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ABSTRACT 

  The effect of temperature and lubrication on the stamping of ferritic stainless 

steel bipolar plates has been studied. Stamping of micro-scale bipolar plate channels in 

ferritic stainless steel foils of 75 µm thickness was carried out at 25, 100 and 200 °C with 

stamping loads varying between 36 and 56 kN, without and with lubrication. In 

unlubricated stamping, high contact friction between the sheet and the die caused strain 

localisation that increased with stamping load and temperature, and heavy surface 

damage was observed. Boron nitride, tungsten disulphide and molybdenum disulphide 

were used as solid lubricants in the process. No necking was observed at 200 °C, the 

strain distribution improved with temperature and the surface damage was considerably 

reduced, although WS2 and MoS2 produced transfer layers on the surfaces. MoS2-

lubrication, 200 °C and stamping loads between 45 and 50 kN have been identified as the 

most suitable conditions for this process. 
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CHAPTER 1: Introduction 

1.1 Metallic Bipolar Plates for Polymer Electrolyte Membrane Fuel Cells 

 Polymer electrolyte membrane fuel cells, or proton exchange membrane fuel cells 

(PEMFC) are the most promising alternative energy fuel source for automotive applications.  

Bipolar plates are the structural components of the PEMFC and act as an anode on one side 

and cathode on the other. They carry intricate flow fields for the transport of oxygen, 

hydrogen and water in order to distribute the reaction over the cross-section of the fuel 

cell [1], as seen in Figure 1. 1. 

The functions of a bipolar plate are:  

 1. To separate the fuel cell into 200 to 400 individual cells 

 2. To carry an intricate network of channels that distributes the flow of hydrogen, 

 oxygen (reactants) and water (product) over its surface area 

 3. To allow the passage of protons (hydrogen ions) through its thickness 

 4. To resist corrosion in the acidic environment of the fuel cell 

The material selected for polymer electrolyte membrane fuel cells must fulfil the following 

requirements [2]: 

 1. Corrosion resistance in the fuel cell environment 

 2. Low electrical contact resistance 

 3. Formability into a low-volume and lightweight plate with intricate flow fields 

 4. Low cost 
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Figure 1. 1: Schematic of the arrangement of the components of a PEM fuel cell and the 

working [7]. 

 

 Currently, bipolar plates are manufactured out of graphite and polymer-composites 

which have good electrical and corrosion properties, but are bulky, difficult to manufacture 

(they require machining) and are too expensive for commercial applications. Stamped 

metallic bipolar plates have the advantage of thin sections and mass-production at low cost. 

Metallic materials which have the electrical properties and corrosion resistance required of 

bipolar plate materials are not economical [3], such as titanium, aluminium and austenitic 

stainless steels (due to the large amounts of nickel in the alloys). Ferritic stainless steels have 
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the potential to replace these materials [4], but their formability must be better understood in 

order to manufacture them economically and effectively. 

 

1.2 Motivation for this Research 

 Fuel cells are currently in the prototype stage. The commercialisation of fuel cells and 

their replacement of existing internal combustion engines require a cost reduction of the fuel 

cell components. Bipolar plates constitute a large percentage of the total cost of the fuel cell; 

an average automobile fuel cell requires 200 to 400 bipolar plates. In addition, they function 

in a harsh environment for which they must have improved corrosion and electrical 

properties. Metallic bipolar plates can achieve the cost, manufacturing and performance 

targets if these are better understood. It is known that the processing method and parameters 

affect the performance of the bipolar plate in terms of corrosion and electrical 

behaviour [5,6]. This work was aimed at understanding the stamping of thin foils of ferritic 

stainless steel to effectively manufacture this component, in the first step towards tailoring 

the processing conditions to impart optimum corrosion and electrical properties to the 

finished product.  

 Further steps in this larger picture involve testing the stamped samples in simulated 

fuel cell corrosion tests, measuring their electrical contact resistance and studying their 

mating with the gas diffusion layer. These are all primarily dependent on the surface 

roughening during the processing and also on the distribution of the strain along the channel. 

Further, the efficiency of the cell depends on the conformance of the physical dimensions to 

the design dimensions. This work provides useful information about the manufacturing 

process towards this end, and lays the groundwork for future work in this research.  
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1.3 Objectives of this Research 

 The objectives of this research were to improve the quality of stamped bipolar plate 

channels in 75-µm-thick ferritic stainless steel foils using lamellar-solid lubrication (boron 

nitride, tungsten disulphide, molybdenum disulphide): 

 1. In the 25 to 200 °C temperature range 

 2. In the 40 to 60 kN stamping load range 

Where the quality of the stamping is decided on the basis of:   

 1. Dimensional accuracy (reduced springback) 

 2. No failure (thinning, necking, tearing) 

 3. Low surface damage and minimal surface roughening 
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CHAPTER 2: Review of Literature 

2.1 Introduction 

 This chapter reviews the literature available to support the feasibility of the forming 

of ferritic stainless steel bipolar plates. It describes the physical metallurgy of the ferritic 

stainless steels, the deformation behaviour of this material and the tribological issues in the 

stamping process. Lamellar solids and their role as lubricants are discussed thereafter as a 

possible means of improving the stamping formability of the material selected for this 

application.  

 
 

 

Figure 2. 1: Schematic of a polymer electrolyte membrane fuel cell stack with repeating units 

[1]. 

 

2.2 The Stamping Process 

2.2.1 Deformation of sheet metal in the stamping process 

 Bipolar plates are structural and functional components of the PEMFC and they are 

located in the fuel cell as shown in Figure 2. 1. Stamping is the most efficient process for 

manufacturing these. Stamping is a sheet metal forming process in which a sheet of metal is 
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pressed under high pressure and speed between a punch and die carrying the desired shape as 

illustrated in a schematic of the process in Figure 2. 2. 

 
 

Figure 2. 2: Schematic of the stamping process for the forming of sheet metal products [57]. 

 

  Common applications are the production of car-body panels on a large scale and 

PEMFC bipolar plates in the micro-scale (which is more correctly, embossing). The 

advantages of stamping are high-rate mass-production, elevated temperature processing and a 

wide range of geometries.  

 Stamping formability is evaluated by the hemispherical punch-stretching test, to 

determine the limiting strains which can be applied during the process, in an experiment 

described in Figure 2. 3. Strains measured from this test are charted in a forming limit 

diagram (FLD) and a typical FLD is shown in Figure 2. 4. Forming limit diagrams help 

identify the limit strains that can be safely applied in sheet-metal forming operations and also 

the strain-path [8]. Grids electrochemically etched onto the surface of the sheet prior to 

punch stretching or stamping aid in the measurement of the biaxial strain distribution over 

the sheet-metal product [9]. Forming limit diagrams as a function of temperature, strain rate 
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or strain path help design sheet-metal stamping products and processes, and are an important 

method for the automotive industry [10]. 

  

 
 

 

Figure 2. 3: (a) Schematic representation of the hemispherical punch-stretching process, (b) 

a partially deformed sheet with circle grids for strain measurements (c) geometry of the 

punch-stretching process [13]. 
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Figure 2. 4: The forming limit diagram showing the strain paths for different types of 

forming [13].  
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 Punch stretching is a case of out-of-plane biaxial stretching, different from in-plane 

biaxial stretching [11]. In-plane sheet deformation does not encounter flow localisation due 

to friction between the punch and the sheet opposing deformation, and instability is caused 

by a previously existing inhomogeneity in the sheet. Marciniak and Kuczynski established 

the instability criterion for in-plane biaxial stretching by assuming the sheet to possess some 

inhomogeneity initially [12]. This is considered to be a thinned trough normal to the principal 

strain direction pre-existing in the sheet. In out-of-plane punch stretching, there is a flow 

localisation caused during the deformation due to the resistance to deformation caused by the 

frictional force in those parts of the sheet in contact with the punch as opposed to the freely 

deforming sheet held at one end under the blank holding force and in contact with the punch 

at the other. If the coefficient of friction due to the contact with the punch is disregarded, the 

centre of the sheet, that is at the pole of the punch experiences the greatest strain, due to 

which the failure should occur at this point. But the friction between the punch and the sheet 

is always finite, due to which, the location of the failure in stamping is always offset from the 

pole [13] (Figure 2. 5).  

 In a punch stretching operation, the deforming sheet can be divided into three zones 

in which the behaviour is different due to the die geometry and contact nature [14]. The first 

is the region that is in contact with the punch where the plastic deformation in biaxial tension 

is countered by the frictional force of contact with the punch surface. The second is the freely 

deforming region that is not in contact with any surface between the part of the sheet in 

contact with the punch and that part held under the blank-holding force. The third region is 

that held under the die which deforms by circumferential contraction if the punch stretching 

has axial symmetry.  
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Figure 2. 5: Distribution of radial and circumferential strains in a steel sheet upon 

unlubricated punch stretching, showing the shifting of the strain peak from the pole of the 

punch [13]. 

 

 The effect of the coefficient of friction on the forming limit curve by numerical 

analyses show that lower coefficient of frictions offset the failure limits to higher strains [15]. 

This is because the strain distribution is more uniform over the entire sheet, and under 

lubricated conditions, there is a most favourable even distribution of strains. There is 

sufficient evidence to show that a control over the friction between the sheet and the die can 
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be practically applied to improving the forming limits during stamping for a given set of 

processing parameters [14].  

2.2.2 Failure by necking in sheet metals 

 Necking is the onset of failure in sheet metal forming and may be of two kinds, 

diffuse or localised [16].  Localised necking occurs when the instantaneous rate of strain 

hardening is balanced by the rate of geometric softening (caused by the decrease in cross-

sectional area) and occurs only under conditions of plane strain [17]. Channel stamping is 

closely approximated to plane strain conditions because the width strain is negligible 

compared to the thickness strain, which can thus be considered equal to the longitudinal 

strain [18]. 

 An analysis of necking in thin sheets stretched in tension under conditions of plane 

strain follows, as given by Hill in 1952 [17]. The rate of strain hardening with an increase in 

the axial force P keeping the cross-sectional area A instantaneously constant is: 

 1

𝐴
 
𝜕𝑃

𝜕𝜀1
  

𝐴

=
𝑑𝜎1

𝑑𝜀1
 

(2.1) 

The strain-induced geometrical softening due to change in the cross-sectional area at a 

constant flow stress is: 

 1

𝐴
 
𝜕𝑃

𝜕𝜀1
  

𝜎1

= 𝜎1

𝑑𝐴/𝐴

𝑑𝜀1
 

(2.2) 

Under conditions of plane strain, (where R is the Lankford ratio): 



 

 12  

𝑑𝐴

𝐴
= − 

1

1 + 𝑅
 𝑑𝜀1 

(2.3) 

Substituting dA/A and equating the strain hardening and geometric softening, 

𝑑𝜎

𝑑𝜀
=

𝜎

1 + 𝑅
 

(2.4) 

For a power-hardening material,  

𝑑𝜎

𝑑𝜀
= 𝑛

𝜎

𝜀
 

(2.5) 

Here, n is the strain hardening exponent. This gives the strain at local instability, εl to be: 

𝜀𝑙 = 𝑛(1 + 𝑅) (2.6) 

 Large values of n and R offset the localised necking to higher strains and are 

beneficial for forming operations such as plane strain draw forming. The angle θ between the 

localised neck and the tensile axis is found from the Mohr‘s circle of the above strain state 

which yields: 

cos 180 − 2𝜃 = (1 − 2𝑅)−1 (2.7) 

𝑡𝑎𝑛𝜃 =  
(1 + 𝑅)

𝑅
 

(2.8) 

 For isotropic materials and sheet metal in the annealed temper, this angle θ is 54.7° 

[18]. Therefore necking, as with other localisation effects such as shear bands and Lüders 

bands occur at an angle of around 55° with the tensile axis [19].  
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2.2.3 Springback 

 Springback is a major dimensional concern in sheet-metal stamping, which is 

attributed to the elastic unloading of a part after stamping. The effect of springback on a 

sheet stamped into a channel is illustrated in Figure 2. 6.  

 

 
 

Figure 2. 6: Schematic of the springback effects in plane-strain channel stamping after 

removal of the deforming load [21]. 

 

 Strain hardening behaviour is important to the springback nature of a material, as are 

the ratio of the punch radius to the sheet thickness, the wall angle, friction coefficient and the 

load. Two forming methods are possible which determine the springback angle- one assumes 

the sheet to stretch before being bent and the other assumes the sheet to bend around a radius 

before being stretched. The latter case is more favourable to reduce the effect of springback 

on the final dimensions of the stamped part [20-22].  

 Assuming that it is due to elastic unloading, Mickalich and Wenner [20] modelled 

springback in the stamping of a long continuous channel as follows, where p in the subscript 

denotes the plastic state: 

According to the Hill criterion of plastic yielding due to transverse anisotropy: 
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τy =
ςy

  1 + v2 −
2vr

 1 + r 
 

 
(2.9) 

∈y= τy/D (2.10) 

Here τ is the true stress and ϵ is the true strain, σy is the yield stress, r is the anisotropy 

coefficient and D is related to the Young‘s modulus E and Poisson‘s ratio v as: 

D =
E

1 − v2
 

(2.11) 

This leads to the elastic unloading from the attained plastic state according to: 

τ

τy
=

τp

τy
+

(ϵ − ϵp)

ϵy
 

(2.12) 

Leading to the angle after springback upon being wrapped around an angle ϕ around a radius 

R being: 

∅S =
R∅

RS
e∆ϵB  

(2.13) 

Rs is the radius of the concave face after springback, ϵB is the strain on the concave face and 

ϵBS is the strain on it after springback. 

2.2.4 Tribology of the stamping process 

 Friction between the deforming sheet-metal and die in the punch-stretching process 

causes strain localisation. The deformation of that part of the sheet which is in contact with 

the punch is countered by the frictional force of the contact, while the part of the sheet not in 

contact deforms freely [14]. This strain localisation causes flow instability and reduces the 
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total forming limits of the sheet by necking or tearing [23,24]. Forming limits are not an 

intrinsic material property, but are dependent on friction with the forming die [14], the 

geometry of the process especially the radius of the punch [25,26] and strain path [18]. 

 Stamping formability is limited by die friction, especially in micro-scales where the 

frictional force is significant to the deforming forces. Friction between the deforming sheet-

metal and die in punch stretching causes strain localisation during stamping, thereby 

reducing the forming limits [27]. The effect of friction on the distribution of strain upon 

punch stretching is shown in the plot in Figure 2. 7. The deformation of that part of the sheet 

which is in contact with the punch is countered by the frictional force of the contact, while 

the part of the sheet not in contact deforms freely [14]. This strain localisation causes flow 

instability and reduces the biaxial forming limit of the sheet by necking or tearing [23,24]. 

Forming limits are not an intrinsic material property, but are dependent on friction with the 

forming die [14], geometry of the process especially the radius of the punch [25,26] and 

strain path. If the coefficient of friction due to contact with the punch is disregarded, the 

center of the sheet experiences the greatest strain and fails. But the friction between the 

punch and the sheet is always finite, due to which, the location of failure in stamping is 

always offset from the pole [13].   
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Figure 2. 7: Distribution of circumferential strain in punch stretching of annealed copper 

and brass, from finite element simulation [27]. The forming limit shows a 50 % increase with 

a 0.2 decrease in the coefficient of friction.  
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Figure 2. 8: The model of punch stretching used to determine the coefficient of friction 

between the sheet and the die during forming [14].  

 

An analysis of the friction in punch stretching is as follows [14]. From the model in Figure 2. 

8, the vertical component of the force acting on a ring of the sheet concentric with the pole of 

the punch is: 

dV =  p cosθ +  μp sinθ (2πρ2 sinθ dθ) (2.14) 

the integration and rearrangement of which gives: 

μ =
2 − Xro

X{ 
ρ2

ro
 sin−1  

ro

ρ
 −  (ρ2 − ro

2)} − (2ro/(ρ2 − ro
2))

 
(2.15) 

Here, the symbols used are: p is the pressure at the interface, θ is the angle between the 

punch axis and the normal to the sheet, ρ is the radius of the punch, ro is the point of 
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inflection in the load-displacement plot and X is the slope of the plot of the punch radius and 

the punch-sheet interface boundary.  

 

 
 

 

Figure 2. 9: Tribological model of the deep-drawing process which explains the nature of 

contact along different regions of the sheet due to the geometry of the process. Regions 1 and 

2 are clamped under the blank-holder and do not experience deformation due to the 

frictional force holding the sheet in place.  

 

 Schey demarcated 6 zones in a sheet undergoing deep drawing depending on the 

distinct deformation and lubrication conditions that prevail there [28], which are applicable 

to channel drawing as well. The model is shown in Figure 2. 9. In the regions 1 and 2, the 

sheet is firmly clamped under the blank-holder and the frictional force holds the material here 

from being drawn in. No deformation occurs here. In regions 3 and 5, the sheet undergoes 

bending and restraightening. On the inside of the radius, there are high circumferential 

stresses on the sheet. Any lubricant film is almost always broken and high friction limits the 

transmission of stresses. Region 4 undergoes the most favourable mode of deformation akin 

to uniaxial deformation. Due to the geometry of the process, there is no contact between the 
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sheet and the die and high pressure of the trapped lubricant film produces a good surface 

finish on the stamped part. Region 6 experiences biaxial tension as in the case of punch 

stretching. Although this model describes a cylindrical-punch deep drawing process where 

the strain states are different from a case of plane-strain draw forming for stamping channels, 

the tribology and the contact nature between the sheet and the die are comparable.  

  The use of lubricants in channel stamping creates a more favourable distribution of 

strain and reduces the localised thinning effects. The prevention of metal-metal contact is 

critical since surface damage due to tool contact becomes significant as the scale of the 

process is reduced.  

 

2.3 Ferritic Stainless Steels 

 Ferritic stainless steels are a class of stainless steels containing high chromium 

contents and little or no nickel or nickel-equivalent constituents. This makes them single-

phase ferritic as can be seen in the Schaeffler diagram  

Figure 2. 10 [29]. The behaviour of this class of steel is less like the austenitic stainless steels 

and more like plain low-carbon steels in their mechanical properties. Some of these 

properties include static strain ageing and dynamic strain ageing during tensile deformation, 

and a low strain-hardening exponent. Ferritic stainless steels show a remarkable increase in 

strength when aged at intermediate temperatures (475 °C) and higher temperatures (750 °C) 

due to the precipitation of intermetallics, carbides, nitrides and α‘-ferrite. This undue 

strength, often more than the full-anneal strength by a factor of three is accompanied by a 

drastic reduction in ductility. 
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Figure 2. 10: The Schaeffler diagram which aids in determining the phase composition of 

stainless steels. At 30% Cr, the stainless steel is fully ferritic [29]. 

 

 The iron-chromium binary alloy phase diagram in Figure 2. 11 shows an α-ferrite 

phase for the high chromium regions (>15 %) at all temperatures below liquidus [30]. The 

Fe-Cr binary phase diagram has a γ-Fe austenite region in the low-chromium high-

temperature region. This region grows in size with increasing contents of interstitials such as 

carbon and nitrogen which are austenite-stabilising alloying elements. The Fe-Cr system is 

susceptible to embrittlement caused by spinodal decomposition at 475 °C [31], but the ageing 

time for this is usually above 100 hours and the more immediate precipitation of carbides, 

nitrides and intermetallic phases at this temperature is of greater concern, which can be 

discerned from the precipitation diagram of Figure 2. 12.  
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Figure 2. 11: The binary Iron-Chromium phase diagram [58]. 

 

 
Figure 2. 12: The precipitation diagram for ferritic stainless steel AISI type 444 [59].  
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2.3.1 Material selection and alloy design 

 High chromium contents (greater than 25 %) in stainless steels improve the corrosion 

resistance even at high temperatures [32] and ensure a fully ferritic structure at all 

temperatures. Common alloying additions include rare earth metals as stabilisers, which 

preferentially form carbide and nitride precipitates over chromium, so as not to compromise 

the corrosion resistance. Chromium forms a passive layer over the surface in its oxide state 

and precipitation of it in carbides or nitrides would reduce its ability to do so. Titanium, 

vanadium, niobium and aluminium are common additions for this purpose in amounts of four 

to eight times the carbon content [33].  

 Interstitial alloying elements reduce the ductility of stainless steels, especially in deep 

drawing, due to dynamic strain ageing. But they also have advantageous effects such as the 

prevention of grain coarsening during recrystallisation annealing by the Zener pinning 

mechanism [34]. Nitrogen is especially effective in this and is usually added when a fine-

grained microstructure is desired, such as for metallic foils and additions over 0.10 % by 

weight are effective [32]. When precipitated with the stabilisers in coarse intragranular 

distribution, they have little effect on the deformation behaviour and these precipitates are 

also effective in inhibiting grain growth. 

 Nickel is an austenite stabiliser and is added to increase the stacking-fault energy of 

the stainless steel for the improved cold-working properties [35]. It is both increasingly 

uneconomical and undesirable for a fully-ferritic microstructure, and the alloy under 

consideration is free of nickel additions.   

 Fine-grained microstructures are preferred for metallic foils which are to be cold-

worked due to the size-effects that reduce the toughness and strain hardenability in reduced 
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scales. Ferritic stainless steels require cold-work and recrystallisation annealing to reduce the 

grain size [33]. Grain refinement is carried out by performing recrystallisation during rolling 

through high reductions per pass and low finishing temperatures [36]. In order to prevent 

excessive grain growth and embrittlement, annealing is carried out between 760-930 °C and 

cooled rapidly. Any embrittling sigma-phase particles are dissolved in this temperature range 

at short holding times.   

2.3.2 The deformation behaviour of ferritic stainless steels 

 The mechanical properties of ferritic stainless steels are less like those of the 

austenitic stainless steels and more like those of the low-carbon steels, due to their bcc 

structure and low rate of strain hardening. The uniform elongation is in the range of 13-15 % 

in uniaxial tension, from the experiments of Wolff and Ball in Figure 2. 13 [37] and wavy 

slip occurs due to the lack of a distinct slip system in the body-centered cubic system (Figure 

2. 14) [38]. They experience dynamic strain ageing due to interstitial-dislocation interaction 

and form Lüders bands during deformation as a result [39]. Ferritic stainless steels exhibit a 

distinct yield point, and because of a low strain hardening exponent of 0.12, localisation of 

deformation within these bands cannot be prevented and they have a low uniform elongation 

in tensile deformation [33]. 
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Figure 2. 13: The tensile deformation behaviour of a 40 % Cr ferritic stainless steel showing 

serrated flow and low uniform elongation [37]. 

 
Figure 2. 14: Ferritic stainless steels deform by wavy slip due to the absence of a distinct slip 

system in the bcc crystal structure. Surfaces of deformed tensile specimens show wavy slip 

bands because mobile dislocations change slip systems often during plastic deformation 

[38].  
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2.3.3 The yielding phenomenon and strain ageing 

 Body-centered cubic metals with interstitial elements exceeding 0.001 % (weight 

percent) exhibit the yielding phenomenon, in which the yield point occurs at an elevated 

stress to subsequent flow stresses, sometimes greater by a factor of two [40]. The 

deformation of a material occurs in four distinct stages. In the initial stage upon application 

of load, say in uniaxial tension, the material undergoes elastic deformation and the flow 

curve shows an almost linear variation of load with extension. Some materials make a 

gradual transition from elastic to plastic deformation, but most engineering materials show a 

distinct peak and drop in the load upon entering the plastic state [41]. This is the yield point 

phenomenon and is caused by the strain ageing mechanism [40]. The subsequent elongation 

of the material occurs at an almost steady load that may fluctuate. These fluctuations may be 

further explained by dynamic strain aging and the formation and propagation of Lüders 

bands [42]. Another cause for the serrations in the flow curve is deformation twinning. The 

high stresses required for twinning to occur and the short time intervals over which twinning 

takes place causes the rise and fall in the flow stress. Serrated flow was first reported by 

Portevin and Le Chatelier in 1923 and is therefore known as the Portevin-Le Chatelier effect 

or PLC [43].  

 Strain ageing is a strengthening mechanism by which dislocations are pinned down 

and rendered immobile by interstitial solute atoms. The strength of the material is increased 

but the ductility is decreased due to a time-dependent exposure to warm temperatures after 

cold-working. Solute atoms preferentially settle at the line of dislocations due to the 

increased lattice spacing produced by the extra half-plane of atoms in an edge dislocation. 

This pinning down is due to the interaction forces of particles and dislocations and the force 
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required to separate a dislocation from a particle is higher than the force required to keep a 

dislocation in motion during deformation [44]. The movement of interstitial solute atoms 

towards a dislocation is a diffusion-controlled process and is dependent on time and 

temperature. Age-hardening is therefore performed at moderate temperatures (so as not to 

cause recovery or recrystallisation at higher temperatures) and for long periods of time. 

Strain ageing explains the distinct yield point in the straining of a material in the form of a 

sharp kink, and also the drop in flow stress after this yield point. The reappearance of a yield 

point when a material is loaded past its yield point, unloaded, aged and then reloaded is also 

explained by the phenomenon of strain ageing. 

 Carbon and nitrogen are small-size interstitial solutes commonly found in steels and 

their ageing effect is considered the same due to the similar behaviour with moving 

dislocations. Henceforth, solute atoms refer to both carbon and nitrogen interstitials. 

Interstitials affect the mechanical properties of steels in three ways as listed by Nabarro in 

1948 [45]. They cause the precipitation of iron and chromium carbides and nitrides in the 

process of quench ageing. Carbon and nitrogen interstitials arrange themselves along the line 

of edge dislocations in an equilibrium position that relieves the hydrostatic stresses around 

the dislocations. This is the ensuing explanation for strain ageing. The third mechanism is 

that by which interstitials order themselves in the interstitial lattice sites at dislocations, 

which is the theoretical explanation of the delayed yielding phenomenon.  

 Edge dislocations possess a hydrostatic component of stress due to the extra half-

plane of atoms, and there is a dilated and compressed region above and below it. These 

stresses can be partly relieved by the formation of an equilibrium atmosphere by solute 
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atoms. An elastic continuum theory is used to describe the force and energy fields of 

interaction, but this fails at the core of the dislocation.  

 Experiments on the static strain ageing and the activation energy for the ageing were 

reported by Gullberg and Plumtree in 1973 [46]. They found the activation energy for the 

ageing process to be 25.2 kcal/mol, which is comparable to that for the diffusion of nitrogen 

in chromium (24.3 kcal/mol). Since ferritic stainless steels contain more iron than chromium, 

which ranges from 13 to 30 % by weight, it would be more likely that the activation energy 

be dependent on iron. But this observation is attributed to the stronger nitride-forming 

tendency of chromium, which even in moderate ferritic stainless steels, averages to one 

chromium atom in every unit cell while the electronic interaction between nitrogen and 

chromium is more than four atomic distances.  

 
(a) 
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(b) 

 

Figure 2. 15: (a) the different types of serrations that can occur during tensile deformation 

and (b) the temperature and strain-rate dependence of the different types of serrations in a 

ferritic stainless steel [49].  

 

 Ferritic stainless steel shows a variation in the types of serration in the flow curve 

with temperature and strain rate and is shown in Figure 2. 15. Relatively low temperatures 

are sufficient for static strain ageing such as in the range of 100 °C and 150 °C. Experimental 

methods of Gullberg and Plumtree [46] involve straining test samples, ageing and then 

restraining. The lower yield point upon restraining and the flow stress during prestraining are 

used in quantifying the effect of static strain ageing as per Hartley‘s [47] modification of the 

Cottrell-Bilby [48] analysis of the effect of ageing as follows: 

A strain ageing parameter is defined as:  

∆ς

ς 
= 2

(ςa − ςp )

(ςa + ςp )
 

(2.16) 
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where the subscript a and p denote aged and pre-aged. 

The rate of increase in the yield stress due to ageing is directly related to the diffusion of 

interstitials to the dislocations as: 

∆ς

ς 
= K + St2/3 

(2.17) 

Here, K is a constant, S is a material constant proportional to D
2/3

, where D is the diffusivity 

of the rate-controlling interstitial (N or C) and t is the ageing time. It was found that ferritic 

stainless steels containing 25 % Cr showed a greater Δσ = (σa-σp) when the interstitial 

content was higher, but concurrently so where the values of 𝜎 = 1/2(𝜎𝑎 + 𝜎𝑝) which calls 

for the need to define the strain ageing parameter as above.  The results of the experiment 

performed with 25 % Cr ferritic stainless steel with different interstitial contents aged at 

different temperatures and time periods were plotted by [46] as shown in Figure 2. 16. The 

slope of these lines is used to find the activation energy for the ageing process as: 

log(STa
2/3

) = log K1 + 
2

3
log Do −

2

3
 

Q

2.3RTa
  

(2.18) 

Here K1 is a constant, Do is the temperature-dependent part of the diffusion coefficient, Q is 

the activation energy and R is the universal gas constant. 
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Figure 2. 16: Strain ageing quantified by the strain ageing parameter for a ferritic stainless 

steel [60].  

  

 Dynamic strain ageing is a phenomenon observed during the deformation of a 

material that takes place by the same mechanism as strain ageing. Dynamic strain ageing 

manifests as serrations in the flow curve of a deforming material when there are multiple 

kinks of rising and falling flow stress after the material has yielded. Each rise corresponds to 

the solute atoms pinning down the mobile dislocations and each subsequent drop in the flow 

curve indicates that the dislocations have broken free of the solute atoms and are moving due 

to the applied stress. This type of serrated flow was first reported in ferritic stainless steels by 

Pink and Grinberg [49]. 

2.3.4 The dislocation theory of yielding 

 The existence of the yield point and the yield stress required to cause plastic 

deformation was first explained in terms of the interaction of dislocations and solute atoms 
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by Cottrell and Bilby in 1949 [48]. The yield point phenomenon represents the larger stress 

required to break the mobile dislocations free of the solute atoms that pin them down than the 

stress required to keep the dislocations in motion, or the flow stress. At favourably high 

temperatures, diffusion allows solute atoms to catch up with the moving dislocations and 

realign themselves, thus causing repeated rise and fall in the flow curve serrated flow due to 

dynamic strain ageing, called so because this mechanism occurs during deformation and in 

the same manner as thermal ageing.  

 An edge dislocation creates a region of compressive stresses above it and tensile 

stresses below it. A screw dislocation does not possess these hydrostatic components due to 

the absence of an extra half-plane of atoms. Interstitial solute atoms can relieve the 

hydrostatic stresses of a dislocation by locating themselves along the dislocation line. The 

energy of interaction between a solute atom and an edge dislocation U creates an 

‗atmosphere‘ in equilibrium: 

U = 4Gb ∈ r3
 sinθ 

R
 

(2.19) 

Where U is the interaction energy of a solute atom at (R, θ) from a positive edge dislocation, 

r is the radius of the solute atom, G is the shear modulus and ϵ is the strain caused by 

increasing the atomic radius to r‘ as ϵ = (r‘-r)/r.  

 The elastic nature of the dislocation upon which this model is based, fails at the core 

of the dislocation at small values of R. The material constants are combined into one term, A 

and the above equation is simplified as: 
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U = A 
 sinθ 

R
 

(2.20) 

 There are two categories of dislocations in a deforming material- slow moving and 

fast moving dislocations. The fast moving dislocations remain relatively unhindered by 

solute atoms due to the limited diffusivity of the solute atoms, but the slow dislocations are 

caught up by the solute atoms. The speed of the fast-moving dislocations is limited to the 

speed of sound in that material. Cottrell and Jaswon in 1949 [50] described the movement 

dislocations and solute atoms together at slow speeds. The drift velocity v with which a 

dislocation and solute atom move together under a force F due to their mutual interaction is: 

v =
D

kT
 F    

(2.21) 

v =
D

kT
 

A

r2
=

Dl

r2
 

(2.22) 

Where the characteristic length l (=A/kT) is the radius of the atmosphere.  

The critical speed of the dislocation Vc (assuming r = l/2): 

vc =
4D

l
 

(2.23) 

 Below critical speed, the particle and dislocation remain together, but the particle 

always lagging behind. Above this speed, the dislocation can pull away from the atom which 

lags behind by distance l.  

The critical stress σc is that which is required to move it at critical speed vc.  
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ς =  
v

vc
 ςc  

(2.24) 

The estimated value of σc is found to be: 

ςc =
28AcoN

b
 

(2.25) 

Where co is the atomic concentration of the solute and N is the number of total atoms per unit 

volume. 28 (Cottrell) is sometimes replaced with 17 (Jaswon). 

The critical resolved shear stress to release line of dislocation from a solute atom is:  

ςo =
3 3A

4λ2ρ2
.. 

(2.26) 

..per unit length of dislocation, assuming that the tensile axis and the slip direction are 

oriented at an angle of π/4. Here, λ is the length of slip distance in the dislocation. 

A reasonable approximation of the above equation is given by: 

ς ≈  
A

(b2ro
2)

 
(2.27) 

Here ro is the distance of the solute atoms from the dislocation core. 

The relationship between the rate of straining, dislocation velocity and the density is: 

ε = bρv  (2.28) 

where ε  is the strain-rate, b is the Burger‘s vector, ρ is the dislocation density and v  is the 

mean dislocation velocity.  
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 These phenomena, namely static strain ageing and the yield point, dynamic strain 

ageing, and the low strain hardening exponent limit the ductility of the high chromium 

ferritic stainless steels that can be applied in a cold working operation such as sheet metal 

stamping. They result in the formation of necking due to localised deformation leading to the 

early termination of the uniform elongation. The mathematic treatment of these physical 

phenomena that control the deformation behaviour of the ferritic stainless steels allows their 

better understanding in order to overcome these practically.  

 

2.4 Lubrication by Lamellar Solids 

 Forming limits of sheet metals can be increased by elevated temperatures, but this 

causes problems such as high friction due to adhesion and reduced tool life due to material 

transfer to the die. High friction in punch stretching causes lowered limit strains due to strain 

localisation [15] [24]. Lubrication can reduce the friction between the sheet and the die 

thereby raising the forming limits and improving the strain distribution [14]. Prevention of 

metal-metal contact between the sheet and the die is important for surface quality of the part 

and tool life. Lamellar solids have good load-bearing capacities to perform under high 

stamping pressures and they maintain their lubricity even at elevated temperatures [51]. 

Boron nitride is one such solid lubricant and it can reduce the friction to as low as 0.15 [51]. 

Molybdenum disulphide (MoS2) is most commonly used in metal forming because of its 

ability to drastically lower friction [52], while tungsten disulphide (WS2) has greater thermal 

stability and oxidation resistance in comparison, by a 100 °C [53]. The ceiling lubrication 

temperatures for the solid lubricants are limited by their oxidation [54]. The disulphides of 
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tungsten and molybdenum have excellent lubricating properties, and were often confused 

with graphite for their similar appearance and physical properties. 

 Solids such as graphite, owe their lubricity to their lamellar structure in which the 

crystal lattice is arranged in planes that are weakly bonded and ‗easy-shear‘ occurs along 

them. Boron nitride, tungsten disulphide and molybdenum disulphide fall under this category 

and they have a hexagonal structure. BN is different from the dichalcogenides in that the 

boron and nitrogen atoms lie in the same plane (Figure 2. 17), whereas in the structure of 

WS2 and MoS2 the tungsten (or molybdenum) and sulphur atoms occupy lie in alternating 

planes (Figure 2. 18). Unlike graphite, these solids do not depend on moisture or ambient 

humidity for their lubrication action [52]. They also have the added advantage of being 

‗clean‘ over graphite and can be removed from the surface after the process by simply rinsing 

in water. Reports of the lubricity of tungsten disulphide are recent and few, and WS2 has the 

same crystal structure as MoS2.  

 
 

Figure 2. 17: The crystal structure of hexagonal Boron Nitride. The dotted lines respresent 

weak van der Waals bonds permitting the ‘easy shear’ of the planes bonded thus [61]. 
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 The lamellar hexagonal structure makes the mechanical properties of these 

compounds anisotropic. Although they are of reduced strength along the shearing direction of 

the lamellar planes, normal to it they are hard [55]. Under sliding conditions after run-in, 

upon preferential orientation of the crystal lattice, they exhibit excellent low-friction and 

low-wear properties, but during run-in especially under high normal loads, they have a 

tendency to scratch and embed into the counterface if their orientation is not along the sliding 

direction. This behaviour depends on the relative hardness of the substrate, and may play an 

important role in stamping, where high loads and non-sliding contact occur.  

 
(a..contd.) 



 

 37  

 
(b) 

 

Figure 2. 18: (a) The crystal structure of molybdenum disulphide [52], and (b) scanning 

electron microscope image of the lamellar arrangement and displacement of the hexagonal 

planes of molybdenum disulphide [62].  

 

 Boron nitride is a popular lubricant for its white colour, high temperature 

performance and economy. Being isoelectronic to carbon, it exists in three crystalline forms, 

namely hexagonal (h-BN), cubic (c-BN) and wurtzite (w-BN), of which c-BN is second in 

hardness only to diamond and h-BN is isostructural to graphite. In the lamellar hexagonal 

form, it reduces the coefficient of friction between sliding surfaces to as low as 0.29 [56]. 

Deacon and Goodwin tested graphite, MoS2, BN and talc for their frictional properties while 

eliminating chemical effects (by using platinum substrates) [51] and reported a coefficient of 

friction lower than 0.2 for BN. No moisture is required for the lubricating action of BN 

unlike graphite, due to the absence of unbonded electrons in the structure. Transfer films 

formed by the lubricants contribute to their lubricity. Although they may be undesirable in 

the finished product, their formation on the mating surfaces is necessary in reducing the 

friction [55].  
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2.5 Summary of the Review of Literature 

 From the work that has been published so far, there is a wealth of information on the 

formability of austenitic stainless steel, its corrosion properties and the material behaviour 

specific to bipolar plates. But very little information is available about the sheet metal 

formability of ferritic stainless steels to complement their excellent corrosion properties 

suitable for bipolar plates 

 Ferritic stainless steels experience dynamic strain ageing during deformation and they 

have a low strain hardening exponent that limits their useful ductility. Moderately elevated 

temperatures (100 – 300 °C) are reported to be useful in overcoming these problems for cold 

working operations. Sheet metal forming operations are limited more by high die friction 

than by the ductility of the material and solid lubricants have the advantage of easy 

application and cleaning after the stamping operation while reducing friction between 

surfaces effectively.  

 Thus, temperature and solid lubrication in combination have been used in this work to 

overcome the limiting factors of stamping ferritic stainless steel bipolar plates for PEMFC.  
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CHAPTER 3: Materials and Experimental Methods 

3.1 Introduction 

 In this chapter, the materials and experimental methods used in this study are 

described. The materials used in this study are described in section 3.2. The experimental 

methods include the design and fabrication of the stamping equipment, detailed in section 

3.3. The characterisation methods used to evaluate the stamping quality are detailed in 

section 3.4.  

 

3.2 Materials and Microstructures 

3.2.1 Microstructure and properties of the 30 % Cr ferritic stainless steel 

 The ferritic stainless steel was used in the form of cold-rolled and annealed sheets of 

75 µm thickness. The alloy was a high-chromium, nickel-free ferritic stainless steel 

containing 30 % wt. Cr, 0.025 % C and 0.035 % N, the complete composition of which is 

given in table 3.1 (from ICP analysis). 

Table 3.1: Composition of the ferritic stainless steel used in this work: 

Elements Cr C N Ti Al V Ni Fe 

Weight % 30.0 0.025 0.035 0.034 0.045 0.36 - balance 
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(a) 

 
(b) 

Figure 3. 1: (a) The microstructure of the sheet parallel to the surface (optical microscopy) 

and (b) microstructure of the cross-section of the sheet showing the equiaxed grains of the 

annealed condition (SEM). 
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 The cross-sectional microstructure along the rolling and transverse directions are 

shown in Figure 3.1. The annealed microstructure consisted of equiaxed ferrite grains of 

5.64 ± 2.78 µm, with coarse precipitates of titanium, vanadium and aluminium. Fine 

intercrystalline carbide precipitates of titanium were present in the microstructure. The coarse 

precipitates of Ti, V, Al and N present in the microstructure were distributed along the 

rolling direction. They were characterised using SEM and EDS and the results are presented 

in Figure 3. 2. 

 
 

Figure 3. 2: (a) SEM micrograph of the coarse precipitates aligned along the rolling 

direction in the cross-section of the ferritic stainless steel and (b) EDS mapping of the area 

in (a) identifying the elements present in the precipitates as Ti, Al, V and N. 
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3.3 Description of the Stamping Experiments 

3.3.1 Fabrication and operation of the stamping machine 

 

 
 

Figure 3. 3: The experimental stamping machine used in this work showing the punch and 

die assembly, with the cartridge heaters and thermocouple used to maintain the test 

temperatures. 
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 An experimental stamping machine was constructed for forming metallic bipolar 

plates and is shown in Figure 3. 3 along with the die set that was used. The stamping machine 

was constructed using a pneumo-hydraulic press (TOX – Pressotechnik S8.100.12.D, 10 – 

100 kN load range) with an electronic pressure sensor for control (ZDO-01-40 AK). A 

pressure control valve controlled the pressure entering the press cylinder from the supply and 

the pressure sensor connected to a data acquisition system measures and recorded the 

cylinder pressure. The stamping machine was fixed onto a cross-frame table, with a locating 

plate on the base on which the lower die half was mounted. The upper die half, or the punch 

was attached to the piston head of the press. Platens were attached to the base of the frame 

and to the piston head of the pneumatic cylinder, fabricated out of AISI 4140 steel with 

titanium (6V-4Al) die holders to provide insulation between the heated die and the press. 

Two load cells measured the force experienced by the punch-head and the sheet-holding part 

of the die, known as the die shoulder. 

 For the forming of bipolar plate channels in stainless steel sheets, the die-set was 

fabricated out of AISI A2 grade tool steel and had two cartridge heaters inserted in the punch 

and die each. AISI A2 grade tool steel was selected for this process due to its high toughness 

and wear resistance required for stamping stainless steels. The die was heat-treated and 

tempered to 57 HRC. Temperature was maintained within a ±3 °C range by means of a 

thermocouple inserted into the die and connected to a temperature controller (OMEGA 

Monogram MCS 77333). The micro-scale bipolar plate channels were machined into the 

punch and the die by wire-EDM. The dimensions of the channels are shown in Figure 3. 4. 

These dimensions are the industrial target and were therefore considered. The radius was set 

at greater than three times the thickness of the sheet to prevent the shear failure of the sheet at 
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the die radius during drawing [63]. The cross-sectional area and perimeter of the channel 

were selected for optimising the performance of the fuel cell in terms of specific power 

output of the cell.  

 
(a) 

 

 
(b) 

 

Figure 3. 4: (a) A closer view of the die set that was used the stamping the bipolar plate 

micro-channels along with a stamped foil. (b) Cross-sectional dimensions of the bipolar 

plate channels that were evaluated in this work.  
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3.3.2 Procedure of the stamping experiments 

 Stamping of the micro-channels was performed at loads varied between 36 and 56 kN 

using the pneumatic control. Stamping was carried out at 25, 100 and 200 °C. The die was 

cleaned with acetone before each specimen was stamped. Stamping was performed placing 

the sheet with the rolling direction aligned with the tensile axis of the plane-strain channel 

drawing. The sheets were cut 5 mm wide by wire-EDM and cleaned with acetone before 

stamping.  

 Stamping was carried out without lubrication and with the application of solid 

lubricants as a dry film on both sides of the sheet. BN, MoS2 and WS2 of particle size less 

than 2 µm were used (supplied by Sigma-Aldrich Co.). Ethanol was used as the carrier; a 

saturated suspension of the powders in ethanol were applied on the sheets using a swab and 

ensured dry before stamping so as to eliminate the effects of the carrier. The average 

lubricant film thickness was measured and found to be 20 µm before stamping. The 

difference in the distribution of the lubricant particles over the stainless steel surface upon 

application and before stamping is shown in Figure 3. 5. 
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(a) 

 

  
(b) (...contd) 
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(c) 

 

Figure 3. 5: SEM image of the distribution of lubricant particles over the ferritic stainless 

steel sheet surface applied using the technique described, (a) boron nitride, (b) tungsten 

disulphide and (c) molybdenum disulphide. 

 

The various conditions under which stamping was carried out is shown in the test matrix in 

Table 3.2 that was used to organise the experiments. 

Table 3.2: The conditions under which stamping was carried out:  

 

 

 

Temperature Stamping Load Lubrication

25 °C 36.95 kN Unlubricated

100 °C 38.70 kN BN

200 °C 40.45 kN WS2

42.20 kN MoS2

45.50 kN 

48.80 kN 

51.60 kN 

54.40 kN 

Conditions of Stamping
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3.4 Measurement and Characterisation 

3.4.1 Strain measurement 

 Previously reported methods of measuring the strain distribution in stamped parts 

used circle grids that were electrochemically etched onto the surface of the sheet, but the size 

of these grids exceeds the dimensions of the channels and an alternative method has been 

used here for micro-scale stamping. Strain distribution along the stamped channels was 

measured by polishing the cross-section of strips and making Vicker‘s diamond-pyramid 

hardness indents with a load of 25 g for 10 s, spaced 100 µm apart along the length of the 

sheet. The strips were then stamped and the spacing of the indents measured using an optical 

microscope. This method is illustrated in Figure 3. 6. 

 
 

Figure 3. 6: The procedure employed in measuring tensile strains along the channel using 

Vicker’s micro-hardness indents. 

 

 Quantitative dimensional measurements such as the depth of the channels and sheet 

thickness were made from optical micrographs of mounted cross-sectional samples. 

Mechanical polishing down to 1 µm diamond suspension was required to eliminate errors 

due to poor edge retention.  



 

 49  

 
(a) 

 

 
(b) 

 

Figure 3. 7: The method of measurement used for calculating thickness strains in the 

stamped channel. Sheet thickness and channel depth measurements are made from polished 

cross-sections of the channels using an optical microscope as shown above, (a) in the seven 

locations indicated and (b) at 30 µm intervals for a finer strain distribution. 

 

 Figure 3. 7 (a) shows an example of how such a measurement was made. 

Measurement of sheet thickness was carried out at the seven locations indicated. Further, 

measurements were made at 30 µm intervals of the channel when a finer strain distribution 
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was required using Clemex Vision PE image analysis software, as is depicted in Figure 3. 7 

(b). 

Strain between two points εx, spaced 100 µm apart along the tensile direction is calculated as: 

εx =
xo − xi

x
 

(3.1) 

Where xo is the initial indent spacing (100 µm) and xi is the final indent spacing. 

The through-thickness strain is calculated as: 

εy =
to − ti

to
 

(3.2) 

Where to is the initial sheet thickness and ti is the final sheet thickness measured at location i. 

 Due to the symmetry of the channel, measurements are made only on one half of the 

channel. Assuming volume constancy and plane-strain conditions, strain along the tensile 

direction and the negative of the through-thickness strain are equal. Strain in the thickness 

direction is used here for its ease of measurement. 

3.4.2 Springback measurement: Channel depth 

 The depth of the channel was measured using optical microscopy. Stamped samples 

were metallographically mounted along their cross-section and polished. The depth of the 

channels was measured from the top of the channel land to the bottom of the channel as is 

shown in Figure 3. 8.  
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Figure 3. 8: The method of measuring channel depth using optical microscopy. 

 

3.4.3 Microstructural characterisation 

 Microstructural characterisation of the material was performed by polishing mounted 

samples mechanically and then with 1 and 0.1 µm diamond suspension. They were then 

electrolytically etched in 60 % HNO3 for 120 s using 1.5 V dc current. Stainless steel 

electrodes were used. Optical microscopy and scanning electron microscopy (SEM) were 

employed to observe the etched microstructures.  

3.4.4 Characterisation of stamped surfaces 

 Surfaces of the stamped channels were observed using a JEOL 6400 scanning 

electron microscope (SEM) and surface roughness was measured using phase-shift optical 

profilometry (WYKO NT1100). 

 Surface roughness of the stamped channel was quantified by optical interferometry 

using monochromatic red light phase-shift interferometry (PSI). A 50x objective lens was 

used with a 1x field of view so as to maintain the area of measurement within the stamped 

channel. The area of measurement was 120 x 90 µm.  
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CHAPTER 4: Experimental Results 

4.1 Introduction 

 This chapter presents the results of the experiments performed as described in the 

previous chapter. First, in section 4.2 the distribution of strain along the channel under the 

different stamping conditions is presented. Microstructural evolution upon stamping is 

presented next in section 4.3. Springback was measured by the lateral expansion of the five-

channel series and by the depth of the channels, and the results are presented in section 4.4. 

Surface roughness and the surface morphology follow in section 4.5.  

 

4.2 Distribution of Strain along the Stamped Channel 

 The locations of the equidistant Vicker‘s indents placed on a sheet and then channel 

stamped at 25 °C are shown Figure 4. 1(a) and the tensile strains calculated from these is 

shown in the strain distribution in Figure 4. 1 (b). The maximum εx was 0.15 and the 

minimum εx was 0.04 for the channel stamped at 25 °C. The through-thickness strains at 

these same locations which were found from the reduction in the sheet thickness at the same 

locations are plotted in Figure 4. 1(c). They were found to be equal to the tensile strain, thus 

confirming plane-strain conditions. 
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Figure 4. 1: (a) Locations of Vicker’s indents along the cross-section of the channel after 

stamping. They were initially placed 100 µm apart and their spacing after stamping was 

measured using optical microscopy to calculate the tensile strain, plotted in (b). Through-

thickness strains measured in the same locations as indicated in (a) are plotted in (c) to 

confirm plane-strain conditions.   
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4.2.1 Unlubricated stamping at elevated temperatures 

 Through-thickness strains were plotted for three loads (42.2, 48.8 and 54.4 kN) at the 

three temperatures tested. For these measurements seven locations were considered on the 

channel as indicated in Figure 3. 7. The through-thickness strain (εy) distribution at 25 °C is 

shown in Figure 4. 2(a). Strain peaks exist in the region between the radius and the channel 

wall (locations 3 and 5), while very low strain is experienced in the regions of the channel 

where the sheet is in contact with the die or the punch (locations 1 and 7).  Increasing the 

temperature from 25 to 100 °C only marginally increases the εy strain peaks from 0.10 to 

0.15 (Figure 4. 2[b]) but a further increase in temperature to 200 °C causes failure due to 

localised necking and the maximum εy increases to 0.33 (Figure 4. 2[c]). Cross-sections of 

channels stamped at these three temperatures are shown in Figure 4. 3. There is no visible 

thinning in the cross-section of the channel stamped at 25 °C and 100 °C shown in Figure 4. 

3(a) and (b), but at all loads in the range tested at 200 °C, localised necking was observed as 

is seen in the micrograph in Figure 4. 3(c). 

 At 25 °C and 100 °C the most uniform distribution of strain is seen at the highest load 

considered, that is 54.4 kN. At 200 °C, a moderate load of 48.8 kN shows a more favourable 

strain distribution than the higher or lower loads. 
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Figure 4. 2: Through-thickness strain along the channel at the seven locations indicated in 

Figure 3. 7 under unlubricated conditions at (a) 25 °C, (b) 100 °C and (c) 200 °C. 
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(a) 

 

 
(b) 

 

 
(c) 

 

Figure 4. 3: Cross-sections of the channels stamped under unlubricated conditions at (a) 

25 °C, (b) 100 °C and (c) 200 °C 
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4.2.2 Lubricated stamping at elevated temperatures 

 With lubrication, the distribution of εy improves with increasing temperature and 

favourable distribution occurs at lower loads. Figure 4. 4 shows the strain distribution along 

the stamped channel stamped with BN lubrication. The strain distribution is most favourable 

at 200 °C and moderate loads of 42.2 and 48.8 kN (Figure 4. 4 [c]). Figure 4.5 shows similar 

strain distribution plots for tungsten disulphide lubricated stamping and Figure 4. 6 shows the 

strain distribution for molybdenum disulphide lubrication.  

 The most uniform strain distribution was obtained from stamping with BN and MoS2 

at 200 °C where the strains at locations 2 through 7 on the channel are almost the same, at a 

stamping load of 42.2 kN (Figure 4. 4 (c) and Figure 4. 6 (c) respectively). On the other 

hand, WS2 lubrication does not seem to prevent the localised straining to the same extent 

under the same conditions. With lubrication and higher temperatures, lower stamping loads 

(42.2 kN) produce better strain distribution.  

 In order to find the extent of localisation of the necking region, thickness strains were 

measured at 30 µm intervals on the stamped channel are shown in Figure 4. 7. Three typical 

conditions were selected, namely necking at 200 °C from unlubricated stamping, and 

lubricated stamping with WS2 and MoS2. A neck formed at 200 °C in Figure 4. 7 (a) shows 

that the sheet thickness is reduced by almost 70 % in the localised neck from the εy strain plot 

in Figure 4. 7 (b). Necking is highly localised and measures less than 30 µm in width. Strain 

distribution of channel stamped with WS2 lubrication at 25 °C is plotted in Figure 4. 7 (d) for 

the locations shown in Figure 4. 7 (c). No necking is observed and the strain distribution is 

uniform without localisation. For the channel stamped with MoS2 lubrication at 25 °C in 
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Figure 4. 7 (e), the strain distribution shows the complete absence of strain-peaks in the plot 

in Figure 4. 7 (f). 

 
 

Figure 4. 4: Through thickness strain along the channel stamped with boron nitride 

lubrication at (a) 25 °C, (b) 100 °C and (c) 200 °C. 



 

 59  

 
 

 

Figure 4. 5: Through thickness strain along the channel stamped with tungsten disulphide 

lubrication at (a) 25 °C, (b) 100 °C and (c) 200 °C. 
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Figure 4. 6: Through thickness strain along the channel stamped with molybdenum 

disulphide lubrication at (a) 25 °C, (b) 100 °C and (c) 200 °C. 
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Figure 4. 7: Thickness strains calculated from sheet thickness measured at 30 µm intervals 

along the stamped channel. (a) Locations of measurement on channel stamped without 

lubrication at 200 °C and (b) the strains at these locations, (c) locations of measurement on 

channel stamped with WS2 at 200 °C and (d) the strains at these locations, (e) locations of 

measurement on channel stamped with MoS2 at 200 °C and (f) the strains at these locations.  
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4.3 Microstructural Evolution 

4.3.1 Unlubricated stamping 

 The microstructure of a channel stamped at 25 and 100 °C is shown in Figure 4. 8 (a) 

and (b). The grains are elongated on the outer side of the radius bends, where there is 

bending under tension (see location 2), while those on the inside of the bend are not. Grains 

are elongated along the channel sidewall as in location 4. Here the sheet is subjected to free 

uniaxial tension where the strain is high but not to the same extent as that on the outside of 

the radius bends. The channel stamped at 200 °C (Figure 4. 8[c]) on the other hand shows 

necking, which formed either at location 3 or 5 (i.e., bending and restraightening) under all 

loads at this temperature. The neck extends the length of 3 elongated grains, which indicates 

the extent of the localisation. 

 

 
 

(a ..contd.) 
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(b ) 

 

 
 

(c) 

 

Figure 4. 8: The cross-sectional microstructures of the channels stamped without lubrication 

at (a) 25 °C, (b) 100 °C and (c) 200 °C. (Electrolytically etched with 60 % HNO3). 
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4.3.2 Lubricated stamping at elevated temperatures 

 The microstructure of a channel stamped with BN, WS2 and MoS2 all at 200 °C with 

a stamping load of 48.8 kN are shown in Figure 4. 9. Necking is absent and there is a 

favourable distribution of sheet thickness along the entire channel. The localised occurrence 

of elongated grains is absent and this set of conditions exhibited the most uniform strain 

distribution (48.8 kN, 200 °C, MoS2 lubrication in Figure 4. 9 [c]). The coarse precipitates do 

not seem to have any effect on the formability and they appear to behave like the matrix 

grains under straining. 

 

 
 

(a ..contd.) 
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(b) 

 

 

 
 

(c) 

 

Figure 4. 9: The cross-sectional microstructures of the channels stamped at 200 °C with (a) 

BN, (b) WS2 and (c) MoS2. (Electrolytically etched with 60 % HNO3). 
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4.4 Springback Effects 

4.4.1 Channel depth 

 The targeted depth of the channels in the die was 350 µm, but the actual depth of the 

stamped channels was less than this depth under all conditions. The incomplete channel 

depth was caused by springback that resulted from the recovery of the elastic component of 

the strain upon removal of the stamping load. The increased angle of the channel wall as a 

result of bending springback affects the depth of the stamped channel as is depicted in the 

schematic in Figure 2. 6. 

 

 
 

Figure 4. 10: Variation of channel depth with load at 25, 100 and 200 °C, (a) unlubricated, 

(b) BN, (c) WS2 and (d) MoS2.  
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 The depths of the channels stamped under all the conditions in plotted in Figure 4. 10. 

The depth of the channel increases with temperature under unlubricated conditions (Figure 4. 

10 [a]). Channel depth increases with stamping load until a maximum for that temperature is 

attained, and then remains constant. The depth of the channels increased with increasing the 

load up to a maximum, which was attained at 47.2 kN at 25 °C and at a lower load of 

42.2 kN at 100 °C. At elevated temperatures, the depth of the channels increased by nearly 

2 % due to the reduction in yield stress with temperature at a load of 51.6 kN. At 100 °C, the 

maximum depth attained was 347.96 ± 1.17 µm, while at 25 °C it was 344.13 ± 0.35 µm. At 

200 °C, there was a reduction in channel depth at the higher end of the load range above 

48.8 kN, which accompanied the adhesion of the sheet to the die at that temperature. 

 Lubrication does not significantly affect the depth of the channels stamped at 25 and 

100 °C, but at 200 °C, channels stamped with lubrication are not as deep as those formed 

with unlubricated stamping (Figure 4. 10[b-c]). In addition to springback, channel depth in 

lubricated stamping is affected by the thickness of the lubricant film itself, and BN reduces 

the depth of the channels by 5 µm more than the other lubricants at elevated temperatures 

(Figure 4. 10[b]). 

 

4.5 Roughening and Morphology of Stamped Surfaces 

4.5.1 Roughness of stamped surfaces 

 The surface roughness (Ra) measured on the punch-side and die-side of the channels 

and its variation with temperature and stamping load under unlubricated conditions is shown 

in Figure 4. 11. The surface roughness of the undeformed blank was 100.53 ± 1.7 nm. The 

roughness on the die-side was considerably higher than on the punch-side. The punch-side 
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shows only a slight increase in surface roughness with temperature, while the die-side surface 

roughness increased dramatically with an increase in temperature. The surface roughness on 

both sides showed an increase with stamping load. 

 The surface roughness for channels stamped with BN lubrication plotted in Figure 4. 

12, lower loads produce erratic roughness, but moderate to high stamping loads show an 

almost steady roughness with load. The roughness is invariant with temperature. For WS2 

lubrication, there is a slight decrease in surface roughness with temperature, as is seen in the 

plots in Figure 4. 13. MoS2 produced higher surface roughness than BN and WS2 which 

increased slightly with temperature (Figure 4. 14).  

 The reduction in surface roughness due to the use of lubrication is more marked at 

elevated temperatures than at 25 °C. BN shows the best reduction in the surface roughness at 

25 °C, whereas the performance of WS2 at elevated temperatures is best. Under all 

conditions, the surface roughness is greater on the die-side of the stamped channel than on 

the punch side.  
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Figure 4. 11: The variation of surface roughness of the stamped channels with stamping load 

on the punch and die sides stamped under unlubricated conditions at (a) 25 °C, (b) 100 °C 

and (c) 200 °C.   
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Figure 4. 12: The variation of surface roughness of the stamped channels with stamping load 

on the punch and die sides stamped with boron nitride lubrication conditions at (a) 25 °C, 

(b) 100 °C and (c) 200 °C.  
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Figure 4. 13:  The variation of surface roughness of the stamped channels with stamping 

load on the punch and die sides stamped with tungsten disulphide lubrication conditions at 

(a) 25 °C, (b) 100 °C and (c) 200 °C.  
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Figure 4. 14: The variation of surface roughness of the stamped channels with stamping load 

on the punch and die sides stamped with molybdenum disulphide lubrication conditions at 

(a) 25 °C, (b) 100 °C and (c) 200 °C.  
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4.5.2 Surface morphology of stamped channels 

 SEM images in Figure 4. 15 of the surfaces of the channels stamped without 

lubrication at 200 °C on the punch and die sides show the difference in morphology due to 

the different types of contact, namely sliding on the punch side (Figure 4. 15 [a] and [b]), and 

purely normal contact on the die side (Figure 4. 15 [c] and [d]). The channels on the inside 

and the outside of the radius bends show different surface morphologies as well. The inside 

of the bends show sliding wear as can be seen in the SEM image of Figure 4. 16(a). The 

outside of the radius bend where there is no contact with the die at any instant of the process 

shows roughening on the grain scale as seen in Figure 4. 16 (b) due to the relative movement 

of the neighbouring grains to accommodate the strains experienced during the process. 

 The surfaces of the channels stamped with BN are relatively damage free as can be 

seen in Figure 4. 17 (a) of the punch side and Figure 4. 17 (b) of the die side. 

 With WS2 lubrication, damage is not observed either, but rather, transfer layers of the 

lubricant are formed. WS2-lubricated stamping at 200 °C produced a transfer layer only on 

the punch side, as is seen in  

Figure 4. 18 (a), and the backscatter image of the same location in  

Figure 4. 18 (b) shows the transfer layer appearing as bright patches indicating the presence 

of tungsten. The die-side does not have any transfer layers as can be seen from  

Figure 4. 18 (c) and (d). MoS2-lubricated stamping shows transfer layer formation on both 

the punch and die sides (Figure 4. 19). The transfer layers appear to be in the plate-like form 

as is seen in Figure 4. 20 (a) on the punch side of the channel stamped with MoS2. The die 

side transfer layer is not arranged in plate-like form as can be seen from the SEM and back-

scattered electron image in Figure 4. 20 (b) and (c).  

 Damage on a smaller scale than was seen in unlubricated stamping was observed at 

100 and 200 °C under lubricated conditions on the die side of the channels such as that seen 
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in Figure 4. 21. Surface roughness is higher on the die side than on the punch side. WS2 

reduces the surface roughness most at elevated temperatures, although transfer layers are 

formed on the die side. MoS2 produces transfer layers on the punch side as well as on the die 

side and is not as effective at elevated temperatures. 

 

 
 

 

Figure 4. 15: SEM images of channel surfaces stamped without lubrication at 200 °C on (a) 

the punch side and (b) the die side. (c) and (d) show high magnification images of the punch 

and die sides respectively.   
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(a) 

 

 
(b) 

 

Figure 4. 16: SEM images of channel surfaces stamped without lubrication at 25 °C on the 

(a) inside and (b) outside of the die radius.  
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(a) 

 
(b) 

  

Figure 4. 17: SEM images of the surfaces stamped at 200 °C with BN lubrication on (a) the 

punch side and (b) the die side.  
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Figure 4. 18: SEM images of the surfaces stamped at 200 °C with WS2 lubrication on (a) the 

punch side and (b) the die side. (c) Backscattered electron image of the location 

corresponding to (a) showing bright patches indicative of the presence of the heavier 

tungsten in the transfer layers, whereas the backscattered electron image of the die side in 

(d) corresponding to (b) indicates the absence of tungsten and therefore any transfer layers.   
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Figure 4. 19: SEM images of the surfaces stamped at 200 °C with MoS2 lubrication on (a) 

the punch side and (b) the die side. (c) and (d) are backscattered electron images 

corresponding to (a) and (b) respectively, and bright patches in both images indicate the 

presence of transfer layers containing molybdenum on both the punch and die sides of the 

stamped channel.   
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(a) 

 
(b) 

 
(c) 

 

Figure 4. 20: SEM images of the transfer layers formed on surfaces stamped at 200 °C with 

MoS2 lubrication showing the difference in morphology of the transfer layers formed on the 

two sides of the channel. (a) Punch side transfer layer assuming a lamellar morphology, (b) 

die side transfer layer of an agglomerated morphology and (c) the corresponding 

backscattered electron image of (b).  
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Figure 4. 21: Nature of damage made by the lubricant particles on the die-side of the 

channel stamped at 100 °C with BN lubrication.  
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CHAPTER 5: Discussion of Results 

5.1 Introduction 

 Results of the experiments conducted thus far show that friction plays an 

important role in limiting the formability in this process and an attempt has been made in 

Section 5.2 to understand it in order to improve the quality of stamped bipolar plates. 

With the observations made in the previous chapter, a tribological model has been 

developed to explain the nature of deformation and die contact that the sheet experiences 

during the process. The effects of first temperature and then lubrication on this ensue in 

Sections 5.3 and section 5.4 respectively. Within the stamping parameters selected for the 

study, a processing window in which the stamping quality is optimum has been arrived at 

and is presented in Section 5.5.  

  

5.2 Tribology of the Stamping Process 

 Friction between the punch and the sheet during stamping opposes deformation. 

Peaks in the strain distribution exist away from the pole of the punch in a region known 

as the ‗crown‘ [13]. This was attributed to the friction between the sheet and the punch 

and failure due to necking occurred there. Although the deformation and strain states are 

different in plane-strain channel stamping from those in punch-stretching or cylindrical 

deep drawing, the tribology and contact nature are comparable. Figure 5. 1 shows a 

schematic of the forces acting on a sheet undergoing plane-strain channel stamping. 

According to the tribological model of deep-drawing presented by Schey (1983) [28], the 

maximum pressure is experienced at the die radii where the sheet is bent over the die 

under tension. The high circumferential stresses cause the frictional force to be greatest at 



 

 82  

this location. There are three distinct types of deformation along the channel: tensile 

deformation opposed by the frictional force of punch (or die), uniaxial tensile stretching 

without any contact friction, and bending under tension.  

 
 

 

Figure 5. 1: Schematic of the forces acting on a sheet by the die during a channel 

stamping process. 

 

 Figure 5. 2 shows seven locations demarcated along the stamped channel. 

Location 1 is that part of the sheet which is clamped under the blank holder where the 

friction between the sheet and the die holds it in place and prevents material from being 

drawn into the channel. Location 7 is that part of the sheet which is in contact with the 
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punch and this region undergoes deformation while always in contact with the punch. 

Locations 2 and 6 are stretched over the radius whilst experiencing high circumferential 

compressive stresses in addition to tension. The frictional force is high due to the high die 

pressure. Locations 3 and 5 experience these same conditions in the initial phase of the 

stamping and then they undergo restraightening as they are drawn into the channel. Due 

to the differing strain states, this region experiences the greatest strain and under critical 

conditions of temperature or load or a combination of both, failure occurs here, either by 

necking or tearing. Location 4 deforms without any contact and friction, and its 

deformation is essentially tensile. The localised straining measured along the tensile and 

through-thickness directions show that the highest strain is measured at locations 3 and 5 

while locations 1 and 7 experience very little strain. 

 In the microstructures of the stamped channel shown in Figure 4. 8, the grains on 

the outer side of the radius bends are elongated along the direction of the tensile strain, 

while those on the inside of the bend are not. Higher frictional forces at the locations of 

die contact will cause less strain in those regions of the sheet, and the strain necessary for 

the geometry will occur at the outside of the radii and the sidewalls (locations 3, 4 and 5). 

The less the deformation experienced in the high-friction zones, the more the other 

regions will strain. When this localisation causes limiting strains to develop in the 

bending and restraightening locations, failure by necking or tearing will occur.  
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Figure 5. 2: Seven zones demarcated on the channel, where the deformation is distinctly 

different due to the different natures of contact in these locations and geometry of the 

process. 

 

 The surface roughness on the punch-side is less than on the die-side. Sliding 

contact between the sheet and the die causes the flattening of asperities and the surface on 

this side has a lower Ra value. The die-side surface first undergoes roughening on the 

grain-scale due to non-contact deformation and then comes into contact with the die. 

There is no sliding and the contact with the die is purely normal, under the stamping load. 

The effect of temperature on the roughness of the die-side surface is much greater than on 

the punch-side.  

 

5.3 Effect of Temperature on the Process 

 Elevated temperatures increase the dimensional accuracy in stamping due to the 

reduced springback from the decrease in the yield stress with increasing temperature. 
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Increasing the temperature from 25 °C to 100 °C significantly increases the depth of the 

channels, due to the lowering of the yield stress and the onset of plastic deformation at a 

lower strain. Wolff and Ball (1991) [38] report the yield stress at 20 °C to be 570 MPa at 

an elongation of 5 %, whereas at 100 °C, the yield stress is 530 MPa at 4 % elongation. 

The increase in channel depth with increasing temperature is due to this.  

 
 

Figure 5. 3: The major limiting criteria under unlubricated warm stamping conditions as 

a function of temperature and stamping load.  

 

 The major limiting factors of unlubricated stamping as a function of temperature 

and stamping load are seen in the map in Figure 5. 3. 
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 Coefficient of friction due to the adhesion of the sheet to the die increases with 

temperature. The through-thickness strain distribution does not vary significantly with an 

increase in stamping temperature from 25 to 100 °C, but at 200 °C, there is severe sheet 

thinning until failure in the regions in which there is localised straining. The increased 

friction between the sheet and the die causes less deformation in regions of die contact, 

and localised straining occurs in locations undergoing bending and restraightening and 

free tension. 

 

5.4 Effect of Lubricants on the Process 

 Friction between the sheet and die at regions 1 and 7 (as indicated in Figure 3. 7) 

restricts the deformation of the sheet, and the strain is localised in the other regions of the 

channel. At locations 3 and 5 there is high circumferential stress on the sheet as it is bent 

over the radius under tension.  

 The absence of necking in lubricated stamping at 200 °C, where unlubricated 

stamping produced necking is evidence that reduced friction improves formability. High 

friction restricts plastic flow in the regions of die contact (regions 1 and 7, and regions 2 

and 6) and causes the strain required to form the channel to localise in regions 3, 4 and 5. 

The greater the frictional force, the more the localisation of strain, and limiting (necking) 

strains develop in regions 3 and 5, causing failure.  

 Punch and die side surfaces formed under lubricated conditions show different 

morphologies not only due to the different types of contact nature but also due to the 

anisotropy of the mechanical properties of lamellar solid lubricants. Under sliding 

conditions on the punch side, the re-orientation of the lubricant particles with the basal 
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planes along the sliding direction occurs, creating favourable conditions for lubrication 

action. The transfer layers are formed due to the sliding pressure. On the other hand, 

purely normal contact exists on the die side and there is no time for the lubricant particles 

to align themselves along the surfaces before the end of the process. This causes the sheet 

and the lubricant to interact at the instant of contact under the stamping load with the 

lamellar solid particles aligned randomly. Since the hardness of the lamellar solids are 

significantly high along the basal plane direction [55], particles so aligned embed into the 

surface under the stamping load acting normal to the sheet and cause the morphology 

seen in Figure 4. 21. Because the hardness of the ferritic stainless steel decreases with 

increasing temperature, but that of the lubricant does not to the same extent, this form of 

damage increases with temperature. With molybdenum disulphide, transfer layers are 

seen on both the punch and die sides at 200 °C, which causes the increased roughness at 

this temperature in comparison to the other lubricants as seen in Figure 4. 14. Upon 

normal loading of the die over the sheet with the lubricant, this random orientation of the 

lubricant particles will cause the surface morphology on the die side seen in Figure 4. 21. 

 

5.5 Surface Roughening and Evolution of Stamped Surfaces 

 The surface roughness on the punch-side is less than on the die-side. Sliding 

contact between the sheet and the die causes the flattening of asperities and the surface on 

this side has a lower Ra value. The die-side surface first undergoes roughening on the 

grain-scale due to non-contact deformation and then comes into contact with the die. 

There is no sliding and the contact with the die is purely normal, under the stamping load. 

The surface morphology seen in Figure 4. 15(d) shows large craters. The high surface 
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roughness measured on this surface is due to these features. The effect of temperature on 

the roughness of this surface is much greater than on the punch-side.  

 Lubrication reduces the surface roughness considerably. The increase in 

roughness with temperature under lubricated stamping is lower on both the punch- and 

the die-sides. Under perfectly lubricated conditions, the roughness on both sides of the 

sheet will be only due to the accommodative grain-scale movement of material in and out 

of the plane of the sheet, normal to the deformation. The actual roughness of the punch-

side of the sheet will depend on the lubricity under sliding conditions, while the die-side 

roughness depends on the load-bearing capacity of the lubricant to separate the surfaces 

under high stamping loads.  

 The higher roughness on the die-side than on the punch side even under 

lubricating conditions is due to the higher grain-scale movement on the outside of the 

bending neutral axis than on the inside. Higher deformation (evidenced by the greater 

elongation of the grains on the die-side of the sheet) leads to a higher roughening of the 

surface on the grain-scale, since bending is also reported to cause more surface 

roughening than in free tensile deformation [64]. 

 The manufacturing process is known to affect the corrosion resistance [5] and 

contact resistance [6] of the bipolar plate. Surface roughening plays an important role in 

the performance of the stamping as a bipolar plate. But the measure of surface roughness 

alone cannot determine the surface quality, and the accompanying morphology is 

important. For example, the grain-scale roughening will be important if the corrosion 

mechanism is intergranular. Sliding wear on the punch-side along with the lubricant 
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transfer layers may have compromised the corrosion-resistant passive layers. These can 

be confirmed upon further corrosion tests on the stamped sheets.  

 

5.6 Optimum Processing Window 

 The channels formed at 100 °C with loads of 45 – 50 kN show the least 

springback with minimal strain localisation and this processing window produces 

optimum bipolar plate channel quality. Deeper channels are produced at this temperature 

than at 25 °C without a significant increase in the peaks in the strains or the excessive 

thinning that is observed at 200 °C. 

 BN, although improving the strain distribution along the channel and decreasing 

the surface roughness better than the other lubricants, decreases the depth of the channels 

by 5 µm. WS2 does not improve the strain distribution as much as the other lubricants 

although the surface roughness at all temperatures is best with this lubricant. MoS2, while 

although not decreasing the surface roughness to the same extent as BN and WS2, 

produces the most uniform strain distribution (at 200 °C and 42.2 kN) without 

significantly affecting the channel depth, and has thus been selected as the optimum 

conditions for the stamping of these channels. 
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Table 5.1: The text matrix incorporating the results of this work to aid in the 

determination of the optimum processing window 
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 These processing conditions have been selected based on formability alone. The 

performance of the bipolar plates stamped under these different conditions must be tested 

for their interfacial contact resistance, corrosion properties and mating with the gas 

diffusion membrane. It will then be possible to select processing conditions as a function 

of the performance of the bipolar plates in the fuel cell environment. This work provides 

useful information towards this end.  

 

5.7 Behaviour of the Alloy 

 This alloy has been designed to best suit both the processing and the application. 

The high interstitial content present is precipitated with Ti, V and Al coarsely in order to 

free the chromium for the corrosion resistant passive layers. These precipitates are large, 

so as not to cause embrittlement and they appear to deform along with the matrix grains, 

as can be discerned from the stamped microstructures in Figure 4. 8 and Figure 4. 9. 

Their effect on the corrosion behaviour of the stamped bipolar plates in PEMFC 

environments remains to be seen, but there is evidence from lack of chromium in these 

precipitates (Figure 3. 2) that they will perform favourably.  

 Size effects affect the strength and deformation of a material, and this effect 

becomes more pronounced as the number of grains along the cross-section are less than 

ten. This is because grain boundaries are responsible for the formation of mobile 

dislocations by the strain accommodation process during deformation [65]. This leads to 

a lower strain hardening exponent than a bulk specimen of the same material and the 

uniform elongation is less as a consequence. A fine grain size is a method of reducing the 
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size effects to a minimum and the material considered in this work has on average 13 

grains across the sheet thickness.   
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CHAPTER 6: Summary and Conclusions 

6.1 Warm Unlubricated Stamping of Ferritic Stainless Steel 

The stamping of micro-scale bipolar plate channels in 30 % Cr ferritic stainless steel was 

carried out in the warm forming temperature range of 25-200 C in the stamping load 

range of 36-56 kN. The main conclusions of this work are as follows: 

 1. The dimensional accuracy of the channels is increased when the stamping was 

carried out at 100 °C rather than at 25 °C, but a further increase in temperature to 200 °C 

causes failure by localised necking. Springback effects are considerably reduced by 

increasing the temperature of stamping from 25 to 100 °C. 

 2. High stamping loads increase the localised strain (greater than 50 kN), possibly 

due to the increase in the frictional force, but a minimum stamping load of 45 kN is 

required to ensure full channel depth. Stamping load must be selected within this range 

for a given stamping temperature.  

 3. Surface roughness increases with stamping temperature and the roughness on 

the die-side of the channel is higher than on the punch-side.  

 4. 100 °C and 45 – 50 kN has been identified as the warm-forming region in 

which the stamping of micro-scale channels produces ferritic stainless steel bipolar plates 

of optimum quality.  
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6.2 Lubricated Warm Stamping of Ferritic Stainless Steel 

The effect of solid lubricants (BN, WS2 and MoS2) on the stamping of metallic bipolar 

plate channels in 30 % Cr ferritic stainless steel foils of 75 µm thickness in the 25-200 °C 

temperature range was evaluated in order to determine the optimum processing 

conditions. The findings of this work are summarised as follows:  

 1. Stamping of micro-scale bipolar plate channels in ferritic stainless steel foils of 

75 m was evaluated in the temperature range of 25-200 °C and load range of 36-56 kN 

under unlubricated conditions and with lamellar solid lubricants. 

 2. Under unlubricated conditions, localised straining and surface roughness of the 

stamped channels increased with temperature and stamping load, and failure by necking 

occurred at 200 °C at all loads.  

 3. Channel depth increased with stamping load and springback was reduced 

considerably by increasing the temperature to 100 °C. 

 4. BN, WS2 and MoS2 were applied to the process and were evaluated based on 

the strain distribution along the channel, the surface roughness and the channel depth in 

the tested temperature and load range. 

 5. BN improved the strain distribution along the channel, especially at 200 °C, but 

the channel depth was less by 5 µm compared to the other lubricants.  

 6. WS2 did not improve the strain distribution to the same effect as the other 

lubricants, but the surface roughness of the channels was the lowest at all temperatures.  

 7. MoS2 produced the best strain distribution at 200 °C, and the surfaces 

developed transfer layers on both the punch and the die sides.  
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 8. The optimum conditions for stamping bipolar plate channels have been 

identified as 200 °C, stamping load of 45 – 50 kN and MoS2 lubrication. 

 

6.3 Recommendations for Future Work 

 This work was performed in order to achieve a larger goal, which is to design the 

manufacturing process of this critical fuel cell component to impart optimum corrosion, 

electrical and structural properties. There is a strong relation between the processing 

conditions and the performance of bipolar plates and the first step towards understanding 

this is to study the effect of different manufacturing parameters on the stamping quality. 

Satisfactory stampings should next be subjected to corrosion tests, electrical contact 

resistance tests and flexural tests. An optimum processing window can then be 

determined based not only on stamping quality but also on the comprehensive 

performance of the stamping as a bipolar plate in fuel cell conditions.   
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