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ABSTRACT 

Narrow-channels have been subjected to diversified research and application interests 

due to miniaturized geometry and lightweight, superior heat transfer characteristics, 

and better energy efficiency. Automatic Transmission Fluid (ATF) cooling is one of 

the most important challenges in the automotive industry due to its changing thermo-

physical properties as a result of temperature and frictional environment which exist, 

inside the transmission. In this study, efforts have been accumulated to justify the 

suitability of Minichannel Heat Exchanger (MICHX) application in characterizing 

ATF cooling and its flow behaviours. 

 An experimental investigation has been conducted with the aid of a well-equipped 

closed loop thermal wind tunnel, which uses a wavy finned MICHX as the test 

specimen.  During the experiment, ATF mass flow rates were varied to achieve 

Reynolds Number of 3 ≤ ReL ≤ 30. The effects of serpentines on ATF heat transfer 

and flow behaviours were investigated in a laminar flow regime. Heat transfer 

enhancement was observed due to the serpentine structure. The effects of 

dimensionless parameters; such as Reynolds number, Nusselt number, Prandtl 

number, Brinkman number, and Ekert number on heat and mass transfer 

characteristics were examined. Heat and mass transfer correlations were established 

while considering variable property ratio.  

The investigation showed promising heat transfer characteristics and good agreement 

in flow-field with the established phenomena of MICHX.   
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CHAPTER I 

INTRODUCTION 

Although naturally occurring renewable-energy sources in the form of solar energy, wind 

energy, geothermal energy, etc., are abundantly available, the reserves of some forms of 

energy, such as fossil fuel and other mining-energy resources, are being diminished day 

by day. All types of energy resources are limited and need to be conserved. Heat is one of 

the most important energies, which has versatile applications in daily life. Industries 

cannot be imagined without the application of heat energy. Power generation, nuclear 

industries, mobile and aerospace application, space research, HVAC industries, marine 

and mining applications, chemical processing, petroleum, and forestry; all of these 

industries and sectors consume heat energy.  

The Global Auto Report (2011) stated that between the 2000 to 2010 statistical years, 

208.82 million cars were sold [1]. The International Organization of Motor Vehicle 

Manufacturers’ statistics showed that in the 2010 manufacturing year, the total number 

for car and commercial vehicle production was 77,857,705 [2]. Such a huge number of 

vehicles in the market consume a significant amount of fossil fuel. Those vehicles need 

suitable thermal management systems to keep them appropriately functioning.  

One of the largest industries utilizing heat from solar energy is the living plants that enact 

photosynthesis when they receive millions of tons of CO2 and release O2.  The heat 

transfer between the plant and the environment usually occurs in all three modes: 

conduction, convection, and radiation. The heat is transferred through the process of 

conduction and convection in the form of sensible heat, and through the evaporation of 

water, which includes the processes of condensation, freezing, thawing, and sublimation 
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in the form of latent heat [3]. In this case the plant stomata are the heat exchangers which 

are the natural heat exchangers. When heat energy is in use, heat transfer occurs and two 

phenomena usually exist: the system persists either in heating or in cooling mode. During 

either of the modes, heat transfer occurs due to the temperature differences in the 

physical systems.  

Appropriate devices allow easy heat transfer. Heat exchangers are the devices that 

participate in exchanging heat between two fluids in order to serve specific purposes 

given the conditions of temperature gradients. The purpose is to remove or to add heat as 

quickly as possible. Inside an engine cylinder heat is transferred from the burnt gases to 

the engine coolant through the engine block, but this system is not considered a heat 

exchanger. However, a device which is called the heat exchanger, allows quick heat 

removal from the hot engine coolant by the flowing air. So, there are specific differences 

among the terms heat transfer and heat exchangers. To evaluate the term ‘heat 

exchanger,’ there must be two fluids participating in exchange of heat between them. 

Among the participating fluids, one may be liquid and the other a gas, or both may be 

liquids. If a heat transfer system consists of only one liquid, it is known as heat sink [77]. 

Heat exchangers can be distinguished from one another based on working principles, 

geometry, construction, fluid-flow arrangements, types of fluids, and the fluid mixing 

conditions. Heat transfer in a heat pipe occurs based on the principle of latent heat with 

no change in temperature in the working fluid, while other heat exchangers work on the 

principle of differential temperature in the form of sensible heat. Space (NASA) is one of 

the largest sectors to use heat pipes. A contact heat exchanger works on the principle of 

making direct contact with the fluids, then mixing with each other, and finally 
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exchanging heat between them. The de-aerator, spray condenser, and wet cooling tower 

are the example of such a heat exchanger. The regenerative heat exchanger works based 

on the principle of heat storage. The common types of heat exchangers used in the 

industries are: shell and tube heat exchanger, plate heat exchangers, regenerative heat 

exchangers, adiabatic wheel heat exchangers, heat sinks, and channel heat exchangers. 

Based on the direction of the liquid flow, the common heat exchangers are: parallel-flow, 

countercurrent, and cross-flow heat exchangers. In parallel-flow heat exchangers, both 

fluids move in the same direction parallel to each other. In countercurrent heat 

exchangers, the fluids flow in opposite directions. Lastly in cross-flow heat exchangers, 

the fluid flow direction is perpendicular to each other.  Heat exchangers may work with 

both of the fluids liquid, one liquid and the other gas, or both gases. Based on channel 

dimensions, especially the hydraulic diameter, or in another word the characteristic 

length scale, heat exchangers may be classified with different names. Mainly, two 

classification schemes are available in open the literature. The scheme proposed by 

Mehendale et al (2000) covered heat exchanger cores within the range of 1µm to 100µm 

as microchannels, 100 µm to 1mm as meso-channels, 1mm to 6mm as compact passages, 

and greater than 6mm as conventional passages [4]. This division was based simply upon 

the hydraulic diameter of the channels. The classifications on channels were further 

refined by Kandlikar et al (2003), who classified channels as: ‘Conventional Channels’: 

Dh >3mm, ‘Minichannels’: 3mm >  Dh >200 µm, ‘Microchannels’: 200µm > Dh 

>10µm, ‘Transitional Channels’: 10µm > Dh >0.1µm, ‘Transitional Microchannels’: 

10µm > Dh >1µm, ‘Transitional Nanochannels’: 1µm > Dh >0.1µm, and ‘Molecular 

Nanochannels’: 0.1µm ≤  Dh. A heat exchanger with a channel size less than 3mm is 
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called narrow-channel [5]. The American Society of Mechanical Engineers (ASME) 

usually adopts the latter classification refined by Kandlikar et al in distinguishing channel 

classification. The organization uses the name; Minichannel, Microchannel, and 

Nanochannel when publishing technical papers or journals which deal with work related 

to channel hydraulic diameters [6, 7]. The heat exchanger under the current investigation 

has a hydraulic diameter of 1mm. Hence, it sits in the classification category of 

Minichannel according to the ASME adoption. Based upon the historical development of 

channel classification, which is established and recognized by ASME, the heat exchanger 

used for the current study has been termed as the Minichannel Heat Exchanger (MICHX).  

Channel size is very important in terms of heat transfer and fluid flow characterization. In 

the case of a single phase or two-phase liquid-gas heat exchangers, no fundamental 

change occurs in fluid-flow due to channel sizes up to 200µm. Below 200µm, 

manufacturing techniques and the cleanliness process are very important in light of their 

performance [5, 8]. 

Heat-transfer intensification and energy efficiency of the heat exchanging devices are the 

prime concern of several industries now-a-days. The optimal design of heat exchangers 

for minimum system losses and efficient heat transfer is a great challenge in terms of 

energy savings. The challenges exist because of the persisting phenomenon of entropy 

generation by the heat transfer process across a finite temperature difference, and of 

irreversible friction flows [9]. One way of enhancing heat transfer is the minimization of 

entropy generation and the maximization of the heat transfer coefficient. This can be 

achieved in numerous ways such as minimizing pressure drops and friction factors, by 

improved fabrication technologies, minimizing channel size, and adopting advanced 
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geometry such as the slab and serpentine structure which gives better performance over 

conventional heat exchangers [6, 10-11, 19, 25, 63-70].   

Researchers are in search of devices that efficiently transform energy and be friendly to 

the environment & ecology. MICHXs are the subject of diversified research and 

application interest due to the: miniaturized geometry and lightweight, augmented heat 

transfer characteristics, and the versatility in their use [12, 17-18, 25]. The devices can 

play an important role in the real-world applications, even in cooling of viscous fluids 

like engine oil, engine coolant, and transmission fluid. The applications of such devices 

are extended in the field of HVAC systems in automotive industries or residential use.   

Narrow channel heat-exchangers with a diameter of 1mm or less have high-heat transfer 

surface densities up to 10,000m
2
/m

3
 [13-18]. In the current study, the surface density of 

the heat exchanger is 4,000m
2
/m

3
, which is about six times higher than traditional 

compact heat exchangers. For flow in channels, the local heat transfer coefficient h is 

directly proportional to the fluid conductivity and inversely proportional to the channel 

hydraulic diameter. The relation is h = Nuk/Dh where h is the coefficient of heat transfer, 

k is the fluid conductivity, and Dh is the channel hydraulic diameter or characteristic 

length. Therefore, two basic parameters lead to the heat-transfer enhancement: fluid 

conductivity (k) and channel geometry (Dh). To ensure heat transfer enhancement, 

designers need to consider either increasing the fluid conductivity or decreasing the 

channel hydraulic diameter. This historical concept was first developed and proved in 

1981 by David B. Tuckerman, a PhD candidate under the supervision of Professor R. F. 

W. Pease (Stanford University USA), to the advent of systems employing high-density, 

very-large-scale integrated (VLSI) circuits that required effective, compact, and quick 
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heat removal [17-18]. Their pioneering work aimed at the cooling of high-speed digital 

circuits employing submicron channel lengths dissipating high heat. They were 

successful in constructing a very compact water-cooled heat sink, which was an integral 

part of the silicon substrate, and capable of maintaining 790 W/cm
2
 power densities. 

Since then, many researchers intensified their interests to dig into the mystery of high 

thermal and hydrodynamic performances in minichannel and microchannels. Some 

researchers worked on developing mathematical models [12, 19], while others conducted 

experimental investigations. Kang, et al (2002) used de-ionized water as the working 

fluid, and found a volumetric heat transfer of 188.5 MW/m
3
-K with an overall heat 

transfer coefficient of 24.7 kW/m
2
-K. Their investigation was carried out with a 

prototype cross-flow microchannel heat exchanger in the laminar regime [10]. 

Although theoretically heat transfer enhancement occurs based on fluid property k, and 

channel geometry Dh, it is still an open question as to whether or not this concept fits for 

all kinds of channel geometries and fluid conductivities. Therefore, many investigators 

emphasized the necessity of further research in this area to develop a consensus for 

eliminating such arguments. Although the open literature shows that higher heat transfer 

intensification can be ensured by the MICHXs [6, 10-11, 19, 25, 63-70], most of the 

investigations were carried out using fluids such as water and ethylene glycol, while 

literature pertaining to the investigation of ATF is scarce. There is a need for in-depth 

investigation on MICHX for cooling ATF.  
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1.1 Motivation 

Heat-transfer augmentation and miniaturized geometry of heat exchangers have 

intensified the propensity of researchers towards finding a match for real-world 

application, such as cooling of a nano-scale device (microchips) or a huge piece of 

equipment, like a spacecraft. Narrow-channel technology in heat transfer and fluid-flow 

applications are heading towards the replacement of the traditional heat exchangers [6, 

10-11, 19, 25, 63-70]. MICHXs are able to mitigate industry energy needs through 

energy conservation and reduced exergy destruction. In recent years, appreciable 

developments in micro and mini-heat exchanger design & fabrication technologies have 

been achieved. Such achievements have enriched the research appeal to find better-

performing heating or cooling devices. The heat exchanger under this study is a slab-

structured single piece unit, which has a serpentine shape and wavy fins at the straight 

part after the serpentine (Figure 4.20 and 4.21). As this is a slab structured unit with 

parallel minichannels, no gap exists in between channels. Such a structure can prevent 

any wake region formation behind the channels, and allow a longer dwelling time that 

enables uniform temperature distribution over the slab. Heat duty, which is defined as the 

amount of heat transferred from 1kg of hot fluid to the 1 kg of cold fluid in one hour, is 

also an important factor in this case. The advantages of these MICHXs have been 

summarized below: 

• They ensure elevated heat duty, even 315 MW/m
3
-K or more because of the 

advanced design, [10-11].   

• Surface density is very high, about 4,000 m
2
/m

3
; it is approximately six times 

higher than traditional compact heat exchangers [20-22]. 
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• For HVAC applications, they have environmentally sound operation, structural 

robustness, better thermal performance, and corrosion resistance [20].   

• For serpentine-structure MICHX: the serpentine develops new thermal boundary 

layers at each turn that enhance the heat transfer rate [23-24].   

• MICHXs offer reduced thermal resistance of the liquid boundary layer due to 

high-performing material properties that allow quicker heat transfer.   

• Reduced air-side pressure drop enhances fuel-cost cutting and indirectly saves the 

environment. 

The MICHX under this study has been selected to characterize fluid-flow and heat 

transfer behaviours of ATF. Under the research plan, a complete set of experimental data 

on heat transfer, fluid flow, and design parameters have been anticipated. Although open 

literature showing the advantages of narrow-channel heat exchangers is abundant, studies 

dealing with heat transfer and fluid-flow characterization of ATF using the MICHX are 

still unavailable. Therefore, the need of an investigation on heat transfer behaviours and 

fluid flow characteristics of ATF in MICHX has been realized. In the current study, the 

motivation of selecting a flat geometry serpentine-slab test specimen is to quantitatively 

and qualitatively justify the ATF cooling strategies.   

1.2 Objectives 

Numerous investigations have been conducted on heat transfer and fluid flow behaviours 

of different fluids like water, ethylene glycol, water-diluted glycol, brine, and other low 

viscous fluids. However, studies on examining heat transfer and flow behaviours of ATF 

are not available in the open literature either for conventional or advanced narrow-
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channel heat exchangers. Thus, the findings of the literature survey on ATF cooling 

characteristics unveiled the great necessity of further exploration on this material to fill in 

the gaps in research. Investigations on slab-structure serpentine MICHXs that are 

involved in examining heat and mass flow characteristics of non-viscous or very low 

viscous fluids are available. However, the scarcity of information pertinent to ATF 

cooling brought the study into light as a field of research interest. Cooling of ATF is one 

of the major challenges for the automatic transmission designer due to the variable 

property characteristics as a result of temperature variation. The response of the ATF 

thermo-physical properties to temperature and the flow behaviours prompted this study to 

use serpentine MICHXs in order to make a judgment on their industrial applicability 

based on experimental data. The main objectives of this study are summarized below:     

• Perform a comprehensive study of previous works identifying heat transfer and 

fluid flow behaviours of different viscous fluids. 

• Experimentally investigate heat-transfer characteristics of ATF in MICHX in the 

laminar regime and compare findings to other fluid behaviours using a similar test 

specimen.     

• Experimentally investigate and identify temperature dependency of ATF fluid-

flow and heat-transfer parameters with air-side temperature change while keeping 

ATF temperature constant. 

• Investigation of heat transfer rates, NTU, effectiveness, friction factor & pressure 

drop behaviours, and overall thermal resistance with ReL and/or mass flux. 
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• Investigate effects of dimensionless form of parameters: Reynolds number (ReL), 

Nusselt number (NuL), Prandtl number (Pr), Brinkman number (NBr), Ekert 

number (Ec), and Dean Number (De) on heat and mass transfer behaviours. 

• Establish heat and mass transfer correlations among the parameters: specifically 

hL and NuL with ReL, NuL with Ec, NuL with NBr, and ε-NTU with ReL. 

• Summarize information to the fulfillment of the potentiality of MICHX in the 

real-world applications, especially in automotive industries.  

• Generate an experimental database for the ATF cooling strategy for further 

research on similar types of viscous fluids using similar heat exchangers.  

A careful completion of such research objectives will ensure greatest achievement in the 

development of an initial guide for the transmission designers and provide a source of 

information for future projects. 
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CHAPTER II 

REVIEW OF LITERATURE 

Heat exchangers are the devices that allow quicker heat transfer from one media to 

another usually between liquid and gases in serving special purposes. Industries cannot 

be established without considering heat exchangers. Heat exchangers have versatile use 

in the real-world applications. Some of the important applications of such a heat 

exchanger can be summarized as: Food & Beverage industry which includes processing 

of dairy product, brewing, soft drink, fruit processing, etc.; Chemical Industry that 

includes petroleum processing, hydrocarbon processing, polymer processing, 

pharmaceutical product processing, etc.; Industrial application such as mining, 

automotive, pulp and paper, textile application, vegetable oil processing, sugar industry, 

etc.; Power sector such as power generation and distribution, HVAC application, and so 

on. Some of the important research areas related to the current investigation available in 

open literature are summarized in this chapter. 

2.1 Heat-Transfer Characteristics at Laminar Flow in Minichannel 

The heat-transfer characteristics of circular minichannels, either straight or serpentine 

configurations for developing or developed laminar flow, are not readily available in the 

open literature. For narrow-channel heat exchangers, the Nu can be found within the 

range of 0.21 to 16 times higher than that of the conventional heat exchangers. During the 

heat transfer and fluid flow in channels, for a partially developed flow, the local Nu may 

be higher than in the case of a fully developed flow. Nu for a particular fluid flowing 

through the heat exchangers can be estimated experimentally or from the available 



Experimental Investigation of Automatic Transmission Fluid (ATF) in an Air Cooled Minichannel Heat Exchanger                               

M. A. Sc Thesis    Md Abdul Quaiyum: Mechanical Automotive and Materials Eng., University of Windsor, ON Canada           12 

correlations.  Although few correlations for a developing laminar flow through traditional 

pipes are available in open literatures, the correlations for developing laminar flow in 

circular minichannel, especially serpentine multi-slab MICHX, is still rare.  Khan et al 

(2010) developed correlation for 50% ethylene glycol flowing through a single straight 

slab MICHX [25]. The authors termed the current minichannel as microchannel in their 

literature. During the investigation, they found a heat-transfer correlation for a 

developing flow in the form of !# = 0.152./*L.MNOP ')*L.QQ within the Reynolds number 

range of 400 ≤ Reg ≤ 1800 while using 50% ethylene glycol as the working fluid. In their 

investigation, the authors claimed that the Nu value is higher than the values obtained 

from the conventional fully developed heat exchangers. They also claimed that it is even 

higher than the conventional thermally developing laminar flow correlation proposed by 

Gnielski. Dasgupta et al (2011) worked on the air side Nu investigation while using de-

ionized water as a liquid and found correlation as Nua= 0.3972Rea 
0.3766

. In this case, the 

authors claimed that Nu is higher than that of Tang and Tailor [6]. Therefore, how ATF 

behaves at cooling while flowing through the serpentine circular minichannel in the 

laminar flow regime may be considered as a field of interest. 

2.2 Automatic Transmission Fluid 

Motor vehicle performances are usually evaluated in terms of torque generation for wheel 

traction, tailpipe emissions, and fuel consumption over on-road mileage. The stringent 

emission legislation set by the Environmental Protection Agency (EPA), California Air 

Resources Board (CARB), and National Highway Traffic Safety Administration 

(NHTSA) for North America, or European Emission Standards for EU countries are 
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highly regulated.  A shifting of the new emission standards applicable to new passenger 

cars, light-duty trucks, and medium-duty passenger vehicles, covering model years 2012 

through 2016 set by EPA and NHTSA, enforced to cover 35.5 miles per gallon [26].   

This new standard compelled the automotive industry to manufacture vehicle components 

that can ensure fuel economy improvements in order for meeting the set legislation. 

Vehicle Power-Train is mainly responsible for such emissions. In a motor vehicle the 

typical Power-Train includes a set of components that generate power, deliver power to 

the transmission, and finally to the wheel for generating traction force. The major 

components of this system include engine, transmission, Power Take-Off (PTO) shaft, 

differentials, and the wheels. The engine and transmission are the main components of 

the vehicle that control its performance. Although the engine is the prime source of 

emissions, the transmission also plays an indirect role in increased emissions. Thus, the 

pressure on the manufacturing companies can be elevated due to inefficiency of such 

components. Researchers and manufacturers are walking jointly on the same way to 

overcome such problems. Efforts are being accumulated on improving the efficiency of 

the Power-Train components, especially the transmission. However, the investigations 

dealing with the efficiency improvement of the transmission system, particularly cooling 

of ATF using the MICHX, are still unavailable in open literatures.  

Automatic transmission fluid has a life of about 100,000 miles at 175⁰F (80⁰C). At a high 

temperature it produces a varnish on internal parts interfering with the operation of the 

transmission. Above 250⁰F (120
o
C), rubber seals harden, causing pressure loss and leaks. 

For every 20⁰F (6.67
o
C) increase in operating temperature above 175⁰F, the life of the 
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fluid is cut in half, and above 240 ⁰F, the life becomes nil [27-28, 31]. The lifetime of the 

transmission with the ATF temperature is shown in Figure 2.1 in summary format. 

 

Figure-2. 1: Working Temperature of ATF and Transmission Life [27, 28] 

In the petroleum industry, ATFs are known to be the most complex lubricants because of 

as many as 15 components in them to meet the requirements of automatic transmissions. 

The ATF usually performs five basic functions [29]: 

(a) Transmit hydrodynamic energy in the torque converter. 

(b) Transmit hydrostatic energy in hydraulic logic control circuits and servomechanisms. 

(c) Lubricate shaft bearings, thrust bearings, and gears.  

(d) Transmit sliding friction energy in bands and clutches. 

(e) Act as a heat-transfer medium controlling automatic transmission operating 

temperatures.  
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What kind of automatic transmission fluid should be used in the transmission; this 

question is always answered by the manufacturers themselves. Various manufacturers of 

the transmission use different fluids and usually they do not match each other. Wrong use 

of ATF can affect the transmission performance. Shifting and engagement of the torque 

converter clutch (TCC) is usually controlled by the transmission control module (TCM). 

During the transmission in operation, the TCM electronic system considers many inputs 

in the transmission: including throttle position, engine speed, input-output speed, etc. The 

ECM and the TCM (together called PCM) work together based on some look-up values 

from control maps. A faulty control map from a wrong ATF may mislead the TCM 

causing a lot of trouble resulting in an inappropriate temperature rise.  Therefore, an 

appropriate method of efficiently cool ATF is very important for the industries.  

2.2.1 Transmission Efficiency 

The improved transmission performance allows an enhanced engine efficiency and 

emission performance leading to overall vehicle performance and fuel economy. Salah, 

(2007) conducted an investigation on the Multiple Cooling Loops in Advanced Vehicle 

Thermal Management Systems. In the investigation, the author used an auxiliary heat 

exchanger located inside the radiator for transmission oil cooling. The research findings 

demonstrated that, appropriate Power-Train cooling can ensure vehicle fuel economy 

[30]. An appropriate cooling method can maintain the essential fluid properties. Semel, 

(2001) investigated stand-alone Oil to Air (OTA) transmission cooling strategy with 

thermostatic cold flow bypass valve. The study was conducted for improving the 

efficiency of the transmission by upgrading the warm-up system to minimize energy 

losses due to extremely viscous fluid at low temperatures [37]. 
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2.2.2 Temperature Dependency of ATF 

ATF performance is highly dependent on temperature, especially due to its quick 

response in changing the viscosity. The ATF properties significantly affect the 

transmission performance. Kemp, et al (1990) conducted an investigation on ATF and 

established correlations among various thermo-physical properties and temperature. In 

their study the author found that viscosity varies exponentially, while the other properties 

vary linearly with the variation in temperature. They established a correlation of 

Brookfield viscosity and temperature, as Y = 51. 565E
(-0.1651T)

. Here Y indicates 

Brookfield viscosity and T as temperature in 
o
C. This relation is valid for low 

temperatures [31]. They found another correlation for the Kinematic viscosity at a higher 

temperature as log (ν + 0.7) = mlog(T) + C where T is the absolute temperature, and m & 

C empirical constants. The double log of viscosity and log of temperature allows 

interpolation and extrapolation as linear relations, but at temperatures below the cloud 

point the viscosity changes rapidly and does not follow linear relations for the mineral 

based lubricants [31-33].   

The ATF viscosity is usually specified as kinematic viscosity, ν (centistokes) at 100
o
C 

(ASTM D445) on the high-temperature range and Brookfield viscosity, µ (centipoises) 

which is reported as absolute viscosity at -40
o
C (ASTM D2983) on the low-temperature 

range [31-32, 34]. The viscosity of ATF varies within 5.50 - 8.00 cSt at 100
o
C and 

generally under 20,000 cP at - 40
o
C [31-32]. Most essential element properties of the 

ATF are: friction and friction durability, oxidation resistance, good sealing performance, 

operating at temperature extremes, non-corrosive to transmission components, and 

special antifoam properties. Rudnick, (1999) explained the physical and chemical 
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properties of ATF and its historical review, and also the performance level comparisons 

[35].  Henderson et al (1998) conducted an investigation on ATF fluidity at low and high 

temperatures. In Brookfield viscosity region, significant gelletion can occur due to wax 

crystal growth effects where the ATF behaves as a non-Newtonian fluid. However, at a 

kinematic viscosity region, it behaves as Newtonian fluid. The transition point is known 

as the cloud point (ASTM D2500) [32]. Basically, the cloud point is the temperature at 

which the gelletion or wax crystals start forming; it may plug the filter. For a typical 

ATF, the cloud point is -14
o
C and for viscosity improved ATF it is -17

o
C [31]. Sarker, et 

al (2002) conducted investigations to characterize rheological properties of ATF at low 

and high temperatures and outlined a cloud point at -7
o
C. Furthermore, the findings of 

their investigation showed that the fluids with same kinematic and the Brookfield 

viscosities undergo a difference in viscosity values up to 40%, while the transmission 

works under the typical conditions [32/30]. Viscosity Index Improver (VII) helps in 

stabilizing the properties of the fluid at these temperatures.  A low-viscosity ATF can 

reduce torque loss and improve the transmission efficiency. However, too low viscosity 

at a high temperature may decrease the fatigue life of metals. Kazuo et al (2003) studied 

low viscosity of ATF and reported on vehicle fuel economy. Their investigation showed 

that an improved ATF can reduce fuel consumption by 1.1-1.4% [36].  

2.2.3 Newtonian and Non-Newtonian Behaviour of ATF 

A fluid is said to be Newtonian fluid when it follows the expression, τ = μ∂v/∂r where τ = 

shear stress, μ = dynamic viscosity, and ∂v/∂r is the velocity gradient perpendicular to the 

direction of shear [81]. ATF behaves as Newtonian and Non-Newtonian both depending 
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on temperature. So, the behaviours of non-Newtonian fluid also need to be studied. 

Rennie, et al (2007) numerically investigated Newtonian as well as non-Newtonian fluids 

flowing through double-pipe helical heat exchanger to examine thermo-physical 

properties. For Newtonian fluids,   they found thermal dependency of viscosities, which 

have very little effect on the Nusselt number correlations, but significant effect on the 

pressure drops in the inner tube due to the change in average viscosity of the fluid with 

the change in average temperature.  They studied the ratio between the pressure drops of 

the non-Newtonian fluid in a Newtonian fluid with change of the mass flow rate in the 

inner tube. Their investigation showed that the ratio of the pressure drops either decrease 

or increase with increasing flow rate in the inner tube, depending on conditions [39]. 

Other Newtonian and Non-Newtonian behaviour of fluids like ATF has been discussed in 

section 2.2.2. 

2.2.4 Automatic Transmission Fluid Properties 

Among the viscous fluids, ATF behaves very differently, especially with variation in 

temperature. So it is very important to know the properties and the fluid components. The 

following table gives an idea of the fluid components and their functions. 

Table-2. 1: Automatic Transmission Fluid Properties 

Components Function of the components 

Mineral oil Base oil 

Viscosity Index Improver 

(VII) 

Helps in keeping the viscosity as much as 

unchanged during temperature change 

Friction Modifier Helps in improving friction characteristics 
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Pour Point dispersant Helps in lowering pour point 

Corrosion inhibitor 

It prevents corrosion of bushings, thrust washers, 

bearings and other parts 

Anti-wear 

Helps preventing wear of gears, bushings, 

washers and other parts 

Antioxidant Control the oxidation during use 

Dispersant It controls the sludge and varnish 

Foam Inhibitor controls foam formation 

Red Dye Differentiate as ATF 

The important thermo-physical properties are the viscosity, density, thermal conductivity, 

and the specific heat capacity which are usually applied for the heat-transfer 

characterization. These properties of ATF get changed with the change in temperature. 

They will be discussed in details in chapter 6. Among other properties of ATF, shear 

resistance is important. Viscosity Index Improver (VII) plays the role to keep the 

viscosity stable at higher and lower temperatures as much as possible. The VII are the 

long-chain polymers that get extended at higher temperature and shortened at the lower 

temperatures. The VIIs are usually composed of high molecular polymers, which have 

coiled chain. This coil size is related to the molecular weight. The high molecular weight 

polymers get sheared quickly [36]. So, there should be a balance in the molecular weight 

for choosing appropriate VII.  In the transmission, especially due to frequent gear and 

clutch engagement and during pumping by the gear pump, the VII can be sheared into 

pieces resulting in permanent loss of viscosity. The temporary loss of viscosity may occur 



Experimental Investigation of Automatic Transmission Fluid (ATF) in an Air Cooled Minichannel Heat Exchanger                               

M. A. Sc Thesis    Md Abdul Quaiyum: Mechanical Automotive and Materials Eng., University of Windsor, ON Canada           20 

due to shearing force that causes the VII molecule to be stretched and straitened. The 

base oil has smaller molecular weight than the VII, so it does not shear easily. It makes a 

thin film between the mating parts. An appropriate cooling can keep the ATF properties 

more stable during operation. 

2.3 Viscous Effect of Liquid on Temperature Variation 

Few researchers worked on examining the viscous effect of the liquid on temperature 

variations [38-53], while few others worked on pressure differential through MICHX [55-

57]. Wang, et al (2004) investigated frictional characteristics of the highly viscous fluid 

in minichannels (Dh = 0.198–2.01 mm) while using water and lubricating oil as the 

working fluids. The study was conducted with Reynolds number of 0.1 to 1500 [41]. In 

their investigation, it was found that the viscosity or the Prandtl number has negligible 

influence on the friction factor if the hydraulic diameter is greater than 1.0 mm. Obot et al 

(1997) observed similar results while working on water, ethylene glycol- water, and 

ethylene glycol within the Prandtl number range of 0.7 ≤ Pr ≤ 125.3. Their result showed 

that the friction factor is independent of Pr in smooth pipes [58]. Nonino, et al (2006) 

carried out a parametric investigation on the effects of temperature-dependent viscosity in 

simultaneously developing laminar flow of a liquid for straight ducts while considering 

boundary condition at a uniform wall temperature [45]. Their numerical investigations 

showed that the viscosity varies exponentially with temperature variation in the entrance 

region for the laminar forced convection. Akehurst, (2001) conducted a study on V-Belt 

Continuously Variable Transmission (CVT) for his PhD work and checked the viscosity 

variation with temperature [59]. In his investigation, he found that the viscosity variation 
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with temperature change occurs in a power law manner where he obtained a polynomial 

best curve fit. Yang, et al (1995) developed a mathematical model to predict the heat 

transfer and fluid hydrodynamics during wet clutch engagement while considering 

viscous dissipation, ATF heat balance, and the effect of other thermo-physical properties 

[54].  So, consideration of viscous effect with temperature variation for designing 

transmission, cooling transmission oil, and designing the heat exchangers are very 

important. 

2.4 Effect of Viscous Energy Dissipation 

Hetsroni, et al (2005) made an analysis to verify the conventional theory to predict the 

hydrodynamic characteristics of Newtonian fluid flowing through micro-channels in the 

laminar regime with a hydraulic diameter range of 15µm ≤ Dh ≤ 4010µm and Reynolds 

number of 10
-3

 ≤ Re ≤ Recr. Their investigation showed that to a fully developed laminar 

flow in circular micro-channels, an adiabatic increase in the fluid temperature may occur 

due to viscous dissipation as in the form of the following equation [60]:    

∆SS0T = 2 UV�V W��X Y�Z[S0T     (2.1) 

where, r is the radius of microchannel channel, ∆T = Tout - Tin, and ν is the kinematic 

viscosity. They also studied the effect of the viscous energy dissipation [60]. The study 

showed that under some conditions, the heat released due to viscous dissipation may 

cause changes in flow and temperature field. It may cause instability in the flow field.  

C.P. Tso, and S.P. Mahulikar conducted an experimental investigation on water to study 

the viscous dissipation. They found an empirical relation of Nusselt number and the Re-
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Pr numbers, Nu/Re
0.62

 Pr
0.33

 on Brinkman Number (NBr) in the range of 0.4559x10
-5

 ≤ NBr 

≤ 2.8333x10
-8 

while the Reynolds number, and the Prandtl number change in the ranges 

of 80 ≤ Re ≤ 107, and 4.80 ≤ Pr ≤ 6.71 [89]. They also noticed that at every small value 

of the Brinkman numbers (NBr ≈ 10
-8

–10
-5

), the effect of viscous dissipation on heat 

transfer may be considered non-realistic for flow in micro-channels.  

The real effect of viscous dissipation on heat transfer can only be estimated if the 

dependence of the Nusselt number on the Brinkman number is determined at fixed values 

of the Reynolds and the Prandtl numbers. When NBr is large as of the order of unity or 

larger, it can influence film temperature (Tf). If that is the case, even for a constant value 

of NBr along the flow direction, the primary effect of NBr occurs [89].  

Koo, (2004) made an investigation on the effects of viscous dissipation on the 

temperature field and the friction factor while using dimensional analysis. He 

experimentally validated computer simulation results using water, methanol and iso-

propanol as working fluids [42].  The investigation turned out that, for micro-conduits, 

viscous dissipation are a function of the channel aspect ratio, Reynolds number, Eckert 

number (Ec), Prandtl number, and conduit hydraulic diameter. In such a case of micro-

conduits, even for a low Reynolds number, significant temperature increase may occur 

due to viscous dissipation in a fluid with high viscosity and low heat capacity. Morini, 

(2005) investigated that for forced convection through micro-channels, the conventional 

theory of  Navier–Stokes equations cannot be considered as valid  for predicting pressure 

drop and convective heat transfer coefficients when the hydraulic diameter is less than 1 

mm. He developed a mathematical model to relate the heat generated due to viscous 

effects [49]. He obtained the model by considering a constant value of the viscosity so 
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that it gives the maximum value of the temperature rise related to the viscous heating. His 

model is (Temperature in Kelvin) [49]: 

�S\�]^ = W4 `�Y� ab./cX ∆Sdefgh      (2.2) 

Where, Ec is the Eckert number (Eckert number = W
2
/(2cp∆Tref , for the reference fluid)) 

The above equation holds if the micro-tube can be considered adiabatic.  

Warnakulasuriya, et al (2008) investigated plate heat exchanger with an absorbent salt 

solution as highly viscous fluid, which has a high-temperature dependency. They 

established a correlation between the Nu, Re, and Pr and found the dependency of the 

heat-transfer coefficient on flow rate and that it is more pronounced at low flow rates. 

The Correlation relates the Nu with Re and Pr as !# = 0.292./L.jLk')L.Qk. They also 

realized the necessity of Nu correction due to the temperature dependency of viscous 

fluid and found a power law relation which they expressed in the form of !# =
0. 292./L.jLk')L.Qk W lflmXL.OM

; here, µf is the dynamic viscosity at film temperature and µm 

in mean temperature. They summarized that some factors may affect the heat exchanger 

performance and can cause (1) increased flow resistance at the end of the channels closer 

to outlet due to cooling down the fluid, (2) sedimentary buildups and solidifications at 

narrow part of flow passages, and (3) cold pockets at the end zone away from the main 

flow paths [38]. Viscous dissipation effects are very important for fluids with low 

specific heats and high viscosities, even in relatively low Reynolds number flows. 
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2.5 Scope of Current Research 

Various investigations have been conducted on several working fluids either for heating 

or cooling purposes, while using different types of heat exchangers. However, the heat 

transfer and fluid-flow characteristics of an ATF still have a need of investigation due to 

the unavailability of information in open literatures. Although a few investigators 

conducted their study to apprehend the thermo-physical properties of ATF and its heat-

transfer fluid-flow performances, the studies are limited to only inside the transmission 

[62]. The study on cooling strategies and heat-transfer characterization, using traditional 

or high performance heat exchanger, are still very sparse in open literatures. Even though 

an intensive literature survey has been accomplished, no literatures were available 

dealing with the ATF cooling, particularly with the aid of a MICHX. Therefore, the 

current study may be considered as a novel one that entails a detailed investigation on the 

applicability of a MICHX for transmission fluid cooling strategies. 

A significant number of research articles, technical papers, journal publications, books, 

and open literatures have been carefully consulted. All those investigations deal with 

different channel geometry, channel size, fin type, tube arrangements, heat exchanger 

types, and types of fluids. Very few researchers have worked on slab structure 

minichannel of the serpentine shape. Their investigations mainly focused on the 

superiority of the cross-flow minichannel heat exchangers    over the traditional ones 

while using water and 50% ethylene glycol. The chronological development of 

microfabrication techniques such as LIGA (a German acronym for Lithographic, 

Galvanoformung, Abformung which means Lithography, Electroplating, and Molding), 
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stereolithography, Laser beam machining, and Electroformation made the design and 

fabrications of mini and micro level heat exchangers easier. The heat exchanger under the 

current investigation is made of high-strength aluminum alloy that can withstand a 

pressure up to 15 Mpa due to the material and the fabrication method. Detailed plans 

have been made to examine the heat exchanger by placing it in a test chamber of a 

closed-loop thermal wind tunnel. A typical ATF has been selected to flow through the 

heat exchanger during the experiments. It has been anticipated that the current study is a 

novel work and after a successful completion of the study, the findings will be an extra 

addition to the industry-based information in the field dealing with the flow of mass and 

heat transfer. 
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CHAPTER III 

DESIGN AND METHODOLOGY 

In the current study, a Minichannel Heat Exchanger (MICHX) has been used as a test 

specimen. A typical automatic Transmission Fluid (ATF) has been taken as the liquid-

side working fluid while conditioned air was blown in a cross-flow direction through the 

fins of the MICHX. For better distinguishing the fluids a subscript ‘L’ for liquid and ‘a’ 

for air have been adopted for the derivation and data analysis in the subsequent sections. 

It is assumed that the ATF is an incompressible fluid. Although ATF shows both Non-

Newtonian and Newtonian behaviours depending on temperatures, the lowest 

temperature of the air has been maintained at 15
o
C, so the ATF temperature can never be 

in the range of Non-Newtonian fluid. Therefore, all the calculations have been performed 

considering Newtonian fluid. Other considerations include; no effect of pressure drop on 

thermo-physical properties but the temperature-dependent  properties like viscosity, 

density, specific heat capacity, thermal conductivity, Prandtl Number, etc. varies with the 

change in temperature. The wetted perimeter of the inlet and the outlet manifolds are 10 

times bigger than the individual channel diameter, so the flow distributions are 

considered uniform.  Based on the measured data all other required data and parameters 

have been deduced. 

3.1 Key Assumptions 

For a better data reduction and appropriate evaluation, the following assumptions were 

made: 
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1. The exchange of heat between the heat exchanger and the surroundings due to 

radiation or conduction is negligible because of appropriate thermal sealing. 

2. No heat loss or gain by the air to or from the outside surroundings near the test 

chamber.  

2. The condensation on the heat exchanger surface by the air is insignificant. 

6. No heat generated by the air due to viscous dissipation.  

7. During the ATF flow through the channels, the axial heat transfer due to conduction is 

negligible. 

8. The kinetic and potential energy changes due to fluid movement from slab to slab 

through the serpentine are negligible. 

3.2 Bulk Temperature and Thermo-physical Properties of ATF 

For a temperature-dependent fluid, a selection of representative temperature for 

calculation is very important. The choice of selecting correct temperature should be based 

on the application such as a heat exchanger or heat sink. Muzychka, (2011) suggested 

that for a single fluid such as a heat sink, the better and easier approach is to use the inlet 

temperature and for two fluids like heat exchangers, better to consider the bulk mean 

temperature for the calculation [77]. The author further suggested that the most 

frequently used reference temperatures for defining the local heat transfer coefficient in 

an internal flow has traditionally been in terms of the bulk temperature [73, 77]. Many 

authors used bulk temperature for evaluating the thermo-physical properties of viscous 
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fluids [44, 46, 49, 52, 71, 78]. Shah, et al (2003) in their book, “Fundamentals of Heat 

Exchanger Design” (chapter 7, page-562), explained the reason of evaluating all 

properties at bulk temperature [71]. Based on the consideration of the authors, the bulk 

temperature as a representative temperature has been considered for the subsequent 

calculations.  

The thermo-physical properties of the ATF include mainly the density, viscosity, thermal 

conductivity, specific heat, Prandtl number, etc., which will be evaluated in this text. As 

the bulk temperature has been considered the representative temperature, these properties 

have been evaluated based on the bulk temperatures for the ATF and the air. The bulk 

temperature for the ATF has been evaluated as the mean of the inlet and outlet 

temperatures given as: 

%2� = S�0nS�oP       (3.1) 

The mean average temperature of air can be evaluated in the similar way as the mean of 

the air inlet and outlet temperatures: 

%2� = S�0nS�oP      (3.2) 

The thermo-physical properties of ATF have been received from different sources. The 

viscosity and the density have been determined by Can-Am Instrument Limited, Canada 

for different temperatures. The ATF thermal conductivity and the specific heat capacity 

data have been checked from the SAE published paper with similar grade [31]. 

Appropriate curves have been best fitted, and any data required for the calculation have 

been taken from the fitted curves.  
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3.3 Dimensionless Fluid Flow and Heat Transfer Parameters 

Dimensionless quantities are obtained from the product or ratio of the quantities which 

have dimensions or measuring units. After the product or making ratios, the units cancel 

out and the output is a result of dimensionless form. In engineering application especially 

in fluid mechanics analysis, a number of dimensionless parameters are employed to 

describe convective heat transfer. Numerous dimensionless parameters are commonly 

used in the field of heat transfer and fluid flow to characterize fluid behaviour. The most 

common dimensionless numbers are summarized here.   

3.3.1 Reynolds Number (Re) 

In fluid flow mechanics, Reynolds number (Re) is a very important parameter. It is 

named after the founder the British engineer and physicist, Osbourne Reynolds [76]. It is 

a dimensionless number which is the ratio of inertial forces to viscous forces. It quantifies 

the relative importance of these two types of forces for given flow conditions. It is the 

function of fluid velocity, density, flow cross-sectional area, characteristic length, and the 

viscosity. In a flow, usually the viscous effect within fluid acts for stabilizing the flow to 

organize it, whereas excessive fluid inertia tends to unorganized the flow. The resulting 

effect is that; either the flow is in laminar, transitional, or turbulent regime. Therefore, Re 

indicates the flow characteristics.   

 By definition, it can be shown as [76]: 

./� = s������ �����t����3� ����� =  utghl = vghl     (3.3) 
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Here G is the mass flux which is mass flow rate per unit cross-sectional area.  

Re is a strong function of the fluid viscosity. In this expression, Dh is the characteristic 

length or in other words the hydraulic diameter. The characteristic length is generally 

expressed as: 

�� = Mwx          (3.4)   
In the expression, P is the wetted perimeter. For a circular geometry, the following 

deduction can be made as: 

�� = Mwx = MygVMyg = �     (3.5)   
Therefore, for a circular geometry, the characteristic length is the channel diameter. Some 

authors have made their investigation and defined the characteristic length for any 

geometry. Muzychka, et al 2009, worked on non-circular geometry while investigating 

Pressure Drop in Laminar Developing Flow. The authors introduced a new characteristic 

length scale; the square root of the cross-sectional area through which the effect of duct 

shapes can be minimized. The hydraulic diameter of any geometry can be expressed as 

the square root of the channel cross-sectional area that can yield convenient results in 

fluid flow analysis [73-74, 79].  The authors claimed that Dh = √A, this characteristic 

length scale is superior to the conventional hydraulic diameter Dh = 4A/P. An expression 

for the Reynolds number of air flow can be obtained. The general expression is; Re = 

ρVDh/µ .   

./� = utghl�       (3.6) 
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In this expression, Dh is the air flow hydraulic diameter. 

3.3.2 Prandtl Number (Pr) 

Prandtl number (Pr) is a fluid property. It is named after the German scientist, Ludwig 

Prandtl, who developed the concept of thermal boundary layer and got the idea of the 

number [76]. It is defined as the ratio of the momentum diffusivity to the thermal 

diffusivity. It is the function of the fluid properties such as viscosity, thermal 

conductivity, and the specific heat capacity. It can be expressed as [76]: 

') =  {�����3� g���3��,��(S������ g���3��,��( =  U| = lZ[}�     (3.7) 

Prandtl number contains no length scale and is dependent only on the fluid and the fluid 

states. In forced convection, heat transfer rate depends on the velocity boundary layer and 

the thermal boundary layer. The Prandtl number indicates the relative effectiveness of 

momentum as well as an energy transport by diffusion in the velocity and thermal 

boundary layers. 

For a particular fluid, especially in the laminar regime the heat diffusion occurs quickly 

when Pr << 1, and slower when Pr >> 1 [75-76]. The fact implies that, compared to the 

velocity boundary layer, the thermal boundary layer is thicker when Pr << 1 and thinner 

when Pr >> 1. Liquid metal has Pr << 1 which indicates that liquid metal can offer 

higher thermal diffusion in heat transfer phenomenon. Oil has Pr >> 1which indicates 

slower thermal diffusion. In the current study, the working fluid is ATF, which has high 

viscosity yielding Pr >> 1. 
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3.3.3 Brinkman Number (NBr) 

The Brinkman number is important for a viscous fluid. It is the measure of the viscous 

heating relative to the conductive heat transfer. It is the ratio of the heat production due to 

viscous forces, to the heat transferred from the wall to the fluid for heating or to the wall 

from the fluid for cooling. The Brinkman number is a dimensionless number related to 

heat conduction from a wall to a flowing viscous fluid. It is defined as the ratio of heat 

generated by viscous dissipation to the heat transferred by conduction. It is expressed as 

[94]: 

!"� = t����3� �����
�����S������ ����3����� = ltV}�(S\�S�)     (3.8) 

It indicates the significance of the temperature rise in the fluid due to viscous dissipation. 

It can be an important factor for long flow pipes. ATF is a viscous fluid, so it may 

dissipate energy due to such viscosity even at low Reynolds number flow [42, 49].  

3.3.4 Eckert Number (Ec) 

Eckert number is named after Ernst R. G. Eckert. It is a dimensionless number which is 

usually defined based on a temperature difference, (not the bulk temperature). It 

expresses as the relationship between a kinetic energy and enthalpy of flow. It 

characterizes the viscous dissipation. It is defined as [95]: 

�� = }������ `���*( �� ���$"�3����( ��(�� ������
( ���������� = tVZ[(S\�S�)    (3.9) 
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It gives the idea of change in kinetic energy inside the channel due to inertia or velocity. 

The product of the Eckert number and the Prandtl number gives the Brinkman number. 

The numbers are explained more detailed in chapter-5. 

3.3.5 Dean Number (De) 

The Dean number is a dimensionless group in fluid mechanics. It is named after the 

British scientist W. R. Dean. He introduced this number 1920s (Dean, 1927, 1928) when 

he was studying fluid mechanics for fully developed laminar flow in a curved tube of 

circular cross section. This dimensionless number usually occurs in the study of flow in 

curved pipes and channels. It gives the ratio of the viscous force acting on a fluid flowing 

in a curved pipe to the centrifugal force. This is basically the Product of the Reynolds 

number and the square root of the ratio of the radius of the pipe to its radius of curvature. 

It can be expressed as [53, 92, 93]: 

�/ = �����#� b�)�/ ����D� �D � b�#�� b����D� �D � �#)�/� ���/ �/D�)�b#��� b�)�/  

�/ = utgl W gPYX�V = ./ W gPYX�V
      (3.10) 

For a Newtonian flow, the curvature of the pipe axis induces centrifugal forces on the 

fluid which forms a secondary flow. The velocity profile began to change to be skewed 

towards the outer periphery due to the centrifugal force of the magnitude, Fc = mV
2
/r.  

The force pushes the fluid outward along the symmetry axis resulting in secondary flow 

separation near the inner bend of the curved tube. It then returns along the upper and 

lower curved surfaces creating vortices.  
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The Dean number shows the flow characteristics due to curvature. The low Dean 

Numbers indicate that the axial-velocity profile remains parabolic, which are similar to 

the fully developed straight tube flow. The higher Dean number indicates that the 

velocity profile is distorted. The curvature ratio is another factor that governs the 

magnitude of the Dean number. For low curvature of the bend, the secondary flow 

intensity becomes higher. With the increase in Dean Number, the developing length also 

increases [53]. 

Due to the formation of Dean Vortices, the heat-transfer enhancement can occur. 

Dehghandokht et al (2011) carried out a numerical investigation on similar heat 

exchanger having only one serpentine within the Reynolds number range of 850 to 2200 

for water and 400 to 1700 for the glycol-water mixture. In their investigation, they found 

that the velocity and thermal boundary layer get broken at the serpentine, and the new 

boundary layers start redeveloping [23-24].  

3.3.6 Poiseuille Number (Po) 

Poiseuille number is a dimensionless number. It is the product of channel friction factor 

and the Reynolds number. It is named after Jean Louis Poiseulle [76]. It is usually a 

constant and depends on the flow channel geometry. It is expressed as; Po =fRe = 

Constant [76, 91]. For Darcy’s friction factor, the product is 64 and for Fanning’s friction 

factor the value is 16. The Hagen–Poiseuille equation is a physical law. It gives the 

pressure drop in a fluid flowing through a long tube in a straight path. To evaluate Po, 

some conditions to be met. The assumptions are that the flow is laminar, viscous; the 

fluid is incompressible, and the tube circular cross-section is constant where L/D is 
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substantially high. In the current study, the working fluid is viscous; the Reynolds 

numbers are very low, which gives a laminar flow. The channel diameter is constant, and 

the L/D is very high. So, evaluation of Po is very important. Even though this number is 

constant for an ideal case; there are discrepancies about the number, whether it is really 

constant for all kinds of channel geometry and hydraulic diameter sizes. Po is not 

applicable to the curved pipes due to flow vortices. Many authors found it higher than 64 

for minichannel, while others got lower [79].  In the current study, it will be examined to 

verify the conventional values. 

3.3.7 Nusselt Number (Nu) 

The Nusselt Number (Nu) is a non-Dimensional number which was named after a 

German Engineer Ernst Kraft Wilhelm Nusselt [76]. It is a function of heat transfer 

coefficient, Channel geometry, and fluid conductivity. It is the ratio of the convective 

heat coefficient or convective conductance to pure molecular thermal conductance. This 

is expressed as [76]: 

!# = Z��,����,� ���� S������� Z����������Z���3���,� ���� �������� Z���������� = !#� = ��gh}�       (3.11) 

Here, the hydraulic diameter Dh is explained earlier.  

In the current study, the working fluid is ATF, which is highly viscous. As a viscous fluid 

the thermo-physical properties of the ATF dramatically vary with temperature changes. 

Although other thermo-physical properties such as density, thermal conductivity, and the 

specific heat capacity are changed with the temperature variation and affect the velocity 

and thermal distributions in the flow field, their contributions are less compared to the 
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viscosity [40, 75]. Temperature has a high effect on viscosity that affects other non-

dimensional parameters, especially Nu when there is an internal flow. So the Nu of ATF 

should be compensated with viscosity for temperature.  Two common schemes are 

usually used for compensating viscosity variation effect due to temperature. These are (a) 

reference temperature (the film average temperature scheme) and (b) the method of 

lumping the effects into the ratio of mean to wall fluid viscosity (µm/µw) [71-72, 75]. 

Method (a) requires the film average temperature which is difficult to maintain. Method 

(b) is more convenient to handle due to simplicity [71-72, 75]. For the temperature effect 

on viscosity, Nu of ATF can be corrected as follows: 

�3��3m = Wlml�X� ,       !#� = !#� Wlml�X�
    (3.12) 

To calculate B$ the inner wall surface temperature is required that can be calculated as: 

%$ = %�0 = %�1 + �+ ∗ .$�     (3.13 

The term Rw is the channel material thermal resistance. The thermal resistance of the wall 

(Rw), although it has been considered negligible for calculating overall thermal resistance 

in subsequent equations, can be calculated as: 

.$ = ����1�0 �Py}���      (3.14) 

In the above equation Do and Di indicate the outer and inner diameter of the channel. The 

channels are spaced 1.00 mm from each other in the heat exchanger slab, and the 

thickness of the slab wall is 0.5 mm. So each channel has a metal thickness 0.50 mm all 

around. Therefore, to make the calculations easier, the surroundings of   a single channel 
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has been considered circular and the above expression can be used to evaluate the 

channel wall thermal resistance for calculating wall temperature.  

The Nusselt number is higher when the convective heat transfer is greater compared to 

conductive heat transfer of the liquid. In case of using nano-fluids, the fluid conductivity 

increases with the decrease in Nu values since, Nu = hD/k. Even so, in the case of 

conventional fluids, this phenomenon is not true. In such a condition, the heat-transfer 

coefficient is expected to be higher to characterize the fluid heat transfer.   

3.3.8 Péclet Number (Pe) 

The Péclet number is a dimensionless number which is important in the study of transport 

phenomena in fluid flow cases. It is the ratio of the rates of advection to the diffusion for 

a physical quantity of the flow. Another word it is the ratio of the bulk heat transfer to 

conduction heat transfer. It is also defined as the product of the Reynolds number and the 

Prandtl Number as [96]: 

'/ = Y��� �� ��,������Y��� �� ����3���� = ght| = ./')   (3.15) 

In engineering applications the Péclet number is often very large. In such situations, the 

dependency of the flow upon downstream locations is diminished, and variables in the 

flow tend to become 'one-way' properties. Thus, when modeling certain situations with 

high Péclet numbers, simpler computational models can be adopted.  

A flow will often have different Péclet numbers of heat and mass flow. This can lead to 

the phenomena of double diffusive convection. 



Experimental Investigation of Automatic Transmission Fluid (ATF) in an Air Cooled Minichannel Heat Exchanger                   

M. A. Sc Thesis    Md Abdul Quaiyum: Mechanical Automotive and Materials Eng., University of Windsor, ON Canada           38 

3.4 Heat Transfer Calculation 

The fundamental equations mainly related to liquid-side heat-transfer calculations are 

summarized here. 

3.4.1 Heat Transfer Rate and Heat Balance 

Without considering any interference for a steady tube flow of a fluid, the conservation of 

energy equation can be expressed as: 

+ = � 	
(%�� − %�3�)     (3.16) 

Where Ti and To are the inlet and outlet temperatures of the fluid respectively. The above 

equation is the general equation for estimating a heat transfer rate. For the ATF, the heat 

transfer rate can be formulated as: 

+ � = � �	
�(%�� − %��) = � �	
�∆%�   (3.17) 

For the air side, heat-transfer rate can be expressed as: 

+ � = � �	
�(%�� − %��) = � �	
�∆%�   (3.18) 

The test chamber is perfectly insulated, so it is anticipated that there is no heat loss or 

gain from the surrounding. In that case, the rate of heat energy released from the hot 

ATF, and the rate of heat energy gained by the cold air should ideally be almost equal.  

This assumption may be valid for an ideal case but in practical situation, it usually does 

not happen. Therefore, it is necessary to verify the heat balance within what percentages 

they exist. Heat balance is basically the percentage deviation from the ideal case.   To 
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evaluate the anticipation following Heat Balance (HB) equation can be expressed in the 

liquid heat transfer case as: 

¡¢� = W£ ��£ �£ � X 100     3.19) 

Due to measurement or instrumental uncertainties, the HB may not be zero. In such a 

case, for better data analysis, the average heat transfer rate needs to be considered. The 

average heat transfer rate is expressed as: 

+ �,* = £ �n£ �P       (3.20) 

Based on the average heat transfer rate, the HB can be evaluated as: 

¡¢�,* = �£ ��£ �£ �¤¥ � 100    (3.21) 

According to the ASME PTC 30-1991, the recommended Heat Balance (HB) limit is 

15% [90]. For the current investigation, the HB has been evaluated based on both heat 

balance equations. 

3.4.2 Heat Transfer Coefficient 

The heat transfer coefficient (h) is very important in thermodynamics, and in mechanical 

and chemical engineering.  It is defined as the amount of heat transferred through a unit 

area of a medium over a unit time per degree temperature gradient. It is used in 

calculating the heat transfer that typically occurs through convection or phase change. If 

the Nu and the length scale are known, h can be easily calculated as: 
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ℎ� = �3�}�gh        (3.22) 

Another way of calculating hL is independent of the NuL values. In this case, the heat-

transfer surface area, average heat transfer rate, and the temperatures of the channel inner 

surface and the surrounding fluid are needed. The expression is given below: 

ℎ� = £ �wh](S\�S�)     (3.23) 

Here Tb indicates the bulk temperature of the surrounding fluid, here ATF, and Tw is 

channel wall temperature. Tb is sometimes referred to as fluid mean temperature. The 

above expression implies that the heat-transfer coefficient is the proportional coefficient 

between the heat flux and the temperature gradient which is basically the thermodynamic 

driving force to cause heat flow. The expression for calculating Tb and Tw have been 

shown earlier. As hL can be independently calculated, NuL can be calculated based on the 

values of hL.  

3.4.3 Thermal Diffusivity 

Thermal diffusivity is the measure of how faster a body can change its temperature. In 

transient heat-transfer problem, the distribution of temperature changes with time. It is 

the quantity that enters into the unsteady or transient heat-transfer situations and can be 

formulated as [76]: 

�S = ���� Z���3�������� ������ = }uZ[      (3.24) 
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Where, DT is the thermal diffusivity, k is thermal conductivity, ρ is the density and the Cp 

is the specific heat capacity. The higher the diffusivity, the more the capacity to adjust the 

temperature of the substances near the surroundings is. 

3.5 Pressure Drop 

In a heat exchanger device, pressure drop is one of the major factors governing the heat 

exchanger performances. The core pressure drop usually refers to the pressure drop in the 

straight flow path. The total pressure in a heat exchanger is the sum of the pressure at the 

straight path and the serpentine. The overall pressure drop depends on the geometric 

parameters of the device and the type of fluids which are summarized in the following 

sections.  

3.5.1 Friction Factor (f)  

Due to finite temperature difference, entropy is generated by the heat transfer in the heat 

exchanger. Another source of entropy generation is the irreversible dissipation of kinetic 

energy due to fluid friction. Therefore, friction factor is a function of kinetic energy, 

which is the result of the flow velocity. Fanning friction factor ‘ff’ may be defined as the 

ratio of wall shear stress τw to the flow kinetic energy per unit volume shown as [76]: 

b� = ¦�P*�utV       (3.25) 

Where, gc is the proportionality constant in Newton’s second law of motion.  
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The friction factor is a non-dimensional quantity and often related to the pressure head 

losses. In traditional pipe flow the f is usually known as the Darcy’s friction factor (fd) 

and it can be expressed as: 

b� = ∆' g� PutV      (3.26) 

∆' = b� �g utVP       (3.27) 

The concept of the friction factor helps in determining pressure drop for fully developed 

or developing laminar flow from the above equation. Using the friction factor a system 

pressure drop can be estimated in another way as: 

∆' = �§�uxtVPw       (3.28) 

Where, P = channel perimeter.  

Fluid thermo-physical properties and geometrical dimensions also play an important role 

in determining fluid pressure or the friction factor. The current study deals with a highly 

viscous fluid like ATF whose thermo-physical properties, especially the viscosity 

changes remarkably with the change in temperature. The friction factor is a function of 

fluid viscosity so; the change in viscosity affects the friction factor also. Therefore, the 

friction factor should be corrected for the viscosity based on temperature as shown below 

[71, 72, 75]: 

��1d¨� = Wlml�X�
      3.29) 

Many authors used the value of the exponent m = 0.50 [75]. 
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In heat transfer and fluid flow analysis both of friction factors, Darcy’s and Fanning’s, 

are important. Ideally, there is no basic difference between the two friction factors. They 

are related to each other as follows [76]: 

b� = 4b�      (3.30) 

The above relationship between the friction factors is dependent on some factors related 

to the flow conditions such as; laminar or turbulent regimes, fully developed or 

developing, and also the channel geometry.  

For a fully developed laminar flow, the friction factor is a function of Reynolds number. 

In such conditions, the relation is independent of roughness. For a circular cross-section 

and laminar flow, the relation is given as: 

b� = ©MY�  , �) b�./ = 64     (3.31)  
The above number is known as Poiseuille Number, which is a constant. In a fully 

developed laminar pipe flow; the flow is known as Hagan-Poiseuille flow.  

3.5.2 Pressure Drop Due to Entrance Effect 

As fluid enters into a tube or channel, the velocity profile starts developing along its 

length, and finally reaches to a fully developed flow which is termed as Hagen–Poiseuille 

flow. Usually, the flow condition of the entrance is considered as a uniform velocity 

condition. The pressure gradients in narrow channels are quite high. In case of a 

minichannel, the length of channel in the developing region forms a major part of the 

flow length.  Therefore, pressure drops due to the entrance effect should be taken into 
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account. If the entrance length is so small compared to the total length of the channel or 

L/D, the entrance effect can be neglected.  

3.6 Pipe Flow 

The Heat Exchanger under the study contains 68 circular channels. Therefore, the 

channel flow can be considered as pipe flow with some exceptions. Fluid flows are 

usually characterized as laminar, transient and turbulent based on the Reynolds number 

(Re) which is mainly dependent on flow velocity and the fluid viscosity. Typically, Re 

values up to 2300 are termed as laminar flow but depending on channel geometry and 

length scale this value can be significantly lower to cause transient or turbulent flow 

regimes for Re values lower than 2300. ATF is a highly viscous fluid, and the channel 

diameter is only 1mm, so flow achieved during the experiment is always in a laminar 

regime. For a pipe flow two important phenomena always need to be considered; (a) 

Hydrodynamic entrance length and (b) Thermal entrance length. The entrance lengths 

imply the flow characters, whether developing or developed. Figure-3.1 shows the 

hydrodynamically developing and developed length, and regions. When a fluid starts 

flowing through a pipe, viscous effects due to the pipe wall develop. The region where 

viscous effects are important is referred to as the boundary layer. At a certain distance of 

the flow, the boundary layers reach the center line where the velocity gets the highest 

intensity.   
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Figure-3. 1: Hydrodynamically Developing and Developed Boundary Layer 

For laminar flow, the hydrodynamically developing entrance length can be calculated as 

[76]: 

ª�( = 0.05./��      (3.32) 

The above expression clearly indicates that the hydrodynamic entrance length is the 

direct function of Re and length scale Dh. The geometry under the investigation has a 

length scale of 1 mm and the ATF is highly viscous, so the entrance length will obviously 

be very short, which implies the higher chances of hydrodynamically fully developed 

flow. 

The thermal entrance length can be calculated as [76]:  

ªS� = 0.05./')��      (3.33) 

ªS� = 0.05 75��B B	
���  

ªS� = 0.05 utZ[ghV}       (3.34) 

The above expression specifies the relation of the thermal entrance length with a fluid 

property, the Prandtl number.  
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In a flow, pressure drop and friction factor are very important to characterize the flow. 

These factors are even more important for pipes or tubes with bend or curvatures. For the 

heat exchanger in the current investigation, each of the loops has four serpentine in 

sinusoidal orientation. Therefore, the pressure drop and the friction factor perceive higher 

importance in-depth investigations. ATF is a highly viscous fluid, so the conventional 

Bernoulli’s theorem is not applicable to this study.  

3.6.1 Pressure Drop in a Straight Tube  

In a fully developed flow the pressure gradient, «�/« is constant. So, «�/« = (P1-

P2)/L=∆P/L [81, chapter 8]. Taking into account the wall shear stress (τ) that occurs due 

to the fluid viscosity (µ), the flow velocity in a tube at a distance r from the tube center 

can be expressed as: 

5 = W ∆xMl�X a.P − )Pc     (3.35) 

Here, R is the tube radius. The volume flow rate in a conduit can be expressed as: 

Ṽ = �5 = ® 52¯)�)Y
L = ® � ∆'4Bª� a.P − )Pc2¯)�)Y

L  

Ṽ = ∆xyY°±l� = ∆xyg°OP±l�      (3.36) 

From the above expression, the pressure drop as a function of channel diameter D, flow 

length L, flow velocity V, and the dynamic viscosity µ can be deduced as follows: 

∆' = 128Bª5 ¯�M  
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∆' = 128Bª�5¯�M  

∆' = 128Bª5¯�M ²¯�P4 ³ 

∆' = �g WQPltg X       (3.37) 

Pressure drop may be computed analytically for a fully developed flow in a horizontal 

pipe once the flow average velocity is known [81]. In that case, Equation 3.37 can be 

applied.  

3.6.2 Pressure Drop in a Curved Tube  

For a curvature in pipe flow, the pressure drop cannot be calculated using the 

conversional pipe-flow equations. In the curved path, two pressure drops exist; the radial 

pressure drop and the axial pressure drop. The pressure drop in curved section is different 

from the straight section due to the fact of additional loss resulting from secondary flow. 

During the flow in a curved path, the centrifugal force causes the positive-pressure 

gradient which rises in the radial direction [53]. This positive-pressure gradient or the 

pressure drop can be calculated as [53]: 

∆'������ = 275P W gg�X     (3.38) 

Here Dc is the diameter of the curvature.  If the Fanning friction factor is known, the 

pressure drop in the axial direction at the curved section (Equation 3.38) can be obtained 

by obtaining first the friction factor fc at the curvature. The same pressure drop equation 
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used for the fluid flow through a straight tube can be used to calculate the pressure drop 

at the curved section [53]. In this case, the Fanning friction factor (ff) should be replaced 

by (fc) as [53]: 

∆'����� = M��W��XutVP       (3.39) 

The equations (3.37) and (33.39) are fundamentally the same except their expression 

containing different parameters. Both equations should give the same result if the 

variables are handy. The friction factor at the curvature can be obtained using some 

expressions that will match the current study. Vashisth, et al (2008) made a review on the 

Potential Applications of Curved Geometries in Process Industry and summarized the 

correlations of fs (friction factor at the straight part of the channel) and fc (friction factor at 

the curved part of the channel) with other curvature parameters [53]. Most of the 

correlations are valid only for laminar flow in curved tubes. The correlations express the 

ratio of the Fanning friction factor at the curved tube to the straight tube under similar 

process parameters (fc/fs). If fc/fs can be computed as a comparison of the pressure drops 

in a curved tube to that in a straight tube, fc can be used to estimate the pressure drops in 

equation (3.39). 

White, (1929) formulated an empirical correlation for a circular geometry between the 

friction factors at the curvature and the straight part of the tube, and also the Dean 

number for that tube [86]. The correlation is shown as follows: 

���́ = 1 − µ1 − WOO.©g� XL.Mk¶ �o.°·
     (3.40) 
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Where, fs is the friction factor at the straight part of the channel, and this is same as 

Darcy’s friction factor in magnitude. De is the Dean number. For the case of De < 11.6, 

the ratio fc/fs comes to unity, which indicates that the friction factor at the curvature is 

equal in magnitude to the friction factor at the straight part of the tube for considering 

equation (3.39). Topakoglu, (1967) used the following analytical expression to find the 

correlation between fc and fs while considering circular tube for small De in a curved tube 

in laminar flow. The author formulated the relation as: 

b� = b� �1 − 0.03058 Wg�VP±±XM − 0.1833 Wg�VP±±X O̧ + OM±¸V��O
     (3.41a) 

���́ = �1 − 0.03058 Wg�VP±±XM − 0.1833 Wg�VP±±X gg� + OM± W gg�XP��O
  (3.41b) 

Where, λ = Dc/D. To calculate the axial pressure drop the friction factor fc should be 

replaced by the above equation. The axial and radial pressure drops are not vector 

quantities, so the total pressure drop will be the summation of the two pressure drops as 

[53]:   

∆' = ∆'������ + ∆'�����           (3.42) 

In the current study, the minichannel has four serpentine in each loop. So, it is very 

important to predict the effect of these serpentine in flow and the heat-transfer 

characteristics. 
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3.6.3 ATF Flow Rate in Laminar Regime 

From the pressure drop equation for fluid flowing through a straight pipe, the velocity of 

the flow can be deduced as: 

5 = g� W∆xgQPlX       (3.43) 

In a fully developed laminar pipe flow, the traditional volume flow rate can be calculated 

as: 

5 = �5 = ¯�P54  

5 = Mt ygV       (3.44) 

From the above equation with pressure drop, the following relation is valid for the 

volume flow rate: 

5 = ∆xyg°OP±l�       (3.45) 

From the above relation, the mass flow rate can be obtained. Mass flow rate is the volume 

flow rate times the mass density. So, the mass flow rate is given by the following 

expression if the pressure drop for the flow is known.  

� = 7Ṽ , �) � = u∆xyg°OP±l�     (3.46) 

For calculating mass flow rates, any of the above relations can be used as data are 

available. In the current study, the heat exchanger has 68 channels in each of the three 
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loops. So, in equation (3.47) for a known mass flow rate, the velocity of the flow can be 

related as: 

5� = M� �Q∗©±yugV = � �kOyugV     (3.47) 

 For the heat exchanger, the above equation will be used to calculate the velocity of ATF 

flow through minichannel heat exchanger. 

3.7 Air Flow 

In the current study, air flows through the fins in a perpendicular direction to the liquid 

mass flow direction. Hence, the MICHX in this case, is a cross flow heat exchanger. 

Detail information of the air flow is summarized in the subsequent sections.  

3.7.1 Air Mass Flow Rate 

The air side mass flow rate through the heat exchanger fins can be calculated based on 

the minimum free flow area through the fin and slab arrays. The air mass flow rate is 

given by: 

� � = 7�5�����      (3.48) 

The integrated wind tunnel is provided with the pitot static tube near the upstream of the 

flow through the heat exchanger. This pitot static tube allows recording the dynamic 

pressure of the air flow. The pitot static tube is connected to a flow kinetic device which 

records the dynamic pressure. Using the dynamic pressure, the velocity of air can be 

obtained from the following expression: 
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5� = 	¹Px§^Tu        (3.49) 

Where, Va is the air velocity, ρ is the air density, Pdyn is the dynamic pressure measured 

through the flow kinetics, and C is the correction factor for the Pitot static tube. The 

manufacturers usually set the value of the factor C. For the current study, the pitot static 

tube which has been used to measure the dynamic pressure of air flow has a correction 

factor of 1. So the above equation reduces to: 

5� = ¹Px§^Tu       (3.50) 

3.7.2 Air-Side Reynolds Number (Rea) 

The air side Reynolds number (Rea) can be calculated based on the air side velocity and 

mass flow rate. The classical formula for the air side Rea is given below: 

./� = 75����B� = � �4ª���������B�����  
./� = � �M��l�wº]�      (3.51) 

Where, L is the air flow length, and the AHxa is the combined available heat transfer 

surface area including all fins and slabs of the heat exchanger. In the current study, the air 

flow length L = 100 mm or 0.10 m, and the AHxa = 8.604 m
2
 (physically measured and 

calculated). Substituting these values in the above equation (3.48) and simplifying them, 

the resulting Rea (equation- 3.51) for this heat exchanger becomes a consolidated form of 

expression as: 
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./� = L.LM©MN� �l�       (3.52) 

The above expression is good for calculating air flow Reynolds number only for the heat 

exchanger used in the wind tunnel for the current study. For other heat exchanger with 

different dimensions, the above expression (equation-3.52) may not apply.  

3.8 Air-side Heat Transfer Calculation 

To characterize the heat exchanger, air-side heat transfer parameters need to be taken into 

account. The relevant parameters are summarized in this section. 

3.8.1 Log Mean Temperature Difference (LMTD) 

As per Newton’s Law of cooling, for a two-fluid cross flow heat exchanger the following 

equation can be applied. 

+ �,* = &��∆%��     (3.53) 

Where, +  is the average heat transfer rate and ∆Tlm is the log mean temperature difference 

that can be expressed as: 

∆%�� = ∆S��∆SV��W∆»�∆»VX       (3.54) 

∆%O = %������� �� − %��� �3� 

∆%P = %������� �3� − %��� �� 
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In equation (3.53) A is the heat-transfer surface area, and ‘F’ is the correction factor for a 

cross-flow heat exchanger. The heat-transfer surface area A can be the surface area of any 

of the fluids, either internal or the external.  In the current study, the internal surface area 

is easily computable, so the heat-transfer surface area of the ATF (Atot-mc) will be 

considered in this case while using the above equation. The correction factor in the 

equation (3.53) is basically the ratio of the true mean temperature difference to the log 

mean temperature difference, F = ∆Tm/∆Tlm. The ∆Tm is the average of the inlet and the 

outlet temperature differences, ∆Tm = (∆T1 + ∆T2)/2.   For different configuration and 

flow arrangement usually ∆Tlm remains the same whereas ∆Tm may be changed. If the 

difference between ∆T1 and ∆T2 is less than 40%, the error using ∆Tm is less (1%), but 

with the increase in the difference of the ∆Ts, the effects of the errors increase. The ∆Tlm 

is basically the exponential decay of the local temperature difference. For a cross cross-

flow exchanger, value of F is less than or equal to unity, F ≤ 1. The limiting value of ‘F 

= 1, indicates a counter flow heat exchanger. The correction factor ‘F’ is basically the 

measure of the deviation of ∆Tlm from the corresponding value of the case if the heat 

exchanger is a counter flow one.  The factor ‘F’ is available from the charts if the value 

of P and R are handy. ‘P’ is the effectiveness of temperature loadings and ‘R’ is the 

capacity rate ratio. If the liquid inlet and outlet temperatures are considered as t1 and t2 

and the air inlet and outlet temperatures as T1 and T2 respectively, for a cross cross-flow  

exchanger, the ‘P’ and ‘R’ can be calculated as: 

� = �V���S���� ,   �D�  . = S��SV�V���      (3.55) 
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Although the values of F are available in most of the heat transfer book by calculating the 

value of P and R, the values usually vary between 0.994 and 0.998 [55]. Bowman et al 

(1940) in their investigation, for a value of R = 1 and P = 0.5, tabulated values of 

different heat exchanger configurations and fluid flow arrangements. The authors showed 

the value of F = 0.91 for a single-pass cross flow heat exchanger [83].  Al-Obaidi, 

(2011), Khan, (2011), Dasgupta, (2011), and Siddiqui, (2011) carried out research for 

their study on the same heat exchangers and used the value of F = 1 in computing values 

of average heat transfer rate [8, 55, 67, 70]. Therefore, the same value F = 1 will be 

considered for the calculation in the current study due to same heat exchanger 

configuration and fluid flow arrangements.   

3.8.2 Overall Thermal Resistance 

Thermal resistance is almost similar to electrical resistance in series. The two-fluid 

thermal resistances are due to liquid inside the heat exchanger core, heat exchanger core 

fluid separating wall, and the flowing air. The overall thermal resistance of the working 

system in the current investigation can be computed from the following equation [71, 76]: 

.����� = (.� + .$ + .�) = O¼w = ½∆S�m£     (3.56) 

Here, RL is the resistance due to liquid, Rw resistance due to tube wall and the Ra 

resistance due to air flow. The above equation can be written in a specified form. 

.����� = O¼w = O��wh] + .$ + O¾���wº]�    (3.57) 
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The heat-transfer resistance of the wall can be computed using the simple methods 

available in the heat transfer books for a circular geometry. In the current study, the slab 

of the heat exchanger contains 68 parallel channels drilled in the slab. The channel 

diameter is too small, only 1mm, and the slab thickness is also very small, 2mm only. 

The channels are spaced 0.5 mm apart. Additionally, the heat exchanger slab is made of 

high-quality aluminum, which has high conductivity. So, the channel outer geometry can 

be assumed circular.  The assumption can be the best approximation which will lead to 

minimum error and greatly simplify the computation. The thermal resistance at the 

channel wall is very small compared to those of the liquid and the air. Therefore, the 

resistance can be considered negligible in finding overall thermal resistance. In such a 

case, the overall thermal resistance of the system can be expressed as follows: 

.����� = O��w� + O¾���w�     (3.58) 

The core of the test specimen is quite new, and no fouling or scale resistance exists on 

either side of the heat exchanger, so the fouling or scaling resistance is not included in the 

above equation. The notation ηa represents the air side extended surface efficiency or 

temperature effectiveness due to the fins. This efficiency is related to the fin efficiency 

and can be expressed as follows [71]:  

C� = 1 − wf0Twº]� �1 − C��     (3.59) 

Here ηf is the fin efficiency, and it can be different for different fin geometry and 

arrangements. Afin represents the fin area, and the AHxa represents total air side heat 
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transfer surface area which is equivalent to Afin + Aslab.  The fins in the present study are 

wavy fins and following equation applies [72]: 

C� = ����({�){�        (3.60) 

¿ = ¹ P��Àf0T�f0T       (3.61) 

ª = %ℎ/ b�D �/D��ℎ b)�� �ℎ/ )��� �� �ℎ/ �/D�/) �b �ℎ/ b�D = �P   (3.62) 

Here H is the height of the fin from the root to root or in other words this is the distance 

from the slab to slab. 

3.8.3 Air-Side Heat Transfer Coefficient (ha) 

The air side heat transfer coefficient can be calculated using the formula given below: 

ℎ� = £ �¾�wº]�(Ś �S\�)      (3.63) 

The computation of ηa of the heat exchanger is a critical task and several steps, and 

iterations are required to find it. Finding the air side heat transfer coefficient, another 

approach can also be adopted as: 

ℎ� = O¾�wº]�Y�       (3.64) 

Ra is the thermal resistance in the air side flow. The method of calculating Ra will be 

discussed in the later section.  
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The air side heat transfer coefficient can be computed once the surface area and the 

geometry are known for the extended surface. From equation (3.57), the ha can be 

obtained as follows: 

ℎ� = O¾�wº]��Y¨1¨��� �h�Áh]�     (3.65) 

 Iterative methods are needed to be used to find the values of ha using equations (3.58- 

3.65). The stepwise methods are shown below: 

1. First calculate the value of UA form equation (3.53) and get Rtotal = 1/UA. 

2. Initially consider the value of ηa = 1and substitute in equation (3.65) to get ha. 

3. Replace the value of ha in equation (3.61) to get M. 

4. Calculate L and put the value of M and L in the equation (3.60) to compute ηf. 

5. Put this value in equation (3.59) to get new ηa. 

6. Repeat the process from step 2 to 5 until Ca converges to a constant value. 

7. Finally use that value to compute ha in equation (5.65). 

After a little iteration, finally the air side heat transfer coefficient ha can be obtained. 

Another way of computing ha is the surface temperature method which is shown equation 

(3.63).  After getting the values of ha from two different methods, the values can be 

compared for their correctness.   
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3.9 Heat Exchanger Performance 

Heat exchanger performance can be evaluated by two distinct methods: Log Mean 

Temperature Difference (LMTD) method and the Effectiveness-NTU method. The 

LMTD method is considered as the best method followed by the effectiveness-NTU 

method.  The LMTD method has been explained in detailed in section 3.8.1. The 

effectiveness-NTU method is summarized here. 

3.9.1 Heat Exchanger Number of Transfer Unit (NTU) 

The number of transfer units or in short NTU is defined as a ratio of the overall thermal 

conductance UA to the smaller heat capacity rate Cmin as: 

!%& = ¼wZm0T = OZm0T Â &��     (3.66) 

The NTU may also be defined as the relative magnitude of the heat transfer rate 

compared to the rate of enthalpy change of the smaller heat capacity rate fluid. It is a 

design parameter for the heat exchangers and indicates the non-dimensional thermal size 

not the geometrical or the physical size of the exchangers. Therefore, a larger value of 

NTU usually does not indicate that the heat exchanger is large enough in physical size 

rather, it indicates the thermal size. However, for a specific application when comparing 

heat exchangers, U/Cmin almost remains constant. For such a case a higher magnitude of 

NTU indicates that the physical size of the heat exchanger is larger. So, the magnitude of 

NTU sometimes refers to a size factor of the heat exchanger. A higher value of NTU can 

be obtained by increasing either U or the heat transfer surface area (A) or both. Another 
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way of achieving higher value of NTU is by decreasing the value of Cmin. By doing the 

change in Cmin affects NTU directly. 

3.9.2 Effectiveness (ε) 

The effectiveness of a heat exchanger is the measure of its thermal performance or 

thermal efficiency.  It is defined as a ratio of the actual heat transfer rate from the hot 

fluid to the cold fluid in a heat exchanger to the maximum possible heat transfer rate 

which is thermodynamically permitted. The term effectiveness should not be confused 

with efficiency; it is used to designate the efficiency of a heat exchanger. The heat 

exchanger may have any configuration in the flow arrangements such as; counter flow, 

cross flow, parallel and the like.  The effectiveness of a heat exchanger can be formulated 

as [71, 76]: 

E = £ ��¨Ã��£ m�](
����2��) = Zh(Sh0�Sh1)Zm0T(Sh0�S�0) = Z�(S�1�S�0)Z m0T(Sh0�S�0)    (3.67) 

Here Cs are heat capacity rates, which are the product of mass flow rate and the heat 

capacity; Cp. Effectiveness can be expressed in another way as: 

E = ¼wZm0T ∆Sm∆Sm�]       (3.68) 

From equation (3.65) a non-dimensionalized temperature can be obtained. 

∆Sm∆Sm�] = E Zm0T¼w        (3.69) 

The effectiveness (ε) ranges from 0-1 and increases rapidly when the value of NTU ≤ 

1.50. It increases monotonically for the value of NTU > 1.50 [76]. From the heat-transfer 
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point of view, a larger value of ε is always desirable but from the point of economic 

justification the larger ε is undesirable because it causes a larger value of NTU. 

Therefore, from the design point of view the ε should be considered based on the real 

field application factors. Basically ε is a function of NTU and C
*
 (Capacity Rate Ratio, C

*
 

= C/Cmin) and for a given value of NTU and C
*
, counter current heat exchangers have the 

highest ε followed by the cross flow heat exchangers. In the current study, the heat 

exchanger configuration is a cross-flow heat exchanger. For a given NTU the ε is 

maximum when C
*
 = 0 and minimum when C

*
 = 1, also for a given capacity rate ratio 

(C
*
) the ε approaches to a value of unity when the value of NTU is large.  



Experimental Investigation of Automatic Transmission Fluid (ATF) in an Air Cooled Minichannel Heat Exchanger                                 

M. A. Sc Thesis    Md Abdul Quaiyum: Mechanical Automotive and Materials Eng., University of Windsor, ON Canada               62 

CHAPTER IV 

EXPERIMENTAL SETUP: INSTRUMENTATION AND MANAGEMENT 

The current investigation has been carried out in a well-equipped laboratory which is 

known as “Integrated Thermal Management Research Laboratory” (ITMRL) in the 

department of Mechanical, Automotive and Materials Engineering (MAME). This 

experimental setup is capable of examining heat transfer and fluid flow characteristics of 

single-phase air to liquid cross-flow minichannel and microchannel heat exchangers 

under different operating conditions. The specialty of this lab is its automated 

instrumental system and the control of the system components. Another important feature 

of the laboratory is its versatility in using working fluids for heating or cooling while 

flowing through the narrow-channel heat exchangers which may be considered as the 

heart of the research work. The ITMRL is also useful for investigating only the air flow 

characteristics or heat pipes. The integrated wind tunnel system has the following three 

major components: 

A. Fully controlled liquid handling system. 

B. Controlled air handling and management system 

C.  Automated Data Acquisition system (DAQ) 

A schematic diagram of the full instrumental network is shown in Figure 4.1. The full 

network will be discussed with full details in the subsequent sections. 
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Figure-4. 1: Schematic Diagram of the Instrumental Network 

4.1 Liquid Handling System 

The liquid handling system comprises several self-controlled equipment. The components 

of the system are divided into mainly two groups; the feeding or operational components 

and the measuring and flow control devices. The major feeding components are; 

1) Reservoir Tank 

2) Gear Pumps  

3) Recirculation Pump  

4) Electric Heater, and 

5) Chiller 



Experimental Investigation of Automatic Transmission Fluid (ATF) in an Air Cooled Minichannel Heat Exchanger                   

M. A. Sc Thesis    Md Abdul Quaiyum: Mechanical Automotive and Materials Eng., University of Windsor, ON Canada           64 

The measuring and flow control devices in the liquid handling network are; 

1) Needle Gauge for temperature and pressure monitoring 

2) Pressure transducers (PTD) 

3)  Resistance Temperature Detector (RTD) 

4) Micro-filter 

5) Digital Flow Meter (DFM) 

6) Impeller Flo Meter (IFM) 

7) Flow Control and Directional valves 

4) Tubing and Fittings 

4.1.1 Reservoir Tank 

In the system network in Figure 4.1, item number 3 shows the reservoir tank. Prior to 

starting the experiment, the tank is usually filled with the liquid. The liquid moves 

through the whole system and comes back to the tank after receiving or releasing heat at 

the heat exchanger. The tank has the dimension of height = 60cm, diameter = 43cm, wall 

thickness = 4cm, and overall volume of 87 liters. It can resist about 100
o
C temperature. 

The returned liquid temperature usually does not exceed 70
o
C, so it works well during the 

experiment. 
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4.1.2 Gear Pump with Frequency-Controlled Motor 

The pump which has been used in this investigation is the external gear pump which has 

the capacity of 17.4 gpm with a maximum pressure of 150 psi at its outlet. This gear 

pump is the positive displacement pump, a pump in which a measured quantity of liquid 

is entrapped in a space; its pressure is raised, and then it is delivered. A Positive 

displacement pump imparts energy by applying mechanical force directly to the liquid. 

The pump in the current study is a frequency controlled pump shown in Figure 4.2. For 

this pump, only by changing the motor running frequency, the pump capacity can be 

varied. The ‘Make’ of the pump is OMEGA and the model is FPUGR205 – RCB. For 

controlling the pump outlet pressure at its nominal value, an inbuilt relief valve gets 

actuated on pressure rise and bypasses the fluid to keep the system safe.  It has the 

working temperature range of -54 to 121
o
C. It is capable of handling all types’ non-

corrosive fluids with a maximum viscosity of 100.000 SUS (Saybolt Universal Second) 

which is equivalent to a kinematic viscosity of 21,630 cSt. At a maximum pressure, the 

pump Water Horse Power is 3.6HP.  
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Figure-4. 2: Positive Displacement Gear Pump 

The pump is coupled with a variable speed (variable frequency) motor drive. The 

maximum motor speed is 1725 rpm with a rated horse power of 7.5 hp or 5.6 kW. The 

main advantage of using such a gear pump is the positive displacement principle. At a 

higher pressure, it will not lose its head and efficiency like a centrifugal pump. Another 

advantage of the pump is the smooth supply of liquid. Other types of pumps like vane 

pump, rotary pump or screw pumps are also positive displacement pump, but the major 

hurdles of such pumps are the prices and the availability.  

In the current study, the working fluid is ATF, which has higher viscosity at lower 

temperatures. Ideally, the pump volumetric efficiency increases with the increase in 

viscosity and decreases with lower viscosity. The pumps cannot be operated if the 

viscosity of the fluid exceeds 750 cP. At peak operating conditions, including peak 

temperatures, the fluid viscosity is often too low and results in decreased pump 

efficiency, inadequate flow rates, reduction in load carrying capacity, and system 

overheating [84]. A centrifugal pump shows the worst-case scenario at such conditions.  
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4.1.3 Recirculation Pump 

While the transmission undergoes an operation, a huge amount of heat generates. The 

heat generation occurs mainly due to the friction between the mating parts and the fluid 

movement.  This heat energy is usually carried away by the ATF to keep the transmission 

cooled. The temperature rise due to metal friction is always higher than the normal 

operating temperature of the ATF. Although the ATF is in contact with the high heated 

mating parts, normally it is not burnt or damaged because of its rapid motion inside the 

transmission and appropriate cooling. 

 In the current study, a liquid heater was used to raise the ATF temperature up to 75
o
C.  

The skin temperature of the heater core is even higher than 120
o
C, which can easily burn 

the ATF and shorten its life. To avoid this burning risk, an attempt has been made to 

create an environment inside the heater similar to that of the automatic transmission 

where the ATF takes the heat and quickly leaves the surface.   Figure 4.3 shows the 

recirculation pump with heater core open. When the pump runs, it draws the liquid from 

the top and forces it through the bottom of the heater. The flow direction is also shown in 

the figure. The flow motion occurs in the same direction as the liquid motion created by 

the main gear pump. As the unit creates continuous agitation inside the heater cylinder, 

the system offers some advantages explained below:  

a) Agitates ATF as it is agitated inside the transmission and the Torque converter.  

b. It prevents the ATF from burning as a result of heater core high skin temperature. 

b) Better mixing of the hot and cold fluid inside the heater 
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c) Better stabilization of ATF temperature due to better mixing 

d) Since, the primary gear pump and the recirculation pump both create fluid motion in 

the same direction of fluid flow (from bottom to up); the recirculation pump helps the 

primary pump to work efficiently by creating additional motion in the same direction 

inside the heater.  

 

Figure-4. 3: Recirculation Pump and Heater Element  

4.1.4 Electric Heater with PID Controller 

In the instrumental network item number 5 and in Figure 4.3 the liquid heater is shown. 

The heater element in the system has a heat producing capacity of 6 kW. The heater 

cylinder has a diameter of 4” which allows the element to have watt density of 4.6 

W/cm2. The heater is capable of handling water, glycol, ATF, Engine oil, etc. It can 

withstand a pressure of up to 6.8 MPa and temperature of 150°C. It is integrated with a 

PID controller which allows setting and controlling liquid temperature through an inbuilt 
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thermocouple inserted from the top of the heater and connected to the controller. The 

heater Model number is MFLI606X2818, from Wattco, and the controller Model number 

is SD6C-HJAAAARG. After setting the desired temperature, the heater first achieves that 

temperature and then goes to the on-off control switches for keeping steady-state 

temperatures. The heater is completely insulated using glass-wool which helps keeping 

the temperature constant and steady.  

4.1.5 Chiller 

In the current study, ATF temperature was raised, so no chiller was used. Although no 

chiller was used the system network has a provision of adding the chiller to lower the 

fluid temperature depending on experimental necessity. 

4.1.6 Needle Gauges for Temperature and Pressure Monitor 

Needle indicator temperature and pressure gauges are also the part of the system network. 

These gauges are not used for measuring or recording system temperature or pressure, 

rather they are used as monitoring devices for safety purposes. The location of the 

pressure gauges are; just after the pump outlet to monitor pump working pressure, after 

the heater to monitor heater pressure and before the micro-filter to observe the pressure 

rise. The locations of the pressure gauge are shown in Figure 4.1, the system network. 

Another pressure gauge was placed just before the impeller flow meter for outlet pressure 

monitor. The capacity of the gauges varies from 200 psi to 600 psi.  

Temperature gauges are placed before and after the gear pump and liquid heater, before 

the micro-filter and the impeller flow meter for system temperature monitoring. The 

capacity of the temperature gauges ranges up to 120
o
C. 
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4.1.7 Pressure Transducers (PTD) 

A pressure transducer is a device which converts pressure into an analog electrical signal. 

The most common is the strain-gage base transducer.  The conversion of pressure into an 

electrical signal is achieved by the deformation of strain gages which are embedded into 

the diaphragm of the pressure transducer and is wired into a Wheatstone bridge 

configuration. The transducer requires a nominal 24 VDC power source to operate the 

signal loop. When the pressure is applied on a diaphragm, and it gets deflected, the 

deflection causes the length changes in the strain gage, and that change in length causes 

changes in resistance. Most of the cases the strain gages are wired into a Wheatstone 

bridge circuit as shown in Figure 4.4. The circuit resistances cause voltage output that is 

measured for calibration. As the strain gage system works under the Wheatstone bridge, 

using voltage dividing rule, the bridge sensitivity can be estimated as [97]:  

Ät1tdef = Å(YVÄY��Y�ÄYV)(Y�nYV)V − (Y°ÄYÆ�YÆÄY°)(YÆnY°)V Ç    (4.1) 

 

Figure-4. 4: Wheatstone Bridge Circuit 

From the output voltage the corresponding pressures can be calculated. 
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In this study, the liquid pressures are recorded by two pressure transducers (PTD). At the 

inlet of the main header to the heat exchanger, a PTD is mounted to measure the inlet 

pressure. Another PTD is mounted just after the outlet header to record outlet pressure 

and thus to get the system pressure drops Figure 4.5-6. They have the capacity of reading 

0-5 volts. The specifications and the calibration curves are produced in chapter 5.  

 

Figure-4. 5: Pressure Transducers (Inlet and Outlet) and the Test Chamber 

 

Figure-4. 6: Pressure Transducer (PTD) & Resistance Temperature Detector (RTD) 
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4.1.8 Resistance Temperature Detector (RTD) 

Resistance Temperature Detector (RTD) is basically a temperature-sensitive resistor 

(Figure 4.6). An RTD is a temperature recording sensor made of metal, which has known 

resistance and changes at different temperatures. RTDs have several advantages: a wide 

temperature range of -50 to 500°C for thin-film and -200 to 850°C for wire-wound type 

RTDs. It has better accuracy than thermocouples, better interchangeability, and long-term 

stability. The working principle of the RTDs is also based on the Wheatstone bridge 

circuit. Once the resistance of the RTD is known, the corresponding output voltage can 

be obtained.  The voltage is generated due to resistance change. The resistance change 

occurs due to temperature effect. The following formula is applied in this case [97]. 

.� = Y\Y�Y�       (4.2) 

t\t0T = Å Y]Y]nY� − Y\Y\nY�Ç     (4.3) 

 

Figure-4. 7: Wheatstone Bridge Circuit for RTDs 

The Callendar-Van Dusen equation is applied to approximate relationship between 

resistance and temperature as shown below [98]: 

Y¨Yo = 1 + È µ� − É W �OLL − 1X W �OLLX − Ê W �OLL − 1X W �OLLXQ¶  (4.4) 
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By fixing alpha, in above equation, from 0°C and 100°C resistances and modifying the 

Callendar-Van Dusen equation, it can be directly used for laboratory data. The equation 

can be modified as: 

.� = .La1 + �� + ¢�P + 	(� − 100�	)�Qc   (4.5) 

Where,  Rt = Resistance at temperature t 

R0 = Resistance at the ice point, 0 deg 

� = È �1 + É100� 

¢ = −10�MÈÉ 

	 = −10�±ÈÊ 

	 = 0 �ℎ/D � > 0�	 

In the current study, the liquid temperatures were recorded by two RTDs. One located at 

the inlet of the main header to the heat exchanger to measure the inlet temperature, and 

the other RTD is mounted just after the outlet header to record outlet temperature of the 

system temperature as in Figure 4.5-6. In the temperature measurement process Omega 

ultra precise immersion RTD sensors were used.  They have the capacity of reading 0-5 

volts. The specifications and the calibration curves are produced in Appendix A.  
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4.1.9 Micro-Filter 

In the instrumental setup, the micro-filter is located just before the Digital flow meter to 

protect the system from any clogging and unwanted pressure development. For any kind 

of blockage in the micro-filter can cause a high pressure rise at the pump outlet and can 

result in pump failure. Therefore, any high pressure difference between the inlet PTD and 

the pump outlet indicates the micro-filter clogging problem. If the micro-filter is clogged, 

it can be easily cleaned by removing it from the tube lines. Two types of micro-filters are 

available; 230 and 420 micron. In the system, 230 micron filter is good for the water but 

for ATF and any other high viscous fluid, 420 micron filter is applicable to avoid any 

high system pressure on the gear pump.    

4.1.10 Flow Meters 

In the current study, two types of flow meters were employed; Digital Flow Meter (DFM) 

and the Impeller Flow Meter (IFM). The DFM is located in the inlet side of the MICHX 

to measure flow rate, pressure and the temperature of the working fluid. The ‘Make’ of 

DFM is Proteus and the model is FLUID-VISION 4000, which has the features of 

measuring flow rate, temperature and pressure of water, water/glycol mixtures, Galden®, 

Fluorinert®, ATF, and other liquids within the kinematic viscosity range of 120 cSt. It 

provides output in voltage within the range of 0–5 VDC, 0–10 VDC or 4–20 mA outputs. 

Figure 4.9 shows digital flow meters. It can measure the temperature by a semiconductor 

transducer which is embedded in stainless steel housing. It can sense the temperature of 

the liquid over the range of -40 to 140°C. The meter is a current actuated device so; first, 

it produces an output current. This produced current is proportional to the absolute 
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temperature with a unit of 1 µA/°K. Later the current is converted to an output voltage of 

1 mV/°K. So the final output voltage gives the temperature measurement of the flowing 

liquid.  

 

Figure-4. 8: Digital Flow Meter (DFM) 

It is a temperature-compensated device and has an operating range of > 250 psi. In the 

current study initially the device was set to recognize a maximum pressure of 100 psi. So 

the device needed recalibration to withstand system pressure of 150 psi. The pressure 

range over which it can be calibrated is determined by the materials of the sensors. The 

pressure outputs are given as 0–5 VDC, 0–10 VDC or 4–20 mA. A 24 ± 10% VDC, 200 

mA supply is necessary for its actuation. It has a safety feature of over voltage protection.  

Proteus meters are viscosity dependent. Therefore, use of the same meter with different 

viscosity fluid, the output signals will be different. The existing flow meter can be re-

calibrated to a different viscosity like the transmission fluid if it operates at high 

viscosity. Typically, Proteus meter can handle fluids with a viscosity up to 120 cSt. 

The Impeller Flow Meter (IFM) is located at the exit line of the test specimen. It helps 

verifying flow rate of the DFM if there is any leakage or loss of fluid on the way back to 

the reserve tank. The IFM works over the range of 160° F (70° C) temperature and 150 
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PSI (10 bar) pressure. It is made by OMEGA, and the model is FPR-301 with a capacity 

of 0.3 ~ 19 LPM.  

 

Figure-4. 9: Impeller Flow Meter 

In addition to the above devices, the instrumental network comprises few flow control 

and directional valves in order to make the system operation easier. The tubing network 

has a tube size of 0.50 inch diameter and made of stainless steel. The whole system is 

capable of withstand very high pressure. 

4.2 Air Handling System 

The air-handling system consists of the following major components; 

1. The Thermal Wind Tunnel 

2. The Test Chamber 

3. Air Temperature Measurement System 

4. Surface Temperature Measuring Thermocouples 

5. Air Pressure Measuring System 
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4.2.1 Integrated Closed Loop Thermal Wind Tunnel 

The air-handling system comprises several equipment and devices. The main and the 

largest component is the thermal wind tunnel itself Figure 4.10. The closed loop thermal 

wind tunnel has a dimension of 544 cm length, 75 cm width, and 164 cm height. The 

material of the wind tunnel body is fiber glass with high insulating quality. The wall 

thickness is 1cm but capable of withstanding low scale twisting or bending loads. It has 

honeycomb porous aluminum plates just before the contraction section to stabilize flow 

stream lines. It has a contraction section near the test section to allow air flow 

measurement and controlled air inlet to the test specimen. The contraction ratio of the 

wind tunnel is 6.25.  

 

Figure-4. 10: Winds Tunnel with Blower Motor 

In the closed-loop wind tunnel, the air flow is generated by a blower which is driven by a 

frequency controlled variable-speed motor. The induction motor has a capacity of 20 HP 

at full load with a rated speed of 1750 rpm. The motor controller has a nominal operating 

frequency of 60 Hz at which the blower produces a free stream air velocity of 30 m/s at 

the test section with no heat exchanger.    
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An inbuilt heat exchanger maintains the inlet air temperature using city water supply. The 

heat exchanger has a capacity of 6 KW to add or remove heat from the air. The heat 

exchanger is a tube fin heat exchanger. A hot and cold water mixing network properly 

mixes the hot, and the cold supply water before it enters into the heat exchanger.  

4.2.2 Test Chamber 

The test chamber is the key point of the experimental setup where the test specimen stays 

on. In Figure 4.11 the test chamber without and with the heat exchanger is shown. It has 

an overall dimension of 304.8 mm width, 304.8 mm height, and 609.6 mm length along 

the flow direction.  It has a slot at the middle to barely fit the heat exchanger. The test 

chamber is made of 6.5 mm thick Plexiglas with the thermal conductivity of 0.19 W/m-

°C. It has a flange at the end to easy fit with the wind tunnel by nut and bolt with proper 

insulation.  

 

Figure-4. 11: Test Chamber and the Heat Exchanger 

The side and the top of the test chamber have removable lids to allow the easy insertion 

of the heat exchanger and also to install a pitot static tube, a hot wire anemometer, and 

humidity sensor. To make the test chamber thermally insulated, additional insulating 
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materials are wrapped around it Figure-4.5.  The thick walled test chamber with 

additional insulation forms a sealed cubicle which prevents the system from participating 

in any heat-transfer activity with the outside environment. 

Holes are drilled at the top, middle, and bottom of the test chamber side wall, and fittings 

are placed to facilitate measuring air pressures by connecting the differential pressure 

transducers. To measure the inlet air velocity, the static and total pressure, and the air 

dynamic pressure at the test section; a 12-inch Pitot static probe, model P012A-CF, is 

placed at a location referred by ASHRAE as shown in Figure 4.5.   

4.2.3 Air Temperature Measurement 

To measure the upstream and downstream air temperatures, thermocouple placement 

grids are installed both at the upstream and downstream to the test specimen. The 

thermocouple probes are equally and appropriately distributed in the grid so that they can 

best record temperatures, Figure 4.12. The upstream grip consists of 3x3 = 9 T-type 

thermocouple (channel number- T100 to T108) whereas the downstream 5x5 = 25 similar 

thermocouples (channel number- T109 to T131 and T200 to T201).  

 

Figure-4. 12: Outlet and Inlet Thermocouple Grids 
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All the thermocouples are well calibrated and connected to the signal conditioner of the 

data acquisition system. For data reduction and analysis, the average temperatures are 

taken as shown below: 

%�� = Å(SOLLn⋯ nSOL±)� Ç      (4.6) 

The above equation is applied for the inlet air temperature where n = 1 to 9. 

For the downstream temperature averaging: 

%�� = Å(SOLNn⋯ nSOQOnSPLnSPLO)��n�V Ç    (4.7) 

For the downstream the n indicates the number of thermocouples where n1 = 1 to 23 and 

n2 = 2.  

4.2.4 Surface Temperature Measurement 

The surface temperature measurement is one of the major issues for a dense finned 

serpentine structure. To measure the surface temperatures, the TC probes are strategically 

and very precisely placed just at the base of the serpentine where it starts forming 

curvature and on the other side at 180
o
 where the curvature ends as shown in Figure 4.13. 

Along the air flow direction, the serpentine/slab width is 100 mm where the fins form 

eight waves. The TC probes are placed at the 2
nd

 and the 6
th

 valley of the waves so that 

they can measure uniform temperature at the airflow direction. The arrangement 

measures all the temperatures at the beginning of channels as well as the ending of the 

channels. The mean of the temperatures gives the average outside surface temperatures. 

For three different loops with twelve serpentines, forty eight thermocouples are equally 
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set for measuring total average surface temperatures. The TC temperature measuring 

channels are T202 to T231 and T300 to T317. The average surface temperatures are 

computed as follows: 

%�,�,* = Å(SPLPn⋯ nSPQOnSQLLn⋯nSQOj)��n�V Ç    (4.8) 

 Here n indicates the number of thermocouples where n1 = 1 to 30 and n2 =1 to18. 

Inappropriate connection, calibration or any probe damage may cause erroneous reading 

in thermocouple temperatures. Therefore, connections should be checked carefully during 

such faulty readings. 

 

Figure-4. 13: Placement of TC Probe for Surface Temperature Measurement 

4.2.5 Air Pressure Measurement 

In the test chamber, taps are drilled at the upstream and downstream to trap pressure 

differences, Figure 4.11. Each upstream and downstream has three pressure traps. From 

the taps narrow plastic tubes are connected to the Differential Pressure Transducers 

X 

Y 

Z 
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(DPTD) as well as to the flow kinetic device which will be explained separately. Two 

types of DPTDs are used for the experimental setup, model PX653 and PX277, Figure 

4.14.         

 

Figure-4. 14: Differential Pressure Transducers (DPTD) 

One of the two PX277 DPTDs which is connected to the DAQ system, channel P-327, 

records the middle differential pressure, while the other PX277 is connected to the pitot 

static tube  (DAQ channel P-325). Among the two PX653 series DPTDs, one is 

connected to record the top portion pressure drops, and the second one records the lower 

portion pressure drops in the test section.   

 

Figure-4. 15: Differential Pressure Transducer Working Diagram 
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A DPTD usually works as the following working principle.  

A Piezoelectric sensor converts force to voltage. The force applied to the sensor 

diaphragm is given by: 

� = �('O − 'P)     (4.9) 

Here, P1 = Absolute upstream pressure, P2 = Absolute downstream pressure. The applied 

force due to pressure is converted to voltage. From the output voltage, the respective 

pressures can be calculated as per calibration. 

4.3 Automated Data Acquisition (DAQ) System 

In the instrumental setup, Data Acquisition (DAQ) system is the main part where all the 

results are accumulated for further data reduction. DAQ system allows automated 

collection of huge data sets with higher accuracy and an integrated manner. The whole 

DAQ system comprises so many components among which the following are the most 

important components. 

1. Main power supply 

2. Back-up battery (UPS) 

3. Flow-Kinetics device, FKT 

4. PC computer and monitor  

5. VDC power supply 

6. Terminal Block 
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7. Signal Conditioner 

8. Ratemeter 

9. Pressure Transducers 

10. RTDs 

The connectivity of the devices and the equipments to the DAQ system, and power 

supply diagram are schematically portrayed below; 

 

Figure-4. 16: Power Supply Connectivity 
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Figure-4. 17: Flow Diagram for the DAQ System Device Connectivity 

The above Figure 4.17 shows the connectivity of the data acquisition system. The PTDs, 

DPTDs, RTDs, and the DFM are connected to the terminal block to have to be voltage 

actuated or current actuated as necessary. The IFM is connected first to the rate-meter. 

The rate-meter, DFM, all the thermocouples, PTDs, DPTDs, RTDs, and if necessary the 

FKT are connected to the signal conditioner. The signal conditioner gives input to the 

data acquisition card which is connected to the computer PC and finally, everything can 

be monitored by the computer monitor.  

Figure-4. 18: Terminal Block, VDC and the Signal Conditioner 
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The DAQ system consists of so many vital components, which are integrated to each 

other in order to complete the full data collection and record. The components are 

explained below: 

4.3.1 DC Voltage Supply Unit and Secondary Terminal Block 

The whole DAQ system runs with a Direct Current Voltage supply range of 20-30 VDC 

where the actual working voltage is 24 VDC. Mainly, the UPS supplies the power but for 

the secondary terminal block, a separate VDC is connected (Figure 4.18). The VDC is 

powered by the UPS which receives AC supply and converts it to DC supply. This device 

basically works as a voltage converter for the primary terminal block due to no inbuilt 

converter in it. The VDC is connected to the terminal block.  

  The secondary terminal block is the main junction point for all the pressure transducers 

and RTDs to have power for actuation. The cable which comes from the PTDs and RTDs 

are just plug and play system (Figure-4.18). The basic function of the terminal block is to 

supply power to necessary components such as PTDs and DFM.  

4.3.2 SCXI Signal Conditioning 

In the DAQ system, the component which receives signals from the PTDs, RTDs, TCs, 

and the flow-meters is the SCXI signal conditioning unit which processes the data and 

conditions them as required by the lab view software, Figure 4.18. It has four main 

components: 

1. SCXI -1300/1303 Terminal Block that makes provisions to connect the thermocouples 

and other probe wires. `It has four terminals out of which one is SCXI-1300. RTDs are 
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current exited, so this SCXI-1300 block supplies current to the RTDs. The other ends of 

the RTDs are directly connected to one of the rest of the three SCXI-1303 blocks to get 

connected to the Module. Each block contains a provision for 32 channels. 

2. The SCXI- 1102 Module which conditions signals as readable by the 16-bit high 

resolution data acquisition card. The data acquisition card is NI 6052E (National 

Instrument) which interfaces to an SCXI system so that over 3,000 analog signals from 

thermocouples, resistance temperature detectors (RTDs), strain gauges, voltage sources, 

or current sources can be acquired.  

3. The SCXI-1000 is the Chassis which holds other components and supply power to 

other modules. 

4. Data acquisition cable that connects to the PC to record data.  

As the signal conditioning system consists of four blocks, and each block provides 32 

channels, the system allows a total number of 128 channels for acquiring data.  

The 128-channel DAQ system has multiplex mode reception. The theory of the multiplex 

system is that; all input channels of the SCXI module are multiplexed into a single analog 

input channel of the E Series DAQ device. Multiplexed mode operation is ideal for high 

channel count systems where the power of SCXI multiplexed mode scanning is its ability 

to route many input channels to a single channel. The multiplexing operation of the 

analog input signals is performed solely by the multiplexers in the SCXI modules. It does 

not happen inside the E Series DAQ device or SCXI chassis. The scheme can do sample 

data at a rate of 100 kHz. In the current study, the configuration of the DAQ system is 
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capable of monitoring, reading, and recording data for 96 individual experimental 

parameters through 96 channels.  

The DAQ system which is used in this experimental setup is from National Instruments. 

The National Instruments software can convert a thermistor voltage to the thermistor 

temperature. The system takes the output voltage of the temperature sensor, the reference 

voltage, and the precision resistance and finally returns the thermistor temperature.  

4.3.3 Flow-Kinetic (FKT) 

The Flow-Kinetics, Model FKT-3DP1A-0.4-5-1and Make FlowKineticsTM-LLC, is a 

multifunction device which allows simultaneous measurement of three (P1, P2, and P3) 

differential and one absolute pressures (Pabs)of the wind tunnel air in conjunction with a 

pitot static tube (Figure 4.19) placed at the upstream of the heat exchanger. It also records 

air humidity, flow velocity, air instant density and the relative humidity.  

 

Figure-4. 19: Flow Kinetics and Pitot Static Tube Configuration 

The FKT is connected with the Pitot Static Tube in such a way that it offers three 

pressure drops measurements simultaneously as shown in Figure 4.19. Among these three 
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pressure drops, P3 records the dynamic pressure which is used in computing air velocities 

as per equation (3.50). 

4.3.4 LabView Data Acquisition System 

The data logging system used in the current study is the LabVIEW (Laboratory Virtual 

Instrumentation Engineering Workbench) version-8 from National Instruments. It ensures 

automated data acquisition at a sampling rate of 100 kHz. . It is integrated with the 

National Instrument data acquisition card, NI-PCI-6052E multi-function I/O Board, 

which is installed in the PC. 

4.4 Minichannel Heat Exchanger 

The Minichannel Heat Exchanger (MICHX) is the key point of this study. The MICHX 

under the study is a slab structured serpentine shape heat exchanger (Figure 4.20-21) with 

cross flow configuration. The heat exchanger core is made of high-quality aluminum 

alloy. It comprises three loops where each loop has five slabs and four serpentines. 

Although the physical shape looks very simple to construct but making parallel channels 

in a 2 mm thick plate is really a challenging task because of high level smoothness inside 

the channel. The slab thickness is 2mm and width is100 mm. There are 68 parallel 

channels of 1mm diameter, spacing 0.5mm from each other. The channels are constructed 

by the laser beam method in order to make the channel flow surface smoother and thus 

keeping the roughness coefficient as minimum as possible. The MICHX making process 

can be considered very simple, as if a long piece of aluminum plate (1838 mm long) with 

required dimensions was drilled to get the channel holes. The plate is then alternately 

bent four times with equal length of 304 mm, and serpentine curvature of 22 mm to make 
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the basic structure. The two ends of the newly formed structure are then welded to the 

headers/distributors (Horizontal). The wavy fins are precisely welded as per 

specifications. All three loops are then connected to the common inlet and outlet 

manifolds (vertical pipes) which are connected with copper inlet and outlet tubes of 4.76 

mm diameter. The purpose of the inlet and outlet common manifold is to serve as 

accumulators for the liquid flowing through the manifolds. The headers equally distribute 

the liquid to 68 channels.  

 

Figure-4. 20: Heat Exchanger Dimensions 

 

Figure-4. 21: Heat Exchanger Slab and the Manifold 
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The MICHX has a frontal area of 0.08669 m2. The fin height is 18mm with the fin 

density of 12 fins per 25.4 mm. 

4.5 Operating Conditions 

In the current study, the liquid under investigation is ATF whose properties are very 

susceptible to the temperature variation. ATF has large functionalities inside the Auto-

transmission. As such, considering all possible situations to match real-world application 

and accordingly setting the operating conditions for the experiment is a vital task. Four 

major variables which are essential to be altered during the experiment for 

characterization of fluid heat transfer and flow behaviours are the liquid mass flow rate 

and inlet temperature, and the air inlet velocity and temperature. ATF achieves the 

highest operation life when the temperature is maintained below 80
o
C. Throughout the 

whole experiment, the ATF inlet temperature has been maintained constant at 75
o
C.  

Usually, the high-way vehicle maximum speed is 100 km/h. Due to the obstructions in 

front of the radiator; it has been considered that maximum 60% air flows to the radiator.  

It means that the radiator face velocity of air is maximum 60 km/h which is equivalent to 

18 m/s face velocity of inlet air to the heat exchanger inside the wind tunnel test chamber. 

On the other hand, the urban normal running average speed is 35-40 km/h which is 

equivalent to the face velocity of 6 m/s when the heat exchanger is set inside the test 

chamber.  Considering all these applicable situations the minimum and maximum air 

velocities, the face velocities of the heat exchanger in the wind tunnel test chamber, have 

been estimated as 6 m/s and 18 m/s respectively. Other intermediate speeds, including the 
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peak torque speed are considered as 10 m/s and 16 m/s. The whole experiment has been 

designed to run by varying the air velocities of 6 m/s, 10 m/s, 16 m/s, and 18 m/s.  

The inlet air temperatures are controlled by the city water supply flowing through the in-

built wind tunnel heat exchanger. During the experiment, the achievable minimum 

temperature of air is 15
o
C, and the maximum temperature is 43

o
C. Within this range of 

temperature three other temperatures, 22
o
C, 29

o
C, and 36

o
C, have been considered.  

ATF is highly viscous at lower temperatures. Therefore, the flow through a one mm 

diameter channel can cause high pressure at higher mass flow rates. To maintain a system 

pressure within the limit of the equipment and devices, the ATF mass flow rates have 

been kept limited. For a particular inlet air temperature, four different mass flow rates 

have been selected. For each fixed mass flow rate of ATF, all four air velocities were 

applied. A pictorial representation of the set conditions is given in Figure 4.22.     

 

Figure-4. 22: Operating Conditions and Experimental Set Points 
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4.6 Experimental Methods 

The main purpose of this study is to experimentally investigate heat transfer and fluid 

flow characteristics of ATF when it flows through an air-cooled Minichannel Heat 

Exchanger (MIHX) in a cross-flow orientation. In this investigation, the hot fluid (ATF) 

flows through the MICHX core whereas the air flows through the fins. Therefore, the 

fluid flow directions are perpendicular to each other. As ATF is the hot fluid, and air is 

cold, naturally the exit ATF will lower its temperature whereas air will gain the 

temperature. For a steady-state condition, ATF exit temperature can never be lower than 

the air exit temperature. Any piece of deviation from such temperature bindings will 

certainly lead to an erroneous data output. In that case, the experiments must be repeated. 

 Before running the experiment, the piping system and the MICHX was properly dried by 

blowing high pressure air. Once the system was dried, the reservoir liquid tank was filled 

up with a right amount of ATF. The level of ATF in the tank was maintained such that 

the tank would never be dried or emptied during operation. The data acquisition system 

was then started first to check all channels that represent different sensor locations and 

functions. The whole system was carefully checked and the main switches for the heater, 

gear pump, and the blower motor were turned on. City water supply was also opened. 

First, the recirculation pump was started. The gear pump switch was turned on, and the 

pump speed was slightly raised by changing the control frequency. The heater was turned 

on for heat up the ATF, and the temperature setting point was raised by the heater 

controller. The blower motor started running. The heater temperature was increased to 

maintain a steady-state temperature of 75 ± 0.5
o
C and it was kept unchanged throughout 
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the whole experiment. The blower speed was increased to achieve the maximum air 

velocity of 18m/s.  The city water supply was controlled to achieve inlet air temperature 

of 15
o
C. The fluid gear pump was maintained at a speed to achieve maximum flow rate 

of ATF within the pressure limit of the system. With the current settings, the experiment 

was run for few hours to investigate system response, stability, and accuracy of the 

instrumental readings. Upon receiving the steady-state response, the data was recorded 

for the first time. Although the DAQ system automatically records the ATF mass flow 

rates in terms of voltage readings, a physical measurement system of bucket and kitchen 

scale was applied to verify the readings of the DFM. Stop watch was used to record the 

collection time for the returned ATF. After collecting exit ATF for few minutes into the 

bucket, it was weighed in a précised kitchen scale and verified with the results from the 

DFM and IFM. Very negligible deviation which may happen due to human error was 

noticed in this process. The data was verified, and it looked satisfactory. As a part of the 

preparation for second set of data, the air velocity was changed to 14 m/s while keeping 

other parameters unchanged. Upon receiving a steady condition by running the system at 

list 25 minutes, second set of data was recorded. Next the air velocities were varied at 10 

m/s and 6 m/s for other two readings.  

To record the next set of experimental data, the mass flow rate was changed and a similar 

way four sets of data were collected by varying inlet air velocities from 18 me/s to 14m/s, 

10 m/s, and then 6 m/s while other parameters keeping the constant. The processes were 

repeated for four different mass flow rates, where four different air velocities were 

applied.  Therefore, at 15
o
C air temperature, four mass flow-rates and for each mass flow 

rate, four air velocities were applied that offered a total set of 4x4 = 16 data points. 
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Hot and cold water was mixed to achieve 22
o
C inlet air temperature. For this temperature, 

another mass flow rate was set such that the flow rate developed similar system pressure 

as it was reached during the experiment with the air temperature of 15
o
C. For the 22

o
C air 

inlet temperature, all the steps were followed as those of the steps followed at air 

temperature of 15
o
C. Another sixteen sets of data points were recorded for this 

temperature. 

The whole processes were repeated for air temperatures of 29
o
C, 36

o
C and 43

o
C. At the 

end of the experiment, sixteen times five equal eighty sets of data points were available 

for subsequent analysis. The number of data sets in-hand was considered enough for the 

analysis of ATF fluid flow and heat transfer characterization. The experimental data 

offered a Reynolds number range of 3 ≤ Re ≤ 30 and the Prandtl number of 180 ≤ Pr ≤ 

285 within the prevailing temperature range. The maximum and minimum mass flow 

rates for individual air temperatures are shown in Figure-22. The ATF mass flow rates 

ranged within a minimum of 0.484 kg/min to the maximum of 3.870 kg/min. The ATF 

mass flow rates were controlled by setting the gear pump control frequency.     
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CHAPTER V 

RESULTS AND DISCUSSIONS 

The main focus of this study was the experimental investigation on heat transfer and fluid 

flow characteristics of a highly viscous fluid and established relationships among the key 

parameters. In order to successfully attain the goal, efforts were concentrated on the 

working fluid flow behaviours and convective heat transfer phenomena.  Important 

parameters of the fluids in connection with heat transfer and fluid flow, such as heat 

transfer rate, Reynolds number, Nusselt number, Prandtl number, and heat transfer 

coefficients were carefully examined. These characteristics of the MICHX were 

investigated: the effectiveness and NTU, pressure drop, friction factor, curvature effect of 

the serpentine structure on the flow field and heat transfer enhancement, and some other 

non-dimensional parameters.   

The ATF temperature was maintained at 75 ± 0.5
o
C, whereas the air inlet temperatures 

were varied in five different steps as: 15, 22, 29, 36, and 43
o
C. The details of the liquid 

mass flow rate and temperatures, and the air velocities and temperatures are displayed in 

Figure 4.22, section 4.5. Based on the prevailing liquid mass flow rates and velocities, the 

liquid Reynolds numbers varied from 3 ≤ ReL ≤ 30, and the Prandtl number varied from 

180 ≤ Pr ≤ 285 at bulk temperature. In order to determine the developing conditions of 

the liquid flow, the velocity boundary layer entrance length as well as the hydraulic 

boundary layer entrance length was estimated using equations 3.32 and 3.34. The 

hydrodynamic entrance length within the range of 0.12-1.462 mm (0.04-0.481% of one 

slab length), and the thermal entrance length of 33-277 mm (11-91% of same slab length) 
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were estimated. To define the entrance length ranges, the maximum and minimum values 

of Re and Pr were considered.  The calculated entrance lengths indicated that the flow 

was hydrodynamically fully developed along most of the parts of the channels, while at 

the entry region, it was developing. On the other hand, the flow was thermally developing 

for the major portion of the total length. This phenomenon of developing thermal 

entrance length happened due to higher Pr values. Therefore, in this study the total effect 

of the flow regime will be termed as ‘developing laminar flow’ for heat transfer 

parameters and assumed to be ‘fully developed laminar flow’ for pressure drop 

calculations. 

5.1 ATF Properties 

As the ATF behaves very peculiar at different conditions of temperature, its properties 

need to be discussed. A brief summary of the fluid thermo-physical properties has been 

given in the following sections. Although the conductivity and the specific heat capacity 

were used for this study, those were not tested in the laboratory. Hence, those two 

properties have been placed in Appendix A.  

5.1.1 Viscosity 

ATF was tested in the laboratory in order to get some ideas on its thermo-physical 

behaviours. The test was conducted in the laboratory, owned by Can-Am Instrument Ltd., 

Oakville ON. The viscosity and density of ATF were tested in that Laboratory. The 

viscosity data has been plotted against the temperature as shown in Figure 5.1. Different 

plotting schemes such as exponential, logarithmic, power-law, and the poly-fit have been 
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applied to predict the best fit.  Among the schemes, only poly-fit offered the best fit as 

illustrated below.  

 

Figure-5. 1: Viscosity Variation with Temperature Change 

The most important physical property of ATF is the viscosity. From the figure, it is 

evident that the viscosity makes sharp changes at temperatures below 20-22
o
C, whereas 

above 60
o
C the trend of viscosity change gets slower. It is highly viscous at lower 

temperatures, but at higher temperatures the viscosity remarkably decreases. The 

viscosity-change with temperature gives a 4
th

 order polynomial equation as: 

Í = 1��L.Lk%M − 0.003%Q + 0.2619%P − 10.854% + 203.10  (5.1) 

The information from the viscosity plot can give an insight in analyzing subsequent data. 

Some of the non-dimensional parameters such as ReL, PrL, NBr, are the function of 
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viscosity. The viscosity governs the magnitude of such numbers and parameters. The 

uncertainty of the viscosity measurement in Can-Am lab has been shown in Table 5.1. 

Table-5. 1: Uncertainty in Viscosity Measurement 

Temp 

T Torque % Torque 

1% of 

Torque cP  Error % Error 

0 88.7 0.887 0.0089 221.7 1.9665 0.0197 

10 78.6 0.786 0.0079 117.87 0.9265 0.0093 

20 68.8 0.688 0.0069 68.79 0.4733 0.0047 

40 77.2 0.772 0.0077 28.94 0.2234 0.0022 

60 69.8 0.698 0.0070 14.95 0.1044 0.0010 

80 59.5 0.595 0.0060 8.92 0.0531 0.0005 

 

Within the temperature range of 0 to 80
o
C, the error is very low; hence, the data can be 

considered reliable.   

Kemp, S. P. et al (1990) made an investigation on physical and chemical properties of the 

similar grade ATF. The authors plotted viscosity and temperature data in log scale that 

resulted in   a straight line [31]. The plot enabled to interpolate or extrapolate additional 

data. The viscosity plot from the authors’ data and the Can-Am lab experimental data 

displayed a good match in the trend line.  
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5.1.2 Density 

The density of ATF was also tested in Can-Am laboratory. Figure 5.2 illustrates density 

of ATF which linearly decreases with the increase in temperature. The change in density 

with temperature is very monotonous. From the plot, it is clearly evident that with a huge 

change in temperature 0-150
o
C, density changes only about 100kg/m

3
.   

 

Figure-5. 2: Density Variation with Temperature Change 

5.1.3 ATF Mass Flow Rate 
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fluid that contains Viscosity Index Improver (VII), the viscosity and VII of the liquid 

may not be the indicative to its performance because the fluid viscosity may be 

substantially decreased as a result of the permanent or temporary shearing of the VII.  

This loss in viscosity may result in low pump flow-rate and excessive increase in fluid 

temperature [85].  The gear pumps are positive displacement pumps, which are known as 

"constant flow machines." However, due to some leakage at a higher pressure, the flow 

rate decreases with the decrease in viscosity, and this is the common principle for an ideal 

case. The relationship between the parameters may be described as [85]: 

Ṽ���3�� = Ṽ������� − 	�'�������*� − '������/B  (5.2) 

Usually, the inlet pressure is always less than atmosphere due to negative suction head. 

So, Pinlet in equation 5.2, can be eliminated. In that case, the volume flow rate of the pump  

can be expressed as [85]: 

Ṽ���3�� = Ṽ������� − 	�'�������*��/B   (5.3) 

Here, C is the geometrical factor which is the pump characteristic. From the above 

equation, the pump volumetric efficiency can be shown as: 

5��� = £��¨Ã��£T1m0T�� ∗ 100     (5.4) 

From the above expressions, it is evident that volumetric efficiency increases with the 

increase in dynamic viscosity. In the present investigation, an opposite phenomenon has 

been observed due to the persisting conditions. The MICHX under the study has a 

channel diameter of 1mm; in contrast a highly viscous fluid has been passed through it. 
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Due to the high viscosity, a high rate of shear stress developed which caused high 

pressure drops.  

The discharge capacity of a pump is a direct function of the pump speed, especially for a 

positive displacement pump. Therefore, in general, pump discharge increases with the 

increase in pump speed in case of a gear pump; but it yields pressure rise in the system. 

To keep the pressure rise within the limit of the network system, the pump speed needs to 

be controlled. Under such a condition, the fluid pump needs to be driven with a limiting 

speed to maintain limited system pressure that results in a reasonably decreased flow-

rate. A correlation has been developed between the mass flow rates and the dynamic 

viscosity of ATF at a certain constant system pressure. A third order polynomial equation 

has been obtained as: 

  � = −49028BQ + 1867BP − 24.30B + 0.173   (5.5) 

 

Figure-5. 3: Effect of Viscosity on Mass Flow Rate 
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The correlation indicates that any increase in dynamic viscosity will lower the pump 

discharge at a condition of constant system pressure.   

The above phenomena implies that during the cold start of a vehicle, a bypass strategy is 

required to be followed for warming up ATF to reach a certain temperature. This task is 

important for avoiding a high pressure rise in the Automatic Transmission system during 

cold start, when ATF viscosity is very high. Semel, (2000) conducted similar 

investigation on improved automotive transmission warm-up that resulted in better 

automatic transmission performance [37].  

5.2 Heat transfer characteristics 

Some basic parameters which govern the heat-transfer phenomena are explained below. 

These are the key points which set the heat-transfer characteristics.      

5.2.1 Inlet-Outlet Temperature Difference and ReL 

The relation between the ATF Reynolds number and its inlet-outlet temperature 

differences (�T) have been plotted for all Re of air in Figure 5.4. The plot shows that, the 

higher the inlet air temperature, the lower the �Ts are which represent higher ATF outlet 

temperature.  Since the ReL increases, the �T deceases. Basically, ReL increases due to the 

combined effect of higher mass flow rate and velocity and lower dynamic viscosity at 

higher ATF temperature. The plot also indicates that the air Rea does not play a big role 

in heat transfer phenomenon. At a particular temperature of the inlet air, the �T does not 

decrease as much as the ReL increases. Therefore, it can be concluded that the change in 

ATF �T mainly occurs due to the effect of inlet-air temperatures.            



Experimental Investigation of Automatic Transmission Fluid (ATF) in an Air Cooled Minichannel Heat Exchanger                   

M. A. Sc Thesis    Md Abdul Quaiyum: Mechanical Automotive and Materials Eng., University of Windsor, ON Canada           104 

 

Figure-5. 4: ATF Inlet-Outlet Temperature Difference, ∆T
o
C 

5.2.2 Heat Balance 

The test chamber is the most important part of the closed-loop wind tunnel. For better 

performance, it was perfectly insulated. So, it was considered as an adiabatic test 

chamber. This assumption may be valid for an ideal case, but in practice it usually does 

not happen. Therefore, it is necessary to verify the heat balances within what percentages 

they exist. Heat Balances (HB) have been calculated using equations 3.19. To get a clear 

idea of the heat-transfer deviation, heat balance has also been calculated based on average 

heat transfer rate using equation 3.21. According to ASME PTC 30-1991 [90], the 

recommended Heat Balance (HB) limit is ± 15%. Figure 5.5 shows detailed HB, plotted 

against liquid ReL. In the current study, the HB remains within the range of ± 5%, which 

is quite below the ASME limit of ± 15%. Therefore, collected data at the test chamber 

can be considered fairly good for subsequent calculations.  
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Figure-5. 5: Heat Balance Vs Liquid Reynolds Number 

5.2.3 Heat Transfer Rate 

ATF heat transfer rates +  and the corresponding Reynolds number ReL have been plotted 

in Figure 5.6. For five different inlet air temperatures, five different curves have been 

fitted with power-law relation.  From the plot, it is evident that the heat transfer rate 

increases with the increase in ReL. For a certain value of ReL, the heat transfer rates are 

comparatively lower at higher inlet air temperatures than the lower air-temperatures. 

Furthermore, it is evident that at lower inlet-air temperatures, the curve slope is steeper 

whereas at higher temperatures it is comparatively flatter indicating lower heat transfer 

performance. This occurred due to higher �T of ATF.     

From the heat transfer observation, it has been found that the maximum heat transfer rate 
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2
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o
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Figure-5. 6: ATF Heat Transfer Rate with Respect to ATF Reynolds Number 

5.2.4 Normalized Heat Transfer and Liquid Reynolds Number 

To analyze heat transfer characteristics, the non-dimensional heat transfer rate is an 

important parameter. It can be calculated as: 
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ReL, the non-dimensional heat transfer rate increases in a power-law relation. A 

correlation has been developed with the following expression:  

+∗ = 0.486./�L.±L     (5.7) 

 

Figure-5. 7: Effect of Liquid ReL on Normalized Heat Transfer 
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liquid Reynolds number in a polynomial relation. For a particular Reynolds number, the 

non-dimensional temperature is higher at the lower temperatures due to the same reasons 

explained in section 5.2.1 with Figure 5.4. 

 

Figure-5. 8: Effect of ATF Reynolds Number on Dimensionless Temperature 
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Figure-5. 9 (a): Effect of Liquid Reynolds Number on LMTD 
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The nature of the non-dimensional temperature differences and the non-dimensional 

LMTD are worth to analyze.   

 

Figure-5. 10 (b): Effect of Liquid Reynolds Number on Non-Dimensional Temperatures (∆T & LMTD) 
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5.2.6 Convective Heat Transfer Coefficient 

Convective heat transfer coefficient implies how faster the heat transfer occurs due to 

convection.  Figure 5.10 shows a correlation between the liquid-side Reynolds number 

and the heat transfer coefficient. With the increase in liquid ReL, heat transfer coefficient 

increases in a power-law relation. The correlation obtained is shown in equation 5.9. 

ℎ� = 17.70./�O.LMM     (5.9) 

 

Figure-5. 11: Effect of ATF Re on Heat Transfer Coefficient 
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In the current study, the correlation shows that the heat transfer coefficient changes 

almost linearly with an exponent of 1.044. This relation is valid for the attained ReL and 

Pr. For a higher ReL range, the obtained correlation may not be applied.  

5.2.7 Effect of ReL on Nusselt Number  

The Nusselt number indicates how faster the heat transfer occurs due to convection 

compared to the fluid conduction. The NuL has been calculated based on equation 3.11. 

As ATF thermo-physical properties are highly dependent on temperature, the NuL was 

corrected with viscosity ratio for temperature as equation 3.12. In order to justify the 

effects of liquid ReL, the NuL has been plotted against the ATF Re. The plot in Figure 

5.11 shows that NuL increases with the increase in ReL. To investigate the actual nature of 

NuL with ReL and to obtain the best correlation between them, different curve fittings 

have been tried. The data is best fitted in a power-law relation. This relationship entails 

all the data points within ±10% data variations. Warnakulasuriya, et al (2008) used poly-

fit as a power function for developing correlation between Nu and Re for a plate type heat 

exchanger while using viscous fluid and found similar trends [38].   

Two different curves have been shown in Figure 5.11. The dotted line represents the 

temperature corrected values with viscous effect as a variable property ratio. Both curves 

showed good agreement with the open literature in the case of the MICHX. As the NuL 

was corrected at its wall temperature with the property ratio, the actual corrected values 

have been found slightly lower than the original values. That happened because of the 

higher viscosities at the lower temperatures near the wall which indicates a lower heat 

transfer rate.  
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Figure-5. 12: Effect of Liquid Re on Liquid Nu 
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no definite way of accepting the value of the exponent ‘n’ because of lack of adequate 

research findings on this matter. To define the suitability of choosing the value of ‘n’ for 

calculation, particular case of experiment is scarce in open literatures. For a design 

purpose, both values can be considered [40, 71, 75]. In this study, the value of ‘n’ has 

been chosen 0.14 based on most of the authors’ selections in open literatures. 

For a constant property case, the correlation followed by the NuL in Figure 5.11 is given 

below: 

!#� = 0.117(./�)O.LOk      (5.10) 

After the NuL was corrected with variable property ratio, the values were found lower 

than the original, and a slightly different correlation resulted as shown in equation 5.11:  

!#�� = 0.100(./�)O.Lk     (5.11) 

Comparing the correlations, it is evident that the slopes and the exponents in the 

correlation differed from each other. The phenomenon emphasized the necessity of 

viscosity correction due to temperature variations. For both cases, the viscous dissipation 

effect is not considered.  

The relationship between the non-dimensional parameters, such as liquid ReL, PrL, and 

NuL, has been investigated. Figure 5.12 shows the correlation between the effects of ReL 

and PrL on NuL. The investigation shows that the NuL increases with the increase in ReL 

and the PrL. The dependency of NuL on ReL and PrL followed a power-law relation. As 

Prandtl number (PrL) is a fluid property, which indicates relative effectiveness of 

momentum as well as energy transport by diffusion, the values decreased with the 
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increase in temperature, mainly due to viscosity. It is important to notice that PrL is a 

function of fluid viscosity and conductivity. At a certain temperature it remains constant 

because no other fluid-properties get changed at that particular temperature. The 

correlation between the ReL, PrL, and NuL at bulk temperature found as: 

!#� = 0.016./�O.OL')�L.QQ     (5.12) 

Based on the correlation developed, the behaviours of the curves have been compared 

with the study conducted by other investigators on a similar type of MICHX.  

Khan, et al (2010) conducted a study on Ethylene Glycol-Water for characterizing heat 

transfer and fluid-flow through a similar two slab single serpentine minichannel heat 

exchanger. For a developing flow, their observation resulted in a correlation of Nug = 

0.152Reg
0.4912 

Prg
0.33 

[25]. The correlation obtained in the present study showed a good 

match with this correlation.  There are slight variations in the numerical values which 

may appear due to the differences in the thermo-physical properties of two different 

fluids, Glycol-water & ATF. Moreover, their investigation was conducted within the 

liquid Reynolds number ranging from 400-1900 only for two slabs; whereas in the 

current study, the ReL value ranges from 3-30 and total number of slabs are 15 in three 

loops.   
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Figure-5. 13: Effect of ReL and PrL on Nusselt number (NuL) 
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Observation: For a fully developed laminar flow in a circular geometry, the NuL should 

be 3.66 upon maintaining a constant surface temperature (Ts) boundary condition. In this 

study, the NuL varied 3.687 ≥ NuLc ≥ 0.235 at variable property-corrected condition, and 

3.819 ≥ NuL ≥ 0.263 at constant property conditions. Ideally, the NuL should not be less 

than 1, although some values are less than unity in this study. Three possible reasons 

have been identified after the fact:  (a) a constant surface temperature boundary condition 

could not be maintained perfectly due to the flow arrangements of the fluids and the 

geometry of the MICHX that keeps a temperature gradient between the inlet and outlet,  

(b) a viscous dissipation occurred due to a highly viscous fluid, but the effect could not 

be perfectly quantified due to the lack of appropriate boundary condition of constant heat 

flux, and (c) axial heat conductions in solid-wall and the liquid occurred, but those could 

not be taken into account.  

5.3 Non-Dimensional Numbers 

Some non-dimensional numbers are very important in characterizing fluid-flow and heat 

transfer, especially in the case of a curved geometry with highly viscous fluid-flow. The 

effects of curvature in a channel on heat transfer and flow-field have been explained in 

this section.  

5.3.1Dean Number (De) 

Dean Number (De) is the ratio of the viscous force acting on a fluid flowing in a curved 

pipe to the centrifugal force. It is very important to address the contribution of a viscous 

fluid like ATF when it flows through serpentine heat exchanger. The purpose of taking 

the De into account is to know the effects of this parameter on fluid-flow and heat-
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transfer characteristics due to serpentines. One of the approaches in evaluating the effects 

of these serpentines on flow field is by finding the friction factor at the curvature and thus 

predicting the flow characteristics. A friction factor at the curvature, if different from that 

of the straight part of the channel, may be considered as an indicative to the presence of 

different flow field at that curved location. De was calculated using equation 3.10. As De 

was investigated and explained in sections 3.5.13, 5.5.1, and 5.5.4, the De did not have 

any effect on fluid-flow characteristics because of very low De values which ranged from 

0.523 ≤ De ≤ 6.235. For a value of De less than 11.6, the friction factors at the straight 

part of the channel and at the serpentine becomes the same (fs = fc) [82, 86]. In this case 

the De data were plugged in equation 3.40 in which case the calculation became 

redundant.   The De values were also fitted in equation 3.41; again the ratio fc/fs became 

unity which proved both friction factors are the same in magnitude. Hence, the analysis 

from two different approaches through equations 3.40 and 3.41offered a similar result. In 

this study, one of the reasons for lower De is the liquid Reynolds number and D/2R = 

0.04545 which is very small. Therefore, in this investigation, it is clear that due to a lower 

De the serpentine showed no effect on flow keeping the flow field undistorted. 

 

Figure-5. 14: Effect of De on Nusselt number, Nu 
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Under the current investigation, although serpentine does not have any influence on flow-

field due to low ReL, it is necessary to predict its effects on heat transfer enhancement. 

One method of evaluating heat transfer enhancement due to curvature is finding the local 

Nu at the straight part as well as the serpentine and then comparing them as:  qNu = 

(Nuserpentine/Nustraight). Finding local Nu was beyond the capacity of this study due to the 

lack of appropriate instrumentation at the serpentine part. Another important matter for 

the current MICHX is its configuration. The serpentines are properly insulated, so they 

are considered adiabatic. Thus, under the scope of this study, finding Nu at an adiabatic 

condition may lead to an impossible task. Therefore, it has been recommended that future 

researchers may concentrate their views to look at these matters.   

Although De is only valid for explaining curvature effect on flow-field and heat transfer 

enhancement, it can also be applied for visualizing heat transfer characteristics even at 

the straight part due to the presence of ReL in the expression De = ReL(D/2R)
0.5

. Figure 

5.13 shows that NuL increases with the increase in De in a power-law correlation.  As De 

is a function of ReL, it demonstrates that the pattern of NuL increment with the increase in 

De is similar to that of the explanation in section 5.2.7. As NuL increases with the 

increase in De as a power-law function, it offers a correlation as: 

!#� = 0.0885�/O.OL')�L.QQ    (5.14) 

This correlation is exactly similar to that of the equation 5.12 except the slope. This slope 

in equation 5.14 is different from that in equation 5.12 because of the curvature ratio in 

De expression. 
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5.3.2 Eckert Number 

A highly viscous fluid, ATF, has been investigated while it was flowing through the 

minichannel. To characterize the viscous dissipation due to such viscous fluid-flow and 

the change in kinetic energy inside the channel due to inertia or velocity, Eckert number 

(Ec) was calculated based on equation 3.9. The calculated Ec has been plotted against the 

mass flux (G) in Figure 5.14 and NuL against Ec in Figure 5.15 to investigate heat transfer 

characteristics. The Ec increases with the increase in mass flux (G). In the present 

investigation Ec varied between the values of 8.087E
-08

 ≤ Ec ≤ 1.818E
-05

, which is very 

small in magnitude. Although the numbers are very small, they should be taken into 

account due to their importance in contributing viscous heating. Since Ec is the ratio of 

the kinetic energy of the flow to the boundary layer enthalpy difference, the kinetic 

energy is much smaller compared to the enthalpy difference. Once the kinetic energy due 

to inertia or velocity increases, the Ec increases. The increase in Ec indicates that the 

viscous dissipation occurred at higher velocities of the flow. Therefore, how smaller the 

Ec or the viscous dissipation is, it cannot be neglected for a viscous fluid. It is also 

evident that at a higher temperature of the inlet-air, the fluid becomes hotter, and gives 

higher kinetic energy due to lower viscosity allowing easy movement of fluid. This may 

happen because Ec = (V
2
/ (Cp (Tb-Tw))), the term Tb-Tw decreases due to the addition of 

viscous heating, and the higher Tw at higher inlet-air temperatures. Due to lower viscosity 

at higher wall temperature, in this case, V
2
 increases resulting in larger Ec. An 

appropriate boundary condition of constant heat flux would result even in higher Ec. 

Figure 5.15 shows the effect of Ec on the heat transfer phenomenon. As the Ec increases, 

the NuL increases in a power-law mode. The figure indicates that, while making a 
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correlation with Ec and NuL, the inlet air temperature does not play a big role on NuL. 

Basically, this increase in NuL does not mean heat transfer is enhanced; this indicates that 

the temperature increases with the increase in Ec which is the result of the viscous 

dissipation due to high viscosity of ATF. 

 

Figure-5. 15: Effect of Mass Flux, G on Ec  

 

Figure-5. 16: Effect of Ec on Nusselt Number, NuL 
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Herwig, et al (2003) investigated unusual behaviour of dissipation effects in the narrow 

pipes.   Tso, et al (2000) made an experimental investigation in micro-flow devices to 

find the micro-effects.  Eckert numbers, Ec, in their study were found in the order of Ec = 

10E
-09

, which is very small. The authors mentioned that the dissipation effects can be 

neglected in the limit Ec→0. They claimed that, the variations of the Eckert number may 

be responsible for an unexpected heat transfer behaviour in their study. They called these 

effects as ‘‘secondary Brinkman effects’’ in view of the Brinkman number expression as 

NBr = EcPr to relate the non-dimensional numbers. So the temperature rise in an 

adiabatic micro-channel has an important contribution to heat transfer characteristics. In 

the current investigation, an empirical correlation has been developed:  !#� = 837��L.kL     (5.15) 

This correlation is developed at a boundary condition of constant surface temperature (Ts) 

at a cooling mode. At a boundary condition of constant heat flux with heating mode 

offers the actual value of Ec which will be larger than the obtained values. As those 

conditions were not possible to maintain in this study, the calculated Ec is far below the 

real values. These values basically illustrate the presence of the viscous heating, not the 

actual heating amount. Therefore, the above correlation is valid only for the existing 

conditions.   

5.3.3 Brinkman Nunber 

There is no basic difference between the Eckert number and the Brinkman number, 

because both  numbers contain the flow velocity and the temperature difference. 

Furthermore, they are related as NBr = EcPr. Therefore, both  numbers fundamentally 
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measure the viscous dissipation. The NBr has been calculated based on equation 3.9. Since  

NBr contains the dynamic viscosity term which is highly dependent on temperature 

variation, it usually gets higher with high viscosity-fluid yielding high rate of viscous 

dissipation. In this case, similar explanation can be applied, which is explained in section 

5.3.2 regarding Ec.  

Due to the effect of viscous dissipation, under some conditions, it can lead to a significant 

change in flow and temperature field. It can cause instability in flow, hydrodynamic 

thermal explosion, and oscillatory motion.  Figure 5.16 shows the effect of mass velocity 

over NBr. As G increases, NBr increases with power-law fit. It is known that NBr is a 

function of Ec and Pr, and Pr being a fluid property that remains constant at a certain 

temperature; it is important to notice that for a particular inlet-air temperature, the NBr 

changes only due to the change in Ec. This increase in NBr occurs due to the higher heat 

release as a result of viscosity. This viscous heating is higher than that of the thermal 

conduction at higher mass flux or velocities resulting in higher NBr as per equation 3.14. 

 

Figure-5. 17: Effect of Mass Flux, G on NBr 
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Tso, et al (2000) carried out experimental investigation on water flowing through 

microchannel specimen and found NBr ≈ 10
-8

–10
-5

. This value has been considered non- 

realistic [60, 89].  A larger value of NBr as of the order of unity or larger, it can influence 

the film temperature (Tf) directly.   

 

Figure-5. 18: Effect of NBr on Nusselt Number, NuL 

 

Figure-5. 19: Effect of NBr on Nusselt Number, NuL 
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In the current investigation, the NBr varies from 2.13E
-05

< NBr < 3.44E
-03

 within the ReL 

range of 3-30, whereas C.P. Tso and S.P. Mahulikar made their investigation with the Re 

of 80-107 to obtain NBr ≈ 10
-8

–10
-5

. It is anticipated that in this study, a possible higher  

ReL range may offer significantly increased NBr. The value of NBr is already higher 

compared to those of ‘Tso’ even at lower ReL. Even though the values of NBr are very 

small, it cannot be considered negligible because of the facts that the NBr should be 

measured at boundary conditions of constant heat flux at heating mode. In the present 

investigation, the experiments have been carried out in such a way that ATF loses heat all 

the way to its travel through the channel core where heat flux also decreases. The 

decrasing heat flux implies that the calculated NBr does not reflect the actual value due to 

the absence of required boundary conditions. Therefore, it can be concluded that ATF, as 

a highly viscous fluid, causes viscous dissipation in minichannel heat exchangers even at 

lower Reynolds numbers. 

Figure 5.18 shows the relation of NBr, Prw, and liquid NuL. An empirical correlation at a 

possible constant temperature boundary condition has been developed as: 

 !#� = 19.52!"�L.©O')�L.QQ     (5.16) 

5.4 Air-Side Heat Transfer 

Although liquid-side heat transfer parameters have been given the priority in this study, 

air-side heat transfer parameters need to be addressed. A brief summary of the heat 

transfer is presented in this section.   



Experimental Investigation of Automatic Transmission Fluid (ATF) in an Air Cooled Minichannel Heat Exchanger                   

M. A. Sc Thesis    Md Abdul Quaiyum: Mechanical Automotive and Materials Eng., University of Windsor, ON Canada           126 

5.4.1 Air-Side Heat Transfer Coefficient 

Air side heat transfer coefficient (ha) has been calculated by an iteration method as 

described in sections 3.8.3.  The ha has been plotted against the air Reynolds number 

while considering a particular liquid Reynolds number which is constant for that 

condition. Figure 5.19 shows the effects of air-side Reynolds number (Rea) on ha. The 

air-side ha increases in a polynomial relation with the increase in Rea. It is important to 

know that ha increased with the increase in liquid ReL also. The maximum ha value has 

been achieved at the maximum ReL value of 28.77, and the minimum ha value at the 

minimum ReL value of 5.6. So, air-side heat transfer coefficient has direct relation with 

air-side as well as the liquid side Reynolds number.  The plot also illustrates that air-side 

Rea has less effect on ha than the liquid ReL. When the Rea changes from 1700 to 5000, 

for an example (at ReL = 5.6), the change in ha occurs from 33 to 37 only. On the other 

hand, ha changes from 33 to 98 with the change in liquid ReL of 5.6 to 28.77.   

 

Figure-5. 20: Effect of Air-Side Rea on Air Heat Transfer Coefficient, ha 
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Therefore, the liquid ReL plays dominating effect on Rea in a convective heat transfer 

phenomena to characterize ATF heat-transfer mechanism for the case of a serpentine 

cross flow MICHX. From the above discussion it is also evident that the air velocity has 

negligible effect on heat transfer parameters for a multiport minichannel heat exchanger. 

5.4.2 Air-Side Nusselt Number  

Air-side Nusselt number (Nua) has been computed for all air inlet temperatures and 

plotted against the air Reynolds number while considering a particular liquid Reynolds 

number which is constant for those conditions.   

 

Figure-5. 21: Effect of Air-Side Rea on Air Nusselt Number Nua 
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in liquid ReL. The air Rea has less effect on the Nua than the liquid ReL. For an example 

(at ReL = 5.6), Nua changes only 4.3 to 4.8 with the Rea change of 1700 to 5000, whereas 

Nua changes from 4.3 to 11.6 with the change in liquid ReL from 5.7 to 28.77. So, the 

effect of the liquid ReL is prominent in a convective heat transfer phenomenon in case of 

ATF cooling through serpentine slab structure MICHX and air velocity has less effect on 

the air Nusselt number. This is because of the high mass flow rate of air even at lower 

Rea (1700-5000) compared to a very little mass flow rate of ATF resulting in very low 

ReL. 

5.5 Pressure Drops 

A highly viscous fluid like ATF creates a high pressure drop, especially in case of a 

narrow-channel. In this study, the channel hydraulic diameter is 1mm which is a 

minichannel. Therefore, pressure drops and friction factors are the prime factors in 

evaluating serpentine shape MICHX performances. Although based on thermally 

developing boundary condition, the flow has been considered developing flow. However, 

the flow is hydrodynamically fully developed. Additionally, the serpentines played no 

roles in flow-fields. Therefore, logically the pressure drops can be calculated considering 

a fully developed flow. The pressure drop parameters are summarized in this section.  

5.5.1 Pressure Drop Analysis in MICHX 

Due to the narrow-channel geometry and a highly viscous fluid, high pressure drops 

occurred when it flows through the heat exchanger. From the investigation, the ATF 

Reynolds number (ReL) was achieved within the range of 3.00 to 30.00, which is very 

low. Although the ReL was very low due to high wall shear stress, an increased friction 
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factor has been found that resulted in high pressure drops. The flow entrance length has 

been calculated as 0.12-1.462 mm, which is so small compared to the channel length of 

1658 mm or the L/D = 1658/1=1658. Therefore, as explained in sections 3.6, 3.6.1-2, 

approach-friction factor or pressure drop due to entrance effect can be neglected. Based 

on this assumption, the total pressure drop for the channel length of 1658 mm has been 

calculated based on equation 3.39 where the serpentine length and effect have also been 

considered. Pressure drops have been computed using equations 3.37-42 for calculating 

different parameters required to estimate total channel pressure. For computing pressure 

drop at the straight part of the channels, equation 3.37 has been applied. For the 

serpentine part equations 3.38 and 3.39 were used. As the Darcy’s friction factor fd or 

Fanning friction factor (ff) is required to calculate fc in equations 3.40 and 3.41, equation 

3.26 has been applied to compute fd which is the friction factor at the straight part of the 

channels. To find the friction factors at the serpentine, equation 3.40 or 3.41 is necessary 

to be verified. To get full in-sight of the serpentine friction factor, both equations have 

been verified. For the cases of using empirical formula 3.40 of White or the equation 3.41 

of Topakoglu, Dean Number is required. The biggest Dean Number has been found as 

6.24. As White, (1929) investigated that for a Dean number De less than 11.6, the ratio 

fc/fs comes to unity. This explains that the friction factor at the curvature is equal to the 

friction factor at the straight part of the tube in magnitude.  In the present investigation, 

the calculated Dean number is maximum 6.24. While substituting this value in equation 

3.40 for calculating fc/fs, the calculations become redundant. On the other hand, equation 

3.41 outlined by Topakoglu, (1967) offered a calculated value of fc/fs=1, which supported 

the observation of White [86]. Hence, the friction factor at straight part and the serpentine 
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are the same. Therefore, the total length of the channel for calculating the friction factor 

and the pressure drop is the sum of the straight part and the serpentine part which equals 

1658 mm. In the current investigation, although the serpentine does not have any effect 

on the friction factor due to curvature (fc) as stated above, the radial component 

contributes a bit to the total pressure. So the total pressure drops along the channels are 

the contribution from equations 3.37 or 3.39 and 3.38. Any of the two equations 3.37 or 

3.39 gives the same ∆P values because the origin of both equations is same. The 

difference between them is just the method of expression.  

The calculated values of the friction factors have been corrected with viscosity effect due 

to temperature change as explained in section 3.5.1. In this case, equation 3.29 has been 

applied for the correction. Based on the corrected values of the friction factors, the actual 

pressure drops along the core have been calculated using equation 3.39.  

 

Figure-5. 22: Effect of ReL on System Pressure and the Pressure along the Channel  
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Figure 5.21 shows relation between the calculated channel core pressure drops and ReL, 

while Figure 5.22 shows pressure drops and mass velocity G. In addition to the channel 

pressure drops, Figure 5.21 also contains the total system pressure which is much higher 

than the core pressure drops (the solid lines). The dotted lines indicate pressure drops 

only at the channel core when they are corrected with variable property ratio. The plots 

showed the effect of ReL on the pressure drops for five different inlet-air temperatures, 

while liquid inlet-temperatures remained constant. For all the data points in the range of 

obtained 3 ≤ ReL≤ 30, the measured total system pressure drops as well as the calculated 

channel pressure drops varied non-linearly with ReL in a power-law relation. For a 

particular ReL, the plot shows that the pressure drops are higher at lower inlet air 

temperatures. This happens due to higher viscosity and shear stress.  

 

Figure-5. 23: Effect of ATF Mass Velocity (G) on Pressure along the Channel 
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investigation found a similar trend of the curves when examining the effect of Re on 

measured pressure drops at different heat transfer rates. The result showed increasing 

pressure drops with increasing ReL.  

Khan, (2011) conducted an investigation on the single slab MICHX to estimate channel 

core pressure drop for hot glycol-water mixture flowing through it. The author made an 

investigation for a Re range of 346 ≤ Re ≤ 1637 to find the pressure drop of hot glycol-

water mixture per unit length of the core channel [54]. The pressure drops were 

calculated by eliminating all other pressure drops from the measured total system 

pressure drops and finally, the remaining pressure drop was the pressure drop at channel 

core. The investigation showed a range of 17 to 138 kpa/m pressure drops along the 

channel core. In the current investigation, the pressure drops calculated varied as 56-300 

kpa/m for the channel core. In this case, serpentine effects have been considered although 

they are very small in magnitude (0.00027- 0.0182kpa). In this investigation, even for 

low ReL, the rise in the pressure drop which is greater than Khan et al is due to the higher 

viscosity of ATF.  

Figure 5.22 illustrates the effect of mass flux (G) on pressure drop. The figure indicates 

that the pressure drop increases with the increase in mass velocity linearly, and for a 

particular G value the higher inlet air temperature offers lower pressure drops due to 

lower viscosity offering lower shear stress. 

5.5.2 Effect of ReL Over Pressure-Drop Mass-Flux (G) Ratio 

To investigate the effect of ReL over the pressure-drop mass-flux ratio (∆P/G), the data 

has been plotted against ReL. By substituting the value of L/D for the MICHX under 
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investigation and rearranging all the parameters, the ∆P/G becomes a direct function of 

velocity and friction factor as shown in equation 5.17 where f is the Fanning friction 

factor and V is the liquid velocity. 

∆xv = 2 �g b5 = 3316b5    (5.17) 

 

Figure-5. 24: Effect of ReL on Pressure Drop-Mass Velocity Ratio 
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5.5.3 Effect of Temperature on Pressure Drop (�P) 

The system pressure drops have been determined from the measurement of the pressure 

transducer located at the inlet and the outlet of the heat exchanger. For a certain 

temperature, it is obvious that the pressure drop increases with the increase in mass flow 

rates. So, the pressure drops can be normalized based on mass flux. Figure 24 shows the 

normalized pressure drops against the liquid bulk mean temperature. When the bulk 

temperature increases, the pressure drop decreases in a power-law function as:  

∆' = 683681%"�Q.LMN�    (5.18) 

 

Figure-5. 25: Effect of Temperature on Normalized Pressure Drops w. r. t. (∆P/G) 

∆P = 683681TB
-3.049G

R² = 0.9303

0

1

2

3

4

5

6

7

8

35 40 45 50 55 60 65

N
o

rm
a

li
ze

d
 p

re
ss

u
re

 d
ro

p
s 

w
it

h
 m

a
ss

 

fl
u

x
, 

∆
P

/G

Bulk Mean Temperature (TB) of ATF, oC

Effect of Tb over  ∆P/G

Power (Effect of Tb over  ∆P/G)



Experimental Investigation of Automatic Transmission Fluid (ATF) in an Air Cooled Minichannel Heat Exchanger                   

M. A. Sc Thesis    Md Abdul Quaiyum: Mechanical Automotive and Materials Eng., University of Windsor, ON Canada           135 

5.5.4 Friction Factor 

The pressure drops and the friction factors are correlated to each other as per equations 

3.28 (Darcy’s friction factor) or 3.39 (Fanning’s friction factor). In this study, two types 

of friction factors have been calculated. One is based on the traditional Poiseuille flow 

(equation 3.26) which is not corrected with viscosity effect, and the other is based on 

making the correction with viscosity change as mentioned in section 3.5.1 as per equation 

3.29. A correlation has been established through a best fit of the curves as portrayed in 

Figure 5.25. In this case, the Darcy’s friction factor makes the correlation with the ReL as 

a power-law function, when considering constant properties. The relation is given as: 

b� = 64.044./��O     (5.19) 

For a fully developed laminar flow in a circular tube, the flow reaches to the Poiseuille 

(Po) flow, and the relation comes to fd =64/Re. The current investigation shows 

fdReL=64.044 which is almost 64. As the friction factors have been corrected with the 

viscosity ratio for temperatures (equation 3.29), the curve shows a slight deviation from 

the Poiseuille equation and makes a different correlation from equation 5.19. The new 

correlation based on variable property ratio is shown in equation 5.20 within the 

prevailing ReL.       b���� = 118./��O.Ok(B�/B$)L.kL    (5.20) 

The plot explains that at lower ReL, the deviation of the corrected friction factor (fcort) 

from the Poiseuille flow is higher and gradually collapsed to overlap each other at higher 

ReL and finally follows Poiseuille law. The influencing factor is the viscosity. 
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Figure-5. 26: Relation Between Darcy’s Friction Factor fd and the ReL 
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Figure-5. 27: Relation Between Darcy’s Friction Factor fd and the ReL in a log-log Plot 
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produces fReL
1.152

 = 118 or an average value of fReL
 ≈ 85.48. At higher ReL the corrected 

variable property curve collapsed to the constant property Poiseuille curve although they 

are separated at lower ReL. Therefore, it can be concluded that, ATF as a viscous fluid 

flowing through minichannel, the flow in the laminar regime behaves in two different 

ways: it follows the conventional Poiseuille flow theory at higher ReL to yield fRe = 64, 

whereas at lower ReL, it results in higher fRe values that disregards Poiseuille law. The 

governing factor is the fluid viscosity. This effect may not be prominent in case of low 

viscous fluid but very important for a highly viscous fluid. 

5.6 Heat Exchanger Performance 

Heat transfer performance is characterized by the Effectiveness-NTU analysis which are 

summarized here.  

5.6.1 Effectiveness 

The effectiveness (ε) for the test specimen under investigation has been calculated using 

equation 3.67.  Figure 5.27 shows that the effectiveness increases with the increase in the 

air-side Reynolds number; this implies the air velocity dependency of the effectiveness. 

Five different curves against five different inlet air temperatures have been plotted in the 

figure. The plot shows that within the air Rea of 1400-5200 and a temperature range of 

15– 43
o
C, the effectiveness varied from 82-95%, which indicates that the heat exchanger 

is almost at its maximum effectiveness. The plot also illustrates that for all temperatures 

of the inlet air except a very low temperature (15
o
C), no big change in effectiveness 

occurs. With the increse in air Rea the effectiveness increases monotonically. So, it is 
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evident that air velocity and temperature both play less important roles in heat exchanger 

performance.  

 

Figure-5. 28: Effect of Rea on Effectiveness 
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E = 1.03./��L.Lk     (5.21) 

 

Figure-5. 29: Effect of ReL on Effectiveness, ε 

Khan, (2011) worked on a similar heat exchanger with a shorter length and found the 

similar trend of decreasing ε with increasing ReL while using ethylene glycol-water as 

working fluid [55]. The effect of liquid ReL has more influence on effectiveness than the 

air-side Rea. Therfore, for a design purpose the liquid ReL should be considered as higher 

influencing factor. 

5.6.2 Number of Transfer Unit (NTU) 

The NTU is another aspect of a heat exchanger design. It gives the economic size of the 

heat exchanger.  The observed NTU has been plotted against the air Rea for four different 

ReL in Figure 5.29. The figure illustrates that for a particular ReL, the NTU increases with 

the increase in an air-side Reynolds number. The figure also explains that the liquid ReL 

values dominate the NTU numbers. At lower ReL, the NTU is higher than that of the NTU 

at higher ReL.  

ε = 1.0303ReL
-0.048

0.800

0.850

0.900

0.950

1.000

0 10 20 30

E
ff

e
ct

iv
e

n
e

ss
, 
ε

ATF Reynolds Number, ReL

Effectiveness



Experimental Investigation of Automatic Transmission Fluid (ATF) in an Air Cooled Minichannel Heat Exchanger                   

M. A. Sc Thesis    Md Abdul Quaiyum: Mechanical Automotive and Materials Eng., University of Windsor, ON Canada           141 

 

Figure-5. 30: Effect of Rea on NTU 
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Figure 5.30 shows the NTU against the ReL in a precise way which shows decreasing 

values with increasing ReL in a power-law correlation as:  !%& = 4.66./��L.PP    (5.22) 

As illustrated in Figure 5.31, the ε- NTU results are plotted against the Capacity Rate 

Ratio (C
*
). For design purpose, the NTU and the ε are tightly related to each other. In a 

general rule, the effectiveness increases rapidly for an NTU value up to 1.5 and then the ε 

increment rate happens monotonously. In the current study, the NTU values range from 

2.25 to 4.00. So the range of rapid change in  ε is not applicable, rather it is in the 

monotonous range.     

 

Figure-5. 32: Effect of ε-NTU and Heat Capacity Rate Ratio (CRR), C
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Figure-5. 33: ε-NTU Relations 
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5.6.3 Heat Exchanger Conductance (UA) 

To investigate the effect of liquid-side Reynolds number (ReL ) on heat exchanger 

conductance (UA), the results have been plotted as shown in Figure 5.33. The UA  is the 

overall conductance of the heat exchanger, which is basically the inverse of total 

resistance ( Rtotal). Conductance is the measure of how well heat can be transferred 

through the heat exchanger. This is directly related to NTU. By determining UA value for 

a particular heat exchanger, other parameters are easy to calculate.  Basically, NTU has 

been calculated from equation 3.66. The conductance increases with the increase in ReL 

and hence the heat transfer coefficient hL increases. The increment of the conductance 

follows a power function with the polynomial curve fit as: &�S� = −0.1918./�P + 14.874./� + 37.36   (5.25) 

 

 

Figure-5. 34: Effect of ATF ReL on Overall Thermal Conductance 
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Siddiqui, (2011) conducted an investigation on 50% ethylene glycol using the same heat 

exchanger for his M. A. Sc program, and he found a similar trend in increasing values of 

UA with the increase in an air-side Reynolds number [70].  In the current investigation, 

the thermal conductance varies as 64 ≥ UA ≥ 307. As the value is high, the thermal 

resistance gets lower and the heat transfer occurs faster.  

Khan, (2011) investigated overall thermal resistance (1/UA) and found the maximum 

value of 0.0175. In this case the author conducted experiments on 50 ethylene glycol 

using a similar type of heat exchanger within the Re maximum value of 400-1800 [55]. In 

the current investigation, the  overall thermal resistance obtained is maximum 0.026, 

which is higher than what Khan found. This is due to the facts of operating conditions, 

fluid flow length, and the fluid itself. 
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CHAPTER VI 

CONCLUSIONS AND RECOMMENDATIONS 

6.1 Conclusions 

An experimental investigation has been conducted in order to characterize ATF heat 

transfer and fluid flow behaviours flowing through an air-cooled MICHX in a cross-flow 

orientation. The main focus of this study is to investigate the appropriateness of cooling 

ATF using a MICHX.  The key parameters, such as heat transfer rates, NTU, 

Effectiveness, friction factor and pressure drop behaviours, and overall thermal resistance 

have been studied. This study entails experimental investigation on the effects of 

dimensionless parameters such as: Reynolds number (Re), and Nusselt number (Nu) for 

both fluids upon heat and mass flow behaviour. Attention has been paid to other non-

dimensional parameters such as: Prandtl number (Pr), Brinkman number (NBr) Eckert 

number (Ec), and Dean Number (De). Empirical relationships have been established 

between the heat transfer and key fluid-flow non-dimensional parameters. 

Eighty different operating conditions were maintained in order to obtain the key heat 

transfer and fluid flow characteristics. ATF temperature has been kept constant at 75
o
C 

throughout the experiment while air temperatures were kept at 15, 22, 29, 36 and 43
o
C. 

ATF mass flow rates were varied and for each mass flow rate, four air velocities: 18, 14, 

10, and 6 m/s were applied.  

Based on in-depth investigation on the matters related to ATF heat transfer and mass-

flow characteristics while using a MICHX, the following observations have been made: 
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1. Inlet air temperature governs major parts of the liquid-side (ATF) heat transfer 

characteristics such as: heat transfer rate, heat transfer coefficient, and Nusselt 

number. It has dominating effect on flow behaviours such as: Reynolds number, 

mass flow rate, pressure drops, and friction factor. The lower inlet air 

temperatures offered higher heat transfer enhancements. 

2. In light of how the ATF behaves with temperature, the Nusselt number has been 

corrected with the viscosity ratio at mean and wall temperatures. The correlations 

found are: 

Nusselt number before correction with viscosity: 

!#� = 0.016./�O.OL')�L.QQ     (6.1) 

Nusselt number after correction with variable property ratio: 

!#�� = 0.009./�O.Pk')�L.QQ Wlml�X�L.OM
    (6.2) 

3. Liquid heat transfer parameters: heat transfer rate, LMTD, convective heat 

transfer coefficient, Nusselt number, and normalized heat transfer rate are strong 

functions of liquid Reynolds number. The parameters increase with the increase in 

liquid Reynolds number and fit power-law correlations.  

4. Pressure drops and friction factor increase with the increase in ReL. The friction 

factor followed the ‘Poiseuille law’ when calculated based on constant properties, 

but upon correction with the variable property ratio, it did not follow the 

Poiseuille law at lower ReL. However, it collapsed to the Poiseuille law at higher 
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ReL. The Poiseuille number (Po) was found very high in the corrected plot. The 

correlation established is different from the Poiseuille constant, f = 64Re. 

The new correlation can be presented as: b���� = 118./��O.Ok(B�/B$)L.kL   (6.3) 

5. The serpentine played no role in developing a new velocity profile and hence no 

secondary flow developed.  

6. From the investigation, some important non-dimensional parameters which are 

intricately related to viscosity were quantified as: Eckert number 8.087E
-08

 ≤ Ec ≤ 

1.818E
-04

 and Brinkman number 2.13E
-05

 ≤ NBr ≤ 3.33E
-03

. Although these 

quantities are small in magnitude, they implied that ATF contributed to viscous 

dissipation even for a low ReL. For quantifying Ec at constant temperature 

boundary condition with a cooling mode, an empirical correlation has been 

developed  as: 

!# = 837��L.kL     (6.4) 

The correlation for the Brinkman number (NBr) found as: !# = 19.52!"�L.©O')L.QQ    (6.5) 

7. Heat exchanger performances, as evaluated by effectiveness-NTU, decreases with 

the increase in liquid Reynolds number (ReL) and capacity rate ratio (Q*); in 

contrast, the parameters increase with the increase in air-side Reynolds number 

(Rea) in a slower rate. Both factors make a power-law relation with ReL and C* as: E = 1.03./��L.Lk     (6.6) 

!%& = 4.66./��L.PP     (6.7) 
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 E = 0.79	∗(�L.Lk)     (6.8) 

!%& = 1.405	∗(�L.PM)    (6.9) 

8. The NTU values ranged from 2.25 to 4.00, the effectiveness ranged from 82-98%, 

and the Capacity rate ratio ranged from 0.016 - 0.129. So the heat exchanger 

performed at the uppermost margin of economic design. At this condition, the 

heat exchanger was working almost at its maximum thermal size.  

9. For the air side, Reynolds number variation of 1450 ≤ Rea ≤ 5250, the coefficient 

in air side heat transfer(ha) and Nusselt number (Nua) increased. The higher the 

liquid side ReL, the higher these two parameters are.  

10. Due to highly viscous fluid and flow limitations in minichannels, the serpentine 

structure MICHX under investigation can be recommended for the light weight 

hybrid car transmission cooling because of a high cooling performance.  

A significant number of correlations has been established based upon the experimental 

investigation for heat transfer, fluid flow and MICHX characteristics. These correlations 

and the information summary might be a useful source for power-train thermal 

management and system designers. Due to the lack of previous information in the open 

literature regarding the heat transfer and fluid behaviours of ATF through any kind of 

heat exchangers, the findings of this study could not be compared to any other research. 

Based upon the significance of the present  research and the information summary, it can 

be considered as a future reference to the researchers.  Additionally,  the research 

outcome might be a valuable source for other research works, and can supplement as an 

aid to the performance evaluation of heavy equipment and devices used in industries such 
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as chemical plants, food processing, petro-chemical, and refineries dealing with viscous 

fluids. It can also be used as a shunt device while testing the performance of heavy 

equipment in those industries.  

6.2 Recommendations 

Although every attempt has been made to highlight the most important information 

observed from the experimental investigation, there is still considerable information in 

existance that could not be presented. The heat exchanger could not be maintained at its 

appropriate boundary conditions, yet the observations made from the present study may 

substantiate the necessity of undertaking future projects and further research in the field 

of heat transfer and thermo-fluid characterization.   Based on the difficulties, constraints, 

and limitations, the following recommendations can be made for short and long-term 

future activities: 

1. Although a promising heat transfer enhancement has been observed in MICHX 

for ATF cooling, further research can be extended to investigate the effect of 

channel diameter to find the optimum channel size that will permit higher mass 

flow rate for such a highly viscous fluid.  

2. The necessity of a thorough investigation in characterizing heat transfer and fluid-

flow behaviours of viscous fluids due to the effect of a serpentine has been 

realized.  

3. The temperature distribution and heat transfer phenomena at the upper and lower 

slabs formed as a result of the curved geometry that creates a counter-flow in 

liquid can be carefully investigated.   
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4. In-depth investigation is recommended to quantify the viscous heating inside the 

channel  by maintaining appropriate thermal boundary conditions. 

5. Comparatively lower values always appeared in quantifying non-dimensional 

parameters, especially the Nusselt number (Nu), Prandtl number, and the friction 

factor while using the slab structure parallel-channel geometry. Research on these 

matters in a broader scale can be conducted to identify the insight of the 

problems. Axial heat conduction through the liquid and the solid, can be 

investigated to address such phenomena.   

6. An accurate fluid pressure measurement inside the channel is absolutely a 

difficult task for a serpentine slab structure MICHX. Appropriate instrumentation, 

such as a high-performance strain gauge, can be implanted at the inlet and outlet 

of the heat exchanger slab as well as on the serpentine part in order for estimating 

channel pressure drops.  

7. Future projects can be taken to obtain an exact picture of the thermal distribution 

and temperature profile inside and outside the channel core through a thermal 

imaging system for better measurement of the local fluid temperatures as well as 

the surface temperature. 

8. The channel outside diameters are always assumed to be circular, although 

physically they are not. In-depth investigation is required to characterize the 

geometry of the heat exchanger in terms of heat transfer and temperature 

distribution.
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APPENDICES 

APPENDIX A 

INSTRUMENT CALIBRATION AND SPECIFICATION 

A.1 General Overview  

The Integrated Thermal Management and Research Laboratory (ITMRL) in the 

Department of Mechanical Engineering comprise a plentiful number of instrument and 

devices. The output of most of the instrument is in the form of voltage. Therefore, it is 

very important to have the instrument be calibrated or should have enough calibration 

information of the instrument and devices. The calibration information including other 

specification of the major instrument and devices are summarized here. 

A.1.1 Digital Flow Meter (DFM) 

The information of the digital flow meter is given in the following table. 

Table A. 1: Digital Flow Meter (DFM) 

Features Specifications 

Make Proteus Instrument 

Model: FLUID-VISION 4000 

Power Requirements  24 ± 10% VDC, 200 mA 

Flow Rate  0.02 to 60.0 GPM / 0.1 to 227 LPM  

Pressure   75, 100, or 250 psi 

Temperature  from -40º C to 140º C 

Output Voltage  0–5 VDC, 0–10 VDC or 4–20 mA outputs 

Accuracy ± 1% Full Scale 

Linearity ± 1.5% Full Scale 

Repeatability ± 0.50% Full Scale 
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Although the instrument calibration is viscosity dependent, the viscosity effect on the 

calibration for different fluids is dominant at higher mass flow rates. In the current study 

the maximum mass flow rate is under 4 kg/min. So the viscosity will not affect the output 

voltage and flow rates. A typical calibration curve is shown for the volume flow rates of 

ATF. 

 
 

Figure A. 1: DFM Calibration Curve 

A.1.2 Impeller Flow Meter (IFM) 

The impeller flow meter (IFM) is basically the back up of the DFM and it is installed at 

the outlet of the liquid flow system through the heat exchanger. The information and the 

calibration curve are given below. 

Table A. 2: Impeller Flow Meter Specification 

Features Specifications 

Make OMEGA 

Model: FPR300 

Power Requirements  5-24 Vdc, 2 mA min 

Pressure   150 PSI (10 bar) 

Temperature  160° F (70° C) 

Output Voltage  Current sinking pulse, 6-24 Vdc 

Accuracy +1% of full scale 

Response Linear 
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Figure A. 2: IFM Calibration Curve 

A.2.1 Pressure Transducer (PTD) 

To measure the inlet and outlet pressures of the liquid, pressure transducers are placed 

just near the inlet to the test specimen and just at the outlet manifold. The outputs of the 

PTDs are in terms of voltage. So it needs to be calibrated to get the exact pressure.   The 

output pressures of the PTDs have a fair linear relation with output voltage. The system 

was run and some data were collected to check the calibration. After plotting the data the 

curve showed good agreement with the company supplied calibration curve. The 

specification and the calibration information are shown below. 

A.2.2 Liquid inlet Pressure Transducer 

The calibration curve and the instrumental information are given below; 

Table A. 3: Liquid inlet Pressure Transducer Specification 

Features Specifications 

Make OMEGA 

Model: PX 309 
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Power Requirements 24 ± 5 VDC 

Output Voltage  0 to 5 Vdc or 0 to 10 Vdc 

Pressure   0-500 pis 

Temperature  -40 to 85°C (-40 to 185°F) 

Accuracy ±0.25% FS BSL at 25ºC; includes linearity, 

hysteresis and repeatability 

Response Time <1 ms 

Compensated Temperature 0 to 50°C (32 to 122°F) for  5 psi range 

Proof Pressure 300% or 20psi, for <50 psig range 

Burst Pressure 500% of capacity or 25 psi  

 

 

Figure A. 3: PTD inlet Calibration data and Curve 

A.2.3 Liquid outlet Pressure Transducer 

The calibration curve and the instrumental information are given below: 
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Table A. 4: Liquid outlet Pressure Transducer specification 

Features Specifications 

Make OMEGA 

Model: PX 309 

Power Requirements 24 ± 5 VDC 

Output Voltage  0 to 5 Vdc  

Pressure   0-50 psi 

Temperature  -40 to 85°C (-40 to 185°F) 

Accuracy ±0.25% FS BSL at 25ºC; includes linearity, hysteresis 

and repeatability 

Response Time <1 ms 

 

 

Figure A. 4: PTD Outlet Calibration data and Curve 

A.2.4 Gas Differential Pressure Transducer (DPTD) 

The differential pressure transducers read the pressure difference between the upstream 

and downstream pressure of the heat exchanger in the test chamber. The detailed of the 
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locations and the functionalities were explained in section 4.2.B.5. The calibration 

information of the DPTDs is explained here. 

A.2.5 Test Chamber Middle Location DPTD 

The DPTD which is connected to the DAQ, channel P-327, records the middle 

differential pressure while the other one is connected to the pitot static tube, DAQ 

channel P-325. Both are same in specification which is given below. 

Table A. 5: Test Chamber Middle Location DPTD Specification 

Features Specifications 

Make OMEGA 

Model: PX277 

Power Requirements  12 to 35 Vdc 

Output Voltage  0 to 5 or 0 to 10 Vdc selectable 

Proof Pressure    10 psi 

Temperature  -18 to 80°C (0 to 175°F) 

Compensated Temp -4 to 65°C (25 to 150°F) 

Media Compatibility Clean dry air or inert gas 

Accuracy ± 1% Full Scale 
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Figure A. 5: DPTD Middle Location Calibration data and Curve 

 

Figure A. 6: DPTD Pitot Static Calibration data and Curve 

A.2.6 Test Chamber Top Location DPTD 

Among the two PX653 series DPTDs, one is connected to record the top portion pressure 

drops and the other one record the lower portion pressure drops in the test section. The 
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transducer shows linear relation with the output voltage and fair relation with the 

supplied calibration information. The detail specification is given below. 

Table A. 6: Test Chamber Top Location DPTD Specification 

Features Specifications 

Make OMEGA 

Model: PX 653 

Power Requirements 12 to 36 Vdc 

Output Voltage  1 to 5 Vdc (3 wire) 

Proof Pressure 15 psi 

Burst Pressure 20 psi 

Operating Temperature  -29 to 72°C (-20 to 160°F) 

Linearity: 0.3%, Hysteresis: 0.02%, 

Repeatability: 0.05% 

Response Time 250 ms 

 

Figure A. 7: DPTD at Bottom Location Calibration Data and Curve 
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A.3.1Thermal Conductivity 

The thermal conductivity linearly changes downwards similar to that of density. Thermal 

conductivity of ATF was not tested in the laboratory; rather necessary data have been 

extracted from the SAE technical paper to fulfill the requirement [31]. The thermal 

conductivity of ATF decreases very slowly with increasing temperature. In Figure 6.3 the 

plot shows that, with the change in temperature from 0-150
o
C, the conductivity changes 

only 0.022 w/m-k. For the current investigation, conductivity does not play a significant 

role in heat transfer characterization. The temperature difference (∆T) of ATF occurred 

within 26 ≥ �T ≥ 60
o
C. For this change in ∆T, the conductivity did not have significant 

effects on heat transfer contribution due to the small values.   

 

Figure A. 8: Thermal Conductivity Variation with Temperature Change 

A.3.2 Specific Heat Capacity (Cp) 

Although some of the ATF thermo-physical properties decrease with increasing 

temperature, specific heat capacity increases with the increase in temperature. This is 

only the property which increases with temperature increase. The increment with 
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temperature is linear. This property was not tested in the laboratory. The data have been 

extracted from the same SAE technical paper [31]. For a 150
o
C temperature difference 

(∆T) in ATF, the Specific heat capacity (Cp) changes only 0.55 KJ/kg-K.  

 

Figure A. 9: Specific Heat capacity (Cp) Variation with Temperature Change 
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APPENDIX B 

UNCERTAINTY ANALYSIS 

In the current study a considerable number of data were collected for both fluids. 

Numbers of instruments and devices were used for the experiments. Also a significant 

number of formulae were applied to compute and analyze data sets for achieving research 

objectives. During the use of such instruments, there were chances of the instrumental 

errors that might lead to some deviation from the actual values. Similarly progressive 

error could happen due to the use of measured data in the analysis while applying for 

some particular formula.  Therefore, the intensity of the error should be taken into 

account for better understanding of the closeness to the accuracy in findings.   

The scope of calculating uncertainties include the instrumental uncertainties, such as 

errors in the form of bias, accuracy, linearity, hysteresis and repeatability, precision etc., 

which are given by the manufacturers. The instruments which are involved in such errors 

are explained in chapter-4. The formula used for data reduction and analysis may be 

considered another source of errors. These formulae are outlined in chapter-3.  The 

uncertainty of such sources is summarized in this section.  

Mainly two types, dependent and independent variables are account for such errors. In 

the current study, both variables are identified. The variables or the parameters which are 

directly measured or recorded during the data acquisition are the independent variables. 

The dependent variables are the function of the independent parameters based on which 

the subsequent calculations are done. The Reynolds number, Prandtl number, Nusselt 

number, liquid velocity, heat transfer rate, these are the dependent parameters.  
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The following expression can be attributed to show the relationship between the 

dependent and the independent variables. Î = b(ÏO, ÏP, ÏQ, … , Ï�)                                            (B.1) 

Xs are the independent variables. The basic principle of computing such errors is the 

Root Sum Squire (RSS) method. The methods of calculating uncertainties are explained 

below:  

B.1 Bias 

The Bias error can be computed using the Root Sum Square (RSS) method as:  

 &" = ±¹¢OP + ¢PP + ⋯ + ¢�P (B.2) 

B.2 Precision 

Precision error can be calculated as:  

 &x = ±¹'OP + 'PP + ⋯ + '�P  (B.3) 

B.3 Repeatability 

The errors from a device or instrument can be estimated as:  

&Y = ±¹.OP + .PP + ⋯ + .�P    (B.4) 

The combined error due to bias, precision, and repeatability using the RSS method can be 

shown as: 

 &Ò = ±√¢P + 'P + .P     (B.5) 
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B.4 Uncertainty in Independent Variables 

The uncertainty in an independent variable can be expressed in terms of absolute and 

relative uncertainties. For an example uncertainty due to bias and precision may be 

calculated in these two forms of expressions. If a single point is measured by an 

instrument and X an arbitrary measurement, for bias and precision the following 

expressions can be used. 

Absolute uncertainty:    &Ò"x = √¢P + 'P    (B.6) 

Relative uncertainty:    
¼ÔÕÖÒ = ¹"VnxVÒV     (B.7) 

B.5 Uncertainty in Dependent Variables 

The uncertainty of the dependent parameters can be computed as a combination of the 

individual error as:   

 &× = ¹W Ø×ØÒ� &Ò�XP + W Ø×ØÒV &ÒVXP + W Ø×ØÒÆ &ÒÆXP + W Ø×ØÒT &ÒTXP  (B.8) 

If an arbitrary variable ‘W’ is considered, the relative uncertainty can be expressed as; 

¼Ù̂] = ÚW ÛÜÛÔ�¼Ô�XVnW ÛÜÛÔV¼ÔVXVnW ÛÜÛÔÆ¼ÔÆXVnW ÛÜÛÔT¼ÔTXV
ÝÙÞ��Ù�,ÙV,ÙÆ,………,ÙT�ßV    (B.9) 

The uncertainty of a parameter can be represented in the form of an absolute value 

as Î ± &×. 

   Î ± &× = Î ± ¹W Ø×ØÒ� &Ò�XP + W Ø×ØÒV &ÒVXP + W Ø×ØÒÆ &ÒÆXP + W Ø×ØÒT &ÒTXP  (B.10) 
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B.6 Uncertainty in Thermo-physical properties 

The thermo-physical properties of the fluid such as viscosity, specific heat, density, and 

conductivity were taken at the liquid bulk temperature from property table or curves. In 

such cases, the uncertainties are considered as bias. Or calculating error, the maximum 

and minimum values are usually considered. The uncertainty of the maximum and 

minimum values at bulk temperatures can be calculated as: 

 & 
��
,��3�� = OP Ýá��#��
��
, %2,���â − á��#��
��
, %2,���âß  (B.11) 

B.6.1 Uncertainty in the Liquid Side Temperatures 

To measure the inlet and the outlet temperatures of ATF, RTDs were used. From the 

available data obtained from the sources supplied by the equipment manufacturers and 

on-site measurements during experiments, the following formula can be used:  

   &S = ±ãÅ ©.LQQ×OLåæQ.NL±×OLå5�1.16038×OLå8|S|ÇP + Å OOL (0.3 + 0.005|%|)ÇP
+ Å1.96 èé»�,»√� ÇP   (B.12) 

B.6.2 Bulk Temperature 

The bulk temperature of the ATF can be calculated as: 

   %2 = S0nS1P   (B.13) 
And its uncertainty is found as: 

   &S\ = ±¹WØS\ØS0 &S0XP + WØS\ØS1 &S1XP  (B.14) 
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ØS\ØS0 = OP  (B.15) 

   
ØS\ØS1 = OP  (B.16) 

B.6.3 Uncertainty in the Liquid Side Density 

The uncertainty of the ATF density can be found as: 

   &u = OP êá7@%2,���â − á7@%2,���âê  (B.17) 
B.6.4 Uncertainty in the Liquid Side Specific Heat 

The uncertainty of the ATF specific heat can be found as follows: 

 &�[ = OP êá�
@%2,���â − á�
@%2,���âê  (B.18) 
B.6.5 Uncertainty Related to the Liquid Mass Flow Rate 

The mass flow rate of ATF can be calculated as: 

 � � = ∀ �7�   (B.19) 
 

Ø� �Øu� = ∀ �   (B.20) 
 

Ø� �Ø∀ � = 7�   (B.21) 
The overall uncertainty of the liquid mass flow rate is: 

 &� � = ±¹ÅØ� �Øu� &u�ÇP + ÅØ� �Ø∀ � &∀ �ÇP
   (B.22) 
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B.6.6 Uncertainty in the Liquid Reynolds Number 

The Reynolds number of ATF depends on it mass flow rate, viscosity, density, and 

channel geometry. It can be expressed as: 

 ./� = � �kOyl�g   (B.23) 
 

ØY��Ø� � = OkOyl�g   (B.24) 
 

ØY��Øl� = − � �kOyl�g   (B.25) 
 

ØY��Øg = − � �kOyl�gV   (B.26) 
The resultant uncertainty associated with ATF Reynolds number can be shown as: 

 &Y�� = ±¹ÅØY��Ø� � &� �ÇP + ÅØY��Øl� &l�ÇP + ÅØY��Øg &gÇP
   (B.27) 

B.6.7 Uncertainty in the liquid Heat Transfer Rate 

The glycol heat transfer rate depends on the liquid mass flow rate, temperature difference 

between the inlet and the outlet, and the specific heat.  

 + * = � ��
�%*,� − %*,��   (B.28) 
 

Ø£ �Ø� � = �
∆%*   (B.29) 
 

Ø£ �Ø�[ = � �∆%�   (B.30) 
 

Ø£ �Ø∆S� = �
� �   (B.31) 
 &£ � = ±ÚÅØ£ �Ø� � &� �ÇP + µØ£ �Ø�[ &�[¶P + Å Ø£ �Ø∆S� &∆S�ÇP

   (B.32) 
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B.7.1 Uncertainty in the Airside Temperatures 

For air temperature measurement, 2 grids were used; one at the inlet and the other at the 

outlet. The thermocouples are well calibrated, so no significance effect on the uncertainty 

calculation. Yet some errors need to be considered. 

 The bias error from the thermocouples is assumed to be 0.1℃. 

 ¢O = 0.1℃  (B.33) 
There is no precision error due to the instrumentation since they only deal with the design 

stage uncertainty. The precision error from the number of samples, N=180000~240000 

and can be accounted as: 

 'P = è»√{ ¢O = 0.1℃  (B.34) 
Where, 

 îS = ¹∑ (Sðm�ñSðò)Vómô�{�O   (B.35) 
 %ð� = O� ∑ %����ÞO   (B.36) 
 ñ%ðò = O{ ∑ %ð�{�ÞO   (B.37) 
 �P = ¿ − 1  (B.38) îS: The standard deviation of each thermocouple at the inlet and outlet %ð�: Mean of the samples number for a specific thermocouple �P: Degree of freedom  ñ%ðò: The mean of each thermocouples reading at the inlet and outlet 

The precision error from the temporal variation is: 

 'Q = �è[�√{�  (B.39) 
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Where, 

 î
 = ¹∑ ∑ (SðmT�ñSðò)VöTô�÷mô� {(��O)   (B.40) 
 �Q = ¿(! − 1)  (B.41) î
: The pooled standard deviation of all the thermocouple and samples �Q: Degree of freedom  

The degree of freedom used with the precision error is found using Welch-Satterthwaite 

(W-S) method as: 

 � = �∑ x0VÆ0ô� �V
∑ ²Ö0°¤0 ³Æ0ô� = �xVVnxÆV�VÖV°¤V nÖÆ°¤Æ   (B.42) 

 �,,Nk = 1.96 (! > 1000)  (B.43) 
The total uncertainty associated with the thermocouples reading includes the bias and the 

precision error, and it is found using the RSS method as: 

 &��������3
��� = ±¹¢P + ��,,Nk'�P  (B.44) 
To convert the voltage reading of the thermocouples to a ℃ reading, and include it with 

the uncertainty calculation, the sensitivity is found as: 

 
ØtØS��������3
�� = 43 × 10�© t℃  (B.45) 

 &gw£ = ± ©.LQQ×OLåætÛøÛ»¨hedm1�1Ã[�e = ©.LQQ×OLåæùMQ×OLåæù ℃⁄ = 0.14℃  (B.46) 
The total uncertainty is: 

 &S� = ±¹&gw£P + &��������3
��P      (B.47) 
The mean temperature of the air inlet-outlet temperatures can be given as: 
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 %�,2 = S�,0nS�,1P   (B.48) 
 &S�,\ = ±Ú�ØS�,\ØS�,0 &S�,0�P + �ØS�,\ØS�,1 &S�,1�P  (B.49) 
Where, 

 
ØS�,\ØS�,0 = OP  (B.50) 

 
ØS�,\ØS�,1 = OP  (B.51) 

B.7.2 Uncertainty in the Air Reynolds Number 

The expression of the Reynolds number for air can be expressed as: 

 ./� = v�gh,�l�    (B.52) 
Where Ga is the air-mass velocity and can be calculated as: 

 �� = � �w�,m0T   (B.53) 
 

Øv�Ø� � = Ow�,m0T   (B.54) 
 

Øv�Øw�,m0T = − � ��w�,m0T�V   (B.55) 
The uncertainty of the mass velocity can be found as follows: 

 &v� = ±ÚÅ Øv�Ø� � &� �ÇP + µ Øv�Øwm0T,� &wm0T,�¶P
   (B.56) 

Therefore, the uncertainty of air can be calculated as: 

 
ØY��Øv� = gh,�l�    (B.57) 

 
ØY��Øgh,� = v�l�   (B.58) 



Experimental Investigation of Automatic Transmission Fluid (ATF) in an Air Cooled Minichannel Heat Exchanger                           

M. A. Sc Thesis    Md Abdul Quaiyum: Mechanical Automotive and Materials Eng., University of Windsor, ON Canada          171 

 
ØY��Øl� = − v�gh,�l�V    (B.59) 

 &Y�� = ±ÚÅØY��Øv� &v�ÇP + µ ØY��Øgh,� &gh,�¶P + ÅØY��Øl� &l�ÇP
   (B.60) 

B.7.3 Uncertainty in the Air Heat Transfer Rate 

 + � = � ��
�%�,� − %�,��   (B.61) 
 

Ø£ �Ø� � = �
∆%�   (B.62) 
 

Ø£ �Ø�[ = � �∆%�   (B.63) 
 

Ø£ �Ø∆S� = �
� �   (B.64) 
 &£ � = ±ÚÅ Ø£ �Ø� � &� �ÇP + µØ£ �Ø�[ &�[¶P + Å Ø£ �Ø∆S� &∆S�ÇP

   (B.65) 
B.8 Uncertainty in the Average Heat Transfer Rate 

The heat transfer rate can be found from the following relationship: 

 

 + = £ �n£ �P    (B.66) 
 

Ø£ Ø£ � = OP   (B.67) 
 

Ø£ Ø£ � = OP   (B.68) 
 &£ = ±¹Å Ø£ Ø£ � &£ �ÇP + Å Ø£ Ø£ � &£ �ÇP

   (B.69) 
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B.9 Uncertainty in Effectiveness 

The effectiveness of a heat exchanger depends on the average heat transfer rate, liquid 

mass flow rate, and the inlet temperatures difference of the two fluids. Effectiveness can 

be expressed as: 

 E = £ £ m�]   (B.70) 
 E = £ �� �[�m0T(S¥,0�S�,0)   (B.71) 
 

ØûØ£ = O� ��[(S¥,0�S�,0)   (B.72) 
 

ØûØ� � = − £ � �V�[(S¥,0�S�,0)   (B.73) 
 

ØûØ�[ = − £ � ��[V(S¥,0�S�,0)   (B.74) 
 

ØûØS�,0 = − £ � ��[(S�,0�S�,0)V   (B.75) 
 

ØûØS�,0 = £ � ��[(S�,0�S�,0)V   (B.76) 
Therefore, the total uncertainty in effectiveness is: 

 &û = ±üÅØûØ£ &£ ÇP + Å ØûØ� � &� �ÇP + µ ØûØ�[ &�[¶P
+ µ ØûØS�,0 &S�,0¶P + µ ØûØS�,0 &S�,0¶P    (B.77) 

B.10 Uncertainty in the Heat Capacity Rate Ratio 

The capacity rate ratio can be expressed as: 

 	∗ = � ��[¥� ��[�   (B.78) 
 

ØZ∗Ø� � = �[¥ m ��[�   (B.79) 
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ØZ∗Ø�[� = � �� ��[�   (B.80) 

 
ØZ∗Ø� � = − � ��[¥(� �)V�[�   (B.81) 

 
ØZ∗Ø�[� = − � ��[¥� �W�[�XV   (B.82) 

The total uncertainty is: 

&Z∗ = ÚÅ ØZ∗Ø� � × &� �ÇP + µ ØZ∗Ø�[� × &�[�¶P + Å ØZ∗Ø� � × &� �ÇP + µ ØZ∗Ø�[� × &�[�¶P
   (B.83) 

y (Cp) Variation with Temperature Change 

B.11Example of Calculating Uncertainty  

Some examples of the important parameters are shown below: 

B.11.1 Uncertainty in ATF Reynolds Number 

 ./� = � �kOyl�g   (B.23) From the experimental data: 
 

ØY��Ø� � = OkOyl�g  = 1/(51*π*0.02*0.001)= 312 (B.24) 
 

ØY��Øl� = − � �kOyl�g  = 0.0351/(51*π*0.02^2*0.001) = 547 (B.25) 
 

ØY��Øg = − � �kOyl�gV  = 0.0351/(51*π*0.02*(0.001)^2) = 10953 (B.26) 
The resultant uncertainty associated with ATF Reynolds number can be calculated as: 

 &Y�� = ±¹ÅØY��Ø� � &� �ÇP + ÅØY��Øl� &l�ÇP + ÅØY��Øg &gÇP
   (B.27) 

&Y�� = ±
a312 ∗ 0.03015cP + a547 ∗ 0.00096cP + a10953 ∗ 0.0000348cP 
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  = ± 0.727 

The relative Uncertainty can be calculated as: &Y��./� ∗ 100 = ± 0.7277.132 ∗ 100 = 10.19% 

B.11.2 Uncertainty in ATF Prandtl Number 

')� = B	
�  

&x�� = Ú�«')«B &l�P + ²«')«	
 &Z[³P + �«')«� &}�P
 

«')«B = 	
� = 13182 

«')«	
 = B� = 0.128 

«')«� = − B	
�P = −695 

&l = −0.00096 &Z[ = 3.49 &} = −0.00014 &x�� = 
(13182 ∗ −0.00096)P + (0.128 ∗ 3.49)P + (−695 ∗ −0.00014)P &x�� = ±12.6 

The relative uncertainty of the Prandtl is: &x��')� ∗ 100 = 12.6518 ∗ 100 = 2.43% 

B.11.3 Uncertainty in ATF Nusselt Number 

The Nusselt number can be calculated as: 
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!#� = ℎ����  

The uncertainty can be calculated as: 

&�3� = ±Ú�«!#�«ℎ� ∗ &���P + �«!#�«�� ∗ &gh�P + �«!#�«� ∗ &}�P
 

«!#�«ℎ� = ��� = 0.00641 

«!#�«�� = ℎ�� = 867 

«!#�«� = − ℎ����P = 5.56 

&�3� = ±
(0.00641 ∗ 12.76)P + (867 ∗ 0.0000348)P + (5.56 ∗ −0.00014)P &�3� = 0.088 

The relative uncertainty is: &�3�!#� ∗ 100 = 0.0880.868 ∗ 100 = 10.11% 

B.12 Uncertainty of the instrument and devices used 

All the laboratory instruments and devices used in the present experiment were 

previously used by some researchers. All of them estimated uncertainties for those 

equipments in details. 

Khan, M. G., (2011) used this laboratory for long time for his PhD research and 

calculated uncertainties of all the equipment he used. He presented these uncertainties in 

his thesis and published literatures [55]. Al-Obaidi S (2011), Dasgupta, E. S, (2011), and 

Siddiqui, F. A., (2011) used this laboratory for their M A Sc research works. They 
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estimated uncertainties for all the equipment and devices including data acquisition 

system [8, 67, 70].   

In the current investigation, same laboratory instrument and devices were used. So, the 

uncertainties were taken from those works for data analysis to avoid repetition of similar 

works. The uncertainties are given below: 

Table B. 1: Uncertainties of Key Parameters Related to the MICHX 

Dimensional 

Parameters 
Brief description of the parameters Numerical value  

Uncertainty 

% 

Lslab 
Length of a single slab participating in 

heat transfer 
0.304 m ± 0.15 

Wslab 
Width of a single slab participating in 

heat transfer 
0.100 m ± 0.20 

Tslab 

Thickness of a single slab participating 

in heat transfer and containing the 

channels 

0.002 m ± 0.50 

Nfin No. of fins per slab 144 ± 0.30 

Nslab Total No. of slab 15   

Hhx Height of the Heat Exchanger 0.287 m ± 0.25 

Afin Total Heat transfer Area of the fins             7.771 m
2
 ± 0.45 

Afront, fin & 

slab 

Area of fin & slab that blocks the air 

flow 
1.587×10

– 2
 ± 6.79 

Afront  
Frontal Area of the Heat Exchanger 

Afront = Lslab X Hhx 
8.748×10

– 2
 m

2
 ± 0.29 

Aslab 

Combined total area of only the slabs 

participating in heat transfer for the 

whole heat exchanger due to air flow. 

0.834 m
2 

  ± 1.55 
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Table B. 2: DAQ System and Measured Parameters 

Dimensional Parameters Numerical value  Uncertainty % 

Data acquisition Card 3.025×10
(-6)

  ±3.025×10
(-4)

 

Signal Conditioning 5.22×10
(-6)

  ±5.22×10
(-4)

  

Data acquisition System 6.033×10
(-6)

  ±6.033×10
(-4)

 

Digital Flow meter ±0.020615 FS ±2.0615 FS 

RTD 0.0042 ±0.42 

ATF Mass Flow rate 0.03015 ±3.015 

ATF Dynamic Viscosity 0.00096 ±0.096 

Channel Hydraulic Diameter 0.0000348 ±0.00384 

Air Side Hydraulic Diameter 0.0087 ± 0.87 

Air Side Temperature 0.0273 ± 2.73 

Air Mass flow rate 0.074 ± 2.74 

Air Reynolds Number 0.0312 ±3.12 

ATF Specific Heat Capacity 3.49 ±34.9 

ATF Conductivity 0.00014 ±0.014 

ATF Reynolds Number 0.1019 ±10.19 

ATF Prandtl Number 0.0243 ±2.43 

ATF Nusselt Number 0.1011 ±10.11 

Heat exchanger effectiveness 0.055 ±5.5 

Heat exchanger NTU 0.0776 ±7.76 
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APPENDIX C 

EXPERIMENTAL DATA 

The following table contains the processed data as a source of information. 

ATF 
inlet 
Temp  

Air 
inlet 
Temp  

ATF 
Mass 
Flow 
Rate  

ATF 
Mass 
Flow 
Rate  

Air Inlet 
Average 
Temp 

Air Outlet 
Average 
Temp 

Air Side 
Surface 
Average 
Temp, Tso 

o
C 

o
C kg/min kg/sec 

o
C 

o
C 

o
C 

75 15 1.256 0.021 14.59 18.10 26.78 

75 15 1.223 0.020 14.47 16.64 23.55 

75 15 1.119 0.019 14.74 16.21 23.95 

75 15 1.118 0.019 14.56 15.75 23.19 

75 15 0.816 0.014 14.68 17.12 23.87 

75 15 0.811 0.014 15.24 16.72 23.78 

75 15 0.819 0.014 14.65 15.70 22.27 

75 15 0.816 0.014 14.93 15.73 22.18 

75 15 0.586 0.010 14.54 16.20 23.23 

75 15 0.580 0.010 15.23 16.22 23.17 

75 15 0.598 0.010 15.50 16.30 23.48 

75 15 0.617 0.010 16.56 17.16 23.27 

75 15 0.537 0.009 14.84 16.43 22.47 

75 15 0.543 0.009 14.58 15.58 21.41 

75 15 0.519 0.009 15.08 15.76 21.36 

75 15 0.519 0.009 15.04 15.54 21.65 

              

75 22 2.510 0.042 22.08 27.72 36.03 

75 22 2.471 0.041 21.52 25.13 32.01 

75 22 2.470 0.041 22.51 25.28 32.12 

75 22 2.435 0.041 22.63 24.78 31.52 

75 22 1.678 0.028 22.56 26.73 34.11 

75 22 1.667 0.028 21.61 24.20 32.16 

75 22 1.596 0.027 21.23 23.11 30.72 

75 22 1.596 0.027 22.07 23.57 30.61 

75 22 0.861 0.014 21.98 24.35 30.70 

75 22 0.828 0.014 21.67 23.07 29.51 

75 22 0.840 0.014 22.02 22.99 29.34 

75 22 0.854 0.014 22.16 22.96 29.18 

75 22 0.585 0.010 21.96 23.49 29.02 

75 22 0.584 0.010 22.21 23.13 28.52 

75 22 0.483 0.008 21.75 22.31 28.74 

75 22 0.482 0.008 22.33 22.76 28.10 

              

75 29 3.292 0.055 30.46 36.69 43.08 

75 29 3.273 0.055 28.15 32.56 39.46 

75 29 3.244 0.054 28.36 31.47 39.18 
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75 29 3.228 0.054 29.80 32.14 39.02 

75 29 2.123 0.035 28.32 32.89 39.31 

75 29 2.138 0.036 28.41 31.40 38.60 

75 29 2.064 0.034 29.49 31.50 38.14 

75 29 2.067 0.034 29.21 30.89 37.95 

75 29 1.741 0.029 29.68 33.64 40.85 

75 29 1.748 0.029 30.01 32.48 39.96 

75 29 1.744 0.029 29.73 31.47 38.92 

75 29 1.733 0.029 29.09 30.51 37.70 

75 29 0.815 0.014 30.17 31.97 39.60 

75 29 0.897 0.015 28.60 29.99 35.55 

75 29 0.772 0.013 28.52 29.37 36.64 

75 29 0.857 0.014 28.62 29.30 35.96 

              

75 36 3.611 0.060 35.85 42.12 46.97 

75 36 3.683 0.061 37.32 41.12 46.99 

75 36 3.632 0.061 35.90 39.00 45.77 

75 36 3.696 0.062 37.59 40.03 46.62 

75 36 3.149 0.052 35.01 40.41 46.82 

75 36 3.104 0.052 36.87 40.20 46.82 

75 36 3.120 0.052 36.02 38.55 45.70 

75 36 3.118 0.052 36.63 38.66 45.75 

75 36 1.990 0.033 35.17 39.09 45.91 

75 36 1.971 0.033 35.75 38.16 45.75 

75 36 1.983 0.033 34.00 35.82 44.11 

75 36 1.995 0.033 36.55 37.92 44.99 

75 36 1.090 0.018 35.49 37.76 44.97 

75 36 1.048 0.017 34.81 36.06 44.96 

75 36 1.050 0.018 35.86 36.75 45.52 

75 36 1.038 0.017 35.60 36.31 44.86 

              

75 43 3.936 0.066 42.20 48.00 53.50 

75 43 3.844 0.064 43.60 46.95 52.94 

75 43 3.854 0.064 43.38 45.99 51.87 

75 43 3.855 0.064 42.79 44.87 51.45 

75 43 3.200 0.053 43.01 47.75 54.96 

75 43 3.200 0.053 43.24 46.51 53.83 

75 43 3.200 0.053 43.79 45.90 52.55 

75 43 3.200 0.053 44.38 46.11 52.86 

75 43 2.295 0.038 43.05 46.60 53.83 

75 43 2.290 0.038 42.36 44.84 52.95 

75 43 2.288 0.038 42.95 44.64 52.66 

75 43 2.285 0.038 42.95 44.26 52.94 

75 43 1.290 0.022 42.69 44.87 53.96 

75 43 1.290 0.022 42.91 44.25 53.92 

75 43 1.281 0.021 42.91 43.87 53.18 

75 43 1.292 0.022 43.62 44.34 53.86 
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IInlet 
Air 
Temp  

Liquid 
inlet Temp 
(RTDi) 

Liquid outlet 
Temp 
(RTDo) 

Liquid 
inlet  
Press  

Liquid 
inlet  
Press 

Liquid 
outlet  
Press 

Liquid 
outlet  
Press 

o
C

 o
C 

o
C Psi Kpa Psi(o)  Kpa 

15 74.64 19.93 137.59 948.66 27.79 191.62 

15 74.33 16.20 134.16 925.00 26.78 184.65 

15 74.74 16.83 131.70 908.06 26.61 183.47 

15 74.57 15.54 128.05 882.88 27.69 190.91 

15 75.48 16.46 93.27 643.07 18.56 127.95 

15 75.25 16.41 96.04 662.20 18.05 124.42 

15 75.33 15.52 98.45 678.79 18.09 124.73 

15 75.42 15.59 98.45 678.80 17.98 123.96 

15 75.12 16.96 67.16 463.06 11.23 77.46 

15 75.68 17.53 68.81 474.43 11.37 78.37 

15 75.48 16.51 68.33 471.11 11.20 77.20 

15 75.13 17.99 69.99 482.55 11.20 77.20 

15 75.04 15.87 64.65 445.73 9.89 68.21 

15 75.06 15.48 64.02 441.43 9.98 68.84 

15 74.87 16.59 64.50 444.72 11.00 75.81 

15 75.00 16.81 65.12 448.99 10.99 75.76 

              

 

22 

 

73.35 

 

29.92 

 

178.29 

 

1229.27 

 

29.50 203.41 

22 72.48 26.90 178.12 1228.11 27.92 192.53 

22 73.60 26.93 176.78 1218.89 28.37 195.63 

22 73.96 26.33 176.94 1219.94 28.85 198.92 

22 74.80 27.02 123.32 850.29 20.38 140.49 

22 74.99 25.19 124.77 860.25 20.41 140.71 

22 74.93 24.17 121.38 836.88 20.40 140.67 

22 74.81 24.02 123.46 851.21 20.20 139.25 

22 74.89 23.64 69.75 480.90 10.31 71.10 

22 74.93 23.91 68.38 471.48 10.97 75.63 

22 75.21 23.94 68.87 474.85 10.47 72.21 

22 75.14 24.90 70.21 484.07 10.82 74.59 

22 75.32 23.78 35.57 245.23 4.67 32.22 

22 74.92 23.71 36.42 251.08 4.78 32.97 

22 75.23 23.10 37.26 256.90 4.59 31.67 

22 75.42 23.72 37.32 257.32 5.25 36.17 

              

29 73.54 37.42 198.87 1371.13 29.15 200.97 

29 73.92 33.87 198.65 1369.65 28.71 197.92 

29 73.87 32.70 196.30 1353.46 29.45 203.03 

29 71.74 33.16 196.33 1353.62 29.89 206.06 

29 74.13 33.15 129.01 889.50 17.80 122.75 

29 74.09 31.62 129.68 894.08 17.97 123.91 

29 74.01 32.47 123.32 850.26 16.81 115.90 
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29 74.30 31.03 126.33 871.02 18.30 126.19 

29 75.45 34.57 108.54 748.36 13.95 96.19 

29 75.58 33.65 109.45 754.61 13.87 95.65 

29 75.42 32.35 105.14 724.92 13.85 95.49 

29 75.17 30.41 104.41 719.90 13.94 96.12 

29 74.87 32.13 49.36 340.32 5.93 40.86 

29 75.41 30.00 54.43 375.29 6.81 46.97 

29 75.07 30.98 48.06 331.37 6.57 45.32 

29 74.93 29.87 52.85 364.36 6.78 46.76 

              

36 73.81 41.95 195.66 1349.03 26.50 182.73 

36 73.47 41.58 198.91 1371.47 26.51 182.75 

36 74.73 40.56 195.83 1350.22 26.86 185.20 

36 74.21 40.69 197.92 1364.63 26.12 180.06 

36 75.11 41.71 172.00 1185.88 21.92 151.16 

36 74.32 41.20 170.65 1176.62 21.87 150.81 

36 74.54 39.57 171.17 1180.17 21.87 150.77 

36 75.32 39.76 172.10 1186.57 21.86 150.75 

36 75.36 39.17 113.10 779.79 14.61 100.73 

36 75.02 39.06 114.99 792.81 14.54 100.25 

36 74.84 36.08 111.30 767.40 14.53 100.17 

36 75.95 38.48 111.76 770.59 14.63 100.89 

36 75.72 38.95 57.00 392.98 5.66 39.01 

36 75.26 37.95 55.80 384.74 5.64 38.90 

36 74.88 38.97 55.80 384.74 5.63 38.83 

36 74.88 36.94 55.58 383.19 5.53 38.10 

              

43 74.18 48.02 177.65 1224.86 23.59 162.65 

43 73.65 47.42 177.64 1224.79 23.59 162.65 

43 73.15 46.51 177.65 1224.88 23.68 163.30 

43 74.42 46.10 177.65 1224.88 23.70 163.37 

43 75.47 48.52 132.53 913.79 18.50 127.56 

43 75.68 46.98 132.62 914.40 18.01 124.15 

43 74.36 46.35 139.88 964.41 19.81 136.61 

43 75.85 46.70 148.00 1020.40 19.51 134.48 

43 74.66 46.93 97.65 673.24 11.69 80.58 

43 75.90 45.17 97.65 673.25 11.76 81.07 

43 75.85 45.11 97.65 673.25 11.75 81.00 

43 75.47 44.95 97.65 673.24 11.75 81.00 

43 75.92 45.38 52.27 360.37 5.35 36.92 

43 75.16 45.15 52.47 361.80 5.15 35.48 

43 75.49 45.32 53.64 369.85 5.43 37.44 

43 75.34 45.05 56.96 392.74 5.41 37.31 
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IInlet 
Air 
Temp. 

Air Dyn 
Pressure ∆P 
(FKT-P3) 

ATF 
Pressure 
drop, ∆P 

ATF Bulk 
Temperature 

Air 
Mean 
Temp 

ATF Inside 
wall Temp, 
Tw (Tsi) 

ATF in & 
out 
Temp 
Diff. ∆T   

o
C

 

kpa Kpa 
o
C 

o
C 

o
C 

o
C 

15 0.02 757.04 47.28 16.35 27.65 54.71 

15 0.06 740.35 45.26 15.56 24.45 58.13 

15 0.12 724.59 45.79 15.47 24.79 57.90 

15 0.18 691.97 45.06 15.15 24.02 59.04 

15 0.02 515.12 45.97 15.90 24.49 59.02 

15 0.06 537.78 45.83 15.98 24.39 58.85 

15 0.12 554.05 45.42 15.18 22.89 59.81 

15 0.20 554.84 45.50 15.33 22.79 59.83 

15 0.02 385.60 46.04 15.37 23.66 58.17 

15 0.06 396.07 46.61 15.73 23.59 58.15 

15 0.12 393.91 45.99 15.90 23.94 58.97 

15 0.19 405.35 46.56 16.86 23.72 57.14 

15 0.02 377.52 45.45 15.63 22.88 59.17 

15 0.06 372.59 45.27 15.08 21.83 59.59 

15 0.12 368.91 45.73 15.42 21.75 58.29 

15 0.20 373.23 45.90 15.29 22.03 58.19 

              

22 0.02 1025.86 51.64 24.90 37.40 43.43 

22 0.06 1035.58 49.69 23.33 33.46 45.58 

22 0.11 1023.26 50.26 23.90 33.63 46.67 

22 0.18 1021.02 50.15 23.70 33.02 47.64 

22 0.02 709.80 50.91 24.64 35.12 47.78 

22 0.06 719.55 50.09 22.90 33.22 49.80 

22 0.11 696.21 49.55 22.17 31.77 50.76 

22 0.19 711.96 49.41 22.82 31.68 50.79 

22 0.02 409.81 49.27 23.16 31.27 51.25 

22 0.06 395.85 49.42 22.37 30.06 51.02 

22 0.11 402.64 49.57 22.50 29.89 51.27 

22 0.19 409.49 50.02 22.56 29.75 50.24 

22 0.02 213.01 49.55 22.73 29.40 51.54 

22 0.06 218.11 49.31 22.67 28.89 51.21 

22 0.11 225.23 49.17 22.03 29.06 52.13 

22 0.19 221.15 49.57 22.55 28.42 51.69 

              

29 0.02 1170.15 55.48 33.58 44.59 36.12 

29 0.06 1171.73 53.90 30.36 41.19 40.04 

29 0.11 1150.43 53.28 29.92 40.90 41.17 

29 0.17 1147.57 52.45 30.97 40.63 38.58 

29 0.02 766.75 53.64 30.61 40.42 40.97 

29 0.06 770.17 52.85 29.91 39.78 42.47 

29 0.11 734.36 53.24 30.50 39.25 41.53 

29 0.19 744.83 52.67 30.05 39.13 43.27 

29 0.02 652.17 55.01 31.66 41.78 40.88 

29 0.06 658.96 54.61 31.25 40.93 41.93 

29 0.11 629.43 53.88 30.60 39.88 43.08 
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29 0.18 623.79 52.79 29.80 38.70 44.77 

29 0.02 299.46 53.50 31.07 40.04 42.73 

29 0.05 328.31 52.71 29.29 36.09 45.41 

29 0.10 286.05 53.02 28.94 37.08 44.08 

29 0.19 317.60 52.40 28.96 36.45 45.06 

              

36 0.02 1166.30 57.88 38.98 48.47 31.85 

36 0.06 1188.71 57.52 39.22 48.51 31.89 

36 0.11 1165.02 57.64 37.45 47.41 34.17 

36 0.18 1184.57 57.45 38.81 48.27 33.52 

36 0.02 1034.72 58.41 37.71 48.16 33.39 

36 0.06 1025.81 57.76 38.53 48.14 33.12 

36 0.11 1029.40 57.06 37.28 47.10 34.97 

36 0.18 1035.82 57.54 37.65 47.18 35.56 

36 0.02 679.06 57.27 37.13 46.85 36.19 

36 0.06 692.56 57.04 36.96 46.69 35.96 

36 0.11 667.23 55.46 34.91 45.11 38.75 

36 0.18 669.70 57.22 37.24 45.96 37.48 

36 0.02 353.97 57.34 36.63 45.50 36.77 

36 0.06 345.85 56.60 35.44 45.45 37.31 

36 0.11 345.91 56.92 36.30 46.01 35.92 

36 0.18 345.09 55.91 35.95 45.37 37.94 

              

43 0.02 1062.21 61.10 45.10 54.86 26.15 

43 0.06 1062.15 60.54 45.28 54.26 26.23 

43 0.11 1061.58 59.83 44.69 53.24 26.64 

43 0.18 1061.51 60.26 43.83 52.89 28.32 

43 0.02 786.23 62.00 45.38 56.08 26.95 

43 0.06 790.25 61.33 44.88 55.05 28.70 

43 0.11 827.80 60.35 44.84 53.71 28.00 

43 0.17 885.92 61.28 45.24 54.06 29.15 

43 0.02 592.66 60.80 44.82 54.65 27.73 

43 0.05 592.17 60.53 43.60 53.87 30.73 

43 0.11 592.25 60.48 43.80 53.57 30.73 

43 0.17 592.24 60.21 43.61 53.84 30.52 

43 0.02 323.46 60.65 43.78 54.46 30.55 

43 0.05 326.32 60.15 43.58 54.43 30.02 

43 0.11 332.41 60.41 43.39 53.70 30.17 

43 0.18 355.44 60.19 43.98 54.36 30.29 
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IInlet 
Air 
Temp  

ATF 
Specific 
Heat Cp, 
at Bulk 
Temp 

ATF 
Specific 
Heat Cp, 
at Wall 
Temp 

ATF 
Density 
ρ, at 
bulk 
Temp  

ATF 
Conductivity 
k, at Bulk 
Temp  

ATF 
Conductivity 
k, at Wall 
Temp  

ATF 
Dynamic 
Viscosity 
at Bulk 
Temp, µm  

o
C

 

J/Kg-K J/Kg-K kg/m
3
 W/m-K  W/m-K  Kg/m-s 

15 2040 1970 849 0.157 0.160 0.022 

15 2040 1960 850 0.157 0.160 0.022 

15 2040 1960 850 0.157 0.160 0.022 

15 2040 1960 850 0.157 0.160 0.022 

15 2040 1960 849 0.157 0.160 0.022 

15 2040 1960 850 0.157 0.160 0.022 

15 2040 1960 850 0.157 0.160 0.022 

15 2040 1960 850 0.157 0.160 0.022 

15 2040 1960 850 0.157 0.160 0.022 

15 2040 1960 850 0.157 0.160 0.022 

15 2040 1960 850 0.157 0.160 0.022 

15 2040 1960 850 0.157 0.160 0.022 

15 2040 1955 850 0.157 0.160 0.022 

15 2040 1950 850 0.157 0.160 0.022 

15 2040 1950 850 0.157 0.160 0.022 

15 2040 1950 850 0.157 0.160 0.022 

              

22 2060 2010 845 0.156 0.158 0.020 

22 2056 1992 846 0.156 0.159 0.020 

22 2056 1992 846 0.156 0.159 0.020 

22 2056 1990 846 0.156 0.159 0.020 

22 2060 2000 845 0.156 0.159 0.020 

22 2056 1992 846 0.156 0.159 0.020 

22 2056 1990 846 0.156 0.159 0.020 

22 2056 1990 846 0.156 0.159 0.020 

22 2056 1985 845 0.156 0.159 0.020 

22 2056 1980 846 0.156 0.159 0.020 

22 2056 1980 846 0.156 0.159 0.020 

22 2056 1980 846 0.156 0.159 0.020 

22 2056 1980 845 0.156 0.159 0.020 

22 2056 1980 846 0.156 0.159 0.020 

22 2056 1980 846 0.156 0.159 0.020 

22 2056 1973 846 0.156 0.159 0.020 

              

29 2080 2032 841 0.156 0.158 0.019 

29 2070 2020 843 0.156 0.158 0.019 

29 2070 2020 844 0.156 0.158 0.019 

29 2068 2020 844 0.156 0.158 0.019 

29 2070 1990 844 0.156 0.158 0.019 

29 2070 1990 844 0.156 0.158 0.019 

29 2070 2013 844 0.156 0.158 0.019 

29 2070 2013 844 0.156 0.158 0.019 

29 2070 2020 844 0.156 0.158 0.019 

29 2070 2020 844 0.156 0.158 0.019 

29 2070 2020 844 0.156 0.158 0.019 

29 2068 2013 843 0.156 0.158 0.019 
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29 2070 2020 843 0.156 0.158 0.019 

29 2070 2002 843 0.156 0.158 0.019 

29 2070 2008 843 0.156 0.158 0.019 

29 2070 2002 843 0.156 0.158 0.019 

              

36 2085 2050 841 0.155 0.157 0.016 

36 2085 2050 841 0.155 0.157 0.016 

36 2083 2050 841 0.155 0.157 0.016 

36 2085 2050 841 0.155 0.157 0.016 

36 2085 2050 841 0.155 0.157 0.016 

36 2085 2050 841 0.155 0.157 0.016 

36 2083 2045 841 0.155 0.157 0.016 

36 2085 2045 841 0.155 0.157 0.016 

36 2085 2045 841 0.155 0.157 0.016 

36 2085 2050 841 0.155 0.157 0.016 

36 2083 2040 841 0.155 0.157 0.016 

36 2085 2040 841 0.155 0.157 0.016 

36 2085 2040 841 0.155 0.157 0.016 

36 2085 2040 841 0.155 0.157 0.016 

36 2083 2040 841 0.155 0.157 0.016 

36 2085 2040 841 0.155 0.157 0.016 

              

43 2098 2075 839 0.155 0.156 0.014 

43 2093 2070 839 0.155 0.156 0.014 

43 2093 2070 839 0.155 0.156 0.014 

43 2093 2070 839 0.155 0.156 0.014 

43 2093 2080 841 0.155 0.156 0.014 

43 2093 2075 841 0.155 0.156 0.014 

43 2093 2070 841 0.155 0.156 0.014 

43 2098 2070 841 0.155 0.156 0.014 

43 2093 2075 841 0.155 0.156 0.014 

43 2093 2070 841 0.155 0.156 0.014 

43 2093 2070 841 0.155 0.156 0.014 

43 2093 2070 841 0.155 0.156 0.014 

43 2093 2070 841 0.155 0.156 0.013 

43 2093 2070 841 0.155 0.156 0.013 

43 2093 2070 841 0.155 0.156 0.013 

43 2093 2072 841 0.155 0.156 0.013 
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IInlet 
Air 
Temp 

ATF 
Dynamic 
Viscosity 
at Wall 
Temp, µw   

Viscosity 
Ratio, 
µm/µw 

Viscosity 
Ratio, 
(µm/µw)

0.14
 

Viscosity 
Ratio, 
(µm/µw)

-0.50
 

ATF 
Reynolds 
Number, 
(ReL), at 
Bulk Temp 

ATF 
Velocity, 
(V) 

o
C

 

Kg/m-s          m/s 

15 0.050 0.440 0.891 1.508 5.94 0.154 

15 0.058 0.379 0.873 1.624 5.78 0.150 

15 0.058 0.379 0.873 1.624 5.29 0.137 

15 0.058 0.379 0.873 1.624 5.29 0.137 

15 0.058 0.379 0.873 1.624 3.86 0.100 

15 0.058 0.379 0.873 1.624 3.83 0.099 

15 0.060 0.367 0.869 1.651 3.87 0.100 

15 0.060 0.367 0.869 1.651 3.86 0.100 

15 0.060 0.367 0.869 1.651 2.77 0.072 

15 0.060 0.367 0.869 1.651 2.74 0.071 

15 0.060 0.367 0.869 1.651 2.83 0.073 

15 0.060 0.367 0.869 1.651 2.92 0.076 

15 0.060 0.367 0.869 1.651 2.54 0.066 

15 0.062 0.355 0.865 1.679 2.57 0.066 

15 0.062 0.355 0.865 1.679 2.45 0.064 

15 0.062 0.355 0.865 1.679 2.45 0.063 

              

22 0.032 0.625 0.936 1.265 13.05 0.309 

22 0.041 0.488 0.904 1.432 12.85 0.304 

22 0.041 0.488 0.904 1.432 12.85 0.304 

22 0.041 0.488 0.904 1.432 12.66 0.299 

22 0.036 0.556 0.921 1.342 8.73 0.207 

22 0.041 0.488 0.904 1.432 8.67 0.205 

22 0.042 0.476 0.901 1.449 8.30 0.196 

22 0.042 0.476 0.901 1.449 8.30 0.196 

22 0.042 0.476 0.901 1.449 4.48 0.106 

22 0.044 0.460 0.897 1.475 4.31 0.102 

22 0.044 0.460 0.897 1.475 4.37 0.103 

22 0.044 0.460 0.897 1.475 4.44 0.105 

22 0.044 0.455 0.895 1.483 3.04 0.072 

22 0.044 0.455 0.895 1.483 3.03 0.072 

22 0.043 0.465 0.898 1.466 2.51 0.059 

22 0.044 0.455 0.895 1.483 2.51 0.059 

            

29 0.024 0.771 0.964 1.139 18.51 0.407 

29 0.028 0.661 0.944 1.230 18.40 0.404 

29 0.028 0.661 0.944 1.230 18.24 0.400 

29 0.030 0.617 0.935 1.273 18.15 0.398 

29 0.030 0.617 0.935 1.273 11.94 0.262 

29 0.030 0.617 0.935 1.273 12.02 0.264 

29 0.030 0.617 0.935 1.273 11.61 0.254 

29 0.030 0.617 0.935 1.273 11.62 0.255 

29 0.028 0.661 0.944 1.230 9.79 0.215 

29 0.028 0.661 0.944 1.230 9.83 0.215 

29 0.028 0.661 0.944 1.230 9.81 0.215 

29 0.028 0.661 0.944 1.230 9.74 0.214 
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29 0.030 0.617 0.935 1.273 4.58 0.101 

29 0.034 0.544 0.918 1.356 5.04 0.111 

29 0.032 0.578 0.926 1.315 4.34 0.095 

29 0.034 0.544 0.918 1.356 4.82 0.106 

              

36 0.021 0.762 0.963 1.146 23.48 0.447 

36 0.021 0.762 0.963 1.146 23.94 0.456 

36 0.021 0.762 0.963 1.146 23.61 0.449 

36 0.021 0.762 0.963 1.146 24.03 0.457 

36 0.021 0.762 0.963 1.146 20.47 0.389 

36 0.021 0.762 0.963 1.146 20.18 0.384 

36 0.022 0.727 0.956 1.173 20.29 0.386 

36 0.022 0.727 0.956 1.173 20.27 0.386 

36 0.022 0.727 0.956 1.173 12.94 0.246 

36 0.022 0.727 0.956 1.173 12.81 0.244 

36 0.024 0.667 0.945 1.225 12.89 0.245 

36 0.022 0.727 0.956 1.173 12.97 0.247 

36 0.024 0.681 0.948 1.212 7.09 0.135 

36 0.024 0.681 0.948 1.212 6.81 0.130 

36 0.022 0.727 0.956 1.173 6.83 0.130 

36 0.024 0.667 0.945 1.225 6.75 0.128 

              

43 0.018 0.778 0.965 1.134 29.24 0.488 

43 0.019 0.757 0.962 1.150 28.56 0.477 

43 0.019 0.737 0.958 1.165 28.64 0.478 

43 0.019 0.737 0.958 1.165 28.65 0.478 

43 0.019 0.737 0.958 1.165 23.78 0.396 

43 0.018 0.778 0.965 1.134 23.78 0.396 

43 0.019 0.737 0.958 1.165 23.78 0.396 

43 0.019 0.737 0.958 1.165 23.78 0.396 

43 0.018 0.778 0.965 1.134 17.05 0.284 

43 0.019 0.737 0.958 1.165 17.02 0.283 

43 0.019 0.737 0.958 1.165 17.00 0.283 

43 0.019 0.737 0.958 1.165 16.98 0.283 

43 0.019 0.705 0.952 1.191 10.01 0.160 

43 0.019 0.705 0.952 1.191 10.01 0.160 

43 0.019 0.705 0.952 1.191 9.94 0.158 

43 0.019 0.705 0.952 1.191 10.03 0.160 
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IInlet 
Air 
Temp  

ATF Heat 
Transfer 
rate Q,  

ATF Heat 
Transfer 
rate Q  

Heat 
Flux, 
(q) 

Liq Heat 
Transfer 
rate Q 

Hydrodynami
c Entry 
length, 

Lh=0.05ReDh, 

Hydrodyna
mic Entry 
length, % of 
Total 
Length 

o
C

 

W  KW  W/m
2
 BTU/min   Mm  % 

15 2336.31 2.34 2397.05 132.81 0.297 0.098 

15 2416.33 2.42 2479.15 137.36 0.289 0.095 

15 2203.04 2.20 2260.32 125.24 0.265 0.087 

15 2244.05 2.24 2302.40 127.57 0.264 0.087 

15 1637.57 1.64 1680.15 93.09 0.193 0.063 

15 1622.63 1.62 1664.82 92.24 0.192 0.063 

15 1664.65 1.66 1707.93 94.63 0.194 0.064 

15 1659.93 1.66 1703.09 94.36 0.193 0.063 

15 1158.88 1.16 1189.01 65.88 0.139 0.046 

15 1146.72 1.15 1176.53 65.19 0.137 0.045 

15 1198.89 1.20 1230.06 68.15 0.141 0.047 

15 1198.66 1.20 1229.83 68.14 0.146 0.048 

15 1080.13 1.08 1108.21 61.40 0.127 0.042 

15 1099.46 1.10 1128.05 62.50 0.128 0.042 

15 1028.50 1.03 1055.25 58.47 0.123 0.040 

15 1026.08 1.03 1052.76 58.33 0.123 0.040 

              

22 3742.42 3.74 3839.73 212.74 0.653 0.215 

22 3859.18 3.86 3959.53 219.38 0.643 0.211 

22 3950.03 3.95 4052.73 224.55 0.642 0.211 

22 3975.03 3.98 4078.38 225.97 0.633 0.208 

22 2752.39 2.75 2823.96 156.46 0.436 0.144 

22 2844.45 2.84 2918.41 161.70 0.434 0.143 

22 2775.94 2.78 2848.12 157.80 0.415 0.137 

22 2777.72 2.78 2849.94 157.90 0.415 0.137 

22 1511.92 1.51 1551.23 85.95 0.224 0.074 

22 1447.60 1.45 1485.24 82.29 0.215 0.071 

22 1475.75 1.48 1514.12 83.89 0.218 0.072 

22 1470.20 1.47 1508.42 83.58 0.222 0.073 

22 1033.73 1.03 1060.61 58.76 0.152 0.050 

22 1023.95 1.02 1050.57 58.21 0.152 0.050 

22 862.97 0.86 885.41 49.06 0.126 0.041 

22 854.34 0.85 876.55 48.57 0.125 0.041 

              

29 4122.33 4.12 4229.51 234.34 0.926 0.304 

29 4521.64 4.52 4639.20 257.04 0.920 0.303 

29 4607.41 4.61 4727.20 261.92 0.912 0.300 

29 4292.06 4.29 4403.66 243.99 0.908 0.299 

29 3001.13 3.00 3079.16 170.60 0.597 0.196 

29 3132.68 3.13 3214.14 178.08 0.601 0.198 
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29 2957.54 2.96 3034.44 168.13 0.580 0.191 

29 3085.45 3.09 3165.68 175.40 0.581 0.191 

29 2455.06 2.46 2518.90 139.56 0.489 0.161 

29 2528.91 2.53 2594.66 143.76 0.492 0.162 

29 2591.97 2.59 2659.36 147.34 0.490 0.161 

29 2673.96 2.67 2743.49 152.01 0.487 0.160 

29 1201.53 1.20 1232.77 68.30 0.229 0.075 

29 1405.26 1.41 1441.80 79.88 0.252 0.083 

29 1174.12 1.17 1204.64 66.74 0.217 0.071 

29 1332.32 1.33 1366.96 75.74 0.241 0.079 

              

36 3996.94 4.00 4100.87 227.21 1.174 0.386 

36 4081.31 4.08 4187.43 232.01 1.197 0.394 

36 4308.28 4.31 4420.30 244.91 1.181 0.388 

36 4305.64 4.31 4417.59 244.76 1.201 0.395 

36 3654.24 3.65 3749.25 207.73 1.024 0.337 

36 3571.93 3.57 3664.81 203.05 1.009 0.332 

36 3788.01 3.79 3886.50 215.34 1.014 0.334 

36 3852.68 3.85 3952.85 219.01 1.014 0.333 

36 2502.62 2.50 2567.69 142.27 0.647 0.213 

36 2462.42 2.46 2526.44 139.98 0.641 0.211 

36 2667.65 2.67 2737.01 151.65 0.645 0.212 

36 2598.16 2.60 2665.72 147.70 0.649 0.213 

36 1392.75 1.39 1428.96 79.17 0.354 0.117 

36 1358.80 1.36 1394.13 77.24 0.341 0.112 

36 1309.25 1.31 1343.29 74.43 0.341 0.112 

36 1368.51 1.37 1404.10 77.80 0.337 0.111 

              

43 3599.15 3.60 3692.73 204.60 1.462 0.481 

43 3517.14 3.52 3608.59 199.94 1.428 0.470 

43 3581.00 3.58 3674.11 203.57 1.432 0.471 

43 3808.65 3.81 3907.68 216.51 1.432 0.471 

43 3008.49 3.01 3086.71 171.02 1.189 0.391 

43 3203.17 3.20 3286.46 182.09 1.189 0.391 

43 3125.66 3.13 3206.93 177.68 1.189 0.391 

43 3261.55 3.26 3346.35 185.41 1.189 0.391 

43 2219.81 2.22 2277.53 126.19 0.853 0.280 

43 2454.54 2.45 2518.36 139.53 0.851 0.280 

43 2453.02 2.45 2516.80 139.45 0.850 0.280 

43 2432.86 2.43 2496.12 138.30 0.849 0.279 

43 1374.62 1.37 1410.36 78.14 0.501 0.165 

43 1350.66 1.35 1385.78 76.78 0.501 0.165 

43 1348.04 1.35 1383.09 76.63 0.497 0.164 

43 1365.35 1.37 1400.85 77.62 0.501 0.165 
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IInlet 
Air 
Temp  

Thermal 
entry 
Length, 
LTh=0.05R
ePrDh 

Thermal 
entry 
Length, 
% of 
total 
length 

ATF 
Heat 
transfer 
Coeffici
ent, hL 

Prandtl 
Numbe
r at 
Bulk 
Temp, 
Prb 

Prandtl 
Numbe
r at 
wall 
Temp, 
Prw  

Nusselt 
Numbe
r at 
Bulk 
Temp, 
Nu 

Correct
ed 
Nusselt 
Numbe
r, Nucort 

o
C

 
mm  % W/m

2
-K         

15 84.67 27.85 120.32 285.13 615.63 0.764 0.681 

15 82.41 27.11 118.25 285.13 710.50 0.751 0.656 

15 75.43 24.81 109.11 285.13 710.50 0.693 0.605 

15 75.36 24.79 108.39 285.13 710.50 0.689 0.601 

15 55.01 18.09 78.97 285.13 710.50 0.502 0.438 

15 54.67 17.98 78.59 285.13 710.50 0.499 0.436 

15 55.18 18.15 75.48 285.13 735.00 0.480 0.417 

15 55.01 18.09 73.78 285.13 735.00 0.469 0.407 

15 39.50 12.99 52.28 285.13 735.00 0.332 0.289 

15 39.10 12.86 50.15 285.13 735.00 0.319 0.277 

15 40.31 13.26 56.57 285.13 735.00 0.359 0.312 

15 41.59 13.68 53.82 285.13 735.00 0.342 0.297 

15 36.19 11.91 49.22 285.13 733.13 0.313 0.272 

15 36.58 12.03 48.74 285.13 755.63 0.310 0.268 

15 34.99 11.51 44.37 285.13 755.63 0.282 0.244 

15 34.96 11.50 43.59 285.13 755.63 0.277 0.240 

                

22 172.39 56.71 263.45 264.10 407.09 1.689 1.581 

22 169.38 55.72 242.92 263.59 513.66 1.557 1.408 

22 169.31 55.70 249.05 263.59 513.66 1.596 1.444 

22 166.92 54.91 239.30 263.59 513.14 1.534 1.387 

22 115.25 37.91 175.89 264.10 454.26 1.127 1.038 

22 114.27 37.59 171.50 263.59 513.66 1.099 0.994 

22 109.40 35.99 161.73 263.59 525.66 1.037 0.934 

22 109.40 35.99 164.36 263.59 525.66 1.054 0.950 

22 59.02 19.41 87.57 263.59 524.34 0.561 0.506 

22 56.76 18.67 78.01 263.59 541.70 0.500 0.449 

22 57.58 18.94 76.01 263.59 541.70 0.487 0.437 

22 58.54 19.26 75.74 263.59 541.70 0.486 0.435 

22 40.12 13.20 51.47 263.59 547.92 0.330 0.295 

22 40.00 13.16 50.23 263.59 547.92 0.322 0.288 

22 33.12 10.89 43.25 263.59 535.47 0.277 0.249 

22 33.06 10.88 40.97 263.59 545.99 0.263 0.235 

                

29 228.30 75.10 379.31 246.67 309.64 2.431 2.344 

29 225.89 74.30 371.77 245.48 359.11 2.383 2.249 

29 223.89 73.65 380.64 245.48 359.11 2.440 2.302 

29 222.57 73.21 372.73 245.24 384.76 2.389 2.233 

29 146.52 48.20 230.05 245.48 379.05 1.475 1.378 

29 147.55 48.54 247.16 245.48 379.05 1.584 1.481 

29 142.45 46.86 216.93 245.48 383.43 1.391 1.300 

29 142.65 46.93 237.76 245.48 383.43 1.524 1.424 

29 120.13 39.52 191.39 245.48 359.11 1.227 1.158 

29 120.67 39.69 192.17 245.48 359.11 1.232 1.162 

29 120.36 39.59 188.18 245.48 359.11 1.206 1.138 
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29 119.49 39.31 194.74 245.24 357.87 1.248 1.178 

29 56.25 18.50 89.96 245.48 384.76 0.577 0.539 

29 61.91 20.36 87.84 245.48 432.18 0.563 0.517 

29 53.28 17.53 76.28 245.48 407.97 0.489 0.453 

29 59.15 19.46 84.34 245.48 432.18 0.541 0.496 

                

36 252.64 83.10 434.27 215.23 274.20 2.802 2.697 

36 257.68 84.76 460.45 215.23 274.20 2.971 2.860 

36 253.86 83.51 440.61 215.02 274.20 2.843 2.736 

36 258.59 85.06 492.39 215.23 274.20 3.177 3.058 

36 220.32 72.47 359.13 215.23 274.20 2.317 2.230 

36 217.17 71.44 375.28 215.23 274.20 2.421 2.331 

36 218.10 71.74 384.57 215.02 286.56 2.481 2.373 

36 218.15 71.76 378.21 215.23 286.56 2.440 2.334 

36 139.24 45.80 245.47 215.23 286.56 1.584 1.515 

36 137.87 45.35 246.56 215.23 287.26 1.591 1.521 

36 138.60 45.59 264.65 215.02 311.85 1.707 1.613 

36 139.58 45.91 235.81 215.23 285.86 1.521 1.455 

36 76.26 25.09 121.61 215.23 305.35 0.785 0.743 

36 73.32 24.12 122.26 215.23 305.35 0.789 0.747 

36 73.39 24.14 122.85 215.02 285.86 0.793 0.758 

36 72.62 23.89 131.85 215.23 311.85 0.851 0.804 

                

43 277.07 91.14 592.03 189.50 239.42 3.820 3.688 

43 269.97 88.80 574.21 189.05 245.48 3.705 3.563 

43 270.67 89.04 570.72 189.05 252.12 3.682 3.528 

43 270.77 89.07 533.04 189.05 252.12 3.439 3.295 

43 224.74 73.93 514.09 189.05 253.33 3.317 3.178 

43 224.74 73.93 535.00 189.05 239.42 3.452 3.332 

43 224.74 73.93 473.90 189.05 252.12 3.057 2.929 

43 225.28 74.11 454.47 189.50 252.12 2.932 2.809 

43 161.18 53.02 365.00 189.05 239.42 2.355 2.273 

43 160.83 52.91 379.83 189.05 252.12 2.451 2.348 

43 160.69 52.86 359.45 189.05 252.12 2.319 2.222 

43 160.48 52.79 384.37 189.05 252.12 2.480 2.376 

43 90.60 29.80 223.88 180.94 252.12 1.444 1.375 

43 90.60 29.80 243.05 180.94 252.12 1.568 1.493 

43 89.97 29.59 208.90 180.94 252.12 1.348 1.283 

43 90.74 29.85 235.67 180.94 252.36 1.520 1.448 
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Inlet 
Air 
Temp  

Mass 
Flux (G) 

Total 
System 
Pressure 
drop (∆P)  

Total 
System 
Pressure 
drop ∆P 

System 
Pressure 
drop  per 
mass flux 

ATF 
Capacit
y rate, 
CL 

Pressure 
Ratio, 
Pin/Po 

o
C

 
   
Kg/m

2
-s kpa pa ∆P/G     

15 130.65 757.04 757042.09 5.79 42.70 4.95 

15 127.17 740.35 740350.38 5.82 41.57 5.01 

15 116.40 724.59 724589.79 6.22 38.05 4.95 

15 116.30 691.97 691973.38 5.95 38.01 4.62 

15 84.88 515.12 515123.72 6.07 27.74 5.03 

15 84.36 537.78 537779.08 6.37 27.57 5.32 

15 85.15 554.05 554053.79 6.51 27.83 5.44 

15 84.88 554.84 554843.63 6.54 27.74 5.48 

15 60.96 385.60 385600.61 6.33 19.92 5.98 

15 60.33 396.07 396066.06 6.56 19.72 6.05 

15 62.21 393.91 393912.27 6.33 20.33 6.10 

15 64.18 405.35 405349.22 6.32 20.98 6.25 

15 55.85 377.52 377515.37 6.76 18.25 6.53 

15 56.45 372.59 372589.07 6.60 18.45 6.41 

15 53.99 368.91 368907.37 6.83 17.65 5.87 

15 53.95 373.23 373228.46 6.92 17.63 5.93 

              

22 261.10 1025.86 1025855.03 3.93 86.18 6.04 

22 257.04 1035.58 1035581.41 4.03 84.67 6.38 

22 256.94 1023.26 1023259.19 3.98 84.64 6.23 

22 253.30 1021.02 1021016.77 4.03 83.44 6.13 

22 174.55 709.80 709804.32 4.07 57.61 6.05 

22 173.41 719.55 719548.00 4.15 57.12 6.11 

22 166.02 696.21 696212.85 4.19 54.69 5.95 

22 166.02 711.96 711957.92 4.29 54.69 6.11 

22 89.56 409.81 409805.60 4.58 29.50 6.76 

22 86.13 395.85 395845.75 4.60 28.37 6.23 

22 87.38 402.64 402642.73 4.61 28.78 6.58 

22 88.84 409.49 409487.21 4.61 29.26 6.49 

22 60.88 213.01 213007.91 3.50 20.06 7.61 

22 60.70 218.11 218112.50 3.59 19.99 7.62 

22 50.25 225.23 225225.30 4.48 16.55 8.11 

22 50.17 221.15 221146.94 4.41 16.53 7.11 

              

29 342.44 1170.15 1170153.93 3.42 114.12 6.82 

29 340.47 1171.73 1171731.35 3.44 112.92 6.92 

29 337.45 1150.43 1150427.72 3.41 111.92 6.67 

29 335.78 1147.57 1147567.09 3.42 111.26 6.57 

29 220.84 766.75 766746.75 3.47 73.24 7.25 

29 222.40 770.17 770167.96 3.46 73.76 7.22 

29 214.70 734.36 734363.60 3.42 71.21 7.34 

29 215.01 744.83 744828.10 3.46 71.31 6.90 
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29 181.06 652.17 652171.57 3.60 60.05 7.78 

29 181.87 658.96 658960.93 3.62 60.32 7.89 

29 181.42 629.43 629428.02 3.47 60.17 7.59 

29 180.27 623.79 623786.49 3.46 59.73 7.49 

29 84.78 299.46 299459.36 3.53 28.12 8.33 

29 93.31 328.31 328313.82 3.52 30.95 7.99 

29 80.31 286.05 286048.75 3.56 26.63 7.31 

29 89.15 317.60 317600.13 3.56 29.57 7.79 

              

36 375.63 1166.30 1166300.72 3.10 125.48 7.38 

36 383.12 1188.71 1188714.65 3.10 127.98 7.50 

36 377.81 1165.02 1165022.54 3.08 126.09 7.29 

36 384.47 1184.57 1184569.12 3.08 128.44 7.58 

36 327.57 1034.72 1034721.05 3.16 109.43 7.85 

36 322.89 1025.81 1025808.05 3.18 107.86 7.80 

36 324.58 1029.40 1029402.94 3.17 108.33 7.83 

36 324.34 1035.82 1035822.28 3.19 108.35 7.87 

36 207.03 679.06 679062.26 3.28 69.16 7.74 

36 204.99 692.56 692561.90 3.38 68.48 7.91 

36 206.27 667.23 667231.06 3.23 68.84 7.66 

36 207.53 669.70 669698.46 3.23 69.33 7.64 

36 113.38 353.97 353971.78 3.12 37.88 10.07 

36 109.02 345.85 345848.44 3.17 36.42 9.89 

36 109.22 345.91 345913.07 3.17 36.45 9.91 

36 107.98 345.09 345087.38 3.20 36.07 10.06 

              

43 409.40 1062.21 1062211.48 2.59 137.62 7.53 

43 399.85 1062.15 1062145.27 2.66 134.09 7.53 

43 400.90 1061.58 1061583.21 2.65 134.44 7.50 

43 401.05 1061.51 1061510.31 2.65 134.49 7.50 

43 332.87 786.23 786229.76 2.36 111.63 7.16 

43 332.87 790.25 790253.89 2.37 111.63 7.37 

43 332.87 827.80 827804.25 2.49 111.63 7.06 

43 332.87 885.92 885915.94 2.66 111.89 7.59 

43 238.73 592.66 592657.63 2.48 80.06 8.35 

43 238.21 592.17 592171.45 2.49 79.88 8.30 

43 238.00 592.25 592250.88 2.49 79.81 8.31 

43 237.69 592.24 592243.49 2.49 79.71 8.31 

43 134.19 323.46 323456.46 2.41 45.00 9.76 

43 134.19 326.32 326317.93 2.43 45.00 10.20 

43 133.25 332.41 332406.51 2.49 44.69 9.88 

43 134.40 355.44 355436.21 2.64 45.07 10.53 
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IInlet 
Air 
Temp  

Air 
Temp 
Diff 
∆T 

Air TH 
Conductivity 
(K air) 

Air 
Density  
ρ 

Air 
velocity , 
(V) 

Air Mass 
Flow 
Rate  

Air 
Specific 
Heat Cp 

o
C

 o
C  W/m-C Kg/m

3
 m/Sec   Kg/sec  KJ/Kg-K 

15 3.51 0.025 1.200 5.80 0.64 1.01 

15 2.18 0.025 1.200 9.82 1.09 1.01 

15 1.47 0.025 1.200 13.84 1.54 1.01 

15 1.19 0.025 1.110 17.91 1.84 1.01 

15 2.44 0.025 1.200 6.15 0.68 1.01 

15 1.48 0.025 1.200 10.04 1.11 1.01 

15 1.06 0.025 1.200 14.02 1.56 1.01 

15 0.80 0.025 1.200 18.04 2.00 1.01 

15 1.66 0.025 1.200 6.08 0.67 1.01 

15 0.99 0.025 1.200 10.00 1.11 1.01 

15 0.79 0.025 1.200 13.98 1.55 1.01 

15 0.60 0.025 1.200 18.00 2.00 1.01 

15 1.59 0.025 1.200 6.14 0.68 1.01 

15 1.00 0.025 1.200 10.08 1.12 1.01 

15 0.67 0.025 1.200 13.98 1.55 1.01 

15 0.49 0.025 1.200 18.20 2.02 1.01 

              

22 5.64 0.026 1.140 5.98 0.63 1.01 

22 3.61 0.026 1.140 10.01 1.05 1.01 

22 2.77 0.026 1.140 14.06 1.48 1.01 

22 2.15 0.026 1.140 17.62 1.86 1.01 

22 4.17 0.026 1.150 5.97 0.63 1.01 

22 2.59 0.026 1.150 10.10 1.07 1.01 

22 1.88 0.026 1.150 14.08 1.50 1.01 

22 1.50 0.026 1.150 18.08 1.92 1.01 

22 2.37 0.026 1.140 6.21 0.65 1.01 

22 1.40 0.026 1.140 10.09 1.06 1.01 

22 0.97 0.026 1.140 13.97 1.47 1.01 

22 0.80 0.026 1.140 18.05 1.90 1.01 

22 1.53 0.026 1.140 6.10 0.64 1.01 

22 0.91 0.026 1.140 10.07 1.06 1.01 

22 0.56 0.026 1.140 14.13 1.49 1.01 

22 0.44 0.026 1.140 18.09 1.91 1.01 

              

29 6.23 0.026 1.130 6.01 0.63 1.01 

29 4.41 0.026 1.130 10.12 1.06 1.01 

29 3.11 0.026 1.130 14.04 1.47 1.01 

29 2.34 0.026 1.130 17.51 1.83 1.01 

29 4.56 0.026 1.130 6.11 0.64 1.01 

29 2.99 0.026 1.130 10.08 1.05 1.01 

29 2.01 0.026 1.130 14.00 1.46 1.01 

29 1.68 0.026 1.130 18.10 1.89 1.01 
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29 3.96 0.026 1.130 5.96 0.62 1.01 

29 2.47 0.026 1.130 10.02 1.05 1.01 

29 1.74 0.026 1.130 13.95 1.46 1.01 

29 1.42 0.026 1.130 17.97 1.88 1.01 

29 1.81 0.026 1.130 6.11 0.64 1.01 

29 1.40 0.026 1.130 9.82 1.03 1.01 

29 0.85 0.026 1.130 13.40 1.40 1.01 

29 0.68 0.026 1.130 18.10 1.89 1.01 

              

36 6.26 0.027 1.120 6.09 0.63 1.01 

36 3.80 0.027 1.120 10.13 1.05 1.01 

36 3.10 0.027 1.110 14.03 1.44 1.01 

36 2.44 0.027 1.110 17.88 1.83 1.01 

36 5.40 0.027 1.130 6.21 0.65 1.01 

36 3.33 0.027 1.120 10.02 1.04 1.01 

36 2.53 0.027 1.120 13.96 1.44 1.01 

36 2.04 0.027 1.120 17.87 1.85 1.01 

36 3.93 0.027 1.130 6.02 0.63 1.01 

36 2.41 0.027 1.120 10.01 1.04 1.01 

36 1.82 0.027 1.130 13.98 1.46 1.01 

36 1.37 0.027 1.130 17.93 1.87 1.01 

36 2.27 0.027 1.120 5.98 0.62 1.01 

36 1.24 0.027 1.130 9.94 1.04 1.01 

36 0.89 0.027 1.130 14.02 1.46 1.01 

36 0.71 0.027 1.120 18.06 1.87 1.01 

              

43 5.80 0.027 1.100 6.09 0.62 1.01 

43 3.35 0.027 1.100 10.26 1.04 1.01 

43 2.61 0.027 1.100 14.02 1.43 1.01 

43 2.08 0.027 1.120 17.80 1.84 1.01 

43 4.74 0.027 1.100 6.05 0.61 1.01 

43 3.27 0.027 1.100 10.01 1.02 1.01 

43 2.11 0.027 1.100 14.00 1.42 1.01 

43 1.73 0.027 1.090 17.90 1.80 1.01 

43 3.55 0.027 1.070 6.10 0.60 1.01 

43 2.48 0.027 1.080 9.94 0.99 1.01 

43 1.69 0.027 1.080 14.12 1.41 1.01 

43 1.30 0.027 1.080 17.87 1.78 1.01 

43 2.18 0.027 1.100 5.95 0.61 1.01 

43 1.34 0.027 1.090 10.01 1.01 1.01 

43 0.97 0.027 1.100 14.05 1.43 1.01 

43 0.72 0.027 1.100 17.88 1.82 1.01 
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IInlet 
Air 
Temp  

Air 
Specific 
Heat Cp,  

Air Heat 
Transfer 

Rate, Q
.
  

Air Heat 
Transfer 

Rate, Q
.
 

Air Heat 
Transfer 

Rate Q
.
 

Heat 
Balance 

Air Dyn. 
Viscosity 
μa 

o
C

 
 J/Kg-K KW         W Btu/min HB Kg/m-s 

15 1005.00 2.27 2268.92 128.98 2.88 0.000018 

15 1005.00 2.38 2382.50 135.44 1.40 0.000018 

15 1005.00 2.26 2262.65 128.62 -2.71 0.000018 

15 1005.00 2.20 2199.32 125.02 1.99 0.000018 

15 1005.00 1.67 1669.60 94.91 -1.96 0.000018 

15 1005.00 1.66 1661.80 94.47 -2.41 0.000018 

15 1005.00 1.65 1651.17 93.86 0.81 0.000018 

15 1005.00 1.61 1606.03 91.30 3.25 0.000018 

15 1005.00 1.12 1122.29 63.80 3.16 0.000018 

15 1005.00 1.10 1103.24 62.72 3.79 0.000018 

15 1005.00 1.23 1232.94 70.09 -2.84 0.000018 

15 1005.00 1.20 1197.82 68.09 0.07 0.000018 

15 1005.00 1.09 1085.91 61.73 -0.54 0.000018 

15 1005.00 1.13 1127.74 64.11 -2.57 0.000018 

15 1005.00 1.05 1045.60 59.44 -1.66 0.000018 

15 1005.00 1.00 1002.68 57.00 2.28 0.000018 

              

22 1005.00 3.57 3570.48 202.97 4.59 0.000018 

22 1005.00 3.83 3827.22 217.56 0.83 0.000018 

22 1005.00 4.12 4121.37 234.29 -4.34 0.000018 

22 1005.00 4.01 4012.22 228.08 -0.94 0.000018 

22 1005.00 2.66 2659.35 151.17 3.38 0.000019 

22 1005.00 2.80 2796.13 158.95 1.70 0.000018 

22 1005.00 2.83 2828.04 160.76 -1.88 0.000018 

22 1005.00 2.90 2904.07 165.09 -4.55 0.000018 

22 1005.00 1.56 1559.49 88.65 -3.15 0.000018 

22 1005.00 1.50 1495.42 85.01 -3.30 0.000018 

22 1005.00 1.44 1440.85 81.91 2.37 0.000018 

22 1005.00 1.52 1523.09 86.58 -3.60 0.000018 

22 1005.00 0.99 988.02 56.17 4.42 0.000018 

22 1005.00 0.98 975.26 55.44 4.76 0.000018 

22 1005.00 0.83 832.33 47.32 3.55 0.000018 

22 1005.00 0.83 834.94 47.46 2.27 0.000018 

              

29 1005.00 3.93 3929.28 223.37 4.68 0.000018 

29 1005.00 4.69 4688.79 266.54 -3.70 0.000018 

29 1005.00 4.58 4578.89 260.29 0.62 0.000018 

29 1005.00 4.30 4299.56 244.42 -0.17 0.000018 

29 1005.00 2.93 2925.78 166.32 2.51 0.000019 

29 1005.00 3.17 3165.02 179.92 -1.03 0.000019 

29 1005.00 2.96 2960.24 168.28 -0.09 0.000019 

29 1005.00 3.19 3188.61 181.26 -3.34 0.000019 

29 1005.00 2.48 2479.33 140.94 -0.99 0.000019 

29 1005.00 2.60 2598.89 147.74 -2.77 0.000019 

29 1005.00 2.55 2545.08 144.68 1.81 0.000019 

29 1005.00 2.67 2673.34 151.97 0.02 0.000019 

29 1005.00 1.16 1158.43 65.85 3.59 0.000019 

29 1005.00 1.44 1440.60 81.89 -2.52 0.000019 

29 1005.00 1.20 1196.50 68.02 -1.91 0.000019 

29 1005.00 1.29 1289.52 73.30 3.21 0.000019 
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36 1005.00 3.97 3970.84 225.73 0.65 0.000018 

36 1005.00 4.01 4007.69 227.82 1.80 0.000018 

36 1005.00 4.48 4477.98 254.56 -3.94 0.000018 

36 1005.00 4.50 4501.18 255.88 -4.54 0.000018 

36 1005.00 3.52 3519.70 200.08 3.68 0.000019 

36 1005.00 3.47 3469.01 197.20 2.88 0.000019 

36 1005.00 3.68 3675.08 208.92 2.98 0.000019 

36 1005.00 3.78 3784.16 215.12 1.78 0.000019 

36 1005.00 2.48 2482.52 141.12 0.80 0.000019 

36 1005.00 2.51 2512.47 142.83 -2.03 0.000019 

36 1005.00 2.67 2670.28 151.80 -0.10 0.000019 

36 1005.00 2.58 2576.03 146.44 0.85 0.000019 

36 1005.00 1.41 1413.86 80.37 -1.52 0.000019 

36 1005.00 1.30 1297.93 73.78 4.48 0.000019 

36 1005.00 1.30 1304.99 74.18 0.33 0.000019 

36 1005.00 1.34 1341.49 76.26 1.97 0.000019 

              

43 1005.00 3.61 3606.27 205.00 -0.20 0.000018 

43 1005.00 3.51 3514.33 199.78 0.08 0.000018 

43 1005.00 3.75 3745.32 212.91 -4.59 0.000018 

43 1005.00 3.85 3853.67 219.07 -1.18 0.000018 

43 1005.00 2.93 2925.58 166.31 2.76 0.000020 

43 1005.00 3.34 3343.33 190.06 -4.38 0.000019 

43 1005.00 3.02 3016.51 171.48 3.49 0.000019 

43 1005.00 3.13 3130.78 177.97 4.01 0.000019 

43 1005.00 2.15 2151.18 122.29 3.09 0.000019 

43 1005.00 2.48 2476.10 140.76 -0.88 0.000019 

43 1005.00 2.39 2391.09 135.93 2.52 0.000019 

43 1005.00 2.34 2338.30 132.92 3.89 0.000019 

43 1005.00 1.32 1324.73 75.31 3.63 0.000019 

43 1005.00 1.36 1362.61 77.46 -0.88 0.000019 

43 1005.00 1.39 1385.33 78.75 -2.77 0.000019 

43 1005.00 1.31 1312.66 74.62 3.86 0.000019 
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IInlet 
Air 
Temp  

Air 
Reynolds 
Number, 
Rea  

Log Mean 
Temperature 
Difference 

Air Side 
Capacity 
Rate, Ca 

Average 
heat 
transferQavg 

Capacity 
rate ratio, 
C* 

o
C

 

Re (air) ∆Tlm   W   

15 1761.00 21.69 646.69 2302.61 0.066 

15 2981.43 15.96 1094.86 2399.41 0.038 

15 4201.78 16.94 1543.01 2232.84 0.025 

15 5027.66 14.13 1846.29 2221.69 0.021 

15 1866.80 16.20 685.54 1653.58 0.040 

15 3047.63 14.66 1119.17 1642.21 0.025 

15 4256.24 13.90 1563.00 1657.91 0.018 

15 5475.65 13.08 2010.81 1632.98 0.014 

15 1846.13 17.70 677.95 1140.58 0.029 

15 3035.01 17.58 1114.54 1124.98 0.018 

15 4243.59 14.28 1558.36 1215.91 0.013 

15 5464.43 15.28 2006.68 1198.24 0.010 

15 1862.68 14.24 684.03 1083.02 0.027 

15 3060.20 13.98 1123.79 1113.60 0.016 

15 4243.59 15.69 1558.36 1037.05 0.011 

15 5524.50 16.40 2028.74 1014.38 0.009 

            

22 1705.94 21.45 633.43 3656.45 0.136 

22 2854.08 19.29 1059.74 3843.20 0.080 

22 4009.68 18.34 1488.82 4035.70 0.057 

22 5024.98 17.58 1865.81 3993.63 0.045 

22 1688.83 18.34 637.76 2705.87 0.090 

22 2864.63 17.81 1078.27 2820.29 0.053 

22 4004.19 17.02 1503.94 2801.99 0.036 

22 5142.10 15.08 1931.33 2840.90 0.028 

22 1752.32 14.32 657.80 1535.70 0.045 

22 2860.76 15.79 1068.06 1471.51 0.027 

22 3961.14 15.23 1478.88 1458.30 0.019 

22 5120.25 16.77 1911.63 1496.64 0.015 

22 1729.56 14.94 645.73 1010.88 0.031 

22 2855.83 14.19 1066.21 999.61 0.019 

22 4007.18 14.06 1496.07 847.65 0.011 

22 5131.26 14.12 1915.74 844.64 0.009 

            

29 1698.44 17.93 630.64 4025.81 0.181 

29 2861.37 18.02 1062.45 4605.21 0.106 

29 3967.18 16.70 1473.04 4593.15 0.076 

29 4950.33 14.69 1838.09 4295.81 0.061 

29 1690.18 16.98 641.37 2963.46 0.114 

29 2802.79 15.25 1057.85 3148.85 0.070 

29 3894.07 14.88 1469.73 2958.89 0.048 

29 5034.48 13.11 1900.15 3137.03 0.038 

29 1649.65 17.20 625.99 2467.20 0.096 
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29 2785.64 15.97 1051.38 2563.90 0.057 

29 3878.22 14.65 1463.75 2568.52 0.041 

29 4997.65 12.30 1886.25 2673.65 0.032 

29 1699.32 13.28 641.37 1179.98 0.044 

29 2731.07 12.67 1030.78 1422.93 0.030 

29 3727.07 14.80 1406.70 1185.31 0.019 

29 5031.76 12.33 1899.12 1310.92 0.016 

            

36 1707.40 15.53 633.97 3983.89 0.198 

36 2838.82 13.85 1054.07 4044.50 0.121 

36 3894.65 15.25 1446.11 4393.13 0.087 

36 4965.42 12.94 1843.69 4403.41 0.070 

36 1670.39 17.02 651.92 3586.97 0.168 

36 2670.11 14.44 1042.09 3520.47 0.104 

36 3720.26 14.01 1451.94 3731.54 0.075 

36 4763.94 13.63 1859.27 3818.42 0.058 

36 1619.82 14.64 632.19 2492.57 0.109 

36 2667.73 13.91 1041.16 2487.44 0.066 

36 3760.73 12.60 1467.74 2668.96 0.047 

36 4822.46 12.10 1882.11 2587.10 0.037 

36 1592.85 14.40 621.66 1403.31 0.061 

36 2672.44 14.27 1043.00 1328.36 0.035 

36 3769.23 13.97 1471.06 1307.12 0.025 

36 4812.95 11.10 1878.40 1355.00 0.019 

            

43 1675.74 13.54 622.21 3602.71 0.221 

43 2823.13 11.77 1048.25 3515.74 0.128 

43 3857.49 11.12 1432.31 3663.16 0.094 

43 4987.74 11.99 1851.98 3831.16 0.073 

43 1552.48 13.75 617.62 2967.03 0.181 

43 2603.80 12.38 1022.59 3273.25 0.109 

43 3642.01 10.76 1430.32 3071.09 0.078 

43 4615.25 10.76 1812.54 3196.16 0.062 

43 1543.31 12.23 606.10 2185.49 0.132 

43 2539.91 11.76 997.50 2465.32 0.080 

43 3607.08 10.88 1416.60 2422.05 0.056 

43 4565.02 10.62 1792.81 2385.58 0.044 

43 1548.99 11.59 608.33 1349.68 0.074 

43 2580.15 10.92 1013.30 1356.64 0.044 

43 3653.82 11.36 1434.96 1366.68 0.031 

43 4650.95 9.60 1826.56 1339.00 0.025 
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IInlet 
Air 
Temp  

UA= 
qavg/F
∆Tlm 

Number 
of 
Transfer 
Unit 

Effective
ness 

Overall 
resistance   
Rtot 

Air side 
heat 
transfer 
Coefficie
nt, ha 

Air 
Nusselt 
Number, 
Nua 

o
C

 

W/
o
K NTU ε 

o
K/W W/m

2
-K   

15 107.23 2.51 0.8980 0.0093 33.21 4.36 

15 151.90 3.65 0.9643 0.0066 36.53 4.80 

15 133.12 3.88 0.9782 0.0070 35.55 4.67 

15 158.78 4.18 0.9738 0.0067 36.91 4.85 

15 103.10 3.72 0.9803 0.0097 26.95 3.54 

15 113.14 4.10 0.9923 0.0089 28.41 3.73 

15 120.49 4.33 0.9817 0.0083 30.83 4.05 

15 126.10 4.55 0.9731 0.0090 30.62 4.02 

15 65.10 3.27 0.9449 0.0150 19.14 2.52 

15 64.65 3.28 0.9437 0.0155 19.44 2.55 

15 86.03 4.23 0.9972 0.0164 22.52 2.96 

15 79.19 3.77 0.9752 0.0176 20.39 2.68 

15 76.80 4.21 0.9855 0.0230 21.28 2.80 

15 80.49 4.36 0.9978 0.0224 28.27 3.71 

15 66.77 3.78 0.9830 0.0250 22.68 2.98 

15 62.47 3.54 0.9595 0.0260 19.98 2.63 

              

22 172.15 2.00 0.8276 0.0055 50.92 6.61 

22 201.20 2.38 0.8907 0.0047 58.75 7.63 

22 222.21 2.63 0.9334 0.0047 59.19 7.69 

22 229.48 2.75 0.9323 0.0046 64.04 8.32 

22 149.00 2.59 0.8991 0.0066 42.48 5.52 

22 159.96 2.80 0.9249 0.0067 47.48 6.17 

22 166.25 3.04 0.9542 0.0060 47.92 6.22 

22 190.35 3.48 0.9850 0.0068 48.79 6.34 

22 108.31 3.67 0.9838 0.0148 29.02 3.77 

22 94.12 3.32 0.9738 0.0150 27.54 3.58 

22 96.74 3.36 0.9525 0.0147 27.37 3.55 

22 90.13 3.08 0.9654 0.0155 29.02 3.77 

22 68.37 3.41 0.9445 0.0236 15.97 2.07 

22 71.14 3.56 0.9485 0.0237 16.60 2.16 

22 60.90 3.68 0.9574 0.0265 17.28 2.24 

22 60.42 3.66 0.9627 0.0297 16.60 2.16 

              

29 226.81 1.99 0.8189 0.0045 55.86 7.09 

29 258.19 2.29 0.8911 0.0040 59.68 7.57 

29 277.86 2.48 0.9018 0.0036 65.30 8.29 

29 295.35 2.65 0.9207 0.0034 67.23 8.53 

29 176.31 2.41 0.8833 0.0057 47.74 6.06 

29 208.58 2.83 0.9346 0.0048 55.19 7.00 

29 200.85 2.82 0.9334 0.0050 61.76 7.84 

29 241.66 3.39 0.9757 0.0049 60.42 7.67 

29 144.92 2.41 0.8977 0.0068 40.51 5.14 
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29 162.20 2.69 0.9328 0.0060 47.31 6.00 

29 177.16 2.94 0.9343 0.0057 52.49 6.66 

29 219.63 3.68 0.9714 0.0055 55.39 7.03 

29 89.77 3.19 0.9389 0.0111 24.45 3.10 

29 113.44 3.67 0.9821 0.0129 30.69 3.89 

29 80.88 3.04 0.9561 0.0126 34.77 4.41 

29 107.41 3.63 0.9574 0.0190 31.85 4.04 

              

36 259.07 2.06 0.8365 0.0038 72.72 9.06 

36 294.90 2.30 0.8742 0.0033 76.52 9.53 

36 290.98 2.41 0.8974 0.0036 77.86 9.70 

36 343.71 2.57 0.9363 0.0029 79.34 9.88 

36 212.84 1.95 0.8176 0.0046 52.30 6.51 

36 246.32 2.28 0.8715 0.0040 59.14 7.36 

36 269.05 2.48 0.8942 0.0036 66.76 8.31 

36 282.90 2.61 0.9108 0.0035 66.02 8.22 

36 171.94 2.49 0.8967 0.0059 46.32 5.77 

36 180.59 2.64 0.9251 0.0059 48.71 6.07 

36 213.96 3.11 0.9495 0.0057 57.14 7.12 

36 215.91 3.11 0.9471 0.0055 59.62 7.42 

36 98.42 2.60 0.9209 0.0105 31.85 3.97 

36 94.02 2.58 0.9019 0.0129 32.05 3.99 

36 94.51 2.59 0.9189 0.0126 36.40 4.53 

36 123.31 3.42 0.9561 0.0190 36.97 4.60 

              

43 268.81 1.95 0.8188 0.0037 92.15 11.26 

43 301.65 2.25 0.8724 0.0033 94.21 11.52 

43 332.75 2.48 0.9154 0.0030 98.05 11.99 

43 322.88 2.48 0.9007 0.0029 97.52 11.92 

43 217.99 1.95 0.8188 0.0050 48.76 5.96 

43 267.10 2.39 0.9041 0.0042 52.69 6.44 

43 288.34 2.58 0.9001 0.0034 69.98 8.55 

43 300.13 2.68 0.9076 0.0030 73.50 8.98 

43 180.52 2.25 0.8635 0.0054 100.06 12.23 

43 211.76 2.65 0.9202 0.0052 92.05 11.25 

43 224.91 2.82 0.9225 0.0044 96.86 11.84 

43 226.98 2.85 0.9205 0.0043 108.28 13.24 

43 117.63 2.61 0.9025 0.0092 33.32 4.07 

43 125.51 2.79 0.9348 0.0087 39.92 4.88 

43 121.52 2.93 0.9386 0.0080 45.01 5.50 

43 140.88 3.13 0.9367 0.0069 55.19 6.75 
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