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Abstract 
 

The heat transfer of a 50% scale model F1 wheel assembly has been analysed experimentally with hot fi lms, 

using a brake cooling test rig for internal analyses, and the Durham University wind tunnel  for combined 

internal and external analyses. Computational analysis using the Exa PowerFlow CFD software was undertaken 

as both a correlation exercise, and to complement the experimental  results, providing insight into the flow 

characteristics within the wheel assembly. 

 

The systematic error within the system was evaluated by determining the level of heat transfer at zero-flow 

conditions, which led to the conclusion that varying flow application method does not affect the disc heat 

transfer coefficient. Experimental and computational results were used to derive the Nusselt number 

equation, with the wind tunnel disc revealing a Reynolds number exponent of 0.87, a figure closely correlating 

to l iterature.  Results for the sidewall presented a range of heat transfer values, to which a combined model fit 

was applied. 

 

Investigations into unmatched tyre surface velocity and flow velocity determined that 77% of the convective 

heat transfer experienced at the sidewall was due solely to the tyre’s rotation. The level of applied air-flow, did 

however, affect the rate of heat transfer. Internal of the upright, comparison of results for a blocked and open 

Inlet scoop found the Inlet scoop to be the predominant source of cooling to the disc. 

 

Wind tunnel heat transfer coefficient results for the tyre sidewall displayed a relationship to radial position, 

with HTC increasing from the central position of the sidewall both toward the internal diameter and external 

diameter. The capability of the CFD software to extract heat transfer coefficients was assessed using two 

rotational simulation methods; Sliding mesh (physical rotation) and moving reference frame (imposed rotation 

through the application of rotational fluid forces), neither of which was able to reproduce the patterns of heat 

transfer outlined in the wind tunnel  results. 
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1.0. Introduction  

1.1. Aim 

The aim of this work is to experimentally determine the convective heat transfer coefficient at various 

locations on a 50% scale F1 wheel assembly through the use of hot fi lm sensors, and to generate a 

computational fluid dynamics simulation using Exa PowerFlow, to evaluate the computational ability of 

predicting the convective heat transfer coefficient.  

1.2. Objectives 

To identify the effects of rotation on tyre aerodynamics. 

The exploration of the effect of rotating components on the convective heat transfer, including the resulting 

advancement of flow separation, and the identification of the internal flow effect of rotation on recirculation 

and heat transfer. 

  

The application of heat transfer knowledge to the identification of heat generation and cooling mechanisms 

of the wheel assembly, including the creation of a heat transfer diagram. 

The outline and mapping of heat transfer, considering internal and external flow and the interaction between 

components, in order to understand system heat transfer. 

 

The generation of upright geometry CAD models. 

The geometry to be used in experimental testing is to be modelled using CAD software in a format compatible 

with the PowerFlow CFD software for creation of the computational simulation. Geometry is also required for 

the setup of the wind tunnel  test, including the design of rig fixtures to support/mount the geometry. 

 

Undertaking of brake cooling test rig experiments in order to determine the internal convective heat 

transfer coefficient. 

A rolling tyre rig test will be used to collect internal heat transfer data using a hot film sensor positioned in a 

disc Vane. The collected data will then be used to determine the convective heat transfer coefficient for each 

of the given test configurations. 

 

To undertake wind tunnel tests in order to determine the external convective heat transfer coefficient. 

The collection of external convective heat transfer coefficient data through the development of a wind tunnel  

test, recording internal values alongside external, so as to validate results recorded from the rig test. 

 

The creation of a tyre sidewall heat transfer map for experimental tyre sidewall results. 

Visual positional development tool for analysis of heat transfer levels on a local and global scale. This will aid in 

the depth of analysis possible with respect to computational comparison. 
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The generation of computational fluid dynamics (CFD) simulations; understanding the correlation between 

experimental and simulated results including the capabilities of a scaled computational model. 

The CFD simulation will  util ise the wheel assembly CAD geometry in order to predict the convective heat 

transfer coefficient; supported by flow analysis . Various setup parameters will  be explored in order to 

determine best practice based on experimental comparisons, including the capability of scaled simulations 

with respect to heat transfer results. 

1.3. Industrial Relevance 

As a result of speed and aerodynamic loading, Formula 1 vehicles experience high vertical loads on their tyres, 

increasing heat generation due to frictional effects with the road, and extreme braking temperatures, making 

temperature control an imperative aspect for performance optimisation. Vehicle setup parameters, such as 

camber/toe and the use of aerodynamic components forward of the front axle can be used to redirect airflow 

so as to optimise heat transfer.  

 

Before interactions between the wheel assembly and other components can be considered, it remains  

important to understand airflow and heat transfer in isolation as they may influence the design of components 

upstream of the wheel in order to optimise cooling requirements . 

A major aspect of this investigation is to evaluate the correlation and best practice of both experimental  and 

computational processes for determining convective heat transfer coefficients (HTC). Correlation can be 

evaluated so long as setup parameters remain consistent throughout the experimental  and computational 

procedures. Regardless of whether or not correlation is achieved, changes of setup may show variations in 

correlation, however, it is assumed that the most basic of scenarios (the stand-alone configuration) should 

provide the best correlation, with increased setup complexity resulting in correlation discrepancies. 
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2.0. Literature Review 

The following sections explore l iterature relevant to the subject of this thesis, including fundamental 

aerodynamic principles of rotating wheels, mechanisms of heat transfer, including their presence within wheel 

assemblies, and an outline of hot fi lm anemometry. 

 

2.1. Rotating Wheel Aerodynamics 

Though several  existing studies compare the aerodynamic parameters of rotating cylinders with their 

stationary equivalents, few explore the impact of rotation on heat transfer. The disparity between 

aerodynamic characteristics of a stationary and rotating wheel is fundamental to understanding the resulting 

variation between heat transfer capabilities. 

2.1.1. Boundary Layer 

Principles of fluid flow dictate that a boundary layer will  occur over a body due to the no-slip condition, 

whereby the fluid incurs a zero-velocity relative to the body upon contact, the formation of which, Browne and 

Wickliffe (1980) found to cause a lower level of heat transfer toward the rear of a cylinder than the front given 

its increasing thickness. 

2.1.2. Flow Structures   

Cylindrical rotation is found to advance separation (Knowles, 2005), and supress rearward vortex shedding in 

the turbulent wake (Stojkovic, et al., 2002). The introduction of a ground plane in contact with the cylinder 

(rather than the study of a free-floating cylinder), results in the blockage of flow, however, for a rotating 3-

Dimensional (3D) tyre of finite span, partial circulation due to the presence of interstices and the no-slip 

condition of the ground, where zero-flow velocity remains on the surface of the tyre as it circulates through its 

rotation, may cause jetting effects . Mears (2004) used particle image velocimetry (PIV) to describe the 

downwash of air over/past a rotating tyre, with majority of separated flow, the portion of fluid flow detached 

from the tyre’s surface after reaching a point of zero-velocity,  following the tread, while sidewalls experienced 

a predominantly free-stream flow. Conversely, the stationary tyre displayed majority of air-flow directed 

around the sidewalls. The effect of ground contact brings tyre simulation and experimentation a level above 

generic cylindrical flow investigations, with ground contact eliminating vortex shedding for both low and high 

aspect ratios as a result of supres sing the separation of the boundary layer (Lei, et al., 1999). 

 

Fackrell (1974) determined the separation point of a stationary wheel to occur at 210deg counter clockwise 

(CCW) from the stagnation point (SP). Furthermore, both Fackrell and Mears found that the separation point 

for rotating wheels was approximately 280deg CCW from the SP. This was confirmed though the studies of 

Nemati et al. (2011), who concluded that the rotation of 3D cylinders of finite span advances the point of flow 

separation. Similarly, for a rotating tyre, Hinson (1999) experienced experimental separation at 270deg, while 

computational separation occurred at 295deg CCW from the SP. Mears found a similar trend between 

computational and experimental results, with separation of his rotating wheel using CFD occurring at 245deg. 
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Further research into the wake structures of stationary and rotating wheels by Bearman et al. (1988) showed 

that at a distance of 2.5D downstream, the wake for a stati onary tyre was dominated by a contra-rotating 

vortex pair near the ground, while that of the rotating wheel was centred approximately 0.25D above the 

ground and of a much lower intensity; tyre rotation resulting in the aforementioned suppression of vortex 

development.  

 

2.2. Heat Transfer Mechanisms 

Heat transfer is the determination of the rate of heat travel; energy that is transferred from a high to low 

temperature by means of one/more of three transfer processes; convection, conduction and/or radiation. The 

fundamentals of convection and the effect of fluid-flow over a surface upon convection are decribed in detail  

in many texts (Cengel et al., 2008; Massey, 1989), from which the following section summarises the flow 

features that are of direct relevance to the flow about a rotating wheel, and those that influence the capacity 

of convective heat transfer in the wheel assembly. 

2.2.1. Convection  

Convective heat transfer is the study of heat transport processes affected by fluid flow (Bejan, 2013), and is 

governed by Newton’s Law of cooling [1], which outlines that the rate of heat transfer is proportional to the 

temperature differential between the surface of an object and ambient conditions. 

 

𝑑𝑄

𝑑𝑡
= ℎ𝐴(𝑇𝑠 − 𝑇𝑎𝑚𝑏)      [1] 

 

Convective heat transfer is a cumulative result of two main characteristic phenomena; molecular motion and 

macroscopic motion (Bergman & Lavine, 2011). The molecular motion is the basis of the effect, with particles 

colliding in a random manner within the flow, causing a constant heat exchange, influenced and carried by the 

macroscopic motion of the fluid. Convective heat transfer is characterised by one of two flow types; natural or 

forced. The work in this thesis will focus on forced convection rather than convection due to natural buoyancy-

driven flow.  

 

When a free-stream flow undergoes contact with a solid surface, a boundary layer is generated, throughout 

which there exists a varying velocity; resulting in a velocity distribution in the y-direction. 

Flat plate theory can be used to describe the two variations of boundary layer; velocity and thermal.  

A velocity boundary layer occurs due to the retardation of flow upon contact with a solid (Figure 1). The 

boundary layer causes a chain of fluid particle retardation in consecutively adjoined fluid layers due to the 

shear stress parallel to the fluid velocity, until, at distance y = δ, the effect becomes negligible, reaching the 

free-stream value. 
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Figure 1: Representation of a boundary layer velocity distribution (Image source: Cengel et al., 2008). 

 

A thermal boundary layer develops when the free-stream flow and surface temperature differ. Figure 2 shows 

the flow over an isothermal plate beginning with a uniform temperature gradient at x = 0. When the fluid 

comes into contact with the surface, fluid particles achieve thermal equilibrium, resulting in a n energy 

exchange between consecutively adjoined fluid layers; introducing a thermal boundary layer. In the case of a 

roll ing tyre, there exists both a velocity and thermal boundary layer; thermal boundary layers exist in either 

fluid-solid contact or solid-solid contact.  

 

 
Figure 2: Representation of a thermal boundary layer’s temperature distribution (Image source: Cengel et al., 2008). 

 

The characteristic curve of a velocity boundary layer is dependent on the flow type, which can be categorised 

as either laminar or turbulent, and affects the degree of convective heat transfer. Flat plate theory 

demonstrates that both flow conditions can occur, with laminar flow preceding turbulent. Each flow type is 

characterised by the nature of the fluid coordinate components of velocity. 

 

 
Figure 3: Representation of the velocity boundary layer development (Image source: Cengel et al., 2008). 
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Laminar flow is characterised by its highly fluid, undisturbed flow, while turbulent flow is highly unstable and 

irregular, consisting of random 3-Dimensional flow structures; high-speed flow is drawn toward the surface, 

while low-speed flow is directed further into the flow-stream. 

The transition between these two flow types is due to mechanisms related to flow disturbance; natural or un-

natural disturbances. Natural disturbances are associated with flow fluctuations, whereas un -natural 

disturbances are dependent on the flow situation, such as the solid component‘s surface roughness. It is 

important to understand the behaviour of the various flow types given the variation that occurs in heat 

transfer coefficient between laminar and turbulent flow.  

 

Boundary layer transition is dependent upon Reynolds number (Re) [2], a dimensionless quantity describing 

the ratio of inertial and viscous forces. Flat-plate theory can be extended to circular flows, such as that of the 

flow around a tyre, whereby a Re < 2x105
 is representative of a laminar boundary layer, with theoretical 

separation occurring at θ=280deg CCW of the SP (where θ=angular position), and an Re > 2x105
 representative 

of a turbulent boundary layer transition, with separation delayed to θ=220deg CCW of SP. 

 

𝑅𝑒𝐷 =
𝜌𝑉𝐷

𝜇
=

𝑉𝐷

𝑣
       [2] 

 
Free-stream flow is stagnated upon contact of a cylinder, resulting in an increased pressure, accelerating the 

flow and forcing it around the cylinder. The pressure gradient continues to decrease until  it equals zero, 

termed the separation point; the point at which fluid momentum is not great enough to overcome the 

pressure gradient, resulting in boundary layer separati on and inducing a wake. 

 

Section 2.1 explored the variation between static and rotating wheel aerodynamics, describing the effect 

rotation has on aspects such as the separation point. In much the same way, cylindrical theory is l imited in its 

accuracy to describe flow characteristics, as tyres do not rotate in a free domain, but in proximal contact with 

a wall/ground plane (the road). Cylindrical theory assumes that the flow bifurcates at the stagnation point and 

travels over the cylinder until the separation point. Vortex shedding is found to decrease, or even become 

obsolete, for cylinders where wall proximity is less than e/D=0.3, which in the case of this study, was a gap of 

93mm (Sumer & Fredsoe, 2006); where e=gap between cylinder and wall and D=cylinder diameter.  

2.2.2. Conduction 

Conduction is the transfer of energy from the more energetic particles of a substance to the adjacent, less  

energetic ones as a result of interactions between the two. In gasses and liquids, this motion is a result of the 

collision and diffusion of molecules during their random motion. In solids it is due to the combination of 

molecular vibrations in the lattice structure, and the energy transported by free moving electrons. In 

conduction processes, energy transfer occurs in the direction of decreasing temperature (Bergman & Lavine, 

2011). The rate of heat transfer is dependent on the geometry of the medium through which it is travelling, as 
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well as the material and temperature difference through its structure (Cengel et al., 2008). The rate of 

conductive heat transfer can be described mathematical ly by Fourier’s law [3]. 

 

�̇�𝑐𝑜𝑛𝑑 = 𝑘𝐴
𝑇1−𝑇2

𝛥𝑥
= −𝑘𝐴 

𝛥𝑇

𝛥𝑥
     (𝑊)      [3] 

Equation 1: Rate of heat conduction. 

 

The material property describing the ability to conduct heat is termed thermal conductivity (k). In the case of 

vehicle brakes, the heat generated is both beneficial and detrimental  to performance. Brake generated heat 

provides performance benefits with respect to achieving optimum temperature for disc-pad interaction and 

heat transfer to tyre rubber for increased grip. Achieving appropriate levels of convective heat transfer is 

required to maintain a balance between performance optimisation and component durability.  

 

2.3. Heat Transfer in Wheel Assemblies 

Heat transfer is of particular importance for performance optimisation of vehicle braking systems, given the 

heat energy dissipated by the disc-pad contact can generate rises in temperature between 300-800degC in the 

disc (Belhocine & Bouchetara, 2012). Heat generation occurs from an energy conversion, mechanical  to heat 

energy, by means of the friction between the brake pad and disc surfaces (Ratamero & Ferreira, 2010). The 

frictional heat generated does not remain within the brake assembly, but is dissipated by means of conduction 

to parts within the brake assembly, by radiation and convection. Further detail  on the heat transfer of the 

braking system will  be discussed in 2.3.3.  

 

A particular intricacy of cooling in braking systems is that of radial cooling within the disc vanes – the channels 

that run from the outer to inner diameter of the disc to channel air and induce cooling.  

disc ventilation design was investigated by Lopez & Tirovic (2012) through the variation in disc vane design to 

maximise convective heat transfer characteristics; 90% of the heat produced is absorbed by the disc (Ratamero 

& Ferreira, 2010), a result of the typical brake disc’s thermal conductivity being higher than that of the brake 

pad’s  (Belhocine & Bouchetara, 2012). 

Results from a study by Jancirani et al. (2003) involving the analysis of a heat transfer simulation of a vehicle 

braking system and experimentally collected heat transfer data, were found to be comparable. Heat transfer 

analysis of thermally influential systems, such as that of the braking system by Jancirani et al., can provide time 

sensitive thermal data useful in the design of efficient thermal management systems.  

With respect to the importance of heat transfer in braking systems, brake disc performance is dependent on 

its sustained capability of withstanding thermal stresses during braking, with heat conduction occurring 

between the brake disc and pad due to friction; causing heat to be dissipated by means of convection 

(Jancirani  et al., 2003). 
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The braking system also plays an influential role i n the temperature experienced by the tyre, with heat 

transferred from the brakes into the rubber.  

Kato et al. (2009) conducted investigations into the numerical prediction and experimental complement of the 

determination of tyre surface HTC, resulting in a modified tyre sidewall  design to increase convective heat 

transfer, a useful tool given that excessive increase in temperature increases the degradation of the tyre. It 

was found that an optimal rib design on a tyre sidewall would create a turbulent flow along the sidewall 

boundary, increasing the convective HTC. This led to a decrease in temperature of 16degC, co nsequently 

increasing the life of the tyre by 50% after only 600seconds . 

The effect of modified sidewall geometry on the heat transfer by Kato et al. (2009) identifies the sidewall as a 

region of interest, particularly given the variation in geometry as a result of deflection from loading. The 

experiments conducted in this study, however, used a non-deformable 50% scale F1 tyre, as such, no loading 

was placed on the tyre; zero loading results in the absence of sidewall bulge and circumferential deformation, 

particularly at the contact patch, therefore providing a slightly different flow to that which would be 

experienced with a pneumatic tyre. Deformation within a tyre introduces jetting and through-hub flow 

variations, rendering its inclusion as beneficial to intricate flow detail. The effect, however, is most severely 

implicated on the downstream wake of the tyre (Sprot et al., 2011) rather than around the sidewall – the area  

of measurement in this study.  

2.3.1. Factors Affecting the Level of Heat Transfer between Components 

The study and design of ribbed tyre sidewalls by Kato et al. (2009) is an indication of the effect of 

aerodynamics on the level of heat transfer within a system. Oncoming flow will  vary depending on 

aerodynamic component design forward of the tyre, and the presence of flow disturbances upstream of the 

vehicle; in racing this is generally exhibited by turbulent flow from a leading vehicle. Any flow variation toward 

the wheel will  also affect the flow onto the braking system; the key system of heat generation within the 

wheel assembly. 

 

The effect of internal flow on the heat transfer experienced by the braking system is emphasised through the 

findings of Sakamoto (2004), who performed studies on the effect of flow on railway brake discs as a means of 

evaluating the heat convection. The work, primarily focusing on the basic equations for heat convection, 

concluded that the exponential cooling term was the most influential factor of heat transfer within disc design 

considerations, with respect to convective area and the HTC. Furthermore, investigations by Palmer et al. 

(2009) into the variation of disc vane designs, such as the use of pin/diamond shaped features to increase the 

rate of convective heat transfer, indicated that in a three-tiered pin-feature design (Figure 4), the first row has 

the most significant effect on the flow field, given it directs the flow through the remainder of the ‘vane’. This 

has a cumulative effect, carrying through to the mass fl ow rate and heat transfer rate. Overall, the pin-vented 

disc showed an increased HTC due to the increase in turbulent flow (Palmer et al., 2009); the same reasoning 

behind the increase in HTC found by Kato et al. (2009) in the ribbed tyre sidewall design.  
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Figure 4: Geometric outline of three-tiered pin-feature design (Palmer et al., 2009). 

2.3.2. Heat Generation  

Before being able to create an accurate computer generated simulation, the components of heat generation 

within the wheel assembly must be identified. The understanding of temperature is necessary given the 

negative effects on performance that are incurred by any material operating at temperatures higher than their 

optimum.  

 

When considering tyre heat generation, there are four key factors that must be measured, the heat generated 

by the tyre through friction and rolling resistance, the heat being generated from the braking system, the heat 

lost through convection and the heat transferred by conduction. Tyres generate heat internally throughout 

their layers, but are also influenced by environmental factors such as cooling by oncoming air, therefore 

resulting in a continuous heat exchange - the thermal origins of tyres are outlined in Figure 5. 

 

 
Figure 5: Thermal origins in tyres (Yokota et al., 2012). 
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Though influenced by inflation pressure, the thermal behaviour of a tyre is dominated by external effects as a 

result of the inner surface of the tyre being solely in contact with the zero-velocity inflation air, hence, the heat 

transfer on the external surfaces of the tyre is more significant (Clark, 1976). Heat transfer on the external 

surface is a result of both temperature generation, and temperature reduction; generation through friction 

and hysteresis, and cooling due to convection to air. Vehicle handling is influenced by tyre temperature, which 

is also affected by the heat generated as a result of the material viscosity (Kato et al., 2009), the subsequent 

hysteresis causing roll ing resistance, and by the heat transfer to ambient air.  

 

A typical schematic of the viscoelasticity of a tyre (Figure 6) shows that, during a rolling tyres l ife, cyclic loading 

(Figure 7) generates heat due to the hysteresis in the material, and, without the occurrence of convective 

cooling, would continue increasing until a point of failure. The roll ing resistance of a tyre is therefore a key 

component of heat generation, and an important characteristic defining the longevity of optimal performance 

windows. 

 
Figure 6: Graphical representation of the viscoelastic nature of rubber (Yamaguchi et al., 2008). 

 
 

 
Figure 7: Cyclic interaction between tyre deformation and temperature (Yamaguchi et al., 2008). 

 

Rolling resistance is a measure of the energy lost as the tyre temperature increases due to the hysteresis of its 

rubber and chord (Song et al., 1998). The cyclic deformation in Figure 6 introduces stresses into the system, 

with the tyre constituents acting as springs, producing energy through movement, resulting in energy losses in 

the form of heat (Clark, 1976). Assad et al. (2008) investigated the dependency of the HTC on temperature by 

varying load; increasing load increases the rolling resistance, a product of the dimensionless rolling resistance 

coefficient and normal force (load). The cyclic loading of the tyre, given the elastic nature of rubber, is present 

under zero loading conditions, however, loading will induce change to the strain energy, therefore varying the 

heat energy. The tests, however, were not long enough to reach steady state conditions, behaviour indicative 

of the HTC’s temperature dependency. Experiments conducted for this thesis used a un-loaded rigid tyre, 



 

11 
 

avoiding effects of non-uniform deformation of the sidewall in order to establish the ba seline heat transfer 

across the sidewall. 

 

The heat generation, however, is not just a function of the roll ing resistance, but also of the frictional 

interaction with the road (Beringer et al., 1987). 

Frictional heat is generated in applications where sliding occurs between two surfaces, however, in the case of 

highly deformable materials, such as rubber in tyres, there involves a factor of wear which becomes 

detrimental to performance (grip); thus highlighting the importance of understanding heat tra nsfer within a 

wheel assembly. During braking, energy is converted to heat through the braking system due to frictional 

interaction, wherebyc90% of the energy is absorbed by the disc, and the remaining 10% by the pad (Ratermo 

& Ricardo, 2010). The convective cooling of brake discs is an important phenomenon which influences the long 

term durability of the disc, much the same as the tyre’s rate of wear and optimum performance window 

(Nutwell & Ramsay, 2009). In order to construct an accurate formulation which reflects the split of heat 

absorption between road and tyre, a coefficient is utilised. Such an approach was implemented by Yavari et al. 

(1993), who produced [4]. 

 

𝑄 = 𝛼. 𝜇.𝑣.𝑃       [4] 

Where, ‘α’ is the coefficient used to describe the split of heat transfer between the two components. 

 

The disc also undergoes convective cooling and internal conduction with other components, particularly those 

in close proximity such as the mounting bell – used to mount the disc onto the hub. This can be assimilated to 

the contact between road and tyre, whereby the tyre will absorb most of the energy, and the remainder by the 

road. The wheel will then dissipate the energy through convection and conduction internally, heating the air 

inside the tyre. The road left behind will cool naturally reaching almost ambient conditions. For continued 

braking time, the surface temperature of the disc increases proportionately with time (Jancirani  et al., 2003), 

making it difficult to maintain heat between braking events; highlighting the importance of heat transfer .  

 

A study by Belhocine & Bouchetara (2012) using two modes of braking (Figure 8), one with repeated braking, 

and one with idle time between braking instances, was undertaken to determine the effect on disc 

temperature through repeated cycles, and the ability of the disc to return to ambient temperature.  

Results (Figure 9) indicate that in both cases, the temperature rises with the number of braking instances, each 

resulting in an increase upon brake application, and an exponential decay upon release. The initial state of the 

disc changes after each braking cycle, where maximum temperature continues to increase given the brake 

release period only allows partial cooling.  

 

Drive cycle 1, with no extra idling period, shows the disc’s cooling capacity due to free rotation is insufficient to 

lower the surface temperature to near initial temperature, causing an accumulation of energy and therefore a 

higher surface temperature (Belhocine & Bouchetara, 2012). The transient thermal behaviour of a disc 
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therefore depends on the braking cycle imposed; tyre temperature generation due to friction follows much 

the same pattern. The higher the rotational velocity of the tyre, the less time a singular tread element has to 

cool (i.e. the time when a certain point is not in contact with the ground, is decreased). This would continue to 

increase until  the ultimate maximum temperature was reached, however, in the case of tyres, where the 

material deforms plastically, temperature gradients are more complex with wear rates . Temperature will  not 

increase/drop constantly, but will  be dependent on tread thickness, road surface roughness etc.  

 

Belhocine & Bouchetara (2012) saw a reduction of brake temperature of approximately 45.9% in drive cycle 2 

compared to drive cycle 1. Given a tyre will always be in contact with the road, it would not have the same sort 

of effect as there will always be frictional heat generation. In fact, under braking, more heat will be transferred 

into the tyre from the braking system and there will be increased frictional heat generation between tyre and 

road given the increased loading on the tyres. The level of cooling capability will  further decrease as the 

velocity of oncoming air decreases under braking. The complexity of the situation is testament to the benefits 

of computer simulated heat transfer, as drive cycle simulations may benefit developmentally from such 

resources. 

 

 
Figure 8: Drive cycle 1 – 14 repeated braking instances & drive cycle 2 – 14 braking and idle instances (Belhocine & 

Bouchetara, 2012). 
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Figure 9: Temperature generation curve during braking cycles (Belhocine & Bouchetara, 2012). 

2.3.3. Heat Transfer Analysis 

The importance of temperature management can be visualised through a heat transfer diagram, where it is 

possible to understand how temperature generation/rejection from one sub-system in a wheel assembly can 

affect another. Figure 10 was created to outline the heat transfer for three simplified steady-state scenarios; 

stationary tyre, rolling tyre (constant velocity) and tyre under braking. The analysis considers only main 

components within the wheel assembly given that this investigation is concerned with the brake disc and tyre 

sidewall  only, where case 1 and case 2 refer to the scenarios investigated in this study. 

 

Case 1 relates to a stationary tyre experiencing oncoming flow, a test that will be conducted to determine the 

relative influence of tyre rotation and oncoming flow to the HTC. In this case, the tyre is undergoing one form 

of heat transfer, convection (neglecting atmospheric effects such as  radiation from the sun). 

 

Case 2, in which the tyre is undergoing a constant velocity rotation, shows how the mechanical properties of 

the tyre are influential to its heat development and transfer. The hysteretic nature of the tyre will  cause 

temperature generation and radiation through from the carcass to the internal air. The mechanical properties 

will  also have an effect on the level of heat transferred by conduction between the road and tread. In this case, 

there exist two mechanisms of heat generation, while convection remains the sole means of heat extraction 

from the system. In the case where the internal air, inflation pressure, is affected, it must be considered that 

this will cause a cyclic effect with the amount of heat generated at the contact patch given the contact patch 

area will transform; this same effect is seen under braking, however, loading under braking will  outweigh the 

effect of internal air pressure differentiation due to heat transfer. 

 

Case 3 represents the occurrence of braking, where a high degree of radiation occurs from the braking system 

to internal components such as the wheel rim. Further radiation and conduction occur as in the roll ing tyre 
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case. A key consideration is that the convection will be reduced given the retardation of flow under braking, 

however, the degree of heat transfer may change with increasing temperature differential; this is, however, 

beyond the scope of the project. 

 

Given the experimental configurations will utilise an unloaded rigid tyre, therefore eliminating frictional heat 

generation between tyre and road (heat from tyre and wind tunnel belt contact is considered to be negligible), 

this analysis is solely concerned with the convective heat transfer. Jancirani et al. (2003) found that convection 

accounts for over 90% of total heat dissipation under braking, the understanding of convective behaviour is 

therefore essential to maximise heat management. The assumption of solely convective heat transfer within 

the experimental system is supported by Jancirani et al., whose studies made apparent that radiative heat 

transfer does not occur at low temperatures. 
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Figure 10: Heat transfer flow diagram for 3 steady state scenarios. 
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2.3.4. Measuring Heat Transfer 

The deformable nature of a tyre renders its cyclic temperature distribution highly variable; depending on 

running time, braking conditions, ambient conditions etc. For accurate results, it is therefore necessary to 

make transient measurements. Experimental techniques for the measurement of heat transfer can be flow-

invasive, leading to the development of simulated measurement techniques. 

 

Experimental collection of heat transfer data can be split into two main subcategories; sensors and imagery. 

Temperature sensors are a readily available and inexpensive method for measuring temperature; mountable 

probes/sensors/cameras introduce a degree of flow disturbance, influencing results in a non-realistic manner 

(Siqueira & Fragoso, 2003).  

 

Figure 11 shows the typical capture regions of a real-time F1 mounted Infrared sensor and Infrared camera. 

Configurations of this type are minimally invasive when compared to the use of sensor booms (Figure 12 & 

Figure 13), but are l imited to data collection when the tyre is in a straight-ahead position. The use of booms, 

though flow-invasive, allows for data collection for a wider range of steering-angles, a beneficial collection 

method given the temperature variation i nduced on tyres under cornering/loading. Unlike its sensor 

counterpart, the infrared camera has a wider capture area, allowing collection across the entire front surface.  

 

 

Figure 11: Typical F1 infrared sensor and camera mountings (Scarborough, 2010)
1
. 

 

                                                             
1 Separate images combined from same source. 
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Figure 12: 2002 Jaguar F1 infrared sensor boom (Scarborough, 2010). 

 

 
Figure 13: Williams F1 external measurement boom (Scarborough, 2010). 

 

Experimentally, infrared technology has been used in a variety of wheel related applications such as the 

investigation by Kato et al. (2009), who used topographical infrared thermography to measure the 

temperature variation of a film heater in varying flow conditions (Figure 14), with which they were able to 

calculate the HTC. A similar approach was taken by Siroux et al. (2001), whereby temperature measurements 

were taken for a heated disc (electrical resistance simulating frictional heat dissipation) by an infrared camera, 

and were then used to numerically solve for HTC’s .  

 

 
Figure 14: Infrared thermography experimental setup (Kato et al., 2009). 
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Figure 15: TGV Infrared Thermography Experimental Setup (Siroux et al., 2001). 

 

Both approaches used infrared thermography as a means of obtaining temperature data to determine the HTC 

as the heat input was known. A different measurement technique was undertaken by Rae & Skinner when 

measuring the velocity distribution inside a rolling tyre, whereby numerical modelling of the flow field was 

used to relate heat transfer to the velocity distributions (Rae & Skinner, 1984). This approach, however, 

util ised hot fi lm anemometry as a measurement technique, with a three-wire probe mounted in a bushing in 

the rim of the tyre. 

 

While much of the reviewed literature has concerned measurement of temperature, there is l ittle r eflecting 

the measurement of convective heat transfer. As such, a  combination of the presented methods were util ised 

for this study, with the use of constant temperature hot fi lm anemometers to measure resistance variations 

with applied air-flow, combined with numerical post-processing to determine the convective HTC’s; a useful 

addition to the existing body of work concerning temperature. Much like Rae & Skinner (1984), the hot fi lm 

sensors were mounted within the wheel assembly, inside a disc vane in a rapid prototyped disc, or on the tyre 

sidewall; given the disc is the internal component most l ikely to experience the most heat flux. The use of hot 

fi lm anemometry allows the flux to be understood, rather than just the temperature; a more accurate analysis  

tool with respect to heat transfer. Further details regarding hot fi lm anemometry will  be discussed in 2.4.  

 

Despite the limitation with regard to flow-field disturbance, realistic environmental data acquisition provides 

an accurate representation for temperature/heat transfer analysis, given the rest of the vehicle is providing its 

natural influence over the area of interest (i.e. aerodynamic flow variation from upstream components). 

Experimental testing and numerical analysis are also imperative for validation of simulated models (Siqueira & 

Fragoso, 2003). 

Simulation is an important development tool in disciplines where experimental testing is inefficient; time and 

cost. Simulated data recording does not impose flow disturbance, and simplifies the measurement of varying 

heat transfer, allowing for transient analysis in locations that would otherwise be inaccessible in experimental 
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testing (Jancirani et al., 2003). In motorsport, simulation of wheel assemblies is favoured given the limitation 

to the availability of tyres and their plastically deforming nature. This thesis combines the use of computer 

simulation as a means of developing a roll ing tyre heat transfer distribution, an otherwise expensive and 

timely test configuration when testing design variations of aerodynamic components which affect the flow 

fields on and around a wheel assembly. Validation of the simulation wil l  be done through the experimental  

collection of convective heat transfer coefficients. 

Heat Transfer Coefficient 

When looking to evaluate a heat transfer scenario, the convective heat transfer coefficient provides a 

quantitative overview of the heat transferred between a given surface and fluid; proportionality of heat flux 

(q), and surface-fluid temperature differential (ΔT) (Kurganov, 2011).  

General consensus over the function of the convective heat transfer coefficient is of its dependency on wheel 

rotational speed (Beringer et al., 1987), and the consequential air-flow circulation (Belhocine & Bouchetara, 

2012). Wheel assembly geometries, such as that of the braking system, will  thus affect the HTC.   

 

An investigation by Browne and Wickliffe (1980) outlined the effect of several experimental variations on the 

convective HTC. The dependence on velocity is supported by their findings, which show that the magnitude of 

the convective HTC is primarily influenced by the thickness of the thermal boundary l ayer and the nature of 

the flow. The apparent association with HTC measurements and wind speed velocity gives  reason to conduct 

tests within this thesis at various wind speeds. 

Figure 16 shows the transition from laminar to turbulent boundary layer flow occurs at the low end of the 

speed range, with the transition from trailing measurements beginning at a lower velocity than those from the 

leading ones (Browne & Wickliffe, 1980). The lower HTC values toward the rear of the tyre, as for any object, 

are a cause of the increasing thickness of both hydrodynamic and thermal boundary layers; inhibiting heat 

loss, thus decreasing the HTC (Browne & Wickliffe, 1980). Given the dynamic nature of the two experiments 

within this study, the cyclic positioning of the sensor allows for a more comprehensive analysis of HTC in 

varying flow windows. 
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Figure 16: Dependence of HTC on velocity and position (Browne & Wickliffe, 1980). 

 

2.4. Hot film Anemometry 

Hot fi lm/wire anemometry is a measurement technique based on forced convective heat transfer from a thin 

heated fi lm/wire, made of a material with temperature dependent resistivity (Laurantzon et al., 2010). An 

applied electric current heats the fi lm/wire to a temperature above the fluid in which it is immersed, in this 

case, air, and the heat transfer is measured based on the variation in resistance occurring as a result of change 

in heat transfer. This heating cycle is typified as Joule heating, whereby the heat released is proportional to the 

square of the current (Laurantzon et al., 2010). Thermal anemometers are operated under various heat 

excitation principles; with constant temperature being used within this study. Constant temperature 

anemometry maintains the temperature of the hot fi lm/wire through management of the resistance by a 

feedback loop, with the forced convective heat transfer balanced by Joule heating (Laurantzon et al., 2010). 

 

For the experimental configurations in this study, constant temperature anemometry was utilised as it allowed 

for the measure of heat transfer through relationships of power and velocity (further exploration in 2.4.1), and 

is known to have a much quicker response time than constant power anemometry (Lundstrom et al., 2007), 

making it suitable for the application where air flow or tyre rotational speed variations can affect the level of 

heat transfer. 
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For constant temperature anemometry, a constant temperature anemometer (CTA) is needed to provide the 

resistance to the hot fi lm/wire. As with any measurement tool, accurate measurements are achieved through 

initial calibrations, which, for a CTA, are done against known air velocities (Lundstrom et al., 2007). A CTA 

provides output data in the form of voltages, which are related to the power lost across the Wheatstone 

bridge in the sensor (Lundstrom et al., 2007).  

2.4.1. Hot Films 

Hot fi lm sensors are made of a material with a high temperature coefficient of resistance; usually tungsten or 

platinum (Shekhter, 2011). The sensor is connected to an arm of the Wheatstone bridge and the other to the 

variable resistor, balancing the bridge (See ‘R2’ in Figure 17) under zero-flow conditions. When a flow is 

applied, the resistance becomes unbalanced, regaining balance through the use of a differential amplifier 

(Webster, 2000). 

 

 
Figure 17: Constant temperature anemometer Wheatstone bridge (Webster, 2000). 

 
Newton’s law of cooling [5] outlines the behaviour of heat flux within the hot fi lm sensor with relation to the 

convective heat transfer coefficient, h. 

 

𝑄 = ℎ𝐴𝛥𝑇     (
𝑊

𝑚2)       [5] 

Where, ΔT=Ts – Tamb 

 
In an anemometry situation, the heat transferred, Q, is related to Qconvection, and is equal to the electrical 

power, P, delivered to the wire (Lundstrom et al., 2007). By rearranging [5] and substituting for P, the heat 

transfer coefficient can be determined [6] (Lundstrom et al., 2007). The same mathematical formulations are 

presented by Laurantzon et al. (2010), however, power is expressed as voltage squared over wire resistance 

(Laurantzon et al., 2010). 

 

ℎ = 
𝑃

𝐴𝛥𝑇
                        

          = 
𝑃

𝐴(𝑇𝑠−𝑇𝑎𝑚𝑏)
       [6] 
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2.4.2. Similar Applications  

The application of hot fi lm/wire anemometry extends from motorsport applications to cardiovascular flow 

studies, and there exists a reassuring foundation of knowledge to the application of hot fi lms for studies 

similar to that in this thesis. 

One of the most resourceful pieces of l iterature is that of Assaad et al. (2008), who designed a small, flexible 

sensor that is able to bend with the tyre as it rolls; effectively a hot film sensor that is marginally deformable. 

The sensor is dual sided, making it capable of measuring temperature and heat flux at both the inner and outer 

surfaces of the tyre using the same principles of variable resistance measurement as a hot fi lm/wire. 

 

 
Figure 18: Double Sided Heat Flux Sensor (Assaad et al., 2008). 

 
The use of hot fi lm sensors by a prominent tyre manufacturer (Assaad worked in conjunction with Goodyear) is 

a strong indication of their accuracy for use as measurement tools. Despite not having access to a double sided 

sensor, the use of a single layer hot fi lm was employed in the same manner, as it allowed more flexibil ity to 

apply to a curved surface, particularly as the tyre used was unloaded. This ensured no damage occurred to the 

hot fi lm when collecting data for the external HTC. The use of a rigid carbon fibre tyre removes the difficulty 

associated with collecting HTC data on flexible surfaces undergoing deformation (Rae & Skinner, 1984). As with 

the experimental testing in this thesis, Assaad et al. (2008) employed slip rings on the motor shaft to pass the 

sensor wires through the rotating objects to the CTA and data logging equipment. Data acquisition equipment 

recorded the voltage and current across the bridge, so as to manipulate into useful information, such as HTC’s  

and flow velocities. Lundstrom et al. (2007) followed the same principle of applying a forced convective flow to 

a tyre and passing an electrical current through the sensor (Hot Wire), with data logging equipment measuring 

voltages across the wire.  

 Browne & Wickliffe (1980) investigated the effect of variation of flow speed, boundary layer turbulence 

(positioning), humidity, surface contamination, surface roughness and wetness. Results showed that recorded 

HTC varied as follows: 

 Rapid increase with increasing air speed 

 Rapid decrease with increased downstream distance 

 No variation due to humidity for an un-wetted surface 
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 Decrease due to presence of a smooth surface contamination 

 Increase due to presence of rough-textured surface contaminants or sidewall s cuffing  

 Increased by up to 8x due to surface wetting 

 Increase due to raised regions such as sidewall lettering 

 

The increase due to raised regions was also validated through further experimentation, where a test surface 

mounted flush to the base of a wind tunnel carried a single stack of thermocouples, and 3 stacks on another. 

Results showed the stacked thermocouples returning higher HTC (Browne & Wickliffe, 1980). In l ight of the 

findings, it was noted that testing should be done at various air flow velocities. With respect to the varying air 

flow velocities, similar tests have found that voltage and current measurements can take up to twenty minutes 

before stabilising (Assaad et al., 2008). In this study, air flow was provided by an externally applied fan, as  was 

undertaken by Kato et al. (2009). To overcome the possibility of any damage to the hot fi lm, Kato et al. applied 

the hot fi lm to the sidewall of the tyre (Figure 19). This, however, does not provide an accurate representation 

of the varying flow during the tyres rotation, as positionally it would encounter varying flow across the span of 

the sidewall. For this reason, experimental data for this thesis was collected across various sidewall mounting 

positions in order to capture the complete heat transfer map. 

 

 
Figure 19: Sidewall placement of hot film (Kato et al., 2009). 

 

However wide the application of hot fi lm sensors and thermal anemometry in the automotive and motorsport 

industry is, much research has been done, particularly with braking systems, using other measurement 

apparatus such as thermocouples, infrared thermometers and infrared thermographs. 

Ratamero & Ferreira (2010) undertook experimental work heating brake discs using electrical thermal sources, 

measuring localised temperature using thermocouples. This is similar to the work done by Kato et al. (2009) on 

the tyre sidewall. Thermocouples were also applied to the brake disc and wheel cover, however, the use of 

thermocouples provides only localised temperature analysis, neglecting the heat transfer process that occurs 
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within a complex system such as that of a wheel assembly (Refer to Section 2.3.3). Using hot fi lms to 

determine the heat transfer provides a better understanding of its  behaviour within the system, and, 

combined with understanding of heat generation mechanisms such as friction, can be used to create 

simulations that provide a roll ing analysis of a dynamic tyre; a more useful tool in the automotive and 

motorsport industry. 

 

2.5. Wheel CFD 

Recent computational investigations used the most up-to-date methods of rotation that were available at the 

time, however, since the introduction of the sliding mesh (SM) method, involving physical rotation of 

components, there has been scarce use of any previous methodologies, with leading automotive and 

motorsport manufacturers utilising the SM methodology where available. Other methods include the velocity 

boundary (VB), a theoretical velocity applied at the boundary, and moving reference frame (MRF), which 

applies rotational  forces, centrifugal and Coriolis, to the fluid within a bounded region. 

SM has shown better correlation to wind tunnel  results for aerodynamic force measurements; capable of 

predicting within 2% of experimental results, while MRF methodologies have been proven to achieve 

correlation within 5% for aerodynamic force measurements (Kandasamy et al., 2012). The SM’s capability of 

capturing local changes in transient flow (Gaylard et al., 2010), allows for a more precise and iterative 

calculation dependant on rotational position and velocity. Gaylard et al. were able to capture the variations of 

the three rotating methodologies through the use of surface flow (Figure 20), surface static pressure (Figure 

21), flow velocity (Figure 22) and streamlines (Figure 23).  

The surface flow provides a good outline of the distinct variation between the VB rotational methodology, 

which appears to lack the ability to compute the radial velocity gradient, compared to the more realistic MRF 

and SM methodologies, which incorporate small -scale flow structures to generate a more accurate result 

(Gaylard, et al., 2010). Static pressure plots emphasise the observations made surrounding the variation 

between VB, MRF and SM. 

 

 
Figure 20: Instantaneous surface flow (a) VBC (b) MRF (c) SM (Gaylard, et al., 2010). 



 

25 
 

 
 

 
Figure 21: Surface static pressure distribution (a) VBC (b) MRF (c) SM (Gaylard, et al., 2010). 

 

The flow velocity of the VB indicates its inability to accurately describe boundary layer development, with the 

boundary layer generated solely over the external surface of the rim, while there is evidence of radial flow for 

both MRF and SM methodologies (Gaylard, et al., 2010). Flow in the SM case is more disturbed, indicating the 

physical rotation varies the flow by possible induced mixing from the forward rotation of the wheel.  

The suction on the outboard face/spokes is evident in the static pressure diagrams, where there exists a high 

pressure differential. Forced through flow inside the hub is evident on the streamline visualisations for the 

MRF (b) and SM (c) methodologies; an important consideration with respect to disc heat transfer values. 

 

 
 
 
 

 
Figure 22: Flow velocity (a) VBC (b) MRF (c) SM (Gaylard, et al., 2010). 
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Figure 23: Flow structure (a) VBC (b) MRF (c) SM (Gaylard, et al., 2010). 

 

2.6. Summary 

The analysis of rotating wheels has identified that rotation affects aerodynamic characteristics at and 

surrounding the wheel compared to a stationary wheel, such as the advancement of separation and the 

suppression of rearward vortex shedding. Convective heat transfer is l inked to the aerodynamics of the wheel, 

however there exists l ittle l iterature encompassing the heat transfer within aerodynamic investigations, 

rendering the directed investigation of this thes is useful in complementing the existing body of work. 

While there have been several previous investigations of temperature distribution within wheel assemblies, 

the underlying convective heat transfer has seen much less investigation. The heat transfer within a wheel 

assembly must be well understood in order to achieve optimal efficiency from components such as the tyre, 

whose viscoelastic nature results in hysteretic behaviour resulting in energy/heat transfer, and the disc, which 

util ises both conductive and convective heat transfer and reaches extremely high temperature.  

 

The range of rotational methods available within computational simulations has  been found to increase in 

correlation with updated methods, but rotational methods have only been validated in aerodynamic cases. 

The implementation of the CFD within this study will provide a supplementary evaluation of the capability of 

the software with regard to determining heat transfer. 
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3.0. Methodology 

The following chapter outlines the three key methodologies used to determine the convective heat transfer; 

two experimental programs and a CFD analysis.  

Both experimental setups util ised hot fi lms as means of determining HTC. A brake cooling rig test with a 

rotating wheel and an applied flow was used to determine the HTC at the disc, while the wind tunnel utilised a 

moving ground and a full external flow, and included capabilities to determine the external HTC of the wheel.  

Experimentally collected data was processed to remove the recorded datum to account for conduction to the 

substrate. A periodic averaging technique was also used, combining results from multiple rotations to produce 

cleaner traces. CFD studies using Exa PowerFlow were conducted to supplement the understanding of 

experimentally determined HTC’s by analysing flow characteristics, and utilised to evaluate the ability of the 

CFD to accurately predict HTC’s. 

 
3.1. Geometry 

The geometry used the three programmes of investigation—brake cooling test rig, wind tunnel and CFD—

util ised the same geometry; a 50% Scale model wheel assembly of a 2005 F1 race-car. 

In order to design the necessary components for experimental configuration, and to undertake CFD 

simulations, the geometry was modelled in the Solidworks CAD package (Figure 24). The main components  

analysed in this thesis were the tyre, wheel rim, disc and upright (Figure 25). 

 

       
Figure 24: 50% Scale model CAD geometry (Translucent tyre for visualisation purposes only). 
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Figure 25: Upright CAD geometry (Translucent sidewall for visualisation purposes only). 

 

The upright consisted of complex internal curvature (Figure 26) that could not be entirely measured. The 

internals of the scoop are important features as the air entering the scoop will follow the path of the internal 

geometry, which will affect the flow speed. As much detail as possible was collected for the model, however, 

any irregularities within the CFD may be attributed to the difference of internal geometry between the 

physical and CAD models. The degree to which this will affect results, however, should not be concerning as 

the resulting flow rate through the upright will be consistent for each simulation, providing comparable trends. 

 

 
Figure 26: Upright CAD geometry cross sectional view of scoop inlet. 
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3.2. Motorised rig Test 

3.2.1. Test Configuration and Specification 

The rig used was comprised of a base frame and variable speed motor (Marelli  Motori MA100LA6). The 

outboard face of the wheel  was mounted on the motor shaft, leaving the inboard face of the wheel and 

upright exposed, allowing for attachment of a fan to provide forced convection from the rear of the upright 

hub where brake cooling scoops are usually fitted. 

 

 
Figure 27: Schematic of rig test and the 50% scale tyre, rim and disc (Image and existing rig from Ng (2013)). 

 

As part of the complete vehicle scale model, the upright relied on the suspension being attached to the model 

spine, a rigid mount through the centreline of the model) (Figure 28). A method of mounting was therefore 

developed to hold the upright inside the wheel rim and attach to the existing rig.  

 

 
Figure 28: Example of F1 scale model suspension mounting points on the model spine  (Screenshot taken from 

referenced video) (Williams in 60 seconds: Wind Tunnel, 2012). 
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 The mounting frame was designed with the capability to: 

 Suspend the geometry at a height within the wheel assembly 

 Withstand the vibrational movement from the motor 

 Allow for upright positional adjustability and ease of removal from the wheel assembly 

 
The initial proposed layout of the upright mount can be seen in Figure 29, comprised of four main 

components; a retaining face plate, two extruded Aluminium struts and two mounting ledges (brackets). The 

Aluminium struts were connected to the optical rails with a 10mm diameter rod passing through an existing 

central diameter cut in the strut, and tightened in the optical rail  carrier/post-holder. The purpose of the 

retaining face plate was to ensure that the two struts remain parallel, and to counter -balance any torque 

created from the mounting of the upright to the opposite side and length of the strut. 

 

Optical rail carriers with level tops were sourced, eliminating the need for stabilising rods. The configuration 

was then built with a single horizontal aluminium s trut as a base to join two vertical struts using Rexroth Angle 

Joints. Individual brackets were mounted on the vertical struts to allow adjustability in height for all  three 

suspension arms (Figure 30). Contrary to the on-vehicle configuration, the pushrod was mounted below the 

upper wishbones as it was a more rigid method than if the pushrod were holding the weight of the upright. 

 

 
Figure 29: Proposed upright mounting method. 
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Figure 30: Brake cooling test rig final configuration – Rexroth angle joints supporting vertical struts used to mount the 
upper wishbones (upper mounts) and pushrod (lower mount). 

 

3.2.2. Orifice Plate Calibration 

The following section outlines the standards followed for the calibration of the orifice plate within the fan used 

in the rig tests. British Standard BS EN ISO 5167-2:2003 outlines the dimensional requirements for an orifice 

plate (Figure 31), in order to accurately calculate the mass flow rate, qm [7] (British Standards, 2003). 

 

Figure 31: Standard orifice plate schematic (British Standards, 2003). 
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𝑞𝑚 =
𝐶

√1−𝛽4 . 𝜀.
𝜋

4
. 𝑑2.√2𝛥𝑃𝜌      [7] 

 

The orifice plate used in this study satisfied the following requirements, as stated in the British Standard: 

 Downstream (2) face is parallel to Upstream face (1) 

 Chamfer angle, α = 45 ± 15 

 d is concentric with D 

 d > 12.5mm        

 e < E < 0.05D        

 0.005D < e < 0.02D          

 0.10 < β < 0.75 (where β = d/D)   

    

Given the orifice plate satisfied the dimensional requirements of BS EN ISO 5167-2:2003, the equations and 

tables within the standard were used in order to calculate the necessary variables required to create the 

calibration fi le for the pipe (nozzle); allowing the correct recording of dynamic pressure and air flow velocity.  

The orifice plate used employed a D and D/2 tapping arrangement (Appendix 4), whereby the upstream 

pressure tap must be at a distance D ± 0.1D, while the downstream pressure tap must be at distance 0.5D ± 

0.002D, given that β < 0.6 in this case (Appendix 5). 

 

Within the BS EN 5167-2 are lookup tables for the discharge coefficient, with respect to diameter ratio, β, and 

Reynolds number, Re, and also for the expansibility factor (Appendix 6), with respect to dynamic pressure and 

diameter ratio. The use of lookup tables, however, produced a characteristic curve which did not take into 

account realistic expansion. It was therefore decided to extract values of the Reynolds number and discharge 

Coefficient from the tables at the known β value (Figure 32). 

 

 
Figure 32: Cp values determined from British Standards tabular data. 
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The fan pipe consisted of a large pipe of diameter ‘D’ connecting the fan to the orifice, however, the diameter 

of the pipe leaving the orifice (D) was half the diameter (d) of the original pipe (D). Calculations were made 

based upon the larger diameter (D), therefore flow at the smaller diameter fan pipe exit was calculated as a 

factor of AD/Ad. Given the small pipe diameter further contracts at the opening of the upright inlet duct scoop, 

calculations were based upon the area of the upright; the final orifice the flow passed before entering the 

upright. Given the non-uniform diameter of the opening, it was calculated by compiling a profile trace of on a 

1cm2 grid, with the area calculated at 0.0022m2. As a result, the recorded velocity at orifice of diameter D = 

0.014m, was transformed from a range of 0.2m/s-2.8m/s to 1.6m/s to 20m/s. 

3.2.3. Fan Velocity Validation using Hub Flow Number Theory 

Further processing was required to evaluate the true velocity as would be experienced by the scoop i nlet of 

the upright where the fan was applied. Despite the previous assumptions that the flow velocity could be 

assumed to be that of the ratio of pipe diameter to upright area, further investigation revealed that the scoop 

geometry further accelerated the flow, and should therefore be considered as the final area at which the flow 

velocity is determined. 

Minto et al. (2011) defined the volumetric flux ratio between the scoop and the free-stream velocity as the 

hub flow number (HFN), which is represented by [8]. 

 

𝐻𝐹𝑁 =
𝐴𝑠𝑈𝑠

𝐴𝑓𝑈∞
       [8] 

𝑤ℎ𝑒𝑟𝑒; 𝐴𝑠 = 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑡ℎ𝑒 𝐼𝑛𝑙𝑒𝑡 𝑆𝑐𝑜𝑜𝑝 𝑐𝑟𝑜𝑠𝑠 𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑝𝑙𝑎𝑛𝑒 

𝐴𝑓 = 𝑓𝑟𝑜𝑛𝑡𝑎𝑙 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑡ℎ𝑒 𝑚𝑜𝑑𝑒𝑙 𝑡𝑎𝑘𝑒𝑛 𝑎𝑠 𝑐𝑟𝑜𝑠𝑠 𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑎𝑟𝑒𝑎 

 

The HFN was also implemented by Sprot (2013) to evaluate various aerodynamic performance characteristics 

for an array of wheel fairing designs that varied the hub flow. Minto’s equation was applied to the geometry in 

this study to determine the ratio of equivalent velocity at the scoop to that of the free-stream. Using the 

calculated values for the frontal area of the tyre, 0.0592m2, and scoop inlet area, 0.0017m2
, and the 

relationship devised by Minto et al. [8], calculations showed that the equivalent velocity at the scoop inlet 

plane was approximately equal to that of the free-stream velocity; indicated by the resulting velocity ratio of 

1.0029 (Table 1).  

 
VARIABLE RESULT FORMULA 

AS 0.0017m2  
AF 0.0592 m2 =diameter*width 

HFNOPEN 0.0288  
US/UFS 1.002917647 =HFNOPEN*(AF/AS) 

Table 1: Speed ratio determination. 

3.2.4. Velocity Selection for Analysis 

As a result of the fan velocity validation with relation to the findings from Minto’s  HFN, the velocity range of 

the fan from the rig test experiment was calculated based on the area ratio of the calibrated fan diameter and 

the scoop inlet area (Table 2).  
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Given the results from the relationship by Minto et al. (2011), a velocity range from the rig Test Results was 

selected that agreed with that of the wind tunnel test range; 0-25m/s. As Reynolds numbers below 2.00E+05 

are in the laminar flow range (Cengel et al., 2008), analyses in this study were focused more toward the higher 

end of the velocity range, with 25m/s selected as the comparison velocity for all  tests. 

 

RIG TEST SPEEDS 

 
VFAN (m/s) 

(@ scoop inlet) 
 

VTYRE (m/s) 
 

0 2.1 0 2.1 

1 22.6 1 6.8 

2 25.2 2 11.4 

3 25.4 3 16.7 

4 25.5 4 22.1 

  
5 24.1 

Table 2: Rig test Fan settings. 

 

The two upper tyre velocities tested on the rig were 22.1m/s (Setting 4-Orange) and 24.1m/s (Setting 5-Blue). 

This agreed well with the wind tunnel tests, where, although the selected velocity was set, underwent slight 

fluctuations as the tunnel controls aimed to maintain the flow velocity. An average was taken of the fan and 

tyre velocities across 6 tests in the wind tunnel, results of which (Table 3) showed a good correlation to the rig 

test velocity (Fan Setting 2, tyre Setting 5), confirming the match between data sets.  

 

 
VTYRE_AV (m/s) VFAN_AV (m/s) 

WT 23.9 24.4 

RIG 24.1 24.8 
Table 3: Comparison of average tyre and fan velocities for WT and rig tests. 

 

3.3. Wind Tunnel Test 

3.3.1. Durham University Wind Tunnel 

The Durham University wind tunnel was used for all wind tunnel tests for this thesis. The tunnel is comprised 

of a 2m2 open jet configuration with a 3.0 x 1.4m moving ground belt capable of speeds up to 30m/s.  

3.3.2. Pre-Process 

Configuration 

Similar to the rig tests, those undertaken in the wind tunnel also required a method for mounting the wheel to 

allow for rotation, and a method for suspending the upright into the wheel. The wheel assembly was mounted 

from the outboard side floor using an existing sting arm, while the upright was suspended inside the wheel rim 

using a custom designed mount, consisting of a back-plate and brackets designed to fit the suspension arm 

ends (Figure 33). The lengths of the upright arms (upper and lower wishbones, track-rod and push-rod) varied 

in length, making any perpendicular mount complex, but suitable given the similarity to the upright’s  original 
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vehicle mounting on the model ’s spine. It was decided to design a vertical back plate mount, util ising various 

attachments to overcome the differing suspension arm lengths (Appendix 8). 

On the wheel side, as with the existing bench test, a rotary shaft was utilised, with attachment to an existing 

sting-arm using pillow-block bearings mounted to a base plate. Other considerations included the wiring 

arrangement, slip ring, and connection to the wheel face by the shaft in order to have consistent rotation as 

there already exists a cylindrical bearing in the wheel nut housing.  

 

 
Figure 33: Wind tunnel test configuration using existing sting arm mount and custom upright mounting plate. 

 
The use of hot fi lms in this experiment required wiring to the slip ring from both the disc and tyre sidewall  

locations. Though the slip ring provided a safe rotational path for the wires, the nature and design of the test 

required wire routing along the length of the shaft. To solve this problem for the majority of the shaft length, a 

hole was drilled along the centre of the shaft to a length of 280mm, allowing the non-rotating wires to pass 

from the sensor to the slip ring with minimal interference with the rotating components. The slip ring used in 

the rig tests was carried across to the wind tunnel test in order to maintain consistency within results. In order 

to minimise costs, a smaller diameter than the rig mounting shaft was chosen for the shaft design, resulting in 

the requirement of a cylindrical adaptor to allow for use of the original slip ring. A similar design was utilised to 

ensure contact of the shaft to the outboard face of the wheel rim. This was essential to ensure rotational 

conformity of the shaft and wheel, as the wheel  nut housing contained a bearing that would otherwise have 

disrupted rotation. 

Data Collection 

The data range collected throughout the experimental wind tunnel  procedure covered two sub-categories; 

experimental data and wind tunnel  data. 

After calibration, hot film voltage for both sensors was recorded to determine the HTC, alongside with the 

voltage of the optical sensor, which was used to track hot film positioning throughout the tyre’s rotation. The 
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transducers internal of the upright were used for correlation against bench test results , where fan velocity 

variation due to upright opening (scoop inlet) area required correlation to confirm internal velocity. 

3.3.3. Post-Processing 

3D Analysis 

After the post processing from recorded data into HTC, the data was then transferred into a visual analytic by 

means of a 3D map of heat transfer across the tyre sidewall. 

The process involved: 

1. Measuring the profile position of each sensor location across the sidewall  

2. Correlating measurements to Solidworks model co-ordinates 

3. Creating a data grid fi le 

4. Importing the Wheel Assembly model fi le into Tecplot (graphical data management software)  

5. Importing the grid fi le of data into Tecplot 

 

Sensor positions were marked out on the tyre sidewall and measured using a height gauge. Grid files contained 

the HTC’s for each sidewall position at a single speed; sidewall sensor positions located by a radial and profile 

height measurement. The grid files were then overlaid in a 3D Cartesian plot with the wheel assembly model 

offset 1mm from the map surface so as to avoid merging surfaces. 

 
 

3.4. Heat Transfer Coefficient Analysis 

3.4.1. HTC Calculations 

The heat transfer coefficient (HTC) is derived from the basic equation of heat transfer as in [5], yielding [9]. In 

the case of the sensors used in this thesis, the sensor temperature, THOT, is unknown, but can be solved using 

resistance [10][11] (Assaad, 2008). 

 

                         𝑄 = ℎ. 𝐴.𝛥𝑇      (𝑊)        

         ℎ =
𝑄

𝐴.𝛥𝑇
      (

𝑊

𝑚2 𝐾
)       

  = 
𝑄𝑐𝑜𝑛𝑣

𝐴𝑒𝑓𝑓.(𝑇ℎ𝑜𝑡−𝑇𝑎𝑖𝑟)
     (

𝑊

𝑚2 𝐾
)             [9] 

𝑤ℎ𝑒𝑟𝑒; 𝑇ℎ𝑜𝑡 = 𝑠𝑒𝑛𝑠𝑜𝑟 ℎ𝑜𝑡 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 

 

 

𝑅ℎ𝑜𝑡 = 𝑅𝑐𝑜𝑙𝑑 (1 + 𝛼(𝑇ℎ𝑜𝑡 − 𝑇𝑐𝑜𝑙𝑑))     (𝛺)      [10] 

𝑇ℎ𝑜𝑡 = 𝑇𝑐𝑜𝑙𝑑 + (
(

𝑅ℎ𝑜𝑡
𝑅𝑐𝑜𝑙𝑑

)

𝛼
)     (𝛫)       [11] 

𝑤ℎ𝑒𝑟𝑒;  𝛼 = 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑓𝑜𝑟 𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑜𝑟 𝑚𝑒𝑡𝑎𝑙 𝑎𝑡 𝑇𝑐𝑜𝑙𝑑 
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The temperature coefficient of resistance is stated in the sensor’s data sheet as 0.40%/degC (Appendix 3), 

while the effective area is known to be 1.47E-06m2.The resistances can best be described through a bridge 

diagram (Figure 34), where the location of the short, introduced when measuring resistance in the circuit using 

a multimeter, is marked so as to identify the resistance locations (e.g. RSTS = RSensor to Rshort). 

 

 
Figure 34: Hot film sensor bridge diagram. 

 

Despite having used different CTA’s, the two experiments (rig and wind tunnel) may stil l  be compared with 

respect to HTC as the calculations are relative to the recorded datum set in each test run. The bridge 

resistance for each CTA was also calculated and considered in calculations of HTC (Appendix 1).  

 

The required unknown variables to calculate HTC can be solved by working backwards from the heat transfer 

equation as follows: 

 

From the heat transfer equation:  ℎ = 
𝑄𝑠𝑒𝑛𝑠𝑜𝑟_𝑐𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑣𝑒

𝐴𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒.(𝑇𝑠𝑒𝑛𝑠𝑜𝑟_ℎ𝑜𝑡−𝑇𝑎𝑚𝑏)
      (

𝑊

𝑚2𝐾
)                 [9] 

Where:     Aeffective = 1.4777E-06m2 and, 

    TATM was recorded for each test run 

    𝑇𝑠𝑒𝑛𝑠𝑜𝑟ℎ𝑜𝑡
= 𝑇𝑠𝑒𝑛𝑠𝑜𝑟𝑐𝑜𝑙𝑑

+ (
(

𝑅ℎ𝑜𝑡
𝑅𝑐𝑜𝑙𝑑

)−1

𝛼
)     (𝐾)     [11] 

 

Where:     α = temperature coefficient of resistance at 20degC 

Since:    𝑄𝑠𝑒𝑛𝑠𝑜𝑟 = 𝑄𝑠𝑒𝑛𝑠𝑜𝑟_𝑐𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑣𝑒 + 𝑄𝑠𝑒𝑛𝑠𝑜𝑟_𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑣𝑒     (𝑊)       

𝑄𝑠𝑒𝑛𝑠𝑜𝑟_𝑐𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑣𝑒 = 𝑄𝑠𝑒𝑛𝑠𝑜𝑟 − 𝑄𝑠𝑒𝑛𝑠𝑜𝑟𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑣𝑒
     (𝑊)      [12] 

    𝑄𝑠𝑒𝑛𝑠𝑜𝑟 =
𝑉𝑠𝑒𝑛𝑠𝑜𝑟

2

𝑅𝑠𝑒𝑛𝑠𝑜𝑟
     (𝑊)          [13] 

Where:     𝑉𝑠𝑒𝑛𝑠𝑜𝑟 =
𝑉𝐶𝑇𝐴.(𝑅𝑠𝑒𝑛𝑠𝑜𝑟_ℎ𝑜𝑡+𝑅𝑠𝑡𝑠+𝑅𝑐𝑡𝑠)

𝑅𝑏𝑟𝑖𝑑𝑔𝑒+𝑅𝑠𝑒𝑛𝑠𝑜𝑟_ℎ𝑜𝑡+𝑅𝑠𝑡𝑠+𝑅𝑐𝑡𝑠
     (𝑉)       [14] 

𝑄𝑠𝑒𝑛𝑠𝑜𝑟_𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑣𝑒 =
𝑉𝑑𝑎𝑡𝑢𝑚

𝐺𝑎𝑖𝑛
∗ 𝑂𝑓𝑓𝑠𝑒𝑡     (𝑊)        

 = 
𝑉𝑠𝑒𝑛𝑠𝑜𝑟.(𝑅𝑠𝑒𝑛𝑠𝑜𝑟_ℎ𝑜𝑡∗𝑅𝑠𝑡𝑠∗𝑅𝑐𝑡𝑠)

𝑅𝑏𝑟𝑖𝑑𝑔𝑒+𝑅𝑠𝑒𝑛𝑠𝑜𝑟+𝑅𝑠𝑡𝑠+𝑅𝑐𝑡𝑠
     (𝑉)       [15] 



 

38 
 

3.4.2. Hot Film Positioning 

The rig tests, consisting of the wheel mounted on a motor driven shaft, were run under two geometry 

conditions; with (shielded) and without (open); the disc shield covered the outer diameter of the disc for 

135deg of rotation. Integration of an optical sensor in the assembly, which produced a stepped-signal after  

each full rotation of the wheel, allowed the position of the hot fi lm to be traced. At the instance of the leading 

edge At the instance of the leading edge, the hot fi lm was located at the point of exit of the shielded region, 

the hot fi lm was located at the point of exit of the shielded region. Measurements taken in the shielded region 

therefore begin 135deg before the leading edge of the optical signal. The leading edge can be distinguished in 

a data set as At the instance of the leading edge, the hot fi lm was located at the point of exit of the shielded 

region (θ=0deg). 

As the wind tunnel test did not utilise the shield, the hot fi lm was aligned bottom dead centre (BDC) of the 

tyre; approximately 10deg advanced of the rig results to allow for tractability. The rig results have therefore 

been rotated 10deg CCW for viewing so as to directly compare the trace characteristics of both experimental 

tests. 

 

3.5. CFD Methodology  

3.5.1. PowerFlow 

The Computational Fluid Dynamics (CFD) software adopted for thi s project was Exa PowerFlow 5.0, a code 

solving for velocity and temperature (Mukutmoni, et al., 2010), with capabilities of rotational meshing, and the 

ability to extract convective heat transfer data. 

PowerFlow utilises the Lattice Boltzmann method, a solver that aims to track the motion of macromolecules of 

gases/liquids (Lietz, et al., 2002). Its designated turbulence model is that of the Very Large Eddy Simulation 

(VLES), a time dependent variation of the k-ε turbulence model, configured using ‘law of the wall’ boundary 

treatments so as to minimise the required mesh refinement for accurate return (Sprot, 2013), taking into 

account stream wise pressure gradients, and as a result, has the capability to predict boundary layer growth 

and separation to a high degree of accuracy (Albukrek, et al., 2006). The accuracy of boundary layer growth 

and separation is key to modelling the convective heat transfer, with previous l iterature having found the 

thickness of the boundary layer affects the level  of heat transfer (Browne & Wickliffe, 1980). 

 

The Lattice-Boltzmann (LBM) equations are used by PowerFlow to conduct initial formulations of the case in 

terms of the distribution function f(x, v, t), the number density of molecules at position ‘x’, speed ‘v’ and time 

‘t’ (Mukutmoni, et al., 2010). The LBM equations have been used to recover the Navier Stokes equations, 

tracking particle collisions with density representations; conserving mass, momentum and energy for 

compressible flow (Albukrek, et al., 2006). 

 



 

39 
 

Given the influence the wheel ’s rotation has upon the airflow path and interaction with its  components, it is 

essential that the rotation, particularly the rotational boundary, be modelled accurately to best represent a 

realistic flow scenario. 

PowerFlow offers various levels of rotational capabilities; velocity boundary condition (VBC), moving reference 

frame (MRF) and sliding mesh (SM). Each of the rotations was defined by Gaylard et al. (2012) in their 

computational simulation of brake dust deposition using PowerFlow as follows: 

 VBC is the application of a constant velocity as the boundary condition for a solid wall with no physical 

rotation 

 MRF applies rotational forces, centrifugal and Coriolis, to the fluid within a bounded region, but has 

no physical rotation 

 SM implies a physical rotation on components within the rotating frame 

3.5.2. Test Configurations 

The simulation flow domain consisted of nine variable resolution regions of decreasing mesh refinement. The 

finest mesh region was located within the hub and was used as the measurement region for residuals; the 

wheel hub area was chosen for residual management due to the complex nature of the flow structure from 

the spokes. This was followed by a 30mm offset region around the entire CAD geometry of the experimental 

setup, and seven rectangular regions increasing in size throughout the domain up until the wind tunnel main 

enclosure. The main enclosure of the wind tunnel was sized to ensure an appropriate blockage ratio below 5% 

(Katz, 1947); the blockage ratio of the CFD domain was measured at 1.5%. 

 

The experimental configuration was replicated in the CFD by reverse engineering the models into CAD 

geometries. The limitation of computational accuracy stems from the approximated curved surface 

measurements on the CAD geometry, particularly the scoop inlet. Sub-assemblies were imported into 

PowerFlow to ensure rotating components were separated; this allowed rotational reference frames to be 

created without interfering static parts (Figure 35). In order to create rotational reference frames between 

rotating and static components (e.g. wheel rim and shaft).  

 

Parallel to the analysis of computational correlation to experimental data, the computational capability was 

evaluated through the undertaking of various simulation methods as described in Table 4 in order to 

determine which provided the highest degree of correlation to experimental data, as well as further exploring 

the variation between static and rotational tyre simulations. 

SETUP # TYRE RIM DISC 

1 Stationary Stationary Stationary 

2 SM SM SM 

3 MRF MRF MRF 

Table 4: Rotational simulation setups. 
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Figure 35: Rotating mesh reference frame polylines. 

 

3.6. Errors and Limitations 

Experimental setups and computational limitations are potential factors of error within collected data, the 

management of which must be considered. 

Results across experiments and simulations were based on a 50% scale model wheel assembly. Scaling factors 

can be adopted in an aerodynamic setting, however the behaviour of scaling factors for heat transfer is not 

well understood. Results from this study aim to take the first step with regard to understanding 

correlation/variation between each method. In order to determine the potential variations between a scaled 

and full  size model; a 100% model was run under the same computational simulation conditions. 

 

Experimentally, sources of error and sensitivity stem from three key areas—sensor capability, noise and setup 

variation. 

Hot fi lm sensors are prone to circuit damage when incorrectly handled; damaging the integrity of data. In 

order to manage stability of the sensor during movement across the tyre sidewall, various mounting 

techniques were tested to avoid circuit damage. It was found that a stronger polyamide tape provided a more 

structurally supportive base, with less flex than generic, commercial adhesive tape. Further precautions 

involved the recording of resistance across the circuit after each hot fi lm movement, so as to ensure no 

variation between experimental tests. 
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Sensitivity of the sensor could also lead to non-flow voltage signals. An error band test was designed to log 

sensor voltages at a theoretical no-flow condition by sealing all potential airflow entry and exit points on the 

disc. Signal traces can be used to determine any characteristic signatures within the data which may i nfer an 

induced positional error from a rotating component. The rotational nature of the experiments could give rise 

to noise within traces; noise from rotating slip rings, electrical components within the test, or local air 

movement. Results of the error band test were used to explore the degree of noise. 

 

Experiments were logged using two channels; one for each hot film, positioned in the disc and sidewall. In an 

ideal situation, all positional movements of the sensor would be logged using separate sensor s, therefore 

eliminating the possibility of circuit damage, however, in order to minimise costs of the experimentation, this 

was not a feasible approach. The disc hot fi lm, however, was used as a reference point in order to ensure the 

behaviour of the CTA was constant throughout experiments in the wind tunnel. Though this could not ensure 

stability of the other sensor, it allowed a certain level of insight into the stability of both sensors in the circuit, 

given the dual-channel CTA shared resistance across  both sensors; a change/error in one would assume a 

change/error in the other. 

The CTA used in the rig experiment (DISA55M10) required manual calibration using dials, while the dual -

channel FlowPoint CTA used for the wind tunnel tests was a more advanced s ystem with computationally 

managed calibration. In order to overcome any variation between the two, the bridge resistance for each was 

calculated and included in the calibration fi les (Appendix 1), ensuring that recorded voltage was captured 

correctly for the comparison of both experiments. 

 

Computationally, CFD Software has many inherent l imitations within its calculation methods. Best practice for 

simulations is to ensure that any residuals are converged, ensuring stability of results, though further 

instability may occur at some period after the point of convergence. For this reason, despite residuals showing 

convergence, the effect of unsettled flow must be considered given that the duration extended only one full  

tyre revolution. A longer simulation of five revolutions was analysed (Appendix 2), results of which exhibited 

residuals with an on-going characteristic curve as in the initial, shorter, simulation. The purpose of the 

simulation was to determine whether residuals remained constant, or reached a point of revisited 

inconsistency.  

 

Geometry accuracy is an area of high fidelity within simulations and may have introduced error to the 

computational results in this thesis. The limited accuracy of the upright Inlet scoop, consisting of curved 

surfaces, may have introduced variation to the heat transfer results in the disc as a result of variation between 

simulated and experimental internal air flow patterns. In order to determine the degree of significance the 

scoop inlet has on the heat transfer of the disc, stationary tests were conducted outlining the degree of heat 

transfer due solely to the air flow. 
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4.0. Results 

All results have been presented in a Front Left configuration; airflow from left to right and rotation in an anti -

clockwise direction. In practise, the wind tunnel used a Front right configuration and so these results have 

been mirrored to present findings in a comparable manner  (Figure 36). Results for the sidewall refer to 

positions numbered 0 to 5; numbering based on test runs – an even distribution of results was required in case 

of hot fi lm sensor failure, the numbering therefore reflects the central position recorded first, with radial 

positions recorded alternately between ID and OD. Figure 37 outlines the positions referred to within the 

results and discussion. 

 

 
Figure 36: Front right and front left configurations (Shielded). 

 

 
Figure 37: Sidewall position reference map. 
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Reynolds number has been quoted at various stages throughout the following analyses and discussions. It 

should be noted that Reynolds number has been defined separately for tyre and disc, each using their own 

diameter within calculations; 0.31m for the tyre and 0.14m for the disc (for the 50% scale model). 

 

4.1. Motorised Rig  

As previously stated, The wind tunnel test ran with the hot fi lm datum location aligned to bottom dead centre 

(BDC) of the tyre. The rig results, for which the datum was located at 10deg CCW from BDC, have therefore 

been rotated for presentation to directly compare the measurements from both experimental tests. 

4.1.1. Error Band Test 

Section 2.4.1 explored the functionality of hot fi lm sensors in that, when a flow is applied the resistance 

becomes unbalanced, regaining balance through the use of a differential amplifier within the fi lm’s bridge 

(Webster, 2000). A datum voltage at wind off and stationary tyre conditions was recorded for every test in 

order to quantify the size of conduction occurring from the hot fi lm to the disc. The use of a slip ring was 

employed so as to allow rotation of the hot fi lm wires. On the rotating side of the slip ring, the wires were 

arranged to minimise any out of balance introduced, and were secured to minimise their movement during 

wheel rotation. 

 

CTA’s are sensitive to change in resistance, both in the sensor itself, and in external components within the 

system such as the cables. As such, slip ring resistance variation throughout a wheel rotation would introduce 

measurement errors. The occurrence of slip ring noise would present itself as a signature within the trace; a 

facet of the data which cannot be established. Further exploration into the possibil ity of slip ring noise is 

revisited in the Section 4.2.2. In order to determine any error within the system a test was developed whereby 

both the inner and outer diameter openings to the disc vanes were sealed with tape (Figure 38); blocking the 

only possible air flow entry points so as to ensure any fluctuation in recorded senso r voltage was not 

attributed to through flow. Resistance variations in the slip ring could be speed dependent, and so a simple 

static evaluation of slip ring resistance was not considered a sufficiently robust test.  

 

 
Figure 38: Schematic of disc vane sealing for error band test. 
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From the results in Figure 39, it is evident that the signal trace becomes sharper at the higher end of the 

velocity range. In order to capture the angular position of both the hot fi lm and slip ring, the results have been 

presented with respect to rotational position, theta; capturing an entire rotation for each speed. 

By plotting the average HTC of the sealed disc at each speed (Figure 40), it was determined that the average 

HTC of the sealed disc followed an almost l inear relationship. Presence of HTC up to 14W/m2K in the sealed 

disc suggests either noise within the system, or a localised flow. 

 

 
Figure 39: Brake cooling test rig error band test results. 
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.  
Figure 40: Average hot film error for rig test. 

4.1.2. Heat Transfer Coefficient and Speed Relationship 

The heat transfer coefficient’s dependency on temperature differential infers a relation to the degree of 

cooling; governed by the imposed airflow and tyre rotational velocity. Results at the higher flow speeds tested 

were compared as both they lay in a Reynolds number past the transitional  range (Figure 41); the Reynolds 

number for the flow at 20 and 25m/s at the disc diameter was 2.02E05 and 2.25E05 respectively. 

Both speeds incurred the highest level of cooling at the region of the scoop inlet area (180-250deg), with the 

opening allowing for a direct flow. Increased heat transfer is a result of the increased voltage at the sensor 

given the intensification of applied flow on its surface, which in [15] is shown to affect the HTC. The internal 

geometry may have caused flow blockage/retardation, which would have affected the heat transfer 

capabilities; this analysis may therefore prove useful for design optimisation. The margin between the two 

data sets is consistent throughout the cycle of rotation at an approximate value of 5W/m2K. Such a result 

suggests that there is no significant variation between airflow structure at 20 and 25m/s. 
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Figure 41: Disc heat transfer coefficient for 20m/s & 25m/s rig test. 

4.1.3. Upright Shield Effect 

Figure 42 outlines the heat transfer variation between the shielded and unshielded geometries, establishing 

that both geometries have equal HTC until entering the shielded region, the shielded configuration shows a 

lower HTC by approximately 3W/m2K for 20 and 25m/s. Despite the use of the shield introducing a reduction 

in HTC for both speeds, the magnitude of the difference between shielded and unshielded is not high enough 

to be certain of its effect on results. 

 

The frontal positioning of the shield suggests that it was employed to retain/recirculate airflow within the area 

as pushed forward by the momentum of the disc, thus increasing the cooling; however, results imply that the 

shield reduced heat transfer capabilities measured in the disc vane. The flow redirection induced by the shield 

may be affecting the disc vane’s capability of collecting air, therefore reducing the HTC at the location of the 

hot fi lm sensor. 
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Figure 42: Effect of upright shield on disc heat transfer as measured on the rig. 

 

4.2. Wind Tunnel 

Wind tunnel testing was conducted to determine the HTC at different locations on the wheel assembly, and to 

validate the ability of CFD software to predict HTC. This section will outline the various tests conducted in the 

tunnel which involved validation of the system and determination of HTC values.  

Validation of the system will be extended from the original error band test to the determination of the Nusselt 

number equation. The level of heat transfer as a result of the Inlet scoop flow will  be determined through 

comparison of HTC results for the blocked and open scoop configurations, and the sidewall HTC will  be 

discussed and presented using 3-Dimensional plots  to aid in assessment of HTC trends. 

Results presented at 0m/s correspond to zero flow velocity with a 1m/s moving ground velocity input as 

means of providing wheel rotation in order for the optical sensor to scan through all  angular positions and 

identify the hot fi lm position. 

4.2.1. Error Band Test  

The same approach used for the rig error band test (Section 4.1.1) was carried out in the wind tunnel , sealing 

the disc to determine the level of ‘error’ within the system. The level of HTC error in the wind tunnel  results 
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was consistently below 3W/m2K, significantly lower than results seen in the rig experiment (max HTC error of 

14W/m2K). 

Traces of HTC for the error band test show a larger error in the high speed traces, with values reaching a l imit 

in maximum error –- evident by the traces for 15, 20 and 25m/s being similar in magnitude throughout a cycle. 

Presenting results as a function of theta (rotational angle) allows for identification of pos itional error, as 

values/traces match across the span of the trace. Positional error would suggest relation to a function of the 

rotation in the system, such as that of the slip ring.  

 

 
Figure 43: Error band test HTC values for wind tunnel disc. 

 

The relationship of speed to HTC error (Figure 44) is shown to be one of significance, with speed increasing the 

range of HTC error experienced throughout a cycle of the sealed test. The increased range, however, results in 

a cubic relation between velocity and average HTC. The decline after the maximum error on the cubic trace 

may be representative of high speed stability within the system; with the increased speed, the system has 

reached a more stable state, eliminating harsh vibrations, however, this cannot be confirmed with the data set 

recorded. 
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Figure 44: Wind tunnel average hot film error for 0-25m/s speed range. 

 

4.2.2. Slip Ring Error Investigation 

Investigation of the error band test from the wind tunnel  prompted the question as to whether the curve 

peaks were characteristics of slip ring error, given they appear in a repeatable manner for each speed trace. 

Considering voltage increased with speed due to the intensification of applied flow, there was caus e for 

concern that this was due to an element of the circuitry such as the slip ring; any variation in voltage could not 

be due to increase in cooling from flow velocity as there was no applied flow.  

 

With the following formulations ([16] to [28])  and consideration of Figure 45, the degree of error for a hot fi lm 

in a non-sealed disc was determined. When the CTA is operating at a higher current due to cooling at the 

sensor, the error associated with the cable path resistance change is increased. The calculations followed 

therefore predict error due to the presumed slip ring resistance change during rotation under applied-flow 

conditions; contrasting the error calculated in the error band test under zero-flow conditions. The error can be 

described as in Figure 46, where the trace for each speed takes a similar characteristic shape, but with a 

varying magnitude. The lower speeds (0-10m/s) showed a smaller delta between open and sealed error than 

the higher speed range (15-25m/s). 

 
Figure 45: Representation of hot film and CTA circuit. 
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From Ohm’s Law:   

𝐼 =
𝑉

𝑅
                      

𝐼 =
𝑉𝑏𝑟𝑖𝑑𝑔𝑒

𝑅𝑓𝑖𝑥𝑒𝑑
     (𝐴)             [16] 

𝑅𝑓𝑖𝑥𝑒𝑑 = 𝑅𝑐𝑎𝑏𝑙𝑒 + 𝑅𝑠𝑙𝑖𝑝_𝑟𝑖𝑛𝑔 + 𝑅ℎ𝑜𝑡               [17] 

∴ 𝑅ℎ𝑜𝑡 = 𝑅𝑓𝑖𝑥𝑒𝑑 − 𝑅𝑐𝑎𝑏𝑙𝑒 − 𝑅𝑠𝑙𝑖𝑝𝑟𝑖𝑛𝑔
     (𝛺)          [18] 

 

Where:     

(𝑅𝑓𝑖𝑥𝑒𝑑 − 𝑅𝑐𝑎𝑏𝑙𝑒) is fixed 

 

And:     

𝑅𝑠𝑙𝑖𝑝_𝑟𝑖𝑛𝑔 = 𝑅𝑠𝑙𝑖𝑝_𝑟𝑖𝑛𝑔
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ + 𝑅′ 𝑠𝑙𝑖𝑝_𝑟𝑖𝑛𝑔     (𝛺)           [19] 

 

Given that the slip ring effect will  vary based on its position in time. 

 

∴ Rhot_calc = Rfixed − Rcable − 𝑅𝑠𝑙𝑖𝑝_𝑟𝑖𝑛𝑔
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ − 𝑅𝑠𝑙𝑖𝑝_𝑟𝑖𝑛𝑔

′     (𝛺)        [20] 

 

From Joule’s 1st Law:   

𝑄 = 𝐼2.𝑅       

𝑄𝑐𝑎𝑙𝑐 = 𝐼2.𝑅ℎ𝑜𝑡                    

           = 𝐼2.(𝑅𝑓𝑖𝑥𝑒𝑑 − 𝑅𝑐𝑎𝑏𝑙𝑒 − 𝑅𝑠𝑙𝑖𝑝_𝑟𝑖𝑛𝑔
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)     (W)          [21] 

 

𝑄𝑎𝑐𝑡𝑢𝑎𝑙 = 𝐼2 .𝑅ℎ𝑜𝑡_𝑐𝑎𝑙𝑐      

  = 𝐼2.(𝑅𝑓𝑖𝑥𝑒𝑑 − 𝑅𝑐𝑎𝑏𝑙𝑒 − 𝑅𝑠𝑙𝑖𝑝𝑟𝑖𝑛𝑔
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ − 𝑅𝑠𝑙𝑖𝑝𝑟𝑖𝑛𝑔

′ )       

  = 𝐼2.𝑅𝑠𝑟
′      (𝑊)             [22] 

 

Since:       

𝐼 =
𝑉

𝑅
      

𝐼2 =
𝑉𝑝𝑟𝑜𝑏𝑒

2

𝑅𝑓𝑖𝑥𝑒𝑑
2       

  =
𝑄𝑡𝑜𝑡𝑎𝑙

𝑅ℎ𝑜𝑡
     (𝐴2)             [23] 

∴ Qcalc − Qactual =
Qtotal

Rhot
.Rsr

′      (W)           [24] 

 

Since:     

ℎ =
𝐴

𝛥𝑇
  

𝑄𝑐𝑎𝑙𝑐−𝑄𝑎𝑐𝑡𝑢𝑎𝑙

𝐴𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒.(𝑇ℎ𝑜𝑡−𝑇𝑎𝑚𝑏)
=

𝑄𝑡𝑜𝑡𝑎𝑙

𝐴𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒.(𝑇ℎ𝑜𝑡−𝑇𝑎𝑚𝑏)
.

𝑅𝑠𝑟
′

𝑅ℎ𝑜𝑡
          [25] 
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ℎ𝑒𝑟𝑟𝑜𝑟
′ = ℎ𝑡𝑜𝑡𝑎𝑙 −

𝑅𝑠𝑟
′

𝑅ℎ𝑜𝑡
     (

𝑊

𝑚2𝐾
)           [26] 

 

Where:     

ℎ𝑒𝑟𝑟𝑜𝑟
′    is the HTC of the sealed disc and 𝑅ℎ𝑜𝑡 is known 

ℎ𝑡𝑜𝑡𝑎𝑙
̅̅ ̅̅ ̅̅    can be found by setting the datum’s  in the sealed test to zero  

 

𝑅𝑠𝑟
′

𝑅ℎ𝑜𝑡
=

ℎ𝑒𝑟𝑟𝑜𝑟_𝑠𝑒𝑎𝑙𝑒𝑑_𝑑𝑖𝑠𝑐_𝑎𝑐𝑡𝑢𝑎𝑙_𝑑𝑎𝑡𝑢𝑚
′

ℎ𝑠𝑒𝑎𝑙𝑒𝑑_𝑧𝑒𝑟𝑜𝑒𝑑_𝑑𝑎𝑡𝑢𝑚
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅            [27] 

 

Since:     

ℎ′
𝑒𝑟𝑟𝑜𝑟_𝑢𝑛𝑠𝑒𝑎𝑙𝑒𝑑 =

𝑅𝑠𝑟
′

𝑅ℎ𝑜𝑡

. (ℎ𝑐𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑣𝑒 + ℎ𝑠𝑒𝑎𝑙𝑒𝑑𝑧𝑒𝑟𝑜𝑒𝑑𝑑𝑎𝑡𝑢𝑚
)     

 

ℎ𝑒𝑟𝑟𝑜𝑟_𝑢𝑛𝑠𝑒𝑎𝑙𝑒𝑑
′ =

ℎ𝑒𝑟𝑟𝑜𝑟_𝑠𝑒𝑎𝑙𝑒𝑑_𝑑𝑖𝑠𝑐_𝑎𝑐𝑡𝑢𝑎𝑙_𝑑𝑎𝑡𝑢𝑚
′ .(ℎ𝑐𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑣𝑒+ℎ𝑠𝑒𝑎𝑙𝑒𝑑_𝑧𝑒𝑟𝑜𝑒𝑑_𝑑𝑎𝑡𝑢𝑚̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)

ℎ𝑠𝑒𝑎𝑙𝑒𝑑_𝑧𝑒𝑟𝑜𝑒𝑑_𝑑𝑎𝑡𝑢𝑚
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅      (

𝑊

𝑚2𝐾
)    [28] 
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Figure 46: Comparison of open and sealed error for wind tunnel test (10-25m/s). 
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The average error for each speed (Figure 47) was derived in the same manner as Figure 40, and shows that the 

error was analogous up to 10m/s, after which the degree of error increased to approximately double. 

The difference between original to corrected HTC of calculated error on an open disc run, changes the 

magnitude of results rather than the shape of the trace. The delta between original and corrected values 

increases with increasing speed, but to a point of diminishing return; such a relation is l ikened to the square 

root function velocity calibration curve of a typical hot fi lm wire/sensor. The lack of variation in trace shape 

suggests that the error is not slip ring related, and perhaps there may be internal cooling within the disc 

despite its sealing. It is therefore appropriate to quantify the error using the detailed calculated approach, but 

not impose any data correction, as this would require making assumptions that are not accurate, and could 

potentially damage the integrity of the data. 

 

 
Figure 47: Average heat transfer coefficient error at the disc for sealed and open configurations. 

4.2.3. Blocked scoop 

A wind tunnel  test configuration was run with a blocked scoop, utilising multiple layering of heavy duty tape, 

to block the scoop at the Inlet plane. By blocking the inlet scoop of the upright (scoop opening internal of the 

upright position at 190-250deg), the degree of heat transfer occurring as a result of the scoop flow was 

determined; the main source of flow velocity within the upright. The open scoop produced average HTC results 

at least ten times larger than the blocked scoop case (Figure 48), inferring that cooling due to the scoop inlet 

flow is the predominant cooling source. Assessment of the results for each speed, and the consideration that 

the maximum error in the wind tunnel disc results was found to be approximately 2W/m2K, suggesting that 

heat transfer within the disc while employing a blocked scoop, is only apparent for the higher flow speeds.  

 

The XY plot demonstrates the distinct variation around the scoop area, where a sudden drop in heat transfer 

occurs only in the blocked scoop configuration (marked as drop initiation point). Figure 49 describes the 

spread of heat transfer around the disc’s rotation.  Results suggest that although the scoop is responsible for 

the majority of cooling, the positional heat transfer is only affected at the region of direct airflow entry near 

the scoop.  
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Figure 48: Resulting disc heat transfer for blocked vs. open brake inlet scoop geometries recorded in the wind tunnel. 
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Figure 49: Blocked vs. open scoop - Disc HTC results recorded in the wind tunnel. 
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The non-dimensional heat transfer, Nusselt number (Nu), is plotted against Reynolds number for both 

configurations in Figure 50. The average Nu for flow across cylinders can be expressed by [29]. The plots 

allowed for a l inear regression analysis to determine the exponents of the equation. 

 

𝑁𝑢 = 
ℎ𝐷

𝑘
= 𝐶𝑅𝑒𝑚𝑃𝑟𝑛     [29] 

 

 
Figure 50: Non-dimensional heat transfer (Nu) and flow (Re) for open and sealed disc configurations. 

4.2.4. Nusselt Number Calculation 

The exponent of the Prandtl number – the ratio of momentum to thermal diffusivities  – has been widely 

accepted to take the value of 1/3, while coefficient ‘C’ and Reynolds number exponent ‘m’ are dependent on 

flow conditions. Cengel et al. (2008) designed a table of experimentally determined values for the constants 

that make up the Nusselt number formulation (Table 5), which was used as a reference for the validation of 

constants in the wind tunnel  experiments. Jancirani et al. (2003) experimentally derived Nusselt number 

relationships for various components within the brake assembly. Equations constructed from their 

experimentally collected data are outlined in Table 6. 
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EXPERIMENTALLY DETERMINED NU RELATIONSHIPS 
BY CENGEL ET AL. 

Range of Re Nu Relationship 

0.4-4 Nu=0.989Re0.330Pr1/3 

4-40 Nu=0.911Re0.385Pr1/3 
40-4000 Nu=0.683Re0.466Pr1/3 

4000-40,000 Nu=0.193Re0.618Pr1/3 
40,000-400,000 Nu=0.027Re0.805Pr1/3 

Table 5: Nu relationships for a range of Re values (Data source : Cengel et al., 2008). 

 

EXPERIMENTALLY FITTED COMPONENT NU 
EQUATIONS BY JANCIRANI ET AL.  

Components Nu Relationship 
Disc Faces 

Nu = 0.0435(Re0.8)(ReT/ReO) 
 
Where; 
ReT = Transverse Re 
ReO = Rotational Re 

Inboard Wheel 
Face 

Outboard Wheel 
Face 

Wheel Hub 
Inboard Flange 

Nu = 0.0195(ReO)0.8 

Outboard Wheel 
Face 

Disc Hat 
Disc OD 

Disc ID 
Hub 
Brake Pads 

Nu = 0.174(ReT)
0.618 

Brake Caliper 
Table 6: Component Nu relationships derived for brake system components (Data source: Jancirani et al., 2003). 

 

The values of ‘C’ and ‘m’ were derived in this study from the experimental wind tunnel  data; where ‘C’ was 

solved for using the Nusselt number equation [29], and m was determined as the gradient of the curve defined 

by the natural log of Nu versus Re. Data were processed separately for the disc and tyre sidewall  (Table 7), 

each using their own diameter within calculations; 0.31m for the tyre and 0.14m for the disc.  

 

NU RELATIONSHIPS 

Disc Nu = 0.013Re0.87Pr1/3 

Sidewall Nu = 2.80Re0.46Pr1/3 

Table 7: Nusselt number validation of ‘C’ and ‘m’ from experimentally collected data. 

 

The disc HTC values collected in the wind tunnel showed good correlation to HTC values determined in other 

experimental setups explored in the literature, with Jancirani et al. (2003) quoting the Reynolds number 

exponent, m, as 0.8 for the disc surfaces, and the coefficient, C, to be comparable to the results in thi s study 

(0.0195 compared to 0.013 in this thesis). The Reynolds numbers experienced in the wind tunnel were all  

within the range of 40,000-400,000, which Cengel et al. (2008) quoted to present a Reynolds number exponent 

of m=0.805. Results from the wind tunnel correlated well to the model fit equations derived (Figure 51). 
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Contrarily, the expression for the average Nu along the tyre sidewall did not agree as well to the referenced 

literature for neither m, nor C; outlining the fact that HTC varies for different regions within the wheel 

assembly. The wind tunnel  results, however, maintained a good fit to the derived expression for Nusselt 

number (Figure 52). The degree of correlation between wind tunnel and CFD Nusselt number results will  be 

explored in Section 5.5. 

 

 
Figure 51: Wind tunnel data points for disc Nusselt number fit well to derived Nusselt number equation. 

 

 
Figure 52: Wind tunnel data for the tyre sidewall and the model fit derived Nusselt number equation. 
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4.2.5. Disc 

The disc hot fi lm was logged for each test run, acting as a reference to identify any large variations signifying 

error. Results for the disc showed minimal variation of HTC, with variation between runs approximately 

4W/m2K for 10-20m/s (Figure 53 to Figure 55), while results at 25m/s (Figure 56) showed a slightly larger 

increase in variation, approximately 7W/m2K. The run for sidewall position 5, the last of the sensor position 

moves, showed consistently lower results. There does not exist a trend between HTC and hot fi lm positional 

movement (i.e. induced error after each increment of movement), suggesting that the hot fi lm did not incur 

any circuit damage during its movement. Results lay within the approximate error of ±2W/m2K.  

 

 
Figure 53: Disc heat transfer coefficient comparison over various runs during sidewall measurements (10m/s).  
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Figure 54: Disc heat transfer coefficient comparison over various runs during sidewall measurements (15m/s). 

 

 
Figure 55: Disc heat transfer coefficient comparison over various runs during sidewall measurements (20m/s). 

 



 

61 
 

 
Figure 56: Disc heat transfer coefficient comparison over various runs during sidewall measurements (25m/s).  

 

4.2.6. Sidewall 

HTC’s at various positions were recorded across the sidewall profile (Figure 37), where it was expected that the 

variation in sidewall profile, combined with the tyre’s rotation, would create a complex heat transfer situation 

dependant on position. The average HTC at the sidewall (Figure 57) shows similarity between all  positions 

when averaged around a 360degree cycle, however, given the complexity of the flow structures due to the 

tyre’s  rotation, non-averaged positional analysis was required in order to capture and compare the positional 

variation in heat transfer at different speeds for each hot fi lm radial position. The general trends in the 

cyclically averaged results can be summarised as follows: 

 Position 2 (ID+13mm) incurred the highest degree of heat transfer  

 Position 3 (ID+55mm) incurred the lowest degree of heat transfer 

 Position 5 (ID+25mm) deviated from a trend based on positioning and exposure to air, where 

positions showed the pattern 2 > 5 > 0 > 4 < 3 < 1 

 Positions 0 (ID+35mm) and 3 (ID+55mm) were very similar despite a position separating them (4) 

 Positions 3 (ID+55mm) and 5 (ID+25mm) were the most over generalised in the averaged results  
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Figure 57: Average heat transfer coefficient across tyre sidewall measurement positions. 

Speed Variation Analysis 

For each flow velocity, key data points were retrieved from the result set, including highest and lowest HTC 

positions across the tyre sidewall, while also determining trends in the global result set for each velocity. The 

trends discovered in the 0-15m/s speed range were prevalent within the higher speed range of 20-25m/s, as 

such, analysis was considered for 20m/s and 25m/s only (Results for 0-15m/s can be found in Appendix 9). 

 

It was proven that the tyre sidewall profile geometry affects the level of heat transfer, with consistent location 

of minimum and maximum HTC. Position 4 (ID+47mm) displayed the lowest level of HTC, while position 2 

(ID+13mm) experienced the highest on average throughout the tyre’s rotation, suggesting that the turbulence 

introduced due to the proximity of the spokes may have exacerbated results.  

 

Earlier it was discussed how boundary layer thickness increases toward the rear of the tyre, which was found 

by Browne and Wickliffe (1980) to cause a lower level of HTC than at the front. The constant occurrence of 

minimum (Position 2 – ID+13mm) and maximum (Position 4 – ID+47mm) HTC indicates that the boundary layer 

is more complex than a simple continuous motion, but that the positions upstream and downstream of the 
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highest point of the curved tyre sidewall profile (z-direction in Figure 58) experienced different boundary layer 

characteristics. Such a phenomena is supplemented by the XY plot (Figure 59 and Figure 60), where Position 4 

(ID+47mm) (purple) and the positions outside it (toward tyre OD), 1 (orange) and 3 (blue), followed similar HTC 

trends throughout the rotation, while 0 (red), 2 (green) and 5 (pink), inside of position 4 (toward tyre ID), 

followed a  trend of their own; a clear variation of HTC for positions upstream and downstream of the highest 

point of the tyre’s sidewall profile . 

 

 
Figure 58: Tyre sidewall profile high point located in positive z-direction. 

 
Moving away from the central point (Position 4 – ID+47mm) in either direction increases the HTC, rendering 

position 4 as the inflection point. The exception occurs at Position 0 (ID+35mm), which displayed 

characteristics of the inner positions when in rearward flow, and outer positions when in free-stream flow. 

The peaks of the positions closest to the rim (Positions 1, 3 and 4) occurred at approximately 275deg 

(bifurcation point/stagnation point); the area of most exposure to the free-stream flow. Before the peaks in 

HTC, the outer three positions showed lower HTC values than the inner three positions (i.e. the heat transfer 

from the ID to the high point of the profile was greater than that after the high point to the OD); a result of the 

rearward flow contacting the inner positions upstream of the sidewall high point, before those downstream. 

 

Such an arrangement reflects the sidewall positional layout, where the highest heat transfer occurs near the 

rim, where turbulent flow is particularly evident, while the lowest occurs at the highest poi nt on the tyre 

sidewall profile. This agrees with the findings of Kato et al. (2009), whereby turbulence is found to increase the 

level of heat transfer. 
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Figure 59: sidewall HTC for 20m/s wind tunnel tests. 
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Figure 60: Sidewall HTC for 25m/s wind tunnel tests. 

 
Positional Analysis 

Representing the HTC experienced at each position for the 0-25m/s speed range allowed for the visualisation 

of heat transfer characteristics around the radial profile of the tyre (Figure 61 & Figure 62).  

Positions 1 (ID+70mm), 3 (ID+55mm) and 4 (ID+47mm) showed distinct traces at every speed, with almost 

constant heat transfer up to 180deg where the HTC increased until , (1) 290deg, (3) 280deg and (4) 270deg, 

after which the curve decreased until 360deg. The start and end points of the increas ed heat transfer area 

were the same for all  three positions, however there was a noticeable advancement of 10deg between 

positions 1, 3 and 4.  

 

The range of heat transfer between 10-25m/s increased for positions moving outward toward the tyre OD, this 

was probably due to the fact that there is more turbulence in the spoke region, which is known to increase 

heat transfer. Positions 2 (ID+13mm) and 5 (ID+25mm) were steadier throughout the rotation, while position 0 

showed peaks at both ends of the rotation across the centreline of the tyre (along 270 to 90deg in the x-
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direction). In the previous investigation the position adjacent to 4 (ID+47mm), position 0 (ID+35mm), showed 

characteristics of the outer and inner positions in terms of HTC trace shape at each speed. Despite the slight 

variation, the positional investigation compliments that of the velocity investigation, whereby it was found 

that central area around the tyre sidewall profile peak is highly influenced by the free-stream flow and the 

development of the boundary layer. 
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Figure 61: Sidewall positional graphs of heat transfer coefficient through 0-25m/s speed range. 

 



 

68 
 

 

 
Figure 62: Sidewall positional polar graphs of heat transfer coefficient through 0-25m/s speed range.
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4.2.7. 3D Analysis 

Data recorded in the wind tunnel was transferred into 3-Dimensional (3D) visualisations  as described in 

Section 3.3.3, with the results summarised in Figure 64 and Figure 65. The 3D visualisation utilised a coloured 

surface contour across the tyre sidewall, spanning the areas recorded by the sensor. In order to view the entire 

surface of results, the 3D plots have been orientated to a frontal view, but can be freely rotated within the 

Tecplot software. 

 

The global scale, showing the surface contour plot for a fixed range of HTC, identifies two key elements. The 

first relates to a key principle of heat transfer, whereby the average HTC increased with speed; relative velocity 

between the wheel’s surface and the air flow. The global scale also provides good visualisation for the previous 

analysis, where it was found that the highest levels of heat transfer on the upstream side (LHS) of the tyre 

occurred toward the outer diameter (Point 1 in Figure 63) where the flow is partially stagnated, while on the 

trailing side, right-hand side, they occurred toward the inner diameter (Point 3 in Figure 63), where flow 

disturbances from the Spoke area affected the degree of HTC. Point 2 in Figure 63 corresponds to Position 4 of 

the hot fi lm locations, where the highest level of HTC was experienced given its location on the sidewall high 

point where free-stream flow dominates. 

 

 
Figure 63: Identification of the key areas of sidewall HTC (1) Highest level of heat transfer on tyre sidewall (upstream 

side) (2) tyre sidewall high-point (3) Highest level of heat transfer on tyre sidewall (downstream side). 

 

On the local scale, showing a custom range of HTC for each speed, the HTC from the ID to the high point of 

sidewall profile was greater than that downstream of the high point to the OD; a much more user friendly 

methodology for presenting results where pattern occurs across the radius and circumference of the sidewall . 

Earlier, it was discovered that position 4 (ID+47mm) experiences the lowest average heat transfer throughout 

the speed range. The use of 3D plots eliminates the ambiguity when reading polar plot traces by employing a 

coloured surface contour. The results showed a blue band for 0-20m/s indicating low HTC according to the 

scale, while 25m/s showed a green-yellow moderate HTC comparably smaller to the rest of the surface at that 

speed. 
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Figure 64: Visual data plot of wind tunnel results for velocity (V) = 0-25m/s within a global scale. 

 

 

 

Figure 65: Visual data plot of wind tunnel results for velocity (V) = 0-25m/s with local scales.
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4.2.8. Spokes 

The non-dimensional heat transfer, Nusselt number (Nu), can be used to provide an overview of heat transfer 

within the system, averaged across an entire rotation. Figure 66 outlines the results for the spoke region 

(including wheel rim) on both the leading, and trail ing surfaces. 

The trailing surface shows lower average heat transfer compared to that of the leading, which experienced a 

higher degree of heat transfer as a result of its more direct pathway through the air ; the leading spoke 

experiencing stagnated flow. The leading spoke surface was also in the path of the turbulent air from the 

spoke directly preceding it, resulting in greater heat transfer capability.  

Both surfaces of the spoke follow the same trend, where at a Reynolds number (based on tyre velocity and 

diameter, 0.31m) of approximately 200,000 (10m/s) there occurred a transitional period between flow 

velocities of 10-15m/s. 

The wheel rim shows similar characteristics in non-dimensional heat transfer as the two spoke positions, with 

magnitude akin to that of the leading spoke surface, however, after the transitional period, distinguishes the 

variation in heat transfer at different positions, with heat transfer of the rim increasing at a different rate 

compared to that experienced by the spoke surfaces. 

 

 
Figure 66: Non-dimensional heat transfer (Nu) of spokes and rim from wind tunnel test speed sweep. 
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Given the evident transitional period occurring between 10-15m/s, a more focused analysis was restricted to 

20-25m/s (Figure 67), so as to ensure a clear analysis without the effect of transitional airflow on the heat 

transfer. The leading and trailing spoke surfaces varied by approximately 10W/m2K at both speeds; given the 

variations seen at 10-15m/s, this is a good indication that the flow structure became steady in this speed 

range. 

The leading spoke showed the least variation between 20 and 25m/s, located between 150-200deg in the rear 

top quadrant of the wheel. Both leading and trailing spokes exhibited the same characteristic as the sidewall  

whereby the HTC increased from TDC to BDC for the leading LHS of the tyre, and decreased from BDC to TDC 

on the trail ing RHS. The leading spoke, however, experienced a period of HTC increase for a range 

approximately 50deg greater than that of the trail ing spoke. 

 

 
Figure 67: Spoke heat transfer data for 20-25m/s in the wind tunnel. 

 

  



 

73 
 

4.2.9. Tyre Surface Velocity and Air Speed Mismatch  

Tests were conducted under various velocity configurations to determine the influence on sidewall  HTC as a 

result of external flow application and tyre rotation. The effect of misaligned tyre surface velocity and external 

flow velocity was also analysed.  

Sidewall 
Point 5 in Figure 68, corresponding to 25m/s, shows that at a Reynolds number (at tyre diameter of 0.31m) of 

approximately 480,000, the effect of tyre rotation becomes negligible with respect to the averaged 

dimensionless heat transfer, Nuav. Instead, it was characterised by the speed of the airflow; the stationary tyre 

showed very similar results (See sub-plot A) to the speed matched tyre (25m/s tyre and air). The results below 

25m/s, however, showed the effect of over and under-speed tyre rotation to vary the rate of heat transfer at a 

given flow velocity. 

 

 
Figure 68: Sidewall HTC for various speed configurations (T = tyre surface speed, W = wind tunnel flow velocity) under-

speed when VTYRE < VWIND, over-speed when VTYRE > VWIND. 
 

 

 
 

        A 

A 
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The over-speed tyre—where tyre surface velocity was higher than that of the air flow velocity applied—

rotating at 25m/s throughout an airflow sweep from 0-25m/s, showed consistently higher HTC values 

compared to the speed matched case—where tyre surface and air flow velocities were equal; the delta 

between the two decreased as the air flow increased. The initial HTC at point 1 (0m/s) for the over-speed trace 

outlines the degree of heat transfer due solely to the tyre’s rotation. This accounts for approximately 77% of 

the overall heat transfer, with heat transfer showing an almost l inear trend with increasing air  flow. This l inear 

trend stems from the stationary tyre results, whereby it becomes evident that increasing airflow had an 

increasing linear effect on the HTC, however, comparing the two data sets, it is evident that the constant tyre 

speed affected the rate of increase; with 25m/s showing a much shallower gradient compared to that of the 

stationary tyre. This is related to the fact that the initial data point for the heat transfer was non-zero given the 

induced flow  that the tyre’s rotation causes,  corresponding to findings by Knowles (2005), that a cylinder 

rotating at a speed equal to that of the air flow is less sensitive to the effects of Reynolds number than when 

stationary. Despite the concordance in results at 25m/s, it is evident that flow structures still vary for 

stationary and rotating wheels at speeds below 25m/s. Perhaps at Re=480,000 a highly turbulent flow field has 

been reached, resulting in a standardised HTC across each of the speed variations. 

 

4.3. Computational Results 

In the following section the computational results are presented and explored in order to gain insight into the 

characteristics of the flow and heat transfer associated with the wheel assembly used in the wind tunnel  

tests—stationary and rotating configurations. Comparisons of two rotational meshing methodologies within 

the Exa PowerFlow CFD suite are compared to determine the most accurate methodology, and the effect of 

geometry scaling is investigated. CFD measurements utilise a surface integration, which involves every surface 

of the selected component. Though probes can be used to identify a point measurement, they cannot follow a 

surface point throughout its rotation. 

 

4.3.1. Stationary Wheel Assembly 

The original simulation was conducted without measurement time boundaries, in order to determine the time 

required for convergence. Residuals were found to converge at approximately timeframe 50. All  further 

simulations were then set to record from timeframe 70, to ensure that measurements were initiated after the 

point of convergence (timeframe 50). Data recording commenced from timeframe 70 and ended at timeframe 

110, averaging results every 1 timeframe (approximately every 9deg of rotation). Simulation properties were 

set to ensure that a full tyre rotation was captured within the given simulation time (Appendix 2). Integrated 

results on PowerFlow allow the user to capture the average HTC over the entire surface of the component 

(herein separated as tyre and disc).  

 

Separation point location will  affect the heat trans fer given its effect on wake structure, and therefore 

recirculated flow due to tyre rotation; the earlier the separation, the earlier the development of the turbulent 
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wake. Despite the rearward turbulence, the low speed nature of the vortices results in less efficient cooling 

than undisturbed flow, particularly given that the tyre’s rotation induces flow recirculation.  

Simulated results for this thesis (Figure 69) correlate well to findings within the literature, with separation for 

the stationary tyre occurring at approximately 235deg CCW from the SP. Note that results in Figure 69 and 

other CFD result figures show the instantaneous flow rather than a time-average, and hence contain various 

unsteady structures. Fackrell (1974) determined from stationary wheel experiments, that the separation point 

of a stationary wheel occurs at approximately 210deg CCW from the stagnation point. Mears (2004) found 

stationary separation to occur at 210deg experimentally, while that of the rotating case occurred at 

approximately 280deg CCW from the SP, with CFD simulations showing separation to occur at 245deg CCW.  

 

The effect of cylindrical proximity to a wall was discussed by Sumer & Fredsoe (2006), whereby the angular 

position of the stagnation point was found to move to a lower angular position as the tyre’s rotation forced 

the flow in a downward direction (Sumer & Fredsoe, 2006). Simulated results show the stagnation point seems 

to be slightly lower than the central point on the tyre, following the findings of Sumer. 

 

 
Figure 69: Velocity magnitude cross-sectional image plane for stationary tyre. 

 

Though results through integration cannot be compared to single surface results from the wind tunnel , they 

allow for comparison of the overall  heat transfer capability of the component in each separate test case; 

providing insight into the variation of flow interaction through the use of realistic and theoretical moving wall 

boundaries. Integrated results for the stationary configuration (Figure 70) indicate the tyre sidewall  HTC 

averaged 78W/m2K. Marginal variation from the wind tunnel  result, 83W/m2K, can be attributed to the 

integration considering both sidewalls (inboard and outboard), the tread, and the internal surface of the tyre, 

whereas the wind tunnel results are determined for the outboard sidewall only. Investigation of the simulation 

revealed low HTC at the front and rear of the tyre (stagnation points), while maintaining magnitude similarity 

on both sidewalls. A second integration box was generated to contain only the outboard sidewall, with results 

attesting to this assumption, showing an average HTC of 89W/m2K. The CFD prediction is approximately 7% 

higher than the wind tunnel  measurement. 
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Figure 70: Integrated heat transfer coefficient for tyre and disc component surfaces. 

 

Throughout the simulation, the results for both tyre and disc show good consistency, with minor fluctuations 

of HTC within a range 3W/m2K. Tyre and disc fluctuations followed a similar trend despite their varying 

magnitudes; HTC of the tyre was approximately five times higher than that of the disc. This would suggest that 

they were experiencing similar flow structures relative to their size despite the external/internal variation. 

When considering the Reynolds number experienced at 25m/s by the tyre (using tyre diameter of 0.31m) , 

4.94x105, and disc (using disc diameter 0.14m), 2.23x105
, it is understandable that the magnitude of the tyre 

HTC was much larger than that of the disc given its higher degree of turbulence, however, consideration of the 

geometrical variation between disc and tyre, diameters 0.14m and 0.31m respectively, the two are 

experiencing similar flows relative to their diameters  (Re ÷ ø = 1x105 for both disc and tyre). 

The rear bottom quadrant of the tyre sidewall has comparatively low HTC to the rest of the surface (Figure 71) 

as a result of the stagnant airflow behind the tyre. Flow rearward of the tyre will tend to be recirculated from 

the vortical structures, which were evident in the streamline traces. The highest level of heat transfer is 

evident rearward of the wheel rim, a result of the turbulent flow induced by through hub flow from the Inlet 

scoop. 
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Figure 71: Sidewall HTC for stationary Wheel in 25m/s flow. 

 
Figure 72 outlines the HTC experienced on the surface of the disc in all directions; flow in negative x-direction. 

The inboard face experienced a much greater level of heat transfer given the scoop flow is directed onto the 

inboard side; this is supported by Figure 73 where the inboard flow is higher than the outboard side. The 

contrast between the level of flow on the inboard side to the outboard is the reason behind the disc inboard 

face curved extrusions, however, flow around the front of the disc was more prominent in the streamline 

representation than flow through the disc vanes. Both upper and lower surfaces showed similar trends in HTC, 

contrary to the upper and lower areas of the tyre sidewall; this is most l ikely related to the fact the disc is near 

a wall, however, at an equal distance around its circumference, therefore not incurring the effects the tyre is 

exposed to due to the ground plane contact. 
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Figure 72: Disc HTC surface image for the stationary assembly with VAIR =25m/s (tyre, upright and wheel rim hidden). 

 
 

 
Figure 73: Through Hub flow from scoop inlet of stationary wheel assembly with VAIR=25m/s (tyre and wheel rim 

hidden). 
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Despite the significant level of flow evident on the outboard side of the disc, Figure 74 displays that the inner 

sidewall surface of the rim, between spokes, experienced the lowest levels of heat transfer of the component. 

The stationary position of the tyre allows the free-stream flow to travel past the sidewall and wheel rim, 

picking up the flow spillage from the wheel rim, carrying it further downstream—this is a potential cause of 

higher HTC toward the inner diameter of the sidewall downstream of the rim. 

 

 
Figure 74: Wheel rim HTC surface image for the stationary assembly with V AIR =25m/ (disc, tyre and upright hidden). 

4.3.2. Sliding Mesh 

Using the sliding mesh (SM) methodology component geometry within a bounded region is physically rotated, 

a development from the moving reference frame (MRF) methodology in which a velocity is imposed through 

the application of rotational fluid forces within a bounded region. 

 

Integrated surface results in Figure 75 outlines that the introduction of rotation resulted in different flow 

structures for the disc and tyre, contrary to the stationary case, where the two components experienced 

similar steady flow structures, resulting in comparable trends of HTC throughout the simulation time frame. 

The variation in HTC due to rotation was not as evident for internal results to the same degree as the external 

results, with the average HTC over the tyre surfaces was 95W/m2K, 17W/m2K higher than that of the 

stationary case, while that of the disc was 14W/m2K, similar to the stationary case, 16W/m2K. The range of 

average surface HTC values experienced by the disc in the rotational case, 1.4W/m2K, comparable to that of 

the stationary case, 1.17W/m2K. Analysis of mismatched tyre surface and flow velocities  supports these 

findings, which showed that the rotation of the tyre had less of an effect on the overall  convective heat 

transfer of the disc than the flow velocity. 
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Figure 75: Sliding mesh simulation time averaged HTC for tyre and disc component surfaces. 

 

Results of average HTC from the surface integrated data allowed the Nusselt number to be calculated at 25m/s 

using the respective diameters of each component (DTYRE=0.31m, DDISC=0.14m). The CFD results  (Figure 76) 

show an increase of 24% at the sidewall, while the disc results are 33% lower than those in the wind tunnel . 

The difference can be attributed to the measurement technique used in CFD integrating every surface of the 

tyre or disc, as opposed to the wind tunnel , which logged only the outboard sidewall and a disc vane.  

 

 
Figure 76: Nusselt number correlation to wind tunnel results for tyre sidewall and disc at 25m/s. 

 

The separation point for the stationary simulation was found to occur at 235deg CCW of the stagnation point. 

For the rotational simulation using sliding mesh boundaries, the separation point occurred at 265deg (Figure 

77), which agrees with the findings of Knowles (2005), Mears (2004) and Stapleford and Carr (1971), whereby 
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cylindrical rotation i s found to advance flow separation compared to the stationary case. Separation is 

advanced compared to the stationary wheel due to the rotation of the tyre introducing momentum within the 

boundary layer. Comparable to the results determined in the sliding mesh simulation, Fackrell  (1974) and 

Mears both found separation for a rotating wheel to occur at 280deg CCW, while Knowles reported 270deg 

CCW. These results, however, were recorded experimentally. Both Mears and Knowles reported CFD 

separation to be slightly delayed compared to experimental results; Mears, 245deg compared to 280deg, and 

Knowles, 265deg compared to 270deg.  

 

 
Figure 77: Velocity magnitude cross-sectional image plane for sliding mesh simulation (25m/s). 

 
The range of separation point values from the computational results and the findings of Fackrell, Mears and 

Knowles, presents itself between 245-280deg. The level of correlation is satisfactory enough to assume the 

simulation behaved in an acceptable manner, given the marginal variation of setup parameters, such as Re, 

between the sourced results. The principle of separation advancement due to rotation is noted, and the effect 

of separation location with respect to heat transfer is highlighted as an important relationship, given the 

variation of rearward flow structure outlined by several researchers, particularly Kato et al. (2009), to show 

significant increase in HTC. 

 

Tyre sidewall HTC surface contours extracted (Figure 78) outline a region of low HTC at the bottom rear 

quadrant of the tyre; the same result was found in the stationary configuration. The rearward flow structure is 

known to be influenced by the presence of the ground pl ane. Flow around a rotating cylinder with no 

boundary restrictions, is found to supress vortex development and have a prominent influence on the near 

wall flow field (Stojkovic et al., 2002). Similarly, flow around a stationary wheel in ground contact is also found 

to supress regular vortex shedding (Bearman et al., 1988).  
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Figure 78: Sidewall HTC at 25m/s – sliding mesh CFD results. 

 

As with the stationary case, the inboard side of the disc, which was exposed directly to oncoming flow directed 

through the scoop inlet, experienced the highest level of heat transfer (Figure 79). The introduction of rotation 

increased the heat transfer in all areas of the disc, with trends from the stationary case remaining; front heat 

transfer higher than rear, and upper approximately equal to lower. The effects due to the introduction of 

rotation can best be visualised using Figure 80, which shows a direct comparison of through-hub scoop inlet 

streamlines for the stationary and rotating (sliding mesh) cases. 

The most distinct variation between the two cases is that the rotating tyre caused a recirculation of flow 

toward the rear of the internal geometry. The flow on the inboard side of the disc also experienced a suction 

effect, with flow travelling along the surface of the disc as it bends around to the outboard side of the disc.  
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Figure 79: Visual overview of disc HTC using sliding mesh functionality at 25m/s (tyre, upright and wheel rim hidden). 

 

 

 
Figure 80: Comparison of scoop inlet internal flow streamlines for stationary and sliding mesh configurations at 25m/s 

(tyre and wheel rim hidden). 
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The HTC results for the spokes (Figure 81) show areas of a wide range of heat transfer occurring, with the 

downstream side of the rim experiencing higher HTC’s than the upstream side. Such results indicate the heat 

transfer at the spokes was affected by flow in the surrounding areas,   

 

 
Figure 81: Sliding mesh surface air velocity vs. HTC for spoke region at 25m/s (disc, tyre and upright hidden). 

 

On the inner spoke surfaces, the leading side of the spokes experienced the most heat transfer, as found in the 

wind tunnel results. The region in which the highest heat transfer was experienced was, with respect to 

angular position, in the region of separation of the tyre. 

 

 

 
Figure 82: Spoke HTC at 25m/s - Leading and trailing view (tyre rotation around y-axis in positive x-direction) (disc, tyre 

and upright Hidden) 
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4.3.3. Moving Reference Frame 

Another meshing capability of the Exa PowerFlow software is the Moving Reference Frame (MRF).  

Unlike the more recently developed Sliding Mesh, the MRF has no physical rotation, instead applying a velocity 

boundary to component walls located within an assigned rotating reference frame, within which, rotational 

fluid forces are applied (Gaylard, et al., 2010). The MRF methodology was used to determine the impact of 

using a simpler methodology on the HTC results. It has been found, from an aerodynamic perspective, that the 

effect of util ising a rotating wall improves the local pressure distribution accuracy, which affects the flow rate 

and airflow direction through and around the wheel (Kandasamy, et al., 2012), as such, results were expected 

to vary from those generated by the sliding mesh.  

 

From the integrated surface results (Figure 83), it is evident that the entire system, internal and external, 

experienced similar flow structures toward the final 90deg of rotation; the disc at time-step 27 showed the 

same behaviour as the tyre, with a phase shift of 3 time-steps; equivalent to 27deg rotation. The effect of flow 

on the exposed tyre compared to that of the internal disc is that the tyre showed a lower level of heat transfer, 

which may be attributed to the generation of the boundary layer. In turbulent flow, the boundary layer 

thickens, which results in increased skin friction. High skin friction is a characteristic that delays flow 

detachment, thus resulting in higher levels of heat transfer. This is the mechanism behind turbulent boundary 

layers resulting in higher heat transfer and sustaining adverse pressure gradients to delay separation, but is 

also used as a means of reducing drag – as is the case with dimpling on golf balls. This is perhaps the 

mechanism behind dimpled wheel rims.  

 

 
Figure 83: Integrated values of average surface HTC for the disc and tyre employing MRF. 

 

It should be noted that the MRF boundary condition was described as the application of rotational forces to 

the fluid within a bounded region, however, with no physical rotation. The bounded region, the reference 

frame, was defined in Figure 35, and is fundamental  to the developed flow structure in the MRF condition. 
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Rotational forces are applied only within the reference frame, leaving external flow to circulate as in the 

stationary case. This affects the flow distribution, with dispersion patterns varying from reality given the 

boundary of rotational flow which is evident in 4 key areas when comparing against the Sliding Mesh (Figure 

84 and Figure 85): oncoming flow (1), rearward flow structure (2), separation point (3) and the sidewall passing 

flow. The interaction on either side of the reference frame results in frontal recirculation, a nd widespread 

longitudinal dispersion of flow. 

 

 
Figure 84: Velocity Plane for MRF Rotational Boundary at 25m/s (1) oncoming flow at free stream velocity (2) wake 

velocity (3) separation point is delayed using MRF compared to SM. 

 

 
Figure 85: Velocity streamlines for MRF rotational boundary at 25m/s. 

 



 

87 
 

The separation point occurs further downstream (245deg CCW from SP) than in the sliding mesh simulation 

(265deg CCW from SP), representative of the stationary case (235deg CCW from SP). The inconformity of the 

separation point with rotational flow theory is l ikely a result of the boundary layer variation in and out of the 

reference frame region; the separation being a main influence on the rearward flow.   

A characteristic of the sidewall HTC results (Figure 86) that stands out relative to the sliding mesh boundary 

condition is the much lower heat transfer prevalent for approximately a quarter of the tyre’s rotation. This is a 

result of the oncoming flow outlined in Figure 85, with high vorticity upstream of the tyre, rather than 

downstream. Using sliding mesh a low level of heat transfer existed toward the rear bottom quadrant of the 

tyre where the flow was turbulent. Since the MRF method applies rotational forces to the fluid within the 

bounded region, perhaps the method is l imited in this respect. The reference frame was used to bind the tyre, 

disc and spokes, but the areas within and surrounding the tyre remained outside the referenced region. Given 

it is these areas adjacent to the rotating components that will affect the flow around the tyre, it is necessary to 

investigate how far away from the bounded rotating wall the reference frame must be positioned for accurate 

results; this is important given the flow near the rotating wall is affected due to its rotation. The effect was 

seen with the delayed separation point, resembling that of the stationary case. This suggests there exists a 

discrepancy between the interaction of fluid and solid for ‘imposed rotation’ and physical rotation. The HTC 

was found to be moderate across the tyre’s surface (Figure 86); the accuracy of which is  questionable given 

the results from the wind tunnel  showed a more regionally banded surface image. 

 

 
Figure 86: Surface image of HTC for MRF simulation at 25m/s. 
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With regard to the spokes, as with the sliding mesh, both leading and trailing spoke surfaces experienced the 

greatest heat transfer at the top half of the wheel rim geometry. In general, there was a moderate average 

heat transfer across the spokes, with the areas at the maximum range of heat transfer located on edges and 

the centre of the spoke surface flat. The leading and trailing spoke surfaces show lower HTC’s than the sliding 

results as there is stagnation on the leading spoke surface in the realistically rotating sliding mesh simulation. 

The MRF methodology does not show this effect as it is not physically rotating, as is reflected in the results. 

There also existed a rearward bias, though to no concernable degree; a l ikely result of flow recirculation given 

the axis of rotation.  

 

 
Figure 87: HTC surface Image for Spoke region at 25m/s MRF (disc, tyre and upright hidden). 

 

Streamlines of flow velocity in Figure 85 support the HTC analysis, showing a high degree of unsteady and 

circulating flow. This should generate a higher degree of heat transfer, however the results are consistently in 

the moderate region of the HTC scale throughout the period of rotation. The rotation of the fluid after passing 

internal componentry such as the disc, has caused it to slow to 30-40% of the free-stream velocity. At this 

speed, the degree of heat transfer capability reduces. In the wind tunnel  experiments, it was deduced that 

when analysing heat transfer along the tyre sidewall, the effect of tyre rotation becomes negligible, instead 

the heat transfer is characterised by the airflow speed; where the stationary tyre with a 25m/s air flow showed 

almost equal results to the matched tyre and air flow speed of 25m/s. Internally, this does not seem to be the 

case; the high degree of turbulence is a result of both the tyre’s rotation and the free-stream velocity.  

 

The disc experienced a low degree of heat transfer on the outboard side, while the inboard side, exposed to 

the oncoming flow from the scoop, showed a much greater range of HTC (Figure 88). The streamline trace in 

Figure 89 indicates a high degree of internal flow recirculation on the outboard side of the disc, more so than 

that occurring for the sliding mesh results. Gaylard et al.’s (2010) description of MRF outlined that within the 

defined region, rotational fluid forces are applied. The method of MRF seems to produce a higher  degree of 

recirculated flow, perhaps an indication of improved accuracy for disc related results, an area that needs to be 

considered further in Section 0. 



 

89 
 

 

 
Figure 88: HTC surface images for disc using MRF at 25m/s. 

 
 

 
Figure 89: MRF internal velocity streamlines at 25m/s (tyre and wheel rim hidden). 
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4.3.4. 100% Scale Model Sliding Mesh Simulation 

PowerFlow allows for the scaling of imported CAD geometry, a function that was utilised to create a full  scale 

model of the wheel assembly in order to determine the effect of scaling geometry on HTC results. By 

maintaining simulation parameters from the original configuration, scaling only the geometry, is 

fundamentally changing the Reynolds number. 

 

Integrated results (Figure 90) show the disc experienced significant generation in HTC, with results at the end 

of the timeframe range on a rise, beginning the next rotation at an accumulated HTC; external (sidewall) 

results show a more consistent flow than the internal results (disc), with data returning to a level approximate 

to that at timeframe 0.  

The average HTC for the tyre was approximately 125W/m2K, while that of the disc was 30W/m2K. The sidewall  

experienced a greater range of HTC’s  throughout the simulation, 13W/m2K, compared to that of the disc, 

3.7W/m2K. Comparison to the original sliding mesh simulation utilising the 50% scaled model geometry (Figure 

91) shows the overall effect of scaling the geometry on the magnitude of HTC. The disc incurred an increase of 

114% from the original 50% scale model, while the tyre showed less of a variation, increasing by 32%. 

 

 
Figure 90: Integrated surface HTC results for 100% scale simulation using sliding mesh methodology. 

 

 
Figure 91: Comparison of integrated surface HTC results for 50% and 100% scale simulations. 
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Stagnation occurs just below the centreline (Figure 92), a characteristic of a rotating cylinder in flow, and in 

proximity of a ground plane. Separation occurs close to that of the original simulation’s separation point 

(265deg CCW of SP). Approximately 270deg CCW of the SP, shedding of low velocity flow occurs, inferring that 

after the flow stagnates on the frontal surface, the velocity boundary layer thickens until gradually separating. 

No other simulation has shown a transitional low speed flow on the tyre surface, rather they have indicated 

free-stream flow velocity until the point of separation. The streamlines in Figure 93, support the previous 

statements with regard to the separation point occurring at the top of the tyre. There also exists a high degree 

of flow recirculation at the rear of the tyre; characteristic of increasing the Re through scaling. 

 

 
Figure 92: Velocity plane for 100% scale tyre separation point identification (270deg CCW). 

 

 
Figure 93: Velocity streamlines for 100% scale assembly. 

 

Sidewall heat transfer surface contours show the top of the tyre, particularly on the OD edges, experiencing 

the highest level of heat transfer. Given the velocity plane indicated complex flow over the tyre, the level of 

unsteady flow must have introduced variations to the flow field that are not seen within the original, 50% scale 

simulations. Simulated results showed a high level of flow spillage out of the inboard side of the wheel rim 

(Figure 95); recirculating disturbed air into the flow stream will change the characteristics of the heat transfer, 

particularly with flow mixing of various velocities. 
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Figure 94: Sidewall HTC surface contours for 100% scale tyre using sliding mesh methodology. 

 

 
Figure 95: Velocity streamlines for flow through Inlet scoop at 25m/s for 100% scale model (tyre and wheel rim hidden). 

In conjunction with Figure 95, the HTC surface images for the disc (Figure 96) show the inboard side’s greatest 

HTC to occur on the bottom edge where the spillage occurred. Flow was restricted through the internals after 

passing through the scoop, with the LHS of the internal geometry lacking visual evidence of flow. As with the 

previous methodologies, the full scale model experienced a higher degree of heat transfer on the inboard side 

of the disc as a result of the introduction of flow from the Inlet scoop on the inboard side.  
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Figure 96: HTC surface contours for disc at all orientations - 100% scale at 25m/s using sliding mesh. 

 

The spoke region experiences a range of values (Figure 97), with the greatest heat transfer occurring in the 

upper rearward region on the leading spokes. Considering the central extrusion was occupied by the connector 

shaft, one can compare the rim internal sidewall HTC to that of the central extrusion as blocked versus 

unblocked. Evidently the through flow from the oncoming air directed by the scoop is responsible for a 

proportion of the heat transfer.  

 
 

 
Figure 97: Left and right angled views for leading and trailing spoke HTC analysis on 100% scale wheel rim (disc, tyre and 

upright hidden). 
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The effect of util ising geometry scaling within the CFD simulations on the HTC results and flow characteristics 

was determine by increasing the model geometry scale from 50% (original model) to full scale (100%), and as a 

result, increasing the Reynolds number. The sliding mesh methodology was utilised as its physical rotation of 

components produces a more accurate system configuration. Increasing the geometry scale increased the HTC 

of magnitude in all areas as a result of the increased Reynolds number. Though magnitudes varied, the areas 

of high and low HTC showed similarities, however, neither scale was able to produce HTC surface contours 

representative of the patterns experienced in the wind tunnel results. 

 

The HTC results were found to be affected more than the flow characteristics, with the average surface HTC of 

the tyre found to increase 32% from the original model, while the disc incurred an increase of 114%. The 

increase in HTC can be attributed to the increased Reynolds number. Comparatively, the areas of low and high 

HTC showed areas of commonality, such as the high HTC on the downstream side of the wheel rim. The 

inboard side of the disc maintained a higher degree of heat transfer compared to the outboard side, and the 

leading spoke showed higher HTC than the trail ing, as in the original model. 

The Stagnation point was unaffected, however, the velocity plane presented a more complex velocity profile 

above the tyre’s surface than the original model. The separation point, however, occurred around the same 

position as the original model (270deg compared to original 265deg). The downstream flow showed more 

disturbances than the original model, characteristic of the increased Reynolds number. 
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5.0. Discussion 

The following section aims to draw associations from the literature and results explored in the preceding 

chapters, outlining the key findings from the results set. 

The comparison of error in both experimental systems is drawn upon to determine the effect upon the disc 

HTC results incurred by varying the method of flow application. Further experimental discussion surrounds the 

effect of varying upright geometry, particularly the influence of the scoop inlet flow, on the disc HTC. 

Comparison of the two rotating simulation methodologies is used to explore the influence of the different flow 

characteristics on the HTC results, and the effect on HTC by increasing geometry scale in the CFD is explored. 

The derivation of Nusselt number equations from experimental and CFD results is discussed, outlining areas of 

correlation, and presenting model fits to capture the range of possible heat transfer. 

 

5.1. Measurement Accuracy between Experimental Configurations  

Error levels were assessed based on the convective heat transfer coefficient of the disc under theoretical no-

flow conditions. The magnitude of error in the rig, 14W/m2K, was greater than that in the wind tunnel , 

2W/m2K. The range of heat transfer variation for the rig experiment was at least six times that of the wind 

tunnel; due to the variation of relationship between average HTC and velocity for the two setups (Figure 98). 

The rig shows average HTC to have an almost l inear relationship with velocity, while the wind tunnel  shows a 

peak HTC which then falls again at 17m/s.  

 

 
Figure 98: Comparison of hot film error between rig and wind tunnel tests. 
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Comparing the two experimental configurations, the main variations are those of the wiring arrangements, the 

method of airflow application, use of different CTA’s, and the introduction of a ground plane, however the 

error measurements conducted with the system sealed would not have been affected by the ground plane.  

The wiring arrangement for the rig test involved the excess wire, which remained so as not to reduce the 

possibility of future application in other experiments, to be evenly distributed in opposing directions around 

the circumference of the tyre before passing through the slip ring and to the CTA. For the WT, the wiring was 

more involved, with a greater length of wiring required to pass over the sting arm assembly. The wiring was 

attached to the wheel rim and passed through the hollow support shaft before passing through the slip ring. 

Both arrangements utilised twisted pairs in order to provide some degree of shielding. The wind tunnel  setup 

util ised a mostly linear arrangement of the wiring, and so the influence of wiring arrangement in the rig setup 

on the HTC error can be attributed to the circumferential  arrangement of wires. 

Each experiment utilised a different CTA, with that of the wind tunnel capable of measuring two simultaneous 

channels.  Although bridge resistance variation was compensated through consideration in the calculation of 

convective HTC, there is most l ikely more error within the analogue system (rig). 

 

In order to determine whether varying the application of flow application affects the HTC of the disc, and 

indeed whether the rig produces accurate results when compared to the wind tunnel , the two systems must 

be compared at equivalent velocity. 

The mass flow was the same for both scenarios, given the correlation wi th results to Minto’s (2011) Hub Flow 

Number theorem, defined as the volumetric flux ratio between the scoop and the free-stream velocity. By 

applying Minto’s relationship to the experimental system, the equivalent velocity at the scoop inlet plane was 

found to be approximately equal to that of the free-stream, with a resulting velocity ratio of 1.0029.  

At 25m/s, the time averaged HTC of the disc on the rig was 91W/m2K, while that in the wind tunnel  was 

102W/m2K. Given the difference between the two results is less than the maximum error found in the error  

band test (14W/m2K), it can be concluded that the method of flow application does not vary the disc HTC, and 

that the rig was able to provide comparable internal HTC results relative to the wind tunnel .  

 

5.2. Effect of Geometry 

5.2.1. Internal Disc Shield 

The brake cooling test rig was run at two test configurations; with and without the shield, which partially 

covered the outer diameter of the disc.  

Results for the shielded and open systems indicate an equal level of heat transfer  between the two 

configurations for the lower velocities, with introduction of an approximate 3W/m2K variation at a free-stream 

velocity of 20 and 25m/s. Despite the use of the shield introducing a reduction in HTC for both speeds, the 

magnitude of variation was not, in the case of this experiment, high enough to be regarded as significant. 

Given the sealed disc error was found to reach a maximum of 14W/m2K at 25m/s on the rig, the 3W/m2K 

variation may be merely a portion of error in the system. 
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5.2.2. Brake Scoop Inlet 

Another geometrical aspect that affects the internal flow, and therefore the heat transfer experienced at the 

disc, is the inlet scoop. A wind tunnel configuration was run with a blocked scoop, utilising multiple layering of 

heavy duty tape, to determine the degree of heat transfer occurring as a result of the scoop flow. The open 

scoop showed average heat transfer results at least 10x larger than the blocked scoop configuration, 

confirming that the cooling due to the scoop inlet flow was the predominant influence on heat transfer. As 

with the shielded case, the level of error determined within the system must be considered; 2W/m2K 

maximum error in the wind tunnel system, implying that with a blocked scoop, the disc will  only experience 

cooling above 10m/s.  

 

Comparison of the blocked and open configurations allows identification of scoop inlet flow as the primary 

source of convective heat transfer, however, the blocked scoop results indicate that the rotational fluid forces 

generated due to the centrifugal flow, were responsible for an approximate upper l imit of 10% of the 

convective heat transfer at the disc. 

 

5.3. Stationary vs. Rotating – Wind Tunnel and Simulated Comparisons 

Many studies preceding this work have outlined aerodynamic/flow variations for stationary and rotating 

components, with the main findings involving the advancement of separation caused as a result of cylindrical 

rotation (Knowles, 2005). Cylindrical rotation has also been found to suppress vortex development (Stojkovic, 

et al., 2002), while wake-breathing/jetting effects have also been observed; affecting the wake (Mears, 2004). 

Both stationary and rotating configurations were tested in the wind tunnel and using CFD. The precise location 

of the HTC was extracted from the wind tunnel test, while data on the whole surfaces were extracted from 

CFD, using surface integration, to gain the best understanding of the simulated flow to complement 

experimental findings. 

Simulated results of HTC were much lower than those in the wind tunnel test. The simulated results showed 

the inboard disc face experienced a much higher degree of heat transfer given its position directly in the path 

of oncoming flow from the scoop; this flow was directed through disc extrusions on the inboard side for flow 

through disc vanes.  The ambiguity in utilising the surface integration method is highlighted in Figure 99, where 

the difference between stationary and rotating simulations is approximately 1W/m2K, whereas wind tunnel 

results show a difference of over 45W/m2K between stationary and rotating configurations. The simulated disc 

HTC results outline a fairly steady heat transfer throughout a rotational cycle, a consequence of the inclusion 

of both inboard and outboard surfaces; the high inboard HTC balanced by the low outboard HTC.  
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Figure 99: Comparison of disc surface integrated HTC results for a stationary and rotating simulation at 25m/s. 

 

Accuracy of the wind tunnel results was proven with results of average HTC for the reference disc maintaining 

results within a narrow band of variation for nine test runs, with results showing clear and consistent trends. 

Furthermore, there was no distinct trend between HTC and hot fi lm location between different sidewall 

positions (i.e. error after each increment of movement), suggesting that the fi lm did not incur any circuit 

damage during its movement. Results for the disc lay within the expected error (determined to be +/- 

2W/m2K).  

Polar result traces indicated that the highest level of heat transfer occurred at the top half of the disc, with 

variation from the bottom half for each speed approximately +4 W/m2K @10m/s, +8 W/m2K @15m/s, +10 

W/m2K @20m/s and +10 W/m2K @25m/s. This is in agreement with the HTC surface image of the simulated 

results, where the highest degree of heat transfer on the inboard side of the disc occurred in the same region; 

indicative of the highest rate of flow. This supports the conclusion that the heat transfer in the simulated disc 

vane would be higher than the average component HTC returned by integrated results. Results for the spokes, 

however, showed better correlation than for other areas of the geometry, with both wind tunnel  and CFD 

results indicating that the leading surface of the spoke experienced a greater level of convective heat transfer 

than the trail ing surface; as the leading surface cut through the air the oncoming flow was stagnated. 

 

Stationary simulation results show the inner sidewall surface of the rim, between the spokes, experiences the 

lowest levels of heat transfer of the component, together with the frontal face of the wheel rim outer surface, 

while rotational results show a significant HTC increase (Figure 100). The stationary tyre allows the free-stream 

flow to travel past the sidewall and wheel rim, picking up the flow spillage from the wheel rim and carrying it 

further downstream, potentially the reason for higher HTC toward the rear of the rim. 
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Figure 100: HTC surface image comparison for stationary and rotating simulations at 25m/s. 

 
The sidewall heat transfer experienced in the wind tunnel displayed complex patterns with relation to speed 

and position, while the simulation provided little scope for investigation, with a near constant heat transfer 

across the sidewall. 

For the simulated results, the lower rear quadrant experienced a lower velocity as a result of recirculated 

turbulent flow in that region. The same phenomenon was experienced on the stationary tyre, though to a 

lesser degree, suggesting rotation induces a lower velocity behind the wheel. There was an otherwise average 

heat transfer for the rotating simulation of approximately 100W/m2K (at 25m/s) across the surface of the 

sidewall. Contrarily, a more complex set of results were produced in the wind tunnel, providing insight into the 

dependence on geometry as well as position and velocity. 

 

The stationary experiment presented results across the tyre sidewall at approximately 3.5±0.5W/m2K, 

however one set of data lay outside the bounds of consensus. Position 2, the inner most position to the wheel 

rim, presented an average HTC of 7W/m2K. Given the sensors proximity to the wheel rim, results suggest the 

turbulence from the spoke region caused some additional localised heat transfer.  

It was deduced from the observed trends in HTC from the wind tunnel , that the positions upstream and 

downstream of the highest point on the tyre sidewall profile experienced different boundary layer states. 
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Moving away from the centrally located high point (both toward ID and toward OD), the heat transfer 

increased.  Just as the spokes underwent a transitional flow between 10-15m/s, so too did the tyre, with the 

centre point taking on characteristics of the inner most positions when in rearward flow, and the outer most 

positions when in free-stream flow. 

 

5.4. Comparison of Rotating Simulations 

The variation in flow structure upstream and around the tyre affects the location of the separation point 

between the two simulation methods (Figure 101). The accuracy of the chosen rotational simulation method is 

important to capture the correct flow structures, with rotating structures causing flow recirculation. The 

velocity of the rearward flow will  partially affect the level of subsidiary heat transfer occurring from its 

recirculation. The sliding mesh imposes a more realistic rotation of components within the simulation, while 

the MRF methodology applies rotational forces to the fluid bounded within the reference frame. This was 

noted in the MRF simulation, which showed a degree of recirculation at the front of the tyre, indicating 

stationary wall like blockage; unlike the jetting phenomena identified by Mears  (2004), which can only be 

induced with wheel rotation, such as that occurring from the sliding mesh. 

 

In terms of sidewall HTC, both rotational methods show generally similar average HTC across the sidewall  

(Sliding mesh = 95W/m2K and MRF = 103W/m2K), with noticeable variation at the front of the MRF tyre; 

concordant with the results from the streamline traces. Both methods show a peak of HTC just before the 

separation point; using the MRF delays separation. Neither methodology produced a HTC map with the 

relations found in the WT i.e. a central low-point of HTC which increases toward the OD and ID. 

 

 
Figure 101: Comparison of separation point in SM and MRF simulation methodologies. 
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Internally (Figure 102), the MRF showed a more realistic representation of flow recirculation than the sliding 

mesh, with more flow recirculation occurring at the outboard face of the disc, and a more even distribution of 

flow around the periphery of the disc rather than the frontal flow only in the sl iding mesh. The generation of 

the reference frame is also an element of introduced error. Exa PowerFlow allows for generation using a co-

ordinate point cloud, or methods such as offsets from surfaces. Complete accuracy is l imited given the upright 

needs be excluded as it is a stationary component, leaving the internal area outside the reference frame. 

Concerns arise as to the behaviour of flow within this region as there should be induced flow disturbances as a 

result of the rotating wheel rim, however, the MRF methodology is defined as applying rotational fluid forces 

to those within the bounds of the reference frame; understanding of the software’s ability to create a relation 

between the two areas of flow is required to assess its capability.  

 

 
Figure 102: Comparison of SM and MRF internal streamlines at 25m/s.  

 

5.5. Nusselt Number Analysis 

Data recorded for the disc in the wind tunnel was found to fit well with the derived Nusselt number equation, 

and correlated with previous findings in the reviewed literature of the Reynolds number exponent, m.  

Comparison with the CFD results (Figure 103), reveals that the CFD produces lower heat transfer for a given 

Reynolds number than the experimental data. The difference in results can be attributed to the use of 

different integration areas between measurement techniques, with the CFD expected to show lower heat 

transfer as it considered results in areas of lower heat transfer (outboard side). This may also have affected the 

slope of the CFD heat transfer curve compared to the experimental result. 
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Figure 103: Nusselt number comparison for wind tunnel and CFD data. 

 

The sidewall experimental results presented an underestimate of the Reynolds number exponent, m, while the 

CFD showed an overestimate (Figure 104). Results at Reynolds number 4.04E+05 (25m/s), show good 

correlation between CFD and experimental Nusselt number, after which point, experimental data points were 

not collected at higher Reynolds numbers. The Reynolds number exponent has been recorded in l iterature to 

an approximate value of 0.8 up to Reynolds numbers of 400,000. The Model Fit equation presents an extended 

trend line for the wind tunnel Results, while the CFD trace outlines the trend for the CFD results. In order to 

balance the over and underestimated ‘m’ values, a Combined Model Fit  was determined as a negotiation 

between the two measurements, outlining the range that results can be expected to fall within. The increasing 

difference between experimental and CFD results after 25m/s may be attributed to the occurrence of a 

transitional phase along the sidewall that was not seen within the 0-25m/s data range in the wind tunnel . 

Nusselt number values from the original model (50% scale) experimental and CFD were used to determine the 

equivalent 100% scale HTC’s at the disc (Figure 105) and tyre sidewall (Figure 106). The same model fit 

methods were applied to distinguish the range of possible values. 
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Figure 104: Nusselt number comparison for experimental, computational and model fit equations.  

 

 
Figure 105: Equivalent 100% model HTC's for the disc. 
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Figure 106: Equivalent 100% Model HTC's for the tyre sidewall. 

 

5.6. Full Scale Simulation 

Scaling the model from experimental component size to a full scale (100%) model while maintaining original 

simulation parameters, results in much higher heat transfer. Comparison of surface integrated results for the 

original and 100% scaled model revealed a 31% increase in average HTC at the sidewall for the full scale model, 

while the disc underwent  an increase of 110%; increase in HTC occurred as a result of the larger Reynolds 

number from increasing the geometry scale.  

 

  



 

105 
 

6.0. Conclusions  

The work presented has investigated the mechanisms of heat transfer in a wheel assembly, identifying the 

effects of wheel rotation and of the implementation of various geometries within the assembly on heat 

transfer. The primary mechanism of interest was the convective heat transfer, which was investigated using 

techniques including wind tunnel testing, rig testing and CFD simulations in order to compare capabilities of 

various methodologies in determining the HTC at the disc and tyre sidewall. The literature review introduced 

the effects of cylindrical rotation and ground planes upon the flow structure, and identified the effect of the 

variation of the separation point and boundary layer development; factors that affect the of potential cooling 

capability within a flow. The Nusselt number equations were derived for experimental and CFD data, which 

provided confidence of the wind tunnel accuracy. 

 

In order to complement the experimental and simulated tests, the experimental apparatus was created in CAD 

geometry both to aid with the design and commissioning of experimental fixtures to carry out hot fi lm 

measurements on a brake cooling test rig and in the wind tunnel, and to carry out CFD simulations. Results of 

HTC from the wind tunnel were processed into a geometrically related positional heat transfer map of the tyre 

sidewall. 

 

6.1. Assessment of Systematic Error 

Hot-fi lm sensor sensitivity to flow is of high fidelity, a facet of the experimental  procedure which proved 

beneficial for determining system level error in both experimental  setups. 

The systematic error was considered by removing external flow conditions from the disc sensor, allowing the 

determination of the level of HTC while at theoretical zero-flow condition. The wind tunnel  results were 

accurate to within 2W/m2K, while measurement of error on the bench-top rig, using a different CTA, was 

recorded up to 14W/m2K. Given the difference between the time averaged HTC of the disc on the rig and wind 

tunnel was less than the maximum error found in the Error Band Test (14W/m2K), concluding that the rig was 

able to provide comparable internal HTC results relative to the wind tunnel despite the difference in external 

flow application methodology.  

 

6.2. Geometry Variations 

Two geometry variations were tested for their effects on internal cooling variations; upright shield on/off and 

Inlet scoop blocked/unblocked. The shield partially covered the outer diameter of the disc, while the inlet 

scoop was blocked using tape to determine the level of cooling due solely to the rotation of the disc. 

Application of the upright shield on the rig test had no implication at the lower end of the speed range, and 

introduced a small reduction in HTC, 3W/m2K, at higher speeds of 20m/s and 25m/s; a difference within the rig 

measurement error range of 14W/m2K.  

 



 

106 
 

The wind tunnel tests with open and blocked scoop showed that a difference occurred at speeds above 10m/s. 

The open scoop average HTC was ten times greater than that of the blocked scoop scenario, confirming the 

Inlet scoop flow as the main source of internal cooling. 

 

6.3. Rotating Simulation Methodologies 

Two variations of rotational simulation were explored within the simulated results; physically  rotating 

components using the s liding mesh approach, versus an implied rotation using the moving reference frame 

(MRF) method. 

 

While the sliding mesh imposes a more realistic rotation of components within the simulation, the need for a 

rotating reference frame by the MRF approach raises concerns about flow property continuity across its 

boundary, and to its inability to follow the geometric contours of the body. The MRF simulation showed a 

degree of recirculation at the front of the tyre, indicating stationary like conditions that differ from the jetting 

phenomena identified in the literature as characteristic of rotating wheels . In general, the airflow was 

unstructured for the MRF, while the sliding mesh showed appropriate rearward vortex generation and 

streamlined flow over and around the tyre. 

The HTC for both simulation methods generally agreed across the tyre sidewall, with some variation 

introduced from the incorrect upstream flow in the MRF simulation. Positionally, both simulations showed 

peak HTC just before the separation point, but using MRF the separation point is delayed.  

 

6.4. Wind Tunnel vs. CFD 

The correlation exercise between wind tunnel and CFD indicated that the CFD software produced lower HTC’s, 

with the magnitude of the difference varying depending on the precise location within the wheel assembly. A 

study of the effect of wheel rotation on disc HTC showed a difference between stationary and rotating 

simulations to be approximately 1W/m2K (Figure 102) while the wind tunnel results produced a much greater 

difference in HTC of over 45W/m2K between the stationary and rotating tests .  

 

Internally, the CFD was able to predict the positional pattern of HTC across the surface to some degree, with 

both rotational methods indicating the highest level of heat transfer occurred around the top half of the disc 

on the inboard side. Both methods also showed the leading Spoke surface experienced a greater level of heat 

transfer compared to that of the trail ing.  

The sidewall heat transfer experienced in the wind tunnel displayed a complex pattern with relation to speed 

and position, while the simulation provided little scope for investigation, with a near constant heat transfer 

across the sidewall. As a consequence of this lack of accuracy, conclusions on tyre sidewall HTC were solely 

based on experimental  results from the wind tunnel . 

The flow either side of the highest geometric point on the tyre sidewall profile experienced different boundary 

layer states, and increased in HTC with increased distance from the high point. Furthermore, heat transfer 

increased for a shorter period of the tyre’s rotation the closer to the ID the measurements were taken. 
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Increasing the scale of the simulation model from 50% to full  size (100%), l ike 50% simulations, showed no 

correlation to the complex patterns experienced in the wind tunnel . Evidently, the scaling factor within the 

CFD software shows no significant benefit with respect to correlation, but with a decrease in efficiency in the 

form of increased simulation run times. However, without a set of 100% scale experimental data, it is difficult 

to draw firm conclusions. 

 

The derivation of Nusselt number equations proved wind tunnel HTC results at the disc to be accurate, with 

correlation in Reynolds number exponent to l iterature. The values presented for the sidewall , however, were 

found to fall between a range bounded by the wind tunnel and CFD results. As such, a combination of both 

model fits was created, which saw more reasonable figures of ‘m’ and C, and can be used in f urther 

investigations of heat transfer.  
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Appendices 

Appendix 1: CTA Bridge Resistance Calculations 
 
Wind tunnel CTA: FlowPoint 
 

𝑉𝑝𝑟𝑜𝑏𝑒

𝑉𝑜𝑢𝑡𝑝𝑢𝑡

=
𝑅ℎ𝑜𝑡 + 𝑅𝑐𝑎𝑏𝑙𝑒

𝑅𝑏𝑟𝑖𝑑𝑔𝑒 + 𝑅ℎ𝑜𝑡 + 𝑅𝑐𝑎𝑏𝑙𝑒

 

0.393

0.629
=

16.6826 + 0.04

𝑅𝑏𝑟𝑖𝑑𝑔𝑒 + 16.6826 + 0.04
 

=
16.7226

𝑅𝑏𝑟𝑖𝑑𝑔𝑒 + 16.7226
 

𝑙𝑒𝑡 𝑥 =
0.393

0.629
 

𝑥. 𝑅𝑏𝑟𝑖𝑑𝑔𝑒 + 16.7226𝑥 = 16.7226 

𝑅𝑏𝑟𝑖𝑑𝑔𝑒 =

16.7226 − (16.7226 ∗ (
0.393
0.629

))

0.393
0.629

 

= 10.04𝛺 

Brake cooling test rig  CTA: DISA55M10 

 

𝑅𝑏𝑟𝑖𝑑𝑔𝑒 =

𝑅𝑑𝑖𝑎𝑙 − (𝑅𝑑𝑖𝑎𝑙 ∗ (
𝑉𝑝𝑟𝑜𝑏𝑒

𝑉𝑜𝑢𝑡𝑝𝑢𝑡
))

(
𝑉𝑝𝑟𝑜𝑏𝑒

𝑉𝑜𝑢𝑡𝑝𝑢𝑡
) 

 

=

16.423 − (16.423 ∗ (
0.361
1.43

))

(
0.361
1.453

)
 

49.68𝛺 
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Appendix 2: Calculation of Rotational Period 
 

𝑇𝑦𝑟𝑒 𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟 = 0.31 𝑚 

𝑇𝑦𝑟𝑒 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 = 25 
𝑚

𝑠
 

𝑇𝑦𝑟𝑒 𝐴𝑛𝑔𝑢𝑙𝑎𝑟 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 = 161.29 
𝑟𝑎𝑑

𝑠𝑒𝑐
 

= 9241.23629 
𝑑𝑒𝑔

𝑠𝑒𝑐
 

 
1 𝑇𝑖𝑚𝑒𝑠𝑡𝑒𝑝(𝑇𝑆) = 1.426 ∗ 10−5 𝑠𝑒𝑐 

1 𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 = 7700 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝𝑠 
𝑆𝑡𝑎𝑟𝑡 𝑜𝑓 𝐷𝑎𝑡𝑎 𝑅𝑒𝑐𝑜𝑟𝑑𝑖𝑛𝑔 𝑎𝑡 𝑇𝑆 = 4900 

 
1 𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 = 7700 − 4900 𝑇𝑆 

= 2800𝑇𝑆 
 

𝑅𝑒𝑎𝑙𝑡𝑖𝑚𝑒 𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒 = 0.039928 𝑠𝑒𝑐 
2800𝑇𝑆 = 0.039928𝑠𝑒𝑐 

𝑆𝑖𝑛𝑐𝑒: 

𝑆𝑝𝑒𝑒𝑑 =
𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑇𝑖𝑚𝑒
 

𝑡ℎ𝑒𝑡𝑎 = 9241.23629 (
𝑑𝑒𝑔

sec
) ∗ 0.039928 (sec) 

𝑡ℎ𝑒𝑡𝑎 = 368𝑑𝑒𝑔 
 

𝐹𝑜𝑟 5 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑠: 
𝑡ℎ𝑒𝑡𝑎 = 1800 𝑑𝑒𝑔 

𝐹𝑜𝑟 1 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛: 
360 = 9241.23628𝑥 
𝑥 = 0.03895583 𝑠𝑒𝑐 

 
1𝑇𝑆 = 1.426 ∗ 10−5 𝑠𝑒𝑐 

𝑥𝑇𝑆 =
0.03895583

1.426 ∗ 10−5
 

= 2732𝑇𝑆 
 

𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑟𝑒𝑠𝑢𝑙𝑡𝑠 𝑠𝑡𝑎𝑟𝑡 𝑎𝑡 4900𝑇𝑆,𝑠𝑜: 
𝑇𝑆 = (2731.82539 + 4900) ∗ 5𝑇𝑆 

= 18560 𝑓𝑜𝑟 5 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑠 
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Appendix 3: Hot Film Sensor Data Sheet (Dantec Dynamics, 2013) 
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Appendix 4: Pressure Tap Spacing (British Standards, 2003) 
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Appendix 5: Orifice Plate Discharge Coefficient for D and D/2 Tappings where D > 
71.12mm (British Standards, 2003)  
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Appendix 6: Orifice Plate Expansion Factor (British Standards, 2003)  
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Appendix 7: Cp Calculations for Bench Test Data 
 

𝑅𝑒𝐷  =  𝑣𝑎𝑙𝑢𝑒 𝑓𝑟𝑜𝑚  𝐴𝑝𝑝𝑒𝑛𝑑𝑖𝑥 6 

𝐶 =  𝑣𝑎𝑙𝑢𝑒 𝑓𝑟𝑜𝑚 𝐴𝑝𝑝𝑒𝑛𝑑𝑖𝑥 6 

𝜀 =  𝑣𝑎𝑙𝑢𝑒 𝑓𝑟𝑜𝑚 𝐴𝑝𝑝𝑒𝑛𝑑𝑖𝑥 6  

𝑉𝑒𝑙𝐷  = 
𝑅𝑒𝐷𝜇

𝑂𝐷𝐷𝜌
           

𝑚 

𝑠
 

𝑃𝐷𝑌𝑁𝐷
=

1

2
𝜌𝑣2          

𝑘𝑔

𝑚.𝑠2
 

𝑃𝐷𝑌𝑁_𝑀𝐸𝐴𝑆_1 =
𝑃𝐷𝑌 𝑁𝐷

(1 − 𝛽4)

(𝛽4. 𝑐2 . 𝜀2)
          

𝑘𝑔

𝑚.𝑠2
 

𝐶𝑃𝐷𝑌𝑁 _𝑀𝐸𝐴𝑆_1 =
𝑃𝐷𝑌𝑁𝑀𝐸𝐴𝑆

𝑃𝐷𝑌 𝑁𝐷

 

 

Quasi-Velocity 

𝑄(𝑣) = √
2𝑃𝐷𝑌𝑁𝑀𝐸𝐴𝑆

𝜌
           

𝑘𝑔

𝑚.𝑠2
 

𝑎𝑛𝑑: 𝛽 =  𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 𝑟𝑎𝑡𝑖𝑜 

          𝑐 = 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 𝑓𝑟𝑜𝑚 𝐵𝑆 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑡𝑎𝑏𝑙𝑒𝑠 

          𝜀 = 𝑒𝑥𝑝𝑎𝑛𝑠𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 

     

𝑄 (
𝑅𝑒

𝑚
) =

𝑄(𝑣) ∗ 𝜌

𝜇
 

 

Calculated Coefficient of Pressure  

𝐶𝑃𝐷𝑌 𝑁𝑀𝐸𝐴𝑆𝐶𝐴𝐿𝐶
=

𝑃𝐷𝑌𝑁𝑀𝐸𝐴𝑆1

𝑃𝐷𝑌 𝑁𝐷2

 

 

Dynamic Pressure at Diameter ‘D2’ 

𝑃𝐷𝑌 𝑁𝐷2
= 𝑃𝐷𝑌 𝑁𝑑

.𝛽4 

 

Dynamic Pressure at Diameter ‘d’ 

𝑃𝐷𝑌 𝑁𝑑
=

𝐶 2. 𝜀2.𝑃𝐷𝑌 𝑁𝑀𝐸𝐴𝑆1

1 − 𝛽4
      

 

Pressure Loss 
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Pressure Loss co-efficient 

K =
𝛥𝜔

0.5 ∗ 𝜌 ∗ 𝑄(𝑣)2
 

 

Measured Coefficient of Pressure 

𝐶𝑝𝑀𝐸𝐴𝑆 = −𝐾 
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Appendix 8: Wind Tunnel Test Mounting Frame – Various Component Drawings 
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Appendix 9: Wind Tunnel Sidewall HTC Graphs 
 

 
Sidewall  HTC for All  Positions at 0m/s  

 

 
Sidewall  HTC for All  Positions at 10m/s  
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Sidewall  HTC at 10m/s – Modified to Outline Positional Trends  

 
 

 
Sidewall HTC for All Positions at 15m/s 


