K/min. 

under a nitrogen gas flow. The sample weight is around 5−10 mg. The Fourier 

transform infrared spectroscope (FTIR) was a Bruker TENSOR 27 Spectrometer 

at the resolution of 2 cm-1in wavenumber.  

 Electrochemical workstation (model 660B, CHI-instrument) was used for 

electrochemical sensing measurement. The pH meter (METTLER TOLEDO) was 

used for measuring the pH values of solutions.    
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Chapter 6. 

Preparations and Characterizations 

of H–Titanate  Nanobelts 

 

 
 6.1 Syntheses  

TiO2 (0.020 g) was added in an aqueous NaOH or KOH solution (10 M, 

10 ml). The mixture was then put into a Teflon-lined stainless steel autoclave 

container and heated at 180 − 240 °C for 3-10 days. The resultant white pulp-like 

suspension was washed with the distilled water until the solution reaching pH 7. 

The product was then air-dried at room temperature (RT). 

 

 6.2 Ion-exchange  

Ion exchange solutions were prepared by dissolving LiCl, NaCl, and HCl 

in DDI water to make 1 M concentration. The as-prepared titanate nanobelts were 

put in the solutions (1 M) of HCl,  LiCl and NaCl and stirred them at room 

temperature (RT) for several days, respectively. The products were thereafter 

washed with DDI water to remove the salts or dilute HCl until no pink color on 

the pH paper (pHydrionTM MIKRO 1-12). 

 

6.3 Preparation of Cyt c and Dopamine Solutions. 

Two stock solutions of cyt c were prepared by dissolving 2.0 mg and 3.7 

mg of the protein in 1 ml of the pH 6.8 phosphate buffer solutions, respectively. 
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Dopamine solutions in DDI water were likewise prepared freshly before test. The 

concentration were 0.21 mM, 0.11 mM, and  42.2 μM. 

 

 

6.4 Fabrication and Characterization of the Nanobelt-Membrane 

Modified Electrodes ( ITO, Glassy Carbon) 

 

6.4.1 Preparation of ITO Electrodes That Are Modified by Nanobelt-

Membrane and then Immobilized by Cyt c 

ITO (fluorine doped tin oxide) glasses (with the resistance of 13 Ω /mm2) 

obtained from Hartford Glass Co., Inc., each about 2.5 cm × 0.8 cm in size, were 

cleaned by sonication for 5 minutes in 15 ml of acetone, then 15 ml methanol, 15 

ml isopropanol, and 15 ml DDW, respectively. 

The titanate-nanobelts were introduced onto the ITO surface, and dried at 

RT in air overnight. Afterwards, the cyt c solutions, 15 µl ranging from 3 (μM) to 

30 (μM) in concentration (or about 45 to 450 picomoles), were added onto the 

titanate-nanobelt surface and dried at the RT before use. 

 

6.4.2 Preparation of Glassy-Carbon Electrodes That Are Modified by 

Nanobelt-Membrane and Immobilized by DA  

Glassy carbon (GC) electrodes from CHI-instrument (Austin) were 

cleaned by sonication for 5 minutes in 15 ml of acetone, then 15 ml methanol, 15 

ml isopropanol, and 15 ml DDI water, respectively. After every experiment, the 
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GC electrodes were polished with alumina slurry 1.0 μm, 0.3 μm, and 0.05 μm, 

respectively on polishing cloth with DDI water and then cleaned using DDI water. 

The titanate-nanobelts were evenly applied onto the GC surface, and dried 

at RT in air overnight. Afterwards, a solution of 15 µl DA was added onto the 

titanate-nanobelt surface and dried at the RT before use. 
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Chapter 7. 
 

Interfacial Characterizations of Nanobelt-Membranes 
 

 

 
 7.1 Ionic Conductions  

This work was performed using a PTFE cell (1 ml volume) pre-filled with 

deionized water (pH adjusted to 7 using KOH). The active electrode containing 

the membrane was connected to the head-stage of an Axopatch 200B instrument 

(working in Voltage Clamp mode), feeding a “Digidata 1440” digitizer 

(Molecular Devices). The second electrode (ground) was an Ag/AgCl wire. Both 

electrodes were embedded into the working solution, which was continuously 

stirred by a low noise Spin-2 Stir Plate (Warner Instruments). The current traces 

were recorded and analyzed using the Clamp fit 10 software package (Molecular 

Devices). Small aliquots of stock solutions (HCl 1mM-10mM, and NaCl 2M) 

were added to the cell in order to change the ionic strength or pH. 

 

 

 7.2  Biocompatibility to Cytochrome c  

FTIR was used to examine the biocompatibility of cyt c immobilized on 

the sample. The nanobelt-membrane, pre-immobilized with cyt c, was mixed with 

KBr powder in a die and pressed into pellets for FTIR measurements.  
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 7.3 Point of Zero Charge (PZC) on H–Titanate Nanobelts Membranes  

To estimate the PZC on membranes of intercalated titanate nanobelts, 

firstly pH Solutions from 2-12 were prepared by using 01 M HCl and  0.1 M 

NaOH. The pH values of solutions were measured by standard pH meter. 

Secondly, put the dried samples of intercalated titanate nanobelts into the pH 

solutions (pH values: 2 – 12) to make the suspension. The ratio of the dried 

sample to pH solution was 0.4 mg/ml.101 The suspensions would be rotated 

overnight at room temperature. The purpose of rotation was to make the surface 

of nanobelts to have enough time to expose to the pH solution. The clear solution 

would be obtained after centrifuging rotated suspension. The final pH value of 

each suspension had been measured from the clear solution.  
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Chapter 8. 
 

Neuron-regenerations and Biosensing on  
 

H–Titanate Nanobelts Membranes 
  

 

 

8.1 Pheochromocytoma  (PC-12) Cell Culture. 

Membranes of titanate nanobelt-scaffolds were first sterilized in 70% 

ethanol, and then put into culture plates. PC-12s (1 million cells/ml)102 (from 

American Type Tissue Culture (http://www.atcc.org) were grown on the 

membranes in the RPMI-1640 media that was supplemented with 1% 

penicillin/streptomycin, 10% horse serum (both heat inactivated), and 5% fetal 

bovine serum in the humidified atmosphere with 5% CO2 at 37˚C. The cells had 

been cultured for 72h on the rat-tail collagen-coated plates by plating at densities 

(1 million cells/ml) to produce 80% confluence on the titanate membranes before 

they were used for exposure studies.  

 

 

8.2 Electrochemical Sensing of Cytochrome c  

A three-electrode system was used in the electrochemical measurement. 

The working electrode (WC) was the ITO glass modified by the titanate nanobelts 

with or without the cyt c immobilization. The electrochemical sensing was 

performed at the room temperature (RT) on an Electrochemical Workstation 

(660B, CHI-instrument), with a platinum counter electrode (CE) and an Ag/AgCl 

http://www.atcc.org)/�
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(3.0M KCl) reference electrode (RE). The buffer solution was purged with 

ultrahigh purity nitrogen gas (from AirGas) at least 10 min. prior the sensing tests. 

A nitrogen environment in the electrochemical cell was maintained throughout 

each of the sensing tests. 

 

8.3 Electrochemical Sensing of Dopamine  

A three-electrode electrochemical cell was used in the CV and DPV tests. 

The cell consisted of the working electrode that was the glassy carbon coated with 

the titanate-nanobelt, a platinum counter electrode (CE), and an Ag/AgCl (3.0M 

KCl) reference electrode (RE). The electrochemical sensing was performed at the 

RT using the electrochemical workstation (660B, CHI-instrument).  The buffer 

solutions were purged with ultrahigh purity nitrogen gas (AirGas) at least 10 

minutes before the sensing test. A nitrogen protection environment in the 

electrochemical cell was maintained throughout each of the sensing tests.  
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PART III   RESULTS AND DISCUSSIONS 
 
 

 
 

Chapter  9. 
 

Structures and Surfaces of Intercalated Titanate Nanobelts 
 
 

 

9.1 Crystal-Lattices of the Intercalated Titanate Nanobelts  

Titanate nanobelts had been synthesized by hydrothermal method in 

autoclave. The reactants included 10 M NaOH and TiO2 (P25) in autoclave were 

in the liquid phase during the hydrothermal reaction. The synthesized temperature 

(~200 ˚C) was lower the critical temperature (~396.4 ˚C) of NaOH (25 %, wt).103

The schematic illustration below clearly depicts a titanate nanobelt’s 

layered lattice structure that is surfaced alternatingly by negative-charged 

framework layers (Ti3O7)2- and interlayer counter-cations. The octahedrons of 

 

The higher concentration of NaOH has a higher critical temperature. The reaction 

temperature and local concentration of Ti (IV) in the autoclave are the most 

important parameters that affect the formation of nanofibers instead of nanotubes. 

Titanate nanofibers was formed mainly through two steps.104  First of all, raw 

TiO2 had been accompanied to titanate nanosheets by the epitaxial grown at 

temperature around 200 ̊C. Secondary, the higher concentration of Ti (IV) may 

increase the rate of nanosheets growth. The rate of crystallization was high 

enough which made the titanate nanosheets became thicker and rigid, and then the 

nanosheets formed nanofibers.   
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[TiO6] are corner- and edge-sharing in the framework [see ORTEP (Oak Ridge 

Thermal Ellipsoid Plot) illustration]. Topologically, the cation population on the 

nanobelt surface is less than that inside the interlayer space. The as-made titanate 

nanobelts may have some protons and distributed in the interlayer.105  

To understand roles of the interlayer-cations at the nanobelt-water 

interface, intercalations of H+, Li+, and Na+ were conducted first of all at room 

temperature (RT) in 1 M HCl, LiCl, and NaCl solutions, respectively. X-ray 

diffraction (XRD) data (Fig. 9.1a) confirm that the (002) diffraction-peak appears 

at 2θ ═ 11.14˚ (d = 0.79 nm) for H +-intercalated nanobelt membrane (nanobelt 

mambrane), 10.69o (d = 0.826 nm) for Li+- intercalated nanobelt membrane, 9.81o 

(d = 0.901 nm) for Na+-nanobelt membrane, respectively. The cation exchanged 

nanobelts kept the same morphology showed in Fig.9.1b. The d(002) of 0.79 nm is 

supported by the lattice-fringe image from a high resolution TEM (HRTEM) 

study (Fig. 9.2).  
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Figure 9.1 (a) XRD patterns of titanate nanobelts:  Blue color is for 

H+–, gray for Li+–, and red for Na+–nanobelt membranes. (b)  H+– 

nanobelt TEM image 
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The increase in the d-space dNa-nanobelt membrane) > d(Li-nanobelt membrane) > dH-

nanobelt membrane) is in line with that for anhydrous cation-radii {Na+ (~0.096 nm) > 

Li+ (~0.060 nm)}, but contrary to that for hydrated cation-radii {Li+
(aq.) (0.34 nm) 

> Na+
(aq.) (0.28 nm)}106 . Therefore, the interlayer-space should be occupied by 

minimally hydrated counter-cations, and the ion-exchange process should be 

accompanied by a dehydration of hydrated cations, which is unusual because in 

other layered transition metal oxides the interlayer cations are often highly 

hydrated107  

 

 

 Figure 9.2  HRTEM lattice-fringe image for a H+–nanobelt. 

 

A minor peak of H-intercalated lattice did sometime appear in the XRD 

patterns of both Li+- and Na+-intercalated nanobelt membrane if the ion-

exchange was not well controlled. This tells that the H+ (~10-6−10-7 M) in 

aqueous solutions of LiCl (~1.0 M) and NaCl (~1.0 M) can compete with 

millions of times more Li+ and Na+ in the intercalations within the same time-
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period, due likely to the smaller diameter and thus higher diffusion-rate and 

mobility of the H+. In contrast to much larger Li+ and Na+, the H+ may easily 

reach the charge-balancing sites throughout the lattice, and introduce the least 

structural distortion and inter-cation repulsion in the interlayer space, both 

probably favorable in kinetics and thermodynamics. The researchers 

illustrated108 that the protons in the interlayer have two different binding energies 

since the oxygen atoms are located different.  Very small amount of the protons 

which are located near the center of nanobelts and have higher binding energies 

may not show cation intercalation and kept in the interlayer. Very likely, the H+ 

could be even mix-intercalated with Li+ or Na+ in the lattices thus further 

reducing the intensities of the XRD-peaks and broadening the peaks in XRD 

pattern. The broaden peaks in the XRD pattern can be caused by other reasons 

such as the crystallite size, microstrain, and solid solution inhomogeneity.109 The 

exchanging H+ with large Li+ and Na+ may not be as easy as doing the opposite. 

During the intercalation, the diffusion of the cations on the nanobelt surface is 

faster than that in the interlayer.  

The titanate nanobelts possess an entangled morphology that is full of 

micropores, mesopores, and macropores. SEM image (Fig. 9.3a) shows a cross 

section of H-titanate nanobelt membrane on an ITO-substrate. The two small 

arrows indicate a single nanobelt in the membrane. Figure 9.3b shows an SEM 

image of as-made titanate nanobelts from hydrothermal syntheses.110  
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Figure 9.3 Nanobelt Characterizations. (a). A cross-section SEM image of 

a 36-μm-thick H-nanobelt membrane on an indium-tin-oxide (ITO) 

substrate. (b) An SEM image of titanate nanobelts synthesized from 

hydrothermal method. 
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9.2  Thermal Stability of Intercalated Nanobelt  

The thermal stability of cation exchanged titanate nanobelts reflects the 

hydration difference in the structure for the various cations in titanate nanobelts. 

Figure 9.4 shows the thermogravimetric analysis (TGA) for Na+–exchanged 

nanobelts and H+–exchanged nanobelts from room temperature to 500 ˚C. One of 

the endothermic peaks from derivative of mass loss at temperature 115 ˚C for 

Na+–exchanged nanobelts (lower part in Fig. 9.4) demonstrates the mass loss that 

is due to the physically absorbed water on the titanate-nanobelt surface. The other 

endothermic peaks at 132 ˚C for H+–exchanged nanobelts (upper part in Fig. 9.4) 

and 178 ˚C for Na+–exchanged nanobelts (lower part in Fig. 9.4) represent loss of 

the interlayer water that intercalated between crystal layers in the titanate 

structure.111,112,113 The TGA plot represents the fact that 2 H2O lost from every 

H+–exchanged titanate, and 1.5 H2O from Na+–exchanged titanate due to more  

protons were in the crystal lattice for H+–exchanged nanobelts and easily diffused 

out from the crystal lattice.114   As the temperature is higher than 300̊ C, no peaks 

are observed from both of H+–exchanged nanobelts and Na+–exchanged 

nanobelts. The cation–exchanged nanobelt continually dehydrated until the 

temperature reached 500 ˚C that implied the structures of cation exchanged 

nanobelts are stable.  The water losses from the titanate structure needed higher 

temperature.115    
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Figure 9.4  TGA analysis for H+–exchanged  (upper) and Na+–exchanged 

(lower) nanobelt-membranes obtained at 10 K/min under flowing N2 from 

room temperature to 500 ̊ C ; Black  color is for weight loss (%), blue or 

red for derivative of the weight loss (%). 
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9.3  Surface of Intercalated Nanobelts 

To determine the difference of one of the surface properties of the cation 

exchanged titanate nanobelt, i.e., point of zero change (PZC), simple titrations 

may offer some useful information for the surface property via monitoring the 

proton concentration. The final pH values of solutions represented the equilibrium 

of the proton concentrations between surfaces [H+
s] for cation exchanged titanate 

nanobelt with [H+] in the bulk solutions116, also it reflects the point of zero charge 

(PZC)117

116

 of cation exchanged titanate nanobelts. The relationship of proton 

concentrations on the immersed solid surface to the bulk solution is represented  

                            [H+
s] ═ [H+] exp(–y0)       yo ═ eψ0/kT                (1) 

From equation 1, the surface potentials are different for the cation 

exchanged titanate nanobelts since cations are different in the interlay108 The Na+ 

cations are weakly bounded to the [TiO6] octahedra comparing with protons. The 

electronic and geometric [TiO6] octahedral were redistributed after cations 

intercalation and then the surface potentials were changed respectively. The 

difference on surface potentials for cation exchanged nanobelts is unclear. The 

[H+
s] on the surface of H+─ exchanged titanate nanobelt expected higher than that 

of Na+─ exchanged titanate nanobelt since H+─ exchanged titanate nanobelt was 

formed in acidic solution in which the H+ cations in the solution replaced the Na+ 

cations in the interlayer of titanate structure.  The TGA data and XRD patterns 

have also been proved this fact. The ratio (Z/r) of cationic charge (Z) to its radii 

(r) is the other parameter that affects the PZC of solid oxides. For the same 
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charged cations in the interlay, the ratio decrease as the cation size increase, the 

PZC would be shifted to the higher value (or increase PZC).118   

In the crystal structure of nanobelts, the −OH groups (Lewis base) on the 

facets may interact with nearby counter-cations (Lewis acid) to influence the 

acidity/basicity at the nanobelt-water interface. These may also affect surface 

properties such as point of zero charge (PZC). Figure 9.5 displays two curves, 

each with a plateau for estimating the PZC. The Na+-intercalated nanobelt 

membrane showing a PZC ~9.8 (the red plateau) can behave as a membrane-

buffer near pH 9.8, while the H+-intercalated nanobelt membrane’s surface with a 

PZC ~ 4.1 (the blue curve) can act as a membrane-buffer near pH 4.1. This 

phenomenon suggests (i) a continuous H+⇔Na+ ion-exchange may enable the 

nanobelt membrane to buffer within pH 4−10 at the nanobelt membrane-water 

interface and (ii) the capacity and kinetics of the nanobuffering may reflect that of 

the intercalation of the nanobelts. Since H+ is a strong Lewis-acid guest while Na+ 

a weak Lewis-acid guest, the sheet-framework (Ti3O7)-2 ought to be a medium 

Lewis-base host, based on the “conjugated acid-base” chemistry. This 

phenomenon also implied the difference of the one of the surface properties for 

Na+─ exchanged titnante nanobelt and H+─ exchanged titanate nanobelt such as 

PZCs.  
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Figure 9.5 The measurement of pH change for cation exchanged 

titanate nanobelts in various pH solutions/suspensions; red: Na+– 

exchanged titanate nanobelt; blue: H+– exchanged titanate nanobelt.   
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9.4  Ionic Conductivity of Intercalated Nanobelts. 

The conduction of H+ and Na+ across both the H+- and Na+-intercalated 

nanobelt membranes were evaluated. At 0.5 mM of cation concentration (the 

dotted line in Figure 9.6), the current of H+ across the H-nanobelt membrane 

(black) is ~50 (nA), while that of H+ across Na-nanobelt membrane (blue) ~4.5 

(nA), that of Na+ across Na-nanobelt membrane (red) ~3.5 (nA), and that of Na+ 

across H-nanobelt membrane (green) ~2.0 (nA), respectively. Since the 

membranes were similar in size, the density of H-current (black) is >10 times 

higher than that of any other three, compared our results with the recent published 

paper for proton transport in aligned mesoporous silica films,119

The mobile and acidic H+ may have no net-intercalation during the H+-

transfer across the acidic H-nanobelt membrane thus the largest current (the black 

curve in Fig. 9.6), with a flatter slope at the curve-beginning is due likely to a 

rapid interaction between the transferring H+ and the –OH group on the H-

nanobelt membrane. The Na+⇔H+ ion-exchange and the acid-base 

“neutralization” can slow down either cation’s conduction. The basic Na-nanobelt 

membrane (PZC~9.8) conducts acidic cations (H+, Na+) poorly, which correlates 

the interfacial acidity/basicity with the ion-transfer at the membrane-water 

interface as “like conducts like”. As a complement to spherical nanoparticles of 

  The higher 

currents of transported Na+ cation and proton in the exchanged membranes of the 

H-nanobelt membrane and Na-nanobelt membrane, the smaller proton 

concentration, thinner film, and easier to synthesize and prepare film are 

achieved.    
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layered phosphates120, charge-transfers along the long nanobelts across the 

nanobelt membrane involve fewer grain-boundaries thus less energy-loss or 

nanoscale heating and the corresponding lattice-distortion than that across 

powder-pressed membranes, which could help develop heat-resistant membrane-

electrodes for Li-battery, fuel-cell, solar-cell, etc. 

In comparison with the Na-transfer across typical biological cell-

membranes which depends on the density of protein-based Na-pumps and 

channels,121 the Na-transfer across the Na- and H-nanobelt membranes shows 

relatively high current-densities. Such thermal-stable ceramic H-nanobelt 

membrane could be useful in developing heat-resistant proton-exchange 

membrane fuel-cell (PEMFC) and membrane-like Li-batteries. 
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Figure 9.6 Correlations between the ion-concentrations and the ionic 

currents. The black curve: H+ across an H-nanobelt membrane, blue for H+ 

across a Na-nanobelt membrane, red for Na+ across a Na-nanobelt 

membrane, and green for Na+ across the H-nanobelt membrane.  
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9.5 Conclusion 

Titanate nanobelt, with a layered crystal lattice and a typical diameter of 

70-nm and length up to 3 cm, has been proven in this work for the first time to 

possess underexploited zwitterionic surfaces that are surfaced alternatingly by 

(Ti3O7)2--framework layers and exchangeable interlayer cations. On this basis, we 

have defined new functions of biocompatibility, ionic conductivity, pH- and 

electrolyte-buffering on a paper-thin filtering membrane self-entangled by the 

low-cost nanobelts, which has been seldom demonstrated in literature so far. By 

tuning the cation-exchange continuously on the zwitterionic surface of the 

thermally and chemically stable nanobelt-membranes, we have simultaneously 

conducted proton, and buffered pH and electrolytes in water, which is unfeasible 

on DNA-, protein- and polymer-based bioscaffolds. As a first attempt to 

exemplify rich chemistry at the nanofiber-water interface in a confined 1D 

environment, this work is believed to be generally applicable to 1D nanomaterials 

with the layered and even porous crystal-lattices in both membrane- and separate 

fiber-forms. 
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Chapter  10. 
 

Biosensory Membrane-bioscaffolds of H-Titanate Nanobelts 
 

 

10.1 FT-IR Characterization for Cyt  c on the H-Nanobelts  

It is known that a protein could be destabilized after binding to the 

negatively charged surfaces such as lipids.122, 123, 124 FT-IR is a commonly used 

technique to study the secondary  structure (or folding) of protein’s polypeptide 

backbone. The amide groups of polypeptides are sensitive to the protein 

conformation, and the amide I (1700-1600 cm-1 region) is primarily due to the 

C═O stretching vibration of protein’s backbone. FT-IR spectra (see Fig 10.1a) 

show a peak at 1648 cm-1 for amide I125  of immobilized cyt c  on the nanobelts, 

which is at the same position as that of native cyt c  in buffer solution at pH 6.8, 

indicating the retained secondary structure for the cyt c  immobilized on the 

titanate-nanobelts. The secondary structure of protein cyt c  was also examined in 

an acidic solution using FT-IR (see Fig 10.1a). There were two separated peaks 

ranging from 1600-1700 cm-1 in acidic solution which are absent in neutral 

solution (pH=7). The peak at 1648 cm-1 present in the neutral solution was found 

to be significantly reduced in intensity as compared to in the acidic solution. 

These results suggest the changed secondary structure of cyt c .126,127  The FT-IR 

results illustrate that cyt c  after immobilization on the titanate nanobelt still exists 

in the normal condition. However, to confirm the biocompatibility of cyt c  

immobilized on titanate nanobelt, more evidence is needed by the use of other 

techniques such as UV-Vis and circular dichroism (CD).   
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10.2 Neuron Cells Growth on H-Titanate Nanobelt Scaffolds 

The scaffolds could facilitate cellular activities. SEM images (Figure 

10.1b) showed that the PC-12 cells attached well and formed cell colonies on the 

titanate-nanobelt bioscaffolds after 72 h, suggesting a good compatibility between 

the cell and the scaffold. The cells appeared round in shape and maintained their 

characteristic phenotypes (cell culture in Chapter 8.1).  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



59 
 

 

 

 

 

             

Figure 10.1   (a) FT-IR spectra. Black: cyt c -titanate-nanobelts mixed 

with KBr;  pink: cyt c  in the pH 6.8 buffer solution; blue: cyt c  in pH 

~2.5 buffer solution. (b) SEM image of the PC-12 cells grown on 

hydrogen titanate-nanobelts scaffolds for 72 h. 
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10.3 Greatly Enhanced Electron Transfer on the Nanobelt Scaffold 

It is believed that the adsorption of cyt c  on the titanate-nanobelts can be 

attributed mainly to the electrostatic effect. At the pH 6.2–9, the H-titanate 

nanobelt surface is negatively charged because of its isoelectric point of 6.2128, 

while the cyt c  surface is positively charged due to its isoeletcric point of 10–

10.5. Thus, the negative titanate-nanobelt surface has a high affinity to the 

positive charged cyt c . Moreover, the cyt c  shape in aqueous solution is nearly 

spherical (a × b × c = 1.5 nm × 1.7 nm × 1.7 nm),129

2
1

 and easily included into the 

voids (the size of holes: over 500 nm2) of the entangled titanate-nanobelts so as to 

further enhance the retention of the cyt c  folding during the electrochemical 

redox processes. 

The scaffolding titanate-nanobelts can offer a desirable environment for 

the cyt c  to undergo facile electron-transfer reactions. The electrochemical redox 

reaction of the cyt c  between Fe (III) and Fe(II) was characterized by means of 

the CV. Figure 10.2  showed the CV data from an ITO glass electrode coated with 

the titanate-nanobelt (red) and the cyt c -titanate-nanobelts (blue), respectively, in 

a potassium phosphate buffer solution (pH 6.8). In Figure 10.2, a pair of 

reversible and well defined redox peaks from the cyt c -titanate-nanobelt electrode 

together with the formal peak potential (E0) of ~ 0.03 V have been recorded. The 

E0 is calculated from an average of anodic peak’s and cathodic peak’s potential 

values, according to the general equation          

                                             E0 = (Epc + Epa) 
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where the Epc and Epa represent cathodic peak potential and anodic peak potential, 

respectively. The E0 value (~ 0.03 V) is close to that reported by other 

researchers.130 

 Measurement of the faradic current as a function of scan rate can help 

diagnose whether a redox reaction on the electrode surface is controlled by 

diffusion. Figure 10.3a shows CV curves of the cyt c -titanate-nanobelt-modified 

electrode in the pH 6.8 at various scan rates. At a low scan rate (< 0.05 V/s), the 

redox peaks were weak and broad. As the scan rate was increased, the redox 

peaks became strong and sharp. Figure 10.3b display that the cathodic and the 

anodic peaks are both linearly proportional to the scan rate from 0.01 V/s to 0.2 

V/s, implying that such an electrode has the typical characteristic of the thin-layer 

electrochemistry.131   
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Figure 10.2 CV plots from the ITO glass electrodes modified with 

titanate-nanobelts (red), 450 picomoles of cyt c  on the titanate-

nanobelts (blue) in pH 6.8 buffer solutions. scan rate: 0.2 V/s. 
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Figure 10.3  (a) Scan rates (V/s) for the sample with 450 picomoles of cyt 

c . Red, 0.2; Blue, 0.15; Dark red, 0.1; Green, 0.05; Dark blue, 0.01 in pH 

6.8 buffer solution.  (b) the relationship between the scan rate and the ipa 

(blue spotted line) and ipa (black spotted line). 
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The sensing of the cyt c  anchored inside the bioscaffold was conducted at 

the pH 6.8. As the concentration the cyt c  was increased, the voltammetric 

current was increased linearly. Figure 10.4a shows cyclic voltammegrams at 

different concentrations of cyt c and Fig.10.4b represents the relationship 

between the concentration of the protein and the current of the anodic peak. The 

reversible, well-defined voltammetric signals were observed from 15 µL solution 

in the concentration range from 3.0 µM (or 45 picomoles) to 30.0 µM (or 450 

picomoles). The concentrations were all linearly (R2 = 0.996) correlated with the 

anodic currents, as shown in the Fig 10.4b.  The equation for straight line is y = -

0.004x + 0.3287. The standard derivation of slop (Sm) and intercept (Sb)132 are 

0.00018 and 0.0568. The limit of detection (LOD) is 42.6 pmoles.   

 

10.4 Sensing Cyt c Using the Square-Wave Voltammetry (SWV) 

 The electron-transfer activity of cyt c  immobilized on the titanate-

nanobelts was studied by the square-wave voltammetry, because the SWV is 

commonly regarded as a powerful electrochemical technique for characterizing 

the confined interfacial molecules.133 The SWV curve of cyt c -titanate-nanobelts 

in the pH 6.8 buffer solution is shown in Figure 10.5a, with the high signal-to-

noise ratio and resolution. In addition, the peak current is linearly correlated with 

the frequencies (see Figure 10.5b). 
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Figure 10.4  (a) CV (scan rate of 0.2 Vs-1) obtained from various cyt c      

concentrations in the pH 6.8 buffer solution. dark blue, 450 picomoles; 

green, 347 picomoles; dark red, 243 picomoles; blue, 122 picomoles; and 

red, 45 picomoles. (b) The relationship between the concentrations and the 

ipa. 
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Figure 10.5  Square-wave voltammogram (SWV) study. (a) SWV of the 

450 picomoles cyt c -titinate-nanobelt in the pH 6.8 buffer solution. SWV 

conditions: equilibration time, 2s; Potential amplitude, 25 mV; step height, 

4mV, and frequencies of 50 (green), 75 (pink), 100 (blue) Hz. (b) The 

relationship between the frequencies and ip data. 
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10.5 The Lattice–Intercalation Effect on Detecting Protein Cyt c 

To detect the influence of electron transfer of cation exchanged nanobelt 

for protein, the protein cyt c  was used. Figure 10.6 represents a linear relationship 

between the nanobelt d-space and the formal potentials (E˚) of the cyt c . The 

formal potentials (E˚) were obtained from cyclic voltammetry in the pH 6.8 PBS 

solution. The cyt c  (450 pmoles) immobilized on the surface of the H+– 

exchanged nanobelts, Li+– exchanged nanobelts, and Na+– exchanged nanobelts  

pre-modified on ITO electrodes. The formal potentials (E˚) of the cyt c  show 

well-fitted linear correlation that the more negative formal potential (E˚) 

appearing on the larger d-spaced nanobelts with a trend of E˚(Na–nanobelt 

membrane) > E˚ (Li–nanobelt membrane) > E˚ (H–nanobelt membrane). There 

are two possible reasons may cause this phenomenon. One is the different band 

gaps for H+–nanobelts (3.3 ev) and Na+–nanobelts (3.4 ev) that cause difficulty in 

electron transfer with the increasing interlayer distance.134  The other may base on 

difference of the surface properties of the cation-exchanged nanobelts such as the 

point of zero charge (PZC). The H+– exchanged nanobelts has a lower PZC (~4.1) 

based on our experiments in chapter 9 compared with that of Na+– exchanged 

nanobelts (~ 9.8). Therefore, the surface environment of H+– exchanged nanobelts 

is more favorable for electrostatic effect, and then the redox reaction of cyt c on 

the H+–nanobelts’ surface is easier compared with cyt c immobilized on the Na+–

nanobelts.  
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Figure 10.6 A linear relationship between the formal potential of the cyt c 

on the various cation exchanged nanobelt membrane and the XRD d-space 

of the intercalated nanobelts   
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10.6 Conclusion 

In summary, the titanate-NB-based bioscaffold can be used as a versatile 

sensing platform for detecting biomolecules simply and quickly. The FT-IR result 

and neuron cells growth demonstrate the biocompatibility of the titanate-NBs 

scaffolds. The electrochemical results illustrate the fast electron transfer through 

the titanate-NBs scaffolds. The detection limit is 45 pmols that represents high 

sensitivity of the titanate-NBs modified electrode. This work may serve as a proof 

of a new concept that sensing biomolecules inside such a bioscaffold is doable. 
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Chapter 11. 

Sensing Dopamine (DA) on Membrane 
 

Scaffold of H–Titanate Nanobelts 
 

 

 11.1   Electrochemical Sensing of Dopamine (DA) on H-titanate Nanobelts  

In Figure 11.1, the blue line is cyclic voltammogram (CV) of the H-

titanate nanobelts modified on glassy carbon (GC) electrode in pH 6.78 phosphate 

buffer solution (PBS) solution without DA; the red line is CV of DA immobilized 

on the H-titanate nanobelts modified GC electrode in pH 6.78 PBS solution. The 

concentration of DA was 0.21 mM; scan rate was 0.1 V/s. The scan started from 

negative voltage (-0.8V) to positive voltage (0.6V). Comparing two CVs, with 

and without DA, two pair of peaks observed from CV of DA.    

The two pairs of peaks represent the redox reactions of DA on the 

nanobelts modified GC electrode. The pair of A peak and B peak were determined 

the redox reaction of dopamine (A) and dopaminequinone (B);135

136

 then the 

dopaminequinone (B) was changed to leucodopachrome (C) 136 on the electrod 

surface; the pair of C peak and D peak were represented the redox reaction of 

leucodopachrome (C) and dopachrome (D).  The CV shows that DA redox 

reaction is electrode process, irreversible chemical reaction, and electrode process 

(ECE). 
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Figure 11.1 CV plots at pH 6.78 PBS from the GC electrodes modified 

with titanate-nanobelts (blue, without DA) and 0.21 mM DA on the 

titanate nanobelts (red). scan rate: 0.1 V/s 
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The effect of scan rate on CV was studied. The scan rates were changed 

from 0.01 to 0.2 (V/s). The redox peaks (A and B) were monitored during the 

changing scan rates. Figure 11.2a represents the CVs at various scan rates as the 

concentration of dopamine was 0.21 mM in PBS at pH 6.78. Figure 11.2b shows 

the relationship between the square root of scan rate (v½) and current peaks. The 

straight lines were obtained from cathodic currents and anodic currents. The 

currents were increased as the square root of scan rates increased. This behavior 

showed the reversible redox reaction of dopamine on the potassium nanobelt 

modified GC electrodes.   

The pH value is one of the parameters that may influence the formal 

potential and peak currents of redox reaction. Solutions with different pH values 

were prepared in PBS buffer to study the effect of pH. Figure 11.3a shows the 

CVs of DA in solutions with different pH values. The formal potentials (E˚) are 

monitored from peak C and peak D. The formal potential (E˚) is calculated using 
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E˚ ═ (Epa + Epc)/2.131 From figure 11.3a  the formal potentials (E˚) are  found to 

be 0.196 V at pH 5.48, 0.146 V at pH 6.78, and 0.121 V at pH 7.39 respectively. 

Figure 11.3b demonstrates that the relationship between formal potentials (E˚) 

and pH values is a straight line. The formal potentials (E˚) calculated from C and 

D decrease with increasing pH. The peak current is also found to reduce with 

increasing pH of solution. These behaviors indicate that the formal potential is the 

pH dependent. In Figure 11.3a, the CV also shows that the current peaks of A and 

B are increased as the pH values increases. This phenomenon demonstrates that 

higher pH is more favorable for the redox reaction of A (dopamine) and B 

(dopaminequinone). As the pH values are increased, the concentrations of 

hydroxide [OH‾] increases. The concentration of proton [H+] decreases due to  

neutralization thereby shifting the equilibriums of reactions from A to B. The 

effect of concentration on electrochemical current can be given by the Randles-

Sevick equation, ip[= (2.69×105)n3/2AD1/2ν1/2C*].131  
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Figure 11.2 (a) Scan rate (V/s) changes for the sample of 0.21mM 

DA on the nanobelt modified GC electrodes. red, 0.2; blue, 0.15; 

dark red, 0.1; green, 0.05; dark blue, 0.01 at pH of 6.78 PBS  (b) 

The relationship between the square root of scan rate and the ipc 

(blue )and ipa  (pink)at pH 6.78 PBS 
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Figure 11.3 (a) the CV of DA / H-titanate nanobelt / GC electrodes at 

different pH: red: pH 5.48; blue: pH 6.78; dark red: 7.39 at 0.21mM DA  

(b) the relationship between pH and formal potentials 

  



76 
 

The CV behavior as a function of the concentration of DA is investigated.  

Figure 11.4a shows the CVs of the dopamine in pH 6.8 PBS at various 

concentrations. The peak at 0.14 V was monitored for the detection of dopamine. 

Figure 11.4b determines the relationship of DA concentrations with anodic 

current peaks (ipa) and cathodic current peaks (ipc). From Figure 11.4b, the ipa and 

ipc increase lineally as the concentrations increase. This result suggests that the 

fraction of DA immobilized on the H-titanate nanobelt which modified on GC is a 

constant at all concentration levels.   

 

11. 2 Sensing DA by Differential Pulse Voltammogram (DPV) 

 The detection of dopamine was studied by using differential pulse 

voltammetry. (DPV). The DPVs of dopamine at various concentrations are 

showed in Figure 11.5a. Two peaks are observed. The peak at 0.14 V was 

monitored for the detection of dopamine. Figure 11.5b exhibits a linear 

relationship between the peak current and concentration. Comparing the results of 

CV and DPV at different concentrations in pH 6.78 PBS solution, DPV is found 

to be a more sensitive technique than CV for the detection of dopamine.  
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Figure 11.4  (a) CV obtained from various DA concentrations on the 

nanobelt modified GC electrodes in the pH 6.78 PBS at scan rate of 0.1 

V/s. dark red: 42.2 μM; blue: 0.11 mM; red: 0.21 mM  (b) Relationship 

between concentration and ipa and ipc 

 

                                            

 

 



78 
 

 

   

 

        

 

Figure 11.5 (a) DPV studied on the nanobelt modified GC electrodes in 

pH 6.78 PBS solution at various concentrations: dark red: 42.2 μM; blue: 

0.11 mM; red: 0.21 mM.  DPV conditions: amplitude ═ 0.05 V; pulse 

width ═ 0.05 s: sample width ═ 0.0167 s; pulse period ═ 0.2 s. (b) The 

relationship between the concentrations and the ip   
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11.3 Conclusion 

We developed the biosensor that can detect dopamine using H– titanate 

NB modified glassy carbon electrode combines with electrochemical methods 

such as CV and DPV. The detected lowest concentration is 42.2 μM. The formal 

potentials (E˚) of dopamine decrease as the pH values increase. The 

biocompatibility of H– titanate NB is also studied by growing pheochromocytoma 

cells (PC-12 cells) on the surface of H–titanate NB. Our results show that the PC-

12 are attached well and grown on the H–titanate NB successfully without coating 

any media on the surface of H–titanate NB.  These results demonstrate that the 

biomaterial of H–titanate NB offers the great opportunities for nerve tissue 

engineering and development of biomedical devices. 
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