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SUMMARY

Recognizing the increasingly congested and contested nature of space, this thesis

contends that the fusion of small aperture, autonomous telescopes with Bayesian inference

techniques can provide timely, actionable evidence of specific threats and hazards to space

based assets. This evidence is required for a robust, persistent Space Domain Awareness

capability that decision makers can employ to protect space services and capabilities. A

multi-objective design framework for optical systems is defined empowering designers to

identify families of designs which represent feasible solutions to user specific Space Domain

Awareness mission requirements. Several trade studies are presented, the outputs of which

directly inform the construction of the Georgia Tech Space Object Research Telescope.

Novel techniques which ingest the unresolved imagery provided by small telescopes are

developed, a↵ording the estimation of attitude and angular velocity states of maneuvering

space objects without prior knowledge of initial attitude, while maintaining computational

tractability. Statistical inference techniques are applied to these posterior state distributions

to rank the hypothesized subjects most likely under surveillance by the maneuvering space

object in terms of their stochastic dominance. The totality of these contributions is validated

on experimentally collected measurements of the Hubble Space Telescope.

x



CHAPTER I

INTRODUCTION

1.1 Motivation for Space Domain Awareness

The October 1957 launch of the Russian Sputnik I satellite set in motion the “space race,”

spurring a rush of innovative technologies which forever transformed our daily lives. The

cell phones in our pockets and the nightly TV news are enabled by a fleet of satellites

in geostationary orbit (GEO) approximately 36,000 km above Earth. Meanwhile, weather

satellites in low earth orbit (LEO) warn of impending natural disasters and influence the

harvest of the world’s crops. The far reaching impact of these space assets has resulted in

the space economy reaching its highest valuation ever, $314 Billion, in 2014 [1].

Despite the value and global importance of these space-based assets, current operational

practices have resulted in an unsustainable use of space, with each launch adding new orbital

debris around Earth’s orbit. It is estimated that of all the objects currently in orbit around

Earth, only 5% are active satellites [2]. This problem is exacerbated by events such as

the often cited Chinese anti-satellite test in 2007 [3]. The first loss of a space based asset

due to debris collision occured in 2009 when an Iridium and Cosmos satellite struck on

orbit [4]. Both the ASAT test and Iridium/Cosmos collision increased the low-earth orbit

(LEO) space object (SO) population by more than 60% [5]. More recent events include

uncertainty of an alleged conjunction between the Russian Ball Lens In The Space satellite

and debris from the Chinese anti-satellite test [6] and the explosion of a retired military

weather satellite which produced more than 43 pieces of space debris [7].

In addition to economic concerns, space debris also poses a risk to human space flight

safety and science missions. Three primary countermeasures have been used to date to

ensure the safety of astronauts in orbit: passive shielding of spacecraft, collision avoidance,

and prevention of new debris through spacecraft design and operational practices [8]. The

ISS is protected by hundreds of custom made shields which protect important subsystems
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from small articles of debris [9]. Larger debris objects require that active missions actively

maneuver away from oncoming debris. In 2009, five di↵erent NASA robotic spacecraft,

the Space Shuttle, and the ISS conducted collision avoidance maneuvers [8]. In 2014, the

number of collision avoidance maneuvers undertaken by the ISS increased from 2 to 5 [10].

Finally, the exploitation and utilization of space remains a key component of the national

security of the United States. One of the highest profile examples are the Global Position

System (GPS) signals which are used for navigation of troops and guidance of munitions.

The military has long relied on satellite communication to coordinate decision making, a

function which only increases in importance as more unmanned aerial vehicles are acquired

and deployed [11]. The military importance of such capabilities has led to a great deal

of posturing among space faring nations. A Russian satellite maneuvered within 10km of

2 commercially operated Intelsat satellites, causing a great deal of concern among both

government o�cials and commercial operators [12].

Recognizing all of these concerns, the response by US policy makers was made clear

when, in 2001, the Rumsfeld Commission Report identified improvements in Space Domain

Awareness (SDA) as a top priority to protect the US and its allies as well as maintain

its economic and diplomatic objectives [13]. Joint Publication 3-14, “Space Operations,”

defines the high level activities of SDA as the detection, tracking, characterization, and

analysis of space objects (SOs) [14]. The purpose of these SDA activities is to provide

timely, actionable evidence of specific space threats and hazards to decision-making pro-

cesses that protect space-based assets. Space objects are typically defined as active and

inactive satellites, rocket bodies, and orbital debris [15]. The United States Strategic Com-

mand Joint Space Operations Center (JSpOC) operates the Space Surveillance Network

(SSN) and currently tracks in excess of 21,000 objects with diameters greater than 10 cm

[10]. Fig. 1 illustrates the 29 di↵erent sensors that constitute the current SSN. A key ele-

ment of JSpOC responsibility is determining whether the orbits of SOs might bring them

into close proximity, an event known as a “conjunction,” and the conditional probability

of SO collision. Other entities also provide data to the SSN, such as foreign governments

2



or other government agencies, such as the Missile Defense Agency [16]. Other SDA stake-

holders include NASA Johnson Space Center’s Orbital Debris Program O�ce, which has

primary responsibility for characterizing members the orbital debris population below the

SSN detection limit [17].

Copyright © National Academy of Sciences. All rights reserved.
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the Air Force Space Command Directorate of Operations and has evolved since then. By that time, various branches 
of the U.S. government (the Navy, SMC, the National Reconnaissance Office [NRO], NASA, and the National 
Oceanic and Atmospheric Administration [NOAA]) as well as various commercial entities (RCA, Hughes, etc.) 
had launched satellites into space for a variety of users and uses. Each satellite system developed its own control 
station and often its own control and processing software quite independent of Space Command or its predeces-
sors. They generally relied on their own transponder data for determining orbits and assessing the status of their 
satellites and made very little use of the data from the sensors operated by Space Command. The same was true 
of satellites launched by allied governments.

Several universities, with funding mostly from NASA and the National Science Foundation (NSF), developed 
satellites for specific scientific studies. Either NASA or the universities themselves developed the necessary control 
and orbit determination software, again tuned to the specific application and type of data.

Standardized astrodynamics algorithms were originally developed within Air Force Space Command to pro-
vide software for the user community to ensure the interoperability of military space surveillance systems with 
the C2 Space Surveillance Center within the North American Aerospace Defense Command (NORAD) located 
at Cheyenne Mountain Air Force Station. The orbital products distributed by the C2 center needed to be used in 
a compatible manner by the users (for example, unless an orbit is propagated in the same manner it was derived, 
the best possible result will not be obtained). 

A historical example of the problem that can occur if interoperability is not maintained is found in the selection 
of the Earth gravity model for propagating the precision orbits distributed for the Defense Meteorological Support 
Program (DMSP) satellites. The program originated in the 1970s, and the available WGS-72 Earth gravity model 
was used by AFSPC during the orbit determination process. It was able to successfully meet the DMSP accuracy 
requirement of predicting the position of the satellite within 1 kilometer, 3 days in the future. In the 1980s, a 
member of the user community wanted to update to the newer and improved WGS-84 Earth gravity model. When it 
used the “better” model to propagate the WGS-72-determined state vectors obtained from the Air Force C2 center, 
the user had worse results and could no longer meet its requirements. (See Figure 1.3.) The user reverted to using 
the WGS-72 gravity model and was able to successfully meet the requirements for accuracy. (Note that AFSPC 
has been unable to get the DMSP legacy user community to upgrade to newer gravity models—e.g., the Earth 
Gravitational Model 1996—because upgrading would involve significant cost and because the existing WGS-72 
model embedded in the legacy software meets the user requirements.) 
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FIGURE 1.2 The Space Surveillance Network. SOURCE: Courtesy of the Air Force Space Command.Figure 1: 29 Current SSN Sensors

1.2 Challenges to Space Domain Awareness

In order to establish a robust SDA capability, obtaining regular measurements is key [18].

Unfortunately, the Space Surveillance Network has historically been unable to collect enough

raw measurements to fully characterize the SO population [19]. While many e↵orts are

currently under way to augment the current SSN with additional sensors [17, 20], the price

tag of acquiring new SSN assets makes existing SSN assets prime targets for deactivation in

today’s austere budgetary environment. One example of such a closure was the VHF Radar

“Space Fence,” occurring in 2013 to make way for a new radar system [21]. In response to

this asset crisis, many have sought more a↵ordable solutions SDA assets.

Even with few optical and radar assets available, scheduling limited sensor resources to

collect observations of the large SO population is a complex scheduling and resource alloca-

tion problem. A great number of additional sensors with improved capability will increase
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the complexity of this scheduling and planning problem. When budgeted future assets be-

comes operational, the number of tracked objects is expected to exceed 100,000 [16]. In

addition, modifying established schedules under dynamically evolving scenarios, inclement

weather conditions, and hardware faults is di�cult [19]. The planning and scheduling is

complicated by the fact that the current global network of SSN sensors is not exclusively

controlled by the Air Force Space Command (AFSPC), but also by other entities that

provide data to the command, such as foreign governments or other government agencies

(OGA) such as the Missile Defense Agency [16].

Not only has the number of SOs tracked by the SSN greatly increased, but the data

products and services provided by JSpOC have a record number of customers as well. Cur-

rently more than 100 countries as well as commercial satellite operators regularly request

conjunctions assessments and launch screenings [16]. This has greatly increased the work-

load of JSpOC, as human analysts are needed to catalog orbital debris, recover lost satellites

from uncorrelated tracks, and ensure computer calculated answers are intuitively correct

[22]. Compounding this problem, the Air Force has faced several challenges concerning

sta�ng a su�cient number of qualified analysts [16, 22].

Outside of these current operational challenges, there is also room for improved utility

of the sensors themselves. As previously discussed, as sensor assets with greater capabilities

are brought online, a greater number of SOs will be able to be added to the current SSN

catalog. Thus, it will become increasingly likely that in the process of completing an assigned

observation, a sensor asset will detect additional SOs previously unknown, such as orbital

debris, in the vicinity of space around the initial target. Due to the centralized planning

yet distributed nature of current SSN sensors [23] and the fast time scales involved in

making SO observations, [24, 25] decisions concerning follow up observations are best made

locally at the sensor location, and globally on time scales that are incompatible with human

in-the-loop decision making.

The large number of SOs, complex scheduling constraints, high human workloads, and

short time scales are persistent challenges that are well suited to using autonomy approaches

[26]. The term ‘autonomy’ is often used to describe any system that can operate without
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human intervention [27]. Autonomy can be described using the three levels of Intelligent

Machine Design defined by NASA’s Goddard Space Flight Center (GSFC) for use in space-

craft [27]. These three levels, Reaction, Routine, and Reflection, are defined by increasing

levels of autonomy. The most basic of the three, the Reaction level, is primarily responsible

for processing sensor information and commanding actuators over very short time scales.

The Routine level is where routine evaluation and planning behaviors occur over medium

time scales. Finally, the Reflective level is where high level planning, review, and learning

occur over large time scales.

1.3 Avenues to Improved Space Domain Awareness

Of the many e↵orts to satiate the demand for automated, a↵ordable SDA assets, one ex-

ceptional example is the Raven program. The Raven program began as an R&D e↵ort

at the AFRL Directed Energy Directorate’s Air Force Maui Optical and Supercomputing

(AMOS) site in 1995. Physically, a Raven system is a combination of several components:

the telescope and dome, electro-optical (EO) sensor, computer, weather station, and a GPS

receiver and timing system. However, a Raven-class telescope system is not rigidly defined

by a specific combination of hardware. Rather, it is a design paradigm where commer-

cial o↵-the-shelf (COTS) hardware and software are combined to fulfill designated mission

requirements. The Raven system at AMOS is capable of acting at the “Routine” level

of autonomy. Using the weather station sensors, it can detect nautical twilight to begin

automated boot sequences and detect inclement weather to suspend operation. More im-

pressively, given a set of tasks, it can determine an appropriate observation schedule to

satisfy the human-provided objectives. In 2001, a Raven located at the Maui Space Surveil-

lance Site (MSSS) became a contributing sensor to the SSN [19].

While the low cost of COTS hardware and automation of the Raven-class telescope

make it an appealing SDA solution, it is not enough to deploy myriad sensors; these assets

must be supported by algorithms which can glean actionable information from observations.

In 2011, Air Force Space Command (AFSPC) asked the National Research Council to

make recommendations specifically concerning how best to develop and incorporate better
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algorithms into current JSpOC data pipelines [16]. Successful SDA requires many tasks to

successfully identify and predict threats and hazard to space-based assets including, but

not limited to: data tasking, collection, characterization, and exploitation. This thesis

is concerned with algorithms for characterizing SO. Characterizing space objects entails

identifying information about the physical and functional features of a SO including, but

not limited to, those listed in Table 1 [28].

Table 1: SO Characteristics

Characteristic Example Methodologies
Size

Shape
Material Composition

Attitude

RADAR
Unresolved Imagery
Resolved Imagery

Operational Status
Payload Capabilty
Mission Purpose

Inference
Subject Matter Expertise

It is common to group the size, shape, and material composition of the SO together

and refer to them collectively as the SO “shape model” [28]. Alongside each characteristic

is a methodology by which information about this characteristic could be gained. The

characteristics in Table 1 have been grouped by methodologies purposefully. The attitude

and shape model can be estimated directly from observations. However, knowledge about

SO operational status, payload capability, or mission purpose must be inferred or otherwise

derived from subject matter expertise.

For SO in low earth orbit, shape model and attitude estimation is performed extensively

using radar-based methods. The first radars utilized for SDA were those belonging to

the U.S. Navy’s “Space Surveillance System,” coming online in 1959 [29]. Unfortunately,

Rayleigh scattering makes debris smaller than 10 cm in diameter very di�cult to reliably

track [30]. The shape and attitude of large SO can also be estimated from resolved imagery

taken by ground based optical sensors. However, when SO are too distant to be imaged by

radar facilities or too small to be adequately resolved by ground based optical sensors, the

only data currently available is unresolved imagery [28].

Unfortunately, SO that are distant and small comprise increasingly important classes
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of SO. The worlds communication satellites are most frequently located in GEO station-

ary orbit, too far away for ground-based resolved imagery. Additionally, on-orbit collisions

produce large clouds of small debris. Current estimates place the number of objects larger

than 1 cm at approximately 700,000 and the number of objects larger than 1 mm at approx-

imately 200 million [31]. Additionally, the low cost, scalability, and potential for disaggre-

gated constellation design, has led to the rapid proliferation of physically small “cube-sats”

in LEO. These facts imply that the successful exploitation of unresolved imagery produced

by Raven-class telescopes is essential to a persistent, robust SDA capability. Consequently,

the contributions of this thesis conform to and support a single guiding philosophy.

Thesis Statement: The fusion of small aperture, autonomous tele-
scopes with Bayesian inference techniques can provide the timely,
actionable evidence of specific threats and hazards required for a
persistent Space Domain Awareness capability that decision mak-
ers can employ to protect space services and capabilities.
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CHAPTER II

SURVEY OF SMALL TELESCOPES AND SPACE OBJECT

CHARACTERIZATION

This chapter outlines previous e↵orts to design small aperture telescopes and techniques

for characterizing SO. This is done in recognition that the contributions presented here

would not be possible without these previous breakthroughs and to provide context for

the contributions of this thesis. §2.1 outlines several small aperture telescopes built which

achieve a diverse set of scientific, educational, and defense related missions. §2.2.1 gives a

brief history of various approaches to light curve inversion while §2.2.2 details the various

approaches to SO characterization, specifically operational mode classification.

2.1 Raven-class Telescopes

The success of the Raven program has led many institutions to embrace small aperture

telescopes as a↵ordable, e↵ective research and development test beds. In 2006, Japan

Aerospace Exploration Agency (JAXA) placed 0.35m telescopes in its Mt. Nyukasa optical

observational facility. The main objective of the facility is to develop detection technology

for space debris less than 10 cm in size. It also aims to conduct GEO surveys as well as

study light curves of GEO objects [32].

Around the same time, a joint team of researchers guided by the Center for Space Debris

Information, Collection, Processing, and Analysis of the Russian Academy of Sciences col-

laborated with 15 observatories to construct and operate the International Scientific Optical

Network (ISON). A series of dedicated 0.22 m telescopes was combined with charge-coupled

device (CCD) cameras, Global Positioning System (GPS) receivers, and the requisite soft-

ware to make more than 130,000 observations of GEO objects. This e↵ort enabled the

Keldysh Institute of Applied Mathematics (KIAM) to find 288 GEO objects that were

absent from the public orbital databases [33].

The United States Air Force Academy has partnered with several institutions to build a
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global network of small-aperture telescopes, named the Falcon Telescope Network (FTN).

These 0.5m telescopes support several missions including satellite imaging, astronomical

research, and STEM support. Operating at the Routine level of autonomy, the FTN is

capable of executing nightly observation campaigns aggregating by network partners [34, 35].

Another example includes Los Alamos’ Telescope ALert Operations Network (TALON),

developed for detecting and observing gamma ray burst (GRB) events. The TALON net-

work was comprised physically of RAPid Telescopes for Optical Response (RAPTOR) tele-

scopes: arrays of COTS optics, including four 0.4m telescopes or sixteen 0.2m cameras.

Operating at the Routine level of autonomy, each RAPTOR had a “client” agent which was

responsible for transmitting data to a centralized server. This centralized server synthesized

these individual data logs to produce follow-up observation alerts which were pushed back

to all telescopes connected to the TALON [36].

Recently, detailed thought has been applied to moving telescope network autonomy to

the Reflective level. The Thinking Telescope program at Los Alamos National Laboratories

has taken lessons learned from TALON and has combined additional RAPTOR telescopes

with unsupervised learning techniques. The architecture consists of a vast database of ob-

servational variations from persistent sources coupled with intelligent agents. These agents

learn over time to distinguish between actual gamma ray burst (GRB) events and environ-

ment noise such as airplane lights and other non-celestial phenomena [37].

Academic and government institutions are not alone in embracing Raven-class tele-

scopes. In 2006, Lockheed Martin began passively tracking LEO space objects using 0.36m

telescopes. As a result of those successful e↵orts, Lockheed invested in what is now known

as the Space Object Tracking (SPOT) Facility. Achieving first light in 2012, the SPOT

facility is comprised of three 1m telescopes whose primary mission is to observe satellites

and orbital debris [38].

Despite these successful implementations of Raven-class telescopes, key questions con-

cerning their widespread adoption for SDA. A larger scale deployment necessarily implies

that each will be operating in optically diverse environments. Therefore, it is important to

determine which combination of COTS components yield the best performance given the
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mission and local optical environment. Tacit in this statement is the reality that di↵erent

SDA missions are best performed with fundamentally di↵erent hardware configurations.

How does one balance these conflicting mission requirements to yield a successful SDA

asset?

2.1.1 Multi-Objective Design

To best accomplish this mission, one desires a conceptual design framework that allows

for the incorporation of multiple design objectives. However, the current literature reveals

no conceptual design studies of optical systems that utilize COTS components to complete

SDA missions. Some studies investigate the performance of a specific, custom optical designs

[39, 40]. Other studies list the performance metrics of finalized optical systems individually,

making it di�cult for the decision maker to understand the impact of performance tradeo↵s

or why a particular design is selected. Additionally, those interested in constructing a Raven

system might come from backgrounds other than optical design or physics. Thus, the

tacit radiometric models and assumptions utilized in the literature to derive performance

estimates of optical systems may not be readily apparent [41, 42]. Still, other studies that

do detail a radiometric model utilize assumptions that are not applicable to the desired

optical environment or mission [25]. These findings motivate the systems engineering trade

study performed for this thesis.

Realizing that the background knowledge necessary to conduct such a study is currently

scattered among the fields of astronomy, information theory, optics, statistics, and systems

design, Chapter 3 outlines the collection of multi-disciplinary equations necessary to create

a radiometric model of optical systems utilizing a consistent nomenclature. Further, the

design metrics and approach outlined in Chapter 4 are intended to provide a high level

methodology for quantifying performance tradeo↵s among design parameters which are

typically controllable when selecting COTS components. It is emphasized that the approach

presented is not intended to replace traditional, detailed optical design. Rather, it is hoped

that the contributions in this work are used during the conceptual design phase to help

designers narrow the design space and to identify families of designs which represent feasible
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solutions to user specific mission requirements.

2.1.2 Raven at Georgia Tech

Deploying numerous SDA assets is only one component of successful SDA. These assets

must be used in tandem with algorithms which can successfully extract information from

collected observations. Critically, any new algorithms o↵ered by the research community

must be able to perform successfully in an operational setting. Unfortunately, due to

the defense related nature of SDA, there is a lack of experimental data available to the

research community. This lack of operational data products, and the a↵ordable nature of

the Raven design paradigm, has led an increasing number of institutions to embrace Raven-

class telescopes as cost e↵ective research testbeds. Ravens around the world are used for

the development of SO detection and characterization algorithms, and to investigate novel

autonomy architectures [34, 32, 43].

Thus, an additional contribution of this thesis is to use the multi-objective design frame-

work to select COTS components for the construction of a Raven-class telescope at Georgia

Tech. The design, assembly, and calibration e↵orts of the author resulted in the Georgia

Tech Space Object Research Telescope (GT-SORT). A summary of this e↵ort is outlined

in Appendix B. Georgia Tech, like the aforementioned organizations, have selected to con-

struct this facility not only to provide a source of experimental data, but also to better

inform their own research directions.

2.2 Space Object Characterization

Given su�cient observational data, SDA stakeholders must successfully exploit this data

for information related to the physical and functional characteristics of SOs. Because unre-

solved imagery is the only avenue to obtain this information on several important classes of

SO, such as GEO objects and cube-sats, Chapter 5 outlines several novel contributions that

allow the attitude of an agile SO to be estimated from unresolved imagery using light curve

inversion. Chapter 6 presents several statistical methods for inferring the active control

mode of an agile SO using the posterior distributions of attitude and body angular rate

states.
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2.2.1 Space Object Attitude Estimation

A light curve is a temporally resolved sequence of power measured over a specified band-

width. Each point in the light curve is the total amount of power reflected by the SO

measured from an unresolved image. Because the total amount of power reflected by the

SO is dependent on the SO shape and attitude, estimating either the attitude or shape

of the SO is possible using the observed light curve under certain assumptions [44]. This

process is referred to as light curve inversion, and was initially developed to characterize

asteroids [45].

Past e↵orts to characterize asteroids have used batch estimation methods, where atti-

tude, angular rates, moments of inertia and shape model are all simultaneously estimated.

Batch estimation requires that available light curves represent the asteroid in a variety of

solar phase angles and attitudes relative to the observer, often assuming a fixed spin axis

[46, 47, 48, 49].

While the light curve inversion process is similar, there are several important di↵erences

between asteroids and man-made SOs. The first significant di↵erence is that unlike aster-

oids, many SO have highly angular surfaces composed of several materials, each having

di↵erent time-varying reflectance properties. This has led some researchers to separate the

SO attitude from materials and shape properties, which are collectively referred to as the

SO “shape model” [28]. Another di↵erence is that satellites are typically actively controlled.

Asteroids, like orbital debris, are generally not actively controlled and subject to many per-

turbative forces such as atmospheric drag, solar radiation pressure, and earth oblateness

e↵ects [50]. SOs that can actively maneuver, typically referred to as “agile” SOs, introduce

new modeling complications. The author defines an agile SO as one that is maneuvering to

produce rotational motion about its center of mass, not one that is maneuvering to change

its orbit plane. Nonzero torques, introduced by SO actuators, are di�cult to discern from

the normalized mass properties of the SO [51].

The first work outlining the theoretical application of light curve inversion to SO char-

acterization was given by Hall et al. in 2005 [44]. Sequential filtering techniques were first

applied to simulated, non-maneuvering SOs in 2007. The approach uses Unscented Kalman
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Filters (UKFs) to estimate either the SO attitude, shape model, or both simultaneously[52].

More sophisticated methods for estimating the SO shape model have been proposed using

Multiple Model Adaptive Estimation (MMAE) techniques. A bank of UKFs, each with

a di↵erent shape model, is implemented to estimate the position, attitude, attitude rates

of a simulated non-maneuvering SO [53]. Recognizing that UKFs are inappropriate for

substantially non-gaussian distributions, which can be caused by bidirectional reflectivity

distribution function (BRDF) measurement models that are non-linear functions of attitude

states, recent e↵orts utilize particle filters (PFs) to estimate the attitude states of agile SO.

It is also shown how shape model bias can be included in the estimated states. To account

for the unknown SO torques and inertia properties, SO angular rates are modeled as a white

noise process [51].

Realizing that including bias states increases the state dimensionality, this thesis intro-

duces an adaptation of the Singer dynamics model to represent the motion of agile SO. This

enables the now linear body angular velocity states to be analytically marginalized out to

reduce the computational burden of a traditional particle filter. This concept, often referred

to as Rao-Blackwellization, enables the estimation of attitude and angular velocity states of

maneuvering space objects without a priori knowledge of initial attitude while maintaining

computational tractability. The simulated results of the Rao-Blackwellized Particle Filter

(RBPF), presented in Chapter 5, show for the first time the full three degree of freedom

estimation of an agile SO.

2.2.2 Space Object Operational Mode Classification

Determining the current attitude of SO is a critical aspect of characterization, and is increas-

ingly useful the closer to real time the information is generated. However, attitude is not an

immediately actionable piece of information; characteristics such as SO operational status,

payload capability, and mission purpose can be more useful in decision making processes.

To help inform the body of evidence for these important classes of SO, the contributions of

this work focus on inferring an SO’s current, active control mode using light curve inversion.

This work defines the active control mode as “the classification of a time history of attitude
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and angular rate states necessary for an SO to rate track a specific subject.” While this

encompasses traditional “operational modes” such as “sun-pointing,” it also describes more

specific behavior such as “rate tracking SO catalog number 16111,” for example.

The earliest work in the public literature on SO operational mode classification, com-

pleted by MIT Lincoln Laboratory, utilizes light curves gathered using the Space-Based

Visible sensor to classify geostationary orbit (GEO) SO in the following categories: nomi-

nal in-slot, anomalous in-slot, nominal moving, anomalous moving, drifting, and graveyard.

These classifications were made using Bayesian networks, but little detail is provided due

to the operational nature of the work [54].

Another approach outlined in the literature also utilizes Bayesian networks, where the

possible classifications are: nominal and anomalous. This work focused on constellations

of SO in the same GEO slot, utilizing the classifications to help ameliorate the problem of

“cross-tagging.” Cross-tagging occurs when a SO is erroneously identified as another, an

occurrence much more likely to happen among a cluster of SO in GEO sharing the same slot

[55]. This work has been extended to multi-satellite scenarios where hypothesis testing and

sliding window techniques, among others, are proposed to classify SO using only nightly

comparisons of light curves [56].

Despite the modicum of prior work on SO operational mode classification, many similar

concepts have been developed in the fault detection and classification literature. Many of

those techniques have already been applied to di↵erent SDA specific problems. Surveying

the literature for fault detection as applied to adaptive control, fault control, and systems

identification reveals that all change detection algorithms fall into one of three general

categories [57].

The first category applies statistical tests to the residuals generated by a Kalman filter.

Tests for whiteness, zero mean, and a specified variance all indicate that the system model

is representative of the true, physical system. If the residuals fail these tests, and the model

accurately reflects the true system, this indicates that the behavior of the physical system

have changed [58]. The second category implements two filters in parallel, where statistical

tests are applied to the distributions at two discrete time steps. Also referred to as “sliding
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window” techniques, these tests are applied to certain parameters including: the generalized

likelihood ratio (GLR), the divergence test, or changes in spectral distance [59]. The third

and final category is the multiple model method, where all hypothesized change times are

defined and compared to the filtered estimates. Similarly to “match filtering” techniques,

the hypothesis which provides the smallest residuals is taken to be the correct hypothesis

[60].

Perhaps the earliest application of a multiple hypothesis methodologies in the SDA field

is the multiple-model adaptive estimation technique proposed to determine the most likely

shape model of an SO. The core technique, where a bank of filters each operating under a

di↵erent hypothesis to determine the most likely physical system, is similar to those ideas

proposed in the fault detection literature. Indeed, the most likely physical shape is indicated

by the hypothesis which produces the highest likelihood [53].

In a manner similar to multiple model methods, match filtering techniques have also

been applied to SDA. First applied to increasing the signal-to-noise ratio (SNR) of radar

returns, the core concept of a match filter is that multiple signal “templates” are hypoth-

esized where the correct hypothesis yields the greatest SNR [61]. One corresponding SDA

application utilizes multiple hypothesized templates to detect unresolved SO in low SNR

imagery obtained with optical telescopes [62]. This is particularly useful when numerical

propagation errors or sensor pointing uncertainties cause di↵erences between SO orbit and

telescope pointing.

The concept of “active control modes” is motivated by the following scenario: an agile

SO under surveillance by an SDA stakeholder, termed the “target” SO, is hypothesized to be

actively rate-tracking another SO, called “subject” SO, with its optical payload. This work

emphasizes that an agile SO is one that is maneuvering to produce rotational motion about

its center of mass, not one that is maneuvering to change its orbit plane. The overall goal

of the methodologies presented is to identify, from a mutually exclusive but not exhaustive

list of hypotheses, which subject is under observation by the agile SO. The methodologies

utilize both estimated attitude states and estimated body angular velocities, such that

any sensor that provides these estimates could exploit the contributions enumerated in
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this work. However, the simulated results assume that a terrestrial telescope produces

unresolved images of the target SO. To the authors knowledge, estimating both the attitude

and velocity states of an agile target SO using unresolved imagery requires innovations in

light curve inversion presented in Chapter 5.

In solving this scenario, the author embraces the philosophy of inductive reasoning

and make the “open-world assumption” for representing knowledge [63]. Applied to SDA,

the knowledge of stakeholders will always contain uncertainty, and new information should

always be used to inductively update beliefs by eliminating incorrect hypotheses. Consistent

with this philosophy, all sets of hypotheses presented in this thesis represent a mutually

exclusive and open set of hypotheses. This stands in contrast to previous work that relies

on framing problems with a closed set of hypotheses. This “closed-world assumption”

artificially create information by comparing measured evidence to synthetic measurements

based upon known assumptions, thereby forcing the new information to support a limited

list of hypotheses that is not guaranteed to contain the truth.

The specific metrics presented in Chapter 6 include a measurement dissimilarity metric,

which computes the time integral of the error between the estimated target space object

bore-sight and the line-of-sight vector to each hypothesized target. To discriminate between

two closely co-located targets, i.e. those with nearly parallel line-of-sight (LOS) vectors,

a “pointing quality” metric is presented utilizing the estimates of body angular velocity.

This metric computes the Mahalanobis distance using the error between the mean vector

of the posterior body angular velocity distribution and each hypothesized body angular

velocity triple. Since some knowledge of SO shape model is required for light curve inversion

techniques, SO shape model information can be fused with the principles of radiometry to

determine maximum body angular velocity errors that satisfy signal-to-noise ratio detection

requirements. Finally, the estimated body angular velocities are utilized to compute mass

specific rotational angular momentum and mass specific rotational kinetic energy analogs.

These analogs are utilized in a statistical hypothesis testing framework to systematically

eliminate those hypotheses which are not consistent with observational data.
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2.3 Summary and Organization

The organization of this dissertation and highlights from each chapter are summarized here.

Contributions from Chapter 3 and Chapter 4 are combined to define a conceptual design

methodology for a↵ordable SDA assets. The results of this study led to the selection of

COTS components that constitute the GT-SORT, as outlined in Chapter B. Novel contri-

butions in agile SO attitude estimation are presented in Chapter 5. Chapter 6 proposes new

methods for estimation SO active control mode. Table 2 outlines how these contributions

are supported by existing literature, denoted as checkmarks.

Table 2: Summary of Related Research

Reference Telescope Design SO Characterization
Attitude Active Control Mode

Sabol [19] X
Fabricant [39] X
Ackermann [40] X
Brown [64] X
Ackermann [41] X
Rios [42] X
Shell [25] X
Dunlap [45] X
Magnusson [46] X
Cellino [65] X
Kaasalainen [47] X
Torppa [49] X
Kaasalainen [66] X
Torppa [67] X
Hall [68] X
Hall [69] X
Jah [70] X
Wetterer [52] X
Linares [53] X
Holzinger [51] X
Abbot [54] X
Chaudhary [55] X
Coder [71] X
Coder [72] X
Coder [73] X
Introduced Chapter 2.1 Chapter 2.2.1 Chapter 2.2.2
Contributions Chapters 3 & 4 Chapter 5 Chapter 6 & 7
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2.4 Contributions of Thesis

This thesis advances the state of the art in several areas of space domain awareness. The

first area is the multi-objective design of electro-optical assets, specifically concerning small-

aperture telescopes. Three analytic performance metrics rigorously define the performance

of these assets, enabling the identification and ranking of major system performance drivers.

It is shown how these metrics can be used to construct Pareto frontiers of non-dominated

designs. From this set, stakeholders may select point designs which satisfy mission require-

ments in a variety of disparate operating environments.

The second set of contributions show how the unresolved imagery produced by small-

aperture telescopes can be exploited; the sum of which constitute a new approach to the light

curve inversion problem. A physics-based measurement model, exponentially correlated

dynamics model, and the Rao-Blackwellized Particle Filter enable the estimation of attitude

and angular velocity states of maneuvering space objects without a priori knowledge of

initial attitude, while maintaining computational tractability. These methods assume that

knowledge of the SO shape and material properties, referred to as the “shape model,” is

known.

The final set of contributions represent a set of mathematical techniques which trans-

form the state estimates provided by the RBPF into a list of subjects most likely under

observation by a SO - key component of SDA. This is accomplished by pruning hypotheses

from a mutually exclusive but not exhaustive list of hypothesized subjects either in terms

of their stochastic dominance relative to each other or in terms of rejecting hypotheses with

multi-variate hypothesis testing. Critically, this activity is only possible because of the

extra information, specifically the body angular velocity estimates, provided by the novel

approach to the light curve inversion problem. While each chapter outlines a simulated test

demonstrating the utility of these techniques, the totality of these contributions is tested

on experimentally collected data of the Hubble Space Telescope.
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Meeting, Williamsburg, VA, January 2015.

• Coder, R.D. and Holzinger, M.J.; “Sizing of a Raven-class Telescope Using Perfor-

mance Sensitivities,” 2013 Advanced Maui Optical and Space Surveillance Technolo-

gies Conference, Wailea, HI, September 2013.

• Coder, R.D. and Holzinger, M.J.; “Autonomy Architecture for a Raven-Class Tele-

scope with Space Situational Awareness Applications,” AAS-13-359, 23rd AAS/AIAA

Spaceflight Mechanics Meeting, Kauai, HI, February 2013.

20



CHAPTER III

RADIOMETRIC PRINCIPLES AND PHENOMENOLOGY

To complete an optical telescope design space exploration, it is necessary to first establish a

complete source to sensor photometry model [74]. Of particular interest to the designer of

SSA systems is the rate of photons emitted by the SO and the background sky. Together,

these two quantities are the greatest contributors to the “signal-to-noise” ratio (SNR), which

is frequently used to define the quality of an image captured with a digital sensor. This

thesis uses the signal to noise ratio as the foundation for the limiting magnitude performance

metric and also as the basis for the probability of un-cued SO detection in Chapter 4.

The radiometric model developed here is also used to define a physics based measurement

model for the light curve inversion problem. By accurately accounting for the disturbance of

the atmosphere in the forward modeling of satellite brightness, the simulations implemented

for testing light curve inversion filters are more realistic. Finally, it is shown in Chapter 6

how this same model can be used to bound the norm of the tracking error of satellite.

3.1 Radiometric Model

By convention, SO brightness is quantified using the apparent visual magnitude system,

first developed by early astronomers. The system is unitless, logarithmic, and references

the brightness of Vega as the scale’s zero point. The resulting SO signature represented in

the apparent visual magnitude system, mv,SO, is found using Eq. (1) [74].

mv,SO = mv,Sun � 2.5 log10


1

R2

Z �UL

�LL

MEarth (�) Fr

⇣
✓BI , ŝ, R̂,�

⌘
d�

�
(1)

Please note that unless otherwise stated, this radiometric model uses standard SI units.

In this equation, R is the distance from the SO to the observer, MEarth (�) is the spectral

exitance of the Sun at the Earth integrated over wavelength �, and Fr is the reflectance

function from the SO towards the observer, from direction ŝ, the unit vector from the Sun

to the SO. The rotation from the inertial frame to the body frame of the SO necessary
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to calculate these unit vectors is denoted by ✓BI . Eq. (1) generally represents the highest

fidelity models of SO signatures, which are functions of a multitude of variables including

SO geometry, attitude, and the bidirectional reflectance distribution function (BRDF) of

the SO materials [75]. In order to simplify this study, first order approximations are made

that maintain a form representative of the majority of potential SOs to be examined, as

detailed in the results section. A general facet shape model can be employed to simplify the

reflected intensity density function, [52] or, in the case of basic geometrical shapes, closed

form solutions are available [41]. In this case, the apparent visual magnitude of a SO can

be calculated as shown in Eq. (2)[76].

mv,SO = mv,Sun � 2.5 log10


A↵ [⇢spec( ) + ⇢di↵( )]

R2

�
(2)

Here, the visible, illuminated area of the SO is A, the albedo of the SO materials are

↵ 2 [0, 1], and ⇢ defines the specular and di↵use components of reflectivity as a function

of the solar phase angle,  . The resulting visual magnitude of the SO is now found in the

unit-less and logarithmic apparent visual magnitude system. Conversion from this scale into

radiometric units is necessary to complete a performance based assessment. This formu-

lation is appropriate for CCD, complementary metaloxidesemiconductor (CMOS) sensors,

and photon counters [24]. The visual magnitude of an SO is equivalent to a photon flux

density above the Earth’s atmosphere, �SO, as described by Eq. (3)[25].

�SO = �0 ⇥ 10�0.4mv,SO (3)

In Eq. (3), �0 is the photon flux density of a magnitude 0 object, and the units for both

� are photons/s/m2. In order to find �0, the first calculation to be made is the total

spectral exitance of the Sun, MSun (�), measured in W/m2/nm. To obtain an accurate

approximation of the total spectral exitance, the Sun is idealized as a black body whose

radiated power at the Sun’s photosphere as a function of wavelength has the form given by

Eq. (4) [74].

MSun (�) ' 2⇡hc2

�5
⇥
exp

�
hc
k�T

�
� 1
⇤ (4)

The constants h, c, and  are Planck’s constant, the speed of light, and Boltzman’s constant

respectively. The wavelength, �, of interest is user defined. For example, Fig. 1 shows the
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Figure 2: Black Body Approximation of Spectral Exitance of Sun

spectral exitance for light with a wavelength between 200 and 2800 nm. These photons

then travel to the Earth such that the spectral exitance above the atmosphere, MEarth (�),

is given by Eq. (5), where 1 AU is the mean Earth-Sun distance [74].

MEarth (�) =
r2Sun

(1 AU)2
MSun (�) (5)

The Sun’s radius is denoted by rSun. Despite the Sun-SO distance varying from a mean

value by its orbit size above Earth, the altitude of an SO is small compared to the mean

Earth-Sun distance. Therefore, little accuracy is lost by using the value of 1 AU in Eq. (5).

The spectral exitance can then be integrated over the sensitive wavelengths of the EO sensor

to yield a total solar exitance emitted over the sensitivity spectrum of the EO sensor above

the Earth’s atmosphere. This solar exitance can then be used to find the exitance of a

magnitude 0 object, M0, using Eq. (6) [74].

M0 =

✓Z �UL

�LL

MEarth (�) d�

◆
10�0.4mSun (6)

It is important to recognize that filter selection impacts the wavelengths of light which pass

onto the EO sensor. Using no filter, or a clear filter, a typical EO sensor is sensitive between

350 and 1000 nm. However, certain SSA missions will dictate the use of a filter which block

all light outside a specific wavelength range, which will impact the overall sensitivity of the

EO sensor. Eq. (7) is used to convert the magnitude 0 objects flux to a photon flux density,

denoted �0 [25].

�0 =
M0�

hc
(7)
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In Eq. (7), a weighted average of � = 625 nm is used, and the quantities h and c are

Planck’s constant and the speed of light respectively [74]. Having found the resulting SO

photon flux density using Eq. (3), the next step is to model the light gathering capabilities

of a proposed telescope system. For a ground-based sensing application, the photon flux

captured by the optical system, qSO, measured in e�/s, is given by Eq. (8) [25].

qSO = �SO⌧atm⌧opt

✓
⇡D2

4

◆
QE (8)

In Eq. (8), ⌧atm and ⌧opt are the transmittance of the atmosphere and optics assembly, which

have possible values ranging from ⌧ 2 (0, 1]. The aperture diameter of the telescope is given

by D, and the quantum e�ciency of the CCD is defined as QE 2 (0, 1]. The atmospheric

transmittance, optical transmittance, and quantum e�ciency are included in Eq. (8) in

lieu of more detailed modeling. If higher fidelity models of these values are desired, the

convolution of any combination of these three values could be utilized. Additionally, this

methodology can be extended for space-based optical systems by simply setting ⌧atm = 1.

Successful detection of an SO typically requires that the number of photons emitted by

the SO be several times greater than the number of photons emitted by noise sources. One

such noise source is the background radiant intensity, also referred to as the background

sky brightness or light pollution. To accurately characterize this noise source, a sky sensor

is utilized to measure the local background radiant intensity, Isky, whose major sources

are moonlight and local light pollution. Because Isky is measured in units of mv/arcsec2,

conversion to radiometric units is necessary. The total photon radiance at the telescope

aperture due to background sky pollution, Lsky, in photons/s/m2/sr, is given by Eq. (9)

[25].

Lsky = �010�0.4Isky

✓
180

⇡

◆2

36002 (9)

The next step is to to calculate the total irradiance on the focal plane, Esky. However, for

clarity, a simple telescope diagram is presented in Fig. 3 to illustrate the major telescope

variables. In Fig. 3, f denotes the e↵ective focal length and D the aperture diameter of

the telescope [77]. It is also common to refer to optics systems by their “f-number,” N , as

shown in Eq. (95) [78].
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Figure 3: Common Telescope Parameters

N =
f

D
(10)

In Eq. (95), f denotes the e↵ective focal length and D the aperture diameter of the telescope.

As a result, the f-number is also referred to as the focal ratio, focal number, or f-stop. Using

these parameters, one can also define the instantaneous field of view (IFOV), sometimes

referred to as the pixel field of view, of the optical system. The equation for IFOV is given

by Eq. (11), where p is the length of the sensor pixel [78].

IFOV = 2 arctan
⇣ p

2ND

⌘
(11)

Using Eq. (95), one can now calculate the total incidence on the focal plane from the

radiance at the telescope aperture. The “camera equation” is used, as defined by Eq. (12)

[74].

Esky =
Lsky

g
(12)

Here, g defines the capability of the system to convert radiance from the aperture to the

sensor focal plane, and has been defined for a singlet lens, valid for all focal lengths, as

shown in Eq. (13) [74].

g =
1 + 4 (ND)2

⌧opt⇡
(13)

It is very typical for SSA telescopes to utilize Cassegrainian-type optics. Thus, an additional

term indicating the loss of photons due to the obstruction created by the secondary mirror

and supporting structure, ⌧s, is introduced [74].

⌧opt,c = ⌧opt⌧s (14)

One way of estimating the transmission loss due to the secondary support structure is given

by Eq. (15) [74].

⌧s = 1� D2
s

D2
(15)
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Here, Ds is the diameter of the secondary mirror. It is di�cult to precisely define the

diameter of the secondary for every design point of interest. Using an existing .5 m design

it is noted that the value of ⌧s = 0.84. Utilizing the previously defined relations, a final

expression for the photon flux per pixel resulting from background radiant intensity, qp,sky,

is expressed in e�/s/pixel as shown in Eq. (16).

qp,sky =
Lsky⌧opt⌧s⇡ (QE) p2

1 + 4N2
(16)

In Eq. (16), the EO sensor is assumed to have square pixels. For non-square pixels, p2

can be replaced by the appropriate unit of area. The radiometric model developed defines

the photon flux of SOs, in Eq. (8), and the background sky brightness, in Eq. (16), as a

function of various environmental variables and SSA asset design parameters. With these

two quantities defined, it is now possible to discuss how these quantities relate to the ability

of an SSA asset, such as a Raven-class telescope, to successfully detect and track SOs. The

most commonly used measure to describe the quality of images captured by optical SSA

assets is the signal-to-noise ratio.

3.2 Signal-to-Noise Ratio

Generally, the SNR of an image is the ratio of the total number of photons from the target to

the number of photons generated by various noise sources, such as background sky pollution,

CCD dark current, and CCD read noise. In the context of SSA, a higher SNR ratio is a

result of a brighter SO in the image plane. This implies a greater probability of successful

detection, and more accurate photometry results [79].

The arrival process of photons incident on the CCD plane can be accurately modeled

by a Poisson process. Therefore, this model is bound by the three main assumptions made

for a Poisson process: the arrival of photons at the detector plane occurs one-at-a-time at

a mean rate of ⇤ per unit time, ⇤ is stationary, and the number of photons incident on the

CCD in two disjoint time intervals are independent [80]. These assumptions hold over the

wavelengths of interest, therefore the number of photons incident on the CCD is the random

variable � having poisson distribution with parameter ⇤. The probability that � is equal to

k number of photons is defined by Eq. (17) [81]. Note the capital greek letter lambda has

26



been used in place of the customary lowercase lambda in order to prevent confusing this

term with wavelength.

� ⇠ Pois(⇤) =
e�⇤⇤k

k!
(17)

With the random variable for number of photons incident on the CCD defined, it is now

necessary to define what constitutes a successful detection. The term signal-to-noise ratio

is introduced, where the “signal” is the number of photons incident on the CCD reflected

by the SO, and the “noise” is the number of photons incident on the CCD from both the

SO and background. A successful detection occurs when the signal received by the CCD

reaches a certain threshold greater than the noise received by the CCD. The SNR of a

measurement made with a CCD is typically defined as the quotient of the mean number of

photons from the SO, µSO, by the standard deviation of photons from all noise sources, �n

[82].

SNR =
µSO

�n
(18)

An excellent discussion on the variance of noise sources is provided by Merline and Howell,

so only the salient steps in deriving the SNR will be presented here [83]. The total signal

integrated over the CCD, S, is calculated from the total count, Ci, the number of pixels

occupied by the SO, m, the average background level, n̄, and digitization o↵set, d̄, as shown

in Eq. (19). This equation is written in terms of analog-to-digital units (ADU), which are

commonly refereed to as “counts” [83].

S =
X

Ci �mn̄�md̄ (19)

To find the variance of the total, integrated signal a Taylor Series expansion is taken about

the mean integrated signal, S̄, as shown in Eq. (20) [83].

�2S =
mX

i=1

✓
@S

@Ci

◆2

�2Ci
+

✓
@S

@n̄

◆2

�2n̄ +

✓
@S

@d̄

◆2

�2d̄ (20)

It is emphasized that beginning with Eq. (20), the following equations are written in units of

electrons and not ADU. So, the variance of the source signal, �2CS
, the variance of the total

signal, �2Ci
, the variance of the background noise, �2n̄, and the variance of the digitization

o↵set, �2
d̄
, are defined in units of electrons. Because all of the coe�cients in Eq. (19) are
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constant, no terms higher than first order appear in Eq. (20). Additionally, the variance

of the total signal, background, and digitization o↵set are assumed to be uncorrelated and

zero mean, therefore no covariance terms appear in Eq. (20). This Taylor series can also be

equivalently rewritten as shown in Eq. (21) [83].

�2S =
mX

i=1

�2Ci
+ m�2n̄ + m�2d̄ (21)

In Eq. (19) through Eq. (21), the subscript i is used to denote a pixel which lies in the array

of pixels containing the SO. In this study, the major contributors to background noise are

assumed to be counts from the radiant intensity of the background sky, CS , counts from

the dark current of the CCD, CD, and read noise of the CCD, �2r . The variance in the total

signal in each i pixel is defined as shown in Eq. (22) [83].

�2Ci
= �2r + (Ci,SO + Ci,D + Ci,S) G (22)

For clarity, the read noise of the CCD is given in units of electrons, as is typically found in

CCD specifications available from the manufacturer, while the remaining terms have been

converted from ADU to electrons via the CCD gain, G. The CCD gain defines the e�ciency

of a CCD sensor in converting electrons to ADU. The variance in the noise is defined as

shown in Eq. (23) [83].

�2n̄ =
1

z2

zX

j=1

⇣
�2r + �2Cj,D

+ �2Cj,S
+ �2Cj,�

⌘
(23)

To quantify the signal reflected by the SO, one must also determine the average background

noise and subtract it from the total signal. Because it is not possible with traditional

CCDs to determine the source of individual electrons, the background noise level must

be estimated. The simplest method for determining the background is to find the mean

background noise from a random sample of z, “SO-free” pixels [24]. The subscript “j” is

used to denote that these z pixels are a separate array from the m pixels occupied by the

SO. Finally, the variance of the digitization o↵set is defined by Eq. (24), where �2f is the

standard deviation of fractional counts lost to digitization in a single pixel [83].

�2d̄ =
G2

m

⇣
1 +

m

z

⌘
�2f (24)
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Determining a specific value for �f requires several assumptions, and contributes a minor

amount of noise, on the order of a few percent of the total read noise [83]. This is insignificant

for purpose of SO detection, but interested readers can find more detail in Newberry [84].

Substituting Eqs. (22 - 24) into Eq. (21) yields a final expression for the variance in the

integrated signal, as shown in Eq. (25) [83].

�2S = m
⇣
1 +

m

z

⌘
�2r +

mX

i=1

[(Ci � C�
i ) G] +

m2

z2

zX

j=1

⇥�
Cj � C�

j

�
G
⇤
+ m

⇣
1 +

m

z

⌘
G�2f (25)

The final new superscript, �, indicates that these counts are due to direct current (DC) bias.

In Eq. (25), the first term is the e↵ect of readout noise on the source and noise integration,

the second term is the photon noise, sometimes referred to as shot noise, in the source

integration, the third term is the photon noise in the noise determination, and the fourth

term is the variance due to the conversion from analog to digital units. The second and

third term of Eq. (25) can be simplified as shown in Eqs. (26 - 27) [83].

mX

i=1

[(Ci � C�
i ) G] ' qSOt + m (qp,sky + qp,dark) (26)

zX

j=1

⇥�
Cj � C�

j

�
G
⇤
' z (qp,sky + qp,dark) (27)

In Eq. (26) and Eq. (27), qSO is the photon flux reflected by the SO as given by Eq. (8),

qp,sky is the photon flux per pixel from the background sky irradiance as defined by Eq. (16),

the dark current per pixel is qp,dark, and t is the integration time, also called the exposure

time, of the observation. Since the mean and variance of a Poisson distribution are equal

to the rate parameter ⇤, the mean and variance of electrons generated in a CCD from a SO

observation can be defined by Eq. (28) and Eq. (29)[80].

µSO = �2SO = qSOt (28)

�2n ⇡ qSOt + m

✓
1 +

1

z

◆
(qp,sky + qp,dark) t +

�2r
n2

�
(29)

The derivation of Eq. (29) from Eq. (25) includes one simplification and one enhancement

made by Schildknecht [24]. The value of �f is approximately equal to �f ' 0.3 ADU when

using the uniformly distributed assumption presented by Merline and Howell [83]. This is

29



relatively small compared to other variances, and is only necessary for precise photometry

and not for detection of SO. Therefore, the last term in Eq. (25) can be ignored. The

enhancement is the inclusion of the pixel binning factor, n. If the EO sensor is operated

in a “binned” mode the read noise can be reduced. Substituting these two expressions into

Eq. (18) yields Eq. (125). Eq. (125) is commonly referred to as the “CCD Equation.”

SNR =
qSOtr

qSOt + m
�
1 + m

z

� h
(qp,sky + qp,dark) t + �2

r
n2

i (30)

Despite its name, the CCD equation applies to many forms of EO sensors, including CMOS

sensors, CCD sensors, or photon counters [24]. Thus, the signal term could represent the

entire signal from a SO, or the signal from a single pixel [83]. As a result, comparing SNR

values is highly dependent on the imaging area considered, and also the specific detecting

algorithm utilized. In this work, Eq. (8) expresses the total signal in the streak of the SO

across the image plane. As developed, all noise sources are computed on a per pixel basis.

Therefore, the total number of pixels occupied by the SO on the image plane has a great

impact on the total SNR [83].

3.3 SO Image Area

In the SNR equation m is the number of pixels occupied by the SO. For the purposes of

defining the limiting magnitude, the main concern is the number of pixels occupied by an

unresolved SO, i.e. a “point source” of light. For a point source, the number of pixels

initially occupied by the SO, mi, is a↵ected by the IFOV and the point spread function

(PSF) of SO intensity formed on the focal plane. The PSF is due to the blurring e↵ects of

optics, the atmosphere, and focus [78]. Theoretically, the PSF includes an infinite area, but

the image size of point source is typically represented using the variance or “full width at

half maximum” (FWHM) of its intensity distribution. To illustrate, Fig. 4 shows how the

FWHM is defined as �x where f(x) is equal to half the maximum value of f(x).

In this work, it is assumed the image is well focused. Therefore, the size of mi is

determined by the IFOV and the FWHM of the PSF. As described by Eq. (11), the IFOV

defines the angular field of view, in radians, of a single pixel. If the IFOV is larger than the
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Figure 4: FWHM of Continuous Distribution

diameter of the PSF, as defined by the FWHM, then mi is simply equal to a single pixel.

The PSF is defined as the larger of two values: the PSF defined by the atmospheric seeing,

or the PSF as a result of di↵raction limiting.

The PSF due to atmospheric seeing can be theoretically evaluated, but PSF is tempo-

rally varying over fast time scales and accurate computation requires detailed knowledge

of atmospheric composition which is typically unknown. Several COTS sensors also exist

that are capable of measuring an average value of FWHM of atmospheric seeing. Thus, the

FHWM of atmospheric seeing is considered a known variable in this analysis, and is defined

to be ✓S .

The PSF due to di↵raction limiting is the theoretical limit of an optical system’s reso-

lution due to the di↵raction of light. For a perfectly circular aperture with no obscuration,

the diameter of a point source is described by the “Airy disk.” The angle in radians of the

Airy disk is given by Eq. (127) [85].

✓A =
2.44 (�)

D
(31)

It is important to note here that the diameter of the Airy disk is wavelength dependent,

and therefore a weighted average for wavelength should be used in the same manner as

Eq. (7). With the PSF diameters calculated for both di↵raction and atmospheric seeing,

the diameter is then chosen using the maximum function

✓ = max (✓S , ✓A, IFOV) (32)

The initial number of pixels occupied by the SO in the image, is then defined by the
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piecewise function described in Eq. (33).

mi =

8
><

>:

1 : ✓ = IFOV

⇡(✓ND)2/4
p2 : ✓ 6= IFOV

(33)

When the optical system is perfectly tracking an SO, then the value of mi is constant.

However, when the relative velocity between the SO and telescope are di↵erent, such as the

case when performing un-cued detection of SO, the captured image will contain SO streaks.

For a SO streaking across the image plane, the number of pixels occupied by the incoming

signal grows as defined by Eq. (126) where ! is in radians/s and IFOV is in radians [24]. It

is important to note that ! is the relative velocity between the telescope motion and the

SO.

m = mi +

p
mi!t

IFOV
(34)

A consideration is how fractional pixel values are handled in such a physics-based model.

Eq. (33) assumes fractional values of pixels, whereas actual detectors are always comprised

of discrete pixels. The piecewise function described in Eq. (33) prevents erroneous limiting

magnitude estimates for the special case of observing small SO with wide FOV systems.

Without establishing a lower bound on mi, the continuous number of pixels occupied by

the SO could be calculated as less than unity. This is problematic, as physically the light

can never be incident on less than a single pixel. Even if the photons emitted by a SO

are incident on a single pixel, it is challenging to distinguish between a “hot pixel” and a

successful SO detection. While advanced detection techniques, such as multiple-hypothesis

tracking, could be used to mitigate detection ambiguities, they are not considered here

[86]. A final consideration is the accuracy of orbits estimated with extremely wide FOV

optical systems. Chapter 4 outlines how the design methodology allows the system analyst

to account for such issues.

32



CHAPTER IV

MULTI-OBJECTIVE DESIGN OF SDA ASSETS

This chapter outlines two di↵erent methodologies for designing optical systems tasked with

SO detection and tracking. The first methodology, presented in §4.1 through §4.1.3, is

intended for designing systems whose primary purpose is detecting previously undetected

SOs to expand a SO catalog. The primary challenge in designing these systems is the lack of

detailed knowledge about target SO parameters. Thus, the three novel performance metrics

detailed in §4.1.1 through §4.1.3 enable the quantification of optical system performance

with very few assumptions about the target SO population.

The second methodology, outlined in §4.1.4, is intended to design optical systems whose

primary objective is SO catalog maintenance. Here, the challenge is not a lack of information

about target SOs, but rather how quickly and e�ciently sensor assets can be utilized to

reacquire previously detected SOs. This additional data informs not only optimal SSA asset

designs but also optimal operational schemes.

Both methodologies consider the actual optical design of the system as a “black box.”

There are many design variables, such as angles and sizes of mirrors or lenses, that constitute

an optical system. However, the ones that are easily controlled in the COTS component

Raven design paradigm are the aperture diameter, D, f-number, N, and pixel size of the

CCD, p. These three variables will be treated as the design variables, x, while all other

parameters, p, will be fixed at constant values.

xT = [D N p]T (35)

pT = [Dso, FWHM, IB, QE, qp,dark, R, SNRalg, !, �0, ⌧atm, ⌧opt, ⌧s]
T (36)

This optics-agnostic approach emphasizes the pixel level performance of a system and

a↵ords several advantages. While the motivation for the study is a ground-based Raven-

class telescope, the developed methodology is not limited to a specific optical configuration
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and enables a wide range of operating environments and optical designs to be considered.

Consequently, the methodologies outlined here can be used to identify families of feasible

designs which constitute candidates for further detailed design.

Since these methodologies are intended to be used during conceptual design phases,

they do not consider geometric optical design. Therefore, neither methodology calculates

items such as the total size of the flat field or optical aberrations [77]. If the analyst wants

to verify that they are not considering a system that might encounter these issues, the

easiest solution is to restrict the range of design variables under study. Using only higher f-

numbers, smaller aperture diameters, or a combination of both can alleviate this problem. If

the systems under consideration requires a large field of regard, then engineering solutions

are available to mitigate these concerns during the detailed design phase [41]. Possible

solutions include restricting the bandwidth of the system, ensuring short back focal lengths,

or accepting larger spot sizes. Such considerations are outside the scope of this thesis and

selecting COTS components ensures these issues will not be significant.

An additional concern not addressed in this thesis is that of system cost. While the pri-

mary motivation for small aperture, autonomous telescopes is their low cost, it is di�cult

for several reasons to predict the cost of conceptual designs generated using this methodol-

ogy. While empirical curves could be fit to the aperture diameter, for example, technology

generally decreases the cost of telescope components, especially electro-optical sensors, at

a rapid pace. Consequently, any specific cost estimates presented in the thesis would be

instantly outdated, and makes broad statements on drivers of total system cost di�cult to

predict. Another consideration is that budgets and costs are relative, and each stakeholder

would identify a↵ordability di↵erently. Thus, this thesis presents a methodology which

computes the performance of electro-optical systems only.

4.1 Multi-Objective Design Methodology

Optical systems tasked with detecting new SOs have three primary goals: to accurately

generate initial orbit estimates, to detect the dimmest SOs possible, and to detect as many
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SO as possibles. To quantify the performance of these optical systems, three novel per-

formance metrics are developed. Attempting to optimize such as a system constitutes a

multi-objective optimization (MOO) problem. Note that in this specific problem the maxi-

mization of all objectives is the desired solution, but the problem has been cast as a classical

minimization problem by multiplying the utility functions by �1. Therefore, the following

discussion will take place in terms of a minimization problem.

In multi-objective optimization, optimum design points are always compromise solu-

tions; a decrease in the value of one objective can only be gained at the increase of another.

The solutions desired are termed Pareto optimal solutions, and are often depicted as a

Pareto frontier. A design point x in the feasible design space is called Pareto optimal

if there is no other point x in the set that reduces at least one objective function with-

out increasing another one. The ordering of these Pareto points is often referred to as

“Pareto dominance.” A point may be strongly or weakly dominant. A vector of objectives

J strongly dominates another vector of objectives Ĵ if J < Ĵ and weakly dominates it if

J  Ĵ . A Pareto frontier is the set of strongly non-dominated points in objective space.

The simple two objective case is depicted in Fig. 5, where the solid black line is the set of

non-dominated Pareto points and the dominated points are represented by ‘+’ signs. The

“utopia point,” J�, is defined as a physically unrealizable solution plotted in the objective

space using a vector of each minimum. In Fig. 5, the utopia point is denoted by ‘O,” and

each individual objective minimum is marked with squares. The utopia points are typically

used as a benchmark to compare the relative merit of a selected design [87].

To ensure the resulting solutions are not skewed by the order of magnitude di↵erence

between the performance metrics, each is normalized as shown in Eq. (37). In this equation,

the ith objective is evaluated using the current vectors of design variables x and parameters

p. Conversely, Ji
max is the maximum value for Ji.

Ji
norm =

Ji(x,p)� Ji
�

Ji
max � Ji

� (37)

There are many well-known MOO strategies, and selection of one most appropriate de-

pends on analyst preferences. If a priori preferences for certain performance criteria have
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Figure 5: Sample Pareto Frontier

been established, a single Pareto optimal point is sought. Therefore, methods such as the

Weighted Global Criterion Method or Bounded Objective Function Method may be ap-

propriate. However, this work is concerned with design space exploration, and therefore

seeks to generate the entire Pareto optimal frontier. Accordingly, methods such as Multi-

Objective Genetic Algorithm or Weighted Min-Max Method are appropriate [87]. Because

the objective functions derived in the following subsections are analytic, it is known that

the objective space is continuous. Therefore, results presented are generated using grid

search methods, where the Pareto frontier is selected using e�cient subroutines detailed by

Deb [88]. Grid search methods are used instead of evolutionary algorithms, as the ability

to support selected designs is preferred. However, the MOO problem formulated here does

not explicitly prevent their use and evolutionary algorithms can certainly be used as the

analysts discretion.

4.1.1 Information Objective

When describing the resolution of an optical system, it is typical to quote the systems

instantaneous field of view (IFOV). However, the actual quantity of interest in initial orbit

estimation is not the resolution of the optical system, but rather the uncertainty in the initial

orbit estimate. Calculating the accuracy of initial orbit estimates is not straightforward,

as measurement uncertainties are passed through an estimation algorithm yielding a final

converged orbit estimate [70, 89]. In a typical estimation algorithm, a measurement z is
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made at time ti of the true state x as given by Eq. (38). Here, vi is the observation

uncertainty which is often assumed to be zero mean Gaussian white noise with covariance

Ri, as described by Eq. (39) [90].

zi = h (xi) + vi (38)

vi ⇠ N (0,Ri) (39)

This approach advocates approximating initial orbit determination uncertainty using the

Information Matrix (IM), as defined by Jazwinsky. The IM defines the amount of informa-

tion, F, contained about the state, x, in the observations, z, as shown in Eq. (40) [91].

F(tk, 1) ,
tkX

ti=1

�T
STM(ti, tk)H

T (ti)R(ti)
�1H(ti)�STM(ti, tk) (40)

In Eq. (40), �STM is the state transition matrix, H is the linearized measurement model

matrix, and R the covariance of the observation uncertainty as defined above. The linearized

measurement model is defined by

H(ti) =
@h

@x

���
i

(41)

To determine the instantaneous amount of information obtained, ti = tk = 1 and conse-

quently both the state transition matrix and model matrix are equal to identity. Substitut-

ing this result into Eq. (40) yields the Information Matrix contained in the observation of

a single SO, as shown in Eq. (42).

F(1, 1) = R�1 (42)

From a decision-making perspective, the IM provided by captured images is not currently

used directly to select optical designs; however, as shown in Eq. (42), the IM is known to be

inversely proportional to the uncertainty in a measurement and therefore monotonic with the

accuracy of initial orbit determinations [91]. In a Raven system, measurement uncertainties

are a combination of the uncertainty of the SO location in the focal plane, uncertainties

in optical system pointing, as well as uncertainties in the geometry and dynamics of the

SO. Ideally, these uncertainties could be bound, thereby defining the best possible initial
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Figure 6: Measurement Uncertainty in Focal Plane Due to Pixel Resolution

orbit estimate possible from the collected observations. As this work is primarily concerned

with optical system design, only the uncertainty in the SO location in the focal plane is

considered.

In SSA missions, the measurement uncertainty of the mean pixel location of the SO is

described by a multivariate normal distribution with parameters a = [µx, µy,�
2
x, �

2
y ]. As

stated in Eq. (39), the observation noise is assumed to be zero mean. Additionally, most

COTS CCD detectors utilize square pixels as shown in Fig. 6. Therefore, the measurement

uncertainty in pixel location is equivalent in both directions and �2 = �2x = �2y and the IM

can be written as given by Eq. (43).

F(1, 1) =

2

64
1
�2 0

0 1
�2

3

75 (43)

This vectorized result does not yield a single scalar information quantity, so the common

practice is to take the trace of the IM, reducing Eq. (43) to Eq. (44) [92]. As a result, Eq.

(44) defines the total amount of information contained in a single observation conduced by

the SSA asset, such as a Raven system.

tr(F(1, 1)) =
2

�2
(44)

Uncertainty in SO location on the focal plane is a result of several factors including: signal-

to-noise ratio, optical system resolution, sub-pixel centroiding, accuracy of reference stars’

catalogued positions, orientation of the EO sensor, and systematic bias in sensors [24, 74, 78,
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93]. Since the focus of this work is optical system design, only the optical system resolution

is included in the uncertainty. The IFOV, as presented in Eq. (11), practically defines the

resolution of images captures by a Raven system. By again examining Fig. 6, it is evident

the conservative measure of maximum uncertainty in SO position, which is analogous to

the observation noise covariance, is half the system’s IFOV. Substituting the small angle

approximation of Eq. (11) into Eq. (44) above yields the final expression for the information

objective given by Eq. (45). Because the Information Matrix can have very large orders of

magnitude change, a base 10 log operation is implemented for ease of interpreting results.

JI (x) = log10

✓
2

�2

◆
/ log10

"
2

�
1
2 IFOV

�2

#
= log10

"
8

✓
ND

p

◆2
#

(45)

As the information objective is the trace of the IM it is also equivalent to the volume of

the information ellipsoid contained in a single image. As demonstrated in Eq. (44), the IM

is inversely proportional to the measurement uncertainty. Therefore, by maximizing the

information objective, the uncertainty in the initial orbit estimate of a SO due to optical

system resolution will be minimized.

4.1.2 Limiting Magnitude Objective

With the accuracy of SO angular measurement defined, the next performance metric to

consider is the detection capability of the Raven system. The brightness of a SO is typically

defined using the apparent visual magnitude scale, and the dimmest object detectable by

an optical system is termed its limiting magnitude [76]. The classical determination of a

telescope’s limiting magnitude assumes the observations are performed by a human eye [94].

These are certainly not applicable in a modern telescope system which uses semiconductor-

based imaging sensors. Newer detection formulations, appropriate for EO sensors, rely on

the signal-to-noise ratio which require a fixed exposure time [24]. Consequently, the concept

of operations and the Raven system performance cannot be evaluated independently . To

ameliorate this problem, a second metric is introduced to calculate the limiting magnitude

of the telescope system while eliminating the dependence on exposure time.

Substituting Eq. (126) into the SNR equation while assuming z is large, and hence ↵

equal to unity, leads to an expanded form of the SNR equation given in Eq. (46). This
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assumption implies that a large number of pixels are utilized to accurately characterize

the background noise levels. This assumption may lead to exaggerated values of limiting

magnitude for small EO sensors or for frames containing crowded star fields.

SNR2 =
(qSOt)2

qSO +
⇣
mi + ND

p
mi!t1p

⌘⇣
qp,sky + qp,dark + �2

r
n2

⌘ (46)

Another tacit assumption of the SNR equation is that all of the light transmitted to the

focal plane is incident on the EO sensor. For larger FOV telescopes, this may not always

be case. Some of these optical systems utilize a mosaic of EO sensors and the physical gaps

between the chips result in lost light. These optical systems can be described by a “fill-

factor” that defines the percentage of light captured by an EO sensor. Since the limiting

magnitude metric is derived from the SNR equation, it also assumes that the fill factor is

equal to unity.

Using L’Hospital’s rule twice to find the SNR as time grows to infinity determines that

maximum achievable SNR, resulting in Eq. (49). The first derivative is shown in Eq. (47)

while the second derivative is shown in Eq. (48).

d
�
SNR2

�

dt
=

2q2sot

qso + mi (qp,sky + qp,dark) +
p

mi!ND 1
p

h
2t (qp,sky + qp,dark) + �2

r
n2

i (47)

d2
�
SNR2

�

dt2
=

pq2sop
mi!ND (qp,sky + qp,dark)

(48)

Because the quantity of interest is the limiting SNR, simple algebraic manipulation yields

Eq. (49). Here, the typical thought process must be altered. Think of Eq. (49) as the SNR

required by a detection algorithm for a successful detection.

SNRalg = lim
t!1

⇣p
SNR2

⌘
=

qso
p

p
⇥p

mi!ND (qp,sky + qp,dark)
⇤1/2 (49)

Thus, Eq. (8) is substituted for the value of qso, and the required photon flux density

emitted by the SO is defined as

�SO =
SNRalg

⇥p
mi!ND (qp,sky + qp,dark)

⇤1/2

⌧atm⌧opt

⇣
⇡D2

4

⌘
QE
p

p
(50)

To convert this photon flux density to the apparent magnitude scale, the formula for con-

verting flux to to visual magnitudes is applied. Using the photon flux density of a zero
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magnitude object results in the limiting magnitude of the optical system.

mv = �2.5 log10

2

4SNRalg

⇥p
mi!ND (qp,sky + qp,dark)

⇤1/2

�0⌧atm⌧opt

⇣
⇡D2

4

⌘
QE
p

p

3

5 (51)

Using a simple law of logarithms results in the final limiting magnitude objective utilized

in this study.

Jm (x,p) = 2.5 log10

2

4
�0⌧atm⌧opt

⇣
⇡D2

4

⌘
QE
p

p

SNRalg

⇥p
mi!ND (qp,sky + qp,dark)

⇤1/2

3

5 (52)

In taking the limit, the limiting magnitude a↵orded by this equation assumes an infinite

exposure time. However, it is important to note that this capability may not be physi-

cally realizable for every SO observation. Appendix A of Schildknecht presents an excellent

investigation into the e↵ect di↵erential motion between the SO and telescope boresight, de-

noted !, has on the SNR. In the appendix, equations for the time necessary for a significant

fraction, e.g. 90%, of the SNR to be reached are developed. It is found that the SNR, and

hence limiting magnitude equation, tends towards its maximum value asymptotically with

exposure time [24].

As a result, the limiting magnitude is typically approached in integration times as short

as a few pixel crossings. This is a consequence of the fact that as the SO streaks through

the focal plane the signal from the SO is spread over an increasing number of pixels, each

with their own noise contributions. Meanwhile, the pixels initially occupied by the SO, mi,

only serve to accumulate more noise. In order to further demonstrate this point, the time

to reach a specific SNR, derived by Howell, can be consulted [79].

4.1.3 Field of Regard

One final aspect of telescope systems not considered by the previous two metrics is the total

field of view. For missions such as the “un-cued” detection of SOs, having a wide FOV is

desirable. The expression for the total angular field of view (FOV), as a function of the

previously defined instantaneous field of view (IFOV), along an axis of the EO sensor is

given by Eq. (53).

FOV = npIFOV (53)
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In Eq. (53) np is the number of pixels in the EO sensor. Therefore, FOV increases with

larger numbers of pixels, larger individual pixel size, and smaller f-numbers. As discussed,

this methodology can not calculate the size of the flat field produced by telescope optics.

As a result, it is not possible using the information presented in this work to say what the

maximum number of pixels, and hence maximum field of view, would be. However, the total

field of view is an important telescope metric. To capture the trade between information

content, limiting magnitude, and field of view, the instantaneous field of regard, IFOR,

metric is defined as given by Eq. (54).

JR (x) = IFOR = IFOV2 = 4arctan2
⇣ p

2ND

⌘
'
⇣ p

ND

⌘2
(54)

This metric is simply the steradians covered by a single pixel. The IFOR metric is defined

by design variables that enable the design methodology to retain its performance-centric

focus, without require detailed information about internal optics. However, the pixel IFOR

monotonically increases with the total FOV, and thus maximizing this metric is equivalent

to maximizing the FOV.

4.1.4 Information Rate

The previous three performance metrics describe the performance capabilities of an optical

system tasked with SO detection without requiring detailed optical design. However, recent

shifts within the community have begun to emphasize alternative metrics, such as total

system cost per byte of information gained and total number of bytes of information gained

per unit time operational [95]. Since the amount of information contained in an observation

of a single SO has been defined previously, the information rate could be calculated as given

by Eq. (55).

JḞ (x; t,p) =
(nSO)(FOV)(JI(x))Pr (�so+n > SNRalg�n)

t
(55)

Here, �so+n is the random variable for the number of photons reflected by the SO in

a background reduced image. Also, nSO is the number density of SO per deg2 and FOV

is the total field of view in deg2. Intuitively, the quantity of information is divided by the

exposure time.
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In reality, the time between successive observations is dictated by several sequential

events including: image exposure time, image download time, time to slew to the next SO,

and time for telescope to “settle” on the next target. Of these, exposure time is the most

logical choice for optimization. The other three times are not typically under the control of

those assembling COTS optical systems. Ideally, they would be as close to zero as possible.

Exposure time, however, must be carefully selected. Enough photons must be collected to

successfully detect the object, but maximizing exposure time leads to ine�cient use of SSA

assets.

It is also necessary to include the probability of successful SO detection, Pr (�so+n > SNRalg�n).

To successfully gain information about the SO, the SO must be successfully detected, which

is not a deterministic event. Additionally, if probability were excluded, any optimization

would result in designs with long focal lengths and small pixel sizes. Careful study of

Eq. (52) reveals that such designs have poor detection sensitivity. By including the proba-

bility of successful detection, the impact of perturbing the aperture diameter is captured.

As a result, the information rate performance index yields designs that would gather infor-

mation at an optimal rate for the specified SO. This is useful in current design paradigms

where a nominal target SO is defined to evaluate SSA asset performance for an entire class

or orbital regime of SO.

The probability of detection is defined as the probability that the number of photons

emitted by the SO is greater than the product of the SNR required by the detection algo-

rithm and the variance of the signal emitted by all noise sources combined. This definition

follows directly from the SNR equation, where the signal must be higher than a certain

threshold above the noise. The di↵erence here, is that the source and variance will be

treated probabilistically rather than deterministically. As discussed in Chapter 3, the mean

number of photons from the SO is given by Eq. (28) while the variance of all noise sources

is provided by Eq. (29). The random variable which describes the number of photons in a

background subtracted image of the SO is then given as the Normal distributions shown
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below [81].

�so+n = Pois(µSO+n)� Pois(µsky)�N (µdark,�
2
dark)�N (µr,�

2
r )

⇡ N (µSO,�2SO+n)

(56)

This approximation, given by the Central Limit Theorem, is valid when the number of

incident photons is large. While defining “large” can be subjective, many have studied the

error rates in approximating the Poisson distribution as normal. These references indicate

this approximation is accurate when the number of incident photons is greater than 30 [96],

with additional benefits seen when the “continuity correction” is applied [80]. For example,

calculating the di↵erence between a Poisson distribution with rate parameter ⇤ = 10 and

its Gaussian approximation, the maximum error in the CDF is 0.02. While this error rate is

su�cient for the results presented here, if further refinement is desired alternative approxi-

mations are available [97]. With this random variables assumed Gaussian, the probability

that the signal is greater than the noise can found using the equation for the cumulative

distribution function (CDF) of a Gaussian. Note that since the probably sought is for the

number of photons greater than the threshold, the complementary CDF is utilized to define

the probability of successful SO detection as given by Eq. (57).

Pr (�so > SNRalg�n) =
1

2


1� erf

✓
SNRalg · �n � µsop

2(�SO)

◆�
(57)

To elaborate, a cartoon depicting the probability distribution function (PDF) of the dif-

ference in these two random variables is shown for a sample in Fig. 7. In the figure, the

Figure 7: Evolution of PDF with Increasing Exposure Time

PDF with the least variance and largest magnitude mean is for a short exposure time, t1.
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However, as the exposure time is increased to t2, the mean and variance increase, caus-

ing the PDF to exhibit lower kurtosis. This results is intuitive, as the increased exposure

time allows photons from all sources, SO and noise, to collect on the EO sensor. The fact

that photons from the SO collect at a higher rate is evident by examine Eq. (28) through

Eq. (29). One can see that while the signal from the SO increases proportionally with time,

the signal from noise sources increases with the square root of time.
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Table 3: System Parameters

Parameter Units Atlanta Antarctic RECONSO
SO altitude km 1000 1000 1000
SO diameter m 1 1 1
SO elevation deg 30 30 30

irradiance of magnitude 0 source photons/s/m2 5.6 · 1010 5.6 · 1010 5.6 · 1010

atmospheric seeing/mount jitter arcsecond 4 1.5 .5
sky brightness mv/as2 15 22 30

CCD quantum e�ciency - .6 .6 .6
CCD dark current e/pixel/s .5 .5 .5

algorithm required SNR - 4 4 4
atmospheric transmittance - .5 .7 1

optical transmittance - .9 .9 .9
secondary transmittance - .84 .84 1

4.2 Multi-Objective Design Case Studies

The multi-objective sizing methodology is utilized to evaluate the performance of opti-

cal systems in three optically diverse environments, as outlined in Table 3. The astute

reader will notice slight discrepancies between the parameters in Table 3 and those listed

in Eq. (36). Specifically, the altitude, elevation, and diameter of a SO are present in lieu of

the slant range and relative velocity between the SO and the observer. This choice is made

out of convenience for the analyst. Typically, a specific slant range or relative velocity is

not known. However, parameters such as SO orbit typically are known. Therefore, several

assumptions are made to ease the production of these results, which are not necessary for

the validity of the methodology.

First, the optical systems are assumed to be operating in a “stare mode” where the SO is

not actively tracked, thus the relative ! is simply the velocity of the SO [17]. Also, circular

orbits were assumed when determining the orbital velocity of SO from orbital altitudes.

Furthermore, some of the parameters specified are specific to CCD sensors. This choice is

made to present a tractable number of results to demonstrate the methodology, but is by no

means necessary. Suitable noise parameters could be introduced for alternative EO sensors.

To facilitate interpretation of the Pareto frontier results, three point designs are iden-

tified and discussed, as described in Table 4. The first, denoted by an ‘*’, is a 0.2 m f/8

telescope utilizing the CMOS sensor found in the rear-facing camera on the iPhone 5s.
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Table 4: Sample Point Designs

Point Design Aperture Diameter (m) F-Number Pixel Size (µm)
Raven with iPhone (*) 0.2 8 1.59
Raven with CCD (O) 0.5 8 9

NASA MCAT (X) 1.3 4 15
RECONSO (r) 84 · 10�3 1.4 9.7

While such systems are not generally considered “research grade”, it serves to illustrate the

performance that can be had with low cost COTS components. For comparison, configura-

tion more typical of a Raven-class telescope, a .5m f/8 telescope, is denoted on the charts

by an ‘O.’ The final design point, marked ‘X,” is NASA’s MCAT and is representative of a

more traditional large aperture telescope. The performance of these systems is evaluated in

two locations: the Antarctic and Atlanta. Chosen for its dark skies and benign seeing, the

Antarctic site is typical of a traditional observatory location. The second environment is

the Georgia Tech observatory, located in Midtown Atlanta, at approximately N 33� 460 3900,

W 84� 230 5500. This location exhibits bright skyglow and significant seeing e↵ects which

greatly impact performance.

To further demonstrate the flexibility of the presented methodology, a small aperture,

space-based optical system is also presented. The specifications are those of a small Cube-

Sat named “RECONnaissance of Space Objects” (RECONSO), which was successfully pro-

posed by a research program at Georgia Tech to the Air Force O�ce of Scientific Research

(AFOSR)/Air Force Research Lab (ARFL) University Nanosatellite Program (UNP)-8 Pro-

gram. To simulate the space environment, the radiant sky intensity is set to a much higher

value. While there certainty is not ambient light from city lights, there is ambient light

from the Earth or Moon depending on specific problem geometry. This assumed value also

implies that the systems do not have to cope with unresolved stars, nebulae, or other celes-

tial phenomena. Additionally, while atmospheric seeing e↵ects are no longer present, there

is still the potential for vibrational loads which could impact performance.

The information rate results are presented for the 0.5 m f/8 Raven-class telescope oper-

ating in Atlanta, as described in both Table 3 and Table 4. For all of these results, several

basic assumptions were made. First, all SO were approximated as spheres whose area was
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calculated from an assumed diameter. The specular component of reflectivity for a sphere

is given by Eq. (58) while the di↵use component is found in Eq. (59) [76]

⇢spec =
1

4⇡
(58)

⇢di↵( ) =
2

3⇡2
[sin( ) + (⇡ �  ) cos( )] (59)

The components of reflectivity are dependent on the geometry of the observer-SO-Sun

angle,  , termed the solar phase angle. A recent study has determined that a reasonable

global, average value for the albedo of SO is 0.175. [98] It is assumed that specular and

di↵use reflectivity contributed equally to the SO signature, an assumption supported by

observational data. [25]

4.2.1 Pareto Frontier - Antarctica

Fig. 8 shows the Pareto surface for optical systems located in the Antarctic. The surface

exhibits performance tradeo↵s that are consistent with intuition. The peak of limiting mag-

nitude performance is achieved for a system having the largest possible aperture diameter,

shortest f-number, and largest pixels. Limiting magnitude performance then diminishes

while information increases for combinations of larger f-numbers or smaller individual pix-

els. This is a result of the fact that the SO image occupies a greater number of pixels in

the EO sensor, therefore increasing the amount of noise added “behind” the SO. Fig. 8

Figure 8: Pareto Frontier of SSA Optical Systems in Antarctic

also highlights three interesting point designs. The specific performances denoted by these
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Table 5: Performance of Selected Point Designs in Antarctic

Optics System Info. Metric Lim. Mag. (mv) IFOR (arcmin2) IFOV (as)
0.2 m f/8 (*) 12.7 15.5 1.0E-05 1.93E-01
0.5 m f/8 (O) 11.9 17.8 6.0E-05 4.64E-01
1.3 m f/4 (X) 11.7 18.9 9.8E-05 5.95E-01

symbols are further detailed in Table 5. It was found that in dark skies, e.g. those in the

Antarctic, increasing the aperture diameter from 0.2m to 0.5m yielded a limiting magnitude

increase of 2.3 mv. This is approximately equivalent to saying a 0.5m telescope could detect

SO 8.3 times dimmer than a 0.2m telescope. However, increasing the aperture diameter

from 0.5m to 1.3m yielded a 1.1 mv limiting magnitude increase. Equivalently, a 1.3m

telescope has the ability to detect SO 2.75 times dimmer than a 0.5m telescope. These re-

sults should not imply that large aperture telescopes are made obsolete by smaller aperture

Raven-class telescopes. Indeed, some missions dictate detecting the smallest, dimmest SO.

However, it is posited by the authors that the requirements of a majority of SSA researchers

are satisfied by small aperture telescopes.

One benefit of the novel, analytical metrics is that if no design were to satisfy the desired

performance the analytical Jacobians of the performance metrics are available. These define

which design variables and parameters have the greatest impact on system performance. It

is extremely important to note that the sensitivities may depend on other variables. Thus,

changing the value of one variable may ultimately change the sensitivity of another. The

sensitivities presented here were evaluated using the parameters set forth in Table 3 and

the design variables were fixed as [D, N, p] = [0.5m, 8, 5µm].

Table 6: Information Content Sensitivities for Raven

Variables �JI/�(·) Variable Step Change
aperture diameter .4 per .1 m

f-number .25 per 1
pixel size -4 per 1 µm

Table 6 shows the information metric sensitivities for a Raven telescope in both the

Antarctic and Atlanta. These results are valid for both locations, as the partial derivatives

of the information objective are a function solely of the design variable in question. When
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interpreting these results, it is important to recall that the information metric is transformed

using the log10 function. For example, the ratio between 0.4 and -4 is given by 100.4+4. The

fact that the aperture diameter has the greatest e↵ect on the information objective can be

attributed to two causes. The first is the fact that the performance metrics are developed

in terms of f-number rather than focal length. As a result, increasing the aperture diameter

increases the focal length. The second cause is the specific design point at which the values

in Table 6 were calculated. N = 8 is a fairly large f-number, meaning an increase in 0.1 m

aperture diameter would increase the focal length more than a change in N from 8 to 9.

Table 7 lists the sensitivities of limiting magnitude for a Raven in the Antarctic. These

sensitivities are not provided in base units, but have been converted to increments that

would most likely be used by the analyst. When interpreting these results, the positive and

negative signs indicate the direction of change in the limiting magnitude for a unit increase

in the variable listed in the last column. Care must be taken for the case of sky brightness,

as an “increase” in 1 mv/as2 means the skies are darker, causing an increase in the limiting

magnitude, implying the telescope can detect dimmer objects. It is interesting to note

that even under “excellent” atmospheric conditions, the sky brightness and atmospheric

seeing still have the greatest impact on system performance. However, of the parameters

that constitute a telescope, the CCD dark current has the greatest impact on the limiting

magnitude for the conditions and telescope design specified.

4.2.2 Pareto Frontier - Atlanta

The Pareto Frontier for SSA assets located in Atlanta is shown in Fig. 9. The greatest

change in Fig. 9 compared to Fig. 8 is the dramatic di↵erence in limiting magnitude per-

formance. Examining Table 8 reveals that the sensitivity of each system has been degraded

by at least 3.5 mv. As a result, for systems operating around urban areas, there is little

performance penalty for selecting faster f-number optics, or EO sensors with smaller pixels.

Table 9 lists the sensitivities for the limiting magnitude for a Raven-class telescope in

Atlanta. Unsurprisingly, the sky brightness becomes a greater detriment to the overall

detection capability of the system. Additionally, the design variable of greatest importance
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Table 7: Limiting Magnitude Sensitivities for Raven in Antarctic

Variable �Jm/�(·) Variable Step Change
sky brightness 3.86E-01 per 1 mv/as2

atmospheric seeing -2.91E-01 per 1 as
algorithm required SNR -2.71E-01 per 1

CCD dark current -2.47E-01 per .1 electron/pixel/s
aperture diameter 2.17E-01 per .1 m

atmospheric transmittance 1.55E-01 per .1
CCD quantum e�ciency 1.11E-01 per .1

SO diameter -1.06E-01 per 1 m
optical transmittance 7.41E-02 per .1

secondary transmittance -4.99E-02 per .1
f-number -3.13E-02 per 1
pixel size 2.75E-02 per 1 µm

SO orbital velocity -1.02E-04 per 1 as/s
slant range 1.89E-10 per 1 km

Figure 9: Pareto Frontier of SSA Optical Systems in Atlanta

Table 8: Performance of Selected Point Designs in Atlanta

Optics System Info. Metric Lim. Mag. (mv) IFOR (arcmin2) IFOV (as)
0.2 m f/8 (*) 12.7 11.9 1.0E-05 1.93E-01
0.5 m f/8 (O) 11.9 12.9 6.0E-05 4.64E-01
1.3 m f/4 (X) 11.7 13.9 9.8E-05 5.95E-01
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to the designer trying to maximize the detection capability for a Raven in Atlanta is the

aperture diameter. The SNR required for algorithm detection again plays a large role in

the overall limiting magnitude, as it did in the Antarctic case.

This is an important consideration for another party that might be interested in this

work. Due to its high level system performance emphasis, program managers looking to

marginally increase performance of existing optical assets could use the performance sen-

sitivities to allocate program funds. So, by evaluating the performance increase due to

SNR threshold, the program manager may realize that devoting additional funds to soft-

ware development or computational power rather than optics hardware may yield the best

performance improvement for their investment.

Table 9: Limiting Magnitude Sensitivities for Raven in Atlanta

Variable �Jm/�(·) Unit Step Change
sky brightness 5.00E-01 per 1 mv/as2

algorithm required SNR -2.71E-01 per 1
aperture diameter 2.17E-01 per .1 m

atmospheric transmittance 2.17E-01 per .1
atmospheric seeing -1.24E-01 per 1 as

CCD quantum e�ciency 9.05E-02 per .1
secondary transmittance -6.46E-02 per .1

optical transmittance 6.03E-02 per .1
SO diameter -4.55E-02 per 1 m

f-number -5.91E-04 per 1
CCD dark current -5.08E-04 per .1 electron/pixel/s
SO orbital velocity -1.02E-04 per 1 as/s

pixel size 5.64E-05 per 1 µm
slant range 8.06E-11 per 1 km

4.2.3 CubeSat RECONSO

While the primary motivation of this study was better understanding of Earth-based obser-

vatories, the methodology is general enough to be extended to all optical systems. Show-

casing this ability, results presented here are for a small, space-based optical system tasked

with SO detection. The largest simplification made in this modeling e↵ort was a lack of

of detail concerning various “sky brightness” contributions such as moon glow, earthshine,

unresolved stars, nebulae, or other celestial phenomena. More detailed modeling would be

52



necessary if the ultimate subject of this study were space-based, but for the current e↵ort

it is worthwhile to reinforce how darker skies impact design tradeo↵s.

Fig. 10 illustrates the Pareto frontier for space-based optical systems. The increased

convexity exhibited by the surface is due to a lack of light pollution, as compared to those

frontiers depicted in Fig. 8 or Fig. 9. Also intuitively, Fig. 10 demonstrates that utiliz-

ing aperture diameters larger than those suitable for CubeSats, space-based platforms are

capable of viewing much smaller SO than terrestrial installations. The small CubeSat

Figure 10: Pareto Frontier of SSA Optical Systems in Space

Table 10: Performance of RECONSO in LEO orbit

Optics System Info. Metric Lim. Mag. (mv) IFOR (arcmin2) IFOV (as)
0.084 m f/1.4 (r) 12.7 11.9 1E-05 17.01E+00

RECONSO is denoted in Fig. 10 using a ‘r’. In such a system, the CubeSat form factor

constrains the aperture diameter to be small and focal lengths short. Such systems will

inevitably have greater limiting magnitudes than information gathering ability.

The sensitivities for a small CubeSat like RECONSO are presented in Table 11. As

noted previously, the RECONSO spacecraft is limited by its small form factor, with its

small aperture diameter becoming the greatest detriment to its performance. Additionally,

the dark and clear viewing conditions cause the dark current of the CCD sensor to become

a much greater noise source compared to ground-based assets.
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Table 11: Limiting Magnitude Sensitivities for CubeSat RECONSO

Variable �Jm/�(·) Variable Step Change
aperture diameter 1.29E+00 per .1 m
CCD dark current -1.01E+00 per .1 electron/pixel/s

f-number -7.29E-01 per 1
pointing jitter -3.02E-01 per 1 as

algorithm required SNR -2.71E-01 per 1
CCD quantum e�ciency 1.75E-01 per .1

optical transmittance 1.17E-01 per .1
atmospheric transmittance 1.09E-01 per .1

pixel size 1.04E-01 per 1 µm
SO diameter -8.91E-02 per 1 m

sky brightness 3.37E-02 per 1 mv/as2

secondary transmittance -4.35E-05 per .1
SO orbital velocity -7.95E-05 per 1 as/s

slant range 1.27E-10 per 1 km

4.2.4 Information Rate

The results presented here use the information rate performance index to predict the per-

formance of an SSA sensor. The same radiometric model used in the previous methodology

is also used to calculate the photon flux from the SO and background sky. The photon

flux values needed as arguments for Poisson distributions can be found from Eq. 8 and Eq.

16. In these results, the number of pixels occupied by the SO is held constant through the

entire exposure. This situation describes the case where the telescope is actively tracking

the SO. In Fig. 11 and Fig. 12, the contour lines represent probabilities of 5%, 25%, 50%,

75%, and 95% in ascending order. Fig. 11 shows the probability of successful SO detec-

tion as a function of both exposure time and aperture diameter for a specific SO. These

results use the system parameters for the Antarctic as defined in Table 19. Fig. 12 shows

how the probability of successfully detecting the SO varies as a function of the exposure

time and SO brightness, for a .4 m f/3.8 Raven-class telescope with a CCD comprised of

9 µm pixels. The probability of detection in both figures starts close to zero, with the

order of magnitude ranging from 10�4 for the smallest aperture diameter to 10�7 for the

largest aperture diameter. This is a result of the f-number being held constant, therefore

the focal length of the larger diameter scopes is also larger. It can also be seen that after

some exposure time, all these design points eventually reach a probably of detection equal
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to unity. Fig. 13 illustrates the information rate gain for several telescopes of di↵erent

(a) For SO = 13.3 mv (b) For SO = 13.3 mv

Figure 11: Probability of Successful SO Detection

(a) For D = 0.5m (b) For D = 0.5m

Figure 12: Probability of Successful SO Detection

aperture diameters, using the same data that generated Fig. 11. Generally, Fig. 13 can be

broken into two sections. From t = 0 sec. until tmax(Pr) sec. the probability of detection the

SO is very low. The length of this period is dependent upon aperture diameter, environ-

mental conditions, and SO parameters. If design variables vary to increase the telescopes

sensitivity, the time of peak information gain moves closer to t = 0 s. Once the mean of

the di↵erence distribution becomes greater than 0, the information rate peaks. The rapid

decline in information rate is due to the fact that the rate of probability increase due to

additional time in a single exposure is not greater than simply starting a new exposure with

equivalent probability. Finally, the sensitivities of information rate performance index are

presented in Table 12. Unsurprisingly, the exposure time has the greatest impact on the
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Figure 13: Information Rate vs. Exposure Time for Di↵erent Apertures

systems ability to maximize the information rate. What is surprising, is that the design

parameters of the telescope now all have the greatest impact on system performance, in

contrast to previous performance metrics which were dominated by environment and SO

parameters. It is intuitive that the designs with the highest information rate performance

would be those systems with large diameters and large pixel pitch. However, the decision

maker must be cautious, as a large FOV is sometimes desired, and a large pixel pitch may

push the design away from this objective. But, as seen the focal length and pixel size have

relatively the same order of magnitude impact. As a result, decision makers in the position

of needing a large FOV would be best to allocate program funding for large CCDs with

small pixels. Additionally, the SO orbital velocity has no impact on the system performance

because the results presented are for the case where the telescope is slewing at the same

rate as the SO. Finally, the decision maker should be cognizant of the physical limitations

on exposure time enforced by the length of streaking stars through the image plane.

4.3 Summary

A radiometric model, defined in consistent nomenclature, is defined which describes the

path photons take from the Sun to the telescope’s EO sensor payload. Consequently, SSA

researchers will be able to successfully duplicate the systems studies presented here. Three

novel performance metrics are motivated and derived which define the ability of an optical
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Table 12: Information Rate Sensitivities for Raven in Atlanta

Variable Sensitivity Unit Step Change
time -8.98E-01 per 1 s

aperture diameter 6.77E-02 per .1 m
f-number 4.20E-02 per 1
pixel size -3.74E-02 per 1 µm

SO diameter 2.12E-03 per 1 m
algorithm required SNR -5.20E-04 per 1

atmospheric transmittance 2.12E-04 per .1
CCD quantum e�ciency 1.74E-04 per .1

optical transmittance 1.16E-04 per .1
albedo 6.07E-05 per .01

sky brightness 1.78E-05 per 1 mv/as2

atmospheric seeing -8.86E-06 per 1 as
secondary transmittance -2.30E-06 per .1

CCD dark current -1.81E-08 per .1 electron/pixel/s
read noise -3.61E-09 per 1
slant range -3.76E-12 per 1 km

space surveillance asset for to detect, track, and characterize SO. These performance met-

rics form the basis of a well-posed multi-objective optimization problem. The generation

of Pareto e�cient frontiers provide a means for designers to identify “knee-in-the curve”

performance tradeo↵s, and quickly evaluate SSA asset performance relative to mission re-

quirements. These Pareto frontiers are intended to be used as a part of the conceptual

design phase, and provide insight into the performance of optical systems in the end user’s

specific optical environment. This enables systems designers to quickly identify feasible

families of optical designs, which are candidates for detailed optical design. Sensitivities

of performance metrics are also derived, allowing the identification and ranking of major

system performance drivers which may be under the designer’s control. These can also be

used by decision makers to determine the performance improvements a↵orded by incremen-

tal upgrades to an existing design point. An information rate performance index is also

defined, which enables the designer to compare how system design variables and exposure

time influence the successful detection and operation of SSA assets.

Generally, it was found that optical systems with large f-numbers and small pixel sizes

sacrificed less detection sensitivity under light polluted skies, like those found in urban en-

vironments, than under darker skies. For space-based SSA assets, the lack of background
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radiant intensity dictates that low noise EO sensors be utilized to maximize limiting mag-

nitude. It is also shown that in all optical environments, the SNR threshold required by

the detection algorithm largely influences the overall detection capability of the system.

Therefore, program funds may be better invested in more sophisticated software rather

than more sophisticated optical hardware. Finally, several trade studies demonstrate the

e�cacy of small aperture diameter telescopes. While large aperture telescopes will continue

to be necessary for SSA assets which contribute to the SSN, this work demonstrates that

the requirements of a majority of SSA researchers may be met by small aperture telescopes,

such as those built according to the Raven design paradigm.
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CHAPTER V

LIGHT CURVE INVERSION

Using the radiometric principles of Chapter 3, a physics based noise model is described

in §5.1. Following this, §5.2 summarizes the how the dynamics of an agile SO can be

modeled with exponentially correlated angular accelerations, i.e. the Singer model. Finally,

§5.3 details how the proposed dynamics model greatly reduces computational burden when

coupled with a Rao-Blackwellized particle filter.

5.1 Measurement Noise Model

This work utilizes the photon flux incident on the CCD for simulating SO light curves and

measurement variance. The radiometric measurement function captures the noise present

in an image as a function of optical and environmental parameters, as shown in Eq. (60).

This stands in contrast to much of the literature in the field, which uses visual magnitudes

and a time invariant measurement variance. Because the number of photons incident on

an EO sensor are typically on the order of 103 and higher, this Poisson process is well

approximated by a Gaussian distribution, leading to the definition of measurement noise in

Eq. (61).

yk(x, tk) = qSO(x, tk) + vk(x, tk) (60)

vk(x, tk) ⇠ N (0, Rk(x, tk)) (61)

In Chapter 3, the variance of a SO signature captured by an EO sensor is defined by

Eq. (29). In this equation, the values of atmospheric losses and sky brightness are deter-

ministic. However, the phase and position of the moon, time of night, presence of clouds,

and scintillation e↵ects all cause the atmospheric transmittance and radiant sky intensity to

be random variables. Atmospheric transmittance and radiant sky intensity vary temporally

and spatially, and both typically increase near the local horizon. Since this work simulates

the SO light curve over a short time period, the radiant sky intensity is treated as constant
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while the atmospheric transmittance is treated as a random variable. For stars near zenith

the atmospheric transmittance is best described as a Gaussian, log-normal, or F distribu-

tion, depending on the power of the scintillation [99]. For simplicity of implementation,

this work will implement the atmospheric transmittance as a normally distributed random

variable.

Consequently, the measurement variance is best described by a class of nonhomogeneous

Poisson processes, termed mixed Poisson processes. A mixed Poisson processes is a Pois-

son process where the intensity, i.e. rate parameter of the Poisson distribution, is itself

dependent on separate random variables as shown in Eq. (62).

P (⇣ < zp) =

Z 1

0

e���zp

zp!
G(�) d� (62)

Generally, ⇣ is the Poisson distributed random variable where the rate parameter is deter-

mined by G(�), termed the mixing distribution. In this work specifically ⇣ is the number of

photoelectrons registered by the EO sensor and the mixing distribution G(�) is the atmo-

spheric transmittance.The variance of a mixed Poisson process has been analytically derived

to be greater than that of a homogenous Poisson process, as shown in Eq. (63) [100, 81, 101].

V ar(⇣) = E(⇣2)� [E(⇣)]2 = E(�) + V ar(�) (63)

Examining Eq. (29), the first term, representing the shot noise component, is the only term

subjected to losses from atmospheric transmittance. Therefore, the mean and variance of

the shot noise is defined by

E(�) =

✓
�SO⌧opt

✓
⇡D2

4

◆
QE tI

◆
µatm (64)

V ar(�) =

✓
�SO⌧opt

✓
⇡D2

4

◆
QE tI

◆2

�2atm (65)

One can define a time dependent zero mean Gaussian white noise using the covariance

defined by Eq. (66). Comparing the deterministic noise of Eq. (29) to Eq. (66) reveals that

the only di↵erence is the addition of the second term in Eq. (66), which includes the e↵ect

of the varying atmosphere Eq. (66)

Rk(x, tI) ⇡ E(�) + V ar(�) + m

✓
1 +

1

z

◆
(qp,sky + qp,dark) t +

�2r
n2

�
(66)
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As a demonstration of the accuracy of the radiometric model, and to further illustrate

the error of using constant magnitude measurement error, refer to Fig. 14. These 2,829

observations of GALAXY 15 were experimentally collected in May and June of 2015 using

a Raven-class telescope located in Kihei, HI. The 16” f/5.628 Raven telescope utilized a

Apogee U47 CCD, a Johnson R filter, and a 5 second exposure time. To generate the

radiometric model represented in Fig. 14 the atmospheric transmittance is assumed to be

⌧atm ⇠ N (.6, .01) (unitless) and the radiant sky intensity is assumed to be Lsky = 16.5

mv/arcsec2. In Fig. 14 the gray dots are the experimentally calculated observations, the

Figure 14: Measurement Noise of GALAXY 15 Observations

black line is the radiometric model, and the dashed black line is a constant measurement

noise of 0.1 mv. For this specific Raven-class telescope the historically assumed magnitude

noise is greater than actual system noise, but this trend should not be construed to be true

for all systems. Examining Eq. (29), for example, indicates that the historically assumed

0.1 mv noise could underrepresent the noise of a system observing dim objects under very

bright skies.

Careful inspection of Fig. 14 reveals that almost all experimentally determined mea-

surement noises lie within the 3� bound. While the outlying points could be the .03% of

points expected outside the 3� bound, it is important to note additional sources of noise

that are not captured in our model. Because the model presented in this work does not
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simulate individual images, one source of error present in experimentally obtained data but

not captured by the model are uncertainties in the star catalog utilized in the conversion

from instrumental counts to visual magnitude. Another source of error is the assumption

of a constant sky brightness, where the phase of the moon and elevation of the telescope at

the time of observation both ensure the sky brightness is varying both spatially and tem-

porally. Finally, local weather conditions, such as cloud cover, can cause abrupt changes in

atmospheric transmittance which are not captured by the model.

Using the radiometric model developed in this work, it is possible to simulate much of

the experimentally produced observed noise. By modeling the stochastic process of photon

arrival on the EO sensor image plane, the measurement variance is consistently determined

for all SO signatures. Additionally, by correctly defining the photon noise, the photon

radiance model developed here is also time varying. Thus, the measurement variance is

accurate for measurements constituting the SO light curve. Finally, it should be noted that

alternative measurement models using radiance as defined in the SI system, i.e. W/m2/sr,

would also a↵ord these benefits. However, dark current and read noise are typically defined

in manufactures’ data sheets in terms of electrons, making the presented model easier to

implement in practice.

5.2 Exponentially Correlated Angular Velocity Model

The light curve attitude estimation problem involves estimating both attitude and angular

velocity states where attitude kinematics are well known but the angular velocity dynamics

may be unknown due to unknown control torques, unknown inertia tensors, and unknown

disturbance torques. This work seeks to account for all of these unknowns using an expo-

nentially correlated process noise model. The general continuous time dynamics of such a

problem with scalar measurements can be described by Eq. (67).

ẋ(t) = f (x, t) + G (x, t)w(t)

y(t) = h (x, t) + vk (x, t)

(67)

It is emphasized that the measurement is defined by Eq. (60) for the light curve inversion

problem. The system state is defined as xT = [✓B
I
T
!

T ]T where ✓

B
I are the 3-2-1 Euler
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angles defining the rotation between the SO body frame, B, to the inertial frame, I, and

the angular velocity of the SO is denoted by !. The true state dynamics for SO rotational

motion is given by Euler angles kinematic relationship and Euler’s rotational equation of

motion. 2

64
✓̇

B
I

!̇

3

75 =

2

64
B(✓B

I )!

�J�1 (! ⇥ J!) + J�1T

3

75 (68)

where

B(✓B
I ) =

1

cos ✓2

2

66664

0 sin ✓3 cos ✓3

0 cos ✓2 cos ✓3 � cos ✓3 sin ✓3

cos ✓2 sin ✓2 sin ✓3 sin ✓2 cos ✓3

3

77775
(69)

Here, J and T represents the true inertia tensor matrix and the sum of all applied control

and external torques respectively. For agile SO the true inertia and torques acting on a SO

are typically unknown. The resultant time varying accelerations of maneuvering objects are

thus modeled as a random process. Random processes described in the literature can be

classified in 3 general groups: white noise models, Markov process models, and semi-Markov

jump process models [102].

White noise models have been previously applied to the SO attitude estimation problem

by Wetterer et al. [52] Holzinger et al. [51]. The angular velocity dynamics can account for

un-modeled torques T by representing this term as additive process noise, w, and Eq. 70

becomes

!̇ = �J�1 [!⇥]J! + w (70)

where the stochastic process w has spectral density matrix E{w(t)w(t � ⌧)} = Q̄w�(⌧)

and �(⌧) is the kronecker delta. This representation is still problematic since J in general

is unknown and although inertia parameters can be added to the estimation process they

increase the dimensionality of the problem and su↵er from observability issues. Holzinger

et al. overcame these issues by modeling both J�1T and �J�1 (! ⇥ J!) with process noise

described by Eq. (71) [51].


✓̇

B
I

�
=


B(✓B

I ) (!µ + �!0)

�
(71)

�!0 ⇠ N (0,Q!) (72)
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Using this white noise process, the mean motion of the SO can be defined as !µ and motion

about this nominal trajectory is modeled by the process noise with appropriately sized

�!0. If the mean motion is unknown, then !µ = 0 and Q! can be sized such that �!0 is

representative of SO maneuver capability.

This work adapts a Markov process model, first proposed in the 1970’s to track maneu-

vering aircraft. Known by its inventor, the “Singer model” defines the target accelerations

as correlated in time during a maneuver [103]. In this work, the angular accelerations,

!̇(t) = ↵(t), are assumed to be correlated in time with the autocorrelation defined by

Eq. (73).

R↵(⌧) = E [↵(t)↵(t + ⌧)] = �2me��|⌧ |I3⇥3 (73)

In Eq. (73), �2m is the resulting variance of the maneuvering target body angular acceleration

and � is the inverse of the maneuver acceleration time constant, ⌧ . Taking the Laplace

transform, L{·}, of the autocorrelation R↵(⌧) yields an equivalent power spectrum in the

frequency domain, R↵(s), as shown.

R↵(s) = L{R↵(⌧)} =
�2��2m

(s� �) (s + �)
(74)

The angular acceleration can therefore be expressed as the 2nd order Markov process shown

below.

↵̇(t) = ��↵(t) + w(t) (75)

The process noise of the angular acceleration, w (t), is driven by the power spectral density

of the angular acceleration, as given by Eq. (141).

Q↵(⌧) = 2��2m� (⌧) I3⇥3 (76)

Without loss of generality, one can define di↵erent time constants and acceleration variances

for each axis of the SO body fixed frame. Letting the subscripts 1 through 3 denote each

orthogonal axis yields

Q↵(⌧) = 2� (⌧) [�1 �2 �3]
T [�2m,1 �

2
m,2 �

2
m,3] (77)

Implementing the Singer model, where the angular velocities are exponentially correlated,

leads to Eq. (78), the continuous dynamics model proposed in this work for agile SO.
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Similarly to Eq. (139), ✓

B
I defines the relationship between the body angular rates and the

attitude coordinates used to represent SO(3) in the inertial frame.
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To implement the model in discrete time, the spectral density matrix must be related to the

discrete time exponentially correlated process noise. The resultant discrete process noise

for the attitude and angular velocity is given[103],

Qk(tk+1, tk,x) =

Z tk+1

tk

�(tk+1, s;�)G(s)Q↵(⌧)G(s)T�T (tk+1, s;�) ds (79)

where, �(tk+1, s;�), the state transition matrix, is computed using numerical integration

of the continuos time state matrix given in Eq. (78).

The success of this model lies on the successful determination of � and �2m. Like previous

models Q↵, by careful selection of � and �2m, must be sized appropriately to represent SO

maneuver capability. Since � is the inverse of ⌧ , it is selected by matching ⌧ to the length of

the expected SO maneuver. It is important to note that when ⌧ 6= 0, the angular velocities

are continuous in time, as they are in the true kinematic motion of the SO. In the special

case where ⌧ = 0, the dynamics reduce to a white noise process model very similar to that

proposed by Holzinger et al. [51].

Singer proposes modeling the variance of target acceleration as a ternary uniform distri-

bution, where probabilities of success and failure of the maneuver are assigned. This work

avoids assuming these unknown probabilities by modeling the variance in the acceleration

as a uniform distribution having a maximum acceleration amplitude, ↵max, as defined by

Eq. (80).

�2m =
↵2
max

3
(80)

Since ↵max will seldom be known, one has two primary methodologies for establishing

this maximum value. The first is to pick values representative of the hypothesized SO

class, where knowledge of SO size could come from auxiliary characterization. The second
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methodology is to hypothesize multiple targets the SO could be tracking, and selecting the

maximum acceleration of those hypotheses.

5.3 Rao-Blackwellized Particle Filter

While several correlation functions are available to model the dynamics of an agile SO, the

exponentially correlated angular acceleration model is chosen purposefully. In Eq. (78),

the Euler angles appear non-linearly in the dynamics and measurement models, while the

angular velocity and angular acceleration states appear linearly in the dynamics. The

linear structure of the angular velocity and acceleration states can be exploited to reduce

the computational burden of a traditional Particle Filter (PF), by marginalizing out the

linear state variables. These linear states can then be estimated using a Kalman filter

(KF), which improves state estimates as it is the optimal estimator of these linear states.

This concept is sometimes referred to as Rao-Blackwellization, and hence is referred to as

a Rao-Blackwellized particle filter (RBPF).

The goal of a nonlinear non-Gaussian filter, like the RBPF, is to determine the poste-

rior probability density function, p(xk|Yk), recursively. The RBPF approach analytically

marginalizes out the linear state by solving for the posterior probability density function

(PDF) at time step k as

p(xn
k ,x`

k|Yk) = p(x`
k|xn

k ,Yk)| {z }
KF

p(xn
k |Yk)| {z }
PF

(81)

where p(x`
k|xn

k ,Yk) is the marginalized posterior probability density for the linear states

and can be optimally solved with the Kalman Filter. However, the marginalized posterior

probability density for the non-linear states, p(xn
k |Yk), has no closed-form solution and

therefore it is approximated with a Particle Filter. The posterior for the linear portion of

the state space is given by

p(x`
k|xn

k ,Yk) = N
⇣
x̂`
k,Pk

⌘
(82)

where x̂n
k and Pk are the linear mean and covariance determined from a KF with the

nonlinear states marginalized. Combining the KF posterior with the PF posterior gives the
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overall state posterior PDF as

p(xn
k ,x`

k|Yk) =
NX

i=1

p(x`
k|xn

k(i),Yk)w
i
k�(x

n
k � xn

k(i)) (83)

note that this representation of the PDF can model both non-Gaussian PDFs in the linear

and non-linear state. In this representation, the linear state are modeled using a Gaussian

distribution, assuming the initial state is Gaussian, and the nonlinear state are modeled

using a collection of weighted particles. This general outline of the RBPF can also found

in Schon, while the specific algorithm utilized in this work is given by Algorithm 1[104].

Using the notation of Schon, the state space is segregated into a non-linear portion, xn
k ,

and a linear portion, x`
k, as illustrated in Eq. (84). This segregation leads to the system

described by Eq. (85), where again it is noted the general form of the system has been

replaced with one specific to the SO light curve inversion problem.

xk =

2

66664

✓

B
I

!

↵

3

77775

t=tk

=

2

64
xn
k

x`
k

3

75 (84)

xn
k+1 = Fn

n,k (xn
k) +An

k (xn
k)x`

k + Gn
k (xn

k)wn
k

x`
k+1 = A`

k (xn
k)x`

k + G`
k (xn

k)w`
k

yk = hn
k (xn

k) + vk

(85)

To further illustrate the relationship between the Rao-Blackwellized particle filter notation

of Eq. (85) and the exponentially correlated dynamics defined in Eq. (78), let the following

relationships be defined. In Eq. (86), � is the state transition matrix �(tk+1, s;�) with

inputs suppressed for brevity. The subscripts, eg. ✓, indicate which rows and columns

correspond of the state transition matrix correspond to the F matrix.

F =

2

64
Fn
n,k (xn

k) An
k (xn

k)

06x3 A`
k (xn

k)

3

75 =

2

66664

�✓,✓ �✓,! �✓,↵

�!,✓ �!,! �!,↵

�↵,✓ �↵,! �↵,↵

3

77775
(86)
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Algorithm 1: Rao-Blackwellized Particle Filter

xi
k+1 = RBPF

�
xi
k, zk

�

1) Initialize Particles
2) PF Measurement Update, Eq. (89) - Eq. (90)
3) Evaluate PF Weights, Eq. (91)
4) PF Resampling
5) PF Time Update, Eq. (78)
6) KF Time Update, Eq. (92) - Eq. (98)

2

64
Gn

k (xn
k)

G`
k (xn

k)

3

75 =

2

66664

I3⇥3

I3⇥3

I3⇥3

3

77775
(87)

Additionally, the discrete time process noise can be sampled utilized the discrete time

process noise covariance matrixes defined by Eq. (79).

wk ⇠ N (0,Qk(tk+1, tk,x)) (88)

The general RBPF algorithm is the same as a traditional PF, except for the final step,

which is the KF time update of the linear states. The RBPF algorithm begins by drawing

random samples from an assumed distribution. One of the key advantages of both PF and

RBPF over other non-linear sequential estimators, such as UKF, is that the distribution

need not be Gaussian. Given su�cient computational power, it is possible that no a priori

attitude is assumed. The next step, the PF update equation defined in Eq. (90), is used to

calculate the likelihood of each particle, c̃ik, conditioned on the true measurement, yk.

zi1,k = yk � hn
k

⇣
xi,n
k , t

⌘
(89)

c̃ik = p (z1,k|xk) =
1

(2⇡Rk(x, tI))
2 exp [�1

2

�
zi1,kRk(x, tI)

�1zi1,k
�
] (90)

These likelihoods are often referred to as the “importance weights” of each particle, and are

used in the PF resampling algorithm after normalizing the weights according to Eq. (91).

The fourth step, particle resampling, solves the much discussed shortcoming of the PF,

which is sample impoverishment. This approach utilizes residual resampling, although other

methods such as Metropolis or stratified resampling have been o↵ered as equally e↵ective
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alternatives [105].

cik =
c̃ik

NP
i=1

c̃ik

(91)

The next step in the typical RBPF would be the KF measurement update to the linear

portion of the state vector of each particle. However, examining Eq. (85) reveals that the

measurement equation is a non-linear function of the body attitude only. As a result, the

KF measurement update step is skipped and the next step is to propagate the non-linear

particles to the next time step. The final step is the KF time update, where the innovation

used is given by Eq. (85).

zi2,k = xi,n
k+1 � Fn

n,k (xn
k) (92)

This second “measurement”, zi2,k, incorporates the couple between the linear and nonlinear

states and is the only means for information from the light curve measurement to be used

to update the linear states. The linear KF propagation and update equations are given by

[104]

x`
k+1 = F̄`

kx
`
k + G`

k

⇣
Q`n

k

⌘T
(Gn

kQ
n
k)�1 zi2,k + Lk

⇣
zi2,k � Fn

kx
`
k

⌘
(93)

P`
k+1 = F̄`

kP
`
k

⇣
F̄`
k

⌘T
+ G`

kQ̄
`
k

⇣
G`

k

⌘T
� LkNkL

T
k (94)

where it is noted that some parameters have been dropped from the following equations to

make them specific to the light curve inversion problem. The equations necessary for these

computations are given by [104].

Nk = Fn
kP

`
k (Fn

k)T + Gn
kQ

n
k (Gn

k)T (95)

Lk = F̄`
kP

`
k (Fn

k)T N�1
k (96)

F̄`
k = F`

k �G`
k

⇣
Q`n

k

⌘T
(Gn

kQ
n
k)�1 Fn

k (97)

Q̄`
k = Q`

k �
⇣
Q`n

k

⌘T
(Qn

k)�1 Q`n
k (98)

These equations complete the RBPF algorithm. The RBPF a↵ords the estimation of both

attitude and angular velocity states of maneuvering space objects without requiring knowl-

edge of the initial orientation of the SO, while maintaining computational tractability. The

next section highlights these benefits compared to previously developed particle filters.
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5.4 Simulation Results

If the algorithms presented are to one day be used operationally, the simulation must

match observational data as closely as possible. Accordingly, every e↵ort is made to create

a realistic physics based simulation, as outlined below.

5.4.1 Data Flow

The first component of this simulator is the Simplified General Perturbations Propagator

(SGP4). This software calculates the position and velocity of a SO by propagating the in-

formation from a two line element (TLE) file. A MATLAB implementation is available from

Vallado et. al. [106] The next piece of software critical to the simulator is the 1987 imple-

mentation of Variations Séculaires des Orbites Planétaires (VSOP87) [107]. The adaptation

of VSOP87 by Bretagnon and Francou[108] combined with the coordinate transformations

provided by Meeus [109] enables the ephemerides of the Sun and Earth to be calculated

with less than 1” error until 6000 A.D. The geometry necessary to define the reflectance

of light can be defined using the the position of the Sun, observer, and SO. This geometry

is used in the final part of the simulator, a bidirectional reflectance distribution function

(BRDF) model. This particular work utilizes the Cook-Torrance BRDF model for specular

contributions [110], and Lambertian reflectance for di↵use contributions to the total radiant

flux of the SO at various attitudes [51].

5.4.2 Test Cases

All test cases presented are derived from a two-line element set (TLE) for the NOAA

18 satellite downloaded from SpaceTrack.org [111]. Each TLE comprises two lines of 80-

column ASCII text identifying the satellite by its catalog ID number and defining its orbital

elements at the given epoch time. The simulation represents observations collected on June

6th, 2014 from 10:19:21 to 10:23:19 UTC from the Fenton Hill Observatory.

NOAA 18 [B]
1 28654U 05018A 15024.53745670 .00000182 00000-0 12433-3 0 4147
2 28654 99.1733 13.7659 0014261 7.4244 99.1613 14.12137281498803

The NOAA 18 spacecraft orbits at a = 7226 km, e = 2.3 ⇥ 10�3, i = 99.2 deg, ⌦ = 17.8

deg, ! = 14.6 deg, and f = 114.8 deg. The problem is simplified such that NOAA 18 is
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represented by a simple cube, with the shape model parameters presented in Table 17. In

Table 13: Assumed Shape Model Parameters

Facet A (m2) ⇠ a m
+X 2 0.5 0.25 0.3
+Y 2 0.5 0.5 0.3
+Z 2 0.5 0.75 0.3
-X 2 0.5 0.9 0.3
-Y 2 0.5 0.4 0.3
-Z 2 0.5 0.1 0.3

the shape model, A is the facet area, ⇠ is the a�ne transformation weighting parameter, a

is the di↵use albedo, and m is the microfacet slope parameter where ⇠, a, and m 2 [0, 1].

Since previous work has addressed shape model uncertainty, this work assumes the shape

model is known perfectly [51]. To simulate an agile SO, the problem is modeled such that

the -Z facet of NOAA 18 is constrained to the line-of-sight vector from the spacecraft to

Colorado Springs, CO for the duration of the pass. This results in the acceleration profile

depicted in Fig. 15. This simulated mission results in the light curves presented in Fig. 16.

Figure 15: True Agile SO Acceleration

The telescope parameters utilized, shown in Table 14, are those of the 0.5 m f/8 GT-SORT

telescope, and are representative of a typical Raven-class telescope [19].

Ideally, it would be desirable to introduce a separate test case for each improvement

outlined in this paper. However, the inclusion of a comparison between the time invari-

ant, limiting magnitude measurement model and the radiometric measurement model was
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(a) TC1 Light Curve (b) TC1 Residual vs Time

(c) TC2 Light Curve (d) TC2 Residual vs Time

(e) TC3 Light Curve (f) TC3 Residual vs Time

Figure 16: Pre and Post Update Estimate of Light Curve
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Table 14: Radiometric Model Parameters

Parameter Value Units
Telescope Aperture Diameter .5 m

E↵ective Focal Length 8 -
Pixel Size 9e-6 m

Mean Atmospheric Transmittance .6 -
Variance Atmospheric Transmittance 2.5e-5 -

Optical Transmittance .7 -
Quantum E�ciency .5 -
Radiant Sky Intensity 18 mv/arcsec2

Exposure Time 1 s
Dark Current .5 e/pixel/s
Read Noise 10 e (RMS)

Pixels Occupied by SO 10 pixels
Pixel Sample Estimate Background Level 200 pixels

deemed trivial. Since the benefit a↵orded by each improvement is judged by its reduc-

tion in the error of estimated states, it seemed illogical to compare estimates arrived at

using a measurement model that produced incorrect uncertainties. Additionally, it was

computationally infeasible to include a comparison between the standard PF utilizing the

ECA dynamics model and the RBPF. Indeed, computational tractability is one of the main

benefits of the RBPF.

As a result, three test cases (TC) are implemented to demonstrate the improvements

outlined in this paper over the current “state-of-the-art.” TC1 represents one version of the

current “state-of-the-art,” using a PF and a white noise process for the unknown angular

velocities. TC1 also implements the time-varying radiometric noise model, where the total

photon count is given using Eq. (60). Importantly, TC1 does not assume any knowledge

of the mean angular velocity states. In contrast, TC2 showcases the performance of the

current state-of-the-art when knowledge of the mean angular velocities is introduced. While

this improves the accuracy of tracking, as shown below, this information is unlikely to be

available in an operational setting. Consequently, TC3, like TC1, does not assume any a

priori knowledge of SO mean angular velocity. TC3 keeps the radiometric nose model, and

adds the exponentially correlated acceleration (ECA) model, enabling the use of the RBPF.

All TC are presented utilizing the same number of particles: 10,000. Additionally, the
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following levels of process noise were utilized to keep comparisons between the PF and

RBPF consistent. For the PF, Q! (⌧) = diag
�
1�4 · [0.0113, 0.7243, 0.0025]

�
rad2/sec2.

Meanwhile, the RBPF utilized Q↵ (⌧) = diag
�
1�5 · [0.0029, 0.1196, 0.0003]

�
rad2/sec2 and

�1 = �2 = �3 = 1/15 with units of 1/sec. For an initial attitude of ✓

B
I = 0 these settings

resulted in 1� noise levels of �!0 = [0.061, .488, .029]T deg/sec.

Table 15: Test Case Descriptions

Test Case NL/L States Measurement Model Dynamics Model !µ Filter
#1 3/0 Radiometric White-Noise 0 PF
#2 3/0 Radiometric White-Noise Truth PF
#3 3/6 Radiometric ECA 0 RBPF

Fig. 17 through Fig. 20 illustrate the particle clouds of the three test cases at four

instances during the simulation time. TC1 is always presented on the top row, while the

middle and bottom rows are TC2 and TC3, respectively. The particles themselves are

shaded such that the particles with the highest likelihoods, i.e. weights, are shown in black

while particles that represent less likely states are represented with lighter shades of gray.

In all subfigures, the true simulated state is shown with a red star.

Fig. 17 illustrates the initialized particles for all test cases. In all test cases, the particles

are uniformly distributed in Euler angle space in a window around the true state. This is

purely a constraint of the computational resources available to the authors. Given a high

performance computer, both the PF and RBPF filters are capable of uniformly sampling

the entire state space. Fig. 18 shows both filters 75 seconds into the simulation. One

can see that the particles of the RBPF (TC3) are distributed in smaller volume of state

space than either PF test case. Additionally, the large swaths of gray particles in TC1 and

TC2 highlight that the RBPF is much more computationally e�cient, with each resampled

particle having a higher likelihood according to Eq. (90).

Fig. 19 shows both filters 155 seconds into the simulation, and is an excellent illustration

of the highly non-Gaussian distributions typical of the SO attitude estimation problem. It is

also evident by examining TC1 that without knowledge of the SO’s mean angular velocity,

the state of the art PF begins to diverge, with the true SO state no longer bounded by the
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(a) TC1 ✓1 - ✓2 (b) TC1 ✓1 - ✓3

(c) TC2 ✓1 - ✓2 (d) TC2 ✓1 - ✓3

(e) TC3 ✓1 - ✓2 (f) TC3 ✓1 - ✓3

Figure 17: Test Cases at t=0 seconds
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(a) TC1 ✓1 - ✓2 (b) TC1 ✓1 - ✓3

(c) TC2 ✓1 - ✓2 (d) TC2 ✓1 - ✓3

(e) TC3 ✓1 - ✓2 (f) TC3 ✓1 - ✓3

Figure 18: Test Cases at t=75 seconds
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(a) TC1 ✓1 - ✓2 (b) TC1 ✓1 - ✓3

(c) TC2 ✓1 - ✓2 (d) TC2 ✓1 - ✓3

(e) TC3 ✓1 - ✓2 (f) TC3 ✓1 - ✓3

Figure 19: Test Cases at t=155 seconds
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particle cloud. Fig. 20 shows all test cases at the final time step in the simulation, at 240

seconds. Only in TC2 and TC3 is the SO successfully tracked, with the true state contained

within the particle cloud. The left hand side of Fig. 21 shows the true SO attitude, denoted

by the solid black line, compared to the first moment of the particle cloud, shown by black

circles, along with the 5 and 95 percentile bounds of the particle cloud illustrated by the

shaded gray area. The right hand side of Fig. 21 shows the residuals of the attitude state,

denoted by black ‘X’, along with the 5 and 95 percentile residual bounds.

The percentile bounds grow as observations of the SO are collected due to the interaction

between the measurement noise and process noise. The observing environment described in

Table 14 is shot-noise limited and in this anecdotal example the SO being observed becomes

brighter with time, as shown in the left hand subfigures of Fig. 16. Consequently, the shot

noise increases the measurement noise during the simulation, as defined in Eq. (29). This

increase in measurement noise causes more particles around the truth to represent brightness

values consistent with the measurement statistics. As a result, particles which have been

randomly subjected to higher levels of process noise are not eliminated, and the cloud of

particles grows as the simulation progresses.

Through the contributions of this work, illustrated in TC3, the angular velocity states

are able to be simultaneously estimated. Fig. 22(b) gives the body angular velocities

provided by the KF update portion of the RBPF. The estimation error is given by the solid

black line, while the 5 and 95 percentile bounds are given by the shaded gray area. The

ability of the RBPF to provide angular velocity estimates, via the adoption of the Singer

dynamics mode, is a novel improvement to the SO attitude estimation problem.

The first benefit of this ability is that knowledge of SO body angular velocity can be used

to better estimate the attitude states via the KF update step of the RBPF. This benefit is

evident in the preceding figures, where the volume of state space occupied by the particle

cloud is less for the RBPF than the PF. The second benefit a↵orded by knowledge of SO

angular velocities manifests itself in SO operational mode classification. While determining

the current attitude of a SO is a critical aspect of characterization, it is not an immedi-

ately actionable piece of information. Indeed, SSA stakeholders desire information on the
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(a) TC1 ✓1 - ✓2 (b) TC1 ✓1 - ✓3

(c) TC2 ✓1 - ✓2 (d) TC2 ✓1 - ✓3

(e) TC3 ✓1 - ✓2 (f) TC3 ✓1 - ✓3

Figure 20: Test Cases at t=240 seconds

79



(a) TC1 Attitude Estimates (b) TC1 Attitude Residuals

(c) TC2 Attitude Estimates (d) TC2 Attitude Residuals

(e) TC3Attitude Estimates (f) TC3 Attitude Residuals

Figure 21: Comparison of Attitude Estimates for all Test Cases
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(a) Angular Velocity Estimates (b) Estimation Error with 3� bounds

Figure 22: RBPF Estimate of Angular Velocity

operational mode of a SO, e.g. if the SO is currently Sun-pointing, nadir-pointing, or track-

ing another SO. Information on SO angular velocity could be an important discriminator

in operational mode classification if multiple operational classifications are represented by

similar SO attitude states alone.

5.5 Summary

Physics based measurement models can be utilized to more closely reflect measurement

noise present in observational data. The implementation of a correlated angular rate dy-

namics model, adapted from the Singer Markov process model, provided a framework for

defining a space object maneuver model. This dynamics model enables the implementa-

tion of marginalized particle filters, enabling estimation of attitude and angular velocity

states of maneuvering space objects without a prior knowledge of initial attitude, while

maintaining computational tractability. These three contributions enhance the quality of

information gleaned from scarce observation assets and further improve the state estima-

tion of agile space objects. The increased knowledge a↵orded by these methods directly

aids space object characterization and the overall mission of Space Domain Awareness.
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CHAPTER VI

ACTIVE CONTROL MODE INFERENCE

6.1 Methodology

Chapter 5 outlined the light curve inversion approach developed for agile SO. This chapter

presents several inference techniques for determining the most likely subject under obser-

vation by an agile SO. To give context to these contributions, It is prudent to discuss the

spectrum of SO characterization. Consider Fig. 23 below, which proposes three general

levels of SO classification. The general concept conveyed by Fig. 23 is that as information

is gathered on a SO, further characterization is enabled.

Physically	
Characterized	

Func3onally	
Characterized	

Behaviorally	
Characterized	

Size,	Shape,	
Materials	

Current	
A<tude	

Typical	
Opera3onal	
Pa?erns	

Levels	

Characteris3cs	

Increasing	SO	Knowledge	

Figure 23: Increasing Knowledge of Agile SO Enable Refined Characterization

The most basic characteristics of SO, such as size or shape, could be estimated with

no a priori information available [112]. Typically, the characteristics determined are intrin-

sic properties of the SO, and therefore this level constitutes a physical characterization.

Determining the shape model enables light curve inversion techniques, a↵ording estimates

of current SO attitude or enabling inference on SO active control mode. Therefore, this

information constitutes a functional description of current SO activity. While methods for

determining shape independent attitude of non-agile SO have been presented [28], the cur-

rent work focuses on agile SO. Finally, if these activities are aggregated over time, further

inference could help establish routine operational patters or indicate payload capability of
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the SO.

The contributions of this work best fit under the “functional characterization” block of

Fig. 23. Subsection 6.1.1 and Subsection 6.1.2 outline metrics which utilize the estimated

states directly to infer the active control mode of the SO. Subsection 6.1.3 couples statis-

tical inference techniques with angular momentum and rotational kinetic energy analogs

to establish formal hypothesis testing techniques. Finally, Subsection 6.1.4 outlines how

radiometric first principles can bound the allowable tracking error between the target and

subject SO.

6.1.1 Inference Using Attitude States

As illustrated in Fig. 24, ⇢ij defines the line-of-sight (LOS) vector from the SO to a

hypothesized target, and ⇢̂b defines the vector along the SO bore-sight calculated from the

estimated attitude angles. The simplest technique to infer SO active control mode is to

determine the smallest angle between the estimated attitude states and each hypothesized

attitude triple. The instantaneous angle between two unit vectors, ⇢̂b and ⇢̂ij , is determined

from the definition of the cross product as shown in Eq. (99).

Subject SO j

Target SO i

⇢̂b

�
✓B

I

�

o

ṙi

ri

⇢ij

N
ȯ

Observer

(a) Observer, Target SO, and Subject SO Ge-
ometry

Subject SO j

Target SO i

⇢ij

⇢̂b

�
✓B

I

�

ri

(b) Instantaneous Angle Between Target
Sensor Bore-axis and Subject SO

Figure 24: Problem Geometry and Instantaneous Angle Illustration

�✓a,b (t) = 2 arcsin

✓
k⇢̂b(t)� ⇢̂ij(t)k

2

◆
(99)

Intuitively, the most likely subject of observation for the target SO at any instant in time is

the hypothesis with the smallest instantaneous angle. However, for very cluttered regions
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of space, such as those regions near to the poles, it is the case that many hypothesized SOs

have small instantaneous angles.

To address this problem, this work adopts a measurement arc dissimilarity metric

(MDM) developed for a match filtering technique for detecting SOs in low signal-to-noise

ratio imagery [62]. To classify the active control mode of the SO, one desires the dissimi-

larity in the measurement arcs over the entire observation window t 2 [tk�T, tk]. For ease

of interpretation, one can define the mean MDM as given by Eq. (100) .

d̄MD =
1

T

Z tk

tk�T
�✓a,b (⌧) d⌧ (100)

Because the bidirectional reflectivity distribution function (BRDF) measurement models

of SO are non-linear functions of attitude states, non-Gaussian state distributions frequently

arise. Commonly, the particle cloud grows to define a multi-modal distribution representing

the symmetry commonly exhibited by man-made satellites. For example, if a satellite

shaped as a cube has roughly the same material properties on each side, the RBPF correctly

exhibits distinct clusters of particles. As shown in Fig. 34, it is common for the mean

attitude state, represented by the black ‘X’, to lie outside the actual particle cloud. To

more closely align the vectors ⇢̂ij and ⇢̂b, k-means clustering is utilized to identify the

number of distinct clusters in the particle cloud.

In traditional k-means, as developed by Lloyd, an arbitrary number of data samples,

in this case particles of a PF, are assigned to c clusters where the number c is selected

by the analyst [113]. While the methodologies presented in this work were not developed

specifically with automation in mind, the more sophisticated k++ means algorithm, such

as implemented in MATLAB®, do not require a priori specification of c [114]. Additionally,

there is no theoretical reason why other clustering or fuzzy logic routines would be less ap-

propriate for the task at hand. Moreover, it may serve as motivation for the implementation

of a Rao-Blackwellized unscented Kalman filter, as discussed in the previous section.

Fig. 25 illustrates an instantiation of the attitude states at a single time step that

resulted in two distinct clouds, shaded lighter and darker gray respectively. Since each

particle has an associated weight, it is possible to identify the most likely cluster of particles.
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The centroid of that cluster is then taken as ⇢̂b, shown as a open circle in Fig. 25.

✓1

✓2 X

Figure 25: 2D View of Attitude States Sorted Via k-means

If the target SO has a continuous attitude rate over the entire observation window, the

correct hypothesis is described by the lowest magnitude MDM. This will not be the case if

the target SO exhibits discrete changes in attitude during the observation window. It is also

possible that hypotheses with di↵erent orbits appear to be closely oriented in space from

the perspective of the target SO. As an intuitive approach to disambiguate these important

cases, one could examine the time derivative of the instantaneous angle defined by Eq. (99)

to provide more information.

d

dt
(�✓a,b (t)) =

�

�t

✓
2 arcsin

✓
k⇢̂b(t)� ⇢̂ij(t)k

2

◆◆
(101)

For ease of implementing the chain rule, let u = 1
2k⇢̂b(t) � ⇢̂ij(t)k such that u 2 [0, 1].

Applying the chain rule to Eq. 101 yields Eq. 102.

d

dt
(�✓a,b (t)) = 2

✓
�

�u
(arcsin (u))

◆✓
du

dt

◆
(102)

Solving the partial derivative yields Eq. 103.

d

dt
(�✓a,b (t)) = 2

✓
1p

1� u2

◆✓
du

dt

◆
(103)

Examining the total time derivative of u from Eq. 103 yields Eq. 104.

✓
du

dt

◆
=

1

2

✓
d

dt
k⇢̂b(t)� ⇢̂ij(t)k

◆
(104)
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To again apply the chain rule define the vector quantity ⇠ = ⇢̂b(t) � ⇢̂ij(t). Using the

identity for the derivative of the 2-norm, shown in Eq. 105, yields Eq. 106.

�

�⇠
k⇠k2 =

⇠

k⇠k2
(105)

✓
du

dt

◆
=

1

2

⇠

k⇠k2
d⇠

dt
(106)

The final derivative to be evaluated has previously been previously derived, as shown in Eq.

107 [115].
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Examining Eq. 107 reveals that there are two main contributing factors to the change

in angle between the target SO sensor bore-sight and the subject SO. The first term on the

right hand side of Eq. 107 is simply dependent on the inherent motion of the target and

subject SO. The second term describes the component of angle change that is dependent on

the rotational motion of the agile SO, !

B
N . Fortuitously, the RBPF previously developed

by the authors and their colleagues enable estimation of the body angular velocities of the

target SO, !

B
N , to discriminate between subjects which are colocated along the target SO

bore-sight, ⇢̂b(t). Therefore, the remaining techniques in this work seek to quantify the

“pointing quality” using the estimated posterior body angular velocity distributions of the

target SO. If it is found that the body angular velocity of the target SO matches a profile

necessary to rate track a specific subject SO, the observer may infer intentional action by

the target SO.

6.1.2 Ranking Hypotheses using Mahalanobis Distance

The most general expression for the inner-product distance between two vectors, a and b,

is given by

d (a,b)2 = (a� b)TA�1 (a� b) (108)

Here, the distance matrix A is positive semi-definite. When A = I the Euclidean dis-

tance formula is recovered, while setting it equal to the covariance matrix of a Gaussian

distributions A = P yields the Mahalanobis distance.
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The particle cloud representing the body angular velocity states can be expressed as a

Multivariate Gaussian Mixture Model (MGMM). Generally speaking, an MGMM expresses

a probability density function as a weighted sum of i = 1 . . . N Gaussian component densi-

ties, as shown in Eq. (109).

p
⇣
x`
k

⌘
= wi

NX

i=1

f (x) (109)

Here, wi is referred to as a “weight” or “likelihood” in the estimation literature. The RBPF

represents the distribution with N “particles,” as they are referred to in the estimation

literature, or as “component densities” in the statistics literature. Each component density

is a p-variate Gaussian function of the form

f (x) = N
⇣
x`
k| !µ,i,Pi

⌘
(110)

To evaluate the distance of Multivariate Gaussian Mixture Models (MGMMs), alterna-

tive expressions for the covariance matrix is required. Previous work has advocated for a

Gaussian mixture distance function based on minimizing the Kullback-Leibler divergence

[116]. Minimizing the KL divergence for a Gaussian mixture yields the distance matrix

given by Eq. (111).

A (x) =

2

4
 

nX

i=1

wif (x)Pi

!�1
0

@
nX

j=1

wj (x)Pj

1

A

3

5
�1

(111)

Here, A (x) is the weighted reciprocal sum of the component covariances, and the weights

are those given by the RBPF. To express the Mahalanobis distance for an MGMM, one

also must define the mean of the MGMM. The mean of a MGMM is given simply by the

weighted sum of all components

!µ =
nX

i=1

wi!µ,i (112)

Substituting both Eq. (111) and Eq. (112) into Eq. (108) yields the Mahalanobis Distance

analog for a MGMM. In this work, the Mahalanobis Distance analog is evaluated for each

hypothesized subject, h = [1, . . . , M ] at each time interval, such that

dGM =
q

(!h,k � !µ,k)
T A�1 (!h,k � !µ,k) (113)
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where !h,k is the body angular velocity triple for each hypothesis, Hh,k, at each time step,

tk. The Mahalanobis distance can then be computed for each hypothesis at each time step,

where the hypothesis with the lowest value of Mahalanobis distance indicates the most likely

hypothesis.

Algorithm 1: Rank Hypotheses using Mahalanobis Distance

1 function rank MD (!µ,k, !h,k,A (x));
Input : !µ,k, !h,k,A (x)
Output: flag

2 For each time step;
3 for k  1 to T do
4 For each hypothesis i;
5 for h 1 to M do
6 Evaluate Mahalanobis Distance, Eq. (113);

7 dGM (h, k) =
q

(!h,k � !µ,k)
T A�1 (!h,k � !µ,k);

8 end

9 end

6.1.3 Rotational Angular Momentum and Kinetic Energy Analog Inference

First principles tells us that the momentum and energy states of a SO are conserved quan-

tities, unless acted upon by an outside force [50]. Therefore, changes in either angular

momentum or angular kinetic energy could serve as a basic indication of active control

mode. Because the SO inertia is typically unknown, but constant in the body fixed frame,

this work proposes analogs for the angular momentum and angular kinetic energy as given

by Eq. (115) and Eq. (117).

H = J! (114)

JH = ! (115)

E =
1

2
!

TJ! (116)

JE = !

T
! (117)

As before, J is the unknown inertia matrix and ! is the body angular velocity, both of

the target SO. Here, JH is the angular momentum analog, which is a rotated and skewed

version of the true angular momentum. JE is the rotational kinetic energy analog, which
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is simply proportional to and monotonic with the true rotational kinetic energy. These

definitions imply that JH is defined as an MGMM and JE is defined as an MGMM analog

of the chi-squared distribution with 3 degrees of freedom.

JH = wi

NX

i=1

N
⇣
x`
k| !µ,i,Pi

⌘
(118)
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wi

NX
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N
⇣
x`
k| !µ,i,Pi
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Unfortunately, this lack of knowledge about the SO inertia tensor implies that the

momentum analog vector and energy analog are not guaranteed to be constant under torque-

free motion. This follows from the analytic relationships for angular momentum and energy

derived for both axisymmetric and asymmetric rigid bodies. These are both important

cases, as spin-stabilized satellites are likely axisymmetric, with rotation occurring about a

principle axis, and debris objects are likely asymmetric. From a geometric standpoint, the

angular velocity vector is constrained to lie on the intersection of the angular momentum

ellipsoid and the kinetic energy ellipsoid. The path defined by this intersection is called the

“polhode,” and defines the curve of the angular velocity vector as seen from the body-fixed

frame. Assuming ideal rigid bodies with no internal energy dissipation, the true angular

momentum and rotational kinetic energy are conserved, and the polhode forms a closed

path [117].

Thus, the body angular velocities can change with time, not only under active control,

but also under general torque-free motion. This implies that a changing angular momentum

or energy analog is not proof of an actively controlled satellite. One important distinction

between these two cases is that the magnitude of the body angular velocity vector, and

hence magnitude of the angular momentum analog, is constant under torque-free motion

for axisymmetric rigid bodies only.

By using the outputs of the RBPF to build momentum and energy distributions, statis-

tical tests can be used to determine the active control mode of an agile SO. Generally these

tests could provide evidence of the following behaviors: whether the SO is actively maneu-

vering during the observed period, what subject a target SO is observing, and whether the

89



active control mode of the target SO changes between any two arbitrary points in time. Con-

sequently, the authors propose using multi-variate hypothesis tests to match the estimated

SO momentum or energy analog with momentum or energy profiles for each hypothesized

subject SO.

To briefly review, a hypothesis is a claim about a certain statistical parameter, where the

union of the null hypothesis H0 and alternative hypothesis H1 comprise the entire domain

of the parameter. Of these two, the null hypothesis is the “status-quo” and the alternative

hypothesis is the new hypothesis being tested. To demonstrate the use of the momentum

analog a two-sided hypothesis test is implemented [81]. Dropping the time step k notation,

the form of the hypothesis given by Eq. (120).

H0 : JH = JH,h vs. H1 : JH 6= JH,h (120)

This form is chosen since it is irrelevant whether the angular momentum profile of the target

SO is larger or smaller than any chosen hypothesized momentum profile. The goal is simply

to determine which hypotheses are statistically equivalent to the estimated values. The

statistical hypothesis test for the equality of two means requires that the two distributions

are Gaussian. To test the mean vector of a multivariate Gaussian distribution the relevant

test statistic is T 2, also referred to as Hottelling’s T 2 in the social sciences [118].

T 2 = N(!µ,k � !h,k)
TA (x)�1(!µ,k � !h,k) (121)

Here N is traditionally the number of samples drawn form the true population. In this work,

N is then the number of particles utilized in the RBPF. The null hypothesis is rejected when

the test statistic is greater than a critical value, T 2 > T 2
crit, where the critical value is

T 2
crit =

(N � 1) p

N � p
Fp,N�p (↵) (122)

Here F is the F -cumulative distribution function with p and N � p degrees of freedom

respectively. Recall that each N is the number of particles, or component densities, and

that each component density is a Gaussian function length of of dimension p. This CDF

is evaluated at the user selected value of ↵, the probability of Type 1 error, also referred

to as the “level of significance” of the test. Type 1 and Type 2 errors are two examples
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of incorrect conclusions that could be reached by a hypothesis test. Type 1 error indicates

that H0 is actually true, but that H0 is incorrectly rejected. Type 2 error indicates that H0

is should have been rejected, but the hypothesis test failed to reject H0.

While the T 2
crit critical region works well for the JH analog as it approaches normality,

su�ciently non-Gaussian distributions, such as JE , are ill-suited for these tests. Because

the number of particles N is typically large in the RBPF, one can also construct the the

hypotheses tests with confidence regions that do assume normal distributions. These large

sample inferences are made using the chi-squared distribution, with the critical value shown

in Eq. (120) [118].

�2
crit = �2

p (↵) (123)

Here, �2
p (↵) is the ↵th upper percentile of the chi-squared distribution with p degrees of

freedom. This leads to Algorithm X, which systematically eliminates those hypotheses

which are not consistent with observational data at each time step k.

Algorithm 2: Momentum and Energy Inference

1 function momentum inference (!µ,k, !h,k,A (x) ,↵);
Input : !µ,k, !h,k,A (x) ,↵
Output: flag

2 For each time step;
3 for k  1 to T do
4 For each hypothesis i;
5 for h 1 to M do
6 Evaluate test statistic, Eq. (121);

7 ts N(!µ,k � !h,k)
TA (x)�1 (!µ,k � !h,k);

8 Determine critical region, Eq. (123);
9 �2

crit  �2
p (↵);

10 if ts > �2
crit then

11 Reject H0 at ↵ level of significance;
12 flag  0

13 else
14 Fail to reject H0 at ↵ level of significance;
15 flag  1

16 end

17 end

18 end
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6.1.4 Bounding Tracking Error with Detection Statistics

The appeal of the metrics presented in the previous section is that no additional information

is required beyond that which is provided by the RBPF algorithm. However, shape model

information is necessary for the light curve inversion process, meaning that the general size of

the target SO is known. Therefore, it is possible to bound the maximum aperture diameter

of the target SO optical system. If it is further assumed that the target satellite is attempting

to rate track its subjects with an electro-optical sensor of its own, this information can be

coupled with the statistics of the signal-to-noise ratio to determine a maximum relative

angular velocity error that would yield detections of the hypothesized subject SOs. The

simulated results also assume that this sensor is not individually articulated, and that the

whole target SO maneuvers to track its subject. Finally, this specific formulation presented

in this work further assumes that the target is taking unresolved images of the hypothesized

subjects, but this assumption could be relaxed by replacing the signal-to-noise ratio (SNR)

equation utilized.

For ease of illustration, the GMM of a single body axis is represented in Fig. 26. In

the figure, �µ,k is the estimated mean of the body angular velocity along the X-axis at the

kth time step and �h,k is the body angular velocity required at that time step to observe

the hth hypothesized subject. Please note that the univariate case is illustrated for ease

of explanation only, as any mathematical technique should utilize the full Multivariate

Gaussian Mixture Model (MGMM).

✓

f
(✓

)

✓µ,k ✓h,k

Figure 26: Direct State Space Classification
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By subtracting each hypothesized body angular velocity from the distribution, one can

define a distinct distribution for each hypothesized subjection satellite. Each body angular

velocity error distribution is given at each time step by

eh,k = k!µ,k � !h,kk (124)

Each error PDF can then in turn be used to construct a cumulative distribution function

(CDF) of body angular velocity errors, as shown in Fig. 27. To determine the probability

that each hypothesized subject is under observation by the target, one determines the

percentage of the error distribution whose particles had angular velocities less than the

limit !`. Please note that !` is exactly equal to d⇢̂ij(t)
dt introduced in Eq. (107), and is

substituted for brevity of notation.

✓

F
(✓

)

!�

Figure 27: Cumulative Distribution Function of Error

It is known that as the angular rate error grows larger, the unresolved “point” of light

grows into a streak. To quantify the angular error limit, !`, that demarcates usable data

one needs to relate this angular error and the quality of the unresolved image. One of the

most commonly used metrics for expressing the quality of an image capturing is the signal-

to-noise (SNR) ratio. Mathematically, it can be expressed as shown in Eq. (125), which is

commonly referred to as the “CCD Equation.”

SNR =
qSOtr

qSOt + m
�
1 + m

z

� h
(qp,back + qp,dark) t + �2

r
n2

i (125)

In Eq. (125), qSO is the photon flux of the subject captured by the target’s optical system,

t is the integration time of the sensor, m is the number of pixels occupied by SO, z is the
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number of pixels used in estimate the background brightness, qp,back is the average brightness

of the background, qp,dark is the dark current of the sensor, �r is the read noise, and n is the

binning factor of the CCD. Texts have devoted to accurately modeling these parameters,

but simple estimates are provided by the radiometric model of Chapter 3. To implement

the SNR, the analyst must appropriately model the brightness of both the subject SO and

the background of the image. To see how tracking errors influence the overall SNR of the

image, one must examine the quantify m.

When the target is perfectly tracking the subject SO, then the value of m is constant.

However, when tracking errors cause a relative velocity between the target’s optical system

and subject, m will increase monotonically with t. For unresolved images of the subject,

the captured image will contain SO streaks. For a SO streaking across the image plane, the

number of pixels occupied by the incoming signal grows as defined by Eq. (126).

m = m0 +

p
m0!`t

IFOV
(126)

Here !` is the tracking error limit, IFOV defines the angular field of view of a single pixel, and

mi is the number of pixels occupied by the point spread function (PSF) of the point source

[24]. The PSF full width half maximum (FWHM) of a traditional, terrestrial observatory is

influenced by the focus of the optical system, any atmospheric blurring, or the di↵raction

of light. Since the system under consideration is space-based, it is appropriate to utilize the

di↵raction limit and assume the optics are well focused.

The PSF due to di↵raction limiting is the theoretical limit of an optical system’s reso-

lution due to the di↵raction of light. For a perfectly circular aperture with no obscuration,

the diameter of a point source is described by the “Airy disk.” The angle in radians of the

Airy disk is given by Eq. (127) [85].

✓A =
2.44 (�)

D
(127)

It is important to note here that the diameter of the Airy disk is wavelength dependent,

and therefore a weighted average for wavelength should be used.

While a large number of assumptions need to be made, the most critical for space-

based applications, the aperture diameter of the target SO optical payload, can be inferred
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Algorithm 3: Bounding Tracking Error with Detection Statistics

1 function bound track err ();
Input :
Output: flag

2 For each time step;
3 for k  1 to T do
4 For each hypothesis i;
5 for h 1 to M do
6 Bound !, Eq. (125)� Eq. (126);
7 !`  function SNR (X,p);
8 Determine tracking error distribution, Eq. (124);
9 eh,k  k!µ,k � !h,kk;

10 Calculate Probability of Hypothesis with Cumulative Distribution Function;
11 Pr (eh,k < !`) Fe (!`);

12 end

13 end

from observational data. Recall that the aperture diameter was established as the greatest

contributor to limiting magnitude from Chapter 4. Size estimation techniques routinely

provide estimates of optical cross section and its derivatives in various photometric bands,

and it is therefore possible to bound D [28, 119, 53]. Likewise, the lower bound on focal

ratio, or f-number, of an optical system is limited by optical aberrations [77]. The SNR

required to determine a value of !` is user selectable and could incorporate

6.1.5 Operational Mode Classification

While the focus of this work is determining the active control mode of SO, these tech-

niques could easily be extended to encompass historically defined operational modes. The

term operational mode typically refers to broad categorical behaviors such as “nominal,”

“anomalous,” or “nadir pointing.” In the case of non-SO subjects, such as the Sun or nadir,

these subjects can simply be included as additional hypotheses as demonstrated in the

Results section. Determining anomalous behavior is more involved, as one must baseline

which observation subjects are nominal. However, with such a baseline, the determination

of subjects di↵erent from those composing the baseline is a relatively simple endeavor.
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6.2 Results

Simulated results for the methodologies outlined in this work are presented below. Sub-

section 6.2.1 outlines some important considerations for accurately replicating the results

presented in this paper. Subsection 6.2.2 outlines the single test case scenario, and high-

lights the results available directly from the RBPF. Subsection 6.2.3 presents results of the

active control mode analysis using the contributions of this work.

6.2.1 Practical Implementation Notes

An important consideration of the methodologies outlined above is to account for the fact

that motion about one or more body axes may be unobservable. This is the case with

the example simulation utilized to produce these results. In the simulated scenario, any

arbitrary rotation about the body y-axis does not cause any significant change to the visible

areas of the target SO. As a result information on this axis, such as the mean angular

velocity, should be excluded. Mathematically, this implies that p = 2 degrees of freedom,

and that any vector ! should contain only the roll and yaw axes.

Additionally, simple checks can reduce the initial hypothesis space. The first is to

ensure that the target SO can maintain line of sight with the subject SO. Simple algebraic

algorithms have been developed which remain computationally tractable even for a large

set of hypothesized subjects. Similar checks exist to ensure that the subject is illuminated

with respect to the target SO. The specific line-of-sight algorithm implemented to generate

the results here is Algorithm 35 by Vallado [120].

Finally, it is informative to review what is both known and unknown about the target

SO. Using only measurements of the brightness coupled with knowledge on the shape and

material properties of the SO, one is able to estimate the attitude and attitude rate states

of a maneuvering satellite. One does not require an initial guess for the orientation of the

satellite, the inertia tensor, or the torques applied by actuators on the SO.
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Table 16: Known Quantities for Light Curve Inversion using RBPF

Quantity Known Unknown
Inertia Tensor X
SO Torques X

Initial Attitude X
SO Shape Model X

6.2.2 Simulated Scenario

The simulated results presented assume that the observer is located at the Remote Maui

Experiment (RME) in Kihei, HI. The telescope parameters utilized are those of the 0.5

m f/8 GT-SORT telescope, and are representative of a typical Raven-class telescope [19].

The simulated target SO is the Intelsat-18 satellite, where the TLE was downloaded from

SpaceTrack.org. The simulation represents observations collected on October 5th, 2015

from 08:05:00 to 08:15:20 UTC.

INTELSAT 18
1 37834U 11056A 15276.58183779 .00000024 00000-0 00000+0 0 9992
2 37834 0.0167 127.6907 0001915 64.8570 208.8878 1.00269536 14658

The position and velocity vectors generated from this TLE specify the IS-18 spacecraft

orbit at a = 42, 166 km, e = 1.8⇥10�4, i = 0.027 deg, ⌦ = 156.6 deg, ! = 46.9 deg, and f =

111.4 deg. The TLE is ingested into the MATLAB implementation of the Simplified General

Perturbations Propagator (SGP4) developed by Vallado et. al. [106]. The ephemerides of

the Sun and Earth are calculated with less than 1” error using the 1987 implementation

of Variations Séculaires des Orbites Planétaires (VSOP87) [107]. These programs use the

mean equator and equinox of J2000 to define the Earth Centered Inertial (ECI) reference

frame

The shape model of NOAA 18 is simplified to that of a simple cube, with the shape model

parameters presented in Table 17. This simplification is made to expedite the simulation

runs and is not a limitation of the RBPF. The measurements are simulated with a BRDF

which uses an a�ne combination of the Cook-Torrance BRDF model for specular reflectance

[110] and Lambertian reflectance for di↵use reflectance. In the shape model, A is the facet

area, ⇠ is the a�ne transformation weighting parameter, a is the di↵use albedo, and m is

the microfacet slope parameter where ⇠, a, and m 2 [0, 1] [51].
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Table 17: Assumed Shape Model Parameters

Facet A (m) ⇠ a m
+X 2 0.5 0.25 0.3
+Y 2 0.5 0.5 0.3
+Z 2 0.5 0.75 0.3
-X 2 0.5 0.9 0.3
-Y 2 0.5 0.4 0.3
-Z 2 0.5 0.1 0.3

Table 18: Hypothesized Subject SO

Catalog ID Number Common Name MDM (deg)
16111 SL-3 R/B 8.89
21423 SL-14 R/B -
21397 OKEAN-3 9.58
16182 SL-16 R/B 9.70
18187 COSMOS 1867 10.18
19120 SL-16 R/B 8.84
20511 SL-14 R/B -
22803 SL-16 R/B -
25400 SL-16 R/B 9.49
27422 IDEFIX & ARIANE 42P R/B 11.34
28059 CZ-4B R/B -
31793 SL-16 R/B 9.03

Since previous work has addressed shape model uncertainty, this work assumes the shape

model is known perfectly [51]. To simulate the motion of IS-18, the problem is modeled

such that the optics payload is fixed to the -Y facet of IS-18 which rate tracks SO 16111,

an SL-3 R/B, for the duration of the pass. Table 18 lists the 12 hypothesized subjects for

this simulation, all orbiting about the North Pole. It is again emphasized that this set of

hypotheses represent a mutually exclusive and open set. It is by no means an exhaustive

list of potential targets.

Fig. 28 illustrates the problem geometry, where the simulated subject SOs are high-

lighted in red, and the blue line denotes the true target. Emphasizing the di�culty of this

problem, Fig. 29 illustrates the subjects from IS-18’s point of view. It is easily seen how

attitude information alone makes inference of the most probable subject di�cult.

The attitude states estimated by the RBPF are presented in Fig. 46 and Fig. 47. Fig.

46 shows the 2D view of the roll and pitch axes, and each subfigure is a di↵erent time step
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Figure 28: Top-Down View of Simulated Scenario

Figure 29: Depiction of Subject SO from Perspective of IS-18
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in the simulation. Fig. 47 shows the 2D view of the roll and yaw axes, where each subfigure

again denotes a separate time step. In the figures, the dots are the particles of the RBPF

each shaded to indicate the likelihood measured for that particle. Black indicates the most

likely particles, while light grey indicates less likely particles. The red star indicates the

true attitude state of IS-18 necessary to track SO 16111.

(a) 05-Oct-2015 08:05:00 UTC (b) 05-Oct-2015 08:08:06 UTC

(c) 05-Oct-2015 08:11:32 UTC (d) 05-Oct-2015 08:15:09 UTC

Figure 30: 2D View of ✓1 - ✓2

Fig. 32 represents the same particle cloud and time step as Subfigure 48(c) and Subfigure

31(a), but the Euler angles have been transformed to Topocentric Equatorial coordinates.

The x-axis denotes right ascension, the y-axis declination, and the origin is fixed to the

camera bore-sight of the target SO. Consequently, the blue star representing the true target

remains fixed at the origin, just above the North Pole. The green circle is the Earth exclusion

zone, the black triangle is the centroid of the particle cloud, and the orange dots represent
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(a) 05-Oct-2015 08:05:00 UTC (b) 05-Oct-2015 08:08:06 UTC

(c) 05-Oct-2015 08:11:32 UTC (d) 05-Oct-2015 08:15:09 UTC

Figure 31: 2D View of ✓1 - ✓3
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the incorrect hypotheses. It can be seen that the initial particle cloud, defined as uniform

over the SO(3) space of Euler angles, initially covers the entire earth.

Figure 32: 05-Oct-2015 08:05:00 UTC

Fig. 33 represents the same particle cloud and time step as Subfigure 30(d) and Subfigure

31(d), with the same symbology as Fig. 32. It can be seen that the particle cloud is reduced

from its initial coverage to a band the spans the poles of the Earth. The geometry of the

cloud is likely due to the lack of observability along the y-axis as well as the simplistic shape

model utilized for IS-18.

6.2.3 Active Control Mode Inference

Using these state estimates, results for the proposed active control mode inference techniques

are presented. For the instantaneous angle, the first step in obtaining a more accurate

centroid involves the k-means++ algorithm. Fig. 34 illustrates the technique applied at a

single time step.
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Figure 33: 05-Oct-2015 08:15:09 UTC

Figure 34: 2D View of Attitude States Sorted Via k-means
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Having sorted the particle cloud to obtain more accurate centroids, Eq. (99) determines

the instantaneous angle between the estimated bore-sight of the SO, the -Y facet of IS-18,

and each hypothesized line-of-sight vector. Fig. 35(a) illustrates which hypothesis had

the smallest instantaneous angle during the observation window. The y-axis labels each

hypothesis and the true subject of the target SO, 16111, is at the top of the chart. Fig. 35(b)

illustrates the instantaneous angle for all 5 SO that exhibited the smallest instantaneous

angle for at least one time step. Here, the y-axis is the instantaneous angle and not the

index of the hypothesized subject. Inspection of both Fig. 35(a) and Fig. 35(b) reveals that

by using this instantaneous angle, the true subject is never identified, even when starting

close to the right hypothesis.

(a) Hypothesis with Smallest Instantaneous Angle (b) Instantaneous Angle for 5 Selected Hypothesis

Figure 35: Classifying ACM with Instantaneous Angle

This fact motivated the MDM, given by Table 18. Inspection of the time averaged

MDM reveals that the true subject rate tracked by the target had the second smallest mean

MDM. However, the error between the true subject and that which is predicted most likely

by the MDM is .05 deg. There are several cases where both the instantaneous angle or

the average MDM can give incorrect results. The first case is subjects whose orbits pass

serendipitously close to the true subject for arbitrary durations of time from the perspective

of the target SO. This is the case for object 19120, as seen in Fig. 35(a). Another case

occurs when the SO happens to be in a very similar orbit plane as the true subject SO,

perhaps only di↵erentiating by a small o↵set in Euclidian space. This is the case for object
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21397. Because of instances like these, the ability to estimate the body angular velocities

is crucial element of successful SO operational mode classification.

The first proposed metric which relies on this extra information is the Mahalanobis

distance. Fig. 36 plots the hypothesis with the smallest MD at each time step. Inspection

of the figure reveals that the true subject, 16111, is correctly identified by the smallest MD

in 77% of the time steps. The other SO identified by a small MD, 21397, is in an orbit

very similar to the true subject. To further examine how similar the orbits of these two

hypotheses appear to the target SO, the momentum analog is utilized.

Figure 36: SO with smallest Mahalanobis Distance

The two sided hypothesis test for equal means is carried out at each time step of the

observation. Fig. 37 illustrates the t-statistic value of each hypothesis as dashed black lines,

and the critical region demarcation as a solid black line at the ↵ = .1 significance level.

Fig. 38 plots the same information, where those hypotheses which have not been rejected

as likely observation targets are plotted as a function of time.

Fig. 38 shows that given the estimated covariance of the body angular velocities, the

mean body angular velocities required to track objects 16111 and 21397 are equivalent over

the entire observation period. Two additional objects also periodically appear to have the

same velocities. This is due to the fact that both of these objects are moving predominantly

in the direction of the body y-axis, which has been neglected from these calculations since

it is unobservable. This methodology reinforces the general philosophy that observational

evidence can only used to eliminate hypotheses.
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Figure 37: Varying t-statistic of Each Hypothesis

Figure 38: Angular Momentum Classification
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Table 19: System Parameters

Parameter Units Value
aperture diameter of target SO m 0.2

focal ratio of target SO - 6
pixel size of target SO sensor m 5e-6

irradiance of magnitude 0 source photons/s/m2 5.6 · 1010

atmospheric seeing/mount jitter arcsecond .5
sky brightness mv/as2 30

CCD quantum e�ciency - .6
CCD dark current e/pixel/s .5

algorithm required SNR - 15
atmospheric transmittance - 1

optical transmittance - .9
secondary transmittance - 1

The results for the final proposed methodology are summarized in Fig. 39 and Fig. 40.

These figures show the percentage of the angular velocity posterior distribution which is

below the angular velocity limit, !e = 4 ·10�5 rad/sec, which resulted in SO subject streaks

having SNR � 15. In lieu of more detailed modeling, every object is assumed to have a

16 mv apparent visual magnitude with respect to the target SO. Table 19 enumerates the

other parameters assumed in this work to simulate an optical environment similar to those

on orbit. For brevity, only the first and last 3 hypotheses are depicted, as all others had

near 0 probability.

Examining Fig. 39 reveals that the true subject SO, 16111, had the most time steps

where 100% of the distribution is below the threshold. As expected, the next most likely

hypothesis is again 21397. The remaining hypotheses all appeared as in Fig. 40, with none

of the particles meeting the SNR requirements.

6.3 Summary

Several methodologies for directly identifying the observational target of a target space

object are presented. The ability of the RBPF to provide estimates of the body angular

velocities as well as attitude states, proves to be a key enhancement over previous techniques.

Critically, the proposed contributions enable the discrimination of targets which are co-

located along the SO bore-sight. The fusion of these estimates enables the contributions of

107



Figure 39: Classification Based on SNR

Figure 40: Classification Based on SNR
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this work to o↵er more precise descriptions of active control mode. By providing the target

the observed SO is tracking, rather than the categorical classifications previously described

in the literature, analysts can infer the mission purpose of a target SO, a key component of

SDA.

109



CHAPTER VII

HUBBLE SPACE TELESCOPE TEST CASE

This chapter outlines the application of the RBPF to experimentally collected data, where

again the motivating scenario is as follows: An agile SO under surveillance by an SDA

stakeholder, termed the “target” SO, is hypothesized to be actively rate-tracking other SO,

called “subject” SO, with its optical payload. A perfect real world example of such an

SO is the Hubble Space Telescope (HST). The overall goal is to identify, from a mutually

exclusive but not exhaustive list of hypotheses, which subject is under observation by the

target SO. As discussed in the previous chapter, this task has been defined as inferring the

SO “active control mode.”

7.1 Methodology

7.1.1 Experimental Data

On July 12th, 2008 the Advanced Electro-Optical System (AEOS) telescope was used to

collect data on the HST as it overflew the Air Force Maui Optical and Supercomputing

(AMOS) facility in Haleakalā, HI. The two-line element (TLE) file available before the pass

is:

HST
1 20580U 90037B 08193.95559624 +.00000231 +00000-0 +49464-5 0 9998
2 20580 028.4680 161.6750 0003581 282.5497 077.4696 15.00391554798708

Data was collected at roughly 1 Hz in the Johnson-Cousins V-band, from 480nm to

660nm, and converted to the exo-atmospheric magnitudes as shown in Fig. 41. The conver-

sion to magnitudes is performed using the zero magnitude reference flux, E0 = 1.85·10�9 W
m2

as reduced by Colina et al.[121]. In the figure, the solid black line is the true measured

brightness of the Hubble Space Telescope and the dashed black line is the brightness simu-

lated using the bi-reflectance distribution function (BRDF) model. Subsection 7.1.2 briefly

describes the simplified BRDF implemented.

The true attitude of the Hubble Space Telescope is available via the European Space
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Figure 41: Measured Light Curve of HST

Table 20: Observation Schedule of HST on July 12th, 2008

Obs. Start Time (UTC) Obs. End Time (UTC) Right Ascension (J2000) Declination (J2000)
2008-07-12 04:26:35 2008-07-12 05:08:10 16h 38m 13.48s -68d 27’ 19.35”
2008-07-12 05:59:58 2008-07-12 06:01:12 16h 38m 13.32s -68d 27’ 18.20”

Agency (ESA) Hubble Science Archive. The start times and geocentric equatorial coordi-

nates of these two observations, identification numbers NA1E46010 and NA1E46ZIQ, are

listed in Table 20 [122]. Hubble was imaging ESO-069-IG-006-SOUTH, as shown in Fig.

42. While Hubble was not actively imaging while passing over AMOS, STSCI lists this

target for the window spanning 04:18:10 UTC to 06:03:02 UTC on the night of July 12th,

2008 [123]. Therefore, it is assumed that the true attitude of Hubble is equal to the first

observation. In either case, any change in brightness due to the minuscule di↵erence in

attitude is within the measurement noise of any ground based optical system.

7.1.2 Measurement Model of Hubble Space Telescope

A simplified facet model of the HST, as shown in Fig. 43, was developed for light curve

inversion. This facet model is coupled with the a�ne combination of two BRDF models,

which together serve as the measurement function for the sequential filter. The Cook-

Torrance BRDF model is utilized for specular reflections, and Lambertian reflectance is

used for di↵use reflections. The resultant composite BRDF model is given by Eq. (128),

where the facet index is removed for compactness.

⇢
�
n̂B, ŝB, v̂B, ⇠, a, m

�
= ⇠Rd + (1� ⇠) Rs (128)
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Figure 42: RA: 16h 38m 13.48s, DEC: -68d 27’ 19.35”

Figure 43: HST Facet Model
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In Eq. (128), ⇠ 2 [0, 1] is the a�ne weighting parameter which dictates how much the

reflect depends on the di↵use, Rd, or specular, Rs reflection respectively. The additional

facet parameters are the microfacet slope parameter, m 2 [0, 1], and the di↵use albedo,

a 2 (0, 1]. The di↵use reflection is given simply by Eq. (129).

Rd =
a
�
n̂B · ŝB

�

⇡
(129)

The specular reflection is given by Eq. (130).

Rs =
F

⇡

D

(n̂B · ŝB)

G

(n̂B · v̂B)
(130)

The first of the three constitutions parts, denoted F , is given as Eq. (131).

F =
1

2

(g � c)2

(g + c)2

"
1 +

(c (g + c)� 1)2

(c (g � c)� 1)2

#
(131)

In Eq. (131), g2 = n2 + c2 � 1, while c =
⇣
v̂B · ĥB

⌘
, and n is given by

n =
1�
p

F0

1 +
p

F0
(132)

The second constitution part of Eq. (130), the Beckmann distribution function denoted D,

is given by Eq. (133).

D =
1

⇡m2 cos4 �
exp

✓
� tan2 �

m2

◆
(133)

In Eq. (133), � = cos�1
⇣
n̂B · ĥB

⌘
, and the final constituent part of the specular reflectance

is defined by Eq. (134).

G = min

8
<

:1,
2 cos �

�
n̂B · v̂B�

⇣
v̂B · ĥB

⌘ ,
2 cos �

�
n̂B · ŝB

�
⇣
v̂B · ĥB

⌘

9
=

; (134)

Together, these equations form the a�ne BRDF utilized in this e↵ort. As discussed by

Holzinger et al., the a�ne weighting parameter ⇠ enables the simplification a = F0 to be

made, since freedom exists in ⇠. The total reflectance of the SO, ⇢, can be related to the

measured intensity, I, by summing over each individual facet of the shape model, i, as

defined in Eq. (135).

I⇤
�
✓

B
I , ŝ, v̂, ⇠, a, m

�
= J⇤

NX

i

Ai ⇢⇤,i
�
n̂B, ŝB, v̂B, ⇠, a, m

�
(135)
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The total irradiance of the Sun at the satellite is denoted J⇤ which emphasizes that this

value is integrated over bandwidth ⇤. In reality, the total reflectance is also wavelength

dependent, but in this work the wavelength average of 548.3 nm is utilized [121]. An

Unscented Kalman Filter is implemented to iteratively solve for a constant value for each

shape model parameter [p = A, a, m, ⇠], excluding the area. Despite this, using theoretical

BRDFs to match experimentally collected data is challenging, as shown in Fig. 44. Fig.

44(a) illustrates the measured radiant intensity alongside the radiant intensity modeled

using the BRDF along with the true attitude. Fig. 44(b) plots the residuals between the

truth and modeled truth over the observation window. One can see the BRDF poorly

models the spike in the measured light curve, which is likely a specular glint.

This error is likely due to a number of uncertainties which could include: the facet-based

approximation of the areas that are both illuminated and visible to the observer, uncertain-

ties in the true solar irradiance, uncertainties in the true material properties of the HST,

or uncertainties in the wavelength dependent losses of the atmosphere, optical assembly,

or the sensor itself. If the photometric reduction is performed properly, the uncertainties

due to loss through the atmosphere and optical train should be minimized. Therefore, it is

assumed that most of the error is due to the BRDF model and materials property uncer-

tainties. The material properties uncertainties are incorporated by evaluating the Jacobian

of the analytic BRDF. Assuming the uncertainty in each shape model parameter p is zero

mean and uncorrelated, and dropping the index notation i, leads to the following Taylor

series expansion.

�2I (p) =

 
@I⇤

�
✓

B
I

�

@A

!2

�2A+

 
@I⇤

�
✓

B
I

�

@a

!2

�2a+

 
@I⇤

�
✓

B
I

�

@m

!2

�2m+

 
@I⇤

�
✓

B
I

�

@⇠

!2

�2⇠ (136)

This same procedure can be carried out for the uncertainty in J⇤. Not only does the Sun

exhibit natural variations in power output, Earth orbiting bodies are subject to illuminating

reflected by the Earth itself, commonly referred to as “Earthshine.” The simulation does not

model this e↵ect, but it is present in the real data. Thus, following the same methodology
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(a) Light Curve Modeled Using True Attitude (b) Residuals of Truth Model

Figure 44: Model Induced Error During Measured Glint

as above

�2I (J⇤) =

 
NX

i

Ai ⇢⇤,i

!2

�2J⇤ (137)

This expansion is evaluated analytical using the MATLAB Symbolic Toolbox. The resulting

functions are evaluated at every time step for each facet using the true attitude of the HST.

The notation indicating the explicit dependence of the simulated intensity on attitude is

kept in Eq. (138) to emphasize that the measurement uncertainty is attitude, and hence

time dependent. Taken together, the measurement model utilized in this study is

zk ⇠ N
�
Ik,�

2
I,k (p) + �2I,k (J⇤)

�
(138)

It should be noted that assuming the measurement errors to be Gaussian distributed is an

approximation. While the large photon flux caused by the brightness of the HST is safely

approximated as Gaussian, the uncertainty in the exact wavelength of the photons incident

on the sensor can cause this approximation to be violated. However, approximating the

radiant intensity as Gaussian is a better assumption than approximating magnitude errors

as Gaussian.

7.1.3 Dynamics Modeling of Hubble Space Telescope

This work builds on results of Chapter 5 and so the Rao-Blackwellized Particle Filter will

not be covered in depth in this section. The fundamental challenge of performing light curve

inversion of agile SO is that the attitude kinematics are well known but the angular velocity
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dynamics may be unknown due to unknown control torques, unknown inertia tensors, and

unknown disturbance torques [51]. The true state dynamics for SO rotational motion is

given by Euler angles kinematic relationship and Euler’s rotational equation of motion. The

symbol B
�
✓

B
I

�
defines the non-orthogonal relationship between the body angular rates and

the attitude coordinates used to represent SO(3) in the inertial frame [124].

2

64
✓̇

B
I

!̇

3

75 =

2

64
B(✓B

I )!

�J�1 (! ⇥ J!) + J�1T

3

75 (139)

The system state is defined as xT = [✓B
I
T
!

T ]T where ✓

B
I are the 3-2-1 Euler angles

defining the rotation between the SO body frame, B, to the inertial frame, I, and the body

angular velocity of the SO is denoted by !. Here, J and T represents the true inertia tensor

matrix and the sum of all applied control and external torques respectively. For agile SO

the true inertia and torques acting on a SO are typically unknown.

To model the unknown inertia matrix and torques acting on an agile SO, an expo-

nentially correlated angular acceleration dynamic model is adopted. This leads to the

continuous dynamics model proposed in this work for agile SO.
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3

77775
w (140)

The body angular velocity is defined as ! and ↵ is the body angular acceleration. The

process noise, used to simulate the unknown motion of the SO, is denoted as w and driven

by the power spectral density of the angular acceleration, as given by Eq. (141).

Q↵(⌧) = 2��2m� (⌧) I3⇥3 (141)

The success of this model lies on the successful determination of � = 1
⌧ , where ⌧ is the time

constant, and �2m, the variance of the angular acceleration. Since � is the inverse of ⌧ , it is

selected by matching ⌧ to the length of the expected SO maneuver.
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(a) Simulated Light Curve Using True Attitude (b) Simulated Measurement Residuals

Figure 45: Pre and Post Update Estimate of Light Curve with Residuals

7.2 Results

7.2.1 Estimated Posterior State Distributions

The RBPF is utilized to estimate the posterior state distributions of the attitude and body

angular velocity states. The aforementioned TLE is ingested into the scenario simulation,

which is comprised of SGP4, VSOP87, and the BRDF described in Chapter 5. To model the

unknown dynamics of the HST, variance of the acceleration is assumed to be �2m = 10�5

rad2 / sec4 and �1 = �2 = �3 = 1/30. The shape model uncertainty is assumed to be

�2A = .1A, �2a = 0.5, �2m = 0.2, �2⇠ = 0.4 and the uncertainty in the solar radiance is

�2J⇤ = 0.25.

Fig. 49(a) shows the pre-update and post-update estimated measurement of the RBPF,

along with the true measurements collected with AEOS in units of W
sr . As expected, it is

observed that model errors in the BRDF results in the RBPF underestimating the intensity.

Fig. 49(b) illustrates the residuals, with the large error aligning with the measured glint,

as discussed previously.

The attitude states are shown in Fig. 46 and Fig. 47, where 2D views are given of

the roll/pitch and roll/yaw axes represented with Euler angles. Each subfigure illustrates

the distribution at a specific time step. The cloud of dots illustrate the individual particles

of the RBPF, where a light gray to dark black shading indicates the least likely and most

likely particles, respectively. The true attitude of HST is given by the red star. One can
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see by examining the lower left subfigure that the model error introduced by the BRDF

causes the RBPF to eliminate many particles. Despite this, the RBPF successfully tracks

the HST throughout the pass.

(a) 12-Jul-2008 05:33:02 (b) 12-Jul-2008 05:34:36

(c) 12-Jul-2008 05:36:12 (d) 12-Jul-2008 05:37:47

Figure 46: 2D View of ✓1 - ✓2

7.2.2 Active Control Mode Inference

While the current attitude of a satellite is an important functional characteristic, it is not

an immediately actionable piece of information. Decision making processes are aided by

higher-level information, such as a list of most likely hypotheses that are actively tracked

by the target SO. This work defines this activity as determining the “active control mode”

of the SO. Using some of the statistical inference techniques outlined in Chapter 6, the

estimates provided by the RBPF are utilized to determine the active control mode of the

HST.
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(a) 12-Jul-2008 05:33:02 (b) 12-Jul-2008 05:34:36

(c) 12-Jul-2008 05:36:11 (d) 12-Jul-2008 05:37:47

Figure 47: 2D View of ✓1 - ✓3
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Table 21: Hypothesized subjects from Caldwell catalogue

Caldwell Number NGC Number Geo. RA (HH:MM:SS) Geo. DEC (DEG:MM:SS)
True Target N/A 16:38:13.48 -68:27:19.35

C78 NGC 6541 18:08:02.36 -43:42:53.6
C81 NGC 6352 17:25:29.11 -48:25:19.8
C87 NGC 1261 16:18:48.00 -57:56:00.0
C95 NGC 6025 16:03:60.00 -60:00:00.0
C107 NGC 6101 16:25:48.12 -72:12:07.9

Fig. 48 represents the same attitude information as Fig. 46 and Fig. 47, but the Euler

angle representation has been transformed to topocentric equatorial coordinates. The origin

of the topocentric equatorial frame has been fixed with the true z-axis of the HST, which

is the bore-sight of the HST. Consequently, the true target remains fixed at the origin. For

illustrative purpose, 5 hypothesized subjects from the Caldwell catalogue are selected, as

shown in Table 21. In Table 21, each hypothesis is listed alongside its right ascension and

declination in the geocentric equatorial frame.

One elemental way to describe the most likely hypothesis is by computing the instan-

taneous angle between each hypothesized subject and the mean of attitude distribution, as

shown in Fig. 49. One can see that shortly after the start of the observation, the RBPF

correctly determines the correct subject. This is not always the case, especially for targets

that are highly maneuverable or subjects whose orbital planes cause them to pass serendipi-

tously close to the target bore sight. In those cases, the time integral of the the time integral

of the instantaneous angle, defined as the mean measurement dissimilarity metric, can be

useful in determining the active control mode of a SO.

Another important piece of information that can be determined using the RBPF is

whether or not the SO is maneuvering or quiescent. This can be accomplished by performing

a multivariate hypothesis test on the angular momentum or energy analogs at each time

step. If is it determined that the momentum is statistically equivalent to 0, then the object

is not maneuvering. Fig. 50 shows the t-statistic of the estimated angular momentum

analog along with the requisite boundary for a 3 degree of freedom F distribution with

↵ = 0.05. Since the statistic is below the threshold at every time step, one can say that

the HST was not maneuvering during the overflight with a significance level of 0.05. This
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(a) 12-Jul-2008 05:33:02 (b) 12-Jul-2008 05:34:36

(c) 12-Jul-2008 05:36:11 (d) 12-Jul-2008 05:37:47

Figure 48: View from HST Bore-sight in Topocentric Equatorial Coordinates

(a) Instantaneous Angle of Each Hypothesis (b) Ranking of Hypotheses by Smallest Angle

Figure 49: ACM Inference Using Instantaneous Angle
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confirms the publicly published observation schedule of the HST as given in Table 20.

Figure 50: Multi-variate Hypothesis Test on Momentum Analog

7.3 Summary

An experimentally collected light curve is coupled with a Rao-Blackwellized Particle Filter

to infer the active control mode of the Hubble Space Telescope. It is found that the quality

of the simplified bi-reflectance distribution function utilized limits the accuracy of the filter.

Despite this, the posterior state distributions are used to infer the most likely subject of

the HST. In addition, the observational data is exploited to provide evidence that the HST

was quiescent during the over flight.
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CHAPTER VIII

CONCLUSIONS AND FUTURE WORK

8.1 Summary of Academic Contributions

As space becomes increasingly congested and contested, the demand for timely, actionable

evidence of threats and hazards to spaced-based assets will increase. For several important

classes of SO, such as GEO communications satellites, unresolved imagery remains the only

data source from which to glean indications of such threats and hazards. Recognizing that

a persistent, robust SDA capability requires copious amounts of data, the contributions of

this thesis advance the state of the art in several relevant areas to satiate this demand.

The radiometric model defined in Chapter 3 provides a description of phenomenol-

ogy in a consistent nomenclature that is accessible to multi-disciplinary SDA researchers.

This foundation is first used in Chapter 4 to build a multi-objective design framework for

small aperture, autonomous telescopes. Analytic performance metrics are derived from first

principles and used to calculate performance sensitivities. The creation of Pareto e�cient

frontiers a↵ords stakeholders the ability to compare the utility of such systems in diverse

optical environments. The intent of this framework is to design systems consistent with

the Raven-class telescope design paradigm, where small aperture telescopes are assembled

from commercial o↵ the shelf hardware. It is emphasized that the approach presented is

not intended to replace traditional, detailed optical design. Rather, it is hoped that the

contributions in this work are used during the conceptual design phase to help designers

narrow the design space and to identify families of designs which represent feasible solutions

to user specific mission requirements.

Chapter 5 shows how the data products generated by small aperture, autonomous tele-

scopes can be leveraged to estimate the attitude of agile SO. The radiometric model of

Chapter 3 is expanded to demonstrate how to properly model the measurement uncertainty

inherent in the SO light curve inversion problem. The dynamics produced by unknown
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torques and unknown inertia properties of the maneuvering SO are modeled as exponen-

tially correlated process noise, enabling the implementation of a Rao-Blackwellized particle

filter. The synthesis of these novel approaches enable the estimation of attitude and an-

gular velocity states of maneuvering space objects without a priori knowledge of initial

attitude, while maintaining computational tractability. For the first time, simulated results

are presented for the full 3 degree of freedom agile space object attitude estimation problem.

Chapter 6 demonstrates how statistical inference techniques can be used to infer the

active control mode of an observed SO. The overall goal is to identify, from a mutually

exclusive but not exhaustive list of hypotheses, which subject is under observation by the

agile SO. These methods use di↵erent measures to rank the enumerated hypotheses in

terms of their stochastic dominance. This methodology o↵ers more precise descriptions of

space object behavior then previously possible. By providing the target the observed SO

is tracking, rather than the categorical classifications previously described in the literature,

analysts can infer the mission purpose of a target SO, a key component of SDA. Finally,

Chapter 7 shows how the methods of Chapter 5 and Chapter 6 can be applied in practice.

8.2 Future Work

Important first steps for future work will require establishing public standards for the gen-

eration of light curves from unresolved imagery. Recent work has posited data format

standards, but the SDA community has not yet established standards for data quality or

reduction accuracy. Critical to the success of the methods outlined in this thesis, is the

quantification of uncertainty that includes not only noise sources inherent to electro-optical

sensors, but also the contributions of the estimation processes themselves.

A great deal of e↵ort could also be focused on the current state of the art in EO sensors.

The wavelength averaged, time averaged, spatially binned photon count data used in the

current state of the art is a crude measure of the time-varying, spatially varying, spectral

information that is the true signature of SOs. This also implies that the theoretical BRDFs

used as measurement models in light curve inversion algorithms could achieve a higher

fidelity.
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APPENDIX A

MULTI-OBJECTIVE DESIGN BACK MATTER

A.1 Derivation of Time to Detect

Here, the expanded form of the SNR equation is used to solve for t as a function of all other

variables and parameters. Exploiting the quadratic form of t in the denominator, terms are

grouped into placeholder variables A, B, and C to ease algebraic manipulation.

SNR2 =
(Sso · t)2

Sr|{z}
C

+ [Sso + m0 (Ssky + Sdark)]| {z }
B

t +
p

m0vf (Ssky + Sdark)
1

2p| {z }
A

t2
(142)

SNR2 =
(Sso · t)2

C + B · t + A · t2
(143)

Like terms are grouped to form Eq. 144
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2
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!
t2 + B · t + C = 0 (144)

Applying the solution for a quadratic equation yields the expression in Eq. 145.
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B = Eso
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◆
· ⌧atm · ⌧opt · QE + m0 (Ssky + Sdark) (147)

C = Sr (148)
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A.2 Performance Index Sensitivities

The sensitivity of the information objective with respect to the design variables are as

follows:

@JI
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N log(10)
(149)
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The sensitivity of limiting magnitude is then:
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APPENDIX B

GT-SORT FACILITY AND HARDWARE

GT-SORT was developed as a research and development test-bed for software pertaining

to all areas of space domain awareness. This includes but is not limited to detection algo-

rithms, correlation techniques, characterization software, as well as innovative techniques

in observation scheduling and planning. The following sections describe the site, optical

design, and sensor payloads currently deployed.

B.1 GT Observatory

The GT Observatory is located atop the Howey Physics building located on the campus

of the Georgia Institute of Technology. The telescope itself is located at approximately

33.777467� N, �84.398965� E and 300m above mean sea level. The site is located in a

densely populated urban area and subsequently experiences bright night skies averaging

around 16 magnitudes per arcsecond squared, as shown in Fig. 52. The general humidity

of the southeast region of the continental United States generates cloudless nights most

frequently October through January.

B.2 Dome and Mount

The Howey observatory utilizes a roll o↵ roof design rather than dedicated clamshell domes.

This is done in part to accommodate the numerous outreach activities conducted jointly

by the Physics and Aerospace Engineering departments. The mount selected was Software

Bisque’s Paramount ME II, due to its fast track rate and best in class weight capacity. The

telescope connects to the mount via Bisque’s Versa Plate dovetail mount adaptor. This

German Equatorial Mount is controlled by Bisque’s well known SkyX software, and their

proprietary “T-point model” software has resulted in pointing accuracy on the order of 10

arcseconds. Better pointing is likely achievable by using “ring” style mounts rather than

the dovetail adaptor.
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Figure 51: GT-SORT before integration of sensor payload

Figure 52: Radiant intensity of Atlanta’s sky from December 10th, 2015 to January 10th,
2016
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B.3 Optical Design and Sensor Payload

Selecting the optimal choice of commercial o↵ the shelf components that simultaneously

satisfied a wide range of future research interests was challenging. The results of the multi-

objective design study described in Chapter 4 revealed that a 0.5m f/8 telescope would

maximize detection sensitivity by minimizing the deleterious impact of the bright night

sky when using large format CCD sensors. O�cina Stellare was contracted to construct a

Ritchey-Chrétien telescope, specifically their Pro RC 500 model.

This model was chosen in part for its carbon fiber construction, which minimizes flexure

of the optical telescope assembly (OTA) over a wide range of temperature changes. The

infamous southern heat and humidity also motivated the incorporation of small axial fans

which, together with temperature and humidity sensors, automatically control the ambient

air temperature inside the OTA to prevent dew from forming on the primary mirror. The

secondary mirror is also controlled via stepper motor to allow fine control during focusing

operations. At its native f/8 configuration, GT-SORT produces a fully corrected flat field

of 80 mm2 with a maximum spot size of 5.4µm. While this large flat field enables the use

of large format CCDs, a high frame rate CMOS sensor was selected as the first sensor for

integration.

A Point Grey GS3-U3-60QS6M-C was selected because of its maximum frame rate of

25fps delivered over USB 3.0. Additionally, the 1” format was the largest form factor

available at the time of purchase, which maximizes the total field view. Finally, this model

consisted of the maximum pixel size available at 5.4 µm pixels, which maximizes detection

sensitivity. To further enlarge the field of view, an optional focal reducer can be used to

create an e↵ective focal length configuration of f/6. The performance of GT-SORT in both

the f/6 and f/8 configurations using the Point Grey camera is given in Table 22 below. These

performance estimates are based on the environmental parameters detailed in Chapter 4.

These limiting magnitudes are specified for an “open” filter. For future photometric studies,

a Finger Lake Instruments Centerline CL-1-10 filter wheel was paired with Johnson-Cousins

UVBRI filters manufactured by Astrodon. This filter wheel allows the simultaneous use of

two separate filters or spectral grates.
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Table 22: GT-SORT Performance

Focal Ratio Limiting Magnitude IFOV (arcsec.) FOV (arcmin.)
f/6 12.9 0.31 14.23 x 11.40
f/8 12.9 0.23 10.68 x 8.55
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M., Depagne, É., De Vera, J., Dilday, B., et al., “Las Cumbres observatory global
telescope network,” Publications of the Astronomical Society of the Pacific, Vol. 125,
No. 931, 2013, pp. 1031–1055.

[65] Cellino, A., Zappala, V., and Farinella, P., “Asteroid shapes and lightcurve morphol-
ogy,” Icarus , Vol. 78, No. 2, 1989, pp. 298–310.

[66] Kaasalainen, M. and Torppa, J., “Optimization Methods for Asteroid Lightcurve
Inversion: I. Shape Determination,” Icarus , Vol. 153, No. 1, 2001, pp. 24 – 36.

[67] Torppa, J. and Muinonen, K., “Statistical Inversion of GAIA Photometry for Asteroid
Spins and Shapes,” GAIA 2004 Proceedings, 2005, pp. 321–324.

[68] Hall, D., Africano, J., Archambealt, D., Birge, B., Witte, D., and Kervin, P., “AMOS
Observations of NASA’s IMAGE Satellite,” Advanced Maui Optical and Space Surveil-
lance Technologies Conference, September 2006.

[69] Hall, D. T., Africano, J. L., Lambert, J. V., and Kervin, P. W., “Time-Resolved I-
Band Photometry of Calibration Spheres and NaK Droplets,” Journal of Spacecraft
and Rockets, Vol. 44, No. 4, July 2007, pp. 910–919.

[70] Jah, M. and Madler, R. A., “Satellite Characterization: Angles and Light Curve Data
Fusion for Spacecraft State and Parameter Estimation,” Proceedings of the Advanced
Maui Optical and Space Surveillance Technologies Conference, Vol. 49, 2007.

[71] Coder, R. D. and Holzinger, M. J., “Multi-Objective Design of Optical Systems for
Space Situational Awareness,” Acta Astronautica, Accepted 2015.

[72] Coder, R. D., Holzinger, M. J., and Linares, R., “3DOF Estimation of Agile Space
Objects using Marginalized Particle Filters,” AIAA Journal of Guidance, Control,
and Dynamics, Submitted 2016.

135



[73] Coder, R. D., Holzinger, M. J., and Jah, M. K., “Inferring Space Object Active
Control Mode using Light Curve Inversion,” AIAA Journal of Guidance, Control,
and Dynamics, Submitted 2016.

[74] Budding, E. and Demircan, O., Introduction to Astronomical Photometry , Cambridge
Observing Handbooks for Research Astronomers, Cambridge University Press, 2nd
ed., 2007.

[75] Nicodemus, F., Richmond, J., and Hsia, J., Geometrical Considerations and Nomen-
clature for Reflectance, U.S. Government Printing O�ce, 1977.

[76] Krag, W. E., “Visible Magnitude of Typical Satellites in Synchronous Orbits,” Tech.
rep., Massachusetts Institute of Technology, 1974.

[77] Smith, W. J., Modern Optical Engineering , McGraw-Hill Education, 4th ed., 2007.

[78] Schott, J. R., Remote Sensing: The Image Chain Approach, Oxford University Press,
1997.

[79] Howell, S. B., Handbook of CCD astronomy , Vol. 5, Cambridge University Press, 2006.

[80] Hines, W. W., Montgomery, D. C., Borror, C. M., and Goldsman, D. M., Probability
and Statistics in Engineering , Wiley, 2008.

[81] Feigelson, E. D. and Babu, G. J., Modern Statistical Methods for Astronomy: with R
Applications, Cambridge University Press, 2012.

[82] Mortara, L. and Fowler, A., “Evaluations of charge-coupled device (CCD) perfor-
mance for astronomical use,” Solid state imagers for astronomy , International Society
for Optics and Photonics, 1981, pp. 28–33.

[83] Merline, W. and Howell, S. B., “A Realistic Model for Point-sources Imaged on Array
Detectors: The Model and Initial Results,” Experimental Astronomy , Vol. 6, No. 1-2,
1995, pp. 163–210.

[84] Newberry, M. V., “Signal-to-Noise Considerations for Sky-subtracted CCD Data,”
Publications of the Astronomical Society of the Pacific, 1991, pp. 122–130.

[85] Kitchin, C. R., Telescopes and Techniques, Springer, 2012.

[86] Blackman, S. S., “Multiple Hypothesis Tracking for Multiple Target Tracking,”
Aerospace and Electronic Systems Magazine, IEEE , Vol. 19, No. 1, 2004, pp. 5–18.

[87] Arora, J., Introduction to Optimum Design, Academic Press, 2004.

[88] Deb, K., Multi-Objective Optimization Using Evolutionary Algorithms , Vol. 16, John
Wiley & Sons, 2001.

[89] Weisman, R. and Jah, M., “Uncertainty quantification for angles-only initial orbit
determination,” AAS/AIAA Spaceflight Mechanics Meeting, Santa Fe, AAS , 2014,
pp. 14–434.

[90] Simon, D., Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches,
Wiley, 2006.

136



[91] Jazwinski, A. H., Stochastic Processes and Filtering Theory , Courier Dover Publica-
tions, 2007.

[92] Frieden, B. R. and Gatenby, R. A., Exploratory Data Analysis Using Fisher Informa-
tion, Springer, 2007.

[93] Hugentobler, U., “Astrometry and Satellite Orbits: Theoretical Considerations and
Typical Applications,” Geod.-Geophys. Arb. Schweiz, Vol. 57,, Vol. 57, 1998.

[94] Schaefer, B. E., “Telescopic Limiting Magnitudes,” Publications of the Astronomical
Society of the Pacific, 1990, pp. 212–229.

[95] Blake, T., Sánchez, M., Krassner, J., Georgen, M., and Sundbeck, S., “Space Domain
Awareness,” AMOS Conference Proceedings, 2011.

[96] Lesch, S. M. and Jeske, D. R., “Some suggestions for teaching about normal approxi-
mations to poisson and binomial distribution functions,” The American Statistician,
Vol. 63, No. 3, 2009, pp. 274–277.

[97] Peizer, D. B. and Pratt, J. W., “A normal approximation for binomial, F, beta,
and other common, related tail probabilities, I,” Journal of the American Statistical
Association, Vol. 63, No. 324, 1968, pp. 1416–1456.

[98] Mulrooney, M., Matney, M. J., Hejduk, M. D., and Barker, E. S., “An Investiga-
tion of Global Albedo Values,” Proceedings of the Advanced Maui Optical and Space
Surveillance Technologies Conference, 2008.

[99] Dravins, D., Lindegren, L., Mezey, E., and Young, A. T., “Atmospheric intensity
scintillation of stars. I. Statistical distributions and temporal properties,” Publications
of the Astronomical Society of the Pacific, 1997, pp. 173–207.

[100] Roggemann, M. C., Welsh, B. M., and Hunt, B. R., Imaging through turbulence, CRC
press, 1996.

[101] Karlis, D. and Xekalaki, E., “Mixed poisson distributions,” International Statistical
Review , Vol. 73, No. 1, 2005, pp. 35–58.

[102] Li, X. R. and Jilkov, V. P., “Survey of maneuvering target tracking. Part I. Dynamic
models,” Aerospace and Electronic Systems, IEEE Transactions on, Vol. 39, No. 4,
2003, pp. 1333–1364.

[103] Singer, R., “Estimating Optimal Tracking Filter Performance for Manned Maneuver-
ing Targets,” IEEE Transactions on Aerospace and Electronic Systems, Vol. AES-6,
No. 4, July 1970, pp. 473 –483.

[104] Schon, T., Gustafsson, F., and Nordlund, P.-J., “Marginalized particle filters for
mixed linear/nonlinear state-space models,” Signal Processing, IEEE Transactions
on, Vol. 53, No. 7, 2005, pp. 2279–2289.
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