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ABSTRACT 

 A proof-of-concept microfluidic device combined with heparin-immobilized magnetic beads was 

created to concentrate cytokine proteins collected from microdialysis samples. Cytokines are known to be 

related to several diseases such as cancer, and Parkinson’s diseases, so to be able to develop more 

effective diseases treatments their interactions have to be well understood. Amine-functionalized 

polystyrene and carboxyl-functionalized magnetic microspheres of ~6.0 µm in diameter were used to 

immobilize heparin. The amount of heparin immobilized on polystyrene beads was 5.82 x 10-8 ± 0.36 x 10-

8 M per 1.0 x 106 beads and for magnetic beads was 0.64 x 10-8 ± 0.01 x 10-8M per 1.0 x 106 beads. The 

minimum initial heparin concentration needed to bind ~ 100% cytokines was 36.8 µM based on 

estimations for a fixed initial concentration (1.0 nM) of cytokines. For polystyrene beads, it was found that 

0.1 and 1.0 nM ratCCL2 (MCP-1) bound to immobilized heparin at levels of 94.50 and 83.67%, 

respectively. For heparin immobilized magnetic beads, experimental percentages of cytokine bound to 

heparin were 70.38 ± 1.71 % (ratCCL2, 0.57 nM) and 11.07 % (ratTNF-α, 0.09 nM). The differences 

between experimental and estimated percentages of cytokine bound to heparin were 28.31 and 31.56% 

for ratCCL2 and ratTNF-α. A microfluidic system was designed and made of polydimethylsiloxane 

(PDMS) with soft lithography. The dimensions were as follows: a) Inlet channel width of 0.1 mm, b) 

circular trapping area of 3.6 mm in diameter, and c) outlet channel width of 0.2 mm. The equivalent circuit 

theory was used to estimate the pressure drop for each channel at a flow rate of 1.0 µL/min. Estimated 

Reynolds numbers for each channel were low (0.17, 0.01, and 0.11) in agreement with the theory. 

Estimated pressure drops were 112.2, 0.20, and 30.28 Pa. Using different flow rates, the infusion of 

magnetic microspheres into the device and their “spreading” behavior within circular channel was 

observed and quantified. “Spreading” behavior of magnetic microspheres on a circular channel could be 

controlled by changing their flow rate. Controlling the behavior of magnetic microspheres is very crucial 

for pre-concentration of cytokine proteins on bead-based microfluidic devices. This microfluidic device is 

now ready for testing of the trapping and preconcentration of cytokines in real microdialysis samples. 
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1 CHAPTER 1.   INTRODUCTION: Background and Signifi cance 

1.1 Cytokine  

1.1.1  Overview and importance in biomedicine 

 Cytokines are vitally important signaling proteins generated during an immunological response. 

Whicher and Evans stated that “cytokines are peptides used by immune and inflammatory cells to 

communicate with each other and control the milleu interieur in which they operate”.1 Their molecular 

weight ranges between 8 to 80 kDa.11 Cytokines or “chemical messengers” are released “by white blood 

cells and several other cell types in the body”.12,13 Several families of cytokines are released during an 

immune response.13 These proteins are often dysregulated in diseases such as diabetes,2 cancer,1,3 and 

Parkinson’s disease.4 These cytokines act coordinately as a network.13 As a result, a multiplexed analysis 

rather than one cytokine at a time analysis is necessary for determining the level of the network. There is 

an enormous interest in monitoring the concentration changes of cytokines in living systems during some 

disease stages.  

 Typically, cytokines are collected from blood and tissue samples. The problem with sampling 

cytokines from blood and tissue is that obtaining in situ and in real-time concentration changes of 

cytokines directly within the tissue is not possible. In contrast, microdialysis sampling methods can be 

used along with other techniques to measure and monitor cytokines concentration changes in situ and in 

real-time, see section 1.2. Cytokines are normally present in low concentrations (picomolar or femtomolar 

range).6,7,8 According to Ao and Stenken most cytokines have a high biological activity and  rapid 

concentration changes within living systems.5 Therefore, quantitation of cytokine proteins is very 

challenging and requires highly sensitive detection methods such as antibody-based enzyme linked 

immunoassay (ELISA). 

1.1.2 Cytokines detection methods or assays 

 Several research groups have worked on the development of detection methods to improve the 

quantitation of cytokines in living systems. Whiteside wrote a helpful review article about cytokines 

assays.10 In this article she pointed out that immunoassays for cytokines such as ELISA are commonly 
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used because of “their acceptable specificity, sensitivity, rapid turnaround time, convenience, ease of 

performance, and a relatively low cost”.10 Also, she classified the available methods for cytokines 

assessment in body fluids, cells, and tissues.10 She mentioned that immunocytochemistry, 

immunofluorescence, and mRNA-based assays are the methods available for the detection of cytokines 

in tissues.10 On the other hand,  according to Remick, et al., the basic ELISA protocol takes 

approximately 19 hours to get the results.9 This is one of the main issues of using ELISA to quantify 

biomolecules or cytokines along with the sample size requirement of at least 100 µL and the labor 

intensity or tediousness of the process.  

 Pre-concentration of biomolecules or proteins is widely used by many research groups and 

industrial processes.14-19 As mentioned above, proteins such as cytokines can be present in picomolar to 

femtomolar concentrations. The problem is that commonly used analytical instruments or methods for 

protein quantitation such as ELISA can only measure down to 31.25 pg/mL or 2.39 pM (MCP-1, for 

example) (BD bioscience ELISA’s kit) without making any changes to the standard protocol.20 Also,  

commonly used analytical methods for protein quantitation require mimumum volumes of at least 50 µL or 

100 µL.20 That is why it is very important to develop a method or system coupled to a sampling technique 

to be able to pre-concentrate cytokines and measure them using smaller sample volumes (1 µL) than the 

ELISA methods. In addition, the fact that some cytokines are present in low pg/mL concentrations and 

sampling techniques such as microdialysis has low extraction efficiencies when sampling cytokines  

represents a challenge for the development of the sampling system. 

 Monitoring concentration changes of cytokines over time is crucial to study the immune-related 

interactions of cytokines within living systems during disease states. Therefore, it is necessary to use 

minimally invasive sampling methods such as microdialysis in order to track the concentration changes 

over time. Finally, it is very important to understand the diffusive limitations of microdialysis sampling in 

order to overcome the challenges associated with monitoring concentration changes of cytokines over 

time. 
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1.2 Microdialysis Sampling  

 Microdialysis sampling is a minimally-invasive diffusion-based technique commonly used to 

sample from many different tissue spaces21 and is starting to be used extensively in humans.11, 22 The 

efficiency of microdialysis sampling during cytokine or protein collection is commonly represented as 

either relative recovery (RR) or extraction efficiency (EE).23, 24 Relative recovery has been defined by 

Bungay et al. as the ratio of the biomolecule concentration of interest collected after microdialysis 

sampling (Coutlet) and the concentration of this biomolecule far away from the collection point (Csample,∞).24 

The latter statement can be simplified with the following equation:  

Equation 1.1                                      

RR = Coutlet

Csample, ∞
 

  Relative recovery (RR) or extraction efficiency (EE) is defined as:25 

Equation 1.2                                   

RR = EE = 1 – exp 
-1

Qd�Rd + Rm + Rq� 

 In this equation, Qdrepresents the flow rate; Rd, the mass transport resistance of the quiescent 

medium external to the microdialysis probe; Rm, the mass transport resistance of the dialysate; and Rq, 

the mass transport resistance of the membrane. More specific terms are shown on Table 1.1. Equation 

1.2 takes into account all the variables associated with influencing the amount of material recovered 

during the collection of any biomolecule using a microdialysis probe. To clarify, it is important to define 

and schematically represent each variable of Equation 1.2,23,25 see Figure 1.1,23 and Table 1.1.22 The 

poor collection or EE performance of microdialysis sampling when used to collect certain biomolecules 

such as cytokines is due to several factors: a) mass transport resistances, see Table 1.1, b) biomolecular 

diffusion rate,  c) the pore size of the microdialysis membrane as well as whether the membrane is 

hydrophobic or hydrophilic, and d) their low concentrations that change rapidly.24 As a result, quantifying 

cytokines collected using microdialysis sampling method is challenging. 
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 Cytokines are known to bind different biomolecules such as complex sugars (for example 

heparin),26 antibodies,26 and aptamers27, 28 which brings the opportunity of creating affinity based methods 

to improve the collection of these proteins from tissue spaces during microdialysis sampling. Aptamers 

are oligonucleotides with similar properties than antibodies generated using a process called Selective 

Evolution of Ligands by Exponential enrichment (SELEX).27, 29 According to Chris Le et al “aptamers are 

short nucleic acid sequences that are used as ligands to bind their targets with high affinity”.28 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1 Schematic CMA/20 10 mm polyethersulfone microdialysis layout.23 

Inner cannula 

Sample medium (q) Sample medium (q) 
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Membrane  
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Table 1.1 List of equations and variables of relative recovery equation, see Equation 1.2 

Equations  Definition  Variables  

Rq = 1

2πDqΦq�2r0L
 

Mass transport resistance of 

the quiescent medium 

external to the microdialysis 

probe25 

Φq= Volume fraction for quiescent 

medium 

r0 = Outer radius of membrane 

L  = Effective membrane length 

Rd  = 13�ri - rα�
70πLriDd

 
Mass transport resistance of 

the dialysate25 

ri  = Inner radius of membrane 

rα = Inner radius of cannula 

Dd= Diffusion coefficient in the 

dialysate 

Rm = 
ln �r0

ri
�

2πLDmΦm

 

Mass transport resistance of 

the membrane25 

Φm= Membrane volume fraction 

occupied by water 

Dd = 6.85 x 10
-15

η	*M
1
3.RG

 
Aqueous diffusion 

coefficient25,30  

η  = Dynamic viscosity 

M = Molecular weight 

RG= Radius of gyration 

λ = rs

rp

 
Ratio of analyte radius to 

pore radius31 

rs = Radius of analyte 

rp = Radius of pore size 

Hm = K(1-2.1044λ + 2.089λ
3
- 0.948λ

5
) Diffusion hindrance factor32 

K = �1 - λ�2 Partition coefficient33 

Dm = Daq �1 - λ�2(1 - 2.104λ + 2.089λ
3 - 0.948λ

5
) 

Effective membrane diffusion coefficient 

using the diffusion hindrance factor34 

 

 Several researchers have created affinity based methods to improve the relative recovery of 

cytokines using microdialysis sampling technique.5, 24, 35 Affinity-based methods could be defined as 

methods that take advantage of the binding affinities of two biomolecules or molecules. For instance, Duo 

et al. developed a method to improve cytokines relative recovery using affinity agents such as antibodies 

and heparin attached to polystyrene microspheres.26 Their method consists of perfusing polystyrene 
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microspheres of 5.99 µm o.d. with an immobilized affinity agent, for example antibodies, through the 

microdialysis probe during cytokine protein collection to increase their mass transport across the 

membrane pores.26, 35 According to Duo, heparin is an affinity agent more suitable for the capture and 

release of cytokines from functionalized microspheres than antibodies.36 Antibodies have slower (10-5 s-1) 

dissociation rate constant (koff), are less chemically stable, and are more expensive than heparin (koff = 

10-2 to 10-4 s-1).36 

 When antibody-immobilized beads are used as affinity agents during microdialysis sampling 

followed by direct measurements of dialysates containing the cytokines on the beads (flow cytometry) 

only one measurement can be performed if the concentration of the cytokine is too high (>5000 pg/mL). 

The problem with the flow Cytometry, immunoassay bead based detection, is that their design (Luminex 

or BD technology) only allows the beads or sample to be measured once, so further dilutions of a sample 

that is saturated or over range are not possible.36 However, some research groups have developed 

methods or techniques that allow dilutions of samples if needed using microfluidic system. For example, 

Ligler and Kim developed a microfluidic system or “microflow cytometer” using bead-based techniques to 

measure multiple analytes at the same time.37 The advantage of their system is that functionalized 

microspheres (having the analyte bound to them) can be recovered and measured more than once if 

necessary.  

 Another issue is that  acidic (pH~4) dissociation reagents are required in order to release 

cytokines from antibody-immobilized microspheres which interfere with the assay performance and could 

denature the antibody.36 In contrast, mild conditions (30% (v/v) acetonitrile) are used to dissociate 

cytokines from heparin functionalized microspheres.36 This makes heparin a more “flexible” affinity agent 

than antibodies facilitating measurements, trapping and release of cytokines. However, using heparin as 

an affinity agent does not completely solve the quantitation issues when low concentrations of cytokines 

are collected. As a consequence, further pre-concentration of cytokines using heparin-microspheres is 

desired.  
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1.3 Heparin  

 Heparin, see Figure 1.2,36 belongs to the family of glycosaminoglycans (GAGs). Highly sulfated 

glycosaminoglycans such as heparin and heparan sulfate are known to have affinity for several cytokines 

such as regulated upon activation, normal T-cell expressed and, secreted (RANTES) or C-C motif Ligand 

5 (CCL5), monocyte chemotactic protein-1 (MCP-1) or C-C motif Ligand 2 (CCL2), macrophage 

inflammatory protein-1 (MIP-1), tumor necrosis factor-alpha (TNF-α), and interleukin-8 (IL-8).38, 39, 40, 41  

Moreover, according to Linhardt and Capila the interactions between heparin and proteins are mainly 

ionic.39 They also pointed out that either carboxyl or sulfo groups on heparin form ion pairs with positively 

charged amino acids on proteins. In addition, hydrogen bonding or nonionic interactions between heparin 

and proteins are also present in some instances.39 Finally, heparin is a suitable affinity agent commonly 

used in biomedical related areas, because it can be attached to amine or carboxyl functionalized surfaces 

or microspheres via reductive amination or end point attachment with well-established chemical 

procedures.42, 43 

 

  

Figure 1.2 Major and minor disaccharide repeating units in heparin (X = H or SO3
-, Y = 

Ac, SO3
-, or H).36  

Major sequence 

Variable sequence 

Heparin 

Uronic acid Glucosamine 
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1.4 Microspheres   

 Magnetic microspheres are widely used both in vivo and in vitro in many research areas such as, 

analytical chemistry, biomedical,44 chemical and bio-engineering, drug targeting,45 microfluidics,46 

medicine,47, 48 molecular biology,49 nanotechnology,48, 50 and proteomics. One of the most common 

applications of magnetic microspheres is as carriers to deliver specific biomolecules into biological 

systems or any other systems such as microfluidics. Also, magnetic microspheres can be used to extract 

or capture biomolecules, viruses or bacteria from different systems.49, 51,52  

 Another application in which magnetic microspheres have been used is in microfluidics devices. 

Veyret et al devised magnetic colloids to capture viruses.49 They made magnetic colloids from oil in water 

magnetic emulsions in which poly (ethyleneimine) and poly (maleic anhydride-co-methyl vinyl ether) were 

adsorbed in two separated steps on the emulsion droplets. Veyret and co-workers could achieve a yellow 

fever virus capture efficiency of 90% from human serum. They performed several steps to isolate, purify, 

and detect the yellow virus from human or phosphate buffer saline using magnetic microspheres. Rittich 

et al functionalized magnetic microspheres with hydrophilic properties for molecular applications.53 In their 

research, they developed magnetic nonporous hydrophilic microspheres by polymerizing poly (2-

hydroxyethyl methacrylate-co-ethylenedimethacrylate)-(P(HEMA-co-EDMA)), poly(2-hydroyethyl 

methacrylate-co-glycidyl methacrylate)-(P(HEMA-co-GMA)), and poly(glycidyl methacrylate)-(PGMA) with 

a stable colloidal solution of magnetite on one step process. Also, they functionalized the magnetic 

microspheres with different enzymes such as RNase A, DNase I, proteinase K, and Salmonella 

antibodies to isolate Salmonella cells and degrade bacterial RNA, chromosomal, and plasmid DNAs. Choi 

et al developed a new magnetic bead-based a device for integrated bio-detection systems.54 He and his 

colleagues devised a filterless bio-separator system to trap functionalized magnetic microbeads on a flat 

surface to separate specific biomolecules from a carrier fluid and treat them chemically to release and 

detect analytes of interest. However, magnetic microspheres approaches to pre-concentrate cytokines or 

proteins have not been reported before. Most of the research work found in the literature is about pre-

concentration of viruses.52 One of the novel aspects of this thesis was the used of magnetic microspheres 

to pre-concentrate cytokines or proteins. 
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1.5  Microfluidics  

 Studies and creation of microfluidic sytems is an interdisciplinary research area integrating 

scientists and non-scientists from different disciplines such as Mechanical, Electrical, Computer 

Engineering, Chemistry,Physics and Biology on the quest for faster, cheaper, and smaller devices able to 

solve many different types of problems. One of the principal advantages of this research area is that 

commonly used analytical instruments or techniques such as High-performance liquid chromatography 

(HPLC), mass spectrometry (MS), and microdialysis sampling can be coupled to microfluidic 

systems.55,56,57 This makes microfluidic sytems a very versatile research area.58 In contrast, most of the 

well-known fluid mechanics laws used for macrosystems cannot be applied to microsystem or 

microfluidics in some cases.59,60,61 That is one of the main drawbacks of this research area. To explain, 

most research depends on experimental information to evaluate the flow behavior in microfluidic 

systems.60,61,62  

 This thesis had several goals. First, immobilization and quantitation of heparin onto either 

polymer or magnetic microspheres to capture cytokines and improve RR of cytokines after microdialysis 

sampling was pursued. Second, development of an equation to estimate the amount of heparin required 

(initial concentration) to be immobilized to beads to bind > 99% of cytokines at equilibrium. The amount of 

heparin included in the calculations was related to the amount of heparin-functionalized microspheres to 

be able to design a system based on the amount of heparin-functionalized microspheres necessary to 

pre-concentrate cytokines. Finally, design, fabricate, and test a microfluidic system to trap and release the 

heparin-functionalized microspheres after microdialysis sampling in order to further pre-concentrate 

cytokines.  
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2 Chapter 2. Immobilization, Testing, and Pre-conce ntration Approach for Microfluidics Systems 
Applications of Heparin Functionalized Microspheres  

2.1 Introduction  

 This chapter describes how heparin was chemically attached to amine functionalized polystyrene 

and carboxyl functionalized magnetic microspheres via reductive amination and EDC (N-(3-

Dimethylaminopropyl)-N’-ethylcarbodiimide hydrochloride) /NHS (N-Hydroxy-succinimide) chemistry, 

respectively. Two types of surface chemistry or functionalized microspheres were used due to the 

commercial unavailability of amine functionalized magnetic microspheres. Therefore, two immobilization 

procedures were used; one for polystyrene microspheres (NH2-functionality) and one for magnetic 

microspheres (COOH-functionality). After immobilization the amount of heparin on the microspheres was 

measured following hydrolysis using a liquid chromatography with pulsed amperometric detection (LC-

PAD) system. Following this measurement the heparin-functionalized microspheres were tested for their 

binding capacity with cytokines (MCP-1 and TNF-α) by measuring the interactions between them using 

two equilibrium methods, see below. In other to prove that heparin functionalized microspheres could be 

used to pre-concentrate cytokines and to determine the amount of heparin functionalized microspheres 

needed to reach ~ 100% of cytokines bound, a set of equations was derived and calculations were 

performed. These calculations were based on reported binding constant values for interactions between 

cytokines and heparin. 

2.1.1   Immobilization and characterization of hepa rin  

2.1.1.1  Magnetic microspheres 

In order to trap and release cytokines from magnetic microspheres several experiments were 

conducted. First,  heparin was immobilized onto carboxyl functionalized superparamagnetic microspheres 

of 6.3 µm mean diameter using the  immobilization procedure described by Chung, et al.1 Second, the 

amount of heparin immobilized onto the magnetic microspheres was quantified using a LC-PAD method 

similar to a method used by Duo2 combined with a modified acid hydrolysis method.3 The method used by 

Duo was based on the quantitation of glucosamine present in heparin after acid hydrolysis. The amount 

of glucosamine present in heparin after hydrolysis is approximately ~20% and varies depending on the 
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acid hydrolysis method used.4 Moreover, according to Rohrer et al., glucosamine is the only 

monosaccharide present in heparin after acid hydrolysis.5  

2.1.1.2  Polymeric microspheres 

Heparin was attached to amine functionalized polystyrene microspheres of 6 microns via 

reductive amination.2 The quantitation of heparin immobilized on the polystyrene microspheres was 

performed by using the same procedure mentioned in section 2.1.1.1 and more fully described in section 

2.2.3.1. The idea of using heparin functionalized polystyrene microspheres was to demonstrate that 

cytokines could be pre-concentrated in a bead-based microfluidic system coupled to microdialysis 

sampling. In addition, heparin is cheaper than antibodies. However, antibodies are more specific than 

heparin. In other words, heparin can bind more than one biomolecule or cytokine. This can have a great 

impact during in vivo experiments and would certainly need to be tested as future work.  

2.1.2 Testing of heparin functionalized microsphere s 

2.1.2.1  Polymeric microspheres 

To test the heparin-functionalized polystyrene microspheres interactions with cytokines 

equilibrium dialysis was used. Equilibrium dialysis is a technique commonly used to evaluate binding 

interactions between biomolecules of different molecular weights (ligand and receptor).6-8 Typically an 

equilibrium dialysis system is composed of two chambers and a membrane separating them, see Figure 

2.1.6,8  

 

 

 

 

 

Cellulose acetate membrane 100 kDa  

Chamber 1 Chamber 2 

Figure 2.1  Schematic representation of the equilibrium dialysis system used to measure the heparin-

cytokines interaction.6  
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In principle the idea of conducting equilibrium dialysis experiments is to allow a small ligand 

(smaller than membrane pore size) to diffuse across a membrane to interact with a receptor or other 

biomolecule that is retained due to the membrane pore size.6-8 In other words, the ligand diffuses across 

the membrane and interacts with the receptor whereas the receptor cannot diffuse across the membrane 

to interact with the ligand due to its molecular weight being greater than the molecular weight cutoff of the 

membrane. At equilibrium, the concentration of the small ligand (free) will be the same in both 

chambers.6-8 This allows calculation of the amount of ligand bound to the receptor by measuring the free 

concentration of the ligand and conducting a mass balance. Even though equilibrium dialysis experiments 

are commonly conducted by using biomolecules of different molecular weights, binding interactions 

between biomolecules of the same or similar molecular weights can be performed as well under certain 

conditions. For instance, the equilibrium dialysis system used for studying the binding interactions 

between heparin (~12 kDa) and cytokines (8 to 80 kDa)  was composed of two chambers of 25 µL each 

and a cellulose acetate membrane of 100 kDa molecular cut off (MWCO).6 In this instance both heparin 

and cytokines have similar molecular weights and are smaller than the membrane pore size. However, 

since heparin is attached to the 6 µm polystyrene microspheres, this prevents heparin from diffusing 

across the membrane. This way only cytokines can diffuse through the membrane pores. 

2.1.2.2 Magnetic microspheres 

To test the heparin-functionalized magnetic microspheres, ratMCP-1 and ratTNF-α were used. 

Heparin-functionalized magnetic microspheres and cytokines were incubated in plastic vials to test their 

binding interactions.2 The method used to study this interaction was the same used by Duo.2  His method 

consisted of placing equal volumes of a solution of heparin-functionalized microspheres in PBS and 

cytokine solution (in the same buffer) in a plastic vial and incubated it for two hours (i.e. MCP-1) at room 

temperature unless otherwise stated (see experimental section).2  

2.1.3 Proof of principal pre-concentration approach  using heparin functionalized polystyrene 
microspheres 

 

 To evaluate the limitations of using heparin immobilized on microspheres to trap and release and 

pre-concentrate cytokines and to have an estimate of the amount of heparin-immobilized beads needed 
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to achieve a particular pre-concentration, several calculations were conducted. These calculations were 

compared to the binding values obtained from the equilibrium experiments of section 2.1.2. The following 

set of calculations for the heparin-cytokines chemical interactions assuming a 1:1 binding interaction, 

which is commonly used for binding calculations,9-12 and using reported binding constants of heparin-

binding cytokines.2 

2.1.3.1 Calculations set up  

H = Heparin; C = Cytokine; HC = Complex (Heparin - Cytokine); [H] f  = Concentration of free heparin;  

[C] f = Concentration of free cytokine; [H]T = Total concentration of heparin; [C] T = Total concentration of 

cytokines; [HC]  = Concentration of the complex 

Chemical equilibrium      
H + C ↔koff 

kon  HC 
 

Equation 2.1  Binding constant 

KD = 
koff

kon

 = 
H�f.
C�f

[HC]
 

Equation 2.2 [H]T = [H]f + [HC]   �    Equation 2.3   [H]f = [H]T – [HC]  

Equation 2.4  [C]T = [C]f + [HC]   �    Equation 2.5  [C]f = [C]T – [HC] 

Substituting equation 2.3 and 2.5 in equation 2.1  �   

Equation 2.6   

KD = ([H]
T

 - [HC]) ([C
T
] - [HC])

[HC]
 

Rearranging equation 2.6 �  KD [HC] = ([H]T - [HC]) ( [C]T - [HC])  �   

KD [HC] = [H]T [C]T - [C]T [HC] - [H]T [HC] + [HC]2 �  

[C]T[H]T + [HC]KD – [HC] [H]T – [HC] [C]T – [HC]2 = 0 

Common factor [HC]  �  Equation 2.7   [H]T [C]T + [HC] (KD + [H]T + [C]T) – [HC]2 = 0 

  Equation 2.7  has the form ax2 + bx + c = 0 and we can apply the quadratic formula, 
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   x = - b ± �b
2 - 4ac

2a
 

   x = [HC]; a = 1; b = - ([H]T + [C]T + KD); c = [H]T[C]T  

�   Equation 2.8      


HC� = �[H
T
] + [C

T
] + KD� ± 	�[H

T
] + [C

T
]+KD�2

- 4([H
T
] [C

T
])

2(1)
 

Equation 2.8 was used to estimate the percentage of cytokine bound to heparin at different initial heparin 

concentrations for a specific amount of initial cytokine concentration. The results calculated from this 

equation are shown in the results section, Table 2.3. The change on the percentage of cytokine bound to 

heparin as a function of the initial heparin concentration was evaluated for a fixed initial cytokine 

concentration of 1.0 nM (see Figure 2.7). 

2.1.4 Hemacytometer 

 The microspheres concentration (magnetic or polymeric) used in all the experiments in this thesis 

were measured using a hemacytometer. This technique is commonly used to count blood cells in 

samples. According to Warren “a hemacytometer is a special type of microscope slide that is divided into 

squares of a defined area over which a defined volume of cell suspension is distributed”.13 To explain, 

microspheres in solution are placed in the hemacytometer chambers and counted one by one under a 

microscope.13 Other methods for counting microspheres include ImageJ, a freeware software used to 

process images.14 This software processes images coming from a microscope with a video system. 

This chapter is going to focus on the immobilization, quantitation, and testing of heparin 

immobilized onto polymeric or magnetic microspheres and proof of principle of pre-concentration 

approach for microfluidics systems applications. 

2.2 Experimental Section 

2.2.1  Chemicals 

Carboxyl functionalized superparamagnetic microspheres (3.45 × 108 beads/mL) of 6.3 µm mean 

diameter (COMPEL) were obtained from Bangs Laboratories, Inc. (Fishers, IN). Amine functionalized 
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polystyrene microspheres (6.00 µm o.do, stock concentration of 2.10 x 108 particles/ml in water) were 

purchased from Polysciences, Inc (Warrington, PA). N-Hydroxy-succinimide (NHS), N-(3-

Dimethylaminopropyl)-N’-ethylcarbodiimide hydrochloride (EDC), 2- morpholinoethanoesulfonic acid 

(MES), albumin, from bovine serum (BSA), heparin sodium salt (from porcine intestinal mucosa), D-(+)-

Glucosamine hydrochloride were from Sigma-Aldrich (St. Louis, MO). The hemacytometer was purchased 

from Hausser Scientific (Horsham, PA). A liquid chromatography instrument (LC) was used (Shimadzu 

LC-10AD, Japan). An anion-exchange column, Dionex CarboPac PA1 (250 x 2mm), with a CarboPac 

PA1 Guard column (50 x 2 mm) were used (Sunnyvale, CA). The detector was a Decade EC detector 

with a gold electrode (Antec Leyden, The Netherlands). Micro-Equilibrium Dialyzer of 25 µL and Cellulose 

Acetate membrane MWCO 100 kDa were purchased from Harvard Apparatus (Holliston, 

Massachusetts).6 Standards (recombinant proteins) and ELISA kits for rat MCP-1 and rat TNF 

respectively were obtained from BD Biosciences (San Diego, CA). All other chemicals used were 

analytical grade unless otherwise stated. 

2.2.2  Immobilization of heparin onto microspheres 

2.2.2.1  Carboxyl functionalized superparamagnetic 

          Heparin was immobilized on carboxyl functionalized magnetic microspheres of 6.3µm using the 

same procedure that Chung, et al., reported for the immobilization of heparin on carboxyl porous 

poly(D,L-lactic-co-glycolic acid) (PLGA) microspheres.1 Typically 200 µL of stock solution of carboxyl 

functionalized superparamagnetic microspheres (3.45 × 108 beads/mL) were washed three times with 200 

µL 0.1 M MES buffer (pH 5.5) and reconstituted with the same buffer. After that 47.9 mg of EDC and 28.8 

mg of NHS were added to the solution followed by the addition of 30 mg/mL of heparin. This solution was 

incubated overnight under constant rotation.1 After the incubation the amount of heparin immobilized was 

determined by using an acid hydrolysis method combined with a LC-PAD system, see section 2.2.3. 

2.2.2.2  Amine functionalized polystyrene  

The protocol for the immobilization of heparin was as follows: 200 µL of stock solution of amine 

functionalized polystyrene microspheres (2.10 x 108 beads/mL) was taken and washed three times with 1 

mL of 0.2 M sodium phosphate buffer, pH 7.0 and then reconstituted in 1.5 mL of the same buffer having 
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30 mg/mL of heparin and 3 mg/mL of NaCNBH3. After that the colloidal solution was incubated on a 

microplate shaker at 1000 rpm at room temperature for 2 days. To be able to compare the amount of 

heparin immobilized onto the microspheres control microspheres were prepared following the above 

procedure without heparin. The solution containing the microspheres was washed three times with 0.2 M 

sodium acetate buffer, pH 7.0 to eliminate any non-covalently bound components and reconstituted in 1 

mL of the buffer. Then 1 mL of acetic anhydride was added to the colloidal solution and incubated for 1 

hour at room temperature to deactivate the unreacted amine groups. Next, the microspheres were 

washed with HPLC water, 0.1 M NaOH, and 10 mM phosphate buffered saline (PBS) pH 7.4. The 

colloidal solution was stored in 10 mM PBS pH 7.4 containing 0.05% sodium azide.2 Before and after 

heparin immobilization, microspheres were counted using a hemocytometer in order to determine if any 

microspheres were lost during the immobilization process. To clarify, 10 µL of the microspheres solution 

was placed in each chamber, placed under microscope, and counted. The heparin concentration 

immobilized to the microspheres was determined by hydrolyzing the microspheres solution and 

quantifying it as the amount of glucosamine present after acid hydrolysis. The standards were used 

based on the heparin lot used for immobilization to diminish any lot variation as heparin is very 

heterogeneous and can vary from lot to lot. 

2.2.3  Characterization or quantitation of heparin immobilized  

2.2.3.1 Polystyrene and superparamagnetic microsphe res 

The acid hydrolization process used was a modified version of the method for heparin quantitation 

found on the Pharmacopeial Forum.3 A glucosamine standard solution was prepared by taking ~0.2 

mg/mL of glucosamine hydrochloride RS in 4.8 M hydrochloric acid. An aliquot of ~625 µL of this standard 

solution was transferred to a 2.0 mL graduated plastic vial with attached lid, and heated for 6 h at 100°C 

in a sand bath. Then the heated solution place in a micro-vial rack at ambient temperature for one hour 

and then was quantitatively transferred to a 2 mL volumetric flask, and diluted with HPLC grade water to 

volume. The standard solution of heparin was prepared by transferring a known weight of heparin sodium 

(targeted ~1.5 mg) to a 2 mL graduated vial with attached lid, dissolved in 2 mL of 4.8 M hydrochloric 

acid, and capped.  The standard solution of heparin was heated for 6 hours at 100°C in a sand bath, then 

the solution was placed in a micro-vial rack until it reached room temperature, and diluted with HPLC 
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grade water (3 in 50) unless otherwise stated (2 mL volumetric flask). Heparin-functionalized polymeric or 

magnetic microspheres were hydrolyzed and the concentrations of glucosamine obtained were compared 

to the standard solutions.  After hydrolysis the microspheres were centrifuged and the supernatant was 

diluted (3:50) in HPLC-grade water. Several calibration curves were generated with the hydrolyzed 

standards prepared above. First, the hydrolyzed heparin was used to generate a calibration curve based 

on the amount of glucosamine. Second, the standard solution of hydrolyzed glucosamine of different 

concentrations was used to generate a calibration curve and compare analyzed amounts to the free 

hydrolyzed heparin, see Figure 2.2. The amount of glucosamine in the hydrolysate from the 

microspheres, and standard solution of glucosamine were quantified by ion-exchange chromatography 

with pulsed amperometric detection (LC-PAD). An anion-exchange column, Dionex CarboPac PA1, with a 

CarboPac PA1 Guard column was used. The detector was a Decade EC detector  with a gold electrode 

in the pulse potentials and time durations of E1 = +0.05 V, t1 = 400 ms; E2 = +0.75 V, t2 = 200 ms; E3 = -

0.75 V, t3 = 400 ms.2 The mobile phase used was 95 mM sodium hydroxide with 10 mM sodium acetate, 

and the injection volume 10 µL. The flow rate for the LC was 0.25 mL/min using an isocratic mode.2 

2.2.4 Testing of heparin immobilized  

2.2.4.1  Polystyrene microspheres 

 A standard solution of rat MCP-1 (289 ng/mL according to the label) was used to prepare the 

standards for the ELISA, and solutions used in equilibrium dialysis experiments. An aliquot of 25 µL of 

heparin functionalized polystyrene microspheres (4.48 x10-7 beads/mL) with a total concentration of 5.22 

x 10-7 M of heparin was placed in one of the equilibrium dialyzer chambers and 25 µL of 0.1 or 1.0 nM 

(reported MW 26.2 kDa)2 ratMCP-1 diluted in 10mM phosphate buffer saline (PBS, pH 7.4) containing 

0.05% BSA were placed on the other chamber (Figure 2.1).6 Controls were prepared as follows: a) 25 µL 

of the same ratMCP-1 solution was placed in one chamber, and 25 µL of the same buffer was placed on 

the other chamber, and b) 50 µL of the same ratMCP-1 solution was placed in a plastic vial. Samples and 

controls were incubated for two hours at room temperature under constant rotation using a horizontal 

rotator to allow equilibrium to occur. The time frame of two hours were chosen based on the binding 

kinetics data reported by Duo for MCP-1 and heparin functionalized microspheres.2 The control placed in 

the plastic vial was incubated with no rotation. After two hours 5 µL aliquot from each equilibrium dialyzer 
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chamber was taken and diluted in 126 µL of ELISA kit assay diluent. Also, 13 µL aliquot from the plastic 

vial was diluted in 327 µL of the assay diluent. Standards solutions of ratMCP-1 for ELISA kit were 

prepared according to the BD Biosciences procedure (standards were diluted in assay diluent as well). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2 Flow chart of the method used to determine the amount of heparin immobilized onto the 

microspheres based on the glucosamine content.  

 

A calibration curve of ratMCP-1 standards was used to calculate the concentration of samples and 

controls. These experiments were performed in triplicate. 

Heparin-functionalized microspheres 
and amine or carboxyl functionalized 
microspheres solution containing 4.8 
M HCl (in a 2.0 mL graduated plastic 
vial w/attached lid) 

Standard solution of 
glucosamine containing 
4.8 M HCl (in a 2.0 mL 
graduated plastic vial 
w/attached lid) 

Heated for 6 h at 100°C 
in a sand bath system 

Placed in a micro-vial rack until reached 
room temperature (~ 1 hour) 

Standard solutions were diluted 
(3:50) with HPLC-grade water 

Microspheres were centrifuged and 
supernatant was diluted (3:50) in HPLC-grade 

10 µL of standard solution of heparin, glucosamine and 
supernatant were injected separately into the LC-PAD system 
to generate two calibration curves and measure the amount of 
glucosamine in the supernatant (this was done in triplicate) 

Calibration curve of glucosamine used to calculate the amount 
of glucosamine in the standards of heparin 

The average of the amount of glucosamine in the standards of 
heparin was determined and used to back calculated the 
amount of heparin immobilized onto the microspheres 

Standard solution of 
heparin containing 4.8 
M HCl (in a 2.0 mL 
graduated plastic vial 
w/attached lid) 
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2.2.4.2 Magnetic microspheres 

The method for trapping and releasing cytokines was similar to the method used by Duo.2 A 

solution, 100 µL, of heparin-functionalized magnetic microspheres (3.90 × 108 beads/mL) with a total 

concentration of 4.98 x 10-7 M of heparin in 10 mM PBS (pH 7.6) was placed in a plastic vial along with a 

100 µL solution of either ratMCP-1 (15 ng/mL) or rat TNF-α (5 ng/mL) in the same buffer at different 

concentrations. These concentrations were selected based on the estimated values of the amount of 

cytokines bound to heparin, see section 2.1.3 and Table 2.3, and the volume (≥ 50 µL) and concentration 

needed to make three measurements using the ELISA kit within the kit’s concentration range (31.3 to 

2000 pg/mL).15 The concentration of ratMCP-1 used was higher compared to rat TNF-α because MCP-1 

has a higher affinity to heparin, see Table 2.3. In other words, in order to obtain a free concentration of 

MCP-1 within the kit’s concentration range a higher initial concentration was used. The plastic vial 

containing both solutions was incubated at room temperature for 2 hrs. After incubation, the supernatant 

was removed and the cytokine content in the supernatant was determined using the corresponding rat 

MCP-1 or rat TNF-α ELISA kit.  

A TecanSPECTRAFluor 96-wells plate reader was used to read the absorbance at 450 nm, 

wavelength correction was used to subtract absorbance at 570 nm from absorbance 450 nm according to 

the BD Biosciences technical data sheet.15 The concentration of cytokines bound to the heparin-

functionalized magnetic beads was determined by subtracting the initial or free concentration of cytokines 

that was placed in the vials before incubation to the free concentration of cytokines after incubation or 

centrifugation. In other words, the concentration of cytokines bound to the heparin-functionalized 

magnetic microspheres was calculated by difference (initial minus free = bound). 

2.2.5 Proof of concept pre-concentration approach u sing heparin functionalized polystyrene 
microspheres 

2.2.5.1 Estimations 

 Equation 2.8 was configured in a Microsoft Office Excel 2007 spreadsheet to facilitate the 

calculations. A set of calculations were performed manually or by hand to confirm the spreadsheet set up 

was working. The steps followed to estimate the amount of heparin functionalized microspheres require to 

achieve ~ hundred percent of cytokines bound to heparin were: a) The concentration of heparin 
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immobilized on 6 µm microspheres ([HB]) used was 15.7 x 106 heparin molecules per bead, b) the initial 

concentration ([B]) value used for “plain” microspheres or without heparin was 7.70 x 105 beads/mL, and 

c) the final concentration of heparin immobilized on the microspheres ([HB]) was calculated based on the 

following equation: 

 


HB� =  
HB� 
B� 1000

6.023 x 10
23

 

  

2.3  Results and discussion 

2.3.1 Characterization or quantitation of heparin i mmobilized 

The amount of heparin immobilized on either heparin-functionalized polystyrene microspheres or 

heparin-functionalized magnetic microspheres was calculated using the appropriate calibration curve, and 

the calculated glucosamine content ~35.0% and ~27.0%, respectively. Different heparin lots were used to 

make polystyrene and magnetic microspheres. That is why the glucosamine content was different, see 

section 2.2.2.2. Glucosamine content was calculated as follows: a) The peak areas of heparin hydrolyzed 

standards, were plugged in the equations generated by the calibration curves to determine the 

concentration of glucosamine, b) The concentrations of glucosamine from “a” were divided by the 

predicted concentrations of the heparin solutions or standards prepared (before acid hydrolysis), c) The 

results of “b” were averaged and used as the glucosamine content. In order to determine the amount of 

heparin measured (after hydrolysis) indirectly the concentration of glucosamine calculated using the 

calibration curve were divided by the glucosamine content. The concentration of heparin on heparin-

functionalized polystyrene and magnetic microspheres after acid hydrolysis measured using LC-PAD, see 

Figure 2.3, and calculated as explained before is shown in Table 2.1. 

 

Table 2.1 Amount of heparin on heparin-functionalized polystyrene and magnetic microspheres 
measured using LC-PAD after acid hydrolysis 

Microspheres type  Microspheres concentration (beads/mL)  Heparin concentration (M)  

Polystyrene 4.48 x 107 5.22 x 10-7 ± 0.32 x 10-7 

Magnetic 3.90 x 108 4.98 x 10-7 ± 0.08 x 10-7   
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The amount of heparin-functionalized magnetic microspheres used was higher (3.90 x 108 beads/mL) 

than the amount of heparin-functionalized polystyrene microspheres (4.48 x 107 beads/ mL), but the 

heparin concentration on polystyrene and magnetic microspheres were approximately the same, see 

Table 2.1. The amounts of microspheres used were different, because each stock of microspheres 

(polystyrene and magnetic) came with different concentration. The reason why a 10 fold difference 

between the amount of heparin-functionalized magnetic and polystyrene microspheres yield 

approximately the same amount of heparin immobilized could be due to the efficiency of the coupling 

chemistry used due to the differences in available surface chemistries for the beads. 

2.3.2 Testing of heparin immobilized 

2.3.2.1 Polystyrene microspheres 

The interaction of heparin-functionalized polystyrene microspheres and MCP-1 was used to test 

the binding capacity of the heparin beads. The method used was equilibrium dialysis. The experimental 

results were compared to the estimated values, see Table 2.2. The difference between experiment and 

theory were 4.25% for 0.1 nM and 15.08% for 1.0 nM. Since the reported KD values were used for the 

estimations this could explain the difference between experiment and theory. 

2.3.2.2 Magnetic microspheres 

In order to test the heparin-functionalized magnetic beads a different approach was used. This method 

was used to minimize the non-specific binding of cytokines. The microspheres were incubated in a plastic 

vial with either MCP-1 or TNF-α as explained in section 2.2.4.2. The percentage of MCP-1 bound was 

70.38% and for TNF-α was 11.07%, see Table 2.3. These values were expected because MCP-1 has a 

higher reported heparin affinity (KD) than TNF-α, see Table 2.5.  
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Glucosamine peaks 

Blank 

Standard of glucosamine 

Standard of heparin 

0.0   1.0   2.0   3.0   4.0   5.0    6.0 

Retention time (min)             n = 3  

Heparin-functionalized microspheres 

Figure 2.3 Chromatograms of standards of glucosamine, hydrolyzed heparin and heparin-

functionalized microspheres after hydrolysis. 
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Table 2.2 Comparison of estimated and experiment of percentage of rat MCP-1 bound to heparin 

functionalized polystyrene microspheres 

ratMCP-1 
Initial 

concentration  
of heparin (µM) 

Initial concentration 
of ratMCP-1 (M) 

*Reported binding 
constant (K D, nM) 

% of cytokine 
bound 

0.52 ± 0.03 
1.00 x 10-9 

6.60 ± 0.80 
98.75 

 1.00 x 10-10 98.75 
 

  Calculated binding  
constant (K D, nM) 

 

1.00 x 10-9 100.02 **83.67 

1.00 x 10-10 30.40 ***94.50 
               *2, **n = 3, ***n = 2 

The estimated and calculated percentages of ratMCP-1 and rat TNF-α bound to heparin immobilized 

polystyrene and magnetic microspheres were compared see Table 2.4.The differences between 

estimated and calculated percentages for those cytokines were 28.31% and 31.56%, respectively. The 

difference between the calculated percentages (using measured values) of ratMCP-1 bound to heparin 

immobilized polystyrene and magnetic microspheres (1.0 nM and 0.57 nM respectively) was 13.29%. The 

estimated percentages (using estimated and reported values) difference was almost negligible (0.06%). 

2.3.3 Proof of principal pre-concentration approach  using heparin functionalized polystyrene 
microspheres  

2.3.3.1  Estimations 

Several calculations were performed using Equation 2.8. These estimations were conducted for MCP-1, 

TNF-α, IL-6, INF-γ, and IL-10 using reported KD values measured using different techniques and 

conditions, see Table 2.5. The initial concentration of cytokines used was 1.0 nM and the initial 

concentration of heparin was varied from 3.68 x 10-10 M to 3.68 x 10-2 M. The reason why this range of 

concentration was used was that Duo2 conducted similar calculations using 3.68 x 10-9 M. However, he 

did not show how the calculations were conducted. After conducting my calculations I decided to use his 

calculations as a reference and to be able to compare our results I used the same initial concentration 

that he used. I obtained similar as Duo. 
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      Table 2.3 ratMCP-1 and ratTNF-α controls concentration in low binding plastic vials, in equilibrium 

dialysis chambers, concentration of free cytokines, and percentages of cytokines bound to heparin-

functionalized magnetic microspheres or heparin after incubation at room temperature for 2 hours. 

 

 

 

 

 

 

Table 2.4 Comparison of the estimated and calculated percentages of ratMCP-1 bound to heparin 

immobilized polystyrene and magnetic microspheres 

Heparin -polystyrene beads  

Initial  
concentration 

of heparin (µM) 

Initial  
concentration of 

ratMCP-1 (M) 

*Reported binding 
constant (K D, nM) 

% of cytokine 
bound 

0.52 ± 0.03 
1.00 x 10-9 

6.60 ± 0.80 
98.75 

1.00 x 10-10 98.75 
 
  Calculated binding 

constant (K D, nM) 
 

1.00 x 10-9 100.02 **83.67 
1.00 x 10-10 30.40 ***94.50 

 
Heparin -magnetic beads  

Initial  
concentration 
of heparin (µM  

Initial  
concentration of 

ratMCP-1 (M)  

*Reported binding 
constant (K D, nM) 

% of cytokine 
bound  

0.49 ± 0.01 0.57 x 10-9 6.60 ± 0.80 98.69 
 
 Calculated binding 

constant (K D, nM) 
% of cytokine 

bound  
208.75 70.38 ± 1.71 

*2, **n = 3, ***n = 2 

 

 

ratMCP-1 

Control in chambers  

  (ng/mL) 

Sample  

 (ng/mL) 

% Bound  

(Exp.) 
% Bound 

(Est.) 

13.58 ± 0.36 4.02 ± 0.23 70.38 ± 1.71 98.69 
ratTNF-α 

Control in chambers 

(ng/mL)  

Sample  

(ng/mL)  

 

% Bound 

% Bound 
(Est.)  

 

*5.12 4.56 ± 0.25 *11.07 42.63 
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After that I conducted a set of calculations as shown on Table 2.5. It was theoretically found (based on 

the calculations) that if an initial concentration of cytokine lower than 1.0 nM and any initial concentration 

of heparin is used the calculate percentage of cytokine bound to heparin is negligible or constant (data 

not shown). In other words, below concentrations of 1.0 nM the estimated % of cytokines bound to 

heparin for any initial concentration of heparin remains almost constant. This is a very important finding 

for the study of the interactions between heparin and cytokines of cytokine concentrations lower than 1.0 

nM.  

Several binding curves were generated to ensure that the estimations and derived equation were 

in agreement with the fact that for this type of calculations the KD of a biomolecule correspond to the 

inflection point of its binding curve.16 In Figure 2.5 can be seen how each cytokine KD value correspond to 

its binding curve inflection point. The amount of heparin required to achieve ~ 100% of cytokines bound 

for a fixed initial concentration of cytokines (1.0 nM) was related to the amount of heparin-functionalized 

microspheres. This was done to estimate the size of the microfluidic trapping area needed to pre-

concentrate the cytokines assuming the heparin content to the microspheres and the total microspheres 

per mL are known. In Table 2.6 the amount of beads highlighted in red represent the amount of heparin-

functionalized microspheres necessary to obtain ~ 100% of cytokines bound. For MCP-1 and TNF-α, the 

amount of heparin-functionalized required is higher (7.70 x 109 beads/mL) compared to IL-6, INF-γ, and 

IL-10 (7.70 x 108 beads/mL). These estimations helped with the microfluidic system design, see Chapter 

3. 
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Table 2.5 Estimated values of the percentage of cytokines bound to heparin at different [H]f values 
 

Note: Numbers in red indicate the initial concentration of heparin required to achieve ~100% of cytokines 

bound.  

 

 

 

 

 

 

 

Initial 
concentration 
of Heparin (M) 

KD (M)  

6.70e-0717 2.00e-0718 7.47e-0817 5.40e-0819 6.60e-092 

TNF-α IL-6 INF-γ IL-10 MCP-1 

3.68e-10 0.05 0.18 0.48 0.66 4.65 

% of 
Cytokine 

bound  

3.68e-092 0.55 1.8 4.64 6.28 33.63 

3.68e-08 5.20 15.49 32.81 40.26 84.49 

3.68e-07 35.43 64.75 83.09 87.18 98.23 

3.68e-06 84.59 94.84 98.01 98.55 99.82 

3.68e-05 98.21 99.46 99.80 99.85 99.98 

3.68e-04 99.82 99.95 99.98 99.99 100.00 

3.68e-03 99.98 99.99 100.00 100.00 100.00 

3.68e-02 100.00 100.00 100.00 100.00 100.00 
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Figure 2.5 Relationship between percentages of cytokines bound and initial or free heparin at different 

concentrations 
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Table 2.6  Estimated amount of heparin, [HB], immobilized on amine functionalized microspheres of 6 

microns, [B], based on a reported value of  15.7 x 106 heparin molecules per bead, [HB],2 at different 

initial concentrations of heparin [H]f.  

 

 

 

 

 

 

 

 

Note: Numbers in read mean the minimum amount of heparin-functionalized beads required to achieve ~ 

100% of cytokines bound related to Table 2.5.* 

2.4 Conclusion  

 Heparin was chemically immobilized on two different types of microspheres (amine functionalized 

polymeric and carboxyl functionalized magnetic). Heparin immobilized to each bead set was quantified 

using acid hydrolysis and LC-PAD. The binding affinity of cytokines with heparin-immobilized polymeric 

and magnetic microspheres was quantified using equilibrium dialysis and “plastic vial mixing” and 

incubation methods. The purpose of these studies was to relate the amount of heparin immobilized onto 

the microspheres to the microspheres concentration. In other words, I wanted to determine how many 

microspheres were required to obtain an “x” concentration of heparin to further capture an expected “y” 

concentration of cytokines. It was estimated theoretically based on experimental data how many 

microspheres with a known heparin content were necessary to achieve one hundred percent binding of 

cytokines. These estimations and experiments served as a fundamental base for the pre-concentration of 

cytokines. For the heparin immobilized polymeric microspheres after equilibrium dialysis (ratMCP-1) the 

difference between estimated and experimental values were 4.25% for 0.1 nM and 15.08% for 1.0 nM. 
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For heparin immobilized magnetic microspheres after “plastic vial mixing” and incubation (ratMCP-1 and 

ratTNF-α) the difference on the percentages were 28.31% and 31.56% respectively. The difference 

between the experimental values of the percentages bound between heparin immobilized polymeric and 

magnetic microspheres for ratMCP-1 was 13.29%. However, the difference between the estimated values 

was almost negligible (0.06%). These differences could be due to the fact that the cytokine KD values 

used were obtained from the literature in which each value were obtain under different conditions as 

compared to the experiments performed in this thesis. Nevertheless, the difference was lower than 

expected. Finally, this work showed that cytokines could be pre-concentrated into a trap and release 

microfluidic systems using microspheres with chemical affinity for cytokines. 
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3 Chapter 3.   Design, fabrication, and testing of pre-concentrator microfluidic system 

3.1 Introduction 

 In this chapter a simple microfluidic system was created to test the usefulness of heparin-

immobilized magnetic microspheres for the pre-concentration of cytokines after microdialysis sampling. 

The microfluidic system created is the first system that have been developed using a circular trapping 

area to pre-concentrate cytokines. The designed microfluidic system used pressure differences as the 

driven force for the fluid. That played an important role on choosing the channels and overall dimensions 

of the device in order to facilate fluid flow in the system and to understand the limititaions of the system in 

term of flow rate. I was able to use relative high flow rate (10.0 µL per minute) without any leakage for a 

system (PDMS-glass) held together by weake forces or Van der Waals forces. Nevertheless, one of the 

issues with this new system is that circular-based systems have not been previously described in the 

literature. In other words lack of a well-understood and comprehensive fluid mechanics theories for 

microfluidics makes the design and characterization of such systems a challenge. 

3.1.1  Theory and estimations 

Several assumptions were made to be able to estimate the pressure drop of the developed 

microfluidic system based on the hydraulic resistance of connected straight channels, the Hagen-

Poiseuille law, and Kirchhoff’s laws or equivalent circuit theory, see Figure 3.1.1 For pressure driven fluids 

microfluidic systems it is common to use the equivalent circuit theory to predict the pressure drop and 

analyse or modify designs using well understood electrical circuit theory.1-5 The aim of this chapter was to 

explain how the microfluidic system was developed and tested.  

3.2 Design and fabrication 

The proposed microfluidic system consisted of several parts: a) A fluidic part having two straight 

channels of 0.1 mm (inlet) and 0.2 mm (outlet) having a circular trapping area of 3.6 mm (internal 

diameter) between them, see Figure 3.2. The height (0.1 mm) was the same for each channel and 

trapping area. The circular trapping area had a volume of ~1 µL equivalent to an estimated amount of ~9 

x 106 magnetic microspheres of 6 µm in diameter. It was made of polydimethylsiloxane (PDMS), flexible 
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polymer commonly used for microfluidic fabrication,6 and b) planar micro-electromagnetic trapping 

system. The latter is part of the future work. 

Several steps were followed for the fabrication of the microfluidic system. First of all, a 2D sketch 

was drawn on AutoCAD 2011 provided by the University of Arkansas’ computer lab, see Figure 3.2. The 

dimensions chosen for the design were based on the microfabrication capabilities of the University of 

Arkansas’ High Density Electronics Center (HiDEC), and cost. The inlet and outlet microchannels 

dimensions were designed to minimize backpressure and to reduce leakage. The idea was to design and 

fabricate a system as straightforward, inexpensive, and fast as possible. Finally, the circular trapping area 

was designed to have a volume of 1 µL that was related to the minimum amount of heparin-functionalized 

magnetic microspheres estimated to reach ~100 % of cytokines bound as explained in Chapter 2.  

Flow direction  

Q1 

P0 
∆P1 = R1 Q1 

P0 Q 

a) 

Q2 

P0 P0 + ∆P2 

P0 + ∆P1 

P0 ≡ 

∆P3 = R3 Q3 

b) 

P0 + ∆P3 

∆P2 = R2 Q2 

P0 + ∆P 

R = R1 + R2 + R3 
c) 

Q3 ∆P = (R1 + R2 + R3) Q 

Figure 3.1  Equivalent circuit approach of three straight channels in series used to estimate the 

pressure drop in  the designed microfluidic system, see 3.5.2. a) Inlet and outlet channels, b) circular 

trapping area showing the assumption that the cross sectional area of the”circle” was equal to the 

cross sectional area of a ”square”, c) the microfludic system. This figure was redrawn and adapted 

from reference 1.  
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The fabrication procedure used to build this system was a standard photolithography or soft 

lithography method (see below). After fabricating the system a glass-slide was used to cover the 

channels. This system was tested by recording the liquid filling and magnetic microspheres colloidal 

solution behavior inside the trapping area.  

3.3 Materials and Methods 

Carboxyl functionalized magnetic microspheres of 6.0 µm (COMPEL) were obtained from Bangs 

Laboratories, Inc. (Fishers, IN). Sylgard 184 silicone elastomer kit base or silicone (Dimethyl siloxane, 

dimethylvinyl-terminated major component) and curing agent or silicone resin solution (Dimethyl, 

methylhydrogen siloxane major component) was used (Down Corning, Midland, MI. Epoxy based 

photoresist or SU-8 was purchased from MicroChem (Newton, MA). Light microscope was purchased 

from Leica Microsystems, Inc. (Buffalo Grove, IL). The syringe pump was purchased from BASi (West 

Lafayette, IN). A digital camera ViviCam 7388s from Vivitar (New York, NY) was used. Fluorinated 

ethylene propylene (FEP) tubing (0.12 mm inner diameter) and tubing adaptors were purchased from 

CMA Microdialysis, Inc. (North Chelmsford, MA).  

Outlet 

20.7 mm 

Ø 3.6 mm 

0.2 mm 

20.7 mm Trapping area 

Inlet  

0.1 mm 

Figure 3. 2 2D sketch of the photomask used to fabricate the microfluidic sytem (fluidic part). 
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The microfluidic device in PDMS was fabricated using standard photolithography, see Figure 3.3. 

SU-8 was spin coated on a 4” silicon wafer to create a master mold. PDMS was prepared by mixing the 

base and curing agent at a 10:1 (w/w) ratio according to the DOW CORNING’s product information 

sheet.7 The mixture was degassed using an in-house made vacuum system, see Figure 3.4, and poured 

onto the SU-8 master mold. After that the SU-8 master mold was cured in a 75 ºC oven for 1 hour. The 

PDMS replica mold was cutted out using a razor blade, removed from the SU-8 master mold, and cleaned 

using isopropyl alcohol. After that the device was placed on a standard, previously cleaned using 

isopropyl alcohol, microscope glass slide to cover the channels. The interaction between the PDMS and 

the glass slide form a weak or reversible bond due to the Van der Waals forces.6 According to McDonald, 

et al., this type of bond between PDMS and glass can withstand up to 5 psi, and the amount of residue 

left after the PDMS is peeled off is significantly low  making the fabrication process easier.6 The inlet and 

outlet of the device were made using a round punch having a nominal cutting edge diameter of 0.71 mm 

from Technical Innovations, Inc. (Angleton, TX). Finally, the inlet and outlet tubing were placed in the 

holes previously made by slightly pushing them in without using any fittings, see Figure 3.5. 

3.4 Testing 

3.4.1 Liquid filling 

In order to test whether or not the system had any leakage and to observe the liquid filling 

behavior inside the circular trapping area, HLPC-grade water and 10 mM phosphate buffered saline 

(PBS), pH 7.6 were perfused at 1.0 µL/min flow rate in two different set of experiments. During each 

individual experiment a video was recorded at 1.0 µL/min flow rate starting at the “entrance” of the circular 

trapping area. The video was recorded using an in-house made micro-video recording system composed 

of a digital camera attached to a light microscope, see Figure 3.6. Two sets of snapshots were taken after 

the experiments were performed, see Figure 3.7, and 3.8. 

3.4.2 Microspheres behavior inside circular trappin g 

Magnetic microspheres were taken from a stock solution (3.45 x 108 beads/mL) and washed three times 

with 100 µL of 10 mM phosphate buffered saline (PBS), pH 7.6. The microspheres were perfused into the 

microfluidic system using a BASi syringe pump. A video of the magnetic microspheres behavior was 
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recorded at different flow rates (1.0, 2.0, 5.0 and 10.0 µL/min) using the micro-video recording system 

made in our lab. Several snapshots from the video were taken as illustrated on Figure 3.9. 

 

 

 

 

 

 

Spincoat silicon wafer with 5 mL SU-8 
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-Postbake 5 min on hotplate 

-Develop the wafer in propylene glycol 

-To mix base:curing agent (10:1 w/w) 
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 the structure to create a thicker chip 
Open microfluidic system 

(fluidic part) 

Figure 3.3 Simplified microfabrication process of the microfluidic system (fluidic part) 



41 
 

 

 

 

 

 

 

 

 

Figure 3.4 In-house made vacuum system 

 

 

 

 

 

 

 

 

 

 

Figure 3.5 fabricated PDMS microfluidic system with inlet and outlet tubings connected 
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Figure 3.6 In-house made micro-video recording system 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7 Snapshots of the liquid filling experiment for HPLC water pumped at 1.0 µL/min. The red arrow 
indicates the direction of the flow. 

 

“Tail” 
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Figure 3.8 Snapshots of the liquid filling experiment for 10 mM PBS pH 7.6 pumped at 1.0 µL/min. The 
red arrow indicates the direction of the flow.  

 

3.4.3 Online and offline collection of microspheres  

To evaluate how coupling the microfluidic device to a BASi syringe system (rotator, syringe, and syringe 

pump) affected the concentration of amine functionalized polystyrene beads overtime at a fixed flow rate 

two set of experiments were conducted. An aliquot of 1.5 µL was taken from amine functionalized 

polystyrene microspheres of 6.0 µm from stock solution (6.57 x 108 beads/mL) and diluted in 998.5 µL of 

10 mM PBS having 0.1% polysorbate 20 (Tween 20). The solution (~1.25 x 106 beads/mL) was split in 

two 1.0 mL solutions to be used in two different experiments. The amount of beads in these solutions was 

measured before and after collection using a hemocytometer. The set up for the experiments was as 

follows: First, BASi syringe was filled up with one of the 1.0 mL of amine functionalized polystyrene beads 

solution previously made for each experiment. After that the syringe was placed on a rotator to constantly 

shake the syringe and keep the amine functionalized polystyrene beads in suspension. A pumping flow 

rate of 5.0 µL/min was used for both experiments. Plastic tubing was attached to the syringe tip using a 

plastic adaptor for offline sampling or amine functionalized polystyrene beads collection. 

 

“Tail” 
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For online collection the syringe was coupled to the microfluidic device inlet and amine functionalized 

polystyrene beads were collected from the device outlet, see Figure 3.10. Amine functionalized 

polystyrene beads were collected in plastic vials every 15 min for 60 min from either the plastic tubing 

attached to the syringe tip or microfluidic device outlet. The concentration of amine functionalized 

polystyrene beads for each experiment was measured using a hemocytometer. 

 

 

 

 

Gap ~0.16mm 

Gap ~0.31 mm  

Figure 3.9 Snapshots taken from the video that was recorded during the perfusion of magnetic 

microspheres into the microfluidic system at different flow rates. The red arrow indicates the direction of 

the flow. A) Magnetic microspheres moving away from circular trapping area walls at 10.0 µL/min flow 

rate, B) magnetic microspheres moving toward circular trapping area walls at 5.0 µL/min flow rate, C) 

magnetic microspheres starting to spread evenly over the circular trapping area at 2 µL/min, and D) 

magnetic microspheres spreading evenly over the circular trapping area at 1.0 µL/min flow rate. 
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Figure 3.10 Experimental set up for the online and offline collection of amine functionalized polystyrene 

microspheres of 6.0 µm. 

 

3.5 Results and discussion 

3.5.1  Background of the design chosen 

The possibility of using polymeric microspheres in the designed microfluidic system was studied. 

However, physical traps and hydrodynamic forces were necessary in order to trap and release polymeric 

microbeads from a trapping area after chemical analysis. For instance, one of the early ideas was to have 

a three channels microfluidic system with a trapping area, see Figure 3.11. The system was composed of 

one channel for the injection of the microspheres or inlet dialysate that would be coupled to the 

microdialysis outlet, another channel for injection of the dissociation buffer, and the outlet channel. To 

explain, the channel used for the injection of dissociation buffer, and the outlet channel would have widths 

smaller than 6 µm or any beads size chosen to trap the beads in the trapping area. The idea was to flush 

the microspheres out through the inlet (dialysate) channel by injecting a solution in both inlet channel 
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(dissociation buffer), and outlet at the same time. The drawbacks of this idea were the following: a) 

Channels with widths smaller than 6 µm are very expensive to fabricate (photomask), b) PDMS could 

collapse in such a narrow channel, c) Solution of microspheres and buffer must be injected at the same 

time (inlet dialysate and inlet dissociation buffer), d) dissociation buffer must be injected in both inlet 

channels as well to avoid bead loss, and e) automation was based on hydrodynamic flow control. It is 

good to point out that after reading Andersson et al article,8 and evaluating the feasibility of using 

polymeric microspheres for the development of a trap and release microfluidic system using physical 

barriers magnetic microspheres were chosen. As stated on their article they used standard 

photolithography, bulk micromachining, deep reactive ion etching, and anodic bonding.8 Compared to the 

two procedures used to make the microfluidic system (fluidic part) using magnetic microspheres on this 

thesis their system is more complex and difficult for this initial application. Even if the planar 

electromagnetic trapping system was added into the procedures, it would be easier to fabricate than the 

Andersson et al system. Also, using an electromagnetic system greatly facilitates the automation process. 

Furthermore, none of the previously mentioned research papers used a circular trapping area for their 

microfluidic systems. The advantages and disadvantages of using a circular trapping area for microfluidic 

applications can be seen on Table 3.1. Pant and his colleagues presented a poster called “System level 

Simulation of Liquid Filling in Microfluidic Chips”.9 They used three different abrupt structures, sharp-

rectangle, hexagon, and rounded-rectangle and studied the liquid filling behavior.9 According to Pant, et 

al., sharp-rectangle abrupt structures or trapping areas tend to trap air bubbles at the corner.9,10 In 

contrast, they found that hexagon, and rounded-rectangle abrupt structures did not trap air bubbles. 

Compared to sharp-rectangle trapping areas circular trapping areas do not trap air bubbles shown by this 

work.  

 

 

 

 



47 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 1 Earlier proposed microfluidic system with physical traps 
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Table 3.1 Advantages and disadvantages of the circular microfluidic system developed 

 

3.5.2 Pressure drop estimations 

 Channels and total pressure drop (∆P) for the microfluidic system was calculated based on the 

Hagen-Poiseuille law, see Equation 3.1, for straight channels in series and analogy with the Ohm’s, see 

Equation 3.2, and Kirchhoff’s laws for circuit in series, see Figure 3.1, and Table 3.2. The following 

assumptions and constants were used: a) Water was flowing in the channels, b) Incompressible flow, c) 

trapping area cross sectional area was square, d) volumetric flow rate is constant, e) density of water = 

1000 Kg/m3, f) viscosity of water = 1 mPa.s, g) length of channel 1 and 3 = 20.7 mm, h) length of channel 

2 = 3.6 mm, i) height of channels 1,2, and 3 = 100 microns, j) width of channel 1 = 100 microns, channel 2 

= 3.6 mm, and channel 3 = 200 microns, and k) Q = 1.0 µL/min. Using equations 3.3, 3.5, 3.7, and 3.8 

the total pressure drop was estimated, see Table 3.3. The Reynolds number for each channel was 

estimated using equations 3.4, 3.5, and 3.6, see Table 3.3. It was found that the total pressure drop is 

directly proportional to the flow rate (data not shown). For instance, the estimated total pressure drop for 

Advantages  Disadvantages  
Circular design avoid trapping air (sharp-rectangle 

chamber)9 

Cannot withstand flow rates higher than 

10.0 µL/min without leakage 

Easy to fabricate and improve if needed Only one injection port 

Cheap and disposable 
Channel walls have to be coated to avoid 

any non-specific absorption 

Could be integrated to well-known magnetic trapping 

systems 

Bonds between PDMS and glass could 

be broken when inserting the inlet or 

outlet tubing if care is not taken 

Easy to automate or control via software Not a well understood system 

Biocompatible and autoclavable if needed 

 
Useful to study flow behavior in circular chambers 

Do not need thermal or oxygen plasma bonding 

Does not require complex fittings 
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0.5 µL/min was 71.13 Pa, and 1425.99 Pa for 10.0 µL/min. It is good to mention that if the cross section 

area of the trapping area (circular) were used on the pressure drop calculations the pressure would be 

slightly higher. Two sets of liquid filling experiments were conducted using HPLC water and 10 mM PBS 

pH 7.6 at a pumping flow rate of 1.0 µL. The snapshots of each set of experiments are shown on Figure 

3.7 and 3.8. PDMS is hydrophobic, so it tends to reduce the fluid flow of water. 

Table 3.2 List of equations and variables used for the estimations 

Equation 3.1 Hagen-Poiseuille law ∆p = RhydQ 

*Reference1 
 

Equation 3.2 Ohm’s law ∆V = R I 

Equation 3.3 
Hydraulic resistance for a 
straight channel with 
rectangle cross section 

*Rhyd = 12 η L

1 - 0.63 �h
w

�
1

h
3
w

 

Equation 3.4 Reynolds number Re =  ρV0Dh

η
 **Reference11 

Equation 3.5 Mean velocity V0= 
Q

A
  

Equation 3.6 
Hydraulic diameter of 
rectangular tubes 

Dh =  2 h w

h + w ** 

Equation 3.7 Conservation of flow rate ***Q = Q1 + Q2 + Q3 

* 
 

Equation 3.8 Simple additive law *Rhyd = Rhyd1 + Rhyd2 + Rhyd3 

Equation 3.9 Total pressure drop 
 

*∆PT = �Rhyd1+ Rhyd2 + Rhyd3� Q 

Variables 

Rhyd = Hydraulic resistance  
Q = Volumetric flow rate 
η = Dynamic viscosity 
L = Length along the 
channel axis 
h = Height of the channel 
w = Width of the channel 
A = Area of the channel 
 

∆V = Potential drop  
R = Electrical resistance 
I = Electrical current  
V0 = Mean velocity 
ρ = Density  
L0 = Length  
***Subscripts refer to: Inlet = 1, Trapping area = 2, 
and Outlet = 3, see Figure 3.1 

 

 

Table 3.3 Results of the estimations for the microfluidic channels 

Channel #  Re Rhyd  (Pa.s.m -3) x 1010 
∆P (Pa) ∆PT (Pa) 

1 0.17 671.35 112.2 
142.60 2 0.01 1.22 0.20 

3 0.11 181.31 30.28 
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Figure 3.7C to E show how the PDMS walls surface limit the fluid flow of water molecules due to the 

PDMS inability to form hydrogen bonds with water. To clarify, the flow path of the pumped HPLC water 

formed a “tail” that was diminishing as soon as it reached the outlet of the circular trapping area, see 

Figure 3.7. The hydrodynamic force generated by pumping HPLC water at 1.0 µL/min is high enough to 

break the resistance to fluid flow presented by PDMS (no data shown). In comparison, pumped PBS did 

show a slightly “tail” or lesser opposition to fluid flow by PDMS, see Figure 8. This could be explained due 

to the fact that typically PBS is composed of four inorganic salts (potassium chloride, potassium 

phosphate monobasic, sodium chloride, and sodium phosphate dibasic). This reduces the “repelling” 

effect that PDMS has for water molecules. In other words, the interaction between PDMS and PBS is 

higher than PDMS and water, because water molecules prefer the salt over the hydrophobic PDMS.  

The video taken, see non-print materials, demonstrated that magnetic microspheres tend to focus on the 

middle of the circular trapping area at high flow rates (10.0 and 5.0 µL/min), see Figure 3.9–A and 3.9-B. 

On the other hand at lower flow rates (2.0 and 1.0 µL/min) magnetic microspheres tend to spread almost 

evenly over the circular area, see Figure 3.9-C and 3.9-D. The distance or gap between the walls (middle) 

of the trapping area and the stream of magnetic microspheres form next to it is inversely proportional to 

the flow rate, see Figure 3.9. Based on the diameter of the trapping area I was able to measure those 

gaps. For flow rates of 10.0 and 5.0 µL/min the gap remains approximately constant (~0.31mm). In 

contrast, when flow rates of 2.0 and 1.0 µL/min were used the same behavior was observed, but the gap 

was ~0.16mm.   

 These results helped to have a better understanding of how to control the magnetic microspheres 

behavior in the trapping area using hydrodynamic force and to determine how long it would take to have 

an evenly distributed magnetic microspheres layer. Similar behavior has been studied by several 

researchers for different applications such as beads separation ,12,13 and flow behavior.14 However, as 

mentioned before those studies used square channels. This kind of behavior has not been presented by 

any research group as far as the author knows.  

 In order to evaluate the variation of amine functionalized polystyrene microspheres concentration 

after coupling the microfluidic device to a BASi syringe system two set of experiments were performed. 
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The initial concentration of amine functionalized polystyrene beads counted before filling up the syringe 

for the offline collection was 1.25 x 106 beads/mL. For the online collection the concentration was 1.26 x 

106 beads/mL. The total averages of the relative recovery of amine functionalized polystyrene beads 

collected were 66.60 and 66.90% for the offline and online experiments, see Figure 3.12. This indicated 

that there were not significant differences between the offline and online collection. To explain, coupling 

the microfluidic device to the BASi syringe system did not have any influence on the concentration of 

amine functionalized polystyrene beads. These experiments demonstrated that a uniform flow rate can be 

achieved when coupling the microfluidic system to a syringe system. Finally, it is very important to 

understand how magnetic microspheres behave in circular channels for the development of any trap and 

release systems for pre-concentration of biomolecules or other applications. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.11 Comparison of the relative recoveries of online and offline collection of 6.0 µm 

amine functionalized polystyrene microspheres at 5.0 µL/min flow rate. 
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4 Chapter 4.   Conclusions and Future work 

Cytokines play an important role in the immune response network generated during implants or 

prostheses, biosensors, and several disease states. The efficient collection and quantitation of cytokines 

during an immune response is crucial. This will allow the monitoring of cytokines concentration changes 

over time during any immune response. In other words, better understanding of the role that each 

cytokine has during an immunological response. However, this is a very difficult task due to the amount 

the variables involves in any biological system. Biological systems are very complex making the study of 

cytokines and collection of cytokines challenging. In order to study cytokines in their “native” environment 

during a specific state it is important to develop analytical tools that could facilitate the task. It is common 

practice, due to its simplicity, the collection and quantitation of cytokines from tissues and blood samples. 

The problem is that the concentration of cytokines measured from tissues or blood sample does not 

represent the “real” concentration of cytokines. It is more like an indirect measurement of the total 

concentration present within their biological environment. In their “native” biological environment the 

cytokine concentration is not constant due to their highly biological activity. If an ideal device or system is 

to be developed to collect and quantify cytokines it would have to have the following characteristics: a) 

Minimally invasive constant collection without disrupting their biological environment, b) constant 

measurement or quantitation of different cytokines (multiplexing) overtime with a lower limit of detection of 

picomolar and a upper of micromolar, c) easily to use, d) portable, and, e) low cost of fabrication. In reality 

some of these characteristic can be found on known systems. For example, microdialysis is commonly 

used to sample from tissue spaces. Microdialysis a diffusion based sample technique is limited to the 

diffusion properties of the cytokines in their biological environment and across the microdialysis 

membrane, the composition of the membrane (hydrophilic or hydrophobic), and the speed of the foreign 

body response caused by its “implantation” to mention a few. Research groups such as Dr. Stenken’s 

group have been working on improving the collection time of cytokines when sampling with microdialysis 

and the recovery of cytokines. The bead-based method developed by her group increased the relative 

recovery of cytokines using heparin immobilized microspheres by two-fold in vivo and two to five fold in 

vitro.1  
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 Quantitation of cytokines is commonly done by using ELISA. ELISA is a great tool to measure low 

concentration of cytokines (pg/mL range). However, ELISA is very labor extensive, expensive, time 

consuming (~19 hours), requires at least 100 µL of sample (longer collection time) and it is not robust. 

These facts add another problem to be solved in order to quantify cytokines efficiently. 

 Microfluidics is one of the fastest new research areas. This research area work on finding 

answers or developing tools to solve complex problems. It is of common knowledge that complex 

problems required sometimes more than one research area. For example, cytokines collection and 

quantitation requires people with knowledge in Biology, Analytical Chemistry, Engineering (fluid 

dynamics, microfabrication and electronics), and Physics (optics, binding interactions). However, 

researchers do not need to know the entire “book” if they only need one chapter to solve their problem. In 

other words, knowing what is needed of a specific area to solve a complex problem is what microfluidics 

brings. Microfluidic systems have several advantages: a) Low cost, b) easy to use, c) low sample volume, 

d) easy to fabricate, e) can be coupled to known analytical techniques, and f) well understood systems 

can be integrated into it. 

 The aim of this thesis was to use a bead-based method developed by Dr. Stenken’s group and 

integrate it in a microfluidic system coupled to microdialysis sampling to pre-concentrate cytokines. The 

bead-based method improves the relative recovery of cytokines and the microfluidic system further pre-

concentration cytokines to enhance their quantitation. 

 In Chapter 2 it was shown the ability to reproduce Duo’s work by making heparin immobilized 

polystyrene and magnetic microspheres. Also, it was developed a system to determine the amount of 

heparin require to achieve ~100% of cytokine bound. This was related to the amount of heparin-

immobilized microspheres needed as well based on the amount of heparin immobilized per bead. These 

beads were tested using equilibrium dialysis and a simple plastic vial incubation method used by Duo. It 

was estimated that the minimum amount of heparin required to achieve ~100% of cytokine bound was 

3.68 µM. The comparisons of experimental and estimated values for ratMCP-1 (heparin immobilized 

polystyrene beads) were 4.25 and 15.08% difference for 0.1 and 1.0 nM. The percentages differences 

between experimental and estimated for ratMCP-1 and ratTNF-α were 28.31 and 31.56%, respectively. 
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The differences of the values could be due to the fact that reported binding constant values were used for 

the estimations. Part of the future work will be to measure cytokine binding constant to have a better 

“control” of the conditions. 

A microfluidic system was developed and tested by pumping water and PBS. The hydrophobicity 

of PDMS was confirmed by looking at the opposition to fluid flow by the PDMS channels in the trapping 

area. Magnetic microspheres flow behavior at different flow rates was tested. The magnetic beads spread 

inversely proportional to the flow rate used. 

The future work will be integration of a trapping, detection, and automation system to fully collect 

and quantify cytokines in real-time. 
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