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Abstract

A mathematical and numerical analysis has been undertaken for three cross diffusion

systems which arise in the modelling of biological systems. The first system appears

in modelling the movement of multiple interacting cell populations whose kinetics

are of competition type. The second model is the mechanical tumor-growth model

of Jackson and Byrne that consists of nonlinear parabolic cross-diffusion equations

in one space dimension for the volume fractions of tumor cells and an extracellu-

lar matrix (ECM), and describes tumor encapsulation influenced by a cell-induced

pressure coefficient. The third system is the Keller-Segel model in multiple-space

dimensions with an additional cross-diffusion term in the elliptic equation for the

chemical signal.

A fully practical piecewise linear finite element approximation for each system

is proposed and studied. With the aid of a fixed point theorem, existence of fully

discrete solution is shown. By using entropy type inequalities and compactness

arguments, the convergence of each approximation is proved and hence existence of

a global weak solution is obtained. In the case of the Keller-Segel model, we were able

to obtain additional regularity to provide an improved weak formulation. Further,

for the Keller-Segel model we established uniqueness results and error estimates.

Finally, a practical algorithm for computing the numerical solutions of each system

is described and some numerical experiments are performed to illustrate and verify

the theoretical results.
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Chapter 1

Introduction

1.1 Introduction

This thesis concerns the analysis of cross-diffusion systems. In order that we can

describe what we mean by cross-diffusion, we first begin by describing diffusion

and then self-diffusion. The term diffusion (diffusion, direct diffusion, ordinary

diffusion) implies material moving from a high concentration to a low-concentration

region. In the case of self diffusion, the rate depends on the local concentration.

The term cross-diffusion means that a flow of one species occurs in the gradient of

other substances. Cross-diffusion coefficients may be positive, negative, or zero. A

positive coefficient suggests motion towards a region with low concentration of other

substances; a negative coefficient indicates that motion occurs towards a region with

a high concentration of other substances. The simplest example at the population

level is a parasite (first object) moving by diffusion of a host (second object). Systems

with cross-diffusion are rather widespread in nature and play an important role,

especially in biophysical and biomedical situations. They have been the subject of

active research for many years due to their wide applicability in biology, see for

example [42, 74, 76, 78, 93] and the references therein. Earlier studies on modelling

cross diffusion systems have been made in [78,88] and more recent work on modelling

cross diffusion systems can be found in [45, 57, 68, 79]. In addition, we refer to

[8,35,50,75,97] for some mathematical studies of a number of cross diffusion models

of Lotka-Volterra type. Other mathematical studies of cross diffusion systems can

1



1.2. Introduction to the population model 2

be found in the literature, cf. [24, 34,58,69].

In this thesis, we use the finite element method as a technique to study three

classes of strongly coupled cross diffusion systems arising in certain biological and

physical applications. The first is a population model of competition type arising in

biological study of the movement of multi-interacting cell populations. The second is

the tumor-growth model which can provide biologists with complementary insight

into the chemical and biological mechanisms which influence the development of

solid tumors. The third is the Keller-Segel model arising in biological fields, such as

embryogenesis, immunology, cancer growth and wound healing.

1.2 Introduction to the population model

We study the mathematical aspects of the multi-dimensional version of a cross-

diffusion model with homogeneous Neumann boundary conditions and appropri-

ate initial data. Up to now, the research has chiefly been concerned with Lotka-

Volterra ODEs and their qualitative analysis such as persistence, permanence and

attractability [1, 37, 64]. We consider the m-species cross-diffusion model: (P) Find

{ui(x, t)}mi=1 ∈ R≥0 × ...× R≥0 such that

∂tui −∇ · [Di∇ui + ui

m∑
j=1

∇uj] = gi(u), in QT , (1.2.1)

[(Di∇ui + ui

m∑
j=1

∇uj)] · ν = 0, on ST , (1.2.2)

ui(·, 0) = u0i , in Ω, (1.2.3)

where Ω is an open bounded domain in Rn(n ≥ 1), with smooth boundary ∂Ω. Here

T is a positive number, QT = Ω×(0, T ), ST = ∂Ω×(0, T ), R≥0 = {x ∈ R : x ≥ 0}, ν

denotes the exterior unit normal to ∂Ω. Di ≥ 0, i = 1, ..,m are the constant diffusion

rates. Furthermore, the source form is given by a Lotka-Volterra form where

gi(u) = γiui − ui

m∑
j=1

uj, i = 1, ...,m,

where the competition coefficients γi, i = 1, ...,m represent a growth advantage of

populations.

July 2, 2015



1.2. Introduction to the population model 3

In Chapter 2, we introduce an extended study of the problem (P). The existence

of a global weak solution of the system (1.2.1)-(1.2.3) is studied. To this end, we

introduce and analyze a fully discrete finite element approximation of (P). The main

features of the system are explicitly reflected in the analysis of the fully discrete

problem. For this purpose, we have to derive an entropy inequality of the problem

as this is the key in our analysis of the discrete problem. By testing the equations

(1.2.1) with lnui, i = 1, ...,m, integration over Ω and using integration by parts we

can derive the entropy inequality of the problem (P):

d

dt

∫
Ω

[ui lnui − ui]dx+

∫
Ω

(
Di

ui
|∇ui|2 +

m∑
j=1

∇ui∇uj)dx ≤
∫
Ω

gi(u) ln ui dx,

and summing i = 1, ...,m, yields

d

dt

m∑
i=1

∫
Ω

[ui lnui−ui]dx+

∫
Ω

(
m∑
i=1

Di

ui
|∇ui|2+ |

m∑
i=1

∇ui|2)dx ≤
m∑
i=1

∫
Ω

gi(u) lnui dx.

However, owing to the singular nature of the derived inequality we have to go through

a regularization procedure in order that we treat this problem. Hence, we establish

a well defined entropy inequality of a regularized version of (P) and derive bounds

on the regularized functions which are independent of the regularization parameter.

The entropy inequality and the uniform bounds of the regularized problem provide

the foundation of a discrete analogue of the entropy inequality and uniform estimates

of the corresponding approximation problem. Such estimates are needed to prove the

convergence of the regularized fully discrete problem as the regularization parameter

and the discretization parameters simultaneously tend to zero, and therefore we

obtain existence of a weak solution to the system (1.2.1)-(1.2.3).

For the study of different types of partial differential equations, the idea of defin-

ing and exploiting an entropy inequality has been used. For instance, in [9, 11], the

entropy inequality is considered to study a thin film equation. In [8, 35, 36, 50, 51]

the entropy inequality is used to study the cross diffusion systems. The approach

adopted in this thesis uses the standard piecewise linear finite element method. For

references that use this approach, or employ similar arguments and tools to our own,

see for example [6,8–11,52,92]. For the theoretical tools, techniques and results used

in this thesis see e.g. [2, 39, 49,70,83,84].
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1.3. Introduction to the cross-diffusion Tumor-growth model 4

In conclusion, the finite element approach used to show the existence of a non-

negative global weak solution of (P) mainly contains five steps. The first step is to

regularize the problem (P) and then establish its entropy inequality. Secondly, we

introduce a fully discrete finite element approximation of the regularized problem

and prove the existence of the approximate solutions at each time step using appro-

priate initial data. Thirdly, a discrete analogue of the entropy inequality is derived

and then we establish some bounds of the approximate solutions. In the fourth

step, the convergence of the fully discrete problem is studied as h → 0. Finally, we

study the convergence of the discrete problem which results from the fourth step as

∆t→ 0.

1.3 Introduction to the cross-diffusion Tumor-growth

model

The modelling and simulation of tumor growth may provide biologists with com-

plementary insight into the chemical and biological mechanisms which influence the

development of solid tumors. In [63], Jackson and Byrne have developed a con-

tinuous mechanical model which gives some insight into tumor encapsulation and

transcapsular spread. The model consists of strongly nonlinear cross-diffusion equa-

tions for the volume fractions of the tumor cells and the extracellular matrix (ECM).

A particular feature of the model is tumor encapsulation which is triggered by the

increase of the pressure of the ECM due to tumor growth. This increase is modelled

by the cell-induced pressure coefficient θ ≥ 0. When θ > 0, the ECM becomes more

compressed as the tumor cell fraction increases. For this problem, we are interested

in a mathematical analysis of this model.

Tumor growth can be very roughly classified into three stages. The first stage is

the avascular growth which is mostly governed by the proliferation of tumor cells.

When the tumor grows, less and less nutrition is available for the cells in the tumor

center, and the tumor starts developing its own blood supply (vascular stage). Lat-

er, the tumor cells are able to escape from the tumor via the circulatory system and

lead to secondary tumors in the body (metastatic stage). The model considered in
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1.3. Introduction to the cross-diffusion Tumor-growth model 5

this problem describes the avascular stage only.

Most models for avascular tumor growth fall into two categories: discrete cell

population models that track the individual cell behavior and continuum models

that formulate the average behavior of tumor cells and their interactions with the

tissue structure [23]. In the following, we concentrate on continuum models and in

particular only on those which contain cross diffusion.

A possible continuum model ansatz is the use of reaction-diffusion equations.

The system is then composed of mass balance equations for the cellular compo-

nents, coupled to a system of reaction-diffusion equations for the concentrations of

the extracellular substances [23]. The mass balance equations need to be closed by

defining (or deriving) equations for the corresponding velocities. Roughly speaking,

there are two classes of models: phenomenological and mechanical models (see Sec-

tion 4 in [23]).

In phenomenological models, it is assumed that the cells or the ECM do not

move or that they move due to diffusion [95], chemotaxis [32] or other mechanisms.

Mechanical models differ from phenomenological ones by the fact that the latter

ones do not take into account mechanical causes of cell movement due to pressure

produced by proliferating tumor cells to the surrounding tissue [23]. An example of

such a model is given by Casciari et al. [30]. When the cells are considered as an

elastic fluid within a rigid ECM, the velocity may be closed according to the Darcy

law, i.e., the velocity is proportional to the negative gradient of the pressure (see

Formula (7) in [33] or Formula (4.4) in [23]). Alternatively, the cell-matrix system

may be supposed to behave as a viscous fluid, in which the stress depends on the

viscosity [28], as a viscoelastic fluid [61], or as a cell mixture in a porous medium

made of the ECM filled with extracellular liquid [53]. More details can be found in

the review of Roose et al. [86].

The mechanical model of Jackson and Byrne [63] describes the growth and en-
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1.3. Introduction to the cross-diffusion Tumor-growth model 6

capsulation of solid tumors. The mass balance equations for the volume fractions

of the tumor cell, the ECM, and the water phases are supplemented by equations

for the velocities, depending on the gradient of the corresponding pressure. It is

assumed in [63] that the pressure of the tumor cells and the ECM increases with

the respective volume fraction and that the presence of tumor cells induces an in-

crease in the ECM pressure, which leads to a nonlinear term in the ECM pressure.

The model is given by the following scaled equations in one space dimension for the

volume fractions of the tumor cells, c, and the ECM, m :

(W ) Find {c(x, t),m(x, t)} ∈ R≥0 × R≥0 such that

∂

∂t

 c

m

−∇
[
D(c,m)

 ∇c

∇m

]
= R(c,m) in Ω, t > 0, (1.3.4)

where Ω = (0, 1), subject to the Neumann boundary and initial conditions

∇c = ∇m = 0 on ∂Ω, t > 0, c(·, 0) = c0, m(·, 0) = m0 in Ω. (1.3.5)

The mixture is supposed to be saturated, i.e., the volume fractions of the tumor

cells c, the ECM m and water w sum up to one. Therefore, the volume fraction of

water can be computed from w = 1 − c − m. Assuming that cell proliferation is

proportional to the cell and water fractions (with rate γ), the tumor cells die with

rate δ, and that the ECM production is proportional to all three fractions (with rate

α), the net production rate is given by

R(c,m) =

 Rc(c,m)

Rm(c,m)

 =

 γc(1− c−m)− δc

αcm(1− c−m)

 . (1.3.6)

The diffusion matrix

D(c,m) =

 2c(1− c)− βθcm2 −2βcm(1 + θc)

−2cm+ βθ(1−m)m2 2βm(1−m)(1 + θc)

 , (1.3.7)

with the pressure coefficients β > 0 and θ ≥ 0 is generally neither symmetric nor

positive definite, which makes the analysis of the above system challenging.

A key observation is that system (1.3.4)-(1.3.7) possesses an entropy functional

if θ < θ∗ := 4/
√
β. To explain this, we introduce the logarithmic entropy

H(c,m) =

∫
Ω

(
c(ln c− 1) +m(lnm− 1) + (1− c−m)(ln(1− c−m)− 1)

)
dx.
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By testing the equations (1.3.4)1 with ln c− ln(1− c−m) and (1.3.4)2 with lnm−

ln(1 − c −m), integrating over Ω and using integration by parts we can drive the

entropy inequality of the problem (W ):

dH

dt
+

∫
Ω

(2(∇c)2 + βθm∇c∇m+ 2β(1 + θc)(∇c)2)dx

≤
∫
Ω

(
Rc(c,m) ln

c

1− c−m
+Rm(c,m) ln

m

1− c−m

)
dx.

For c,m > 0 and c+m < 1, it is easy to show that the right-hand side is bounded.

It turns out that the integrand of the second term on the left-hand side is a positive

definite quadratic form in cx and mx if θ < θ∗, which provides gradient estimates

for c and m. This result can be strengthened: If 0 < θ < 4/
√
β, then we have∫

Ω

(2(∇c)2 + βθm∇c∇m+ 2β(1 + θc)(∇m)2)dx ≥ Kθ

∫
Ω

((∇c)2 + (∇m)2)dx.

Here, we have used the properties c,m > 0, and c+m < 1.

1.4 Introduction to the Keller-Segel model

Chemotaxis, the directed movement of cells in response to chemical gradients, plays

an important role in many biological fields, such as embryogenesis, immunology,

cancer growth, and wound healing [60, 81]. The mathematical modeling of chemo-

taxis dates to the pioneering works of Patlak [80] and Keller and Segel [67]. The

original model equations have been reduced to describe the evolution of the cell

density e(x, t) and the concentration of the chemical signal s(x, t), and it is given,

in its general form by:

(Q) Find {e, s} ∈ R≥0 × R≥0 such that

∂te−∇ · [∇e− e∇s] = 0, in QT , (1.4.8)

α∂ts−∆s− δ∆e− µe+ s = 0, in QT , (1.4.9)

∇e · ν = 0, ∇s · ν = 0, on ST , (1.4.10)

e(·, 0) = e0, s(·, 0) = s0, in Ω, (1.4.11)

where Ω is an open bounded domain in Rn(n ≥ 1), with smooth boundary ∂Ω. Here

T is a positive number, QT = Ω × (0, T ), ST = ∂Ω × (0, T ), ν denotes the exterior
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unit normal to ∂Ω. The parameter α ≥ 0 is a measure of the ratio of the time scales

of the cell movement and the distribution of the chemical, µ > 0 is the secretion

or production rate at which the chemical substance is emitted by the cells and δ is

a positive constant. When α = 1, the above system is of parabolic-parabolic type,

whereas in the case α = 0, it is parabolic-elliptic. The rigorous derivation of the

classical Keller-Segel model from an interacting stochastic many-particle system has

been performed by Stevens [89].

For the Keller-Segel model, we developed a finite element analysis. As both

systems (1.2.1)-(1.2.3) and (1.4.8)-(1.4.11) belong to a similar class of equations,

the analysis of problem (P) will significantly contribute to our study of the problem

(Q). In particular, similar arguments used for (P) will be employed to prove the

existence of a global weak solution of the system (1.4.8)-(1.4.11). Our analysis

involves a discussion of the uniqueness of the weak solution of (Q) and a derivation

of some fully discrete error estimates. By testing the equations (1.4.8) with ln e and

(1.4.9) with s, integrating over Ω and using integration by parts we can derive the

entropy inequality of the problem (Q):

d

dt

∫
Ω

(
e(ln e− 1) +

α

2δ
s2
)
dx+

∫
Ω

(
4|∇

√
e|2 + 1

δ
|∇s|2 + 1

δ
s2
)
dx

≤ C(µ, δ)∥e∥5/2L1(Ω) +

∫
Ω

(
2|∇

√
e|2 + 1

2δ
|∇s|2 + 1

2δ
s2
)
dx,

where C(µ, δ) is a constant depend on µ and δ.

1.5 Research objectives and outline

We now give a brief description of each chapter for this thesis. Each of these de-

scriptions is followed by the methodology that has been used.

In Chapter 2, the population model (P) is considered. A truncated alternative

”equivalent” solvable problem to (P) is introduced. A regularized problem of the

truncated system is studied and some a priori estimates of the regularized functions

are obtained. A practical fully discrete approximation of the regularized problem

is presented using a finite element method, with piecewise linear basis functions, to

discretise in space and using backward Euler method to discretise in time. Then,
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some technical lemmata necessary for the analysis of the approximate problem are

discussed. Finally, existence of the approximate solution at each time level is proven

using the Schauder fixed point theorem.

In Chapter 3, the analysis of the population model (1.2.1)-(1.2.3) is continued.

Some stability bounds on the fully discrete approximations, defined in Chapter 2, are

derived. Using classical compactness arguments, the convergence of the approximate

problem to (P) is studied. Existence of a global weak solution of the system (1.2.1)-

(1.2.3) is shown.

In Chapter 4, we pass to the limit M → ∞ in the discrete problem to deduce

the existence of solutions to (P). To do this, we derive bounds on the approximate

solution of (P), independent of M . The approximate model includes ”microscopic

cut-off” parameter M , where M > 1 is a (fixed, but otherwise arbitrary) cut-off

parameter. Our ultimate objective is to pass to the limits M → ∞ and ∆t → 0

in the discrete model, with M and ∆t linked by the condition ∆t = o(M−1), as

M → ∞. To that end, we need to develop various bounds on sequences of weak

solutions of the discrete problem that are uniform in the cut-off parameter M and

thus permit the extraction of weakly convergent subsequences, as M → ∞, through

the use of a weak compactness argument.

In Chapter 5, some practical algorithms for computing the numerical solutions

of problem (P) are described. Some numerical simulations in one and two spaces

dimensions are performed and discussed.

The mechanical tumor-growth model of Jackson and Byrne is approximated using

a finite element scheme in Chapter 6. The model consists of nonlinear parabolic

cross-diffusion equations in one space dimension for the volume fractions of the

tumor cells and the extracellular matrix (ECM). It describes tumor encapsulation

influenced by a cell-induced pressure coefficient. The global-in-time existence of

bounded weak solutions to the initial-boundary-value problem is proved when the

cell-induced pressure coefficient is smaller than a certain explicit critical value.

In Chapter 7, a practical algorithm for solving the finite element problem of (W )

at each time step is introduced. Some numerical results are presented to illustrate

the tumor-growth behaviour.
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Chapter 8 will be devoted to the analysis of the problem (Q). As both systems

(1.2.1)-(1.2.3) and (1.4.8)-(1.4.11) belong to a similar class of equations, the analysis

of problem (Q) is similar to the extent that we are able to prove the existence of a

global weak solution of the system (1.4.8)-(1.4.11).

Ideally, one would like to pass to the limit M → ∞ in the discrete problem to

deduce the existence of solutions to (Q). Of course, our aim is to show existence

of weak solutions to the Problem (Q), and that demands passing to the limits

∆t → 0+ and M → ∞, this then brings us to the next step in our argument.

In Chapter 9, we shall link the time step ∆t to the cut-off parameter M > 1 by

demanding that ∆t = o(M−1), as M → ∞, so that the only parameter in the

approximate problem is the cut-off parameter. We shall show that the approximate

problem can be bounded, independent of the cut-off parameter M . The collection

of M−independent bounds enables us to extract some convergent subsequences of

solutions to problem as M → ∞. Due to the structure of (Q), the second part of

this thesis will also involve a discussion of the uniqueness of the weak solution of

(Q) as well as a derivation of some fully discrete error estimates. Some uniqueness

results for weak solution have been discussed. An error bound between the fully

discrete and weak solutions of (Q) has been proved.

A practical algorithm for computing the numerical solutions of the Keller-Segel

model is given at the beginning of Chapter 10. We then perform numerical experi-

ments in one space dimension demonstrating the fully-discrete error bound and the

growth behaviour of the numerical approximation. Furthermore, simulations in two

space dimensions are performed.

Finally, in Chapter 11, some concluding remarks are given and some possible

future work is suggested.
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Chapter 2

The population model: A fully

discrete approximation of a

regularized truncated problem

In Section 2.1 we mention the basic notation adopted in the thesis, regarding the

Sobolev spaces, and recall and show some auxiliary results. In Section 2.2 we make

a significant step towards showing the existence of a global in-time weak solution of

the problem (P). Our approach in proving existence is based on the idea of defining

an entropy inequality that leads us to obtain energy estimates. Thus in Section 2.2,

we introduce a truncated alternative problem to (P). In Section 2.3 we introduce

a regularized problem of the problem (P). Next, we derive a well defined entropy

inequality of the regularized problem. In Section 2.4 we present some finite element

notation which will be used in the current and the following chapters. A practical

fully discrete finite element approximation of the regularized problem is proposed

then we present some necessary lemmata. Finally, the existence of the approximate

solutions are discussed by using a fixed point theorem.

2.1 Notation and auxiliary results

Throughout this study Ω denotes a bounded domain in Rd, d ≤ 3, with a Lipschitz

boundary ∂Ω. We use the usual Sobolev spaces Wm,p(Ω),m ∈ N, p ∈ [1,∞] with

11



2.1. Notation and auxiliary results 12

the associated norms and semi-norms, denoted by ∥ · ∥m,p and | · |m,p respectively.

In particular, for p = 2,Wm,2(Ω) will be denoted by Hm(Ω) with norm ∥ · ∥m and

semi-norm | · |m and if m = 0,W 0,2(Ω) = L2(Ω). The L2(Ω) inner product over Ω

with norm ∥ · ∥0 = | · |0 is denoted by (·, ·). In addition, ⟨·, ·⟩ denotes the duality

pairing between (H1(Ω))′ and H1(Ω) where (H1(Ω))′ is the dual space of H1(Ω). A

norm on (H1(Ω))′ is given by

∥f∥(H1(Ω))′ := sup
v ̸=0

|⟨f, v⟩|
∥v∥1

≡ sup
∥v∥1=1

|⟨f, v⟩|. (2.1.1)

We also introduce the function spaces depending on time and space Lp(0, T ;X)

(1 ≤ p ≤ ∞) where X is a Banach space, consisting of all functions u such that for

a.e. t ∈ (0, T ) u ∈ X and the following norm is finite

∥u(t)∥Lp(0,T ;X) =

(∫ T

0

∥u(t)∥pXdt
) 1

p

,

∥u(t)∥L∞(0,T ;X) = ess sup
t∈(0,T )

∥u(t)∥X .

We also define Lp(ΩT ) = Lp(0, T ;Lp(Ω)), p ∈ [1,∞]. Furthermore, we define

C([0, T ];X), the space of continuous functions from [0, T ] into X, which consists

of those u(t) : [0, T ] → X such that u(t) → u(t0) in X as t → t0. We recall that

C([0, T ];X) is a Banach space with the associated norm (see [91] page 43):

We also recall the following well-known Sobolev results

H1(Ω)
c
↪→ Lr(Ω) ↪→ (H1(Ω))′ holds for r ∈


[1,∞] if d = 1,

[1,∞) if d = 2,

[1, 6] if d = 3,

(2.1.2)

⟨f, v⟩ = (f, v) ∀f ∈ L2(Ω) and v ∈ H1(Ω), (2.1.3)

where ↪→ denotes the continuous embedding. Further, we have from the Rellich-

Kondrachov theorem, e.g. see [39] page 114 and [31] page 8, that the embedding

in (2.1.2) is compact with r ∈ [1, 6] replaced by r ∈ [1, 6) in the case d = 3. The

compact embedding will be denoted by the symbol
c
↪→.
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For later use we recall the Gagliardo-Nirenberg inequality, see e.g. Adams [2]: Let

p ∈ [1,∞], k ≥ 1 and v ∈ W k,p(Ω). Then there are constants C and ϖ = d
k

(
1
p
− 1

r

)
such that the inequality

∥v∥0,r ≤ C∥v∥1−ϖ
0,p ∥v∥ϖk,p, holds for r ∈


[p,∞] if k − d

p
> 0,

[p,∞) if k − d
p
= 0,

[p,− d
k−d/p

] if k − d
p
< 0.

(2.1.4)

We also need the following version of the Sobolev interpolation result: Let v ∈ H1(Ω)

then there are constants C and θ = 2d(r−1)
r(d+2)

such that the following inequality holds

∥v∥0,r ≤ C∥v∥1−θ
0,1 ∥v∥θ1, holds for r ∈


[1,∞] if d = 1,

[1,∞) if d = 2,

[1, 6] if d = 3.

(2.1.5)

For later use, we recall the following embedding compactness result (see [72], page

58): Let X, Y and Z be three Banach spaces with X and Z being reflexive and

X
c
↪→ Y ↪→ Z. Also let

W = {v : v ∈ Lr(0, T ;X),
∂v

∂t
∈ Ls(0, T ;Z)},

where T <∞ and 1 < r, s <∞. Then

W
c
↪→ Lr(0, T ;Y ). (2.1.6)

For later purpose we mention the Hölder’s inequality: For 1 ≤ p, q ≤ ∞ such that

1
p
+ 1

q
= 1, if f ∈ Lp(Ω) and g ∈ Lq(Ω) then f g ∈ L1(Ω) and

|f g|0,1 =
∫
Ω

|f g|dx ≤
(∫

Ω

|f |pdx
) 1

p
(∫

Ω

|g|qdx
) 1

q

= |f |0,p|g|0,q. (2.1.7)

One can generalise this inequality by applying it for example twice to yield

|f g h|0,1 =
∫
Ω

|f g h|dx

≤
(∫

Ω

|f |pdx
) 1

p
(∫

Ω

|g|qdx
) 1

q
(∫

Ω

|h|rdx
) 1

r

= |f |0,p|g|0,q|h|0,r, (2.1.8)
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for 1 ≤ p, q, r ≤ ∞ such that 1
p
+ 1

q
+ 1

r
= 1.

Another well-known inequality we need is the Poincaré inequality (e.g. see Wloka

[96], page 117)

∥u∥20 ≤ Cp(|u|21 + |(u, 1)|2), ∀u ∈ H1(Ω), (2.1.9)

where Cp is a positive constant that depends on the domain Ω.

We shall frequently need the following simple version of Young’s inequality

ab ≤ εp1
ap1

p1
+ ε−p2

bp2

p2
,

1

p1
+

1

p2
= 1,

valid for any a, b ≥ 0, ε > 0 and p1, p2 > 1.

We shall also need the following simple inequality

(a− b)2 ≥ a2

2
− b2, ∀ a, b ∈ R, (2.1.10)

which follows from a direct application of the Young’s inequality.

Another useful consequence of the Young’s inequality is the following

ab ≥ −εa
2

2
− ε−1 b

2

2
, ∀ a, b ∈ R, ∀ε > 0. (2.1.11)

We note the following elementary inequalities, valid for any a ∈ R:

(1− a) = [1− a]+ + [1− a]− ≤ [1− a]+ ≤ 1− [a]−, (2.1.12)

(1− a) = [1− a]+ + [1− a]− ≥ [1− a]− ≤ [a]− − 1, (2.1.13)

where [a]+ = max{a, 0} and [a]− = min{a, 0}. Finally, for later reference we define

the mean integral as

−
∫
η :=

1

|Ω|
(η, 1) ∀ η ∈ L1(Ω). (2.1.14)

Throughout C represents a generic positive constant, independent of any regulariza-

tion and discretization parameter, which may change from one expression to another.

In addition, C(c1, ..., cn) denotes a constant depending on {ci}ni=1.

July 2, 2015



2.2. A truncated alternative problem 15

2.2 A truncated alternative problem

One of the main difficulties of (P) is how to deal with the diffusion terms to derive

H1-norm bounds of the solutions {ui}mi=1. To deal with this difficulty, from a bio-

logical point of view, we note that one does not expect all solutions {ui}mi=1, to be

unbounded. For γj > γi we have an advantage of the uj cells over the ui cells. Thus,

for the mathematical analysis of (P), we replace the term ui
∑m

j=1 ∇uj in (1.2.1) by

ϕ(ui)
∑m

j=1∇uj for i = 1, ...,m and to replace the reaction terms gi(u), i = 1, ...,m

by gi,M(u), i = 1, ...,m, where

ϕ(ui) = [ui −M ]− +M, (2.2.15)

gi,M(u) = γiui − ϕ(ui)
m∑
j=1

uj, i = 1, ...,m. (2.2.16)

Here M is fixed positive number, and for later computational purposes we choose

M ≥ e. Without loss of generality, such a replacement can be considered even if for

γj > γi, uj does not have advantage over ui. Thus the modified problem is:

(PM) Find {ui,M(x, t)}mi=1 ∈ R≥0 × ...× R≥0 such that

∂tui −∇ · [Di∇ui + ϕ(ui)
m∑
j=1

∇uj] = gi,M(u), in QT , (2.2.17)

[Di∇ui + ϕ(ui)
m∑
j=1

∇uj] · ν = 0, on ST , (2.2.18)

ui(·, 0) = u0i , in Ω, i = 1, ...,m. (2.2.19)

Before we go through the analysis of the problem (PM), we first demonstrate the

point of considering such a problem as an alternative to the model (P). In particular,

we clarify the relation between a solution of (PM) and a solution of (P). On noting

the system (1.2.1)-(1.2.3) and the system (2.2.17)-(2.2.19), it can be seen clearly that

the problem (PM) is equivalent to (P), if the number M is chosen large enough such

that ui < M . This equivalence has meaning since the values of ui, in (P), represent

densities of multi types of cell populations, which are expected in the biological

literature to be bounded (see Painter and Sherratt [79]). We finally mention that

our analysis of the problem (P) will be also restricted to the assumption Di > 0 as

in the analysis of the problem (P).

July 2, 2015



2.3. A regularized problem 16

2.3 A regularized problem

A key step of the multi-dimensional existence proof is to establish and exploit an

entropy inequality. This will play a central role in our finite element approximation

of (P). In order to make the entropy inequality of problem (PM) well defined, we

adopt the approach which has been used in [8–11]. Firstly, we introduce a function

FM ∈ C2(R>0) such that ϕ(s)(FM)′′(s) = 1 and FM(1) = 0 that is FM : R≥0 → R≥0

given by

FM(s) :=

 (ln s− 1)s+ 1, 0 ≤ s ≤M,

s2−M2

2M
+ (lnM − 1)s+ 1, M ≤ s,

(2.3.20)

with the first two derivative of FM given by

(FM)′(s) :=

 ln s, 0 < s ≤M,

s
M

+ lnM − 1, M ≤ s,
(2.3.21)

and

(FM)′′(s) :=

 1
s
, 0 < s ≤M,

1
M
, M ≤ s.

(2.3.22)

Assuming positive values of the population densities, {ui,M}mi=1, one can define the

non-negative entropy functional

E(t) =
m∑
i=1

∫
Ω

FM(ui,M)dx. (2.3.23)

Now, multiplying (2.2.17) by (FM)′(ui,M), integrating by parts over Ω and summing

the resulting equations, after recalling (2.3.20) and (2.2.18), we have the following

entropy inequality

E(t) +

∫ t

0

(
m∑
i=1

Di

M
∥∇ui,M∥20 + ∥

m∑
i=1

∇ui,M∥20)dt

≤ E(0) +

∫
Qt

m∑
i=1

gi,M(uM) (FM)′(ui,M) dx dt. (2.3.24)

Obviously, the bound (2.3.24) is only formal since e.g. a priori we do not know

that ui(x, t) ∈ R>0 for FM to be well defined. To make this bound rigorous, and in
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2.3. A regularized problem 17

constructing our numerical approximation of (P), one has to go through a regular-

ization procedure. Following the approach of Barrett and Blowey [8], we introduce

an alternative regularization procedure, which we believe to be more transparent,

to that employed in [35]. We replace FM ∈ C2(R>0) for any ε ∈ (0, e−1) by the

regularized function Fε : R → R≥0 such that

Fε(s) :=


s2−ε2

2ε
+ (ln ε− 1)s+ 1, s ≤ ε,

(ln s− 1)s+ 1, ε ≤ s ≤M,

s2−M2

2M
+ (lnM − 1)s+ 1, M ≤ s.

(2.3.25)

Hence Fε ∈ C2,1(R) with the first two derivatives of Fε given by

F ′
ε(s) :=


ε−1s+ ln ε− 1, s ≤ ε,

ln s, ε ≤ s ≤M,

s
M

+ lnM − 1, M ≤ s,

(2.3.26)

and

F ′′
ε (s) :=


1
ε
, s ≤ ε,

1
s
, ε ≤ s ≤M,

1
M
, M ≤ s,

(2.3.27)

respectively. We introduce also the regularized function ϕε : R → [ε,M ] defined by

ϕε(s) := [F ′′
ε (s)]

−1 :=


ε, s ≤ ε,

s, ε ≤ s ≤M,

M, M ≤ s.

(2.3.28)

It is easily established from (2.3.25), (2.3.26) and (2.3.27) that for ε ∈ (0, e−1)

(see [11] for more details)

Fε(s) ≥
s2

2ε
∀s ≤ 0, (2.3.29)

Fε(s) ≥
s2

4M
− 3M

2
∀s ≥ 0, (2.3.30)

sF ′
ε(s) ≤ 2Fε(s) + 1 ∀s ∈ R, (2.3.31)

and

sF ′
ε(s) ≥ ϕε(s) F

′
ε(s) ≥ s− 1 ∀s ∈ R. (2.3.32)

From Taylor’s theorem for any F ∈ C2(R) we have

(s−r)F ′(s) = F (s)−F (r)+ (s− r)2

2
F ′′(ξ), for some ξ between s and r. (2.3.33)
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2.3. A regularized problem 18

We now introduce for ε ∈ (0, e−1) the corresponding regularized version of the

problem (PM):

(PM,ε) For fixed M ≥ e Find {ui,ε(x, t)}mi=1 ∈ R× ...× R such that

∂tui,ε −∇ · [Di∇ui,ε + ϕε(ui,ε)
m∑
j=1

∇uj,ε] = gi,ε(uε), in QT , i = 1, ...,m,

(2.3.34)

[Di∇ui,ε + ϕε(ui,ε)
m∑
j=1

∇uj,ε] · ν = 0, on ST , (2.3.35)

ui,ε(x, 0) = u0i , ∀x ∈ Ω, (2.3.36)

where

gi,ε(uε) = γiui,ε − ϕε(ui,ε)
m∑
j=1

ϕε(uj,ε), i = 1, ...,m. (2.3.37)

In the next lemma we prove an entropy inequality for the system (2.3.34)-(2.3.37)

which is very important in the numerical analysis that follows.

Lemma 2.3.1 Let {u0i (x)}mi=1 be non-negative bounded functions. There exists a

positive C(u01, ..., u
0
m,M, γ1, ..., γm) independent of ε such that any solution of (PM,ε)

satisfies

sup
0≤t≤T

∫
Ω

m∑
i=1

Fε(ui,ε)dx+

∫ t

0

(
m∑
i=1

Di

M
∥∇ui,ε∥20 + ∥

m∑
i=1

∇ui,ϵ∥20)dt ≤ C. (2.3.38)

In addition,

sup
0≤t≤T

∫
Ω

m∑
i=1

|[ui,ε]−|2dx ≤ Cε. (2.3.39)

Proof : Testing (2.3.34) with F ′
ε(ui,ε), i = 1, ...,m and summing the resulting equa-

tions yields, after using (2.3.28) and the boundary conditions (2.3.35) that

d

dt

∫
Ω

m∑
i=1

Fε(ui,ε)dx+

∫
Ω

m∑
i=1

Di

ϕε(ui,ε)
|∇ui,ε|2dx+ ∥

m∑
i=1

∇ui,ϵ∥20

≤
∫
Ω

m∑
i=1

gi,M,ε(uε) F
′
ε(ui,ε)dx, (2.3.40)

where we have noticed that

ϕε(ui,ε)∇[F ′
ε(ui,ε)] = ∇ui,ε. (2.3.41)
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We now obtain from (2.3.28), (2.3.31), (2.3.32), (2.1.12), Young’s inequality and

(2.3.29) that for i=1,...,m

gi,M,ε(uε) F
′
ε(ui,ε) = [γiui,ε − ϕε(ui,ε)

m∑
j=1

ϕε(uj,ε)]F
′
ε(ui,ε)

= γiui,εF
′
ε(ui,ε)− ϕε(ui,ε)F

′
ε(ui,ε)

m∑
j=1

ϕε(uj,ε)

≤ γi(2Fε(ui,ε) + 1) + (1− ui,ε)
m∑
j=1

ϕε(uj,ε)

≤ γi(2Fε(ui,ε) + 1) + (1− [ui,ε]−)
m∑
j=1

ϕε(uj,ε)

= γi(2Fε(ui,ε) + 1) +
m∑
j=1

ϕε(uj,ε)− [ui,ε]−

m∑
j=1

ϕε(uj,ε)

≤ 2γiFε(ui,ε) +
m

2ε
[ui,ε]

2
− +

ε

2

m∑
j=1

ϕ2
ε(uj,ε) + C(M,γi,m)

≤ (2γi +m)Fε(ui,ε) + C(M,γi,m). (2.3.42)

Combining (2.3.40) and (2.3.42) and noting (2.3.28), leads to

d

dt

∫
Ω

m∑
i=1

Fε(ui,ε)dx+
m∑
i=1

Di

M
∥∇ui,ε∥20 + ∥

m∑
i=1

∇ui,ϵ∥20

≤ C(M,γi)

(
1 +

∫
Ω

m∑
i=1

Fε(ui,ε)dx

)
. (2.3.43)

Hence, on noting the assumptions on the initial conditions (2.3.36) and the assump-

tion on u0i , the the desired result follows from (2.3.43) after a simple application of

the Grönwall lemma (A.1.3).

Then, from (2.3.38) we have

sup
0≤t≤T

∫
Ω

m∑
i=1

Fε(ui,ε)dx ≤ C.

Finally, it follows from (2.3.29), that

sup
0≤t≤T

∫
Ω

m∑
i=1

[ui,ε]
2
−dx ≤ Cε.

2
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2.4. A fully discrete finite element approximation 20

The regularized entropy inequality (2.3.38) and the estimate (2.3.39) can be used

to pass to the limit ε −→ 0 in (PM,ε) in order to obtain existence of a non-negative

solution to problem (PM). In the following section we formulate and analyse a fully

discrete finite element approximation of the regularized system (2.3.34)-(2.3.37).

2.4 A fully discrete finite element approximation

In this section we formulate a fully discrete approximation to the solution of the

continuous problem (PM,ε) where we discretise in the spatial variable using a finite

element method.

In Section 2.4.1 we briefly cover the assumptions and results needed for the subse-

quent analysis and present a fully-discrete in time, finite element approximation. We

also define some necessary operators and mention briefly their associated properties.

In addition, we recall definitions of different types of partitioning in space. We state

the required assumptions on the partitioning of Ω and (0, T ). We also define the s-

tandard piecewise linear finite element space and discuss some associated results. In

Section 2.4.2 we formulate a practical fully discrete finite element approximation of

the system (PM,ε) and prove some technical lemmata. Then, in Subsection 2.4.3, we

prove existence of the finite element approximations under appropriate assumptions

on the discretization parameters.

2.4.1 Notation and associated results

Let Ω ∈ Rd, d = 1, 2, 3, be a convex polygonal domain in d = 2 and a convex

polyhedral domain in d = 3. Let T h be a quasi-uniform partitioning of Ω, into

disjoint open simplices τ with hτ := diamτ and h := maxhτ so that Ω̄ = ∪τ∈T h τ̄ .

The parameter h indicates the maximal diameter of the simplices of the partitioning.

We recall that a partitioning T h is said to be ”quasi-uniform” if there exists a positive

constant β such that
ϱτ
hτ

≥ β, ∀τ ∈ T h,

where ϱτ denotes the diameter of the sphere inscribed in τ . For instance, in the case

d = 2, the quasi-uniform condition means that the angles of the triangles τ ∈ T h
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2.4. A fully discrete finite element approximation 21

are not allowed to be arbitrarily small; see Johnson [65] page 85. Additionally, we

assume T h is weakly acute.

We also recall that a partitioning T h is said to be ”acute” for d = 2 if all the

angles of the triangles are less than or equal to π/2, and for d = 3 if the angles made

by any two faces of the same tetrahedron are less than or equal to π/2. Another

type of partitioning is the ”right-angled” that is, in the case d = 2, if all triangles

are right-angled; and in the case d = 3, if all tetrahedra have a vertex at which all

the edges meet at right angles. From the definitions, we note that the right-angled

partitioning is acute.

In the work that follows we consider a finite element approximation of (PM,ε)

under the following assumptions on the spacial and temporal meshes:

(A) Let Ω ∈ Rd, d = 1, 2, 3, be a polygonal domain in d = 2 and a polyhedral domain

in d = 3. Let T h be a quasi-uniform and right-angled partitioning of Ω into disjoint

open simplices {τ} with hτ := diamτ and h := maxτ∈T h hτ , so that Ω =
∪

τ∈T h τ .

Let 0 = t0 < t1 < ... < tN−1 < tN = T be a partitioning of (0, T ) into time

steps ∆tn = tn − tn−1, n = 1, ..., N with ∆t = maxn=1,...,N ∆tn. Let Sh ⊂ H1(Ω),

we define the standard finite element space consisting of the continuous piecewise

linear functions

Sh := {χ ∈ C(Ω) : χ|τ is linear ∀τ ∈ T h}.

Let {φj}Jj=0 be the standard basis functions for Sh, satisfying φj(pi) = δij for i, j =

0, ..., J where N h := {pj}Jj=0 the set of nodes of the partitioning T h. We also

introduce

Sh
≥0 := {χ ∈ Sh : χ(pj) ≥ 0, j = 0, ..., J}

⊂ H1
≥0 := {η ∈ H1(Ω) : η ≥ 0 a.e. ∈ Ω}.

Let πh : C(Ω) → Sh be the Lagrange interpolation operator (alternatively, piecewise

linear interpolant) such that

πhη(pj) := η(pj), for j = 0, ..., J.
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In addition, we define a discrete L2 inner (semi-inner) product on Sh(C(Ω)) as

(u, v)h :=

∫
Ω

πh(u(x)v(x))dx =
J∑

j=0

M̂jj u(pj) v(pj), (2.4.44)

where M̂jj = (φj, φj)
h = (1, φj) > 0. On noting (2.4.44) it is easy to verify that

(η1, η2)
h = (πhη1, η2)

h = (πhη1, π
hη2)

h ∀η1, η2 ∈ C(Ω). (2.4.45)

Below we mention some well-known results concerning the finite element space Sh.

The induced discrete semi-norm on C(Ω), and norm on Sh, is | · |h := [(·, ·)h]1/2. It

is well-known that | · |h is equivalent to the norm ∥ ·∥0 := [(·, ·)]1/2 (e.g. Raviart [82])

via,

∥χ∥20 ≤ |χ|2h ≤ (d+ 2)∥χ∥20 ∀χ ∈ Sh. (2.4.46)

The discrete inner product (2.4.44) approximating the continuous L2 inner product

is exact for all piecewise polynomials u v of degree less than or equal to one. For

future reference we also define

Mij = (φi, φj), Kij = (∇φi,∇φj), M̂ij = (φi, φj)
h,

corresponding to the mass matrix M , stiffness matrix K and lumped mass matrix

M̂ respectively. Note that M̂ is a diagonal matrix. Notice that

M̂ii =
J∑

j=0

Mij, i = 0, ..., J,

i.e., the elements of the lumped mass matrix M̂ are obtained by adding the off

diagonal elements of M in any row to the diagonal element of that row. This is

easily proved via

J∑
j=0

Mij =
J∑

j=0

∫
Ω

φiφjdx =

∫
Ω

φi

J∑
j=0

φjdx = (φi, 1) = M̂ii,

using that
∑J

j=0 φj = 1. The use of the discrete inner product to approximate the

mass matrix is often called ”lumped mass integration” (e.g., Strang and Fix [90] ,

page 118). One advantage of mass lumping is that the (diagonal) mass matrix is

trivially inverted.
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As the partitioning T h is acute, we have that (see [77] page 49)

Kjj > 0,∀j and Kij ≤ 0,∀i ̸= j. (2.4.47)

Using the fact
∑J

j=0 φj = 1, we also have

J∑
j=0

Kij = (∇φi,∇
J∑

j=0

φj) = 0. (2.4.48)

Providing that the partitioning T h is acute, we state the following lemma about

the regularized functions ϕε(s) which will be important in deriving later stability

estimates and is a consequence of the weak acuteness property.

Lemma 2.4.1 Assume the partitioning T h is weakly acute and U(χ) ∈ Sh is a

monotonic function for all χ ∈ Sh. Then

(∇χ,∇πh[U(χ)]) =
1

2

J∑
i=0

J∑
j=0j ̸=i

(−Kij)(χi − χj)(U(χi)− U(χj)) ≥ 0. (2.4.49)

Proof : Recall the weak acuteness properties (2.4.47) and the fact that Kii > 0. Set

χ =
∑J

j=0 χjφj where χj = χ(xj) and note that πhU(χ) =
∑J

j=0 U(χj)φj, thus

(∇χ,∇πh[U(χ)]) =
J∑

i=0

J∑
j=0

Kij χj U(χi)

=
J∑

i=0

( J∑
j=0j ̸=i

Kij χj U(χi) +Kii χi U(χi)

)

=
J∑

i=0

( J∑
j=0j ̸=i

Kij χj U(χi)−
J∑

j=0j ̸=i

Kij χi U(χi)

)

=
J∑

i=0

J∑
j=0j ̸=i

Kij (χj − χi)U(χi). (2.4.50)

Additionally,

J∑
i=0

J∑
j=0j ̸=i

Kij(χj − χi)U(χi) =
J∑

j=0

J∑
i=0i ̸=j

Kij(χj − χi)U(χi)

=
J∑

i=0

J∑
j=0j ̸=i

Kij(χi − χj)U(χj), (2.4.51)

as
∑J

i=0

∑J
j=0j ̸=i(·) =

∑J
j=0

∑J
i=0i ̸=j(·), Kij = Kji and swapping the indices i and

j. Thus from (2.4.50) and (2.4.51) yields the desired result (2.4.49). 2
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Lemma 2.4.2 Let the assumptions (A) hold. Then for all χ ∈ Sh

∥∇πh[ϕε(χ)]∥20 ≤ (∇χ,∇πh[ϕε(χ)]). (2.4.52)

Proof : The proof of this Lemma follows from (2.4.49) on noting that the functions

ϕε are Lipschitz continuous and non-decreasing functions. 2

We now recall some well-known results about the space Sh under our assumption

that T h is a quasi-uniform partitioning:

For any τ ∈ T h, χ ∈ Sh, 1 ≤ p, q ≤ ∞ and m, l ∈ {0, 1} with l ≤ m, we have

∥χ∥m,p,”τ” ≤ Ch
l−m+dmin(0, 1

p
− 1

q
)

”τ” ∥χ∥l,q,”τ”, (2.4.53)

where the abbreviation ”τ” means ”with” or ”without” τ . The above inequality is

known as ”the inverse inequality”, see [49] page 75-77, and it also holds with ∥ · ∥

replaced by | · | , see [39] page 140-142.

For later purpose we introduce the following inverse inequalities which follow from

the quasi-uniform condition (see Theorem 3.2.6, in Ciarlet [39])

|χ|1,p,”τ” ≤ Ch−1
”τ”|χ|0,p,”τ”, 1 ≤ p ≤ ∞, (2.4.54)

|χ|m,p,”τ” ≤ Ch
−d( 1

q
− 1

p
)

”τ” |χ|m,q,”τ”, 1 ≤ q ≤ p ≤ ∞,m ∈ {0, 1}. (2.4.55)

We also require the following interpolation results for all η ∈ W 1,s(Ω), s ∈ [2,∞] if

d = 1 and s ∈ (d,∞] if d = 2 or 3:

|(I − πh)η|m,s ≤ Ch1−m|η|1,s, m ∈ {0, 1}, (2.4.56)

lim
h→0

|(I − πh)η|1,s = 0, (2.4.57)

(see Theorem 1.103 and Corollary 1.110 in [49] respectively). In addition, the fol-

lowing interpolation error estimates (Theorem 5, in Ciarlet and Raviart [40]) holds

∥(I − πh)η∥0,1 ≤ Ch2|η|2,1, ∀ η ∈ W 2,1(Ω). (2.4.58)

We also recall the following useful result (e.g. Ciavaldini [41]), for all χ1, χ2 ∈ Sh,

that

|(χ1, χ2)− (χ1, χ2)
h| ≤ Ch1+m|χ1|m,n1|χ2|1,n2 , (2.4.59)
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for m ∈ {0, 1} and 1 ≤ n1, n2 ≤ ∞ with 1
n1

+ 1
n2

= 1.

For later purposes, we introduce the following generalized version of the estimate

(2.4.59). For all χ1, χ2, χ3 ∈ Sh

|(χ1, χ2, χ3)− (χ1, χ2, χ3)
h| ≤ Ch2|χ1|1,n1 |χ2|1,n2 |χ3|1,n3 , (2.4.60)

where 1 ≤ n1, n2, n3 ≤ ∞ with 1
n1

+ 1
n2

+ 1
n3

= 1.

We are now in a position to formulate a practical fully discrete finite element

approximation of the system (PM,ε).

2.4.2 A practical fully discrete approximation

Similarly to the approach in [98] and [54], we introduce, for any ε ∈ (0, e−1), Λε :

Sh → [L∞(Ω)]d×d such that for all χ ∈ Sh and a.e. in Ω

Λε is symmetric and positive definite (2.4.61)

Λε(χ)∇πh[F ′
ε(χ)] = ∇χ, (2.4.62)

that is, the discrete analogue to (2.3.41). Firstly, we give the construction of Λε in

the simple case when d = 1. Given χ ∈ Sh and τ ∈ T h having vertices pj and pk,

we set

Λε(χ)|τ :=


χ(pk)−χ(pj)

F ′
ε(χ(pk))−F ′

ε(χ(pj))
= 1

F ′′
ε (χ(ζ))

for some ζ ∈ τ if χ(pk) ̸= χ(pj),

1
F ′′
ε (χ(pk))

if χ(pk) = χ(pj).

(2.4.63)

Since F ′′
ε (s) > 0 and

∑J
j=0∇φj = 0, it can be easily seen that the piecewise constant

function Λε satisfies the conditions (2.4.61) and (2.4.62). Following [54] we extend

the above construction to d = 2 or 3. Let {ei}di=1 be the orthonormal vectors

in Rd, such that the j-th component of ei is δij, i, j = 1 → d. Given non-zero

constants αi, i = 1 → d, let τ̂({αi}di=1) be a reference simplex in Rd with vertices

{p̂i}di=1, where p̂0 is the origin and p̂i = p̂i−1 + αiei, i = 1 → d. Given a τ ∈ T h

with vertices {pji}di=0, such that pj0 is not a right-angled vertex, then there exists a

rotation/reflection matrix Rτ and non-zero constants {p̂i}di=1 such that the mapping
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Rτ : x̂ ∈ Rd → pj0 + Rτ x̂ ∈ Rd maps the vertex p̂i to pji , and hence τ̂ ≡ τ̂({αi}di=1)

to τ . For all τ ∈ T h and χ ∈ Sh, we set

Λε(χ)|τ := Rτ Λ̂ε(χ̂)|τ̂RT
τ , (2.4.64)

where χ̂(x̂) ≡ χ(Rτ x̂) for all x̂ ∈ τ̂ and Λ̂ε(χ̂)|τ̂ is the d × d diagonal matrix with

diagonal entries, k = 1, ..., d,

[Λ̂ε(χ̂)|τ̂ ]kk :=



χ̂(p̂k)−χ̂(p̂j)

F ′
ε(χ̂(p̂k))−F ′

ε(χ̂(p̂j))
=

χ(pjk )−χ(pj0 )

F ′
ε(χ(pjk ))−F ′

ε(χ(pj0 ))

= 1
F ′′
ε (χ(ζ))

for some ζ between pjk and pj0

if χ(pjk) ̸= χ(pj0),

1
F ′′
ε (χ̂(p̂0))

= 1
F ′′
ε (χ(pj0 ))

ifχ(pjk) = χ(pj0).

(2.4.65)

As RT
τ = R−1

τ , we have that

∇χ|τ := Rτ∇̂χ̂|τ̂ , (2.4.66)

where ∇̂ is the gradient on τ̂ . On noting (2.4.64), (2.4.65), (2.4.66), the positivity

of F ′′
ε (s) and the fact

∑J
j=0∇φj = 0, one can easily show that Λε satisfies the con-

ditions (2.4.61) and (2.4.62).

Under the assumptions (A), for any given ε ∈ (0, e−1) we consider the following

fully discrete finite element approximation of (PM,ε):

(Ph,∆t
M,ε ) For n ≥ 1 find {Un

1,ε, ..., U
n
m,ε} ∈ [Sh]m such that for all χ ∈ Sh

(
Un
i,ε − Un−1

i,ε

∆tn
, χ

)h

+

(
Di∇Un

i,ε + Λε(U
n
i,ε)

m∑
j=1

∇Un
j,ε,∇χ

)

=

(
γiU

n
i,ε − ϕε(U

n
i,ε)

m∑
j=1

ϕε(U
n−1
j,ε ), χ

)h

, i = 1, ...,m, (2.4.67)

where {U0
i,ε}mi=1 ∈ Sh are given approximations of {u0i }mi=1 respectively.

Lemma 2.4.3 Let the assumptions (A) hold. Then for any given ε ∈ (0, e−1) the

function Λε : S
h → [L∞(Ω)]d×d satisfies, for a.e. in Ω

εξT ξ ≤ ξTΛε(χ)ξ ≤MξT ξ ∀ξ ∈ Rd, ∀χ ∈ Sh. (2.4.68)
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Lemma 2.4.4 Let the assumptions (A) hold. Then for any given ε ∈ (0, e−1)

the function Λε : Sh → [L∞(Ω)]d×d is continuous in the following sense. For all

χ1, χ2 ∈ Sh and τ ∈ T h

∥(Λε(χ1)− Λε(χ2))|τ∥ ≤ 2M

ε
∥χ1 − χ2∥0,∞, (2.4.69)

Lemma 2.4.5 Let the assumptions (A) hold. Then for any given ε ∈ (0, e−1) the

function Λε : S
h → [L∞(Ω)]d×d satisfies

max
x∈τ

∥(Λε(χ(x))− ϕε(χ(x))I∥ ≤ hτ |∇χ|τ , (2.4.70)

where I is the d× d identity matrix.

2.4.3 Existence of the approximations

In order to prove the existence of a solution {Un
i,ε}mi=1, n ≥ 1, of the system (2.4.67) for

given {Un−1
i,ε }mi=1, it is convenient to define the functions Ai : [S

h]m → Sh, i = 1, ...,m

such that for all χ ∈ Sh

(Ai(U), χ)h = (Ui − Un−1
i,ε , χ)h +∆tn(Di∇Ui + Λε(Ui)

m∑
j=1

∇Uj,∇χ)

−∆tn(γiUi − ϕε(Ui)
m∑
j=1

ϕε(U
n−1
j,ε ), χ)h, i = 1, ...,m. (2.4.71)

We first note that the continuous piecewise linear functions Ai(U) can be defined

uniquely in terms of their values at the nodal points N h. This can be seen by setting

χ ≡ φj , for j = 0, ..., J , in (2.4.71) and then obtaining the following solvable square

matrix systems

M̂Ai(U) = Si, i = 1, ...,m,

where M̂ is the lumped mass matrix introduced in Subsection 2.4.1 , and Si are

given vectors in terms of the nodal values of {Ui}mi=1 and {Un−1
i,ε }mi=1. Thus, the

functions Ai are well defined.

It is clear that solving the system (2.4.71) is equivalent to finding {Un
i,ε}mi=1 ∈

[Sh]m, n ≥ 1, such that

Ai(U
n
ε ) = 0, i = 1, ...,m, (2.4.72)

for given {U0
i,ε}mi=1 ∈ [Sh]m.
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Lemma 2.4.6 For any given R > 0, the functions Ai : [S
h]mR → Sh are continuous,

where

[Sh]mR = {{χ1, ..., χm} ∈ [Sh]m :
m∑
i=1

|χi|2h ≤ R2}.

Proof : Let {U1
i }mi=1, {U2

i }mi=1 ∈ [Sh]mR . It follows from (2.4.71) that for all χ ∈ Sh

(Ai(U
1)− Ai(U

2), χ)h = (U1
i − U2

i , χ)
h +∆tn(Di∇(U1

i − U2
i )

+Λε(U
1
i )

m∑
j=1

∇U1
j − Λε(U

2
i )

m∑
j=1

∇U2
j ,∇χ)−∆tn(γi(U

1
i − U2

i )

− (ϕε(U
1
i )− ϕε(U

2
i ))

m∑
j=1

ϕε(U
n−1
j,ε ), χ)h, i = 1, ...,m. (2.4.73)

Choosing χ = Ai(U
1) − Ai(U

2) in (2.4.73) yields on noting the Cauchy- Schwarz

inequality, (2.4.54), (2.4.46) and the Lipschitz continuity of ϕε that

|Ai(U
1)− Ai(U

2)|h ≤ C(M,h−1,∆tn, Di, γi)|U1
i − U2

i |h

+C(h−1,∆tn)∥Λε(U
1
i )

m∑
j=1

∇U1
j − Λε(U

2
i )

m∑
j=1

∇U2
j ∥0 i = 1, ...,m. (2.4.74)

We also have from (2.4.54), (2.4.46), (2.4.69), (2.4.68) and (2.4.55) that

∥Λε(U
1
i )

m∑
j=1

∇U1
j − Λε(U

2
i )

m∑
j=1

∇U2
j ∥0

= ∥Λε(U
1
i )

m∑
j=1

∇U1
j − Λε(U

2
i )

m∑
j=1

∇U1
j + Λε(U

2
i )

m∑
j=1

∇U1
j − Λε(U

2
i )

m∑
j=1

∇U2
j ∥0

≤ ∥(Λε(U
1
i )− Λε(U

2
i ))

m∑
j=1

∇U1
j ∥0 + ∥Λε(U

2
i )(

m∑
j=1

∇U1
j −

m∑
j=1

∇U2
j )∥0

≤ ∥(Λε(U
1
i )− Λε(U

2
i ))∥0,∞

m∑
j=1

|U1
j |1 + ∥Λε(U

2
i )∥0,∞

m∑
j=1

|U1
j − U2

j |1

≤ Ch−1∥(Λε(U
1
i )− Λε(U

2
i ))∥0,∞

m∑
j=1

|U1
j |h + Ch−1∥Λε(U

2
i )∥0,∞

m∑
j=1

|U1
j − U2

j |h

≤ C(h−1,M, ε−1)∥U1
i − U2

i ∥0,∞
m∑
j=1

|U1
j |h + C(h−1,M)

m∑
j=1

|U1
j − U2

j |h

≤ C(h−1,M, ε−1, R)∥U1
i − U2

i ∥0 + C(h−1,M)
m∑
j=1

|U1
j − U2

j |h
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≤ C(h−1,M, ε−1, R)
m∑
j=1

|U1
j − U2

j |h. (2.4.75)

Combining (2.4.74) and (2.4.75) yields that for i = 1, ...,m, Ai is Lipchitz continuous.

2

We now show the main result of this chapter where we establish the existence of

a solution {Un
i,ε}mi=1 to (Ph,∆t

M,ε ).

Theorem 2.4.7 Let the assumptions (A) hold and let {Un−1
i,ε }mi=1 ∈ [Sh]m be a

given solution to the (n − 1)-th step of (Ph,∆t
M,ε ) for some n = 1, ..., N . Then for all

ε ∈ (0, e−1), for all h > 0 and for all ∆tn such that ∆tn ≤ 1
2γi+m

, ∀i = 1, ...,m, there

exists a solution {Un
i,ε}mi=1 ∈ [Sh]m to the n-th step of (P h,∆t

M,ε ).

Proof :

By contradiction, let R > 0 and assume that there does not exist {Un
i,ε}mi=1 ∈

[Sh]mR with Ai(U) = 0. Hence, on noting the continuity of the functions Ai(U) on

[Sh]mR , we define the continuous function B : [Sh]mR → [Sh]mR given by

B(U) = (B1(U), ..., Bm(U)),

where Bi(U), i = 1, ...,m are given by

Bi(U) :=
−RAi(U)

|(A1(U), ..., Am(U))|Sh×...×Sh

, (2.4.76)

where |(·, ..., ·)|Sh×...×Sh is the standard norm on [Sh]mR defined by

|(χ1, ..., χm)|Sh×...×Sh = (
m∑
i=1

|χi|2h)
1
2 .

We note from the continuity of {Ai}mi=1, see Lemma 2.4.6, that the function B

is continuous. Hence, on recalling that [Sh]mR is a convex and compact subset of

Sh × ... × Sh, it follows from Schauder’s theorem (see Appendix A.1.1) that there

exists {Ui}mi=1 ∈ [Sh]mR which is fixed point of B, that is

B(U) = (B1(U), ..., Bm(U)) = (U1, ..., Um).

We deduce from Schauder’s theorem, see Appendix A.1.1, that there exists {Ui}mi=1 ∈

[Sh]mR that is a fixed point of B such that

m∑
i=1

|Ui|2h =
m∑
i=1

|Bi(U)|2h = R2. (2.4.77)
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To prove a contradiction for R sufficiently large, we choose χ ≡ πh[F ′
ε(Ui)], i =

1, ...,m, in (2.4.71) yielding on noting (2.4.45), (2.4.62) and (2.4.68) that

(Ai(U), F ′
ε(Ui))

h = (Ui − Un−1
i,ε , F ′

ε(Ui))
h +∆tn(Di[Λε(Ui)]

−1∇Ui +
m∑
j=1

∇Uj,∇Ui)

−∆tn(γiUi − ϕε(Ui)(
m∑
j=1

ϕε(U
n−1
j,ε ), F ′

ε(Ui))
h

≥ (Ui − Un−1
i,ε , F ′

ε(Ui))
h +∆tn

Di

M
|Ui|21 +∆tn

m∑
j=1

(∇Uj,∇Ui)

−∆tn(γiUi − ϕε(Ui)
m∑
j=1

ϕε(U
n−1
j,ε ), F ′

ε(Ui))
h, i = 1, ...,m. (2.4.78)

We obtain from (2.3.28), (2.3.33) and (2.1.10) that

(Ui − Un−1
i,ε , F ′

ε(Ui))
h ≥ (Fε(Ui)− Fε(U

n−1
i,ε ), 1)h +

1

2
((Ui − Un−1

i,ε )2, F ′′
ε (ξ))

h

≥ (Fε(Ui)− Fε(U
n−1
i,ε ), 1)h +

1

2M
|Ui − Un−1

i,ε |2h

≥ (Fε(Ui)− Fε(U
n−1
i,ε ), 1)h +

1

4M
|Ui|2h −

1

2M
|Un−1

i,ε |2h. (2.4.79)

It follows from (2.3.31), (2.3.32), (2.1.13), (2.1.11) and (2.3.29) that

−∆tn(γiUi − ϕε(Ui)
m∑
j=1

ϕε(U
n−1
j,ε ), F ′

ε(Ui))
h

≥ −γi∆tn(2Fε(Ui) + 1, 1)h +∆tn (Ui − 1,
m∑
j=1

ϕε(U
n−1
j,ε ))h

≥ −2∆tnγi(Fε(Ui), 1)
h +∆tn ([Ui]−,

m∑
j=1

ϕε(U
n−1
j,ε ))h − C(Un−1

ε )

≥ −2∆tnγi(Fε(Ui), 1)
h − m∆tn

2ε
[Ui]

2
− − ε∆tn

2

m∑
j=1

|ϕε(U
n−1
j,ε )|2h − C(Un−1

ε )

≥ −∆tn(2γi +m)(Fε(Ui), 1)
h − C(Un−1

ε ), i = 1, ...,m. (2.4.80)

Combining (2.4.78) for i = 1, ...,m and noting (2.4.79), (2.4.80), and the stated

assumption on ∆tn yields for R sufficiently large that

m∑
i=1

(Ai(U), F ′
ε(Ui))

h ≥
m∑
i=1

(Fε(Ui), 1)
h +

1

4M

m∑
i=1

|Ui|2h

July 2, 2015



2.4. A fully discrete finite element approximation 31

−
m∑
i=1

∆tn(2γi +m)(Fε(Ui), 1)
h +∆tn

m∑
i=1

m∑
j=1

(∇Uj,∇Ui)− C(Un−1
ε )

≥ 1

4M

m∑
i=1

|Ui|2h+
m∑
i=1

[1−∆tn(2γi+m)](Fε(Ui), 1)
h+∆tn

m∑
i=1

m∑
j=1

(∇Uj,∇Ui)−C(Un−1
ε )

≥ R2

4M
+∆tn|

m∑
j=1

Uj|21 − C(Un−1
ε ) > 0. (2.4.81)

Further, for R sufficiently large, we have from (2.4.76) and (2.4.81), since {Ui}mi=1 is

fixed point of B, that

m∑
i=1

(Ui, F
′
ε(Ui))

h =
m∑
i=1

(Bi(U), F ′
ε(Ui)))

h =
−R

∑m
i=1(Ai(U), F ′

ε(Ui))
h

|(A1(U), ..., Am(U))|Sh×...×Sh

< 0.

(2.4.82)

Once again, it follows from (2.3.33) and (2.3.28) that

(Ui, F
′
ε(Ui))

h ≥ (Fε(Ui)− Fε(0), 1)
h +

1

2M
|Ui|2h, i = 1, ...,m, (2.4.83)

and from (2.4.83) and the non-negativity of Fε(s), we have that

m∑
i=1

(Ui, F
′
ε(Ui))

h ≥ R2

2M
−m(1− ε

2
)|Ω| > 0, (2.4.84)

which contradicts (2.4.82). As a result, we conclude that there exists {Un
i,ε}mi=1 ∈

Sh × ...×Sh that satisfies Ai(U
n
ε ) = 0. Thus, we have existence of a solution to the

n-th step of (Ph,∆t
M,ε ). 2
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Chapter 3

The population model:

Convergence and existence of a

weak solution

In this chapter we prove the existence of a global weak solution to the system (P∆t
M )

by analysing the convergence of the fully discrete approximate problem (Ph,∆t
M,ε ). In

Section 3.1, additional notation to that presented in Chapter 2 previously is also

included. A discrete analogue of the entropy inequality is derived and some stability

bounds on the approximate solution are shown in Section 3.2. In Section 3.3, the

convergence of our approximation is established and hence existence of a global weak

solution to the system (P∆t
M ) is shown. The argument in Section 3.3 will consist of

three main steps. We first utilize the stability estimates derived in Section 3.2. Then

we prove the existence of non-negative functions {Ui}mi=1 bounded in various time-

dependent spaces using classical sequential compactness arguments (see the results

collected in A.1.11 → A.1.16). Finally, we prove that the functions {Ui}mi=1 represent

a global weak solution of the system (P∆t
M ) via passage to the limit ε, h → 0 of the

approximate system. In Chapter 4, we will let ∆t→ 0 in (P∆t
M ).

32



3.1. Notation 33

3.1 Notation

For dealing with the initial data of the fully-discrete approximation, given η we

introduce the discrete L2−projection P h : L2(Ω) → Sh defined by

(P hη, χ)h = (η, χ), ∀χ ∈ Sh. (3.1.1)

The above projection satisfies the following important results (see, e.g., [11]):

∥P hη∥0,∞ ≤ ∥η∥0,∞, ∀η ∈ L∞(Ω), (3.1.2)

∥(I−P h)η∥m,s ≤ Ch1−m∥η∥1,s, ∀η ∈ W 1,s(Ω) for any s ∈ [2,∞] and m ∈ {0, 1}.

(3.1.3)

For q ∈ (1, 2], let (W 1,q′(Ω))′ denote the dual of W 1,q′(Ω). It is convenient to

introduce the inverse Laplacian operator Gq : (W
1,q′(Ω))′ → W 1,q(Ω), q′ = q

q−1
such

that

(∇Gqv,∇η) + (Gqv, η) = ⟨v, η⟩q′ ∀η ∈ W 1,q′(Ω), (3.1.4)

and ⟨·, ·⟩q′ denotes the duality pairing between (W 1,q′(Ω))′ andW 1,q′(Ω) that satisfies

(see Appendix A.1.17):

⟨v, η⟩q′ = (v, η) ∀v ∈ L2(Ω), η ∈ W 1,q′(Ω). (3.1.5)

The well-posedness of the operator Gq follows from the generalized Lax-Milgram

theorem, see Appendix A.1.4, which additionally asserts the existence of a positive

constant C such that

∥Gqv∥1,q ≤ C∥v∥(W 1,q′ (Ω))′ ∀v ∈ (W 1,q′(Ω))′. (3.1.6)

For consistency of notation, when q = 2 the indices q and q′ will be dropped in the

above operator and duality pairing, that is G : (H1(Ω))′ → H1(Ω) defined by

(∇Gv,∇η) + (Gv, η) = ⟨v, η⟩ ∀η ∈ H1(Ω), (3.1.7)

where ⟨·, ·⟩ denotes the duality pairing between (H1(Ω))′ and H1(Ω) such that

⟨v, η⟩ = (v, η) ∀v ∈ L2(Ω), η ∈ H1(Ω). (3.1.8)

Also, it is important to introduce the norm

∥f∥−1 := |Gf |1 ≡ ⟨f,Gf⟩
1
2 , ∀f ∈ (H1(Ω))′. (3.1.9)
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Lemma 3.1.1 For given f , the norms ∥f∥(H1(Ω))′ and ∥f∥−1 are equivalent on

(H1(Ω))′

∥f∥(H1(Ω))′ ≤ ∥f∥−1 ≤ C∥f∥(H1(Ω))′ . (3.1.10)

Proof : Let 0 ̸= f ∈ (H1(Ω))′. From (2.1.1) and (3.1.7) we have that

∥f∥(H1(Ω))′ = sup
∥v∥1=1

|⟨f, v⟩| = sup
∥v∥1=1

|(∇Gf,∇v) + (Gf, v)|

≤ sup
∥v∥1=1

(|Gf |1|v|1 + ∥Gf∥0∥v∥0) = sup
∥v∥1=1

∥Gf∥1∥v∥1 = ∥Gf∥1 ≤ C|Gf |1 = C∥f∥−1.

Now by taking v = Gf
∥Gf∥1 ∈ H1(Ω) we deduce using (3.1.9) that

∥f∥(H1(Ω))′ ≥ |⟨f, v⟩| = |⟨f,Gf⟩|
∥Gf∥1

=
|Gf |21
∥Gf∥1

≥ C
|Gf |21
|Gf |1

= C|Gf |1 = C∥f∥−1,

where we have applied Poincaré inequality (2.1.9) to give ∥Gf∥21 = |Gf |20 + |Gf |21 ≤

(C2
p + 1)|Gf |21. 2

We finally recall the following lemma, about the operator Gq for q ∈ (1, 2], which

is a consequence of the quasi-uniform partitioning of T h:

Lemma 3.1.2 For any q ∈ (1, 2], it holds that

∥η∥0,q ≤ Ch−1∥Gqη∥1,q ∀η ∈ Sh. (3.1.11)

Proof : On noting (3.1.5), (3.1.4), Hölder’s inequality, Young’s inequality and

(2.4.53), we have for any η ∈ Sh and for any α > 0 that

∥η∥20 ≤ ⟨η, η⟩q′ ≤ (∇Gqη,∇η) + (Gqη, η)

≤ 2∥Gqη∥1,q∥η∥1,q′

≤ α∥Gqη∥21,q +
C

α
h
−2(1+d( 1

2
− 1

q′ ))∥η∥20. (3.1.12)

It follows from choosing α = 2C h
−2(1+d( 1

2
− 1

q′ )) in (3.1.12) and (2.4.53), that

∥η∥0,q ≤ Chd(
1
q
− 1

2
)∥η∥0 ≤ Ch

d( 1
q
− 1

2
)−(1+d( 1

2
− 1

q′ ))∥Gqη∥1,q ≤ Ch−1∥Gqη∥1,q.

2
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3.2 Stability estimates

In this section we establish some uniform bounds on the solution {Un
i,ε}mi=1, indepen-

dent of the parameters ε and h, which will be used to prove the convergence of the

approximate problem.

Lemma 3.2.1 Let the assumptions of Theorem 2.4.7 hold and let ∆tn ≤ 1
2γ+1

,

Di > 0,∀i and {Un−1
i,ε }mi=1 ∈ Sh × ... × Sh, n ≥ 1. Then a solution {Un

i,ε}mi=1 ∈

Sh × ...× Sh, n ≥ 1 to the n−th step of (Ph,∆t
M,ε ) satisfies

[1−∆tn(2γ +m)](
m∑
i=1

Fε(U
n
i,ε), 1)

h +
D

M
∆tn

m∑
i=1

|Un
i,ε|21 +∆tn|

m∑
i=1

Un
i,ε|21

≤ (
m∑
i=1

Fε(U
n−1
i,ε ), 1)h + C∆tn, (3.2.13)

where D = min
i
Di, γ = max

i
γi.

Proof : Choosing χ ≡ ∆tnπ
h[F ′

ε(U
n
i,ε)] as a test function in (2.4.67) yields, on noting

(2.4.61), (2.4.62) and (2.4.45), that

(Un
i,ε − Un−1

i,ε , F ′
ε(U

n
i,ε))

h +∆tn(Di[Λε(U
n
i,ε)]

−1∇Un
i,ε +

m∑
j=1

∇Un
j,ε,∇Un

i,ε)

= ∆tn(γiU
n
i,ε − ϕε(U

n
i,ε)

m∑
j=1

ϕε(U
n−1
j,ε ), F ′

ε(U
n
i,ε))

h, i = 1, ...,m. (3.2.14)

Using (2.3.28), (2.3.32), (2.1.12), Young’s inequality, (2.3.29) and the fact that

Fε(·) ≥ 0 yields

∆tn(γiU
n
i,ε − ϕε(U

n
i,ε)

m∑
j=1

ϕε(U
n−1
j,ε ), F ′

ε(U
n
i,ε))

h

= ∆tn(γiU
n
i , F

′
ε(U

n
i,ε))

h −∆tn (ϕε(U
n
i,ε)

m∑
j=1

ϕε(U
n−1
j,ε ), F ′

ε(U
n
i,ε))

h

≤ ∆tnγi(2Fε(U
n
i,ε) + 1, 1)h +∆tn (1− Un

i,ε,

m∑
j=1

ϕε(U
n−1
j,ε ))h

≤ ∆tnγi(2Fε(U
n
i,ε) + 1, 1)h +∆tn (1− [Un

i,ε]−,
m∑
j=1

ϕε(U
n−1
j,ε ))h
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≤ 2∆tnγi(Fε(U
n
i,ε), 1)

h −∆tn ([U
n
i,ε]−,

m∑
j=1

ϕε(U
n−1
j,ε ))h + C(M, |Ω|, γi)∆tn

≤ 2∆tnγi(Fε(U
n
i,ε), 1)

h +
m∆tn
2ε

[Un
i,ε]

2
− +

ε∆tn
2

(
m∑
j=1

|ϕε(U
n−1
j,ε )|2h) + C(M, |Ω|, γi)∆tn

≤ ∆tn(2γ +m)(Fε(U
n
i,ε), 1)

h + C(M, |Ω|, γi)∆tn, i = 1, ...,m. (3.2.15)

It follows from (3.2.14), (3.2.15) and the first inequality in (2.4.79) that

[1−∆tn(2γi +m)](Fε(U
n
i,ε), 1)

h +∆tn(Di[Λε(U
n
i,ε)]

−1∇Un
i +

m∑
j=1

∇Un
j,ε,∇Un

i,ε)

≤ (Fε(U
n−1
i,ε ), 1)h + C(M, |Ω|, γi)∆tn, i = 1, ...,m. (3.2.16)

Summing (3.2.16) for i = 1, ...,m yield

( m∑
i=1

[1−∆tn(2γi +m)](Fε(U
n
i,ε), 1)

h, 1
)h

+∆tn

m∑
i=1

(
Di[Λε(U

n
i,ε)]

−1∇Un
i,ε,∇Un

i,ε

)

+∆tn|
m∑
i=1

Un
i,ε|21 ≤

( m∑
i=1

Fε(U
n−1
i,ε ), 1

)h
+ C∆tn,

and then using (2.4.68), Fε(s) ≥ 0 and that γi > 1 yields the desired result. 2

Lemma 3.2.2 Let the assumptions of Lemma 3.2.1 hold and let {u0i }mi=1 ∈ L∞(Ω)

with u0i (x) ≥ 0, i = 1, ...,m for a.e. x ∈ Ω. Let either U0
i,ε ≡ P hu0i ; or U

0
i,ε ≡ πhu0i

if {u0i }mi=1 ∈ C(Ω). Then for all ε ∈ (0, e−1), for all h > 0 and for all ∆tn ≤ 1−δ
2γ+m

,

for some δ ∈ (0, 1), the problem (Ph,∆t
M,ε ) possesses a solution {Un

i,ε}mi=1, n = 1, ..., N

satisfying

max
n=1,...,N

[(
m∑
i=1

Fε(U
n
i,ε), 1)

h + ε−1

m∑
i=1

∥πh[Un
i,ε]−∥20 +

m∑
i=1

∥Un
i,ε∥20]

+
N∑

n=1

∆tn∥
m∑
i=1

Un
i,ε∥21 +

N∑
n=1

∆tn

m∑
i=1

∥Un
i,ε∥21 ≤ C. (3.2.17)

Proof : Firstly, we note that, ∆tn ≤ 1−δ
2γ+m

and thus we have

δ ≤ 1−∆tn(2γ +m) ≤ 1−∆t(2γ +m). (3.2.18)

Also,

1

1−∆tn(2γ +m)
= 1 +

(2γ +m)∆tn
1−∆tn(2γ +m)

≤ 1 +
(2γ +m)∆tn

δ
. (3.2.19)
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From (3.2.13), (3.2.18), (3.2.19), we deduce for n = 1, ..., N , that

(
m∑
i=1

Fε(U
n
i,ε), 1)

h

≤ 1

1−∆tn(2γ +m)
(

m∑
i=1

Fε(U
n−1
i,ε ), 1)h +

C∆tn
1−∆tn(2γm +m)

≤ (1 +
(2γ +m)∆tn

δ
)(

m∑
i=1

Fε(U
n−1
i,ε ), 1)h +

C∆tn
δ

≤ e
(2γ+m)∆tn

δ (
m∑
i=1

Fε(U
n−1
i,ε ), 1)h +

C∆tn
δ

≤ Ce
(2γ+m)∆tn

δ

[
(

m∑
i=1

Fε(U
n−1
i,ε ), 1)h + e−

(2γ+m)∆tn
δ ∆tn

]
. (3.2.20)

Next, with the use of the assumptions on the initial data {U0
i }mi=1, (2.3.25), the

definition of πh and (3.1.2), it follows that

(
m∑
i=1

Fε(U
0
i,ε), 1)

h ≤ C. (3.2.21)

Therefore, (3.2.20) and (3.2.21) imply that

max
n=1,...,N

[(
m∑
i=1

Fε(U
n
i,ε), 1)

h]

≤ Ce
(2γ+m)∆tn

δ [(
m∑
i=1

Fε(U
n−1
i,ε ), 1)h + e−

(2γ+m)∆tn
δ ∆tn]

≤ Ce
(2γ+m)(∆tn+∆tn−1)

δ [(
m∑
i=1

Fε(U
n−2
i,ε ), 1)h

+e−
(2γ+m)∆tn

δ ∆tn + e−
(2γ+m)∆tn−1

δ ∆tn−1]

≤ Ce
(2γ+m)(∆tn+...+∆t1)

δ [(
m∑
i=1

Fε(U
0
i,ε), 1)

h

+e−
(2γ+m)∆tn

δ ∆tn + ...+ e−
(2γ+m)∆t1

δ ∆t1] ≤ C. (3.2.22)

From this result, with the aid of (2.4.46), (2.3.29) and (2.3.30) we obtain, for n =

1, ..., N with i = 1, ...,m, that

∥Un
i,ε∥20 ≤ |Un

i,ε|2h = ((Un
i,ε)

2, 1)h ≤ C((Fε(U
n
i,ε), 1)

h + 1) ≤ C. (3.2.23)
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Now using (2.4.46), (2.4.45) and (3.2.22) and noting the facts s = [s]+ + [s]− and

F (s) ≥ 0, yields for n = 1, ..., N

∥πh[Un
i,ε]−∥20 ≤ ∥πh[Un

i,ε]−∥2h = ([Un
i,ε]

2
−, 1)

h ≤ 2ε(Fε(U
n
i,ε), 1)

h ≤ Cε. (3.2.24)

We now note that the bounds 1 → 3 in (3.2.17) follow by combining (3.2.22), (3.2.23)

and (3.2.24). Now, to prove the fourth and the fifth bounds in (3.2.17), firstly, we

sum (3.2.13) over n, next we use (3.2.21), (3.2.22), to get

N∑
n=1

∆tn

m∑
i=1

|Un
i,ε|21 +

N∑
n=1

∆tn|
m∑
i=1

Un
i,ε|21 ≤ C. (3.2.25)

From the third bound in (3.2.17), we have

N∑
n=1

∆tn

m∑
i=1

∥Un
i,ε∥20,≤ C, (3.2.26)

then the fifth bound follow from (3.2.25) and (3.2.26). Now, On noting Poincaré

inequality and the second and third bounds in (3.2.17), we have

∥
m∑
i=1

Un
i,ε∥20 ≤ C(|

m∑
i=1

Un
i,ε|21 + |(

m∑
i=1

Un
i,ε, 1)|2) ≤ C, (3.2.27)

then the fourth bound follow from (3.2.25) and (3.2.27).

2

Theorem 3.2.3 Let the assumptions of Lemma 3.2.2 hold. Let α = 2(d+2)
d

and

{∆tn}Nn=1 be such that

∆tn ≤ ∆tn−1, ∀n = 2, ..., N.

Then a solution {Un
i,ε}mi=1, n = 1, ..., N to (Ph,∆t

M,ε ) satisfies

N∑
n=1

∆tn
[ m∑

i=1

∥Un
i,ε∥α0,α +

m∑
i=1

∥
Un
i,ε − Un−1

i,ε

∆tn
∥2(H1(Ω))′ +

m∑
i=1

∥G[
Un
i,ε − Un−1

i,ε

∆tn
]∥21

]
≤ C.

(3.2.28)

Proof : Using the Sobolev interpolation theorem (2.1.4) and the third and fifth

bounds in (3.2.17) gives for n = 1, ..., N ,

∥Un
i,ε∥α0,α ≤ C∥Un

i,ε∥α−2
0 ∥Un

i,ε∥21 ≤ C, i = 1, ...,m, (3.2.29)
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where αd(1
2
− 1

α
) = 2, that is α = 2(d+2)

d
.

It is crucial to note from the definition of πh, (3.2.13) and the assumptions on

{u0i }mi=1 that

m∑
i=1

∥U0
i,ε∥0 =

m∑
i=1

(

∫
Ω

(U0
i,ε)

2dx)
1
2 =

m∑
i=1

(

∫
Ω

(πhu0i )
2dx)

1
2

≤ C
m∑
i=1

∥πhu0i ∥20,∞ ≤ C
m∑
i=1

∥u0i ∥20,∞ ≤ C. (3.2.30)

Next, it follows from (3.1.8), (3.1.1), (2.4.67), (2.4.46), (2.3.28), (3.1.3), (2.4.64) and

(2.4.65) for any η ∈ H1(Ω) and for n = 1, ..., N that

⟨
Un
i,ε − Un−1

i,ε

∆tn
, η⟩ = (

Un
i,ε − Un−1

i,ε

∆tn
, η) = (

Un
i,ε − Un−1

i,ε

∆tn
, P hη)h

= (γiU
n
i,ε − ϕε(U

n
i,ε)(

m∑
j=1

ϕε(U
n−1
j,ε )), P hη)h − (Di∇Un

i,ε + Λε(U
n
i,ε)

m∑
j=1

∇Un
j,ε,∇P hη)

≤ C[1 + |Un
i,ε|h + C[ |Un

i,ε|1 + |
m∑
j=1

Un
j,ε|1 ]] |P hη|1

≤ C[ 1 + ∥Un
i,ε∥0 + C[ |Un

i,ε|1 + |
m∑
j=1

Un
j,ε|1 ]] |P hη|1

≤ C[ 1 + ∥Un
i,ε∥0] ∥η∥1 + C[ |Un

i,ε|1 + |
m∑
j=1

Un
j,ε|1 ]] ∥η∥1

≤ C[ 1 + ∥Un
i,ε∥1 + ∥

m∑
j=1

Un
j,ε∥1 ] ∥η∥1, i = 1, ...,m, (3.2.31)

to arrive at the following bound,

∥
Un
i,ε − Un−1

i,ε

∆tn
∥2(H1(Ω))′ ≤ C[ 1 + ∥Un

i,ε∥21 + ∥
m∑
j=1

Un
j,ε∥21 ], i = 1, ...,m. (3.2.32)

If we use this result with (3.2.17), our assumption on the time steps and (3.2.30),

we find
N∑

n=1

∆tn∥
Un
i,ε − Un−1

i,ε

∆tn
∥2(H1(Ω))′

≤ C
N∑

n=1

∆tn[ 1 + ∥Un
i,ε∥21 + ∥

m∑
j=1

Un
j,ε∥21 ] ≤ C, i = 1, ...,m. (3.2.33)

To complete the proof of the theorem, we note that the last bounds in (3.2.28) follow

from the bounds in (3.2.33) and on recalling (3.1.9). 2
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Lemma 3.2.4 Let the assumptions of (A) hold and let {u0i }mi=1 ∈ H1
≥0(Ω). Let

either U0
i,ε ≡ P hu0i ; or U

0
i,ε ≡ πhu0i if either d = 1 or u0i ∈ W 1,r(Ω) with r > d, it

follows that U0
i,ε ∈ Sh

≥0, for i = 1, ...,m and

m∑
i=1

∥U0
i,ε∥21 ≤ C. (3.2.34)

Proof : We first mention that πhu0i , i = 1, ...,m, are well defined as the Sobolev

embedding result (see Ciarlet [39], page 114):

Wm,r(Ω)
c
↪→ C(Ω) holds for r ∈ [1,∞] if m >

d

r
.

It can be seen clearly from the definitions of the projection operator P h and the

interpolation operator πh that {U0
i,ε}mi=1 ∈ Sh

≥0. Now, to drive the bound (3.2.34),

we use (2.4.56), (3.1.3) and the assumptions on {u0i }mi=1 as follows:

m∑
i=1

∥U0
i,ε∥21 =

m∑
i=1

∥πhu0i,ε∥21 =
m∑
i=1

[ ∥πhu0i,ε∥20 + |πhu0i,ε|21 ]

=
m∑
i=1

[∥u0i,ε − u0i,ε + πhu0i,ε∥20 + |u0i,ε − u0i,ε + πhu0i,ε|21]

≤ C
m∑
i=1

[∥u0i,ε∥20 + ∥(I − πh)u0i,ε∥20 + |u0i,ε|21 + |(I − πh)u0i,ε|21]

≤ C
m∑
i=1

∥u0i,ε∥21 ≤ C.

2

3.3 Existence of a weak solution

In this section, we establish convergence of our approximation (2.4.67) in one, two

and three space dimensions; and hence existence of a solution to the problem (P∆t
M ).

This is achieved by taking the limit of the regularization and discretization parame-

ters of the problem (Ph,∆t
M,ε ). The condition U

0
i ∈ H1(Ω), i = 1, ...,m will be essential

in the analysis of this section.

We shall first consider the following definitions:

Ui,ε(t) = (
t− tn
∆tn

)Un
i,ε + (

tn − t

∆tn
)Un−1

i,ε , t ∈ [tn−1, tn], n ≥ 1, i = 1, ...,m,

(3.3.35)
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and

U+
i,ε(t) = Un

i,ε, U−
i,ε(t) = Un−1

i,ε , t ∈ [tn−1, tn], n ≥ 1, i = 1, ...,m. (3.3.36)

We also have that for t ∈ (tn−1, tn)

∂Ui,ε

∂t
=
U+
i,ε − U−

i,ε

∆tn
=
U+
i,ε − Ui,ε

tn − t
=
Ui,ε − U−

i,ε

t− tn−1

, t ∈ [tn−1, tn], n ≥ 1, i = 1, ...,m.

(3.3.37)

Using the above we can restate the problem (Ph,∆t
M,ε ) as follows:

Find Ui,ε ∈ C([0, T ];Sh)×C([0, T ];Sh), i = 1, ...,m such that for all χ ∈ L2(0, T ;Sh)∫ T

0

[(
∂Ui,ε

∂t
, χ)h +Di(∇U+

i,ε,∇χ) + (Λε(U
+
i,ε)

m∑
j=1

∇U+
j,ε,∇χ)]d t

=

∫ T

0

[(γiU
+
i,ε − ϕε(U

+
i,ε)(

m∑
j=1

ϕε(U
−
j,ε), χ)

h]d t, i = 1, ...,m. (3.3.38)

We now show the main theorem in this chapter which deals with the existence of a

global weak solution to the system (P∆t
M ).

Theorem 3.3.1 Let the assumptions (A) hold, Di > 0, γi > 1, ∀i, and {U0
i }mi=1 ∈

H1
≥0(Ω) ∩ L∞(Ω). In addition, let ε, h, {∆tn}Nn=1, {U0

i,ε}mi=1 be such that

(i) either U0
i,ε ≡ P hU0

i ; or U
0
i,ε ≡ πhU0

i if either d = 1 or U0
i ∈ W 1,r(Ω) with r > d.

(ii) ∆tn ≤ 1−δ
2γ+m

, for some δ ∈ (0, 1).

(iii) ∆tn ≤ C∆tn−1, ∀n = 2, ..., N .

(iv) ε→ 0 as h→ 0.

Then there exists a subsequence of {Ui,ε}mi=1 , solving (2.4.67), and functions

Ui ∈ L2(0, T ;H1(Ω))∩Lα(ΩT )∩L∞(0, T ;L2(Ω))∩H1(0, T ; (H1(Ω))′), i = 1, ...,m,

(3.3.39)

where α = 2(d+2)
d

, with U±
i (x, t) ≥ 0, i = 1, ...,m almost everywhere and

Ui(·, 0) = u0i (·), in L2(Ω). (3.3.40)

Moreover, it holds as h→ 0 that for i = 1, ...,m

Ui,ε, U
±
i,ε ⇀ Ui, U

±
i in L2(0, T ;H1(Ω)) ∩ Lα(ΩT ), (3.3.41)
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Ui,ε, U
±
i,ε ⇀

∗ Ui, U
±
i, in L∞(0, T ;L2(Ω)), (3.3.42)

∂Ui,ε

∂t
⇀

∂Ui

∂t
in L2(0, T ; (H1(Ω))′), (3.3.43)

Ui,ε, U
±
i,ε → Ui, U

±
i in L2(0, T ;Ls(Ω)), (3.3.44)

ϕε(U
±
i,ε) → ϕ(U±

i ) in L2(0, T ;Ls(Ω)), (3.3.45)

πhϕε(U
±
i,ε) → ϕ(U±

i ) in L2(0, T ;Ls(Ω)), (3.3.46)

Λε(U
±
i,ε) → ϕ(U±

i )I in L2(0, T ;Ls(Ω)), (3.3.47)

for any

s ∈


[2,∞] if d = 1,

[2,∞) if d = 2,

[2, 6] if d = 3,

where the symbols →,⇀, and⇀∗ represent strong, weak and weak-star convergence

respectively (see A.1.11 → A.1.13).

Proof : From the assumptions (i)→(iii), (3.2.17), (3.2.28), (2.3.28), (2.4.64), (2.4.65),

(3.3.35), (3.3.36), (3.3.37) and (3.2.34) one may establishes the following uniform

bounds independently of the parameters ε, h and ∆t

∥U±
i,ε∥L2(0,T ;H1(Ω)) + ∥U±

i,ε∥Lα(ΩT ) + ∥U±
i,ε∥L∞(0,T ;L2(Ω)) + ε−

1
2∥πh[U±

i,ε]−∥L∞(0,T ;L2(Ω))

+∥∂Ui,ε

∂t
∥L2(0,T ;(H1(Ω))′)+∥G ∂Ui,ε

∂t
∥L2(0,T ;H1(Ω))+∥ϕε(U

±
i,ε)∥L∞(ΩT )+∥πhϕε(U

±
i,ε)∥L∞(ΩT )

+∥Λε(U
±
i,ε)∥L∞(ΩT ) ≤ C, i = 1, ...,m. (3.3.48)

In the above, and throughout, the notation U±
i,ε means with and without the su-

perscript ±. Although Ui,ε can go negative, the amount it can is controlled by the

regularization parameter ε through the fourth term in (3.3.48).

Also,we have

∥Ui,ε∥2L2(0,T ;H1(Ω)) =

∫ T

0

∥Ui,ε∥2H1(Ω)dt

≤
N∑

n=1

2

(∆tn)2

∫ tn

tn−1

[|t− t+|2∥U+
i,ε∥2H1(Ω) + |t+ − t|2∥U−

i,ε∥2H1(Ω)]dt

≤
N∑

n=1

2(∆t)2

(∆tn)2

∫ tn

tn−1

[|U+
i,ε∥2H1(Ω) + |U−

i,ε∥2H1(Ω)]dt
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≤ C [∥U+
i,ε∥2L2(0,T ;H1(Ω)) + ∥U−

i,ε∥2L2(0,T ;H1(Ω))] ≤ C, i = 1, ...,m, (3.3.49)

and

∥Ui,ε∥αLα(ΩT ) =

∫ T

0

∥Ui,ε∥αLα(Ω)dt

≤
N∑

n=1

C

(∆tn)α

∫ tn

tn−1

[|t− t+|α∥U+
i,ε∥αLα(Ω) + |t+ − t|α∥U−

i,ε∥αLα(Ω)]dt

≤
N∑

n=1

C(∆t)α

(∆tn)α

∫ tn

tn−1

[∥U+
i,ε∥αLα(Ω) + ∥U−

i,ε∥αLα(Ω)]dt

≤ C [∥U+
i,ε∥Lα(ΩT ) + ∥U−

i,ε∥Lα(ΩT )] ≤ C, i = 1, ...,m. (3.3.50)

Moreover, we can get

∥Ui,ε∥2L∞(0,T ;L2(Ω)) = ess sup ∥Ui,ε∥2L2(Ω)

= max
n=1,...,N

[ 2

(∆tn)2
[
|t− t+|2∥U+

i,ε∥2L2(Ω) + |t+ − t|2∥U−
i,ε∥2L2(Ω)

]]
= max

n=1,...,N

[2(∆t)2
(∆tn)2

[
∥U+

i,ε∥2L2(Ω) + ∥U−
i,ε∥2L2(Ω)

]]
dt

≤ C[∥U+
i,ε∥L∞(0,T ;L2(Ω)) + ∥U−

i,ε∥L∞(0,T ;L2(Ω))] ≤ C. (3.3.51)

Before moving onto the passage to the limit step of the proof we recall that L∞(0, T, L2(Ω))

is the dual space of L1(0, T, L2(Ω)), which is a separable Banach space but not re-

flexive, while the Banach spaces L2(0, T,H1(Ω)), Lα(ΩT ) are reflexive. Thus, by

compactness arguments (see A.1.6 and A.1.8) and the bounds (3.3.48) we can ex-

tract subsequences, still denoted {U±
i,ε}h, {Ui,ε}h, such that as h→ 0 we have

U±
i,ε, Ui,ε ⇀ U±

i , Ui in L2(0, T,H1(Ω)) ∩ Lα(ΩT ),

U±
i,ε, Ui,ε ⇀

∗ U±
i , Ui in L∞(0, T, L2(Ω)),

and thus the convergence results (3.3.41) and (3.3.42) were satisfied. Then, since

{∂Ui,ε

∂t
}h ∈ L2(0, T, (H1(Ω))′) and L2(0, T, (H1(Ω))′) are reflexive Banach spaces then

according to the weak compactness theorem, there exist a subsequences {∂Ui,ε

∂t
}h ∈

L2(0, T, (H1(Ω))′) and a functions η̃ ∈ L2(0, T, (H1(Ω))′) such that

∂Ui,ε

∂t
⇀ η̃ in L2(0, T, (H1(Ω))′).
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A well known argument can be easily adapted to show that η̃ = ∂Ui

∂t
, (see Robin-

son [84], page 204). Thus, the result (3.3.43) holds.

Note that from (3.3.41) and (3.3.42) we have Ui ∈ L2(0, T ;H1(Ω)) ∩ Lα(ΩT )∩

L∞(0, T ;L2(Ω)), thus to prove (3.3.39) we need to prove that Ui ∈ H1(0, T ; (H1(Ω))′).

From the embedding L2(0, T ;H1(Ω)) ↪→ L2(0, T ; (H1(Ω))′), we conclude that Ui ∈

L2(0, T ; (H1(Ω))′), and from (3.3.43) we have that ∂Ui

∂t
∈ L2(0, T ; (H1(Ω))′), thus

∥Ui∥H1(0,T ;(H1(Ω))′) = ∥Ui∥L2(0,T ;(H1(Ω))′) + ∥∂Ui

∂t
∥L2(0,T ;(H1(Ω))′) ≤ C.

Thus, (3.3.39) has been proved.

From an application of the Lions-Aubin theorem, see (2.1.6), on noting the fol-

lowing embedding results

H1(Ω)
c
↪→ Ls(Ω) ↪→ (H1(Ω))′,

which hold from the Rellich-Kondrachov theorem under the stated choice of s, we

find that

Wu = {η : η ∈ L2(0, T ;H1(Ω)),
∂η

∂t
∈ L2(0, T ; (H1(Ω))′} c

↪→ L2(0, T ;Ls(Ω)).

As Ui,ε ∈ L2(0, T ;H1(Ω)) and
∂Ui,ε

∂t
∈ L2(0, T ; (H1(Ω))′), thus, Ui,ε ∈ Wu, then we

can extract a subsequence, still denoted Ui, such that the convergence result (3.3.44)

holds.

Using the strong convergence of Ui,ε to Ui in L
2(0, T ;Ls(Ω)) and the fourth bound

in (3.3.48), we can extract a subsequence, still denoted Ui,ε, such that as h → 0 (

see Appendix A.1.17)

Ui,ε → Ui and πh[Ui,ε]− → 0 a.e. in Ω× (0, T ). (3.3.52)

But we have from the definition of πh that

Ui,ε = πh[Ui,ε]+ + πh[Ui,ε]−. (3.3.53)

Therefore, we deduce from (3.3.52) and (3.3.53) that Ui ≥ 0 almost everywhere.
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Noting (2.2.15), (2.3.28), the non-negativity of the function Ui and the assump-

tion (iv) yields that

∥ϕε(U
±
i )− ϕ(U±

i )∥L2(0,T ;Ls(Ω)) ≤ Cε→ 0 as h→ 0. (3.3.54)

With the aid of the Lipschitz continuity of the function ϕε and (3.3.44) we have

∥ϕε(U
±
i,ε)− ϕε(U

±
i )∥L2(0,T ;Ls(Ω)) ≤ ∥U±

i,ε − U±
i ∥L2(0,T ;Ls(Ω)) → 0 as h→ 0. (3.3.55)

Therefore, in order to establish (3.3.45) we find that

∥ϕε(U
±
i,ε)− ϕ(U±

i )∥L2(0,T ;Ls(Ω))

≤ ∥ϕε(U
±
i,ε)− ϕεU

±
i )∥L2(0,T ;Ls(Ω)) + ∥ϕε(U

±
i )− ϕ(U±

i )∥L2(0,T ;Ls(Ω))

→ 0 as h→ 0. (3.3.56)

Next, employ (2.4.56), (2.4.52), (2.4.55) and the first bound in (3.3.48) to see that

∥(I − πh)ϕε(U
±
i,ε)∥L2(0,T ;Ls(Ω)) ≤ Ch∥∇ϕε(U

±
i,ε)∥L2(0,T ;Ls(Ω))

≤ Ch∥∇U±
i,ε∥L2(0,T ;Ls(Ω))

≤ Ch1−d( 1
2
− 1

s
)∥U±

i,ε∥L2(0,T ;H1(Ω))

≤ Ch1−d( 1
2
− 1

s
) → 0 as h→ 0. (3.3.57)

Next, use (2.4.70), (2.4.55), the first bound in (3.3.48) and (3.3.45) to derive

∥Λε(U
±
i,ε)− ϕ(U±

i )I∥L2(0,T ;Ls(Ω))

= ∥Λε(U
±
i,ε)− ϕε(U

±
i,ε)I + ϕε(U

±
i,ε)I − ϕ(U±

i )I∥L2(0,T ;Ls(Ω))

≤ ∥Λε(U
±
i,ε)− ϕε(U

±
i,ε)I∥L2(0,T ;Ls(Ω)) + ∥ϕε(U

±
i,ε)− ϕ(U±

i )∥L2(0,T ;Ls(Ω))

≤ h∥∇U±
i,ε∥L2(0,T ;Ls(Ω)) + ∥ϕε(U

±
i,ε)− ϕ(U±

i )∥L2(0,T ;Ls(Ω))

≤ Ch1−d( 1
2
− 1

s
)∥U±

i,ε∥L2(0,T ;H1(Ω)) + ∥ϕε(U
±
i,ε)− ϕ(U±

i )∥L2(0,T ;Ls(Ω))

≤ Ch1−d( 1
2
− 1

s
) + ∥ϕε(U

±
i,ε)− ϕ(U±

i )∥L2(0,T ;Ls(Ω)) → 0 as h→ 0. (3.3.58)

Hence the result (3.3.47) holds from (3.3.58).

To complete the proof of the theorem, we still have to deal with the initial

approximations and show that the solution {ui}mi=1 satisfies (3.3.40). We first note
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from the error estimates (3.1.3) and (2.4.56) and the stated assumptions on the

initial data, {u0i }mi=1 , that for i = 1, ...,m

∥u0i − Phu0i ∥0 ≤ Ch|u0i |1 ≤ Ch,

and

∥u0i − πhu0i ∥0 ≤

Ch|u
0
i |1 ≤ Ch for d = 1,

Ch|u0i |1,r ≤ Ch for d = 2 or 3,

which provide the following strong convergence results as h→ 0

U0
i → u0i in L2(Ω), i = 1, ...,m. (3.3.59)

It follows from (3.3.43) and (3.3.44) that for a.e. (see Theorem A.1.11)

Ui(t) → ui(t) in L2(Ω) as ∆t→ 0, i = 1, ...,m. (3.3.60)

We comment that (3.3.59) and (3.3.60) are not sufficient to prove the equalities in

(3.3.40) since if t = 0 belongs to the null-set of the almost everywhere statement for

(3.3.60) then possibly ui(0) ̸= u0i , i = 1, ...,m (see Robinson [58], Section 7.4.4, for

further discussion). In addition to (3.3.59) and (3.3.60), we actually exploit other

properties of the solutions {Ui}mi=1 and the functions {ui}mi=1 in order to conclude

that (3.3.40) holds.

We note that since

Ui, ui ∈ L2(0, T ;H1(Ω)) and
∂Ui

∂t
,
∂ui
∂t

∈ L2(0, T ; (H1(Ω))′), i = 1, ...,m,

it follows that

Ui, ui ∈ C([0, T ];L2(Ω)), i = 1, ...,m, (3.3.61)

see Theorem 7.2 and Proposition 7.1 in Robinson [84], respectively. Therefore, the

desired result (3.3.40) follows easily by combining (3.3.59), (3.3.60) and (3.3.61).

2

Lemma 3.3.2 Let the assumptions of Theorem 3.3.1 hold. Then the following

convergence results are valid as h→ 0:

πhϕε(U
+
i,ε) π

hϕε(U
−
i,ε) → ϕ(U+

i )ϕ(U
−
i ) in L2(ΩT ), i = 1, ...,m. (3.3.62)
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Proof : From (2.2.15), (3.3.48), the Hölder’s inequality and the embedding result

L2(0, T ;Ls(Ω)) ↪→ L2(ΩT ) one shows

∥πhϕε(U
+
i,ε) π

hϕε(U
−
i,ε)− ϕ(U+

i )ϕ(U
−
i )∥L2(ΩT )

≤ ∥πhϕε(U
+
i,ε) π

hϕε(U
−
i,ε)− πhϕε(U

+
i,ε) ϕ(U

−
i )∥L2(ΩT )

+∥πhϕε(U
+
i,ε) ϕ(U

−
i )− ϕ(U+

i )ϕ(U
−
i )∥L2(ΩT )

≤ ∥πhϕε(U
−
i,ε)− ϕ(U−

i )∥L2(ΩT )∥πhϕε(U
+
i,ε)∥L∞(ΩT )

+∥πhϕε(U
+
i,ε) − ϕ(U+

i ) ∥L2(ΩT )∥ϕ(U−
i )∥L∞(ΩT )

≤ C(∥πhϕε(U
−
i,ε)− ϕ(U−

i )∥L2(ΩT ) + ∥πhϕε(U
+
i,ε) − ϕ(U+

i ) ∥L2(ΩT ))

≤ C(∥πhϕε(U
−
i,ε)− ϕ(U−

i )∥L2(0,T,Ls(Ω) + ∥πhϕε(U
+
i,ε) − ϕ(U+

i ) ∥L2(0,T,Ls(Ω))

→ 0 as h→ 0, i = 1, ...,m. (3.3.63)

2

Theorem 3.3.3 Let the assumptions of Theorem 3.3.1 hold. Then there exists a

subsequence of {Ui,ε}h>0, i = 1, ...,m, where {Ui,ε}, i = 1, ...,m solves (3.3.38), and

nonnegative functions {Ui}, i = 1, ...,m satisfying (3.3.39). In addition, as h→ 0 the

convergence results (3.3.41)-(3.3.47) and (3.3.62) hold. Furthermore, the functions

{Ui}, i = 1, ...,m represent a global weak solution of the problem (P∆t
M ) in the sense

that ∫ T

0

[⟨∂Ui

∂t
, η⟩+Di(∇U+

i ,∇η) + (ϕ(U+
i )

m∑
j=1

∇U+
j ,∇η)]d t

=

∫ T

0

[(γiU
+
i − ϕ(U+

i )(
m∑
j=1

ϕ(U−
j ), η)]d t, ∀η ∈ L2(0, T ;H1(Ω)), i = 1, ...,m.

(3.3.64)

Proof : The first and second parts of the theorem follow from Theorem 3.3.1.

To show that {Ui}mi=1 is a weak solution of (P∆t
M ) in sense that (3.3.64) are satisfied,

we set χ ≡ πhη as a test function in (3.3.38) and then pass to the limit ε, h→ 0.

For any η ∈ L2(0, T ;H1(Ω)), we set χ ≡ πhη as a test function in (3.3.38)

yielding∫ T

0

[(
∂Ui,ε

∂t
, πhη)h +Di(∇U+

i,ε,∇πhη) + (Λε(U
+
i,ε)

m∑
j=1

∇U+
j,ε,∇πhη)]d t
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=

∫ T

0

[(γiU
+
i,ε − ϕε(U

+
i,ε)(

m∑
j=1

ϕε(U
−
j,ε), π

hη)h]d t, i = 1, ...,m. (3.3.65)

We shall now study the convergence of each term in (3.3.65) separately. For all

η ∈ L2(0, T ;H1(Ω)) and for all η̃ ∈ H1(0, T ;H1(Ω)) we have that∫ T

0

(
∂Ui,ε

∂t
, πhη)h =

∫ T

0

[
(
∂Ui,ε

∂t
, πh[η − η̃])h − (

∂Ui,ε

∂t
, πh[η − η̃])

]
dt

+

∫ T

0

[
(
∂Ui,ε

∂t
, πhη̃)h − (

∂Ui,ε

∂t
, πhη̃)

]
dt

+

∫ T

0

(∂Ui,ε

∂t
, (πh − I)η

)
dt

+

∫ T

0

(∂Ui,ε

∂t
, η
)
dt

:= I1,1 + I1,2 + I1,3 + I1,4. (3.3.66)

Then from (2.4.59), (3.1.11), (2.4.56), Hölder’s inequality, the denseness ofH1(0, T ;H1(Ω))

in L2(0, T ;H1(Ω)) and (3.3.48) we may derive

|I1,1| ≡
∣∣ ∫ T

0

[
(
∂Ui,ε

∂t
, πh[η − η̃])h − (

∂Ui,ε

∂t
, πh[η − η̃])

]
dt
∣∣

≤ Ch

∫ T

0

∥∂Ui,ε

∂t
∥0 |πh[η − η̃]|1dt

≤ C

∫ T

0

∥G ∂Ui,ε

∂t
∥1 |η − η̃ + (πh − I)η − (πh − I)η̃|1dt

≤ C

∫ T

0

∥G ∂Ui,ε

∂t
∥1

[
∥η − η̃∥1 + ∥(πh − I)η∥1 + ∥(πh − I)η̃∥1

]
dt

≤ C∥G ∂Ui,ε

∂t
∥L2(0,T ;H1(Ω))

[
∥η−η̃∥L2(0,T ;H1(Ω))+∥(πh−I)η∥L2(0,T ;H1(Ω))+∥(πh−I)η̃∥L2(0,T ;H1(Ω))

]
≤ C

[
∥η − η̃∥L2(0,T ;H1(Ω)) + ∥(πh − I)η∥L2(0,T ;H1(Ω)) + ∥(πh − I)η̃∥L2(0,T ;H1(Ω))

]
→ C∥η − η̃∥L2(0,T ;H1(Ω)) as h→ 0. (3.3.67)

We now see from (2.4.59), (2.4.56), Hölder’s inequality and (3.3.48) that

|I1,2| ≡
∣∣ ∫ T

0

[
(
∂Ui,ε

∂t
, πhη̃)h − (

∂Ui,ε

∂t
, πhη̃)

]
dt
∣∣

≤
∣∣ ∫ T

0

[
(Ui,ε,

∂πhη̃

∂t
)h − (Ui,ε,

∂πhη̃

∂t
)
]
dt
∣∣

+
∣∣(Ui,ε(·, T ), πhη̃(·, T ))h − (Ui,ε(·, T ), πhη̃(·, T ))

∣∣
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+
∣∣(Ui,ε(·, 0), πhη̃(·, 0))h − (Ui,ε(·, 0), πhη̃(·, 0))

∣∣
≤ Ch

∫ T

0

∥Ui,ε∥0|
∂πhη̃

∂t
|1dt+ Ch∥Ui,ε(·, T )∥0|πhη̃(·, T )|1 + Ch∥Ui,ε(·, 0)∥0|πhη̃(·, 0)|1

≤ Ch∥Ui,ε∥L∞(0,T,L2(Ω))∥πhη̃∥H1(0,T,H1(Ω)) + Ch∥Ui,ε(·, T )∥0|πhη̃(·, T )|1

+Ch∥Ui,ε(·, 0)∥0|πhη̃(·, 0)|1

≤ Ch[∥η̃∥H1(0,T,H1(Ω)) + ∥(πh − I)η̃∥H1(0,T,H1(Ω))]

+Ch∥Ui,ε(·, T )∥0|πhη̃(·, T )|1 + Ch∥Ui,ε(·, 0)∥0|πhη̃(·, 0)|1 → 0 as h→ 0,

(3.3.68)

where the fourth inequality was obtained from (2.4.56) and exploiting the continuous

embedding (see Robinson [84] page 190):

W 1,p(0, T ;X) ↪→ C([0, T ];X) 1 ≤ p ≤ ∞,

namely,

sup
t∈[0,T ]

∥ζ(t)∥X ≤ ∥ζ∥W 1,p(0,T ;X) for ζ ∈ W 1,p(0, T ;X). (3.3.69)

To treat the term I1,3, we observe using (3.1.8), Hölder’s inequality and the fifth

bound in (3.3.48) that

|I1,3| =
∣∣ ∫ T

0

(∂Ui,ε

∂t
, (πh − I)η

)
dt
∣∣ = ∣∣ ∫ T

0

⟨∂Ui,ε

∂t
, (πh − I)η

⟩
dt
∣∣

≤
∫ T

0

∣∣⟨∂Ui,ε

∂t
, (πh − I)η

⟩∣∣dt
≤

∫ T

0

|∂Ui,ε

∂t
|(H1(Ω))′ |(πh − I)η|1dt

≤ ∥∂Ui,ε

∂t
∥L2(0,T ;(H1(Ω))′)∥(πh − I)η∥L2(0,T ;H1(Ω))

≤ C∥(πh − I)η∥L2(0,T ;H1(Ω)) → 0 as h→ 0. (3.3.70)

Next we use (3.1.8) and the weak convergence result (3.3.43) to arrive for all η ∈

L2(0, T ;H1(Ω)),

I1,4 ≡
∫ T

0

(∂Ui,ε

∂t
, η
)
dt =

∫ T

0

⟨∂Ui,ε

∂t
, η
⟩
dt→

∫ T

0

⟨∂Ui

∂t
, η
⟩
dt as h→ 0. (3.3.71)
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Combining (3.3.66)-(3.3.68), (3.3.70), (3.3.71), (2.4.57) and the denseness ofH1(0, T ;H1(Ω))

in L2(0, T ;H1(Ω)) one then obtains for all η ∈ L2(0, T ;H1(Ω))∫ T

0

(∂Ui,ε

∂t
, πhη

)h →
∫ T

0

⟨∂Ui

∂t
, η
⟩
dt as h→ 0. (3.3.72)

We employ Hölder’s inequality, (3.3.48) and (2.4.57) to now see for all η ∈ L2(0, T ;H1(Ω))

that ∣∣ ∫ T

0

(∇U+
i,ε,∇(πh − I)η)dt

∣∣ ≤ ∫ T

0

∣∣(∇U+
i,ε,∇(πh − I)η)

∣∣dt
≤

∫ T

0

|U+
i,ε|1 |(πh − I)η|1dt

≤ ∥U+
i,ε∥L2(0,T,H1(Ω)) ∥(πh − I)η∥L2(0,T,H1(Ω))

≤ C ∥(πh − I)η∥L2(0,T,H1(Ω))

→ 0 as h→ 0. (3.3.73)

It follows from (3.3.73) and (3.3.41) for all η ∈ L2(0, T ;H1(Ω)) that∫ T

0

(∇U+
i,ε,∇πhη)dt =

∫ T

0

(∇U+
i,ε,∇(πh − I)η)dt+

∫ T

0

(∇U+
i,ε,∇η)dt

→
∫ T

0

(∇U+
i ,∇η)dt as h→ 0. (3.3.74)

We obtain for all η ∈ L2(0, T ;H1(Ω)) and for all η̃ ∈ H1(0, T ;H1(Ω)) that∫ T

0

(Λε(U
+
i,ε)

m∑
j=1

∇U+
j,ε,∇πhη)d t

=

∫ T

0

(Λε(U
+
i,ε)

m∑
j=1

∇U+
j,ε,∇(πh − I)η)d t

+

∫ T

0

([Λε(U
+
i,ε)− ϕ(U+

i )I]
m∑
j=1

∇U+
j,ε,∇(η − η̃))d t

+

∫ T

0

([Λε(U
+
i,ε)− ϕ(U+

i )I]
m∑
j=1

∇U+
j,ε,∇η̃)d t

+

∫ T

0

(ϕ(U+
i )

m∑
j=1

∇U+
j,ε,∇η)d t

:= I2,1 + I2,2 + I2,3 + I2,4. (3.3.75)
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Now, the generalized Hölder’s inequality and (3.3.48) are used to find

|I2,1| ≡
∣∣ ∫ T

0

(Λε(U
+
i,ε)

m∑
j=1

∇U+
j,ε,∇(πh − I)η)d t

∣∣
≤

∫ T

0

∥Λε(U
+
i,ε)∥∞

m∑
j=1

|U+
j,ε|1 |(πh − I)η|1d t

≤ ∥Λε(U
+
i,ε)∥L∞(ΩT )

m∑
j=1

∥U+
j,ε∥L2(0,T,H1(Ω)) ∥(πh − I)η∥L2(0,T,H1(Ω))

≤ C ∥(πh − I)η∥L2(0,T,H1(Ω)) → 0 as h→ 0. (3.3.76)

Similarly to the treatment of the term I2,1, the generalized Hölder’s inequality,

(3.3.48), the denseness of the space H1(0, T ;H1(Ω)) in L2(0, T ;H1(Ω)) and (2.2.15)

are employed to see that

|I2,2| ≡
∣∣ ∫ T

0

([Λε(U
+
i,ε)− ϕ(U+

i )I]
m∑
j=1

∇U+
j,ε,∇(η − η̃))d t

∣∣
≤ ∥Λε(U

+
i,ε)− ϕ(U+

i )I∥L∞(ΩT )

m∑
j=1

∥U+
j,ε∥L2(0,T,H1(Ω)) ∥η − η̃∥L2(0,T,H1(Ω))

≤ C ∥η − η̃∥L2(0,T,H1(Ω)) → 0 as h→ 0. (3.3.77)

In addition, we have that

|I2,3| ≡
∣∣ ∫ T

0

([Λε(U
+
i,ε)− ϕ(U+

i )I]
m∑
j=1

∇U+
j,ε,∇η̃)d t

∣∣
≤ ∥Λε(U

+
i,ε)− ϕ(U+

i )I∥L2(ΩT ))

m∑
j=1

∥U+
j,ε∥L2(0,T,H1(Ω)) ∥∇η̃∥L∞(ΩT ))

≤ C∥Λε(U
+
i,ε)− ϕ(U+

i )I∥L2(ΩT ) ∥η̃∥L∞(0,T ;W 1,∞(Ω)

≤ C∥Λε(U
+
i,ε)− ϕ(U+

i )I∥L2(0,T,Ls(Ω) → 0 as h→ 0. (3.3.78)

It follows from (3.3.41) for all η ∈ L2(0, T ;H1(Ω)) that

I2,4 ≡
∫ T

0

(ϕ(U+
i )

m∑
j=1

∇U+
j,ε,∇η)d t→

∫ T

0

(ϕ(U+
i )

m∑
j=1

∇U+
i ,∇η)d t as h→ 0,

(3.3.79)
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where we used the fact that the function ϕ(s) is bounded. Now, combining (3.3.75)-

(3.3.79), (2.4.57) and (3.3.47) leads for all η ∈ L2(0, T ;H1(Ω)) that∫ T

0

(Λε(U
+
i,ε)

m∑
j=1

∇U+
j,ε,∇πhη)d t→

∫ T

0

(ϕ(U+
i )

m∑
j=1

∇U+
i ,∇η)d t as h→ 0,

(3.3.80)

It remains to show the convergence of the reaction term in (3.3.65). On noting

(2.4.59), Hölder’s inequality, (2.4.56) and (3.3.48) yields for all η ∈ L2(0, T ;H1(Ω))

that ∣∣ ∫ T

0

[(U+
i,ε, π

hη)h − (U+
i,ε, π

hη)]d t+

∫ T

0

(U+
i,ε, (π

h − I)η)d t
∣∣

≤
∣∣ ∫ T

0

[(U+
i,ε, π

hη)h − (U+
i,ε, π

hη)]d t
∣∣+ ∣∣ ∫ T

0

(U+
i,ε, (π

h − I)η)d t
∣∣

≤ Ch

∫ T

0

∥U+
i,ε∥0|πhη|1d t+

∫ T

0

∥U+
i,ε∥0∥(πh − I)η∥0d t

≤ Ch

∫ T

0

∥U+
i,ε∥0|(πh − I)η + η|1d t+ Ch

∫ T

0

∥U+
i,ε∥0|η|1d t

≤ Ch

∫ T

0

∥U+
i,ε∥0|η|1d t

≤ Ch∥U+
i,ε∥L2(ΩT ))∥η∥L2(0,T,H1(Ω))

≤ Ch∥U+
i,ε∥Lα(ΩT ))∥η∥L2(0,T,H1(Ω))

≤ Ch∥η∥L2(0,T,H1(Ω)) → 0 as h→ 0. (3.3.81)

Combining (3.3.81) and (3.3.41) leads for all η ∈ L2(0, T ;H1(Ω)) that∫ T

0

(U+
i,ε, π

hη)hd t =

∫ T

0

[(U+
i,ε, π

hη)h − (U+
i,ε, π

hη)]d t+

∫ T

0

(U+
i,ε, (π

h − I)η)d t

+

∫ T

0

(U+
i,ε, η)d t→

∫ T

0

(U+
i , η)d t as h→ 0. (3.3.82)

Now, we deal with the convergence of the non-linear reaction terms in (3.3.65).

Firstly, it follows from (2.4.45) for all η ∈ L2(0, T ;H1(Ω)) that∫ T

0

(ϕε(U
+
i,ε)ϕε(U

−
j,ε), π

hη)hd t =

∫ T

0

(πhϕε(U
+
i,ε)π

hϕε(U
−
j,ε), π

hη)hd t

=

∫ T

0

[(πhϕε(U
+
i,ε)π

hϕε(U
−
j,ε), π

hη)h − (πhϕε(U
+
i,ε)π

hϕε(U
−
j,ε), π

hη)]d t

+

∫ T

0

(πhϕε(U
+
i,ε)π

hϕε(U
−
j,ε)− ϕ(U+

i )ϕ(U
−
j ), π

h[η − η̃])d t
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+

∫ T

0

(πhϕε(U
+
i,ε)π

hϕε(U
−
j,ε)− ϕ(U+

i )ϕ(U
−
j ), π

hη̃)d t

+

∫ T

0

(ϕ(U+
i )ϕ(U

−
j ), (π

h − I)η)d t

+

∫ T

0

(ϕ(U+
i )ϕ(U

−
j ), η)d t

:= I3,1 + I3,2 + I3,3 + I3,4 + I3,5. (3.3.83)

Using (2.4.60), (2.4.54), (2.4.52), Hölder’s inequality, (2.4.56), (3.3.48) gives that

|I3,1| ≡
∣∣ ∫ T

0

[
(πhϕε(U

+
i,ε)π

hϕε(U
−
j,ε), π

hη)h − (πhϕε(U
+
i,ε)π

hϕε(U
−
j,ε), π

hη)
]
d t

∣∣
≤ Ch2

∫ T

0

∥πhϕε(U
+
i,ε)∥1,∞∥πhϕε(U

−
j,ε)∥1∥πhη∥1d t

≤ Ch

∫ T

0

∥πhϕε(U
+
i,ε)∥0,∞

[
∥πhϕε(U

−
j,ε)∥0 + |πhϕε(U

−
j,ε)|1

]
∥πhη∥1d t

≤ Ch∥πhϕε(U
+
i,ε)∥L∞(ΩT )

[
∥πhϕε(U

−
j,ε)∥L2(ΩT )+∥πhϕε(U

−
j,ε)∥L2(0,T ;H1(Ω))

]
∥πhη∥L2(0,T ;H1(Ω))

≤ Ch
[
∥πhϕε(U

−
j,ε)∥L2(ΩT ) + ∥U−

j,ε∥L2(0,T ;H1(Ω)

]
∥(πh − I)η + η∥L2(0,T ;H1(Ω))

≤ Ch∥η∥L2(0,T ;H1(Ω))

→ 0 as h→ 0. (3.3.84)

Using Hölder’s inequality, (2.4.56), (2.2.15), (3.3.48) and the denseness ofH1(0, T ;H1(Ω))

in L2(0, T ;H1(Ω)) gives that

|I3,2| ≡
∣∣ ∫ T

0

(πhϕε(U
+
i,ε)π

hϕε(U
−
j,ε)− ϕ(U+

i )ϕ(U
−
j ), π

h[η − η̃])d t
∣∣

≤ ∥πhϕε(U
+
i,ε)π

hϕε(U
−
j,ε)− ϕ(U+

i )ϕ(U
−
j )∥L2(ΩT ) ∥πh[η − η̃]∥L2(ΩT )

≤ ∥πhϕε(U
+
i,ε)π

hϕε(U
−
j,ε)− ϕ(U+

i )ϕ(U
−
j )∥L2(ΩT ) ∥(πh − I)(η − η̃) + η − η̃∥L2(ΩT )

≤ ∥πhϕε(U
+
i,ε)π

hϕε(U
−
j,ε)− ϕ(U+

i )ϕ(U
−
j )∥L2(ΩT )

×
[
|(πh − I)(η − η̃)∥L2(ΩT ) + ∥η − η̃∥L2(ΩT )

]
≤ ∥πhϕε(U

+
i,ε)π

hϕε(U
−
j,ε)− ϕ(U+

i )ϕ(U
−
j )∥L2(ΩT )

×
[
∥(η − η̃)∥L2(0,T ;H1(Ω)) + ∥η − η̃∥L2(ΩT )

]
≤ ∥πhϕε(U

+
i,ε)π

hϕε(U
−
j,ε)− ϕ(U+

i )ϕ(U
−
j )∥L2(ΩT )∥(η − η̃)∥L2(0,T ;H1(Ω))

→ 0 as h→ 0. (3.3.85)
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With the aid of Hölder’s inequality and (2.4.56) we have

|I3,3| ≡
∣∣ ∫ T

0

(πhϕε(U
+
i,ε)π

hϕε(U
−
j,ε)− ϕ(U+

i )ϕ(U
−
j ), π

hη̃)d t
∣∣

≤ ∥πhϕε(U
+
i,ε)π

hϕε(U
−
j,ε)− ϕ(U+

i )ϕ(U
−
j )∥L2(ΩT )∥πhη̃∥L2(ΩT )

≤ ∥πhϕε(U
+
i,ε)π

hϕε(U
−
j,ε)− ϕ(U+

i )ϕ(U
−
j )∥L2(ΩT )∥(πh − I)η̃ + η̃∥L2(ΩT )

≤ ∥πhϕε(U
+
i,ε)π

hϕε(U
−
j,ε)− ϕ(U+

i )ϕ(U
−
j )∥L2(ΩT )

[
∥(πh − I)η̃∥L2(ΩT ) + ∥η̃∥L2(ΩT )

]
≤ ∥πhϕε(U

+
i,ε)π

hϕε(U
−
j,ε)− ϕ(U+

i )ϕ(U
−
j )∥L2(ΩT ) ∥η̃∥L2(0,T ;H1(Ω))

→ 0 as h→ 0. (3.3.86)

From equations (2.2.15) and (2.4.56), we have

|I3,4| ≡ |
∫ T

0

(ϕ(U+
i )ϕ(U

−
j ), (π

h − I)η)d t|

≤ C

∫ T

0

∥ϕ(U−
j )∥0 ∥(πh − I)η∥0

≤ Ch

∫ T

0

∥ϕ(U−
j )∥0 ∥η∥1d t

≤ Ch∥ϕ(U−
j )∥L2(ΩT ) ∥η∥L2(0,T ;H1(Ω))

≤ Ch∥ϕ(U−
j )∥L2(0,T ;Ls(Ω)) ∥η∥L2(0,T ;H1(Ω))

→ 0 as h→ 0. (3.3.87)

Upon use of (3.3.83)-(3.3.87) we see for all η ∈ L2(0, T ;H1(Ω)) that∫ T

0

(
ϕε(U

+
i,ε)ϕε(U

−
j,ε), π

hη
)h
d t→

∫ T

0

(
ϕ(U+

i )ϕ(U
−
j ), η

)
d t as h→ 0. (3.3.88)

If we combine the results on (3.3.65), (3.3.72), (3.3.74), (3.3.80), (3.3.82) and (3.3.88)

we find the desired result (3.3.64).

This completes the proof of the main theorem in this chapter. 2
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Chapter 4

Time convergence

4.1 Introduction

Our starting point for the analysis here is the final result of the previous chapter,

which concerns the existence of a solution to the discrete-in-time problem (P∆t
M ).

The model (P∆t
M ) includes ”microscopic cut-off” in some terms in problem (P∆t

M ),

where M > 1 is a (fixed, but otherwise arbitrary,) cut-off parameter. Our ultimate

objective is to pass to the limits M → ∞ and ∆t → 0 in the model (P∆t
M ), with

M and ∆t linked by the condition ∆t = o(M−1), as M → ∞. To that end, we

need to develop bounds on sequences of weak solutions of (P∆t
M ) that are uniform

in the cut-off parameter M and thus permit the extraction of weakly convergent

subsequences, as M → ∞, through the use of a weak-compactness argument. This

approach has been adopted in [13–21]

Now, we consider the following cut-off version FM of the entropy function F :

s ∈ R≥0 → F(s) = (ln s− 1)s+ 1 ∈ R≥0 which is given by

FM(s) =

 (ln s− 1)s+ 1, 0 ≤ s ≤M,

s2−M2

2M
+ (lnM − 1)s+ 1, M ≤ s.

(4.1.1)

Note that

(FM)′(s) =

 ln s, 0 < s ≤M,

s
M

+ lnM − 1, M ≤ s,
(4.1.2)

and
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4.2. M-independent bounds on the derivatives 56

(FM)′′(s) :=

 1
s
, 0 < s ≤M,

1
M
, M ≤ s.

(4.1.3)

Hence, we define the function ϕ as follows

ϕ(s) = [(FM)′′(s)]−1 =

 s, 0 < s ≤M,

M, M ≤ s,
(4.1.4)

with the convention 1/∞ := 0 when s = 0, and

(FM)′′(s) ≥ (F)′′(s) = s−1, s ∈ R>0. (4.1.5)

We shall also require the following inequality, relating FM to F :

FM(s) ≥ F(s), s ∈ R≥0. (4.1.6)

For s > 1, (4.1.6) follows from (4.1.5), with s replaced by a dummy variable σ,

after integrating twice over σ ∈ [1, s], and noting that (FM)′(1) = (F)′(1) and

FM(1) = F(1). For s ∈ [0, 1], we have FM(s) = F(s) by definition.

4.2 M-independent bounds on the derivatives

We are now ready to embark on the derivation of the required bounds, uniform in

the cut-off parameter M , on norms of U+
i , i = 1, ...,m. The appropriate choice of

test function in (3.3.64) for this purpose is η = χ[0,t](FM)′(U+
i ), i = 1, ...,m with

t = tn, n ∈ {1, ..., N}, and χ[0,t] denoting the characteristic function of the interval

[0, t]. While Theorem 3.3.1 guarantees that U+
i (., t), i = 1, ...,m is nonnegative

a.e. on Ω × [0, T ], there is unfortunately no reason why U+
i , i = 1, ...,m should be

strictly positive on Ω × [0, T ], and therefore the expression (FM)′(U+
i ), i = 1, ...,m

may in general be undefined; the same is true of (FM)′′(U+
i ), i = 1, ...,m which

also appears in the algebraic manipulations. We shall circumvent this problem by

working with (FM)′(U+
i + ϵ), i = 1, ...,m instead of (FM)′(U+

i ), i = 1, ...,m, where

ϵ > 0; since U+
i , i = 1, ...,m are known to be nonnegative from Theorem 3.3.1,

(FM)′(U+
i + ϵ), i = 1, ...,m and (FM)′′(U+

i + ϵ), i = 1, ...,m are well-defined. After
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deriving the relevant bounds, which will involve FM(U+
i + ϵ), i = 1, ...,m only, we

shall pass to the limit ϵ → 0+, noting that, unlike (FM)′(U+
i ), i = 1, ...,m and

(FM)′′(U+
i ), i = 1, ...,m, the function FM(U+

i + ϵ), i = 1, ...,m is well-defined for

any nonnegative U+
i , i = 1, ...,m .

Before we prove the bounds on the approximate solutions, in the next Lemma,

we provide a result which will be important in the analysis of the approximation

problem (P∆t
M ).

Lemma 4.2.1 ∫
Ω

FM(ϕ(U0
i ) + ϵ)dx ≤ 3

2
ϵ|Ω|+

∫
Ω

F(U0
i + ϵ)dx.

Proof :

We label Q(ϵ) and express as follows:

Q(ϵ) =

∫
Ω

FM(ϕ(U0
i ) + ϵ)dx

=

∫
YM,ϵ

FM(ϕ(U0
i ) + ϵ)dx+

∫
YM,ϵ

FM(ϕ(U0
i ) + ϵ)dx,

where

YM,ϵ = {x ∈ Ω : 0 ≤ ϕ(U0
i (x)) ≤M − ϵ},

YM,ϵ = {x ∈ Ω :M − ϵ < ϕ(U0
i (x)) ≤M}.

We begin by noting that∫
YM,ϵ

FM(ϕ(U0
i ) + ϵ)dx =

∫
YM,ϵ

F(ϕ(U0
i ) + ϵ)dx.

For the integral over YM,ϵ we have∫
YM,ϵ

FM(ϕ(U0
i ) + ϵ)dx

=

∫
YM,ϵ

[
(ϕ(U0

i ) + ϵ)2 −M2

2M
+ (ϕ(U0

i ) + ϵ)(logM − 1) + 1]dx

≤
∫
YM,ϵ

[
(M + ϵ)2 −M2

2M
+ (ϕ(U0

i ) + ϵ)(log(ϕ(U0
i ) + ϵ)− 1) + 1]dx

=

∫
YM,ϵ

(2ϵM + ϵ2)

2M
dx+

∫
YM,ϵ

F(ϕ(U0
i ) + ϵ)dx
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≤ 3

2
ϵ|Ω|+

∫
YM,ϵ

F(ϕ(U0
i ) + ϵ)dx.

Thus we have shown that

Q(ϵ) ≤ 3

2
ϵ|Ω|+

∫
Ω

F(ϕ(U0
i ) + ϵ)dx.

Now, there are two possibilities:

1. If ϕ(U0
i ) + ϵ ≤ 1, then 0 ≤ ϕ(U0

i ) ≤ 1 − ϵ. Since M > 1 it follows that

0 ≤ ϕ(s) ≤ 1 if, and only if, ϕ(s) = s. Thus we deduce that in this case

ϕ(U0
i ) = U0

i , and therefore 0 ≤ F(ϕ(U0
i ) + ϵ) = F(U0

i + ϵ).

2. Alternatively, if ϕ(U0
i ) + ϵ > 1, then, on noting that ϕ(s) ≤ s for all s ∈

[0,∞), it follows that 1 < ϕ(U0
i ) + ϵ ≤ U0

i + ϵ. However, the function F is

strictly monotonic increasing on the interval [1,∞), which then implies that

0 = F (1) ≤ F(ϕ(U0
i ) + ϵ) ≤ F(U0

i + ϵ).

The conclusion we draw is that, either way,

0 ≤ F(ϕ(U0
i ) + ϵ) ≤ F(U0

i + ϵ).

Hence,

Q(ϵ) ≤ 3

2
ϵ|Ω|+

∫
Ω

F(U0
i + ϵ)dx.

2

Theorem 4.2.2 Suppose that we impose the condition of relating ∆t toM , is such

that ∆tM = o(1) as ∆t → 0 (or, equivalently, ∆t = o(M−1) as M → ∞). Then,

the solutions {U±
i , i = 1, ...,m} satisfy the following bounds

m∑
i=1

∫
Ω

FM(U+
i )dx+ (

1

2M∆t
− 2m−1)

∫ t

0

∫
Ω

(U+
i − U−

i )
2dxdt

+2D∗
∫ t

0

∫
Ω

m∑
i=1

|∇
√
U+
i |2 dxdt+

1

2

∫ t

0

∫
Ω

(
m∑
i=1

∇U+
i )

2 dxdt ≤ B1(U
0
i ), (4.2.7)

where D∗ is a constant and B1(U
0
i ) = [1 + 2γ(1 + 2γ∆t)k]

∑m
i=1

∫
Ω
F(U0

i )dx+ C.

Proof : For any ϵ ∈ (0, 1), whereby 0 < ϵ < 1 < M , we choose η = χ[0,t](FM)′(U+
i +

ϵ), i = 1, ...,m with t = tn, n ∈ {1, ..., N}, as test function in (3.3.64):∫ T

0

[⟨∂Ui

∂t
, χ[0,t](FM)′(U+

i + ϵ)⟩+Di(∇U+
i ,∇χ[0,t](FM)′(U+

i + ϵ))
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+(ϕ(U+
i )

m∑
j=1

∇U+
j ,∇χ[0,t](FM)′(U+

i + ϵ))]d t

=

∫ T

0

[(γiU
+
i − ϕ(U+

i )
m∑
j=1

ϕ(U−
j ), χ[0,t](FM)′(U+

i + ϵ))]d t, i = 1, ...,m. (4.2.8)

Then, we start by considering the first term in (4.2.8). Clearly FM(U+
i + ϵ) is twice

continuously differentiable on the interval (−ϵ,∞) for any ϵ > 0. Thus, by Taylor

series expansion of s ∈ [0,∞) → FM(s+ϵ) ∈ [0,∞) with remainder, and c ∈ [0,∞),

(s− c)(FM)′(s+ ϵ) = FM(s+ ϵ)−FM(c+ ϵ) +
1

2
(s− c)2(FM)′′(θs+ (1− θ)c+ ϵ),

with θ ∈ (0, 1). Hence, on noting that t ∈ [0, T ] → U+
i (., t) is piecewise linear

relative to the partition {0 = t0, t1, ..., tN = T} of the interval [0, T ],

T̃1 =

∫ T

0

∫
Ω

∂Ui

∂t
χ[0,t](FM)′(U+

i + ϵ)dxdt =

∫ t

0

∫
Ω

∂Ui

∂t
(FM)′(U+

i + ϵ)dxdt

=
1

∆t

∫ t

0

∫
Ω

(U+
i − U−

i )(FM)′(U+
i + ϵ)dxdt

=
1

∆t

∫ t

0

∫
Ω

(FM)(U+
i + ϵ)dxdt− 1

∆t

∫ t

0

∫
Ω

(FM)(U−
i + ϵ)dxdt

+
1

2∆t

∫ t

0

∫
Ω

(U+
i − U−

i )
2(FM)′′(θU+

i + (1− θ)U−
i + ϵ)dxdt. (4.2.9)

Noting from (4.1.3) that (FM)′′(s + ϵ) ≥ 1/M for all s ∈ [0,∞) and all ϵ > 0, this

then implies, with t = tn, n ∈ {1, ..., N}, that

T̃1 ≥
1

∆t

∫ t

0

∫
Ω

(FM)(U+
i + ϵ)dxdt− 1

∆t

∫ t

0

∫
Ω

(FM)(U−
i + ϵ)dxdt

+
1

2M∆t

∫ t

0

∫
Ω

(U+
i − U−

i )
2dxdt. (4.2.10)

The denominator in the prefactor of the last integral motivates us to link ∆t to M

so that ∆tM = o(1) as ∆t → 0 (or, equivalently, ∆t = o(M−1) as M → ∞), in

order to drive the integral multiplied by the prefactor to 0 in the limit of M → ∞,

once the product of the two has been bounded above by a constant, independent of

M .

Next we consider the second term in (4.2.8). From (4.1.5), we have for all

i = 1, ...,m that

T̃2 = Di

∫ T

0

∫
Ω

∇U+
i ∇χ[0,t](FM)′(U+

i + ϵ)dxdt
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= Di

∫ t

0

∫
Ω

|∇U+
i |2(FM)′′(U+

i + ϵ)dxdt = Di

∫ t

0

∫
Ω

|∇U+
i |2

ϕ(U+
i + ϵ)

dxdt. (4.2.11)

With the aid of (4.1.5), the third term in (4.2.8) can be simplified as follows

T̃3 =

∫ T

0

∫
Ω

ϕ(U+
i )

m∑
j=1

∇U+
j ∇χ[0,t](FM)′(U+

i + ϵ)dxdt

=

∫ t

0

∫
Ω

ϕ(U+
i )

ϕ(U+
i + ϵ)

∇U+
i

m∑
j=1

∇U+
j dxdt. (4.2.12)

Now, we deal with the fourth term in (4.2.8). It follows from (2.3.31), (2.3.32) and

ϕ(s) ≤ s, ∀s that

T̃4 = γi

∫ T

0

∫
Ω

U+
i χ[0,t](FM)′(U+

i + ϵ)dxdt

= γi

∫ t

0

∫
Ω

(U+
i + ϵ) (FM)′(U+

i + ϵ)dxdt− ϵ γi

∫ t

0

∫
Ω

(FM)′(U+
i + ϵ)dxdt

≤ γi

∫ t

0

∫
Ω

(2FM(U+
i +ϵ)+1)dxdt−ϵ γi

∫ t

0

∫
Ω

1

ϕ(U+
i + ϵ)

ϕ(U+
i +ϵ)(FM)′(U+

i +ϵ)dxdt

≤ 2γi

∫ t

0

∫
Ω

FM(U+
i + ϵ)dxdt+ γiT |Ω| − ϵ γi

∫ t

0

∫
Ω

(U+
i + ϵ− 1)

ϕ(U+
i + ϵ)

dxdt

≤ 2γi

∫ t

0

∫
Ω

FM(U+
i + ϵ)dxdt+ γiT |Ω| − ϵ γi

∫ t

0

∫
Ω

(U+
i + ϵ)

ϕ(U+
i + ϵ)

dxdt

+γi

∫ t

0

∫
Ω

ϵ

ϕ(U+
i + ϵ)

dxdt ≤ 2γ

∫ t

0

∫
Ω

FM(U+
i + ϵ)dxdt+ 2γT |Ω|, (4.2.13)

where γ = maxmi=1 γi.

Next, we consider the last term in (4.2.8). On noting (2.3.32) and ϕ(s) ≤ ϕ(ŝ) for

s ≤ ŝ yields that

T̃5 =

∫ T

0

∫
Ω

ϕ(U+
i )

m∑
j=1

ϕ(U−
j ) χ[0,t](FM)′(U+

i + ϵ)dxdt

=

∫ t

0

∫
Ω

ϕ(U+
i )

m∑
j=1

ϕ(U−
j ) (FM)′(U+

i + ϵ)dxdt

=

∫ t

0

∫
Ω

ϕ(U+
i )

ϕ(U+
i + ϵ)

m∑
j=1

ϕ(U−
j ) ϕ(U

+
i + ϵ)(FM)′(U+

i + ϵ)dxdt

≥
∫ t

0

∫
Ω

ϕ(U+
i )

ϕ(U+
i + ϵ)

m∑
j=1

ϕ(U−
j ) (U+

i + ϵ− 1)dxdt
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≥
∫ t

0

∫
Ω

(U+
i + ϵ)ϕ(U+

i )

ϕ(U+
i + ϵ)

m∑
j=1

ϕ(U−
j )dxdt−

∫ t

0

∫
Ω

ϕ(U+
i )

ϕ(U+
i + ϵ)

m∑
j=1

ϕ(U−
j )dxdt

≥
∫ t

0

∫
Ω

ϕ(U+
i )

m∑
j=1

ϕ(U−
j )dxdt−

∫ t

0

∫
Ω

m∑
j=1

ϕ(U−
j )dxdt. (4.2.14)

Combining (4.2.10)-(4.2.14) and (4.2.8), then summing the final results for i =

1, ...,m, leads that

m∑
i=1

1

∆t

∫ t

0

∫
Ω

FM(U+
i + ϵ)dxdt−

m∑
i=1

1

∆t

∫ t

0

∫
Ω

FM(U−
i + ϵ)dxdt

+
1

2M∆t

m∑
i=1

∫ t

0

∫
Ω

(U+
i − U−

i )
2dxdt+

m∑
i=1

Di

∫ t

0

∫
Ω

|∇U+
i |2

ϕ(U+
i + ϵ)

dxdt

+

∫ t

0

∫
Ω

m∑
i=1

ϕ(U+
i )

ϕ(U+
i + ϵ)

∇U+
i

m∑
j=1

∇U+
j dxdt ≤ 2γ

m∑
i=1

∫ t

0

∫
Ω

FM(U+
i + ϵ)dxdt

+m

∫ t

0

∫
Ω

m∑
i=1

ϕ(U−
i )dxdt−

∫ t

0

∫
Ω

m∑
i=1

ϕ(U+
i )

m∑
i=1

ϕ(U−
i )dxdt+ 2γ̂T |Ω|, (4.2.15)

where γ̂ =
∑m

i=1 γi. By using Young’s inequality, we deal with the second term in

the right side of (4.2.15) as follows,

m

∫ t

0

∫
Ω

m−1∑
i=1

ϕ(U−
i )dxdt ≤

m2

2
T |Ω|+ 1

2

∫ t

0

∫
Ω

[ m∑
i=1

ϕ(U−
i )

]2
dxdt. (4.2.16)

With the aid of the Lipschitz continuity of the function ϕ and Young’s inequality,

we have

−
∫ t

0

∫
Ω

m∑
i=1

ϕ(U+
i )

m∑
i=1

ϕ(U−
i )dxdt

= −
∫ t

0

∫
Ω

[ m∑
i=1

ϕ(U+
i )−

m∑
i=1

ϕ(U−
i ) +

m∑
i=1

ϕ(U−
i )

] m∑
i=1

ϕ(U−
i )dxdt

= −
∫ t

0

∫
Ω

[ m∑
i=1

ϕ(U+
i )−

m∑
i=1

ϕ(U−
i )

] m∑
i=1

ϕ(U−
i )dxdt−

∫ t

0

∫
Ω

[ m∑
i=1

ϕ(U−
i )

]2
dxdt

≤ 2m−1

m∑
i=1

∫ t

0

∫
Ω

(
ϕ(U+

i )− ϕ(U−
i )

)2
dxdt− 1

2

∫ t

0

∫
Ω

[ m∑
i=1

ϕ(U−
i )

]2
dxdt

≤ 2m−1

m∑
i=1

∫ t

0

∫
Ω

(
U+
i − U−

i

)2
dxdt− 1

2

∫ t

0

∫
Ω

[ m∑
i=1

ϕ(U−
i )

]2
dxdt. (4.2.17)
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From the Lipschitz continuity of the function ϕ, Young’s inequality and ϕ(s+ϵ) ≥ ϵ,

it follows that ∫ t

0

∫
Ω

m∑
i=1

ϕ(U+
i )

ϕ(U+
i + ϵ)

∇U+
i

m∑
j=1

∇U+
j dxdt

=

∫ t

0

∫
Ω

(
m∑
i=1

∇U+
i )

2 dxdt+

∫ t

0

∫
Ω

m∑
i=1

ϕ(U+
i )− ϕ(U+

i + ϵ)

ϕ(U+
i + ϵ)

∇U+
i

m∑
j=1

∇U+
j dxdt

≥
∫ t

0

∫
Ω

(
m∑
i=1

∇U+
i )

2 dxdt− 2m−2

∫ t

0

∫
Ω

m∑
i=1

(ϕ(U+
i )− ϕ(U+

i + ϵ))2

ϕ(U+
i + ϵ)

|∇U+
i |2

ϕ(U+
i + ϵ)

dxdt

−1

2

∫ t

0

∫
Ω

(
m∑
i=1

∇U+
i )

2 dxdt

≥ 1

2

∫ t

0

∫
Ω

(
m∑
i=1

∇U+
i )

2 dxdt− 2m−2ϵ

∫ t

0

∫
Ω

m∑
i=1

|∇U+
i |2

ϕ(U+
i + ϵ)

dxdt. (4.2.18)

Substituting (4.2.16), (4.2.17) and (4.2.18) in (4.2.15) we have

(
1

∆t
− 2γ)

m∑
i=1

∫ t

0

∫
Ω

FM(U+
i + ϵ)dxdt−

m∑
i=1

1

∆t

∫ t

0

∫
Ω

FM(U−
i + ϵ)dxdt

+(
1

2M∆t
− 2m−1)

∫ t

0

∫
Ω

(U+
i − U−

i )
2dxdt+

D∗

2

∫ t

0

∫
Ω

m∑
i=1

|∇U+
i |2

ϕ(U+
i + ϵ)

dxdt

+
1

2

∫ t

0

∫
Ω

(
m∑
i=1

∇U+
i )

2 dxdt ≤ m2

4
T |Ω|+ 2γ̂T |Ω| (4.2.19)

In the above inequality we useD∗−2m−2ϵ ≥ D∗/2 and this holds for ϵ ≤ D∗/2m−1

where D∗ = mini=1,..mDi. From (4.2.19) we conclude that

(
1

∆t
−2γ)

m∑
i=1

∫ t

0

∫
Ω

FM(U+
i +ϵ)dxdt−

m∑
i=1

1

∆t

∫ t

0

∫
Ω

FM(U−
i +ϵ)dxdt ≤ C, (4.2.20)

where C = (m
2

4
+ 2γ̂)T |Ω|. Now, let

vk =
m∑
i=1

∫ t

0

∫
Ω

FM(U+
i + ϵ)dxdt =

m∑
i=1

k−1∑
j=0

∆t

∫
Ω

FM(U j+1
i + ϵ)dx,

then we can write (4.2.20) as follows

vk ≤
vk−1

(1− 2γ∆t)
+

∆tC

(1− 2γ∆t)
≤ (1 + 2γ∆t)vk−1 +∆t(1 + 2γ∆t)C. (4.2.21)

Finally, using induction we arrive at the following inequality

vk ≤ (1 + 2γ∆t)kv0 +∆tC
k∑

l=1

(1 + 2γ∆t)l
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≤ (1 + 2γ∆t)kv0 +
C

2γ
(1 + 2γ∆t)k+1

≤ (1 + 2γ∆t)kv0 +
C

2γ
e2γ∆t(k+1).

That is

m∑
i=1

∫ t

0

∫
Ω

FM(U+
i + ϵ)dxdt ≤ (1 + 2γ∆t)k

m∑
i=1

∫
Ω

FM(U0
i + ϵ)dxdt+

C

2γ
e2γ∆t(k+1).

(4.2.22)

Moreover, noting ϕ(s) ≤ s yields that∫ t

0

∫
Ω

|∇U+
i |2

ϕ(U+
i + ϵ)

dxdt ≥
∫ t

0

∫
Ω

|∇U+
i |2

U+
i + ϵ

dxdt = 4

∫ t

0

∫
Ω

|∇
√
U+
i + ϵ|2dxdt.

(4.2.23)

Now, by substituting (4.2.22) and (4.2.23) in (4.2.19), and using induction we arrive

at
m∑
i=1

∫
Ω

FM(U+
i + ϵ)dx+ (

1

2M∆t
− 2m−1)

∫ t

0

∫
Ω

(U+
i − U−

i )
2dxdt

+2D∗
∫ t

0

∫
Ω

m∑
i=1

|∇
√
U+
i + ϵ|2 dxdt+ 1

2

∫ t

0

∫
Ω

[ m∑
i=1

∇U+
i

]2
dxdt

≤ [1 + 2γ(1 + 2γ∆t)k]
m∑
i=1

∫
Ω

FM(U0
i + ϵ)dx+ C

≤ [1 + 2γ(1 + 2γ∆t)k]
m∑
i=1

∫
Ω

FM(ϕ(U0
i ) + ϵ)dx+ C

≤ [1 + 2γ(1 + 2γ∆t)k]
m∑
i=1

∫
Ω

F(U0
i + ϵ)dx+ C. (4.2.24)

We use in the second inequality a simple fact that, clearly, if there exists M > 0

such that 0 ≤ U0
i ≤ M , then ϕ(U0

i ) = U0
i . Henceforth M > 1 is assumed. Then in

the last inequality, we use the results of Lemma 4.2.1.

We shall tidy up the bound (4.2.24) by passing to the limit ϵ→ 0+. Concerning

the ϵ-dependent term on the right-hand side, Lebesgue’s dominated convergence

theorem implies that

lim
ϵ→0+

∫
Ω

F(U0
i + ϵ)dx =

∫
Ω

F(U0
i )dx

We can easily pass to the limit on the left-hand side of (4.2.24). By applying

Fatou’s lemma to the first and third terms on the left-hand side of (4.2.24) we get,
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for t = tn, n ∈ {1, ..., N}, that

lim inf
ϵ→0+

∫
Ω

FM(U+
i + ϵ)dxdt ≥

∫
Ω

FM(U+
i )dxdt,

lim inf
ϵ→0+

m∑
i=1

∫ t

0

∫
Ω

|∇
√
U+
i + ϵ|2dxdt ≥

m∑
i=1

∫ t

0

∫
Ω

|∇
√
U+
i |2dxdt.

Thus, after passage to the limit ϵ→ 0+, we have, for all t = tn, n ∈ {1, ..., N}, that
m∑
i=1

∫
Ω

FM(U+
i )dxdt+ (

1

2M∆t
− 2m−1)

∫ t

0

∫
Ω

(U+
i − U−

i )
2dxdt

+2D∗
∫ t

0

∫
Ω

m∑
i=1

|∇
√
U+
i |2 dxdt+

1

2

∫ t

0

∫
Ω

[ m∑
i=1

∇U+
i

]2
dxdt

≤ [1 + 2γ(1 + 2γ∆t)k]
m∑
i=1

∫
Ω

FM(U0
i )dx+ C. (4.2.25)

2

Additional regularity, more than we have been able to prove, is required to

complete the analysis of problem (P∆t
M ). Unfortunately, we have been unable to prove

the regularity requirement which is essential to establish the convergence results.

However, in order to proceed with the convergence analysis we adopt an alternative

technique to prove that U±
i (x, t) ∈ L∞(ΩT ).

Lemma 4.2.3 Let us divide the region Ω into two regions such that Ω = ΩM(t)
∪

Ω0(t)

and these regions be defined as follows:

ΩM(t) = {x ∈ Ω : U+
i (x, t) ≥M},

Ω0(t) = {x ∈ Ω : U+
i (x, t) < M}.

Then we have |ΩM(t)| → 0 as M → ∞, a.e. in Ω× [0, T ].

Proof : We note from (4.1.1) that (when s ≥M)

FM(s) =
s2 −M2

2M
+ (lnM − 1)s+ 1 ≥ (lnM − 1)s.

Then, using the first bound in (4.2.7), we have∫
Ω

FM(U+
i )dx =

∫
ΩM (t)

FM(U+
i )dx+

∫
Ω0(t)

FM(U+
i )dx ≤ C. (4.2.26)
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Then, (4.2.26) lead to the following inequality:

C ≥
∫
ΩM (t)

FM(U+
i )dx ≥ (lnM − 1)

∫
ΩM (t)

U+
i dx ≥M(lnM − 1)|ΩM(t)|. (4.2.27)

So for each i

|ΩM(t)| ≤ C

M(lnM − 1)
→ 0 as M → ∞. (4.2.28)

2

Assumption 4.2.1 From Lemma 4.2.3 we will assume that: U+
i ≤ Υ, a.e. in Ω×

[0, T ] for M sufficiently large, i.e

∥U+
i ∥L∞(ΩT ) ≤ Υ where Υ ∈ R <∞. (4.2.29)

Theorem 4.2.4 Suppose that the condition of relating ∆t to M , is such that

∆tM = o(1) as ∆t → 0 (or, equivalently, ∆t = o(M−1) as M → ∞). Moreover, if

∆t < 1/4γ, then, the solutions {U±
i , i = 1, ...,m} satisfy the following bounds

m∑
i=1

∫
Ω

(U+
i )

2dx+
1

∆t

m∑
i=1

∫ t

0

∫
Ω

(U+
i − U−

i )
2dxdt+ 2D̆

m∑
i=1

∫ t

0

∫
Ω

|∇U+
i |2dxdt

+
m∑
i=1

∫ t

0

∫
Ω

U+
i ϕ(U

+
i )

m∑
j=1

ϕ(U−
j )dxdt ≤ B2(U

0
i ), (4.2.30)

where D̆ = D − 2m−2Υ2 > 0 and B2(U
0
i ) = 2[1 + 2γ(1 + 2γ∆t)k]

∑m
i=1

∫
Ω
(U0

i )
2dx+

CB1(U
0
i ).

Proof : For any ϵ ∈ (0, 1), whereby 0 < ϵ < 1 < M , we choose η = χ[0,t]U
+
i ,

i = 1, ...,m with t = tn, n ∈ {1, ..., N}, as the test function in (3.3.64), to obtain

(
1

2∆t
−2γ)

m∑
i=1

∫ t

0

∫
Ω

(U+
i )

2dxdt− 1

2∆t

m∑
i=1

∫ t

0

∫
Ω

(U−
i )

2dxdt+
1

2∆t

m∑
i=1

∫ t

0

∫
Ω

(U+
i −U−

i )
2dxdt

+D
m∑
i=1

∫ t

0

∫
Ω

|∇U+
i |2dxdt+

m∑
i=1

∫ t

0

∫
Ω

U+
i ϕ(U

+
i )

m∑
j=1

ϕ(U−
j )dxdt

≤ −
∫ t

0

∫
Ω

m∑
i=1

ϕ(U+
i )∇U+

i

m∑
j=1

∇U+
j dxdt, (4.2.31)

July 2, 2015



4.3. M-independent bounds on the time-derivatives 66

where D = mini=1,..mDi and γ = maxmi=1 γi. We also have from Young’s inequality,

the fourth bound in (4.2.7) and the bound (4.2.29), that

−
∫ t

0

∫
Ω

m∑
i=1

ϕ(U+
i )∇U+

i

m∑
j=1

∇U+
j dxdt

≤ ρ

2

∫ t

0

∫
Ω

[ m∑
i=1

ϕ(U+
i )∇U+

i

]2
dxdt+

1

2ρ

∫ t

0

∫
Ω

[ m∑
i=1

∇U+
i

]2
dxdt

≤ 2m−2ρ

∫ t

0

∫
Ω

m∑
i=1

ϕ2(U+
i )|∇U+

i |2dxdt+
B1(U

0
i )

2ρ

≤ 2m−2Υ2ρ

∫ t

0

∫
Ω

m∑
i=1

|∇U+
i |2dxdt+

B1(U
0
i )

2ρ
. (4.2.32)

Combining (4.2.31), (4.2.32) yields that

(
1

2∆t
−2γ)

m∑
i=1

∫ t

0

∫
Ω

(U+
i )

2dxdt− 1

2∆t

m∑
i=1

∫ t

0

∫
Ω

(U−
i )

2dxdt+
1

2∆t

m∑
i=1

∫ t

0

∫
Ω

(U+
i −U−

i )
2dxdt

+D̆
m∑
i=1

∫ t

0

∫
Ω

|∇U+
i |2dxdt+

m∑
i=1

∫ t

0

∫
Ω

U+
i ϕ(U

+
i )

m∑
j=1

ϕ(U−
j )dxdt ≤

B1(U
0
i )

2ρ
.

(4.2.33)

Similarly to (4.2.22), we have from (4.2.32) that

m∑
i=1

∫ t

0

∫
Ω

(U+
i )

2dxdt ≤ (1 + 2γ∆t)k
m∑
i=1

∫
Ω

(U0
i )

2dxdt+
B1(U

0
i )

4ργ
e2γ∆t(k+1). (4.2.34)

Now, by substituting (4.2.34) in (4.2.33), and using induction we arrive to the re-

quired result. 2

4.3 M-independent bounds on the time-derivatives

We begin by bounding the time-derivative of Ui, i = 1, ...,m using (3.3.64). It follows

from (3.3.64) that

|
∫ T

0

∫
Ω

∂Ui

∂t
η d xd t| ≤ |Di

∫ T

0

∫
Ω

∇U+
i ·∇η d xd t|+|

∫ T

0

∫
Ω

ϕ(U+
i )

m∑
j=1

∇U+
j ·∇η d xd t|

+|γi
∫ T

0

∫
Ω

U+
i η d xd t|+ |

∫ T

0

∫
Ω

ϕ(U+
i )

m∑
j=1

ϕ(U−
j ) η d xd t|

:= Ŝ1 + Ŝ2 + Ŝ3 + Ŝ4, i = 1, ...,m. (4.3.35)
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We proceed to bound each of the terms Ŝ1, ..., Ŝ4. We shall use throughout the rest

of this section test functions η such that

η ∈ L2(0, T ;H1(Ω)).

We begin by considering Ŝ1. We the Hölder’s inequality and (4.2.7) to arrive for all

η ∈ L2(0, T ;H1(Ω)),

Ŝ1 = |Di

∫ T

0

∫
Ω

∇U+
i · ∇η d xd t| ≤ Di

∫ T

0

|U+
i |1|η|1 d t

≤ Di∥U+
i ∥L2(0,T ;H1(Ω))∥η∥L2(0,T ;H1(Ω)) ≤ C∥η∥L2(0,T ;H1(Ω)). (4.3.36)

Next, we consider term Ŝ2. We observe using the Hölder’s inequality, (4.2.30) and

(4.2.29) that

Ŝ2 = |
∫ T

0

∫
Ω

ϕ(U+
i )

m∑
j=1

∇U+
j · ∇η d xd t| ≤

∫ T

0

∥ϕ(U+
i )∥∞

m∑
j=1

∥∇U+
j ∥∥∇η∥d t

≤
∫ T

0

∥U+
i ∥∞

m∑
j=1

∥∇U+
j ∥∥∇η∥d t

≤ ∥U+
i ∥L∞(ΩT )

m∑
j=1

∥U+
j ∥L2(0,T ;H1(Ω))∥η∥L2(0,T ;H1(Ω)) ≤ C∥η∥L2(0,T ;H1(Ω)). (4.3.37)

We are ready to consider Ŝ3. Employing the Hölder’s inequality, (4.2.7), (4.2.29)

and the embedding result L∞(ΩT ) ↪→ L2(ΩT ) yields

Ŝ3 = |γi
∫ T

0

∫
Ω

U+
i η d xd t| ≤ γi∥U+

j ∥L2(ΩT )∥η∥L2(ΩT ) ≤ C∥η∥L2(ΩT ). (4.3.38)

Now, we consider term Ŝ4. We employ, the Hölder’s inequality, (4.2.29) to see for

all η ∈ L2(0, T ;W 1,∞(Ω)) that

Ŝ4 = |
∫ T

0

∫
Ω

ϕ(U+
i )

m∑
j=1

ϕ(U−
j ) η d xd t| ≤

∫ T

0

∥ϕ(U+
i )∥∞

m∑
j=1

∥ϕ(U−
j )∥ ∥η∥ d t

≤
∫ T

0

∥U+
i ∥∞

m∑
j=1

∥U−
j ∥ ∥η∥ d t

≤ ∥U+
i ∥L∞(ΩT )

m∑
j=1

∥U−
j ∥L2(ΩT ) ∥η∥L2(ΩT ) ≤ C∥η∥L2(ΩT ). (4.3.39)
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Upon substituting the bounds on the terms Ŝ1 to Ŝ4 into (4.3.35), with η ∈ L2(0, T ;W 1,∞(Ω)),

and noting the embedding results L2(0, T ;H1(Ω)) ↪→ L2(ΩT ), we deduce from

(4.3.35) that

|
∫ T

0

∫
Ω

∂Ui

∂t
η d xd t| ≤ C∥η∥L2(0,T ;H1(Ω)), i = 1, ...,m. (4.3.40)

Thus, we deduce that∥∥∥∥∂Ui

∂t

∥∥∥∥2

L2(0,T ;(H1(Ω))′)

≤ C. i = 1, ...,m. (4.3.41)

4.4 Passage to the limit M → ∞

We note that we have had to assume that Ui is in L∞(ΩT ), but as this is an arti-

ficial assumption, in the following theorem, we exclude any convergence properties

associated with this assumption.

Theorem 4.4.1 Suppose that ∆t = o(M−1), then, there exists a subsequence

of {U±
i , i = 1, ...,m}M>1 (denoted by the same sequence), and functions {ui, i =

1, ...,m} such that

ui ∈ L2(0, T ;H1(Ω)) ∩ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;Ls(Ω)), (4.4.42)

with ui(x, t) ≥ 0, i = 1, ...,m almost everywhere. Moreover, it holds as M → ∞

(and thereby ∆t→ 0+), that for i = 1, ...,m

Ui, U
±
i ⇀ ui in L2(0, T ;H1(Ω)), (4.4.43)

Ui, U
±
i ⇀∗ ui, in L∞(0, T ;L2(Ω)), (4.4.44)

∂Ui

∂t
⇀

∂ui
∂t

in L2(0, T ; (H1(Ω))′), (4.4.45)

Ui, U
±
i → ui, in L2(0, T ;Ls(Ω)), (4.4.46)

ϕ(U±
i ) → ui in L2(0, T ;Ls(Ω)), (4.4.47)

for any
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s ∈


[2,∞] if d = 1,

[2,∞) if d = 2,

[2, 6] if d = 3.

The function {ui, i = 1, ...,m} is a global weak solution to problem (P) in the sense

that ∫ T

0

[⟨∂ui
∂t
, η⟩H1(Ω) +Di(∇ui,∇η) + (ui

m∑
j=1

∇uj,∇η)]d t

=

∫ T

0

[(γiui − ui

m∑
j=1

uj, η)]d t, ∀η ∈ L2(0, T ;H1(Ω)), i = 1, ...,m. (4.4.48)

Proof : On recalling the weak∗ compactness of bounded balls in the Banach s-

pace L∞(0, T ;L2(Ω)) and noting the first bound on (4.2.30), upon three successive

extractions of subsequences, we deduce the existence of an unbounded index set

M ⊂ (1,∞) such that each of the three sequences {Ui, U
±
i } converges to its respec-

tive weak∗ limit in L∞(0, T ;L2(Ω)) as M → ∞ with M ∈ M. Thanks to (3.3.35),

(3.3.36) and (3.3.37)∫ T

0

∥Ui − U+
i ∥2ds =

1

3

∫ T

0

∥U+
i − U−

i ∥2ds ≤
1

3
C∆t, (4.4.49)

where the last inequality is a consequence of the second bound in (4.2.30). On

passing to the limit ∆t → 0 and using (4.2.30) we thus deduce that the weak∗

limits of the sequences {Ui, U
±
i } coincide. We label this common limit by ui; by

construction then, ui ∈ L∞(0, T ;L2(Ω)). Thus we have shown (4.4.44).

Upon further successive extraction of subsequences from {Ui, U
±
i }, and noting

the third bound on (4.2.30), the limits (4.4.43) follow directly from the weak com-

pactness of bounded balls in the Hilbert spaces L2(0, T ;H1(Ω)) and the uniqueness

of limits of sequences in the weak topology of L2(0, T ;H1(Ω)). Thus, the result

(4.4.43) holds.

Next, since {∂Ui

∂t
}h ∈ L2(0, T, (H1(Ω))′) and L2(0, T, (H1(Ω))′) are reflexive Ba-

nach spaces then according to the weak compactness theorem, there exist a sub-

sequences {∂Ui

∂t
}M ∈ L2(0, T, (H1(Ω))′) and a functions η̃ ∈ L2(0, T, (H1(Ω))′) such
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that
∂Ui

∂t
⇀ η̃ in L2(0, T, (H1(Ω))′).

A well known argument can be easily adapted to show that η̃ = ∂ui

∂t
, (see Robin-

son [84], page 204). Thus, the result (4.4.45) holds.

From an application of the Lions-Aubin theorem, see (2.1.6), on noting the fol-

lowing embedding results

H1(Ω)
c
↪→ Ls(Ω) ↪→ (H1(Ω))′,

which hold from the Rellich-Kondrachov theorem under the stated choice of s, we

find that

Wu = {η : η ∈ L2(0, T ;H1(Ω)),
∂η

∂t
∈ L2(0, T ; (H1(Ω))′} c

↪→ L2(0, T ;Ls(Ω)).

As Ui ∈ L2(0, T ;H1(Ω)) and ∂Ui

∂t
∈ L2(0, T ; (H1(Ω))′, thus, Ui ∈ Wu, then we can

extract a subsequence, still denoted ui, such that the convergence result (4.4.46)

holds.

Next from the Lipschitz continuity of ϕ, we obtain for any s <∞ that

∥ϕ(U±
i )− ui∥L2(0,T ;Ls(Ω)) ≤ ∥ui − ϕ(ui)∥L2(0,T ;Ls(Ω)) + ∥ϕ(ui)− ϕ(U±

i )∥L2(0,T ;Ls(Ω))

≤ ∥ui − ϕ(ui)∥L2(0,T ;Ls(Ω)) + C∥ui − U±
i ∥L2(0,T ;Ls(Ω)). (4.4.50)

The first term on the right-hand side of (4.4.50) converges to zero as M → ∞ on

noting that ϕ(ui) converges to ui almost everywhere on Ω × [0, T ] and applying

Lebesgues dominated convergence theorem, see Appendix A.1.20. The second term

converges to 0 on noting (4.4.46). That yields the desired result (4.4.47).

For any η ∈ L∞(0, T ;W 1,∞(Ω)), we set χ ≡ η as a test function in (3.3.64)

yielding ∫ T

0

[(
∂Ui

∂t
, η) +Di(∇U+

i ,∇η) + (ϕ(U+
i )

m∑
j=1

∇U+
j ,∇η)]d t

=

∫ T

0

[(γiU
+
i − ϕ(U+

i )
m∑
j=1

ϕ(U−
j ), η)]d t, i = 1, ...,m. (4.4.51)
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We shall now study the convergence of each term in (4.4.51) separately. Passing to

the limit on the first term in (4.4.51) is easy. Using (4.4.45) we immediately have

that∫ T

0

∫
Ω

∂Ui

∂t
η d x d t =

∫ T

0

⟨ ∂Ui

∂t
η⟩H1(Ω) d t→

∫ T

0

⟨ ∂ui
∂t

η⟩H1(Ω) d t, i = 1, ...,m,

(4.4.52)

as M → ∞ (and ∆t→ 0+), for η ∈ L∞(0, T ;W 1,∞(Ω)), as required.

The second term in (4.4.51) is dealt with as follows:

Di

∫ T

0

∫
Ω

∇U+
i ∇ηd x d t→ Di

∫ T

0

∫
Ω

∇ui∇ηd x d t. (4.4.53)

The third term in (4.4.51) will be dealt with by decomposing it into two further

terms, the first of which tends to 0, while the second converges to the expected

limiting value. We proceed as follows:∫ T

0

∫
Ω

ϕ(U+
i )

m∑
j=1

∇U+
j · ∇ηd x d t

=

∫ T

0

∫
Ω

(ϕ(U+
i )− ui)

m∑
j=1

∇U+
j · ∇ηd x d t+

∫ T

0

∫
Ω

ui

m∑
j=1

∇U+
j · ∇ηd x d t

=: V1 + V2. (4.4.54)

We shall show that V1 converges to 0 and that V2 converges to the expected limit.

|V1| ≤
∫ T

0

∫
Ω

|ϕ(U+
i )− ui|

m∑
j=1

|∇U+
j | |∇η|d x d t

≤ ∥ϕ(U+
i )− ui∥L2(ΩT )

m∑
j=1

∥U+
j ∥L2(0,T ;H1(Ω)) ∥η∥L∞(0,T ;W 1,∞(Ω))d x d t.

The second term is bounded by (4.4.43). The norm of the difference of the bound

on V1 is known to converge to 0 as M → ∞ (and ∆t→ 0+), on noting (4.4.47) and

the embedding result L2(0, T ;Ls(Ω)) ↪→ L2(ΩT ). This then implies that the term

V1 converges to 0 as M → ∞ (and ∆t→ 0+).

Concerning the term V2, we have that

V2 =

∫ T

0

∫
Ω

ui

m∑
j=1

∇U+
j · ∇ηd x d t→

∫ T

0

∫
Ω

ui

m∑
j=1

∇uj · ∇ηd x d t, i = 1, ...,m,

(4.4.55)
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as M → ∞ (and ∆t→ 0+).

The fourth term in (4.4.51) is easily shown to converge to following limit:

γi

∫ T

0

∫
Ω

U+
i ηd x d t→ γi

∫ T

0

∫
Ω

uiηd x d t, i = 1, ...,m. (4.4.56)

Next, the last term in (4.4.51) can be divided into two part as follows

−
∫ T

0

∫
Ω

ϕ(U+
i )

m∑
j=1

ϕ(U−
j )ηd x d t

= −
∫ T

0

∫
Ω

(ϕ(U+
i )− ui)

m∑
j=1

ϕ(U−
j )ηd x d t

−
∫ T

0

∫
Ω

ui

m∑
j=1

ϕ(U−
j )ηd x d t =: V3 + V4. (4.4.57)

With the aid of the Hölder’s inequality, we have

|V3| = |
∫ T

0

∫
Ω

(ϕ(U+
i )− ui)

m∑
j=1

ϕ(U−
j )ηd x d t|

≤
∫ T

0

∫
Ω

|ϕ(U+
i )− ui|

m∑
j=1

|ϕ(U−
j )| |η|d x d t

≤ ∥ϕ(U+
i )− ui∥L2(ΩT )

m∑
j=1

∥U−
j ∥L2(ΩT ) ∥η∥L∞(ΩT ).

Thus, we deduce that term V3 converges to 0 as M → ∞ (and ∆t→ 0+) on noting

the embedding L2(0, T ;Ls(Ω)) ↪→ L2(ΩT ) and L
∞(0, T ;W 1,∞(Ω)) ↪→ L∞(ΩT ) . It

is clear that the second part converge to the expected limit. This ends the proof of

the theorem.
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Chapter 5

The population model: Numerical

experiments

In this chapter we shall perform numerical experiments in one and two space di-

mensions which verify the theoretical results derived above and to show the growth

behaviour of the solutions. All simulations were run by programs written in the

Matlab programming language. In Section 5.1 we present a practical algorithm for

computing the numerical solution. We then introduce the numerical experiments in

one and two space dimensions in Sections 5.1.1 and 5.1.2, respectively. In Section

5.2.1 we discuss computational results of the fully-discrete scheme in one space di-

mension. Finally, the results of two dimensional simulations are presented in Section

5.2.2.

5.1 The population model: Numerical experiments

We first introduce the following practical algorithm to solve the nonlinear algebraic

system arising from the approximate problem (Ph∆t
M,ε ) at each time level:

(Ph∆t,k
M,ε ): Given {Un,0

i,ε , i = 1, ...,m} ∈ Sh × ... × Sh for k ≥ 1 find {Un,k
i,ε , i =

1, ...,m} ∈ Sh × ...× Sh such that for all χ ∈ Sh

(
Un,k
i,ε − Un−1

i,ε

∆tn
, χ)h + (Di∇Un,k

i,ε + Λε(U
n,k−1
i,ε )

m∑
j=1

∇Un,k
j,ε ,∇χ)
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= (γiU
n,k
i,ε − ϕε(U

n,k−1
i,ε )

m∑
j=1

ϕε(U
n−1
j,ε ), χ)h, i = 1, ...,m. (5.1.1)

We start with U0
i,ε ≡ πhu0i and we set, for n ≥ 1, Un,0

i,ε ≡ Un−1
i,ε . We can write (5.1.1)

as a system of m × (J + 1)d, d = 1, 2, 3 linear equations, simply by testing (5.1.1)

with φj, j = 0, ..., J . For our numerical results, we set TOL = 10−6 and adopt the

stopping criteria

|Un,k
i,ε − Un,k−1

i,ε |0,∞ < TOL, (5.1.2)

i.e. for k satisfying (5.1.2) we set Un
i,ε ≡ Un,k

i,ε , i = 1, ...,m .

Programs were written in Matlab. The resulting linear systems were solved

directly with sparse matrix facilities in Matlab. Although, we have been unable

to prove convergence of Un,k
i,ε , i = 1, ...,m to Un

i,ε, i = 1, ...,m for n fixed, good

convergence properties have been observed in practise. We found that the iterative

method always converged well (only a few steps were required to fulfill the stopping

criteria at each time level).

5.1.1 One-dimensional simulations

Numerical simulations in one space dimension were performed with Ω = [0, L], for

0 ≤ t ≤ T with mesh points xj = jh, j = 0, ..., J where h = L/J . In all simulations

we take J = 200. Thus, the equation is posed on the interval Ω = [0, L] = [0, 2]

with ∆t = 0.001 and h = 0.01. We consider the initial boundary conditions:

u1(x, 0) = 0.2−0.1 cos(2πx), u2(x, 0) = 0.3−0.3 cos(2πx), u3(x, 0) = 0.5−0.5 cos(2πx).

(5.1.3)

5.1.2 Two-dimensional simulations

We take Ω = [0, L]2 and a square uniform mesh with vertices (xi, yj) = (ih, jh),

where i, j = 0, ..., J (see Figure 5.1). Note h = L/J , i.e., we used the same space step

in both the x and y directions. We employ a ’right-angled’ triangulation where each

square is bisected by a diagonal running from the top-right corner to the bottom-

left corner. Nodes are ordered in the ’natural way’, that is, we number the nodes
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consecutively left to right starting with the bottom row. We implemented the fully-

discrete finite element approximation, except now we havem×(J+1)2 unknowns and

the resulting linear system has a block matrix structure. As in the one dimensional

case, the linear system is strictly diagonally dominant for ∆t sufficiently small and

so no partial pivoting is required. We consider the initial boundary conditions:

u1(x, y, 0) = 0.5 + 0.25 cos(2ηπx) + 0.25 cos(2ηπy),

u2(x, y, 0) = 0.5− 0.25 cos(2ηπx)− 0.25 cos(2ηπy). (5.1.4)

Figure 5.1: Right-angled uniform mesh for two dimensional simulations.

5.2 Numerical results

5.2.1 One-dimensional experiments

Firstly, we considered the dynamics of three interacting cell populations in one

dimensional space. We choose the parameters such that D = D1 = D2 = D3 = 1

and M = 10. To discuss how the parameters could reflect a competitive advantage

of certain cell populations over the others, firstly we performed the experiment for

July 2, 2015



5.2. Numerical results 76

γ1 = γ2 = γ3 = 1 then secondly we select γ1 = 1, γ2 = 2 and γ3 = 4. At several

times, the results of numerical solution of (Ph,∆t
M,ε ) are plotted in Figure 5.2 and 5.3.

We selected these times carefully to show the evolution of the interacting cells as

t increases. We see that the solution arrives to a steady state for sufficiently large

time. For γ1 = γ2 = γ3 = 1, the cells evolve to form a homogeneous distribution,

see Figure 5.2. The same behaviour is observed when γ1 = 1, γ2 = 2 and γ3 = 4,

but with a distinct advantage of the u3 cells, see Figure 5.3.

Next, we repeated the same experiment but for D = D1 = D2 = D3 = 100.

In general, the behaviour was very similar, however, we arrive to the stationary

solutions earlier than the case D = 1 for both γ1 = 1, γ2 = 2 and γ3 = 4 and

γ1 = γ2 = γ3 = 1 see Figure 5.4.

In the previous experiments each population moves down its own gradient as

claimed in [79]. Also, we observed that due to the large diffusivity in the case

D = D1 = D2 = D3 = 100, the movement to the direction of lower concentrations

is faster than the case when D = D1 = D2 = D3 = 1.

In all our previous experiments, the computed solution did not exceed the value

M . Also, we repeated the above experiments for different values of M > 10 and

obtained the same results. The question is: How we can choose a suitable value

of M which leads to an accurate numerical solution to (P) a priori? Firstly, we

can initially start with a value M which satisfies maxi ∥U0
i,ε∥ ≤ M then we use the

following criterion in the solver: For fixed n and k, if maxi ∥Un,k
i,ε ∥ > M then set

M = maxi ∥Un,k
i,ε ∥ and recompute {Un,k

i,ε }mi=1. This approach was used successfully

throughout.

We note that the steady-state solution of (P) in space and time, denoted by

{u1,c, u2,c, u3,c}, is determined by the following equations

u1,c(γ1 − u1,c − u2,c − u3,c) = 0,

u2,c(γ2 − u1,c − u2,c − u3,c) = 0,

u3,c(γ3 − u1,c − u2,c − u3,c) = 0.

For γ1 < γ2 < γ3, the u1 and u2 cells will vanish in (P) due to the advantage of the

u3 cells, Therefore, the expected steady state solutions will be u1,c = 0, u2,c = 0 and
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u3,c = γ3 . In the case of γ1 = γ2 = γ3, we clearly have either u1,c = u2,c = u3,c = 0

or u1,c + u2,c + u3,c = γ1 = γ2 = γ3, and this has been satisfied by all numerical

steady-state solutions in our experiments.

The rapid change of the solutions in Figure 5.5 is a point of interest. As an

attempt to investigate whether such behaviour is due to the existence of a sin-

gularity when D = 0, we have repeated the experiment in Figure 5.5 for D =

0.5, 0.2, 0.1, 0.01, 0.001 and 0 with a finer mesh (we took h = 0.005). The solutions

at t = 2 for U1,ε, U2,ε and U3,ε are plotted in Figure 5.5 (a), (b) and (c), respectively.

As D decreases to zero, the solutions change rapidly at x = 0, 0.5, 1, 1.5 and 2.

The solutions appear to be continuous but we expect there will be limited regularity

when D = 0, i.e. ui /∈ C0,1. We also note that the solutions behave smoothly outside

the small neighborhoods of x = 0, 0.5, 1, 1.5 and 2. It may be possible in future

work to investigate the behaviour of the solution around points of rapid change by

performing small-parameter expansions(see the techniques used in [25]).

5.2.2 Two-dimensional experiment

In the second experiment, we considered the dynamics of two interacting cell pop-

ulations in two-dimensional space. Due to the lack of an exact solution for the

cross-diffusion equations, we compute errors in different norms using a numerical

solution on a fine mesh as reference. To measure errors between such a reference

solution zref and an approximate solution zh, at time tn, we will use normalized

Lp-errors:

enp =
∥znref − znh∥p

∥znref∥p
, p = 1, 2,∞,

where

∥znref − znh∥∞ = max
i,j=0,...,J

|znref,i,j − znh,i,j|,

∥znref − znh∥p =
(

L

(J + 1)2

J∑
i=0

J∑
j=0

|znref,i,j − znh,i,j|p
) 1

p

, p = 1, 2.

Here znref,i,j stands for the projection of the reference solution onto the point i, j.

Note that we don’t use the exact norms in these computation as they can be difficult

to calculate so instead use these approximate measures.
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Figure 5.2: Numerical solutions of (P h∆t
M,ε ) in one dimension plotted at several times. The

initial data are u1(x, 0) = 0.2− 0.1 cos(2πx), u2(x, 0) = 0.3− 0.3 cos(2πx) and u3(x, 0) =

0.5 − 0.5 cos(2πx). The parameter values are: D = 1, M = 10, γ1 = γ2 = γ3 = 1. The

solid, dash, dot lines represent u1, u2, u3, respectively. (a) t = 0.1, (b) t = 0.2, (c)

t = 0.5, (d) t = 1, (e) t = 4.
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Figure 5.3: Numerical solutions of (P h∆t
M,ε ) in one dimension plotted at several times. The

initial data are u1(x, 0) = 0.2− 0.1 cos(2πx), u2(x, 0) = 0.3− 0.3 cos(2πx) and u3(x, 0) =

0.5− 0.5 cos(2πx). The parameter values are: D = 1, M = 10, γ1 = 1, γ2 = 2 and γ3 = 4.

The solid, dash, dot lines represent u1, u2, u3, respectively. (a) t = 0.1, (b) t = 0.2,

(c) t = 0.3, (d) t = 0.5, (e) t = 1, (f) t = 4.
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Figure 5.4: Numerical solutions of (P h∆t
M,ε ) in one dimension plotted at several times. The

initial data are u1(x, 0) = 0.2− 0.1 cos(2πx), u2(x, 0) = 0.3− 0.3 cos(2πx) and u3(x, 0) =

0.5 − 0.5 cos(2πx). The parameter values are: D = 100, M = 10, γ1 = 1, γ2 = 2 and

γ3 = 4 in (a), (b), (c) and (d) while γ1 = γ2 = γ3 = 1 in (e) and (f). The solid, dash, dot

lines represent u1, u2, u3, respectively. (a) t = 0.1, (b) t = 0.5, (c) t = 1, (d) t = 4,

(e) t = 0.1, (f) t = 4.
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Figure 5.5: Numerical solutions of (P h∆t
M,ε ) in one dimension plotted at time t = 2. The

initial data are u1(x, 0) = 0.2− 0.1 cos(2πx), u2(x, 0) = 0.3− 0.3 cos(2πx) and u3(x, 0) =

0.5 − 0.5 cos(2πx). The solutions are plotted for different parameter values of D with

M = 10, γ1 = 1, γ2 = 2 and γ3 = 4. (a) u1, (b) u2, (c) u3.
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The numerical test corresponds to the two dimensional cross-diffusion model

endowed with zero-flux boundary conditions. The spatial domain is Ω = [0, L]2

and to perform the numerical simulations we adopt a set of parameters as follows:

∆t = 0.000002, L = 0.5, η = 2, D = D1 = D2 = 0.1, γ1 = γ2 = 1 and h = 0.02, 0.01

and 0.005. We computed the reference solution zref with h = 0.005, then we compare

this solution with the approximated solutions at h = 0.02 and h = 0.01. The

corresponding error results for this example is given in Figure 5.6. This figure

shows that the errors in the numerical solutions decrease roughly as the space-steps

are decreased. Also, we notice from Figure 5.6 that the error in the approximate

solutions increases with increasing the time.

Next, we solve our problem in two dimensions with the following selections:

∆t = 0.00001, L = 1, η = 1, D1 = 1 = D2 = 1, γ1 = γ2 = 1 and h = 0.01. In order

to display the numerical results clearly, the solutions are plotted in Figures 5.7 and

5.8. A comparison of the species’ behaviour can be analyzed from Figure 5.9, where

we display profiles of the numerical solutions at time t = 0.2, 0.4, 0.6, 1 and 2 in a

one dimensional slice of the domain, namely the level y = 0.5.
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Figure 5.6: Errors for u1 in different norms versus the simulated time for different the

mesh size h (a) L1-norm, (b) L2-norm, (c) L∞-norm.
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Figure 5.7: Model with cross-diffusion: Spread of a population for species u1 at times (a)

t = 0.2, (b) t = 0.4, (c) t = 0.6, (d) t = 1, (e) t = 2.
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Figure 5.8: Model with cross-diffusion: Spread of a population for species u2 at times (a)

t = 0.2, (b) t = 0.4, (c) t = 0.6, (d) t = 1, (e) t = 2.
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Figure 5.9: Model with cross-diffusion: Profile view at y = 0.5 of the spread of a popu-

lation for species u1 and u2 at times (a) t = 0.2, (b) t = 0.4, (c) t = 0.6, (d) t = 1, (e)

t = 2.
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Chapter 6

Fully discrete approximation for a

cross-diffusion tumor-growth

model

In this chapter we discretise the cross-diffusion Tumor-growth model in space using

a finite element method and discretise in time using finite differences. In Section 6.1,

we present a fully discrete finite element approximation of problem (W ). In Section

6.2 we prove the existence and uniqueness of the fully discrete approximations, while

in Section 6.3 some stability estimates are proved.

6.1 A fully discrete approximation

The corresponding fully discrete regularized version of the problem (W ) is:

(W h∆t
M,ε ) For n ≥ 1 find {Cn

ε ,Mn
ε} ∈ Sh × Sh such that for all χ ∈ Sh

(
Cn
ε − Cn−1

ε

∆t
, χ)h+(Dn

11∇Cn
ε+D

n
12∇Mn

ε ,∇χ)

= (−γϕε(Cn
ε )ϕε(Cn−1

ε +Mn−1
ε − 1)− δϕε(Cn

ε ), χ)
h,

(6.1.1)

(
Mn

ε −Mn−1
ε

∆t
, χ)h+(Dn

21∇Cn
ε+D

n
22∇Mn

ε ,∇χ)

= −(αϕε(Cn−1
ε ) ϕε(Mn

ε ) ϕε(Cn−1
ε +Mn−1

ε − 1), χ)h,

(6.1.2)
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where

Dn
11[∇πhF ′

ε(Cn
ε )−∇πhF ′

ε(1−Cn
ε−Mn

ε )] =
1

τ

∫
τ

πh(2(1−ϕε(Cn
ε ))−βθϕ2

ε(Mn
ε )) dx ∇Cn

ε

+
1

τ

∫
τ

πh(
2ϕε(Cn

ε )(1− ϕε(Cn
ε ))− βθ(1− ϕε(Mn

ε )− ϕε(1− Cn−1
ε −Mn−1

ε ))ϕ2
ε(Mn

ε )

ϕε(1− Cn−1
ε −Mn−1

ε )
dx

×(∇Cn
ε +∇Mn

ε ), (6.1.3)

Dn
12[∇πhF ′

ε(Cn
ε )−∇πhF ′

ε(1−Cn
ε −Mn

ε )] = −2β

τ

∫
τ

πh(ϕε(Mn
ε )(1+θϕε(Cn

ε ))) dx ∇Cn
ε

−2β

τ

∫
τ

πh(
(1− ϕε(Mn

ε )− ϕε(1− Cn−1
ε −Mn−1

ε ))ϕε(Mε)(1 + θϕε(Cn
ε ))

ϕε(1− Cn−1
ε −Mn−1

ε )
)dx

×(∇Cn
ε +∇Mn

ε ), (6.1.4)

Dn
21[∇πhF ′

ε(Mn
ε )−∇πhF ′

ε(1− Cn
ε −Mn

ε )]

=
1

τ

∫
τ

πh(−2ϕε(Cn
ε ) + βθ(1− ϕε(Mn

ε ))ϕε(Mn
ε )) dx ∇Mn

ε

+
1

τ

∫
τ

πh(
−2ϕε(Cn

ε )(1− ϕε(Cn
ε )− ϕε(1− Cn−1

ε −Mn−1
ε )) + βθ(1− ϕε(Mn

ε ))ϕ
2
ε(Mn

ε )

ϕε(1− Cn−1
ε −Mn−1

ε )
)dx

×(∇Cn
ε +∇Mn

ε ), (6.1.5)

and

Dn
22[∇πhF ′

ε(Mn
ε )−∇πhF ′

ε(1−Cn
ε −Mn

ε )] =
2β

τ

∫
τ

(1−ϕε(Mn
ε ))(1+θϕε(Cn

ε )) dx ∇Mn
ε

+
2β

τ

∫
τ

πh(
ϕε(Mn

ε )(1− ϕε(Mn
ε ))(1 + θϕε(Cn

ε ))

ϕε(1− Cn−1
ε −Mn−1

ε )
) dx (∇Cn

ε +∇Mn
ε ), (6.1.6)

subject to the initial conditions

C0
ε = πhc0 or P hc0, C0

ε = πhm0 or P hm0 in Ω. (6.1.7)

In the above equations, the regularized functions ϕε and Fε, and the parameter ε

have been defined in Chapter 2. Here, the functions on the right hand side of (6.1.1)-

(6.1.2) are considered to be appropriate to control the nonlinearity and obtain the

intended entropy results. In the following lemma we derive the entropy inequality

for the regularized problem (W h∆t
M,ε ) which will provide us with some uniform bounds

on the regularized solutions {Cn
ε ,Mn

ε} ∈ Sh × Sh.
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Lemma 6.1.1 Let {Cn−1
ε ,Mn−1

ε } ∈ Sh × Sh be given for some n = 1, ..., N . Then

for all ε ∈ (0, e−1), for all h > 0 such that

∆t ≤ 1

2
,

there exists a solution {Cn
ε ,Mn

ε} ∈ Sh × Sh to the n-th step of (W h,∆t
M,ε ) such that

[1−2∆t]E(Cn
ε ,Mn

ε )+Kθ∆t|Cn
ε |21+Kθ∆t|Mn

ε |21+
1

4M
|Cn

ε |2h+
1

4M
|Mn

ε |2h+
1

4M
|1−Cn

ε−Mn
ε |2h

≤ E(Cn−1
ε ,Mn−1

ε ) + ∆tC(δ, γ, α, ε,M, |Ω|) + 1

2M

[
|Cn−1

ε |2h + |Mn−1
ε |2h

]
, (6.1.8)

where E(Cn
ε ,Mn

ε ) = (Fε(Cn
ε )+Fε(Mn

ε )+Fε(1−Cn
ε −Mn

ε ), 1)
h, and Kθ is a constant

depending on θ, β and M .

Proof : Choosing χ ≡ ∆tπhF ′
ε(Cn

ε ) − ∆tπhF ′
ε(1 − Cn

ε − Mn
ε ) as a test function in

(6.1.1) and χ ≡ ∆tπhF ′
ε(Mn

ε )−∆tπhF ′
ε(1− Cn

ε −Mn
ε ) as a test function in (6.1.2)

yields,

(Cn
ε − Cn−1

ε , πhF ′
ε(Cn

ε )− πhF ′
ε(1− Cn

ε −Mn
ε ))

h

+(Dn
11∇Cn

ε +Dn
12∇Mn

ε ,∆t∇πhF ′
ε(Cn

ε )−∆t∇πhF ′
ε(1− Cn

ε −Mn
ε ))

= −(γϕε(Cn
ε ) ϕε(Cn−1

ε +Mn−1
ε − 1),∆tπhF ′

ε(Cn
ε )−∆tπhF ′

ε(1− Cn
ε −Mn

ε ))
h

−(δϕε(Cn
ε ),∆tπ

hF ′
ε(Cn

ε ))
h + (δϕε(Cn

ε ),∆tπ
hF ′

ε(1− Cn
ε −Mn

ε ))
h, (6.1.9)

and

(Mn
ε −Mn−1

ε , πhF ′
ε(Mn

ε )− πhF ′
ε(1− Cn

ε −Mn
ε ))

h

+(Dn
21∇Cn

ε +Dn
22∇Mn

ε ,∆t∇πhF ′
ε(Mn

ε )−∆t∇πhF ′
ε(1− Cn

ε −Mn
ε ))

= −(αϕε(Cn−1
ε ) ϕε(Mn

ε ) ϕε(Cn−1
ε +Mn−1

ε −1),∆tπhF ′
ε(Mn

ε )−∆tπhF ′
ε(1−Cn

ε−Mn
ε ))

h.

(6.1.10)

Firstly, it follows from (2.3.32) and (2.1.10) that

(Cn
ε − Cn−1

ε , F ′
ε(Cn

ε ))
h ≥ (Fε(Cn

ε )− Fε(Cn−1
ε ), 1)h + (

1

2
(Cn

ε − Cn−1
ε )2, F ′′

ε (ξ))
h

≥ (Fε(Cn
ε )− Fε(Cn−1

ε ), 1)h +
1

2M
|Cn

ε − Cn−1
ε |2h

≥ (Fε(Cn
ε )− Fε(Cn−1

ε ), 1)h +
1

4M
|Cn

ε |2h −
1

2M
|Cn−1

ε |2h. (6.1.11)
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Similarly,

(Mn
ε −Mn−1

ε , F ′
ε(Mn

ε ))
h ≥ (Fε(Mn

ε )− Fε(Mn−1
ε ), 1)h +

1

4M
|Mn

ε |2h −
1

2M
|Mn−1

ε |2h,

(6.1.12)

and

(−Cn
ε −Mn

ε + Cn−1
ε +Mn−1

ε , F ′
ε(1− Cn

ε −Mn
ε ))

h

≥ (Fε(1−Cn
ε−Mn

ε )−Fε(1−Cn−1
ε −Mn−1

ε ), 1)h+
1

4M
|1−Cn

ε−Mn
ε |2h−

1

2M
|1−Cn−1

ε −Mn−1
ε |2h.

(6.1.13)

Next, we are going to find a bound on the first term of right-hand side of (6.1.9). It

follows from (2.3.32), (2.1.12), Young’s inequality and (2.3.29) that

−γ(ϕε(Cn
ε )ϕε(Cn−1

ε +Mn−1
ε − 1), πhF ′

ε(Cn
ε )− πhF ′

ε(1− Cn
ε −Mn

ε ))
h

= −γ(ϕε(Cn−1
ε +Mn−1

ε −1), ϕε(Cn
ε )F

′
ε(Cn

ε ))
h+γ(ϕε(Cn

ε )ϕε(Cn−1
ε +Mn−1

ε −1), F ′
ε(1−Cn

ε−Mn
ε ))

h

≤ γ(ϕε(Cn−1
ε +Mn−1

ε −1), 1−Cn
ε )

h+γ(ϕε(Cn
ε )ϕε(Cn−1

ε +Mn−1
ε −1), F ′

ε(1−Cn
ε −Mn

ε ))
h

≤ 1

2ε
([Cn

ε ]
2
−, 1)

h + γ(ϕε(Cn
ε )ϕε(Cn−1

ε +Mn−1
ε − 1), F ′

ε(1− Cn
ε −Mn

ε ))
h

+C(M, ε, γ, |Ω|)

≤ (Fε(Cn
ε ), 1)

h+ γ(ϕε(Cn
ε )ϕε(Cn−1

ε +Mn−1
ε − 1), F ′

ε(1−Cn
ε −Mn

ε ))
h+C(M, ε, γ, |Ω|).

(6.1.14)

To deal with the second term on the right-hand side of inequality (6.1.14), we par-

tition the interval Ω as follows

Ω = J+

∪
J−,

where

J+ = {i : F ′
ε((1− Cn

ε −Mn
ε )(xi)) ≥ 0},

and

J− = {i : F ′
ε((1− Cn

ε −Mn
ε )(xi)) < 0},

then, we arrive

γ(ϕε(Cn
ε )ϕε(Cn−1

ε +Mn−1
ε − 1), F ′

ε(1− Cn
ε −Mn

ε ))
h

= γ
∑
i∈J+

M̂iiϕε(Cn
ε (xi))ϕε((Cn−1

ε +Mn−1
ε − 1)(xi))F

′
ε((1− Cn

ε −Mn
ε )(xi))
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+γ
∑
i∈J−

M̂iiϕε(Cn
ε (xi))ϕε((Cn−1

ε +Mn−1
ε − 1)(xi))F

′
ε((1− Cn

ε −Mn
ε )(xi))

≤ γ
∑
i∈J+

M̂iiϕε(Cn
ε (xi))ϕε((Cn−1

ε +Mn−1
ε − 1)(xi))F

′
ε((1− Cn

ε −Mn
ε )(xi))

= γ
∑
i∈J+

M̂ii
ϕε(Cn

ε (xi))ϕε((Cn−1
ε +Mn−1

ε − 1)(xi))

ϕε((1− Cn
ε −Mn

ε )(xi))

×ϕε((1− Cn
ε −Mn

ε )(xi))F
′
ε((1− Cn

ε −Mn
ε )(xi)). (6.1.15)

Now, since (1 − Cn
ε −Mn

ε )(xi) ≥ 1 then ϕε((1 − Cn
ε −Mn

ε )(xi)) ≥ ϕε(1) = 1, then,

on noting (2.3.28), we have

ϕε((Cn
ε )(xi))ϕε((Cn−1

ε +Mn−1
ε − 1)(xi))

ϕε((1− Cn
ε −Mn

ε )(xi))
≤M2.

Now, it follows from (2.3.32), Young’s inequality and (2.3.29), that

γ(ϕε(Cn
ε )ϕε(1− Cn−1

ε −Mn−1
ε ), F ′

ε(1− Cn
ε −Mn

ε ))
h

≤ γM2
∑
i∈J+

M̂iiϕε((1− Cn
ε −Mn

ε )(xi))F
′
ε((1− Cn

ε −Mn
ε )(xi))

≤ γM2
∑
i∈J+

M̂ii(1− [(1− Cn
ε −Mn

ε )(xi)]−)

≤ (Fε(1− Cn
ε −Mn

ε ), 1)
h + C(γ,M, ε, |Ω|). (6.1.16)

Finally, combining (6.1.14) and (6.1.16), we have

−γ(ϕε(Cn
ε )ϕε(Cn−1

ε +Mn−1
ε − 1), πhF ′

ε(Cn
ε )− πhF ′

ε(1− Cn
ε −Mn

ε ))
h

≤ (Fε(Cn
ε ), 1)

h + (Fε(1− Cn
ε −Mn

ε ), 1)
h + C(γ,M, ε, |Ω|). (6.1.17)

Now to bound the terms in right-hand side of (6.1.10), we can use a similar technique

which was used in bounding the second term in the right-hand side of (6.1.14), and

noting (2.3.28), (2.3.31), (2.3.32), (2.1.12), Young’s inequality and (2.3.29), to obtain

−α(ϕε(Cn−1
ε )ϕε(Mn

ε )ϕε(Cn−1
ε +Mn−1

ε − 1), πhF ′
ε(Mn

ε )− πhF ′
ε(1− Cn

ε −Mn
ε ))

h

= −α(ϕε(Cn−1
ε )ϕε(Cn−1

ε +Mn−1
ε − 1), ϕε(Mn

ε )π
hF ′

ε(Mn
ε ))

h

+α(ϕε(Mn
ε )ϕε(Cn−1

ε )ϕε(Cn−1
ε +Mn−1

ε − 1), πhF ′
ε(1− Cn

ε −Mn
ε ))

h

≤ (Fε(Mn
ε ), 1)

h + (Fε(1− Cn
ε −Mn

ε ), 1)
h + C(α,M, ε, |Ω|). (6.1.18)
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The second term in the right-hand side of (6.1.9) can be easily bound as follows:

−δ(ϕε(Cn
ε ), π

hF ′
ε(Cn

ε ))
h ≤ δ(1− Cn

ε , 1)
h ≤ 1

2ε
([Cn

ε ]
2
−, 1)

h + C(δ, |Ω|, ε)

≤ (Fε(Cn
ε ), 1)

h + C(δ, |Ω|, ε). (6.1.19)

To deal with the third term in the right-hand side of (6.1.9), we use similar technique

which was used in bounding the second term in the right-hand side of (6.1.14).

Firstly, we divide the interval Ω as before, then we obtain

δ(ϕε(Cn
ε ), π

hF ′
ε(1− Cn

ε −Mn
ε ))

h

= δ
∑
i∈J+

M̂iiϕε(Cn
ε (xi))F

′
ε((1− Cn

ε −Mn
ε )(xi))

+δ
∑
i∈J−

M̂iiϕε((Cn
ε (xi))F

′
ε((1− Cn

ε −Mn
ε )(xi))

≤ δ
∑
i∈J+

M̂iiϕε(Cn
ε (xi))F

′
ε((1− Cn

ε −Mn
ε )(xi))

= δ
∑
i∈J+

M̂ii
ϕε(Cn

ε (xi))

ϕε((1− Cn
ε −Mn

ε )(xi))
ϕε((1− Cn

ε −Mn
ε )(xi))F

′
ε((1− Cn

ε −Mn
ε )(xi)).

(6.1.20)

Now, since ϕε((1− Cn
ε −Mn

ε )(xi)) ≥ 1 on J+ and ϕε(s) ≤M, ∀s, we have

ϕε((Cn
ε )(xi))

ϕε((1− Cn
ε −Mn

ε )(xi))
≤M.

Finally, using (2.3.32), we have

δ(ϕε(Cn
ε ), π

hF ′
ε(1− Cn

ε −Mn
ε ))

h

≤Mδ
∑
i∈J+

M̂iiϕε((1− Cn
ε −Mn

ε )(xi))F
′
ε((1− Cn

ε −Mn
ε )(xi))

≤
∑
i∈J+

M̂iiFε((1− Cn
ε −Mn

ε )(xi)) + C(δ,M)

≤ (Fε(1− Cn
ε −Mn

ε ), 1)
h + C(δ,M). (6.1.21)

Combining (6.1.9), (6.1.11), (6.1.17), (6.1.19) and (6.1.21), gives

(1− 2∆t)(Fε(Cn
ε ), 1)

h − 2∆t(Fε(1− Cn
ε −Mn

ε ), 1)
h +

1

4M
|Cn

ε |2h

−(Cn
ε − Cn−1

ε , πhF ′
ε(1− Cn

ε −Mn
ε ))

h + (Dn
11∇Cn

ε +Dn
12∇Mn

ε ,∆t∇πhF ′
ε(Cn

ε )
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−∆t∇πhF ′
ε(1− Cn

ε −Mn
ε )) ≤ (Fε(Cn−1

ε ), 1)h +
1

2M
|Cn−1

ε |2h +∆tC(M,γ, δ, ε, |Ω|).

(6.1.22)

Combining (6.1.10), (6.1.12) and (6.1.18) gives

(1−∆t)(Fε(Mn
ε ), 1)

h −∆t(Fε(1− Cn
ε −Mn

ε ), 1)
h +

1

4M
|Mn

ε |2h

−(Mn
ε −Mn−1

ε , πhF ′
ε(1− Cn

ε −Mn
ε ))

h + (Dn
21∇Cn

ε +Dn
22∇Mn

ε ,∆t∇πhF ′
ε(Mn

ε )

−∆t∇πhF ′
ε(1− Cn

ε −Mn
ε )) ≤ Fε(Mn−1

ε ), 1)h +
1

2M
|Mn−1

ε |2h +∆tC(M,α, ε, |Ω|).

(6.1.23)

Now, by adding (6.1.22) and (6.1.23) and noting (6.1.13), we have

[1− 2∆t]E(Cn
ε ,Mn

ε ) + (Dn
11∇Cn

ε +Dn
12∇Mn

ε ,∆t∇πhF ′
ε(Cn

ε )

−∆t∇πhF ′
ε(1− Cn

ε −Mn
ε )) + (Dn

21∇Cn
ε +Dn

22∇Mn
ε ,∆t∇πhF ′

ε(Mn
ε )

−∆t∇πhF ′
ε(1− Cn

ε −Mn
ε )) +

1

4M
|Cn

ε |2h +
1

4M
|Mn

ε |2h +
1

4M
|1− Cn

ε −Mn
ε |2h

≤ E(Cn−1
ε ,Mn−1

ε ) +
1

2M

[
|Cn−1

ε |2h + |Mn−1
ε |2h

]
+∆tC(δ, γ, α,M, ε, |Ω|). (6.1.24)

Next, we can simplify the second and the third terms in (6.1.24) as follows

(Dn
11∇Cn

ε +Dn
12∇Mn

ε ,∇πhF ′
ε(Cn

ε )−∇πhF ′
ε(1− Cn

ε −Mn
ε ))

+(Dn
21∇Cn

ε +Dn
22∇Mn

ε ,∇πhF ′
ε(Mn

ε )−∇πhF ′
ε(1− Cn

ε −Mn
ε ))

=
∑
τ

1

τ

∫
τ

∫
τ

πh(2(1− ϕε(Cn
ε ))− βθϕ2

ε(Mn
ε )) dx |∇Cn

ε |2 dx′

+
∑
τ

1

τ

∫
τ

∫
τ

πh(
2ϕε(Cn

ε )(1− ϕε(Cn
ε ))− βθ(1− ϕε(Mn

ε )− ϕε(1− Cn−1
ε −Mn−1

ε ))ϕ2
ε(Mn

ε )

ϕε(1− Cn−1
ε −Mn−1

ε )
)

×dx (|∇Cn
ε |2 +∇Cn

ε · ∇Mn
ε ) dx

′

−
∑
τ

2β

τ

∫
τ

∫
τ

πh(ϕε(Mn
ε )(1 + θϕε(Cn

ε ))) dx ∇Cn
ε∇Mn

ε dx′

−
∑
τ

2β

τ

∫
τ

∫
τ

πh(
(1− ϕε(Mn

ε )− ϕε(1− Cn−1
ε −Mn−1

ε ))ϕε(Mn
ε )(1 + θϕε(Cn

ε )))

ϕε(1− Cn−1
ε −Mn−1

ε )
)

× dx (|∇Mn
ε |2 +∇Cn

ε · ∇Mn
ε ) dx

′

+
∑
τ

∫
τ

1

τ

∫
τ

πh(−2ϕε(Cn
ε ) + βθ(1− ϕε(Mn

ε ))ϕε(Mn
ε )) dx ∇Cn

ε∇Mn
ε
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+
∑
τ

1

τ

∫
τ

∫
τ

πh(
−2ϕε(Cn

ε )(1− ϕε(Cn
ε )− ϕε(1− Cn−1

ε −Mn−1
ε )) + βθ(1− ϕε(Mn

ε ))ϕ
2
ε(Mn

ε )

ϕε(1− Cn−1
ε −Mn−1

ε )
)

× dx (|∇Cn
ε |2 +∇Cn

ε · ∇Mn
ε ) dx

′

+
∑
τ

2β

τ

∫
τ

∫
τ

(1− ϕε(Mn
ε ))(1 + θϕε(Cn

ε )) dx |∇Mn
ε |2 dx′

+
∑
τ

2β

τ

∫
τ

∫
τ

πh(
ϕε(Mn

ε )(1− ϕε(Mn
ε ))(1 + θϕε(Cn

ε ))

ϕε(1− Cn−1
ε −Mn−1

ε )
) dx (|∇Mn

ε |2+∇Cn
ε ·∇Mn

ε ) dx
′

=

∫
Ω

(2|∇Cn
ε |2 + βθϕε(Mn

ε ) ∇Cn
ε · ∇Mn

ε + 2β(1 + θϕε(Cn
ε ))|∇Mn

ε |2)dx

≥
∫
Ω

((2− βθ2

8
ϕ2
ε(Mn

ε ))|∇Cn
ε |2 + 2βθϕε(Cn

ε )|∇Mn
ε |2)dx

≥
∫
Ω

((2− βθ2

8
M2)|∇Cn

ε |2 + 2βθϕε(Cn
ε )|∇Mn

ε |2)dx. (6.1.25)

It is clear that the last integral is nonnegative if θ ≤ 4/M
√
β. This result can be

strengthened: If 0 < θ < 4/M
√
β, then we have∫

Ω

((2− βθ2

8
M2)|∇Cn

ε |2 + 2βθϕε(Cn
ε )|∇Mn

ε |2)dx

≥ Kθ

∫
Ω

(|∇Cn
ε |2 + |∇Mn

ε |2)dx. (6.1.26)

where Kθ = min{2 − βθ2

8
M2, 2βθ}. Combining (6.1.24), (6.1.25) and (6.1.26) then

we arrive at the required result. 2

6.2 Existence of the approximations

In this section we establish existence of a solution to the problem (W h∆t
M,ε ) by adapting

a similar approach applied in [8] to prove existence of a finite element approximation

of a cross diffusion equation. The approach relies on constructing a contradiction

to the Schauder fixed point theorem (see Appendix A.1.1).

In order to prove the existence of a solution {Cn
ε ,Mn

ε}, n ≥ 1, of the system

(6.1.1) and (6.1.2) for given {Cn−1
ε ,Mn−1

ε }, it is convenient to define the functions

Ac : S
h × Sh → Sh and Am : Sh × Sh → Sh such that for all χ ∈ Sh

(Ac(C,M), χ)h = (C − Cn−1
ε , χ)h +∆t(D11∇C +D12∇M,∇χ)

+∆t(γϕε(C) ϕε(Cn−1
ε +Mn−1

ε − 1) + δϕε(C), χ)h, (6.2.27)
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(Am(C,M), χ)h = (M−Mn−1
ε , χ)h +∆t(D21∇C +D22∇M,∇χ)

+∆t(αϕε(Cn−1
ε ) ϕε(M) ϕε(Cn−1

ε +Mn−1
ε − 1), χ)h, (6.2.28)

respectively. Therefore, from (6.2.27) and (6.2.28) we have that (6.1.1) and (6.1.2)

at the n− th step is equivalent to the problem:

For n ≥ 1 find {Cn
ε ,Mn

ε} ∈ Sh × Sh such that for all χ ∈ Sh

(Ac(C,M), χ)h = 0, (Am(C,M), χ)h = 0. (6.2.29)

Before we prove existence of the approximate solutions, in the following subsection,

we provide some lemmata which will be important in the analysis of the approxi-

mation problem (W h∆t
M,ε ). Firstly, we shall prove that Ac(C,M) and Am(C,M) are

well defined, then we note that the continuous piecewise linear functions Ac(C,M)

and Am(C,M) can be defined uniquely in terms of their values at the nodal points

N h.

Lemma 6.2.1 The definitions of D11, ..., D22 are well defined. Moreover,

∇πhF ′
ε(C)−∇πhF ′

ε(1− C −M) = F ′′
ε (ξ

c)∇C + F ′′
ε (ξ

c,m)(∇C +∇M),

∇πhF ′
ε(M)−∇πhF ′

ε(1− C −M) = F ′′
ε (ξ

m)∇M+ F ′′
ε (ξ

c,m)(∇C +∇M).

Proof : Firstly, by using the mean value theorem, we can derive

∇πhF ′
ε(C)−∇πhF ′

ε(1− C −M)

=
1

h
[F ′

ε(Ci+1)− F ′
ε(Ci)]−

1

h
[F ′

ε(1− Ci+1 −Mi+1)− F ′
ε(1− Ci −Mi)]

=
1

h

∫ Ci+1

Ci
F ′′
ε (s)ds−

1

h

∫ 1−Ci+1−Mi+1

1−Ci−Mi

F ′′
ε (s)ds

= F ′′
ε (ξ

c)∇C + F ′′
ε (ξ

c,m)(∇C +∇M), (6.2.30)

where ξc ∈ [Ci, Ci+1] and ξ
c,m ∈ [1 − Ci −Mi, 1 − Ci+1 −Mi+1]. Similarly, one can

show that

∇πhF ′
ε(M)−∇πhF ′

ε(1− C −M) = F ′′
ε (ξ

m)∇M+ F ′′
ε (ξ

c,m)(∇C +∇M),

We work with (6.1.1) and (6.1.2), we are left with the question of whetherD11, ..., D22

are well defined. We will now discuss how we find D11 and the same ideas are used
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for finding D12, D21 and D22. For n fixed on each triangle, in the case that the

constant ∇πhF ′
ε(C)−∇πhF ′

ε(1−C−M) is non-zero, Dn
11 is easily found by division.

In the case that it is zero, we can conclude that

• If ∇C = 0, this means that C is constant, and hence ∇πhF ′
ε(C) = 0 then as

∇πhF ′
ε(C)−∇πhF ′

ε(1−C−M) = 0, this implies that ∇πhF ′
ε(1−C−M) = 0,

and 1 − C − M is constant, but as C is constant, then M is constant so

∇(C +M) = 0 thus both sides of (6.1.3) are equal to zero and we can choose

Dn
11 as desired.

• If ∇(C+M) = 0, this mean that 1−C−M is constant, and hence ∇πhF ′
ε(1−

C−M) = 0 then as ∇πhF ′
ε(C)−∇πhF ′

ε(1−C−M) = 0, and this implies that

∇πhF ′
ε(C) = 0, and thus C is constant, and hence ∇C = 0. Thus, both sides

of (6.1.3) are equal to zero and we can choose Dn
11 as desired.

• If ∇C ̸= 0 and ∇(C +M) ̸= 0. In this case, it is clear that ∇πhF ′
ε(C) ̸= 0 and

∇πhF ′
ε(1− C −M) ̸= 0. Here, we have four possibilities:

1. If ∇C > 0 and∇(C+M) > 0, then, it is clear that∇πhF ′
ε(C)−∇πhF ′

ε(1−

C −M) > 0, so this cannot occur.

2. If ∇C < 0 and ∇(C +M) < 0, then, similarly to the first case, we have

∇πhF ′
ε(C)−∇πhF ′

ε(1− C −M) < 0, so this cannot occur.

3. If ∇C < 0 and ∇(C +M) > 0, in this case, we are unable to prove the

well-posedness of any Dn
11. In Chapter 7, we discuss the algorithm and

we overcome this ill-posedness by adding ωDn
11∇Cn to the left-hand side

of (6.1.3) at points where ∇πhF ′
ε(C)−∇πhF ′

ε(1− C −M) = 0, where ω

is small, but retaining the same right hand side for that single iteration.

4. If ∇C > 0 and ∇(C + M) < 0, then we use a similar treatment which

has been used in 3.

Large values for ω will make our experiments less accurate. Therefore, to make

the effect of ω on the numerical results small, we select ω = ε at those points

where 3 and 4 above occurs.
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2

In the next Lemma we prove some preliminary results that will be useful for

the existence proof. We investigate the continuous dependence of Dn
11 on Cn and

Mn and we temporarily drop the index n for ease of exposition. Also, we denote

D1
11 = D11(C1,M1) and D

2
11 = D11(C2,M2).

Lemma 6.2.2 Assume that |∇πhF ′
ε(C)−∇πhF ′

ε(1−C−M)|∞ ≥ ν > 0 and ∥Dl
11∥0,

∥Dl
12∥0, ∥Dl

21∥0, ∥Dl
22∥0 ≤ ς, l=1, 2, where ν and ς are constant. Let [Sh]2R =

{{χ1, χ2} ∈ Sh × Sh : |χ1|2h + |χ2|2h ≤ R2} and {C1,M1}, {C2,M2} ∈ [Sh]2R be two

solutions of (6.1.1) and (6.1.2), then we have the following bounds

∥D1
11∇C1 −D2

11∇C2∥0 ≤ C(R,M, β, θ, h−1, ε−1, ν−1, ς)[|C1 − C2|h + |M1 −M2|h],

(6.2.31)

∥D1
12∇M1 −D2

12∇M2∥0 ≤ C(R,M, β, θ, h−1, ε−1, ν−1, ς)[|C1 − C2|h + |M1 −M2|h],

(6.2.32)

∥D1
21∇C1 −D2

21∇C2∥0 ≤ C(R,M, β, θ, h−1, ε−1, ν−1, ς)[|C1 − C2|h + |M1 −M2|h],

(6.2.33)

∥D1
22∇M1 −D2

22∇M2∥0 ≤ C(R,M, β, θ, h−1, ε−1, ν−1, ς)[|C1 − C2|h + |M1 −M2|h].

(6.2.34)

Proof :

We have from (2.4.54) and (2.4.46) that

∥D1
11∇C1 −D2

11∇C2∥0 = ∥(D1
11 −D2

11)∇C1 +D2
11(∇C1 −∇C2)∥0

≤ ∥(D1
11 −D2

11)∇C1∥0 + ∥D2
11(∇C1 −∇C2)∥0

≤ ∥D1
11 −D2

11∥0,∞ |C1|1 + ∥D2
11∥0|C1 − C2|1,∞

≤ C(h−1)∥D1
11 −D2

11∥0 |C1|1 + C(h−1, ς) |C1 − C2|h. (6.2.35)

To deal with the term D1
11−D2

11 and to make our proof more simple, we use Lemma

6.2.1 and suppose that

Υi(x, t) = ∇πhF ′
ε(Ci)−∇πhF ′

ε(1− Ci −Mi), i = 1, 2,

ψi(x, t) =
1

τ

∫
τ

πh(2(1− ϕε(Ci))− βθϕ2
ε(Mi)) dx ∇Ci, i = 1, 2,
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and

Ψi(x, t) =
1

τ

∫
τ

πh(
2ϕε(Ci)(1− ϕε(Ci))− βθ(1− ϕε(Mi)− ϕε(1− Cn−1

ε −Mn−1
ε ))ϕ2

ε(Mi)

ϕε(1− Cn−1
ε −Mn−1

ε )
)dx

×(∇Ci +∇Mi), i = 1, 2,

then, we have

D1
11 −D2

11 =
ψ1 +Ψ1

Υ1

− ψ2 +Ψ2

Υ2

=
Υ2(ψ1 +Ψ1)−Υ1(ψ2 +Ψ2)

Υ1Υ2

=
Υ2(ψ1 − ψ2) + ψ2(Υ2 −Υ1)

Υ1Υ2

+
Υ2(Ψ1 −Ψ2) + Ψ2(Υ2 −Υ1)

Υ1Υ2

. (6.2.36)

Now let gi = 1
τ

∫
τ
πh(2(1 − ϕε(Ci)) − βθϕ2

ε(Mi))dx and fi = ∇Ci, i = 1, 2, then

it follows from the definition of the function ψ and on noting the Cauchy-Schwarz

inequality, (2.3.28), (2.4.54) and (2.4.46), that

∥ψ1 − ψ2∥0 = ∥f1g1 − f2g2∥0 ≤ ∥f1 − f2∥0∥g1∥0,∞ + ∥g1 − g2∥0,∞∥f2∥0. (6.2.37)

Using the Cauchy-Schwarz inequality, the Lipschitz continuity of ϕε, (2.3.28), (2.4.54)

and (2.4.46), we can deal with term ∥g1 − g2∥0,∞ as follows:

∥g1 − g2∥0,∞ ≤ ∥ϕε(C1)− ϕε(C2)∥0,∞ + C(β, θ)∥ϕ2
ε(M1)− ϕ2

ε(M2)∥0,∞

≤ ∥C1 − C2∥0,∞ + C(M,β, θ)∥M1 −M2∥0,∞

≤ C(h−1,M, β, θ)
[
|C1 − C2|h + |M1 −M2|h

]
. (6.2.38)

Substituting (6.2.38) into (6.2.37) and using the definition of R, (2.4.54) and (2.4.46)

we have that

∥ψ1 − ψ2∥0 ≤ C(M)|C1 − C2|1 + C(h−1,M, β, θ)
[
|C1 − C2|h + |M1 −M2|h

]
|C2|1

≤ C(h−1,M)|C1 − C2|h + C(h−1,M, β, θ, R)
[
|C1 − C2|h + |M1 −M2|h

]
≤ C(h−1,M, β, θ, R)

[
|C1 − C2|h + |M1 −M2|h

]
. (6.2.39)

Similarly, we can deal with term Ψ1 − Ψ2, using (2.3.28), (2.4.54) and (2.4.46), to

arrive at

∥Ψ1 −Ψ2∥0 ≤ C(R,M, β, θ, ε−1)[|C1 − C2|1 + |M1 −M2|1]
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≤ C(R,M, β, θ, h−1, ε−1)[|C1 − C2|h + |M1 −M2|h]. (6.2.40)

Finally, to deal with the term Υ2−Υ1, we apply the Cauchy-Schwarz inequality and

(2.4.46), to obtain

∥Υ2−Υ1∥0 = ∥∇πhF ′
ε(C2)−∇πhF ′

ε(1−C2−M2)−∇πhF ′
ε(C1)+∇πhF ′

ε(1−C1−M1)∥0

≤ ∥∇πhF ′
ε(C2)−∇πhF ′

ε(C1)∥0 + ∥∇πhF ′
ε(1− C2 −M2)−∇πhF ′

ε(1− C1 −M1)∥0

≤ |∇πhF ′
ε(C2)−∇πhF ′

ε(C1)|h+|∇πhF ′
ε(1−C2−M2)−∇πhF ′

ε(1−C1−M1)|h. (6.2.41)

To deal with the first term on the right-hand side of (6.2.41), firstly, we note from

the definition of πh and mean value theorem that

∇πhF ′
ε(C2)−∇πhF ′

ε(C1)

=
1

h
[F ′

ε(C2(xi+1))− F ′
ε(C2(xi))]−

1

h
[F ′

ε(C1(xi+1))− F ′
ε(C1(xi))]

=
1

h

∫ C2(xi+1)

C2(xi)

F ′′
ε (s)ds−

1

h

∫ C1(xi+1)

C1(xi)

F ′′
ε (s)ds

=
1

h

∫ C2(xi+1)

C2(xi)

F ′′
ε (s)ds−

1

h

[ ∫ C2(xi)

C1(xi)

F ′′
ε (s)ds+

∫ C1(xi+1)

C2(xi)

F ′′
ε (s)ds

]
=

1

h

[ ∫ C2(xi)

C1(xi+1)

F ′′
ε (s)ds+

∫ C2(xi+1)

C2(xi)

F ′′
ε (s)ds

]
− 1

h

∫ C2(xi)

C1(xi)

F ′′
ε (s)ds

=
1

h

∫ C2(xi+1)

C1(xi+1)

F ′′
ε (s)ds−

1

h

∫ C2(xi)

C1(xi)

F ′′
ε (s)ds

=
1

h
[C2(xi+1))− C1(xi+1)]F

′′
ε (ξ

1)− 1

h
[C2(xi))− C1(xi)]F ′′

ε (ξ
2), (6.2.42)

where ξ1 is between C1(xi+1) and C2(xi+1) and ξ
2 is between C1(xi) and C2(xi). As

a consequence of (6.2.42), on noting (2.3.28) and (2.4.46) we have

|∇πhF ′
ε(C2)−∇πhF ′

ε(C1)|h ≤ C(h−1, ε−1)|C2 − C1|h. (6.2.43)

Next, we can use a similar technique to that employed in (6.2.43) to obtain

|∇πhF ′
ε(1−C2−M2)−∇πhF ′

ε(1−C1−M1)|h ≤ C(h−1, ε−1)
[
|C2−C1|h+|M2−M1|h

]
.

(6.2.44)

Combining (6.2.41), (6.2.43) and (6.2.44), gives

∥Υ2 −Υ1∥0 ≤ C(h−1, ε−1)
[
|C2 − C1|h + |M2 −M1|h

]
. (6.2.45)
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To arrive to the required result (6.2.31), we combine (6.2.35)-(6.2.45). Similarly, by

applying the same techniques we arrive at (6.2.32)-(6.2.34) on noting (2.3.28) and

(2.4.46). 2

Lemma 6.2.3 Let the assumptions of Lemma 6.2.2 hold. Then, for any given

R > 0, the functions Ac : [S
h]2R → Sh and Am : [Sh]2R → Sh are continuous.

Proof : Let {C1,M1}, {C2,M2} ∈ [Sh]2R be two solutions of (6.1.1) and (6.1.2), it

follows from (6.2.27) that for all χ ∈ Sh

(Ac(C1,M1)− Ac(C2,M2), χ)
h = (C1 − C2, χ)h

+∆t(D1
11∇C1 −D2

11∇C2 +D1
12∇M1 −D2

12∇M2,∇χ)

+∆t(γ ϕε(Cn−1
ε +Mn−1

ε − 1)(ϕε(C1)− ϕε(C2)) + δ(ϕε(C1)− ϕε(C2)), χ)h. (6.2.46)

Choosing χ = Ac(C1,M1) − Ac(C2,M2) in (6.2.46) yields on noting the Cauchy-

Schwarz inequality, (2.4.54), (2.4.46), (6.2.31), (6.2.32) and the Lipschitz continuity

of ϕε that

|Ac(C1,M1)− Ac(C2,M2)|h ≤ |C1 − C2|h

+C(∆t, h−1)∥D1
11∇C1 −D2

11∇C2 +D1
12∇M1 −D2

12∇M2∥0

+∆t|(γ ϕε(Cn−1
ε +Mn−1

ε − 1) + δ)(ϕε(C1)− ϕε(C2))|h

≤ C(M,∆t, γ, δ)|C1 − C2|h

+C(∆t, h−1)∥D1
11∇C1 −D2

11∇C2 +D1
12∇M1 −D2

12∇M2∥0

≤ C(M,β, θ, h−1, ε−1, γ, δ,∆t, R, ν−1, ς)[|C1 − C2|h + |M1 −M2|h]. (6.2.47)

This proves the continuity of Ac and the continuity of Am follows similarly to Ac.

Theorem 6.2.4 Let the assumptions (A) hold, and let {Cn−1
ε ,Mn−1

ε } ∈ Sh × Sh

be a given solution to the (n− 1)-th step of (W h,∆t
M,ε ) for some n = 1, ..., N . Then for

all ε ∈ (0, e−1), for all h > 0 and for all ∆t such that ∆t ≤ 1
3
, there exists a solution

{Cn
ε ,Mn

ε} ∈ Sh × Sh to the n-th step of (W h,∆t
M,ε ).
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Proof : By using a proof by contradiction argument, for a given R ∈ R>0 sufficiently

large we prove existence of at least one solution to (6.2.29). For this purpose,

we assume that for all R ∈ R>0 there does not exist {C,M} ∈ Sh × Sh with

Ac(C,M) = Am(C,M) = 0. It has been proved in Lemma 6.2.3 that Ac(C,M) and

Am(C,M) are continuous on [Sh]2R and hence one can define a continuous function

B : [Sh]2R → [Sh]2R such that

B(C,M) = (Bc(C,M), Bm(C,M)),

where Bc(C,M) and Bm(C,M) are given by

Bc(C,M) :=
−RAc(C,M)

|(Ac(C,M), Am(C,M))|Sh×Sh

, (6.2.48)

Bm(C,M) :=
−RAm(C,M)

|(Ac(C,M), Am(C,M))|Sh×Sh

, (6.2.49)

where |(·, ·)|Sh×Sh is the standard norm on Sh × Sh defined by

|(χ1, χ2)|Sh×Sh =
√
|χ1|2h + |χ2|2h.

Since [Sh]2R is a convex and compact subset of the finite dimensional space Sh ×Sh,

the Schauder fixed point theorem shows that there exists a pair {C,M} ∈ [Sh]2R

such that

B(C,M) = (Bc(C,M), Bm(C,M)) = (C,M).

Hence, it follows from (6.2.48) and (6.2.49) that

|C|2h + |M|2h = |Bc(C,M)|2h + |Bm(C,M)|2h = R2. (6.2.50)

Choosing χ ≡ πhF ′
ε(C) − πhF ′

ε(1 − C − M) as a test function in (6.2.27) and χ ≡

πhF ′
ε(M)−πhF ′

ε(1−C−M) as a test function in (6.2.28) yields, on noting (2.4.45),

that

(Ac(C,M), F ′
ε(C)− F ′

ε(1− C −M))h = (C − Cn−1
ε , F ′

ε(C)− F ′
ε(1− C −M))h

+(Dn
11∇C +Dn

12∇M,∆t∇F ′
ε(C)−∆t∇F ′

ε(1− C −M))

+(−γϕε(C)ϕε(Cn−1
ε +Mn−1

ε − 1)− δϕε(C),∆tF ′
ε(C)−∆tF ′

ε(1−C −M))h, (6.2.51)
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and

(M−Mn−1
ε , F ′

ε(M)− F ′
ε(1− C −M))h

= (Dn
21∇c+Dn

22∇M,∆t∇F ′
ε(M)−∆t∇F ′

ε(1− C −M))

+(−αϕε(Cn−1
ε ) ϕε(M) ϕε(Cn−1

ε +Mn−1
ε −1),∆tF ′

ε(M)−∆tF ′
ε(1−C−M))h. (6.2.52)

Here, we can use the similar technique which is used to prove the entropy inequality

(see (6.1.25)) to arrive to the following inequality:

(Ac(C,M), F ′
ε(C)− F ′

ε(1− C −M))h + (Am(C,M), F ′
ε(M)− F ′

ε(1− C −M))h

≥ (1−2∆t)(Fε(C)+Fε(M)+Fε(1−C−M))+Kθ∆t|C|21+∆tKθ|M|21+
1

4M
|C|2h+

1

4M
|M|2h

+
1

4M
|1− C −M|2h − C(Cn−1

ε ,Mn−1
ε ) ≥ R2

4M
− C(Cn−1

ε ,Mn−1
ε ) > 0. (6.2.53)

On noting that {C,M} is fixed point of the function B, (6.2.48), (6.2.49) and (6.2.53)

we obtain for R sufficiently large that

(C, F ′
ε(C)− F ′

ε(1− C −M))h + (M, F ′
ε(M)− F ′

ε(1− C −M))h

= (Bc(C,M), F ′
ε(C)− F ′

ε(1− C −M))h + (Bm(C,M), F ′
ε(M)− F ′

ε(1− C −M))h

=
−R [(Ac(C,M), F ′

ε(C)− F ′
ε(1− C −M)) + (Am(C,M), F ′

ε(M)− F ′
ε(1− C −M))]

|(Ac(C,M), Am(C,M))|Sh×Sh

< 0.

(6.2.54)

Once again, it follows from (2.3.33) and (2.3.28) that

(C, F ′
ε(C)− F ′

ε(1− C −M))h ≥ (Fε(C)− Fε(0))
h +

1

2M
|C|2h − (C, F ′

ε(1− C −M))h,

(6.2.55)

(M, F ′
ε(M)−F ′

ε(1−C−M))h ≥ (Fε(M)−Fε(0))
h+

1

2M
|M|2h−(M, F ′

ε(1−C−M))h.

(6.2.56)

On the contrary, combining (6.2.55) and (6.2.56) yields on noting the non-negativity

of Fε(s) that

(C, F ′
ε(C)− F ′

ε(1− C −M))h + (M, F ′
ε(M)− F ′

ε(1− C −M))h

≥ 1

2M
R2 − (2− ε)|Ω| − (C +M, F ′

ε(1− C −M))h

≥ 1

2M
R2 − (2− ε)|Ω|+ (1− C −M− 1, F ′

ε(1− C −M))h
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≥ 1

2M
R2 − (2− ε)|Ω|+ (Fε(1− C −M)− Fε(1), 1)

h +
1

2M
|C +M|2h,

≥ 1

2M
R2 − (2− ε)|Ω| > 0, (6.2.57)

which will be positive for R sufficiently large. Therefore, this is a contradiction

and so guarantees the existence of {Cn
ε ,Mn

ε} ∈ Sh × Sh satisfying Ac(Cn
ε ,Mn

ε ) =

Am(Cn
ε ,Mn

ε ) = 0. Equivalently, we have existence of a solution, which is {Cn
ε ,Mn

ε},

to the n-th step of (W h,∆t
M,ε ). 2

6.3 Stability bounds

In this section we derive stability estimates for the regularized approximations

{Cn
ε ,Mn

ε} under the assumptions of Theorem 6.2.4.

Lemma 6.3.1 let {c0,m0} ∈ L∞(Ω) with c0,m0 ≥ 0 for a.e. x ∈ Ω. Let either

C0
ε ≡ Phc0 and M0

ε ≡ Phm0; or C0
ε ≡ πhc0 and M0

ε ≡ πhm0 if c0,m0 ∈ C(Ω).

Then for all ε ∈ (0, e−1), for all h > 0 and for all ∆t such that ∆t ≤ 1−ϱ
2
, for some

ϱ ∈ (0, 1) and Kθ, the problem (W h,∆t
M,ε ) possesses a solution {Cn

ε ,Mn
ε}, n = 1, ..., N

satisfying

max
n=1,...,N

[
(Fε(Cn

ε )+Fε(Mn
ε ), 1)

h+ε−1∥πh[Cn
ε ]−∥20+ε−1∥πh[Mn

ε ]−∥20+∥Cn
ε ∥20+∥Mn

ε∥20
]

+
N∑

n=1

[
∆t∥Cn

ε ∥21+∆t∥Mn
ε∥21+ ∥Cn

ε ∥α0,α+ ∥Mn
ε∥α0,α

]
+ ∥C0

ε∥0+ ∥M0
ε∥0 ≤ C, (6.3.58)

where α = 2(d+2)
d

.

Proof : It follows immediately from (6.1.8), for n = 1, ..., N , that

(Fε(Cn
ε ) + Fε(Mn

ε ), 1)
h ≤ 1

1− 2∆t
(Fε(Cn−1

ε ) + Fε(Mn−1
ε ), 1)h +

C∆t

ϱ

≤ (1 +
2∆t

ϱ
)(Fε(Cn−1

ε ) + Fε(Mn−1
ε ), 1)h +

C∆t

ϱ

≤ e
2∆t
ϱ (Fε(Cn−1

ε ) + Fε(Mn−1
ε ), 1)h +

C∆t

ϱ
. (6.3.59)

It follows from the assumptions on the initial data {c0,m0}, (2.3.25), the definition

of πh and (3.1.2), that

(Fε(C0
ε ) + Fε(M0

ε), 1)
h ≤ C. (6.3.60)
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Combining (6.3.59), (6.3.60) yields that

max
n=1,...,N

[(Fε(Cn
ε ) + Fε(Mn

ε ), 1)
h] ≤ Ce

2∆t
ϱ [(Fε(Cn−1

ε ) + Fε(Mn−1
ε ), 1)h +∆t]

≤ Ce
2∆t
ϱ [(Fε(Cn−2

ε ) + Fε(Mn−2
ε ), 1)h + 2∆t]

≤ Ce
2T
ϱ [(Fε(C0

ε ) + Fε(M0
ε), 1)

h + T ] ≤ C. (6.3.61)

On noting (2.4.46), (2.3.29), (2.3.30) and (6.3.61) we have for n = 1, ..., N that

∥Cn
ε ∥20 ≤ |Cn

ε |2h ≤ ((Cn
ε )

2, 1)h ≤ C((Fε(Cn
ε ), 1)

h + 1) ≤ C, (6.3.62)

and similarly,

∥Mn
ε∥20 ≤ |Mn

ε |2h ≤ ((Mn
ε )

2, 1)h ≤ C((Fε(Mn
ε ), 1)

h + 1) ≤ C. (6.3.63)

From (2.4.46), (2.4.45), (2.3.30) and (6.3.61) we obtain, after recalling that s =

[s]+ + [s]− and Fε(s) ≥ 0, that for n = 1, ..., N

∥πh[Cn
ε ]−∥20 ≤ |πh[Cn

ε ]−|2h = ([Cn
ε ]

2
−, 1)

h ≤ 2ε(Fε(Cn
ε ), 1)

h ≤ Cε, (6.3.64)

∥πh[Mn
ε ]−∥20 ≤ |πh[Mn

ε ]−|2h = ([Mn
ε ]

2
−, 1)

h ≤ 2ε(Fε(Mn
ε ), 1)

h ≤ Cε. (6.3.65)

Now, to prove the sixth and the seventh bounds in (6.3.58), firstly, we sum (6.1.8)

over n, next we use (6.3.60), (6.3.61), to get

∆t
N∑

n=1

|Cn
ε |21 +∆t

N∑
n=1

|Mn
ε |21 ≤ C. (6.3.66)

Due to the fourth and fifth bounds in (6.3.58), the following bound holds

∆t
N∑

n=1

∥Cn
ε ∥21 +∆t

N∑
n=1

∥Mn
ε∥21 ≤ C. (6.3.67)

Then use of the Sobolev interpolation theorem (2.1.4) and the bounds (6.3.62),

(6.3.63) and (6.3.67) yields for n = 1, ..., N

∥Cn
ε ∥α0,α ≤ C∥Cn

ε ∥α−2
0 ∥Cn

ε ∥21 ≤ C, (6.3.68)

∥Mn
ε∥α0,α ≤ C∥Mn

ε∥α−2
0 ∥Mn

ε∥21 ≤ C, (6.3.69)

where αd(1
2
− 1

α
) = 2; that is α = 2(d+2)

d
.

2
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Chapter 7

Numerical results of a

cross-diffusion Tumor-growth

model

This chapter is devoted to the discussion of some numerical experiments for the

model (W ) in one space dimension. We introduce an iterative approach to solve

our fully discrete finite element approximation to problem (W h∆t
M,ε ). We then discuss

some numerical solutions for different choices of parameters. We also introduce a

modified iterative scheme for the problem (Ŵ h∆t
M,ε ). Further, we make an experimen-

tal comparison between the solutions of (W h∆t
M,ε ) and (Ŵ h∆t

M,ε ). All programs were

written in Matlab to generate the numerical results and Originlab 8.5 to plot the

graphs.

7.1 Numerical results

We remark that Jackson and Byrne [63] and Jüngel and Stelzer [66] have employed

a different scaling to our model to arrive to the following scaled system

∂

∂t

 c

m

−
[
DJB(c,m)

 cx

mx

]
x

=

 γc(1− c−m)− δc

αcm(1− c−m)

 , (7.1.1)
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where the diffusion matrix

DJB(c,m) =

 2βcc(1− c)− βmθcm
2 −2βmcm(1 + θc)

−2βccm+ βmθ(1−m)m2 2βmm(1−m)(1 + θc)

 . (7.1.2)

The results proved in the previous chapter are with β = βm/βc, a rescaling of time

and redefining γ, α and δ, and this formulation is used in the numerical experiments.

We introduce the following practical algorithm to solve the nonlinear algebraic sys-

tem arising from the approximate problem (Ŵ h∆t
M,ε ) at each time level:

Given {Cn,0
ε ,Mn,0

ε } ∈ Sh × Sh for k ≥ 1 find {Cn,k
ε ,Mn,k

ε } ∈ Sh × Sh such that

for all χ ∈ Sh

(
Cn,k
ε − Cn−1

ε

∆t
, χ)h + (DJB n,k−1

11 ∇Cn,k
ε +DJB n,k−1

12 ∇Mn,k
ε ,∇χ)

= (γϕε(Cn,k−1
ε ) ϕε(1− Cn−1

ε −Mn−1
ε )− δϕε(Cn,k−1

ε ), χ)h, (7.1.3)

(
Mn,k

ε −Mn−1
ε

∆t
, χ)h + (DJB n,k−1

21 ∇Cn,k
ε +DJB n,k−1

22 ∇Mn,k
ε ,∇χ)

= (αϕε(Cn−1
ε ) ϕε(Mn,k−1

ε ) ϕε(1− Cn−1
ε −Mn−1

ε ), χ)h, (7.1.4)

where we start with C0
ε ≡ πhc0 and M0

ε ≡ πhm0 and we set, for n ≥ 1, Cn,0
ε ≡

Cn−1
ε and Mn,0

ε ≡ Mn−1
ε . As the system (7.1.3) and (7.1.4) is linear, existence of

{Cn,k
ε ,Mn,k

ε } follows from uniqueness. The standard method to solve the system

(7.1.3) and (7.1.4) at each iteration is by testing the equations (7.1.3) and (7.1.4)

with φj, j = 0, ..., J, which is the standard hat function, to obtain a (2J+2)×(2J+2)

linear system, in terms of the nodal values of Cn,k
ε and Mn,k

ε , which can be solved

using linear programming. For our numerical results, we set TOL = 10−6 and adopt

the stopping criteria

|Cn,k
ε − Cn,k−1

ε |0,∞ < TOL and |Mn,k
ε −Mn,k−1

ε |0,∞ < TOL, (7.1.5)

i.e. for k satisfying (7.1.5) we set Cn
ε ≡ Cn,k

ε and Mn
ε ≡ Mn,k

ε . We have been

unable to prove convergence of {Cn,k,Mn,k}∞k=1 to {Cn,Mn} for n fixed. However,

in practice we found that the iterative method always converged well (only a few

steps were required to fulfill the stopping criteria at each time level).

We now present some numerical results in one space dimension. Unless otherwise

specified, in all experiments we consider a uniform partitioning of Ω = (0, 2) into
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400 subintervals, i.e. J = 400 and h = 0.005), and choose ∆t = 0.001, n ≥ 1, and

ε = 10−31. The initial data are defined as in [63] and [66]

c0(x) =
C1

2
(1 + tanh(

x0 − x

η
)) + µ,

m0(x) =
M1

2
(1− tanh(

x0 − x

η
)),

where C1 =M1 = 0.25, x0 = 0.1, µ = 0.0002 and η = 0.05. The diffusion coefficients

are taken as in [63] and [66]:

βc = 0.2, βm = 0.0015.

Firstly, we plot the entropy E which is defined

E = (Fε(Cn
ε ) + Fε(Mn

ε ) + Fε(1− Cn
ε −Mn

ε ), 1)
h,

versus time in Figure 7.1 for Rc = Rm = 0. We see in Figure 7.1 that the entropy E

decreases as t increases when the pressure coefficient θ is smaller than the theoretical

critical value θ∗ = 4
M

√
βc/βm = 9.23, with β = βm/βc and M = 5, see the proof

of Lemma 6.1.1 in Chapter 6. Also, this behaviour is illustrated in Figure 7.2

for Rc ̸= Rm ̸= 0. However, we performed additional experiments for θ beyond this

threshold and found that the entropy is decreasing for larger values of θ, too. Figure

7.2 shows that the entropy E is uniformly bounded in time for θ = 0 and the curves

for θ = 100 and θ = 800 are graphically indistinguishable. The entropy is decreasing

rapidly up to t = 15 then the entropy value decreases very slowly.

Now, we consider the case of vanishing production rates, Rc = Rm = 0. Fig-

ures 7.3-7.6 show the volume fractions of the tumor cells and the extracellular

matrix at various times, where we have used the cell-induced pressure coefficient

θ = 100, 200, .., 900. The cross-diffusion term DJB
21 cx causes a drift of the extracellu-

lar matrix to the right boundary, induced by variations of the tumor volume. The

diffusion DJB
22 of the extracellular matrix outside of the tumor is very small, such

that the extracellular matrix cannot diffuse and forms a peak. However, the peak

indicates a loss of regularity of m, and we conjecture that global classical solutions

to the tumor-growth model do not exist. With increasing times, the tumor cell front
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Figure 7.1: Entropy versus time at ∆t = 0.001. The production rates vanish, Rc = Rm =

0.
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Figure 7.2: Entropy versus time using θ = 0, ∆t = 0.001. The production rates are

α = 0.1, γ = 1, δ = 0.35.

July 2, 2015



7.1. Numerical results 109

moves to the right boundary, i.e., the tumor penetrates the surrounding extracellu-

lar matrix. The tumor cell fraction at the left boundary x = 0 is decreasing in time

since the total volume fraction
∫ 2

0
cdx is constant in time and we have drift to the

right. In Figures 7.5 and 7.6, we see that the m is close to 0.25 at all times. We see

the shape of the curve spreading. The height of the wave is larger for greater values

of θ. We conjecture that the maximum height of the travelling wave above 0.25 is

directly proportional to θ.

Next, we include the production terms in the equations. In Figures 7.7, we

plot the volume fractions of the tumor cells θ = 0 and 800. We find that the

qualitative features of the solution for other values of θ are very similar. The right

hand boundary plays a role from early times as the solution lifts away from the

constant value of c = 0, taken by the initial data, to cb(t), where cb(t) denotes

the constant value of c close to the boundary at time t. Moreover, the shape of c

decreases and dips down below cb(t) before recovering to cb(t) which becomes more

prominent the larger θ becomes. In this experiment we observe that even at small

times, e.g. T = 4, the solution lifts away from 0.

In Figures 7.8 and 7.9, we plot the the extracellular matrix at various times,

where the values of pressure coefficient were θ = 100, .., 800. When we compare

Figures 7.7-7.9 to Figures 7.3-7.6 we can see that the cell front and the extracellular

matrix peaks are moving much faster. Also, the tumor cell volume is increasing

(because of the production rates). The height of the peak becomes smaller for

smaller values of θ. This behavior has also been observed by Jackson and Byrne [63]

and Jüngel and Stelzer [66]. Moreover, we see in Figures 7.8 and 7.9 that wave

appears to move with constant velocity but the shape of the wave spreads and

elongates with time.

In Figure 7.8, we saw that after a short amount of time, a wave has formed on

the line m = 0.25 which moves to the right as the time increases. We define xF (t)

such that

xF (t) = {x ∈ [0, 2] : Mn
ε (x, t) ≥ Mn

ε (y, t); ∀y ∈ [0, 2]}.

Assuming a linear velocity so that

xF (t) = β1 + β2t, (7.1.6)
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Figure 7.3: Volume fractions of the tumor cells c versus position at times t = 0, .., 15 and

∆t = 0.001. The production rates vanish, Rc = Rm = 0. (a) θ = 0, (b) θ = 50, (c)

θ = 100, (d) θ = 200, (e) θ = 300, (f) θ = 400.
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Figure 7.4: Volume fractions of the tumor cells c versus position at times t = 0, .., 15 and

∆t = 0.001. The production rates vanish, Rc = Rm = 0. (a) θ = 500, (b) θ = 600, (c)

θ = 700, (d) θ = 800, (e) θ = 900.

July 2, 2015



7.1. Numerical results 112

0.0 0.5 1.0 1.5

0.00

0.05

0.10

0.15

0.20

0.25

m

x

 t=0
  t=1
  t=2
  t=3
  t=4
  t=5
  t=6
  t=7
  t=8
  t=9
  t=10
  t=11
  t=12
  t=13
  t=14
  t=15

(a)

0.0 0.5 1.0 1.5

0.00

0.05

0.10

0.15

0.20

0.25

m

x

 t=0
  t=1
  t=2
  t=3
  t=4
  t=5
  t=6
  t=7
  t=8
  t=9
  t=10
  t=11
  t=12
  t=13
  t=14
  t=15

(b)

0.0 0.5 1.0 1.5
0.00

0.05

0.10

0.15

0.20

0.25

0.30

m

x

 t=0
  t=1
  t=2
  t=3
  t=4
  t=5
  t=6
  t=7
  t=8
  t=9
  t=10
  t=11
  t=12
  t=13
  t=14
  t=15

(c)

0.0 0.5 1.0 1.5
0.00

0.05

0.10

0.15

0.20

0.25

0.30
m

x

 t=0
  t=1
  t=2
  t=3
  t=4
  t=5
  t=6
  t=7
  t=8
  t=9
  t=10
  t=11
  t=12
  t=13
  t=14
  t=15

(d)

0.0 0.5 1.0 1.5

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

m

x

 t=0
  t=1
  t=2
  t=3
  t=4
  t=5
  t=6
  t=7
  t=8
  t=9
  t=10
  t=11
  t=12
  t=13
  t=14
  t=15

(e)

0.0 0.5 1.0 1.5

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

m

x

 t=0
  t=1
  t=2
  t=3
  t=4
  t=5
  t=6
  t=7
  t=8
  t=9
  t=10
  t=11
  t=12
  t=13
  t=14
  t=15

(f)

Figure 7.5: Volume fractions of the Extracellular matrix m versus position at times

t = 0, .., 15 and ∆t = 0.001. The production rates vanish, Rc = Rm = 0. (a) θ = 0, (b)

θ = 50, (c) θ = 100, (d) θ = 200, (e) θ = 300, (f) θ = 400.
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Figure 7.6: Volume fractions of the Extracellular matrix m versus position at times

t = 0, .., 15 and ∆t = 0.001. The production rates vanish, Rc = Rm = 0. (a) θ = 500,

(b) θ = 600, (c) θ = 700, (d) θ = 800, (e) θ = 900.
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Figure 7.7: Volume fractions of the tumor cells c versus position at times t = 0, ..., 9. The

production rates are α = 0.1, γ = 1, δ = 0.35 and ∆t = 0.001 (a) θ = 0, (b) θ = 800.

for the position of the peak, we performed a least-square fit to find β2 given in Figure

7.10 and Tables 7.1 and 7.2.

In all of these experiments, increasing h by a factor of two resulted in little change

for the calculated velocity to the extent that we feel confident that the calculated

values are correct to 3 decimal places. There is a period where the maximum value

moves its position a constant speed when |Ω| = 2 and |Ω| = 4. For large values of

θ (see Figure 7.11), the velocity varies very little, but, the shape of the wave and

its amplitude changes significantly. In Tables 7.1 and 7.2, we list the position which

corresponding to the maximum of the Extracellular matrix m for each time level,

when Rc = Rm = 0 and α = 0.1, γ = 1, and δ = 0.35. Also, in Figure 7.10, we plot

a graph when Rc = Rm = 0 and α = 0.1, γ = 1, and δ = 0.35. Note that in the

second experiment xF hits the right hand boundary shortly after t = 11.
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Figure 7.8: Volume fractions of the Extracellular matrix m versus position at times

t = 0, .., 10. The production rates are α = 0.1, γ = 1, δ = 0.35 and ∆t = 0.001 (a) θ = 0,

(b) θ = 50, (c) θ = 100, (d) θ = 200, (e) θ = 300.
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Figure 7.9: Volume fractions of the Extracellular matrix m versus position at times

t = 0, .., 10. The production rates are α = 0.1, γ = 1, δ = 0.35 and ∆t = 0.001 (a)

θ = 400, (b) θ = 500, (c) θ = 600, (d) θ = 700. (e) θ = 800.
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Figure 7.10: The position which corresponding to the maximum of the Extracellular

matrix m for each time level, i.e. xF (t) = {x ∈ [0, 2] : Mn
ε (x, t) ≥ Mn

ε (y, t);∀y ∈ [0, 2]}

for θ = 800 (a) The production rates vanish, Rc = Rm = 0. (b) The production rates are

α = 0.1, γ = 1, and δ = 0.35.
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Figure 7.11: β2 in equation (7.1.6) versus θ. (a) The production rates vanish, Rc = Rm =

0. (b) The production rates are α = 0.1, γ = 1, and δ = 0.35.
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θ

t 0 50 100 200 300 400 500 600 700 800 900

1 1.015 0.445 0.445 0.445 0.445 0.440 0.440 0.440 0.440 0.440 0.440

2 1.005 0.560 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.550

3 1.000 0.640 0.635 0.635 0.635 0.635 0.635 0.635 0.635 0.630 0.630

4 1.765 0.700 0.700 0.695 0.700 0.700 0.700 0.695 0.695 0.695 0.695

5 1.170 0.755 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750

6 1.765 0.800 0.800 0.795 0.800 0.800 0.800 0.800 0.795 0.795 0.795

7 1.765 0.845 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.835

8 1.420 0.885 0.880 0.875 0.880 0.880 0.880 0.880 0.875 0.875 0.875

9 1.565 0.920 0.915 0.910 0.915 0.915 0.915 0.915 0.915 0.910 0.910

10 1.565 0.950 0.945 0.945 0.945 0.950 0.950 0.945 0.945 0.945 0.945

11 1.565 0.980 0.975 0.975 0.980 0.980 0.980 0.975 0.975 0.975 0.975

12 1.565 1.010 1.005 1.005 1.005 1.010 1.005 1.005 1.005 1.005 1.000

13 1.565 1.035 1.030 1.030 1.035 1.035 1.035 1.035 1.030 1.030 1.030

14 1.565 1.065 1.055 1.055 1.060 1.060 1.060 1.060 1.060 1.055 1.055

15 1.565 1.085 1.080 1.080 1.085 1.085 1.085 1.085 1.085 1.080 1.080

Table 7.1: The position corresponding to the maximum of the Extracel-

lular matrixm for each time level, i.e. xF (t) = {x ∈ [0, 2] : Mn
ε (x, t) ≥

Mn
ε (y, t);∀y ∈ [0, 2]}. The production rates vanish, Rc = Rm = 0 and

∆t = 0.001.
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θ

t 0 50 100 200 300 400 500 600 700 800

1 1.760 0.475 0.470 0.470 0.470 0.470 0.470 0.470 0.470 0.470

2 1.705 0.635 0.630 0.630 0.630 0.630 0.630 0.630 0.630 0.630

3 1.695 0.780 0.775 0.770 0.770 0.770 0.770 0.770 0.770 0.770

4 1.700 0.915 0.910 0.905 0.905 0.910 0.910 0.910 0.905 0.905

5 0.255 1.060 1.050 1.040 1.045 1.045 1.045 1.045 1.045 1.045

6 0.255 1.205 1.190 1.185 1.185 1.185 1.185 1.190 1.185 1.185

7 0.255 1.355 1.340 1.325 1.325 1.330 1.330 1.330 1.330 1.330

8 0.255 1.510 1.490 1.475 1.470 1.475 1.475 1.480 1.480 1.480

9 0.255 0.530 1.645 1.625 1.615 1.620 1.625 1.625 1.630 1.630

10 0.260 0.515 1.805 1.775 1.765 1.770 1.775 1.775 1.780 1.780

11 0.260 0.500 2 2 2 1.965 1.950 1.950 1.950 1.950

12 0.265 0.480 0.480 2 2 2 2 2 2 2

13 0.270 0.450 0.370 2 2 2 2 2 2 2

14 0.275 0.400 0.170 2 2 2 2 2 2 2

15 0.280 0.315 0 0 2 2 2 2 2 2

Table 7.2: The position corresponding to the maximum of the Extracel-

lular matrixm for each time level, i.e. xF (t) = {x ∈ [0, 2] : Mn
ε (x, t) ≥

Mn
ε (y, t);∀y ∈ [0, 2]}. The production rates are α = 0.1, γ = 1,

δ = 0.35 and ∆t = 0.001.
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θ β2

50 0.05327206

100 0.05289706

200 0.05294118

300 0.05323529

400 0.05343382

500 0.05336765

600 0.05333088

700 0.05326471

800 0.05310294

900 0.05312500

Table 7.3: The values of velocity β2. The production rates vanish, Rc =

Rm = 0, ∆t = 0.001.

θ β2

50 -0.01247794

100 0.00515441

200 0.08652941

300 0.13048529

400 0.13013235

500 0.13003676

600 0.13002206

700 0.13015441

800 0.13015441

Table 7.4: The values of velocity β2. The production rates are α =

0.1, γ = 1, and δ = 0.35, ∆t = 0.001.
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Chapter 8

Approximation of the Keller-Segel

Model

In this chapter a finite element scheme for the Keller-Segel model with an addition-

al cross-diffusion term in the elliptic equation for the chemical signal is analyzed.

In Section 8.1 we introduce a regularized problem of the truncated system. Then

we obtain some a priori estimates of the regularized functions, independent of the

regularization parameter, via deriving a well defined entropy inequality of the regu-

larized problem. In Section 8.2.1, we propose a practical fully discrete finite element

approximation of the regularized problem. Next, in Section 8.2.2, we use a fixed

point theorem to show the existence of the approximate solutions. In Section 8.2.3

we derive a discrete entropy inequality and some stability bounds on the solutions

of regularized problem. In Section 8.2.4, the uniqueness of the fully discrete ap-

proximations is discussed. Finally, in Section 8.3, we discuss the convergence to the

semi-discrete problem.

8.1 A regularized problem

The key step of our analysis in proving existence of a global weak solution of the

system (1.4.8)-(1.4.11) is to derive a priori estimates. To achieve this, we use a

mathematical approach that deals with an entropy inequality of the problem (Q).

Such an approach has been employed in studying different kinds of partial differential
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8.1. A regularized problem 122

equations, e.g. see [8], [9], [10] and [11]. However, although the methodology we

will use has been utilized before, we include all details here for completeness. By

using an appropriate entropy functional, we first obtain some a priori estimates on

a solution of the model (Q).

For illustrative purposes, we now introduce for ε ∈ (0, e−1) the corresponding

regularized version of the problem (QM,ε):

Find {eε, sε} ∈ R× R such that

∂teε −∇ · [∇eε − ϕε(eε)∇sε] = 0, in QT , (8.1.1)

α∂tsε −∆sε − δ∆eε − µeε + sε = 0, in QT , (8.1.2)

∇eε · ν = 0, ∇sε · ν = 0, on ST , (8.1.3)

eε(·, 0) = e0, sε(·, 0) = s0, in Ω, (8.1.4)

where the regularized function ϕε and the parameter ε have been defined in Chapter

2. In the following lemma we derive the entropy inequality for the regularized

problem (QM,ε) which will provide us with some uniform bounds on the regularized

solutions eε and sε.

Lemma 8.1.1 Let {e0(x), s0(x)} ∈ L2(Ω) × L2(Ω). Then, there exists a positive

C(e0, s0, δ, µ, C) independent of ε such that any solution of QM,ε satisfies

sup
0≤t≤T

∫
Ω

(Fε(eε) +
α

2δ
s2ε)dx+

∫ T

0

(
|∇eε|2

2ϕε(eε)
+

1

2δ
∥sε∥20 +

1

2δ
|sε|21

)
≤ C(M). (8.1.5)

where Fε is defined in (2.3.25). In addition,

sup
0≤t≤T

∫
Ω

|[eε]−|2dx ≤ C(M)ε. (8.1.6)

Proof : Multiplying (8.1.1) and (8.1.2) by F ′
ε(eε) and 1

δ
sε respectively, integrating

by parts over the domain Ω, summing the resulting equations yields, after recalling

the boundary conditions (8.1.3), that

d

dt

∫
Ω

(Fε(eε) +
α

2δ
s2ε)dx+

∫
Ω

(
|∇eε|2

ϕε(eε)
+

1

δ
|∇sε|2 +

1

δ
s2ε

)
dx ≤ µ

δ

∫
Ω

eεsεdx, (8.1.7)

where we used the relation

ϕε(eε)∇[F ′
ε(eε)] = ∇eε. (8.1.8)
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We note that testing (8.1.1) with χ ≡ 1 gives for a.e. t ∈ (0, T ) that

(eε(., t), 1) = (eε(., 0), 1) = (e0, 1) ≤ C. (8.1.9)

It follows immediately from (8.1.2) for a.e. t ∈ (0, T ) that

α
d

dt
−
∫
sε − µ−

∫
eε +−

∫
sε = 0. (8.1.10)

Therefore, on noting the assumptions on the initial data and the bound (8.1.9),

integrating (8.1.10) over (0, T ) leads to

−
∫
sε ≤ C. (8.1.11)

We estimate the right-hand side of (8.1.7) using the Hölder inequality:

µ

δ

∫
Ω

eεsεdx ≤ µ

δ

∥∥eε −−
∫
eε
∥∥ ∥∥sε∥∥0

+ C, (8.1.12)

where C = |Ω|−
∫
eε−
∫
sε. Then, the term ∥eε − −

∫
eε∥ can be bounded by use of the

Poincaŕe inequality:

∥∥eε −−
∫
eε
∥∥2 ≤ Cp

∣∣eε∣∣21 ≤ Cp

∫
Ω

|∇eε|2

ϕε(eε)
ϕε(eε)dx ≤ CpM

∫
Ω

|∇eε|2

ϕε(eε)
dx. (8.1.13)

Combining (8.1.12) and (8.1.13) and using Young’s inequality leads to

µ

δ

∫
Ω

eεsεdx ≤ 1

2

∫
Ω

|∇eε|2

ϕε(eε)
dx+ CpM

µ2

2δ2
∥∥sε∥∥2

0
+ C. (8.1.14)

Hence, the result (8.1.5) follows from (8.1.7) on noting (8.1.14), (8.1.9) and (8.1.11).

Finally, the result (8.1.6) follows immediately from the first bound in (8.1.5) and

(2.3.29). 2

The existence of a solution of problem (Q) could be shown by passing to the limit

ε −→ 0. However, this can only be performed in the case that we have existence of

a solution to the regularized problem (QM,ε). To deal with this issue, in our study

of problem (Q), we use the power of the finite element method.

We now formulate a fully discrete finite element approximation of (QM,ε) and

prove existence of fully discrete approximate solutions using discretization param-

eters h and ∆t. In actual fact, to prove existence for (Q) we let h → 0 to yield a

semi-discrete problem (Q∆t
M ) and then let 1

M
,∆t→ 0.
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8.2 A fully discrete approximation of the Keller-

Segel Model

8.2.1 An approximation problem

In order to introduce a fully discrete approximation that is consistent with the reg-

ularized problem (QM,ε), we adapt a technique developed in [54] for studying a

degenerate nonlinear fourth order parabolic equation modelling the height of thin

films of viscous fluids driven by surface tension. This technique has been also adapt-

ed and employed in a number of numerical studies, see for example [8], [9], [10], [11]

and [12].

Now, we propose the following fully discrete finite element approximation of

(QM,ε) for any ε ∈ (0, e−1) :

(Qh,∆t
M,ε ) For n ≥ 1 find {En

ε , S
n
ε } ∈ [Sh]2 such that for all χ ∈ Sh

(En
ε − En−1

ε

∆t
, χ

)h
+ (∇En

ε − Λε(E
n
ε )∇Sn

ε ,∇χ) = 0, (8.2.15)

α
(Sn

ε − Sn−1
ε

∆t
, χ

)h
+ (Sn

ε , χ)
h + (∇Sn

ε ,∇χ) + δ(∇En
ε ,∇χ) = µ(En

ε , χ)
h, (8.2.16)

where E0
ε and S0

ε ∈ Sh are given approximations of e0ε and s0ε, respectively, and Λε

is given by (2.4.65).

8.2.2 Existence of the approximations

In order to prove the existence of solution En
ε and Sn

ε , n ≥ 1, of the system (8.2.15)-

(8.2.16) for given En−1
ε and Sn−1

ε , it is convenient to define the functions Ae : S
h ×

Sh → Sh and As : S
h × Sh → Sh such that for all χ ∈ Sh

(Ae(E, S), χ)
h = (E − En−1

ε , χ)h +∆t(∇E − Λε(E)∇S,∇χ), (8.2.17)

(As(E, S), χ)
h = α(S − Sn−1

ε , χ)h +∆t(S, χ)h +∆t(∇S,∇χ) + δ∆t(∇E,∇χ)

−∆tµ(E, χ)h, (8.2.18)

respectively. We first note that the continuous piecewise linear functions Ae and As

can be defined uniquely in terms of their values at the nodal points N h. This can be
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seen by setting χ ≡ φj , for j = 0, ..., J , in (8.2.17) and (8.2.18) and then obtaining

the following solvable square matrix systems

M̂Ae(E, S) = S1,

M̂As(E, S) = S2,

where M̂ is the lumped mass matrix, and S1 and S2 are given vectors in terms of

the nodal values of E, S,En−1
ε and Sn−1

ε . Thus, the functions Ae and As are well

defined.

From (8.2.17) and (8.2.18) we note that the problem (Qh,∆t
M,ε ) can be restated as:

For given {E0
ε , S

0
ε} ∈ Sh × Sh, find {En

ε , S
n
ε } ∈ Sh × Sh, n ≥ 1, such that

Ae(E, S) = 0, As(E, S) = 0. (8.2.19)

Lemma 8.2.1 For any given R > 0, the functions Ae : [Sh]2R → Sh and As :

[Sh]2R → Sh are continuous, where

[Sh]2R =

{
{χ1, χ2} ∈ Sh × Sh : |χ1|2h + |χ2|2h ≤ R2

}
.

Proof : Let {E1, S1}, {E2, S2} ∈ [Sh]2R . It follows from (8.2.17) that for all χ ∈ Sh

(Ae(E1, S1)− Ae(E2, S2), χ)
h = (E1 − E2, χ)

h +∆t(∇(E1 − E2)− Λε(E1)∇S1

+Λε(E2)∇S2,∇χ). (8.2.20)

Choosing χ = Ae(E1, S1) − Ae(E2, S2) in (8.2.20) yields on noting the Cauchy-

Schwarz inequality, (2.4.54) and (2.4.46), that

|Ae(E1, S1)−Ae(E2, S2)|h ≤ C(h−1,∆t)|E1−E2|h+C(h−1,∆t)∥Λε(E1)∇S1−Λε(E2)∇S2∥0.

(8.2.21)

It follows from (2.4.54), (2.4.46), (2.4.69), (2.4.68) and (2.4.55) that

∥Λε(E1)∇S1−Λε(E2)∇S2∥0 = ∥Λε(E1)∇S1−Λε(E2)∇S1+Λε(E2)∇S1−Λε(E2)∇S2∥0

≤ ∥(Λε(E1)− Λε(E2))∇S1∥0 + ∥Λε(E2)(∇S1 −∇S2)∥0

≤ ∥(Λε(E1)− Λε(E2))∥0,∞|S1|1 + ∥Λε(E2)∥0,∞|S1 − S2|1

≤ Ch−1∥(Λε(E1)− Λε(E2))∥0,∞|S1|h + Ch−1∥Λε(E2)∥0,∞|S1 − S2|h
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≤ C(h−1,M, ε−1)∥E1 − E2∥0,∞|S1|h + C(h−1,M)|S1 − S2|h

≤ C(h−1,M, ε−1, R)∥E1 − E2∥0 + C(h−1,M)|S1 − S2|h

≤ C(h−1,M, ε−1, R)
(
∥E1 − E2∥0 + |S1 − S2|h

)
. (8.2.22)

Combining (8.2.20), (8.2.21) and (8.2.22) yields that for Ae is Lipchitz continuous.

The proof of the continuity of As follows similarly to the proof of the continuity of

Ae.

2

We now show the main result of this chapter where we establish the existence of a

solution {En
ε , S

n
ε } to (Qh,∆t

M,ε ).

Theorem 8.2.2 Let {En−1
ε , Sn−1

ε } ∈ Sh × Sh be a given solution to the (n− 1)-th

step of (Qh,∆t
M,ε ) for some n = 1, ..., N . Then for all ε ∈ (0, e−1), for all h > 0 and

for all ∆t ≤ δ
2Mµ2 , there exists a solution {En

ε , S
n
ε } ∈ Sh × Sh to the n-th step of

(Qh,∆t
M,ε ).

Proof : Now, we recall that the proof is equivalent to the proof of existence of

{En
ε , S

n
ε } ∈ [Sh]2R satisfies (8.2.19). One approach is to use a proof by contradiction.

LetR be a fixed positive number and assume that there does not exist {E, S} ∈ [Sh]2R

with Ae(E, S) = As(E, S) = 0. This assumption enables us to define a function

B : [Sh]2R → [Sh]2R such that

B(E, S) = (Be(E, S), Bs(E, S)),

where Be(E, S) and Bs(E, S) are given by

Be(E, S) :=
−RAe(E, S)

|(Ae(E, S), As(E, S))|Sh×Sh

,

Bs(E, S) :=
−RAs(E, S)

|(Ae(E, S), As(E, S))|Sh×Sh

, (8.2.23)

where |(·, ·)|[Sh]2R
is the standard norm on [Sh]2R defined by

|(χ1, χ2)|Sh×Sh =

( 2∑
i=1

|χi|2h
) 1

2

.

We note from the continuity of Ae and As, see Lemma 8.2.1, that the function B

is continuous. Hence, on recalling that [Sh]2R is a convex and compact subset of
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Sh × Sh, it follows from the Schauder’s theorem (see Appendix A.1.1) that there

exists E, S ∈ [Sh]2R which is a fixed point of B; that is

B(E, S) = (Be(E, S), Bs(E, S)) = (E, S).

We also note from (8.2.23) that the fixed point {E, S} satisfies

|E|2h + |S|2h = |Be(E, S)|2h + |Bs(E, S)|2h = R2. (8.2.24)

We now prove a contradiction for R sufficiently large. Choosing χ ≡ πh[F ′
ε(E)], in

(8.2.17) yields on noting (2.4.45), (2.4.62) and (2.4.68) that

(Ae(E, S), F
′
ε(E))

h = (E − En−1
ε , F ′

ε(E))
h +∆t(Λ−1

ε (E)∇E −∇S,∇E)

≥ (E − En−1
ε , F ′

ε(E))
h +

∆t

M
|E|21 −∆t(∇S,∇E), (8.2.25)

and χ ≡ S
δ
in (8.2.18)

(As(E, S),
S

δ
)h =

α

δ
(S − Sn−1

ε , S)h +
∆t

δ
|S|2h +

∆t

δ
|S|21 +∆t(∇E,∇S)

−∆tµ

δ
(E, S)h. (8.2.26)

We obtain from (2.3.28), (2.3.33) and (2.1.10) that

(E − En−1
ε , F ′

ε(E))
h ≥ (Fε(E)− Fε(E

n−1
ε ), 1)h +

1

2
((E − En−1

ε )2, F ′′
ε (ξ))

h

≥ (Fε(E)− Fε(E
n−1
ε ), 1)h +

1

2M
|E − En−1

ε |2h

≥ (Fε(E)− Fε(E
n−1
ε ), 1)h +

1

4M
|E|2h −

1

2M
|En−1

ε |2h. (8.2.27)

Using the simple identity

2φ(φ− κ) = φ2 − κ2 + (φ− κ)2, ∀ φ, κ ∈ R,

we obtain that
α

δ
(S − Sn−1

ε , S)h ≥ α

2δ
|S|2h −

α

2δ
|Sn−1

ε |2h. (8.2.28)

The last term of (8.2.26) can be bound using Young’s inequality, as follows:

∆tµ

δ

(
E, S

)h ≤ ∆tµ2

2δ
|E|2h +

∆t

2δ
|S|2h. (8.2.29)
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Adding (8.2.25) and (8.2.26) and noting (8.2.27)-(8.2.29), (8.2.24), the non-negativity

of Fε(s), and the stated assumption on ∆t yields for sufficiently large R that

(Ae(E, S), F
′
ε(E))

h +
1

δ
(As(E, S), S)

h

≥ (Fε(E), 1)
h+

( 1

4M
−µ

2

2δ
∆t

)
|E|2h+

( α
2δ

+
∆t

2δ

)
|S|2h+

∆t

M
|E|21+

∆t

δ
|S|21−C(En−1

ε , Sn−1
ε )

≥ (Fε(E), 1)
h+min

{( 1

4M
−µ

2

2δ
∆t

)
,
( α
2δ

+
∆t

2δ

)}
R2+

∆t

M
|E|21+

∆t

δ
|S|21−C(En−1

ε , Sn−1
ε ).

(8.2.30)

Noting that {E, S} is a fixed point of the function B, (8.2.23) and (8.2.30) yields

for R sufficiently large that

(E,F ′
ε(E)

h +
1

δ
(S, S)h = (Be(E, S), F

′
ε(E))

h +
1

δ
(Bs(E, S), S)

h

=
−R [(Ae(E, S), F

′
ε(E, S)

h + 1
δ
(As(E, S), S)

h]

|(Ae(E, S), As(E, S))|Sh×Sh

< 0. (8.2.31)

Once again, it follows from (2.3.33) and (2.3.28) that

(E,F ′
ε(E))

h ≥ (Fε(E)− Fε(0), 1)
h +

1

2M
|E|2h. (8.2.32)

Thus, using (8.2.32) yields on noting the non-negativity of Fε(s) for R sufficiently

large that

(E,F ′
ε(E))

h +
1

δ
(S, S)h ≥ R2 min{ 1

2M
,
1

δ
} − (1− ε

2
)|Ω| > 0, (8.2.33)

which contradicts (8.2.31). This contradiction ensures that there exists {En
ε , S

n
ε } ∈

Sh×Sh satisfying Ae(E
n
ε , S

n
ε ) = As(E

n
ε , S

n
ε ) = 0. Equivalently, we have existence of

a solution, which is {En
ε , S

n
ε }, to the n-th step of (Qh,∆t

M,ε ).

2

8.2.3 Discrete entropy inequality and stability bounds

In this section we obtain a discrete analogue of the a priori estimates in Lemma

8.1.1. We also prove some uniform bounds on the solution {En
ε , S

n
ε }, independent

of the parameters ε, h and ∆t, which are necessary to prove the convergence of the

approximate problem. The following estimate is discrete analogue of (8.1.5), and

plays a key role in obtaining important stability bounds of various norms of the

approximate solutions.
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Lemma 8.2.3 Let the assumptions of Theorem 8.2.2 hold. Let {En−1
ε , Sn−1

ε } ∈

Sh × Sh be given for some n = 1, ..., N . Then for all ε ∈ (0, e−1) and for all h > 0,

there exists a solution {En
ε , S

n
ε } ∈ Sh × Sh to the n-th step of (Qh,∆t

M,ε ) such that

(
Fε(E

n
ε ), 1

)h
+

∆t

2M
|En

ε |21 +
(
α

2δ
+

∆t

δ
− µ2

2δ2
ς∆t

)
|Sn

ε |2h +
∆t

δ
|Sn

ε |21

≤
(
Fε(E

n−1
ε ), 1

)h
+
α

2δ
|Sn−1

ε |2h + C∆t|(E0
ε , 1)|2, (8.2.34)

where ς =M(d+ 2)Cp.

Proof : The existence was demonstrated in Theorem 8.2.2. We now show that the

solution {En
ε , S

n
ε } ∈ Sh×Sh satisfies (8.2.34). Choosing χ ≡ ∆tπh[F ′

ε(E
n
ε )] as a test

function in (8.2.15) and χ ≡ ∆t
δ
Sn
ε as a test function in (8.2.16) yields, on noting

(8.2.27), (8.2.25) and (8.2.28), the discrete analogue of (8.1.7)

(
Fε(E

n
ε ), 1

)h
+

∆t

M
|En

ε |21 −∆t(∇Sn
ε ,∇En

ε ) ≤
(
Fε(E

n−1
ε ), 1

)h
, (8.2.35)

α

2δ
|Sn

ε |2h +
∆t

δ
|Sn

ε |21 +
∆t

δ
|Sn

ε |2h +∆t(∇Sn
ε ,∇En

ε ) ≤
α

2δ
|Sn−1

ε |2h +
µ∆t

δ
(En

ε , S
n
ε )

h.

(8.2.36)

It follows immediately from (8.2.15) with n = 1, ..., N , that

(En
ε , 1) = (E0

ε , 1). (8.2.37)

It follows from the Young’s inequality, the Poincaré inequality, (2.4.46), and (8.2.37)

that
µ∆t

δ
(En

ε , S
n
ε )

h ≤ ∆t

2CpM(d+ 2)
|En

ε |2h +
µ2

2δ2
CpM(d+ 2)∆t|Sn

ε |2h

≤ ∆t

2CpM
∥En

ε ∥20 +
µ2

2δ2
CpM(d+ 2)∆t|Sn

ε |2h

≤ ∆t

2M
|En

ε |21 +
µ2

2δ2
CpM(d+ 2)∆t|Sn

ε |2h + C∆t|(E0
ε , 1)|2. (8.2.38)

Combining (8.2.35), (8.2.36) and noting (8.2.38), leads to the desired result (8.2.34).

2

In the following theorem we derive a discrete entropy inequality of the system

(8.2.15)-(8.2.16) that is consistent with the entropy inequality obtained in Lemma

8.1.1.
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Theorem 8.2.4 Let e0, s0 ∈ L2(Ω) with |e0(·)| ≤ 1 a.e. in Ω. Let E0
ε ∈ L1(Ω).

Further, let either E0
ε ≡ Phe0, S0

ε ≡ Phs0; or E0
ε ≡ πhe0, S0

ε ≡ πhs0 if e0, s0 ∈ C(Ω).

Then for all ε ∈ (0, e−1), for all h > 0 and for all ∆t > 0 such that

∆t ≤

δ/2Mµ2 if ς ≤ 2δ
µ2 ,

δ( α
2δ

− ρ)/(µ
2

2δ
ς − 1) if ς > 2δ

µ2 .

Then, the problem (Qh,∆t
M,ε ) possesses a solution {En

ε , S
n
ε }, n = 1, ..., N satisfying

max
n=1,...,N

[
(Fε(E

n
ε )+∥Sn

ε ∥20
]
+

N∑
n=1

∆t[
1

M
∥En

ε ∥21+∥Sn
ε ∥21+ε−1∥πh[En

ε ]−∥20+∥πh[Sn
ε ]−∥20] ≤ C.

(8.2.39)

Furthermore,

N∑
n=1

∆t

[∥∥∥∥En
ε − En−1

ε

∆t

∥∥∥∥2

(H1(Ω))′
+

∥∥∥∥Sn
ε − Sn−1

ε

∆t

∥∥∥∥2

(H1(Ω))′

]
+

N∑
n=1

∆t

[∥∥∥∥G[En
ε − En−1

ε

∆t
]

∥∥∥∥2

1

+

∥∥∥∥G[Sn
ε − Sn−1

ε

∆t
]

∥∥∥∥2

1

]
≤ C. (8.2.40)

Proof : We consider the case when ς > 2δ
µ2 and we comment later on the simple case

ς ≤ 2δ
µ2 . Using (3.1.1), the definition of the interpolation operator and (3.1.2) and

our assumptions on the initial data, we obtain that

∥E0
ε∥0 + ∥S0

ε∥0 ≤ C, (8.2.41)

It follows from our assumptions on the initial and (2.3.25) that

(Fε(E
0
ε ), 1)

h ≤ C. (8.2.42)

Moreover, it holds from (8.2.37) and (8.2.41) with n = 1, ..., N , that

(En
ε , 1) = (E0

ε , 1) ≤ C. (8.2.43)

Since Fε(E
n
ε ) ≥ 0, we have from (8.2.34) and (8.2.43) for n = 1, ..., N that(

α

2δ
− (

µ2

2δ
ς − 1)

∆t

δ

)[
2δ

α

(
Fε(E

n
ε ), 1

)h
+ |Sn

ε |2h
]
+

∆t

2M
|En

ε |21

≤
(
α

2δ
+ (

µ2

2δ
ς − 1)

∆t

δ

)[
2δ

α

(
Fε(E

n−1
ε ), 1

)h
+ |Sn−1

ε |2h
]
+ C∆t|(E0

ε , 1)|2. (8.2.44)
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On noting (8.2.44), we have that

2δ

α

(
Fε(E

n
ε ), 1

)h
+ |Sn

ε |2h +
∆t

2M

(
α
2δ

− (µ
2

2δ
ς − 1)∆t

δ

) |En
ε |21

≤
(
1 +

2

ρ
(
µ2

δ
ς − 1)

∆t

δ

)[
2δ

α

(
Fε(E

n−1
ε ), 1

)h
+ |Sn−1

ε |2h
]
+ C∆t

≤ e
2
ρ
(µ

2

δ
ς−1)∆t

δ

[
2δ

α

(
Fε(E

n−1
ε ), 1

)h
+ |Sn−1

ε |2h
]
+ C∆t, (8.2.45)

where ρ = α
2δ

− (µ
2

2δ
ς − 1)∆t

δ
. Therefore, the first two bounds in (8.2.39) flows form

(8.2.45) and noting (8.2.41) and (2.4.46). When ς ≤ 2δ
µ2 , we can rewrite (8.2.44) as

follow
α

2δ

[
2δ

α

(
Fε(E

n
ε ), 1

)h
+ |Sn

ε |2h
]
+

∆t

2M
|En

ε |21

≤ α

2δ

[
2δ

α

(
Fε(E

n−1
ε ), 1

)h
+ |Sn−1

ε |2h
]
+ C∆t|(E0

ε , 1)|2. (8.2.46)

Thus, the proof will follow the same steps of the case when ς > 2δ
µ2 . The only

difference is that the constant e
2
ρ
(µ

2

2δ
ς−1)∆t

δ will be changed to 1 and hence the proof

will be much easier.

The third and fourth bounds in (8.2.39) can be obtained easily by summing

(8.2.34) over n on noting (8.2.41), (8.2.43) and the second bound in (8.2.39). From

(2.4.46), (2.4.45), (2.3.29) and the first two bounds in (8.2.39) we obtain, after

recalling that s = [s]+ + [s]− and Fε(s) ≥ 0, that for n = 1, ..., N

∥πh[En
ε ]−∥20 ≤ ∥πh[En

ε ]−∥2h = ([En
ε ]

2
−, 1)

h ≤ 2ε(Fε(E
n
ε ), 1)

h ≤ Cε, (8.2.47)

∥πh[Sn
ε ]−∥20 ≤ ∥πh[Sn

ε ]−∥2h = ([Sn
ε ]

2
−, 1)

h ≤ ((Sn
ε )

2, 1)h ≤ C. (8.2.48)

Now, from (3.1.1), (8.2.15), (2.4.68), (3.1.3) and (2.4.46) we obtain for any η ∈

H1(Ω) and for n = 1, ..., N that

⟨E
n
ε − En−1

ε

∆t
, η⟩ = (

En
ε − En−1

ε

∆t
, η) = (

En
ε − En−1

ε

∆t
,Phη)h

= (Λε(E
n
ε )∇Sn

ε −∇En
ε ,∇Phη)

≤ C
(
|En

ε |1 + |Sn
ε |1

)
|Phη|1

≤ C
(
∥En

ε ∥1 + ∥Sn
ε ∥1

)
∥η∥1, (8.2.49)
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and therefore, ∥∥∥∥En
ε − En−1

ε

∆t

∥∥∥∥2

(H1(Ω))′
≤ C

(
∥En

ε ∥21 + ∥Sn
ε ∥21

)
. (8.2.50)

Hence, we have from (8.2.39) that

N∑
n=1

∆t

∥∥∥∥En
ε − En−1

ε

∆t

∥∥∥∥2

(H1(Ω))′
≤ C

N∑
n=1

∆t
(
∥En

ε ∥21 + ∥Sn
ε ∥21

)
≤ C. (8.2.51)

Similarly to (8.2.49), it follows from (3.1.1), (8.2.16), (3.1.3) and (2.4.46) we obtain

for any η ∈ H1(Ω) and for n = 1, ..., N that

⟨S
n
ε − Sn−1

ε

∆t
, η⟩ = (

Sn
ε − Sn−1

ε

∆t
, η) = (

Sn
ε − Sn−1

ε

∆t
,Phη)h

= µ(En
ε ,P

hη)h − (Sn
ε ,P

hη)h − (∇Sn
ε ,∇Phη)− δ(∇En

ε ,∇Phη)

≤ C
(
∥En

ε ∥1 + ∥Sn
ε ∥1

)
∥Phη∥1

≤ C
(
∥En

ε ∥1 + ∥Sn
ε ∥1

)
∥η∥1. (8.2.52)

Thus, (8.2.52) implies∥∥∥∥Sn
ε − Sn−1

ε

∆t

∥∥∥∥2

(H1(Ω))′
≤ C

(
∥En

ε ∥21 + ∥Sn
ε ∥21

)
. (8.2.53)

Hence we have from (8.2.39), that

N∑
n=1

∆t

∥∥∥∥Sn
ε − Sn−1

ε

∆t

∥∥∥∥2

(H1(Ω))′
≤ C

N∑
n=1

∆t
(
∥En

ε ∥21 + ∥Sn
ε ∥21

)
≤ C. (8.2.54)

To complete the proof of the theorem, we note that the last two bounds in (8.2.40)

follow from the the first two bounds in (8.2.40), respectively, on recalling (3.1.10).

Remark 8.2.1 As M is a non-physical parameter, we could have taken M >

2δ/(µ2(d+ 2)Cp).

8.2.4 Uniqueness of the approximation

Theorem 8.2.5 Let the assumptions of Theorem 8.2.4 hold. Let {En
ε , S

n
ε }, n =

1, ..., N be a solution of the problem (Qh,∆t
M,ε ). If Cb = maxn=1,...,N ∥Sn

ε ∥20 and ∆t ∈

(0, τ1), where the values of τ1 is stated in the proof (8.2.63), then, the solution

{En
ε , S

n
ε }, n = 1, ..., N is unique.
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Proof : We perform the proof by induction. Assume there are two discrete solutions

{En
ε,1, S

n
ε,1} and {En

ε,2, S
n
ε,2}, n = 1, ..., N to the problem (Qh,∆t

M,ε ) such that

max
n=1,...,N

{
∥Sn

ε,1∥20, ∥Sn
ε,2∥20

}
≤ Cb. (8.2.55)

Firstly, we note that the approximation solutions are unique at time t = 0, then

we assume that the approximations are unique at the (n − 1)-time step of (Qh,∆t
M,ε ).

Secondly, we set En
ε = En

ε,1 − En
ε,2 and Sn

ε = Sn
ε,1 − Sn

ε,2. On subtracting the fully

discrete approximations gives for all χ ∈ Sh that

1

∆t

(
En
ε , χ

)h
+ (∇En

ε ,∇χ) = (Λε(E
n
ε,1)∇Sn

ε,1 − Λε(E
n
ε,2)∇Sn

ε,2,∇χ), (8.2.56)

α

∆t

(
Sn
ε , χ

)h
+ (Sn

ε , χ)
h + (∇Sn

ε ,∇χ) + δ(∇En
ε ,∇χ) = µ(En

ε , χ)
h. (8.2.57)

Next, we set χ ≡ En
ε in (8.2.56) and χ ≡ 1

δ
Sn
ε in (8.2.57) as a test function and adding

the resulting equations yields, on using the Hölder’s inequality, (2.4.68), (2.4.69),

(2.4.54) and (8.2.55), that

1

∆t
|En

ε |2h + |En
ε |21 +

α

δ∆t
|Sn

ε |2h +
1

δ
|Sn

ε |2h +
1

δ
|Sn

ε |21

= (Λε(E
n
ε,1)∇Sn

ε,1 − Λε(E
n
ε,2)∇Sn

ε,2,∇En
ε ) +

µ

δ
(En

ε ,Sn
ε )

h − (∇En
ε ,∇Sn

ε )

=
(
[Λε(E

n
ε,1)− 1]∇En

ε ,∇Sn
ε

)
+
(
[Λε(E

n
ε,1)− Λε(E

n
ε,2)]∇Sn

ε,2,∇En
ε

)
+
µ

δ
(En

ε ,Sn
ε )

h

≤ C1|En
ε |1 |Sn

ε |1 + ∥Λε(E
n
ε,1)− Λε(E

n
ε,2)∥0|Sn

ε,2|1,∞ |En
ε |1 +

µ

δ
|En

ε |h |Sn
ε |h

≤ C1|En
ε |1 |Sn

ε |1 +
C2

h
∥Λε(E

n
ε,1)− Λε(E

n
ε,2)∥0∥Sn

ε,2∥0,∞ |En
ε |1 +

µ

δ
|En

ε |h |Sn
ε |h

≤ C1|En
ε |1 |Sn

ε |1 +
C2Cb

h
∥Λε(E

n
ε,1)− Λε(E

n
ε,2)∥0|En

ε |1 +
µ

δ
|En

ε |h |Sn
ε |h

≤ C1|En
ε |1 |Sn

ε |1 +
2MC2Cb

hε
∥En

ε ∥0,∞|En
ε |1 +

µ

δ
|En

ε |h |Sn
ε |h := I1 + I2 + I3, (8.2.58)

where C2 is the positive constant, independent of the parameters h and ε, that is

generated from applying (2.4.54) and C1 =M + 1.
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Next, we obtain from the Young’s inequality, (2.4.54) and (2.4.55) that

I1 ≤
δC2

1

4
|En

ε |21 +
1

δ
|Sn

ε |21 ≤
δC2

1C
2
2

4h2
∥En

ε ∥20 +
1

δ
|Sn

ε |21 = a4|En
ε |2h +

1

δ
|Sn

ε |21,

(8.2.59)

I2 ≤
2MC2C3Cb

h3/2ε
∥En

ε ∥0|En
ε |1 ≤

(MC2C3Cb)
2

h3ε2
∥En

ε ∥20 + |En
ε |21 ≤ a5∥En

ε ∥2h + |En
ε |21,

(8.2.60)

I3 ≤ a6|En
ε |2h +

( α

δ∆t
+

1

δ
− β

)
|Sn

ε |2h,

(8.2.61)

where

a4 =
δC2

1C
2
2

4h2
, a5 =

(MC2C3Cb)
2

h3ε2
and a6 =

µ2

4δ2( α
δ∆t

+ 1
δ
− β)

.

and 0 < β < α
δ∆t

+ 1
δ
. Combining (8.2.58) and (8.2.59)-(8.2.61) yields on noting the

equivalence (2.4.46) that

( 1

∆t
− (a4 + a5 + a6)

)
|En

ε |2h + β|Sn
ε |2h ≤ 0. (8.2.62)

Now, we set

τ1 < 1/(a4 + a5 + a6). (8.2.63)

It follows from (8.2.62), for any ∆t ∈ (0, τ1) that

|En
ε |2h + |Sn

ε |2h ≤ 0,

leading to En
ε,1 = En

ε,2 and Sn
ε,1 = Sn

ε,2, n = 1, ..., N as required. 2

8.3 A semi-discrete approximation of the Keller-

Segel Model

By extending the notation (3.3.35)-(3.3.37) to Eε and Sε and noting (8.2.15)-(8.2.16),

we can rewrite the problem (Qh,∆t
M,ε ) as:

Find {Eε, Sε} ∈ C([0, T ];Sh)× C([0, T ];Sh) such that for all χ ∈ L2(0, T ;Sh)∫ T

0

[(∂Eε

∂t
, χ

)h
+ (∇E+

ε ,∇χ)
]
dt =

∫ T

0

(Λε(E
+
ε )∇S+

ε ,∇χ)dt, (8.3.64)
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∫ T

0

[
α
(∂Sε

∂t
, χ

)h
+ (S+

ε , χ)
h + (∇S+

ε ,∇χ) + δ(∇E+
ε ,∇χ)

]
dt = µ

∫ T

0

(E+
ε , χ)

hdt.

(8.3.65)

Theorem 8.3.1 Let e0, s0 ∈ H1(Ω) and ε, h, e0, s0 be such that

(i) E0
ε ≡ Phe0, S0

ε ≡ Phs0; or E0
ε ≡ πhe0, S0

ε ≡ πhs0 if e0, s0 ∈ C(Ω)

(ii) ε→ 0 as h→ 0.

Then there exists a subsequence of {Eε, Sε}, solving (8.3.64) and (8.3.65), and func-

tions

E, S ∈ L2(0, T ;H1(Ω)) ∩ L∞(0, T ;L2(Ω)) ∩ H1(0, T ; (H1(Ω))′), (8.3.66)

and

E(·, 0) = e0(·) and S(·, 0) = s0(·) in L2(Ω), (8.3.67)

E ≥ 0, a.e. on Ω. (8.3.68)

Moreover, it holds as h→ 0 that

Eε, E
±
ε ⇀ E,E± and Sε, S

±
ε ⇀ S,S± in L2(0, T ;H1(Ω)), (8.3.69)

Eε, E
±
ε ⇀∗ E,E± and Sε, S

±
ε ⇀∗ S, S± in L∞(0, T ;L2(Ω)), (8.3.70)

∂Eε

∂t
⇀

∂E

∂t
and

∂Sε

∂t
⇀

∂S

∂t
in L2(0, T ; (H1(Ω))′), (8.3.71)

Eε, E
±
ε → E,E± and Sε, S

±
ε → S, S± in L2(0, T ;Ls(Ω)), (8.3.72)

ϕε(E
±
ε ) → ϕ(E±) in L2(0, T ;Ls(Ω)), (8.3.73)

πhϕε(E
±
ε ) → ϕ(E±) in L2(0, T ;Ls(Ω)), (8.3.74)

Λε(E
±
ε ) → ϕ(E±)I in L2(0, T ;Ls(Ω)), (8.3.75)

for any

s ∈


[2,∞] if d = 1,

[2,∞) if d = 2,

[2, 6] if d = 3.
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Proof : First of all, we note from (3.1.3), (2.4.56) and the stated assumptions on

the initial data that

∥E0
ε∥1 + ∥S0

ε∥1 ≤ C, (8.3.76)

and

E0
ε → e0 and S0

ε → s0 in L2(Ω). (8.3.77)

By using (2.3.28), (2.4.64), (2.4.65), (3.3.35), (3.3.36), (3.3.37), (8.3.76), (2.4.68),

(8.2.39) and (8.2.40) we obtain the following uniform bounds independently of the

parameters ε and h

∥E±
ε ∥L2(0,T ;H1(Ω))+∥E±

ε ∥L∞(0,T ;L2(Ω))+∥∂Eε

∂t
∥L2(0,T ;(H1(Ω))′)+ε

− 1
2∥πh[E±

ε ]−∥L∞(0,T ;L2(Ω))

+∥G ∂Eε

∂t
∥L2(0,T ;H1(Ω)) + ∥ϕε(E

±
ε )∥L∞(ΩT ) + ∥Λε(E

±
ε )∥L∞(ΩT ) ≤ C, (8.3.78)

and

∥S±
ε ∥L2(0,T ;H1(Ω))+∥S±

ε ∥L∞(0,T ;L2(Ω))+∥∂Sε

∂t
∥L2(0,T ;(H1(Ω))′)+∥G ∂Sε

∂t
∥L2(0,T ;H1(Ω)) ≤ C.

(8.3.79)

Furthermore, we have from the third bounds in (8.3.78) and (8.3.79), respectively,

that

∥E±
ε − Eε∥2L2(0,T ;(H1(Ω))′) + ∥S±

ε − Sε∥2L2(0,T ;(H1(Ω))′)

≤ (∆t)2
∥∥∂Eε

∂t

∥∥2

L2(0,T ;(H1(Ω))′)
+ (∆t)2

∥∥∂Sε

∂t

∥∥2

L2(0,T ;(H1(Ω))′)
≤ C(∆t)2. (8.3.80)

From (8.3.78), (8.3.79), (8.3.80), (2.1.6) and the compact embedding H1(Ω)
c
↪→

L2(Ω) ↪→ (H1(Ω))′, one can obtain using sequential compactness arguments the

existence of a subsequence of {Eε, Sε}h, still denoted {Eε, Sε}h, and functions {E, S}

such that the results (8.3.66) and (8.3.69)-(8.3.72) hold. We note that since

Eε, Sε, E, S ∈ {η : η ∈ L2(0, T ;H1(Ω)),
∂η

∂t
∈ L2(0, T ; (H1(Ω))′},

it follows that

Eε, Sε, E, S ∈ C([0, T ];L2(Ω)), (8.3.81)

see Theorem 7.2 in Robinson [84]. Thus, (8.3.67) follows from (8.3.72), (8.3.77) and

(8.3.81).
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Using the strong convergence of Eε to E in L2(0, T ;Ls(Ω)) and the fourth bound

in (8.3.78), we can extract a subsequence, still denoted Eε, such that as h→ 0 (see

Appendix A.1.17)

Eε → E and πh[Eε]− → 0 a.e. in ΩT . (8.3.82)

But we have from the definition of πh that

Eε = πh[Eε]+ + πh[Eε]−. (8.3.83)

Therefore, we deduce from (8.3.82) and (8.3.83) that E ≥ 0 almost everywhere.

We obtain from (2.3.28), the non-negativity of the function E and the assumption

(ii), on using the dominated convergence theorem, that

∥ϕε(E
±)− ϕ(E±)∥L2(0,T ;Ls(Ω)) ≤ Cε→ 0 as h→ 0. (8.3.84)

From the Lipschitz continuity of the function ϕε and (8.3.69), it follows that

∥ϕε(E
±
ε )− ϕε(E

±)∥L2(0,T ;Ls(Ω)) ≤ ∥E±
ε − E±∥L2(0,T ;Ls(Ω)) → 0 as h→ 0. (8.3.85)

Thus, in order to prove (8.3.73) we note that

∥ϕε(E
±
ε )− ϕ(E±)∥L2(0,T ;Ls(Ω))

≤ ∥ϕε(E
±
ε )− ϕε(E

±)∥L2(0,T ;Ls(Ω)) + ∥ϕε(E
±)− ϕ(E±)∥L2(0,T ;Ls(Ω))

→ 0 as h→ 0. (8.3.86)

We also have from (2.4.56), (2.4.52), (2.4.55) and the first bound in (8.3.78) that

∥(I − πh)ϕε(E
±
ε )∥L2(0,T ;Ls(Ω)) ≤ Ch∥∇ϕε(E

±
ε )∥L2(0,T ;Ls(Ω))

≤ Ch∥∇E±
ε ∥L2(0,T ;Ls(Ω)) ≤ Ch1−d( 1

2
− 1

s
)∥E±

ε ∥L2(0,T ;H1(Ω))

≤ Ch1−d( 1
2
− 1

s
) → 0 as h→ 0. (8.3.87)

We obtain from (2.4.70), (2.4.55), the first bound in (8.3.78) and (8.3.73) that

∥Λε(E
±
ε )− ϕ(E±)I∥L2(0,T ;Ls(Ω))

= ∥Λε(E
±
ε )− ϕε(E

±
ε )I + ϕε(E

±
ε )I − ϕ(E±)I∥L2(0,T ;Ls(Ω))
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≤ ∥Λε(E
±
ε )− ϕε(E

±
ε )I∥L2(0,T ;Ls(Ω)) + ∥ϕε(E

±
ε )− ϕ(E±)∥L2(0,T ;Ls(Ω))

≤ h∥∇E±
ε ∥L2(0,T ;Ls(Ω)) + ∥ϕε(E

±
ε )− ϕ(E±)∥L2(0,T ;Ls(Ω))

≤ Ch1−d( 1
2
− 1

s
)∥E±

ε ∥L2(0,T ;H1(Ω)) + ∥ϕε(E
±
ε )− ϕ(E±)∥L2(0,T ;Ls(Ω))

≤ Ch1−d( 1
2
− 1

s
) + ∥ϕε(E

±
ε )− ϕ(E±)∥L2(0,T ;Ls(Ω)) → 0 as h→ 0. (8.3.88)

Hence the result (8.3.75) holds from (8.3.88).

Theorem 8.3.2 Let the assumptions of Theorem 8.3.1 hold. Then, the functions

{E, S} represent a global weak solution in sense that for all η ∈ L2(0, T ;H1(Ω))∫ T

0

[
⟨∂E
∂t
, η⟩+ (∇E+,∇η)

]
dt =

∫ T

0

(ϕ(E+)∇S+,∇η)dt, (8.3.89)

∫ T

0

[
α⟨∂S
∂t
, η⟩+ (S+, η) + (∇S+,∇η) + δ(∇E+,∇η)

]
dt = µ

∫ T

0

(E+, η)dt. (8.3.90)

Proof : For any η ∈ L2(0, T ;H1(Ω)), we set χ ≡ πhη in (8.3.64) and (8.3.65)

and then we analyse the convergence of the resulting terms as h → 0. On setting

Yε = Eε and Sε, respectively, we have for all η ∈ L∞(0, T ;W 1,∞(Ω)) and for all

η̃ ∈ W 1,∞(0, T ;W 1,∞(Ω)) that

∫ T

0

(
∂Yε
∂t

, πhη)h =

∫ T

0

[(
∂Yε
∂t

, πh[η − η̃])h − (
∂Yε
∂t

, πh[η − η̃])]dt

+

∫ T

0

[(
∂Yε
∂t

, πhη̃)h − (
∂Yε
∂t

, πhη̃)]dt

+

∫ T

0

(
∂Yε
∂t

, (πh − I)η)dt

+

∫ T

0

(
∂Yε
∂t

, η)dt

:= I1,1 + I1,2 + I1,3 + I1,4. (8.3.91)

Using (2.4.59), (3.1.11), (2.4.56), Hölder’s inequality, the denseness ofW 1,∞(0, T ;W 1,∞(Ω))

in L∞(0, T ;W 1,∞(Ω)), (8.3.78) and (8.3.79) gives that

|I1,1| ≡ |
∫ T

0

[(
∂Yε
∂t

, πh[η − η̃])h − (
∂Yε
∂t

, πh[η − η̃])]dt|

≤
∫ T

0

|(∂Yε
∂t

, πh[η − η̃)h − (
∂Yε
∂t

, πh[η − η̃])|dt
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≤ Ch

∫ T

0

∥∂Yε
∂t

∥0 |πh[η − η̃]|1dt

≤ C

∫ T

0

∥G ∂Yε
∂t

∥1 ∥η − η̃∥1dt

≤ C∥G ∂Yε
∂t

∥L2(0,T ;H1(Ω)) ∥η − η̃∥L2(0,T ;H1(Ω))

≤ C∥η − η̃∥L2(0,T ;H1(Ω)). (8.3.92)

It also follows from (2.4.59), (2.4.56), Hölder’s inequality, (8.3.78) and (8.3.79) that

|I1,2| ≡ |
∫ T

0

[(
∂Yε
∂t

, πhη̃)h − (
∂Yε
∂t

, πhη̃)]dt|

≤ |
∫ T

0

[(Yε,
∂πhη̃

∂t
)h − (Yε,

∂πhη̃

∂t
)]dt|

+|(Yε(·, T ), πhη̃(·, T ))h − (Yε(·, T ), πhη̃(·, T ))|

+|(Yε(·, 0), πhη̃(·, 0))h − (Yε(·, 0), πhη̃(·, 0))|

≤ Ch

∫ T

0

∥Yε∥0|
∂πhη̃

∂t
|1dt+ Ch∥Yε(·, T )∥0|πhη̃(·, T )|1 + Ch∥Yε(·, 0)∥0|πhη̃(·, 0)|1

≤ Ch∥Yε∥L∞(0,T,L2(Ω))∥πhη̃∥H1(0,T,H1(Ω)) + Ch∥Yε(·, T )∥0|πhη̃(·, T )|1

+Ch∥Yε(·, 0)∥0|πhη̃(·, 0)|1

≤ Ch∥η̃∥H1(0,T,H1(Ω)) → 0 as h→ 0. (8.3.93)

To treat the term I1,3 , we observe using (3.1.8), Hölder’s inequality and the fifth

bound in (8.3.78) and (8.3.79) that

|I1,3| = |
∫ T

0

(
∂Yε
∂t

, (πh − I)η)dt| = |
∫ T

0

⟨∂Yε
∂t

, (πh − I)η⟩dt|

≤
∫ T

0

|⟨∂Yε
∂t

, (πh − I)η⟩|dt

≤
∫ T

0

|∂Yε
∂t

|(H1(Ω))′|(πh − I)η|1dt

≤ ∥∂Yε
∂t

∥L2(0,T ;(H1(Ω))′)∥(πh − I)η∥L2(0,T ;H1(Ω))

≤ C∥(πh − I)η∥L2(0,T ;H1(Ω)). (8.3.94)

From (3.1.8) and the weak convergence result (8.3.71) we have, for all η ∈ L∞(0, T ;W 1,∞(Ω)),

that

I1,4 ≡
∫ T

0

(
∂Yε
∂t

, η)dt =

∫ T

0

⟨∂Yε
∂t

, η⟩dt→
∫ T

0

⟨∂Y
∂t
, η⟩dt as h→ 0. (8.3.95)
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Combining (8.3.91)-(8.3.95), (2.4.57) and the denseness of W 1,∞(0, T ;W 1,∞(Ω)) in

L∞(0, T ;W 1,∞(Ω)) yields for all η ∈ L2(0, T ;H1(Ω)) that∫ T

0

(
∂Yε
∂t

, πhη)h →
∫ T

0

⟨∂Y
∂t
, η⟩dt as h→ 0. (8.3.96)

With the aid of Hölder’s inequality, (8.3.78), (8.3.79) and (2.4.57) we obtain for all

η ∈ L∞(0, T ;W 1,∞(Ω)) that

|
∫ T

0

(∇Y +
ε ,∇(πh − I)η)dt| ≤

∫ T

0

|(∇Y +
ε ,∇(πh − I)η)|dt

≤
∫ T

0

|Y +
ε |1 |(πh − I)η|1dt

≤ ∥Y +
ε ∥L2(0,T,H1(Ω)) ∥(πh − I)η∥L2(0,T,H1(Ω))

≤ C ∥(πh − I)η∥L2(0,T,H1(Ω))

→ 0 as h→ 0. (8.3.97)

Noting (8.3.97) and (8.3.69) yields for all η ∈ L∞(0, T ;W 1,∞(Ω)) that∫ T

0

(∇Y +
ε ,∇πhη)dt =

∫ T

0

(∇Y +
ε ,∇(πh − I)η)dt+

∫ T

0

(∇Y +
ε ,∇η)dt

→
∫ T

0

(∇Y +,∇η)dt as h→ 0. (8.3.98)

and similarly ∫ T

0

(Y +
ε , π

hη)hdt→
∫ T

0

(Y +, η)dt as h→ 0. (8.3.99)

We have for all η ∈ L∞(0, T ;W 1,∞(Ω)) and for all η̃ ∈ W 1,∞(0, T ;W 1,∞(Ω)) that∫ T

0

(Λε(E
+
ε )∇S+

ε ,∇πhη)d t

=

∫ T

0

(Λε(E
+
ε )∇S+

ε ,∇(πh − I)η)d t

+

∫ T

0

([Λε(E
+
ε )− ϕ(E+)I]∇S+

ε ,∇(η − η̃))d t

+

∫ T

0

([Λε(E
+
ε )− ϕ(E+)I]∇S+

ε ,∇η̃)d t

+

∫ T

0

(ϕ(E+)∇S+
ε ,∇η)d t

:= I2,1 + I2,2 + I2,3 + I2,4. (8.3.100)
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On noting the generalized Hölder’s inequality and (8.3.78), (8.3.79) we have

|I2,1| ≡ |
∫ T

0

(Λε(E
+
ε )∇S+

ε ,∇(πh − I)η)d t|

≤
∫ T

0

∥Λε(E
+
ε )∥∞ |S+

ε |1 |(πh − I)η|1d t

≤ ∥Λε(E
+
ε )∥L∞(ΩT )) ∥S+

ε ∥L2(0,T,H1(Ω)) ∥(πh − I)η∥L2(0,T,H1(Ω))

≤ C ∥(πh − I)η∥L2(0,T,H1(Ω)) → 0 as h→ 0. (8.3.101)

Similarly to the treatment of the term I2,1, we have from the generalized Hölder’s

inequality, (8.3.78), (8.3.79) and (2.2.15) that

|I2,2| ≡ |
∫ T

0

([Λε(E
+
ε )− ϕ(E+)I]∇S+

ε ,∇(η − η̃))d t|

≤ ∥Λε(E
+
ε )− ϕ(E+)I∥L2(ΩT )) ∥S+

ε ∥L2(0,T,H1(Ω)) ∥η − η̃∥L∞(0,T,W 1,∞(Ω))

≤ ∥Λε(E
+
ε )− ϕ(E+)I∥L2(ΩT )) ∥S+

ε ∥L2(0,T,H1(Ω)) ∥η − η̃∥L∞(0,T,W 1,∞(Ω))

≤ C ∥η − η̃∥L∞(0,T,W 1,∞(Ω)). (8.3.102)

We also have that

|I2,3| ≡ |
∫ T

0

([Λε(E
+
ε )− ϕ(E+)I]∇S+

ε ,∇η̃)d t|

≤ ∥Λε(E
+
ε )− ϕ(E+)I∥L2(ΩT ) ∥S+

ε ∥L2(0,T,H1(Ω)) ∥∇η̃∥L∞(ΩT )

≤ C∥Λε(E
+
ε )− ϕ(E+)I∥L2(ΩT )) ∥η̃∥L∞(0,T ;W 1,∞(Ω))

≤ C∥Λε(E
+
ε )− ϕ(E+)I∥L2(0,T,Ls(Ω)) → 0 as h→ 0. (8.3.103)

As the function ϕ(s) is bounded, we obtain from (8.3.69) for all η ∈ L∞(0, T ;W 1,∞(Ω))

that

I2,4 ≡
∫ T

0

(ϕ(E+)∇S+
ε ,∇η)d t→

∫ T

0

(ϕ(E+)∇S,∇η)d t as h→ 0. (8.3.104)

Combining (8.3.100)-(8.3.104) and noting the denseness of the spaceW 1,∞(0, T ;W 1,∞(Ω))

in L∞(0, T ;W 1,∞(Ω)), yields for all η ∈ L∞(0, T ;W 1,∞(Ω)) that∫ T

0

(Λε(E
+
ε )∇S+

ε ,∇πhη)d t→
∫ T

0

(ϕ(E+)∇S,∇η)d t as h→ 0. (8.3.105)

Now, we deduce from (8.3.64)-(8.3.65), (8.3.96),(8.3.98), (8.3.99) and (8.3.105) that

the functions {E, S} satisfy (8.3.89)-(8.3.90), as well as the results of Theorem 8.3.2.

This completes the existence proof.
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Chapter 9

Existence and uniqueness for the

Keller-Segel Model

In this chapter we show that the solutions can be bounded, independent ofM . Based

on the analysis in this chapters, the idea is to show the existence of weak solutions

to the model (Q), that demands passing to the limits, ∆t → 0+ and M → ∞.

Then we link the time step ∆t to the cutoff parameter M > 1 by demanding that

∆t = o(M−1), as M → ∞, so that the only parameter in the problem (Q∆t
M ) is

the cutoff parameter. In Section 9.1 and by using special energy estimates, we

show that the solutions can be bounded, independent of M . Then, we use these

M−independent bounds on the relative entropy to derive M−independent bounds

on the time-derivatives. In Section 9.2, compactness arguments was used to study

the convergence of the finite element approximate problem and the existence of a

non-negative weak solution for (Q) was concluded. Finally, the error estimate was

introduce in Section 9.3.

9.1 M-independent bounds on the derivatives

We are now ready to embark on the derivation of the required bounds, uniform

in the cut-off parameter M , on norms of E+ and S+. The appropriate choice of

test function in (8.3.89) and (8.3.90) for this purpose is η = χ[0,t](FM)′(E+) and

η = χ[0,t]S
+ with t = tn, n ∈ {1, ..., N}, and χ[0,t] denoting the characteristic function
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9.1. M-independent bounds on the derivatives 143

of the interval [0, t]. While Theorem 8.3.1 guarantees that E+ is nonnegative a.e.

on Ω× [0, T ], there is unfortunately no reason why E+ should be strictly positive on

Ω× [0, T ], and therefore the expression (FM)′(E+) may in general be undefined; the

same is true of (FM)′′(E+) which also appears in the algebraic manipulations. In

the following theorem, we circumvent this problem by working with (FM)′(E+ + ϵ)

instead of (FM)′(E+), where ϵ > 0. Since E+ is known to be nonnegative from

Theorem 8.3.1, (FM)′(E+ + ϵ) and (FM)′′(E+ + ϵ) are well-defined. After deriving

the relevant bounds, which will involve FM(E+ + ϵ) only, we shall pass to the

limit ϵ→ 0+, noting that, unlike (FM)′(E+ + ϵ) and (FM)′′(E+ + ϵ), the functions

FM(E+ + ϵ) is well-defined for any nonnegative E+.

Theorem 9.1.1 LetM = max supE0 if E0 ∈ L∞(Ω), then, the solutions {E±, S±}

satisfy the following bounds∫
Ω

(FM)(En)dx+
α

2δ

∫
Ω

(Sn)2dx+ 2

∫ t

0

∫
Ω

|∇
√
E+|2dxdt

+
1

2M∆t

∫ t

0

∫
Ω

(E+ − E−)2dxdt+
α

2∆tδ

∫ t

0

∫
Ω

(S+ − S−)2dxdt

+
1

2δ

∫ t

0

∫
Ω

|S+|2dxdt+ 1

4δ

∫ t

0

∫
Ω

|∇S+|2dxdt

≤ B1(E
0, S0). (9.1.1)

where B1(E
0, S0) =

∫
Ω
F(E0)dxdt+ α

2δ

∫
Ω
(S0)2dxdt+ C.

Proof : We now take any ϵ > 0 and ϵ < min{1, 1/δ} to be fixed, whereby 0 < ϵ <

1 < M , and we choose

η = χ[0,t](FM)′(E+ + ϵ) and η =
1

δ
χ[0,t]S

+ with t = tn, n ∈ {1, ..., N},

as test function in (8.3.89) and (8.3.90), respectively, to get∫ T

0

[
⟨∂E
∂t
, χ[0,t](FM)′(E+ + ϵ)⟩+ (∇E+,∇χ[0,t](FM)′(E+ + ϵ))

]
dt

=

∫ T

0

(ϕ(E+)∇S+,∇χ[0,t](FM)′(E+ + ϵ))dt, (9.1.2)∫ T

0

[α
δ
⟨∂S
∂t
, χ[0,t]S

+⟩+ 1

δ
(S+, χ[0,t]S

+) +
1

δ
(∇S+,∇χ[0,t]S

+)
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+(∇E+,∇χ[0,t]S
+)
]
dt =

µ

δ

∫ T

0

(E+, χ[0,t]S
+)dt. (9.1.3)

We now analyze each term individually. Clearly FM(E+ + ϵ) is twice continuously

differentiable on the interval (−ϵ,∞) for any ϵ > 0. Thus, using Taylor theorem for

s ∈ [0,∞) and c ∈ [0,∞),

(s− c)(FM)′(s+ ϵ) = FM(s+ ϵ)−FM(c+ ϵ) +
1

2
(s− c)2(FM)′′(θs+ (1− θ)c+ ϵ),

with θ ∈ (0, 1). Hence, on noting that t ∈ [0, T ] → E+(., t) is piecewise linear

relative to the partition {0 = t0, t1, ..., tN = T} of the interval [0, T ],

T̂1 :=

∫ T

0

∫
Ω

∂E

∂t
χ[0,t](FM)′(E+ + ϵ)dxdt =

∫ t

0

∫
Ω

∂E

∂t
(FM)′(E+ + ϵ)dxdt

=
1

∆t

∫ t

0

∫
Ω

(E+ − E−)(FM)′(E+ + ϵ)dxdt

=
1

∆t

∫ t

0

∫
Ω

(FM)(E+ + ϵ)dxdt− 1

∆t

∫ t

0

∫
Ω

(FM)(E− + ϵ)dxdt

+
1

2∆t

∫ t

0

∫
Ω

(E+ − E−)2(FM)′′(θE+ + (1− θ)E− + ϵ)dxdt.

Noting from (4.1.3) that (FM)′′(s + ϵ) ≥ 1/M , this then implies, with t = tn, n ∈

{1, ..., N}, that

T̂1 ≥
1

∆t

∫ t

0

∫
Ω

(FM)(E+ + ϵ)dxdt− 1

∆t

∫ t

0

∫
Ω

(FM)(E− + ϵ)dxdt

+
1

2M∆t

∫ t

0

∫
Ω

(E+ − E−)2dxdt

=

∫
Ω

(FM)(En + ϵ)dx−
∫
Ω

(FM)(E0 + ϵ)dx+
1

2M∆t

∫ t

0

∫
Ω

(E+ − E−)2dxdt

=

∫
Ω

(FM)(En + ϵ)dx−
∫
Ω

(FM)(ϕ(E0) + ϵ)dx+
1

2M∆t

∫ t

0

∫
Ω

(E+ − E−)2dxdt

≥
∫
Ω

(FM)(En+ϵ)dx−
∫
Ω

F(E0+ϵ)dx+
1

2M∆t

∫ t

0

∫
Ω

(E+−E−)2dxdt−Cϵ. (9.1.4)

We use in the second step the simple fact that if there exists M > 0 such that

0 ≤ E0 ≤ M , then ϕ(E0) = E0. Then, in the last inequality, we use the results of

Lemma 4.2.1. Now, using the fact that ϕ(s) ≤ s, ∀s, we can deal with the second

term in (9.1.2) as follows:

T̂2 :=

∫ T

0

∫
Ω

∇E+∇χ[0,t](FM)′(E+ + ϵ)dxdt =

∫ t

0

∫
Ω

|∇E+|2(FM)′′(E+ + ϵ)dxdt
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=

∫ t

0

∫
Ω

|∇E+|2

ϕ(E+ + ϵ)
dxdt ≥

∫ t

0

∫
Ω

|∇E+|2

E+ + ϵ
dxdt = 4

∫ t

0

∫
Ω

|∇
√
E+ + ϵ|2dxdt.

(9.1.5)

Next, we consider the third term in (9.1.2), using Cauchy-Schwarz and Young in-

equalities, the Lipschitz continuity of ϕ and the fact that ϕ(s+ ϵ) ≥ ϵ we have

T̂3 :=

∫ T

0

∫
Ω

ϕ(E+)∇S+ ∇χ[0,t](FM)′(E++ϵ)dxdt =

∫ t

0

∫
Ω

ϕ(E+)

ϕ(E+ + ϵ)
∇E+ ∇S+ dxdt

=

∫ t

0

∫
Ω

∇E+ ∇S+ dxdt+

∫ t

0

∫
Ω

ϕ(E+)− ϕ(E+ + ϵ)

ϕ(E+ + ϵ)
∇E+ ∇S+ dxdt

≤
∫ t

0

∫
Ω

∇E+ ∇S+ dxdt+ δ

∫ t

0

∫
Ω

(ϕ(E+)− ϕ(E+ + ϵ))2

ϕ2(E+ + ϵ)
|∇E+|21 dxdt

+
1

4δ

∫ t

0

∫
Ω

|∇S+|2dxdt

≤
∫ t

0

∫
Ω

∇E+ ∇S+ dxdt+ϵδ

∫ t

0

∫
Ω

|∇E+|21
ϕ(E+ + ϵ)

dxdt+
1

4δ

∫ t

0

∫
Ω

|∇S+|2dxdt (9.1.6)

Moreover,

T̂4 :=
α

δ

∫ T

0

∫
Ω

∂S

∂t
χ[0,t]S

+dxdt =
α

∆tδ

∫ t

0

∫
Ω

(S+ − S−)S+dxdt

=
α

2∆tδ

∫ t

0

∫
Ω

(S+)2dxdt− α

2∆tδ

∫ t

0

∫
Ω

(S−)2dxdt+
α

2∆tδ

∫ t

0

∫
Ω

(S+ − S−)2dxdt.

=
α

2δ

∫
Ω

(Sn)2dx− α

2δ

∫
Ω

(S0)2dx+
α

2∆tδ

∫ t

0

∫
Ω

(S+ − S−)2dxdt. (9.1.7)

Now, substituting the results of (9.1.4)-(9.1.7) in (9.1.2) and (9.1.3), then summing

the final results, we have∫
Ω

(FM)(En + ϵ)dx+
α

2δ

∫
Ω

(Sn)2dx

+
1

2M∆t

∫ t

0

∫
Ω

(E+ − E−)2dxdt+
α

2∆tδ

∫ t

0

∫
Ω

(S+ − S−)2dxdt

+4(1− δϵ)

∫ t

0

∫
Ω

|∇
√
E+ + ϵ|2 + 1

δ

∫ t

0

∫
Ω

|S+|2dxdt+ 3

4δ

∫ t

0

∫
Ω

|∇S+|2dxdt

≤ µ

δ

∫ t

0

∫
Ω

E+S+dxdt+

∫
Ω

(FM)(E0 + ϵ)dx+
α

2δ

∫
Ω

(S0)2dx+ Cϵ. (9.1.8)

We estimate the first term in right-hand side of (9.1.8) using Hölder’s inequality,

the Sobolev embedding theorem, the Gagliardo-Nirenberg inequality with ϖ = d/12

and Young’s inequality for p1 = 1/ϖ, p2 = 2/(1− 2ϖ), and p3 = 2 imply that

T̂8 :=
µ

δ

∫
Ω

E+S+dx ≤ µ

δ
C ∥E+∥L6/5(Ω) ∥S+∥L6(Ω) ≤

µ

δ
C ∥

√
E+∥2L12/5(Ω) ∥S

+∥H1(Ω)
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≤ µ

δ
C ∥

√
E+∥2(1−ϖ)

L2(Ω) ∥
√
E+∥2ϖH1(Ω) ∥S+∥H1(Ω)

≤ µ

δ
C ∥E+∥1−ϖ

L1(Ω) ∥
√
E+∥2ϖH1(Ω) ∥S+∥H1(Ω)

≤ C(µ, δ)∥E+∥2(1−ϖ)/(1−2ϖ)

L1(Ω) + 2∥
√
E+∥2H1(Ω) +

1

2δ
∥S+∥2H1(Ω)

≤ C(µ, δ)∥E+∥2(1−ϖ)/(1−2ϖ)

L1(Ω) + 2∥∇
√
E+∥20 + 2∥

√
E+∥20 +

1

2δ
∥S+∥20 +

1

2δ
|S+|21

≤ C(µ, δ)∥E+∥2(1−ϖ)/(1−2ϖ)

L1(Ω) + 2∥E+∥L1(Ω) + 2∥∇
√
E+∥20 +

1

2δ
∥S+∥20 +

1

2δ
|S+|21.

(9.1.9)

Moreover,

∥E+∥L1(Ω) = (E+, 1) = (e0, 1) ≤ C. (9.1.10)

Substituting (9.1.9) in (9.1.8) and noting (9.1.10), we have∫
Ω

(FM)(En + ϵ)dx+
α

2δ

∫
Ω

(Sn)2dx

+
1

2M∆t

∫ t

0

∫
Ω

(E+ − E−)2dxdt+
α

2∆tδ

∫ t

0

∫
Ω

(S+ − S−)2dxdt

+4(1− δϵ)

∫ t

0

∫
Ω

|∇
√
E+ + ϵ|2dxdt+ 1

2δ

∫ t

0

∫
Ω

|S+|2dxdt+ 1

4δ

∫ t

0

∫
Ω

|∇S+|2dxdt

≤
∫
Ω

F(E0 + ϵ)dx+
α

2δ

∫
Ω

(S0)2dx+ 2

∫ t

0

∫
Ω

|∇
√
E+|2dxdt+ Cϵ. (9.1.11)

We shall tidy up the bound (9.1.11) by passing to the limit ϵ → 0+. Concerning

the ϵ-dependent term on the right-hand side, Lebesgue’s dominated convergence

theorem implies that

lim
ϵ→0+

∫
Ω

F(E0 + ϵ)dx =

∫
Ω

F(E0)dx.

We can easily pass to the limit on the left-hand side of (9.1.11). By applying

Fatou’s lemma to the first and fifth terms on the left-hand side of (9.1.11) we get,

for t = tn, n ∈ {1, ..., N}, that

lim inf
ϵ→0+

∫
Ω

FM(En + ϵ)dxdt ≥
∫
Ω

FM(En)dxdt,

and

lim inf
ϵ→0+

∫ t

0

∫
Ω

|∇
√
E+ + ϵ|2dxdt ≥

∫ t

0

∫
Ω

|∇
√
E+|2dxdt.
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Thus, after passage to the limit ϵ → 0+, we have after a small rearrangement, for

all t = tn, n ∈ {1, ..., N}, that∫
Ω

(FM)(En)dx+
α

2δ

∫
Ω

(Sn)2dx+
1

2M∆t

∫ t

0

∫
Ω

(E+ − E−)2dxdt

+
α

2∆tδ

∫ t

0

∫
Ω

(S+ − S−)2dxdt+ 2

∫ t

0

∫
Ω

|∇
√
E+|2 + 1

2δ

∫ t

0

∫
Ω

|S+|2dxdt

+
1

4δ

∫ t

0

∫
Ω

|∇S+|2dxdt ≤
∫
Ω

(F)(E0)dx+
α

2δ

∫
Ω

(S0)2dx+ C. (9.1.12)

2

Remark: The denominator in the prefactor of the third integral motivates us

to link ∆t to M so that ∆tM = o(1) as ∆t → 0 (or, equivalently, ∆t = o(M−1) as

M → ∞), in order to drive the integral multiplied by the prefactor to 0 in the limit

of M → ∞, once the product of the two has been bounded above by a constant,

independent of M .

Lemma 9.1.2 The following bounds hold:

∥E+∥L2(0,T ;W 1,1(Ω)) + ∥E+∥L4/3(0,T ;W 1,4/3(Ω)) ≤ C, (9.1.13)

∥E+∥L2(ΩT ) ≤ C, d = 1 , 2, (9.1.14)

where C > 0 is independent of M and ∆t.

Proof : Using the Cauchy-Schwarz inequality and (9.1.10), we have

∥E+∥L2(0,T ;W 1,1(Ω)) = ∥∇E+∥L2(0,T ;L1(Ω)) + C = 4

∫ T

0

∥∥√E+∇
√
E+

∥∥2

L1(Ω)
dt+ C

≤ 4

∫ T

0

∥∥√E+
∥∥2

L2(Ω)

∥∥∇√
E+

∥∥2

L2(Ω)
dt+ C

≤ 4
∥∥E+

∥∥
L∞(0,T ;L1(Ω))

∥∥∇√
E+

∥∥2

L2(0,T ;L2(Ω))
+ C ≤ C,

using (9.1.1). This shows the first estimate. Notice that this bound implies, because

of the embeddingW 1,1(Ω) ↪→ L2(Ω) for d = 2, that E+ is bounded in L2(ΩT ), where

ΩT = Ω× (0, T ). Then the second bound follows from

∥E+∥L4/3(0,T ;W 1,4/3(Ω)) = ∥∇E+∥L4/3(ΩT ) + C

≤ 2
∥∥√E+ ∇

√
E+

∥∥
L4/3(ΩT )

+ C
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≤ 2
∥∥√E+

∥∥
L4(ΩT )

∥∥∇√
E+

∥∥
L2(ΩT )

+ C ≤ 2
∥∥E+

∥∥2

L2(ΩT )

∥∥∇√
E+

∥∥
L2(ΩT )

+ C ≤ C,

which finishes the proof. 2

Lemma 9.1.3 The following bounds on the time-derivatives hold:∥∥∥∥∂E∂t
∥∥∥∥2

L1(0,T ;(H2+φ(Ω))′)

≤ C,

and ∥∥∥∥∂S∂t
∥∥∥∥2

L4/3(0,T ;(W 1,4(Ω))′)

≤ C.

Proof : We begin by bounding the time-derivative of E using (8.3.89), we shall

then bound the time derivative of S in a similar manner. Let φ > 0 and η ∈

L∞(0, T ;H2+φ(Ω)). By Sobolev embedding, it holds that η ∈ L∞(0, T ;W 1,∞(Ω)).

Then, by using (8.3.89), (9.1.1) and Hölders inequality,

|
∫ T

0

∫
Ω

∂E

∂t
η d xd t| ≤ |

∫ T

0

∫
Ω

∇E+ · ∇η d xd t|+ |
∫ T

0

∫
Ω

ϕ(E+)∇S+ · ∇η d xd t|

≤ ∥∇E+∥L4/3(ΩT )∥∇η∥L4(ΩT ) + ∥E+∥L2(ΩT )∥∇S+∥L2(ΩT )∥∇η∥L∞(ΩT )

≤ B(E0, S0)∥η∥L∞(0,T ;W 1,∞(Ω))

≤ B(E0, S0)∥η∥L∞(0,T ;H2+φ(Ω)).

Thus, we deduce that ∥∥∥∥∂E∂t
∥∥∥∥2

L1(0,T ;(H2+φ(Ω))′)

≤ C. (9.1.15)

In a similar way, let η ∈ L4(0, T ;W 1,4(Ω)), then using (8.3.90), (9.1.1) and (9.1.13),

we have∣∣∣∣ ∫ T

0

∫
Ω

∂S

∂t
η d xd t

∣∣∣∣ ≤ C

[∣∣∣∣ ∫ T

0

∫
Ω

S+η d xd t

∣∣∣∣+ ∣∣∣∣ ∫ T

0

∫
Ω

∇S+ · ∇η d xd t
∣∣∣∣

+

∣∣∣∣ ∫ T

0

∫
Ω

∇E+ · ∇η d xd t
∣∣∣∣+ ∣∣∣∣ ∫ T

0

∫
Ω

E+η d xd t

∣∣∣∣]
≤ C

[
∥S+∥L2(ΩT )∥η∥L2(ΩT ) + ∥∇S+∥L2(ΩT )∥∇η∥L2(ΩT )

+∥∇E+∥L4/3(ΩT )∥∇η∥L4(ΩT ) + ∥E+∥L2(ΩT )∥η∥L2(ΩT )

]
≤ CB(E0, S0)∥η∥L4(0,T ;W 1,4(Ω)).

Then, we have ∥∥∥∥∂S∂t
∥∥∥∥2

L4/3(0,T ;(W 1,4(Ω))′)

≤ C. (9.1.16)

2
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9.2 Passage to the limit M → ∞

We shall assume that

∆t = o(M−1) as M → ∞. (9.2.17)

Requiring, for example, that 0 < ∆t ≤ C0/(M logM),M > 1, with an arbitrary

(but fixed) constant C0 will suffice to ensure that (9.1.1) holds. The sequences

{E+}M>1, {S+}M>1,

as well as all sequences of spatial and temporal derivatives of the entries of these

two sequences, will thus be, indirectly, indexed by M alone, although for reasons

of consistency with our previous notation we shall not introduce new, compressed,

notation with ∆t omitted from the superscripts. Instead, whenever M → ∞, it will

be understood that ∆t tends to 0 according to (9.2.17).

On combining (9.1.15) and (9.1.16) with (9.1.1) we arrive at the following bound,

which represents the starting point for the convergence analysis that will be devel-

oped in the next subsection:∫
Ω

(FM)(En)dxdt+
α

2δ

∫
Ω

(Sn)2dxdt+ 2

∫ t

0

∫
Ω

|∇
√
E+|2 + 1

2δ

∫ t

0

∫
Ω

|S+|2dxdt

+
1

2M∆t

∫ t

0

∫
Ω

(E+ − E−)2dxdt+
α

2∆tδ

∫ t

0

∫
Ω

(S+ − S−)2dxdt

+
1

4δ

∫ t

0

∫
Ω

|∇S+|2dxdt+
∥∥∥∥∂E∂t

∥∥∥∥2

L1(0,T ;(H2+φ(Ω))′)

+

∥∥∥∥∂S∂t
∥∥∥∥2

L4/3(0,T ;(W 1,4(Ω))′)

≤ C,

(9.2.18)

where C denotes a generic positive constant independent of M and ∆t.

Lemma 9.2.1 Let E± = min{E±,M}. Hence E± → E = min{e,M} a.e. then for

sufficiently small ∆t > 0, the following bounds hold:∫
Ω

|E± − E±|dx ≤ 1

lnM

[ ∫
E±≥M

F(E±)dx+ C

]
, (9.2.19)

∫
Ω

|E − e|dx ≤ 1

lnM

[ ∫
e≥M

F(e)dx+ C

]
. (9.2.20)
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Proof : It follows from the definition of ϕ(e) and by testing (8.1.1) with χ ≡ 1

gives that

0 ≤
∫
e≥M

Mdxdt ≤
∫
Ω

ϕ(e)dxdt ≤
∫
Ω

edxdt =

∫
Ω

e0dxdt. (9.2.21)

and similarly

0 ≤
∫
E±≥M

Mdxdt ≤
∫
Ω

E0dxdt. (9.2.22)

Let us now recall the logarithmic Young’s inequality (see Appendix A.1.21):

r s ≤ r ln r − r + es ∀ r, s ∈ R≥0. (9.2.23)

Applying (9.2.23) with r = e−M and s = lnM and then with r = E±−M and

s = lnM , we have for e ≥M and E± ≥M that

lnM(e−M) ≤ F(e−M) +M,

lnM(E± −M) ≤ F(E± −M) +M.
(9.2.24)

The bound (9.2.24)2 and (9.2.22) then imply∫
Ω

|E± − E±|dx =

∫
E±≥M

(E± −M)dx

≤ 1

lnM

[ ∫
E±≥M

F(E± −M)dx+

∫
E±≥M

Mdx

]
≤ 1

lnM

[ ∫
E±≥M

F(E± −M)dx+ C

]
, (9.2.25)

and similarly, using the bound (9.2.24)1 and (9.2.21) we have∫
Ω

|e− E|dx ≤ 1

lnM

[ ∫
e≥M

F(e−M)dx+ C

]
. (9.2.26)

2

In the next lemma, we prove the strong convergence of a sequence of functions

bounded in certain Sobolev spaces.

Lemma 9.2.2 Let Ω ⊂ Rd(d ≥ 1) be a bounded domain with ∂Ω ∈ C0,1, T > 0.

Furthermore, let {E±} be a sequence of nonnegative functions satisfying

∥F(E±)∥L∞(0,T ;L1(Ω)) + ∥
√
E±∥L2(0,T ;H1(Ω)) + ∥∂tE∥2L1(0,T ;(Hs(Ω))′) ≤ C, (9.2.27)

for some C > 0 independent of ∆t. Then, up to a subsequence, as ∆t→ 0, E± → e

strongly in L2(0, T ;Ld/(d−1)(Ω)) .
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The above uniform estimates are typical for solutions E± of nonlinear diffusion e-

quations for which
∫
Ω
F(E±)dx is an entropy with

∫
Ω
|∇

√
E±|2dx as the correspond-

ing entropy production. Notice that the estimate implies that ∇E± = 2
√
E±∇

√
E±

is uniformly bounded in L2(0, T ;L1(Ω)). Hence, since the embedding W 1,1(Ω)) ↪→

Lp(Ω) is compact for all p < d/(d−1), we conclude from the Aubin lemma that there

exists a subsequence of {E±}, which is not relabelled, such that E± → e strongly

in L2(0, T ;Lp(Ω)) as ∆t → 0. The additional estimate for F(E±) in L1(Ω) allows

us to extend this convergence result to p = d/(d− 1).

Proof : It holds that E± → e a.e. First, we claim that this convergence and the

bound for F(E±) imply that
√
E± →

√
e strongly in L∞(0, T ;L2(Ω)) as ∆t → 0.

Indeed, by the Fatou lemma,

sup
(0,T )

∫
Ω

F(e)dx = sup
(0,T )

∫
Ω

lim
∆t→0

F(E±)dx ≤ lim inf
∆t→0

sup
(0,T )

∫
Ω

F(E±)dx ≤ C.

Note that |E±−E| → 0, a.e, and that |E±|, |E| ≤M, then the dominated convergence

theorem yields that ∫
Ω

|E± − E|dx→ 0 as ∆t→ 0,

so for ∆t sufficiently small

sup

∫
Ω

|E± − E|dx ≤ 1

lnM
. (9.2.28)

On noting that F(e) is non-negative and monotonically increasing on [1,∞), and

that F(e) ∈ [0, 1] for e ∈ [0, 1], then by using the bound (9.1.1), we deduce that∫
e≥M

F(e−M)dxdt

=

∫
e∈[M,M+1)

F(e−M)dxdt+

∫
e≥M+1

F(e−M)dxdt

≤
∫
e∈[M,M+1)

dxdt+

∫
e≥M+1

F(e)dxdt

≤ 1 +

∫
Ω

F(e)dxdt ≤ C, (9.2.29)

and similarly, we have∫
E±≥M

F(E± −M)dxdt ≤ 1 +

∫
Ω

F(E±)dxdt ≤ C. (9.2.30)
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Then, on noting the bounds (9.2.25), (9.2.26), (9.2.29) and (9.2.30), we arrive:

sup
(0,T )

∫
Ω

|E± − e|dx ≤ sup
(0,T )

∫
Ω

|E± − E±|dx+ sup
(0,T )

∫
Ω

|E± − E|dx+ sup
(0,T )

∫
Ω

|E − e|dx

≤ 1

lnM

[ ∫
E±≥M

F(E± −M)dx+ C

]
+

1

lnM
+

1

lnM

[ ∫
e≥M

F(e−M)dx+ C

]
≤ C

lnM
.

This shows that as M → ∞ then E± → e strongly in L∞(0, T ;L1(Ω)). Consequent-

ly, since (x − y)2 ≤ |x2 − y2| for x, y ≥ 0, then we have
√
E± →

√
e strongly in

L∞(0, T ;L2(Ω)).

Next, we apply the Gagliardo-Nirenberg inequality

∥
√
E± −

√
e∥4L4(0,T ;L2d/(d−1)(Ω)) ≤ C1

∫ T

0

∥
√
E± −

√
e∥2H1(Ω)∥

√
E± −

√
e∥2L2(Ω)dt

≤ C2

(
∥
√
E±∥2L2(0,T ;H1(Ω)) + ∥

√
e∥2L2(0,T ;H1(Ω))

)
× ∥

√
E± −

√
e∥2L∞(0,T ;L2(Ω))

→ 0 as ∆t→ 0.

Hence,
√
E± →

√
e strongly in L4(0, T ;L2d/(d−1)(Ω)). Now, since

∥uv∥2
L2(0,T ;Lp(Ω))

≤ ∥u∥2L4(0,T ;L2p(Ω))∥v∥2L4(0,T ;L2p(Ω)),

then, by using the above fact we have

∥E±−e∥2L2(0,T ;Ld/(d−1)(Ω)) ≤ ∥
√
E±+

√
e∥2L4(0,T ;L2d/(d−1)(Ω))×∥

√
E±−

√
e∥2L4(0,T ;L2d/(d−1)(Ω))

≤
[
∥
√
E±∥2L4(0,T ;L2d/(d−1)(Ω))+∥

√
e∥2L4(0,T ;L2d/(d−1)(Ω))

]
×∥

√
E±−

√
e∥2L4(0,T ;L2d/(d−1)(Ω))

→ 0 as ∆t→ 0.

Hence, E± → e strongly in L2(0, T ;Ld/(d−1)(Ω)). 2

Theorem 9.2.3 There exists a subsequence of {E±, S±}M>1, (not indicated) with

∆t = o(M−1), and a pair of functions {e, s} such that

E,E± ⇀ e in L4/3(0, T ;W 1,4/3(Ω)), (9.2.31)

∂E

∂t
⇀

∂e

∂t
in L1(0, T ; (H2+φ(Ω))′), (9.2.32)
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E,E± → e in L2(0, T ;Lp(Ω)), p ≤ d/(d− 1), (9.2.33)

ϕ(E±) → e in L2(0, T ;Lp(Ω)), p ≤ d/(d− 1), (9.2.34)

S, S± ⇀ s, in L2(0, T ;H1(Ω)), (9.2.35)

S, S± ⇀∗ s in L∞(0, T ;L2(Ω)), (9.2.36)

∂S

∂t
⇀

∂s

∂t
in L4/3(0, T ; (W 1,4(Ω))′), (9.2.37)

S, S± → s in L2(0, T ;Lq(Ω)), q <∞, (9.2.38)

E±∇S± → e∇s in L1(0, T ;L1(Ω)), d = 1, 2, (9.2.39)

Proof : The proof of (9.2.31), (9.2.32), (9.2.35), (9.2.36) and (9.2.37) can achieved

using a sequential compactness argument and noting the bounds in (9.2.18). Note

that (9.2.33) was demonstrated in Lemma 9.2.2 for all p ≤ d/(d − 1). Taking into

account (9.2.35), (9.2.37) and Aubins lemma provides the existence of subsequences

of S±, which are not relabeled, such that, as ∆t→ 0, the convergence result (9.2.38)

holds, where, we have used the compactness of the embeddings H1(Ω) ↪→ Lq(Ω) for

all 1 ≤ q <∞ in two-dimensional domains.

From the Lipschitz continuity of ϕ, we obtain for any p ≤ d/(d− 1) that

∥ϕ(E±)− e∥L2(0,T ;Lp(Ω)) ≤ ∥e− ϕ(e)∥L2(0,T ;Lp(Ω)) + ∥ϕ(e)− ϕ(E±)∥L2(0,T ;Lp(Ω))

≤ ∥e− ϕ(e)∥L2(0,T ;Lp(Ω)) + ∥e− E±∥L2(0,T ;Lp(Ω)). (9.2.40)

The first term on the right-hand side of (9.2.40) converges to zero as M → ∞

on noting that ϕ(e) converges to e almost everywhere on Ω × [0, T ] and applying

Lebesgue’s dominated convergence theorem see Appendix A.1.20. The second term

converges to 0 on noting (9.2.33). That yields the desired result (9.2.34).

Unfortunately, the above convergence results do not allow us to pass to the limit

in the term (E±∇S±). However, we are able to exploit the boundedness of F(E±)

in L1(Ω). Indeed, Lemma 9.2.2 shows that, up to a subsequence,

E± → e in L2(0, T ;L2(Ω)), d = 1, 2. (9.2.41)

Hence, we find that ∫ t

0

∫
Ω

|E±∇S± − e∇s|dxdt
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≤
∫ t

0

∫
Ω

|(E± − e)∇S±|dxdt+
∫ t

0

∫
Ω

|(∇s−∇S±)e|dxdt

→ 0 as ∆t→ 0. (9.2.42)

Hence, we have

E±∇S± → e∇s in L1(0, T ;L1(Ω)), d ≤ 2. (9.2.43)

2

Theorem 9.2.4 The functions {e, s} are a global weak solution to problem (Q), in

the sense that∫ T

0

[
⟨∂e
∂t
, η⟩H2+φ(Ω)+(∇e,∇η)

]
dt =

∫ T

0

(e∇s,∇η)dt, η ∈ L4(ΩT )∩L∞(0, T ;W 1,∞(Ω))

(9.2.44)∫ T

0

[
α⟨∂s
∂t
, η⟩W 1,4(Ω)+(s, η)+(∇s,∇η)+δ(∇e,∇η)

]
dt = µ

∫ T

0

(e, η)dt, η ∈ L4(ΩT ).

(9.2.45)

Proof :

We shall now study the convergence of each term in (8.3.89) and (8.3.90) sepa-

rately. By using (9.2.32) and (9.2.37) we immediately have that∫ T

0

∫
Ω

∂E

∂t
η d x d t =

∫ T

0

⟨ ∂E
∂t
, η⟩H2+φ(Ω) d t→

∫ T

0

⟨ ∂e
∂t
, η⟩H2+φ(Ω), (9.2.46)

∫ T

0

∫
Ω

∂S

∂t
η d x d t =

∫ T

0

⟨ ∂S
∂t
, η⟩W 1,4(Ω) d t→

∫ T

0

⟨ ∂s
∂t
, η⟩W 1,4(Ω), (9.2.47)

as M → ∞ (and ∆t→ 0+), for η ∈ L2(0, T ;H1(Ω)), as required. Moreover:∫ T

0

∫
Ω

∇E+∇ηd x d t→
∫ T

0

∫
Ω

∇e∇ηd x d t, (9.2.48)

∫ T

0

∫
Ω

∇S+∇ηd x d t→
∫ T

0

∫
Ω

∇s∇ηd x d t, (9.2.49)∫ T

0

∫
Ω

E+ ηd x d t→
∫ T

0

∫
Ω

e ηd x d t, (9.2.50)∫ T

0

∫
Ω

S+ ηd x d t→
∫ T

0

∫
Ω

s ηd x d t. (9.2.51)
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The third term in (9.2.44) will be dealt with by decomposing it into two further

terms, the first of which tends to 0, while the second converges to the expected

limiting value. We proceed as follows:∫ T

0

∫
Ω

ϕ(E+)∇S+ ∇ηd x d t

=

∫ T

0

∫
Ω

(ϕ(E+)− E+)∇S+∇ηd x d t+
∫ T

0

∫
Ω

E+∇S+ ∇ηd x d t

=: V1 + V2. (9.2.52)

We shall show that V1 converges to 0 and that V2 converges to the expected limit.

|V1| ≤
∫ T

0

∫
Ω

|ϕ(E+)− E+| |∇S+| |∇η|d x d t

≤ ∥ϕ(E+)− E+∥L2(ΩT ) ∥S+∥L2(0,T ;H1(Ω)) ∥η∥L∞(0,T ;W 1,∞(Ω)).

The norm of the difference of the bound on V1 is known to converge to 0 asM → ∞

(and ∆t → 0+), by (9.2.34). This then implies that the term V1 converges to 0 as

M → ∞ (and ∆t→ 0+).

Concerning the term V2, we have that

V2 =

∫ T

0

∫
Ω

E+∇S+ ∇ηd x d t→
∫ T

0

∫
Ω

e∇s∇ηd x d t, (9.2.53)

as M → ∞ (and ∆t→ 0+). 2

9.2.1 Uniqueness of a weak solution

In this section, in order that we are able to prove uniqueness of a solution, we have

to assume that ∥e∥L∞(ΩT ) + ∥s∥L∞(0,T ;H1(Ω)) ≤ C holds. We note that we are unable

to prove the uniqueness without such a bound.

Theorem 9.2.5 Assume that ∥e∥L∞(ΩT ) + ∥s∥L∞(0,T ;H1(Ω)) ≤ C, then for δ suffi-

ciently small, there exists a unique solution to (9.2.44)-(9.2.45).

Proof : Assume that there are two weak solutions {e1, s1} and {e2, s2} to the

system (9.2.44)-(9.2.45). Let the solutions {e1, s1} and {e2, s2} satisfy

∥ei∥L∞(ΩT ) + ∥si∥L∞(0,T ;H1(Ω)) ≤ C, i = 1, 2, (9.2.54)
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and

e1(·, 0) = e2(·, 0) = e0(·) and s1(·, 0) = s2(·, 0) = s0(·) in L2(Ω). (9.2.55)

Setting e = e1 − e2, s = s1 − s2 and testing (9.2.44) with η ≡ e ∈ L2(0, T ;H1(Ω))

and (9.2.45) with η ≡ 1
δ
s ∈ L2(0, T ;H1(Ω)) leads to after subtracting the weak

forms

1

2
∥e(T )∥20 + ∥∇e∥2L2(ΩT ) =

1

2
∥e(0)∥20 +

∫ T

0

(e2∇s2 − e1∇s1,∇e)dt, (9.2.56)

α

2δ
∥s(T )∥20+

1

δ
∥s∥2L2(ΩT )+

1

δ
∥∇s∥2L2(ΩT )+

∫ T

0

(∇e ,∇s)dt =
α

2δ
∥s(0)∥20+

µ

δ

∫ T

0

(e , s)dt.

(9.2.57)

Adding (9.2.56) and (9.2.57), noting (9.2.54) and employing Hölder’s inequality

yields that

1

2

(
∥e(T )∥20 +

1

δ
∥s(T )∥20

)
+ ∥∇e∥2L2(ΩT ) +

1

δ
∥s∥2L2(ΩT ) +

1

δ
∥∇s∥2L2(ΩT )

=
µ

δ

∫ T

0

(e , s)dt−
∫ T

0

(∇e ,∇s) +

∫ T

0

(e2∇s2 − e1∇s1,∇e)dt

=
µ

δ

∫ T

0

(e , s)dt−
∫ T

0

(∇e ,∇s)−
∫ T

0

(e1∇s ,∇e)dt−
∫ T

0

(e∇s2,∇e)dt

≤ µ

δ

∫ T

0

∥e∥0∥s∥0dt+ C

∫ T

0

|e |1|s|1dt+
∫ T

0

∥e∥0,∞|s2|1|e |1dt

≤ µ

δ

∫ T

0

∥e∥0∥s∥0dt+ C

∫ T

0

|e |1|s|1dt. (9.2.58)

We easily obtain from the Young’s inequality that

µ

δ

∫ T

0

∥e∥0∥s∥0dt ≤
µ2

4δ
∥e∥2L2(ΩT ) +

1

δ
∥s∥2L2(ΩT ), (9.2.59)

C

∫ T

0

|e |1|s|1dt ≤ Cδ∥∇e∥2L2(ΩT ) +
1

δ
∥∇s∥2L2(ΩT ). (9.2.60)

Putting (9.2.59) and (9.2.60) in (9.2.58) leads to

1

2

(
∥e(T )∥20 +

α

δ
∥s(T )∥20

)
+ (1− Cδ)∥∇e∥2L2(ΩT ) ≤

µ2

4δ
∥e∥2L2(ΩT ). (9.2.61)

As Cδ ≤ 1, then we arrive to the following inequality

∥e(T )∥20 +
1

δ
∥s(T )∥20 ≤ C∥e∥2L2(ΩT ). (9.2.62)

Applying the integral version of Grönwall’s lemma, see Appendix A.1.5, leads to

∥e(T )∥20 +
1

δ
∥s(T )∥20 ≤ 0. (9.2.63)

Thus, we conclude e1 = e2 and s1 = s2 as required. 2
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9.3 An error estimate

In this section we study the error estimate between the weak solution of (Q) and

the fully discrete approximation defined by (8.2.15) - (8.2.16). Additionally to the

uniqueness requirements, the derivation of an error estimate requires extra regularity

on the time derivatives of the approximate solutions that we have been unable to

prove. The details are given in the following theorem.

Theorem 9.3.1 Let all the assumptions of Theorem 8.2.4 hold. If δ < 4
κ̂2 and

∥∥∂Eε

∂t

∥∥
L2(ΩT )

+
∥∥∂Sε

∂t

∥∥
L2(ΩT )

+
∥∥Sε

∥∥
L∞(0,T ;H1(Ω))

+∥e∥L∞(0,T ;H1(Ω)) + ∥E+∥L2(0,T ;H1(Ω)) + ∥e∥L2(0,T ;H1(Ω)) ≤ C, (9.3.64)

where κ̂ = ∥e − 1∥L∞(ΩT ) and let ∥e∥L∞(ΩT ) ≤ M and e0, s0 ∈ H1(Ω), then the

solution {Eε, Sε} of (Qh,∆t
M,ε ), h,∆t ≤ 1, satisfies the following error bound:

∥e− Eε∥2L∞(0,T ;L2(Ω)) + ∥s− Sε∥2L∞(0,T ;L2(Ω))

≤ C
(
h+∆t+ ε2 +

∥∥∇(I − πh)e
∥∥
L2(ΩT )

+
∥∥∇(I − πh)s

∥∥
L2(ΩT )

)
. (9.3.65)

Furthermore, if e, s ∈ L2(0, T ;H2(Ω)) then

∥e− Eε∥2L∞(0,T ;L2(Ω)) + ∥s− Sε∥2L∞(0,T ;L2(Ω)) ≤ C
(
h+∆t+ ε2

)
. (9.3.66)

Proof : We first mention that πhe and πhs are well defined since e(·, t), s(·, t) ∈

H1(Ω) for a.e. t ∈ (0, T ) and the Sobolev embedding result H1(Ω) ↪→ C(Ω) holds

in one space dimension. Noting this, we set

eAy = y − πhy, e(±)
y,ε = y − Y (±)

ε , E(±)
y,ε = πhy − Y (±)

ε , (9.3.67)

where y ≡ e and s, Y
(±)
ε ≡ E

(±)
ε and S

(±)
ε , respectively.

On subtracting (8.3.64) and (8.3.65) from (9.2.44) and (9.2.45) respectively, it

follows for a.e. t ∈ (0, T ) and for all χ ∈ Sh that

(∂ee,ε
∂t

, χ
)
+(∇e+e,ε,∇χ) = (e∇s,∇χ)−(Λε(E

+
ε )∇S+

ε ,∇χ)+
{(∂Eε

∂t
, χ

)h−(∂Eε

∂t
, χ

)}
,

(9.3.68)

α
(∂es,ε
∂t

, χ
)
+ (e+s,ε, χ) + (∇e+s,ε,∇χ) + δ(∇e+e,ε,∇χ) = µ (e+e,ε, χ)
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+α

{(∂Sε

∂t
, χ

)h − (∂Sε

∂t
, χ

)}
+ µ

{
(E+

ε , χ)− (E+
ε , χ)

h

}
. (9.3.69)

Hence, choosing χ ≡ E+
e,ε ∈ Sh in (9.3.68) and χ ≡ 1

δ
E+
s,ε ∈ Sh in (9.3.69) and

summing the resulting equations yields that

1

2

d

dt
∥ee,ε∥20 +

α

2δ

d

dt
∥es,ε∥20 +

1

δ
∥e+s,ε∥20 + |e+e,ε|21 +

1

δ
|e+s,ε|21

=

[(
∂ee,ε
∂t

, eAe

)
+
α

δ

(
∂es,ε
∂t

, eAs

)]
+

[(
∂ee,ε
∂t

, E+
ε − Eε

)
+
α

δ

(
∂es,ε
∂t

, S+
ε − Sε

)]
+

[(
∇e+e,ε,∇eAe

)
+

1

δ

(
∇e+s,ε,∇eAs ) +

1

δ
(e+s,ε, e

A
s

)]
+

[{(∂Eε

∂t
,E+

e,ε

)h − (∂Eε

∂t
,E+

e,ε

)}
+
α

δ

{(∂Sε

∂t
,E+

s,ε

)h − (∂Sε

∂t
,E+

s,ε

)}
+
1

δ

{
(S+

ε ,E
+
s,ε)

h − (S+
ε ,E

+
s,ε)

}]
+

[(
∇e+e,ε,∇eAs

)
−
(
e∇e+s,ε,∇eAe

)]
+

[(
(e− 1)∇e+s,ε,∇e+e,ε

)]
+

[(
[e− Λε(E

+
ε )]∇S+

ε ,∇E+
e,ε

)]
+

[
µ

δ
(e+e,ε,E

+
s,ε)

]
+

[
µ

δ

{
(E+

ε ,E
+
s,ε)− (E+

ε ,E
+
s,ε)

h

}]

=
9∑

i=1

[
Ii
]
, (9.3.70)

where we have noticed from (9.3.67) that

E(±)
y,ε = e(±)

y,ε − eAy = ey,ε − eAy + Yε − Y (±)
ε .

We now bound each term on the right hand side of (9.3.70) separately.

Using the Cauchy-Schwarz inequality gives that

I1 =

(
∂ee,ε
∂t

, eAe

)
+
α

δ

(
∂es,ε
∂t

, eAs

)

≤ C

(
∥∂ee,ε
∂t

∥0∥eAe ∥0 + ∥∂es,ε
∂t

∥0∥eAs ∥0) := Ĩ1

)
, (9.3.71)

I2 =

(
∂ee,ε
∂t

, E+
ε − Eε

)
+
α

δ

(
∂es,ε
∂t

, S+
ε − Sε

)
≤ C

(
∥∂ee,ε
∂t

∥0∥E+
ε − Eε∥0 + ∥∂es,ε

∂t
∥0∥S+

ε − Sε∥0
)

:= Ĩ2, (9.3.72)
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I3 =
(
∇e+e,ε,∇eAe

)
+

1

δ

(
∇e+s,ε,∇eAs ) +

1

δ
(e+s,ε, e

A
s

)
≤ C

(
|e+e,ε|1|eAe |1 + |e+s,ε|1|eAs |1 + ∥e+s,ε∥0∥eAs ∥0

)
:= Ĩ3. (9.3.73)

With the aid of (2.4.59), we have that

I4 =

{(∂Eε

∂t
,E+

e,ε

)h − (∂Eε

∂t
,E+

e,ε

)}
+
α

δ

{(∂Sε

∂t
,E+

s,ε

)h − (∂Sε

∂t
,E+

s,ε

)}

+
1

δ

{
(S+

ε ,E
+
s,ε)

h − (S+
ε ,E

+
s,ε)

}
≤ C h

(
∥∂Eε

∂t
∥0|E+

e,ε|1 + ∥∂Sε

∂t
∥0|E+

s,ε|1 + ∥S+
ε ∥0|E+

s,ε|1
)

:= Ĩ4. (9.3.74)

Noting the Cauchy-Schwarz inequality leads to

I5 =
(
∇e+e,ε,∇eAs

)
−

(
e∇e+s,ε,∇eAe

)
≤ C(|e+e,ε|1|eAs |1 + |e+s,ε|1|eAe |1) := Ĩ5. (9.3.75)

We also obtain from Young’s inequality that

I6 =
(
(e− 1)∇e+s,ε,∇e+e,ε

)
≤ κ̂|e+e,ε|1|e+s,ε|1 ≤

δκ̂2

4
|e+e,ε|21 +

1

δ
|e+s,ε|21 := Ĩ6. (9.3.76)

It follows from the Hölder’s inequality, the last bound in (9.3.64), (2.4.69), (2.4.55),

the Lipschitz continuity of ϕε and (9.3.67) that

I7 =

(
[e− Λε(E

+
ε )]∇S+

ε ,∇E+
e,ε

)
≤ |S+

ε |1∥Λε(E
+
ε )− e∥0,∞|E+

e,ε|1

≤ C∥Λε(E
+
ε )− e∥0,∞|E+

e,ε|1

≤ C

(
∥Λε(E

+
ε )− ϕε(E

+
ε )∥0,∞ + ∥ϕε(E

+
ε )− ϕε(e)∥0,∞

+∥ϕε(e)− ϕ(e)∥0,∞ + ∥ϕ(e)− e∥0,∞
)
|E+

e,ε|1

≤ C

(
h

1
2 |E+

ε |1 + ∥e+e,ε∥0,∞ + ε

)
|E+

e,ε|1

≤ C

(
h

1
2∥E+

ε ∥1 + ∥e+e,ε∥0,∞ + ε

)(
|e+e,ε|1 + |eAe |1

)
=

[
C

(
h

1
2∥E+

ε ∥1+ε
)
|e+e,ε|1

]
+

[
C∥e+e,ε∥0,∞|e+e,ε|1

]
+

[
C

(
h

1
2∥E+

ε ∥1+∥e+e,ε∥0,∞+ε

)
|eAe |1

]
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:=

[
I7,1

]
+

[
I7,2

]
+

[
I7,3

]
. (9.3.77)

But, the Young’s inequality gives, on making the assumption δ < 4
κ̂2 , that

I7,1 ≤ C
(
h ∥E+

ε ∥21 + ε2
)
+

4− δκ̂2

8

∣∣e+e,ε∣∣21. (9.3.78)

We obtain from (2.1.4) and Young’s inequality that

I7,2 = C∥e+e,ε∥0,∞|e+e,ε|1

≤ C∥e+e,ε∥
1
2
0 ∥e+e,ε∥

1
2
1 |e+e,ε|1

≤ C

(
∥e+e,ε∥0 |e+e,ε|1 + ∥e+e,ε∥

1
2
0 |e+e,ε|

3
2
1

)
≤ C∥e+e,ε∥20 +

4− δκ̂2

8
|e+e,ε|21

≤ C∥ee,ε∥20 + C∥E+
ε − Eε∥20 +

4− δκ̂2

8
|e+e,ε|21. (9.3.79)

Noting the Cauchy-Schwarz inequality and Young’s inequality leads to

I8 =
µ

δ
(e+e,ε,E

+
s,ε) ≤

µ

δ
∥e+e,ε∥0∥E+

s,ε∥0

≤ C
(
∥e+e,ε∥20 + ∥E+

s,ε∥20
)

≤ C∥ee,ε∥20 + C∥es,ε∥20 + Ĩ8, (9.3.80)

where Ĩ8 := C
(
∥E+

ε − Eε∥20 + ∥S+
ε − Sε∥20 + ∥eAs ∥20

)
. Finally, we use (2.4.59) and

Young’s inequality to obtain that

I9 =
µ

δ

{
(E+

ε ,E
+
s,ε)− (E+

ε ,E
+
s,ε)

h

}
≤ C h∥E+

ε ∥1∥E+
s,ε∥0 := Ĩ9. (9.3.81)

Now, combining (9.3.70)-(9.3.81) yields that

d

dt

(
∥ee,ε∥20 +

α

δ
∥es,ε∥20

)
≤ C

(
∥ee,ε∥20 +

α

δ
∥es,ε∥20

)
+

9∑
i=1

Ĩi, (9.3.82)

where

Ĩ6 := 0,

Ĩ7 := I7,3 + C
(
h ∥E+

ε ∥21 + ε2 + ∥E+
ε − Eε∥20

)
.
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Applying the Grönwall lemma to (9.3.82) leads to for a.e. t ∈ (0, T )

∥ee,ε(t)∥20+
α

δ
∥es,ε(t)∥20 ≤ eCT

(
∥ee,ε(0)∥20+

α

δ
∥es,ε(0)∥20

)
+eCT

∫ T

0

9∑
i=1

Ĩidt. (9.3.83)

To bound the right hand side of (9.3.83), the assumption e0, s0 ∈ H1(Ω) and (2.4.56)

that

∥ee,ε(0)∥20 ≤ ∥e0 − E0
ε∥20 ≤ Ch2|e0|21 ≤ Ch2, (9.3.84)

∥es,ε(0)∥20 ≤ ∥s0 − S0
ε∥20 ≤ Ch2|s0|21 ≤ Ch2. (9.3.85)

We also use the estimate (2.4.56) to find that

∥eAe ∥20 = ∥(I − πh)e∥20 ≤ Ch2|e|21, (9.3.86)

∥eAs ∥20 = ∥(I − πh)s∥20 ≤ Ch2|s|21. (9.3.87)

Similarly to (8.3.80), we have from (9.3.64) that

∥E±
ε − Eε∥2L2(ΩT ) + ∥S±

ε − Sε∥2L2(ΩT )

≤ (∆t)2
∥∥∂Eε

∂t

∥∥2

L2(ΩT )
+ (∆t)2

∥∥∂Sε

∂t

∥∥2

L2(ΩT )
≤ C(∆t)2. (9.3.88)

On noting (9.3.67), (9.2.35), (9.3.64), and (2.4.56), we deduce that

∥∥E+
e,ε

∥∥
L2(0,T ;H1(Ω))

+
∥∥E+

s,ε

∥∥
L2(0,T ;H1(Ω))

≤
∥∥e+e,ε∥∥L2(0,T ;H1(Ω))

+
∥∥e+s,ε∥∥L2(0,T ;H1(Ω))

+
∥∥eAe ∥∥L2(0,T ;H1(Ω))

+
∥∥eAs ∥∥L2(0,T ;H1(Ω))

.

(9.3.89)

Now, using Hölder’s inequality, (9.3.64), (9.3.86), (9.3.87), (9.3.88) and (9.3.89), we

can obtain the following estimates:∫ T

0

Ĩ1 ≤ C h

(
∥∂ee,ε
∂t

∥L2(ΩT )∥e∥L2(0,T ;H1(Ω)) + ∥∂es,ε
∂t

∥L2(ΩT )∥s∥L2(0,T ;H1(Ω))

)
≤ C h, (9.3.90)∫ T

0

Ĩ2 ≤ C

(
∥∂ee,ε
∂t

∥L2(ΩT )∥E+
ε − Eε∥L2(ΩT ) + ∥∂es,ε

∂t
∥L2(ΩT )∥S+

ε − Sε∥L2(ΩT )

)
≤ C∆t, (9.3.91)∫ T

0

Ĩ3 ≤ C

(
∥e+e,ε∥L2(0,T ;H1(Ω))∥∇eAe ∥L2(ΩT )
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+∥e+s,ε∥L2(0,T ;H1(Ω))∥∇eAs ∥L2(ΩT ) + Ch∥e+s,ε∥L2(ΩT )∥s∥L2(0,T ;H1(Ω))

)
≤ C

(
∥∇eAe ∥L2(ΩT ) + ∥∇eAs ∥L2(ΩT ) + h

)
, (9.3.92)∫ T

0

Ĩ4 ≤ C h

(
∥∂Eε

∂t
∥L2(ΩT )∥E+

e,ε∥L2(0,T ;H1(Ω))

+∥∂Sε

∂t
∥L2(ΩT )∥E+

s,ε∥L2(0,T ;H1(Ω)) + ∥S+
ε ∥L2(ΩT )∥E+

s,ε∥L2(0,T ;H1(Ω))

)
≤ C h, (9.3.93)∫ T

0

Ĩ5 ≤ C

(
∥e+e,ε∥L2(0,T ;H1(Ω))∥∇eAs ∥L2(ΩT ) + ∥e+s,ε∥L2(0,T ;H1(Ω))∥∇eAe ∥L2(ΩT )

)
≤ C

(
∥∇eAs ∥L2(ΩT ) + ∥∇eAe ∥L2(ΩT )

)
, (9.3.94)∫ T

0

Ĩ7 ≤ C

(
h

1
2∥E+

ε ∥L2(0,T ;H1(Ω)) + ∥e+e,ε∥L2(0,T ;L∞(Ω)) + ε

)
∥∇eAe ∥L2(ΩT )

+C

(
∥E+

ε − Eε∥2L2(ΩT ) + h∥E+
ε ∥2L2(0,T ;H1(Ω)) + ε2

)
≤ C

(
(∆t)2 + h+ ε2 + ∥∇eAe ∥L2(ΩT )

)
, (9.3.95)∫ T

0

Ĩ8 ≤ C (∥E+
ε − Eε∥2L2(ΩT ) + ∥S+

ε − Sε∥2L2(ΩT ) + Ch2∥s∥2L2(0,T ;H1(Ω)))

≤ C
(
(∆t)2 + h2

)
, (9.3.96)∫ T

0

Ĩ9 ≤ C h∥E+
ε ∥L2(0,T ;H1(Ω))∥E+

s,ε∥L2(ΩT ) ≤ C h. (9.3.97)

Combining (9.3.83), (9.3.84) and (9.3.90)-(9.3.98) yields for h,∆t ≤ 1, and for

a.e. t ∈ (0, T ) that

∥ee,ε∥20 + ∥es,ε∥20 ≤ C
(
h+ h2 +∆t+ (∆t)2 + ε2 + ∥∇eAe

∥∥
L2(ΩT )

+
∥∥∇eAs

∥∥
L2(ΩT )

)
≤ C

(
h+∆t+ ε2 + ∥∇eAe

∥∥
L2(ΩT )

+
∥∥∇eAs

∥∥
L2(ΩT )

)
. (9.3.98)

This gives the estimate (9.3.66).

If e, s ∈ L2(0, T ;H2(Ω)), the result (9.3.66) follows immediately from (9.3.65) on

noting the following estimate (see Theorem 3.1.6 in Ciarlet [39]):

|(I − πh)η|1 ≤ C h |η|2.

2
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Chapter 10

The Keller-Segel Model:

Numerical experiments

This chapter is devoted to the discussion of some numerical experiments for the

model (Q). We introduce an iterative approach to solve our fully discrete finite

element approximation to problem (Q). We then establish and discuss some numer-

ical solutions for different choices of the parameters α, δ, µ. We also introduce a

modified iterative scheme to obtain the numerical solutions. In addition, we obtain

and discuss some other numerical results. All programs were written in Matlab to

generate the numerical results and to plot the graphs.

We could find no two-dimensional examples to compare our computations with

for δ > 0. However, in the case that δ = 0 the continuous and numerical solution

blow up, see references. It should be noted that our entropy bound is not valid in

this case but that the numerical approximation still works up to the point of blow-

up. We include this simulation to demonstrate the robustness of the approximation.

We performed the same experiment with other values of δ > 0 and found that blow

up did not occur.

We first introduce the following practical algorithm to solve the nonlinear alge-

braic system arising from the approximate problem (Qh∆t,k
M,ε ) at each time level:

Given {En,0
ε , Sn,0

ε } ∈ Sh × Sh for k ≥ 1 find {En,k
ε , Sn,k

ε } ∈ Sh × Sh such that for

all χ ∈ Sh
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(En,k
ε − En−1

ε

∆t
, χ

)h
+ (ρ∇En,k

ε − ϱΛε(E
n,k−1
ε )∇Sn,k

ε ,∇χ) = 0, (10.0.1)

α
(Sn,k

ε − Sn−1
ε

∆t
, χ

)h
+ (Sn,k

ε , χ)h + (∇Sn,k
ε ,∇χ) + δ(∇En,k

ε ,∇χ) = µ(En,k
ε , χ)h,

(10.0.2)

where the coefficients ρ, ϱ > 0 have been added to compare with experiments else-

where in the literature. We note that it is easy to prove all of the results that we have

proved, i.e., all of the previous results hold with this modified model. We start with

E0
ε ≡ πhe0 and S0

ε ≡ πhs0 and we set, for n ≥ 1, En,0
ε ≡ En−1

ε and Sn,0
ε ≡ Sn−1

ε . As

the system (10.0.1)-(10.0.2) is linear, existence of {En,k
ε , Sn,k

ε } follows from unique-

ness. The standard method to solve the system (10.0.1)-(10.0.2) at each iteration

is by testing the equations (10.0.1) and (10.0.2) with φj, j = 0, ..., J, to obtain a

(2J + 2) × (2J + 2) linear system, in terms of the nodal values of En,k
ε and Sn,k

ε ,

which can be solved using linear programming. For our numerical results, we set

TOL = 10−6 and adopt the stopping criteria

|En,k
ε − En,k−1

ε |0,∞ < TOL and |Sn,k
ε − Sn,k−1

ε |0,∞ < TOL, (10.0.3)

i.e. for k satisfying (10.0.3) we set En
ε ≡ En,k

ε and Sn
ε ≡ Sn,k

ε .

Although, we have been unable to prove convergence of {En,k, Sn,k}∞k=1 to {En, Sn}

for n fixed, good convergence properties have been observed in practice. We found

that the iterative method always converged well (only a few steps were required to

fulfill the stopping criteria at each time level).

As already mentioned, the system is square so proving uniqueness is equivalent

to existence. If we attempt to adopt the existence argument in the Schauder fixed

point theorem, then unfortunately we are left with the extra term

−∆t

([
Λε(E

n,k
ε )

]−1
Λε(E

n,k−1
ε )∇Sn,k

ε ,∇χ
)
,

which we are unable to deal with. Next we prove uniqueness directly, which depends

on ∆t being sufficiently small. In practice, if we found that the iteration did not

convergence, then our strategy would to be reduce ∆t by a factor of 1/2 and to

repeat the experiment.
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Theorem 10.0.2 Let {En,k
ε , Sn,k

ε } be a solution of the problem (Qh∆t,k
M,ε ) such that

max
n,k

∥Sn,k
ε ∥20 ≤ Cb,

where Cb is a positive constant independent of the parameters h,∆t and ε. Then,

for sufficiently small ∆t, the solution {En,k
ε , Sn,k

ε }, n = 1, ..., N is unique.

Proof : Assume there are two solutions {En,k
ε,1 , S

n,k
ε,1 } and {En,k

ε,2 , S
n,k
ε,2 } to the problem

(Qh,∆t,k
M,ε ) such that

max
n,k

{
∥Sn,k

ε,1 ∥20, ∥S
n,k
ε,2 ∥20

}
≤ Cb. (10.0.4)

Now, setting En,k
ε = En,k

ε,1 − En,k
ε,2 and Sn,k

ε = Sn,k
ε,1 − Sn,k

ε,2 , and subtracting the fully

discrete approximations yields for all χ ∈ Sh that

1

∆t

(
En,k
ε , χ

)h
+ (∇En,k

ε ,∇χ) = (Λε(E
n,k−1
ε )∇Sn,k

ε ,∇χ), (10.0.5)

α

∆t

(
Sn,k
ε , χ

)h
+ (Sn,k

ε , χ)h + (∇Sn,k
ε ,∇χ) + δ(∇En,k

ε ,∇χ) = µ(En,k
ε , χ)h. (10.0.6)

Choosing χ ≡ En,k
ε in (10.0.5) and χ ≡ 1

δ
Sn,k
ε in (10.0.6) and adding the resulting

equations yields, on using the Hölder’s inequality, (2.4.68), (2.4.69), (2.4.54) and

(10.0.4), that

1

∆t
|En,k

ε |2h + |En,k
ε |21 +

α

δ∆t
|Sn,k

ε |2h +
1

δ
|Sn,k

ε |2h +
1

δ
|Sn,k

ε |21

= (Λε(E
n,k−1
ε )∇Sn,k

ε ,∇En,k
ε ) +

µ

δ
(En,k

ε ,Sn,k
ε )h − (∇En,k

ε ,∇Sn,k
ε )

=
(
[Λε(E

n,k−1
ε,1 )− 1]∇En,k

ε ,∇Sn,k
ε

)
+
µ

δ
(En,k

ε ,Sn,k
ε )h

≤ C1|En,k
ε |1 |Sn,k

ε |1 +
µ

δ
|En,k

ε |h |Sn,k
ε |h, := I1 + I2, (10.0.7)

where

I1 = C1|En,k
ε |1 |Sn,k

ε |1,

I2 =
µ

δ
|En,k

ε |h |Sn,k
ε |h,

and C1 is a positive constant, independent of the parameters h,∆t and ε, that is

generated from applying (2.4.54).

It follows from the Young’s inequality, (2.4.54) and (2.4.55) that

I1 ≤ |En,k
ε |21 +

C2
1

4
|Sn,k

ε |21 ≤ |En,k
ε |21 +

C2
2C

2
1

4h2
|Sn,k

ε |20 = |En,k
ε |21 + a1|Sn,k

ε |2h, (10.0.8)

I2 ≤ a2|En,k
ε |2h +

1

δ
|Sn,k

ε |2h, (10.0.9)
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where C2 is the positive constant, independent of h,∆t and ε, generated from ap-

plying (2.4.55), a1 =
C2

2C
2
1

4h2 and a2 = µ2

4δ
. Combining (10.0.7) and (10.0.8)-(10.0.9)

yields on noting the equivalence (2.4.46) that( 1

∆t
− a2

)
|En,k

ε |2h +
( α

δ∆t
− a1

)
|Sn,k

ε |2h ≤ 0. (10.0.10)

Now, we set

τ = min{ α

δa1
,
1

a2
}.

On noting (10.0.10), we obtain for any ∆t ∈ (0, τ) that

|En,k
ε |2h + |Sn,k

ε |2h ≤ 0.

We thus conclude En,k
ε,1 = En,k

ε,2 and Sn,k
ε,1 = Sn,k

ε,2 , as required. 2

10.1 Numerical results

10.1.1 1D numerics

We now present some numerical results in one space dimension. Unless otherwise

specified, in all experiments we consider a uniform partitioning of Ω = (0, 1) into

100 subintervals, i.e. J = 100 and h = 1/100, and choose ∆t = 0.001, n ≥ 1,

and ε = 10−9. In the first part of our experiments, we considered the initial data

e0(x) = 1, and s0(x) = 1 + 0.1e−10x2
, which was also considered in [60], with α = 1,

δ = 0, µ = 1, ϱ = 5 and ρ = 0.1.

In Figure 10.1 we plot numerical simulations of the Keller-Segel model. The

cell density and chemical concentration are plotted at distinct times, showing the

growth of the solution as cells accumulate into a sharp boundary peak. After t = 1,

the figures do not change significantly.

We note that the steady-state solution of (Q) in space and time, denoted by

{ec, sc}, is determined by the following equations

[ex − (esx)]x = 0, sxx + δexx + µe− s = 0.

In the next experiments, we considered the same initial data of the first experiment,

with α = 1 and ρ = 0.1. For δ = 0, µ = 0 and ϱ = 5, if {ec, sc} is a constant steady
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state solution, then it is easy to show that (ec(x), 1) =
1
|Ω|(e

0, 1) and sc(x) = 0, and

this behaviour has been shown in Figure 10.2. In the second experiment we choose

the same parameters of first one but with e0(x) = 2. The solutions corresponding

to e0(x) = 2 are plotted in Figure 10.3 at several times, and the results show the

same behaviour of Figure 10.2.

Thirdly, we choose δ = 0.1 and ϱ = 0, then if {ec, sc} is a constant steady state

solution, then we have ec = 1
|Ω|(e

0, 1) and sc = µec. Firstly, we choose e0(x) = 1,

and the solutions corresponding to this experiment have been shown at many time

levels in Figures 10.4 for µ = 0.5. We repeated the experiment with e0(x) = 1 and

µ = 0, 3 and e0(x) = 2 and µ = 0, 0.5, 3, and we found {ec, sc} always satisfied

sc−µec = 0, within tolerance. Finally, in Figure 10.5 we plot the term ρex−ϱ(esx),

for e0(x) = 1, s0(x) = 1 + 0.1e−10x2
, α = 1, δ = 0, µ = 1, ϱ = 1 and ρ = 0.1. It is

very clear in Figure 10.5 that the term ex− (esx) has a constant value in the steady

state solutions.

10.1.2 2D numerics

In this section, we demonstrate the performance of the proposed finite element

scheme in two dimensions for the Keller-Segel model. We take the computational

domain to be a square uniform mesh = [−1
2
, 1
2
]× [−1

2
, 1
2
] with α = 1, δ = 0, µ = 1,

ϱ = 1, ρ = 1. The space step is h = 1/J in both x and y directions where

J + 1 is the number of the nodes in each direction. Then, we apply a right-angled

triangulation on Ω in which each subsquare is bisected by its north-east diagonal.

We first consider the initial-boundary value problem for the Keller-Segel system with

the radially symmetric bell-shaped initial data,

e0(x, y, 0) = 1000e−100(x2+y2), s0(x, y, 0) = 500e−50(x2+y2). (10.1.11)

According to the results in [59], both e− and s−components of the solution are ex-

pected to blow up at the origin in finite time. This situation is especially challenging

since capturing blow up solutions with shrinking support is extremely hard [59]. We

first apply the finite element method to the initial-boundary value problem (10.0.1)-

(10.0.2). The computed cell densities at times T = 10−6, 5×10−6, 4.4×10−5, 6×10−5
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Figure 10.1: The cell density e(x, t) and the concentration of the chemical signal s(x, t)

versus position with ∆t = 0.001, α = 1, δ = 0, µ = 1, ϱ = 5 and ρ = 0.1. The initial

data are e0(x) = 1, s0(x) = 1+0.1e−10x2
. In (a) and (c) we plot e& s for t = 0, 0.1, ..., 1,

respectively, while in (b) and (d) we plot e& s for t = 0, 0.2, ..., 2, respectively.
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Figure 10.2: The cell density e(x, t) and the concentration of the chemical signal s(x, t)

versus position with ∆t = 0.001, α = 1, δ = 0, µ = 0, ϱ = 5 and ρ = 0.1. The initial data

are e0(x) = 1, s0(x) = 1 + 0.1e−10x2
.
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Figure 10.3: The cell density e(x, t) and the concentration of the chemical signal s(x, t)

versus position with ∆t = 0.001, α = 1, δ = 0, µ = 0, ϱ = 5 and ρ = 0.1. The initial data

are e0(x) = 2, s0(x) = 1 + 0.1e−10x2
.
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Figure 10.4: The cell density e(x, t) and the concentration of the chemical signal s(x, t)

versus position with ∆t = 0.001, α = 1, δ = 0.1, µ = 0.5, ϱ = 0 and ρ = 0.1. The initial

data are e0(x) = 1, s0(x) = 1 + 0.1e−10x2
.
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Figure 10.5: The term ρex − ϱ(esx) versus position with ∆t = 0.001, α = 1, δ = 0,

µ = 1, ϱ = 1 and ρ = 0.1. The initial data are e0(x) = 1, s0(x) = 1 + 0.1e−10x2
.

ζ = DEn
ε − En

εDSn
ε , where Dy = (yi+1 − yi)/h, i = 0, ..., J . In this Figure, we plot for

t = 5, 10, ..., 60, respectively.
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and 10−4 are plotted in Figures 10.6, 10.7, 10.8, 10.9 and 10.10, respectively, with

∆t = 10−7. The method performs reasonably well, where we only show the plots

with J = 200 and J = 400 as with other finer grid spacing the plots were quantita-

tively similar.

In the results in [38], negative densities appear in numerical solutions which refer

to the severe numerical instabilities. We observe a lack of negative values of e or

any other numerical instabilities in these experiments, and a high resolution of the

solution blowing up. Numerical convergence of the finite element method is verified

by running the same test on a finer grid with h = 0.005, where we observed that

the coarse and the fine grid solutions were in very good agreement at small times

T = 10−6, 5×10−6. However, they are quite different at a larger time T = 4.4×10−5,

and especially at T = 6× 10−5. Therefore, we further refine the grid on the uniform

grid with h = 0.0025. It seems that these is agreement in the computed solutions at

T = 4.4× 10−5, but beyond that time there is a difference that keeps increasing (as

the grid is refined) at T = 6× 10−5. A more precise interpretation of the obtained

results would require a knowledge of the blowup time (which is not available). Based

on the presented numerical results, we conjecture that the blowup time is most likely

T > 6× 10−5.
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Figure 10.6: The cell density e(x, t) at T = 10−6 (left) and its one-dimensional (1D) slice

along x = 0 (right), with ∆t = 10−7. In (a) and (b), h = 0.005, in (c) and (d), h = 0.0025.
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Figure 10.7: The cell density e(x, t) at T = 5× 10−6 (left) and its one-dimensional (1D)

slice along x = 0 (right), with ∆t = 10−7. In (a) and (b), h = 0.005, in (c) and (d),

h = 0.0025.
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Figure 10.8: The cell density e(x, t) at T = 4.4 × 10−5 (left) and its one-dimensional

(1D) slice along x = 0 (right), with ∆t = 10−7. In (a) and (b), h = 0.005, in (c) and (d),

h = 0.0025.
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Figure 10.9: The cell density e(x, t) at T = 6× 10−5 (left) and its one-dimensional (1D)

slice along x = 0 (right), with ∆t = 10−7. In (a) and (b), h = 0.005, in (c) and (d),

h = 0.0025.

July 2, 2015



10.1. Numerical results 176

-0.4 -0.2 0.0 0.2 0.4

0.0

2.0x105

4.0x105

6.0x105

8.0x105

1.0x106

1.2x106

1.4x106

1.6x106

1.8x106

e

y

(a)

-0.4 -0.2 0.0 0.2 0.4

0.0

6.0x105

1.2x106

1.8x106

2.4x106

3.0x106

3.6x106

4.2x106

e

y

(b)

Figure 10.10: The one-dimensional (1D) slice along x = 0 of cell density e(x, t) at T =

10−4 and (a) h = 0.005, (b) h = 0.0025.
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Conclusions

We studied three cross diffusion systems using the finite element method. The first

system, (P), is a population model which represents the movement of multi inter-

acting cell populations in d ≤ 3 space dimensions. The second system, (W), models

mechanical tumor-growth. Finally, a Keller-Segel model (Q) with an additional

cross-diffusion term in the equation for the chemical signal is analyzed. In the first

chapter of the thesis we introduced the models (P), (W) and (Q) and defined the

research objectives. Our study of the model (P) was executed in the following four

chapters. Also, the model (W) was studied in Chapter 6 and the rest of the thesis

was devoted to the study of the model (Q).

It is important to note that the cut-off function ϕ(s) and the entropy func-

tion F are closely related, viz. ϕ(s) = min(1/(FM)′′(s),M), see (2.3.22), and this

connection plays a crucial role in our argument. Due to the fact that (FM)′′(s)

is unbounded at s = 0, the strictly convex entropy function FM is replaced by a

strictly convex regularization Fε whose second derivative is bounded above by 1/ε

and bounded below by 1/M , ε ∈ (0, 1),M > 1, at the same time the cut-off function

ϕ is replaced by a strictly positive cut-off function ϕε defined by ϕε(s) = 1/F ′′
ε (s).

In Chapter 2, we make a significant step towards showing the existence of a

global in-time weak solution of the problem (P). Our approach in proving existence

is based on the idea of defining an entropy inequality that leads us to obtain energy

estimates. Firstly, we introduce a truncated alternative problem to (P). Then, we

introduce a regularized problem of the problem (P). Next, we derive a well defined
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entropy inequality of the regularized problem. Also, A practical fully discrete finite

element approximation of the regularized problem is proposed then we present some

necessary lemmata. Finally, the existence of the approximate solutions are discussed

by using a fixed point theorem.

In Chapter 3, we prove the existence of a global weak solution to the system (P∆t
M )

by analysing the convergence of the fully discrete approximate problem (Ph,∆t
M,ε ). A

discrete analogue of the entropy inequality is derived and some stability bounds on

the approximate solution are shown. Then we prove the existence of non-negative

functions {Ui}mi=1 bounded in various time-dependent spaces using classical sequen-

tial compactness arguments. Finally, we prove that the functions {Ui}mi=1 represent

a global weak solution of the system (P∆t
M ) via passage to the limit ε, h → 0 of the

approximate system.

In Chapter 4, to show the existence of weak solutions to the model (P), that

demands passing to the limits, ∆t → 0+ and M → ∞. Then we link the time step

∆t to the cutoff parameter M > 1 by demanding that ∆t = o(M−1), as M → ∞,

so that the only parameter in the problem (P∆t
M ) is the cutoff parameter. By using

special energy estimates, we show that the solutions can be bounded, independent

of M . We then use these M−independent bounds on the relative entropy to derive

M−independent bounds on the time-derivatives. By using sequential compactness

arguments, the convergence of the finite element approximate problem has been

studied and existence of a non-negative weak solution for (P) was concluded. We

also might be able to find the error estimate by adapting the ideas in Barrett and

Blowey [7]. We leave this for future investigation. A regularity result stronger than

we obtained is required to complete the analysis of problem (PM
∆t). However, in

order to proceed with the convergence analysis we adopted an alternative technique

where we assumed that U±
i (x, t) ∈ L∞(ΩT ).

At the end of our study, in Chapter 5, an algorithm for computing the numer-

ical solutions of the population model (P) was given. Simulations in one and two

space dimensions were performed using the implicit scheme. Numerically, there are

remaining issues that can be investigated such as existence, uniqueness and error

bounds. We were unable to numerically verify the fully discrete error bound for (P)
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because no exact solution is known. However, experimental work that can be done

in this direction is by comparing the computed solution on a coarse mesh with that

on a fine mesh.

In Chapter 6 we introduce a fully discrete finite element approximation for the

cross-diffusion Tumor-growth model (W). We proved the existence and some sta-

bility estimates of the fully discrete approximation. An algorithm for computing

the numerical solutions of model (W) and simulations in one space dimension were

performed using the implicit scheme in Chapter 7.

In Chapter 8 and 9, the Keller-Segel model (1.2.1)-(1.2.3) is considered. The

mathematical analysis used in proving the existence results for (P) was adapted to

show that there exists at least one global weak solution of the Keller-Segel model

(Q). A regularized fully discrete finite element approximation of the problem (Q)

was studied. Existence and uniqueness of the approximations were established. A

technical replacement of s by ϕ(s) was the key to our study of the system where

we considered a truncated alternative problem to (Q). The singular nature of (Q)

in R≥0 has been treated by employing an appropriate regularization procedure. A

well defined entropy inequality of the regularized problem has been derived. A fully

discrete finite element approximation to (Q) has been introduced. The existence of

the fully discrete solutions has been shown for a sufficiently small time discretization

parameter. An analogous discrete entropy inequality has been obtained and some

stability bounds on the approximations have been established. Some uniqueness

results of approximate and weak solutions have been discussed. An error bound

between the fully discrete and weak solutions of (Q) has been proved.

Our mathematical analysis of the Keller-Segel model was for d = 1, 2 and 3.

However, we use the compactness of the embeddings H1(Ω) ↪→ Lq(Ω) for all 1 ≤

q < ∞ in two-dimensional domains and thus the result in (9.2.38) holds for d ≤ 2.

Moreover, the continuous embedding H1(Ω) ↪→ L∞(Ω) holds only for d = 1, thus

our uniqueness and error bound analysis of (Q) is not valid for multi-dimensional

spaces; see and (9.3.79).

Finally, a practical algorithm for computing the numerical solutions of (Q) was

given at the beginning of Chapter 10, where simulations in one and two space di-
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mensions were performed. We then performed numerical experiments in two space

dimensions demonstrating the blow up behaviour of the numerical solution.

Additional regularity, more than we have been able to prove, was required to

complete the uniqueness proof and error bound analysis for problem (Q). Unfortu-

nately, we have been unable to prove the regularity requirement which was essential

to establish these results. However, it might be possible and this is left open for

future investigation. With regard to the problem (P), an idea for obtaining unique-

ness results is to mimic the uniqueness study presented for the model (Q). In this

direction, and due to the structure of the model (P), it is more difficult and the

issues faced are: analytic; regularity requirements; other technical obstacles. This

is also left as an open problem for future work.

The mathematical work in this thesis can be used to analyse other cross diffusion

systems. For example, following similar arguments used for (P), one can improve

the analysis presented in [35] and [8]. One could also try to adapt the techniques

employed in this thesis to study the cross diffusion models in [69] and [57].
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[15] J.W. Barrett, E. Süli (2008), Existence of global weak solutions to dumbbell

models for dilute polymers with microscopic cut-off, Math. Models Methods

Appl. Sci. 18, 935-971.
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[18] J.W. Barrett, E. Süli (2011), Existence of global weak solutions to finitely

extensible nonlinear beadspring chain models for dilute polymers with variable

density and viscosity, available from: http://arxiv.org/abs/1101.1990, 2011.

July 2, 2015



Bibliography 183
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Appendix A

Basic and Auxiliary Results

A.1 Definitions and Auxiliary Results

Theorem A.1.1 (Schauder’s theorem) Let B be a normed space and let K be

a non-empty convex compact set of B. If f : K → K is a continuous function then

f has at least one fixed point (see [5] page 215).

Theorem A.1.2 (Green’s formula, Rodrigues [85], p.76)

Let Ω ⊂ Rn be a bounded Lipschitz domain with outward unit normal ν. If u ∈

H2(Ω) and v ∈ H1(Ω), then∫
Ω

∇u · ∇v dx =

∫
∂Ω

∂v

∂ν
u ds−

∫
Ω

u ∆v dx. (A.1.1)

Theorem A.1.3 (Lax-Milgram, see, e.g., [87] page 20 and [49] page 83)

Let V be a Hilbert space. Let a be a bounded bilinear form on V ×V and let f ∈ V ′

(i.e. f is a bounded linear functional on V ). If a is a coercive, i.e.,

∃α > 0, ∀u ∈ V, a(u, u) ≥ α∥u∥2V .

Then, there exists a unique u ∈ V such that

a(u, v) = f(v) ≡ ⟨f, v⟩V×V ′ ∀v ∈ V.

In addition,

∥u∥V ≤ 1

α
∥f∥V ′ .
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Theorem A.1.4 (generalized Lax-Milgram) Let V and W be reflexive Banach

spaces. Further let a(·, ·) : V ×W −→ R be a continuous bilinear form such that

sup
v∈V

a(v, w) ≥ 0 ∀w ∈ W,

inf
0 ̸=v∈V

sup
0 ̸=w∈W

a(v, w)

∥v∥V ∥w∥W
≥ α,

where α is a positive constant. Then for every F ∈ W ′ there exists a unique u ∈ V

such that

a(u,w) = F (w) ∀w ∈ W.

Furthermore, the following a priori estimate holds:

∥u∥V ≤ 1

α
∥F∥W ′ .

For a proof and applications of the theorem, see for example [87] and [49].

Theorem A.1.5 (The Grönwall lemma in its integral and differential form, see

e.g. [48]).

We start with the integral form:

Let β be a non-negative constant and let u(t) ∈ L∞(0, T ) and v(t) ∈ L1(0, T ) be

non-negative functions such that for a.e. t ∈ (0, T )

u(t) ≤ β +

∫ t

0

u(s) v(s) ds.

Then for a.e. t ∈ (0, T )

u(t) ≤ β exp(

∫ t

0

v(s) ds). (A.1.2)

We now state the differential form:

Let f́(t) ∈ W 1,1(0, T ) and g(t), h(t), w(t) ∈ L1(0, T ) be non-negative functions such

that for a.e. t ∈ (0, T )

f́(t) + g(t) ≤ h(t) + f(t)w(t).

Then for a.e. t ∈ (0, T )

f(t) +

∫ t

0

g(s) ds ≤ eΛ(t)f(0) + eΛ(t)
∫ t

0

h(s) ds, (A.1.3)

where Λ(t) =
∫ t

0
w(s) ds.
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Theorem A.1.6 (Sobolev spaces results) Let m be a non-negative integer and

let 1 ≤ p ≤ ∞. The Sobolev spaces Wm,p(Ω) equipped with the associated norms

satisfy the following:

• Wm,p(Ω) is a Banach space (see [83], page 206).

• Wm,p(Ω) is separable if p ≤ ∞ (see [83], page 206).

• Wm,p(Ω) is reflexive if 1 ≤ p ≤ ∞ (see [2], page 47).

Theorem A.1.7 (Sobolev embedding results) Suppose that Ω is a bounded

domain. For non-negative integers m and k such that m ≥ k, we have

Wm,q(Ω) ↪→ Wm,p(Ω),

whenever 1 ≤ p ≤ q ≤ ∞ (see, e.g., [27] page 32). If the domain Ω has a Lipschitz

boundary, there are more subtle relations among the Sobolev spaces. For instance,

there are cases when k < m and p > q and the above embedding is satisfied. In this

direction, we refer to the Sobolev embedding theorems in [2], [39] and [5].

Theorem A.1.8 (Time-Dependent spaces results) Let X be a Banach space

and let 1 ≤ p ≤ ∞. The Sobolev spaces Lp(0, T ;X) satisfy the following:

• Lp(0, T ;X) is a Banach space (see [70], page 114-116).

• Lp(0, T ;X), (p ≤ ∞) is separable ⇔ X is separable (see [70], page 118).

• Lp(0, T ;X), (1 ≤ p ≤ ∞) is reflexive ⇔ X is reflexive (see [70], page 125).

Theorem A.1.9 (Time-Dependent spaces: embedding results) Let X, Y be

Banach spaces with X continuously embedded in Y . Then

Lq(0, T ;X) ↪→ Lp(0, T ;X), 1 ≤ p ≤ q ≤ ∞.

(See, for example, [71] page 132).

Theorem A.1.10 (Density results)
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• Let Ω be an open bounded domain in Rd with a Lipschitz boundary ∂Ω. Letm

be a non-negative integer and 1 ≤ p ≤ ∞. Then C∞(Ω) is dense in Wm,p(Ω),

(see, e.g., [87] page 346).

• Let X be a Banach space and 1 ≤ p ≤ ∞. Then C∞([0, T ];X) is dense in

Lp(0, T ;X), (see [70], page 118).

Definition A.1.11 (strong convergence) Le V be a normed vector space. Then

xn ∈ V converges strongly to x ∈ V , written xn → x, if and only if

∥xn − x∥V → 0.

Definition A.1.12 (Weak convergence) LetX be a Banach space. Then xn ∈ X

converges weakly to x ∈ X, written xn ⇀ x, if and only if

⟨f, xn⟩ → ⟨f, x⟩ ∀f ∈ X ′,

where we use ⟨·, ·⟩ to denote the duality pairing between X and X ′.

Definition A.1.13 (Weak-star convergence) Let X be a Banach space. Then

fn ∈ X ′ converges weakly-star to f ∈ X ′, written fn ⇀ f , if and only if

⟨fn, x⟩ → ⟨f, x⟩ ∀x ∈ X.

Theorem A.1.14 (Some results of weak and weak-star convergence) Let

X be Banach space and X ′ its dual. Then

• xn → x in X implies xn ⇀ x in X.

• xn ⇀ x in X implies ∥x∥X is bounded and ∥x∥X ≤ lim inf ∥xn∥X .

• fn
∗
⇀ f in X ′ implies ∥f∥X′ is bounded and ∥f∥X′ ≤ lim inf ∥fn∥X′ .

• Weak (weak-star) convergence has a unique limit.

The proof of the above results can be found, for example, in [84] page 102-105.

Theorem A.1.15 (Weak compactness) Let X be a reflexive Banach space, {xn}

a bounded sequence in X. Then it is possible to extract from {xn} a subsequence

which converges weakly in X(see [43], page 289).
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Theorem A.1.16 (Weak-star compactness) LetX be a separable Banach space

and X ′ its dual. Then from every bounded sequence in X ′, it is possible to extract

a subsequence which is weakly-star convergent in X ′ (see [43], page 291).

Theorem A.1.17 (Convergence) If a sequence un → u in Lp(Ω), (1 ≤ p ≤ ∞),

then there is a subsequence that converges pointwise to u almost everywhere in Ω,

(see, e.g., [84] page 27).

Theorem A.1.18 (Gilfand Triple) Let W be a Banach space continuously and

densely embedded in the Hilbert space H. Then

W ↪→ H ≡ H ′ ↪→ W ′, H ′ is dense in W ′,

and we can write

⟨f, w⟩W ′×W = (f, w)H , ∀f ∈ H, w ∈ W.

(See [71], page 103-105).

Theorem A.1.19 (Lions-Aubin Theorem) Let X0, X , X1 be three Banach

spaces such that

X0
c
↪→ X ↪→ X1,

where X0 and X1 are reflexive. Let T be finite and 1 < p0, p1 <∞, then the space

W =

{
v : v ∈ Lp0(0, T ;X),

dv

dt
∈ Lp1(0, T ;X)

}
,

with the norm

∥v∥W := ∥v∥Lp0 (0,T ;X) + ∥v∥Lp1 (0,T ;X),

is a Banach space and the injection W into Lp0(0, T ;X) is compact. (See Temam

[91], p.271).

Theorem A.1.20 (Lebesgue dominated convergence theorem). Suppose fn : R →

[−∞,∞] are (Lebesgue) measurable functions such that the pointwise limit f(x) =

limn→∞ fn(x) exists. Assume there is an integrable g : R → [0,∞] with |fn| ≤ g(x)

for each x ∈ R. Then f is integrable as is fn for each n, and

lim
n→∞

∫
R
fn(x)dx =

∫
R
lim
n→∞

fn(x)dx =

∫
R
f(x)dx.
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Theorem A.1.21 (logarithmic Youngs inequality). Let r, s ∈ R≥0 then we have

r s ≤ r log r − r + F (s).

Proof : Consider G(r) := sups∈R(r s − F (s)) then using analysis we note that the

argument of the supremum attains a maximum at s = ln r and the argument also

tends to −∞ as x → ±∞ so that in fact G(r) := r ln r − r. However, from the

definition of G(r), ∀s ∈ R

G(r) ≥ r s− F (s),

that is

r s ≤ r ln r − r − F (s).

2

Theorem A.1.22 (Fatou’s Lemma). If fn is a sequence of nonnegative measurable

functions, then ∫
lim inf
n→∞

fn dµ ≤ lim inf
n→∞

∫
fn dµ.
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