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ABSTRACT 

Comparing to conventional Electric Vehicles (EVs) and Hybrid Electric Vehicles (HEV), Plug-in 

Hybrid Electric Vehicles (PHEVs) have gained more attraction from researchers due to their 

advantages of extended all-electric range, decreased emission and being less dependent on 

recharging infrastructure. In order to develop power control and management for diesel 

engine-generator set in a series PHEV system, an estimation mechanism based on the NOx and 

soot emission with the impact of Exhaust Gas Recirculation (EGR) is developed in this thesis. In 

particular, the single zone combustion thermodynamic engine sub-model, NOx estimation 

sub-model (based on extended Zeldovich mechanism), soot estimation sub-model (based on 

Hiroyasu’s two-step empirical model) and EGR sub-model are incorporated together. In order to 

illustrate the impact of EGR on the NOx and soot emission, the EGR sweep experiment has been 

carried out under certain working conditions. And, the simulation results have been validated 

with the empirical data. Finally, based on the validation of the emission estimation mechanism 

and the selected eight operating points working condition, the results EGR sweep results have 

been generated for the series PHEV engine-generator control design. In general, the present work 

targets on estimating real-time NOx and soot emission based on the inputs information, such as 

intake boost, fuel injection, injection timing etc, and the purpose of this thesis is to aid 

development of engine emission management with study about the effect of EGR on the 

reduction and the soot trade-off. 
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CHAPTER 1 INTRODUCTION 

Due to the increasing oil price and stringent regulations on emissions around the globe, Electric 

Vehicles (EVs) and Hybrid Electric Vehicles (HEVs) [1] have received much research attention 

in the past few decades. Recently, many studied have been carried out in the field of Plug-in 

Hybrid Electric Vehicles (PHEVs) [3][4], which are considered as the new generation of HEV, 

because of rapidly improving battery technology. Gasoline engine (or other spark-ignition engine) 

equipped with an electric motor is still the most popular hybrid powertrains [5]. Comparing with 

conventional gasoline engine and HEVs, gasoline PHEVs reduce CO2 emissions by 37%-67% 

and 19-54% [6]. But being encouraged by the Diesel engine (also known as compression-ignited 

engine) fuel economy benefits and high engine performance potential under low speed condition, 

researchers have increasing interests in the development of combination of diesel engines and 

electric motor in HEVs and PHEVs. Especially in Europe, automakers such as Volvo, 

Mercedes-Benz and Volkswagen are paying much attention to the investigation of diesel PHEVs.   

 

1.1 Diesel Engine Emission Estimation 

Emissions from internal combustion engine are released to the environment mainly into air and 

sometimes it is absorbed in water in marine application.The impact of air pollution is significant 

and few areas around the world are not impacted by its effects. Road transportation is considered 

a significant contributor to air pollution in cities. It’s the main contributor for the emission of 

nitrogen dioxide. In recent decades, the epidemiological and toxicological evidence on the 
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effects of transport-related air pollution on health has increased heavily [6].The National 

Pollutant Inventory Guide list and detailed the four types of emission estimation techniques, 

which are sampling or direct measurement, mass balance, fuel analysis or other engineering 

calculations and emissions factors [10]. 

 

Since an early successful diesel engine was demonstrated by Rudolph Diesel at the 1900 Paris 

Exhibition [8], this technology has changed the world. High compression ratio and lean fuel 

running condition bring the high thermal efficiencies to Diesel engine. Comparing with gasoline 

engine, today’s turbocharged diesel engine has 30% better fuel economy [8]. The most difficult 

challenges for diesel engine designers are the formation of soot particles and NOx. When the 

high velocity injected diesel fuel is directly sprayed into the air in the main combustion chamber, 

which is compressed to a high temperature and pressure, it vaporizes quickly and mixes with the 

air. Without spark plug applied, the mixture is ignited after undergoing a series of chemical 

reactions. Because the fuel distribution is non-uniform, NOx forms in the high flame temperature 

area, and the highest formation rate is in the close-to-stoichiometric regions [9]. The soot 

particles are generated from the incomplete combustion of hydrocarbon fuel because of the 

highly non-homogeneous environment. Over the past few years, due to the imposed emission 

regulations, extraordinary achievements of developing clean diesel engine have been made when 

new techniques are utilized such as common rail system, fuel injection control strategies, exhaust 

gas recirculation and exhaust gas after treatment etc [12]. 
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Figure 1- 1 Typical Direct Ignition (DI) Diesel Engine Heat Release Rate Diagram 

To order to predict the engine performance and NOx and soot emission formation, it is necessary 

and important to understand the details of diesel engine combustion process [1]. For Diesel 

engine, the pollutant formation processes are mainly determined by fuel mixture distribution in 

the cylinder. Figure 1- 1 shows the typical Direct Ignition (DI) Diesel engine heat release rate 

diagram. After the ignition delay period, the fuel combustion takes place rapidly with the high 

heat-release rate during the premixed combustion phase. 

 

To cope with the air pollution problem, stringent emission limits have been implemented to 

diesel engine. The following diagrams Figure 1- 2 show the European Emission Standards for 

HD Diesel Engine with respect to NOx and soot emission ranging from the 1992 to 2013.These 

two diagrams reveal the restriction of the emission standard over time. For example, the 
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concentrations in 2013 are expected to be roughly 25% of those in 2008. 

 

An estimation of Diesel engine emission is essential for the Diesel engine-generator set control 

design. The real diesel engine works as a highly non-linear mechanical system [14], it is 

extremely hard to produce a model with truly predictive capabilities to achieve more precise 

estimation. With the rapid development of microprocessor technology, these engines models can 

be applied in the field of real-time state estimation, control and fault diagnostics [15][16]. Early 

efforts in diesel engine modeling were focus on specific closed part of the engine cycle, and the 

linear dynamic models were developed based on the usage of empirical data [17][2]. The great 

drawbacks of these quasi-linear models are their huge dependence on the empirical data, which 

need to be collected prior to the simulations, and poor performance to the transient response.  

 

 

Figure 1- 2 European NOx and PM Emissions Standard for Heavy-Duty Diesel Engine 

1.2 Literature Review 

Nowadays, most of the phenomena related to combustion have been revealed by empirical study. 
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However, there is no experimental equipment or technique which can provide and clarify all 

detailed relevant chemical reactions. Based on the understanding of chemical processes, the 

simulation modeling and analysis investigation is necessary. 

 

NOx emissions consists of NO and NO2. The NO2 formation is via the oxidation of NO. 

Therefore, the simulation of NOx formation is reduced to understanding of NO formation [21]. 

Based on the mechanism developed by Ahmed and Plee [17] that the majority of NO formation 

is via thermal path, Zeldovich mechanism and extended Zeldovich mechanism were postulated 

by Zeldovich and further developed by Lavoie [9]. The empirical heat transfer correlation was 

utilized in these phenomenological models. Miller et al [18] and Sundar R. Krishnan et al [19] 

improved the mechanism to super extended Zeldovich mechanism. Sundar R. Krishnan et al’s 

model accounts for 43 reactions and 20 species and Miller et al’s model includes 67 reactions 

and 13 species ,which provided more accurate prediction results, instead of the typical three 

reactions used in the extended Zeldovich mechanism. But then more reactions and species are 

included in the calculation results in higher computational complexity.  

 

Although the soot formation phenomenon in the in-cylinder turbulent spray combustion is far 

from being fully understood, various models have been developed for soot predictions [21]. 

Khan and Greees first presented the model for the prediction of soot for diesel engines. Later on, 

detailed kinetic soot models were proposed [22] to describe soot dynamic formation. Complex 

gas phase chemistry reaction and particle growth and distribution were considered in detailed 

kinetic approach. Due to the complexity of turbulence, thermochemistry, and the appearance of 

Arrheius terms in detailed kinetic models, there have been concerns about using this approach to 
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simulate diesel combustion condition. Hiroyasu et al. proposed a two-step phenomenological 

model to predict soot formation distribution [23] for combustion engines. Because Hiroyasu’s 

model is easy to be implemented into CFD simulation code, most of the modern prediction of 

soot formation for multidimensional diesel engine calculation was based on this empirical 

approach. Comparing to the detailed kinetic soot model, the phenomenological model consists 

one Arrhenuis term in the soot formation step with two empirical constants and the particle 

growth and the dynamic of soot has not been taken into account. Niklas Winkler [25] 

incorporated a multi-zone diesel engine model for NOx prediction with a simplified soot 

formation estimation model, which were tuned with constant parameters during the entire engine 

operating range. The calculated engine performance which was produced from a 1-dimensional 

fluid dynamic code GT-Power for transient operation was validated with the experimental data.  

1.3 Research Objectives 

Figure 1-1 represents the clean diesel series plug-in hybrid electrical vehicle (PHEV) powertrain 

system. The author has been working on this project with other colleague at Clean Diesel Engine 

Laboratory. As shown in Figure 1-3, the development of the Diesel Engine model and the real 

time emission estimation model have been carried out by the author. The series HEVs proposed 

in this thesis has three power sources: the primary power sources are the high voltage battery and 

the super capacitors while the assistant power source is the diesel -generator set. 
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Figure 1- 3 Series PHEV Powertrain System 

The main goal of this thesis is developing an engine thermodynamic model and emission (NOx 

and Soot) estimation for a smart engine, incorporating of the EGR model into the engine model 

and the validation of the engine and emission estimation. The proposed single dimensional 

engine thermodynamic model provides the in-cylinder pressure, temperature, heat release rate 

(HRR), species fraction during the combustion process. Sub-models include:  

1) Ignition delay model 

2) Heat release model 

3) Heat transfer model 
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These models are integrated together to predict engine performance and estimate emission 

formation. At the end of the thesis, the calculation results of the 8 operating points for the smart 

engine are also included.  

 

Figure 1- 4 NOx and Soot Emission Estimation Block
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CHAPTER 2 BACKGROUND 

PHEVs are a potentially important technology for reducing the fossil fuel consumption and CO2 

emission because they can run on electricity for a certain distance after each recharge, depending 

on their battery’s energy storage capacity, which is expected to be typically between 20km and 

80km [1]. PHEVs offer great promise for petroleum displacement [29]. According to the 2009 

National Household Travel Survey [28], in 2009, people travels 36.1 miles per day and average 

daily trips per person is 3.8. Although PHEVs will be more expensive than conventional and 

hybrid vehicles, the cost can be recovered by fuel saving. Meanwhile, people will benefit from 

emissions reduction. 

 

The powertrain configurations include series, parallel and power split vehicle configurations. 

Comparing with other configurations, the series engine configuration is often considered to be 

closer to a pure electric vehicle. Since engine operation is directly related to fuel efficiency and 

gaseous emissions, it plays an important part in the hybrid vehicle control strategy [30][27]. 

 

Engine operating point is one of the important parameters affecting the vehicle control strategy. 

Engine operating point is directly related to fuel efficiency and emissions [31]. As mentioned 

before in Fig 1-2, in the case of series PHEVs configuration, the propulsion power for the vehicle 

is exclusively coming from the electrical energy source traction motor. As a result of that, engine 

speed is entirely decoupled from the wheel axles, and the engine operation point is independent 

of vehicle operations [31]. From the diesel engine perspective, as shown in Fig 2-1 the brake 



[CHAPTER 2]                                                                                          
 

10 
 

specific fuel consumption (BSFC) curve, with the characteristic series PHEVs system, diesel 

engine can work along the best efficiency cure while satisfying the power demand. Meanwhile, 

when the diesel engine works in the optimal engine operating points, NOx and PM emission 

increase dramatically. It bring another challenging constrain in the control strategy. 

 

In the Argonne National Laboratory, Maxime research group conducted the project to test the 

effect of powertrain system control on diesel engine emissions and fuel efficiency, base on the 

conventional diesel engine and PHEVs. The trade off relation between fuel economy and 

emission from different configuration was studied, however, the NOx and PM emission was not 

considered as one of constrains in the control theory in simulation model. Aymeric Rousseau [29] 

tested the fuel efficiency of power split and series configuration midsize vehicles on more than  

real world driving conditions cycles. In Oak Ridge National Laboratory, Vehicle Technologies 

Program started the advanced PHEV Engine Systems and Emissions Control Modeling and 

Analysis program at 2005. One of the project objectives is to apply the simulation to test the fuel 

efficiency and emissions impact of advanced combustion (HCCI, PCCI) versus conventional SI 

and diesel engine. 

 



Figure 2- 1 Engine Brake Specific Fuel Consumption Contour

Chemical reaction inside cylinder during the combustion process is very difficult to model due 

its transient and heterogeneous charact

fuel and the fresh intake air [32].

attempted to develop two-zone combustion model,

desire to predict accurate exhaust emissions. 

Exhaust Gas Recirculation on heavy

modified KIVA-3V code to test the NO and Soot emissions. 

was used in investigation. Pia Kilpinen

for medium-speed, four-stroke, direct

emission with increasing load was correctly predicted.

 

Engine Brake Specific Fuel Consumption Contour 

reaction inside cylinder during the combustion process is very difficult to model due 

character, primarily controlled by the turbulent mixing of injected 

. So it is hard to predict the NOx and Soot emission.

zone combustion model, multi-zone combustion model

desire to predict accurate exhaust emissions. Hongusk Kim [33] investigated the effect of 

Exhaust Gas Recirculation on heavy-duty diesel engine performance and developed and 

t the NO and Soot emissions. The multidimensional engine model 

Pia Kilpinen [13] improved a sub-model for NO emission prediction 

stroke, direct-injection marine engine and the trend of increasing NO 

emission with increasing load was correctly predicted.  
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Comparing with lower zones diesel combustion models, the advantage of multi-dimensional 

models is available for the detailed spatial information and interactions of phenomena. However, 

the accurate prediction results from multi zone models are based on the relative inadequacy of 

turbulence, combustion chemistry sub-models. And multi-dimensional models require longer 

computing time and storages capacity [9]. Therefore, in our case, the single-zone model is a 

reasonable choice for our control purpose. 

EGR was considered as an effective means for reducing flame temperature and NOx emission 

[35]. The control inputs to the diesel engine include the fuel injection, injection time, boost and 

EGR, while the outputs are the in-cylinder pressure, in-cylinder temperature and heat release rate 

etcetera. Figure 2- 1 shows a flow chart of the diesel thermodynamic model and NOx and soot 

emission model. As mentioned before the thermodynamic model receives the input signals of 

fuel injection, injection timing, boost and EGR. From this, in-cylinder pressure, heat release rate 

and in-cylinder temperature can be calculated. The instantaneous in-cylinder pressure, 

temperature and heat release rate can be used as inputs of the emission estimation models. 

After comparing the experimental data from Clean Diesel Engine Lab to the estimation results, 

the model was tuned in order to complete the model validation. In the following sections the 

detailed information about the diesel thermodynamic model and sub-models and the emission 

estimation model is shown. 
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Figure 2- 2 Thermodynamic Engine Model and Emission Estimation Model 

2.1 Combustion Model 

According to the first law of the thermodynamics, the change of the internal energy of a system 
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during a process is the sum of the changes in its heat transfer and work transfer. Figure 2- 3 

indicates the thermodynamic engine model. The first law of thermodynamics is implemented 

with the ideal -gas equation of state [34]. 

 dQ dE pdV= +  (2. 1) 

 2 ( 0.57) ( 4595/ ) 0.05 1/2
2[ ] 2.129 10 [ ] [ ]TOH T e O H O− −× ×= × × ×     (2. 2) 

Where: R is the universal gas constant (R=8.31447 ��/���� ∙ �); 

P (pa) is the absolute pressure; 

T (K) is the absolute temperature; 

V (m3) is the instantaneous cylinder volume; 

The instantaneous cylinder volume consists of a clearance volume Vc and the instantaneous 

displacement volume. The instantaneous displacement volume is a function of crank angle, 

cylinder bore, crank radius, compression ratio and the length of connecting rod.  

 
  

  
d c

c
c

Maximum Cylinder Volume

Minimum Cylinder Vol
r

e

V

Vum

V+= =  (2. 3) 

 
2

2 21 1
1 cos( ) 1 sin ( )

4 1 2 180 180c

D S S
V R

r R R

π π πθ θ
    = + + − − −   −     

 (2. 4) 

Where Vc is the clearance volume; 

Vd is the displaced volume; 

rc is the compression ratio; 
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Figure 2- 3 Thermodynamic Engine Model 

For the air surrounding the injected fuel, the first law of thermodynamic can be written as 

following equation: 

    b wdQ dQdU dV
p

d d d dθ θ θ θ
= − −       (2. 5) 

 ( ) ( ) ( )( ) ( ) ( 1) ( ) ( 1) ( 1) ( ) ( 1) ( )( )air i fuel p i i v i i i i i w iM X M C T T LHV M p V V Qθ θ− − − −+ × − = × × − − − −   

  (2. 6) 

The equation for the mean mixture temperature is derived as follows: 

 
( ) ( )( ) ( 1) ( 1) ( ) ( 1) ( )

( ) ( 1)
( )

v i i i i i w i

i i
air i fuel

LHV M p V V Q
T T

M X M

θ θ − − −
−

× × − − − −
= +

+ ×
 (2. 7) 

Where: LHV is the lower heating value; (Assuming LHV=42.5 MJ/kg) 

      Mfuel (kg) is the injected fuel; 

���

��
 

���

��
 

���

��
 

�
��

��
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      Cp is the specific heat capacity; 

      Mair (kg) is the mass of in-cylinder air; 

      Mv(kg) is the evaporated fuel at each step size; 

      Qw is the heat transfer from cylinder wall, cylinder head and piston; 

      X is the burn fraction of the injected fuel; 

      T is the in-cylinder temperature; 

The compression process is assumed as a polytrophic compression process; 

 0 0PV PVγ γ=  (2. 8) 

Where: P0 (pa) is the in-cylinder pressure when the crank angle starts from 180o; 

       V0 (m
3) is the in-cylinder volume when the crank angle stats from 180o; 

       P (pa) is the in-cylinder pressure when the crank angle is after 180o; 

       V (m3) is the in-cylinder volume when the crank angle is after 180o; 

The equations for the in-cylinder pressure and in-cylinder temperature are as follows during the 

compression process. 

 ( )
( 1) ( )

( 1)

( )i
i i

i

V

V
P P γ

+
+

=  (2. 9) 

 ( )
( 1) ( 1)

( )1
( ) ( )

i i
ii

i i

P V
T T

P V
+ +

+ =  (2. 10) 

2.2 Heat Release Model 

The in-cylinder combustion is a very complex process, and the extensive modeling would be 

helpful. The analytical functions computing the burn rate is used in this thesis. The prevailing of 

these functions is the Wiebe function, which can be used to predict the burn fraction and burn 

rate for different engine systems [43][44]. 



[CHAPTER 2]                                                                                          
 

17 
 

Equation (2.11) and (2.12) are used to calculate the mass burning fraction and absolute value of 

heat release [42].  

 ( ) 1 10 01 1 exp( ( ) ) 1 exp( ( ) )m m
b wall wall

wall

X a a
K

θ θ θ θα α
θ θ

+ + − − = − − − + − −   
   △△

  (2. 11) 

 bB
fuel

dXdQ
M LHV

d dθ θ
= × ×  (2. 12) 

Where :   Xb  is the mass fraction burned; 

         �  is the crank angle; 

         �� is the crank angle when the combustion starts (SOC); 

																				�� is the total combustion duration; 

         M  is the adjustable parameter; 

A  is the adjustable constant relating to the combustion duration; 

         ����� is the fraction of the mixture that burns in the slow combustion region; 

         Kwall  is the ratio of slow burn duration to the standard burn duration; 

 
1

1/( 1) 1/( 1)
10 90

1 1
(ln( )) (ln( ))

1 0.9 1 0.1

m
m ma a

+
+ +

−
 = = − − − 

 (2. 13) 

For diesel engines, the in-cylinder pressure, temperature and swirl ratio directly affect the 

ignition delay (ID). Many corrections have been made to predict the ignition delay for diesel 

engines [45][46]. The most widely accepted correlation was given by an Arrhenius expression 

[45], which is a function of ambient gas pressure and temperature. 

 exp( )N

u

E
ID Fp

R T
−=  (2. 14) 

Where: p and T are the cylinder pressure and temperature, E is the activation energy, Ru is the 

universal gas constant, N and F are experimental constants.  
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For diesel fuel, Wolfer (1950) [23] achieved a reasonable estimate from the following equation. 

 1.022100
3.45exp( )ID p

T
−=  (2. 15) 

2.3 Heat Transfer Model 

Convective mode of heat transfer contributes to 80% of the total engine heat transfer [9] .For 

typical diesel engines, the heat transfer process starts from the in-cylinder mixture within the 

cylinder via the combustion chamber wall to the coolant. Both the convective heat transfer and 

radiation heat transfer contribute to the heat flux through the wall. Based on the experiment 

results, Annand [9] developed the convective heat-transfer correlation for cylinder head. In this 

thesis, Woschni’s approach is used.                              

 ( )
3 3

1 1

1w w
c i w

i i

dQ dQ
h A T

d w
T

dθ θ= =

= = × × × −∑ ∑  (2. 16) 

Where: T is the in-cylinder temperature (k). 

      Tw is the temperature of cylinder wall, cylinder head and piston head. 

      hc is the coefficient of convective heat transfer; 

      i=1: Cylinder head; i=2: Piston; i=3: Cylinder wall; 

      A is the heat transfer area (m3); 

According to Woschni’s correlation, the equation for the coefficient of heat transfer is 

summarized as: 

                    0.2 0.8 0.55 0.83.26ch D p T w− −= × × × ×  (2. 17) 

Where: D is the cylinder bore (m); 

      p is the in-cylinder pressure (kPa); 

      T is the cylinder temperature (K); 



[CHAPTER 2]                                                                                          
 

19 
 

      W is the average cylinder gas velocity (m/s); 

The average cylinder gas velocity for a four stroke, direct injection compression ignition engine 

was expressed as follows: 

 1 2 ( )d r
p m

r r

V T
w C S C p p

p V
= + −  (2. 18) 

Where: Vd is the displaced volume; p is the instantaneous in-cylinder pressure; Pr,Tr,Vr are the 

in-cylinder pressure, temperature and volume when the crank angle is 180o; pm is the motored 

cylinder pressure at the same crank angle as p; �� = 2.28;�� = 3.24 × 10��;  

2.4 EGR System 

EGR systems work by recirculating different amounts of an engine’s exhaust gas back to the 

engine cylinder. Combining the exhaust gas recirculation technology is recognized as the only 

possible way to achieve future emission restriction target by internal measures [54]. EGR is 

defined as the ratio of intake manifold CO2 concentration to exhaust manifold CO2 concentration 

[53]. EGR system interferes with the diesel combustion system through thermal, chemical and 

dilution effects. When an EGR system is incorporated into the diesel engine, the amount of NOx 

emissions are reduced due to lower in-cylinder temperatures during the combustion process. The 

application of EGR is regarded as one of the essential means of reducing oxides of nitrogen 

(NOX) emission from diesel engines. However, for intermediate and low engine loads, EGR 

increases the particulate emissions and specific fuel consumption [36]. Equation (2.19) describes 

the complete combustion process without EGR while the equation (2.20) describes the 

combustion process when diesel engine incorporates EGR system. In the diesel engine model 

calculations for this work, the second equation was used. In order to validate the simulation 

results, the calculation was conducted by using a typical diesel fuel formulation. Ultimately, the 
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formula C1H1.7 was used in the simulation. 

 

The complete combustion equation (without EGR) when Lambda > 1 

 ( ) ( )2 2 2 2 2 23.76 3.76 1 ( )
4 2 4 4

C H O N CO H O N Oα β
β β β βλ α α λ α λ α   + + + → + + + + − +   

   
  

  (2. 19) 

The complete combustion equation (with EGR) 

( )2 2 2 2 2

2 2 2 2 2

23.76 3.76
1 1 1

( ) ( )3.764 2 4
1 1 1 1 1

EGREGR EGR
C H a O N CO H O a N

EGR EGR EGR

a EGR aa a
O CO H O N O

EGR EGR EGR EGR EGR

α β

β
α

β β βα α

 
 × + + + + + × × +  − − −   
 

     − + − +     ×     + + +      − − − − −      
   

→

  

 (2. 20) 

Where ��� =
	���,�����	

	���,	
���
�

 	 = 
 × (� +



�
) 

The mass fraction of the CO2 from exhaust: 

2

44
1_ _

( ( ))
2 444 18 3.76 28 32

1 1 1 1

EGR

EGRMASS CON CO
EGR a EGREGR EGR

a
EGR EGR EGR EGR

α

β βαα

× ×
−=

− +× × + × + × × × + ×
− − − −

 

  

  (2. 21) 

Where: 	 = � +



�
 

Amount of O2 (mole) consumed each step size (0.1 Crank Angle): 

 2_ _ _ ( / 4)n rac O n fuel α β= × +  (2. 22) 
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Where: n_fuel is the amount of fuel consumed each step size (0.1 Crank Angle); 

Amount of CO2, H2O produced each step size (0.1 Crank Angle): 

 

 2_ _ _ ( )
1 1

a EGR
n rac CO n fuel

EGR EGR

α ×= × −
− −

 (2. 23) 

 2
2 2_ _ _ ( )

1 1

EGR
n rac H O n fuel

EGR EGR

β β

= × −
− −

 (2. 24) 

 2 2 2_ ( ) _ ( 1) _ _n O i n O i n rac O= − +  (2. 25) 

 2 2 2_ ( ) _ ( 1) _ _n CO i n CO i n rac CO= − +  (2. 26) 

 2 2 2_ ( ) _ ( 1) _ _n H O i n H O i n rac H O= − +  (2. 27) 

 2 2 2 2_ ( ) _ ( ) _ ( ) _ ( ) _ ( )n total i n CO i n H O i n O i n N i= + + +  (2. 28) 

The mole fraction of O2, N2, CO2, H2O are as follows: 

 2
2

_ ( )
_ _ ( )

_ ( )

n O i
O mole frac i

n total i
=  (2. 29)  

 2
2

_ ( )
_ _ ( )

_ ( )

n N i
N mole frac i

n total i
=  (2. 30) 

  

 2
2

_ ( )
_ _ ( )

_ ( )

n CO i
CO mole frac i

n total i
=  (2. 31) 

  

 2
2

_ ( )
_ _ ( )

_ ( )

n H O i
H O mole frac i

n total i
=  (2. 32)
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CHAPTER 3 CONTROL ORIENTED NOx AND SOOT 

ESTIMATION 

3.1 NOx Emission Estimation 

In-cylinder NOx formation occurs from three fundamentally different reactions. In year 1946, 

Zeldovich [9] was the first to suggest the importance of reactions equation (3.1) and (3.2). For 

internal combustion engine, the primary source is the thermal NO forming from the thermal 

dissociation equation (3.1) and the subsequent reaction of nitrogen and oxygen molecules from 

the combustion air [10].  

The governing equations for the thermal NOx from molecular nitrogen are as follows: 

 2O N N NO+ +⇌  (3. 1) 

 2N O O NO+ +⇌  (3. 2) 

The mechanism of NO formation from Zeldovich has been well accepted and understood 

extensively. Later on, Lavoie [9] added the reaction (3.3) to the Zeldovich Mechanism and 

contributed significantly to the study. Due to the temperature sensitivity, the mechanism 

including equation (3.1), (3.2) and (3.3) is referred to as the thermal mechanism. 

 N OH H NO+ +⇌  (3. 3) 

Applying the chemical kinetic rate law for the equations presented above, the formation rate of 

NO is given by: 

 
[ ][ ] [ ][ ] [ ][ ]

[ ][ ] [ ][ ] [ ]
,1 2 ,2 2 ,3

,1 ,2 ,3

[ ]

[ ]

f f f

r r r

d NO
k O N k N O k N OH

dt
k NO N k NO O k NO H

= + +

− − −
  



[CHAPTER 3] 
 

23 
 

  (3. 4) 

Note: All concentrations have a unit of mol/m3 

The rate constants measured from experimental studies have been evaluated by Hanson and 

Salimian[49]and the expressions are shown below. 

 8 38370/
,1 1.8 10 T

fk e−= ×  (3. 5) 

 4 4680/
,2 1.8 10 T

f eTk −= ×  (3. 6) 

 7 450/
,3 7.1 10 T

fk e−= ×  (3. 7) 

 7 425/
,1 3.8 10 T

rk e−= ×  (3. 8) 

 3 20820/
,2 3.81 10 T

r eTk −= ×  (3. 9) 

 8 24560/
,3 1.7 10 T

rk e−= ×  (3. 10) 

Where kf,1, kf,2, kf,3 are the rate constants for the forward reactions. kr,1, kr,2, kr,3 are the rate 

constants for the corresponding reverse rate constants. 

According to Westenberg[50], the equilibrium O-atom concentration can be derived as follows: 

 [ ] 1/2
2[ ]pO k O= ×  (3. 11) 

 [ ] 1/2 1/2 27123/
236.64 [ ] TO T O e− −= × × ×  (3. 12) 

The partial equilibrium approach was chosen to determine the OH radical concentration. 

 [ ] 2 0.57 4595/ 1/2 1/2
22.129 10 [ ] [ ]TOH T e O H O− −= × × × × ×  (3. 13) 

Finally, the expression for the rate of change NO concentration is shown as follows 
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 [ ] [ ]

[ ]

2
,1 ,2

,1 2 ,2 2
,1 2

,1

,2 2 ,3

[ ]
1

[ ][ ]
2 [ ]

[ ]
1

[ ]

r r

f f
f

f

f f

k k NO

k N k Od NO
k O N

k NOdt
k O k OH

 
− 

 =
 

+  + 

 (3. 14) 

As mentioned previously, the rate of formation of NO is significant at high temperatures, which 

results from the large amount of energy required to break the strong N2 triple bond. This effect is 

illustrated by the high activation energy of reaction equation (3.1). Since the activation energy 

for nitrogen-atom oxidation is small, with sufficient oxygen provided, the free nitrogen atoms 

consumption rate equals to it formation rate and therefore a quasi-steady state can be achieved 

[50]. Except for extremely fuel-rich combustion conditions, this assumption can be applied for 

most combustion cases. The indicated forward and reverse reaction rates introduce the 

uncertainty to the prediction with actual in-cylinder pressure and temperature.  

3.2 Soot Emission Estimation 

The most popular semi-empirical model is the two-step Hiroyasu model [51]. According to his 

model, the soot formation process considered involves two reaction steps: the formation step and 

the oxidation step. When the formation reaction begins, at the same time, the oxidation step is 

carried on. Therefore the amount of soot produced is equal to the soot production of the 

formation reaction minus the oxidation reaction. In the formation step, shown in equation (3.16), 

soot is directly related to fuel vapor molecules whereas during the oxidation step, shown in the 

equation (3.17), soot particles decrease due to the presence of molecular oxygen. The pressure of 

O2 can be derived from the engine combustion model. 

Soot formation rate equals to the amount of formed soot minus the oxided soot [37]. 

 soot soot soot

form oxid

dm dm dm

dt dt dt
   = −   
   

 (3. 15) 
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1

_ 1
1 _

_

exp

n

soot form gasA
fuel v

gas ref

dm pT
A M

dt T p

  = × − × ×        
 (3. 16) 

 2

2

3

_ 22
2

_

exp( ) ( )

n

Osoot oxid nA
soot

O ref

pdm T
A m

dt T p

 
= × − × ×  

 
 (3. 17) 

 

Where: A1 is the constant for soot formation; 

A2 is the constant for soot oxidation; 

TA1 is the activation temperature for soot formation reaction [6313K]; 

TA2 is the activation temperature for soot oxidation reaction [7070K]; 

  Mfuel-v is the currently vapor fuel mass (kg); 

 pgas is the in-cylinder pressure (bar); 

   pgas_ref is the gas reference pressure (bar); 

 pO2 is the partial pressure of O2 (bar); 

   pO2-ref is the O2 reference partial pressure (bar); 

         �� = 1.8;�� = 1.0;�� = 1.0; 

Due to its simplicity, this model has been widely utilized [37][38][39]. It can be incorporated 

into the single-zone, two-zone and multi-zone engine combustion models [40][26]. 

 

In order to calculate the soot formation rate, in-cylinder current vapor fuel mass is required. C.O. 

Schmalzing [41] proposed a holistic injection model to optimize fuel injection in the Diesel 

engine system. Comparing to measured liquid and vapor phase penetration lengths for different 

operating conditions, the calculated results were validated. According to the simulation results 
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from [41], the relation of vaporizing percentage and crank angle was generated and utilized for 

the current vapor fuel mass calculation, which is shown in Figure 3- 1. 

 

Figure 3- 1 Vaporizing Percentage VS. Crank Angle (Injection Pressure Pinj=80 MPa)
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CHAPTER 4 EXPERIMENT SETUP AND ESTIMATION 

RESULT VALIDATION 

4.1 Experiment Setup 

The experimental investigation was conducted on a single cylinder, four-stroke, common rail 

diesel engine of 0.76 lit displacement volume. The experiment engine bench setup and engine 

geometrical specifications are shown in Figure 4- 1 and Table 4- 1. 

 

 

Figure 4- 1 Single Cylinder Research Engine Test Platform 

The experimental investigations in this thesis have been carried out under independently 

controlled levels of engine boost, exhaust backpressure and EGR valve opening. In order to 
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measure the in-cylinder pressure to obtain combustion information, an AVL G13P pressure 

piezoelectric transducer was mounted and connected through a Kistler 5010B charge amplifier. 

Based on the computer code developed in Labview control software, the control of high speed 

acquisition system had been achieved. A dual-bank exhaust analyzer system (for NOx, HC, CO2 

and O2) has been installed for the exhaust emissions and intake gas concentration for exhaust 

analysis. A CAI 6000 Series chemiluminescence detector and an AVL smoke meter are used to 

measure NOx and Filter Smoke Number. The following equation was used to convert FSN to 

soot mass concentration in the unit of [mg/m3]. 

 [ ]3 3 2/ 1.8419 [ ] 2.9545 [ ] 12.815 0.0305Soot mg m FSN FSN FSN  = × + × + × −    

  (4. 1) 

4.2 Estimation Result Validation 

In order to affect the comparison results, it was necessary to carry out the parametric analysis of 

the sub-model constants to tune the model. 

1) Determining the values for adjustable constants of Weibe heat release model in order to 

make sure that the calculated in-cylinder pressures match the experimental pressures 

measured from the cylinder pressure transducer. When m value equals to 1, the in-cylinder 

pressure and heat release rate curve match with the empirical results with k���� = 0.34 and 

α = 0.36. The temperature of the cylinder walls was chosen equal to 500K. 

2) Determining the values for the reaction constants of the NOx formation so that the 

calculated results of NOx formation will match the experimental values. According to the 

NOx estimation mechanism, the rate constants for the forward reactions and corresponding 

reverse rate constants were set as follows: 
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 8 42000/
,1 2.8 10 T

fk e−= ×  (4. 2) 

 4 4680/
,2 1.8 10 T

fk Te−= ×  (4. 3) 

 7 450/
,3 7.1 10 T

fk e−= ×  (4. 4) 

 7 425/
,1 3.8 10 T

rk e−= ×  (4. 5) 

 3 20820/
,2 3.81 10 T

rk Te−= ×  (4. 6) 

 8 24560/
,3 1.7 10 T

rk e−= ×  (4. 7) 

The constants for the equilibrium O-atom and OH radial concentration were chosen as follows: 

 [ ] 1.24 1.4 28400/
236.64 [ ] TO T O e−= × × ×  (4. 8) 

The partial equilibrium approach was chosen to determine the OH radical concentration. 

 2 ( 0.57) ( 4595/ ) 0.05 1/2
2[ ] 2.129 10 [ ] [ ]TOH T e O H O− −× ×= × × ×  (4. 9) 

3) Determining the values for the reaction constants of the soot formation so that the soot 

formation will match the experimental values. For soot estimation mechanism, the constants 

for soot formation and oxidation were set as �� = 1.6 × 10�� and �� = 3200. And the 

exponent of pressure in the soot formation and oxidation equations n1=3 and n3=0.9 are 

chosen to fit the experimental results. The activation temperatures are found in [37], 

TA1=3200k and TA2=7070k. 

 

Before utilizing the thermodynamic model and emission estimation for the 8 operating points, it 

is necessary to validate their ability to provide the engine performance information and emission 

profile. In this chapter, the calculated and measured results of in-cylinder pressure, temperature, 

cumulative heat release, NO formation concentration and soot formation concentration as a 

function of crank angle will be presented. The measured experimental data and calculated results 
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are depicted in the following figures in a comparative way. Table 4-1 presents the specification of 

single cylinder research engine used for the engine performance and emission estimation 

validation. 

Table 4- 1 Single Cylinder Research Engine Geometrical Specification 

SINGLE CYLINDER I-TEC ENGINE SPECIFICATIONS 

Bore (mm) 96 

Stroke (mm) 105 

Connecting Rod (mm) 176 

Compression Ratio 14.3 

Combustion System Direction Injection 

Injection System Common rail 

 

The experimental data shown here was collected from the Clean Diesel Engine Laboratory 

(University of Windsor). The operating conditions for the EGR Sweep are as follows: Engine 

speed = 1200 rpm, IMEP = 8 bar, Boost = 1.4 bar, Injection pressure = 1200 bar and CA 50 = 

368 CA. The range of the EGR sweep is from 8% to 43% depending on the engine operating 

condition examined. 

The detailed information of governing equations for heat release rate calculation was presented 

in Chapter 2. Figure 4-2 illustrates the heat release fraction with different m values between 0.1 

and 3 for the combustion duration of 8 crank angle degrees. With higher m value, the combustion 

is retarded. The burning rate is shown in Figure 4-3 when the combustion duration was fixed at 

40 crank angle degrees with different m values.  
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Figure 4- 2 Heat release rate with different m value 

Figure 4- 3 Burn rates for constant combustion duration and different values of m 
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In the internal combustion engine analysis, the in-cylinder pressure has been considered to be an 

important experimental diagnostic in the development of automotive engine research [43]. The 

in-cylinder pressure profiles directly reflect the effects of in-cylinder heat release, heat transfer to 

the cylinder wall and head surface and work transfer. Figure 4- 4 and 4-7 present the predicted 

and measured in-cylinder pressure traces diagram when the EGR is 21% and 34% at speed of 

1200 rpm. The computation time interval is 0.1 CA. It can be seen from the figure that the 

experimental data and simulation results appear to agree well with one another. After the first 

step of the analysis, it was verified that the model can effectively predict the in-cylinder pressure. 

 

Figure 4- 4 Comparison of the calculated and experimental in-cylinder pressure (EGR=21%) 
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achieved in other different EGR operating condition

about the comparisons. 

Figure 4- 5 Comparison of heat 
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Figure 4- 6 Average in-cylinder temperature (EGR=21%) 
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The Figure 4-7 and Figure 4-8 illustrate the comparison of the computed and empirical results of 

the in-cylinder pressure and heat release rate when EGR equals to 34%. And they both follow the 

same trend as when EGR is 21%. Comparing the temperature results shown in Figure 4-6 (when 

EGR=21%), the mean cylinder temperature (shown in Figure 4-9) decreases due to the increase 

of EGR rate. 

 

Figure 4- 7 Comparison of the calculated and measured in-cylinder pressure (EGR=34%) 
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Figure 4-10 and Figure 4-11 show the species mole fraction of O2, CO2 and H2O during the 

combustion process with EGR=21% and EGR=34%. 

 

Figure 4- 10 Species (O2 , CO2 and H2O) mole fraction (EGR=34%) 
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Figure 4- 11 Species (O2, CO2, and H2O) mole fraction (EGR=21%) 

Figure 4- 12 shows the comparison of the calculated nitric oxide concentration history for 

EGR=21% and EGR=34%. It presents that when higher EGR is applied, value of NO formation 
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Figure 4- 13 shows the soot density history for EGR=21% and 34%.And when the higher EGR is 
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Figure 4- 12 Calculated and measured in-cylinder Nitric Oxide (NO) concentration 

 

Figure 4- 13 Calculated and measured in-cylinder soot concentration 
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EGR is one of the most effective ways to reduce NOx emission for diesel engines. From Figure 

4- 14, it can be observed that the NOx decreases when higher EGR rate is applied under fixed 

operating condition. It is hard to simulate the diesel engine combustion process and precisely 

predict the emission. But for the control purpose, as it can be observed, this model presents high 

reliability to predict the trend and relative change in NO emissions within different operating 

conditions. 

 

Figure 4- 14 Calculated and measured in-cylinder Nitric Oxide (NO) formation 

Figure 4-15 illustrates the comparison of the simulated and measured soot density when EGR 

rate increases from 15% to 45%.Soot formation is primarily determined by the engine load [9].  
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Figure 4- 15 Calculated and measured in-cylinder Nitric Oxide (NO) formation
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CHAPTER 5 APPLICATION OF ESTIMATION RESULTS TO 

SMART DIESEL ENGINE 

After the calculation results of thermodynamic model and NO and soot emission estimation have 

been validated, the computation results of the 8 operating points will be shown in this chapter for 

the development of the engine-generator set controller design. The good agreement achieved in 

Chapter 4 between the empirical and calculated results under certain engine operating condition 

confirmed that the estimation will provide valuable information for the engine-generator control 

design. Table 5-1 presents the specification of the smart engine used for the engine-generator 

control design. 

 

Table 5- 1 Smart Engine Specification 

 

Engine Type 3 in line,4 Stroke Diesel Engine 

Bore (mm) 65.5 

Stroke (mm) 79 

Compression Ratio 18 

Cylinder Displacement(L) 0.8 

Rated Torque (lb-ft) 95 

Fuel Injection System Common Rail High Pressure 
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Figure 5- 1 Smart Car Cdi Engine 

 

Figure 5- 2 Photo of engine-generator set (Courtesy Ricardo) 

Engine Generator 
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Table 5-2 shows the detailed information about the 8 operating points for the engine controller 

design. The speed ranges from 1600 rpm to 2800 rpm and the torque, output power and fuel flow 

all increase as well.  

Table 5- 2  Detailed Information about 8 Operating Points 

Operating 

Point 

Engine 

Speed (rpm) 

Torque 

(Nm) 

Power 

(kW) 

Fuel Flow 

(g/s) 

Efficiency 

(%) 

BMEP 

(bar) 

CA 50 

#1 1600 42 7 0.51 0.33 6.6 365 

#2 1950 51 10 0.72 0.345 8.0 365 

#3 2150 58 13 0.89 0.35 9.1 365 

#4 2250 67 16 1.07 0.352 10.5 365 

#5 2450 75 19 1.31 0.351 11.8 365 

#6 2570 82 22 1.52 0.345 12.9 365 

#7 2630 90 25 1.75 0.337 14.1 365 

#8 2800 95 28 2.05 0.324 14.9 365 

The following figures show the benefit of EGR in reducing of NOx emission for the eight 

operating points. It can be seen that with the increase of EGR rate, the NO emission decreases 

under all of the eight different operating conditions. In general, there are two reasons which can 

explain relationship between NOx formation and EGR rate. The first reason for NOx emission 

reduction with higher EGR is because that the higher the values of the EGR rate that is used, the 

lower the in-cylinder temperature during combustion process. The second reason is the reduction 

of oxygen concentration which restrains NOx generation. As mentioned previously, NOx 

emission is very sensitive to temperature and oxygen concentration. 
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To study the EGR effect on the engine performance and emission, for each operating point, 

certain parameters will be fixed, such as engine speed, injected fuel quality, intake pressure and 

temperature. 

Figure 5- 3 shows the typical effect of EGR on the NOx formation for operating point 1, 2, 3 and 

4. For operating point 1, NOx formation is reduced drastically with 12% EGR. For operating 

point 2, it is reduced by approximately 70% within 15% EGR. 

 

Figure 5- 3 Relationship between EGR and NOx formation (for Operating Point 1-4) 
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Figure 5- 4 shows the relationship between NO formation and EGR rate of operating point #5, #6 

and #7 when boost is increased from 1.6 bar to 2 bar. Comparing with Figure 5- 3, in the case of 

operating point #5, 6 and 7, the engine is running in a higher load and speed. Therefore higher 

EGR rate and boost are required. 

 

 

Figure 5- 4 Relationship between EGR and NOx formation (for Operating Point 5-7) 
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Figure 5- 5 Relationship between EGR and NOx formation (for Operating Point 8) 

Figure 5- 6 and Figure 5- 7 show the calculation results for soot emissions which all follow the 

same trend with various EGR rates. With the increase of EGR, soot emissions increase. This is 
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Figure 5- 6 Relationship between EGR and soot density (for Operating Point 1-4) 

 

Figure 5- 7 Relationship between EGR and soot density (for Operating Point 5-7) 
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For operating point #8, the engine is working at 2800 rpm and the fuel injection quantity is 

increased to 87 mg/cycle. Figure 5- 8 and Figure 5-5 present the variation of soot and NOx 

formation with various EGR rates. When higher boost is applied to engine, higher NOx and 

lower soot density are achieved. The reason for the increase on the NOx formation and the 

reduction of soot formation is owing to excess air.  

 

Figure 5- 8 Relationship between EGR and soot density (for Operating Point 8) 
 

Figure 5- 9 and Figure 5-10 illustrate the in-cylinder pressure trace calculated under the 
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Figure 5- 9 In-cylinder pressure t
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Figure 5- 11 Heat release rate with different EGR rates (Operating Point 3) 

Figure 5- 12 illustrates the effect of EGR on ignition delay. The ignition delay increases with 

increasing EGR rate. The reason is that higher EGR results in lower oxygen concentration in the 
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Figure 5- 12 Effect of boost on ignition delay 
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not occur. But when the injecting timing is at -20 CA ATDC, the low limit of oxygen 

concentration is 17%. 

5

10

15

20

25

30

8 10 12 14 16 18 20 22

Ig
ni

tio
n 

D
el

ay
 (

C
A

)

EGR (%)

Boost=2.2 bar

Boost=2.1bar

Boost=2bar

Operating Point#8:
EGR Sweep
Boost:2.2bar;
Speed:2800 rpm;
Minj=87mg/cycle (3 cyl )



[CHAPTER 5] 
 

53 
 

 
Figure 5- 13 Effect of intake Oxygen concentration on the in-cylinder peak pressure 
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CHAPTER 6 CONCLUSION AND FUTURE WORK 

6.1 Conclusion 

The objective models for emission estimation for a series PEHV diesel engine-generator set 

control design, which combine the thermodynamic engine model, NOx model, soot model and 

EGR model described in Chapter One, have been developed. The heat release model was tuned 

to match the empirical data until the satisfactory results have been achieved, and the calculated 

in-cylinder pressure agrees well with the experimental data. Furthermore, the in-cylinder 

temperature, heat release rate, species mole fraction were calculated and provided as the inputs 

of the NOx and soot emission estimation models. Comparing to the previous work, the emission 

estimation model has been modified to take EGR system into account. Additionally, the NOx and 

soot emission estimation was validated and satisfactory for the Diesel engine-generator set 

control design. According to the implemented Model Predictive Control (MPC) design, eight 

operating points were selected to represent the diesel engine output power ranging from 7kW to 

28kW. And the NO and soot emission results with EGR sweep for each operating point were 

provided for the diesel engine-generator controller design.  

6.2 Future Work 

In the validation part, more EGR sweep experiments shall be further conducted with various 

boundary operating conditions. Measured experimental data from Clean Diesel Engine Lab was 

satisfactory for certain limited operating range. More empirical data collected will bring 

improvement over the previous validation work.  
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The next stage of the research shall target on a two-zone thermodynamic engine model. NOx 

emission is very sensitive to the in-cylinder temperature and oxygen concentration. For the 

engine control application, the single zone dynamic engine model had been efficient to 

accomplish the estimation work. However, when the two-zone engine model is applied to the 

emission estimation model, it will provide more accurate prediction.
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APPENDIX A. ESTIMATION RESULT VALIDATION 

The comparison of experimental and simulation results of in-cylinder pressure with EGR=21% 

and EGR=34% was shown in Chapter 4. More validation results with various EGR rates will be 

illustrated in this section. 

Figure A- 1 Comparison of the calculated and measured in-cylinder pressure (EGR=6.5%) 
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Figure A- 2 Comparison of the calculated and measured in-cylinder pressure (EGR=12%) 

 

Figure A- 3 Comparison of the calculated and measured in-cylinder pressure (EGR=15%) 
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Figure A- 4 Comparison of the calculated and measured in-cylinder pressure (EGR=25%) 

 

Figure A- 5 Comparison of the calculated and measured in-cylinder pressure (EGR=30%) 
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Figure A- 6 Comparison of the calculated and measured in-cylinder pressure (EGR=35%)
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