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ABSTRACT 

Spark ignited internal combustion engines are expected to continue to be the mainstay for 

the passenger cars and light duty trucks for the next few decades. It is understood that to 

conform to the stringent fuel efficiency legislations as well as meet the regulated exhaust 

emission limits, combustion technology must evolve significantly. It is imperative to 

develop a deeper understanding of the fundamental engine processes such as air intake, 

fuel-air interaction, and ignition so that avenues for incremental improvements may be 

explored. 

With this broad objective, the present study focuses on spark ignition engines in which 

premixed and lean (air in excess) charge of fuel and air can be burned efficiently. Studies 

have indicated that under these conditions, it is possible to simultaneously reduce the 

oxides of nitrogen (NOx), while keeping the carbon monoxide (CO) and unburned 

hydrocarbons (UHCs) at low levels. The in-cylinder turbulence plays a major role in the 

fuel-air mixture preparation. When this mixture ignites, the combustion may propagate 

through what is known as a premixed turbulent flame. Turbulence is beneficial since it 

enhances the mass burning rate. This is particularly critical in lean burn engines in which 

it is difficult to complete the combustion within the extremely short time scales typical of 

modern engines. Excess turbulence however, may lead to flame quenching.  

In order to investigate the conditions leading up to and the propagation of the turbulent 

flame itself, analytical and empirical studies are performed. Tests are conducted on a 

constant volume combustion chamber with optical access to provide insight into the 

combustion characteristics of lean mixtures subject to turbulence. Fundamental studies on 

premixed flame propagation are performed with a variety of fuels at different equivalence 
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ratios with different fuels. Impacts of engine operating conditions such as air-fuel ratio, 

exhaust gas recirculation, engine load, fuels, and ignition strategies on the flame initiation 

and development are investigated in detail on a research engine test setup. Chemical 

simulation and computational fluid dynamics (CFD) tools are used to supplement the 

understanding of the results. Finally, an attempt is made to comprehensively understand 

the combined effects of in-cylinder flow and fuel reactivity on premixed and lean 

combustion. 
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  INTRODUCTION  

Spark ignited, reciprocating internal combustion engines are the mainstay of light duty 

vehicles for passenger and goods transport. Improving the efficiency and reducing the 

emissions of such engines continue to be the focus of extensive research. In this chapter, a 

context is offered for the work undertaken by the author in this research domain. First, an 

outline of the dissertation is presented followed by the research objectives. Thereafter, the 

background, associated challenges and trends of this research are described with the aid of 

relevant literature.  

 Dissertation Outline 

The dissertation consists of seven chapters and appendices. It is divided into five main 

sections as illustrated in Figure 1-1. The first section consists of Chapters 1 to 2. In Chapter 

1, the author introduces the topic, states the research objectives and motivations, and 

describes the relevant background of the research. A detailed literature review is presented 

in Chapter 2. In the second section, consisting of Chapter 3, the author provides a detailed 

description of the empirical tools and methods used to execute the research plan. 

The third section consists of Chapters 4 and 5 in which the author describes the empirical 

results of this research. In Chapter 4, the author expounds on the combustion tests in a 

constant volume combustion chamber (CVCC) with optical access to estimate flame 

propagation speed and measure ionization current magnitude. The effects of fuel, fuel 

concentration, and charge1 motion are explained. The effect of directed charge flow on a 

conventional spark discharge is described as well. High speed flames are generated using 

a shock tube and the flame speeds are estimated using ion current probes. The engine test 

1Charge is defined here as a homogeneous mixture of fuel and air 
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results are presented in Chapter 5 in which different methods of changing charge reactivity 

are investigated.   

The fourth section consists of the numerical simulations performed to analyze the empirical 

results in further detail (Chapter 6). Zero-dimensional chemical kinetic simulations are 

used to determine how fuel concentration and temperature may affect the inherent 

chemistry of the combustion. Three-dimensional computational fluid dynamics (CFD) 

simulations are performed to estimate the in-cylinder flow-field especially the region near 

the spark plug.  

The fifth and final section of this dissertation comprises of the research outcomes and 

additional information provided in the references and appendices. In Chapter 7, the author 

provides a summary of the research conducted, lists the main conclusions, and proposes 

future work. The specifications of the critical equipment used in this research are presented 

in Appendix-A together with the measurement uncertainties. Formulae for pressure-based 

combustion metrics along with different related statistics are summarized in Appendix-B. 

The author has developed MATLAB codes to process the ionization current data from the 

combustion chamber and engine test setups which are provided in Appendix-C. Validation 

of the simulation parameters by comparison with empirical results is presented in 

Appendix-D. Input parameters of the three-dimensional flow field simulation are listed in 

Appendix-E.  Copyright permissions for non-original material are listed in Appendix-F.     
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Figure 1-1. Dissertation outline 

RESEARCH 
OBJECTIVES AND 
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Introduction
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TEST SETUP AND 
METHODS

Chapter-3
Research Tools and Methods
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 Single cylinder research engine test setup
 Ion current measurement system development
 Data processing methods

EMPIRICAL 
INVESTIGATION

Chapter-4
Combustion Chamber Flame Propagation Studies
 Validate ion current system on optical chamber
 Investigate effect of fuel, excess air ratio and charge motion 

on flame propagation
 Study impact of directed flow on spark discharge channel 
 Demonstrate high speed flame measurement in a shock tube

Chapter-5
Charge Reactivity Impact on Engine Combustion
 Increase stability of lean combustion by modifying intake flow

 Investigate the effect of modifying charge reactivity by 
changing fuel, excess air ratio and intake temperature

NUMERICAL 
ANALYSIS
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Analysis of Charge Reactivity and Flow Fields
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chemical kinetic simulation to identify differences
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Conclusions
 Summary of Results
 Conclusions
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equipment

 Details of pressure and ion 
signal processing

 Simulation parameters and 
validation curves
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 Research Motivation 

In North America, the passenger vehicle and light truck market is dominated by gasoline 

fueled, spark ignition engines (SI) [1]. Originally, the fuel efficiency improvement of 

passenger vehicles was primarily driven by governmental regulations to tackle 

uncertainties related to oil supply and prices [2]. In United States of America (USA), these 

regulations were enacted under the Corporate Average Fuel Economy (CAFE) standards, 

with each manufacturer’s vehicle fleet mandated to meet them [2]. Eventually, greenhouse 

gas (GHG) emissions were also brought under the purview of the CAFE standards. 

Canadian standards are closely aligned with USA’s standards [3-4]. Moreover, major 

automotive markets such as China and the European Union (EU) have similar standards. 

Consequently, the fuel economy of passenger vehicles has steadily improved (Figure 1-2) 

and this improvement is projected to continue in the future provided there are no major 

policy changes. The CAFE and other equivalent standards have therefore incentivized 

manufacturers to continuously improve the fuel efficiency of their vehicle fleets. Separate 

regulations have also curbed vehicular pollutant emissions.  

In recent years, battery electric vehicles (BEVs) have received significant attention [5-6] 

due to their absence of tailpipe emissions. If sufficient BEVs can be sold, manufacturers 

would also be able to meet the CAFE standards. However, two of the biggest concerns with 

BEVs from a consumer’s perspective are the driving range and the charging time. Gasoline 

fueled vehicles typically have longer driving ranges and shorter refuelling times [7]. In 

Figure 1-3, the energy densities (lower heating values) of gasoline, dimethyl ether (DME) 

and ethanol are plotted together with practical energy density of lithium ion (Li-ion) 

batteries used in automotive applications [8-15]. DME and ethanol are shown since they 
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are relevant to the research presented in this manuscript. One cause for the low energy 

density of a conventional Li-ion battery is the fact that the battery carries all the reactants 

and products of the chemical reaction. A reasonable compromise could be gasoline-battery 

hybrid electric vehicles (HEVs) which leverage certain advantages of BEVs and gasoline 

fueled vehicles.  

 

Figure 1-2. CAFE or equivalent historic trends and projections of passenger vehicles [1] 

Hence, given the ubiquity of gasoline fueled SI engines, incremental improvements in their 

fuel efficiency can make significant environmental and societal impacts. Different methods 

and combinations thereof have been studied to improve SI engine efficiency [16]. One such 

method is the premixed lean-burn SI engine in which a mixture of fuel and excess air is 

combusted [17-21]. In lean-burn engines, air is in excess, meaning that after complete 

combustion of the fuel, there is oxygen remaining in the exhaust. 

 

20

25

30

35

40

45

50

55

60

2006 2009 2012 2015 2018 2021 2024

C
A

FE
 (

o
r 

Eq
u

iv
al

en
t)

 [
m

i/
U

S 
ga

l]

Year

China USA EU Canada

Projected



 

6 

 

 

Figure 1-3 Energy density of liquid fuels in comparison to lithium-ion battery  

In theory, a lean burn engine should have higher thermal efficiency because the excess air 

increases the specific heat ratio of the in-cylinder charge and decreases the dissociation and 

heat transfer losses. Consequently, this should improve the fuel efficiency. The impact of 

lean combustion on engine performance is summarized in Figure 1-4. In this figure, the 

fuel consumption, power, and regulated emissions – nitrogen oxide and nitrogen dioxide 

(hereafter referred to as NOx), carbon monoxide (CO), and (unburned) hydrocarbon (HC) 

are plotted against the excess air ratio, denoted by the Greek letter λ.   

Excess air ratio (λ) is defined by the following equation – 

𝜆 =
𝐴𝑐𝑡𝑢𝑎𝑙 𝑎𝑖𝑟 𝑡𝑜 𝑓𝑢𝑒𝑙 𝑟𝑎𝑡𝑖𝑜

𝑆𝑡𝑜𝑖𝑐ℎ𝑖𝑜𝑚𝑒𝑡𝑟𝑖𝑐 𝑎𝑖𝑟 𝑡𝑜 𝑓𝑢𝑒𝑙 𝑟𝑎𝑡𝑖𝑜
                                          1.1 

The stoichiometric air-fuel ratio can be calculated from the molecular formula of the fuel 

(or equivalent molecular formula in case of mixtures such as gasoline). This is applicable 

for the condition of complete combustion of the fuel with full utilization of the air. The 
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actual air-fuel ratio can be determined by direct measurement of the air flow rate and the 

fuel flow rate and multiplying each by the density of air and density of fuel respectively. 

When λ<1, the combustion is deemed to be rich. When λ>1, the combustion is deemed to 

be lean. λ=1 corresponds to stoichiometric combustion. Conventional gasoline SI engines 

typically operate around the stoichiometric condition.     

 

Figure 1-4 Impact of lean burn on engine performance (adapted from [17]) 

As illustrated in Figure 1-4, with increasing λ (increasing leanness of the charge), in theory, 

the fuel consumption and the HC emissions should decrease, but in practice, the opposite 

happens when the air fuel mixture is too lean – a so called ‘lean limit’ is reached. The NOx 

and CO emissions however, show a decreasing trend with increasing λ.  Extension of the 

lean limit therefore, may help achieve lower NOx, HC and CO emissions, and yet maintain 

or improve fuel efficiency. 

CO-carbon monoxide

HC-Hydrocarbon

NOx-oxides of nitrogen
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One reason for the lean limit is the decrease in the laminar burning velocity with increasing 

λ [22-26]. Due to the lowered burning velocity, combustion may be incomplete. This can 

explain the rise in the HC emissions and the drop in the fuel efficiency. For example, 

laminar burning velocities of ethanol-air mixtures at different excess air ratios and initial 

pressures are plotted in Figure 1-5 based on tests conducted in a constant volume 

combustion chamber (CVCC) [25]. Additionally, increase in initial pressure also decreases 

the laminar burning velocity.    

 

Figure 1-5 Laminar burning velocity of ethanol-air mixtures [25] 

One means to counteract the reduction in the burning velocity is to enhance the in-cylinder 

flow field [27-28]. In SI engines, regardless of whether they operate under lean burn or not, 

the flame propagation rate is increased through turbulence. In lean burn engines however, 

this assumes greater significance since the completion of combustion is even more 

challenging. This turbulence is typically generated by features of the engine design such as 

the design of the intake manifold, or the piston bowl [29].  
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 Research Objective  

The primary objective of this research is to study the premixed and lean combustion 

relevant to a spark ignition engine operating under low load and low speed to understand 

the fundamental effects of certain operational parameters. The first is the charge motion 

which would affect the flame propagation. Organizing the charge motion under lean 

conditions is especially critical for timely completion of combustion in an engine. The 

second is the reactivity of the air-fuel charge itself. The modulation of the charge reactivity 

will be performed in the following ways – type of fuel, air-fuel ratio, and initial temperature 

of the charge. According to the author’s search, this is the first comprehensive study on the 

combined effects of in-cylinder flow and fuel reactivity on premixed and lean combustion 

in an SI engine. 

The objective will be achieved through a combination of empirical and computational tools 

and methods. The fundamental effect of flow on the flame propagation will be studied 

through controlled tests in a constant volume combustion chamber (CVCC) with optical 

access. Emphasis will be on effect of flow on the spark discharge and initial flame kernel 

formation as well as the overall flame propagation. Additionally, tests will be conducted 

on a spark ignition engine under low load and low speed condition. Impact of intake flow 

modulation and air-fuel mixture reactivity control will be highlighted. Furthermore, the 

engine test conditions will be subject to numerical analysis to further the knowledge of 

underlying flow and chemical phenomena. Simulations of engine combustion conditions 

will be performed through detailed chemical kinetic analysis. The in-cylinder flow field 

will be estimated through use of computational fluid dynamics (CFD) simulation. The 

general scheme of the research is illustrated in Figure 1-6. 



 

10 

 

 

Figure 1-6. General scheme of research 

 Spark Ignited Lean Combustion 

Lean combustion for SI engines as a concept has existed for more than a hundred years 

[30].  In the 1970s, automotive companies such as General Motors and Toyota published 

research on lean burn SI engines [19-20]. It is believed that some of this interest was caused 

by the shortage and cost of petroleum fuels during that time [18]. As explained in Section 

1.2, the benefits of lean combustion can be diminished by the practical considerations such 

as lowering of flame speeds.  

Quader presented a qualitative relationship between spark timing and excess air ratio which 

further defined the challenges of lean combustion [31]. At any λ, if the ignition timing is 

advanced or retarded from the maximum brake torque (MBT) timing, there is an ignition 

limit or a partial burn limit respectively for the timing (Figure 1-7). The ignition limit is 

the start of the misfire zone. Advancing the timing further would cause misfire – either the 

charge will not ignite, or even if it does, the flame will be blown out. After the partial burn 

Engine Test Chamber Test 

Computational 

Fluid 

Dynamics

Chemical 

Modeling

Fuel
Excess 

Air Ratio

Intake 

Temperature

Computational Methods

Empirical Methods

Parameters



 

11 

 

limit, retarding combustion further causes incomplete combustion, and consequently, a 

decrease in the engine load. Between these two limits is the stable zone of combustion. As 

the λ increases, the ignition and partial burn limits converge, thereby decreasing the range 

of stable spark timings possible. The λ corresponding to the point where the ignition and 

partial burn limits converge marks the start of the misfire or the partial burn zone [18]. The 

intention would be to move this further right (direction of arrow) which extends the stable 

zone further as λ is increased.   

 

Figure 1-7. Zones of stable, misfire and partial burn combustion (based on [31]) 

In this context, two other relevant terms must be defined. The first is the lower flammability 

limit which is a property of the fuel and varies with pressure and temperature. It is defined 

by ASTM as “the minimum concentration of a combustible substance that is capable of 

propagating a flame in a homogeneous mixture of the combustible and a gaseous oxidizer 

under the specified conditions of test” [32]. Therefore, this is the highest λ at a given 
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pressure and temperature at which a flame can propagate. The second term is the lean 

ignition limit which is defined as “minimum external energy which must be supplied to a 

critical volume to raise the mixture to its minimum ignition temperature” [18]. This is 

related to the energy delivered to the spark gap which in turn is affected by parameters such 

as the coil charging duration and the length of the spark gap.  

The combustion in an SI engine with a premixed charge, can be visualized in a simplified 

manner as shown in Figure 1-8. If the spark energy is at or above the lean ignition limit, 

ignition will occur, and a flame kernel may be formed. If the fuel concentration in the 

charge is above the lower flammability limit, the flame kernel may expand, and eventually 

propagate.   

 

Figure 1-8. Simplified representation of SI combustion 

In an SI engine environment with a premixed charge, the ignition and the subsequent flame 

propagation are therefore two of the main stages of combustion. The type of impact 

(positive/negative/no impact) of some engine operating variables on ignition and flame 

propagation are summarized in Table 1-1. 

Flame PropagationIgnition & Flame Kernel
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Table 1-1. Impact of SI ICE operating variables on ignition and flame (based on [31]) 

Operating Variable Impact on ignition Impact on flame propagation 

Increasing spark energy Positive  No/negligible 

Increasing compression ratio Positive  Positive 

Increasing charge motion Negative Positive 

Increasing charge dilution Negative Negative 

Increasing flame propagation 

distance 

No/negligible Negative 

During lean combustion, with reduced flame speeds, flame propagation becomes a 

challenge [18]. One way to address this is to increase the charge motion through bulk 

motion (swirl/tumble) and/or turbulence. However, increasing the charge motion may have 

a negative impact on the ignition. Moreover, increasing charge dilution typically has a 

negative effect on both ignition and flame propagation. Hence, research in lean combustion 

attempts to address some of these challenges. A summary of premixed lean combustion 

engine research is provided in Chapter 2. 

 Premixed Turbulent Flames 

In an internal combustion engine, in-cylinder flows are characterized by turbulence. The 

turbulence plays a major role in the fuel air mixture preparation, and subsequent 

combustion. Eddies move in random directions to enhance mixing of fuel and air across 

adjacent fluid layers [33]. When the fuel-air mixture ignites, the combustion propagates 

through what is known as turbulent flame. Unlike a laminar flame, whose velocity can be 

characterized by the fuel, oxidizer and transport properties such as thermal conductivity, 

viscosity and thermal diffusivity, turbulent burning velocity is harder to resolve. It is not a 

well-defined quantity and results vary between one experimental setup to the next.  
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Turbulence can be defined as the fluctuating component of the velocity which is added to 

the mean velocity of a viscous flow. In a physical sense, the velocity and pressure inside a 

turbulent flow keeps varying with irregularity and the fluctuations are characterized by 

high frequencies. In a qualitative sense, these fluctuations would affect the surface area of 

the flame by producing a corrugated flame front and increase the energy transfer as well as 

the flame speed. Mixing due to enhanced convection can promote further burning of the 

unburned mixture. 

Damkohler was the first to study turbulent premixed flame propagation [34]. He identified 

two limiting cases based on magnitude of scale of turbulence as compared to thickness of 

the laminar premixed flame, and for large scale turbulence, assumed interaction between 

turbulent premixed flame front and turbulence flame front to be purely kinematic. 

The Damkohler number (Da) is used to characterize turbulent flames – 

Da=
𝛵𝑓𝑙𝑜𝑤

𝛵𝑐ℎ𝑒𝑚
                                                                                      1.2 

which, is the ratio of the characteristic turbulence time scale (Τflow) and the characteristic 

chemical time scale (Τchem). For large values of Da, the chemical time scale would be small, 

which in turn would imply that the chemical reactions are fast relative to the flow and not 

significantly affected by the turbulence. 

In an internal combustion engine, a spherical flame may be encountered given by the Figure 

1-9 (adapted from [33]). The innermost wavy line represents the flame front at time, t=0. 

Let the burned mixture be contained in a spherical volume or radius, rm. Over an infinitely 

small step in time, dt, the unburned mixture enclosed by next corrugated line is burned. 
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This volume is given by the volume of a spherical shell with inside diameter rm, and wall 

thickness drum. 

The turbulent flame speed (St) is equal to,  

𝑆𝑡 =
𝑑𝑟𝑢𝑚

𝑑𝑡
                                                                                1.3 

 

Figure 1-9: Premixed turbulent flame ball (adapted from [33]) 

One of the most common ways of characterizing turbulence is to define the turbulence root 

mean square velocity denoted by u’ in this manuscript. u’ is also sometimes referred to as 

the turbulence intensity, but in this manuscript, the definitions are as follows.  

The velocity at any point, U can be expressed as the sum of the mean velocity component 

Ū and the fluctuating component u. The equation is – 

U=U̅+u                                                                                      1.4 
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So, u’ is the root mean square of the fluctuating component u. The turbulence intensity (I) 

is given by the following ratio – 

𝐼 =
𝑢′

U̅
                                                                                     1.5 

Turbulence can be visualized as an assortment of eddies of different sizes. The largest 

eddies are of the order of the geometry of the chamber and their size is given by the integral 

length (Λ). The size of the smallest eddies is given by the Kolmogorov length (η). 

A turbulent flame increases the rate of burning compared to a laminar flame due to an 

increase in the surface area characterized by the corrugations or wrinkling as shown in 

Figure 1-9. Again, the heat transfer rate and convective transport of active species due to 

the turbulence can increase the burning velocity. Furthermore, turbulence can enhance the 

mixing of the burned and the unburned gas such that the reaction becomes homogeneous. 

Two terms will be defined at this point which are relevant to the evaluation of flames – 

flame stretch rate, and Markstein Number. Flame stretch rate is defined as the change in 

frontal area of a flame with respect to time [35]. It is given by the relation – 

𝛫 =
𝑑(ln 𝐴)

𝑑𝑡
                                                                              1.6 

Where A is flame surface area and t is time [35]. 

Finally, the Markstein number is defined as follows [36] – 

𝑀𝑎 =
𝑀𝑎𝑟𝑘𝑠𝑡𝑒𝑖𝑛 𝐿𝑒𝑛𝑔𝑡ℎ

𝐶ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐 𝐿𝑎𝑚𝑖𝑛𝑎𝑟 𝐹𝑙𝑎𝑚𝑒 𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠
                           1.7 
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A higher Markstein length typically indicates a greater impact of flame stretching on the 

localized burning velocity. It can be calculated for the burned and the unburned gas [36]. 

The flame stretch rate and the Markstein number can be determined experimentally.   

Two other definitions will be given here for future reference. The ‘turbulent burning 

velocity’ is defined as the “velocity which when multiplied by a defined flame surface area 

and the unburned gas density gives the mass rate of burning” [37]. The flame (propagation) 

speed is “a measure of how fast the flame is traveling with respect to a fixed point of 

reference” [38].  

 Premixed turbulent combustion in a CVCC 

One of the ways to study flame propagation in engine like conditions is to use constant 

volume combustion chambers (CVCCs). A summary of CVCC research for flame 

propagation studies is provided in this section since a CVCC was used in this research as 

well. One way to generate turbulence in a CVCC is using a fan which can stir the charge 

inside the chamber [37]. The turbulent combustion in a CVCC can be divided into four 

stages [38]. It is assumed that the gas phase, homogeneous, premixed charge is ignited by 

a spark. The stages are as follows – 

Stage-I 

The first stage is characterized by chemical reactions beginning at the spark surface without 

any perceptible change in the pressure. The flame accelerates as a primarily laminar flame 

whose acceleration would depend on the fuel-air ratio, temperature, density, and loss of 

heat. At this stage, the unburned mixture may be compressed so the expansion of the burned 

mixture is isobaric. 
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Stage-II 

As the flame front expands further away from the spark plug, the flame velocity is 

essentially a sum of the expansion velocity and the laminar burning velocity. Both pressure 

and temperature increase in the chamber since with the expanding flame front, the burned 

as well as the unburned gases get compressed. 

Stage-III 

At this stage, the flame has approached a turbulent flame with marginal change in flame 

area with increase in the flame radius. 

Stage-IV 

As the flame front approaches the walls of the chamber, the burning velocity decreases 

which is accompanied by a decrease in the flame velocity. 

Herweg et al used a CVCC to study the initial flame kernel formation [39]. The initial 

flame speed was similar to the laminar flame speed when turbulence intensities were low. 

The laminar flame chemistry controlled the flame kernel formation. Increasing turbulence 

intensity increased the initial flame speed. The turbulent burning velocity during the flame 

kernel formation was significantly lower than a fully developed flame.  Bradley et al made 

a review of premixed turbulent velocity measurements in combustion bombs and burners 

[37]. They found that when turbulent velocity was measured in a fan-stirred bomb, the 

entire flame surface was exposed to mostly isotropic turbulence under constant pressure 

conditions. Limited data was available at high pressures and temperatures which are more 

relevant to engine operation conditions. Ohigashi et al performed premixed turbulent 
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combustion tests in a chamber using a fast-moving perforated plate for generating 

turbulence [40]. Increasing the turbulence intensity increased the extents of the combustion 

region. When turbulence was weak (u’<0.1 m/s), the initial flame front resembled a laminar 

flame, but the flame front wrinkled subsequently.  

Moriyoshi et al studied the combustion characteristics of homogeneous and stratified 

charge using propane and methane [41]. For homogeneous charge, it was found that 

turbulence enhanced combustion at any excess air ratio. The effect of turbulence was 

especially enhanced for methane-air charges.  Lee and Ryu researched flame propagation 

and combustion characteristics of liquified petroleum gas (LPG) in a CVCC without charge 

motion [42]. They concluded that excess air ratio had a greater impact on flame propagation 

speed than the initial pressure and temperature of the unburned gas. Flame propagation 

speed increased with increasing temperature of the unburned gas and decreased with 

increasing pressure of the unburned gas. 

Bradley et al discussed the importance of selecting the reference radii in turbulence 

velocity measurements, the effect of Markstein number, and studied the turbulent flames 

of different fuels such as ethanol, propane and methane [43-46]. They also proposed the 

use of spherical flames to determine the stretch free burning velocity and Markstein length. 

Haq et al studied laminar and turbulent flames in a CVCC at initial pressures of 1 and 5 

bar for methane and iso-octane fuels [47]. Planar laser induced fluorescence of the OH 

radical (PLIF-OH) was used to study the flame structure. Disturbances during the ignition 

process were found to manifest in laminar flames in the form of dents or cusps. The shape 

of the cusp varied with type of fuel, excess air ratio, and pressure. Flame curvature 

increased when pressure was increased from 1 to 5 bar. Jiang et al studied the relationship 
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that minimum spark ignition energy had with premixed and lean combustion [48]. They 

found that the minimum spark ignition energy increased with increasing intensity of 

turbulence. Sayama et al used a high swirl chamber in which the flow velocity in the spark 

gap was 65 m/s. When the charge became leaner, it became increasingly difficult for the 

flame to remain attached to the spark plug and it tended to be blown-off [49]. The turbulent 

flame itself will also affect the turbulence in a chamber or engine. In a review published 

by Lipatnikov et al, it was stated that premixed flames can substantially affect a turbulent 

velocity field [50]. Moreover, predicting such effects is difficult especially if the root mean 

square of the turbulence velocity and the laminar flame speed are of the same order. The 

maximum initial pressure and maximum initial temperature in the surveyed literature for 

CVCCs is summarized in Figure 1-10. The corresponding maximum excess air ratio in the 

surveyed literature for CVCCs is summarized in Figure 1-11. This is based on the author’s 

limited search only.  

 

Figure 1-10. Maximum initial pressure and temperature in surveyed literature  
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Figure 1-11: Maximum initial pressure and λ in surveyed literature 

 Premixed turbulent combustion in engines 

In this sub-section, a summary of research on premixed turbulent combustion in engines is 

provided. Under motoring condition, the root mean square of fluctuating velocity, u’ can 

be influenced by several operating parameters. Typically, increasing engine speed, 

volumetric efficiency, or intake swirl causes a linear increase in the u’ [38]. The effects of 

compression ratio, throttling and charge dilution with exhaust gas recirculation (EGR) on 

the u’ are either marginal or there are no effects. Under firing conditions, the turbulent 

burning velocity is strongly correlated to the engine speed and the intake swirl due to the 

in-cylinder turbulence [38].  

Brequigny et al studied early stages of flame propagation in an optical engine at different 

engine speeds using different fuels. The fuels ranked in order of decreasing combustion 

duration were methane, propane, butane and iso-octane, which corresponded to their ranks 
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according to the Markstein lengths [51]. Moreover, it was observed that at small flame 

radii, the global flame stretch rate increased for all fuels. Premixed fuel–air flame 

propagation was investigated in a single-cylinder, spark-ignited, four-stroke optical test 

engine using high-speed imaging by Ihracska et al [52]. The results indicated that gasoline 

and isooctane had similar flame propagation behavior with axial flame speeds of the order 

of ~0-20 m/s. The initial flame propagation speed at the start of ignition was very high (~50 

m/s) and then the flame contracted (negative velocity) due to endothermic dissociation of 

the fuel molecules and formation of radicals. Subsequently, the flame speed became 

positive again.  

Ikeda et al discussed flame speed measurement in a V-8 racing engine with four valves and 

a pent roof cylinder head [53]. An infrared sensor was used to measure the amount of laser 

light absorption by the fuel and determine the flame arrival timing. A micro Cassegrain 

(MC) sensor was used to measure the chemiluminiscence inside the cylinder after arrival 

of the flame. The flame propagation speed increased with engine speed. From 10000 to 

16000 rpm, the flame propagation speed increased from 20 to 32 m/s. However, the flame 

speed normalized with mean piston speed remained constant. At high speeds, flame 

propagation speed was affected by the fluid dynamics of the cylinder flow.  

Mounaϊm-Rousselle et al used an optically accessible boosted (1.3 bar absolute) spark 

ignited single cylinder engine run at 1200 rpm and medium load using simulated EGR [54]. 

The laminar burning velocity, SL was calculated and the turbulent burning velocity, ST, 

was obtained from measurement. The ratio of ST and SL decreased with increasing burned 

mass fraction which indicated a decrease in the flame corrugation. Charge dilution was 

found to increase this ratio – indicating an increase in the flame corrugation. 
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Le Coz made a study of cycle to cycle variations in SI engines caused by the in-cylinder 

flow field [55]. Four variables of consequence were identified – intensity of the high 

frequency turbulence in the charge, low frequency velocity of the charge before ignition 

(swirl/tumble), spark duration (from discharge current), and spark breakdown period. The 

cyclic variations of the large-scale flow field controlled the stability of lean combustion. 

These effects and evolution of the large-scale flow field have been researched extensively 

[42, 56-59]. The spark glow duration was a characteristic of the in-cylinder flow field near 

the plug since it was distorted by the flow field. This impact of the flow field on the spark 

discharge has been confirmed by others [27, 60].  

 Relevant Flame Detection Techniques 

This section provides a background summary of the flame detection techniques used in this 

research – shadowgraph imaging and ion current sensing. Each sub-section provides a 

description of the technique followed by brief overview of results and applications. 

 Shadowgraph imaging 

Shadowgraph imaging has been a standard laboratory tool for more than a century [61]. 

The underlying theory of this technique is based on geometrical optics and diffraction 

effects. The refractive index of a medium is related to it density. The sensitivity of this 

technique is proportional to the second derivative of the refractive index. This makes it 

suitable for measuring density changes in high speed compressible fluid flows [62].  

Shadowgraph measures the deflection and the displacement of a single uniform incident 

light beam [63]. When the light ray passes through a region where there is a gradient of 

refractive index, it gets bent. When there is no change in refractive index, the light ray 
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maintains its path. Convergence and divergence of these light rays cause the image to have 

light and dark regions corresponding to the gradients in density in the medium under 

investigation. Different configurations of the shadowgraph system are possible. The 

shadowgraph imaging configuration relevant to this research is the Z-type system which 

consists of two parabolic telescope mirrors, a light source, and a high-speed camera. The 

experimental setup is illustrated in Figure 3-1. A sample shadowgram (image obtained 

from shadowgraphy) from this system is shown in Figure 1-12.     

 

Figure 1-12. Shadowgraph image of flame in a CVCC 

 Ion current sensing 

Ion sensing is based on the ability of the ionized gas to conduct electricity. In its simplest 

form, an ion sensing probe consists of two electrodes, and is placed in a volume of interest 

where ionized species are expected (Figure 1-13). A voltage bias (typically direct current) 

is provided across the electrodes. When ionized gas such as in the flame front passes 

between the electrodes, the circuit is completed by ions present in the reacting gas. This 

ion current is detected by measuring the voltage drop across a resistor in series.  
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Typical ionic species in engine combustion include H3O
+, OH-, H+, and CH+ radicals. The 

ion sensing method is used in some production engines for combustion diagnostics 

especially misfire and knock detection [64-65]. The spark plug is generally used as the ion 

sensing probe in production engines. 

 

Figure 1-13. Fundamental concept of ion current measurement 

The use of ion current for combustion detection and analysis in SI engines is well 

established [65-78]. Andersson and Eriksson used ion current measurement in an SI direct 

injection engine for combustion stability control [66]. The ignition phase ion signal was 

excluded, and the remaining signal was integrated similar to the cumulative heat release 

calculation. At the maximum brake torque timing (MBT), the ion signal variation was 

lowest, and the signal integral value was the highest. Using ion current to detect knock, 

misfire and incomplete combustion are widely reported in literature and used in racing and 
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production applications [67-73]. The ion current magnitude is typically highest when the 

charge is stoichiometric or slightly rich (λ≤1) [74-75].  

Correlating the ion signal to the pressure signal has also been researched. Gürbüz used an 

ion current sensor which was integrated into a fast response thermocouple [76]. The author 

reported various correlations between in-cylinder pressure-based combustion parameters, 

local gas temperature, and ion current. Gao et al found good agreement between the timing 

of the post flame peak of the ion current, and the timing of peak of the pressure. The peak 

of ion current increased with load [77].   

Einewall et al made a comparison between lean combustion with excess air and exhaust 

gas recirculation (EGR) diluted combustion through the measurement of ion current [78]. 

EGR dilution at stoichiometric conditions produced a stronger ion current signal when 

compared to lean conditions. Ion current detection for homogeneous charge compression 

ignition (HCCI) combustion has also been reported. For instance, Dong et al concluded 

that in gasoline and ethanol fueled HCCI engines, the ion production was dominated by 

temperature [79]. They integrated the ion signal and compared the phasing of ion signal 

(Ion50) with the combustion phasing (CA50). It was found that the difference between the 

Ion50 and CA50 changed with λ and the type of fuel used. Mehresh et al. demonstrated 

that the ion signal could not only be a surrogate for the pressure signal but could also be 

used to detect cycle-by-cycle variation [64].   
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 LITERATURE REVIEW 

In this chapter, the author presents a literature review on premixed lean combustion in 

engines and the effects of charge reactivity modulation using different fuels and 

temperatures. This chapter is divided into two sections. In the first section, the author 

provides a general review of premixed lean combustion in SI engines. The second section 

is a discussion on the effect of modifying charge reactivity. 

 Premixed Lean Combustion in SI Engines 

An introduction to spark ignited lean combustion has been provided in Sections 1.2 and 

1.4. A further discussion from literature is provided in this section to explain the benefits 

and challenges associated with premixed lean combustion in SI engines. A few definitions 

are in order. The start of combustion is defined as CA5, which is the crank angle for the 5% 

mass burned fraction (MFB). The MFB is derived from the heat release rate (HRR) which 

is again calculated from the pressure signal. Additionally, CA10, CA50, and CA90 

represent crank angles corresponding to 10%, 50% and 90% of MFB. 

Second law of thermodynamics analysis by Farrell et al provided further evidence of higher 

engine efficiency with lean combustion due to reduced exhaust and in-cylinder heat losses, 

and pumping losses [80]. However, it was estimated that lean burn operation increased 

‘combustion irreversibilities’, a measure of entropy production and consequently, indicated 

a decrease of capability to do work. The combustion irreversibility could be reduced by 

increasing the reaction temperatures.   

Studies in engines with optical access have revealed certain characteristics of flame 

propagation under lean conditions. Aleiferis et al observed that the 3-dimensional structure 
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of the flame (λ=1.47, iso-octane) varied between each engine cycle in terms of size, shape 

and location [27]. The flame kernel was not spherical which indicated that the large-scale 

features of the flow-field, rather than the turbulence were more influential. Moreover, the 

tumble motion caused convection of the kernel out of the spark gap. This phenomenon 

advanced the CA5. Arcoumanis et al attempted to quantify the tumble generating capacity 

of a four-valve pent roof engine with optical access [81]. The flame was observed to be 

turbulent and asymmetric from the early stages and stretched in the direction of the mean 

flow. In an additional study, Arcoumanis et al further confirmed the strong correlation 

between flame development and the velocity field near the spark plug [82]. Increasing the 

mean flow velocity and the turbulence intensity tended to decrease the combustion duration.  

Le et al used high speed particle image velocimetry (PIV) to measure the flow field and 

capture the flame propagation simultaneously [83]. The flame generated turbulence was 

higher for stoichiometric operating conditions than lean conditions. Again, lean flames 

grew as a “highly turbulent structure” and flame front propagation was slowest into the 

regions where the turbulence and flow velocity were the lowest. Further studies by 

Aleiferis et al suggested that the cyclic variability in the early flame development stage 

caused variability in the CA5 [84]. The flame growth speeds decreased when they were 

plotted as a function of flame radius from the piston crown plane of view. Moreover, the 

flame typically preserved its shape while growing. Lee et al confirmed the decrease in 

flame speed with increasing λ in a liquified petroleum gas (LPG) fueled SI engine [85]. 

However, HC emissions and the IMEP variation increased with increasing λ. By increasing 

the in-cylinder swirl motion, the CA50 was advanced but the overall burn duration was 

increased marginally. The measured flame speed had a linear positive correlation with the 
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corresponding laminar flame speed at the experimental pressures and temperatures. Kang 

et al also studied the characteristics of tumble motion on lean combustion and observed 

that the turbulence intensity increased near TDC when the tumble was enhanced [86]. The 

enhancement of tumble decreased the combustion duration, but also increased the cyclic 

variation in peak pressure due to the higher turbulence near TDC. 

A major disadvantage of lean combustion is the inability to use a three-way catalyst due to 

the presence of oxygen in the exhaust. Einewall et al made a comparison of lean 

combustion and stoichiometric combustion with EGR and a three-way catalyst using 

natural gas as the fuel [87]. Higher CO emissions and lower efficiency were reported for 

stoichiometric combustion with EGR in comparison to those for lean combustion. The 

three-way catalyst can be used for stoichiometric combustion with EGR, but the λ must be 

controlled in a very narrow range (±0.01%) for acceptable trade-off between NOx 

reduction and CO oxidation. One of the downsides of lean combustion was the limited 

window of ignition timing, which limited load extension. Similar comparisons between 

lean combustion and stoichiometric combustion with EGR by Lumsden et al [88] and Inge 

et al [89] suggested that lean combustion was better for improving fuel efficiency. 

However, Lumsden et al recommended that the increase in HC emissions and decrease in 

combustion stability associated with lean combustion could be compensated by enhancing 

intake flow. Kharas et al. studied the implications of lean combustion on the engine after-

treatment [90]. They proposed a system which consisted of a durable lean NOx catalyst 

placed upstream of a suitable three-way catalyst. Hydrocarbons in the exhaust reduced 

NOx in the lean NOx catalyst, and the hydrocarbons and CO were subsequently oxidized 

in the three-way catalyst. A combination of lean combustion and EGR was presented by 
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Ratnak et al [91]. Using high intake swirl, 95 Research Octane Number (RON) gasoline, 

and lean combustion with EGR, an indicated thermal efficiency of 48.2% at ~5 bar IMEP 

was demonstrated.             

One challenge for lean combustion as mentioned previously is the combustion stability 

with increasing λ. This is highlighted in Figure 2-1 (based on report presented by [92]) 

which shows a plot of  indicated thermal efficiency vs. excess air ratio. The range of the 

data is also shown with error bars. It is evident that when λ increases (especially λ>2), the 

combustion variability increases significantly with high chances of misfire. Ishii et al 

concluded that the cyclic variation in IMEP was affected by initial combustion speed, 

maximum fuel MFB, and the fraction of fuel which burned later in the expansion stroke 

[93]. The authors chose 60 degrees after compression TDC as the starting point for 

determining this ‘late burn’ fraction. 7% to 20% of the supplied fuel could be burned during 

this later period. Moreover, when the initial combustion was slow, the maximum MFB was 

smaller, and the late burn fraction was higher. Takagi et al observed a negative correlation 

between NOx emissions and cyclic variability (given by the coefficient of variation (COV) 

of IMEP) [94]. This observation was attributed to the decreasing mean flame temperature 

with increasing λ. Furthermore, with increasing λ, the COV of IMEP and HC emissions 

increased due to higher number of misfires or partial burn cycles.        
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Figure 2-1. Indicated thermal efficiency under super-lean conditions (adapted from [92]) 

A reason for increasing cyclic variability (or decreasing combustion stability) is the 

extended combustion duration. Under lean operation, Jung et al demonstrated the use of a 

multi-coil ignition system which increased the effective spark discharge energy to advance 

the CA5 [95]. By advancing the ignition timing and the CA5, the authors were able to 

advance the CA50 which consequently shortened the combustion duration (defined by 

CA10 to CA90). In a related study, the Jung and Iida increased the discharge energy and 

tumble motion to demonstrate a lean limit of λ=1.9 [60]. The duration of spark timing (ST) 

to CA5 was shortened as well. There was a positive correlation between ST-CA5 duration 

and the CA10-CA90 duration.        

 Modifying Charge Reactivity 

In this dissertation, the author employed three methods of modifying charge reactivity – 

modifying the excess air ratio, fuel, and temperature of the unburned gas.  
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Since the effects of modifying the excess air ratio have been discussed in the preceding 

sections, the temperature and the fuel property effects on premixed lean combustion will 

be elaborated on in the following sub-sections.  

 Effect of temperature  

The general effect of increasing the inlet charge temperature is extension of the lean limit 

[96-99]. The lean limit reported in literature depends on how combustion stability is 

defined by the authors. For instance, Hanabusa et al defined the unstable combustion as 

having a COV of IMEP greater than 6%. [96]. When the in-cylinder temperature was 

increased by increasing the compression ratio (13.2:1) and the intake temperature (373 K), 

the lean limit could be extended to λ=~1.9. The NOx emissions were low even with intake 

heating at the leanest condition.  

Badr et al made a parametric study on misfiring and knocking combustion in SI gasoline 

engines [97]. Again, the increase in intake temperature was expected to extend the lean 

limit due to increase of the reaction rate. This was the dominant phenomenon. However, 

increase in the intake temperature also caused an increase in the heat loss which tended to 

decrease the lean limit, especially at the higher engine speeds tested (more than 1500 rpm) 

and at intake heating temperatures below 343 K. The effect of intake temperature on a 

propane fueled engine with a compression ratio of 10:1 is shown in Figure 2-2 (adapted 

from [97]). The y-axis is the equivalence ratio, which is the reciprocal of excess air ratio λ 

(=1/φ). Therefore, decreasing equivalence ratio means increasing λ.    
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Figure 2-2. Example of effect of Tinitial on the misfire lean limit (adapted from [97]) 

Russ observed that the increase in intake temperature from 302 K to 364 K led to a decrease 

in the knock limited spark advance (KLSA) [98]. For every 7 K increase in intake 

temperature, the spark timing had to be retarded by 1 °CA from the KLSA timing. An 

approximate relation for the effect of intake temperature on the octane number (ON) 

requirement for the fuel was discussed as well – an increase of 1 ON for the fuel for every 

7 K of increase intake temperature to maintain KLSA. Sjöberg et al researched the 

combined effects of intake heating and multi-pulse transient plasma ignition using E85 fuel 

(blend of 85% ethanol, 15% gasoline by volume) under lean conditions [99]. An increase 

in the intake temperature of 40 K with additional heating was found to make a significant 

effect on the lean limit since the spark timing could be retarded. The increase in flame 

speeds was predicted to be caused by two factors – higher intake charge temperature and 

the enhanced compression heating of the charge prior to the late spark timing.  
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 Effect of fuel property 

The fuel is expected to be one of the key factors in charge reactivity. The properties of 

fuels used in this research are listed in Table 2-1. Gaseous fuels – methane, propane, and 

DME were used for the CVCC tests, and liquid fuels – gasoline, ethanol and DME were 

used for the engine tests. DME was unique in the sense that it behaved as a gas below 5 

bar gauge pressure and as liquid above that pressure. Consequently, it could be used in the 

chamber as a gaseous fuel and as a liquid fuel in the engine by controlling the fuel 

pressurization. Some unique properties of the fuels will be highlighted. Methane has a 

comparatively lower reactivity with respect to the other fuels based on the high octane 

number and close to zero cetane number. Propane’s octane number is in a similar range as 

gasoline. Gasoline’s properties can vary over a wide range since it is a mixture, and subject 

to seasonal and regional variations. The oxygenated fuels, DME and ethanol have the same 

molecular weight but based on the differences in their octane and cetane numbers, their 

reactivities are expected to be dissimilar. DME and ethanol have smaller lower heating 

values (LHVs) compared to the conventional hydrocarbon fuels such as gasoline. DME 

has the highest cetane number which indicates its propensity for auto-ignition. Its auto 

ignition temperature is also the lowest of all the test fuels. Finally, ethanol has the highest 

latent heat of vaporization, which indicates that evaporation of the fuel droplets would 

produce significant charge cooling compared to the other liquid test fuels.     
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Table 2-1. Property of test fuels (sourced from [8-11]) 
 

Methane Propane Di-methyl 

Ether (DME) 

Gasoline* Ethanol 

Mol. Wt. [g/mol] 16.043 44.09 46.07 ~100 46.07 

Boiling Point [°C] -161.5 -42 -25.1 30-190 78.2 

Latent heat of vapor. 

[kJ/kg] 

512 426 464 305 920 

Vapor pressure 

@25 °C [bar] 

621 9.3 6.1 0.28 0.079 

Auto-ignition temp. 

[°C] 

537 457 235 280-486 363 

Research Octane 

number [-] 

>127 96 <20 90-100 109 

Cetane Number [-] ~0 ~5 55-60 ~16 ~5-8 

Lower Heating 

Value [MJ/kg] 

50 46.36 28.43 42.5 26.7 

* Values for comparison 

Some background information on ethanol and DME lean combustion will be presented 

here since they were used in the engine tests. Aleiferis et al made a comprehensive 

comparison of flame propagation between gasoline, iso-octane, methane, ethanol, and 

butanol fuels in an optical engine under λ=1.0/1.2 [100]. At λ=1.0, they observed that the 

flame growth was fastest for ethanol (~10-13 m/s at 1500 rpm), followed by butanol, 

gasoline and iso-octane. Methane’s initial flame growth was slow, but the overall flame 

development was completed within a similar period to the alcohol fuels (ethanol and 

butanol). At λ=1.2, the trends remained same. The flame stretch was also estimated, and 

the order was as follows – methane, ethanol, butanol, iso-octane, and gasoline. Faster flame 

speeds were observed for fuels which had lower Markstein numbers and vice-versa. Moxey 

et al reported similar results in their comparison of gasoline, iso-octane, ethanol and E10 

(blend of 90% ethanol and 10% iso-octane by volume) [101]. Ethanol flame propagation 

was the fastest, followed by gasoline and iso-octane. E10 was the slowest which indicated 
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that blending ethanol did not provide any benefit in terms of increasing flame propagation 

speed. The faster burning of ethanol was attributed to the marginally higher laminar flame 

speed which was deemed to be the more dominant in the initial flame development. 

Moreover, for all fuels, with increasing flame size, the wrinkled depth of the flame 

increased as well [102]. In a separate study, the detachment of the flame centroid from the 

spark plug was also studied [103]. The displacement speed of this centroid was of the order 

of the velocity field around the plug during ignition timing (~3 m/s for this case). E85 

(blend of 85% ethanol and 15% gasoline by volume) had a higher displacement speed than 

gasoline. However, in this study [103] and others for example [104], owing to its 

composition, gasoline may have a flame speed greater than ethanol under certain conditions. 

Tests by Costa et al using hydrous ethanol suggested that the lean limit for their setup was 

λ=1.4 [105]. The combustion was deemed unstable when COV of IMEP exceeded 3%. 

With increasing λ, the NOx, HC, and CO emissions decreased till the lean limit was reached. 

Arcoumanis et al made a review of the potential of DME to be used as an alternative for 

diesel in compression ignition (CI) engines [106]. The main feature of DME is its high 

cetane number which allows it to auto-ignite easily. DME can be derived from sustainable 

means and is non-toxic [106-107]. Since DME is mostly seen as a fuel for CI engines, 

according to the author’s search, there is very limited research on SI combustion. Shi et al 

for instance, studied the effects of spark timing on combustion and emission of gasoline-

DME blends under lean conditions in an SI engine [108]. DME combustion was 

characterized by the low temperature reactions which shortened the CA10-CA90 duration. 

It was possible to reduce the NOx and HC emissions by suitably adjusting the ignition 

timing. Ying et al made a comparison of port injected (PFI) and direct injected (DI) DME 
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under HCCI operation [109]. Engine operation under a wide range of load (0.5 to 8 bar 

brake mean effective pressure) was demonstrated. The peak pressure and peak heat release 

rate were lower for HCCI-DI compared to those for HCCI-PFI. With increasing DI fuel 

quantity, and decreasing PFI fuel quantity, there were three main observations. First, the 

start of the second stage heat release was retarded (first stage was a result of low 

temperature reactions). Second, the NOx increased at low loads and decreased at high loads. 

Third, the HC and CO emissions decreased. In a numerical analysis with experimental 

validation, Kong concluded that the low temperature heat release of DME drove the auto-

ignition of the fuel [110].  

In the context of this research, DME HCCI is implemented to contrast the high reactivity 

of DME fuel with SI combustion of lower reactivity fuels such as ethanol and gasoline. 

Furthermore, DME HCCI combustion may not need intake heating to increase the lean 

limit unlike gasoline and ethanol due to its higher reactivity.             
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 RESEARCH TOOLS AND METHODS 

In this chapter, the author describes the tools and methods used for the empirical research. 

There were two main research platforms used – a constant volume combustion chamber 

with optical access and shadowgraph imaging, and a single cylinder research engine. 

Additionally, the author developed an ion current detection system for use on both the 

research platforms. A shock tube setup was also used to simulate higher flame speeds. The 

following sections describe these setups and the methods associated with processing the 

data from each setup.  

 Constant Volume Combustion Chamber (CVCC) 

The ion signal validation tests were performed on a constant volume combustion chamber 

setup with optical access (Figure 3-1) which will hereafter be referred to as CVCC. A 

second purpose of the CVCC was to study the flame propagation for the air-fuel mixtures 

of the three gaseous test fuels – methane, propane and DME. The working volume of the 

CVCC was 2.6 liters with optical access of 80 mm diameter. The inner structure of the 

vessel was cylindrical with a diameter of 150 mm and length of 115 mm. The test fuel and 

air were supplied to an Environics 4040 gas divider which provided precise control of the 

excess air ratio of the charge. The charge was then pressurized using a diaphragm pump 

and routed into the CVCC. Charge filling and exhaust were performed through 3/8-inch 

diameter ports. The chamber pressure was recorded using a flush mounted Swagelok S 

Model dynamic pressure sensor (Model PTI-S-NG5000-22AQ) with a range of 0-344.7 

bar (0-5000 psi). High speed shadowgraph imaging of the flame propagation was 

performed through a system consisting of a white LED light, two parabolic mirrors, and a 

Vision Research Phantom V7.3 high speed camera with Nikon 105 mm f/2.8 lens. 
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The spark discharge was provided through an ignition power drive consisting of an ignition 

coil controlled by an insulated gate bipolar transistor (IGBT) chip. This chip was driven by 

an in-house developed electronic driver circuit. The ignition command was generated by a 

National Instruments (NI) real-time (RT) and field-programmable gate array (FPGA) 

setup. This control signal was isolated from the rest of the system by means of optical 

isolation. The secondary cable from the coil was passed through a Pearson 411 wide-band 

current monitor probe to measure the discharge current. All signals were measured with 

Picoscope 4824 digital oscilloscope. Detailed specifications of the oscilloscopes used in 

this research are provided in Appendix-A. The multi-pole spark plug developed at the 

Clean Combustion Engine Laboratory was installed on the top of the chamber. Details of 

this invention can be found in [111].  

 

Figure 3-1. Experimental setup of CVCC 
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The multi-pole spark plug in the given configuration consisted of three independent 

electrodes as show in Figure 3-2. The spark plug thread was specified as M14 – metric 

thread of 14 mm diameter with 1.25 mm pitch. One electrode was connected to the spark 

discharge circuit for igniting the mixture. The spark gap was 0.86 mm. The remaining two 

were used for ion current detection. An second ion probe was installed from the bottom of 

the chamber and this probe extended into the optical viewport.  This probe was a modified 

non-resistive spark plug with extended electrodes. In this way, ion current detection was 

enabled at two locations – in the vicinity of the spark plug, and in the central region of the 

CVCC. 

 

Figure 3-2. Multi-pole spark plug of 14 mm metric thread size 

 Creation of air motion 

An additional feature of the chamber was the ability to stir the air-fuel charge in the CVCC. 

This was done by driving a 3.0-inch diameter, 10-blade fan installed in the chamber. The 

other end of the fan shaft was connected to a SDP/SI magnetic coupling (S50DCM-

24H08).  The entire assembly was mounted on two high speed ball bearings (~5000 rpm). 

The magnetic coupling was used to avoid the complexities associated with sealing a 

rotating shaft for high pressure. The fan shaft was driven by the driver shaft through the 

other half of the magnetic coupling. The driver shaft was connected to a Ryobi router motor 
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(model R163G). The speed of the router motor was controlled by a rheostat-based fan speed 

controller. To ensure consistency between the data points, the driver shaft rotational speed 

was monitored. A rotor magnet was installed on the shaft and the passage of the magnetic 

pole over each rotation of the shaft was picked up by a Hall Effect sensor (Littelfuse Inc. 

55110-3M-03-A). The fan shaft was mounted perpendicular to the optical path. An image 

of this installation is shown in Figure 3-3.  

 

Figure 3-3. Motor for driving fan inside CVCC (Inset: Speed sensor) 

The torque transmission ability of the magnetic coupling was limited to 1 Nm. Based on 

this limitation, the fan was tested at different speeds and charge pressures in the CVCC. 

An initial pressure of 4 bar gauge was chosen for the CVCC tests since this was close to 

the cylinder pressure in the ignition timing window for the engine test setup. At this 

pressure, a fan speed of 1200 rpm was found to be stable. The magnetic coupling was also 

able to maintain a connection in order to keep driving the fan in the chamber. This speed 

of 1200 rpm is lower than most of the fan speeds reported in literature for fan stirred 

CVCCs. Based on an estimation given in [48], a fan running at 20 Hz (f) frequency (1200 

rpm) can generate turbulence with a fluctuating velocity of ~0.92 m/s.  Consequently, any 
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turbulence, if generated, may be weak. The author did not have the means to measure and 

verify if any turbulence was produced. Therefore, future references to the fan use will be 

termed as ‘charge motion’.   

 Estimation of flame area 

The shadowgraph image frames obtained from the high-speed camera are used to 

determine the flame area over time. The Phantom camera records a video in its proprietary 

format – cine. Each frame of the video is converted to grayscale bitmap images. The images 

are then processed into binary images using a MATLAB code originally developed in the 

author’s laboratory. The flame area is represented by white coloured pixels while the 

remainder of the image is converted to black coloured pixels (Figure 3-4). This judgement 

is made for each pixel based on a brightness threshold value. Through calibration, the area 

of each pixel is determined. This area is multiplied by the number of white pixels to 

estimate the flame area.  The camera settings are summarized in Table 3-1. 

 

Figure 3-4. Estimating flame area using binary images 
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Table 3-1. Phantom V7.3 camera settings 

Sample rate 11527 frames per second 

Exposure 7 μs 

Resolution 512 X 512 pixels 

Trigger External, spark command 

 

 Research Engine Platform 

The research engine platform was based around a Yanmar NFD170 single cylinder, four-

stroke, horizontal configuration, industrial grade, diesel engine. Specifications of the 

engine are listed in Table 3-2. This engine was heavily modified for spark ignition research. 

The ignition, fuel management, and air management systems were controlled 

independently. A schematic overview of the research engine platform is shown in Figure 

3-8. The original diesel injector was replaced with a spark ignition system. The ignition 

power drive was identical to the one used for the CVCC tests. Again, the multi-pole spark 

plug was used for spark discharge as well as ion current measurement near the spark 

discharge location. Ion current signal from this location will hereafter be termed as the 

‘plug probe’. An additional ion probe was installed on the cylinder head and was based on 

a modified M8 spark plug. This probe will hereafter be referred to as the ‘auxiliary probe’. 

The location of the ion current probes and the pressure transducer are shown in Figure 3-5 

and Figure 3-6. The distance between the two ion probe locations was ~25.6 mm. Ion 

current signals were measured using a Picoscope 4425 oscilloscope.  

A water-cooled Kistler pressure transducer (model 6043A60) was installed on the cylinder 

head and coupled with a Kistler 5010B charge amplifier. The pressure data was 
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synchronized at a resolution of 0.1 °CA through an optical shaft encoder (Gurley Precision 

Instruments) mounted on the crankshaft. The manifold pressure was measured using a 

Kistler piezo-resistive type absolute pressure transducer (model 4075A10). In-cylinder and 

manifold pressure were recorded for 200 consecutive cycles for each data point. An 

auxiliary liquid cooling system (FEV Coolant Conditioning Unit) maintained the engine 

coolant temperature at 80 °C. The cooling unit was also used to preheat the engine before 

the start of the tests. An auxiliary lubrication system circulated the engine oil under 

controlled pressure and temperature. The stock piston was replaced with a customized 

piston which reduced the stock compression ratio (17.8:1) to 9.2:1. The engine was coupled 

to a 40 horsepower General Electric direct current (DC) dynamometer (model 26G215) 

which was operated through a Dyne Systems Dyn-Loc IV digital dynamometer controller. 

 

Figure 3-5. Location of ion current probes on cylinder head 
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Given the engine load level and the air flow rate requirements for this research, no intake 

boost was necessary. All tests were carried out under normally aspirated intake conditions. 

A Roots (5M175) mass air flow meter was installed just before the intake surge tank to 

measure the intake charge quantity. This engine was also equipped with an EGR loop 

though use of EGR was outside the scope of this research. The EGR loop consisted of an 

EGR cooler (using municipal water) and an EGR flow control valve.  

A throttle valve, and a solenoid four-hole port fuel injector were installed upstream of the 

intake valve in the intake manifold, and an exhaust oxygen sensor was installed on the 

exhaust manifold just downstream of the exhaust valve. The main controls for the intake 

charge dilution were the throttle opening (to set the mass air flow (MAF) rate of the engine), 

and the opening duration of the solenoid fuel injector. Gasoline (pump octane 89) and 

anhydrous ethanol were supplied to the engine at 4 bar gauge injection pressure through an 

in-house developed fuel injection system. Gasoline and ethanol fuel flow rates were 

measured with an Ono Sokki FP-213 flow meter. Since DME is a gas below 5 bar gauge 

pressure and normal temperature, it was handled differently. DME was filled into a day 

tank from the main storage tank. This DME in the day tank was then pressurized to 7 bar 

gauge using nitrogen gas. To further ensure that DME remains a liquid in the fuel line, a 

section of the fuel line was kept immersed into an ice bath upstream of the injector to lower 

DME’s temperature.  

There were two additional features added to the intake air path of the engine. The first was 

the heater coil downstream of the throttle valve which was used to increase the temperature 

of the incoming air. This heater was controlled by an Omega CN2110 series temperature 

controller which used feedback from a K-type thermocouple inserted into the intake flow 
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downstream of the heater. The second feature was a helical insert (Figure 3-7) installed 

downstream of the heater and was used to enhance the intake flow field. Details of the 

development work related to this insert can be found in [29]. The insert was found to 

improve combustion stability under lean conditions and was therefore used for majority of 

this research. 

 

Figure 3-6. Image of cylinder head 

 

Figure 3-7. Helical insert (adapted from [29]) 
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Certain engine exhaust species were measured using different types of gas analyzers 

manufactured by California Analytical Instruments (CAI). Each analyzer was based on a 

certain detection technology. Oxygen (O2) was measured with a paramagnetic oxygen 

detector. Carbon monoxide and carbon dioxide were measured with a non-dispersive 

infrared (NDIR) analyzer. NOx was measured with a chemiluminescence detector. 

Hydrocarbon was measured with a flame ionization detector. Detailed specifications of the 

analyzers, including the measurement uncertainties, are provided in Appendix-A.    

The critical data acquisition and control applications were performed using National 

Instruments (NI) RT-FPGA hardware. An array of sensors and actuators were integrated 

using the NI data acquisition and control system. Windows-based PC systems were used 

for overall test control and data management. More details of the hardware can be found 

in Appendix A and in [112]. 

Table 3-2: Yanmar NFD-170 specifications 

Displacement volume 857 cm3 

Bore 102 mm 

Stroke 105 mm 

Connecting rod length 165 mm 

Compression ratio 9.2:1  

Engine Speed 1300 rpm 

Injection system Port injection 

Injection pressure 4 bar gauge (gasoline/ethanol) 

7 bar gauge (DME) 

Ignition system Spark ignition 
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Figure 3-8: Schematic setup of research engine platform 
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 Ion Current Measurement System 

The ion current measurement system was developed by the author for detecting combustion 

and estimating flame propagation speeds. The concept of ion current measurement in IC 

engines is well-established and has been in use in research as well as product domains for 

more than two decades (Chapter 1). The ion current measurement system developed here 

therefore draws from published research. The author’s own experience in improving the 

ion current signal quality has been incorporated in the measurement circuit as well. 

One of the main drawbacks of using a conventional spark plug for ion current measurement 

in an SI engine is the inability to measure the ion current during the breakdown and the 

glow phase of the spark discharge. The use of the multi-pole plug overcomes this challenge 

since one central electrode can be used for the breakdown, and the remaining two can be 

used for ion current measurement near the spark kernel. The author has published a 

comparison previously between using conventional spark plug and a multi-pole plug for 

ion current detection [75]. As stated previously, the research presented in this dissertation 

incorporates a multi-pole plug (plug probe) as well as a conventional plug (central/auxiliary 

probe) for ion current measurement at two locations in either of the experimental setups.  

The ion current measurement circuit is shown in Figure 3-9 for the plug probe and the 

auxiliary probe. An input voltage of 9 V from a PP3 alkaline cell was provided to an 

isolated negative biased DC-DC converter (XP Power EMCO A05N-12).  The DC-DC 

converter amplified the voltage to 600 V.  A 1000 V diode was used to prevent current 

from the system from flowing back into the DC-DC converter. A 0.5 μF capacitor was used 

to provide a stable voltage supply. For the plug probe, each of the central electrodes acted 
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as one of the ends of the gap which detected ions between themselves. Therefore, the 

system was electrically isolated not just from the spark breakdown circuit but from the 

engine ground as well.  

 

Figure 3-9: Ion current circuit used for this research 

For the auxiliary probe, one end of the probe was the common ground of the engine as the 

modified spark plug was installed on the cylinder head. This was the main reason why the 

negatively biased DC-DC converter had to be used so that current from the ground flowed 

into the measurement resistor. When ionized species completed the circuit, the current 

passed through the measurement resistor. The measurement resistor was 40 kΩ for 

chamber tests. For engine tests, a higher resistance of 1 MΩ was used since it was the best 

compromise in terms of signal detection and noise from the circuit. Each of the plug probe 
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and the auxiliary probe circuits could be operated as independent circuits with their own 

power supply.      

An example of the ion signal profiles from the engine are shown in Figure 3-10 along with 

the in-cylinder pressure trace for reference. After the ignition, the ion signal is expected to 

constitute of the flame front (propagation) phase and the post flame phase [66]. During the 

post flame phase, the ion signal can also be high due to the presence of ions produced due 

to thermal ionization. The locations of the first peak of the plug probe signal and the first 

peak of the auxiliary probe signal are determined through post-processing (Appendix C). 

The period between these two peaks is used to calculate the parameter Tion_diff. This can be 

regarded as a rough estimation of the time it takes for the flame to propagate between the 

two probe locations.  

 

Figure 3-10. Typical engine ion current signal profiles and cylinder pressure 

0

5

10

15

20

25

0

40

80

120

160

200

330 340 350 360 370 380

P
re

ss
u

re
 [

b
ar

]

Io
n

 S
ig

n
al

 [
V

]

Crank Angle [°CA]

Plug Probe

Aux. Probe

Pressure

Ignition Timing=325  CA PFI_pinj=4 bar gauge (gasoline)      RPM=1300 

λ=1.2 Tintake= 313 K IMEP=3 bar

Peak Locations



 

52 

 

 Shock Tube Setup 

The shock tube was used to generate a shockwave which could potentially create conditions 

for flames propagating at speeds higher than what may be achieved in the CVCC. The 

shock tube schematic is shown in Figure 3-11. It consisted of a 480 mm long driver section 

and a 360 mm driven section which was open to the atmosphere. The material of 

construction of the shock tube was alloy steel (SAE 4340) with an inner diameter of 23.8 

mm and a wall thickness of 12.5 mm. At this relatively low internal diameter, a major 

limitation of this shock tube is that the boundary layer effects may cause significant 

deviation from ideal shock tube theory [116]. The diaphragm consisted of heavy duty 

aluminum foil with a thickness of ~0.048 mm. Instrumentation consisted of two 

piezoresistive pressure transducers (Kistler 4075A10) and two ion current probes – one of 

each in the driver and the driven section. The ion current probes were modified K-type 

thermocouples. The ion current overall circuit layout was identical to the previously 

described one (Figure 3-9). The bias voltage was 250 VDC and the measurement resistance 

was 1 MΩ.  

The air-methane charge was filled into the driver section at an initial pressure of 

1.5/1.75/2.0 bar. A spark discharge was used to ignite the mixture in the driver section. 

When the charge ignited, the pressure in the driver section increased causing the diaphragm 

to burst. The burst pressure ratio varied between ~3-4 bar for the given test conditions. The 

burst of the diaphragm caused a shockwave to propagate in the driven section followed by 

the gas interface. Since the fuel in the driver section may not have been completely 

consumed, a flame may propagate from the driver section into the driven section which 

could be detected by the ion current probes.   
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Figure 3-11. Shock tube schematic 
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 COMBUSTION CHAMBER FLAME PROPAGATION STUDIES 

In this chapter, the author presents the results for tests conducted in a constant volume 

combustion chamber (CVCC) with optical access. High speed imaging and concurrent 

measurement of ion current are carried out to observe the flame propagation under different 

excess air ratios with and without charge motion. The first section describes the validation 

of the ion current measurement system through high speed imaging. The second and third 

sections present analyses of the flame images, pressure and the ion current signals. The 

fourth section describes an investigation on the effect of directed flow on the spark gap. 

The final section presents a study on higher speed methane-air flames using a shock tube.  

 Validation of Ion Current Signal in CVCC 

The validation of the ion current signal is carried out using high speed shadowgraph 

imaging in a CVCC. The purpose of these tests is to verify if the ion current signal 

corresponds to the flame front propagation in the chamber. As explained in Chapter 3, two 

locations of ion current measurements are used which are visible through the optical 

windows. The first location is within the perimeter of the multi-pole spark plug and the 

spark gap can be seen in the images (right side of the plug). The second location is closer 

to the center of the chamber. The first location captures the ion signal at the initial stage of 

the flame kernel, while the second location measures the ion signal when the flame is 

further developed. 

Three conditions are discussed in this section for purpose of demonstrating the wide 

applicability of ion current measurement for different test fuels at various excess air ratios. 

The ion signals for methane fuel at λ of 1.0, and propane at 1.4 are shown in Figure 4-1 
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and Figure 4-2 respectively. The ion signals for DME at λ of 1.6 are shown in Figure 4-3. 

The corresponding secondary current profile is also shown in the figures. Since the coil 

charging duration is 5 ms, the spark breakdown occurs at around the 5 ms mark from the 

trigger (at 0 ms) for all cases discussed in this section and Sections 4.2 and 4.3.  

For all cases, the ion signal profile corresponds to the physical phenomena of the flame 

propagation. For instance, in Figure 4-1, the first rise in the multi-pole ion current probe 

signal is observed at the 7 ms mark, which is within the glow phase of the spark discharge. 

Ion current measurement during the glow phase is typically not possible when a 

conventional spark plug is used for spark discharge as well as ion current probing. The ion 

signal reaches a peak at approximately 8.8 ms at which point, the flame is still located 

within the measurement volume of the multi-pole plug. Subsequently, the ion current 

magnitude reduces and remains constant till the 20 ms mark. This could be the result of the 

thermal ionization since the flame front has already passed this location. Finally, when the 

flame front reaches the central probe at 45 ms, there is a rise in the ion signal. Subsequently, 

the ion current measurement system is validated for different equivalence ratios and fuels. 

The ion current signal profiles of propane for instance at λ=1.4 (Figure 4-2) also directly 

correlate to the flame propagation though the magnitudes and the time instances are 

different. Since the multi-pole plug is non-resistive, some effects of the noise from the 

spark discharge are observed on the ion signals although the multi-pole probe is isolated 

from the common ground. This is especially important for λ=1.6 cases when the ion 

concentration and combustion temperature would be expected to be lowest. The result for 

DME at λ=1.6 is shown in Figure 4-3. The flame front propagation is drastically slower 

than the methane λ=1.0 case. The ion current magnitude is also lower.         
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Figure 4-1. Ion current signal validation at λ=1.0 with methane as fuel 
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Figure 4-2. Ion current signal validation at λ=1.4 with propane as fuel 
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Figure 4-3. Ion current signal validation at λ=1.6 with DME as fuel 
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 Flame Propagation Study in Optical Chamber 

In this section, the author describes the results of combustion tests performed in the CVCC 

using three fuels – methane, propane and DME at different excess air ratios. In order to 

study the effect of flow on the combustion and the flame propagation, the air-fuel mixture 

(hereafter referred to as charge) inside the chamber is stirred with a fan rotating at a 

constant speed (details of experimental setup explained in Chapter 3). Three types of data 

are analyzed – image frames from high speed shadowgraph imaging, pressure, and ion 

current. This section is further divided into two subsections. In the first subsection, the 

individual results of the three fuels from the lowest (λ=1.0) to the highest (λ=1.4/1.6) 

excess air ratios are presented. In the second subsection, a comparative analysis of the three 

fuels is provided. Each data point is an average of up to three combustion events. 

 Flame imaging analysis 

The shadowgraph images are processed based on the method described in Chapter 3. Figure 

4-4 shows an example of images at four instances of time from the rising edge of the spark 

trigger signal namely 5, 10, 15, and 20 ms for methane at λ=1.0. After the spark breakdown 

at the ~5 ms mark, the flame propagates outwardly from the spark plug symmetrically in 

the view plane when there is no charge motion – a typically laminar flame front. With 

charge motion, flame front and flame propagation are markedly different. The flame front 

is highly corrugated typical of turbulent flames, which increases the overall surface area, 

leading to faster flame propagation. When compared to the quiescent frames at the same 

time instance, the flame area is larger. After analysing the frame by frame data for different 

λ, the flame areas can be calculated as a function of time (Figure 4-5). 
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Figure 4-4. Image frames from methane combustion at λ=1.0 
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Figure 4-5. Flame area calculation of methane-air flames at varying λ 
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with respect to time more in line with the laminar flame propagation observed for λ of 1.0 

and 1.2. The viewport is an 80 mm diameter circle, hence the maximum area estimation 

from the images is ~5024 mm2. When there is charge motion for λ=1.0 and 1.2 methane 

cases, the flame front has propagated throughout the viewport by 25 ms. After the end of 

the glow phase at ~10 ms, the effect of charge motion on increasing the flame area is more 

evident.  

The effects of increasing λ and charge motion are similar for propane and DME. The 

leanest condition for propane charge was λ=1.4 beyond which ignition was inconsistent. 

Example images are shown in Figure 4-6 and Figure 4-7 for propane and DME respectively 

at λ=1.0. The flame area estimations from the images are presented in Figure 4-8 and Figure 

4-9 for propane and DME respectively. For both fuels, the laminar flame observed without 

charge motion propagates symmetrically in the viewing plane after the end of the glow 

phase (~10 ms).   

For propane and DME, significant decreases in the flame areas with respect to time are 

observed when λ increases from 1.0 to 1.2. Further decreases are observed when λ increases 

to 1.4 (propane) or 1.6 (DME). For both propane and DME at λ=1.0 with charge motion, 

the flame front travels across the viewport within the 20 ms mark. At λ=1.4 for propane, 

the flame area increases by almost 100% by 25 ms when charge motion is used. For DME, 

the estimated flame area at λ=1.6 is approximately 100 mm2, with no significant effect of 

the charge motion at this λ till the 25 ms time instant (Figure 4-9). This could imply that 

since the initial flame propagation speed of DME at the leanest condition is slow and the 

flame remains near the spark plug, the given magnitude of charge motion may be 

insufficient to enhance the flame propagation speed.  



 

63 

 

 

Figure 4-6. Image frames from propane combustion at λ=1.0 
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Figure 4-7. Image frames from DME combustion at λ=1.0 
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Figure 4-8. Flame area calculation of propane-air flames at varying λ 

 

 

Figure 4-9. Flame area calculation of DME-air flames at varying λ 
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 Pressure and ion current analysis 

The image analysis provides some clues on the effect of excess air ratio and charge motion 

on the combustion. One major disadvantage of the image analysis presented in this 

dissertation is that the flame is viewed in one plane only – two dimensions. Since the 

combustion in a CVCC or an IC engine is a three-dimensional phenomenon, additional 

measurements are necessary. The pressure signal processing is a more established method 

of analyzing combustion [112]. Additionally, in this study, ion current measurements are 

made at the multi-pole spark plug and the central region of the chamber.  

The pressure and ion current measurements are made concurrently with the high-speed 

shadowgraph imaging.  The pressure signal is the average gas pressure over the entire 

chamber volume, unlike the ion signal, which is localized in the region of the probe. The 

ion signal at the spark plug detects the initial flame kernel during which there wouldn’t be 

a detectable change in the chamber pressure using the high range pressure transducer. 

Therefore, this signal is not expected to correlate with the pressure. However, when the 

flame front reaches the central ion probe, there should be a significant change in the 

chamber pressure. Hence, in following Figure 4-10, Figure 4-11 and Figure 4-12, the 

pressure and the ion central probe signal are illustrated for methane, propane and DME 

respectively at the stoichiometric and the leanest (λ=1.4 or 1.6) test conditions. 

Two general observations can be made for each fuel from the pressure traces. First, the 

peak pressure decreases when the charge becomes leaner though values at λ=1.0 and λ=1.2 

are similar. The timing for this peak pressure is advanced as well. Second, at the same λ, 

with charge motion, the peak pressure increases and the timing for this peak is advanced 

as well. A higher peak pressure, and earlier peak pressure timing could indicate a faster 
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combustion. The significance of charge motion on lean combustion enhancement is evident 

especially for methane and propane (Figure 4-10 and Figure 4-11 respectively) when the 

charge motion can increase the peak pressure and peak pressure timing very close to 

stoichiometric case without air motion. Since a single fan speed was used for this study, 

the results should be viewed with that limitation. It is possible that further enhancement of 

flow can increase the speed of combustion further [37] or may cause the flame to be 

extinguished.  

From DME imaging results at λ=1.6 (Figure 4-9), it is evident that the flame area does not 

increase substantially within the 25 ms period from the rising edge of the spark trigger. 

This is further corroborated by the pressure signal (Figure 4-12) which does not show an 

increase till the ~50 ms mark even with charge motion. With charge motion, the rate of 

increase of pressure is higher, causing the peak pressure to occur at around 140 ms. This is 

much earlier compared to 300 ms for the quiescent λ=1.6 case.  

The central ion probe signal also shows certain similar attributes between the fuels. For 

fairness of comparison, the bias voltage and the measurement resistance are kept constant. 

First is the shape of the ion signal. As discussed in Section 5.1, the sharp rise in the central 

ion probe signal is related to the arrival of the flame at the probe location. In general, the 

signal remains high for the period over which the flame passes through the length of the 

probe. Then, it decreases, and increases again. This second peak is related to the post flame 

phase during which the thermal ionization is predominant [66]. For propane and DME at 

stoichiometric conditions, this thermal peak exceeds the limit of the measurement system; 

hence the curve is truncated at 50 volts. The high thermal ionization signal could indicate 

a higher temperature in the chamber. In general, this overvoltage is observed only for the 
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stoichiometric cases. The initial rise of the ion current is of interest since it is an 

approximate measure of the arrival of the flame front in that region of the chamber. The 

timing of the peak pressure and the timing of the corresponding first peak of the ion current 

are generally correlated. With charge motion, the flame propagates faster, which advances 

the first peak of the ion signal. The first peak of ion current timing is typically earlier than 

the peak pressure timing.  

The second common attribute is the change in the magnitude of the first ion peak. The 

magnitude of the first peak of ion current is related to the peak pressure at the same λ. For 

instance, when charge motion is used, the ion current peak is higher. On a physical level, 

this may correspond to a faster rate of ion production due to the increase in the burning 

velocity.  Moreover, there is a drastic decrease in the ion current magnitude with increase 

of λ. This highlights the difficulty in measuring ion current at lean conditions due to the 

decrease in the ion concentration. For the current experimental setup, discernible signal is 

observed even at λ=1.6. But owing to the small magnitude of the signal at λ=1.6, there is a 

possibility that during engine test, the system noise may make it difficult to distinguish the 

ion current. Therefore, a higher measurement resistance of 1 MΩ and a high range 

oscilloscope is used for engine tests.  

An additional observation is the difference in the magnitude of the first peak of ion signal 

between the fuels. It is expected that due to the differences in the combustion chemistry, 

the ion concentration in the flame front could be different for each fuel [79]. For the given 

experimental conditions and setup, the magnitude of this first peak of signal is highest for 

propane, followed by DME, and finally methane at λ=1.0.  
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Figure 4-10. Air-methane flames – pressure traces (top) & ion probe signal (bottom) 
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Figure 4-11. Air-propane flames – pressure traces (top) & ion probe signals (bottom) 
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Figure 4-12. Air-DME flames – pressure traces (top) & ion probe signals (bottom) 
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 Fuel Effect: A Comparison between Methane, Propane and DME 

After a study of the individual attributes of combustion of each fuel in the CVCC in Section 

4.2, the author provides a comparative analysis of the three fuels in this section. Since the 

shadowgraph frames at λ=1.0 have been discussed previously, the combustion at the 

leanest condition (λ=1.6 for methane and DME, λ=1.4 for propane) is shown in Figure 4-13 

and Figure 4-14 without and with charge motion respectively. After the breakdown at 5 ms 

and till 15 ms (Figure 4-13), the flame is in the periphery of the spark plug. At 40 ms, the 

differences in the flame area are more perceptible. With air-propane at λ=1.4, the flame is 

expected to be faster than that of methane and DME at λ=1.6. The DME flame area is lower 

than that of methane at 40 ms. However, by 60 ms, the DME flame area is greater than that 

of methane. This implies that DME flame propagation is initially slower, but then as the 

flame expands, the flame propagation speed increases. This may be explained by the 

fundamentals of flame propagation. The Markstein lengths (burned/unburned) for laminar 

flames at this pressure and λ are negative for methane and positive for DME [22-26, 117].  

A negative Markstein length typically implies that the flame speed will increase with flame 

stretch. The flame stretch is highest at the lowest flame radius and decreases as the flame 

radius increases. Methane’s Markstein length at λ=1.6 and 4 bar absolute initial pressure is 

lower than -0.5 mm, while for DME, the Markstein length is approximately 0.5 mm [22, 

117]. Hence, the higher stretch condition in the initial stage of the flame propagation is 

expected to increase the flame speed of methane. As the flame propagates, the stretch rate 

decreases, thereby decreasing the flame speed. The flame speed of DME on the other hand, 

due to the positive Markstein length, will increase as the flame stretch decreases with 

expanding flame radius.      
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Figure 4-13. Image frames from combustion at λ=1.4/1.6 under quiescent condition 
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With charge motion, the overall time scale of combustion is shorter. Unlike the quiescent 

cases, the flame front sweeps over the viewport within 40 ms for the methane and propane 

cases (Figure 4-14). Methane (at λ=1.6) is marginally faster than propane (at λ=1.4). For 

DME, the initial flame propagation is significantly slower, which again could be due to the 

positive Markstein length explained earlier.  

To put these results into perspective from a practical standpoint, the time scales in these 

chamber tests at λ=1.4/1.6 are much larger than those in an engine. Typically, combustion 

duration in an SI engine is of the order of a few milliseconds [113]. Therefore, the initial 

period of flame propagation in the 10-15 ms range after the spark breakdown warrants 

closer examination. In Figure 4-15 and Figure 4-16, the flame areas are plotted with respect 

to time for λ=1.0 and λ=1.4/1.6 respectively for all test fuels. At λ=1.0, DME flame area 

increases at the fastest rate, followed by propane and methane. With charge motion, all the 

curves shift upward but the order remains the same. At λ=1.0, the Markstein length for 

DME is negative, indicating that flame speed increases with increasing flame stretch.  

At λ=1.6, the trends are reversed for the fuels (Figure 4-16). Under quiescent conditions, 

methane and propane have similar increases in flame areas with respect to time. With 

charge motion, methane is faster than propane. The flame area of DME does not increase 

significantly over the period under examination – both without and with charge motion. 

This could imply that under these experimental conditions, achieving fast flame 

propagation of DME would be a significant challenge with spark ignition.    
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Figure 4-14. Image frames from combustion at λ=1.4/1.6 under charge motion condition 
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Figure 4-15. Flame area calculation at λ=1.0 

 

Figure 4-16. Flame area calculation at λ=1.4/1.6 
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The ‘t_5’ time is determined from the pressure signal according to the procedure explained 

in Appendix B. This is an estimation of the period for 5% of mass fraction burned for a 

CVCC. A shorter t_5 would imply faster conversion of the unburned charge into burned 

gas during the early stage of combustion. The results for λ=1.0 and λ of 1.4 (propane) and 

1.6 (methane/DME) are presented in Figure 4-17 and Figure 4-18 respectively. The flame 

area estimations and the pressure-based analyses cannot be expected to match under all 

circumstances since the initial flame propagation will affect the area calculation, but it may 

not cause a detectable change in the chamber pressure. At λ=1.0 under quiescent 

conditions, the t_5 is shortest for DME, followed by propane and methane. This correlates 

with the flame area estimations (Figure 4-15). With charge motion, t_5 of DME is shortest, 

followed by methane and propane.   

 

Figure 4-17. t_5 based on pressure at λ=1.0 
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At λ=1.6 and quiescent conditions, t_5 is shortest for propane followed by methane and 

DME. With charge motion, the t_5 is similar for methane and propane, and longest for 

DME. These trends broadly match the main conclusion from the image processing – DME 

SI combustion is the slowest of the three fuels at the leanest test conditions.    

 

Figure 4-18. t_5 based on pressure at λ=1.4/1.6 
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ambient conditions. A Dantec Dynamics Hot-Wire Calibrator is used to direct a free stream 

air jet of known velocity towards the spark gap of a conventional resistive spark plug. 

Second, combustion tests are performed in the CVCC under lean conditions (λ=1.6) with 

directed flow on the spark gap of a conventional resistive spark plug (uses a ceramic 

resistor to suppress ignition noise) to estimate the impact on the charge combustion.  

A representation of the effect of flow on the discharge channel is shown in Figure 4-19. 

The arc is represented in light gray colour (enhanced perimeter for improved viewability) 

with an outline of the spark plug in the background. High speed direct imaging is used to 

capture the arc during the spark breakdown and glow phase. Increasing the flow velocity 

across the spark gap typically causes the discharge channel to increasingly stretch until it 

breaks and re-establishes [113]. This stretching of the discharge channel can impact 

combustion greatly [27, 114]. 

 

Figure 4-19. Stretching of the discharge channel under flow 
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Measurement of the discharge current provides further clues on the impact of flow on the 

discharge mechanism (Figure 4-20). The spark breakdown occurs at ~0 ms in the figure.  

The coil charging duration is 2 ms for all cases. The number of spikes in the discharge 

current increase with increasing flow velocity across the spark gap. These typically could 

correspond to the re-establishment of the discharge channel after it breaks off after 

stretching. The overall glow phase duration decreases with increasing cross flow velocity.   

 

Figure 4-20. Discharge current vs. time at different gap velocities  
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IGBT to control the duration of the additional current supply. The module is activated 

during the glow phase to boost the discharge current from a decreasing waveform profile 

into a flatter square waveform profile under ideal and quiescent conditions. The actual 

current profile is expected to be irregular due to the charge motion. Average current levels 

of 100 to 400 mA may be provided through this module. Further details can be found in 

previous publications [113, 115]. Another way to manipulate the discharge current is to 

use two independent ignition coils and stagger the coil charging and discharging to provide 

a steady current supply. This ‘dual coil’ method can provide an average discharge current 

of up to 55 mA.  

A comparison of the current profiles between conventional, dual coil (55 mA), and current 

control module (190 mA and 250 mA) are provided in Figure 4-21. This test is performed 

in the CVCC in an air-methane medium at λ=1.6 with a conventional resistive spark plug 

(4.5 kΩ). The flow into the spark gap is provided through a nozzle which is connected to a 

buffer volume containing air-methane charge at λ=1.6. The estimated flow velocity from 

particle image velocimetry (PIV) is approximately 25 m/s. The background pressure and 

temperature are identical to the test conditions in the previous sections. The coil charging 

duration for the TCI system is 2 ms. It can be seen from Figure 4-21 that the flow causes 

the current profile to increase and decrease over the current control duration of 1.8 ms. 

However, a significantly higher average discharge current (55, 190 or 250 mA) can be 

provided to the spark gap.  

The consequent impact of the current modulation on the combustion of a lean mixture 

(λ=1.6) at 55 mA, 190 mA, and 250 mA is shown in Figure 4-22. The corresponding flame 

area calculation result is given in Figure 4-23.  
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Figure 4-21. Discharge current manipulation using current control 
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Figure 4-22. Combustion with directed flow – effect of current control 
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and 190 mA cases, the flame detaches from the spark gap at 3 ms from the spark 

breakdown. For the 55 mA case, the flame is extinguished by 5 ms, and the background 

mixture in the chamber does not ignite. This causes the flame area to decrease (Figure 

4-23). In the 190 mA case, the detached flame is able to sustain, and eventually, the 

background mixture in the chamber is ignited. For 250 mA case, the flame remains attached 

to the spark gap, and eventually, causes combustion of the background mixture. This 

phenomenon of flame detaching has also been reported in [49]. 

 

Figure 4-23. Flame area using current control at 25 m/s directed flow 
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initial pressure. The operation of the ion current measurement system can also be tested 

under these high flow conditions. The experimental conditions are listed in Table 4-1.  

Table 4-1. Experimental conditions for shock tube test 

Fuel Methane 

Excess air ratio 1.0/1.2/1.4 

Initial temperature 27 °C 

Initial pressure 1.5 / 1.75 / 2.0 bar abs 

Shock tube pressure ratio ~3-4 

Ion current bias voltage 250 VDC 

Estimated shock speed ~400-500 m/s 

 

The driven section of the shock tube is filled with charge at a pressure of 1.5, 1.75 or 2.0 

bar absolute and at a λ of 1.0, 1.2 or 1.4. The driven section is open to ambient air. When 

the charge is ignited, the pressure in the driver section increased which caused the 

diaphragm to suddenly burst (at ~3-4 bar) and a shockwave propagated in the driven section. 

This was followed by a freely propagating flame in the open ended driven section of the 

shock tube. A schematic diagram of the shock tube is shown in Figure 3-11.  

The pressure profiles at λ=1.0 for two initial pressure conditions are shown in Figure 4-24. 

When the diaphragm bursts, the pressure transducer in the driver section measures a sharp 

fall in pressure. Shortly after, the shockwave causes a sharp increase in pressure measured 

by the driven section pressure transducer. The distance between the pressure transducers 

and the time between the falling edge of the driver pressure and the rising edge of the driven 

pressure can be used to estimate the shockwave speed. For the given conditions, the 

shockwave speed is of the order of ~400 to 500 m/s depending on the diaphragm burst 
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pressure which is between ~3-4 bar. The flame speed is measured using two ion current 

probes – one each in the driver and the driven section. An example of ion current and 

pressure profiles is shown in Figure 4-25.  

 

Figure 4-24. Driver and driven section pressure profiles 

The ion signal peaks are used to estimate the flame propagation speed (Figure 4-25). The 

spark breakdown occurs at 0 ms. Thereafter, the flame propagates from the spark plug (SP) 

and registers the first peak in the driver section ion current probe (S1). Eventually, as the 

diaphragm breaks, the shock propagates first followed by the flame front which registers 

the peak in the driven section ion current probe (S2).  

 

Medium: Air-Methane λ=1.0 pinitial= 1.5/2.0 bar abs T initial= 300 K

Coil charging duration: 5 ms   Burst Pressure: ~3-4 bar
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Figure 4-25. Ion and pressure signal profiles for λ=1.4 and pinitial=2.0 bar abs 
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section). Hence, the flame speeds from S1 to S2 are observed to be significantly higher 

than that from SP to S1. The flame speed for the highest initial pressure case (2.0 bar) is 

almost double the lowest initial pressure case (1.5 bar). This could be due to the extra fuel 

energy that is put into the driver section when the initial pressure is higher. The overall 

decreasing trend in flame speed with increasing λ remains. 

 

Figure 4-26. Flame speed estimation from ion current signal 
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 CHARGE REACTIVITY IMPACT ON ENGINE COMBUSTION 

In this chapter, the author describes the empirical work done on the Yanmar engine test 

cell. In addition to the typical instrumentation of a modern engine test cell, in-cylinder ion 

current measurement is also performed to provide further insight into the combustion. The 

broad objective is to study the effects of excess air ratio and intake temperature on 

combustion of the chosen test fuels. This chapter is organized into five sections. In the first 

section, the author presents the results of modifying the intake manifold to enhance the in-

cylinder air motion. In the second section, an overview of combustion of the three test fuels 

(gasoline, ethanol, and DME) under low load is provided. As explained in Chapter 3, these 

fuels were chosen based on their availability and their varying reactivity. The effects of 

excess air ratio and intake temperature on the reactivity of each of these fuels is described 

in the third and fourth sections respectively. In the fifth section, extension of lean limit of 

DME HCCI with intake heating is briefly discussed.        

 Effect of Modifying Intake Flow  

The intake manifold of the engine is modified by adding an insert with the objective to 

enhance the flow field during the intake stroke of the engine. Modification of the intake 

flow field can potentially affect the subsequent combustion. The insert was conceptualized 

in the author’s laboratory. Details of the development project, simulation results, 

evaluation on a swirl measurement flow bench, and engine test results are provided in [29]. 

The impact of the intake insert is highlighted in the following figures. The first effect is on 

combustion stability quantified here by the coefficient of variation (COV) of indicated 

mean effective pressure (IMEP) shown in Figure 5-1.  The insert has no significant impact 

on the COV of IMEP up to λ=1.4. At λ=1.6, using the insert reduces the COV of IMEP by 
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0.5% at advanced ignition timings, and by ~1-2% at the retarded ignition timings. Due to 

the increased stability, the ignition timing window can also be expanded beyond 330 °CA. 

In practice, at λ=1.6, enhanced air motion may increase the flame speed (CVCC results in 

Chapter 4). This in turn may allow more complete combustion for majority of the engine 

cycles. This can improve the load stability and decrease the COV of IMEP.   

 

Figure 5-1. COV of IMEP without and with insert at varying λ 
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1.6 (Figure 5-2). This implies that the ignition delay is reduced by using the insert. A 

corresponding advance in the combustion phasing (denoted by CA50) is observed as well 

(Figure 5-3). If the CA50 is excessively delayed, there will be a drop in the combustion 
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Figure 5-2. CA5 without and with insert at varying λ 

 

Figure 5-3. CA50 without and with insert at varying λ  
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 Test Matrix and Baseline Combustion Results 

The engine test conditions are summarized in Table 5-1. Two main methods of changing 

charge reactivity are studied. First is changing excess air ratio of the charge from λ=1.0 

(stoichiometric) to λ=1.6. Second is increasing the intake temperature in two steps from 

the baseline of ~313K to 333 K and 393 K. This is performed at excess air ratios of 1.4 and 

1.6 to understand the effect of temperature on the charge reactivity and combustion 

duration on the leanest combustion cases.  

Table 5-1. Engine Test Conditions 

Test type Air-Fuel Ratio Effect Temperature Effect 

Fuel Gasoline/Ethanol/DME 

Fuel mass per cycle ~18.4 (gasoline) / ~31.2 (ethanol) mg/cycle 

Engine speed 1300 rpm 

Nominal load ~3 bar IMEP 

Spark coil charge duration 5 ms (for gasoline and ethanol only) 

Port fuel injection pressure 4 bar gauge (gasoline and ethanol) / 7 bar gauge (DME)  

Excess Air Ratio (λ) 1.0 / 1.2 /1.4 / 1.6 
1.6 (gasoline and ethanol) 

~1.83 DME 

Intake Temperature 313 K 313 / 333 / 393 K 

 

Three fuels are chosen for the engine test with different reactivities – gasoline, ethanol, and 

DME. The properties of the fuels and additional details on their choice are provided in 

Chapter 2. For the chosen test conditions, DME combustion does not require spark ignition 

since DME’s high cetane number causes it to auto-ignite. Therefore, DME combustion 

results presented in this dissertation are for HCCI type of combustion. Gasoline and ethanol 

are spark ignited with a constant spark coil charging duration of 5 ms. For the spark ignited 

tests, the ignition timing is swept between the advance and the retard limit timings for each 
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condition. These limit timings are based on the broad target of keeping the CA50 between 

360 and 380 °CA. Based on experience, the thermal efficiency is usually maximum in this 

range for this engine setup. When CA50 is outside the 360-380 °CA limit, there is usually 

a significant drop in engine load (of the order of ~20-30%).  The fuel amount is maintained 

constant for all test points to keep the load at 3 bar IMEP. For increasing the λ, the throttle 

is progressively opened to increase the mass air flow into the engine. The ignition timing 

usually must be advanced owing to the increase in the combustion duration as the charge 

becomes leaner. For increasing temperature, the intake heater power is ramped up and 

controlled with a PID heater controller.   

In the Figures 5-4 to 5-7, the pressure and the heat release rate traces are shown for all three 

fuels at each of excess air ratios tested at baseline temperature. For ease of comparison, the 

ignition timings are identical for gasoline and ethanol. Each ignition timing corresponds to 

the shortest combustion duration observed for gasoline at a given λ. Certain characteristics 

become apparent. Gasoline and ethanol have similar single hump heat releases with ethanol 

combustion typically starting before gasoline for all λ. This is expected since the laminar 

flame speed of ethanol is usually higher than gasoline [100]. The peak pressure and peak 

heat release rate of ethanol are greater than gasoline for all λ. DME HCCI combustion 

cannot be directly compared with premixed SI combustion but the contrast between the 

two is evident. Two peaks of heat release are observed for DME HCCI combustion. The 

first peak corresponds to the low temperature reactions typically before compression TDC 

which eventually lead to the combustion of the bulk of the charge. Since combustion can 

initiate at multiple locations, the overall combustion duration is short, which causes a sharp 

peak in the heat release rate.    
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Figure 5-4. Pressure and HRR at λ=1.0 for test fuels 
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Figure 5-5. Pressure and HRR at λ=1.2 for test fuels 
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Figure 5-6. Pressure and HRR at λ=1.4 for test fuels 
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Figure 5-7. Pressure and HRR at λ=1.6 for test fuels 

The start of combustion (CA5), combustion phasing (CA50) and combustion duration 

(CA5 to CA95) for the four examples in Figures 5-4 to 5-7 are summarized in Table 5-2. 

0

50

100

150

200

250

300

0

5

10

15

20

25

30

330 345 360 375 390

D
M

E 
H

e
at

 R
e

le
as

e
 R

at
e

 [
J/

°C
A

]

H
e

at
 R

e
le

as
e

 R
at

e
 [

J/
°C

A
]

Crank Angle [°CA]

Gasoline

Ethanol

DME HCCI

0

5

10

15

20

25

30

35

300 315 330 345 360 375 390 405 420

P
re

ss
u

re
 [

b
ar

]

Crank Angle [°CA]

Gasoline

Ethanol

DME HCCI

Ignition Timing=310  CA      IMEP=3 bar       RPM=1300     T intake= 313 K 

λ=1.6   PFI_pinj=4 (gasoline & ethanol) & 7 (DME) bar gauge 



 

98 

 

Table 5-2. Summary of CA5, CA50 and Combustion Duration 

 Fuel 

Excess Air Ratio (λ) 

1.0 1.2 1.4 1.6 

Ignition 

Timing [°CA] 

Gasoline 340 330 315 310 

Ethanol 340 330 315 310 

DME HCCI 

CA5 [°CA] 

Gasoline 361.6 356.9 354.4 359.4 

Ethanol 359.8 354.8 351.2 358.6 

DME 350.4 350.1 350.4 349.1 

CA50 [°CA] 

Gasoline 375.2 371.4 372.2 381.6 

Ethanol 372.3 369.1 368.5 380.3 

DME 358.3 359.2 361.7 361.2 

Combustion 

Duration 

[°CA] 

Gasoline 65.0 62.2 63.7 74.9 

Ethanol 69.1 65.5 63.3 70.2 

DME 16.8 14.6 14.3 14.0 

 

The author would like to emphasize that owing to the different ignition timings, the CA5 

and CA50 results presented in Table 5-2 should not be used to compare between different 

excess air ratios.  The purpose of presenting these numbers is to make some broad 

observations which are investigated further. The CA5 and CA50 of ethanol are more 

advanced compared to those of gasoline. The overall combustion duration of gasoline is 

however lower or similar to the combustion duration of ethanol except at λ=1.6. This 

suggests that the later half of gasoline combustion is faster than that of ethanol (period from 
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CA50 to CA95).  At λ=1.6, even advancing the ignition timing of gasoline and ethanol to 

310 °CA does not advance the CA5.  

When the excess air ratio is increased by opening the throttle, the intake pressure increases 

from 0.4 bar absolute to 0.556 bar. Increase in the intake pressure can increase the fuel 

reactivity for HCCI combustion and advance the CA5 and CA50 [118]. For DME HCCI, 

the combustion duration decreases from λ=1.0 to λ=1.6. No clear trend is observed for 

DME’s CA5 and CA50 results summarized in Table 6-2. 

 Excess Air Ratio Effect 

In this section, the effect of the excess air ratio is examined in detail through select results 

at baseline temperature. The results for gasoline and ethanol are presented in the form of 

ignition timing sweeps. The DME HCCI results are listed on each figure for reference. 

First, the analysis of the pressure-based signal is presented followed by the emission results. 

Finally, a brief description on the ion current results is provided. 

The two important parameters of interest in this research are the start of combustion (CA5), 

and the combustion duration. They are illustrated in Figure 5-8 for three excess air ratios 

of 1.0, 1.2, and 1.6. With increasing excess air ratio, CA5 retards. The CA5 for ethanol is 

always earlier compared to gasoline for the same λ and ignition timing. With retardation 

of the ignition timing, the CA5 retards monotonically. The error bars in the figures 

represent the standard deviation of the data collected over 200 cycles. With increasing λ, 

the flame speed for SI combustion is expected to decrease provided there is no change in 

the background charge motion. The charge reactivity would decrease as λ increases. This 

may explain the retardation of the CA5 and CA50 with increasing λ. 
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Figure 5-8. CA5 (top) and combustion duration (bottom) at 313 K 
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very similar at λ=1.4 (not shown). The trend shifts when λ=1.6, with gasoline combustion 

duration significantly longer than that of ethanol. Second, for both ethanol (green) and 

gasoline (purple), the combustion duration at λ=1.0, is longer than at λ=1.2. Therefore, in 

the remaining figures of this section, comparisons of λ of 1.2 and 1.6 will be shown only 

since they represent the fastest and slowest combustion for this set of results. Third, at λ of 

1.0 and 1.2, the combustion duration decreases as the timing is retarded. However, at λ=1.6, 

the combustion duration increases as the timing is retarded. This can be understood from 

the combustion phasing (CA50) plot shown in Figure 5-9.  

When the ignition timing is retarded, the combustion phasing retards as well for λ=1.2/1.6. 

However, for λ=1.2, when the ignition timing is retarded, the CA50 gets retarded into the 

360 to 380 °CA zone where the thermal efficiency is typically maximized for this test setup 

possibly due to the optimal combination of pressure and temperature. Flame speed usually 

decreases when pressure increases, and flame speed increases when temperature increases 

[24-25]. If the ignition timing is earlier, the flame may propagate in the increasing pressure 

environment prevailing in the cylinder as the piston approaches TDC. With a later timing, 

the flame propagation may still be in higher pressure environment, but the temperature is 

expected to be significantly higher than that at the compression TDC. For λ=1.6, when the 

ignition timing is retarded, the CA50 is retarded beyond 380 °CA. This can be caused by 

the lower reactivity of the charge under lean conditions. Moreover, later in the expansion 

stroke, the temperature may also not be sufficiently high to enhance the flame speed. The 

CA50 of ethanol is earlier for gasoline for λ=1.2/1.6. However, the end of combustion 

(CA95) for gasoline combustion is marginally earlier than that of ethanol at λ=1.2 which 

suggests that the second half of the combustion is faster for gasoline at λ=1.2. At λ=1.6, 
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gasoline’s CA95 is more than 5 °CA later than the CA95 of ethanol. These observations 

will be further discussed in the next chapter using chemical kinetic simulations. 

 

Figure 5-9. CA50 (top) and CA95 (bottom) at 313 K 
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In the figures above and the following, the DME HCCI results are also listed. The ignition 

timing is not applicable as there is no spark, hence, they are not plotted on the individual 

figure. HCCI combustion is very different from the SI combustion of gasoline and ethanol 

but the purpose of showing these values is to provide a context for the subsequent 

numerical analysis of DME HCCI (Section 6.1.3). 

The primary purpose of the engine tests is to study the impact on combustion duration, and 

no attempts are made to mitigate the regulated components of the engine exhaust. However, 

a brief description of the NOx and CO emissions (Figure 5-10) is provided here to further 

understand the implications of lean combustion. One of the main advantages of using a 

leaner charge in an SI engine is the reduction of NOx. From λ=1.2 to λ=1.6, there is 

approximately a tenfold reduction in NOx emission. Ethanol’s NOx emission is observed 

to be lower than gasoline which could be due to the higher heat of evaporation which 

reduces charge temperature during the intake stroke when the ethanol spray evaporates. 

CO is typically a product of incomplete combustion. The trends for CO are shown in Figure 

5-10 as well. CO is observed to be lower for gasoline at λ=1.2/1.6 compared to CO for 

ethanol. The CO emission at λ=1.2 is higher than λ=1.6. This could be due to the higher 

availability of oxygen at lean conditions which can oxidize the CO. As the timing is 

retarded, CO emission tends to increase which could be due to insufficient time for 

complete combustion. DME HCCI’s NOx and CO emissions are similar to those of 

gasoline at the same λ. The difference in the CO emission between the fuels and at different 

excess air ratios will be discussed further in the chemical kinetic simulations in the next 

chapter.     
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Figure 5-10. NOx emission (top) and CO emission (bottom) at 313 K 
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advanced or a very retarded timing will cause a drop in the load. This trend is observed for 

both gasoline and ethanol. Though the combustion duration decreases (Figure 5-8), the rise 

in CO emission could indicate a drop in the combustion efficiency. For λ=1.6, retarding 

the ignition timing causes the thermal efficiency to drop, which is probably caused by the 

delayed CA50.    

 

Figure 5-11. Indicated thermal efficiency at 313 K 
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Figure 5-12. Scatter of ion current peak position – plug and auxiliary probe 
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be a detectable change for the wide range pressure transducer. Conversely, the peak of the 

auxiliary probe is retarded compared to the CA5. This could be due to flame propagation 

away from the spark plug which has caused a significant change in the cylinder pressure. 

Since the first peaks of the ion signals can represent passage of the flame front (Chapter 4), 

the time difference between the two peaks (Tion_diff) could provide some information on the 

general in-cylinder flame propagation.  The Tion_diff for gasoline combustion at various 

excess air ratios is shown in Figure 5-13. A lower value of Tion_diff could indicate faster 

flame propagation between the ion probes. The results correspond with the combustion 

duration results in terms of the λ trends (Figure 5-8). The trend with respect to ignition 

timing is not clear especially for λ=1.0/1.2. The lowest and highest durations of 8 (λ=1.2) 

and 17.5 (λ=1.6) °CA can roughly translate to a flame propagation speed of 25 and 11.4 

m/s between the two probe locations. 

 

Figure 5-13. Ion signal peak difference for gasoline combustion at 313 K 
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 Temperature Effect 

A method to increase the charge reactivity under lean conditions is increasing the initial 

temperature of the charge (Tintake). This method is applied to study the effect of intake 

temperature on the start of combustion and combustion duration for gasoline and ethanol 

at the leanest condition of λ=1.6. Two increments of intake temperature above the baseline 

are made for this study – 20 K (Tintake=333 K) and 80 K (Tintake=393 K), both achieved 

through intake heating. This range of increase in intake temperature is possible in modern 

engines without additional heating by using EGR.  

Gasoline (Figure 5-14) and ethanol (Figure 5-15) show similar trends. The first increment 

of 20 K to raise the intake temperature to 333 K has a marginal effect on advancing the 

CA5 – approximately 1-2 °CA. The CA50 follows a similar trend to the CA5 (not shown). 

For the given experimental setup and test conditions, at 333 K, the CA50 advances into the 

360-380 °CA band for gasoline. The overall decrease in the combustion duration is more 

significant – of the order of 5-10 °CA. Further increase in the intake temperature to 393 K 

causes the CA5 to advance to λ=1.0 levels. Gasoline’s combustion duration is longer than 

that of ethanol at the baseline temperature. However, it is observed that gasoline’s change 

in combustion duration with increasing temperature is more significant compared to 

ethanol. At 393 K, the advance in the ignition timing has a stronger tendency to advance 

the CA5 compared to the lower temperatures. Additionally, at 393 K, change in the ignition 

timing doesn’t have a major effect on the overall combustion duration.  
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Figure 5-14. Intake heating (gasoline): CA5 (top) and combustion duration (bottom) 
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Figure 5-15. Intake heating (ethanol): CA5 (top) and combustion duration (bottom) 
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The time difference between the ion current peak signals, Tion_diff, is shown in Figure 5-16. 

The trends match the corresponding trends in the combustion duration. For instance, at an 

ignition timing of 320 °CA, the combustion duration decreases by approximately 20 °CA 

and the Tion_diff decreases by ~8 °CA.    

 

Figure 5-16. Ion signal peak difference for gasoline combustion with intake heating 
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Figure 5-17. Tintake effect on NOx emission (top) and CO emission (bottom) 
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agrees with the results presented in Section 5.3 at baseline temperature. However, when 

intake temperature is increased at λ=1.6, the NOx emission increases. This is probably due 

to the increase in the peak cylinder temperature. CO emissions are also lower for λ=1.6 at 

Tintake=393 K when compared to λ=1.2 at Tintake=313 K (Figure 5-17). In fact, the CO 

emissions do not change significantly when Tintake is increased from 313 to 393 K at λ=1.6. 

An additional advantage of increasing Tintake at λ=1.6 is the decrease in the COV of IMEP. 

This is illustrated in Figure 5-18 for gasoline. Similar trend is observed for ethanol (not 

shown). The COV of IMEP at λ=1.6 decreases from ~15% to ~5% when Tintake increases 

from 313 K to 393 K. At the baseline temperature, the high COV of IMEP at λ=1.6 could 

be caused by partial or complete misfire cycles which may also lower the indicated thermal 

efficiency as discussed previously (Figure 5-11). Therefore, in practice, increasing Tintake 

at λ=1.6 may provide certain benefits if the heating process does not consume fuel.            

 

Figure 5-18. COV of IMEP – changing λ and Tintake 
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 Extending Lean Limit of DME HCCI  

A brief description of λ and Tintake effects on DME HCCI is provided in this section. Owing 

to its high cetane number, DME undergoes compression ignition under the given 

experimental conditions. The overall combustion duration of DME is much shorter 

compared to the SI combustion of gasoline and ethanol. At the baseline intake temperature 

of 313 K, with increase in excess air ratio, the combustion duration decreases up to λ=1.6 

(Figure 5-19). The COV of IMEP decreases as well. The CA5 is advanced and the CA50 

is retarded (Figure 5-20). These observations may be explained by two factors. First, the 

intake pressure increases with increasing throttle opening which can advance the start of 

combustion for HCCI combustion due to enhancement of the low temperature reaction 

rates [118].  Second, the retardation of the CA50 with increase in λ would suggest that the 

duration of the first half of combustion (CA5 to CA50) increases with increasing λ. 

However, the overall combustion duration decreases with increasing λ (up to λ=1.6) since 

the duration of the second half of the combustion (CA50 to CA95) becomes shorter with 

increasing λ. The second half of combustion typically occurs during the expansion stroke 

when cylinder temperature is increasing and is probably a consequence of the high 

temperature reactions associated with DME oxidation. 

Due to the high reactivity of DME, the excess air ratio can be increased to λ=1.7 at which 

a significant increase in the combustion duration is observed (Figure 5-19). Since there is 

no major change in the CA5 or the CA50 (Figure 5-20), this suggests that again, the 

duration of the second half of the combustion (CA50 to CA95) becomes longer. Therefore, 

for the given experimental setup and test conditions, combustion duration and the CA50-

CA95 period are the shortest at λ=1.6. With increasing intake temperature, the combustion 
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duration can be decreased while the λ can be increased further to ~1.8. The extension of λ 

is limited by the COV of IMEP which increases drastically at the leanest condition of 

λ=1.83 even with Tintake at 393 K. CA5 and CA50 are both advanced with increasing Tintake.      

 

Figure 5-19. Effect of increasing λ on CD and COV of IMEP for DME 
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Figure 5-20. Effect of increasing λ on CA5 and CA50 for DME  
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The NOx and CO emissions are shown in Figure 5-21 – both NOx and CO emissions 

decrease with increasing λ. When Tintake is increased, even though λ is higher, the NOx 

emission increases while the CO emission decreases.    

 

Figure 5-21. Effect of increasing λ on NOx and CO emissions for DME  
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 Summary of Engine Test Results 

The effects of changing the experimental variables are summarized in Table 5-3. These 

may only be valid for the given experimental conditions and test setup.   

Table 5-3. Impact summary of experimental variables 

Action 
Start of 

Combustion 

Combustion 

Duration 
COVIMEP NOx CO 

Intake Flow 

Modification 
Advance Decrease Decrease 

No major 

effect 

No major 

effect 

Increase λ – SI 

Combustion 
Retard Increase Increase Decrease Decrease 

Increase λ – DME 

HCCI Combustion 
Advance Decrease Decrease Decrease Decrease 

Increase Tintake at 

λ=1.6 – SI 

Combustion 

Advance Decrease Decrease Increase Decrease 
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 ANALYSIS OF CHARGE REACTIVITY AND FLOW FIELDS 

Two software simulation tools are used in this study. The first is the ANSYS CHEMKIN 

version 19, which is used to study the chemical kinetics under lean and premixed conditions 

for the test fuels. The objective is to develop some understanding of the underlying 

chemical mechanisms which could explain the results of the engine tests. The second tool 

is the 3-dimensional computational fluid dynamics (CFD) suite Converge which is used to 

simulate the in-cylinder flow field with additional emphasis on the region in the vicinity of 

the spark plug. The purpose of the CFD simulation is to estimate the flow velocities in the 

cylinder during the time of ignition.  

 Chemical Simulations  

CHEMKIN simulations are performed under different excess air ratios to determine the 

overall scheme of reactions. Two types of 0-dimensional models are used. The Spark 

Ignition Engine Zonal model is used for gasoline and ethanol, while the Closed Internal 

Combustion HCCI Engine model is used for DME. The main purpose of these simulations 

is to understand the effects of change in excess ratio and initial temperature on the 

combustion chemistry.  

The SI and the HCCI engine model inputs are setup using the following methods. The 

geometric parameters are based on the Yanmar engine used for the engine tests. The 

simulation period is from the compression BDC to 120 °CA after the compression TDC. 

The initial pressure is determined from the empirical data. The initial temperature is set to 

the empirical intake temperatures for the SI model (313 K and 393 K) and to 400 K for the 

HCCI model. In theory (and practice), DME is the most reactive of the three test fuels. 

However, for the purposes of the simulation, the initial temperature had to be set to 400 K 
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for combustion to occur. This is a deviation from the baseline engine test conditions and 

can probably be attributed to the temperature thresholds in the reaction mechanism.  

The heat transfer parameters are tuned to match the experimental motoring pressure for 

each excess air ratio. The heat transfer parameters are listed in Table D-1 and Table D-2 of 

Appendix-D for gasoline/ethanol and DME respectively. The dimensionless heat transfer 

correlation and the Woschini correlation for average cylinder gas velocity are used. The 

parameters for the Woschini correlation are assumed to be uniform throughout each stroke 

of the cycle. The SI engine model consists of two homogeneous zones – the unburned and 

burned. Initially, all the gas is in the unburned zone. The mass exchange between the 

unburned and burned zone is controlled by the Wiebe function whose parameters are also 

adjusted. The start of combustion and the combustion duration input for the SI engine 

model are based on empirical data. A further assumption is a burning efficiency of 100%. 

The heat transfer and Wiebe function parameters are tuned by comparing the simulation 

and experimental pressure curves. The default or initial values are obtained from the 

software manual [119].   

The motoring and firing validation results are provided in Appendix D. In general, the 

motoring and firing pressure traces between the simulation and the experimental results 

show reasonable correlation with respect to peak pressures and start of combustion. Details 

of the simulation parameters are summarized in Table 6-1. Each fuel is described separately. 

Results are shown for three excess air ratios – 1.0, 1.2, and 1.6. λ=1.4 was also simulated 

but has not been presented here since the results were always intermediate of λ=1.2 and 

λ=1.6 for all test fuels. 
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Table 6-1. Parameters for CHEMKIN simulations 

Fuel Gasoline Ethanol DME 

Reactor Type SI Dual Zone HCCI Engine 

Geometry Yanmar NFD-170 

Engine Speed 1300 rpm 

Simulation Period 180 to 480 °CA 

Excess Air Ratio 1.0/1.2/1.4/1.6 

Initial Temperature 313 K / 393 K  400 K 

Initial Pressure Empirical data 

Model Ref. Mehl et al.  Marinov Fischer et al.  

Heat Transfer 
Generalized convective heat transfer coefficient 

Woschini correlation of average cylinder gas velocity 

 Gasoline surrogate SI combustion 

The gasoline surrogate skeletal mechanism consists of 312 species and 1488 reactions. 

Details of the mechanism can be found in [120-121]. For this research, gasoline is modelled 

as a mixture of iso-octane (iC8H18) and normal heptane (nC7H16) molecules. The molar 

ratio of octane and heptane is 9:1, which roughly correlates to the octane number of the 

fuel used in the experiments. The pressure, temperature, and mole fraction of the primary 

fuel molecule – iso-octane, are shown in Figure 6-1. All the results are zone-averaged, 

meaning they are averaged values from the burned and unburned zones of the SI dual zone 

model. From the pressure traces, it is found that the peak pressure is highest for λ=1.2, 

followed by λ=1.0 and λ=1.6. The temperature rise is earlier for λ=1.2, but the highest bulk 

gas temperature is estimated for λ=1.0. There is a significant decrease in peak temperature 

with increase of λ, of the order of ~500 K. This could explain the drop in the NOx emissions 

observed in the test results (Figure 5-10).  
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Figure 6-1. Gasoline surrogate – Cylinder pressure, temperature & YiC8H18 
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with the test results (Figure 5-8). Iso-octane oxidation is facilitated by a few key chemical 

reactions which are listed in Table D-3 (based on [121]).  

Figure 6-2 shows the mole fractions of ȮH (hydroxyl), Ḣ (hydrogen), HȮ2 (hydroperoxyl), 

and ĊH3 (methyl) radicals with respect to crank angle at varying λ. These radicals 

participate in the chain branching reactions. A few observations can be made. First, λ=1.6 

produces the lowest concentration of all the radicals shown in the figure. Second, the 

maximum HȮ2 and ĊH3 radical concentrations at λ=1.2 are higher than that at λ=1.0. The 

methyl radical formation begins later for λ=1.2, compared to λ=1.0, but quickly increases 

after. Third, the ȮH and Ḣ radical concentrations are highest for λ=1.0 though the 

formation of ȮH starts later when compared to the ȮH formation at λ=1.2. It may then be 

possible that the HȮ2 and ĊH3 radicals would not be as active in hydrogen abstraction at 

λ=1.0 in comparison to λ=1.2. Fourth, the ĊH3 radical may not play a significant role in 

the hydrogen abstraction at λ=1.6.  Two of the main intermediates are iso-butene (iC4H8) 

and propene (C3H6). These are typically products of the unimolecular decomposition. Mole 

fractions of iC4H8, C3H6, CH4 (methane), and CO are illustrated in Figure 6-3. The 

concentrations of iso-butene and propene are highest for λ=1.2 (Figure 6-3), and very 

similar for λ of 1.0 and 1.6. This may indicate that unimolecular decomposition is more 

prevalent for λ=1.2 compared to λ of 1.0 and 1.6. The concentration of methane is also 

highest for λ=1.2 followed by λ=1.0, and negligible for λ=1.6. CO on the other hand, has 

the highest concentration for λ=1.0. This is expected since the lower oxygen availability 

will reduce conversion of CO into carbon dioxide (CO2). At λ=1.6, the CO concentration 

is lowest, and agrees with the trends of the experimental results (Figure 5-10).   
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Figure 6-2. Gasoline surrogate – YȮH, YḢ, YHȮ2, and YĊH3 
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Figure 6-3. Gasoline surrogate – YiC4H8, YC3H6, YCH4 and YCO 

0.0E+0

5.0E-15

1.0E-14

1.5E-14

2.0E-14

2.5E-14

3.0E-14

330 345 360 375 390 405 420

C
H

4
M

o
le

 F
ra

ct
io

n
 [

-]

Crank Angle [ CA]

0.0E+0

1.0E-10

2.0E-10

3.0E-10

4.0E-10

5.0E-10

6.0E-10

330 345 360 375 390 405 420

iC
4
H

8
M

o
le

 F
ra

ct
io

n
 [

-]

Crank Angle [ CA]

0.0E+0

2.0E-12

4.0E-12

6.0E-12

8.0E-12

1.0E-11

1.2E-11

330 345 360 375 390 405 420

C
3
H

6
M

o
le

 F
ra

ct
io

n
 [

-]

Crank Angle [ CA]

1.0

1.2

1.6

0.0E+0

2.0E-3

4.0E-3

6.0E-3

8.0E-3

1.0E-2

330 345 360 375 390 405 420

C
O

 M
o

le
 F

ra
ct

io
n

 [
-]

Crank Angle [ CA]



 

126 

 

 Ethanol SI combustion 

The reaction mechanism used for ethanol analysis consists of 57 species and 383 reactions. 

Details of the mechanism can be found in [122]. Some of the key oxidation reactions are 

listed in Table D-4. The cylinder pressure, bulk gas temperature, and ethanol consumption 

are shown in Figure 6-4 which follow the same trends as gasoline. 

 

Figure 6-4. Ethanol – Cylinder pressure, temperature & YC2H5OH 
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According to the engine results, gasoline and ethanol follow similar trends when the λ is 

increased. This similarity may be explained by the similar trends seen in the formation and 

consumption of the radicals such as ȮH, Ḣ, HȮ2, and ĊH3 (Figure 6-5). Formation of ȮH 

and Ḣ radicals are highest for λ=1.0, and decrease with increase in λ. At λ=1.2, formation 

of HȮ2 and ĊH3 radicals are highest out of all the λ. At λ=1.6, the Ḣ radical formation is 

almost negligible when compared to the Ḣ formation at lower excess air ratios.  

The mole fractions of major intermediate species such as ethene (C2H4), methane (CH4), 

formaldehyde (CH2O) and carbon monoxide (CO) are illustrated in Figure 6-6. 

Formaldehyde and carbon monoxide formation are highest at λ=1.0 and comparatively 

negligible for λ=1.6. This could indicate that the homolytic scission of the carbon-carbon 

bond (Reaction 1 in Table D-4) is favored over the homolytic scission of the carbon-oxygen 

bond. Ethene is an intermediate in the homolytic scission of the carbon-oxygen bond. At 

λ=1.2, the higher mole fractions of ethene and methane are estimated when compared to 

the those at λ=1.0/1.6. This may imply that the homolytic scission of the carbon-oxygen 

bond is more prevalent at λ=1.2 than at λ=1.0/1.6. Peak CO formation decreases with 

increasing excess air ratio probably due to increased oxidation of CO to CO2.     

From the gasoline and ethanol simulation results, some correlation can be made to the 

engine test results in terms of combustion duration and carbon monoxide formation. The 

differences in the radical formation and consumption between λ=1.0 and λ=1.2 may 

provide some insight into why combustion is fastest for λ=1.2. At λ=1.6, there is a sharp 

drop in concentration of most of the major reactivity enhancing radicals which may cause 

the longest combustion durations.  
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Figure 6-5. Ethanol – YȮH, YḢ, YHȮ2, and YĊH3 
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Figure 6-6. Ethanol – YC2H4, YCH4, YCH2O and YCO 
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 Intake temperature effect 

The intake temperature (denoted by Tintake) was found to affect the combustion significantly 

during the engine test results.  The overall trend was similar for both gasoline and ethanol 

– with increasing Tintake, the combustion advanced and the combustion duration decreased. 

In this subsection, the temperature effect will be examined through chemical simulations 

at λ=1.6 at Tintake of 313 and 393 K. In the following figures, simulation results for λ=1.2 

at Tintake=313 K will also be shown for comparison. The simulated and experimental 

pressures traces are shown in Figure D-6 and Figure D-7 in Appendix-D at Tintake=393 K 

for gasoline and ethanol. 

The pressure, temperature, and iso-octane mole fraction are shown in Figure 6-7. The peak 

pressure at λ=1.6 at Tintake=393 K (denoted by λ=1.6-393 K) is marginally higher than the 

λ=1.2 (denoted by λ=1.2-313 K) case, congruent to the experimental results. The peak in-

cylinder temperature is higher for λ=1.2 compared to λ=1.6 with intake heating. This 

prediction may also be true if the measured exhaust NOx emissions are indicative of it. The 

measured NOx emission for λ=1.2 is greater than 1000 ppm while the measured NOx 

emission for λ=1.6 at 393 K is less than 700 ppm. The initial iso-octane mole fraction is 

lower when λ=1.6 at 393 K in comparison to λ=1.2, but the consumption of iso-octane is 

completed within similar durations. The iso-octane consumption is slowest for λ=1.6 at the 

baseline temperature (denoted by λ=1.6-313 K). Increasing temperature is expected to 

increase the rate of reactions of key oxidation reactions. Consequently, there will be an 

impact on the formation of main chain branching radicals. The peak mole fractions of ȮH, 

Ḣ, and HȮ2 radicals increase when Tintake increases from 313 to 393 K at λ=1.6 though the 

highest concentration is at λ=1.2 at the baseline temperature (Figure 6-8). There is marginal 
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effect of increase in Tintake on the Ḣ formation. However, the peak ĊH3 mole fraction is a 

few orders of magnitude higher for the λ=1.6-393 K case compared to the other baseline 

temperature cases at λ of 1.2 and 1.6.  Formation of ĊH3 also starts earlier when the intake 

temperature is higher. Ethanol shows similar trends for pressure, temperature, ethanol mole 

fraction, and radical formation, and are not shown here for the sake of brevity. 

 

Figure 6-7. Tintake effect (gasoline) – Cylinder pressure, temperature & YiC8H18 
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Figure 6-8. Tintake effect (gasoline) – YȮH, YḢ, YHȮ2, and YĊH3 
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From the experimental results (Figure 5-8 and Figure 5-14), it is found that increasing the 

intake temperature to 393 K at λ=1.6 reduces the combustion duration to periods equivalent 

to λ=1.2 at 313 K. The enhancement of the charge reactivity with increase in the Tintake may 

be due to the enhancement of certain key reactions. Figure 6-9 and Figure 6-10 show the 

trends for major intermediate species for gasoline and ethanol respectively. Carbon 

monoxide formation shows a marginal increase at λ=1.6 when the Tintake is increased to 393 

K. At the leanest conditions, since oxygen is freely available, carbon monoxide would be 

expected to be oxidized to carbon dioxide with ease. Another common major intermediate 

species for both the fuels is methane. Methane formation increases by a few orders of 

magnitude for both fuels when the intake temperature is increased to 393 K at λ=1.6.  

In general, a similar increase in the peak concentration of the major intermediate species is 

observed for both fuels when Tintake is increased at λ=1.6. Moreover, the start of formation 

of these intermediate species is advanced as well. For gasoline for instance, increasing the 

intake temperature at λ=1.6 increases the iso-butene and propene formation by a few orders 

of magnitude (Figure 6-9). This prediction along with the increase in the ĊH3 would 

indicate that the tendency for the unimolecular dissociation of iso-octane would increase 

with increase in temperature (Table D-3). For ethanol, the peak ethene concentration is 

increased by two orders of magnitude and ethene formation starts earlier (comparing λ=1.6-

393 K with λ=1.2-313 K in Figure 6-10) which would suggest a greater tendency for 

homolytic scission of the carbon-oxygen bond (Table D-4). At λ=1.6-313 K, no 

formaldehyde formation is predicted. The peak formaldehyde concentration at λ=1.6-393 

K is of the order of λ=1.0 (Figure 6-6) and an order greater than λ=1.2-313 K though the 

start of formation is later.  
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Figure 6-9. Tintake effect (gasoline) – YiC4H8, YC3H6, YCH4 and YCO 
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Figure 6-10. Tintake effect (ethanol) – YC2H4, YCH4, YCH2O and YCO 
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 DME HCCI combustion 

DME simulation results are not a direct comparison to the gasoline and ethanol results 

owing to the difference in the reactor model used. The reaction mechanism consists of 79 

species and 351 reactions. Details are provided in [123-125]. The key reactions are listed 

in Table D-5. 

The motoring pressure was a reasonable match with the simulated motoring pressure which 

was used to validate the heat transfer parameters. The simulated firing pressure curve 

deviated from the experimental results. The pressure rise from the low temperature 

reactions matched that from the experiments. However, the second pressure rise 

corresponding to the high temperature reactions was later than that from the experiments. 

Therefore, the results presented here should be viewed only in terms of trends and may not 

directly correspond to the engine test results of Chapter 5. Validation curves are provided 

in Appendix D. 
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Figure 6-11. DME – Cylinder pressure, temperature & YCH3OCH3 

The estimated cylinder pressure, temperature, and DME mole fraction are shown in Figure 

6-11. The simulation parameters are set in accordance with the engine tests. With 

increasing λ, the intake pressure is increased as the fuel amount is kept constant. The peak 

pressure increases with increasing λ. This agrees with the engine test results. The chemical 
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TDC with corresponding changes in the pressure, temperature and DME mole fraction. 

The timing for the start of the low temperature reactions is marginally retarded by increase 

in λ. Rate of DME consumption increases with increasing λ.  

Unlike gasoline or ethanol, DME HCCI follows the trends of species monotonically. The 

concentration plots of reactivity enhancing radicals – ȮH, Ḣ, HȮ2, and ĊH3 are shown in  

Figure 6-12. From the simulation, it is estimated that the low temperature reactions (LTRs) 

before TDC which eventually initiate the high temperature reactions (HTRs) are controlled 

by the HȮ2 and ĊH3 radicals. The start of formation of these radicals starts at the same 

time as the start of the first heat release. λ=1.0/1.2 cases have similar concentration profiles 

of HȮ2 and ĊH3 radicals in the low temperature regime. When λ is increased to 1.6, the 

peak concentrations of HȮ2 and ĊH3 are advanced in both the LTR and HTR periods which 

may be due to increase in oxygen availability as well as start of pyrolysis. During the start 

HTR period (typically after TDC), Ḣ and ȮH concentration peaks increase, and the timings 

of these peaks retard when the λ is increased. Large increases in the radical pool are 

expected with further chain branching to cause the HTRs to progress even faster. The CH3Ȯ, 

CH4, CH2O, and CO intermediate formation and consumption are advanced with increasing 

λ. CH3Ȯ is highest during the LTR period probably due to the high concentrations of the 

HȮ2 and the ĊH3 radicals (Reaction 10 in Table D-5). The other three intermediates 

increase as the HTRs start. The formaldehyde concentration is especially high during the 

entire combustion duration owing to it being a common by product of several reactions 

(Reactions 1a, 2a, and 6 in Table D-5). 
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Figure 6-12. DME – YȮH, YḢ, YHȮ2, and YĊH3 
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Figure 6-13. DME – YCH3Ȯ, YCH4, YCH2O and YCO 
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 In-cylinder Flow-field Simulations 

This section describes the three-dimensional computational fluid dynamics simulations 

undertaken to estimate the flow field in the cylinder under engine motoring conditions. As 

emphasized previously, the flow-field is a critical element in the development of the flame. 

Simulation parameters are described in the first sub-section. The simulation results for the 

effect of intake flow rate on the in-cylinder flow field are discussed in the second sub-

section. Details on the flow field near the spark plug are described in the third sub-section.   

 Simulation parameters 

The geometry input for Converge® version 2.3 is shown in Figure 6-14 showing some of 

the main boundaries. The geometry is based on the Yanmar NFD-170 stationary diesel 

engine used for the engine tests. It also includes the insert in the intake manifold. A flexible 

foam mold of the helical intake port is made using the cylinder head. This mold is then 

laser scanned in 3-D, and from the scan, the corresponding surface file is generated for 

intake port [29]. This surface file is incorporated in the overall geometry input file. A single 

motoring engine cycle is simulated from 0 to 720 °CA. The primary variable for the CFD 

simulations is the mass air flow rate. Four increasing flow rates corresponding to 

λ=1.0/1.2/1.4/1.6 are simulated to estimate the in-cylinder flow field during the spark 

breakdown and early flame propagation period of 300 to 360 °CA.  

The simulation parameters are summarized in Table 6-2. Since the main purpose of the 

simulations is to estimate the flow, the input parameters especially those related to the flow, 

are selected carefully to mirror the engine operating conditions. The intake pressure 

measured at a resolution of 0.1 °CA during engine motoring (empirical data) is used as the 

boundary condition for the inflow boundary of the intake port. The cylinder region 
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boundary temperature is set to 373 K to match the empirical motoring pressure. Finally, 

the experimental and simulated motoring pressure traces are compared to validate the gas 

exchange process (Figure E-1, Appendix E).  The intake and exhaust valve profiles are 

determined through physical measurement on the engine.  

 

Figure 6-14. Converge geometry input showing the main features and boundaries 

The base grid size refers to the edge length of cube shaped cells. Time varying grid 

refinement is used. During the intake stroke, the grid size in the region around the intake 

valve is reduced to 1 mm. The grid size in the cylinder region is reduced to 1 mm till the 

start of the spark window at 291 °CA. During the spark and the early flame propagation 

window of 291 to 370 °CA, which is the main period of interest, the grid size is 0.5 mm. 

Thereafter, the grid size in the cylinder region is again increased to 1 mm. For the spark 

plug vicinity flow field simulations, the grid size is reduced further to 0.25 mm over a 20 
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mm radius and 20 mm height cylindrical region centered around the sparking electrode of 

the multi-pole plug. This is of the order of the spark gap (0.86 mm) and air gap (~0.8 mm) 

between the spark plug ceramic insulator and the metal ground shell. The grid size is 

decided based on successive reduction of the grid size until no further improvement is 

observed in the resolution of the velocity profile. The average root mean square of the 

fluctuating velocity, u’ (defined in Section 1.5) and the swirl ratio (ratio of average 

rotational velocity about the cylinder axis and the engine speed) for the cells in the cylinder 

are very similar for two grid sizes of 0.5 and 0.25 mm (Figure 6-15). Therefore, there may 

not be any major improvement in the computational accuracy with further grid refinement.      

Table 6-2. Converge simulation parameters 

Parameter Value 

Intake temperature 313 K 

Boundary temperature 373 K 

Intake pressure profile Input from empirical data 

Cell size (edge length) 4 mm (max) / 0.25 mm (min) 

Turbulence model Renormalized Group k-ε 

Engine geometry Yanmar NFD-170 

Bore 102 mm 

Stroke 105 mm 

Engine speed 1300 rpm 

Compression ratio 9.2:1 

Intake valve open (IVO) -10 °CA 

Intake valve close (IVC)  225 °CA 

Intake lift 10.46 mm 

Exhaust valve open (EVO) 495 °CA 

Exhaust valve close (EVC) 14 °CA 

Exhaust lift 10.46 mm 
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Figure 6-15. Effect of cell size on turbulent velocity and swirl ratio 

The Renormalized Group (RNG) k-ε turbulence model is used since it has been shown to 

estimate engine flows with reasonable accuracy [126-128]. The major input files with 
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literature [126, 128]. The simulation data is post-processed using Ansys Ensight 10.1. Two 

viewing planes are defined as shown in Figure 6-16 for presenting the results. These planes 

bisect the sparking electrode of the multi-pole spark plug. In this manner, the region closest 

to the spark kernel can be examined. The plane which views the spark gap from the front 

is defined as ‘Gap Plane’ and the plane which views the spark gap from the side (and 

intersects the ground electrode completely) is defined as ‘Ground Plane’. The purpose of 

the simulations is to obtain an estimate of the order of the in-cylinder flow velocities which 

could not be measured directly. Moreover, the author would like to emphasize that two-

dimensional representations of complex three-dimensional phenomena such as in-cylinder 

flows can only be used to draw broad conclusions on the in-cylinder flow structure. Since 

the spark gap is small (of the order of ~1 mm), this approximation may be acceptable. The 

simulated flow field should be validated with empirical studies in the future. 

 

Figure 6-16. Viewing planes for the CFD results 
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 Effect of intake flow rate on in-cylinder flow field 

In this section, the author presents the results for the estimation of the in-cylinder flow field 

velocity at two intake air flow rates of 4.2 and 5.4 g/s. These match with the MAF at λ=1.2 

and λ=1.6 for the engine test and correspond to the shortest and longest combustion 

durations that were observed during the engine tests.  

The figures are to be read in terms of the velocity magnitude and the velocity direction. 

The colour in the background corresponds to the velocity magnitude for the cells which the 

viewing plane intersects. This is calculated using the three directional components of the 

velocity for each of these cells. The no-slip boundary layer calculation is not shown in the 

figures. The direction of the arrow in the foreground corresponds to the direction of the 

cell velocity projected on viewing plane. For clarity, select cells are demarcated with their 

corresponding velocity arrow to illustrate the velocity flow-field. The length of the arrow 

has no physical significance.  

Each of the following figures, Figure 6-17-Figure 6-20 is at 325, 335, 345, and 355 °CA 

crank position respectively. The top two insets show the gap plane velocity at the two 

MAFs, and the bottom two show the ground plane velocity at the same MAFs. For the gap 

plane plots, the intake valve is on the right, and the exhaust valve is on the left. The colour 

bar for the velocity magnitude ranges from 0 to 14 m/s. 

From 325 °CA onwards (Figure 6-17), some similarities can be observed between the two 

MAF cases in the gap and the ground planes. First, the overall velocity magnitudes between 

the two MAF cases are similar with the velocity magnitude in most of the cells in the range 

of ~6-8 m/s. Second, there is a developed recirculation zone of low velocity that is between 
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the intake valve and the spark plug in the gap plane. The charge velocity is lower in this 

zone (~2-4 m/s). As the piston moves towards TDC, this zone moves closer towards the 

spark gap (Figure 6-18). By 345 °CA (Figure 6-19), for the 4.2 g/s MAF case, the 

recirculation zone in the gap plane is inside the perimeter of the spark plug. For 5.4 g/s 

MAF case, this low velocity recirculation zone is inside the spark plug perimeter by 

355 °CA (Figure 6-20). Third, in the ground plane, the flow is directed towards the ground 

electrode for both MAF cases at 325 °CA (from left to right in the images). As the piston 

approaches TDC, the flow direction in the ground plane shifts towards the spark plug axis 

(bottom left to top right in the images). This shift is apparent earlier in the 4.2 g/s MAF 

case in comparison to the 5.4 g/s case. The velocity magnitude in this plane is ~6-8 m/s 

near the spark gap and decreases as the piston approaches TDC. Fourth, the simulation 

predicts formation of multiple recirculation zones in the ground plane as the piston 

approaches 355 °CA, with the structures resembling typical compression squish.  

From these estimations, two main conclusions can be drawn. First, there are no major 

differences in the in-cylinder flow field structure when the MAF is increased from 4.2 to 

5.4 g/s. Second, the flow field changes with crank position especially near the spark plug. 

Hence, the grid near the spark plug is refined further and analyzed in greater detail. In 

addition to the spark gap, the flow in the gap between the ground metal shell and the 

ceramic insulator is of interest since this flow can affect the surface temperature of the 

spark plug. The surface temperature of the spark plug may be associated with combustion 

abnormalities [130].        
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Figure 6-17. Flow field comparison at 325 °CA between MAF of 4.2 and 5.4 g/s 
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Figure 6-18. Flow field comparison at 335 °CA between MAF of 4.2 and 5.4 g/s 
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Figure 6-19. Flow field comparison at 345 °CA between MAF of 4.2 and 5.4 g/s 

 A                 λ         R       

         
 m   

4.2    

4.2    

5.4    

5.4    

  p      

            



 

151 

 

 

Figure 6-20. Flow field comparison at 355 °CA between MAF of 4.2 and 5.4 g/s 
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 Flow profile in the spark plug vicinity 

From the results presented in section 6.2.2, it can be concluded that the flow field near the 

spark plug changes significantly over the ignition timing window of this study – 300 to 

360 °CA. Hence, a more detailed analysis of the flow profile near the spark plug is 

undertaken for the MAF of 5.4 g/s corresponding to the leanest test condition (λ=1.6).  

The gap plane and ground plane results are shown in Figure 6-21 and Figure 6-22 from 315 

to 365 °CA at 10 °CA intervals. The ignition timing at this λ for the engine test was varied 

from 305 to 325 °CA. In this timing range, there is no significant difference in the flow 

field in the spark gap. The average velocity magnitude in the spark gap is ~6-8 m/s. In the 

ground plane, the flow is directed towards the spark gap. The sparking central electrode 

acts as a bluff body causing a recirculation zone formation between the central and the 

ground electrode. Again, by 345 °CA, the velocity magnitude in the gap decreases in both 

the planes, and the flow direction in the ground plane changes direction.  

According to the chamber test, with charge motion, the propane flame is still around the 

perimeter of the multi-pole spark plug 5 ms after the spark breakdown (Figure 4-14). At an 

ignition timing of 320 °CA, the in-cylinder pressure of the engine at λ=1.6 is ~3.6 bar 

absolute. This is slightly lower than the CVCC initial pressure of 4 bar absolute. However, 

a reasonable assumption would be that the flame kernel is still around the spark perimeter 

5 ms after the breakdown, which is ~39 °CA. This is supported by the plug probe ion signal 

data and further by the cylinder pressure signal since the CA5 is later at 363 °CA (Figure 

5-8 for gasoline at λ=1.6). Therefore, the flow field around the spark plug at ~359 °CA 

(320+39 °CA) should play an important role in increasing the area of the flame as it 

expands away from the plug.  
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Figure 6-21. Detailed flow field in the spark vicinity at 5.4 g/s for gap plane 

 A             λ      R       

10 8 6 4 2 0

         
 m   



 

154 

 

 

Figure 6-22. Detailed flow field in the spark vicinity at 5.4 g/s for ground plane 
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The lower flow velocities estimated between 355-365 °CA may not aid in flame expansion. 

Incidentally, advancing the ignition timing to 310 °CA decreases the combustion duration 

in comparison to ignition timing of 320 °CA. The flame could then be outside the perimeter 

of the spark plug by ~349 °CA.  

In addition to the flow field in the spark gap region, for the given conditions, there is no 

major flow in the gap between the ground metal shell and the ceramic insulator. The flow 

velocity is of the order of less than 1 m/s. However, as the piston approaches TDC, the 

direction of the velocity starts to shift from upward into the gap to downward away from 

the gap. This is probably due to the downward motion of the piston causing the in-cylinder 

gas to expand outward with respect to the axis of the cylinder.        
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 CONCLUSIONS AND FUTURE WORK 

A study of premixed and lean combustion relevant to spark ignition engines operating 

under low load and low speed was conducted. The effects of charge motion and charge 

reactivity were investigated through empirical and numerical methods on a variety of 

research platforms. Certain trends were identified and compared with published research. 

The significance of a comprehensive approach to analysis of lean combustion was 

highlighted. In this chapter, the author provides a summary of the research undertaken and 

the main conclusions. Recommendations are also made for future research.  

 Combustion Chamber Flame Propagation Studies 

Tests are conducted in a CVCC and shock tube to study some of the fundamental 

parameters governing premixed flame propagation including fuel property, excess air ratio, 

charge motion, and discharge current profile. Three different gaseous fuels are tested – 

methane, propane and DME. Concurrent high-speed shadowgraph imaging, pressure, and 

ion current measurements are made. The main conclusions of this research are – 

• The ion current measurement system developed during this research can detect the 

propagating flame front under various operating conditions. The system is validated 

using simultaneous optical measurements. Flame front detection during the glow 

phase is also possible with the ion current system using the multi-pole spark plug. 

A conventional spark plug typically cannot measure ion current during the glow 

phase. 

• Shadowgraph images are processed to differentiate between flame propagation at 

various excess air ratios and fuels with and without charge motion. Flame areas 
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decrease with increasing λ, but with charge motion, the flame area at the leanest 

conditions can match that of laminar flames at stoichiometric conditions. 

• With decreasing λ, the peak pressure increases and the timing for this pressure 

advances. The ion current signal shows a similar trend. The effect of charge motion 

in increasing the flame speed is also evident from the pressure and ion signals. 

However, at the highest tested λ of 1.6, the magnitude of the ion current is much 

lower than that at λ=1.0, which is probably caused by the decrease in the ion 

concentration.  

• The flame areas for each fuel can be correlated to the differences in the Markstein 

lengths. At λ=1.6 and with charge motion, for the given test setup, spark ignited 

DME flame propagation is the slowest of the three test fuels. 

• Directed flow on the spark gap demonstrated the increasing stretch of the discharge 

channel with increasing flow velocity. The effective discharge duration decreases 

as well. Increasing the average discharge current can prevent blow-out of the flame 

kernel (and consequent misfire) under flow conditions with a lean background 

mixture (λ=1.6). 

• Shock accelerated high speed flames of methane were generated in a shock tube 

with an open ended driven section. This allowed sudden free propagation of the 

flame. Flame speeds of up to ~39 m/s were estimated using the ion current probes. 

The flame propagation in the driver section, which is akin to a chamber, was not 

affected significantly by the initial unburned gas pressure. However, the freely 

propagating flame behind the shock tube was strongly influenced by the initial 
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unburned gas pressure probably due to increased fuel energy content. Overall, 

flame speeds typically decreased with increasing λ for all cases.    

 Charge Reactivity Impact on Engine Combustion 

Charge reactivity impact tests are conducted on a single cylinder SI research engine under 

low load and low speed. First, the effect of an insert in the intake manifold is evaluated. 

Second, gasoline and ethanol fuels are tested under different excess air ratios and intake 

temperatures. DME HCCI tests are also conducted under similar operating conditions to 

contrast low fuel reactivity (gasoline and ethanol) with high fuel reactivity (DME). The 

main conclusions of this research are – 

• A helical insert placed in the intake manifold can lower the combustion variability 

especially under lean conditions. It may also advance the start of combustion (CA5) 

and combustion phasing (CA50). 

• The peak pressure and peak heat release rate for ethanol combustion are greater 

than those for gasoline. DME HCCI has a double hump heat release corresponding 

to low temperature reactions and high temperature reactions respectively. Owing 

to probably multiple locations of combustion initiation, the overall combustion 

duration is significantly shorter than ethanol and gasoline.  

• For all SI gasoline and ethanol cases, the CA5 retards monotonically with 

retardation of the ignition timing. The combustion duration is shortest at λ=1.2. 

CA5 and CA50 of ethanol at all excess air ratios are earlier than those for gasoline, 

but the overall combustion duration (CA5-CA95) is lower for gasoline except at 

λ=1.6. This implies that the second half of combustion of gasoline (developed 

flame) may be faster than ethanol. 
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• With increasing λ, NOx and CO emissions tend to decrease probably due to 

reduced flame temperature and additional oxygen supply respectively. Ethanol 

NOx emissions are lower than gasoline probably due to the lowering of the initial 

charge temperature when liquid ethanol evaporates. Lowering of the in-cylinder 

temperature with ethanol may also reduce CO oxidation rate. CO emissions were 

lower for gasoline. 

• The plug ion current probe and the auxiliary ion current probe signals show some 

correlation with the pressure signal based CA5. The plug probe’s response is found 

to be faster than the pressure signal probably due to the detection of the initial 

flame kernel which may not cause a detectable change in pressure. The period 

between the peaks of plug probe and the auxiliary probe can be used to make a 

rough estimate of the flame propagation between these two locations. With 

increasing λ, the period increases, indicating slower flame propagation.   

• Increasing the intake temperature at λ=1.6 advances the CA5 and shortens the 

combustion duration for both gasoline and ethanol fuels. At the highest intake 

temperature of 393 K, the combustion duration tends to become independent of the 

ignition timing. The ion signals also indicate faster flame propagation with 

increasing temperature. 

• Though the combustion duration is similar, NOx and CO emissions at λ=1.6 and 

Tintake=393 K are lower than those at λ=1.2 and Tintake=313K. The COV of IMEP 

is also reduced when Tintake is increased at λ=1.6 from 313 to 393 K.  

• For DME HCCI, increasing λ from 1.0 to 1.6 causes a decrease in the combustion 

duration. λ can be extended to 1.83 at which the COV of IMEP starts increasing.      
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 Simulation Studies for Combustion Chemistry and In-cylinder Flow Field 

Numerical analysis of the combustion chemistry and in-cylinder flow filed is conducted 

using CHEMKIN and Converge CFD suite respectively. The main conclusions are – 

 Chemical simulations 

• Start of reactions is earliest for λ=1.2 and latest for λ=1.6 for both gasoline and 

ethanol. Cylinder pressure is also highest at λ=1.2 for both fuels though the bulk 

gas temperature is highest at λ=1.0. At λ=1.6, the peak bulk gas temperature reduces 

by ~500 K which could explain the lower NOx.  

• Various radicals are identified that are most instrumental in causing the oxidation 

of the fuel by assisting with chain branching. The ȮH and Ḣ radical concentrations 

are highest for λ=1.0 and decrease with increasing λ. However, the ȮH radical 

formation starts earliest for λ=1.2. The HȮ2 and the ĊH3 mole fractions are highest 

at λ=1.2 and lowest at λ=1.6. These trends are common for both fuels. These 

analyses may provide some clues on why combustion duration is shortest at λ=1.2, 

and longest at λ=1.6.    

• For gasoline reactions, the highest concentration of intermediate species such as 

iso-butene and propene may indicate a greater tendency for unimolecular 

decomposition at λ=1.2 in comparison to λ=1.0/1.6. 

• For ethanol reactions, the higher concentrations of ethene and methane 

intermediates at λ=1.2 may indicate a greater tendency for homolytic scission of 

the carbon-oxygen bond, rather than the carbon-carbon bond at λ=1.0.   
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• With increased initial temperature at λ=1.6, there is a sharp rise in the ĊH3 radical 

formation for both ethanol and gasoline, accompanied by an increase in 

concentration of certain intermediate species by a few orders of magnitude.   

• For DME HCCI, the peak cylinder pressure increases with increasing λ since the 

intake pressure increases. The increasing intake pressure probably advances the 

start of combustion and shortens the overall combustion duration.  

• The low temperature reactions for DME HCCI combustion may be controlled by 

the formation of the HȮ2 and ĊH3 radicals. During high temperature reactions when 

the bulk of the charge is combusted, the Ḣ and ȮH concentrations usually reach 

their peak.  

• Increasing λ for DME HCCI combustion also advances the formation of 

intermediates such as CH3Ȯ, CH4, CH2O, and CO. 

 In-cylinder flow-field simulations 

• No major differences in the velocity magnitudes are observed between the two 

MAF (4.2 and 5.4 g/s) cases at which the experimental combustion durations are 

shortest and longest respectively. The velocity magnitudes in the cylinder are 

estimated to be of the order of ~6-8 m/s as the piston approaches TDC.  

• Recirculating flow structures resembling compression squish may be identified as 

the piston moves towards TDC in the ignition timing zone. One of these flow 

structures in the gap plane approaches the spark gap as the piston reaches TDC. The 

velocity in this zone is lower, of the order of ~2-4 m/s which may aid in flame 

kernel formation if the ignition timing is appropriate.  
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 Recommendations for Future Work 

The author attempted to make a comprehensive analysis of premixed and lean combustion 

from the perspective of charge motion and charge reactivity. However, the present 

understanding cannot be deemed comprehensive. The following recommendations are 

made for future work – 

• Stronger flows relevant to engine conditions must be generated in the chamber to 

further the understanding of flow on the flame propagation. CVCC tests at higher 

pressures and higher temperatures of the unburned gas are required since they will be 

more relevant to the conditions found in modern gasoline engines. The ignitability 

challenges should be addressed with further studies on the spark current profile control, 

and spark discharge energy.  

• Use of EGR under lean combustion should be explored in greater detail in terms of 

balancing emission reduction and improving thermal efficiency.  

• The ion current measurement using multi-pole plug shows potential as a future 

diagnostic for early detection of combustion especially during the glow phase, and 

efforts must be made to use this measurement for intra-cycle control.     

• The numerical analyses related to the chemical reactions and the flow field require 

further validation. In-cylinder direct gas sampling may be one way to determine the in-

cylinder gas composition to determine differences in the underlying chemistry with 

changes in λ. Though the gas exchange process is validated, the flow-field is not. 

Optical studies may yield more information.    
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APPENDIX A: Specifications of Key Equipment 

Table A-1. Yanmar Engine Cylinder Pressure Measurement [112] 

Hardware 
Piezo electric Cylinder 

Pressure Transducer 
Charge Amplifier 

Model Kistler 6043A60 Kistler 5010B 

Measurement Range 0-250 bar 10-999000 pC 

Sensitivity 20 pC/bar 0.01-9990 pC/bar 

Output – ±10 V 

Accuracy <±0.5% <±0.5% 

 

Table A-2. Air Flow and Fuel Flow Measurement [112] 

Hardware Air Flow Fuel Flow 

Model 
Dresser Roots Meter 

5M175 
Ono Sokki FP-213 

Measurement Range 

2.36 m3/min 

11.9 bar g maximum 
1-1000 ml/min 

Resolution 2.622 x 10-4 m3 0.01 ml 

Output Pulse output 0.01 ml/pulse 

Accuracy <0.3% <±0.5% 
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Table A-3. CAI emission analyzer details 

Species Model Working Principle 
Range 

Used 
Resolution 

Noise/Zero

-Span Drift 

CO 
600-

NDIR/Oxygen 

Non-dispersive 

infrared (NDIR) 
0-1% 0.001% <1% 

CO2 
600-

NDIR/Oxygen 

Non-dispersive 

infrared (NDIR) 
0-20% 0.02% <1% 

O2 
600-

NDIR/Oxygen 
Paramagnetic 0-25% 0.025% <1% 

NO/NO2/

NOx 
600-HCLD Chemiluminiscence 

0-3000 

ppm 
0.01 ppm <1% 

HC 300M-HFID 
Heated flame 

ionization detector 

0-3000 

ppm 
0.01 ppm <1% 

 

Table A-4. PicoScope Oscilloscope Specifications 

Model 4425 4824 

Channels 4 8 

Sampling rate 
20 million samples/second (USB 

3.0) 
10 million samples/second  

Input ranges ±50 mV to ±200 V in 12 ranges ±10 mV to ±50 V in 12 ranges 

Bandwidth 
20 MHz (100 mV to 200 V ranges) 

10 MHz (50 mV range) 

20 MHz (50 mV to 50 V ranges) 

10 MHz (10 and 20 mV ranges) 

DC accuracy ±1% of full scale ±1% of full scale 

Input 

characteristics 
1 MΩ in parallel with 24 pF 1 MΩ in parallel with 19 pF 

Input type Floating, BNC connector Floating, BNC connector 

Buffer memory 
250 million samples shared 

between active channels 

256 million samples shared 

between active channels 

Time base 

ranges 
100 ns/div to 5000 s/div 20 ns/div to 5000 s/div 

Noise 220 μV RMS on 50 mV range 45 μV RMS on 10 mV range 
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APPENDIX B: Pressure Signal Based Combustion Metrics 

 Pressure measurement in chamber 

Initial chamber pressure = pinitial 

Peak chamber pressure = pmax 

t_100 = Time at which pressure signal is maximum 

t_0 = Zero of time scale for data acquisition system  

t_5 = Time at which pressure is pinitial + 5% of (pmax-pinitial) 

t_50 = Time at which pressure is pinitial + 50% of (pmax-pinitial) 

t_90 = Time at which pressure is pinitial + 90% of (pmax-pinitial) 

 Pressure measurement in engine  

Heat Release Rate (derivation and assumptions in [112, 131]) 

𝑑𝑄

𝑑𝜃
= [

1

𝛾 − 1
] [𝑉

𝑑𝑝

𝑑𝜃
+ 𝑝𝛾

𝑑𝑉

𝑑𝜃
] 

Definition for Start of Combustion 

CA5 = Crank angle for 5% of mass fraction burned [°CA] 

Definition for Combustion Phasing 

CA50 = Crank angle for 50% of mass fraction burned [°CA] 

Definition for End of Combustion 

CA95 = Crank angle for 95% of mass fraction burned [°CA] 

Combustion Duration 

Combustion Duration (CD) = CA95-CA5 [°CA] 
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Figure B-1. Standard deviation of CA5 

 

Figure B-2. Standard deviation of CA50  
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APPENDIX C: Ion Current Signal Processing Method 

 

 Ion current profiles for two pole measurement using multi-pole spark plug 

 

Figure C-1. Typical raw ion current profiles for a firing cycle 

 

Figure C-2. Processed signal at two breakdown timings  
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  Matlab processing program for determining signal peaks 

clear variables 

close all 

clc 

 

load('comb_cad_sig_ethanol.mat'); 

datastart=input('Enter start DP  '); 

dataend=input('Enter end DP  '); 

 

for j=datastart:1:dataend 

k=comb_sig_cad_data(:,:,j); 

cntr=1; 

figure1 = figure('units','inches'); 

% axes1 = axes('Parent',figure1,'XTick',[300 310 320 330 340 350 360 370 380],... 

%     'FontWeight','bold',... 

%     'FontName','Times New Roman','FontSize',18); 

% % Uncomment the following line to preserve the X-limits of the axes 

% xlim(axes1,[300 380]); 

% box(axes1,'on'); 

% hold(axes1,'all'); 

 

for i=1:20:141    

[hax hl1 hl2]=plotyy(k(1:3600,i),k(1:3600,i+1),k(1:3600,i),k(1:3600,i+2)*(-1)); 

hold all 

xlim(hax(1),[300 380]); 

xlim(hax(2),[300 380]); 

hax(1).XTick=300:10:380; 

hax(2).XTick=300:10:380; 

ylim(hax(1),[0 10]); 

ylim(hax(2),[0 10]); 

hax(1).YTick=0:1:10; 

hax(2).YTick=0:1:10; 

hl1.Color=[0 0 0]; 

hl2.Color=[1 0 0]; 

hold all 

% plot(k(1:3600,i),k(1:3600,i+2),'Color',[1 0 0]); 

% hold all 

% plot(k(1:3600,16),k(1:3600,18)); 

% hold all 

[dypks_s1,ix_s1] = findpeaks(k(1:3600,i+1), 'MinPeakDistance',5, 'MinPeakHeight',0.7);   

[dypks_s2,ix_s2] = findpeaks(k(1:3600,i+2)*(-1), 'MinPeakDistance',5, 

'MinPeakHeight',2);  

 

% ix=findchangepts(k(1:3600,i+2),'Statistic','linear','MinThreshold',var(s1)); 
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% 

ix_s2=findchangepts(k(1:3600,i+2),'Statistic','linear','MinThreshold',var(k(1:3600,i+2))); 

 

hold(hax(1),'on') 

scatter(hax(1),k(ix_s1,i),dypks_s1); 

hold(hax(2),'on') 

scatter(hax(2),k(ix_s2,i),dypks_s2); 

% hold all 

% scatter(hax(2),k(ix_s2,i),k(ix_s2,i+2)); 

 

% t_s1=find((k(ix_s1,i)>limit), 1, 'first'); 

% t_s2=find((k(ix_s2,i)>limit), 1, 'first'); 

% ind_s1(cntr)=k(ix_s1(t_s1),i); 

% ind_s2(cntr)=k(ix_s2(t_s2),i); 

% cntr=cntr+1; 

end 

 

limit=input('Set min CAD limit for peak search  '); 

close all 

 

for i=1:5:156 

plot(k(1:3600,i),k(1:3600,i+1),'Color',[0 0 0]); 

hold all 

plot(k(1:3600,i),k(1:3600,i+2)*(-1),'Color',[1 0 0]); 

hold all 

% plot(k(1:3600,16),k(1:3600,18)); 

% hold all 

[dypks_s1,ix_s1] = findpeaks(k(1:3600,i+1), 'MinPeakDistance',5, 'MinPeakHeight',0.7);   

[dypks_s2,ix_s2] = findpeaks(k(1:3600,i+2)*(-1), 'MinPeakDistance',5, 

'MinPeakHeight',2);  

% ix=findchangepts(k(1:3600,i+2),'Statistic','linear','MinThreshold',var(s1)); 

% ix=findchangepts(k(1:3600,i+1),'Statistic','linear','MinThreshold',var(k(1:3600,i+1))); 

% 

ix_s2=findchangepts(k(1:3600,i+2),'Statistic','linear','MinThreshold',var(k(ix_s2,i+2))); 

% scatter(k(ix_s1,i),dypks_s1); 

% hold all 

% scatter(k(ix_s2,i),dypks_s2); 

% hold all 

t_s1=find((k(ix_s1,i)>limit), 1, 'first'); 

t_s2=find((k(ix_s2,i)>limit)&(k(ix_s2,i+2)*(-1)>0.2), 1, 'first'); 

if isempty(t_s1)==1 

    ind_s1(cntr,j)=0; 

else 

    ind_s1(cntr,j)=k(ix_s1(t_s1),i); 

end 

if isempty(t_s2)==1 
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    ind_s2(cntr,j)=0; 

else 

    ind_s2(cntr,j)=k(ix_s2(t_s2),i); 

end 

cntr=cntr+1; 

end 

 

diff_s2_s1(:,j)=ind_s2(:,j)-ind_s1(:,j); % take difference 

diffind=find(diff_s2_s1(:,j)<1|ind_s1(:,j)==0|ind_s2(:,j)==0); 

ind_s1(diffind,j)=0; 

ind_s2(diffind,j)=0; 

diff_s2_s1(diffind,j)=0; 

 

mean_ind_s1(j)=sum(ind_s1(:,j))./sum(ind_s1(:,j)~=0); 

mean_ind_s2(j)=sum(ind_s2(:,j))./sum(ind_s2(:,j)~=0); 

mean_diff(j)=sum(diff_s2_s1(:,j))./sum(diff_s2_s1(:,j)~=0); 

% mean_s2(j)=sum(ind_s2(:,j))./sum(ind_s2(:,j)~=0); 

end 

 

 

comb_ion_data_peak=zeros(32,dataend-datastart+1); 

cntr2=datastart; 

for a=1:3:(((dataend-datastart)+1)*3)-2 

    comb_ion_data_peak(:,a)=ind_s1(:,cntr2); 

    comb_ion_data_peak(:,a+1)=ind_s2(:,cntr2); 

    comb_ion_data_peak(:,a+2)=diff_s2_s1(:,cntr2); 

    cntr2=cntr2+1; 

end 

 

mean_data=[mean_ind_s1(datastart:dataend)' mean_ind_s2(datastart:dataend)' 

mean_diff(datastart:dataend)']; 

% save('comb_ion_pk_21_30.mat','comb_ion_data_peak'); 
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APPENDIX D: Validation and Input Parameters – CHEMKIN 

 Motoring cases for validation of heat transfer parameters 

Table D-1. Heat transfer parameters for Gasoline and Ethanol 

Parameter Value 

Heat Transfer Correlation 

Coefficient a 0.2 

Coefficient b 0.8 

Coefficient c 0.0 

Wall Temperature 400 K 

Woschni Correlation of Average Cylinder Gas Velocity 

Coefficient C11 2.28 

Coefficient C12 0.318 

Coefficient C2 0.324 cm/sec-K 

Combustion-Expansion Transition 

Temperature 
650 K 

 

 

Figure D-1. Gasoline motoring in CHEMKIN – Experiment vs. Simulation 
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Figure D-2. Ethanol motoring in CHEMKIN – Experiment vs. Simulation 

Table D-2. Heat transfer parameters for DME 

Parameter Value 

Dimensionless Heat Transfer Correlation 

Coefficient a 0.035 

Coefficient b 0.71 

Coefficient c 0.0 

Wall Temperature 400 K 

Chamber Bore Diameter 102 mm 

Woschni Correlation of Average Cylinder Gas Velocity 

Coefficient C11 2.28 

Coefficient C12 0.308 

Coefficient C2 3.24 cm/sec-K 

Combustion-Expansion Transition 

Temperature 
650 K 
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Figure D-3. DME motoring in CHEMKIN – Experiment vs. Simulation 

 Chemical mechanisms – main reactions 

The purpose of listing these reactions is to highlight some of the important species involved 

in the oxidation of iso-octane. This list is not exhaustive. 

The most dominant reaction is the unimolecular fuel decomposition (Reaction 1) of iso-

octane into tert-butyl radical (tĊ4H9). The radical further dissociates into iso-butene (iC4H8) 

and hydrogen radical (Reaction 1a). Another pathway of iso-octane consumption is 

abstraction of hydrogen atom from the iso-octane molecule to form the aĊ8H17 radical and 

hydrogen molecule (Reaction 2). aĊ8H17 breaks up into iso-butene and iso-butyl radical 

(Reaction 2a). This iso-butyl radical (iĊ4H9) further dissociates into propene and methyl 

radical (Reaction 2b). Reaction 3 is alkyl decomposition which breaks up the iso-octane 

molecule into the heptyl radical and the methyl radical. In reactions 4 and 5, the iso-octane 

molecule breaks up into isomers of Ċ8H17 radical which further dissociate into isobutene. 

0

2

4

6

8

10

12

300 330 360 390 420

 
  

  
 
 
  
 
  

  
 
  

  
 
  

 

                 

Exp

Sim

λ = 1.0 

λ = 1.6   m           



 

186 

 

Consequently, iso-butene and propene are the primary intermediates of the reaction. 

Additionally, in hydrocarbon combustion reactions, the hydroperoxyl radical chemistry 

plays an important role in controlling the overall reactivity (Reactions 6 to 9). The chain 

branching reaction to form the hydroxyl (ȮH) and Ȯ radicals increases the overall 

reactivity (Reaction 6) since it increases the number of radicals. Hydrogen abstraction from 

iso-octane is facilitated by the hydroxyl and the hydroperoxyl (HȮ2) radicals (Reactions 7-

8). Moreover, reaction of the methyl (ĊH3) radical with the hydroperoxyl radical to from 

the methoxy and hydroxyl radicals (Reaction 9) promotes reactivity since it maintains the 

number of radicals. 

Table D-3. Key iso-octane oxidation reactions [121] 

Serial 

No. 

Reaction 

Oxidation 

1 iC8H18                → tĊ4H9 + tĊ4H9 

1a tĊ4H9                  → iC4H8 + Ḣ 

2 iC8H18 + Ḣ    → aĊ8H17 + H2 

2a aĊ8H17           → iC4H8 + iĊ4H9 

2b iĊ4H9                    → C3H6+ĊH3 

3 iC8H18                  → yĊ7H15 + ĊH3 

4 iC8H18 + Ḣ     → cĊ8H17 + H2 

5 iC8H18 + Ḣ     → bĊ8H17 + H2 

Hydroperoxyl radical 

6 Ḣ + O2                  → Ȯ  +   ȮH 

7 iC8H18 + ȮH   → xĊ8H17 + H2O 

8 iC8H18 + HȮ2  → xĊ8H17 + H2O2 

9 ĊH3  + HȮ2     → CH3Ȯ + ȮH 

One common aspect between the ethanol and gasoline reaction mechanisms is the 

hydrogen and oxygen chain branching (Reaction 3) which produces two active radicals to 

promote subsequent reactions. The main source of radicals which initiate the ignition are 
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the homolytic scissions of the ethanol molecule (Reactions 1 and 2). Reaction 1 is 

homolytic scission of the carbon-carbon bond, while reaction 2 is for the homolytic scission 

of the carbon-oxygen bond. The products of these reactants undergo further reactions. For 

instance, the methyl (ĊH3) radical reacts with the hydroperoxyl (HȮ2) radical to form 

methoxy radical and hydroxyl radical (Reaction 1a). The methoxy radical further 

dissociates into formaldehyde (CH2O) and hydrogen atom (Reaction 1b). The 

hydroxymethylene (ĊH2OH) radical reacts with oxygen to form formaldehyde and 

hydroperoxyl (Reaction 1c). Homolytic scission of the carbon-oxygen (Reaction 2) bond 

leads to formation of ethyl radical (Ċ2H5). The ethyl radical finally dissociates into ethene 

(C2H4) and hydrogen atom (Reaction 2a). The formyl radical (HĊO) reacts to form 

hydrogen atom and carbon monoxide.   

Table D-4. Key ethanol oxidation reactions [122] 

Serial 

No. 

Reaction 

1 C2H5OH (+M)  ↔ ĊH3 + ĊH2OH (+M) 

1a ĊH3 + HȮ2       ↔ CH3Ȯ + ȮH 

1b CH3Ȯ (+M)      ↔ CH2O + Ḣ (+M) 

1c ĊH2OH + O2    ↔ CH2O + HȮ2 

2 C2H5OH (+M)  ↔ Ċ2H5 + ȮH (+M) 

2a Ċ2H5 (+M)       ↔ C2H4 + Ḣ (+M) 

3 O2 + Ḣ              ↔ Ȯ + ȮH 

4 HĊO + M         ↔ Ḣ + CO + M 

 

The key DME reactions are summarized in Table D-5. Again, this list is not exhaustive and 

only presents some of the more important species which affect the fuel reactivity. The 

reactions can be divided into two processes – DME pyrolysis and DME oxidation. Both 

processes begin with the unimolecular decomposition of the DME molecule (Reaction 1). 

In case of an established radical pool, H atom abstraction may occur through the Ḣ, ĊH3, 
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Ȯ or the OḢ radicals (Reactions 2, 3, 4 and 5 respectively). The OḢ radical reaction with 

DME molecule is only under oxidation.     

Table D-5. Key DME oxidation reactions [123-124] 

Serial No. Reaction 

High temperature pyrolysis 

1 CH3OCH3            → CH3Ȯ + ĊH3 

1a CH3Ȯ                   → CH2O + Ḣ 

2 CH3OCH3 + Ḣ     → CH3OĊH2 + H2 

3 CH3OCH3 + ĊH3 → CH3OĊH2 + CH4 

2a/3a CH3OĊH2            → CH2O + ĊH3 

Oxidation 

4 CH3OCH3 + ȮH → CH3OĊH2 +H2O 

5 CH3OCH3 + Ȯ    → CH3OĊH2 + ȮH 

6 ĊH3 + O2            → CH2O + ȮH 

7 CH2O + ĊH3      → HĊO + CH4 

7a HĊO + O2          → CO + HȮ2 

7b HĊO                   →  Ḣ + CO 

8 O2 + Ḣ                → Ȯ + ȮH 

9 Ḣ + O2 (+M)       → HȮ2 (+M) 

10 ĊH3 + HȮ2          → CH3Ȯ + ȮH 

 

The methoxy (CH3Ȯ) radical formed from the pyrolysis converts to formaldehyde (CH2O) 

and hydrogen atom (Reaction 1a). The methoxymethyl (CH3OĊH2) radical may also 

undergo beta scission to create formaldehyde and methyl radical (Reaction 2a/3a). 

Formaldehyde is also formed as an intermediate in the reaction of methyl radical with 

oxygen (Reaction 6). Methyl radical and formaldehyde may react to form the formyl (HĊO) 

radical and methane (Reaction 7). The formyl radical can react with oxygen to form carbon 

monoxide and generate the hydroperoxyl radical (Reaction 7a). The formyl radical may 

also decompose into hydrogen atom and carbon monoxide (Reaction 7b). Higher oxygen 
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typically increases the HȮ2 formation (Reactions 7a and 9). Consequently, this may 

increase the formation of the methoxy radical. Hence, the intermediates of interest are 

identified as follows – methoxy radical, methane, formaldehyde, and carbon monoxide.  

 Firing cases for validation 

This section presents a comparison of the pressure profiles for the combustion cases. 

λ=1.2/1.6 experimental pressures are compared with the CHEMKIN results. With 

increasing λ, the intake pressure increases because the throttle is opened further. Simulation 

maximum pressures are marginally higher than experimental measurements for all cases. 

Start of combustion is typically matched for all cases (±2 °CA) as well including start of 

low temperature reactions of DME. Overall combustion duration is longer for simulation 

than experiments for DME due to a longer calculated period for high temperature reactions. 

However, the simulations follow the trends with respect to λ.   

 

Figure D-4. Gasoline firing in CHEMKIN – Experiment vs. Simulation 
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Figure D-5. Ethanol firing in CHEMKIN – Experiment vs. Simulation 

 

Figure D-6. Gasoline firing in CHEMKIN (Tintake=393 K) – Experiment vs. Simulation 
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Figure D-7. Ethanol firing in CHEMKIN (Tintake=393 K) – Experiment vs. Simulation 

 

Figure D-8. DME firing in CHEMKIN – Experiment vs. Simulation 
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APPENDIX E: Validation and Input Parameters – Converge 

 Boundary conditions 

Table E-1. Types of boundaries  

Boundary Boundary Condition 

Intake/exhaust port No-slip stationary wall 

Cylinder head No-slip stationary wall 

Inflow Manifold pressure 

Outflow Zero-gradient pressure 

Intake/exhaust valves No-slip moving wall 

Spark plug No-slip stationary wall 

Cylinder No-slip stationary wall 

Piston No-slip moving wall 

 

 Embedding parameters 

#  Embedding 3  
#-------------- ------------------------------- 

BOUND embedded_type 

12 boundary_id 

2 embed_scale 

3 num_embed 

SEQUENTIAL  
-364 start_time 

-134 end_time 

#-------------- ------------------------------- 

#  Embedding 4  
#-------------- ------------------------------- 

REGION embedded_type 

0 region_id 

2 embed_scale 

SEQUENTIAL  
-360 start_time 

-69 end_time 

#-------------- ------------------------------- 

#  Embedding 

4@  
#-------------- ------------------------------- 

REGION embedded_type 

0 region_id 
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3 embed_scale 

SEQUENTIAL  
-70 start_time 

10 end_time 

#-------------- ------------------------------- 

#  Embedding 5  
#-------------- ------------------------------- 

REGION embedded_type 

0 region_id 

2 embed_scale 

SEQUENTIAL  
11 start_time 

200 end_time 

 

 Valve lifts (measured) 

 

  
 Input parameters 

 

surface.dat surface_filename 

1 crank_flag 

-360 start_time 

180 end_time 

1 rstrtflg 
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2 rstrtnum 

0 mapflag 

0 nohydro 

-1 parallel_scale 

100 load_cyc 

1 reread_input 

0 random_seed 

  
# grid  
0.004 dx_base 

0.004 dy_base 

0.004 dz_base 

0 grid_scale 

0 amr_flag 

1 embedded_flag 

1 events_flag 

0.0005 seal_tol 

  
# output control 

2 screen_print_level 

twrite.in twrite_post 

5 twrite_transfer 

1 twrite_files 

60 twrite_restart 

3 num_restart_files 

0 write_map_flag 

0 wall_output_flag 

0 transfer_flag 

0 mixing_output_flag 

0 species_output_flag 

1 inter_regions_flow_flag 

1 dynamic_flag 

0 mpi_write_flag 

  
# timestep control 

1 timeflag 

1.00E-07 dtstart 

1.00E-08 dt 

0.0001 dt_max 

1.00E-08 dt_min 

1.5 mult_dt_spray 

9999 mult_dt_evap 

0.5 mult_dt_chem 
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0.5 mult_dt_coll_mesh 

1 max_cfl_u 

2 max_cfl_nu 

50 max_cfl_mach 

  
# solver flags 

1 momentum_solver 

1 energy_solver 

1 species_solver 

1 turbulence_solver 

0 steady_solver 

100 min_cycles_steady 

0 monitor_steady_state_flag 

  
# properties 

1 gas_compressible_flag 

0 liquid_compressible_flag 

1 eos_flag 

0 real_gas_prop_flag 

6 max_reduced_pres 

133 crit_temp 

3770000 crit_pres 

0.035 acentric_factor 

0 species_diffusion_model 

0.71 prandtl 

0.78 schmidt 

10 min_temp 

60000 max_temp 

10 max_visc 

0 gravity_x 

0 gravity_y 

0 gravity_z 
 

 Solver parameters 

20 tol_scale 

2 piso_itmin 

9 piso_itmax 

0.001 piso_tol 

0 flux_scheme_mom 

0.5 fv_upwind_factor_mom 

1 muscl_blend_factor_mom 
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step flux_limiter_mom 

0 flux_scheme_global 

0.5 fv_upwind_factor_global 

1 muscl_blend_factor_global 

step flux_limiter_global 

0 flux_scheme_turb 

1 fv_upwind_factor_turb 

1 muscl_blend_factor_turb 

step flux_limiter_turb 

1.00E-05 monotone_tolerance 

0 upwind_all_dir_flag 

1 impl 

1 conserve 

1 strict_conserve_flag 

1 rc_flag 

0.7 omega_presrat 

0.2 omega_p_steady 

0 mom_solver_type 

1.00E-05 mom_tol 

0 mom_itmin 

30 mom_itmax 

1 mom_omega 

0 mom_preconditioner 

0 pres_solver_type 

1.00E-08 pres_tol 

2 pres_itmin 

500 pres_itmax 

1.3 pres_omega 

0 pres_preconditioner 

0 density_solver_type 

0.0001 density_tol 

0 density_itmin 

2 density_itmax 

1 density_omega 

0 density_preconditioner 

0 energy_solver_type 

0.0001 energy_tol 

0 energy_itmin 

2 energy_itmax 

1 energy_omega 

0 energy_preconditioner 

0 species_solver_type 

0.0001 species_tol 
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0 species_itmin 

2 species_itmax 

1 species_omega 

0 species_preconditioner 

0 passive_solver_type 

1.00E-05 passive_tol 

0 passive_itmin 

30 passive_itmax 

1 passive_omega 

0 passive_preconditioner 

0 tke_solver_type 

0.001 tke_tol 

2 tke_itmin 

30 tke_itmax 

0.7 tke_omega 

0 tke_preconditioner 

0 eps_solver_type 

0.001 eps_tol 

2 eps_itmin 

30 eps_itmax 

0.7 eps_omega 

0 eps_preconditioner 

0 omega_solver_type 

0.001 omega_tol 

2 omega_itmin 

30 omega_itmax 

0.7 omega_omega 

0 omega_preconditioner 

0 rad_solver_type 

1.00E-08 rad_tol 

0 rad_itmin 

2500 rad_itmax 

1 rad_omega 

0 rad_preconditioner 

  

 Turbulence parameters 

2 turbulence_model 

# 1 = k-eps, 2 = rng k-eps, 3 = rapid distortion rng 

# 6 = standa rd k-omega 1998, 7 = standard k-omega 200 

# 0 = upwind LES, 12 = Smagorinsky model, 21 = dynami 

# 11 = 1-equ ation eddy viscosity LES, 22 = dynamic st 
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# k-eps RANS model constants 

0.0845 keps_cmu 

1.39 keps_rpr_tke 

1.42 keps_ceps1 

1.68 keps_ceps2 

-1 keps_ceps3 

1.39 keps_rpr_eps 

0.012 keps_rng_beta 

4.38 keps_rng_eta0 

# k-omega RANS model constants 

0.09 komega_cmu 

0.85 komega_rpr_tke 

0.5 komega_rpr_omega 

0.556 komega_alpha 

0.075 komega_beta 

0.875 komega_clim 

0.31 komega_sst_a1 

1 komega_rpr_tke_outer 

0.856 komega_rpr_omega_outer 

0.44 komega_alpha_outer 

0.0828 komega_beta_outer 

0 komega_near_wall_treatment 

# Wall modeling  
11 heat_model 

0.42 law_kappa 

5.5 law_b 

# Other physics effects 

0 discrete_c_s 

0.03 discrete_c_ps 

0 buoyancy_flag 

# Turbulence Statistics 

0 turb_stat_flag 

-999999 turb_stat_start_time 

-999999 turb_stat_end_time 

0.0001 turb_stat_tol 
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 Converge motoring simulation 

The gas exchange process is validated by comparison of simulation results with 

experimental pressure measurements 

 

Figure E-1. Converge motoring – Experiment vs. Simulation  
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