
University of Windsor University of Windsor 

Scholarship at UWindsor Scholarship at UWindsor 

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers 

2012 

Driver Modeling for Risk Assessment Driver Modeling for Risk Assessment 

André Joseph Edouard Levesque 
University of Windsor 

Follow this and additional works at: https://scholar.uwindsor.ca/etd 

Recommended Citation Recommended Citation 
Levesque, André Joseph Edouard, "Driver Modeling for Risk Assessment" (2012). Electronic Theses and 
Dissertations. 5383. 
https://scholar.uwindsor.ca/etd/5383 

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor 
students from 1954 forward. These documents are made available for personal study and research purposes only, 
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution, 
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder 
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would 
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or 
thesis from this database. For additional inquiries, please contact the repository administrator via email 
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208. 

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F5383&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/5383?utm_source=scholar.uwindsor.ca%2Fetd%2F5383&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca


DRIVER MODELING FOR RISK ASSESSMENT
by

ANDRÉ J. E. LEVESQUE

A Thesis
Submitted to the Faculty of Graduate Studies

through Mechanical, Automotive, & Materials Engineering
in Partial Fulfillment of the Requirements for

the Degree of Master of Applied Science at the
University of Windsor

Windsor, Ontario, Canada
2012

© 2012 André J. E. Levesque



DRIVER MODELING FOR RISK ASSESSMENT
by

ANDRÉ J. E. LEVESQUE

APPROVED BY:

Dr. C. Lee

Civil and Environmental Engineering

Dr. B. Minaker

Mechanical, Automotive, & Materials Engineering

Dr. J. Johrendt, Advisor

Mechanical, Automotive, & Materials Engineering

Dr. R. Barron, Chair of Defense

Mechanical, Automotive, & Materials Engineering

January 23, 2012



Declaration of Previous Publication

Chapter 2: "Literature Review", consists of "The State of the Art of Driver Model Development",

as published by the Society of Automotive Engineers, 4/12/2011:

A. Levesque, J. Johrendt,(2011) The State of the Art of Driver Model Development, SAE Paper

2011-01-0432. SAE Publishers.

I certify that I have obtained a written permission from the copyright owner to include the above

published material in my thesis. This permission by be referred to in Appendix A of this document.

I certify that the above material describes work completed during my registration as graduate student

at the University of Windsor.

I declare that, to the best of my knowledge, my thesis does not infringe upon anyone’s copyright

nor violate any proprietary rights and that any ideas, techniques, quotations, or any other material

from the work of other people included in my thesis, published or otherwise, are fully acknowledged

in accordance with the standard referencing practices. Furthermore, to the extent that I have included

copyrighted material that surpasses the bounds of fair dealing within the meaning of the Canada

Copyright Act, I certify that I have obtained a written permission from the copyright owner(s) to

include such material(s) in my thesis and have included copies of such copyright clearances to my

appendix.

I declare that this is a true copy of my thesis, including any final revisions, as approved by my

thesis committee and the Graduate Studies office, and that this thesis has not been submitted for a

higher degree to any other University or Institution.

iii



Abstract

As the Baby Boomer generation begins to age along with the advances made in modern medicine,

the number of elderly people is expected to increase significantly over the course of the next several

decades. As the elderly population increases, the number of elderly drivers on our roads increases as

well. Driving is both a physically and cognitively intensive task, and it is a well known fact that as

people age, both their physical, and cognitive abilities decrease. As a result, elderly drivers are at an

increased risk of being involved in a collision. Currently, the methods to determine driver fitness are

limited, and as a result, doctors are placed in a difficult situation where they must choose between

protecting their client, the public, and their own reputation; or allowing their client to maintain their

accustomed level of independence. While there are elderly drivers who are obviously no longer fit to

drive, the problem is making a decision regarding elderly drivers whose ability has not completely

deteriorated, and fit in a sort of "gray area". The following research presents the ground work for the

development of an objective driver risk assessment tool. The assessment tool makes use of artificial

neural networks to both model, and evaluate driver behaviour. Presented herein is the current state

of driver modeling, the theory behind neural networking and vehicle dynamics, the process used to

develop the model, the performance results, and finally the conclusions that were obtained from the

research.
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Chapter 1

Introduction

Over the course of the next several decades, the portion of the population greater than the age of

75 is set to increase significantly. A result of the increase of the number of elderly people will be

an increase in the number of elderly drivers on the road. This poses a concern to society because

as people age both their physical and mental abilities deteriorate. The task of driving is one that is

both cognitively and physically demanding, and deterioration of such abilities poses a risk to both

the elderly drivers themselves as well as the rest of the population using the roadways. The ability

to identify competent behaviour is becoming increasingly important in order to ensure that elderly

drivers are capable of driving and that no warning signs of potential danger are missed.

1.1 Current Practice

In order to evaluate elderly drivers there are very few options available. Current practice, for the

most part, is based on observations by a physician through a physical examination. The physical

examination is performed to assess the overall health of the person along with their mental and

physical functions. Using conclusions drawn from the physical examination, the doctor then makes

a decision regarding the fitness of the driver. Often, what may happen is the doctor will take a

conservative approach and revoke the licence for fear of repercussions should the person be involved

in collision, serious or otherwise. The problem with the current practice is that it is very subjective,

and drivers that are still capable of driving may have their licence revoked. This leaves the person

unable to transport themselves and limits their independence as they must now rely on either family

members or friends to make even the shortest of trips, which ultimately reduces the quality of life of

the individual. The entire process essentially places doctors in a lose-lose situation, because on one

hand they risk being found liable if the person’s actions harms either themselves or someone else;

1



CHAPTER 1. INTRODUCTION 2

on the other hand the person may be resentful towards the doctor since they are removing much of

their independence.

One tool called DriveABLE™ is currently available on the market to assist with the decision.

DriveABLE™ consists of two separate tests; the first test is done in office where the person wil

undergo a physical examination by an occupational therapist to evaluate head mobility, peripheral

vision as well as both mobility and strength of the wrists, arms and legs. The person will then

be asked to perform a series of tasks with the assistance of a computer interface, the tasks are

designed to test cognitive ability, memory and reflexes. The second test is done in-vehicle, where the

person will be asked to drive a predetermined course while being accompanied by the occupational

therapist for evaluation. All of the driver inputs are recorded as well and compared statistically

with what is considered to be acceptable. While DriveABLE™ does provide an objective means for

the evaluation of elderly drivers and the people using it do speak favourably about its performance,

DriveABLE™ still has some drawbacks, the first of which is cost. Each session costs approximately

$400; rather than being a one-time cost to purchase the equipment, a fee must be paid each time

a person is tested. Another significant drawback of DriveABLE™ is with the in office test, all of

the tasks are done on a computer with the use of either a mouse or a touchscreen. While these

tests are good predictors of physical capabilities such as mobility, reflexes and vision, they fail to

assess the person’s physical capabilities when put in an actual driving situation. The first test may

also be considered questionable by some because of the fact that it is a computer-based test. The

reason for this is that elderly people are often unfamiliar with and therefore uncomfortable using

computers. This instantly puts them at a disadvantage because they must spend time learning the

interface rather than simply being evaluated on their performance, which might ultimately make

them perform poorly. In the case of the on-road test, the drawback is that a potentially unsafe driver

may be allowed to drive, thus putting themselves, the occupational therapist and other road users at

risk. The second portion of the test is administered regardless of the outcome of the first part.

1.2 Proposed Solution

The idea being presented herein is to provide a conclusive, objective method of evaluating drivers,

with particular attention paid to elderly drivers. The current methods of evaluation mentioned earlier

are either very subjective and place doctors in what amounts to being an unfair position, or they are

regarded as being controversial because they may not provide an accurate assessment. The method

being proposed is to take advantage of the ability of Artificial Neural Networks to produce a driver

model that represents a typical, average driver. Neural Networks are mathematical models that in

concept mimic the function of the human brain in that they can learn, when a series of inputs is



CHAPTER 1. INTRODUCTION 3

presented to them, to predict an output. They are capable of both function approximation and data

organization. In the case of this research, there are two neural network structures that will be used;

the first will be of the function approximating variety, which will be used to model a typical driver. It

will be developed by presenting data from a series of test subjects gathered by the GRAME research

group at l’Université Laval in Québec City, PQ; using their driving simulator. This data will be used

to represent what an average driver would likely do in a given scenario. The other type of network

that will be used is a clustering network, where the actual behaviour of the driver will be compared

with the behaviour of the driver model, or, what the behaviour should be.

Figure 1.1: Block Diagram of Driver Assessment Tool

Ultimately a decision will be made where there are three possible outcomes; the first is that

the driver’s behaviour is satisfactory and in-line with what is to be expected from a typical driver.

The next potential outcome is that the driver’s behaviour indicates that their ability has deteriorated,

but not to the point where they can no longer drive; therefore they will be allowed to keep their

licence but they may only drive under limited conditions (e.g., only during the day, good weather,

not on freeways, etc.). The final outcome is that the drivers ability has deteriorated considerably,

and therefore they should no longer be allowed to drive. It is hoped that this tool will help keep

drivers that are in the second category of limited ability on the road such that they can still retain

some of their independence and be allowed to make short trips by car. At the same time, both they

and the other road users will be protected by keeping them away from situations that they are no

longer capable of handling due to their decreased capability. Another potential use for this model

is to assist with driver retraining; in the past, the group at Laval have used their simulator to help

retrain drivers, and it may be possible to use this tool to identify where the shortcomings of the

driver are and thus tailor a retraining plan properly suited to their issues. In the past, attempts to

retrain drivers using driving simulators have proven to be successful [1]. According to the group

at Laval, drivers who were informed of their shortcomings and instructed on how to improve their

driving, demonstrated an improved level of performance when they were evaluated afterwards. Of

note is that several of these drivers were elderly, which offers some promise that an assessment tool

could be valuable in order to help retrain elderly drivers whose abilities have diminished.



Chapter 2

Literature Review

The follwing chapter has been taken from SAE paper 2011-01-0432 entitled "The State of the Art

of Driver Model Development"; the abstract, introduction and conclusion have all been omitted.

2.1 Distinction Between Model Types

According to Michon, driver models can be classified based on two dimensions: distinctions be-

tween taxonomic and functional models as well as between behavioural (input-output) and internal

state (psychological) models[2, 3, 4] (Figure 2.1). Taxonomic models are those that are based purely

on facts and ignore any type of interaction between different components of the model. In the case of

functional models, these interactions are considered. By taking into consideration these interactions

it is possible to determine how an action in one component of the model will affect what happens

in all other components or how a given component is affected by what is occurring in the system

as a whole. Behavioural models analyse the input to the model and the associated output. They are

incapable of analysing the thought processes of the driver. Internal state models are models that are

capable of analysing the thought process and they determine the psychological state of the driver.

The result of these four classifications of models and the fact that they are arranged in a two-

dimensional manner yields several types of models that combine the aspects of two of the classi-

fications. The first type of model is task analysis models which are classified as a taxonomic and

behavioural model. Task analysis models separate driving into a series of tasks and subtasks, such

models are built using data that was likely collected from either a driving simulator or from an in-

strumented vehicle. The purpose of a task analysis model is to analyse the necessary requirements

of the driver for the given situation as well as the ability of the driver. The next type of model is the

trait model which is a combination of taxonomic and internal state models. Trait models describe

4



CHAPTER 2. LITERATURE REVIEW 5

Figure 2.1: Model Types According to Michon, [2]

the thought process of the driver and aim to classify the attitude and traits of the driver with the

goal of determining the relative amount of risk that a given driver is likely to take. Mechanistic

models are classified as behavioural and functional models and attempt to use a mechanistic system

to describe driver behaviour (one example referred to by Michon is the use of hydrodynamics to

model traffic behaviour). Overall, mechanistic models are said to be somewhat limited in their ca-

pability and see very little use as no consideration is given to the driver’s thought process. Adaptive

control models are also classified under behavioural and functional models, a further subdivision

of types exists consisting of servo-controlled models and information flow control models. Servo-

controlled models consider driving as a continuous or intermittent tracking task, Often these models

use input signals that represent the lateral position (compensatory tracking) or road curvature (pur-

suit tracking). In order to represent the driver and vehicle, transfer functions are used. Information

flow control models are very much like the name suggests in that they use the information that is

perceived by the driver. The information is then interpreted through a flow of logical steps. Motiva-

tional models are classified as internal state and functional type models; according to Michon at the

time of writing such models were limited to the discussion of the products of cognitive functions

such as beliefs, emotions and intentions rather than the actual cognitive functions. When discussing

motivational models, there are three different varieties that exist, which are compensation models,

risk threshold theory and threat avoidance models. Compensation models postulate that drivers

establish a target level of risk and attempt to maintain that target level of risk and will act to com-

pensate for any deviation. Risk threshold models appear to have some similar characteristics to

compensation models; however, they are based more on the driver attempting to maintain a balance

between the perceived level of risk and the actual level of risk. Finally, threat avoidance models

state that drivers attempt to avoid any and all risk. Further information with regard to motivational
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models as well as some examples will be presented in the following sections.

As mentioned previously in the introduction, one method of classifying models is to distin-

guish between descriptive models and motivational models. These classifications are proposed by

Carsten[5] and are broader than those proposed by Michon. According to Carsten, descriptive mod-

els attempt to describe either the entire driving task or some parts of it; they are analytical in nature

and therefore cannot make any predictions with regard to the effect of motivation, capability or

decision. Classified under descriptive models are task models, adaptive control models and pro-

duction models. Details with regard to the first two types have already been previously discussed.

Production models describe driving as a formal set of rules in the manner that a production system

works. The definition of motivational models according to Carsten is very much the same as the one

presented by Michon in that they attempt to describe the reasoning behind driver decisions based on

aspects such as risk, personality, capability and so forth.

2.2 Model Hierarchy

To describe the driving task, a hierarchical structure has been put forth by Michon[2, 6]. The model

described by Michon, models driving task performance, which describes the level at which a driver

processes a given task. The model consists of three levels: the strategic level, the manoeuvring

level and the control level (Figure 2.2). A fourth level, the behavioural level is sometimes added to

the model. The behavioural level contains the most fundamental aspects of the driver, namely the

attitudes and beliefs that dictate the general behaviour of the driver in everyday life. The strategic

level of the hierarchical model governs general plans for a given trip, aspects such as destination,

planned stops and essentially any other long term goals for the trip. The manoeuvring level, some-

times known as the tactical level, manages more immediate goals; the operations at this level are

of a shorter term than those at the strategic level. Essentially the manoeuvring level governs the

tactics used to arrive at given destination such as when to make a turn, or the process of overtaking

a vehicle in order to arrive at the final destination quicker. Finally the last level of this model is the

control level; the control level governs very short term goals to help the driver arrive at the desired

destination. Goals of interest at the control level consist of basic inputs to ensure that the vehicle

stays on the route, things like speed control, negotiating a curve and maintaining lane position.

While the model hierarchy proposed by Michon describes the level on which the driver carries

out a task, it fails to describe the type of behaviour used to carry out the driving task. The Task

Behaviour model developed by Rasmussen [4, 6] describes the driving behaviour through the use

of a sort of hierarchy. Rasmussen’s model describes three different types of behaviour that are used

by drivers while carrying out the driving task. These three types of behaviour are knowledge-based
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Figure 2.2: Michon’s Hierarchical Structure, [2]

behaviour, rule-based behaviour and finally skill-based behaviour. Knowledge-based behaviour is

used when a driver may encounter a new situation and must use knowledge from a previous situation

or some form of training in order to deal with the situation at hand. Knowledge-based behaviour

requires conscious thought on the part of the driver as the driver must actively search through their

memory and find the appropriate knowledge to deal with the given situation. Rule-based behaviour

is used when the driver has some familiarity with an event and there is a partially pre-determined

method for dealing with a situation that the driver has already learned. In situations where rule-based

behaviour is used, a combination of conscious and unconscious thought is used by the driver as a

portion of the action is carried out automatically however the driver must still give some thought for

dealing with the event. The final level of the task behaviour model involves skill-based behaviour

where the task is carried out through an entirely unconscious process. Skill-based behaviour is used

for generally simple tasks where the driver does not need to give any thought about the process and

everything is accomplished automatically.

The final form of hierarchy involves the information processing model. While the informa-

tion processing model is not necessarily a hierarchy, it can still be used in combination with the

previously described hierarchies. The information processing model also consists of three differ-

ent components which are perception, processing and action[4]. Perception is the point at which a

driver first notices an event occurring within the driving environment; once the driver is aware of the

situation, the information from the environment is processed by the driver where a decision is made

with regards to the appropriate course of action. Once the appropriate course action is determined

by the driver, the action is carried out to allow the vehicle to progress through the road environment

with the least amount of difficulty possible. The information processing model can be viewed as
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a cycle (Figure 2.3) as the driver is constantly going through this process and the actions taken by

the driver have an impact on the situation at hand. The impact of the driver’s actions must then be

perceived by the driver in order for another action to be carried out for further progress through the

road environment. To form a complete hierarchical model of driver behaviour, the three aforemen-

tioned models can be combined to form a 3-dimensional model that completely describes all aspects

the driving task (Figure 2.4)[7, 8].

Figure 2.3: The driving process represented as a cycle, [4]

2.3 Motivation and Risk Management

Motivation is an important concept when trying to model driver behaviour, as it is a cognitive

process and is determined by the driver’s intentions. When modeling driver motivation there are

three factors that are influential: attitude, the subjective norm and the perception of control [9]. The

attitude of a driver is dictated by overall beliefs and a link between consequences and outcomes.

Some drivers may believe that driving in a certain manner may yield positive consequences or
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Figure 2.4: Three dimensional driver model, [7]

outcomes, while other drivers may believe that behaving in such a manner carries too much risk

and that the potential positive outcomes do not outweigh the negative ones. The subjective norm is

what the general population believes to be acceptable behaviour; if the majority of people behave in

a certain manner, a driver may use that information to gauge how they should behave and whether

or not the way in which they are behaving would be perceived favourably or unfavourably by the

general population. Perception of control describes the driver’s sense of ability to accomplish a task

in the driving environment, which is governed by what the driver feels are their own limits as well

as the limits of the vehicle.

Risk Management is another important concept when describing driver motivation and be-

haviour; several researchers have used risk management to establish driver models. Two notable

theories that are discussed by Fuller[9] are the Risk Homeostasis Theory by Wilde and the Zero

Risk Theory by Näätänen and Summala. The Risk Homeostasis Theory proposes that the intention

of the driver is to maintain a constant level of risk called a target risk while driving. The target risk

is influenced by a compromise between benefits and consequences. Drivers attempt to maximize

the net benefit and in order to do so the amount of expected gain by the driver must be increased and

thus the risk must be increased as well, subsequently increasing the amount of expected loss[10].

In order to maintain the target risk, the driver will compare it with the level of perceived risk. The

perceived risk is determined by three factors according to Wilde, which are past experiences with

the given situation, the perceived likelihood of an accident and the amount of confidence the driver

has in their ability to make decisions and control the vehicle. An important note with regard to risk

homeostasis is that Wilde stresses that the target level of risk is not constant and that drivers do in

fact adjust according to the situation; however, in a given situation there will be no variation. In the



CHAPTER 2. LITERATURE REVIEW 10

case of the Zero Risk Theory, it is proposed that the ultimate goal of the driver is to avoid any and all

risk; this is made possible as drivers learn the required actions in order to avoid collisions. What is

interesting with regard to the two aforementioned theories is that they are essentially a contradiction

of each other, since, according to Wilde, at a state of zero risk nothing is gained or lost and thus no

progress is made. In his criticisms of both methods, Vaa established an interesting concept of target

feeling [11]. In his opinion, the Risk Homeostasis Theory is too rigid in its assumption of target risk

being a number and that the Zero Risk theory fails to establish why drivers will feel safe traveling

at a given speed, for example. According to Vaa, the target feeling is achieved by the driver in a

given situation where the driver feels comfortable and without risk. In a manner of speaking, he has

merged the two theories by taking the aspect that drivers attempt to achieve a target value (in this

case a feeling of safety) and as a result,in the driver’s opinion, there is no risk.

The Task-Capability model was proposed by Fuller [9]. The model works based on the fact

that drivers have a limited amount of capability and that tasks have a demand associated with them

that requires a certain amount of capability. For the majority of driving situations, the driver capa-

bility outweighs the task demand; for such situations the driver is able to maintain control of the

vehicle. When the task demand exceeds the driver capability, the driver loses control of the vehicle

(Figure 2.5). When loss of control occurs, the likelihood of a collision is increased significantly;

however, it is possible to avert a collision either through the actions of other drivers or through a

so-called "lucky escape". When describing driver capability, there are several aspects for considera-

tion. There are physical abilities, such as speed, that affect reaction time, coordination and strength,

and mental capabilities, which are determined by the driver’s experiences as well as any training

they may have received. To describe the task demand, there are four different categories that affect

demand. The first category is the road environment, which encompasses aspects like visibility, road

signs and road design (straight, curved etc.); the second category is related to traffic and the other

vehicles in the driving environment; the third category is related to characteristics of the vehicle

being driven; and the fourth category is the speed and direction of the vehicle. The fourth category

is the only one over which the driver has any level of control.

2.4 Behavioural Adaptation

Behavioural Adaptation is a phenomenon associated with driver assistance systems. The phe-

nomenon occurs when drivers operate vehicles equipped with these systems and become over-reliant

on them. The driver assistance system is programmed to assist the driver with the driving task in

order to make it easier and increase safety; however, because the driver is aware of the presence of

this system, they may become inclined to take more risks. A classic example where behavioural
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Figure 2.5: Task-Capability Model, [9]

adaptation occurs is with vehicles that use an anti-lock braking system (ABS). Some studies have

observed that drivers operating vehicles with ABS will have a tendency to both drive at a higher

speed and begin braking at a later point, as ABS reduces stopping distance and allows the vehicle

to be steered while the brakes are being applied. Vaa discusses the details of such a study that was

undertaken in Germany with taxi drivers[10]. Behavioural Adaptation is highly undesirable be-

cause it undermines the effectiveness of driver assistance systems as drivers adjust their behaviour

to compensate for the supposed increase in safety offered by the system. An interesting fact is that

the notion of behavioural adaptation ties in with the Risk Homeostasis theory, in that it states that

drivers attempt to maintain a constant level of risk. It is essentially what occurs with behavioural

adaptation since a driver assistance system works to lower the risk level; however, when drivers

compensate for their effects, essentially they are increasing risk back to a level that they find to be

acceptable. The works by Bengler[12], Janssen[13] and Saad[14] provide significant data to support

this theory, as well as discussion on more specific effects due to behavioural adaptation.
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2.5 Safety Margins

Safety margins have significant implications for driver behaviour and determining risk, as drivers

create a series of imaginary regions around themselves within the driving environment. Drivers

establish a safety region around themselves that consists of a risk threshold[15]. Once this threshold

is breached the driver has a greater feeling of risk and that a collision may occur. The establishment

of these safety margins is generally based on time and space. It has been suggested by Gibson and

Crooks that drivers attempt to locate gaps in time and space within the road environment to which

they refer to as the field of safe travel[16]. These gaps are pathways that allow the driver to progress

through the road environment without being impeded (Figure 2.6).

Figure 2.6: The field of safe travel as described by Gibson and Crooks, [16]

The field of safe travel is bounded by objects and features in the road environment and it re-

sembles a sort of "tongue" that extends in front of the vehicle. According to Gibson and Crooks,

acceleration is motivated by the desire arrive at a given destination while deceleration is motivated

by a contraction in the field of safe travel. Another quantity discussed by Gibson and Crooks is

the minimum braking distance, which is determined by a number of factors such as vehicle speed,

driver reaction time, road conditions and the braking power of the vehicle. Typically, the minimum

braking distance is ahead of the field of safe travel such that the driver feels safe and comfortable as

they are capable of stopping before anything can impede them. It should be noted that the minimum

braking distance can be extended by increasing the speed of the vehicle; however, it can only be

extended as far the field of safe travel. Another factor affecting minimum braking distance is that
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there is potential for the field of safe travel to be cut off abruptly to the point of cutting into the min-

imum braking distance and inducing the instantaneous application of maximum braking. In such a

scenario a collision is highly probable.

The field of safe travel is defined by the number of different types of boundaries. The first type of

boundary is the natural boundary which consists of obstacles along with environmental factors such

as lighting (day or night, glare), weather and terrain. Vehicle capability also limits the field of safe

travel; while a portion on the inside curve of a road may be unimpeded, it may still be impossible

for the vehicle to travel along that path as the tires may not have enough grip to allow such a tight

trajectory. While obstacles themselves serve to define the field of safe travel, drivers will typically

not follow a path where they come in contact with the obstacle; therefore, the region around the

object, known as the clearance region also defines the field of safe travel. Moving obstacles have

clearance where the vehicle will be closest to; therefore, it may appear that an object is within the

field of safe travel as it might be in front of the vehicle in its path. However, once the vehicle arrives

at the point, the object will have moved. Such is the case for a pedestrian crossing the street or

even a vehicle following another at higher speeds. Potential obstacles have an uncertainty attached

to them; such situations occur when the driver may not be able to see part of the road environment

ahead of the vehicle, as with blind corners, or when coming over a hill, the assumption is that

the path is clear; however, the potential exists for there to be an obstacle. Finally, there are legal

obstacles, which consist of things like speed limits or the information from signs such as a stop sign.

2.6 Error Quantification

In order to model driver performance and to determine whether or not a driver’s behaviour can be

considered appropriate, any deviation from desired behaviour can be viewed as an error. Driving

errors have some relation to safety margins. Any behaviour that takes the driver outside of the

established safety margin is likely an error of some nature, since it puts the driver at an increased

risk of being involved in a collision. Driving errors can occur at all three levels of driver behaviour

and are classified as either being slips/lapses or mistakes[17]. At the knowledge-based performance

level of driver behaviour, errors are considered to be mistakes; these errors occur due to incorrect or

limited knowledge of the driving situation, which results in the wrong course of action taken by the

driver. At the rule-based level, errors are also classified as mistakes; generally these errors are the

result of misapplying a certain rule to the given situation. Finally, at the skill-based level, errors are

regarded as slips or lapses. Such an error is due to an action carried out by the driver unconsciously

in the same manner that all activity at the skill level is carried out–without cognitive thought.

In order to quantify any errors, certain measures are required. One method of doing so is by
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the use of time related measures. Several methods for time related measures are discussed by van

der Horst[8]; he differentiates between methods that can be used for either lateral or longitudinal

control. For lateral control of the vehicle, the most heavily discussed measure is the Time-to-Line

Crossing, which, as the name suggests, gives the amount of time before a vehicle crosses the line

marking a lane and wanders over into another lane. To calculate the Time-to-Line Crossing, the

lateral position, heading angle and speed are used. The driver has control over these parameters

through the steering angle. For longitudinal control, several measures are proposed which, are

Time to Collision (TTC), Time to Intersection (TTI) and the Time to Stop Line (TTS). The Time

to Collision measure, indicates the amount of time before two vehicles in the driving environment

collide since one is interfering with the path of another; there are several different forms of the Time

to Collision measure which describe certain aspects of the event. One form of TTC is TTC braking

(TTCbr) which is the time remaining before a collision at the point where the driver begins to apply

the brakes; there is also the minimum TTC (TTCmin) which describes the point in time during the

event where the time before a collision was at its smallest. This measure is particularly useful for

describing how close a collision was to occurring. The Time to Intersection (TTI) measures the

time needed to reach a major road when approaching it from a minor one. The TTI decreases as the

vehicle approaches the intersection and it is affected by deceleration, it is possible to reduce the rate

that TTI decreases through gradual deceleration. The Time to Stop Line (TTS) is a similar measure

to (TTI); however, rather than referencing an intersection, a specific stop line is specified that may

correspond to a certain object in the driving environment is specified.

2.7 Modeling Methods

Prior to developing driver models, it is important to establish what elements should be contained;

MacAdam[18] provides a comprehensive list of these essential aspects as well as some secondary

ones that may be used to enhance the model. In his work MacAdam quotes Rashevsky, who is of

the opinion that the model must consider the vehicle and the driver as one entity that may not be

separated. He also characterises human drivers based on physical limitations and physical attributes.

Physical limitations refer to input channels that humans have such as visual, vestibular, kinaesthetic,

auditory and tactile channels. MacAdam ranked the channels based on importance and, in his opin-

ion, the most important is the visual channel, as information regarding velocity and position can be

obtained through vision. He also reinforces his argument by indicating the fact that regulatory agen-

cies often place a great level of importance in visual acuity tests. Following the visual channel, the

next in terms of importance are the vestibular and kinaesthetic channels, as this relates to what the

driver is feeling and from which acceleration information is extracted. The final two input channels
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in terms of importance are the auditory and tactile channels, with more importance being placed on

the tactile channel; however, according to MacAdam, both are useful at providing additional infor-

mation with regard to the situation. The list of essential components for a driver model is based on

physical attributes and consists of:

• a transport delay time to consider reaction times

• the use of preview to sense lateral and longitudinal control

• adaptation provisions for changing conditions

• a linear regime "crossover model" near what is known as the crossover frequency

• the presence of an internal vehicle model to estimate future responses

There is also a list of secondary components that are not as essential; however, they may serve

to further enhance the driver model. The list includes the following components:

• provisions for processing incoming signals to account for neural delays, thresholding, etc.

• neuromuscular filtering elements for output channels such as steering, braking and throttle

response,

• previewed path adjustment capabilities to account for skill related abilities or preferences in

paths

• the ability to adjust speed according to upcoming lateral path requirements to improve path

tracking

• provisions for surprises or unexpected situations

• inclusion of skill factors to account for different skills and experience levels

Some of the earliest driver models made use of control theory. This approach has been used by

a number of researchers. Control theory methods can be considered appropriate for modeling, given

that a driver is a very complex controller whose task is to maintain the course of the vehicle and

arrive at the desired destination. One of the early control theory models was developed by Tustin;

the model focused on the linear part of driver behaviour while the non-linear portions were regarded

as a remnant[19]. Attempts were made to describe the remnant; however, they were relatively

unsuccessful as they can generally only be regarded as an error which is quite difficult to model

mathematically. An observation with regard to the remnant is that it is relatively small and that most

of the behaviour is described by the linear portion; however, employing this method is not very well
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regarded as there are inaccuracies that are known to exist in the model. Ultimately, the research

by Tustin revealed that modeling human behaviour through the use of mathematical equations is

extremely difficult given the amount of variation that exists in human behaviour, especially from

person to person.

The Quasi-Linear model is another control theory model that was developed by McRuer and

Krendel as discussed by Jürgensohn[19]. In order to model driver behaviour, second-order linear

differential equations are used[19]. The model uses five parameters, which are the driver reaction

time, the neuromuscular delay, and a gain along with both a lead and lag factor. To create a model us-

ing this method, these parameters must be found in a catalogue established by the researchers, which

greatly limits the model’s capability. Another model closely related to the Quasi-Linear model that

Jürgensohn discuses as well is the Crossover model, which was also developed by McRuer and

Krendel. This model is a somewhat simplified form of the Quasi-Linear model that uses an integra-

tor and a phase correction for the reaction time and requires two parameters: the reaction time and

the crossover frequency. One significant property of this model is that it assumes that the driver and

the vehicle are one system; the model is said to often produce a fairly precise description of driver

behaviour; however, it too is limited in the same manner as the Quasi-Linear model as it requires

either empirical data or parameters from a catalogue.

Common practice in the development of driver models that use control theory principles is to

divide the model in two separate parts, where one portion is responsible for longitudinal control

and the other portion is responsible for lateral control[20]. A model of this nature is presented by

Weir and Chao (Figure 2.7). The lateral portion of the model contains two feedback loops, one that

considers the heading angle of the vehicle and the other that considers the lateral lane position. In

addition to the feedback loops, the model also considers a random yaw rate disturbance. While the

model is presented showing consideration for the lane position in the outer loop, it is possible to

consider other parameters like path angle, sideslip and lateral acceleration; however, the latter two

are less desirable since they are more difficult to perceive by the driver. A dynamic model of the

vehicle is required, which is not difficult to obtain as it may already be known or can be measured if

necessary. For the driver model there are two describing functions that are used that relate to vari-

ables chosen for the feedback loops. When constructing this driver model a combination of different

approaches is used, which consists of the crossover model, control principles and experimental data

acquired from either a driving simulator or an instrumented vehicle. The other portion of the model

is for longitudinal control. This model is less complex than the one used to describe the lateral

position as there is only one feedback loop with one describing function, because only the throttle

pedal position is considered and braking is neglected. To increase the accuracy of the longitudinal

model, a speed disturbance that may simulate environmental factors such as wind and changes in
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terrain is added.

Figure 2.7: Lateral Control Model by Weir and Chao, [20]

Bengtsson et. al in conjunction with Volvo have developed a more comprehensive longitudinal

model for use in the development of adaptive cruise control systems[21]. The model that they have

presented considers both acceleration and braking. To construct the model, data was acquired from

instrumented vehicles. For this particular research both a leading vehicle and following vehicle, as

seen in Figure 2.8, are used, as adaptive cruise control systems base their vehicle speed on that of

a vehicle ahead of it in traffic. Two different systems are used to consider the variables of interest

as seen in Figure 2.9. The first system considers headway, velocity and differential velocity as

inputs and brake pressure and throttle angle as outputs. In the case of the second system, the input is

simply the velocity of the lead vehicle and the output variables are the headway, differential velocity,

velocity, brake pressure and throttle angle of the following vehicle. To analyze the collected data,

three different methods were used: a linear regression method, a state space model using subspace

identification and a behavioural model. Little insight is given into the details of each method. The

first two methods utilize the input and output variables described in system one, while the third

method that is discussed uses the input and output variables described in system two. The linear

regression method is used to determine if a correlation exists between any of the inputs and outputs.

Ultimately this method proved unsuccessful, even with models with an order as high as 30. The

residuals from the higher-order model were used to construct a pseudolinear regression model that

proved to be more accurate. In the case of the state space model, a model of order of 15 was

used; however, it too proved to be relatively unsuccessful at describing driver behaviour and like the

linear regression method was somewhat better suited at describing the throttle angle rather than the

brake pressure. Finally, the behavioural model provided a fairly accurate representation of driver

behaviour. A model of order 30 is used; however, very few details with regard to this method are

given.
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Figure 2.8: Leading vehicle and following vehicle, [21]

Figure 2.9: Two input and output systems used in the adaptive cruise control model, [21]
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A lateral driver model based on adaptive predictive control was developed by Ungoren and

Peng[22]. The basis of the model is to correct the error in the actual position of the vehicle on

the road versus the desired one, as seen in Figure 2.10. The lateral position is determined as a

function of vehicle state and the steering angle. The proposed model is said to contain three key

components of human driving: the use of preview information, off-line adaptation and driving style.

For the preview component of the model, selecting the proper preview time is critical since a longer

preview window introduces an increase in tracking error; however, the vehicle is said to be more

stable. This was found when validating the model and using preview times that were described as

being long, medium and short in length. The initial assumption regarding steering angle was that it

was fixed throughout the preview window; however, if it is adjusted throughout the preview window

it reduces tracking error. Continuous adjustment of steering angle is not a realistic representation

of driver behaviour; however, it is likely that some adjustment will occur. Therefore the model

often accounts for one adjustment in steering angle during the preview window; this was found to

have a similar effect on tracking as shortening the preview window. The model also accounts for

driving style, as it was found that drivers control the vehicle based on different cues. For example,

experienced drivers use yaw information more than inexperienced drivers. Ultimately, following

data analysis from 22 subjects operating a driving simulator, it was found that results from the

model correlated well for the most part with the data obtained from the driving simulator.

Figure 2.10: How the model corrects the actual path according to the desired one, [22]

A complete driver model using a control theory based approach is presented by Kiencke and

Nielsen. The model that they have developed is termed the hybrid driver model and considers

both longitudinal and lateral behaviour[23]. The longitudinal portion takes into consideration both

acceleration and braking. The model is also more complete in that it considers how information is

acquired and handled by the driver, the determination of reference values and finally the longitudinal
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and lateral control models (Figure 2.11). For processing information, queuing theory is used and

in the case of driver models, the driver is represented by a server and the incoming information

is represented as clients. The queue temporarily stores these clients until they can be handled by

the server. Different types of queues exist, some work simply on a first come first served basis,

while some are capable of giving priority to certain clients. In the case of driver modeling, the

latter type is best suited. For the driver model, two separate queues are used: one is dedicated

to processing visual information, while the other is said to process vestibular information, which

consists of motion that is perceived by the sense of balance. The next aspect of the model that is

considered is the determination of a reference value, which, in this particular case, is the desired

velocity of the vehicle. To determine the desired velocity, a finite state machine (Figure 2.12) that is

based on the scenarios encountered in the road environment and consists of seven states numbered

0 through 6 is used. State 0 is the initialisation state when the automat is first called. State 1

(straight line): there is no road curvature within sight and the radius (ρ(t+t f )) is equal to infinity.

State 2 (approaching a curve): the driver can see a curve and may need to adjust the velocity of the

vehicle, to calculate the appropriate reference velocity several parameters are used such as the curve

radius, the road width and yaw angle. State 3 (braking): at this stage braking is necessary and the

necessary amount of braking is determined in order to attain the desired velocity. State 4 (before the

curve): at this stage the desired velocity is nearly attained; however, some light braking may still

be required. State 5 (curve): the vehicle is now travelling at the desired velocity, minor adjustments

may be necessary based on lateral acceleration and what the driver feels. State 6 (accelerating):

the final state where the driver begins to accelerate, this may occur slightly before the curve ends.

The final portion of the model is the controller itself. As with many models two separate systems

are used for longitudinal and lateral control with both using a General Predictive Controller. For

the longitudinal controller, the inputs are the desired and actual acceleration while the outputs are

the throttle angle and the brake pedal force. To determine the appropriate amount of engine or

braking torque required, the controller uses maps that contain both engine and brake torque with

respect to both desired acceleration as well as vehicle velocity. While the braking portion of the

controller is very similar to the accelerating portion, it also adds the ability to consider the effect

of engine braking. The operating principle used for the lateral controller is to minimize the offset

of the vehicle to an ideal line on the road, the output of this controller is the steering angle and the

offset is measured from the centre point of the front axle.

While many of the methods used to develop driver models utilize traditional control theory

methods, there are alternate methods such as neural networks or fuzzy logic, to name a few. Neu-

ral network methods have been successfully applied by Lin et. al, where the objectives of their

work were to employ and compare different types of neural networks as well as to develop a driver-
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Figure 2.11: Model structure proposed by Kiencke and Nielsen, [23]

Figure 2.12: Finite State Machine used to calculate the reference velocity, [23]
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vehicle-environment (DVE) simulation system[24]. To model the driver handling behaviour in the

DVE both mental behaviour and physical action are considered. In their study, three different ma-

noeuvres were considered: a single line motion which is typically used in a lane change, a double

line motion as seen in the overtaking of another vehicle and sine line motion which is used while

negotiating an s-curve turn. The inputs to the neural network that are used in this model are the yaw

rate, lateral velocity, lateral acceleration, roll angle, roll angle velocity, lateral displacement and

preview lateral offset. The outputs of the system consist of the steering wheel angle as well as the

steering wheel angle velocity. Figure 2.13 presents the general architecture for feedforward neural

network structures.

To implement the neural network model, three different types were used: Counter Propagation

Network (CPN), Radial Basis Function Network (RBFN) and Back Propagation Network (BPN).

It should be noted that the authors omitted any details with regard to the BPN development. The

CPN model consists of an unsupervised training layer known as the Kohonen layer and a supervised

training layer known as the Grossberg layer. The Kohonen layer deals with information compression

and pattern recognition which greatly reduces training time while the Grossberg layer has the role

of ensuring accuracy. In the case of the RBFN model, it is initially considered to have two layers

where one layer is hidden. The hidden layer is then redefined as a non-linear function in the input

layer. In order to train the neural networks, data was required; the data, in this case, was collected

from instrumented vehicles. Five male drivers were the test subjects ranging in experience from

one to twenty years; each driver drove five different cars alternately. The drivers were required to

drive one hour each day at a required velocity between 30 and 90 km/hr. To evaluate the various

models, training time, error tolerance and accuracy were measured. In terms of training time, the

RBFN and CPN models were very close, with the RBFN requiring slightly less time while the BPN

took substantially longer to train. For error-tolerance, the CPN model yielded the best result; this is

attributed to the weight update scheme. The RBFN model was the next best, while the BPN model

was the worst. In terms of accuracy, the RBFN model was the most accurate and the CPN model

was the least accurate. To validate the simulation results, experimental data was collected from

two drivers that drove along the prescribed motions as mentioned previously; the data collection

was performed in a parking lot in order to eliminate any uncontrollable disturbances. Following

comparison with the experimental data, it was determined that the simulation does in fact yield an

output that is in agreement. One aspect that is noted by the authors is that the simulation often

appears to lag the experimental data, which they attribute to the lateral acceleration approaching the

validity limit of the vehicle dynamics model (0.4g). The conclusion reached by the authors is that

the RBFN model is well suited for driver modeling and that the agreement with the experimental

data represents a good fault tolerance.
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Figure 2.13: General feedforward neural network architecture, [25]

2.8 Potential Applications for Driver Models

Up to this point, most of the research into driver modeling has been for the purpose of developing

driver assistance systems or driver information systems. The models are used to study both the

effects of implementing these devices on driver behaviour as well as to design them to be more ef-

fective. There exists several other applications for the use of driver models, one area in particular is

the optimization of drive cycles in hybrid vehicles. Hybrid vehicles utilize two methods of propul-

sion and as a result energy management is a significant issue in their development; driver modeling

can aid in optimizing fuel economy and maintaining proper charge sustenance. To achieve this goal,

a control device will determine the appropriate torque distribution. Also some systems may actually

work with the driver to either alert them or assume control in order to operate in a manner that

increases fuel efficiency.

The work of Ishio et. al[26] presents a driver model that was used to assess the handling charac-

teristics of vehicles. The motivation for using a driver model in this application is that the behaviour

of the vehicle may be the result of the driver rather than the vehicle characteristics, particularly in

the case of subjective evaluations. According to the authors, accurate evaluation of vehicle handling

performance is said to have an increased importance with the development of active chassis con-

trols and understanding their effects on vehicle performance. By applying a driver model based on

steering angle and vehicle trajectory data during a lane change, a common reference can be used

to evaluate handling performance; in this particular case the effects of drive-by-wire steering and

direct yaw control were evaluated. MacAdam also discusses the use of driver modeling to evalu-

ate handling to simulate how a driver would react during a sudden tire failure during an obstacle

avoidance manoeuvre[18].
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The application of driver modeling for accident reconstruction has been undertaken by Jurecki

& Stanczyk[27]. In their work they state that there are many factors that contribute to accidents thus

making it difficult to determine the exact cause. In their opinion accident reconstruction is the next

logical step for the application of driver modeling, following their use for vehicle development and

then vehicle control systems development. The authors focus on the concept of risk time, which

is a function of both vehicle speed and the distance to an obstacle and describes how much time a

driver has to react to a scenario. A relationship between reaction time and risk time was discovered

with reaction times increasing with risk time. This relationship is to be expected as drivers will have

more time to react and they will be slower to do so, as seen in Figure 2.14. To characterise driver

behaviour in pre-accident situations, braking and steering manoeuvres were evaluated along with

risk time; by using this data in conjunction with a driver model previously developed by the authors,

it is believed possible to reconstruct an accident and determine the cause, since there is now more

insight on how drivers will behave when presented with an accident scenario.

Figure 2.14: General relationship between reaction time and risk time, [27]

Another potential application of driver models is for risk assessment of drivers. Such an applica-
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tion will be very useful for the medical field, as currently there are few objective methods to evaluate

driver risk. This subject is particularly sensitive in the case of elderly drivers as family members

who are concerned for their safety may inform their doctor that they feel such a person may be

no longer fit to drive. Subsequently, doctors may take a safe approach and remove the licence on

medical grounds, while the person may still be fit to drive in a limited capacity. Ultimately when the

licence is revoked, the person becomes much less independent and their quality of life will suffer.

The goal of the authors’ research in this topic is to establish a method to evaluate drivers using a

driving simulator, which will give doctors a more definitive and objective way of determining driver

fitness.



Chapter 3

Theory

3.1 Artificial Neural Networks

3.1.1 General Information

While there are many possible methods to create a driver model, as described in the previous chapter,

for this particular project Artificial Neural Networks were chosen. Although it is unknown if this is

necessarily the best method to create a driver model, part of the goal of this research is to discover

whether or not this is the case. The principle behind Neural Networks is to mimic the function

of the human brain; they are capable of learning the behaviour of a certain phenomenon based on

provided information. Neural Networks are capable of representing a broad range of systems but

there is one major distinction in that they can be used for either function approximation or data

organization. Typically the systems that are modeled using neural networks fall into one of the two

aforementioned categories.

In order to develop a neural network, it must first be trained; this is done by presenting a dataset

that contains both input and desired output, or target variables. The goal of training is to allow the

network to be exposed to the input variables that stimulate the system along with their corresponding

response; using this information the network is able to learn how the system will behave under

the conditions characterized by the presented training dataset. This type of training is known as

supervised training. Unsupervised training is another form of neural network training and it is

typically used in clustering and pattern recognition applications. The idea behind unsupervised

training is for the network to group like variables together when presented a dataset. It does this

by assuming that inputs within a certain region of the input space are similar and thus represent

a similar behaviour or characteristic. An important point to note is that neural networks are very

effective at making generalizations and very effective at interpolating; however, it is widely accepted

26
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that neural networks are not particularly strong at extrapolating data [28]; therefore, when selecting

a dataset it is important to ensure that the number of data points is sufficient to span as large an

area as possible (or practical) such that the network is trained for the widest number of possible

scenarios.

Artificial Neural Networks are structured very much like their biological counterparts; they

contain elements known as neurons (Figures 3.1 & 3.2) which are connected to one another as well

as to data. The network may contain multiple layers of neurons; however, there is a minimum of

three layers: The input layer, which, like the name suggests contains the input data. The next layer

is the hidden layer (or layers as often more than one may be utilized). This is where much of the

generalization is performed. The final portion is the output layer where the network gives the output

representing the response of the system. The hidden layers and the output layer are comprised of

a series of neurons. In the case of the output layer the number is defined by the number of output

variables; however, for the hidden layer the number is somewhat arbitrary. The goal is to achieve a

desired level of accuracy with a minimal number of neurons.

Figure 3.1: Structure of a feedforward neural network, Adapted from: [25]

In order to further understand the operation of a neural network it is important to understand

what exactly a neuron is (see Figure 3.2). Neurons are comprised of three main elements: a series
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of weights, a bias and a transfer function. The role of the weight is to connect network inputs to

the neuron or to connect the output of one layer of neurons as inputs to another. The number of

weights in each neuron corresponds to the number of inputs to that particular neuron, in the case

of a single hidden layer network, a hidden layer neuron will have the same number of weights as

network inputs while an output layer neuron will have the same number of weights as there are

hidden layer neurons. Each weight is multiplied by its corresponding input and all of the products

are summed together. The role of the bias is very similar to that of the weight; however, each neuron

only contains one and in some cases a bias may not be used at all. Essentially a bias is weight that

acts on an input equal to unity in the same way that a weight acts on an input from the dataset. It

acts to shift the sum of the weighted inputs by the bias value. The final component of neuron is

the transfer function which may also be referred to as an activation function. A variety of functions

can be used as the transfer function in the neuron, the most important distinction being between

linear and non-linear transfer functions. In the case of hidden layer neurons, the transfer function

used is generally non-linear with the most common being either the logistic function (Figure 3.3 &

Equation 3.1)[29] or the hyperbolic tangent function (Figure 3.4 & Equation 3.2)[29]. In the output

layer typically a simple linear activation function is used.

Figure 3.2: Structure of a single neuron, [28]

Figure 3.3: Plot of Logistic Function, [28]
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[ht pb] f (t) =
1

1+ e−t (3.1)

Figure 3.4: Plot of Hyperbolic Tangent Function, [28]

[ht pb] f (t) =
1+ e−t

1− e−t (3.2)

Having defined all the critical elements of the neuron it is now possible to describe how they all

work together to approximate the behaviour of a particular system. First, each input will be passed to

each hidden layer neuron where, as mentioned before, they will be multiplied by the corresponding

weight. The next step is to sum the products of all the inputs multiplied by the weights and to add

the bias. Each summation is then passed through the transfer function at, which point they become

the outputs of the neurons. The same procedure is repeated through the next hidden layer or the

output layer depending on the overall network structure. Updating the weights is the method by

which the network learns to model the system. As an initial starting point an arbitrary set of weights

is chosen and the data is passed through the network. The output of the network is then compared

with the target output of the system and the error between the two outputs is calculated and then

used to update the weights using one of many available training algorithms which will be discussed

in greater detail in the following section. Please note that the aforementioned process is specific to

supervised learning.

3.1.2 Training Algorithms

As discussed briefly in the previous section, neural networks learn by updating the weights using

one of many available training algorithms. When discussing training algorithms, there is one major

distinction that must first be made, which is between first and second order method methods. First

order methods use the gradient of the error surface (see Figure 3.5) as a function of the weights to

select a path of descent to a minimum point on the error surface corresponding to the minimum error;

hence, they are often referred to as gradient descent methods. The error gradient is backpropagated
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through the neural network to update the weights until a satisfactory minimum error is achieved.

Several variants of gradient descent methods exist which will be discussed later in this section. In

the case of second order methods, the second derivative of the error surface with respect to the

weights is used to determine the curvature of said surface, which is used to update the weights.

Second order methods are more powerful and have a tendency of training faster; however, they

do require more computing resources. It is also important to mention that there are several ways

of calculating the error; a commonly used method is the mean squared error or MSE (Equation

3.3)[29].

E =
1

2N

N

∑
i=1

(zi− ti)2 (3.3)

where,

E = the error

N = the size of the training set

z = the network output

t = is the target output

The simplest form of neural network training is backpropagation learning. As the name implies

the error associated with the neural networks for a given set of weights is used to update the weights

for the next iteration. The formula for updating the weights using backpropagation training is given

in (Equation 3.4)[29]. Essentially the direction of steepest descent is determined by noting that

it is in the opposite direction of the previously calculated gradient, dm[29]. The gradient is then

multiplied by a pre-determined factor called a learning rate, ε, and it is then added to the current

weight. The only parameter that the analyst controls is the learning rate which is essentially opti-

mized through trial and error, ranging between 0 and 1. The ideal learning rate is able to quickly

and efficiently determine the minimum error yet still descend the error surface in a smooth manner

to the global minimum. If the error rate is too small it may take a long time to attain convergence

and if it is too large it may oscillate around a solution yet never reach the minimum point. A param-

eter known as momentum is an additional term that can be added to the backpropagation algorithm

(Equation 3.5[29]). Once again the parameter ranges between 0 and 1 and its purpose is to consider

previous weight changes in order to dampen potential oscillations.

wm+1 = wm +∆wm

∆wm =−εdm

(3.4)
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Figure 3.5: Mean Square Error as a Function of Network Weights, [29]
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where,

w = the weight

ε = the learning rate

dm = the derivative or gradient.

∆wm = µ∆wm−1− (1−µ)εdw
m (3.5)

where,

µ = the momentum term

Another commonly used set of first order training algorithms uses conjugate vectors to locate

the minimum error. They are commonly referred to as conjugate gradient methods. Conjugate

gradient methods differ from steepest descent methods in that descent of the error surface follows

the direction of a vector that is conjugate to the steepest descent vector. In simple terms a conjugate

vector is orthogonal to the steepest descent vector; see Equation 3.6 for the definition of conjugate.

The advantage of conjugate gradient algorithms (Equation 3.7) is that they are supposedly capable

of obtaining second order information without the need to actually calculate the second derivative.

Unfortunately some of this information may be lost through a procedure called restarting where

after a certain number of iterations, the solution restarts following the direction of steepest descent.

Restarting must be employed to increase the rate of convergence, otherwise it is only linear[30].

There are several theories on how often the algorithm must be restarted. A discussion of such

methods is beyond the scope of this thesis; further reading is available in other publications, [30,

31, 32]. The main difference between the variants of conjugate gradient methods is the manner in

which βk in Equation 3.7 is calculated, the method shown is just one example.

pt
iGp j = 0 when i 6= j (3.6)

where,

G = an arbitrary matrix

pt
i &p j = two vectors that are mutually conjugate to one another



CHAPTER 3. THEORY 33

wk+1 = wk +αk pk

pk+1 =−gk+1 +βk pk

βk =
yt

kgk+1

yt
k pk

yk = gk+1−gk

(3.7)

where,

w = the weight

g = the gradient.

p = the search direction

α = appears to be the learning rate however this is not explicitly stated

k = kthiteration

In the case of second order training algorithms, they make use of information regarding the cur-

vature of the error surface to locate the minimum[29]. The major advantage of such methods is that

they tend to be both quicker and more accurate. A significant disadvantage with second order meth-

ods is that they tend to be computationaly intensive as the Hessian matrix must be calculated. The

Hessian matrix (Equation 3.8)[29] contains the partial second derivatives of the error with respect

to the weight and as the size of the network increases so does the complexity of the Hessian matrix.

There are two well known second order methods: the Gauss-Newton method (Equation 3.9)[29] and

the Levenberg-Marquardt (L-M) method (Equation 3.10)[29]. These training algorithms are almost

identical; however, the L-M method contains a conditioning term that can force it to operate like

the Gauss-Newton method when the term is set to a small value, and like a first order method when

it is large. The advantage of the L-M method over the Gauss-Newton method is that there may be

occasion for the second derivative information to lead the solution towards a maximum, thus in-

creasing the error. Because the L-M method can operate as a first order method, it avoids this [29].

As a result, the L-M algorithm is often viewed as being the best one as it is often the fastest and

the most accurate. As a word of caution, as the network increases in size, the speed advantage of

the L-M method diminishes with respect to the other algorithms and it has a tendency of requiring a

significant amount of memory, particularly when using large sets of training data. Also related to the

second order methods are what are called quasi-Newton methods. A common one of these methods

is known as the Broyden-Fletcher-Goldfard-Shanno(BFGS) algorithm[33]. This method operates

in a similar fashion to the second order methods; however, it does not need to directly compute the
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Hessian matrix thus allowing it to run using fewer system resources.

H =



∂2E
∂w2

i

∂2E
∂wi∂w j

· · ·
∂2E

∂w j∂wi

. . .
...

∂2E
∂wm∂wn

 (3.8)

∆wm =−ε
dm

ds
m

(3.9)

where,

wm = the weight

ε = the learning rate

dm = the 1st derivative of the error surface

ds
m = the 2nd derivative of the error surface

∆wm =− dm

ds
m + eλ

(3.10)

where,

eλ = the conditioning term

3.1.3 Types of Neural Networks

Until now, the discussion regarding neural networks has focused mainly on the multilayer percep-

tron or MLP, which is the most basic form of neural network; however, many different types exist

with each being suitable for a different purpose. As briefly mentioned earlier in the preceding sec-

tions, there are clustering networks which are used to organize data. The way in which they work

is that they will take a dataset and look for certain trends in the data. Based on these trends the

data will then be grouped into various clusters in which the data exhibits similar characteristics.

Such architectures are often used for pattern recognition problems in order to classify information

of some sort. Examples of fields that use them are the medical field and image processing.

Another type of network is a variant of the mutlilayer perceptron network known as the the

nonlinear autoregressive network with exogenous inputs or NARX; these are known as dynamic

networks and they are distinguished by the fact that their training takes into consideration previous

inputs, outputs and states of the network[28]. To accomplish this, the inputs are delayed and either

the network output is looped back into the network as shown in (Figure 3.6) or the target value from
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the same state is used instead (Figure 3.7). The latter architecture is said to be more accurate and

based on the author’s experience, it appears to train significantly faster.

Figure 3.6: Closed loop NARX network, [28]

Figure 3.7: Open loop NARX network, [28]

The final type of network of interest is the Radial Basis Function Network or RBFN. The concept

of the RBFN is different from other types of networks altogether. The main distinction of RBFN’s is

that their transfer function is a Gaussian function (Equation 3.11)[28] where the weight of the neuron

acts as the center of the function in the input space[28, 34]. The distance between the input and the

weight (center) is calculated; if the distance is close to 0, the output of the radial basis function is

close 1 (Figure 3.8). Another property of the transfer function is called the spread which defines

slope of the function around the center of neuron in the input space. A large spread means that the

function will have a shallow slope and therefore more data will have a higher correlation, and small

spread indicates the function will have a very steep slope around the center. When designing such a
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network, the spread is the only parameter that the analyst can tune to optimize it. Another important

point to note is that there exists what is called an exact RBFN where the size of the network is

dictated by the size of the training set, such that there is a neuron for each data point in the input

set whose center is equal to that particular input. The main drawback is that the network becomes

very large, perhaps too large and inefficient. An alternative to this approach is start with one neuron

and train the network by continuously adding a neuron and updating the weights until a network

deemed acceptable according to the standards set forth by the analyst is created.

Figure 3.8: Plot of Radial Basis Function, [28]

f (x) = e−|x−w|b (3.11)

where,

x = the network input

w = the weight or neuron center in the input space

b = the spread

3.2 Vehicle Dynamics

While the focus of this thesis is not on vehicle dynamics, it is the opinion of the author that it is

important to discuss some elementary vehicle dynamics properties given the influence they have

on vehicle handling, which ultimately influences the driver’s decisions. Most of the decisions that

a driver will make are either based on visual information (what the driver sees) and vestibular in-

formation (what the driver feels). Other properties are used as well; however, these are the two

principal ones.

Vehicle dynamics is used to describe the overall behaviour of the vehicle. There are two sig-

nificant regimes of interest which are linear and non-linear. The handling behaviour is very closely
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related to the behaviour of the tire and the property known as slip. In the longitudinal sense it is

known as the slip ratio and in the lateral sense it is known as the slip angle. Until a certain degree

of slip the tire will behave in a linear fashion; however, beyond that point the behaviour becomes

nonlinear and therefore more difficult to predict[35]. As a result, the average driver is restricted to

the linear regime and the car is much more predictable. Typically, if an average driver enters the

non-linear range of operation, the result is often dangerous as they typically reach the grip limit of

the tires. It is only highly trained and skilled drivers that are capable of operating in this range. The

data used in this study likely falls within the linear regime.

Another important aspect of vehicle dynamics is handling and the vehicle’s steering tendencies.

Vehicles can handle in three different manners; they will either understeer, oversteer or experience

neutral steering. In the case of understeer, the vehicle will have a tendency of taking a corner with

a wider turning radius if the speed is increased[35]. During oversteer the turn radius will decrease

with speed, and neutral steer occurs when the vehicle keeps the same radius. Ideally neutral steering

is desirable; however most vehicles are designed to have some degree of understeer. The reason for

this is that understeer is a stable state such that if the driver were taking a curve too fast they would

simply need to reduce their speed in order to safely negotiate it. In the case of an oversteering

vehicle, it can become very unstable before the driver can safely realize it; therefore, such vehicles

are prone to losing control and spinning suddenly. Once again, there are some applications where

highly skilled drivers may prefer some degree of oversteer; however, its use in everyday applications

is highly unrecommended and potentially dangerous. There are several factors that influence the

handling characteristics of a vehicle: the first being weight distribution and the location of the center

of mass, the next being the lateral force being developed by the tires which, in turn, is influenced by

the properties of the tires themselves as well as by the stiffness of the suspension.

A simple model known as the bicycle model (Figure 3.9) has been developed to help illustrate

the handling behaviour of a vehicle. This particular model neglects lateral weight transfer; how-

ever, it does provide some good insight on the forces affecting vehicle handling. The bicycle model

illustrates that it is the lateral forces generated by the rear tires of the vehicle that provide an under-

steering moment as all moments act about the center of gravity. Because understeer is a stable state,

the moment generated by the rear tires is sometimes referred to as a stabilizing moment. What the

bicycle model illustrates is that a vehicle with with a center of gravity towards the front will tend

to understeer and thus be more stable. As a result a large majority of road vehicles are designed as

such. Given this fact it is safe to assume that any vehicle modeling for the development of a driver

model used to evaluate road users should exhibit the aforementioned characteristics.
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Figure 3.9: Bicycle Model, [35]



Chapter 4

Training Data

In order to develop a neural network, a set of training data must be acquired such that the network

can learn the behaviour of the system, as mentioned in Chapter 3. To develop a driver model,

the training data must consider three key elements, which are the driver, the vehicle and the road

environment. It is important to recognize that for the purpose of this research the driver is nothing

more than a controller, albeit a very sophisticated controller. As a result there will be both a set of

input data as well as a set of output data. Drivers will use information of the vehicle’s behaviour

and information from the road environment to make their decisions on the vehicle control inputs to

use. This information will constitute the input variables, while the driver’s actions will be the output

variables.

In order to obtain driving data, there are two methods available. The first is to instrument a

vehicle and ask a selected group of people to act as test subjects and to drive a specified route in the

vehicle. While this occurs their actions, along with the vehicle behaviour are recorded. The other

method is to set up a driving simulator on a computer. The former method has the advantage of being

more accurate since all of the factors in terms of the vehicle’s performance and roadway information

can be considered. The drawback to this method is that a lot more resources are required, which

can increase the cost as well as the time needed to acquire the data. The latter method using a

simulator is much easier and much cheaper to use, since the subjects can perform the test in an

office environment and fewer resources are required. The issues with using a driving simulator

are concerns with accuracy. Constructing a simulator that can accurately model the behaviour and

response of a vehicle can be very difficult and costly. As an example, when driving a vehicle on the

road it is likely to behave differently than in a simulator due to non-linearities and the behaviour of

the components’ materials, particularly in the case of the tires. The question of accuracy also calls

into question the overall validity of any test administered on a driving simulator.

39
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4.1 Driving Simulator

To acquire data, the Groupe de Recherche en Analyse du Mouvement et Ergonomie (GRAME,

translated: Movement and Ergonomics Analysis Research Group) at l’Université Laval in Québec

City, PQ; was contacted as they possess a driving simulator and have substantial experience running

simulations, particularly for elderly drivers. The simulator is developed by Systems Technology

Inc.(STI®), it is referred to as STISIM and it operates their Drive 2.0 software[36]. STI® offers

a variety of simulator configurations both in terms of hardware and software; descriptions of the

different types of simulators are listed in [37]. The arrangements offered range from very simple

setups that are relatively inexpensive and can be used with a desktop computer and controls used

for gaming to sophisticated cab style simulators with projectors that provide steering feedback to

the driver. The simulator installed at Laval shown in Figure 4.1 is an open cab simulator; however,

it does not offer any steering feedback to the driver. The simulator uses an image approximately

1.45m high and 2.0m wide projected onto a flat wall situated approximately 2.2m away from the

simulator. The field of view generated by the projector is 40 degrees horizontally and 30 degrees

vertically. The simulator is also equipped with a video camera to record the driver’s actions[36]. All

of the driving simulator interfaces are instrumented such that all of the steering wheel, throttle pedal

and brake pedal movements are recorded. The simulator can record 50 data channels[38]; however,

only a select number of the channels are used for model development. Ultimately, the channels

of interest for this project are the longitudinal velocity and acceleration, Vx and Ax, respectively,

the lateral position, velocity and acceleration, Y, Vy and Ay, respectively, speed limit, Vlim and

road curvature, ρ. These seven channels will act as the input variables for the neural network. The

steering wheel angle, θ, throttle pedal, Tp input and brake pedal input, Bp, will act as target variables

for the network as they will be the output from the network once it is simulated.

In terms of software, the vehicle model is based on a simulation tool developed for the NHTSA

known as Vehicle Dynamics Analysis NonLinear (VDANL)[37]. As the name suggests, the model

provides a non-linear analysis of the vehicle performance, and it includes a sophisticated tire model

referred to as STIREMODEL. The motivation, according to STI®, for using a high fidelity vehicle

dynamics model is "to achieve realistic feel and motion cueing and to be able to provide hardware-

in-the-loop interaction with elements such as steering and braking"[37]. STI® does acknowledge

that some of the computer analysis components of the model have been disabled in order for the

model to be able to run in real time, they refer to the modified model as VDANL/RT, this variation

also has an additional input-output component added to it. The software used in the simulator

at Laval is a simplified model that is linear and according to STI® "has no notion of individual

wheels". The linear vehicle dynamics model also models the throttle and braking differently than

the more advanced mode. Typically throttle position is represented between 0 and 1, where 0 is
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no throttle inout and 1 is full throttle input, and braking is typically measured either using the

force required to move the pedal or the brake master cylinder pressure. Instead, the linear model

considers the accelerations due to throttle and braking; it does, however, keep a record of the raw

inputs. This does create some complications for the development of the model that will be discussed

in Section 4.3. Another complication that arises from the use of the simplified model is that because

there is no notion of individual wheels, there is no steering ratio between the angle of the steering

wheel and angle of the steered wheels at the road. The lack of a steering ratio is problematic when

validating using a vehicle simulation program such as CarSim® as it uses the angle at which the

wheels are being steered while the data from the simulator is the angle of the steering wheel; without

a steering ratio there is no way of relating these two parameters. Ultimately the simplified linear

model may be a satisfactory and more cost effective solution for the purposes that it is being used for

by GRAME in terms of giving an estimate of driver performance from the standpoint of observing

physical abilities. A non-linear model would provide a more realistic model and allow for the

creation of a more accurate representation of the driver’s behaviour, particularly when constructing

the model using a neural network. Such a model would be more costly; however, future work should

endeavor towards using a non-linear model. Further discussion regarding this idea will be made in

the conclusions and recommendations chapter.

Figure 4.1: Setup of Driving Simulator at l’Université Laval, Photo Courtesy [39]
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The data that is used in the neural network is distance-dependent as opposed to time dependent.

This approach is taken because the subjects completed the driving scenario at different rates. Basing

data extraction on time is not appropriate as the proper events will not be recorded; however, because

the scenario is the same for all subjects, extracting the data based on the distance traveled will

provide the desired events. The sample rate of the simulator is constant at 30 Hz., therefore the

datasets will all be of different sizes for different subjects depending on the amount of time taken

by the subject to complete the scenario. In this discussion, scenario describes the entire course that

the subject is asked to follow. It is important to note that while it is not explicitly recorded, time

is considered in the input dataset as each segment is a timeseries concatenated to form one large

dataset. Training the neural network requires presenting it with the expected outcome for a given

series inputs. Based on that expected outcome a generalization is made, therefore, the time at which

each event occurs is ultimately irrelevant.

4.2 Data Acquisition

The data used for training was obtained from four different sets. Two of the sets were for a study

regarding elderly drivers where the subjects were mixture of younger drivers and elderly drivers. In

total there were 23 subjects involved in the study and two different visits used (datasets referred to as

AUTO21 phase 2, visits 2 and 7)[36]. One of the datasets was obtained from a study regarding the

effects of alcohol consumption on driving (DUI). In that particular set a baseline test was performed

where no alcohol was consumed, and three other tests that recorded the effects of drinking one, two

and three standard bottled servings of beer. The final set used was one where the simulator was used

to retrain a person who had suffered a traumatic brain injury (TBI). In this particular case there were

12 runs recorded. Once the data was extracted according to each of the segments, it was analyzed

for any anomalies such as accidents or flags. The purpose of the flag is for the people administering

the test to note observed behaviour that was deemed to be unsatisfactory. Many different actions

constitute unsatisfactory behaviour; however, anything that is either illegal or increases the risk of a

collision is deemed unsatisfactory. Segments where such an event was present were excluded from

the dataset as they do not represent the desired behaviour for the driver model. They were, however,

set aside for future use. Also of note is that some of the segments were completely excluded as a

result of "sim sickness" where the subject may have become nauseous. This a known issue with

driving simulators and one of their shortcomings. Measures to mitigate this effect such as venting

additional air directly on the subject are used; however, they are not always successful.As a result

of sim sickness, the subject was unable to complete the run and no data could be acquired.
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4.3 Data Processing

Once the data was acquired from the simulator extensive processing was required to prepare it

to train the designed neural network. As discussed previously, there were many data channels

recorded from the simulator; however, only a select few were required to construct the model. As

also previously noted, segmentation of the data was required such that what was occurring in the

road scenario was known and that it could be associated with the appropriate subject or test run. As

mentioned, there were four datasets that were used in training the neural network. In terms of the

scenario, it was the same one used for the the two visits studying elderly drivers and for the study

that focused on the retraining following a traumatic brain injury. A comprehensive breakdown of

the driving scenarios is given in Table 4.1.

In order to obtain the data in a useful form, a script was written in MATLAB® that would

extract the desired variables for each segment. The manner in which the script functions is that

the distance corresponding to the beginning of the segment is presented; the script then searches

through the distance variable until it finds the first value equal to or greater than the presented value.

It then identifies the "handle" of that variable and uses it to find the appropriate value for each of the

variables that are to be extracted (The handle is an identifier of a variable assigned by MATLAB®,

it is associated with the index of a matrix)[40]. This same process is repeated to find the end of the

segment; once these two values are found they are used to set up a loop that extracts all of the desired

data in between these two points. Once all of the data was extracted, it was then concatenated into

one data file containing in excess of 380,000 data points. Following the concatenation, the data was

then normalized between -1 and 1; this is common practice when conditioning data for use in neural

networks; the process is illustrated in Figure 4.2 .

The principle reason for data scaling is to ensure that all of the variables have the same relative

size in order to prevent some of the network weights from becoming too large. Variables with

larger magnitudes will have a tendency of having larger weights associated with them. This in turn

could cause their effect to dominate the effect of the variables with smaller magnitudes, and give an

inaccurate representation of the relative influence of the variables. Scaling also helps give a more

accurate representation of error for similar reasons[29, 41]. There are a few important points to note

regarding the data scaling. The first is that all of the input variables were scaled with respect to their

respective maximum value within the training set. The one exception is the speed variable as it was

normalized with respect to the largest speed limit since the two variables are coupled together and

the highest speed recorded did not exceed the highest speed limit within the dataset. Had the highest

speed exceeded the highest speed limit, it would have been used. In the case of the output variables

the data was normalized with respect to the global maximum of all the acquired data. This was done

because typically the throttle signal is simply a value between 0 and 1. However, it was not available
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Table 4.1: Breakdown of data properties used to train the neural network driver model

Dataset Segment
Type

Length Road Curvature Number of
Subjects or
Runs

Number of
Segments
per Subject
or Run

Auto21 Phase 2
Visit 2

Straight
Road

500m Not Applicable 23 4

Auto21 Phase 2
Visit 7

Straight
Road

500m Not Applicable 23 4

Traumatic Brain
Injury

Straight
Road

500m Not Applicable 12 4

Auto21 Phase 2
Visit 2

Curve Right 300m 250m 23 3

Auto21 Phase 2
Visit 7

Curve Right 300m 250m 23 3

DUI Curve Right 234m 500m 13 12
Traumatic Brain
Injury

Curve Right 300m 250m 12 3

Auto21 Phase 2
Visit 2

Curve Right 350m 250m 23 1

Auto21 Phase 2
Visit 7

Curve Right 350m 250m 23 1

DUI Curve Right 290m 666.67m 13 1
Traumatic Brain
Injury

Curve Right 350m 250m 23 1

Auto21 Phase 2
Visit 2

Curve Left 300m 250m 23 2

Auto21 Phase 2
Visit 7

Curve Left 300m 250m 23 2

DUI Curve Left 234m 500m 13 12
Traumatic Brain
Injury

Curve Left 300m 250m 23 2
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Figure 4.2: Illustration of how data is scaled down for input and often how the output will be scaled up. For
the purposes of this research scaling up is not necessary unless using the model in conjunction with a vehicle
simulation program., [41]
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in this form because of the simplified vehicle model; therefore, only the raw signal could be used.

In order to establish full throttle, the largest value that appears had to be used. The same holds true

for the steering angle, as the data was normalized against the largest steering angle that appeared. In

the case of the braking data, the deceleration due to braking was used. In this form the data can be

manipulated in many ways; in this particular case to determine the brake master cylinder pressure.

This was done in the event that the model is ever to be used in a vehicle simulation program.

4.4 Data for the Classification Network

Following the development of the driver model neural network, it was then possible to obtain data

that could be used to evaluate the behaviour of the drivers. The procedure used was to take each sub-

ject, in this case both those that exhibited desirable behaviour and those that exhibited undesirable

behaviour and to run simulations with their input variables through the neural network. Since this

particular network had already been trained using a large dataset of acceptable driving behaviour,

the output from the neural network should represent the desired driving behaviour under the given

conditions. The deviation in the actual output dataset from the behaviour calculated from the neural

network constitutes the error which is then divided into three categories for each variable. As a re-

sult of this there are 27 potential combinations that can arise as there are three output variables and

three classes used for each variable. In order to construct the classification network, self-organizing

maps (SOMs) and clustering networks were considered. Further research discovered that the appro-

priate network to use in this role was a Learning Vector Quantization Network (LVQ). Discussion

regarding the construction of LVQ networks will be given in the following chapter. In brief, LVQ

networks have target classes assigned to their input vectors and use such information to organize an

SOM to classify them.



Chapter 5

Neural Network Design

When using neural networks for analysis, the first step in their design is to select the appropriate

architecture for the given problem. As discussed in Chapter 3, there are several different types

of neural networks available with the most important distinction being between networks used for

function approximation and those used for grouping data. The following chapter discusses the

design steps taken to design the neural networks used in this research and the reasoning behind the

choices that were made.

5.1 Driver Model Neural Network

Initially to develop the driver model network, a simple multi-layer perceptron network was selected.

There are two reasons behind the choice of such a network as an initial starting point. The first

reason is that the purpose of the network is to approximate the behaviour of an ideal driver. It is

not attempting to classify data; therefore, a network suited for function approximation, was used,

that being the MLP. The second reason is that the MLP is the simplest architecture available for

function approximation; therefore, it was deemed appropriate that it be used as a starting point and

if the performance proved to be favourable no further experimentation with network architectures

would be required. To evaluate the performance of the MLP in a driver modeling role, it was initially

trained using only a portion of all of the available training data that was discussed in Chapter 4. This

was done because a decision of how to process the entire training dataset had not yet been made.

Only a portion of the dataset was also used in order establish an evaluation in a relatively short time

frame, given that it was known that the MLP may eventually not be used as the final driver model.

Once the network was trained, its performance was analyzed. Upon initial examination of the

output variables, it was apparent that the network was able to approximate the behaviour of the

47
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steering and throttle inputs that the driver would be using. This, however, was not the case with the

braking data. Examination of the braking data plots revealed that the error was quite large, meaning

that the network was not able to accurately represent that particular behaviour. This effect also

manifested itself in the linear regression plots, while the overall correlation factors were very high

it was obvious that there were some outliers specifically associated with the braking data. Because

a large majority of the network outputs correlated well with their target values, the effect of these

outliers on the global correlation factor was limited. Nevertheless, it was still important to determine

a cause and solution to this problem as the individual correlation factor for the braking behaviour

was much lower than those for the steering and throttle behaviour.

The first attempt to correct this problem was to develop a NARX network (see Section 3.1.3),

once again using only a portion of the dataset. It was believed that as a result of the use of time delays

and feedback loops that it might help diminish the error in the braking behaviour. Once the network

was generated and trained, the results were once again analyzed; however, the improvement was

limited. Another factor that was considered was that the local maximum was used as the scaling

factor, which caused the network to measure the relative error to that portion of the data rather

than the absolute error error of the entire dataset available. This had a large effect given that the

discrepancy was normalized over a smaller value and thus magnified giving rise to a larger error. A

global scaling factor was then applied to the complete dataset. Both an MLP and a NARX network

were trained using the rescaled dataset. The results were much more favourable as the level of error

was significantly reduced which gave more validity to the method being used.

Another attempt to improve the driver model involved the creation of a radial basis function

network(RBFN). An attempt to use this type of network was made as they are supposedly well suited

for driver modeling as discussed in Chapter 2 and in [24]. Unfortunately, attempts to construct such

a network were unsuccessful as initial attempts failed to train a simplified RBFN or simulate in the

case of an exact RBFN(see Section 3.1.3 for details on the differences between the two types of

RBFNs). The attempts to develop a driver model using an RBFN failed as result of the extensive

computing resources required; the memory required to train the network exceeded the 12 GB that

was available. There is a possibility that with the adjustment of some training parameters that

an RBFN could be used; however, time constraints prevented such an investigation from taking

place. While an evaluation of the performance of an RBFN would have been insightful, the fact

of the matter is that the NARX network provided a model that was adequate for the purpose of the

research at this time.
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5.2 Neural Network Sizing

Following the selection of a neural network architecture, the next step is to size the network in terms

of hidden layers and the number of neurons in the hidden layer. At this stage neural network sizing

is a very open-ended question with very few rules or guidelines; therefore, much debate exists and

reserach is on-going in order to establish methods that optimize neural network sizing. Typically

the current practice is to overestimate the number of neurons and evaluate the performance. The

process becomes iterative by reducing the number of neurons (assuming the initial network was an

overestimate) until the performance of the network degrades to a point deemed to be unsatisfactory.

The importance of obtaining an optimally sized network is to find a balance between accuracy and

efficiency, while a larger network may be capable of more accurately modeling the behaviour of the

system of interest, the benefits may not be so great that it warrants being used over a smaller network.

The use of a smaller network will have the effect of reducing both the time and computing resources

needed to train and simulate the neural network. Another concern regarding neural network sizing

is overtraining. It is possible that a neural network may in fact capture the behaviour too well rather

than make a generalization. This can be an issue particularly with noisy datasets, as an overtrained

network will begin the follow the noise rather than make a generalization "through the noise"; the

end results is that because the network models the noise, it is not modeling the true response of the

system (Figure 5.1).

Figure 5.1: Plot of the Desired Neural Network Generalization with Noisy Data

One method to establish a starting point is to use Kolmogorov’s Theorem[42], which is not

uniquely used in neural networks as it is used in other computational methods. Kolmogorov’s
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Theorem states that any function of n variables may be represented by the superposition of a set of

2n+1 univariate functions. In this case there are 7 input variables, therefore 15 hidden layer neurons

is an appropriate starting point according to Kolmogorov’s Theorem. In all likelihood a network of

this size is larger than necessary. A preliminary analysis done for another project using a smaller

portion of the dataset revealed that a network with as few as 8 neurons could adequately model the

system. Time constraints prevented training a smaller network with the complete dataset.

While there are no established rules for sizing neural networks, methods for reducing their size

following training do exist. These methods are referred to as pruning methods. Samarsinghe[29]

gives an extensive discussion of two methods, the first method is called Optimal Brain Damage

(OBD), and the other is based on an analysis of the variance of sensitivity to the error. Optimal

Brain Damage uses a parameter known as saliency, which defines how important a weight is and

the method itself calculates the so-called cost of setting that particular weight to zero. The saliency

is computed through the Hessian matrix Equation 5.1[29] (recall Section 3.1.2).

Hi j =
∂2E

∂wi∂w j
(5.1)

In order to reduce the computational cost, a local approximation is typically used where only

the diagonal terms of the Hessian matrix are considered. Hii represents the acceleration of the error

with respect to a weight; when it is multiplied by w2
i (Eqn.5.2)[29] an indication of the total effect

of wi on the error is given.

si =
Hiiw2

i

2
(5.2)

Effectively, a larger value of si indicates that the weight wi has a larger influence on the error.

The entire procedure for pruning using this method involves first calculating the saliency and then

removing pathways associated with any weights with small saliencies and removing entire neurons.

Once those weights have been removed, the simplified network is then retrained and should perform

just as well as the initial network.

The second pruning method discussed in [29] uses the variance of the network sensitivity of a

given parameter. In this case sensitivity is described as being the derivative or gradient of a given

parameter; the parameter can be either an input, a hidden neuron activation, or a weight according

to [29]. For conciseness a lengthy description of the method will be omitted; however, to give a

brief overview of the method, a series of statistical properties are calculated and two hypothesis

tests are performed. The results of the hypothesis tests give an indication of the relevance of the

parameter. If the parameter is relevant, then its removal is not advisable; however, if it is deemed

to be irrelevant, it should be removed from the network. In other work referenced in [29], it is
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stated that the variance nullity measure is superior to OBD. This stems from the fact that OBD is

magnitude based and typically attempts to remove small weights. In some cases the network may

still be sensitive to small weights and their removal is not warranted as a result. Also of note is the

fact that data scaling prevents the network from calculating large weights in the first place.

5.3 Neural Network Training

Training the neural network is the next step once the architecture has been chosen and it has been

sized; this entails selecting a training algorithm. The default training algorithm in MATLAB® is

the Levenberg-Marquardt (L-M) method as it is generally regarded as being the fastest and most

accurate as discussed in Chapter 3. While the L-M training algorithm is regarded as being the

most effective in terms of speed and accuracy, the principle disadvantage is the amount of resources

required to train with it. The L-M training algorithm is very memory intensive, so much so that

when using a very large dataset, the 12 GB of memory was inadequate, such that the network was

unable to complete even one training iteration. As a result, an alternative training algorithm that is

less resource intensive was sought. Eventually it was discovered that the L-M method could be used

as MATLAB® allows for certain parameters to be altered to reduce the amount of memory required

at the expense of increased training time. Another factor that allowed for the use of L-M training

algorithm was switching to an open-loop NARX network rather than one of the closed-loop variety,

the differences of which were discussed in section 3.1.3. In comparison with the other training

algorithms, the L-M method produced the most accurate network as was expected to be the case.

5.4 Final Driver Model Neural Network Architecture

To recap the previous sections of this chapter, the final decision on the overall design of the neural

network to act as the driver model is to use an open-loop NARX network with 15 hidden layer

neurons, each using the tansig activation function and three linear output neurons (one for each of

the output variables. The network also incoporated two time delays on the inputs and the output

variables trained using the Levenberg-Marquardt training algorithm (Figure 5.2). This network

produced favourable results, more details of which will be discussed in the following chapter.

5.5 Classification Network Design

As briefly mentioned in Chapter 4 the driver behaviour assessment tool requires the use of two types

of neural networks. Until now the discussion in this chapter has focused solely on the network used
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Figure 5.2: Final Architecture for the Driver Model Neural Network

to construct the driver model. The information in this section will be focused on the network used

to classify each driver based on their behaviour in comparison to that of the driver models intended

"typical" behaviour. In order to develop this portion of the assessment tool several types of networks

that are best suited for classification were investigated. The networks for function approximation

discussed in the previous sections are generally not well suited for classification.

A problem with using the standard clustering networks and self organizing maps (SOM) in this

application is that many classes may exist throughout the dataset, necessitating a large quantity of

neurons, while the ultimate goal of the assessment tool and in turn the classification network is to

classify the drivers based on three different levels of ability. This justifies the use of a learning

vector quantization network, as it makes use of an SOM to associate neurons with their appropriate

location in the input space, while incorporating a layer of linear neurons with which the neurons in

the SOM associate themselves. The linear neurons are each associated with one of the particular

classes of behaviour prior to training. The neurons in the SOM act as subclasses that eventually,

become associated with one of the linear layer neurons.

Construction of an LVQ network requires prior knowledge of what, in this case, constitutes

good, marginal and poor driving behaviour. Unfortunately such parameters have yet to be estab-

lished and are beyond the scope of this research; therefore, an estimation to divide the data was

used in order to establish whether or not an LVQ network can be used in this role.

The training data used for the LVQ network was the absolute error of the normalized network

outputs with respect to the normalized target outputs while the parameters to divide the data were

based on the percentage error. As already discussed on several occasions there are three output
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variables from the driver model and three possibilities in terms of classification of behaviour for

each one, thus there are 27 degrees of freedom or what can be viewed as 27 sub-classes (see Figure

5.3 for a visual representation). As a result the same number of neurons are used in the SOM,

indicating that theoretically there should be one neuron associated with each potential sub-class and

as already mentioned there are three potential outcomes and thus three neurons in the output layer.

Figure 5.3: Visual Representation of the Input Space to the LVQ Network
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Results & Discussion

The following chapter discusses the results of the different methods that were tested in order to

develop the driver assessment tool as discussed in the preceding chapter.

6.1 Driver Model Network

Performance of the driver model networks were analyzed based on the observations made from

several plots which have been included in this section. The plots include the training window

generated by MATLAB® during training. This window provides information such as the amount

of time and number of iterations needed for training and the criteria that was met to halt training.

The plots of the neural network output are presented alongside the target output in order to view

a direct comparison the network’s performance along with a zoomed in portion of the network

output overlayed on the target output. It should be noted that these plots display the normalized

target and neural network outputs versus each input; also note that the overlays and error plots are

based on the same information. Overlaying the entire plots would be ideal however arranging the

plots in such a manner renders it difficult to draw conclusions from them. As such, plotting them

separately along with a zoomed in portion of the overlay was viewed as an adequate compromise.

The plots of the error for each output is also included to provide further insight into the performance

of the network. The linear regression of the network output versus the target output also provides a

valuable indicator of neural network performance. In the following section the linear regressions for

each output variable and for the entire network are given. A network that performs well will place

most of the data in the region of a plot that follows the function y=x. The error histogram places

the error for each data point in its appropriate bin based on its magnitude; in this plot it is desirable

for most of the data points to be placed in bins at or near zero. Finally the training performance
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plot is also presented, the purpose of this plot is to present the mean squared error of the network

for the training set, the test set and the validation set at each iteration. This is significant because

one of the stopping criteria is when the MSE of the training set is greater than that of the validation

set for a pre-specified number of consecutive iterations. The aforementioned plots are presented for

each of the networks discussed in Chapter5 that were used to develop the driver model portion of

the assessment tool.

6.1.1 Multi-Layer Perceptron

As discussed in Ch.5, the first network architecture to be tested was the MLP due to its simplicity.

Based on the information in the following figures it can be concluded that the network performed

fairly well. Figure 6.1 (p.57) indicates that network training stopped after 37 iterations once the

minimum error gradient was exceeded. According to the figure, training took almost 59 minutes to

complete and a mean square error of 0.000201 was achieved.

According to Figures 6.2a & 6.2b (p.58), the MLP network was successful in establishing a

relatively accurate generalization of the steering behaviour. Figures 6.2c & 6.2d indicate that a

relatively accurate generalization of the throttle behaviour was made, however, not to the same

degree as witnessed in the case of the steering behaviour. Figures 6.2e & 6.2f indicate a similar

result for braking as was witnessed for the steering behaviour. The zoomed in portion of the overlay

plots (Figure 6.3, p.59) help to further illustrate this behaviour. It is apparent that the network output

follows the target output very closely for both the steering and braking behaviour (Figure 6.3a &

6.3c, respectively); however, a larger variation in the performance of the network relative to the

target output is observed for the throttle behaviour (Figure 6.3b).

The error plots (Figure 6.4, p.60) further serve to enhance the observations made from the

performance plots. Figures 6.4a and 6.4c illustrate the errors for the steering & braking behaviours

respectively. With the exception of a few spikes, there are very few errors of significant magnitude

in both plots. Figure 6.4b illustrates a far greater number of errors in the throttle behaviour in

comparison with the plots for the steering and braking behaviours.

The linear regression plots in Figure 6.5 (p.61) help to reinforce the observations made from

figure 6.2 as the correlation of the network output variables appears to be relatively strong with

the target variables. The correlation factors for the steering, throttle and braking performance were

0.99386, 0.95787 and 0.95221, respectively, with an overall correlation factor of 0.99823. The

steering regression plot illustrates that most of the data is concentrated near the line of y=x with

only a small number of outliers. The throttle regression plot illustrates that most of the data lies

in a larger area that follows the regression line, while the braking regression plot displays a larger

number of outliers which is indicative of less accurate performance.
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Figure 6.6 (p.62) is the error histogram for the MLP network. From the error histogram it can

be observed that the errors are mostly clustered around zero which helps to confirm that the network

did in fact perform well.

Figure 6.7 (p.63) displays the training performance of the neural network. It can be observed

from this plot that the three sets of data used for training, validation and testing all seem to follow

a similar level of performance at each iteration. However, the performance of the validation data

never exceeded the performance of the training data often enough to stop the network from training

as this was not the factor that stopped training. One of the potential criteria that the neural network

toolbox uses to determine if training should be stopped is if the performance of the validation set

exceeds that of the training set for a pre-specified number of iterations.

The overall assessment of the performance of the MLP network based on the information dis-

played in the plots is that it demonstrated the ability to accurately model the target driving behaviour.

This conclusion is especially true in the case of the steering & braking behaviour, while the accuracy

of the throttle behaviour leaves ample possibility for improvement.
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Figure 6.1: Training Window for MLP network
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(a) Steering Target Output (b) Steering Network Output

(c) Throttle Target Output (d) Throttle Network Output

(e) Braking Target Output (f) Braking Network Output

Figure 6.2: Comparison of the performance of the MLP network alongside the target output
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(a) Steering Overlay (b) Throttle Overlay

(c) Braking Overlay

Figure 6.3: Magnified Overlays of Target Output(Blue) and Network Output(Red)
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(a) Steering Error (b) Throttle Error

(c) Braking Error

Figure 6.4: Error Plots for Each Network Output
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(a) Steering (b) Throttle

(c) Braking (d) Overall Regression

Figure 6.5: Regression plot for each individual variable and overall regression using an MLP neural network.
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Figure 6.6: Error Histogram for MLP network
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Figure 6.7: Training performance for MLP network

6.1.2 Nonlinear Autoregressive Network with Exogenous Inputs

While the MLP neural network was capable of accurately modeling the driving behaviour, an even

greater level of accuracy was sought. As a result a NARX network was designed and trained.

A preliminary network was trained with a smaller dataset of approximately 10,300 data points as

discussed in Section 5.1, and it performed satisfactorily. In this section the results of both the

preliminary network and the final network using the full dataset are presented. The main difference

in the network structures is that the preliminary network used a closed loop while, the final network

used an open loop in order to facilitate training. The difference between the two network structures

is discussed in Section 3.1.3.
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Preliminary NARX network results

The training window (Figure 6.8, p.65) indicates that training was stopped after 220 iterations based

on having failed 6 consecutive validation checks. Training lasted almost 2 hours and 46 minutes

and mean squared error of 0.00303 was attained.

Figures 6.9a & 6.9b (p.66) indicate that the network was able to make a relatively accurate

model of the steering behaviour while Figures 6.9c & 6.9d illustrate a similar result for the throttle

behaviour. Figures 6.9e & 6.9f indicate that this was not the case for the braking performance as

the network had difficulty accurately learning the braking behaviour. As previously discussed in

Section 5.1, much of this poor performance is attributable to the scaling factor that was used when

normalizing the data. The overlay plots (Figure 6.10, p.67) help to further illustrate the accuracy

of the network. Figures 6.10a and 6.10b display how both the steering & throttle performance

follow the target performance closely, with the steering performance almost matching the exact

target performance while the braking peformance (Figure 6.10b) leaves much to be desired.

The error plots (Figure 6.11, p.68) serve to further display the same conclusions drawn from the

performance plots. Figures 6.11a & 6.11b display errors for the steering & throttle performance,

respectively, are mostly of a relatively small magnitude. As expected, the same cannot be said for

the braking performance (Figure 6.11c) as the errors are mostly of a significantly larger magnitude.

Figure 6.12 (p.69) illustrates the linear regression for each output variable as well as the overall

linear regression. The aforementioned plots help reinforce the deductions made from the output

plots as the linear regressions for both the steering and throttle behaviour are concentrated around a

line representing y=x while most of the braking outputs lie very far from this region. The steering,

throttle and braking data had correlation factors of 0.9997, 0.99047 and 0.17635 respectively, while

the overall correlation was 0.97386.

The error histogram (Figure 6.13, p.70) illustrates that, for the most part, the errors are concen-

trated around zero, however there are some errors in the outlying bins which is consistent with what

was observed in the performance and regression plots. The deduction that was made from the error

histogram is that the NARX network offered some promise of accurately modeling driver behaviour

but further investigation was required.

The training performance plot (Figure 6.14, p.71) indicates that the performance of the vali-

dation set was better than that of the training set which is consistent with the criteria used to stop

training.

The overall performance of the preliminary network served as a starting point to illustrate that,

at least to some degree, neural networks, particularly NARX networks, are suitable for driver mod-

eling. This conclusion was drawn based on the performance for the steering and throttle behaviour.

While the braking performance was poor, it was acknowledged that much of the poor performance
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was attributable to the scaling factor used for the data. As a result, further investigation into the abil-

ities of the NARX network using a global scaling factor and the complete dataset was warranted.

Figure 6.8: Training Window for Preliminary NARX network
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(a) Steering Target Output (b) Steering Network Output

(c) Throttle Target Output (d) Throttle Network Output

(e) Braking Target Output (f) Braking Network Output

Figure 6.9: Comparison of preliminary NARX network alongside the target output
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(a) Steering Overlay (b) Throttle Overlay

(c) Braking Overlay

Figure 6.10: Magnified Overlays of Target Output(Blue) and Network Output(Red)
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(a) Steering Error (b) Throttle Error

(c) Braking Error

Figure 6.11: Error Plots for Each Network Output
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(a) Steering (b) Throttle

(c) Braking (d) Overall Regression

Figure 6.12: Regression plot for each individual variable and overall regression for preliminary NARX
network
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Figure 6.13: Error Histogram for Preliminary NARX network
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Figure 6.14: Training performance for Preliminary NARX network

NARX network results using the full dataset

As discussed, following an analysis of the performance of the the preliminary NARX network,

further development of this type network was warranted using the full dataset, the results of which

are presented below.

The training window (Figure 6.15, p.73) indicates that training was terminated after 44 iterations

once the minimum error gradient was exceeded. According to the training window, the training time

was approximately 13 hours and a mean squared error of 2.31x10−5 was attained.

According to Figures 6.16a & 6.16b (p.74) the NARX network was able to model the steering

behaviour. Figures 6.16c & 6.16d illustrate that the NARX network was able to accurately repre-

sent the throttle behaviour as well, however, not to the same degree as witnessed with the steering

behaviour. Figures 6.16e & 6.16f illustrate an accurate representation of the braking behaviour as
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well. Overall, the output plots of the NARX network seem to validate two hypotheses which are:

that the NARX network is better suited for driver modeling over an MLP network and that using a

global scaling factor as opposed to a local scaling factor for normalizing the data would yield better

network performance. All three overlay plots in figure 6.17 (p.75) help to further illustrate the accu-

racy of the network for all three outputs as network output plots are almost indistinguishable from

those of the target output.

The error plots (Figure 6.18, p.76) further serve to illustrate the quality of the performance as all

three plots display errors of a relatively small magnitude. It is apparent from these plots however,

that the throttle performance(Figure 6.18b) is inferior to that of both the steering & braking perfor-

mances displayed in Figures 6.18a & 6.18c, respectively. The same characteristics regarding the

performance of each individual output was also observed in the performance of the MLP network.

The regression plots (Figure 6.19, p.77) help to validate the observations made based on the

output plots. The steering regression (Figure 6.19a) plot illustrates a very strong correlation with

very few outliers, the throttle regression (Figure 6.19b) plot demonstrates that an acceptably strong

correlation was achieved however there are more outliers than for the regression plot for the steer-

ing behaviour, finally Figure 6.19c demonstrates a very strong correlation with the braking data and

large improvement over the performance witnessed in the preliminary network. The correlation fac-

tors for the steering, throttle and braking behaviour were 0.99613, 0.99577 and 0.99665 respectively

and the overall correlation factor was 0.9998, this information indicates that from a mathematical

perspective, the trained NARX network is very accurate and would produce a high fidelity model of

a driver.

The error histogram (Figure 6.20, p.78) for the NARX further serves to reinforce the quality of

the performance of the NARX network as most of the errors have been placed in the bin closest to

zero.

The training performance plot (Figure 6.21, p.79) indicates that the performance of all three

datasets (training, validation and test) all followed a similar level of performance at each iteration.

This is consistent with the stopping criteria that was used to terminate network training as the perfor-

mance of the validation dataset never exceeded the performance of the training dataset often enough

to halt network training.

Overall, following an examination of the plots, it can be concluded that the performance of

the NARX network was very good and, as expected, it exceeded that of the MLP network. The

performance of the NARX network illustrates the importance of proper data scaling in comparison

to the performance of the preliminary network.
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Figure 6.15: Training Window for NARX network
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(a) Steering Target Output (b) Steering Network Output

(c) Throttle Target Output (d) Throttle Network Output

(e) Braking Target Output (f) Braking Network Output

Figure 6.16: Comparison of NARX network alongside the target output
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(a) Steering Overlay (b) Throttle Overlay

(c) Braking Overlay

Figure 6.17: Magnified Overlays of Target Output(Blue) and Network Output(Red)
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(a) Steering Error (b) Throttle Error

(c) Braking Error

Figure 6.18: Error Plots for Each Network Output
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(a) Steering (b) Throttle

(c) Braking (d) Overall Regression

Figure 6.19: Regression plot for each individual variable and overall regression for NARX network
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Figure 6.20: Error Histogram for Preliminary NARX network



CHAPTER 6. RESULTS & DISCUSSION 79

Figure 6.21: Training performance for Preliminary NARX network

6.2 Classification Network

In the same manner that the performance of the neural networks used for the driver model were

assessed, the performance of the networks developed for classifying driver behaviour are analyzed

based on several criteria displayed in a series of plots. It should be noted that when examining

the plots, that class 1 is associated with acceptable behaviour, class 2 is associated with marginal

behaviour, and class 3 is associated with unacceptable behaviour. The first plot presented is the

training window generated by MATLAB®. This is the same window generated for the driver model

network discussed in Section 6.1. The next figure presented is what is called the confusion matrix.

The confusion matrix presents the class that the input vector was associated with in the training

dataset and the class that the network associates that particular input vector with once it has been

trained. Evidently, if the trained network is capable of associating each input vector to its correct
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class, it is indicative that it has been properly trained and can be trusted to function properly when

used in its desired application. The next figure used to assess the performance of the classification

network is what is called the receiver operating characteristics (ROC); the MATLAB® help files [40]

describe how the ROC parameter calculates the true positive ratio which it describes as "the number

of outputs greater or equal to the threshold, divided by the number of one targets" and the false

positive ratio which it describes as "the number of outputs less than the threshold, divided by the

number of zero targets"; the MATLAB® help files [40] also discuss how it is desirable for the ROC

plot to "hug" the left and top edges of the plot. According to Witten[43], the ROC characterizes

the tradeoff between the "hit rate" and the "false alarm rate". The vertical axis plots the number

of positives in the sample expressed as a percentage of the total number of positives with respect

to; the number of negatives in the sample as a percentage of the total number of negative on the

horizontal axis. When plotting the ROC chart, movement in the vertical direction corresponds to

that particular input being positive; while movement on the horizontal direction corresponds to that

particular input being negative. There are some important points that must be stressed regarding

ROC which are, that the magnitude of displacement is not important given that they are expressed

as percentages, ideally the plot should be close to the top lefthand corner, and that a diagonal line

from the lower lefthand corner corresponds to the behaviour of a random dataset. The final plot

used to assess the performance of the classification network is the training performance, which, in

this case, plots the means squared error at each iteration.

6.2.1 Learning Vector Quantization Network Using the Full Dataset

Figure 6.22 (p.82) displays the training window for the classification network that was trained using

the full dataset. Training was stopped by the user as the window indicates that the mean squared

error experienced no change following 292 iterations that took in excess of 117 hours to complete.

The training window indicates that a mean squared error of 0.00957 was achieved. Initial observa-

tion appears to indicate that an acceptable network was trained. Further investigation into network

performance reveals that training did not produce a network that functions to an acceptable level.

The confusion matrix (Figure 6.23, p.83) reveals significant information regarding the quality

of the network. Essentially the confusion matrix indicates that following training, the network clas-

sified all of the input vectors in the same class, which is not a desirable outcome. One observation

made was that an overwhelmingly large portion of the data belonged to the same class; therefore, if

the rest of the data was misclassified it would still have very little effect on the performance of the

network. It was also believed that the manner in which the data was divided prevented the network

from being able to classify each vector properly and as a result a modified input dataset was cre-

ated. The performance results of this network are not presented as MATLAB® destabilized which
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made it impossible to obtain vital performance information. It should be noted that the observed

performance of the network prior to MATLAB® destabilizing exhibited extremely minimal benefits.

The receiver operator characteristics (Figure 6.24, p.84) also serve to reinforce the observation

that the network failed to perform as desired. While the MATLAB® help files [40] state that it is

desirable for the plots to "hug" the left and top edges of the plot, the plots in Figure 6.24 follow

a line of y=x, according to Witten[43], this indicates that the performance corresponds to that of a

random dataset.

The training performance plot in Figure 6.25 indicates that network performance did not im-

prove to any extent during training. As a result, it is unlikely that the performance would have

improved at all or without an exorbitant amount of training. A possible explanation for this is that

the error surface may have had a very shallow gradient as other networks were trained using the

L-M training algorithm and their training was quickly terminated as the minimum error gradient

was very quickly reached.
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Figure 6.22: Training Window for LVQ network using the full dataset
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Figure 6.23: Confusion Matrix for LVQ network using the full dataset
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(a) Class 1 (b) Class 2

(c) Class 3

Figure 6.24: Receiver Operating Characteristics for Each Class of the LVQ Network Using the Full Dataset
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Figure 6.25: Training performance for LVQ network using the full dataset

6.2.2 Learning Vector Quantization Network Using a Portion of the Dataset

In order to try and provide evidence that an LVQ network can be used to classify driver behaviour,

an investigation of the performance using a portion of the dataset was carried out. The training

window (Figure 6.26, p.87) indicates that training was terminated following 1000 iterations taking

nearly 16 hours to do so. Following training, the network was able to attain a mean squared error of

0.0923.

The confusion matrix (Figure 6.27, p.88) helps to reinforce the observation made from the

training window that the network performance is not satisfactory, while the network was able to

associate some of the input vectors with their appropriate class, there were many vectors that it

failed to properly classify. This was especially noticeable with input vectors belonging to class

3, which is associated with behaviour deemed to be unacceptable, in which it failed to properly

identify any of the associated input vectors. It can be noted, however, that the fact that it was able to
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at least properly classify data for more than just one class represents an improvement over the first

LVQ network developed.

The receiver operator characteristic plots (Figure 6.28, p.89) represent a validation of the ob-

servations made from the confusion matrix as the plots move closer to the left and top edges of the

figure for classes 1 and 2. The plot for class 3 is identical to the plot generated from the network

using the entire dataset in that it forms a line of y=x; this is also consistent with the observations

made from the confusion matrix as there was no improvement in performance for identifying that

particular class of behaviour.

Finally, the training performance plot (Figure 6.29, p.90) illustrates that as training progressed,

the mean squared error was reduced from the first iteration; however, it appears as if it is oscillating

within a region of the plot indicating that the network was perhaps searching in different directions

on the error surface in which the error could be minimized. The plot may also indicate that further

training with this particular dataset may not yield any improvement in network performance.
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Figure 6.26: Training Window for LVQ network using a portion of the dataset
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Figure 6.27: Confusion Matrix for LVQ network using a portion of the dataset
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(a) Class 1 (b) Class 2

(c) Class 3

Figure 6.28: Receiver Operating Characteristics for Each Class of LVQ Network Using a portion of the
Dataset
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Figure 6.29: Training performance for LVQ network using a portion of the dataset



Chapter 7

Conclusions & Recommendations

The research presented reveals many conclusions regarding driver modeling and how it can be

applied to assess driver behaviour. First of all the review of literature and past work reveals that

a significant amount of work has been accomplished in the field of driver modeling and that the

ultimate goal appears to be the development of a universal model. While the development of such

a model is beyond the scope of this research, the work does represent an application of some of the

information that has been learned and published. The previous accomplishments also served as a

guide for developing the driver assessment tool, especially in the area of employing neural networks

in the driver modeling role.

The conclusions that can be drawn from the actual research undertaken is that based on the

results discussed in Chapter 6, a functional driver model was developed using neural networks.

According to the standard methods used to evaluate neural network performance, the driver model

accurately modeled the driver behaviour. Another conclusion that was reached was that the NARX

network outperformed the MLP neural network in the role as a driver model.

While the network for the driver model portion of the assessment tool appeared to perform

well the same cannot be said for the classification portion. Since the network must be designed to

organize data, the use of an SOM is appropriate, and because the ultimate classification for the input

vectors in the training data is known, the LVQ network is in fact the appropriate structure. The main

issue with the development of this portion of the assessment tool appears to lie in the training data.

At this point a metric to differentiate between acceptable, marginal and unacceptable behaviour has

yet to be developed; therefore, it is difficult to properly divide the data. Combined with the fact that

the data was more or less arbitrarily divided, the end result was that most of the input vectors were

classified as being in the acceptable range, and the network had difficulty learning how to distribute

the data.

91
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Based on the conclusions for each portion of the assessment tool, the overall conclusion that

can be reached is that the work represents a successful first attempt in the development of an elderly

driver assessment tool. While the classification network did not meet expectations, a significant

amount of information regarding how to proceed in future developments was learned along with

many pitfalls that must be avoided, many of which are discussed in the recommendations section.

7.1 Recommendations

Based on the conclusions reached following the work, the recommendations for future work are as

follows:

• Acquire a new dataset from a more sophisticated driving simulator.

The data used to develop this initial model was acquired from a simulator that employs a sim-

plified linear vehicle model and the user interface provides no feedback to the driver. While

the subjects of interest for this study operate the vehicle in the linear regime it is a well known

fact that there are many non-linearities that exist in vehicle behaviour, particularly where the

tires are concerned; the vehicle model used in the simulator fails to account for tire behaviour

as there is no notion of individual wheels as discussed in Section 4.1. Vehicle feedback to the

driver is also an important aspect, as drivers base many of their decisions on what they feel,

particularly when steering the vehicle where the driver will feel a resistant tire force as they

turn the wheel. Similarly, the wheels will also have a tendency of correcting themselves once

the driver ceases to steer the wheel. This attribute is incorporated intentionally and is known

as return steer; however, any further discussion of its behaviour is beyond the scope of this

research. While highly sophisticated driving simulators with several degrees of freedom in

terms of vestibular feedback do exist, they are excessive for the purpose of the development

of the assessment tool. It would, however, be very beneficial to have access to a simulator

that at least employs a high fidelity vehicle model, provides steering feedback to the subject

and that uses clearer sensors for the throttle and braking inputs.

• Ensure that the scenario presented to the subjects requires them to deal with a wide variety of

situations.

The road situations that the subjects were exposed to are listed in Table 4.1 in Chapter 4.

After examining this table it is evident that the number of situations that the subjects were

exposed to are limited, in that there are no situations other than straight and curved roads and,

where the curved roads are concerned, there is very little variety in road curvature. Ideally,
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the driving scenario used to acquire the data should incorporate a variety of different road

curvatures, lane changes and intersections to name some examples.

• Establish a proper metric to distinguish acceptable, marginal and unacceptable driving be-

haviour.

As was discussed previously, when dividing the training data for the classification network

between acceptable, marginal and unacceptable behaviour, there was no definitive method to

do so, and as a result the division of data was little more than arbitrary. It is understood that

the establishment of such a metric would require an extensive quantity of work in which the

subjects behaviour would be observed. The observations would then be correlated with the

data in order to determine the appropriate thresholds for each of the output variables, namely

the steering, throttle and braking performance in accordance with each of the three classes of

behaviour. The development of said metric would represent a very large step forward in the

development of the driver assessment tool.

• Explore the incorporation of time based measures as discussed in Section 2.6 and gap accep-

tance theory into the driving behaviour metric.

The literature review discovered several time based methods that can be used to quantify

error. These methods could be used to enhance the metric to differentiate the behaviour

using a quantitative method. Gap acceptance theory is a measure that is frequently employed

in traffic engineering and could potentially be useful in assisting to provide a quantitative

method to differentiate driving behaviour.

• Validation of the driver model portion using a vehicle simulation program such as CarSim®.

While the driver model displayed acceptable performance in accordance with the methods

typically used to assess the performance of neural networks, it’s performance when exposed

to new driving scenarios remains untested. By developing a co-simulation using MATLAB®

and a vehicle simulator such as CarSim® it would be possible to present new scenarios to

the driver model, where it would be required to respond with the appropriate commands for

the steering, throttle and braking all while using a high fidelity vehicle model. Also neural

network performance only reveals the response to the given inputs. In reality those inputs

may not be adequate and more may be required; a co-simulation with a vehicle simulation

program would reveal this. Theoretically, a proper driver model should be able to control the

vehicle for virtually any reasonable scenario presented to it.

• Exploring the use of different types of neural networks for the driver model as well as opti-

mizing the network’s size.
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While a NARX network using 15 hidden layer neurons and two delays was deemed to be the

best network for driver modeling of the ones tested, the fact of the matter is there might be

better options both from a performance and efficiency standpoint. In all likelihood, 15 hidden

layer neurons is more than necessary and reducing the number of hidden layer neurons would

decrease both training and simulation time as well as the amount of computing resources re-

quired without significantly reducing performance. Unfortunately time constraints prevented

network simplification from taking place. It is also recommended that the use of an RBFN to

act as a driver model be revisited, according to Lin [24] such networks performed very well

in the driver modeling role.

• Train the classification network used in the second portion of the assessment tool using the

data divided with a proper metric.

Finally it goes without saying that once a proper metric has been established, it should be

employed in order to properly divide the data according based on behaviour.

While the implementation of all the recommendations may seem somewhat excessive, they

serve as a guide as to where to proceed with the development of the elderly driver assessment tool.

The next step in the development of the model should be to prioritize the recommendations and

implement them as deemed fit.
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Appendix B

M-Code for Elderly Driver Assessment
Tool

clear

clc

%Values used to scale the data

maxi=[112,0.6314 ,4.6105 ,8.9386 ,0.5122 ,112,0.0040];

maxo=[148 ,4169 ,768033];

%Load the driver model neural network

load('NARX15.mat');

%Load the path to the file to be simulated

load(File);

%For loops to scale the input and output variables

for k=1:7;

%Divide by the maximum value to normalize

input(k,:)=input(k,:)./maxi(k);

end

for k=1:3;

%Divide by the maximum value to normalize

output(k,:)=output(k,:)./maxo(k);

end

%Neural Network toolbox commands to convert the data to a form usable by

%the neural network

inputSeries = tonndata(input ,true ,false);

outputSeries = tonndata(output ,true ,false);

%Command to prepare the data specifically for use specifically by a NARX

%network

[inputs ,inputStates ,layerStates ,outputs] =

100
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preparets(NARX_15 ,inputSeries ,{},outputSeries);

%Simulate using the driver model neural network

netoutputs=NARX_15(inputs ,inputStates ,layerStates);

%Convert

netoutput=cell2mat(netoutputs);

%De-scale the data to its original values

for k=1:3;

%Multiply by the maximum value to reverse normalizing

netoutput(k,:)=netoutput(k,:).*maxo(k);

output(k,:)=output(k,:).*maxo(k);

end

%Determine the length of output vectors

l=length(output);

%Calculate the error for use by the classification network

error=netoutput -output(:,3:l);

load('Class_net.mat');

%Simulate using the classification network

Class=Class_net(error);



Appendix C

Neural Network Weights

This appendix displays the weight matrices calculated by neural networks. The first section displays

those calculated the driver model network while the second section displays the weights calculated

for the classification network.

C.1 Driver Model NARX Network Weights

The first matrix displays the weights that the connect the input layer to the hidden layer; note that

there are two sets of weights, one for the current input, and another for the time-delayed input. The

second matrix displays the weights connecting the target outputs acting as feedback to the hidden

layer; once again there are two sets of weights as a result of the time-delayed input. The third matrix

contains the weights that connect the hidden layer to the output layer. The fourth matrix contains

the hidden layer biases, while the fifth layer contains the output layer biases.
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
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
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

−2.1775
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
−0.34084

0.59173

0.037431


C.2 Learning Vector Quantization Classification Network Weights

The first matrix contains the weights for the self organizing map. The second matrix contains the

weights for the output layer.
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

0.0018105 0.00047161 0.00050199
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
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1


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