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ABSTRACT 

Orthogonal cutting of Ti-6Al-4V alloy was studied. Surface roughness, chip 

thickness and shear band frequency increased with the feed rate and cutting speed. 

Serrated chips were formed due to shear band. Strain and flow stress distributions in the 

material ahead of the tool tip were estimated from shear angle measurements and 

microhardness measurements respectively. The stress-strain data obtained in this way 

was used in numerical models. Two numerical models were developed by using two-

dimensional Lagrangian element formulation and Smoothed-particle hydrodynamics 

formulations employing the Johnson-Cook constitutive relationship that utilised the 

experimental data generated from the machined material with the damage criteria. The 

Lagrangian element formulation predicted the strain and temperature generated in the 

material ahead of the tool tip as 1.65 and 1222 K respectively, which were in agreement 

with the experimental strain (1.65) and temperature (1217 K). The predicted results using 

Lagrangian element formulation correlated well with the experimental findings. 
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CHAPTER 1: INTRODUCTION 

1.1. Background of this Research 

Metal cutting methods are manufacturing processes in which metal parts are 

shaped to the required dimensions and finish by removal of unwanted metal. It is 

important to understand the machining process to have better control over the product 

dimensions and surface finish, power consumption, and tool life. 

During orthogonal cutting of metals and alloys, large strains and strain gradients 

are generated in the workpiece material ahead of the tool tip, and the deformation 

microstructures of the workpiece material need to be studied carefully in order to obtain a 

thorough understanding of the chip formation mechanisms. Previous researchers have 

adopted various means to investigate energy expenditure processes in the workpiece 

ahead of the tool tip. Merchant [1] proposed a model to predict the orientation of the 

primary shear plane with respect to the cutting direction using the principle of 

minimization of plastic deformation work. Lee and Shaffer [2] applied the slip line field 

analysis to the material ahead of the tool tip to predict shear angles and shear strain 

distributions. Stevenson and Oxley [3] used aluminum sample on which a fine scale grid 

was imprinted and estimated the distribution of shear strains and strain rate fields in the 

material ahead of the tool tip. Ramalingam and Black [4], using scanning and 

transmission electron microscopy of the plastically deformed zone at the root of the 

chips, shed light on the role of microstructure of the work material on the machinability.  
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Ti-6Al-4V is an  -  titanium alloy which is known as a difficult to machine 

material. This alloy is chemically reactive and therefore has a tendency to weld to the 

cutting tool during machining, thus leading to tool failure [5]. Its low thermal 

conductivity increases the temperature at the tool-workpiece interface, which affects the 

tool life adversely [6]. Serrated chip formation is obtained during orthogonal cutting of 

Ti–6Al–4V alloy under conventional cutting conditions and even at low cutting speeds 

due to the thermoplastic instability, which results in shear localization or adiabatic shear 

band formation [7]. This adiabatic shear band is formed as the combined effects of strain 

and strain rate hardening are outweighed by the thermal softening caused by adiabatic 

deformation in the primary shear zone [8].  

The modeling of machining processes using the finite-element method (FEM) 

provides an effective alternative to reduce the machining costs and analysis time. The 

FEA method can account for the large deformation, strain rate effect, tool-chip contacts 

and friction, local heating and temperature effect, the different boundary and loading 

conditions, and other phenomena associated with the metal cutting operation. Numerical 

modeling for high strain (and strain rate) typical of metal cutting processes consists of 

three major element formulation implementations, namely,  Lagrangian, Eulerian, and 

Arbitrary Lagrangian-Eulerian (ALE) [9]. Recently, researchers have implemented 

smooth particle hydrodynamic (SPH) particle formulations [10] to investigate workpiece 

deformation during cutting. Most studies dealing with FE modeling of orthogonal cutting 

has implemented a Lagrangian FE formulation, in which the finite-element mesh of the 

workpiece that consists of material elements are attached to the material and allowed to 

deform together. Commonly two groups of methods were used to simulate serrated chip 
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formation: either damage or material failure model [11] or material model for 

temperature-dependent flow softening based adiabatic shearing [12]. Smoothed-particle 

hydrodynamics (SPH) formulation was also used to model the serrated chip formation 

during machining of AISI 4340 steel [13]. Benson and Okazawa [14] studied application 

of the Eulerian finite-element formulation in machining and simulated serrated chip 

formation during high-speed machining.  

1.2. Thesis Objective 

The objective of this research was to perform dry orthogonal cutting experiments 

on Ti-6Al-4V alloy at different cutting conditions to observe their effects on the 

deformation behaviour of Ti-6Al-4V alloy as well as to understand the mechanism of 

chip formation or shear band formation using metallographic methods and numerical 

analysis. The effective plastic strains were calculated on the basis of shear angle 

measurements. Local flow stress values were determined from the microhardness 

measurements. The shear band properties in terms of hardness and shear strain were also 

determined. Another challenge of this research was to develop a numerical model that 

formed serrated chips during cutting. Numerical simulations were performed using the 

explicit nonlinear FE code, LS-DYNA with Lagrangian element formulation and 

smoothed-particle hydrodynamics formulations. The boundary conditions and geometry 

of the workpiece and tool were defined from the experimental observation. These models 

integrated the material models based on the microstructural data with the dynamics of 

strain localization. The capabilities of different FEA formulations were evaluated to 

include complexities of strain localization exhibited during machining. Another aim of 
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this research was to conduct the comparison between the numerical results and the 

experimental findings with respect to strain, stress and temperature distributions and 

cutting force, in order to validate the models and find the most suitable model that could 

represent the machining operation more accurately including phase transformation.  
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CHAPTER 2: LITERATURE REVIEW 

 The metal cutting process is an industrial process in which a metal part is shaped 

by removal of unwanted material. The machining process is one of the most important 

manufacturing processes due to the value added to the finished product. Most titanium 

parts used in aerospace industries are still manufactured by conventional machining 

methods such as turning, milling, drilling, reaming, grinding, and tapping. In this chapter 

the previous research work on the machining of Ti-6Al-4V alloy is introduced to better 

understand the mechanism of serrated chip formation. A summary of previous attempts 

made on the finite-element modeling of metal cutting is also included in this chapter.  

2.1. Basics of Machining Process  

2.1.1. Principle of Cutting Operations 

 The three most widely used cutting operations are: 1. Turning, 2. Milling, and 3. 

Drilling [15]. Turning is a process using a single point tool that removes unwanted 

material to produce a desired product. In turning a cutting tool is fed into a rotating 

workpiece to generate an external or internal surface concentric with the axis of rotation. 

Turning is carried out using a lathe, one of the oldest and most versatile conventional 

machine tools [16]. 

2.1.1.1. Orthogonal Cutting: A Type of Turning Operation 

 Depending on the way the cutting tool makes contact with the workpiece material, 

the turning processes are normally identified as (1) orthogonal cutting and (2) oblique 
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cutting [15]. The term orthogonal cutting has been pointed to cover the case where the 

cutting tool generates a plane surface parallel to an original plane surface of the material 

being cut and is set with its cutting edge perpendicular to the direction of relative motion 

of tool and work piece [15,16] (Fig. 2.1). If the cutting direction and tool edges are not 

perpendicular to each other or the contacting edge of the cutting tool with the workpiece 

is not a straight line, the oblique cutting results [16,17]. The orthogonal cutting process 

and oblique cutting process are considered as two-dimensional and three-dimensional 

problems, respectively.  

2.1.2. Deformation Zones in the Workpiece 

 Three deformation zones are present during metal cutting and chip formation, 

namely, primary deformation zone (PDZ), secondary deformation zone (SDZ), and 

tertiary deformation zone (or machined surface) shown in Fig. 2.2. The primary 

deformation zone is formed as the tool advances and penetrates through the workpiece, 

and the material directly in front of the tool tip undergoes shearing and heavy plastic 

deformation. According to early assumptions [1,18,19], the workpiece shearing takes 

place along a fixed plane, called the primary shear plane, which passes through the 

primary deformation zone. The angle between the cutting direction and the primary shear 

plane is called the shear angle, φ shown in Fig. 2.2. The secondary deformation zone is 

formed as the chip produced at the tool tip undergoes further sliding against the rake face 

of the tool, thus undergoing further deformation due to friction between the two surfaces. 

Finally, the tertiary deformation zone is formed due to the friction between the newly 

machined surface and the flank of the tool.  
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2.1.3. Chips Formation and Classification  

 The unwanted material removed during orthogonal cutting is in the form of chips 

that can be classified into the following four main classes [16]: 

2.1.3.1. Continuous Chip 

 The continuous chip is an ideal type of chip for analysis because it is relatively 

stable and simple to analyze. Continuous chips are long, ribbon-like chips (Fig. 2.3a) 

formed during machining of soft, ductile material such as aluminum [20], or copper [21]. 

The favourable conditions for the generation of continuous chips are: high speeds, small 

feeds and small depths of cut [15,16,22]. However, the continuous chip often interferes 

with the machining process, wraps around the workpiece and machine spindle and may 

cause some unpredictable flaws and damage on the machined surface, cutting tool or 

machine tool; it may even cause injuries to the operator.  

2.1.3.2. Discontinuous Chip 

 Discontinuous chips or fragmented chips are generally formed during machining 

of brittle materials such as cast iron due to cyclic fracturing (Fig. 2.3b). Fracture occurs 

as the material is unable to undergo a large amount of plastic deformation. Factors such 

as low cutting speed or high tool-chip friction and large feed and depth of cut favour the 

formation of discontinuous chips [15,16].  
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2.1.3.3. Continuous Chip with Built-up Edge 

 During machining, when the temperature at the chip-tool interface is relatively 

low, fracture may happen within the chip along a plane approximately at right angle to 

the shear plane, leaving behind a portion of the chip attached to the tool face, which acts 

as the cutting edge and is called a built-up edge (BUE) (Fig. 2.3c). BUE formation leads 

to modification of effective tool geometry, thus leading to irregularities in the machined 

surface. BUE formation is undesirable in a machining operation and can be avoided by 

increasing the cutting speed, using positive rake tools, or by application of a coolant 

[15,22]. 

2.1.3.4. Serrated Chip 

 Serrated chips (or saw-tooth chips), are formed due to thermoplastic instability 

which results in shear localization or adiabatic shear band formation [7]. This 

catastrophic shear or adiabatic shear band is formed as the combined effects of strain and 

strain rate hardening are outweighed by the thermal softening caused by effectively 

adiabatic plastic deformation in the primary shear zone [7,23]. This type of chip (Fig. 

2.3d) is likely to form during machining of titanium alloys or hardened and stainless 

steels at high cutting speed [24-26].  

2.1.4. Forces and Stresses during Orthogonal Cutting 

Merchant assumed that the force between the tool face and the chip, and the force 

between the work piece and the chip along the shear plane are equal in equilibrium 
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condition, and the relationships between the various forces on the basis of the force 

diagram (Fig. 2.4) are as follows [15,18]: 

                                  (2.1) 

                                  (2.2) 

                                 (2.3) 

                                (2.4) 

where,    is cutting force,    is thrust force,    is the shear force on the shear plane,     is 

the normal force on the shear plane,     is shear force on rake face and    is the normal 

force on the rake face. 

 The components of the forces on the rake face can be used to find the coefficient 

of friction on the tool face ( ): 

                                                                   

                                             (2.5) 

The shear model or card model is a simplified and useful method to predict the 

stresses on the shear plane and rake face of an orthogonally cut sample. It is assumed that 

the distribution of shear and normal forces on the shear plane and on the shear rake face 

is uniform. From this assumption, the shear stress on the shear plane    can be calculated 

as follows [18,22]: 
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[
   

    
]

           (2.6) 

 

where, f is the uncut chip thickness which is equal to the feed rate and w is the depth of 

cut during orthogonal cutting. 

The normal stress on the shear plane    can similarly be computed as: 

   
                           

                   
 

 

   
                

[
   

    
]

           (2.7) 

 

Similarly, the shear stress    on the chip contact with the rake face is equal to: 

   
               

[   ]
           (2.8) 

And the normal stress on the rake face    can be written as: 

   
               

[   ]
           (2.9) 

where, l is the length of sliding contact.  

2.1.5. Deformation Microstructures of the Workpiece Subjected to Orthogonal 

Cutting 

Machining operations generate large strains and strain gradients in the work 

material. It is important to understand the development of the deformation 

microstructures in the workpiece material in order to rationalize the energy expenditure 
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process during machining operations, and thus to have better control of the machining 

parameters. Ramalingam and Black [4,27] used SEM (Scanning electron microscopy) 

and TEM (Transmission electron microscopy) to analyze the plastic deformation zone at 

the root of the chip in steel and concluded that the dynamic equilibrium is established 

between strain hardening and recovery during the chip formation, and that plastic flow in 

machining is a microscopically heterogeneous deformation process dependent upon the 

prior deformation history of the workpiece, both before and during machining. Zhang and 

Alpas [20] observed the deformation microstructure of aluminum alloy (Fig. 2.5) 

subjected to orthogonal cutting to quantify the plastic strain gradients. Ni et al. used TEM 

to investigate the deformation microstructure generated in copper [21] and aluminum 

[28] ahead of the tool tip during machining. It was observed that the microstructure of the 

primary deformation zone (PDZ) was characterized by the formation of elongated 

dislocation cell structures composed of heavily tangled dislocation walls, and that 

dynamic recrystallization occurred in the microstructure of the machined chips of copper. 

2.1.5.1. Shear Angle Estimation 

To measure the shear angle, Zhang and Alpas [20] considered the orientation 

change of the deformed grains, which behave like flow lines, on the cross-sectional plane 

(Fig 2.5) and generated a schematic diagram (Fig. 2.6a). The values of shear angle,  , 

were computed from the slopes of the flow lines (Fig. 2.6b) bending in the direction of 

plastic deformation as follows: 

       (
  

  
)           (2.10) 
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2.1.5.2. Strain Estimation 

Plastic deformation occurs in the workpiece material during metal cutting, and it 

is important to measure the amount of plastic deformation. Dautzenberg and Zaat [29] 

explained the method of measuring the equivalent or effective plastic strain more clearly. 

They considered an ideal spherical crystal (ABC in Fig. 2.7) deforming under the 

influence of true shearing, where the shear strain component was       . It was 

assumed that the normal strain components and the rest shear components were zero, that 

is: 

                               (2.11) 

 where,         is the normal incremental normal strain components and      is the shear 

strain components.  

The incremental effective plastic strain   ̅ is defined as [30]: 

 

 
   ̅   

 

 
[         

           
           

 ]  
 

 
[    

      
      

 ]                  

             (2.12) 

From Eq. 2.11 and Eq. 2.12, it follows that: 

  ̅  
    

    
 

    

 
 
   

  
          (2.13) 

Integration of Eq. 2.13 leads to: 

 ̅  
    

 
 
 

  
 ∫    

  
 

 
    

 
 
  

  
          (2.14) 
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 ̅  
    

 
               (2.15) 

where   is the deformation angle which can be written as:        . Here,   is the 

shear angle. 

 This method of equivalent strain estimation has been found to be applicable and 

has been used for investigating the plastic strain generated due to high deformation which 

occurred during machining. Zhang and Alpas [20] have used Eq. 2.15 to estimate the 

equivalent strains from the orientation change of the extrusion lines or flow lines 

(Fig.2.6a) during orthogonal cutting of 6061 Al. The same method has been used 

successfully by Elmadagli et al. to estimate the strains during dry machining of 

commercial purity copper [31] and Al 1100 [28]. Fig. 2.8 depicts the strain distribution 

diagram in Al 1100 ahead of the tool tip. The maximum strain value was 2.52 generated 

in the material ahead of the tool tip and the depth of deformed zone 1300 µm.  

2.1.5.3. Flow Stress Estimation 

 The microhardness of the material ahead of the tool tip and below the machined 

surface varies from one location to another. Flow stress value can be estimated from the 

measured microhardness value, which was explained clearly by Tabor [32].  

In  [32], Tabor attempted to correlate the hardness of a metal with its elastic limit 

and with the way in which the elastic limit varies with the amount of deformation to 

which the metal has been subjected. If   ,   ,    are the principal stresses in a solid body 

(Fig.2.9), the criterion for plastic flow or effective stress is [33]:  
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[       

         
         

 ]
 

 ⁄  

Or,    
         

         
         

        (2.16) 

where    is the effective stress of the material as found by pure tension (of frictionless 

compression) experiments. The Eq. 2.16 has been solved by Hill et al. [34], and they 

suggested that the plastic yielding would occur when the mean pressure, was: 

                  (2.17) 

For Eq. 2.17, the assumptions are: 

 The deformed area is not too large compared with the size of the specimen  

    is independent of the applied load and size of the indentation.  

 Frictionless compression is performed. 

It was proposed by Marsh [35] that the Vickers hardness number, H, of the fully 

work-hardened material could be related to the corresponding flow stress  , as:  

  
 

 
             (2.18) 

This approximate equation is commonly used to estimate the flow stress of the 

materials ahead of the tool tip after performing cutting operation [21,28].  

2.1.5.4. Energy Expended and Temperature Rise during Plastic Deformation 

To measure the energy expended during the deformation of the material ahead of 

the tool tip, a relationship between the equivalent stresses and strains was developed by 



 

15 

 

plotting the corresponding stress and strain values determined at each point in the 

material ahead of the tool tip [31]. From the regression analysis, the relationship between 

the flow stress and the equivalent strain (Fig. 2.10) in the case of copper was described in 

the formalism of the Voce equation [36]. 

 ̅    ̅̅ ̅     ̅̅ ̅   ̅        
 ̅

 ̅ 
          (2.19) 

 In this equation σ is the value of the equivalent flow stress,  ̅ is the corresponding 

equivalent strain,  ̅  is the saturation stress or the stress at which the work hardening rate 

becomes zero,  ̅  is the value of the yield flow strength of the material, and  ̅  is a 

constant. Fig 2.10 depicts the saturation stress and flow strength of copper as 422.2 MPa 

and 199.3 MPa respectively. However, in the case of 1100 Aluminum, the saturation 

stress and flow strength are 299.0 MPa and 138.8 MPa respectively, which are lower in 

value compared to copper. Because, copper is a low stacking fault energy material, work 

hardens at a faster rate during machining [28]. 

The energy expended during the deformation of the material ahead of the tool tip 

can be calculated from the area under the stress/strain curve in Fig. 2.10. For each 

increment of strain, the work of plastic deformation, W, (per unit volume) is given as 

[31]: 

  ∫    ̅̅ ̅     ̅̅ ̅   ̅        
 ̅

 ̅ 
 

 ̅   

 ̅ 
   ̅      (2.20) 
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A large portion of the work done during the plastic deformation of the workpiece 

is transformed into heat to produce a temperature increase (  ) in the work material 

which can be expressed (Fig. 2.11) as [28]: 

   
 

  
∫    ̅̅ ̅     ̅̅ ̅   ̅        

 ̅

 ̅ 
 

 ̅   

 ̅ 
   ̅              (2.21) 

where   is the fraction of plastic work converted into heat. It is generally assumed that 

   0.95 [18],   is the density, and C is the specific heat capacity of the workpiece.  

 For 1100 Aluminum the local temperature increments calculated according to Eq. 

2.21 are presented in the form of a temperature distribution diagram in Fig. 2.11. The 

maximum temperature is 244 ˚C generated in the material ahead of the tool tip [28]. 

2.2. Machining of Titanium Alloy 

Titanium and its alloys are used extensively in the aerospace industry because of 

their excellent combination of high specific strength (strength-to-weight ratio) which is 

maintained at elevated temperature, fracture resistant, and corrosion resistant 

characteristics. They are also being used in other industrial and commercial applications 

such as petroleum refining, chemical processing, surgical implantation, pulp and paper, 

pollution control, nuclear waste storage, food processing, electrochemical (including 

cathodic protection and extractive metallurgy), and marine applications [37,38].  

Most titanium parts are still manufactured by conventional machining methods. 

Virtually all types of machining operations such as turning, milling, drilling, reaming, 

tapping, sawing, and grinding, are employed in producing aerospace components [5]. For 
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the manufacture of gas turbine engines, turning and drilling are the major machining 

operations, whereas in airframe production, end milling and drilling are among the most 

important machining operations. 

2.2.1. Ti-6Al-4V Alloy 

 Titanium alloys may be divided into four main groups according to their basic 

metallurgical characteristics:   alloys, near   alloys,     alloys, and   alloys [39,40]. 

Among these four types of alloy, the Ti-6AI-4V (     alloy is known as the workhorse 

of the titanium industry because it is by far the most common titanium alloy, accounting 

for more than 50% of the total titanium production. Table 2.1 gives the comparisons 

among the important properties of Ti-6AI-4V alloy, AISI 1045 steel, Aluminum 1100, 

and ETP copper. 

Table 2.1. Important properties of different metals [40-45].  

Properties Ti-6Al-4V AISI-1045 

Steel 

Aluminum 

1100 

ETP 

Copper 

Yield Strength, MPa 880 505 103 76 

Modulus of Elasticity, GPa 110 205 68.9 125 

Density, g/cc 4.43 7.84 2.71 8.89 

Thermal conductivity,    W/m k 7.3 49.8 220 388 
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It is interesting to note the Ti-6Al-4V alloy has lower density and higher yield 

strength compared to AISI-1045 steel and lower thermal conductivity compared to all 

other metals such as AISI-1045, Aluminum 1100, and ETP copper.   

2.2.1.1. Microstructure of Ti-6Al-4V Alloy 

At room temperature, the microstructure of Ti-6Al-4V alloy is composed of 

equiaxed   grains, along with a lamellar,     bimodal microstructure as shown in Fig. 

2.12. The   phase (hexagonal close-packed structure) is the stable phase and the   phase 

(body centred cubic structure) is the metastable phase at room temperature. For this alloy, 

allotropic phase transformation from  -phase to  -phase occurs at 995 15 ˚C [46].  

2.2.2. Research into Machining of Ti-6Al-4V Alloy 

 Pioneering studies on the mechanics of chip during machining of titanium alloy or 

Ti-6Al-4V alloy have been conducted since the early 1950s by Shaw and his coworkers 

[47,48] and Boston et al. [49]. Komanduri et al. [6,50] explained the mechanism of chip 

formation during the machining of titanium alloy more clearly. Previous studies on the 

machinability of Ti-6Al-4V alloy, microstructural changes, and mechanism of chip 

formation are explained below. 

2.2.2.1. Machinability of Ti-6Al-4V Alloy 

 Machinability is the characteristic of a material that make it easier to cut, drill, 

grind, shape, and so on. In general, there are three main aspects of machinability [15]: 

product surface finish, tool life, and power required to cut. Materials with good 

machinability can be cut quickly, easily obtain a good finish, require little power to cut, 

http://www.businessdictionary.com/definition/characteristic.html
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and do not wear the tool significantly. The factors that typically improve the performance 

or mechanical properties of a material often degrade its machinability. Therefore, to 

manufacture components economically, engineers are challenged to find ways to improve 

machinability without harming performance.  

Ti-6Al-4V alloy is a very interesting material for industrial applications because 

of their high strength-to-weight ratio, combined with ductility and fracture resistance 

properties. Despite these features, the utilization of titanium alloys is still limited due to 

their poor machinability or high machining cost. Many researchers [5,6,49,51-55] claim 

individually some of the following points as the reasons for the poor machinability of 

titanium.  

1. Due to the poor thermal conductivity of Ti-6Al-4V alloy (Table 2.1), high cutting 

temperatures are generated during machining of this alloy and a large proportion 

of the generated heat is conducted into the tool as it cannot be removed with the 

fast flowing chip. Investigation of the distribution of the cutting temperature has 

shown that the temperature gradients are much steeper and the heat-affected zone 

much smaller and much closer to the cutting edge when machining titanium alloy 

compared to steel, which causes high tool-tip temperatures of up to about 1100 

˚C. As illustrated in Fig. 2.13, a large proportion (about 80%) of the heat 

generated when machining titanium alloy Ti-6AI-4V is conducted into the tool 

because it cannot be removed with the fast flowing chip due to the low thermal 

conductivity of titanium alloys, which is about 1/6 that of steels [56]. About 50% 

of the heat generated is absorbed into the tool when machining steel. As a result, 

tool failure occurs due to the thermal fatigue.  
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2. The chip of titanium is very thin with an unusually small contact area with the 

tool (  ⁄  to   ⁄  of that for turning steel) which causes high stresses on the tip of the 

tool. The combination of high stress and high temperature at the tool tip promote 

tool wear and increase production cost.  

3. The high strength of Ti-6Al-4V alloy is maintained to elevate temperatures (Fig. 

2.14) that are generated during machining and this opposes the plastic 

deformation needed to form a chip and causes high cutting force to cut. 

4. There is strong chemical reactivity of titanium at the cutting temperature (which is 

greater than 500 ˚C) with almost all tool materials available. The freshly 

generated hot shear-failed surface in contact with the tool face can cause rapid 

chemical reaction and tool wear. 

5. Chatter is another main problem to be overcome when machining titanium alloys, 

especially for finish machining, the low modulus of elasticity of titanium alloys 

(Table 2.1) being a principle cause of the chatter during machining. When 

subjected to cutting pressure, titanium deflects nearly twice as much as carbon 

steel, and the greater spring-back behind the cutting edge results in premature 

flank wear, vibration and higher cutting temperature. In effect, there is a bouncing 

action as the cutting edge enters the cut. The appearance of chatter may also be 

partly associated with the high dynamic cutting forces in the machining of 

titanium. This force can be up to 30% of the static force due to the adiabatic or 

catastrophic thermoplastic shear process by which titanium chips are formed. 
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These problems may be minimized by employing very rigid machines, using 

proper cutting tools and set-ups, minimizing cutting pressures, providing copious coolant 

flow and designing special tools or non-conventional cutting methods. 

2.2.2.2. Machined Surface and Subsurface 

During machining of titanium alloys, many forms of surface defects on the 

machined surface are reported in the literature. Main surface defects observed during 

machining are surface drag, material pull-out/cracking, feed marks, adhered material 

particles, tearing surface, chip layer formation, debris of microchips, surface plucking, 

deformed grains, surface cavities, slip zones, laps (material folded onto the surface), and 

lay patterns [57-59]. Surface defects mainly depend on the cutting conditions and the tool 

materials. Surface roughness increases with the cutting speed (Fig. 2.15a) and cutting 

time (Fig. 2.15b) [60,61]. However, the presence of lubricant reduces the amount of 

surface damage in the workpiece during machining [58]. 

During machining operations, the thermal, mechanical, and chemical effects on 

the workpiece material can lead to strain aging or recrystallization of the material. Due to 

the strain aging process, the material might become harder but less ductile, and 

recrystallization might cause the material to become less hard but more ductile. These 

thermal (high temperature and rapid quenching) and mechanical (high stress and strain) 

effects are the main reasons for the microstructural alterations in the material, as well as 

for phase transformations and plastic deformations [62].  

During machining of Ti-6Al-4V alloy, grains below the machined surface were 

observed to deform along the machined direction due to the thermal and mechanical 
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effects [59,63]. The depth of the deformed zone mainly depends on the cutting 

conditions. Velasquez et al. [63] observed that the deformed zone increased with the 

cutting speed. It is reported that an overheated white layer can be formed when titanium 

alloy is machined in an abusive manner (such as using a dull tool). This white layer may 

be harder or softer than the base metal depending on the cutting conditions [64,65]. The 

white layer is also formed during machining of hardened steel and this white layer is 

harder compared to the bulk metal [66]. 

2.2.2.3. Mechanism of Chip Formation in Ti6Al-4V Alloy 

 Under conventional cutting conditions and even at low cutting speeds, formation 

of saw-tooth (or serrated) chips (Fig. 2.16) is a fundamental characteristic of the 

machined Ti–6Al– 4V alloy [67]. Two different mechanisms have been adopted to 

describe saw-tooth chip formation during machining under different machining 

conditions, namely (i) the initiation and propagation of cracks inside the primary shear 

zone of the workpiece material and (ii) the thermoplastic instability. 

 Cook et al. [68], Nakayama et al. [69], Elbestawi et al. [70], Vyas and Shaw [71] 

and Poulachonand Moisan [72] have suggested that a crack initiates periodically at the 

free surface of the workpiece ahead of the tool and propagates towards the tool tip. Thus 

the periodic cracks originated at the free surface are the root of saw-tooth chip formation. 

Discontinuous chips are formed during orthogonal cutting of aluminum 6% silicon alloy 

(319 Al) due to the crack formation [73]. According to Hua and Shivpuri [74], serrated or 

saw-tooth chips are formed during machining of Ti-6Al-4V alloy due to crack initiation 

and propagation. 
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R. F. Recht [7], Komanduri et al. [24], Semiatin and Rao [75], Xia et al. [76-78] 

and Hou and Komanduri [79] have proposed thermoplastic instability as the root cause of 

saw-tooth chip formation during machining of titanium alloy. This mechanism is often 

referred to as the formation of adiabatic shear band.  

 Recent publications tend to support the thermoplastic shear instability theory 

rather than the periodic theory. Gente and Hoffmeister [80] introduced a new quick stop 

method to obtain partially formed chip during machining of Ti-6Al-4V alloy at extremely 

high cutting speed and found that the serrated chips are formed due to the localized shear. 

Puerta Velásquez et al. [81] performed metallurgical analyses on chips obtained from 

high speed machining of Ti6Al4V alloy and found that the saw-tooth chips were formed 

due to the catastrophic thermoplastic shear, instead of the periodic crack initiation. 

Cotterell and Byrne [82] recorded the saw-tooth chip formation cycle of Ti6Al4V by 

high-speed imaging system and found that the thermoplastic shear instability or adiabatic 

shear band resulted in saw-tooth chip formation during machining of titanium alloy 

Ti6Al4V. Barry and Byrne [83] studied the mechanism of chip formation in machining 

hardened steels and concluded that the saw-tooth chip is formed due to the adiabatic 

shear. 

2.2.2.4. Adiabatic Shear Band 

Adiabatic shear band (ASB) was observed for the first time by Zener and 

Hollomon [84] in 1944. ASB is a region where plastic deformation in the material is 

highly concentrated. Adiabatic shear results from plastic instability arising when the 

combined effects of strain and strain rate hardening are outweighed by the thermal 
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softening caused by effectively adiabatic plastic deformation [8,23]. ASB usually 

manifests as zones of intense shear deformation and/or microstructural modification of 

the original material up to hundreds of micrometres wide, interspersed between regions 

of relatively homogeneous deformation. The maximum temperature attained within the 

developing shear bands may be up to several hundred degrees above that of the 

surrounding matrix [85]. 

Adiabatic shear deformation is a term used to describe the localization of plastic 

flow that occurs in many metals when they are deformed at high strain rates to large 

plastic strains [86]. The titanium alloy Ti-6Al-4V is very susceptible to adiabatic shear 

localization which dominates its deformation behaviour at large plastic strains under 

conditions of rapid deformation, for example in ballistic impact [8], machining [50], high 

strain rate compression [87], and dynamic torsion [88]. This is an important mode of 

deformation as the shear zones often become the sites later on for eventual failure of the 

material.  

2.2.2.4.1. Criteria of Forming Adiabatic Shear Band 

It has been reported that an adiabatic shear band is observed in discrete zones of 

intense shear deformation, and large shear strains are a prominent feature of the band. 

Depending on the alloy, various combinations of process variables such as tool and 

workpiece geometry, deformation rate, preheat temperature, die temperature and 

lubrication, as well as material parameters such as strain-rate sensitivity and temperature 

dependence of the flow stress, strain hardening rate, thermal conductivity, specific heat, 
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and the phase transformation kinetic have been observed to lead to the development of 

bands [89].  

 According to Recht [7], the criteria for catastrophic slip can be written as: 

0   
  

  

 
  

  
 
  

  

  1           (2.22) 

In Eq. 2.22, if the ratio between the strain hardening and thermal softening is 

between zero and 1, the material will shear catastrophically and shear band will be 

formed. Negative value of the ratio indicates that the material actually becomes stronger 

with an increase in temperature and that shear deformation will distribute. High positive 

values above the unity indicate that strain-hardening is predominant, and shear 

deformation will distribute throughout the material.   

According to Lemaire and Backofen [23], the criterion for instability can be 

expressed as: 

(
  

  
)  (

  

  
)   

        

 
          (2.23) 

Where     = machine stiffness in the direction of the resultant force, b = shear zone 

thickness, A = area of the sheared plane. 

 Culver [90] and Timothy and Hutchings [8] suggested that the shear localization 

is imminent once a critical shear strain has been exceeded and the critical instability 

strain,   , is given by: 
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            (2.24) 

where   is the density of the material, n is the strain hardening exponent, C is the specific 

heat capacity,   is the fraction of plastic work that appears as heat (generally 0.9     

1.0), and     ⁄ , is the slope slop of the temperature dependence of flow stress taken at 

constant strain and strain rate. 

Bayaumi and Xie [91] suggested that the shear band formation during machining 

depends on the chip load factor = Vf. Here, V is the cutting speed and f is the feed rate. In 

the case of Ti-6Al-4V alloy and AISI 4340 steel, the critical cutting load value is 0.004 

and 0.006 respectively. According to Komanduri and Hou [92], a critical cutting 

condition is necessary for the shear band formation (Fig. 2.17).  

2.2.2.4.2. Types of Adiabatic Shear Band 

Shear bands can be classified depending upon whether or not they are 

accompanied by a phase change in the material and also upon the extent of adiabatic 

strain localization [8]. Backman and Finnegan [93] originally proposed that shear bands 

in different metals could be broadly classified as either deformed or transformed 

depending on the temperature at the shear band. The temperature within the shear zone, 

     can be measured by [23]: 
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]                    (2.25) 
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where   is the density, C is the specific heat capacity,   is the shear stress, K is the 

thermal diffusivity of the alloy,      is the ambient temperature,    is the cutting speed, 

d is depth of cut which is equal to the feed rate,         is the shear strain within the 

shear band. According to [94], the shear strain,    , within the shear band can be 

estimated by the shear displacement within the shear band,   , divided by the thickness of 

the shear band,    (Fig. 2.16):  

    
  

  
            (2.26) 

A. Deformed Shear Bands: The deformed adiabatic shear zone is not accompanied 

by any phase change in the material, even though the grains present in the band show 

an extremely high amount of distortion. Fig. 2.18 depicts that the deformed shear 

band is formed in 7039 aluminum alloy during the ballistic impact test [95]. 

B. Transformed Shear Bands: The term transformed is associated primarily with a 

phase transformation in the shear band, hence restricting number of alloy systems in 

which it can form. A permanent change in structure is associated with the transformed 

shear band, and the relative larger temperature rise within developing transformed 

shear zones is therefore assumed by definition (Fig. 2.19). Metals of low thermal 

diffusivity and of low resistance to adiabatic shear localization were found to be more 

susceptible to the formation of transformed shear bands. In general, the formation of a 

transformed shear band appeared to correspond to an advanced stage of adiabatic 

strain localization in a given metal, with a deformed shear band representing an 

earlier stage in this process [85].  
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It is claimed that during orthogonal cutting of Ti–6Al–4V alloy, the temperature rises 

rapidly to above allotropic phase transformation temperature (995±15 ˚C), and the lattice 

structure of Ti–6Al–4V changes from hcp ( -phase) with fewer slip planes into bcc ( -

phase) with more slip planes [96,97]. New slip planes accelerate localized deformations, 

cause further instability and complexity in the plastic deformation process, and result in 

formation of serrated chips [6]. However, Velasquez et al. [81] used electron backscatter 

diffraction or EBSD measurements and claimed that deformed shear band was formed 

because no phase transformation occurred within the shear band during machining of Ti-

6Al-4V alloy. 

2.2.2.4.3. Hardness of the Shear Band 

Shahan and Taheri [98] report that the shear zone hardness depends on the alloy 

forming conditions and the widths of the adiabatic shear zone could be either harder or 

softer than the surrounding regions. The hardness may change by as much as 100 HV in 

the banded microstructure. For steels, transformed shear bands are usually much harder 

than the surrounding material [99]. Figure 2.20a shows the microhardness traverse for an 

AISI 4340 steel. The hardness inside a shear band in Ti-6AI-4V alloy was not 

substantially different from the surrounding region [25,100,101] (Fig. 2.20b). It was 

claimed that the  ' martensite formed in the transformed shear band was up to   10% 

softer than the adjacent deformed matrix [8]. 

2.2.2.4.4. Effect of Cutting Conditions on Adiabatic Shear Bands 

 The adiabatic shear banding phenomenon in the metal cutting process is mainly 

affected by cutting conditions and material properties. The effects of cutting conditions 
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on chip formation can be understood by the effect of those on the cutting temperature and 

hence the work hardening/softening rate. It was concluded by Bayoumi and Xie [91] that 

the cutting speed and feed rate are the dominant factors to influence the onset point at 

which the shear localized chips can be initiated. The shear banding frequency is defined 

as the average distance between the centre-line of two consecutive shear bands ( Lc value 

in Fig. 2.16), which can be used to depict how frequently the shear bands are generated 

during the chip formation process. This is a useful parameter for the purpose of chip 

control and/or disposal in automatic machining operations. 

Shear band frequency or the average distance between the centre-line of two 

consecutive shear bands increases with the cutting speed and the feed rate due to the 

increment of cutting temperature or thermal gradient [102]. However, Bayoumi and Xie 

[91] and Molinari et al. [97] claimed that the shear banding frequency increases with 

decrease of the cutting speed.  

Wright and Ockendon [103] and Molinari [97] have determined the characteristic 

distance, Lc, between adiabatic shear bands obtained in a shear test at high strain rates, 

and the Lc is given by: 

     (
            

 

(  
 

 
)    ̇   ̂  

 
)

 

 

          (2.27) 

where m is the strain rate sensitivity, k is the heat conductivity, c is the heat capacity per 

unit mass,   is the Taylor Quinney coefficient characterizing the part of plastic work 
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transformed into heat, a is the thermal softening parameter,    is the initial temperature,  

 ̂  is the stress which can be written as: 

 ̂         (
 ̇

 ̇ 
)
 

          (2.28) 

where   is the shear flow resistance,  ̇ is the shear strain rate and  ̇  is the reference 

strain rate. Eq. 2.27 shows that the distance between two shear bands, Lc, decreases with 

increase in the strain rate as well as the cutting speed. However, the recent publication 

[104] shows that the distance between the shear band or the value of Lc (Fig. 2.21) and 

the thickness of the shear band increases with the cutting speed and feed rate due to the 

increment of thermal gradient. 

2.2.2.5. Tool Materials for Machining of Ti-6Al-4V Alloy 

Major improvements in the rate at which workpieces are machined usually result 

from the development and application of new tool materials. However, none of these 

developments in cutting tool materials has had successful application in improving the 

machinability of titanium alloys. The requirements of the tool material for machining 

titanium alloy, are: (i) high hardness to resist the high stresses involved; (ii) good thermal 

conductivity to minimize thermal gradients and thermal shock; (iii) good chemical 

inertness to depress the tendency to react with titanium; (iv) toughness and fatigue 

resistance to withstand the chip segmentation process; and (v) high compressive, tensile, 

and shear strength.  

Dearnley and Grearson [105] carried out many trials involving various tool 

materials in the continuous turning of Ti-6AI-4V and confirmed that the K grade carbides 
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were the best choice. They suggested that those WC/Co alloys with Co content of 6 wt% 

and a medium WC grain size (about 0.8 and 1.4 µm) provided the optimum performance.  

It has been proven that steel cutting grades (P grades of ISO codes) of cemented carbides 

are not suitable for machining titanium alloys because of the greater wear rate of the 

mixed carbide grains compared that of the WC grains [54,56,105,106].  

All coated carbide tools tested (cemented carbides coated with TiC, TiCN, TiN-

TiC, Al2O3-TiC, TiN-Ti(C,N)-TiC, Al2O3, HfN, and TiB2) also show greater wear rates 

than those of straight grade cemented carbides [105,106]. Bhattacharyya et al. [107] 

observed the performance of triple coated cemented carbide tools when machining Ti-

6Al-4V alloy and showed that chemical interactions between coating materials and 

workpiece occurred, and the coating thus was rapidly removed, resulting in the substrate 

acting as the cutting edge over most of the tool life. 

The super-hard cutting tool materials (cubic boron nitride and polycrystalline 

diamond) have also shown good performance in terms of wear rate in the machining of 

titanium [105,108]. However, their applications are limited due to their high price. 

2.2.2.6. Tool Wear during Machining of Ti-6Al-4V Alloy 

Some specific studies on tool failure modes and wear mechanisms when 

machining titanium alloys have been conducted [56,60,105,106]. Notching, flank wear, 

crater wear, chipping, and catastrophic failure are the prominent failure modes when 

machining titanium alloys, these being caused by a combination of high temperature and 

high cutting stresses developed at the cutting edge of the tool, the strong chemical 

reactivity of titanium, the formation process of catastrophic shear or serrated chips, and 
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so on. Figure 2.22 depicts the different types of wear formed during machining of Ti-6Al-

4V alloy. 

Tool life can be expressed as the time or volume of material removed before a cutting 

tool becomes worn out or fractures. In machining titanium alloys, small changes in 

cutting speed cause extremely high changes in tool life. Flank wear, rake wear and tool 

life are significantly affected by the cutting speeds [60,109,110]. Increase in cutting 

speed caused the bigger increment in cutting temperature at the cutting edge of the tool. 

High temperature plays an important role to reduce the strength of the tool as well as to 

promote the reactivity of different wear mechanisms [60,110]. Tool life in machining 

titanium alloys, however, is also sensitive to changes in feed [5]. Fig. 2.23 reveals the 

effect of cutting speed and feed on tool life in turning Ti-6AI-4V. 

2.2.2.7. Temperature at the Tool Tip 

The combination of a small contact area and the low thermal conductivity of Ti-

6Al-4V alloy results in very high cutting temperatures at the tool tip. The analysis of the 

microstructure suggests that the maximum temperature rise during formation of the shear 

band occurs at the centre of the zones [98,101]. The thin chips, a thin secondary shear 

zone and a short chip-tool contact length cause high tool-tip temperatures of up to about 

1100°C [54,55,105].  
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2.3. Finite Element Modeling 

2.3.1. Introduction  

Modeling of the metal cutting process using the finite element method is effective 

to reduce the machining costs and analysis time. This numerical method takes into 

account not only the large deformation, strain rate effect, tool-chip contacts and friction, 

local heating and temperature effect but also the different boundary and loading 

conditions, and other phenomena encountered in the metal cutting processes. These 

operations are dynamic in nature, and this method is also able to analyze the dynamic 

deformation behaviour that occurs over a short time interval within which the loads and 

boundary conditions are highly time dependent.  

 A commercially available FE code, LS-DYNA was used in the present work. LS-

DYNA is an explicit FE program, developed by Livermore Software Technology 

Corporation (LSTC), and capable of performing non-linear dynamic analyses of both 

two-dimensional and three-dimensional structures [9].  

2.3.2. Types of Element Formulations in LS-DYNA 

Numerical modeling for high strain (and strain rate) typical of metal cutting 

processes consists of three major element formulation implementations, namely,  

Lagrangian, Eulerian and Arbitrary Lagrangian-Eulerian (ALE). Comparisons of 

Lagrangian, Eulerian and Arbitrary Lagrangian-Eulerian (ALE) element formulations 

from Livermore Software Technology Corporation’s tutorial [111] are discussed below. 
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In the Lagrangian element formulation, the FE mesh consists of material elements 

that cover the region of analysis exactly. These elements are attached to the material and 

are deformed with the deformation of the workpiece (Fig. 2.24a). This approach is very 

convenient, particularly, when unconstrained flow of material is involved, because the FE 

mesh will accurately represent the material boundaries during the course of the analysis.  

Another approach in modeling of metal cutting is to apply an Eulerian FE formulation 

method where the overall mesh can be considered as two overlapping meshes consisting 

of a background spatial mesh, which is fixed in space, and material, which can flow 

through the fixed mesh (Fig. 2.24b). Because the mesh is fixed in space, the numerical 

difficulties associated with the distortion of the elements are eliminated. Eulerian FE 

formulation methods have two main steps: the Lagrangian step and the Eulerian 

advection step. The Lagrangian step, performed first, advances the solution in time, 

whereas the Eulerian step accounts for the transport between the elements. The 

Lagrangian step in the Eulerian element formulation is very similar to the time step in 

Lagrangian element formulations. After the Lagrangian step, the mesh is remapped to its 

original spatial coordinates, referred to as advection step or the Eulerian step.  

The Arbitrary Lagrangian-Eulerian formulation is a hybrid of the Eulerian and 

Lagrangian formulation. ALE and purely Eulerian formulations are the same in their 

Lagrangian step but differ in the advection step. However, the Eulerian mesh is always 

remapped back to its original position during the advection step, the ALE mesh is 

remapped to an entirely new mesh smoothed only to a level that eliminates excessive 

distortion (Fig. 2.24c). Meshes can be smoothed by using smoothing weight factors such 

as: 1) simple average, 2) volume weighting, 3) equipotential, and 4) equilibrium. Each of 
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the smoothing factors has a unique approach to determine the coordinates of nodes in the 

advection step [112]. 

In both the Eulerian and ALE formulation methods, the advection step can be 

either a first-order donor cell where the properties are assumed constant throughout the 

element or a second-order Van Leer to allow the interpolation of properties within an 

element into a piecewise function [113,114].  

2.3.3. Studies on Metal Cutting Using Finite Element Modeling 

2.3.3.1. Lagrangian Element Formulation  

One of the earliest FE models for metal cutting was developed by Klamecki 

[115], who simulated the cutting process from the incipient state using three-dimensional 

FEM modeling. The model did not thrive largely due to significant modeling shortcuts, 

such as modeling the workpiece as a perfectly plastic material and disregarding friction. 

Usui and Shirakashi [116] treated steady-state metal cutting based on empirical data and 

assuming rate-independent deformation behaviour. A later study by Iwata et al. [117] 

considered the effect of friction between the chip and the tool rake face but was limited to 

very low cutting speeds and strain rates and assumed rigid-plastic deformation. 

Strenkowski and Carroll [118] and Carroll and Strenkowski [119] used the FE method 

applying Lagrangian formulation to model the orthogonal metal cutting process, 

developed a technique for element separation in front of the tool tip, and proposed an 

element-separation criterion based on the magnitude of plastic strains. The chip-tool 

interaction was accounted for using several methods, including defining a constant 

coefficient of friction at the interface [118] and defining a distinct coefficient of friction 
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for the two regions of contact (sticking and sliding) [120]. Ceretti et al. [121] considered 

the effect of friction and temperature increase in orthogonal cutting and compared the 

simulated results with the experimental results; the simulated results were in good 

agreement with experiments in terms of estimating chip geometry, tool workpiece contact 

length, and chip and tool temperatures (Fig. 2.25). Shih and Yang [122] and Shih 

[123,124] conducted a combined experimental and numerical investigation of the 

orthogonal metal cutting process to consider the effects of large strain, high strain-rate, 

and temperature.  

Most studies dealing with FE modeling of orthogonal cutting hava implemented a 

Lagrangian FE formulation due to accurate representation of the material boundaries 

during the analysis. However, due to the high strains on the order of 2 to 8 [125] and high 

strain rates of 10
3
 to 10

7
 s

-1
 [3] associated with the machining process, application of a 

Lagrangian FE mesh often degrades the accuracy of the simulation due to severe mesh 

distortion. Because of chip separation/breakage criterion or application of a failure 

criterion along a predetermined line lying parallel to the cutting direction at the level of 

the tool tip [126-129], adaptive meshing or continuous re-meshing [121,130-132] are 

commonly used techniques to compensate for mesh distortion and disintegration. In the 

geometrical and physical criteria, separation occurs at a critical distance from the tool tip 

and when a critical shear stress is reached, respectively. In the combined geometrical and 

physical criterion, separation is prompted by either critical distance or critical shear 

stress, whichever occurs first [133,134]. Lin and Lo [135] applied the geometry criterion 

to simulate ultra-precision orthogonal cutting for oxygen-free high-conductive copper, 

with validation by numerical-experimental comparison in terms of cutting force. In Fig. 
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2.26, it was shown that the chip and the workpiece were connected by twin nodes along a 

predefined separation path OB. The chip was separated when the distance D between the 

leading node and the tool edge was equal to or smaller than the given value Dc. Ceretti 

and Marusich [130,131] have used mesh adaptivity and proved that the use of mesh 

adaptivity is equivalent but costly in computational time. In addition, inappropriate 

application of mesh adaptivity criteria may decrease the error yet still give rise to 

excessive processing times. 

2.3.3.1.1. Lagrangian Element Formulation in Serrated Chips Formation 

Most of the researchers used the Lagrangian Element Formulation to obtain the 

serrated chips in numerical simulations. Often there are approaches that are utilized to 

simulate serrated chip formation: (a) using damage or material failure models [11,136-

140] or (b) using modified material models for temperature-dependent flow softening 

based adiabatic shearing [12,141-145]. Using the material failure criteria, Xie et al. [146] 

developed a numerical model of machining of Ti-6Al-4V alloy and calculated the 

effective plastic strain and effective shear stress distributions ahead of the tool tip (Fig. 

2.27). Ceretti et al. [147] also used the damage criteria to obtain the serrated chips during 

machining of steel AISI 1045 and observed the temperature and stress distributions ahead 

of the tool tip (Fig. 2.28) and also the variation of cutting force with cutting speed. They 

predicted the maximum temperature and stress were generated in the material at the tool 

tip. Hua and Shivpuri [138] also used damage criteria to predict the chip morphology and 

segmentation during machining of Ti-6Al-4V alloy. Their predicted cutting forces at 

different cutting conditions were in agreement with the experimental results (Fig. 2.29).  
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Rhim and Oh [148] integrated the effect of flow softening due to dynamic 

recrystallization initiating after a critical strain value at temperatures higher than half of 

the melting temperature in the material model. Calamaz et al. [143,144] considered the 

adiabatic shear band formation without material failure in the primary shear zone and 

developed a new material model that takes into account the influence of strain, strain rate, 

and temperature on the flow stress and also considers the strain softening effect. Chip 

morphology, cutting and feed forces predicted by numerical simulations are compared 

with experimental results (Fig. 2.30). 

2.3.3.2. Eulerian Element Formulation  

Another alternative method in the modeling of the metal cutting process is to 

apply an Eulerian element formulation for the workpiece. Application of the Eulerian FE 

formulation for the simulation of the metal cutting process provides two significant 

advantages. First, the magnitude of strains observed in the machining process (2 to 8) can 

be simulated without application of mesh adaptivity or simulation results influenced by 

computational error due to severe mesh distortion. Second, the use of an Eulerian FE 

formulation eliminates the need for any element separation criterion (either physical or 

geometrical). Material deformation behaviour is determined based upon established 

material properties and is not dependent upon element separation criteria, which is 

potentially dependent upon the FE mesh and the problem being studied [149]. However, 

the Eulerian FE approach has limited applications in modelling solid mechanics problems 

compared with the Lagrangian element formulation [150,151].  
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Caroll and Strenkowski [119] used both Lagrangian and Eulerian element 

formulations to investigate the cutting process of aluminum 2024-T361 and suggested 

that the Eulerian method is more accurate and computationally less intensive than the 

Lagrangian formulation. The disadvantage is that the final shape of the chip cannot be 

easily predicted. Strenkowski and Moon [152] proposed a steady-state metal cutting 

technique based on an Eulerian formulation. They used the technique to predict chip 

geometry and temperature distribution. A good correlation between model predictions 

and metal cutting measurements was found. 

The Eulerian formulation was also successfully employed by Raczy et al. [149] to 

predict the stress and strain distributions in the material (copper) subjected to orthogonal 

cutting. Material behaviour of the workpiece was studied using an elastic plastic 

hydrodynamic material model incorporated with a Voce-type stress- strain relationship. 

An alternative material model was based on the Johnson-Cook constitutive equation. 

Both of the simulation results were validated by experimental results of strain (Fig. 2.45) 

and stress distributions. Numerical and experimental stress and strain distributions 

correlated well in terms of both magnitudes and distributions. By using the Johnson-Cook 

constitutive equation, the predicted strain distribution ahead of the tool tip was fairly 

accurate, whereas the predicted tool tip stresses were higher than those from the 

hydrodynamic material model due to the power-law nature of the Johnson-Cook 

equation. Benson and Okazawa [14,153] studied application of the Eulerian finite-

element formulation in machining and simulated discontinuous chip formation of AISI 

4340 steel during high-speed machining. 
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2.3.3.3. Arbitrary Lagrangian-Eulerian (ALE) Element Formulation 

An Arbitrary Lagrangian-Eulerian (ALE) formulation, which combines the 

advantage of both Lagrangian and Eulerian formulations in a single description, has been 

developed and applied to model high deformation problems such as metal forming and 

machining. Benson [154] was one of the first researchers to introduce the concept of the 

ALE element formulation and discuss its strengths and weaknesses. Many researchers 

have used the ALE formulation to predict chip formation, strain, strain rate and 

temperature, as well as chip-tool contact length, chip thickness and cutting forces.  

Movahhedy et al. [155,156] and Olovsson et al. [157] developed and studied the 

efficiency of ALE models for two-dimensional metal cutting processes. They concluded 

that there was no need for chip separation criteria, and the ALE formulation eliminated 

mesh distortions because the mesh was not obligated to follow the material flow, while 

enabling an approximate initial chip shape to smoothly evolve into a reasonable chip 

shape. Nasr et al. [158] used an ALE finite-element model to study the effects of cutting 

edge radius on residual stresses during orthogonal dry cutting of an austenitic stainless 

steel. Miguelez et al. [159] investigated the influence of geometric parameters and cutting 

speed during orthogonal cutting using an ALE formulation.  

Pantale et al. [160] presented a two-dimensional and three-dimensional finite 

element model of unsteady state metal cutting performed with the Abaqus/Explicit finite 

element code. The yield stress was taken as a function of strain, strain rate and 

temperature. Instead of using one of the separation criteria, a Johnson-Cook damage law, 

which took into account strain, strain rate, temperature and pressure, was used in the 

model to better represent reality. Cutting force results agreed with experimental result 
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very well. von Mises stresses and distributions are shown at different stages of the cutting 

process (Figure 2.46). 

2.3.4. Smooth Particle Hydrodynamic (SPH) Formulation 

Smoothed-particle hydrodynamics (SPH) is a Lagrangian numerical technique 

and has found application in the study of certain problems in which large mesh 

deformations leading to significant numerical problems are an important concern 

[161,162] due to its mesh-free characteristic, that is, there is no connectivity between the 

particles. From the computational point of view, in the SPH formulation the workpiece is 

represented as a set of moving particles evolving/displacing during machining process. 

Each SPH particle represents an interpolation point on which all the properties of the 

material are known. The solution of the entire problem is calculated on all the particles 

with a regular interpolation function, the so-called smoothing function, over the 

smoothing length. The equations of conservation (mass, momentum, and energy) are then 

equivalent to terms expressing fluxes or inter-particular forces. The details about the 

mathematical basis of the SPH formulation can be found in references [161] and [163].  

Over the past three decades, the SPH formulation has been improved and extends 

to continuum mechanics scales. Bonet and Kulasegaram [164] developed an SPH 

formulation for metal-forming simulations including plane strain upsetting, plane strain 

forging, and axis-symmetric forging. However, Buyuk et al. [165] reported that the SPH 

formulation is not as successful as the Lagrangian and Eulerian methods in a simulation 

of ballistic impact. Limido et al. [10,13] have utilized the SPH technique in two-

dimensional modeling of orthogonal cutting, to simulate continuous (Fig. 2.47a) and 
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shear localized chip (2.47b) formation. Akarca et al. [151,166] implemented the SPH 

formulation for modeling of orthogonal cutting of aluminum alloy, and the numerically 

obtained stress-strain distribution was in a good agreement with the experimental work. 

Calamaz et at. [167] used the SPH formulation in modelling of orthogonal cutting of Ti-

6Al-4V alloy to observe the effect of tool wear. The predicted chip morphology and the 

cutting force evolution with respect to the tool wear are qualitatively compared with 

experimental trends. Very recently, Bagci [168] and Limido et al. [169] have used the 

SPH formulation in two-dimensional modeling of orthogonal cutting and calculated the 

cutting force, and good agreement between predicted and experimental cutting forces was 

observed. 

2.3.5. Material Models and Properties 

In finite element models, an accurate material model is the key requirement for a 

successful process simulation.  Generally the material data used to assign the material 

behaviour are obtained from experimental testing such as uniaxial tension test, torsion 

test, Taylor bar tests, and so on. Over 100 material models are available in the LS-DYNA 

code, including models designed to replicate the behaviour of composites, ceramics, 

polymers, metals, and fluids, including specialized types of materials such as foams, 

glass, fabric, hydrodynamic materials, plastics, rubber, soil, wood, and heart and human 

tissue. Each of the material models has its distinct characteristics, and the details of the 

material models and their applicability to the analysis are discussed in LS-DYNA 

Keyword User's Manual Volume I [170] and Theoretical Manual [112]. In some cases, 

thermal analysis is also needed to be considered. In that situation, the behaviour of the 

material is defined by a material model (*MAT_OPTION) and a thermal material model 
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(*MAT_THERMAL_OPTION). Again, when a material model is used in modeling 

hydro materials or fluids, it must be accompanied by an equation of state 

(*EOS_OPTION), which accounts for resistance to hydrostatic compression [103]. 

During the selection of a material model for high rate sensitive materials such as 

steel and titanium alloy, some important aspects such as the levels of strain rate and 

temperature dependent strain rate effects should always be taken into account. Xie et al. 

[146] suggested that the material behaviour during the formation of the shear localized 

chip or the serrated chip is very complicated and there has been no confirmed model to 

describe the behaviour of workpiece material during machining process. The majority of 

the energy dissipated in cutting is converted into heat in a very small zone, which makes 

the temperature distribution in the deformation zone complex. They assumed the 

workpiece material as an elastoplastic material and predicted the force, strain, and stress 

distributions (Fig. 2.41) in the material ahead of the tool tip. Hua and Shivpuri [74] used 

a rigid-viscoplastic material model with von Mises yield criterion to model the workpiece 

of titanium alloy and predicted the forces at different cutting conditions.  

2.3.5.1. Johnson-Cook Constitutive Material Model 

In finite element models, a constitutive material model is required to relate the 

flow stress to strain, strain rate, and temperature. The Johnson-Cook equation [171] is a 

well-known constitutive relation widely used in numerical and theoretical modeling of 

materials subjected to deformation in a broad range of strains, strain rates, and 

temperatures [172-174]. The general form of the Johnson-Cook equation is as follows: 

        ̅ 
 
        ̇                 (2.29) 
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where    is the yield strength, B is the strength coefficient, n is the plastic strain-

hardening exponent,  ̅  is the equivalent plastic strain,  ̇   ̇  ̇  is the normalized 

equivalent plastic strain rate for  ̇  = 1.0 s
-1

, m is thermal softening exponent (= 0.577 for 

Ti-6Al-4V alloy), and    is the homologous temperature and can be defined as: 

   
       

           
           (2.30) 

c is the strain rate sensitivity which can be expressed by [33]: 
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Here,  ̇ and  ̇  are different strain rates, and    and    are the corresponding flow 

stresses respectively.  

Failure accumulation in the Johnson-Cook model does not directly degrade the 

yield surface. The model defines the strain at fracture as: 

   [            
  ][        ̇

  ][     
 ]                 (2.32) 

where the five constants   ,   ,   ,    and    are Johnson-Cook failure parameter,    is 

the ratio of the pressure to the effective stress, that is: 

   
        

 ̅
           (2.33) 

Fracture occurs in the Johnson-Cook model when the damage parameter D 

exceeds 1.0. The evolution of D is given by the accumulated incremental effective plastic 

strains divided by the current strain at fracture as: 
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            (2.34) 

However, some authors [143,175] affirmed that the Johnson-Cook model cannot 

predict the adiabatic phenomenon responsible for the saw-tooth chip formation, which is 

common in machining processes because the strain softening is not taken into account. In 

order to achieve the adiabatic phenomenon, Calamaz et al. [143,144] developed a new 

material constitutive law, which takes into account the influence strain, strain rate, and 

temperature on the flow stress and also introduces a strain softening effect; and the new 

material flow stress is expressed by the following equation: 
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             (2.35) 

Sima and Ozel et al. [12], Karpat [145] also improved the Johnson-Cook model 

by considering the temperature-dependent flow softening, to obtain the serrated chip 

formation. 

2.4. Research Focus 

It can be concluded from the literature survey that the machining operation is an 

extremely complex process. This is a very important process as most titanium parts used 

in aerospace industries are still manufactured by conventional machining methods. 

Machining parameters, workpiece material property, tool material property, and 

lubricants or coolants play the most important roles in the machining process.  
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In this research the effect of feed rate and cutting speed on the machinability of 

the Ti-6Al-4V alloy that includes the surface quality and the forces, is analyzed. In this 

literature survey it was shown that the subsurface microstructure below the machined 

surface deformed in the cutting direction. Under this project, the depth of the subsurface 

deformed zone and the strain gradient are also examined. Serrated chips are formed 

during machining of Ti-6Al-4V alloy, and it is important to understand the mechanism of 

the chip formation.  This work also studies the plastic deformation in the workpiece 

ahead of the tool tip where the chip formation starts and also the effect of feed rate and 

cutting speed on the chip morphology. 

Under this project, numerical models that include localized strain information and 

take into account the deformation behaviour of the Ti-6Al-4V alloy are developed and 

the predicted results are compared to the experimental findings in order to validate the 

model and find out a most suitable model that can represent the machining operation 

more accurately. 
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FIGURES- CHAPTER 2 

 

 

 

 

 

 

 

 

 

 

Fig.2.1. Schematic diagram showing the chip formation during the orthogonal cutting. 

 

 

 

 

 

 

 

 

 

Fig. 2.2. Schematic diagram of sectioned orthogonally cut sample showing deformation 

zones and cutting parameters, where,   is the rake angle,   is the clearance angle, f is the 

feed, Vc is the cutting speed, and   is the primary shear plane angle, tc is the chip 

thickness [149]. 
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Fig. 2.3. Various types of chips produced during orthogonal machining: (a) Continuous 

chip formed during machining of 6061 Al at 36 m/min cutting speed and 0.30 mm/rev 

feed rate [20], (b) Discontinuous chip formed during machining of Al 319 at 50 m/min 

cutting speed and 0.35 mm/rev feed rate [73], (c) Chip with BUE formed during 

machining of low carbon steel at 0.24 m/s cutting speed and 0.13 mm/rev feed rate [176], 

(d) Serrated chip formed during machining of Al 319 at 115 m/min cutting speed and 

0.25 mm/rev feed rate [73]. 
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Fig. 2.4. Force diagram for orthogonal cutting where    is cutting force,    is thrust force, 

   is the shear force on the shear plane,    is the normal force on the shear plane, Fp is 

shear force on rake face and Np is the normal force on the rake face [15]. 
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Fig. 2.5. Optical micrograph of a section through a machined chip of 6061 Al attached to 

the work piece. Cutting speed = 0.6 m/s, feed = 0.30 mm, rake angle = −5° [20]. 
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Fig. 2.6. (a) A computer-generated image of the cross-section of the machined work piece 

with the chip still attached. The image was obtained by determining the location of each 

point on the deformation lines and these were plotted to actual scale shown on the 

diagram, (b) Schematic diagram showing the measurement of shear angles from the 

slopes of the deformation lines [20]. 
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Fig. 2.7. Model for true shearing of a sphere [29]. Here ABC is an ideal sphrical crystals 

and after shearing it becomes A'B'C. lx and ly are the distances at the X and Y directions 

respectively and θ is the deformation angle. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.8. Strain distribution diagram showing the values of equivalent shear strains,  ̅, in 

the material (Al 1100) ahead of the tool tip. Equivalent strains were estimated from the 

local shear angle values ( ) using Eq. (2.15). The iso-strain contours are also shown [28]. 
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Fig. 2.9. Plastic deformation of a flat surface by a harder spherical surface. (a) This onset 

of plasticity occurs at the point Z below the surface when the mean stress,          , 

(b) At a later stage the whole of the material around the indentation flows plastically; at 

this stage          [177]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.10. The cumulative stress-strain curve of commercial purity copper subjected to 

orthogonal cutting [31]. 
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Fig. 2.11. Temperature map showing local increases in temperature as a result of 

transformation of the work done during plastic deformation into heat [28]. 

 

 

 

 

 

 

 

 

 

 

 

 

      

 

 

 

Fig. 2.12. Optical image of Ti-6A1-4V microstructure [178]. 
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Fig. 2.13. Distribution of heat when machining titanium and steel [56] with different 

conductive tool materials. A large proportion of the heat generated during the machining 

of Ti-6Al-4V alloy is conducted into the tool due to the low thermal conductivity of the 

alloy. 
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Fig. 2.14. True stress–strain curves of Ti–6Al–4V alloy deformed (compression) at 

different strain rates and temperature conditions [179]. 
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Fig. 2.15. Diagram showing the (a) variation of average surface roughness value with 

cutting speed for milling of Ti-64 alloy at feed = 0.1 mm/tooth and depth of cut = 1 mm 

[61] and (b) typical surface roughness when machining of alpha-beta titanium alloy with 

tungsten carbide tool (CNMG 120408-MR3-890) at feed rate of 0.25 mm/rev [60]. 
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Fig. 2.16. Serrated chips are formed during machining of Ti-64 alloy where    is the 

shear displacement within the shear band,    is the thickness of the shear band and Lc is 

the distance between two consecutive shear bands (Cutting condition: feed 0.214mm and 

cutting speed 80 m/min) [180]. 

 

 

 

 

 

 

 

 

 

Fig. 2.17. Variation of the critical cutting velocity for shear localization with the depth of 

cut or feed rate [92]. 
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Fig. 2.18. Adiabatic deformed shear band in 7039 aluminum alloy at impact velocity 

311 m/s [95]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.19. Adiabatic transformed shear band in a chip of titanium alloy Ti-6Al-4V, 

obtained by orthogonal cutting at the velocity 13 m/s [97]. 
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Fig. 2.20. Microhardness traverses encompassing shear bands for (a) AlSI 4340 quenched 

and tempered steel [99] (b) Ti-6Al-4V alloy [25]. 

(a) 

(b) 
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Fig. 2.21. Diagram showing the variation of segment spacing  or shear band frequency in 

case of Ti-6Al-4V alloy, with the (a) cutting speed and (b) feed rate. Here  o is the rake 

angle [104]. 
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Fig. 2.22. Flank and rake face wear patterns (T = 15min) [109]. The tool material was 

uncoated cemented carbide (grade K15 micrograin). 
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Fig. 2.23. Effect of cutting speed and feed on tool life in turning Ti-6AI-4V [5]. 
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(a) Lagrangian mesh behaviour 

 

 

 

 

 

 

 

 

 

 

(b) Eulerian mesh behaviour 

 

 

 

 

 

 

 

 

 

 

(c) ALE mesh behaviour 

Fig. 2.24. Comparison of Lagangian, Eulerian and ALE mesh behaviour Eulerian 

Approach [111].  
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Fig. 2.25. Diagram showing the (a) chip geometry and (b) temperature distribution after a 

tool path of 7 mm. (Cutting speed 250 mm/s, feed rate 0.1 mm/rev, depth of cut 1 mm, 

rake angle 10˚ and coefficient of friction 0.5) [121]. 

 

(a) 

(b) 
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Fig. 2.26. Diagram showing the geometrical separation method: (a) before node 

separation, (b) after node separation [135]. 

 

 

 

 

 

 

 

 

Fig. 2.27. Diagram showing the (a) contours of effective plastic strain when the shear 

band is fully formed, (b) contours of effective shear stress (10
5
 N/mm

2
) at the indication 

of the shear banding initiation [146]. 

(b) (a) 

(b) (a) 
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Fig. 2.28. Diagrams showing the (a) temperature distribution and (b) stress distribution 

ahead of the tool tip of AISI 1045 steel (cutting speed = 600 m/min, feed rate = 0.1 

mm/rev) [147]. 

(a) 

(b) 
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Fig. 2.29. Diagram showing the comparison of force data for turning of Ti-6Al-4V alloy 

experiments and model predictions [74]. 

 

 

 

 

 

 

Fig. 2.30. (a) Experimental chip obtained when machining with a cutting speed of 180 

m/min and a feed of 0.1 mm, (b) Simulated chips at a cutting speed of 180 m/min and a 

feed of 0.1 mm: using modified material model [143]. 

(b) (a) 



 

69 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.31. Contours of equivalent strain in the material (ETP copper) ahead of the tool tip 

according to (a) experimental measurements, (b) numerical model using a hydrodynamic 

material model in Eulerian FE formulation [149].  

(b) 

(a) 

(b) 
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Fig. 2.32. Continuous chip formation and von Mises stress distribution at (a) 0.087 ms, 

(b) 0.4 ms & (c) 1.3 ms using ALE [160]. 

(b) 

(c) 

(a) 
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Fig. 2.33. Plastic strain distribution ahead of the tool tip of (a) Al6061–T6 and (b) AISI 

4340 steel using SPH formulation [13]. 
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CHAPTER 3: Experimental and Numerical Procedures 

3.1. Experimental Approach 

3.1.1. Workpiece geometry and composition  

 The material investigated in this study was the Ti-6Al-4V alloy which is one of 

the most widely used titanium alloys. The Ti-6Al-4V alloy is an  -   titanium alloy and 

composition of this alloy is given in Table 3.1. The alloy was obtained in the form of 

extruded rods with a diameter of 25.45 mm. Tubular samples with a wall thickness of 3.2 

mm were machined for the orthogonal cutting tests from these extruded rods. The 

microhardness of the alloy was 380 ± 3 HV, measured using a microhardness tester with 

a 50 gram of load.  

Table 3.1. Composition of Ti-6Al-4V alloy 

Elements Al V Fe O2 C N2 Ti 

Weight % 5.5-6.76 3.5-4.5 < 0.25 < 0.2 < 0.08 < 0.05 The Balance 

 

A small piece of sample was cut and prepared to observe the microstructure of Ti-

6Al-4V alloy using the standard metallographic preparation techniques. The sample was 

ground using silicon carbide paper and water, starting with grade 180 followed by 240, 

320, 400, 600, 800 and 1200 using light pressure applied to the center of the small 

sample. Next, the sample was cleaned by washing with water followed by rinsing in 

alcohol and drying. Then the sample was polished using diamond suspension, starting 
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from 3 µm and going down to 0.1 µm. Care was taken to wash the sample thoroughly 

with soapy water before moving on to the 1 µm stage so as to avoid contamination of the 

disc. Then the sample was cleaned with ethanol and etched with Kroll’s solution (92% 

H2O, 6% HNO3 and 2% HF) for 18-25 sec. The microstructure of this alloy consisted of 

  and   phases (Fig. 3.1) where   phase is the h.c.p. structure and   phase is the b.c.c. 

structure. The   phase is elongated along the extruded direction. The average length and 

width of   phase are 4.86   2.86 µm and 1.03   0.46 µm.  

3.1.2. Orthogonal cutting tests 

All orthogonal cutting tests were executed on a Harrison M300 lathe which is a 

compact, simple-to-operate and reliable center lathe (Fig.3.2). It has a long, foot-operated 

and very powerful spindle-brake with electrical disengagement for interrupted cutting and 

is powered by a fan-cooled 2.2 kW (3 HP.) 3-phase, 1500 rpm motor. The spindle 

rotation speed can be chosen from twelve different speeds ranging from 40 to 2500 rpm. 

The range of power sliding feeds varies from 0.03 mm to 1 mm per revolution of the 

spindle in metric mode. 

Different cutting conditions were used for the orthogonal cutting test. The cutting 

speeds were 180 RPM (14.4 m/min), 370 RPM (29.6 m/min), 540 RPM (43.2 m/min) and 

800 RPM (63.5 m/min) and the feed rates were 0.1 mm/rev, 0.15 mm/rev, 0.2 mm/rev 

and 0.25 mm/rev. The use of four different values ensured enough data points for 

analyzing the effects of cutting speed and feed rate on the machinability of Ti-6Al-4V 

alloy. The rake angle and the clearance angles were 0˚ and 7˚ respectively. 

Polycrystalline diamond (PCD) insert (VCMW 332FP) shown in Fig. 3.3, was used as a 
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cutting tool for the cutting experiments. A polycrystalline diamond insert was chosen as it 

is has excellent high wear resistance, high fracture strength and high dimensional stability 

properties [16]. It was reported that the PCD tool performed better in terms of wear rate 

during machining of titanium alloy [108]. 

3.1.3. Force measurement 

During orthogonal cutting, cutting and thrust forces are two important forces 

exerted by tool on the workpiece. The direction of the each force on a SEM of the 

machined sample is shown in Fig.3.4. A two-axis force sensor system developed by [73] 

was used for measuring cutting and thrust forces.  A detachable unit (Fig. 3.5) contains a 

modified tool holder along with the tool-holder-mounting with the strain sensor with the 

wireless transmitter, was used which could easily be installed on the machine without 

requiring any change in the normal configuration of the lath or the work-piece. The data 

acquisition system was comprised of a strain sensor, a wireless transmitter system (V-

Link 2.4 GHz Wireless Voltage Node), an analog base station (MicroStrain Micro TxRx 

wireless base station w/ analog outputs) and a computer loaded with data acquisition 

software ‘Agile Link’. Fig. 3.6 represents the schematic diagram showing the different 

components of the force sensor and data acquisition system. The sampling rate of the data 

acquisition system was 680 Hz.  

The strain sensor (V-Link 2.4 GHz Wireless Voltage Node) attached to the 

narrow groove in the modified tool holder (Fig. 3.5) picked up the strains produced in the 

tool holder as it bent under the loads exerted on it during turning operation. It transmitted 

the signals via electrical wires to the strain sensor which then wirelessly transmitted them 
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to the base station. The bases station transmitted the data to the PC via a USB cable and 

‘Agile Link’ was used to convert the streamed data to a readable format.  

The system was calibrated before measuring the forces. The system was first 

mounted on a vice in such a way that the force of gravity, acting vertically downwards, 

acted in the direction cutting force would act in during cutting tests. Then a known load 

was applied to the cutting direction and the corresponding output (milivolt) was measured 

via data acquisition system. Same procedure was used for measuring the output values at 

different loads. The relationship between the applied load in the cutting force direction 

and the corresponding output value was linear (R
2
 = 1) and the relationship shown in Fig. 

3.7a, can be described as: 

Fc = -1.1618a + 2376.6 (in units of Newton)         (3.1) 

where Fc is the cutting force, ‘a’ is the output value for cutting force direction. 

In order to calibrate the system for measuring thrust forces, it was remounted on 

the vice in such a way that the force of gravity would now act in the direction of thrust 

force. The rest of the steps followed were same as described above for calibrating the 

system for cutting forces. The relationship between the applied load in the thrust force 

direction and the corresponding output value was linear (R
2
 = 1) and the relationship 

shown in Fig. 3.7b, can be described as: 

Ft = 1.1853b – 2409.3  (in units of Newton)         (3.2) 

where Ft  is the thrust force and ‘b’ is the output value for thrust force direction. 
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The cutting and thrust forces were measured using the force measurement system 

for different cutting conditions. The output data obtained from the data acquisition 

software was converted into different forces using the calibration equations (Eq. 3.1 and 

3.2). Fig.3.8 shows a typical output force curve from the force measurement system. In 

this case the cutting conditions were.  As the tool came into contact with the workpiece, 

force measurements showed a rapid rise in magnitude of forces followed by a steady state 

system response. As the quick stop foot controlled brakes are applied almost 

instantaneously, the forces rapidly reduce to zero. 

3.1.4. Surface quality measurement 

A WYKO NT 1100 Optical Profiling System was used to analyze the finish of the 

machined surfaces for the samples turned under the different cutting conditions where the 

surface roughness value is expressed in terms of Ra, Rq, Rz and Rt.   

Optical interferometry is the principle of superposition of separate light waves of 

similar frequency, to combine in such a way that conveys the information about the 

original state of the waves. A single light beam emitted from a coherent light source, are 

split into two identical beams by an inclined mirror. After traversing through different 

paths these two beams eventually recombine to create a resulting pattern with a phase 

difference between the two waves. This phase difference creates the interference pattern 

between the two waves, thus imparting information regarding the cause of the phase 

difference, which in case of an optical interferometer is the specimen being studied. 

In a modern day optical profilometer, such as WYKO NT 1100, similar principle 

is used where the resulting interference phenomena, as a result of recombination of 
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separated beam from a single source, is recorded in the form of an interferogram. The 

original beam is separated into two by the beam-splitter. The beam which moves towards 

the test piece passes through a reference surface where most of the light passes through 

the surface on to the test piece, while rest of the light (Reference beam) is reflected back 

to the detector. The light reflected from the test piece returns to the interferometer where 

it interferes with the reference beam. The recombined beams create bright (constructive 

interference) and dark bands (destructive interference) called fringes acting like 

topographic maps thus recreating the map of the surface of the object under observation. 

The CCD detector registers the interferogram and forwards the frame to the computer 

which processes the data using interferometric phase mapping programs. 

In this research for measuring the surface roughness of the machined surfaces, the 

Vertical Scanning Interferometry (VSI) mode was used instead of the Phase Shifting 

Interferometry (PSI) mode due to the higher roughness of the machined surface. VSI is 

useful for rough surface and PSI is more appropriate and accurate for smooth surface and 

short measurement time. However, the use of PSI is limited for objects that have large 

step-like height changes and this method becomes ineffective as height discontinuities of 

adjacent pixels exceed one quarter of the used wavelength (λ/4).  

3.1.5. Sample preparation and metallographic analysis 

The machined samples were sectioned as shown in Fig. 3.9 for metallographic 

examination of their deformation microstructures ahead of the tool tip. The samples were 

mounted with the mounting materials (Lecoset
TM

 7007 Cold-curing resin (Powder: 

Liquid = 2:1) for metallographic applications) to observe the desired metallographic 
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sections. Samples were prepared using the standard metallographic preparation 

techniques described in section 3.1.1.  

The microstructure of the polished surface was observed using a scanning 

electron microscope (SEM, JEOL JSM-5800LV).  The main areas examined included the 

primary and secondary deformation zones, the chip region, the machined surface and the 

work-piece bulk material region. Energy dispersive spectroscopy or EDS was done to 

analyze the transferred material on the tool surface.  

3.1.6. Stain measurement 

A cross-sectional SEM image of the deformation microstructure of the material 

ahead of the tool tip, taken by interrupting the orthogonal cutting process is presented in 

Fig. 3.10. Plastic strains induced in the workpiece during cutting were estimated from the 

orientation change of the deformed   phase grains of the alloy on the cross sectional 

plane of the material ahead of the tool tip. Fig. 3.11 depicts the schematic representation 

the deformation pattern of Ti-6Al-4V alloy obtained by plotting orientation changes of 

the   phase grains at the same scale as in the actual microstructure in Fig. 3.10. However, 

Fig. 3.12 shows the displacement of the   phase grains in the material ahead of the tool 

tip at the same scale as in the actual microstructure in Fig. 3.10. For measuring the 

deformation angle at different points a curve fitting software “TableCurve 2D” was used 

which is discussed in Appendix A. Effective plastic strains or equivalent strains were 

estimated at the points of intersection of an imaginary grid (50μm by 50μm) using Eqn. 

2.15 that is discussed in section 2.1.5.2.  



 

79 

 

 ̅  
    

 
               (2.15) 

The strains were then plotted on an outline of the micro graph and points having 

same magnitude of strains were connected together to yield isostrain lines. The results of 

the strains distribution ahead of the tool tip are described in greater details in section 4.6. 

3.1.7. Microhardness measurement-Flow stress estimation 

Vickers Hardness (HV) was measured using a Buehler Micromet II 

microhardness tester. The load used for all the indentations was 50 grams. Indentations 

were place at the points of intersection of an imaginary grid of 50μm x 50μm. The points 

on an outline of the micrograph for the area ahead of the tool tip location, which 

exhibited same magnitude of hardness have been connected together to obtain iso-

hardness contours. Flow stresses in the workpiece at the locations of the indentations 

were estimated using Eqn. 2.18. 

  
 

 
             (2.18) 

The results of the flow stress measurement have been discussed in details in 

section 4.7. 

3.1.8. Temperature measurement 

During machining of Ti-6Al-4V alloy the temperature at the tool tip was 

measured different feed rates and cutting speeds. To measure the temperature during 

orthogonal cutting of Ti-6Al-4V alloy at the tool tip, a modified carbide tool (Fig. 3.13), 
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a K-type (Cbromel-Alumel) thermocouple (diameter 0.52 mm), a data acquisition system 

and a computer loaded with data acquisition software ‘pDaqView’ were used. The 

thermocouple was mounted at the rake face of the tool through the small hole (diameter 

0.7 mm), and near the cutting edge (distance between edge and the center of the hole 

= 0.8 mm). Schematic diagram of the temperature measurement system is shown in 

Fig. 3.14. The sampling rate of the data acquisition system was 120 Hz. 

The thermocouple installed in the modified tool measured the temperature 

difference and converted it into electrical signals and transmitted the signals to the strain 

sensor which then wirelessly transmitted them to the data acquisition and then the data 

acquisition transmitted the data to the PC via a USB cable and ‘pDaqView’ was used to 

convert the streamed data to a readable format. 

The system was calibrated before measuring the temperature. A small electrical 

furnace was used for calibration. The furnace was heated to a known temperature and the 

corresponding output value (milivolt) was measured via data acquisition system. Same 

procedure was used for measuring the output values at different temperatures. The 

relationship between the temperature and the corresponding output value was linear 

(R
2
 = 0.996) and the relationship can be described as: 

T = 33003x + 20.98 (in units of degree Celsius)         (3.3) 

where, ‘x’ is the value obtained from the data acquisition system for temperature 

measurement and T is the corresponding temperature. 
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The output data obtained from the data acquisition software was converted into 

temperature using the calibration equations.  Fig. 3.15 depicts a typical output 

temperature curve from the temperature measurement system. As the tool came into 

contact with the workpiece, temperature measurements showed a rapid rise in magnitude 

of temperature until it reached to a steady state region. As the quick stop foot controlled 

brakes were applied the temperature dropped rapidly and reached to room temperature 

(23 ˚C). Average tool tip temperature was calculated from the steady state zone in 

Fig. 3.15. 

3.2. Finite Element Simulations 

 All the finite element simulations were performed using the finite-element 

program LS-DYNA version 971, release R.4.2.1. Two different formulations were used 

to simulate the orthogonal cutting of Ti-6Al-4V alloy, namely, 2D Lagrangian element 

formulation and smoothed particle hydrodynamic (SPH) formulation. 

3.2.1. 2D Lagrangian Element Formulation 

The termination time specified for this simulation was 1 millisecond and the 

processing time for the simulation was approximately 75 hours using a personal computer 

with Intel Xeon 3.0 GHz processors with 4 CPU and 16 gigabyte of memory. Explicit 

time integration was used for this formulation. The scale factor for computed time step 

was 0.90. Coupled structural thermal analysis was performed for all the simulations. The 

initial thermal time step size was 100 ns. A Crank-Nicholson scheme was used in time 

integration. The solution results were then viewed and analyzed in the post-processing 
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software package LS-PREPOST (Version 2.4). The summary of the FE input file is 

contained in Appendix B. 

3.2.1.1. Model Geometry and Discretization 

To model the orthogonal cutting process two parts, namely, a workpiece and a 

tool were considered (Fig. 3.16). The FE mesh of the upper part of the workpiece were 

finer (3µm   3µm), compared to the mesh of the lower portion (6µm   6µm) of the 

workpiece. This was performed to predict the stress, strain and temperature distributions 

in the workpiece ahead of the tool tip more accurately. Transition elements were used to 

avoid the stress concentration in between the finer mesh and the course mesh. The aspect 

ratio of the mesh size of the workpiece was 1.0. The workpiece consists of 74560 plane 

strain elements utilizing a 3 3 integration point scheme, and the tool was modeled using 

a plane strain elements formulation also having 3 3 integration.  A finer discretization 

(20µm   2.5µm) was utilized near the tool tip. However, the aspect ratio of the mesh size 

of tool was 8.0. The radius of the tool tip used for modeling was 15 µm, which was 

consistent with the experimental setup (Fig. 3.17).  

3.2.2. Smoothed-Particle Hydrodynamics (SPH) Formulation 

Each simulation had a termination time of 1 millisecond and the total simulation 

time was approximately 88 hours using a personal computer with Intel Xeon 3.0 GHz 

processors with 4 CPU and 16 gigabyte of memory. The scale factor for computed time 

step was 0.15. Coupled structural thermal analysis was performed for all the simulations. 

The initial thermal time step size was 100 ns and the Crank-Nicholson scheme was used 

in time integration. The solution results were then viewed and analyzed in the post-



 

83 

 

processing software package LS-PREPOST (Version 2.4). The summary of the FE input 

file is contained in Appendix C. 

3.2.2.1. Model geometry and Discretization 

In the SPH model (Fig. 3.18), two parts, namely workpiece and cutting tool were 

used to model the cutting process. The workpiece in the SPH model consisted of 31500 

SPH particles. The distance between two particles was 8 µm in all directions. The initial 

number of neighbors per particle was 150. The aspect ratio of the distance between the 

particles was 1.0. 

The cutting tool was discretized using solid Lagrangian formulation elements. 

The geometry of the tool was same as the tool used in 2D Lagrangian element 

formulation method, while the thickness of the solid tool element was 10 µm. 

3.2.2. Workpiece and Tool Material Modeling 

The Johnson-Cook (JC) material model (*MAT_JOHNSON_COOK, material 

type 15 within LS-DYNA) was used to represent the workpiece material behaviour. 

Details of this material model were discussed in section 2.3.5.1, where the general form 

of the Johnson–Cook equation is as follows: 

        ̅ 
 
        ̇                 (2.29) 

The parameters used to define the deformation behaviour of Ti-6Al-4V alloy 

according to the Johnson–Cook equation were obtained from the experimental results and 

reference [181], and have been discussed in details in section 5.2. The density, shear 
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modulus, elastic modulus, specific heat and Poisson’s ratio of the workpiece were 

specified as 4.43 g/cm
3
, 55.0 GPa, 110 GPa, 0.568 J/g ˚C and 0.33 respectively. 

For the formation of serrated chips, the Johnson-Cook damage criteria were used. 

The model defines the strain at fracture as: 

   [            
  ][        ̇

  ][     
 ]                 (2.32) 

where the five constants   ,   ,   ,    and    are Johnson-Cook failure parameter.  

Fracture occurs in the Johnson-Cook model when the damage parameter D 

exceeds 1.0. The evolution of D is given by the accumulated incremental effective plastic 

strains divided by the current strain at fracture 

  ∑
  ̅ 

  
            (2.33) 

The Johnson-Cook damage law parameters of Ti-6Al-4V alloy are given in 

Table. 3.2. 

Table 3.2. The Johnson-Cook damage law parameters of Ti-6Al-4V alloy [181] 

Initial failure 

strain, D1 

Exponential 

factor, D2 

Triaxiality 

factor, D3 

Strain rate 

factor, D4 

Temperature 

factor, D5 

-0.09 0.5 0.48 0.014 2.5 

 

The Grüneisen equation of state (*EOS_GRUNEISEN, in LS-DYNA) was 

utilized to describe the pressure-volume relationship of the workpiece. It defines the 

pressure for compressed materials by relating the material shock velocity and particle 

velocity through a cubic equation: 
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and for expanded materials as: 

     
                      (3.5) 

where,   is the volumetric parameter that can be expressed by: 

  
 

  
   

    

 
  

  

 
 

 

  
           (3.6) 

Here, C = Bulk sound speed,    = Initial value of Gruneisen's gamma, a = coefficient of 

the volume dependence of gamma, S1 = Linear coefficients, S2 = Quadratic coefficients, 

S3 = Cubic coefficients,    is the density at nominal/reference state, usually non-stress or 

non-deformed state, E is the initial internal energy and   is the current density.  

Table 3.3. The Grüneisen equation of state parameters [182] 

C0 (cm/µs) S1 S2 S3    b E V 

0.513 1.028 0 0 1.23 0.17 0 1 

 

As the deformation of the tool is negligible compared to the workpiece, the tool 

was modeled as a rigid (*MAT_RIGID, material type 20 within LS-DYNA). The 

properties of the cutting tool were specified as follows: the density ρ = 7.1 g/cm
3
, 

Young’s modulus E = 210 GPa, and Poisson’s ratio ν = 0.33. 
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3.2.3. Workpiece-Tool Contact 

The contact between the tool and the workpiece was modeled using a penalty type 

contact algorithm, where the penetration of slave nodes into the master segment is 

checked and prohibited. At contact, the coefficient of friction is determined by: 

                   |    |               (3.7) 

Here,    and    are the dynamic and static coefficient of friction respectively, DC is the 

exponential decay coefficient and      is the relative velocity of the surfaces in contact. 

The assigned value of coefficient of friction for contact between the tool and the 

workpiece was also determined from the experimental work which is discussed in section 

5.2. 

3.2.4. Boundary Conditions 

To represent the experimental setup, the tool was assigned to move towards the 

workpiece (X-direction) at a velocity of 63.5 m/min or 1.058 m/s. No other translations 

or rotations in any other directions were permitted. The bottom nodes of the workpiece 

were restricted in all degrees of freedom. To impose the symmetrical conditions in x-y 

plane, the movement of the workpiece in z-direction and the rotation in x and y directions 

were restricted. 
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Fig. 3.1. SEM image of the microstructure of Ti-6Al-4V alloy. 

 

 

 

 

 

 

 

 

Fig. 3.2. Harrison M300 lathe used for the orthogonal cutting experiments. 
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Fig.3.3. Polycrystalline diamond (PCD) insert (VCMW 332FP) used for orthogonal 

turning of Ti-6Al-4V alloy.  
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Fig. 3.4. SEM image showing the direction of cutting and thrust force on a section of an 

orthogonally cut sample. Cutting conditions: cutting speed 43.2 m/min and feed 0.15 mm 

per revolution. 
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Fig. 3.5. Part of the portable force measurement system which was mounted on the lathe 

during machining experiments. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.6. Schematic diagram showing the different components of the force sensor and 

data acquisition system. 
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Fig. 3.7. Curves for relation between readings on Agile Link output (millivolt) and force 

(N) applied on force measuring system during loading and unloading for (a) cutting 

forces and (b) thrust forces. The corresponding equations for loading and unloading are 

also shown on the plots. 

(b) 

(a) 

Fc = -1.1618a + 2376.6 

Ft = 1.1853b – 2409.3 
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Fig. 3.8. Typical force plot showing cutting and thrust forces obtained after analysis of 

output data from the force-measuring system and different stages in a typical force vs. 

time plot obtained for orthogonal cutting experiments (Cutting speed 43.5 m/min and 

feed rate 0.25 mm/rev). 

 

 

 

 

 

 

 

 

 

 

Fig. 3.9. Schematic of metallographic section taken from the workpiece for 

microstructural analyses, where f is feed rate, ts thickness of the shear band and ds is 

shear displacement within the shear band. 
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Fig. 3.10. Cross-sectional SEM image of the material ahead of the tool tip of Ti-6Al-4V 

alloy. Cutting speed = 63.5 m/min, feed rate  = 0.25 mm/rev. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.11. Schematic representation the deformation pattern of Ti-6Al-4V alloy obtained 

by plotting orientation changes of the   phase grains at the same scale as in the actual 

microstructure in Fig. 3.10. OC is the cutting line. 
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Fig. 3.12. Diagram showing the displacement of the   phase grains in the material ahead 

of the tool tip at the same scale as in the actual microstructure in Fig. 3.10. 
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Fig. 3.13. Modified carbide tool for temperature measurement. A small hole was drilled 

using EDM on the rake face of the tool to install the thermocouple. A close view of the 

hole was shown in the insert. 

 

 

 

 

 

 

 

 

Fig. 3.14. Schematic diagram of the temperature measurement system. 
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Fig. 3.15. Typical temperature plot showing temperature obtained after analysis of output 

data from the temperature measurement system and different stages in a typical 

temperature vs time plot obtained for orthogonal cutting experiments at 43.2 m/min of 

cutting speed and 0.25 mm/rev of feed rate.  

 

 

 

 

 

Fig. 3.16. Schematic diagram showing the geometry of the finite element model of the 

tool and the workpiece (2D Lagrangian element formulation method). 
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Fig. 3.17. Schemetic diagram showing the tool geometry. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.18. Schematic diagram showing the geometry of the finite element model of the 

tool and the workpiece (SPH formulation). 
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CHAPTER 4: Experimental Results 

4.1. Introduction 

This chapter presents the experimental results conducted in order to determine the 

machining performance of Ti-6Al-4V alloy subjected to orthogonal cutting under 

different cutting conditions. The effect of feed rate and cutting speed on the machining of 

the alloy was examined by conducting turning experiments at different feed rates and 

different cutting speeds. The cutting speed was varied from 14.4 m/min to 63.5 m/min 

maintaining the maximum feed rate constant at 0.25 mm/rev in order to understand the 

effect of cutting speed. However, for understanding the effect of feed rate, feed rate was 

varied from 0.10 mm/rev to 0.25 mm/rev keeping a constant moderate cutting speed of 

43.2 m/min. Four different values were used to ensure the statistical viability of the 

effects of cutting speed and feed rate on the machinability of Ti-6Al-4V alloy. 

SEM and surface profilometer, WYKO was used to observe the machined surface 

quality. Microstructural observations using SEM was performed to determine the 

deformation state in the material ahead of the tool tip and below the machined surface.  

Variation of hardness value in the material ahead of the tool tip was measured and 

analyzed. Also, deformation of material in front of the tool tip was studied by estimating 

flow stress and plastic strain distribution in the region. These results were used 

subsequently to calculate the work of deformation, temperature distribution in the 

material ahead of the tool tip and used in the material models in FEA in chapter 5. 
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The results obtained from the experimental work are presented in the following 

sections.  

4.2. Analysis of forces generated during dry orthogonal cutting 

4.2.1. Cutting force measurements 

Figures 4.1 (a and b) illustrate cutting forces measured for Ti-6Al-4V alloy under 

different conditions. Cutting forces were measured for different feed rates including 

0.10 mm/rev, 0.15 mm/rev, 0.20 mm/rev and 0.25 mm/rev where the cutting speed was 

constant (43.2 m/min). Cutting forces were also measured for different cutting speeds 

such as 14.4 m/min, 29.6 m/min, 43.2 m/min and 63.5 m/min where the feed rate was 

constant (0.25 mm/rev). An examination of the responses revealed that there was no 

significant change in measured force values in the cutting zone for fixed cutting 

conditions.  

Average cutting force for each cutting condition studied was estimated from the 

force data of the steady state cutting zone, immediately before the brake was applied.  

Fig. 4.2a presents the variation of the average cutting forces with different feeds at 

43.2 m/min of cutting speed. It was found that the cutting force was increased from 

504 N to 1150 N with feed rate from 0.10 mm/rev to 0.25 mm/rev. The variation of 

average cutting force from 898 N to 1240 N with different cutting speeds is depicted in 

Fig. 4.2b. The general trend outlined that the cutting force decreased in magnitude with 

an increase in cutting speed.  
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4.2.2. Thrust force measurements 

Thrust forces were measured for different feed rates (Fig. 4.3a) such as 

0.10 mm/rev, 0.10 mm/rev, 0.15 mm/rev, 0.20 mm/rev and 0.25 mm/rev where the 

cutting speed was constant (43.2 m/min). Thrust forces were also measured for different 

cutting speeds namely 14.4 m/min, 29.6 m/min, 43.2 m/min and 63.5 m/min where the 

feed rate was constant (0.25 mm/rev). Average thrust force for each cutting condition 

studied was estimated from the force data of the stable cutting zone.  Fig.4.4a presents the 

variation of the average thrust forces with different feeds at 43.2 m/min cutting speed. 

The thrust force was increased from 254 N to 538.5 N with feed rate from 0.10 mm/rev to 

0.25 mm/rev. A direct relationship was observed between thrust force and feed rate.  

However, the average thrust force varied from 430 N to 543 N with different cutting 

speeds depicted in Fig. 4.4b.  

4.2.3. Normalized cutting and thrust forces measurements 

Normalized cutting and thrust force measurement is effective to analysis the force 

results. Normalized cutting force is equal to the cutting force per unit depth of cut or 

thickness and normalized thrust force is equal to the thrust force per unit depth of cut or 

thickness or              
                  

 ⁄ , where w is the depth of cut (= 3.2 mm). 

The variation of normalized cutting and thrust forces are shown in Fig. 4.5. The trends 

outlined that the cutting and thrust forces increased with an increase in feed rate and 

decreased with an increase in cutting speed. 
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4.3. Chip Morphology Produced During Dry Orthogonal Cutting of Ti-6Al-

4V Alloy 

Serrated chips were formed during the machining of Ti-6Al-4V alloy at the 

experimental cutting conditions. The cross-sectional SEM images of deformational 

microstructure in the material ahead of the tool tip for different cutting conditions such as 

cutting speed 43.2 m/min and feed rate 0.10 mm/rev, cutting speed 43.2 m/min and feed 

rate 0.15 mm/rev, cutting speed 43.2 m/min and feed rate 0.20 mm/rev, cutting speed 

43.2 m/min and feed rate 0.25 mm/rev, cutting speed 14.4 m/min and feed rate 

0.25 mm/rev, and cutting speed 29.6 m/min and feed rate 0.25 mm/rev are shown in Fig. 

4.6-4.11 respectively. It was observed that the chip thickness, distance between two shear 

bands, length of primary deformation zone and depth of deformed zone from the 

machined surface depended on the cutting conditions. It was confirmed for the SEM 

image of the shear band (Fig. 4.12) that the serrated chips were formed during the 

machining of Ti-6Al-4V alloy under these cutting conditions due to the adiabatic shear 

band formation. 

4.3.1. Chip Thickness Variation  

A cross sectional view of the machined chips (Fig. 4.13) reveals that the chip 

thickness varied with the feed rate. Fig. 4.14 also depicts that the chip thickness changes 

with the cutting speed. Average chip thickness measured from the different location of 

the chip, increased with the feed rate (Fig.4.15a) and also with the cutting speed (Fig. 

4.15b). The average chip thickness increased from 96 µm to 199.6 µm for the increment 

of feed rate from 0.10 mm/rev to 0.25 mm/rev. However, the ratio between the maximum 
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thickness (tmax) and minimum thickness (tmin) of the chips varied from 1.13 to 1.9 with the 

increment of feed rate from 0.10 mm/rev to 0.25 mm/rev (Fig. 4.16).  

4.3.2. Shear Band Frequency Variation 

The shear banding frequency or the average distance between the center-line of 

two consecutive shear bands was observed to vary with the feed rate (Fig. 4.13) and 

cutting speed (Fig. 4.14). The average shear band frequency increased with an increase in 

feed rate and cutting speed (Fig. 4.17). Shear band frequency increased from 23 µm to 

136 µm for the increment of feed rate from 0.10 mm/rev to 0.25 mm/rev. It was observed 

that the shear band frequency was lowest (23 µm) for the cutting conditions of 0.10 m/rev 

feed rate and 43.2 m/min cutting speed. However, the maximum shear band frequency 

(143 µm) was noted for the cutting conditions of 0.25 mm/rev feed rate and 63.5 m/min 

cutting speed.  

Figures 4.18 (a and b) show the variation of cutting force with the shear band 

frequency for different cutting conditions. However, it was observed that the cutting force 

was increased with the shear band frequency for different feed rates and decreased with 

the shear band frequency for different cutting speed.    

4.3.3. Shear Displacement Variation 

 Shear displacement can be defined as the displacement between two consecutive 

chip segments along the shear band. Shear displacement varied with the cutting 

conditions (Fig. 4.19). The average shear displacement increased with an increase in feed 

rate and cutting speed. The average shear displacement increased from 15 µm to 108 µm 
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for the increment of feed rate from 0.10 mm/rev to 0.25 mm/rev. However, the maximum 

average shear displacement (110 µm) was noted for the cutting conditions of 

0.25 mm/rev feed rate and 63.5 m/min cutting speed. 

4.3.4. Shear Band Width Variation 

Fig. 4.20 and Fig. 4.21 depict the shear bands formed under different cutting 

conditions. The average width of the shear band increased with the feed rate and cutting 

speed (Fig. 4.22). The average width of the shear band varied between 2.4 µm and 

8.5 µm for the feed rate from 0.10 mm/rev to 0.25 mm/rev. The maximum width of the 

shear band was 8.9 µm obtained during machining at 63.5 m/min and 0.25 mm/rev feed 

rate. However, the smallest width of the shear band (2.3 µm) was observed for the cutting 

condition of 43.2 m/min cutting speed and 0.10 mm/rev feed rate.  

4.3.5. Shear Strain within the Shear Band  

The shear strain within the shear band varied with the cutting conditions (Fig. 

4.23). It was observed that the shear strain within the shear band varied from 6.25 to 14.7 

for different cutting conditions and the maximum shear strain (14.7) was obtained during 

machining at 43.2 m/min cutting speed and 0.15 mm/rev feed rate. In case of different 

feed rate, the lowest shear strain value was 6.25 for cutting condition of 43.2 m/min 

cutting speed and 0.10 mm/rev feed rate. However, for different cutting speed, the lowest 

shear strain value was 8.5 for cutting condition of 14.4 m/min cutting speed and 

0.25 mm/rev feed rate. 



 

103 

 

4.4. Subsurface Microstructure below the Machined Surface: 

During machining the subsurface grains are deformed along the cutting direction. 

The deformation of the grains and the depth of deformation zone form the machined 

surface depend on the machining parameters. Fig. 4.24 and Fig. 4.25 depict the 

subsurface microstructure and the variation of depth of deformed zone for different 

cutting conditions. 

A close observation was done on the subsurface microstructure to find the white 

layer zone. Fig. 4.26 confirmed that no white layer was found below the machined 

surface.  

4.4.1. Strain Gradient 

The maximum strain generated below the machined surface and strain gradient 

that were measured using the ‘TableCurve 2D’ software, depended on the cutting 

conditions. Figures 4.27 (a and b) show the variation of strain gradient or the maximum 

strain generated below the machined surface with feed rate and cutting speed. For 

43.2 m/min of cutting speed the maximum strain below the machined surface at feed rate 

of 0.10 mm/rev, 0.15 mm/rev, 0.20 mm/rev and 0.25 mm/rev were 1.1, 1.2, 1.3 and 1.5 

respectively. The highest value of strain generated at the machined surface was 1.66 

observed for the cutting conditions of 63.5 m/min cutting speed and 0.25 mm/rev feed 

rate.  
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A relationship was developed between the distance below the machined surface 

(l) and the average equivalent strain ( ̅) for different cutting conditions. This relationship 

(R
2
 = 0.98) is defined as:  

 ̅                                  (4.1)  

Using Eq. 4.1, the average strain below the machined surface at any location can 

be measured. 

4.4.2. Depth of Deformed Zone 

The average depth of deformed zone calculated from Fig. 4.27, increased with an 

increase in feed rate and cutting speed (Fig. 4.28). It was observed that the depth of 

deform zone varied form 30 µm to 51 µm for the feed rate from 0.10 mm/rev to 

0.25 mm/rev. The maximum depth of deformed zone (55.1 µm) was observed for the 

cutting condition of 63.5 m/min cutting speed and 0.25 mm/rev feed rate. 

4.5. Analysis of Surface Finish of Machined Surface 

Surface finish is one of the most important factors in determining the 

machinability of an alloy and suitability of a component for a given application. Surface 

finish varies with the machining parameters. Surface roughness of the machined surface 

was studied in order to investigate the effect of cutting conditions such as cutting speed 

and feed per revolution on surface quality of the material.  

Surface profilometer, WYKO images and corresponding SEM images of the 

machined surface for different feed rates are shown in Fig. 4.29(a-d). It was found that 
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the surface roughness (Ra) of the machined surface increased with the feed rate. 

Figures 4.30(a-d) illustrate the WYKO images and corresponding SEM images of the 

machined surface for different cutting speeds. For 43.2 m/min of cutting speed the 

average surface roughness of the machined surface at feed rate of 0.10 mm/rev, 

0.15 mm/rev, 0.20 mm/rev and 0.25 mm/rev were 210 µm, 291 µm, 361 µm and 440 µm 

respectively. However, for 0.25 mm/rev of feed rate the average surface roughness of the 

machined surface at cutting speed of 14.4 m/min, 29.6 m/min, 43.2 m/min and 

63.5 m/min were 219 µm, 320 µm, 440 µm and 498 µm respectively. The variation of the 

average surface roughness with feed rate and cutting speed are shown in Fig. 4.31a and 

Fig. 4.31b respectively. It was observed that the surface quality decreased with an 

increase in feed rate and cutting speed. 

From the Figures 4.28 (a and b) and Figures 4.31 (a and b), it was observed that 

the both surface roughness and depth of deformed zone varied with the feed rate and 

cutting speed. As the feed rate or cutting speed was increased, the depth of deformed 

zone was increased and the surface roughness was also increased (Fig. 4.32). Surface 

roughness increased almost linearly with the depth of deformed zone. 

Fig. 4.33 depicts the relationship between the surface roughness and the 

maximum strain below the machined surface. It was noted that the surface roughness 

increased with the strain below the machined surface. However, the relationship between 

surface roughness and the shear band frequency (Fig. 4.34) suggested that the surface 

roughness also increased with the shear band frequency. 
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4.6. Strain Distribution in the Material Ahead of the Tool Tip 

A close and careful examination of the cross-sectional area of the machined 

section revealed that the   phase grains trace out well defined patterns which are very 

similar to flow lines present in the machined cross-section of softer materials such as 

copper [31] and Aluminum 1100 [28].  

The strain distributions in the material ahead of the tool tip for different cutting 

conditions such as cutting speed 63.5 m/min and feed rate 0.25 mm/rev, cutting speed 

43.2 m/min and feed rate 0.10 mm/rev, cutting speed 43.2 m/min and feed rate 

0.15 mm/rev, cutting speed 43.2 m/min and feed rate 0.20 mm/rev, cutting speed 

43.2 m/min and feed rate 0.25 mm/rev, cutting speed 14.4 m/min and feed rate 

0.25 mm/rev, and cutting speed 29.6 m/min and feed rate 0.25 mm/rev are shown in 

Fig. 4.35-4.41 respectively.  

It was observed that the strains decreased along the cutting line from the tool tip 

in the X-direction. The maximum strain is generated in the material at the tool tip for all 

the cutting conditions. For 43.2 m/min of cutting speed the maximum strain, at feed rate 

of 0.10 mm/rev, 0.15 mm/rev, 0.20 mm/rev and 0.25 mm/rev were 1.1, 1.2, 1.32 and 1.52 

respectively. However, for 0.25 mm/rev of feed rate the maximum strain, at cutting speed 

of 14.4 m/min, 29.6 m/min, 43.2 m/min and 63.5 m/min were 1.4, 1.45, 1.52 and 1.66 

respectively.  
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4.7. Flow Stress Distribution in the Material Ahead of the Tool Tip 

Vickers hardness measurements were used to find the variation in hardness in the 

material ahead of the tool tip of an orthogonally cut sample machined under different 

cutting conditions. Fig. 4.42 depicts the results of the microhardness measurements in the 

material ahead of the tool tip which were measured at regular intervals of 50 µm both 

parallel and normal to the cutting direction. Two additional measurements were made at 

30 µm above and below each indentation point, and the mean value of these 

measurements was used to represent the local microhardness. The maximum hardness 

was obtained in the material at the tool tip. 

The local flow stress values were estimated from the Vickers hardness 

measurements using the Eq.2.18. The stress distribution in the material ahead of the tool 

tip for the cutting condition of 63.5 m/min cutting speed and 0.25 mm/rev feed rate is 

shown in Fig. 4.43. The points on the micro-graph outline having the same value for 

stresses have also been connected together to obtain iso-stress contours.  

The flow distributions obtained from the hardness measurement, in the material 

ahead of the tool tip for different cutting conditions such as cutting speed cutting speed 

43.2 m/min and feed rate 0.10 mm/rev, cutting speed 43.2 m/min and feed rate 0.15 

mm/rev, cutting speed 43.2 m/min and feed rate 0.20 mm/rev, cutting speed 43.2 m/min 

and feed rate 0.25 mm/rev, cutting speed 14.4 m/min and feed rate 0.25 mm/rev, and 

cutting speed 29.6 m/min and feed rate 0.25 mm/rev are shown in Fig. 4.44-4.49 

respectively. For all the cutting conditions the maximum stress was observed at the tool 

tip and also the flow stress decreased along the cutting line from the tool tip in the X-
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direction. For 43.2 m/min of cutting speed the maximum flow stress, at feed rate of 0.10 

mm/rev, 0.15 mm/rev, 0.20 mm/rev and 0.25 mm/rev were 1439.1 MPa, 1446 MPa, 

1443 MPa and 1452.7 MPa respectively. However, for 0.25 mm/rev of feed rate the 

maximum flow stress, at cutting speed of 14.4 m/min, 29.6 m/min, 43.2 m/min and 

63.5 m/min were 1442 MPa, 144 MPa, 1452.7 MPa and 1457 MPa respectively. 

4.8. Cumulative Stress-Strain Curve  

A relationship between the plastic stresses and strains was established by plotting 

corresponding stress and strain values at each point in the material ahead of the tool tip. 

Fig. 4.50 reveals the flow curve that represents the relationship between the flow stresses, 

and equivalent strains developed during orthogonal cutting of Ti-6Al-4V alloy at cutting 

speed of 63.5 m/min and feed per revolution of 0.25 mm. A regression analysis showed 

that  ̅ and  ̅ relationship in Fig. 4.50 can be described using a phenomenological equation 

proposed by Voce [36]: 

 ̅    ̅̅ ̅     ̅̅ ̅   ̅        
 ̅

 ̅ 
               

(4.2) 

Cumulative stress strain curves for different cutting condition were also 

determined from the stress strain values in the material ahead of the tool tip. The 

magnitude of the cumulative stress-strain curve varied with the cutting conditions. The 

variation of the cumulative stress-strain curve with different feed rates and different 

cutting speeds are shown in Fig. 4.51 and Fig. 4.52 respectively. It was observed that the 

trend of the curves at different cutting conditions was almost identical. However, the 
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magnitude of the saturation stress varied in a short range from 1439.1 MPa to 1457 MPa 

for the increment of cutting speed due to the strain rate sensitivity of this alloy. In this 

case the strain rates were 800 s
-1

, 1630 s
-1

, 2400 s
-1

 and 3525 s
-1

 for cutting speeds of 14.4 

m/min, 29.6 m/min, 43.4 m/min and 63.5 m/min respectively.  

The Eq. 4.2 can be expressed in terms of a work hardening rate, (
  ̅

  ̅
) at a flow 

stress  ̅ as: 

  ̅

  ̅
 

 ̅ 

 ̅ 
   

 ̅

 ̅ 
                   (4.3) 

where,  ̅  is the saturation stress at which work hardening rate becomes zero,  ̅ (= 

1,242 MPa) is the yield strength of the material, and  ̅ (= 0.13) is a constant. 

 A plot of the work hardening rate, (
  ̅

  ̅
  versus the flow stress curves for different 

cutting conditions are given in Figures 4.53 (a and b), It was observed that the work 

hardening rate of the material decreased with the flow stress and became zero at the 

saturation stress. However, the magnitude of the saturation stress varied in order with the 

cutting speed. 

4.9. Energy Expended during Plastic Deformation 

 The energy consumption rate, i.e., the total energy consumed per unit time (P) 

during machining can be considered equal to the product of speed, V, and cutting force, 

Fc (i.e. P = VFc). It was observed that the energy consumption rate increased with the 

cutting speed and feed rate (Fig. 4.54). The maximum value of the energy consumption 
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rate was 950.1 W observed during the machining at 63.5 m/min cutting speed and 

0.25 mm/rev feed rate. However, the minimum value of the energy consumption rate 

(363 W) was observed during the machining at 43.2 m/min cutting speed and 0.10 

mm/rev feed rate. 

The energy consumption per unit volume of material removal or specific cutting 

energy, U, was calculated as: 

   
  

  
⁄                (4.4) 

where t is the depth of cut (= 3.2 mm) and f is the feed rate. 

Specific energy is the total energy expended during the cutting process. It was 

observed that the specific cutting energy decreased with the cutting speed and feed rate 

(Fig. 4.55). The minimum value of the specific cutting energy (1122.4 MJ/m
3
) was 

observed during the machining at 63.5 m/min cutting speed and 0.25 mm/rev feed rate. 

The energy expended during the deformation of the material ahead of the tool tip 

can also be calculated from the area under the stress/strain curve. For each increment of 

strain, the work of plastic deformation, W, (per unit volume) is calculated using the Eq. 

2.20. 

  ∫    ̅̅ ̅     ̅̅ ̅   ̅        
 ̅

 ̅ 
 

 ̅   

 ̅ 
   ̅        (2.20) 
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The stress relationship obtained from cumulative stress-strain plot shown in 

Fig.4.51 was found to follow Voce’s equation and this relationship was used for 

estimation of work of plastic deformation using Eq. 2.20. 

 

The iso-strain lines for the deformed material ahead of the tool tip are plotted in 

Fig. 4.56, and the (average) plastic work extended per unit volume (W) of the material 

between the iso-strain lines was given (numbers in brackets). For the cutting condition of 

43.2 m/min cutting speed and 0.10 mm/rev feed rate, the cumulative plastic work 

expended per unit volume of material in the region between lowest strain and highest 

strain, which was approximately bound by the isostrain lines of 0.01 and 1.10, was 

computed as 1537.2 MJm
-3 

(Fig. 4.56). 

However, For the cutting condition of 63.5 m/min cutting speed and 0.25 mm/rev 

feed rate, the cumulative plastic work expended per unit volume of material in the region 

between lowest strain (0.1) and highest strain (1.66) was computed as 2253.9 MJm
-3

 

(Fig. 4.57). 

4.10. Temperature Rise Due to Plastic Deformation 

The temperature increase (  ) due to conversion of deformation energy to heat 

within a unit volume of material can be expressed by Eq. 2.21. 

   
 

  
∫    ̅̅ ̅     ̅̅ ̅   ̅        

 ̅

 ̅ 
 

 ̅   

 ̅ 
   ̅               (2.21) 
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where,   is the fraction of plastic work converted into heat and it is taken as 0.95 [18], 

  = 4.43 gm/cm
3
, and specific heat, C = 0.526 J/g. ˚C.  

Fig. 4.58 reveals the temperature distribution diagram in the material ahead of the 

tool tip for the cutting condition of 63.5 m/min cutting speed and 0.25 mm/rev feed rate. 

Maximum temperature was 1217 K (944 ˚C) generated in the material ahead of the tool 

tip and in the secondary deformation zone (SDZ). The temperature decreased along the 

cutting line from the tool tip in the X-direction. 

Similarly, the temperature distributions diagram obtained from the cumulative 

stress-strain curve, for different cutting conditions such as cutting speed cutting speed 

43.2 m/min and feed rate 0.10 mm/rev, cutting speed 43.2 m/min and feed rate 0.15 

mm/rev, cutting speed 43.2 m/min and feed rate 0.20 mm/rev, cutting speed 43.2 m/min 

and feed rate 0.25 mm/rev, cutting speed 14.4 m/min and feed rate 0.25 mm/rev, and 

cutting speed 29.6 m/min and feed rate 0.25 mm/rev are shown in Fig. 4.59-4.64 

respectively. It was observed at the tool tip temperature varied with the cutting conditions 

and the temperature decreased along the cutting line from the tool tip in the X-direction. 

For 43.2 m/min of cutting speed the tool tip temperature, at feed rate of 0.10 mm/rev, 

0.15 mm/rev, 0.20 mm/rev and 0.25 mm/rev were 900 K (627 ˚C), 959 K (686 ˚C), 1055 

K (782 ˚C) and 1125 K (852 ˚C) respectively. However, for 0.25 mm/rev of feed rate the 

tool tip temperature, at cutting speed of 14.4 m/min, 29.6 m/min, 43.2 m/min and 

63.5 m/min were 997 K (724 ˚C), 1040 K (767 ˚C), 1125 K (852 ˚C) and 1217 K (944 

˚C) respectively. It was observed that the temperature at the tool tip was increased with 

the feed rate (Fig. 4.65a) and also with the cutting speed (Fig. 4.65b). 
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Temperatures at the tool tip for different cutting condition were measured using 

the temperature measurement system and it was observed that the tool tip temperature 

increased with increasing the feed rate (Fig. 4.66a) and cutting speed (Fig. 4.66b). A 

comparison between the calculated temperature using Eq. 2.21 and the temperature 

measured by temperature measurement system was also observed for different cutting 

conditions. It was observed that the temperature values measured by temperature 

measurement system were lower than the calculated values due to the heat loss and 

location of the thermocouple. The thermocouple was mounted at the rake face and 0.8 

mm away from the cutting edge.  

4.11. Temperature and Hardness of the shear band 

The temperature within the shear zone,     was measured by Eq. 2.25. 

    
  

  
 [

 

       √
  

    

]                      (2.25) 

where,     is the cutting speed (63.5 m/min or 1.05 m/s) and d is depth of cut which is 

equal to the feed rate (0.25 mm/rev),      is the ambient temperature (23 ˚C), K is the 

thermal diffusivity of Ti-6Al-4V alloy (2.87 10
-6

 m
2
/s). 

The shear stress on the shear plane   was calculated from the Eq. 2.6.  

   
                

[
   

    
]

           (2.6) 
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where, the cutting and thrust forces for 63.5 m/min cutting speed and 0.25 mm/rev feed 

rate, were 898 N and 430 N respectively. The width or thickness of the workpiece (w) 

was 3.2 mm and the shear angle,   was 39 ˚. Therefore, the calculated shear stress was 

336.11 MPa. Under this cutting condition the shear strain,      
  

  
), within the shear 

band was 12.54 where ds was calculated from the Fig. 4.15d as 110.32   23.71 µm and    

was calculated from Fig. 4.22, was 8.79   1.45 µm.   

Therefore, the temperature within the shear band was 1235.5 ˚C or 1508.5 K 

which was greater than the         transus temperature 1268±15 K (995±15 ˚C). 

Shear band temperature within the shear band for different cutting conditions are 

shown in Fig. 4.67. It was observed that the temperature within the shear band was higher 

than the transformation temperature for the cutting conditions of 43.2 m/min cutting 

speed and 0.15 mm/rev feed rate, 43.2 m/min cutting speed and 0.20 mm/rev feed rate, 

43.2 m/min cutting speed and 0.25 mm/rev feed rate, 29.6 m/min cutting speed and 

0.25 mm/rev feed rate, and 63.5 m/min cutting speed and 0.25 mm/rev feed rate. 

However, the shear band temperature was lower than the transformation temperature for 

the cutting conditions of 43.2 m/min cutting speed and 0.10 mm/rev feed rate, and 

14.4 m/min cutting speed and 0.25 mm/rev feed rate. 

Microhardness of the shear band measured using the Vickers hardness 

measurement with 10 gm load, was 395.4   4.1 HV. Fig. 4.68 shows the SEM image of 

indentations of microhardness measurements. The spacing distance of indentation was 

approximately 20 µm. It was observed in Fig. 4.69 that the microhardness value of the 

shear band was lower than the surrounding deformed grains (409.1   5.5 HV). 
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However, cracks were observed at the shear band (Fig. 4.12) and the 

microhardness ahead of the crack tip was high (402.1   7.9 HV). The microhardness 

varied with the distance from the crack tip (Fig. 4.70). 

4.12. Tool Surface 

Tool surface and edge were observed before (Fig. 4.71a) and after (4.71b) the 

machining of Ti-6Al-4V alloy. Transferred material was observed after the machining 

operation on the cutting edge of the cutting tool. EDS results (Fig. 4.72a) and the EDS 

mapping results (Fig. 4.72b) confirmed that the transferred material contained titanium, 

aluminum, vanadium etc. that came from the workpiece (Ti-6Al-4V alloy) during 

machining. It was also observed that the amount of transferred material depended on the 

cutting conditions (Fig. 4.73). At lower cutting speed the amount of transferred material 

was less (13.8 % area) compared to the amount of transferred material at higher cutting 

speed (23.6 % area).  
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Fig. 4.1. Plots showing variation of cutting forces with time for Ti-6Al-4V alloy when 

machined under (a) different magnitudes of feed per revolution and a constant cutting 

speed or 43.2 m/min, (b) different magnitudes of cutting speed and a constant feed rate or 

0.25 mm/rev.  
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Fig. 4.2. Plot showing the variation of average cutting forces with increase in (a) feed for 

43.2 m/min cutting speeds and (b) cutting speed for 0.25 mm feed per revolution. 
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Fig.4.3. Plots showing variation of thrust forces with time for Ti-6Al-4V alloy when 

machined under (a) different magnitudes of feed per revolution and a constant cutting 

speed of 43.2 m/min, (b) different magnitudes of cutting speed and a constant feed rate or 

0.25 mm/rev.   

 

Stable zone used for  

average force 

measurement 

(a) 0.25 mm/rev 

0.20 mm/rev 

0.15 mm/rev 

0.10 mm/rev 

Cutting Speed 43.2 m/min 

 

Feed rate 0.25 mm/rev 

63.5 m/min 

 

14.4 m/min 

 

43.2 m/min 

 

29.6 m/min 

 

Stable zone used for  

average force measurement 

(b) 



 

119 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.4. Plot showing the variation of average thrust forces with (a) increase in feed for 

43.2 m/min cutting speeds and (b) increase in cutting speed for 0.25 mm feed per 

revolution. 
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Fig. 4.5. Variation of cutting and thrust forces for per unit depth of cut, with (a) the feed 

rate and (b) the cutting speed. 
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Fig. 4.6. (a) Cross-sectional SEM image of the material ahead of the tool tip of Ti-6Al-

4V alloy. Cutting speed = 43.2 m/min and feed rate = 0.10 mm/rev, (b) Close view of the 

primary deformation zone. 
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Fig. 4.7. (a) Cross-sectional SEM image of the material ahead of the tool tip of Ti-6Al-

4V alloy. Cutting speed = 43.2 m/min and feed rate = 0.15 mm/rev, (b) Close view of the 

primary deformation zone. 
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Fig. 4.8. (a) Cross-sectional SEM image of the material ahead of the tool tip of Ti-6Al-

4V alloy. Cutting speed = 43.2 m/min and feed rate = 0.20 mm/rev, (b) Close view of the 

primary deformation zone. 
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Fig. 4.9. (a) Cross-sectional SEM image of the material ahead of the tool tip of Ti-6Al-

4V alloy. Cutting speed = 43.2 m/min and feed rate = 0.25 mm/rev, (b) Close view of the 

primary deformation zone. 
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Fig. 4.10. (a) Cross-sectional SEM image of the material ahead of the tool tip of Ti-6Al-

4V alloy. Cutting speed = 14.4 m/min and feed rate = 0.25 mm/rev, (b) Close view of the 

primary deformation zone. 
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Fig. 4.11. (a) Cross-sectional SEM image of the material ahead of the tool tip of Ti-6Al-

4V alloy. Cutting speed = 29.6 m/min and feed rate = 0.25 mm/rev, (b) Close view of the 

primary deformation zone.  
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Fig. 4.12. (a) SEM image of the shear band. Schematic diagram of the shear band is 

shown in the insert. Here w is the width of the shear band, (b) Diagram showing the crack 

at the end of the shear band. Machining conditions: 63.5 m/min cutting speed and 0.25 

mm/rev feed rate. 
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Fig. 4.13. Cross-sectional view of machined chips at different feed rates: (a) 0.10 mm/rev 

feed; (b) 0.15 mm/rev feed; (c) 0.20 mm/rev feed and (d) 0.25 mm/rev feed. tmax and tmin 

are the maximum and minimum chip thickness of the chip respectively. Ls is the distance 

between the center-line of two consecutive shear bands.  
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Fig. 4.14. Cross-sectional view of machined chips at different cutting speeds: (a) 14.4 

m/min; (b) 29.6 m/min; (c) 43.2 m/min and (d) 63.5 m/min. tmax and tmin are the 

maximum and minimum chip thickness of the chip respectively. Ls is the distance 

between the center-line of two consecutive shear bands and ds is the shear displacement. 
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Fig. 4.15. Variation of average chip thickness with (a) the feed rate and (b) the cutting 

speed. 
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Fig. 4.16. Variation of the ratio between the maximum thickness (tmax) and minimum 

thickness (tmin) of the chips with feed rate. 
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Fig. 4.17. Increment of the shear band frequency (the average distance between the 

centerline of two consecutive shear bands) with (a) the feed rate and (b) cutting speed. 
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Fig. 4.18. Diagram showing the variation of normalized cutting force with the shear band 

frequency for different (a) feed rate and (b) cutting speed. 
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Fig. 4.19. Diagram showing the variation of shear displacement with the (a) feed rate and 

(b) cutting speed. 
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Fig. 4.20. SEM image of the shear band formed at different feed rates: (a) 0.10 mm/rev 

feed; (b) 0.15 mm/rev feed; (c) 0.20 mm/rev feed and (d) 0.25 mm/rev feed.  
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Fig. 4.21. SEM image of the shear band formed at different cutting speeds: (a) 14.4 

m/min; (b) 29.6 m/min; (c) 43.2 m/min and (d) 63.5 m/min.  
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Fig. 4.22. Variation of the average width of the shear band with (a) the feed rate and (b) 

the cutting speed.  
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Fig. 4.23. Variation of the shear strain within the shear band with (a) the feed rate and (b) 

the cutting speed.  
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Fig. 4.24. Subsurface microstructure below the machined surface of Ti-6Al-4V alloy 

subjected to orthogonal cutting at different feed rates: (a) 0.10 mm/rev, (b)0.15 mm/rev, 

(c) 0.20 mm/rev and (d) 0.25 mm/rev and constant cutting speed of 43.2 m/min; 

Cutting direction 
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Fig. 4.25. Subsurface microstructure below the machined surface of Ti-6Al-4V alloy 

subjected to orthogonal cutting at different cutting speeds: (a) 14.4 m/min, (b) 29.6 

m/min, (c) 43.2 m/min and (d) 63.5 m/min and constant feed rate of 0.25 mm/rev. 
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Fig. 4.26. High magnification (4000x) SEM image of the microstructure below the 

machined surface of Ti-6Al-4V alloy subjected to orthogonal cutting at 63.5 m/min 

cutting speed and 0.25 mm/rev feed rate. No white layer was observed below the 

machined surface. 
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Fig. 4.27. Diagram showing the variation of strain gradient below the machined surface 

of Ti-6Al-4V alloy subjected to orthogonal cutting at different (a) feed rates and (b) 

cutting speeds. 
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Fig 4.28. Diagram showing the variation of depth of deformed zone with the (a) feed rate 

and (b) cutting speed. 
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Fig. 4.29. WYKO images (595.1 µm   452.8 µm) and corresponding SEM images of 

machined surface at different feed rates: (a,b) 0.10 mm/rev feed; (c,d) 0.15 mm/rev feed; 

(e,f) 0.20 mm/rev feed and (g,h) 0.25 mm/rev feed. 
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Fig. 4.30. WYKO images (595.1 µm   452.8 µm) and corresponding SEM images of 

machined surface at different cutting speeds. (a,b) 14.4 m/min; (c,d) 29.6 m/min; (e,f) 

43.2 m/min and (g,h) 63.5 m/min cutting speed. 
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Fig. 4.31. Variation of average surface roughness with (a) feed rate and (b) cutting speed. 
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Fig. 4.32. Diagram showing the relationship between the surface roughness and the depth 

of deformed zone below the machined surface. Here Ra is the surface roughness, D is the 

depth of deformed zone and Ro is the initial surface roughness. 
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Fig. 4.33. Diagram showing the relationship between the surface roughness and the 

maximum strain below the machined surface. Here Ra is the surface roughness,  ̅ is the 

strain below the machined surface and Ro is the initial surface roughness. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.34. Diagram showing the relationship between the surface roughness and the shear 

band frequency. Here Ra is the surface roughness,    is the shear band frequency and Ro 

is the initial surface roughness. 
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Fig. 4.35. Plastic strain distribution diagram where the equivalent strains were estimated 

using the value of shear angle at each location. Machining conditions: cutting speed of 

63.5 m/min and feed per revolution of 0.25 mm. 
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Fig. 4.36. Plastic strain distribution diagram for the machining conditions of 43.2 m/min 

cutting speed 0.10 mm/rev feed rate.  
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Fig. 4.37. Plastic strain distribution diagram for the machining conditions of 43.2 m/min 

cutting speed 0.15 mm/rev feed rate.  
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Fig. 4.38. Plastic strain distribution diagram for the machining conditions of 43.2 m/min 

cutting speed 0.20 mm/rev feed rate.  
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Fig. 4.39. Plastic strain distribution diagram for the machining conditions of 43.2 m/min 

cutting speed 0.25 mm/rev feed rate.  
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Fig. 4.40. Plastic strain distribution diagram for the machining conditions of 14.4 m/min 

cutting speed 0.25 mm/rev feed rate.  
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Fig. 4.41. Plastic strain distribution diagram for the machining conditions of 29.6 m/min 

cutting speed 0.25 mm/rev feed rate.  
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Fig. 4.42. Diagram showing the variation in hardness values in the material ahead of the 

tool tip for sample machined under cutting speed of 63.5 m/min and feed per revolution 

of 0.25mm. Average hardness value of three indentations, taken on the alloy, at the points 

of intersection of an imaginary grid of 50 μm X 50 μm, has been used for the diagram. 

50 grams load was used for each measurement.  
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Fig. 4.43. Diagram showing the variation in flow stress (in units of MPa) values in the 

material ahead of the tool tip for sample machined under cutting speed of 63.5 m/min and 

feed per revolution of 0.25mm. Here OAC is the cutting line. 
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Fig. 4.44. Flow stress (in units of MPa) distribution diagram for the machining conditions 

of 43.2 m/min cutting speed 0.10 mm/rev feed rate.  

 

 

 

 

 

 

 

 

 

 

Fig. 4.45. Flow stress (in units of MPa) distribution diagram for the machining conditions 

of 43.2 m/min cutting speed 0.15 mm/rev feed rate. 
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Fig. 4.46. Flow stress (in units of MPa) distribution diagram for the machining conditions 

of 43.2 m/min cutting speed 0.20 mm/rev feed rate. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.47. Flow stress (in units of MPa) distribution diagram for the machining conditions 

of 43.2 m/min cutting speed 0.25 mm/rev feed rate. 
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Fig. 4.48. Flow stress (in units of MPa) distribution diagram for the machining conditions 

of 14.4 m/min cutting speed 0.25 mm/rev feed rate.  

 

 

 

 

 

 

 

Fig. 4.49. Flow stress (in units of MPa) distribution diagram for the machining conditions 

of 29.6 m/min cutting speed 0.25 mm/rev feed rate. 
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Fig. 4.50. The cumulative stress–strain curves of Ti-6Al-4V alloy subjected to orthogonal 

cutting. Machining conditions were cutting speed of 63.5 m/min and feed per revolution 

of 0.25 mm. O, A and C are the different points on the cutting line shown in Fig. 4.43. 
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Fig. 4.51. The cumulative stress–strain curves of Ti-6Al-4V alloy subjected to orthogonal 

cutting at different feed rates such as: 0.10 mm/rev, 0.15 mm/rev, 0.20 mm/rev and 

0.25 mm/rev, and constant cutting speed 43.2 m/min. 
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Fig. 4.52. The cumulative stress–strain curves of Ti-6Al-4V alloy subjected to orthogonal 

cutting at different cutting speeds such as: 14.4 m/min, 29.6 m/min, 43.2 m/min and 63.5 

m/min, and constant feed rate 0.25 mm/rev. 
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Fig. 4.53. The variation of work hardening rates with the flow stress for Ti-6Al-4V alloy 

subjected to orthogonal cutting at: (a) different feed rates and (b) different cutting speeds. 
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Fig. 4.54. Diagram showing the energy consumption rate duting machining of Ti-6Al-4V 

alloy subjected to orthogonal cutting at different (a) feed rates and (b) cutting speeds. 
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Fig. 4.55. Diagram showing the specific cutting energy duting machining of Ti-6Al-4V 

alloy subjected to orthogonal cutting at different (a) feed rates and (b) cutting speeds. 
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Fig. 4.56. The work of plastic deformation per unit volume of material (MJ m
-3

) between 

each increment of equivalent strain. The average plastic work values for each strip of 

material bound between two iso-strain lines are indicated inside square brackets. 

Machining conditions were 43.2 m/min cutting speed and 0.10 mm feed per revolution. 
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Fig. 4.57. The work of plastic deformation per unit volume of material (MJ m
-3

) between 

each increment of equivalent strain. The average plastic work values for each strip of 

material bound between two iso-strain lines are indicated inside square brackets. 

Machining conditions were 63.5 m/min cutting speed and 0.25 mm feed per revolution. 
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Fig. 4.58. Temperature map (in units of Kelvin) showing local increases in temperature as 

a result of transformation of the work done during plastic deformation into heat. 

Machining conditions were cutting speed of 63.5 m/min and feed per revolution of 0.25 

mm.  
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Fig. 4.59. Temperature (in units of Kelvin) distribution diagram for the machining 

conditions of 43.2 m/min cutting speed 0.10 mm/rev feed rate. 

 

 

 

 

 

 

 

Fig. 4.60. Temperature (in units of MPa) distribution diagram for the machining 

conditions of 43.2 m/min cutting speed 0.15 mm/rev feed rate. 
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Fig. 4.61. Temperature (in units of MPa) distribution diagram for the machining 

conditions of 43.2 m/min cutting speed 0.20 mm/rev feed rate. 

 

 

 

 

 

 

 

Fig. 4.62. Temperature (in units of MPa) distribution diagram for the machining 

conditions of 43.2 m/min cutting speed 0.25 mm/rev feed rate. 
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Fig. 4.63. Temperature (in units of MPa) distribution diagram for the machining 

conditions of 14.4 m/min cutting speed 0.20 mm/rev feed rate. 

 

 

 

 

 

 

 

Fig. 4.64. Temperature (in units of MPa) distribution diagram for the machining 

conditions of 29.6 m/min cutting speed 0.25 mm/rev feed rate. 
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Fig. 4.65. Variation of the maximum temperature ahead of the tool tip with (a) the feed 

rate and (b) cutting speed. 
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Fig. 4.66. Plots showing the variation of tool tip temperature with increasing the (a) feed 

rate and (b) cutting speed. 
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Fig. 4.67. Variation of the temperature within the shear band with the (a) feed rate and (b) 

cutting speed. 
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Fig. 4.68. SEM image of the indentations of microhardness measurements within the 

shear band and outside of the shear band. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.69. Microhardness distribution across the shear band formed under the cutting 

condition of 63.5 m/min cutting speed and 0.25 mm/rev feed rate. 
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Fig. 4.70. (a) Optical image of the indentations of microhardness measurements within 

the shear band and near the crack tip. (b) Variation of microhardness within the shear 

band with the distance form the  crack tip. 
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Fig. 4.71. SEM images of the polycrystalline diamond (PCD) tool (a) before the 

machining test, (b) after the machining of Ti-6Al-4V alloy. Transferred material was 

observed at the edge of the tool after the cutting. 
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Fig. 4.72. (a) EDS results of the transferred material on the tool edge. (b) EDS mapping 

of the tool surface confirms that the transferred material mainly contains titanium, 

aluminum, and vanadium that comes from the workpiece material (Ti-6Al-4V alloy). 
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Fig. 4.73. SEM images of the polycrystalline diamond (PCD) tool after the machining of 

Ti-6Al-4V alloy at (a) 43.2 m/min of cutting speed and 0.25 mm/rev of feed and (b) 63.5 

m/min of cutting speed and 0.25 mm/rev of feed rate. More transferred material was 

observed at the edge of the tool for higher cutting speed. 
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CHAPTER 5: Numerical Results 

5.1. Introduction 

In this chapter the numerical results obtained using the two different methods, 

namely, 2D Lagrangian element formulation method and smoothed particle 

hydrodynamic (SPH) formulation, are discussed. In this research the numerical models 

were developed using the experimental data. The results obtained from the numerical 

models have been presented in the following sections:  

5.2. Johnson-Cook Material Model  

The Johnson–Cook equation (Eq. 2.29) constants for Ti-6Al-4V alloy were 

determined from the experimentally observed stress–strain behaviour (Fig. 4.23).  

        ̅ 
 
        ̇                 (2.29) 

Experimentally determined the stress-strain curve was fitted with Eq. 5.3 using a 

curve fitting software called ‘TableCurve 2D(v5.01)’ shown in Fig. 5.1. 

           ̅ 
     

            (5.3) 

 Accordingly,   , B, and n were found to 1240 MPa, 220 MPa, and 0.26, 

respectively for machining conditions of 63.5 m/min or 1.05 m/sec of cutting speed and 

0.25 mm/rev of feed rate.   
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The strain rate sensitivity, c, was calculated using the Eq. 2.31, from the stress-

strain curve for different cutting speeds (Fig. 4.25b). 

  
 ̇

 
(
  

  ̇
)
   

 
          

     ̇   ̇  
          

(2.31) 

 The strain rates for 63.5 m/min and 29.6 m/min cutting speeds are 3525 s
-1

 and 

1630 s
-1

 respectively, and the corresponding saturated stresses are 1457 MPa and 1444 

MPa. The calculated value of the strain rate sensitivity, c, is 0.012.  

In the JC material model, another failure criteria such as maximum effective 

strain at failure (= 1.66) and shear strain at failure (= 2.2) obtained from the experimental 

strain distribution diagram (Fig. 4.20), were also imposed. 

The assigned value of coefficient of friction (COF) in contact between tool and 

workpiece in the numerical model was also calculated from the experimental results. 

COF value was calculated using the Eq. 2.5. The cutting and thrust force were 898 N and 

430 N respectively, for the machining conditions of 63.5 m/min or 1.05 m/sec of cutting 

speed, 0.25 mm/rev feed rate and +5˚ of rake angle. The calculated value of the 

coefficient of friction,  , is 0.6. The values of the static and dynamic coefficients of 

friction for contact between tool and workpiece were specified as 0.6 since it was 

assumed that the COF was constant during cutting. 
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5.2.1. 2D Lagrangian element formulation 

Serrated chips were obtained using 2D Lagrangian Element Formulation 

implementing the Johnson-Cook material model with damage criteria. 

5.2.1.1. Energy balance 

The balance between external work and total energy in a numerical simulation is 

very important to the validity of the results.  Fig. 5.2 shows the typical energy balance of 

the serrated chip formation simulation using 2D Lagrangian element formulation, 

including the external work, total energy, kinetic energy, internal energy, hourglass 

energy and sliding energy. The total energy of the system was almost equivalent to the 

external work. The total energy was composed of internal energy stored in the deformed 

workpiece and kinetic energy of the moving tool and workpiece. The sliding and 

hourglass energies were negligible, confirming that neither hourglass deformation nor 

penetration occurred. The energy ratio was 1.0 throughout the simulation, which 

established the results were valid with respect to the energy balance 

5.2.1.2 Deformation of the workpiece 

During the simulation, force applied by the rigid tool imposed a displacement on 

the workpiece and caused mesh deformation (Fig. 5.3a). A very fine Lagrangian mesh 

(3 µm X 3 µm) compared to the mesh used by [149], was used to avoid the mesh 

distortion and usually a finer mesh distribution is favorable in numerical modeling to 

ensure more precise calculations. Fig. 5.3b depicts that excessive deformation is occurred 

in the workpiece at the tool tip. Large amount of deformation also occurred at the PDZ. 
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As the strain value in the material reaches to the failure strain calculated from the 

Johnson-Cook failure equation (Eq. 2.32), the corresponding elements of the workpiece 

are deleted and finally serrated chips are formed. The average width of the chip which is 

equal to the average chip frequency, is about 118.6   11.8 µm. However, in experimental 

case serrated chips were formed due to the formation of adiabatic shear band. 

5.2.1.3. Strain Distribution 

The strain distribution in the workpiece model is shown in Fig. 5.4a. Fig. 5.4b 

depicts the contours of strain distribution in the workpiece model. It was observed that 

the maximum strain was generated in the workpiece ahead of the tool tip. The model 

predicted the maximum strain as 1.65 at the tool tip (Fig. 5.4b) and the strain decreased 

along the cutting line from the tool tip in the X-direction. Numerically predicted depth of 

deformed zone and length of the primary deformation zone (from tool tip to chip root) 

were 35 µm and 400 µm respectively.  

5.2.1.4. Stress Distribution 

The stress distribution in the workpiece model is shown in Fig. 5.5a. Fig. 5.5b 

depicts the contours of stress distribution in the workpiece model. It was observed that 

the maximum predicted stress was generated in the PDZ of the workpiece. The model 

predicted the maximum stress as 1464 MPa at the primary deformation zone (Fig. 5.5b).  

5.2.1.5. Temperature Distribution 

Fig. 5.6a represents the temperature profile and Fig. 5.6b depicts the temperature 

distribution contours in the workpiece ahead of the tool tip. It was observed that the 
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maximum temperature was generated in the material at the tool tip and also in the 

secondary deformation zone (SDZ). The maximum predicted temperature was 1222 K 

occurred during machining of Ti-6Al-4V alloy at 63.5 m/min cutting speed and 

0.25 mm/rev feed rate.   

5.2.1.6. Cutting Force Prediction 

The force that is required to move the tool to the workpiece in the X-direction is 

equal to the cutting force for that machining condition.  Fig. 5.7 depicts the variation of 

cutting force per unit thickness with time. Due to the formation of segmented chips, the 

force varied in a long range. The predicted average cutting force was 245.5   88.2 N/mm 

measured from the stable force zone. 

5.2.2. Smoothed-particle hydrodynamics (SPH) formulation  

Serrated chips were also formed using Smoothed-particle hydrodynamics (SPH) 

formulation implementing the Johnson-Cook material model with damage criteria. 

5.2.2.1. Energy Balance 

The energy balance typical of simulations performed with Smoothed-particle 

hydrodynamics (SPH) formulation is shown in Figure 5.8. The total energy was 

composed of internal energy stored in the deformed workpiece and kinetic energy of the 

moving tool and workpiece. In this case, the total energy of the system was almost 

equivalent to the external work. The sliding and hourglass energies were negligible, 

confirming that neither hourglass deformation nor penetration occurred. The energy ratio 
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was 1.0 throughout the simulation, which established the results are valid with respect to 

the energy balance. 

5.2.2.2 Deformation of the Workpiece 

Similar to the 2D Lagrangian element formulation method, excessive deformation 

was occurred in the workpiece at the tool tip for smoothed-particle hydrodynamics (SPH) 

formulation (Fig. 5.9a). Fig. 5.9b depicts that excessive deformation is occurred in the 

workpiece at the tool tip. Large amount of deformation is also occurred at the PDZ.  

5.2.2.3. Strain Distribution 

The strain distribution in the workpiece model is shown in Fig. 5.10a. Fig. 5.10b 

depicts the contours of strain distribution in the workpiece model. The maximum strain 

(1.6) was generated in the workpiece ahead of the tool tip. The strain value decreased 

along the cutting line from the tool tip in the X-direction. Numerically predicted depth of 

deformed zone and length of the primary deformation zone (from tool tip to chip root) 

using the SPH formulation, were 24 µm and 380 µm respectively.  

5.2.2.4. Stress Distribution 

The stress distribution in the workpiece model is shown in Fig. 5.11a. The 

contours of stress distribution in the workpiece model are shown in Fig. 5.11b. It was 

observed that the maximum predicted stress was generated in the PDZ of the workpiece. 

The model predicted the maximum stress as 1736 MPa at the tool tip.  
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5.2.2.5. Temperature Distribution 

Fig. 5.12a represents the temperature profile in the model. The temperature 

distribution contours in the workpiece ahead of the tool tip are shown in Fig. 5.12b. It 

was observed that the maximum temperature was generated in the material at the tool tip 

and also in the secondary deformation zone (SDZ). The maximum predicted temperature 

was 892 K occurred during machining of Ti-6Al-4V alloy at 63.5 m/min cutting speed 

and 0.25 mm/rev feed rate.   

5.2.2.6. Cutting Force Prediction 

Fig. 5.13 depicts the variation of cutting force per unit thickness with time during 

machining of Ti-6Al-4V alloy at 63.5 m/min of cutting speed and 0.25 mm/rev of feed 

rate using SPH formulation. The force varied in a long range due to the formation of 

segmented chips. The predicted average cutting force is 307.9   93.2 N/mm measured 

from the stable force zone. 

5.2.3. Machining at higher cutting speed 

 The model developed using the 2D Lagrangian element formulation was used to 

simulate the machining of Ti-6Al-4V alloy at higher cutting speed. In this case the 

cutting speed was 1500 RPM or 120 m/min. It was predicted that the maximum strain in 

the material ahead of the tool tip was 1.80 and the temperature at the tool tip was 1288 K 

or 1015 ˚C for the cutting condition of 120 m/min of cutting speed and 0.25 mm/rev of 

feed rate. The predicted average shear band frequency or the distance between two shear 
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bands and the average cutting force measured from the stable force zone, are 128.4   8.2 

µm and 238.1   95.2 N/mm respectively.  

5.2.4. Effect of Friction  

The friction between the tool and the workipiece is an important issue during 

machining. In this case, different friction values (µ = 0.0, µ = 0.3, µ = 0.6 and µ = 0.99) 

were assigned into the numerical model and the effect of friction was observed. It was 

observed that the temperature at the tool tip depended on the friction value. The predicted 

temperature at the tool tip was 1020 K (747 ˚C) for zero friction value. However, the 

predicted temperature for high coefficient value (0.99) was 1255 K (982 ˚C) at the tool 

tip (Fig. 5.14).  

It was also observed that the strain at the tool tip also varied with increasing the 

COF value. The strains at the tool tip were 1.40, 1.48, 1.65 and 1.80 for the friction 

values of 0.0, 0.30, 0.60 and 0.99. The strain at the tool tip increased with the friction 

value assigned at the contact between tool and workpiece (Fig. 5.15). From the strain 

value, the surface roughness value of the machined surface can also be predicted using 

the Fig. 4.33.  
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Fig. 5.1. Experimental stress-strain curve fitted with power law curve where the R
2
 value 

is 0.95. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.2. Energy balance of serrated chip formation simulation using 2D Lagrangian 

element formulation. 
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Fig. 5.3. (a) Serrated chips formation in simulated orthogonal cutting using Johnson-

Cook material model, where w is the width of the chip which is equal to the shear band 

frequency, (b) Close view of PDZ. 
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Fig. 5.4. (a) Strain distribution diagram, (b) Schematic strain distribution diagram in the 

material ahead of the tool tip for the cutting condition of 63 m/min of cutting speed and 

0.25 mm/rev of feed rate. 
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Fig. 5.5. (a) Stress distribution diagram (in units of Kg/mm/s
2
), (b) Schematic stress 

distribution diagram in the material ahead of the tool tip for the cutting condition of 63 

m/min of cutting speed and 0.25 mm/rev of feed rate. 
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Fig. 5.6. (a) Temperature distribution diagram (in unit of Kelvin), (b) Schematic 

temperature distribution diagram in the material ahead of the tool tip for the cutting 

condition of 63 m/min of cutting speed and 0.25 mm/rev of feed rate. 
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Fig. 5.7. Variation of cutting force per unit thickness with time for the cutting condition 

of 63 m/min of cutting speed and 0.25 mm/rev of feed rate. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.8. Energy balance of serrated chip formation simulation using Smoothed-particle 

hydrodynamics (SPH) formulation. 
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Fig. 5.9. (a) Serrated chips formation in simulated orthogonal cutting using Smoothed-

particle hydrodynamics (SPH) formulation with Johnson-Cook material model, (b) Close 

view of PDZ. 
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Fig. 5.10. (a) Strain distribution diagram, (b) Schematic strain distribution diagram in the 

material ahead of the tool tip for the cutting condition of 63 m/min of cutting speed and 

0.25 mm/rev of feed rate using the SPH formulation. 
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Fig. 5.11. (a) Stress distribution diagram (in unit of Kg/mm/s
2
), (b) Schematic stress 

distribution diagram in the material ahead of the tool tip for the cutting condition of 

63 m/min of cutting speed and 0.25 mm/rev of feed rate using the SPH formulation. 
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Fig. 5.12. (a) Temperature distribution diagram (in unit of Kelvin), (b) Schematic 

temperature distribution diagram for the cutting condition of 63 m/min of cutting speed 

and 0.25 mm/rev of feed rate using the SPH formulation. 
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 Fig. 5.13. Variation of cutting force per unit thickness with time for the cutting condition 

of 63 m/min of cutting speed and 0.25 mm/rev of feed rate using the SPH formulation. 

 

 

 

 

 

 

 

Fig. 5.14. Diagram showing the effect of friction on the temperature at the tool tip. 
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Fig. 5.15. Diagram showing the effect of friction on the strain at the tool tip. 
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CHAPTER 6: Discussion 

6.1. Introduction 

Orthogonal cutting of Ti-6Al-4V alloy, which produced serrated chips, was 

studied by machining the alloy under different cutting condition to assess the effects of 

machining parameters such as the feed rate and cutting speed. The effect of feed rate and 

cutting speed on the machining forces, chip morphology, subsurface deformation zone, 

the surface quality and temperature at the tool tip, is discussed in this chapter. The 

comparison between experimental results and the numerical results is also presented in 

this chapter. 

6.2 Cutting and Thrust Force Measurements     

Cutting and thrust forces were measured during orthogonal cutting of the Ti-6Al-

4V alloy at different cutting conditions. It was found that the cutting force and thrust 

forces varied with the cutting conditions (Fig. 4.5). It was observed as noted in 

section 4.2.3, that the cutting force per unit depth of cut, ranged from approximately 

157 N/mm to 388 N/mm. It was reported in the literature that the cutting force for the 

cutting condition of 43.2 m/min and 0.10 mm/rev feed rate was 175 N/mm [183]. 

However, the measured cutting force under the same cutting condition was 160 N/mm 

which was approximately equal to the reported value. This showed that the force 

responses are within the acceptable range. 
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Fig. 4.5a illustrates that the cutting and thrust forces increased with an increase in 

feed rate. Cutting force increased almost linearly with the feed rate. With the increase in 

feed, material removal rate (  = Vcfd, where Vc is the cutting speed, f is the feed rate and 

d is the depth of cut), and hence the rate of plastic deformation, increases resulting in 

increase in the cutting force [184]. However, the temperature was increased with the feed 

rate. The effect of temperature was less to reduce the forces. 

The variation of cutting force and thrust force with the cutting speed is illustrated 

in Fig. 4.5b. Observations indicate that the cutting and thrust forces decrease with the 

cutting speed. Machining at higher speed generates higher temperature at the tool tip 

compared to the machining at lower speed. Due to the increment of temperature at the 

tool tip, the forces required for removing metal and forming chip are also decreased 

[185,186].  

During machining of the Ti-6Al-4V alloy the force responses fluctuated in 

magnitude. It was suggested that the fluctuation was occurred due to the cyclic generation 

of the shear bands in the chips during machining [15].  Vibration in tool and lathe also 

influenced the fluctuation. 

6.3 Surface Quality of the Machined Surface     

Surface profilometer, WYKO images and corresponding SEM images of the 

machined surface for different feed rates (Fig. 4.29(a-d)) and different cutting speeds 

(Fig. 4.30 (a-d)) confirmed that the surface quality depended on the cutting conditions. It 

was observed that the temperature at the tool tip increased with increasing the feed rate 
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and cutting speed (Fig. 4.65). Due to the increment of temperature, the depth of deformed 

zone and the maximum strain generated at the machined surface or the strain gradient 

increased. Surface roughness was observed to increase with feed rate and cutting speeds 

due to the strain gradient and the depth of deformed zone. A linear relationship was found 

between the surface roughness and the depth of deformed zone. However, the surface 

roughness was also increased linearly with the shear band frequency.  

For low feed such as 0.10 mm/rev, the temperature at the tool tip was 900 K 

(627 ˚C), the depth of deformed zone was 30 µm, maximum strain below the machined 

surface is 1.1 and the surface roughness is 210 nm. However for high feed such as 0.25 

mm/rev, the temperature at the tool tip was 1125 K (852 ˚C), the depth of deformed zone 

was about 52 µm, maximum strain below the machined surface was 1.5 and the surface 

roughness is 440 nm. High temperature increased the depth of deformed zone and strain 

gradient or strain below the machined surface. These factors influenced the surface 

roughness or decreased the surface quality. 

The importance of the surface roughness value depends on the application of the 

machined products. If the acceptable limit of the surface roughness is 500 nm, in that 

case, all the cutting conditions can be applied. However, in case of productivity, the most 

suitable cutting condition would be of 63.5 m/min cutting speed and 0.25 mm/rev feed 

rate due to the low cutting force, low specific cutting energy and high productivity.  
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6.4. Chip Morphology and Adiabatic Shear Band Formation 

Figures 4.13 and 4.14 confirmed that the serrated chips were formed during 

machining of Ti-6Al-4V alloy under the different cutting conditions used in this research. 

According to Eq. 2.22, the criteria for catastrophic slip can be written as: 

0   
  

  

 
  

  
 
  

  

  1           (2.22) 

In Eq. 2.22, if the ratio between the strain hardening and thermal softening is in 

between zero and 1, the material will shear catastrophically and shear band will be 

formed.  

For the cutting conditions of 63.5 m/min and 0.25 mm/rev, the average work 

hardening rate (
  

  
) for the flow stress between 1400 MPa  and 1440 MPa was 223 MPa 

obtained from Fig. 4.53b. The corresponding   ,    and    values were 0.16, -40 MPa 

and 83 K obtained from Figures 4.35, 4.43 and 4.58 respectively (value difference from 

(50 µm, 0 µm) to (100 µm, 0 µm)). The calculated value of the ratio between the strain 

hardening and thermal softening or, (

  

  

 
  

  
 
  

  

) was 0.89 which satisfied the formation of 

adiabatic shear band criterion. Adiabatic shear bands were formed as the thermal 

softening predominated over the strain hardening. Similar procedure was applied for the 

other cuttings conditions and it was found that the criterion was satisfied shown in Table 

6.1. However, the SEM image of the shear band (Fig. 4.12) also confirmed that the 

serrated chips were formed due to the formation of adiabatic shear bands. The ratio 
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between the strain hardening and thermal softening for aluminum and copper were also 

determined (discussed in Appendix D) and the values were greater than 1. For this 

reason, the shear band was absent in aluminum and copper in that cutting conditions.    

Table 6.1. Important properties of different metals [40-45].  

Machining Conditions 𝜹𝝈
𝜹 

 
  
  

 
  
  

 

SB formation criteria 

satisfied or unsatisfied 

0.10 feed rate & 43.2 m/min 0.96 Satisfied 

0.15 feed rate & 43.2 m/min 0.91 Satisfied 

0.20 feed rate & 43.2 m/min 0.86 Satisfied 

0.25 feed rate & 43.2 m/min 0.71 Satisfied 

0.25 feed rate & 14.4 m/min 0.87 Satisfied 

0.25 feed rate & 29.6 m/min 0.77 Satisfied 

0.25 feed rate & 43.2 m/min 0.71 Satisfied 

0.25 feed rate & 63.5 m/min 0.89 Satisfied 

 

 Semiatin and Rao [75], suggested the flow localization parameter for the 

formation of adiabatic shear band. The flow localization parameter can be defined as 

[76]: 
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where, m is the strain rate sensitivity, c is the heat capacity and k is the thermal 

diffusivity. The flow localization parameter depends on the cutting speed and feed rate. 

For the formation of shear localization in the Ti-6Al-4V alloy, the critical value of chip 

load which is defined by (feed   cutting speed) or Vf  is 0.004 m
2
/min [76].  

In this research, the chip load values for the cutting conditions such as cutting 

speed cutting speed 43.2 m/min and feed rate 0.10 mm/rev, 43.2 m/min and feed rate 0.15 

mm/rev, cutting speed 43.2 m/min and feed rate 0.20 mm/rev, cutting speed 43.2 m/min and 

feed rate 0.25 mm/rev, cutting speed 29.6 m/min and feed rate 0.25 mm/rev, and cutting 

speed 63.5 m/min and feed rate 0.25 mm/rev were 0.0043 m
2
/min, 0.0065 m

2
/min, 

0.0086 m
2
/min, 0.0108 m

2
/min, 0.0074 m

2
/min and 0.0159 m

2
/min respectively. All these 

values were higher than the critical chip load value (0.004 m
2
/min) and shear 

localizations were observed. However, shear localization was also observed for the 

cutting condition of 43.2 m/min cutting speed and 0.10 mm/rev feed rate which had the chip 

load value 0.0036 m
2
/min (<0.004 m

2
/min). Shear localization was observed in this 

cutting condition as the chip load value was close to the critical value. 

Chip thickness (Fig. 4.15), shear band frequency or the average distance between 

the center-line of two consecutive shear bands (Fig. 4.17) and shear band width (Fig. 

4.22) varied with the machining parameters such as feed rate and cutting speed. As the 

cutting speed and the feed rate increased the maximum temperature at the tool tip also 

increased (Fig. 4.65). Due to the large thermal gradient, the chip thickness as well as the 

shear band frequency and the shear band width increased with the feed rate and cutting 

speed [102]. However, the obtained values were identical with the literature [104]. 
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6.5. Study of Plastic Deformation by Stress-Strain Estimation 

The effect of feed rate and cutting speed on the stress-strain curve was also 

studied. It was found that the value of saturation stress increased with the cutting speed 

(Fig. 4.52) or the strain rate ( ̇        where L is the length of deformed zone). As Ti-

6Al-4V alloy is a strain rate sensitive material [33], the saturation stress increases with 

increasing the strain rate. The value of strain rate sensitivity, c, of Ti-6Al-4V alloy is low 

(c = 0.012) and in this case the cutting speed varied within a short range or the strain rate 

varied form 800 s
-1

 to 3525 s
-1

. For these reasons the saturation stress varied within a 

short range from 1442 MPa to 1457 MPa for the cutting speed from 14.6 m/min to 63.5 

m/min respectively. 

It was also found that the saturation stress varied within a short range (from 1440 

MPa to 1452 MPa) for different feed rates (Fig. 4.51). In this case, the material was 

deformed at a constant speed. A close observation of the stress-strain curves for different 

feed rate suggested that the deformation behaviour of Ti-6Al-4V alloy was independent 

of feed rate. However, it is also suggested in the literature that the saturation stress or the 

deformation behaviour is independent of feed rate during metal cutting [187].  

6.6. Temperature at the Tool Tip 

A large portion of the work done during the plastic deformation of the workpiece 

is transformed into heat to produce a temperature increase (  ) in the work material. The 

temperature distribution diagram in the material ahead of the tool tip for different cutting 

conditions (Figures 4.58-4.64) revealed that the temperature at the tool tip varied with the 
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cutting parameters such as cutting speed and feed rate. Material removal rate or the 

plastic deformation of the workpiece increased with the feed rate and cutting speed and 

for this reason the temperature gradient or tool tip temperature also increased. However, 

the temperature at the tool tip for Ti-6Al-4V alloy for machining at 43.2 m/min cutting 

speed and 0.25 mm/rev feed rate was higher (1125 K or 852 ˚C) compared to the 

temperature (517 K or 244 ˚C) for aluminum 1100 for machining at 36 m/min cutting 

speed and 0.30 mm/rev feed rate [28]. The temperature distribution diagrams also 

illustrate that the temperature gradients are steep and the heat-affected zone is small due 

to the low thermal conductivity of the Ti-6Al-4V alloy (Table. 2.1).  

However, the experimentally measured temperatures (Fig. 4.66) at the tool tip 

were lower than the calculated value due to the low thermal conductivity of the carbide 

tool and moreover the thermocouple was placed approximately 1 mm away from the tool 

edge.  Transferred material was observed at the tool edge due to adhesion. It was 

confirmed using EDS (Fig. 4.72) that the transferred material was the workpiece material 

(Ti-6Al-4V alloy). The amount of transferred material was increased with an increase in 

the cutting speed (Fig. 4.73) due to the temperature increment. 

6.7. Temperature and Hardness of the Shear Band 

The temperature within the shear band was greater than the         

transformation temperature (995±15 ˚C) [6], which indicated that transformed type 

adiabatic shear bands were formed during machining of Ti-6Al-4V alloy. However, for 

the cutting conditions of 43.2 m/min and 0.10 mm/rev feed rate, and 14.4 m/min and 

0.25 mm/rev feed rate, the temperature within the shear were 1023 K (800 ˚C) and 
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1248 K (975 ˚C) respectively. Deformed shear band is formed and the shear strain value 

within the shear band was lower for these cutting conditions. The shear strain values were 

6.5 and 8.5 for the cutting conditions of 43.2 m/min and 0.10 mm/rev feed rate, and 14.4 

m/min and 0.25 mm/rev feed rate respectively. However, for the rest of the cutting 

conditions the temperature within the shear band was higher than the transformation 

temperature. As a result transformed shear band was formed and the shear strain within 

the shear band was higher (Fig. 4.23). However, for the phase transformation within the 

shear band, cracks were observed in the shear band. This crack was formed due to the 

volume mismatch. Volume mismatch occurred as the   phase (b.c.c. structure) 

transformed into    matensite (h.c.p. structure) due to rapid cooling. The hardness of the 

crack tip was also measured and the value was high due to the plastic zone formation 

ahead of the crack tip.  

Fig. 4.69 shows that the hardness value of the shear band was lower than the 

surrounding deformed grains. It was reported in the literature that the hardness of the 

shear band was up to   10 % lower than the adjacent deformed matrix for transformed 

shear band. In this case, the hardness of the shear band was 3.6 % lower than the adjacent 

deformed matrix which indicated the shear band formed during machining of Ti-6Al-4V 

alloy at the cutting speed of 63.5 m/min and feed rate of 0.25 mm/rev was ‘transformed’ 

shear band.  
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6.8. Comparison between Experimental and Numerical Results 

An accurate model for orthogonal machining should be able to predict the strain, 

stress and temperature distributions in the material ahead of the tool tip, and the 

magnitudes of cutting forces accurately. In this research, the Johnson-Cook material 

model was used to represent the workpiece, where the most of the parameters of the 

Johnson-Cook material model were obtained from the experimental results. Although the 

chips were not separated or failed during experimental machining of Ti-6Al-4V alloy, 

failure criteria were used in numerical modeling to obtain the serrated chips under this 

research. However, cracks were observed at the end of the shear bands during chip 

formation (Fig. 4.12b).  

For 2D Lagrangian element formulation the mesh size of the workpiece was small 

(3 µm   3 µm). However for smoothed particle hydrodynamics (SPH) formulation, the 

distance between the two particles were 8 µm. The metal cutting simulation using 2D 

Lagrangian element formulation with mesh size of 8 µm   8 µm was also performed and 

it was confirmed that the results were not affected by this mesh size. For the SPH 

formulation the initial number of neighbors per particles was also varied from 100 to 200 

and confirmed that the results were not affected by this initial number of neighbors per 

particles. 

The comparisons between the experimental and numerical results are discussed 

below. 



 

211 

 

6.8.1. Strain Distribution 

Both the Lagrangian element formulation (Fig. 5.3) and Smoothed-particle 

hydrodynamics (SPH) formulations (Fig. 5.9) predicted the serrated chips during 

orthogonal cutting of Ti-6Al-4V alloy. Both the models predicted the maximum strain as 

1.65 at the tool tip (Fig. 5.4 and Fig. 5.10) for the machining conditions of cutting speed 

of 63.5 m/min and feed rate of 0.25 mm/rev, which was identical with the experimental 

strain at the tool tip (Fig. 4.35). The strains decreased along the cutting line form the tool 

tip in the X-direction for both (experimental and numerical) cases. Experimentally 

obtained length of the primary deformation zone (from tool tip to chip root) was 400 µm 

while the numerically predicted length was 375 µm for both models. In the mid-section 

of the primary shear plane (175µm, 125µm), experimentally determined strain was 0.25 

while the numerically predicted strain values were 0.17 and 0.20 for Lagrangian element 

formulation and SPH formulations respectively. The experimental depth of the deformed 

zone below the machined surface was 40 µm, where the predicted values were 35 µm and 

25 µm for Lagrangian element formulation and SPH formulation respectively. However, 

both numerical strain distributions showed good overall correlation with the experimental 

strain distributions. 

6.8.2. Stress Distribution 

The experimental stress distributions (Fig. 4.43) showed that the maximum stress 

was 1457 MPa, generated at the primary deformation zone. The predicted maximum 

stress using the Lagrangian element formulation method was 1464 MPa generated at the 

PDZ (Fig. 5.5) which was close to the experimental result.  Numerical stress distributions 
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in the material ahead of the tool tip using the Lagrangian element formulation method 

were observed to be somewhat similar to the experimental findings. At the point (150 

µm, 0 µm), the experimental stress was 1350 MPa while the numerically predicted value 

was 1340 MPa. However, the SPH formulation predicted much higher stress (1736 MPa) 

at the PDZ (Fig. 5.11) compared to the experimental results.   

6.8.3. Temperature Distribution 

The Experimental temperature distributions showed that the maximum 

temperature was 1217 K, generated at the tool tip and the secondary deformation zone 

(Fig. 4.58). The Lagrangian element formulation predicted the maximum temperature as 

1222 K at the tool tip and SDZ (Fig. 5.6), which was in a very good agreement to the 

experimental value. At the point (25 µm, 0 µm), the experimental temperature was 470 K 

while the predicted value was 495 K. However the SPH formulation predicted much 

lower temperature (892 K) at the tool tip and SDZ (Fig. 5.12) compared to the 

experimental results.  

6.8.4. Cutting Force 

The experimental average cutting force for the machining of Ti-6Al-4V alloy at 

63.5 m/min of cutting speed and 0.25 mm/rev of feed rate was 280.6   8.1 N/mm (Fig. 

4.5). The predicted average cutting forces were 245.5   88.2 N/mm and 307.9   93.2 

N/mm using the Lagrangian element formulation (Fig. 5.7) and SPH (Fig. 5.13) 

formulations respectively. It was found that both the predicted the cutting forces were 

comparable to the experimental results. 
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The above discussion on the comparison between experimental and numerical 

results suggests that the both models predict the strain, stress and temperature 

distributions, and cutting force close to the experimental results. However, the predicted 

results are more accurate for the Lagrangian element formulation method. For this reason, 

this model can be used to predict the cutting force as well as the temperature, stress and 

strain distributions in the material ahead of the tool tip for different cutting conditions. 

However, the model did not predict the deformation behaviour at the shear band 

accurately 

The Lagrangian element formulation method was also used to analyze the effect 

of friction at the contact between tool and the workpiece on the temperature at the tool 

tip. The temperature at the tool tip increases with increasing the friction value (Fig. 5.14) 

and due to the increment of temperature at the tool tip, the strain at the tool tip was also 

increased with the friction. 

From this both experimental and numerical work the mechanism of chip 

formation during machining of Ti-6Al-4V alloy is clarified. The effect of feed rate and 

cutting speed on the surface quality is also clarified. The numerical model can predict the 

stress, strain and temperature distributions in the material ahead of the tool tip similar to 

the experimental results. Using the numerical model the effect of friction was analyzed. 

However, this model can also be used to obtain the optimum cutting conditions for the 

machining of Ti-6Al-4V alloy. 
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CHAPTER 7. CONCLUSIONS 

7.1. Conclusions 

The present research studied on the effect of machining parameters on the 

deformation microstructure and surface morphology of Ti-6Al-4V alloy during dry 

orthogonal cutting tests. The main conclusions drawn from this study are: 

1. During machining of Ti-6Al-4V alloy at different feed rates and cutting speeds 

serrated chips are formed due to the adiabatic shear band formation. 

2. Shear band frequency or the average distance between the center-line of two 

consecutive shear bands, shear band width and chip thickness increased with feed 

rate and cutting speed. The temperature generated during machining increased 

with increasing the feed rate and cutting speed, and amplified the shear band 

frequency and shear band width. 

3. The cutting and thrust forces were increased with the feed rate due to the 

increment of material removal rate. However, the cutting and thrust forces were 

decreased with increasing the cutting speed due to the increment of temperature. 

4. The depth of deformed zone below the machined surface increased with an 

increase in the feed rate and cutting speed due to the increment of temperature and 

this has led to the increment of surface roughness. 

5. The distributions of equivalent strain and Local flow stress in the material ahead 

of the tool tip were determined in a machined Ti-6Al-4V alloy at different cutting 

speeds and feed rates. The maximum equivalent strain and flow stress generated 
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in the material at the tool tip were varied with the cutting conditions. The strain in 

the material ahead of the tool tip increased with the feed rate and cutting speed.    

6. Flow curves that showed the relationship between the flow stresses and the 

equivalent strains were obtained for different cutting conditions. It was found that 

the saturation stress was independent of the feed rate. However, that saturation 

stress increased with the cutting speed due to the strain rate sensitivity of this 

alloy.    

7. The temperature increment due to plastic deformation in the material ahead of the 

tool tip was determined using the equivalent flow stress and the equivalent strain 

relationship. The temperature ahead of the tool tip was increased with the cutting 

speed and feed rate due to the increment of material removal rate or plastic 

deformation of the material. 

8. The temperature within the shear band was 1508.5 K or 1235.5 ˚C, which is 

higher than the         transus temperature (995±15 ˚C) and transformed 

adiabatic shear band is formed. However, the hardness of the shear band was 

lower compared to the surrounding deformed zone and indicated the transformed 

shear band. 

9. To represent the experimental work, numerical models were developed using 2D 

Lagrangian element formulation and Smoothed-particle hydrodynamics (SPH) 

formulation implementing Johnson-Cook material model with the Johnson-Cook 

damage criteria. The parameters used in the JC material model were determined 

form the experimental flow curves.    
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10. Both 2D Lagrangian element formulation and Smoothed-particle hydrodynamics 

(SPH) formulation predicted the serrated chips formations.  Both models also 

predicted the strain, stress and temperature distributions, and cutting force close to 

the experimental results. However, the Lagrangian element formulation predicted 

all the distributions and force more accurately compared to SPH formulation.  

11. The Lagrangian element formulation was used to predict the effect of friction at 

the tool-workpiece contact. It was found that the temperature at the tool tip 

increased with an increase in the friction value. However, due to the increment of 

temperature, strain at the tool tip was also increased with friction. This result 

suggests that a better quality tool has to be developed that would reduce the 

friction and temperature as well as increase the tool life and productivity. 

The Lagrangian element formulation can be used to predict the cutting force as 

well as the temperature, stress and strain distributions in the material ahead of the tool tip 

for different cutting conditions and that would help to reduce the production cost and 

time. However, the model did not predict the deformation behaviour at the shear band 

accurately.  

7.2. Suggestions for Future Work 

The future work that may be performed to carry this research work further would 

be to machine the Ti-6Al-4V alloy with coolant and to understand the effect of coolant on 

the deformation of the workpiece, chip morphology and the surface quality.  Machining 

of Ti-6Al-4V alloy can be done at very high cutting speed to understand the effect of high 

cutting speed. However, TEM analysis can be performed to investigate the shear band 
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zone more deeply. Different coated tool can be used to find out a suitable coated tool for 

machining Ti-6Al-4V alloy that can resist the thermal stress and have the characteristic of 

chemical inertness. 

For numerical analysis, a suitable material model that can take into account the phase 

transformation phenomena or that can represent the machining operation more 

accurately, can be develop. Microstructural modelling obtained using the microstructure 

of the Ti-6Al-4V alloy can also be developed to understand the deformation behaviour 

during machining operation more clearly. The grain deformation can be observed more 

accurately form the microstructure based modeling. 
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APPENDIX A 

Deformation Angle ( ) Measurement at Each Point Using “TableCurve 2D” 

Software 

 Fig. A.1. depicts the microstructure below the machined surface. The  -phase 

grans are deformed along the cutting direction. ABO is a flow line that is drawn by using 

the  -phase grans as a marker.  

 

 

 

 

 

 

 

Fig. A.1. SEM image of the microstructure below the machined surface (Cutting speed 

63.5 m/min and feed rate 0.25 mm/rev). Here ABO is a flow line drawn by using the  -

phase grans as a marker.   and   are the shear and deformation angle respectively. 

The equation for the ABO flow line was determined using the curve fitting 

software named “TableCurve 2D” where the R
2
 value was 0.95. The equation is:  
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The value of     ⁄  or      was determined using analytical software named 

‘MAPLE 12’ from the Eq. A.1 as: 

  

  
     

 
                            

                                

 
                                                             

                                   
 

 

             (A.2) 

Form the Eq. A.2, the value of shear angle,  , at point of the flow line was determined 

and the deformation angle was determined as:    90 –   . 
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APPENDIX B 

Sample LS-DYNA Input File for Ti-6Al-4V Alloy Using Lagrangian Element 

Formulation 

*KEYWORD 

$ UNITS: micrometer, kilograms and seconds  

*TITLE 

Ti-6Al-4V Alloy Using Lagrangian Element Formulation                                               

*CONTROL_HOURGLASS 

$#     ihq        qh 

         6  0.100000 

*CONTROL_SOLUTION 

$#    soln       nlq     isnan     lcint 

         2         0         0       100 

*CONTROL_TERMINATION 

$#  endtim    endcyc     dtmin    endeng    endmas 

 7.3000E-4         0     0.000     0.000     0.000 

*CONTROL_THERMAL_SOLVER 

$#   atype     ptype    solver     cgtol       gpt    eqheat     fwork       sbc 

         1         0         1     0.000         0     0.000  1.000000     0.000 

*CONTROL_THERMAL_TIMESTEP 

$#      ts       tip       its      tmin      tmax     dtemp      tscp      lcts 

         0  0.500000 1.0000E-7     0.000     0.000     0.000     0.000         0 

*CONTROL_TIMESTEP 

$#  dtinit    tssfac      isdo    tslimt     dt2ms      lctm      

     0.000  0.900000         0     0.000     0.000         0          

*DATABASE_GLSTAT 

1.0000E-7         0         0         1 

*DATABASE_MATSUM 

1.0000E-7         0         0         1 

*DATABASE_RBDOUT 

1.0000E-7         0         0         1 

*DATABASE_RCFORC 

1.0000E-7         0         0         1 

*DATABASE_TPRINT 

1.0000E-7         0         0         1 

*DATABASE_BINARY_D3PLOT 

$#      dt      lcdt      beam     npltc    psetid 

 1.0000E-7         0         0         0         0 

*DATABASE_BINARY_D3THDT 

$#      dt      lcdt      beam     npltc    psetid 

 1.0000E-7         0         0         0         0 

 

*DATABASE_EXTENT_BINARY 

$#   neiph     neips    maxint    strflg    sigflg    epsflg    rltflg    engflg 

         0         0         3         1         1         1         1         1 

$#  cmpflg    ieverp    beamip     dcomp      shge     stssz    n3thdt   ialemat 

         0         0         0         1         1         1         2         1 

$# nintsld   pkp_sen      sclp    unused     msscl     therm    intout    nodout 

         0         0  1.000000         0         0          

*BOUNDARY_PRESCRIBED_MOTION_RIGID 

$#     pid       dof       vad      lcid        sf       vid     death     birth 

         2         1         0         1  1.000000         01.0000E+28     0.000 

*BOUNDARY_SPC_SET 

$#    nsid       cid      dofx      dofy      dofz     dofrx     dofry     dofrz 

         1         0         1         1         1         1         1         1 

*SET_NODE_LIST_TITLE 

NODESET(SPC) 1 

$#     sid       da1       da2       da3       da4 

         1     0.000     0.000     0.000     0.000 

$#    nid1      nid2      nid3      nid4      nid5      nid6      nid7      nid8 
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    104116    104192    104268    104344    104420    104496    104572    104648 

………… (Cont’d) 

 

*BOUNDARY_SPC_SET 

$#    nsid       cid      dofx      dofy      dofz     dofrx     dofry     dofrz 

         2         0         0         0         1         1         1         0 

*SET_NODE_LIST_TITLE 

NODESET(SPC) 2 

$#     sid       da1       da2       da3       da4 

         2     0.000     0.000     0.000     0.000 

$#    nid1      nid2      nid3      nid4      nid5      nid6      nid7      nid8 

    104116    104117    104118    104119    104120    104121    104122    104123 

………… (Cont’d) 

 

*CONTACT_2D_AUTOMATIC_SINGLE_SURFACE_ID 

$#     cid                                                                 title 

         2                                                                       

$#    sids      sidm     sfact      freq        fs        fd        dc     membs 

         3         0  1.000000        50  0.600000  0.600000 1000.0000         6 

$#  tbirth    tdeath       sos       som       nds       ndm       cof      init 

     0.0001.0000E+20  1.000000  1.000000         0         0         0         0 

*SET_PART_LIST_TITLE 

WP 

$#     sid       da1       da2       da3       da4 

         3     0.000     0.000     0.000     0.000 

$#    pid1      pid2      pid3      pid4      pid5      pid6      pid7      pid8 

         1         0         0         0         0         0         0         0 

*CONTACT_2D_AUTOMATIC_SURFACE_TO_SURFACE_ID 

$#     cid                                                                 title 

         2                                                                       

$#    sids      sidm     sfact      freq        fs        fd        dc     membs 

         3         4  1.000000        50  0.600000  0.600000 10.000000         6 

$#  tbirth    tdeath       sos       som       nds       ndm       cof      init 

     0.0001.0000E+20  1.000000  1.000000         0         0         0         0 

*SET_PART_LIST_TITLE 

Tool 

$#     sid       da1       da2       da3       da4 

         4     0.000     0.000     0.000     0.000 

$#    pid1      pid2      pid3      pid4      pid5      pid6      pid7      pid8 

         2         0         0         0         0         0         0         0 

*PART 

$# title 

WP                                                                               

$#     pid     secid       mid     eosid      hgid      grav    adpopt      tmid 

         1         1         4         1         0         0         0         1 

*SECTION_SHELL_TITLE 

WP 

$#   secid    elform      shrf       nip     propt   qr/irid     icomp     setyp 

         1        13  1.000000         3         1         0         0         1 

$#      t1        t2        t3        t4      nloc     marea      idof    edgset 

  1.100000  1.100000  1.100000  1.100000     0.000     0.000     0.000         0 

*MAT_JOHNSON_COOK_TITLE 

WP 

$#     mid        ro         g         e        pr       dtf        vp 

         4 4.4300E-6 5.5000E+7 1.1000E+8  0.330000     0.000     0.000 

$#       a         b         n         c         m        tm        tr      epso 

 1.2400E+6 2.2000E+5  0.260000  0.012300  1.010000 1933.0000 296.00000  1.000000 

$#      cp        pc     spall        it        d1        d2        d3        d4 

 5.6800E+8     0.000  1.000000  1.000000 -0.090000  0.500001  0.480000  0.014000 

$#      d5 

  2.500000 

*EOS_GRUNEISEN 

$#   eosid         c        s1        s2        s3     gamao         a        e0 

         1 5.1300E+6  1.028000     0.000     0.000  1.230000  0.500000     0.000 

$#      v0 

  1.000000 

*PART 

$# title 

$#     pid     secid       mid     eosid      hgid      grav    adpopt      tmid 

         2         2         2         0         0         0         0         2 



 

236 

 

 

 

*SECTION_SHELL_TITLE 

Tool 

$#   secid    elform      shrf       nip     propt   qr/irid     icomp     setyp 

         2        13  1.000000         3         1         0         0         1 

$#      t1        t2        t3        t4      nloc     marea      idof    edgset 

  1.110000  1.110000  1.110000  1.110000     0.000     0.000     0.000         0 

*MAT_RIGID_TITLE 

Tool 

$#     mid        ro         e        pr         n    couple         m     alias 

         2 7.1000E-6 2.1000E+8  0.330000     0.000     0.000     0.000           

$#     cmo      con1      con2 

  1.000000         5         7 

$# lco or a1      a2        a3        v1        v2        v3 

     0.000     0.000     0.000     0.000     0.000     0.000 

*MAT_ADD_EROSION 

$#     mid      excl    mxpres     mneps    effeps    voleps    numfip       ncs 

         4     0.000     0.000     0.000  1.660000     0.000  1.000000  1.000000 

$#  mnpres     sigp1     sigvm     mxeps     epssh     sigth   impulse    failtm 

     0.000     0.000     0.000  1.660000  2.000000     0.000  4.200000  1.000000 

*MAT_THERMAL_ISOTROPIC_TITLE 

Workpiece 

$#    tmid       tro     tgrlc    tgmult      tlat      hlat 

         1 4.4300E-6     0.000     0.000     0.000     0.000 

$#      hc        tc 

 5.2600E+8 6700.0000 

*MAT_THERMAL_ISOTROPIC_TITLE 

Tool 

$#    tmid       tro     tgrlc    tgmult      tlat      hlat 

         2 7.1000E-6     0.000     0.000     0.000     0.000 

$#      hc        tc 

 5.2600E+8 27200.000 

*INITIAL_TEMPERATURE_SET 

$#    nsid      temp       loc 

         0 300.00000         0 

*DEFINE_CURVE_TITLE 

Velocity 

$#    lcid      sidr       sfa       sfo      offa      offo     

         1         0  1.000000  1.000000     0.000     0.000          

$#                a1                  o1 

               0.000        1060.0000000 

           0.1000000        1060.0000000 

*ELEMENT_SHELL 

$#   eid     pid      n1      n2      n3      n4      n5      n6      n7      n8 

   67976       2   71709   71710   71721   71720       0       0       0       0 

   67977       2   71710   71711   71722   71721       0       0       0       0 

………… (Cont’d) 

 

*NODE 

$#   nid               x               y               z      tc      rc 

   71709      -0.0028500       0.2161320           0.000       0       0 

………… (Cont’d) 

 

*END 
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APPENDIX C 

Sample LS-DYNA Input File for Ti-6Al-4V Alloy Using Smoothed-particle 

hydrodynamics (SPH) 

*KEYWORD 

$ UNITS: micrometer, kilograms and seconds  

*TITLE 

Ti-6Al-4V Alloy Using Smoothed-particle hydrodynamics (SPH) 

*CONTROL_ENERGY 

$#    hgen      rwen    slnten     rylen 

         2         2         1         1 

*CONTROL_HOURGLASS 

$#     ihq        qh 

         1  0.100000 

*CONTROL_SOLUTION 

$#    soln       nlq     isnan     lcint 

         2         0         0       100 

*CONTROL_SPH 

$#    ncbs     boxid        dt      idim    memory      form     start      maxv 

         2         0  0.100000         0       150         0     0.0001.0000E+15 

$#    cont     deriv 

         0         0 

*CONTROL_TERMINATION 

$#  endtim    endcyc     dtmin    endeng    endmas 

  0.002000         0     0.000     0.000     0.000 

*CONTROL_THERMAL_SOLVER 

$#   atype     ptype    solver     cgtol       gpt    eqheat     fwork       sbc 

         1         0         1     0.000         0     0.000  1.000000     0.000 

*CONTROL_THERMAL_TIMESTEP 

$#      ts       tip       its      tmin      tmax     dtemp      tscp      lcts 

         0  0.500000 1.0000E-7     0.000     0.000     0.000     0.000         0 

*CONTROL_TIMESTEP 

$#  dtinit    tssfac      isdo    tslimt     dt2ms      lctm     erode     ms1st 

     0.000  0.150000         0     0.000     0.000         0         0         0 

$#  dt2msf   dt2mslc     imscl 

     0.000         0         0 

*DATABASE_GLSTAT 

1.0000E-7         0         0         1 

*DATABASE_MATSUM 

1.0000E-7         0         0         1 

*DATABASE_NODFOR 

1.0000E-7         0         0         1 

*DATABASE_RBDOUT 

1.0000E-7         0         0         1 

*DATABASE_RCFORC 

1.0000E-7         0         0         1 

*DATABASE_TPRINT 

1.0000E-7         0         0         1 

*DATABASE_BINARY_D3PLOT 

$#      dt      lcdt      beam     npltc    psetid 

 1.0000E-7         0         0         0         0 

$#   ioopt 

         0 

*DATABASE_BINARY_D3THDT 

$#      dt      lcdt      beam     npltc    psetid 

 1.0000E-4         0         0         0         0 

*DATABASE_EXTENT_BINARY 

$#   neiph     neips    maxint    strflg    sigflg    epsflg    rltflg    engflg 

         0         0         3         1         1         1         1         1 

$#  cmpflg    ieverp    beamip     dcomp      shge     stssz    n3thdt   ialemat 

         0         0         0         1         1         1         2         1 
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$# nintsld   pkp_sen      sclp    unused     msscl     therm    intout    nodout 

         0         0  1.000000         0         0         0                     

*BOUNDARY_PRESCRIBED_MOTION_RIGID 

$#     pid       dof       vad      lcid        sf       vid     death     birth 

         4         1         0         1  1.000000         01.0000E+28     0.000 

*BOUNDARY_SPC_SET 

$#    nsid       cid      dofx      dofy      dofz     dofrx     dofry     dofrz 

         1         0         1         1         1         1         1         1 

*SET_NODE_LIST_TITLE 

NODESET(SPC) 1 

$#     sid       da1       da2       da3       da4 

         1     0.000     0.000     0.000     0.000 

$#    nid1      nid2      nid3      nid4      nid5      nid6      nid7      nid8 

    122659    122660    122789    122790    122919    122920    123049    123050 

………… (Cont’d) 

 

*BOUNDARY_SPC_SET 

$#    nsid       cid      dofx      dofy      dofz     dofrx     dofry     dofrz 

         2         0         0         0         1         1         1         0 

*SET_NODE_LIST_TITLE 

NODESET(SPC) 2 

$#     sid       da1       da2       da3       da4 

         2     0.000     0.000     0.000     0.000 

$#    nid1      nid2      nid3      nid4      nid5      nid6      nid7      nid8 

    122659    122660    122661    122662    122663    122664    122665    122666 

………… (Cont’d) 

*CONTACT_AUTOMATIC_NODES_TO_SURFACE_ID 

$#     cid                                                                 title 

         1                                                                       

$#    ssid      msid     sstyp     mstyp    sboxid    mboxid       spr       mpr 

         3         4         4         3         0         0         0         0 

$#      fs        fd        dc        vc       vdc    penchk        bt        dt 

  0.600000  0.600000 100.00000     0.000 20.000000         0     0.0001.0000E+20 

$#     sfs       sfm       sst       mst      sfst      sfmt       fsf       vsf 

 10.000000 10.000000     0.000     0.000  1.000000  1.000000  1.000000  1.000000 

*SET_NODE_LIST 

$#     sid       da1       da2       da3       da4 

         3     0.000     0.000     0.000     0.000 

$#    nid1      nid2      nid3      nid4      nid5      nid6      nid7      nid8 

    122659    122660    122661    122662    122663    122664    122665    122666 

………… (Cont’d) 

 

*PART 

$# title 

SphNode                                                                          

$#     pid     secid       mid     eosid      hgid      grav    adpopt      tmid 

         1         5         1         1         0         0         0         1 

*SECTION_SPH_TITLE 

Wp 

$#   secid      cslh      hmin      hmax    sphini     death     start 

         5  1.200000  0.200000  2.000000     0.0001.0000E+20     0.000 

*MAT_JOHNSON_COOK_TITLE 

WP 

$#     mid        ro         g         e        pr       dtf        vp 

         1 4.4300E-6 5.5000E+7 1.1000E+8  0.330000     0.000     0.000 

$#       a         b         n         c         m        tm        tr      epso 

 1.2400E+6 2.2000E+5  0.260000  0.019700  0.577000 1933.0000 296.00000  1.000000 

$#      cp        pc     spall        it        d1        d2        d3        d4 

 5.6800E+8     0.000  2.000000     0.000 -0.090000  0.500001  0.480000  0.014000 

$#      d5 

  2.500000 

*EOS_GRUNEISEN 

$#   eosid         c        s1        s2        s3     gamao         a        e0 

         1 5.1300E+6  1.028000     0.000     0.000  1.230000  0.800000     0.000 

$#      v0 

  1.000000 

*PART 

$# title 
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$#     pid     secid       mid     eosid      hgid      grav    adpopt      tmid 

         4         4         2         0         0         0         0         2 

*SECTION_SOLID_TITLE 

Tool solid 

$#   secid    elform       aet 

         4         1         0 

*MAT_RIGID_TITLE 

Tool 

$#     mid        ro         e        pr         n    couple         m     alias 

         2  7.100E-6 2.1000E+8  0.330000     0.000     0.000     0.000           

$#     cmo      con1      con2 

  1.000000         5         7 

$# lco or a1      a2        a3        v1        v2        v3 

     0.000     0.000     0.000     0.000     0.000     0.000 

*MAT_THERMAL_ISOTROPIC_TITLE 

WP 

$#    tmid       tro     tgrlc    tgmult      tlat      hlat 

         1 4.4300E-6     0.000     0.000     0.000     0.000 

$#      hc        tc 

 5.2600E+8 6700.0000 

*MAT_THERMAL_ISOTROPIC_TITLE 

WP 

$#    tmid       tro     tgrlc    tgmult      tlat      hlat 

         2 7.1000E-6     0.000     0.000     0.000     0.000 

$#      hc        tc 

 5.2600E+8 27200.000 

*INITIAL_TEMPERATURE_SET 

$#    nsid      temp       loc 

         0 300.00000         0 

*DEFINE_CURVE_TITLE 

Vel 

$#    lcid      sidr       sfa       sfo      offa      offo    dattyp 

         1         0  1.000000  1.000000     0.000     0.000         0 

$#                a1                  o1 

               0.000        1000.0000000 

           0.0020000        1000.0000000 

*ELEMENT_SOLID 

$#   eid     pid      n1      n2      n3      n4      n5      n6      n7      n8 

  142159       4  142159  142160  142171  142170  142280  142281  142282  142283 

………… (Cont’d) 

*ELEMENT_SPH 

$#   nid     pid            mass 

  122659       1  1.1340800e-012 

………… (Cont’d) 

*NODE 

$#   nid               x               y               z      tc      rc 

  122659       0.0040000       0.0040000       0.0020000       0       0 

………… (Cont’d) 

*END 

 

 

 

 

  



 

240 

 

APPENDIX D 

Shear Band Formation Criteria for Aluminum and Copper 

Aluminum [28]: 

For the cutting conditions of 36 m/min and 0.30 mm/rev, the average work 

hardening rate (
  

  
) for the flow stress between 260.35 MPa  and 254.15 MPa was 

27 MPa. The corresponding       and    values were 0.42, 43 K and -6.2 MPa. The 

calculated value of the ratio between the strain hardening and thermal softening or, 

(

  

  

 
  

  
 
  

  

) was 1.82 which did not satisfy the adiabatic shear band criterion.  

 

Copper [31]: 

For the cutting conditions of 36 m/min and 0.25 mm/rev, the average work 

hardening rate (
  

  
) for the flow stress between 320.8 MPa  and 315.2 MPa was 41 MPa. 

The corresponding       and    values were 0.4, 20 K and -5.6 MPa. The calculated 

value of the ratio between the strain hardening and thermal softening or, (

  

  

 
  

  
 
  

  

) was 

2.9, which did not satisfy the adiabatic shear band criterion.  
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APPENDIX E 

DVD with all the Input Files 

A DVD that contains all the input files for the simulation is attached with this 

thesis.  
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