
Durham E-Theses

Box�Cox�type Transformations for Linear and Logistic

Models with Random E�ects.

ALMOHAIMEED, AMANI,MOHAMMED

How to cite:

ALMOHAIMEED, AMANI,MOHAMMED (2018) Box�Cox�type Transformations for Linear and Logistic

Models with Random E�ects. , Durham theses, Durham University. Available at Durham E-Theses Online:
http://etheses.dur.ac.uk/12831/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

http://www.dur.ac.uk
http://etheses.dur.ac.uk/12831/
 http://etheses.dur.ac.uk/12831/
htt://etheses.dur.ac.uk/policies/

Academic Support O�ce, Durham University, University O�ce, Old Elvet, Durham DH1 3HP
e-mail: e-theses.admin@dur.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

2

http://etheses.dur.ac.uk

Box–Cox–type Transformations

for Linear and Logistic Models

with Random Effects

Amani Mohammed Almohaimeed

A Thesis presented for the degree of
Doctor of Philosophy

Department of Mathematical Sciences
Durham University
United Kingdom

October 2018

Box–Cox–type Transformations

for Linear and Logistic Models

with Random Effects

Amani Mohammed Almohaimeed

Submitted for the degree of Doctor of Philosophy

October 2018

Abstract: Random effect models have become a mainstream statistical technique

over the last decades; and the same can be said for response transformation models

such as the Box–Cox transformation. The latter ensures that the assumptions of

normality and of homoscedasticity of the response distribution are fulfilled, which are

essential conditions for the use of a linear model or a linear mixed model. However,

methodology for response transformation and simultaneous inclusion of random

effects has been developed and implemented only scarcely, and is so far restricted to

Gaussian random effects. The first aim of this thesis is to develop such methodology,

thereby not requiring parametric assumptions on the distribution of the random

effects. This is achieved by extending the “Nonparametric Maximum Likelihood”

towards a “Nonparametric Profile Maximum Likelihood” (NPPML) technique. The

implemented techniques allow to deal with overdispersion as well as two–level data

scenarios in general linear models.

The second part of this thesis considers the transformation of mixed-effects

logistic models, with the aim of improving model fit. In binary data, link functions

other than the logit can be used to connect predictors with the response. The

Box-Cox transformation is used in mixed–effects binary regression models as an

alternative link function for linearization purposes. The NPPML approach is used

similarly as before, with some adjustments.

The proposed approach is implemented in the R package boxcoxmix. Simu-

lation studies and applications on real data are carried out to study the performance

of this approach.

Declaration

The work in this thesis is based on research carried out in the Department of

Mathematical Sciences at Durham University. No part of this thesis has been

submitted elsewhere for any degree or qualification.

Copyright © 2018 Amani Mohammed Almohaimeed .

“The copyright of this thesis rests with the author. No quotation from it should be

published without the author’s prior written consent and information derived from

it should be acknowledged.”

Acknowledgements

First and foremost,

“Alhamdulillah for the countless blessings upon me.”

My most sincere appreciation goes to my PhD supervisor Prof Jochen

Einbeck. I am very grateful for his kindness, patience, encouragement, and immense

knowledge throughout my PhD. I would like to extend my gratitude to all of the

faculty and staff of the Department of Mathematics, Durham University.

My deepest and sincere gratitude goes to my husband and my parents for

their love and encouragement.

Last but not least, I would like to thank my sponsors, Qassim University

and Saudi Arabian Cultural Bureau in London for their generous scholarship and

support.

Dedicated to

Bandar, Nareez, Albadra,
Mom and Dad

Contents

Abstract iii

List of Figures xvii

List of Tables xxv

1 Introduction 1

1.1 Basic concepts and notations 2

1.2 Literature review 7

1.3 Software review 15

1.4 Summary . 16

2 Box-Cox transformations for random effect models 19

2.1 Introduction . 19

2.2 Box–Cox transformation 23

xii Contents

2.2.1 Estimation of the model parameters 24

2.2.2 Existing R implementation: boxcox() 27

2.3 Random effects . 31

2.3.1 Estimation of finite mixtures 32

2.3.2 Existing R implementation: alldist() 36

2.4 Box-Cox transformations for random effect models 40

2.4.1 Estimation of finite mixtures 41

2.4.2 Estimation of the transformation parameter 46

2.5 Technical details 47

2.5.1 Non-iterative solution for β̂(λ) 47

2.5.2 The standard error of the parameter estimates SE(β̂(λ)) . . 50

2.5.3 Starting point selection and the first cycle 53

2.6 Software description 54

2.7 Simulation studies 59

2.8 To transform or not to transform? 71

2.9 Applications . 72

2.10 Special case: Box-Cox transformations for pure mixture model . . 83

Contents xiii

2.10.1 Estimation of finite mixtures 84

2.11 Applications . 87

2.12 Discussion . 93

3 Box-Cox transformations for two–level models 99

3.1 Introduction . 99

3.2 Two-level models 100

3.2.1 Estimation of finite mixtures 101

3.2.2 Existing R implementation: allvc() 104

3.3 Box-Cox transformations for two-level models 108

3.3.1 Estimation of finite mixtures 109

3.4 Software description 114

3.5 Simulation study 114

3.6 Applications . 119

3.7 Discussion . 123

4 Transformations for logistic regression models 125

4.1 Introduction . 125

4.2 Logistic regression model 126

xiv Contents

4.2.1 The logit link function 127

4.2.2 Maximum likelihood estimation of the regression parameters 128

4.2.3 Existing R implementation: glm(), alldist() 129

4.3 Transformations for binary regression models 129

4.3.1 Maximum likelihood estimation of the regression parameters 132

4.3.2 Estimation of the transformation parameter 134

4.4 Software description 135

4.5 Simulation study 136

4.6 Application . 144

4.7 Discussion . 151

5 Transformations for mixed–effects logistic models 155

5.1 Introduction . 155

5.2 Transformations for mixed–effects binary regression models . . . 156

5.2.1 Maximum likelihood estimation of the regression parameters 157

5.3 Transformations for the two–level binary regression model 160

5.3.1 Maximum likelihood estimation of the regression parameters 161

5.4 Software description 164

Contents xv

5.5 Simulation study 164

5.6 Application . 172

5.7 Discussion . 204

6 Conclusions and Recommendations 205

References 210

A Appendix A 221

A.1 R codes for the simulation studies 221

A.1.1 Box-Cox transformations for random effect models 221

A.1.2 Box-Cox transformations for two–level models 233

A.1.3 Transformations for fixed–effect binary regression models . . 239

A.1.4 Transformations for mixed–effects binary regression models . 244

A.2 A comparison of the simulation studies of the random effect models 249

A.3 Simulations using fixed λ 252

A.4 Residual Plots . 256

The boxcoxmix package manual 257

List of Figures

2.2.1 Untransformed hosp data 29

2.2.2 Transformed hosp data 30

2.3.1 fitting the random effect with NPML to the strength data using

the function alldist(), with k=3 and tol=0.5 39

2.7.1 Flow chart of the methodology followed in the simulation study 1 . 60

2.7.2 Simulation Study 1: boxplots for the parameter estimates of the

transformed random effect model using a fixed value of λ that is 0,

0.5, 1 and 2, respectively, from 1000 simulations. 61

2.7.3 Simulation Study 1: estimates β̂, in each plot for true λ` = 0, 0.5, 1, 2

(from left to right). The lower plot is exactly the upper plot with

logarithmic scale in the vertical axis. Horizontal lines indicate the

true values. 64

2.7.4 Simulation Study 1: estimated λ, for true λ` = 0, 0.5, 1, 2 (from left

to right). 65

xviii List of Figures

2.7.5 Simulation Study 2: boxplots for the parameter estimates of fixed

lambda, for each transformed model using the true value of lambda

0, 0.5, 1 and 2, respectively, from 1000 simulations. 68

2.7.6 Simulation Study 2: estimates β̂, in each plot for true λ` = 0, 0.5, 1, 2

(from left to right). The lower plot is exactly the upper plot with

logarithmic scale in the vertical axis. Horizontal lines indicate the

true values. 70

2.7.7 Simulation Study 2: estimated λ, for true λ` = 0, 0.5, 1, 2 (from left

to right). 71

2.8.1 to transform or not to transform 71

2.9.1 A grid search over tol for the random effect models of the strength

data, using K = 3 and λ = 1 74

2.9.2 A grid search over λ for the random effect models of strength data,

using K = 3 and tol= 1.8 75

2.9.3 AIC and BIC values of the model after applying the response trans-

formation to the fabric data for K ∈ [1, 8] 80

2.9.4 λ̂ as a function of K with the optimal tol of each class for modelling

fabric data . 80

2.9.5 the Box–Cox transformation for the fixed (left) and random effects

models (right) to the fabric data 81

List of Figures xix

2.9.6 The fitted values against the transformed response of the fabric

data for fixed effect model (left) and those for random effect model

(right) . 82

2.9.7 Control Chart of residuals of the untransformed (top plot) against

the transformed fabric Data (bottom plot), using K=2, λ = −0.3

and tol=1.5 . 82

2.11.1 λ̂ as a function of K with the optimal tol for each K of modelling

AirPassengers data 89

2.11.2 AIC and BIC values of the model after applying the response trans-

formation to the AirPassengers data for K ∈ [1, 8] 89

2.11.3 λ̂ as a function of K with the optimal tol for each number of classes

of modelling the WWWusage data 91

2.11.4 AIC and BIC values of the model after applying the response trans-

formation to the WWWusage data for K ∈ [1, 8] 92

3.2.1 Heights of 26 boys in Oxford over two years. 106

3.2.2 Fitting the variance component with NPML to the Oxboys data

using the function allvc, with k=6 and tol=0.5 108

3.5.1 Simulation results: estimated β for fixed λ` = 0, 0.5, 1, 2 with K =

4(from left to right). 116

xx List of Figures

3.5.2 Simulation results: Estimates β̂, in each plot for true λ` = 0, 0.5, 1, 2

(from left to right). The lower plot is exactly the upper plot with

logarithmic scale in the vertical axis. Horizontal lines indicate the

true values. 117

3.5.3 Simulation results: estimated λ, for true λ` = 0, 0.5, 1, 2 (from left

to right). 118

3.6.1 AIC and BIC values of the model after applying the response trans-

formation to the Oxboys data for K ∈ [1, 10] 121

3.6.2 λ̂ as a function of K with the optimal tol for each class of the

Oxboys data . 122

3.6.3 The disparities (−2 logL) against EM iteration number for the 8

mass–points transformed model of the Oxboys data using λ = −0.19

and tol = 0.5. 123

4.5.1 Simulation results: estimated β for fixed λ compared with logistic

model, from left to right: λ1 = −0.2, logistic model, λ` = 0, 0.2, 0.5, 1,

respectively. 138

4.5.2 Simulation results: Estimates β̂, in each plot for true λ` = −0.2, 0, 0.2, 0.5, 1

(from left to right). 140

4.5.3 Simulation results: estimated λ, for true λ` = −0.2, 0, 0.2, 0.5, 1

(from left to right). 140

List of Figures xxi

4.5.4 Simulation results: estimated regression parameters against estim-

ated transformation parameters. In each plot for true β = 2, 1 (from

left to right) and for true λ = −0.2, 0, 0.2 (from top to bottom), . 141

4.5.5 Simulation results: estimated regression parameters against estim-

ated transformation parameters. In each plot for true β = 2, 1 (from

left to right) and from top to bottom, λ = 0.5, 1. 142

4.5.6 Simulation results: in each plot, β̂1 vs β̂0 for true λ = −0.2, 0, 0.2, 0.5, 1

(from top to bottom). 143

4.6.1 For the UCB data, a grid search over λ 149

4.6.2 Residuals against fitted values plots for the UCB data using λ̂ = −3.75

and λ = 0 (logit model). The middle plot is exactly the left plot but

with logarithmic scale in the vertical axis. 150

5.5.1 Simulation results: estimated β for logistic model compared with

fixed λ` = 0, 0.2, 0.5, 1 and K = 3 (from left to right), the horizontal

lines in the boxplots indicate the actual values of β = 3, 0.5. . . 166

5.5.2 Simulation results: Estimates β̂, in each plot for true λ` = 0, 0.2, 0.5, 1,

setting K = 3 (from left to right). The lower plot is exactly the

upper plot with adjusted limits in the vertical axis in the range of

-5 to 30. Horizontal lines indicate the true values β = 3, 0.5. . . 167

xxii List of Figures

5.5.3 Simulation results: estimated λ, for true λ` = 0, 0.2, 0.5, 1, setting

K = 3 (from left to right). Horizontal lines indicate the true values

of λ. 168

5.5.4 Simulation results: estimated regression parameters against estim-

ated transformation parameters, in each plot for true βj = 3, 0.5

(from left to right) and λ1 = 0. The lower plots are exactly the

upper plots with logarithmic scale in the vertical axes. 168

5.5.5 Simulation results: estimated regression parameters against estim-

ated transformation parameters, in each plot for true β = 3, 0.5

(from left to right) and λ` = 0.2, 0.5, 1 (from top to bottom). . . 169

5.5.6 Simulation results: in each plot, β̂2 vs β̂1 for true λ = 0, 0.2, 0.5, 1.

Plot (b) is exactly Plot (a) with logarithmic scale in the vertical axis. 171

5.6.1 A grid search over λ, using K = 2 (left) and K = 3 (right), of the

rainfall data 175

5.6.2 Residuals against fitted values plots for the rainfall data with

K = 2 using the logit (left plot) and power (right plot) link functions.178

5.6.3 A grid search over λ, using K = 2, 3, 4 and 5, of the betablocker

data . 184

5.6.4 λ̂ as a function of K with the optimal tol for each class of the

betablocker data 185

List of Figures xxiii

5.6.5 AIC and BIC values of the Box–Cox–type models for K ∈ [2, 5] of

the betablocker data 185

5.6.6 A grid search over λ, using K = 2, 3, 4 and 5 for the two–level model

of the betablocker data 191

5.6.7 λ̂ as a function of K with the optimal tol for each class of the

two–level model of the betablocker data 192

5.6.8 AIC and BIC values of the Box–Cox–type models for K ∈ [2, 5] for

the two–level model of the betablocker data 192

5.6.9 Residuals against fitted values plots for the two–level model of the

betablocker data with K = 3 using the power (left plot) and logit

(right plot) link functions. 194

5.6.10 A grid search over λ, using K = 2, 3, 4 and 5 of the Mehta data . 200

5.6.11 λ̂ as a function of K with the optimal tol for each class of the Mehta

data . 200

5.6.12 AIC and BIC values of the Box-Cox-type model for K ∈ [2, 5] of the

Mehta data . 201

5.6.13 Residuals against fitted values plots of the Mehta data with K = 2

using the power (left plot) and logit (right plot) link functions. . 203

A.2.1 Simulation Study 1: an assessment of the normality of the residuals

for simulated data of the first study using QQ-plot and Histogram 251

xxiv List of Figures

A.2.2 Simulation Study 2: an assessment of the normality of the residuals

for simulated data of the second study using QQ-plot and Histogram251

A.3.1 Algorithm for simulation studies for the linear models with fixed λ

values . 254

A.3.2 Algorithm for simulation studies for the binary models with fixed λ

values . 255

A.4.1 The residuals plots for WWWusage data before and after applying the

response transformation for K ∈ [1, 4] 256

List of Tables

2.6.1 number of parameters 56

2.7.1 Simulation Study 1: Summary of simulation results for λ = 0 . . 62

2.7.2 Simulation Study 1: Summary of simulation results using λ̂, in each

column for true λ` = 0, 0.5, 1, 2 66

2.9.1 Comparison of results from untransformed & transformed strength

data, using K = 3. 76

2.9.2 Comparison of AIC values for strength data 77

2.9.3 Comparison of results from the untransformed fabric data (λ = 1),

using K from 1 to 8 79

2.9.4 Comparison of results from the transformed fabric data using λ̂,

using K from 1 to 8 79

2.11.1 Comparison of results from the untransformed AirPassengers data

(λ = 1), using K from 1 to 8 88

xxvi List of Tables

2.11.2 Comparison of results from the transformed AirPassengers data

using K from 1 to 8 88

2.11.3 Comparison of results from the untransformed WWWusage data (λ =

1), using K from 1 to 8 91

2.11.4 Comparison of results from the transformed WWWusage data (λ = 1),

using K from 1 to 8 91

3.5.1 Summary of simulation results for λ = 0 116

3.5.2 Summary of simulation results using unknown values of λ . . . 119

3.6.1 Comparison of results from the untransformed Oxboys data (λ = 1),

using K from 1 to 10 120

3.6.2 Comparison of results from the transformed Oxboys data using K

from 1 to 10 . 121

4.6.1 Comparison of results from logistic & power transformed models for

the UCB data . 149

5.6.1 Comparison of results from logistic & power transformed models for

the rainfall data 178

Chapter 1

Introduction

In regression analysis, meeting the assumptions of normality and homoscedasticity

of the response distribution and linearity of the model often requires transforming

the response variable. The power transformation that was proposed by Box and

Cox (1964) allows the response variable to achieve at least approximately a normal

distribution, and makes the variance more nearly constant across data points around

the regression line. Osborne (2010) suggested that normalizing data via the Box–Cox

transformation to be a stage in data cleaning routines. In this thesis, we present

the research in two parts. The methods of the first part focus on transforming

the response in the linear model to validate the distributional assumptions of the

model (Chapters 2 and 3). The second part applies the transformation to the odds–

ratio as an alternative link function to generalize the logistic–mixed–type model

and carry out the analysis of the binary response (Chapters 4 and 5). In this

introduction, we initially lay out some basic concepts which are required for later

use. A comprehensive review on the literature regarding these concepts will then be

2 Chapter 1. Introduction

presented. We will also review the statistical software packages used in this thesis.

Finally, the chapter will be closed with a brief summary of this thesis.

1.1 Basic concepts and notations

The Box–Cox transformation (Box and Cox, 1964) has been widely used in applied

data analysis. The objective of the transformation is to select an appropriate para-

meter λ which is then used to induce normality and homoscedasticity in the linear

model. The transformation of the responses yi, i = 1, . . . , n, takes the form:

y
(λ)
i =

yλi − 1
λ

(λ 6= 0),

log yi (λ = 0)

(1.1.1)

where the restriction yi > 0 applies. The response variable transformed by the

Box–Cox transformation is assumed to be linearly related to its covariates and the

errors normally distributed with constant variance. For unknown λ,

Y (λ) = XTβ + ε (1.1.2)

where Y = (y1,, yn)T is a vector of observations, Y (λ) = (y(λ)
1 ,, y(λ)

n)T is the

vector of transformed observations, X is a known matrix of dimension n × p, β is

a p × 1 vector of unknown predictors, ε ∼ N(0, σ2) is a vector of random errors.

This family of transformations includes many traditional transformations to meet

the needs of the data (Osborne, 2010):

Y (1): no transformation needed; produces results identical to original data

Y (1/2): square root transformation

1.1. Basic concepts and notations 3

Y (1/3): cube root transformation

Y (1/4): fourth root transformation

Y (0): natural log transformation

Y (−1/2): reciprocal square root transformation

Y (−1): inverse transformation and so on.

General ideas for finding variance-stabilising transformations, were dis-

cussed by Sakia (1992), are based on assuming that the variance of a Box-Cox

transformed variable can be approximated by

V ar(Y (λ)) ' σ2[E(Y)]2λ−2+δ (1.1.3)

where δ is unknown and [E(Y)] > 0. If δ = 2− 2λ, the homoscedasticity is achieved.

In the linear model, it is assumed that a set of explanatory variables xi,

i = 1, . . . , n, and a response variable yi are linearly related such that yi = xTi β + εi,

where εi is an error term which is usually assumed to be Gaussian and homoscedastic.

In such cases, the presence of further unknown variability can be accommodated by

adding an unobserved random effect zi with density g(z) to the linear predictor,

yi = xTi β + zi + εi. (1.1.4)

The responses yi are assumed to be independently distributed with mean function

E(yi|zi) = xTi β + zi, conditionally on the random effect zi. Let φ(y; ·, ·) denote the

univariate Gaussian probability density function, with mean and variance specified in

the remaining two function arguments. The conditional probability density function

4 Chapter 1. Introduction

of yi given zi is given by

f(yi|zi) = φ(yi;xTi β + zi, σ
2) = 1√

2πσ2
exp

[
− 1

2σ2 (yi − xTi β − zi)2
]
. (1.1.5)

Note that under the presence of a random effect, the parametric intercept term

can be omitted from xTi β. Under the non-parametric maximum likelihood (NPML)

estimation approach, the distribution of the random effect will be approximated by a

discrete distribution at mass–points z1, . . . , zK , which can be considered as intercepts

for the different unknown subgroups. The likelihood can now be approximated as a

discrete distribution on a finite number K of mass-points zk, with masses πk (Aitkin

et al., 2009)

L(β, σ2, g) =
n∏
i=1

∫
f(yi|zi)g(zi)dzi ≈

n∏
i=1

K∑
k=1

πkfik (1.1.6)

where fik = f(yi|zk). For more details, see Chapter 2.

If the population from which the data are sampled consists of heterogen-

eous, unknown subpopulations, then the linear model described above will not fit

well. The unobserved heterogeneity occurs when it is not possible to identify to

which subpopulations the observations of a sample belong (Wang, 2004). Ignoring

heterogeneity can result in biased and inconsistent estimates of all model parameters

and the effect of covariates can also be meaningless (Assaf et al., 2016). Lubke

and Muthén (2005) stated that “If the sources of heterogeneity are observed (e.g.,

gender), the data can be split into groups and the data analyzed with methods for

multiple groups. If the sources of population heterogeneity are unobserved, the data

can be analyzed with latent class models.” For further information the reader is

referred to Chapter 8 of the statistical modelling in R book (Aitkin et al., 2009).

1.1. Basic concepts and notations 5

The variance component model can be used to induce intra-class correlation

in hierarchical two–level structures (e.g., children in school classes, hospital within

region, etc). In this case, an unobserved random effect zi with upper–level indexed

by i = 1 . . . , r, and lower-level indexed by j = 1, . . . , ni,
∑r
i=1 ni = n is added

to the linear predictor xTijβ. The responses yij are independently distributed with

conditional mean function E(yij|zi) = xTijβ + zi, where the distribution of the zi

is again unspecified. The conditional probability density function of yij given zi is

given by

f(yij|zi) = φ(yij;xTijβ + zi, σ
2) = 1√

2πσ2
exp

[
− 1

2σ2 (yij − xTijβ − zi)2
]
. (1.1.7)

The likelihood is thus

L(β, σ2, g) =
r∏
i=1

∫ ni∏
j=1

f(yij|zi)
 g(zi)dzi. (1.1.8)

The aforementioned approach is carried out to approximate the likelihood in the

same way as the random effect models with some related changes, for further details

see Chapter 3.

A second topic considered in the thesis is the logistic model that includes

an unobserved random effect zi, i = 1, . . . , n, with an unspecified mixing distribution

g(z) into the linear predictor. We assume the response Yi, i = 1, . . . , n, follows a

binomial distribution with Yi ∼ B(mi, Pi) where mi is the number of trials and Pi is

a vector with fixed success probabilities for each category. Logistic models connect

the probability Pi nonlinearly to the linear predictors xTi β + zi = ηi through a link

function. In such case, a common link function is the logit that transforms the

6 Chapter 1. Introduction

interval (0, 1) to (−∞,∞),

logit(Pi) = ηi = xTi β + zi (1.1.9)

The likelihood function can be written as

L(β, g) =
n∏
i=1

∫
f(yi|Pi)g(zi)dzi (1.1.10)

where

f(yi|Pi) =
(
mi

yi

)
P yi
i (1− Pi)mi−yi (1.1.11)

where yi = 0, 1, ...,mi, P yi
i (1− Pi)mi−yi is the probability of having mi − yi failures

and yi successes in a particular order, and
(
mi
yi

)
is the binomial coefficient that is

the number of ways of observing yi successes in mi trials. It follows E(Yi|zi) = miPi

and V ar(Yi|zi) = miPi(1 − Pi). If mi = 1, then Yi follows a Bernoulli distribution

with mean and variance as E(Yi|zi) = Pi and V ar(Yi|zi) = Pi(1− Pi), respectively.

Equation (1.1.9) is a binomial regression model that includes an unobserved random

effect zi, i = 1, . . . , n, with an unspecified mixing distribution g(z) and it includes

the binary regression model as a special case. The model (1.1.9) is still sometimes

referred to in the literature as a binary regression model and we will use these two

terms interchangeably throughout the thesis. The marginal likelihood can again be

approximated using NPML estimation (Aitkin et al., 2009):

L(β, z1,, zk, π1,, πk) =
n∏
i=1

K∑
k=1

πkf(yi|Pik) (1.1.12)

with a similar adoption for two–level models. See Chapters 4 and 5 for further

information about fixed effect and mixed effects binary regression models.

1.2. Literature review 7

1.2 Literature review

In regression analysis, the data needs to achieve normality and homoscedasticity

of the response distribution in order to use parametric statistical tests. This of-

ten requires transforming the response variable. Box and Cox (1964) proposed a

parametric power transformation technique for transforming the response in uni-

variate linear models. They used maximum likelihood (ML) as well as Bayesian

methods for the estimation of the transformation parameter. This transformation

has been intensively studied by many researchers. Sakia (1992) briefly reviewed

the work relating to this transformation. In this context, an estimation method for

the Box–Cox transformation model without making any parametric assumption on

the distribution of the error term has been proposed in Foster et al. (2001), Shin

(2008) and Ji et al. (2017), and is found to be more consistent than the parametric

estimation of the parameters. Further considerations relating to the estimation of

the transformation parameter, particularly the non–consistency of the estimate, have

also been discussed by Sugasawa and Kubokawa (2015), Maruo et al. (2015) and

Maruo et al. (2017). They addressed the truncation problem that is the fact of not

including the entire real line in the transformation due to the restriction on the

response to be greater than zero. They concluded that the wrong assumption of

the error term results in inconsistency of the ML estimation of the transformation

parameters which might affect the inference of the other model parameters. Foster

et al. (2001) has indicated that the non–parametric estimation of the transformation

parameters is a useful tool for characterising the non–concave (or non–convex) shape

of the transformation.

8 Chapter 1. Introduction

Solomon (1985) studied the application of the Box–Cox transformations to

simple variance component models. The extension of the transformation to the linear

mixed effects model was proposed by Gurka et al. (2006), in the case of a Gaussian

random effect distribution. An obvious concern of assuming a normal random effect

distribution is whether there are any harmful effects of misspecification. Agresti

et al. (2004) showed that a misspecification of the random effects distribution may

affect the prediction accuracy of the random effects as well as the fixed effects. In

such cases, Maruo et al. (2017) whose interests were in assessing fixed effects more

than random effects, added a robust inference to the model proposed by Gurka et al.

(2006). They proposed an inference of the median difference procedure based on the

Box–Cox linear mixed model by applying the inverse of the transformation to the

model mean and obtain the corresponding median on the original scale. However,

Carroll (1982) focused on estimating the median of the response in the original scale

when the choice of the power of the transformation is restricted to a finite set and

found that restricted estimation of the transformation parameter can possibly lead

to inferences different from ML estimation of the median response. In consideration

of the random effects misspecification, Wang et al. (2012) argued that even when

the estimation of the fixed effect is robust, the estimation of the random effects

could be invalid. This may raise the question of whether to use fixed or random

effects in transforming such data. Clark and Linzer (2015) offered general rules of

thumb upon which researchers may rely when deciding between the fixed effects

and random effects approach. They concluded that, for any particular sample, the

random effects model may introduce bias in estimates of the parameters but can

greatly constrain the variance of those estimates leading to estimates that are closer

1.2. Literature review 9

to the true value when compared with those of the fixed effects model.

Bock and Aitkin (1981) showed that there is no need to make an assump-

tion about the distribution of the random effects and that is estimated as a discrete

mixing distribution. Aitkin (1996a), Heckman and Singer (1984) and Davies (1987)

showed that the parameter estimation is sensitive to the change in the mixing dis-

tribution specification. The problem of estimating the mixing distribution using a

specific parametric form (e.g. normal) can be overcome by the use of non–parametric

maximum likelihood (NPML) estimation; the NPML estimate of the mixing distribu-

tion is known to be a discrete distribution involving a finite number of mass–points

and corresponding masses (Laird, 1978; Lindsay, 1983). Agresti et al. (2004) studied

the effects of using parametric or nonparametric estimation methods for random

effects when the true distribution is quite far from normal. They concluded that

“the safest approach might seem to be always to use a nonparametric rather than

a parametric approach for the random effects distribution.” Methodology to assess

the accuracy of random effect distributions has been developed by Verbeke and

Molenberghs (2013).

Theory and application of the non–parametric approach to random effects

are acknowledged to be “attractive” (Butler and Louis, 1992). Rabe-Hesketh et al.

(2003) used NPML estimation to estimate logistic regression models models with

measurement error, and their study revealed that the NPML gives unbiased estimates

of the odds–ratio and other parameter of interest. The study by Fotouhi (2003) used

the bias and efficiency criteria to compare five estimation procedures for fitting

multilevel models. They recommended the NPML approach among the studied

10 Chapter 1. Introduction

procedures especially when no prior information is made about the distribution of

the random effect. Butler and Louis (1992) concluded that, in both linear and non–

linear models, the non–parametric approach produces efficient and robust estimates

of fixed effects.

Maximization of a nonlinear likelihood function is required for estimation

of the Box–Cox Equation (1.1.1) which has been remarked by Spitzer (1982) as a

more complex analysis. Gurka et al. (2006) used the residual maximum likelihood

(REML) to find the parameter estimators of the Box–Cox Equation (1.1.1) for the

linear mixed effects model. Piepho and McCulloch (2004) noted that ML estimation

of variance components is more biased than REML estimation. However, Aitkin

(1995) demonstrated that the NPML method reduces bias and increases precision.

Iterative methods must be used to find the parameter estimates that maximize the

likelihood. Lindstrom and Bates (1988) compared the Newton–Raphson (NR) and

Expectation–Maximization (EM) algorithms in terms of computational order and

performance in estimating the parameters in the mixed-effects model via both ML

and REML. They concluded that although the NR algorithm achieves convergence

with a small number of iterations, it is not guaranteed to converge, while the EM

algorithm will always converge to a local maximum of the likelihood but may require

a high number of iterations.

The EM algorithm for NPML estimation was proposed by Laird (1978)

in the case of mixture density estimation and developed by Lindsay (1983). This

algorithm was used by Dempster et al. (1977) for fitting the finite mixture distri-

bution, each iteration of this algorithm is based on two steps: the expectation step

1.2. Literature review 11

(E-step) in which the posterior probabilities that the current unit is assigned to a

certain cluster are computed, and the maximization step (M-step) in which the ML

estimates are calulated using the current weights. The ML estimate via the EM

algorithm is a preferable approach due to its generality and simplicity; when the

underlying complete data come from an exponential family whose ML estimates are

easily computed, then each maximization step of an EM algorithm is likewise easily

computed (Dempster et al., 1977). For both overdispersed and variance component

models, the EM algorithm for the NPML estimate of the mixing distribution was re-

garded as “very stable and converged in every case” (Aitkin, 1996a, 1999a). We refer

the reader to Aitkin (1999a), Aitkin et al. (2009) and Einbeck et al. (2007) for more

details in the context of linear models. A brief discussion on the EM algorithm for

the NPML estimate of an unspecified mixing distribution for mixed–effects logistic

models can be found in Trovato and Caiazza (2004).

A particular benefit of the NPML approach is that the posterior probability

that a certain unit belongs to a certain cluster corresponds to the weights in the

final iteration of the EM algorithm (Sofroniou et al., 2006). Another advantage

of this approach is that there is no need for a computational effort to locate new

mass–points when the number of components increased and that the mass–points

are not necessarily restricted to be on a grid (Aitkin, 1996a). Aitkin concluded that

“the simplicity and generality of the non–parametric model and the EM algorithm

for full NPML estimation in overdispersed exponential family models make them

powerful modelling tools”.

Einbeck and Hinde (2006) investigated the effect of the number of com-

12 Chapter 1. Introduction

ponents K on convergence of EM algorithm, they concluded that a larger value of

K may results in a large number of iterations for convergence. This implies that

the value of K needs to be estimated. Aitkin (1999a) suggested that in order to

select the appropriate number of components in the finite mixture one can start with

one component (i.e. the standard generalized linear model) and then increase the

number of components until the likelihood is maximized. A general common issue in

clustering techniques is the difficulty of determining the ‘right’ number of compon-

ents. Within the context of NPML estimation, Böhning et al. (2006) remarked that

“profile likelihood ratios will not have standard χ2–distributions”, therefore, they

suggested using other selection criteria for determining the number of components.

Bowman and Evers (2017) showed that one cannot use classical statistical tests for

estimating the number of components due to the parameter boundary hypothesis

problem. To solve this, they suggested the use of model selection criteria. Leroux and

Puterman (1992) indicated that the NPML estimation may require an unnecessarily

high number of components to maximize the likelihood whereas well–fitting models

with a small number of components are usually preferred. Lukociene and Vermunt

(2009) suggested an approach in which the number of components is estimated. In

their approach, the value of K increased until no further improvement is possible for

the criterion used for model selection. Akaike’s information criterion (AIC; Akaike,

1998) and the Bayesian information criterion (BIC; Bhat and Kumar, 2010) are

popular information criteria for comparing model fits. The model with the ‘correct’

number of classes is the one with the minimum AIC or BIC value.

The ability of the EM algorithm to locate the global maximum in fewer

iterations can be affected by the choice of initial values. Aitkin et al. (2005) demon-

1.2. Literature review 13

strated that fitting mixture models using the EM algorithm guaranteed convergence

to at least one local maximum, however, extensive search over the starting values

was suggested to locate the global maximum. Einbeck and Hinde (2006) noted

that the EM algorithm may find different local maxima, depending on the choice

of the starting values. The difference in the local maxima may occur depending

on whether the EM algorithm has an odd or even number of mass–points (Aitkin,

1996a). Several methods for choosing initial values for the EM algorithm in the case

of finite mixtures are discussed by Karlis and Xekalaki (2003). A grid search for

setting the initial values was suggested by Laird (1978).

Hou et al. (2011) compared the effect of estimating the Box-Cox power

transformation parameter and subsequent analysis of variance with or without a

priori knowledge of predictor variables under the fixed effect or random effects

model cases. They found limited difference from subsequent test of structural effects

regardless of whether such structure is included or omitted during the estimating

process for the Box-Cox power transformation parameter. This enables analysts to

transform variables earlier in the model building, making the Box-Cox transformation

much simpler to apply in practice. They also noted that the Box–Cox transformation

works better only if the cluster sizes are very large; and it is necessary to run a grid

search of the transformation in order to determine the parameter estimate that

maximizes the residual likelihood during the optimization process both under the

linear and the mixed model settings. Nawata (1994) proposes a scanning ML method.

Basically one conducts the entire methodology on a grid of fixed values of λ and

then optimizes over this grid. Nawata (2013) used this method to calculate the ML

estimator of the Box–Cox transformation model. Gurka et al. (2006) noted that

14 Chapter 1. Introduction

it is necessary to discuss how the estimation of λ affects inference about the other

model parameters when one extends the Box–Cox transformation to the linear mixed

model. It seems that it is possible for there to be a trade-off between transformation

and mixed-effects models — both change the nature of the variance explained by

the model.

Estimation of λ using profile maximum log–likelihood was discussed by Box

and Cox (1964). The likelihood in relation to the original observations was obtained

by multiplying the Jacobian of the transformation by the normal density. The ML

estimates were found by taking the derivative of the log–likelihood function with

respect to the regression parameters, setting the resulting derivatives equal to zero,

solving the resulting equations, and replacing the results back into the log–likelihood

function, and thus obtaining a profile log–likelihood function for λ. The value of

λ that maximizes the profile log–likelihood was selected to be the best estimate

of λ. A confidence interval based on the chi–squared χ2 distribution was used to

round the optimum λ to the nearest half. However, it is not possible to get a useful

confidence interval in non–parametric situations because of the discrete nature of

the underlying distributions. Hence, when faced with the decision on whether or

not needing to transform the response, not only the best estimate of λ but also the

relevant model selection criteria should be taken into account. Piepho and McCulloch

(2004) considered the model selection in mixed models with transformations as “a

difficult problem”. Gurka (2004) suggested the use of the likelihood-based measures

such as AIC and BIC to compare non-nested models. As already mentioned, the

model with the lowest AIC or BIC is considered the best one. Furthermore, graphical

measures can be used for exploring normality and homogeneity of variance such as

1.3. Software review 15

control charts, probability plots, histograms of residuals. Piepho and McCulloch

(2004) suggested to fit a number of models and compare their fits by plotting the

residual on the transformed and the untransformed scales.

1.3 Software review

The EM algorithm is an iterative method to find maximum likelihood estimators that

may require a large number of iterations. This can be difficult and time consuming.

Therefore, software is required, such as the open source statistics software, R. Aitkin’s

(1996a) NPML algorithm is implemented in R function alldist() in the npmlreg

package, which is designed to account for simple overdispersion models using the

NPML estimation, while variance component models (Aitkin, 1999a) can be fitted

with allvc() in the npmlreg package (Aitkin et al., 2009; Einbeck et al., 2014).

Einbeck and Hinde (2006) provided a guidance for performing NPML estimates for

exponential families with unspecified mixing density.

The Box-Cox transformations are usually implemented in form of a plot

of the profile log-likelihood for the univariate linear model against a set of λ values

to locate the maximum, yielding transformed data that has constant variance and

it follows a normal distribution more closely than the untransformed data. For an

implementation of the Box-Cox transformations for the univariate linear model in

R, see the boxcox() function in the MASS package (Venables and Ripley, 2002).

The R package boxcoxmix implements the methodology developed in this

thesis in R (Almohaimeed and Einbeck, 2017), which is available from the Compre-

16 Chapter 1. Introduction

hensive R Archive Network (CRAN) at https://cran.r-project.org/package=

boxcoxmix.

1.4 Summary

The thesis proposes a transformation approach by extending the Box–Cox trans-

formation to overdispersion and two–level data scenarios in linear models as well as

logistic mixed-effects models. In linear models, the aim is to ensure the constancy of

error variance and the validity of a normal response distribution, whereas in mixed–

effects binary regression models the Box-Cox transformation is used as an alternative

link function for linearizing purposes. Using the Box–Cox power transformation in

the presence of random effects that do not require any parametric assumptions on

their distribution can be achieved by using the “Nonparametric Profile Maximum

Likelihood” (NPPML) technique. To the best of my knowledge, the approach turns

out to be the only one of its kind that has implemented the Box–Cox power trans-

formation of the linear and logistic mixed effects models with unspecified random

effect distributions. Simulated and real data are investigated using the R package

boxcoxmix (Almohaimeed and Einbeck, 2017).

The remainder of the thesis is organized as follows. Chapter 2 begins by

discussing the Box–Cox transformation for the linear model, as well as the theory

and methodology underlying random effect models with unspecified random effect

distribution. After that, it uses the NPPML technique to combine these two methods.

In Chapter 3, we extend the Box–Cox transformation to the two–level structure using

https://cran.r-project.org/package=boxcoxmix
https://cran.r-project.org/package=boxcoxmix

1.4. Summary 17

the NPPML approach similarly as before, with some related adjustments. Chapter 4

provides a new way of implementing the work by Guerrero and Johnson (1982) that

applied the Box–Cox transformation for the logistic regression model. Chapter 5

proposes an extension of the transformation to mixed-effects logistic models using the

NPPML technique. Chapters 2, 3, 4 and 5 all follow the same basic format. They first

present the theory and methodology underlying each model. The proposed approach

will be then applied to that model. Finally, real and simulated data applications are

used to verify the proposed approach. Chapter 6 concludes the thesis and gives an

outlook to future work.

Chapter 2

Box-Cox transformations for

random effect models

2.1 Introduction

Box and Cox (1964) introduced their transformation originally for the linear model,

where it is assumed that a set of explanatory variables xi, i = 1, . . . , n, and a response

variable yi are linearly related such that yi = xTi β + εi, with independent errors εi

which are usually taken to be Gaussian and homoscedastic. The transformation

y
(λ)
i given in (1.1.1) is designed to mitigate violations of the latter two properties.

However, not all types of violations can be mitigated through this route. It is often

the case that the population from which the data are sampled consists of heterogen-

eous subpopulations. If these subpopulations are known, then they can simply be

accounted for through an additional covariate in the model. However, frequently the

subpopulations are latent, i.e. it is not possible to identify to which subpopulations

20 Chapter 2. Box-Cox transformations for random effect models

the observations of a sample belong (Wang, 2004). Under the resulting unobserved

heteorogeneity, the errors cease to be independent, and their distribution tends to

be multimodal. Fortunately, there is a well–known solution to this problem: The

contribution by the latent subpopulation is captured by a random effect, conditional

on which the errors restore their independence.

In this chapter, we intend to connect and combine both approaches, i.e.

we assume that there is a value of λ so that the responses yi are independently and

normally distributed with mean function E(y(λ)
i |zi) = xTi β + zi, conditionally on the

random effect zi. In explicit notation, one has then

y
(λ)
i |zi ∼ N(xTi β + zi, σ

2), (2.1.1)

where zi is a random effect term with some density g(·). Note that under the

presence of a random effect, the parametric intercept term can be omitted from xTi β.

For the distribution of g(·), several choices are possible, among them the normal

distribution, as in the classical literature on linear mixed models. The extension of

the transformation under this scenario was proposed by Gurka et al. (2006), and

extended to the longitudinal data setting by Maruo et al. (2017) whose main interests

were in robust estimation of fixed (treatment) effects.

However, a normal distribution is by definition unimodal, and hence may fail

to capture the full heterogeneity of the latent subpopulations. An obvious concern is

whether there are any harmful effects of this potential misspecification. Agresti et al.

(2004) showed that a misspecification of the random effects distribution may affect

the prediction accuracy of the random effects as well as the fixed effects, and suggest

2.1. Introduction 21

that “the safest approach might seem to be always to use a nonparametric rather

than a parametric approach for the random effects distribution.” In consideration of

the random effects misspecification, Wang et al. (2012) argued that even when the

estimation of the fixed effect is robust, the estimation of the random effects could

be invalid.

Accordingly, we follow in this chapter the concepts laid out by Aitkin

(1996a), which allows leaving the density g(·) unspecified. For estimation purposes,

g(·) is then approximated by a finite discrete mixture with masses πk at mass points

zk, k = 1, . . . , K. These mixture parameters can be estimated alongside the other re-

gression parameters in a usual EM algorithm. While it could, superficially, be argued

that a ‘discrete random effect’ constitutes an even stronger limitation than a normal

random effect, there is solid evidence that this is not the case. Methodologically,

what is being approximated is the marginal likelihood,

L =
n∏
i=1

∫
f(yi|zi)g(zi)dzi ≈

n∏
i=1

K∑
k=1

πkf(yi|zk) (2.1.2)

(where in our context f(yi|zi) is the conditional density of the raw — not the trans-

formed — data, which can be obtained from (2.1.1) using the transformation formula

for probability density functions). It is known from early work by Laird (1978), Bock

and Aitkin (1981) and Lindsay (1983), that this integral can be approximated with

very high accuracy, and that the NPML estimate of the mixing distribution involves a

finite number K of mass–points and corresponding masses. In practical applications,

this integer K is typically very small, with values between K = 2 and 10.

In the context of model (2.1.1), the parameter λ needs to be estimated

22 Chapter 2. Box-Cox transformations for random effect models

on top of the regression and mixture parameters, which leads us to an approach

which one can consider as a ‘nonparametric profile maximum likelihood’ (NPPML)

technique, in a direct extension of the profile maximum log–likelihood estimation

technique discussed by Box and Cox (1964).

The chapter is organised as follows. Section 2.2 presents the concept and

computation of the Box–Cox transformation in univariate linear models (Box and

Cox, 1964) along with a real data example. In Section 2.3, the random effect model

is considered without making any specific assumptions about the mixing distribution

of the random effects. The non–parametric maximum likelihood (NPML) approach

advocated by Aitkin (1999a) is used to estimate the unspecified mixing distribution.

For maximizing finite mixture likelihoods, we use the expectation–maximization

(EM) algorithm that is iterated between adjusting given weights and using the

current weights to calculate the parameter estimates. An extensive discussion of

overdispersion in generalized linear models is to be found in Aitkin (1999a), Aitkin

et al. (2005, 2009) and Einbeck et al. (2007). Einbeck and Hinde (2006) give a good

practical introduction to the application of overdispersed generalized linear models

using the software package npmlreg (Einbeck et al., 2014).

After discussing the Box–Cox transformation and the overdispersed gener-

alized linear model, we consider combining these methods together in Section 2.4.

We assume that the power transformation of the responses results in a linear model,

following the same approach given by Box and Cox (1964) for transforming the

response in univariate linear models. We extend this transformation to random

effect models using the NPML technique, which, for our purposes, is adapted to-

2.2. Box–Cox transformation 23

wards a NPPML technique. Section 2.5 provides technical specifications including

a non–iterative solution for the estimate of the model parameter, an introduction

of a new approach to the standard error of the estimate of our model, a discussion

of the choice of starting points and a brief description of the first cycle of the EM

algorithm with NPPML estimation. Furthermore, in Section 2.6, we introduce a new

R package boxcoxmix that implements the proposed approach in R (Almohaimeed

and Einbeck, 2017), which is available from the Comprehensive R Archive Network

(CRAN) at https://cran.r-project.org/package=boxcoxmix. Applications to

simulated data sets in Section 2.7 and to real data sets in Section 2.9 demonstrate

the accuracy and the efficiency of the proposed approach.

In Section 2.10, we consider the special case of the Box–Cox transformation

for a random effect model without any independent variables, we call it a ‘pure

mixture model’ to distinguish it from a more general type of mixture model ‘mixed

effect model’. We also illustrate the application of the approach to pure mixture

models using real data examples. The Chapter concludes with a discussion in Section

2.12.

2.2 Box–Cox transformation

The Box–Cox transformation (Box and Cox, 1964) has been widely used in applied

data analysis. The objective of the transformation is to select an appropriate para-

meter λ which is then used to induce constant variance and normality. It includes any

positive or negative power, as well as the log. The transformation of the responses

https://cran.r-project.org/package=boxcoxmix

24 Chapter 2. Box-Cox transformations for random effect models

yi, takes the form:

y
(λ)
i =

yλi − 1
λ

(λ 6= 0),

log yi (λ = 0)

(2.2.1)

where the restriction yi > 0, i = 1, . . . , n, applies. Note that when λ approaches

zero,

yλi − 1
λ

= elog yλi − 1
λ

= eλ log yi − 1
λ

≈ 1 + λ log yi − 1
λ

= log yi.

Box and Cox (1964) also proposed a shifted power transformation to include

zero and negative values of yi, that is of the form

y
(λ)
i =

(yi + λ2)λ1−1

λ1
(λ1 6= 0),

log(yi + λ2) (λ1 = 0)

(2.2.2)

where λ = (λ1, λ2), λ1 is the transformation parameter and λ2 is chosen such that

yi > −λ2. The discussion in this thesis is based on equation (2.2.1). So the focus

here is on just positive responses.

2.2.1 Estimation of the model parameters

Let φ(y; ·, ·) denote the univariate Gaussian probability density function, with mean

and variance specified in the remaining two function arguments. It is assumed that

there is a value of λ for which the transformed observation y(λ) is independently

normally distributed with parameters β and σ2. Let J(y, λ) be the Jacobian of the

2.2. Box–Cox transformation 25

transformation from y to y(λ), such that if λ 6= 0

J(yi, λ) = dy(λ)
i

dyi
= λyλ−1

i − 0
λ

= yλ−1
i (2.2.3)

and if λ = 0

J(yi, λ) = dy(λ)
i

dyi
= 1
yi

= y−1
i (2.2.4)

Setting λ = 0 in Equation (2.2.3) results in Equation (2.2.4), therefore, we will use

Equation (2.2.3) in both cases.

The probability density of any single observation y is given by

f(y) = φ(y(λ); β, σ2)yλ−1 (2.2.5)

where the last term is the Jacobian of the transformation multiplied by the normal

density. Hence, the likelihood in relation to the original observations is

L(λ, β, σ2) =
n∏
i=1

f(yi) =
n∏
i=1

yλ−1
i

(2πσ2)n2
exp

[
− 1

2σ2 (y(λ)
i − xTβ)2

]
(2.2.6)

The log–likelihood is then

logL(λ, β, σ2) = −n2 log 2π−n log σ− 1
2σ2

n∑
i=1

(y(λ)
i −xTβ)2+(λ−1)

n∑
i=1

log yi (2.2.7)

For fixed λ, the maximum likelihood estimates can be found by taking the

derivative of the log–likelihood with respect to the parameters β and σ2, setting the

resulting derivatives equal to zero, and solving the resulting equations. Now, taking

the derivative of Equation (2.2.7) with respect to β yields

∂ logL
∂β

= − 1
2σ2

n∑
i=1

2 (−xi)(y(λ)
i − xTi β) = 0

26 Chapter 2. Box-Cox transformations for random effect models

n∑
i=1

xix
T
i β =

n∑
i=1

xiy
(λ)
i

=⇒ β̂(λ) = (
n∑
i=1

xix
T
i)−1(

n∑
i=1

xiy
(λ)
i) (2.2.8)

Equation (2.2.8) in matrix notation is

β̂(λ) =
(
XTX

)−1 (
XTY (λ)

)
(2.2.9)

where Y (λ) is an n × 1 vector of observations y(λ)
i , i = 1, . . . , n, and X is an n × p

matrix,

Y (λ) =

y
(λ)
1

...

...

y(λ)
n

and X =

x11 x12 · · · x1p

...

...

xn1 xn2 · · · xnp

. (2.2.10)

Note that, Equation (2.2.9) is just standard least-squares (MLE under normality)

estimation for β using the transformed response Y (λ). Now, taking the derivative

of Equation (2.2.7) with respect to σ, setting it equal to 0 and solving the resulting

equation yields

∂ logL
∂σ

= −n
σ

+ 1
σ3

n∑
i=1

(y(λ)
i − xTi β)2 = 0

n = 1
σ2

n∑
i=1

(y(λ)
i − xTi β)2

nσ2 =
n∑
i=1

(y(λ)
i − xTi β)2

=⇒ σ̂2(λ) =
∑n
i=1(y(λ)

i − xTi β)2

n
(2.2.11)

Equation (2.2.11) is again as expected based on residual sums of squares (RSS), but

note that it is the MLE and not the (more usual) unbiased estimate from ANOVA.

2.2. Box–Cox transformation 27

Replacing the results into Equation (2.2.7), the profile log–likelihood function for

fixed λ is thus

`P (λ) = logL(λ, β̂(λ), σ̂2(λ)) = −n2 log 2π − n log σ̂ − nσ̂2(λ)

2σ̂2(λ) + (λ− 1)
n∑
i=1

log yi

= −n2 log 2π − n log σ̂(λ) − n

2 + (λ− 1)
n∑
i=1

log yi (2.2.12)

The profile maximum log-likelihood estimate of λ is thus

λ̂ = arg max
λ

`P (λ). (2.2.13)

For this, one needs to define the range over which the optimization of λ will occur

and this range must include 1. For each λ, the MLE of β and σ2 is computed using

β̂ = β̂(λ) and σ̂2 = σ̂2(λ) and then `P (λ̂) is maximized over a given grid of values for

λ using the values for β̂(λ) and σ̂2(λ) given in Equations (2.2.9) and (2.2.11).

An approximate 100(1− α)% likelihood–ratio based confidence interval for

λ can be obtained by

`P (λ̂)− `P (λ) < 1
2χ

2
α,1 (2.2.14)

where χ2
α,1 is the value of the chi–square statistic with 1 degree of freedom.

2.2.2 Existing R implementation: boxcox()

The Box–Cox approach for the linear model is implemented in the MASS function

boxcox() in R (Venables and Ripley, 2002). The best estimator of λ is selected

according to Equation (2.2.13) via the function boxcox() which plots the profile log–

likelihood for a range of λ values, including a vertical line indicating the maximum

value of λ. It uses a 95% confidence limit to define the range of the optimum λ, in

28 Chapter 2. Box-Cox transformations for random effect models

which the optimal choice for λ can occur anywhere within the confidence limits. A

λ value of 1 does not change the shape of the distribution, therefore, a confidence

interval that includes the value 1, corresponds to no transformation.

Example 2.2.1. the Pennsylvanian Hospital Stay data

The Pennsylvanian Hospital Stay (hosp) dataset, that is part of the R package

npmlreg (Einbeck et al., 2014) and consists of 25 observations, is used with the

function boxcox() in R to produce a plot of the profile likelihood function which

summarises information concerning λ, including a horizontal line indicating the

critical value of the likelihood ratio at the 95% confidence level (see Figures 2.2.1(a)

and 2.2.2(a)). A normal probability plot (QQ–plot) can be then used to assess the fit

of the data before and after the transformation to a normal distribution (see Figures

2.2.1(b) and 2.2.2(b)). If the data fits a normal distribution, the points in the QQ–

plot lie along a straight diagonal line. To investigate the effects of the covariates age,

sex and temp1 on the total number of days patients spent in hospital (duration),

where age denotes the age of patient in whole years, sex denotes the gender (1=Male,

2=Female) and temp1 denotes the first measured temperature following admission,

measured in Fahrenheit, the following model is fitted to the hosp data,

y
(λ)
i = β0 + β1 · agei + β2 · sexi + β3 · temp1i + εi (2.2.15)

The code below produces the Box–Cox transformation plot.

R Note:

Import the hosp data into R, then:

library(MASS)

2.2. Box–Cox transformation 29

boxcox(duration ~ age + sex + temp1, data=hosp)

−2 −1 0 1 2

−
45

−
40

−
35

−
30

−
25

λ

lo
g−

Li
ke

lih
oo

d

 95%

(a) Profile log–likelihood plot for λ of the un-

transformed data

−2 −1 0 1 2

−
2

−
1

0
1

2
3

4
5

Normal Scores

S
ta

nd
ar

di
ze

d
R

es
id

ua
ls

●

●

●
●

●
●

● ●

●
● ●

● ● ●
● ● ● ●

●
●

●
●

●

●

●7

9

(b) Probability plot of the untransformed data

Figure 2.2.1: Untransformed hosp data

The Box–Cox plot is shown in Figure 2.2.1(a). The 95% confidence in-

terval does not include the value one, indicating that the data support the need

for the transformation. Since the value of λ̂ = −0.2 is close to zero, the natural

log transformation would be appropriate. The following code applies a logarithmic

transformation of the hosp data,

R Note:

boxcox(log(duration) ~ age + sex + temp1, data=hosp)

Here the response is a duration, so like a time to event in which case

V ar(Y) ≈ µ2 and a log-transformation would be variance-stabilising

V ar(log(Y)) ≈ 1
µ2V ar(Y) ≈ constant

30 Chapter 2. Box-Cox transformations for random effect models

this is a special case of Equation (1.1.3) with λ = 0 and δ = 0.

−2 −1 0 1 2

−
12

−
11

−
10

−
9

−
8

−
7

−
6

λ

lo
g−

Li
ke

lih
oo

d

 95%

(a) Profile log–likelihood plot for λ of the trans-

formed data

−2 −1 0 1 2

−
2

−
1

0
1

2

Normal Scores

S
ta

nd
ar

di
ze

d
R

es
id

ua
ls

● ●

●
●

●
● ●

●
● ●

●

●
●

●
●

● ●

●
●

●

● ●
●

●

●7

18

(b) Probability plot of transformed data

Figure 2.2.2: Transformed hosp data

After the transformation, we can see that the 95% confidence interval

in Figure 2.2.2(a) contains 1. This gives further support to the decision to use

the natural log transformation. Additionally, by comparing the probability plot

of the residuals from the univariate model of the transformed response (ε̂(λ)
i =

y
(λ)
i − ŷi(λ) = y

(λ)
i −xTi β̂(λ)) in Figure 2.2.2(b) with that for the untransformed model

(ε̂i = yi − ŷi = yi − xTi β̂) in Figure 2.2.1(b), it is obvious that the residuals of the

untransformed data have two clear outliers while the residuals of the transformed

data match a normal distribution better.

2.3. Random effects 31

2.3 Random effects

We consider the linear model in which an unobserved random effect zi with an

unspecified distribution g(z) is added to the linear predictor xTi β for the i-th ob-

servation. The responses yi are independently distributed with mean function

E(yi|zi) = xTi β + zi and variance function V ar(yi|zi) = σ2, conditionally on the

random effect zi. The marginal mean is

E(yi) = E(E(yi|zi)) =

=
∫
E(yi|zi) g(zi)dzi

=
∫

(xTi β + zi) g(zi)dzi

=
∫
xTi β g(zi)dzi +

∫
zi g(zi)dzi

= xTi β + E(zi) (2.3.1)

where the term xTi β does not include an intercept, hence E(zi) can be thought of as

an intercept β0. The marginal variance is

V ar(yi) = E(V ar(yi|zi)) + V ar(E(yi|zi)) =

= E(V ar(yi|zi)) + V ar(xTi β + zi) =

= E(σ2) + V ar(zi)

= σ2 + V ar(zi) (2.3.2)

In the case of a normal random effect zi ∼ N(0, τ 2), this would imply yi ∼

N(xTi β, τ 2 + σ2). The conditional probability density function of yi given zi is

32 Chapter 2. Box-Cox transformations for random effect models

given by

f(yi|zi) = φ(yi;xTi β + zi, σ
2) = 1√

2πσ2
exp

[
− 1

2σ2 (yi − xTi β − zi)2
]
. (2.3.3)

2.3.1 Estimation of finite mixtures

Parameter estimation requires maximizing the likelihood

L(β, σ2, g) =
n∏
i=1

∫
f(yi|zi)g(zi)dzi (2.3.4)

Under the non-parametric maximum likelihood (NPML) approach, the in-

tegral over the (unspecified) mixing distribution g(z) is approximated by a discrete

distribution on a finite number K of mass–points zk, with masses πk (Aitkin et al.,

2009). The K components of the finite mixture satisfy the relations ∑K
k=1 πk = 1;

0 < πk 6 1. The approximated likelihood is then

L(β, σ2, z1,, zk, π1,, πk) =
n∏
i=1

K∑
k=1

πkfik (2.3.5)

where fik = f(yi|zk). The log-likelihood is then

` = logL = log
(n∏
i=1

K∑
k=1

πkfik

)
=

n∑
i=1

log
(K∑
k=1

πkfik

)
(2.3.6)

Since Equation (2.3.6) is intractable we augment the data structure by defining

indicators Gik such that

Gik =

1 if case i stems from component k,

0 otherwise.

(2.3.7)

2.3. Random effects 33

Now the "complete data" likelihood would be

L∗ =
n∏
i=1

K∏
k=1

(πkfik)Gik . (2.3.8)

The complete log-likelihood is thus

`∗ = logL∗ = log
(n∏
i=1

K∏
k=1

(πkfik)Gik
)

=
n∑
i=1

K∑
k=1

log
(

(πkfik)Gik
)

=
n∑
i=1

K∑
k=1

Gik log
(
πkfik

)

=
n∑
i=1

K∑
k=1

[
Gik log πk +Gik log fik

]
(2.3.9)

where

log fik = log
(

1√
2πσ2

exp
[
− 1

2σ2 (yi − xTi β − zk)2
])

=
(
−1

2 log 2π − log σ − 1
2σ2 (yi − xTi β − zk)2

)
, (2.3.10)

then

`∗ =
n∑
i=1

K∑
k=1

[
Gik log πk +Gik

(
−1

2 log 2π − log σ − 1
2σ2 (yi − xTi β − zk)2

)]
.

(2.3.11)

We now apply the expectation-maximization (EM) approach to find the

maximum likelihood estimate (MLE) of the model parameters. Given some starting

values β0, σ0, z0
k, and π0

k (the choice of which will be discussed below), set β̂ = β0,

σ̂ = σ0, ẑk = z0
k, π̂k = π0

k, k = 1, 2, . . . , K, and iterate between the following steps:

Expectation step (E-step): As Gik are unknown, we use the conditional expect-

ation of the log-likelihood to replace Gik,

34 Chapter 2. Box-Cox transformations for random effect models

E[Gik|yi] = P (Gik = 1|yi) = P (Gik = 1)P (yi|Gik = 1)
P (yi)

=
πk exp

[
− 1

2σ2 (yi − xTi β − zk)2
]

∑
` π` exp

[
− 1

2σ2 (yi − xTi β − z`)2
] = πkfik∑

` π`fi`
≡ wik

(2.3.12)

where wik is the posterior probability that observation yi comes from component

k, and fik depends via equation (2.3.3) implicitly on the current values of ẑk, β̂ and σ̂2.

Maximization step (M-step): Calculate ẑk, σ̂2, β̂ and π̂k using current wik,

∂`∗

∂zk
= − 1

2σ2 (2)
n∑
i=1

wik(yi − xTi β − zk)(−1) = 0

n∑
i=1

wik(yi − xTi β − zk) = 0

n∑
i=1

wikyi −
n∑
i=1

wikx
T
i β −

n∑
i=1

wikzk = 0

n∑
i=1

wikzk =
n∑
i=1

wikyi −
n∑
i=1

wikx
T
i β

=⇒ ẑk =
∑n
i=1 wik(yi − xTi β)∑n

i=1 wik
(2.3.13)

Similarly

∂`∗

∂β
= − 1

2σ2 (2)
n∑
i=1

K∑
k=1

wik(−xi)(yi − xTi β − zk) = 0

n∑
i=1

K∑
k=1

wikxi(yi − xTi β − zk) = 0

n∑
i=1

K∑
k=1

wikxiyi −
n∑
i=1

K∑
k=1

wikxix
T
i β −

n∑
i=1

K∑
k=1

wikxizk = 0

n∑
i=1

xiyi
K∑
k=1

wik −
n∑
i=1

xix
T
i β

K∑
k=1

wik −
n∑
i=1

xi
K∑
k=1

wikzk = 0

n∑
i=1

xiyi −
n∑
i=1

xix
T
i β −

n∑
i=1

xi
K∑
k=1

wikzk = 0

=⇒ β̂ =
(

n∑
i=1

xix
T
i

)−1 (n∑
i=1

xiyi −
n∑
i=1

xi
K∑
k=1

wikzk

)

2.3. Random effects 35

β̂ =
(

n∑
i=1

xix
T
i

)−1 n∑
i=1

xi

(
yi −

K∑
k=1

wikzk

)
(2.3.14)

Equation (2.3.14) in matrix notation is

β̂ =
(
XTX

)−1
XT (Y −WZ) (2.3.15)

where Y is an n× 1 vector of observations yi, i = 1, . . . , n, and X is an n× p matrix,

Y =

y1

...

...

yn

, X =

x11 x12 · · · x1p

...

...

xn1 xn2 · · · xnp

, (2.3.16)

W is an n×K matrix and Z is a K × 1 vector,

W =

w11 · · · · · · w1K

...

...

wn1 · · · · · · wnK

and Z =

z1

...

...

zK

(2.3.17)

ẑk and β̂ are obtained by iterating between Equations (2.3.13) and (2.3.14) a small

number of times in each M-step. The MLE for σ is

∂`∗

∂σ
=

n∑
i=1

K∑
k=1

wik

[
− 1
σ

+ 1
σ3 (yi − xTi β − zk)2

]
= 0

−
n∑
i=1

K∑
k=1

wik +
n∑
i=1

K∑
k=1

wik
σ2 (yi − xTi β − zk)2 = 0

n =
n∑
i=1

K∑
k=1

wik
σ2 (yi − xTi β − zk)2

nσ2 =
n∑
i=1

K∑
k=1

wik(yi − xTi β − zk)2

36 Chapter 2. Box-Cox transformations for random effect models

=⇒ σ̂2 =
n∑
i=1

K∑
k=1

wik(yi − xTi β − zk)2

n
(2.3.18)

Since ∑K
k=1 πk = 1, we apply a lagrange multiplier,

∂
(
`∗ − θ(∑K

k=1 πk − 1)
)

∂πk
= 0 k = 1,, K

=⇒
∑n
i=1 wik
πk

− θ = 0 =⇒ π̂k =
∑n
i=1 wik
θ

1 =
K∑
k=1

πk =
K∑
k=1

n∑
i=1

wik
θ

= 1
θ

n∑
i=1

K∑
k=1

wik = 1
θ
· n⇒ θ = n

=⇒ π̂k =
∑n
i=1 wik
n

(2.3.19)

where π̂k is the average posterior probability for component k.

2.3.2 Existing R implementation: alldist()

One can use the npmlreg (Einbeck et al., 2014) function alldist() to fit random

effect models. However, the function alldist() relies on the output of the function

glm() rather than computing (2.3.13), (2.3.14), (2.3.18) and (2.3.19) directly. For

starting values of the EM algorithm one can use Gauss-Hermite quadrature points

(Einbeck and Hinde, 2006):

z0
k = β̂0 + tol× s× gk (2.3.20)

where β0 is the intercept of the fitted model yi = xTi β+εi, tol is a scaling parameter

restricted to the choice 0 ≤ tol ≤ 2, gk are Gauss-Hermite quadrature points with

masses π0
k, and s is the standard deviation of residuals defined as,

s =
√√√√ 1
n− p

n∑
i=1

ε̂i
2 (2.3.21)

2.3. Random effects 37

where n − p is the degrees of freedom for the residuals ε̂i, n is the sample size, p

represents the number of parameters used to fit the model and the residual is the

difference between the observed data of the dependent variable yi and the fitted

values ŷi (i.e. ε̂i = yi − ŷi = yi − xTi β̂).

Example 2.3.1. the Strength data

We consider the strength data from the R library mdscore (da Silva-Júnior et al.,

2014) which is a subsample of the 5 x 2 factorial experiment of 30 observations given

by Ostle and Malone (1954). The objective here is to investigate the effects of the

covariates lot and cut on the impact strength, where lot denotes the lot of the

material (I, II, III, IV, V) and cut denotes the type of specimen cut (Lengthwise,

Crosswise). The random effect model that is fitted to the strength data is a two-way

lot × cut interaction model. For the i-th cut and j-th lot, we have

ηij = γi + βj + δij + z, i = 1, 2, j = 1, 2, .., 5, (2.3.22)

where γ1 = 0, β1 = 0, δ1,1 = δ1,2 = · · · = δ1,5 = δ2,1 = 0, and z is the random

effect with an unspecified mixing distribution. Under the NPML approach, g(z) is

approximated by a discrete distribution on a finite number K of mass–points zk,

with masses πk.

R Note:

Import the strength data into R, then:

library(npmlreg)

38 Chapter 2. Box-Cox transformations for random effect models

fit<-alldist(y ~ cut*lot, data=strength, k=3)

summary(fit)

Call: alldist(formula = y ~ cut * lot, data = strength, k = 3)

#

Coefficients:

Estimate Std. Error t value

cut Crosswise -0.2493290 0.012165308 -20.495080

lot II -0.0796219 0.011737237 -6.783700

lot III -0.2659958 0.012165303 -21.865116

lot IV -0.2192806 0.012500052 -17.542378

lot V -0.4996067 0.013048088 -38.289650

cut Crosswise:lot II 0.3259945 0.016721037 19.496067

cut Crosswise:lot III 0.1493025 0.016721344 8.928860

cut Crosswise:lot IV 0.2660311 0.016720593 15.910387

cut Crosswise:lot V 0.1730249 0.017367740 9.962431

MASS1 0.8934177 0.008602925 103.850457

MASS2 1.0422844 0.010236461 101.820778

MASS3 1.1631634 0.009931993 117.112784

#

Mixture proportions:

MASS1 MASS2 MASS3

0.2333320 0.5660864 0.2005815

#

2.3. Random effects 39

Component distribution - MLE of sigma: 0.02265

Random effect distribution - standard deviation: 0.08939663

#

-2 log L: -83.3 Convergence at iteration 12

plot(fit)

Figure 2.3.1: fitting the random effect with NPML to the strength
data using the function alldist(), with k=3 and tol=0.5

It is clear from the top right plot of Figure 2.3.1 that the three estimated

mass points that are coloured by black (MASS1), red (MASS2) and green (MASS3)

for k = 1, 2 and 3, respectively, are distinct and identifiable, suggesting that the

random effects should be taken into account. In the bottom right plot of Figure 2.3.1,

the residual on the x-axis is ε̂i = yi−ŷi = yi−xTi β̂−ẑi, where ẑi = ∑K
k=1 wikẑk (Aitkin,

40 Chapter 2. Box-Cox transformations for random effect models

1996b), and the posterior probability on the y-axis corresponds to the weights wik

in the final iteration of the EM algorithm that is the probability that the case i

comes from component k and that can take on any values between 0 and 1. The

posterior probability that lower residuals came from component 1 is 1 while that

from components 2 and 3 is 0. Also, the posterior probability that middle residuals

came from component 2 is 1 and that from components 1 and 3 is 0. Similarly, the

posterior probability that upper residuals came from component 3 is 1, however,

that from components 1 and 2 is 0.

2.4 Box-Cox transformations for random effect

models

In this section, the Box-Cox transformation is extended to the random effects model.

Recall the equation for the Box-Cox transformation of the response yi above

y
(λ)
i =

yλi − 1
λ

(λ 6= 0),

log yi (λ = 0)

(2.4.1)

and that for yi > 0, i = 1, ..., n. From the inversion of (2.4.1) we get

ŷi =

(
1 + ληi

)1/λ
(λ 6= 0),

eηi (λ = 0)

(2.4.2)

where ηi = xTi β + zi.

2.4. Box-Cox transformations for random effect models 41

2.4.1 Estimation of finite mixtures

In the case of random effect models, it is assumed that there is a value of λ for

which,

y
(λ)
i |zi ∼ N(xTi β + zi, σ

2) (2.4.3)

where zi is a random effect with an unspecified g(zi) distribution. Taking account of

the Jacobian of the transformation from y to y(λ), the conditional probability density

function of yi given zi is

f(yi, λ|zi) = yλ−1
i√
2πσ2

exp
[
− 1

2σ2 (y(λ)
i − xTi β − zi)2

]
(2.4.4)

The likelihood can now be approximated using the NPML approach (Aitkin et al.,

2009) as

L(λ, β, σ2, g) =
n∏
i=1

∫
f(yi, λ|zi)g(zi)dzi ≈

n∏
i=1

K∑
k=1

πkf
(λ)
ik (2.4.5)

where f (λ)
ik = f(yi, λ|zk). The log-likelihood is then

` =
n∑
i=1

log
(K∑
k=1

πkf
(λ)
ik

)
(2.4.6)

Using notation as defined in (2.3.7), the “complete data” likelihood would be

L∗ =
n∏
i=1

K∏
k=1

(πkf (λ)
ik)Gik . (2.4.7)

Now the complete log-likelihood would be

`∗ =
n∑
i=1

K∑
k=1

[
Gik log πk +Gik log f (λ)

ik

]

where

log f (λ)
ik = log

(
yλ−1
i√
2πσ2

exp
[
− 1

2σ2 (y(λ)
i − xTi β − zk)2

])

42 Chapter 2. Box-Cox transformations for random effect models

=
(
−1

2 log 2π − log σ − 1
2σ2 (y(λ)

i − xTi β − zk)2 + (λ− 1) log yi
)
, (2.4.8)

then

`∗ =
n∑
i=1

K∑
k=1

Gik log πk +Gik

− 1
2 log 2π − log σ − 1

2σ2 (y(λ)
i − xTi β − zk)2

+(λ− 1) log yi

. (2.4.9)

If K = 1, the log-likelihood would be the usual log-likelihood of the Box–Cox model

without random effects.

The EM algorithm can then be applied to find the MLE of the model para-

meters. As mentioned in the previous section, we could specify a set of parameters

β0, σ0, z0
k, and π0

k, and start the iterative procedure:

E-step: As Gik are unknown, we use the conditional expectation of the log-likelihood

to replace Gik,

E[Gik|yi] = P (Gik = 1|yi) = P (Gik = 1)P (yi|Gik = 1)
P (yi)

=
πk exp

[
− 1

2σ2 (y(λ)
i − xTi β − zk)2

]
∑
` π` exp

[
− 1

2σ2 (y(λ)
i − xTi β − z`)2

] = πkf
(λ)
ik∑

` π`f
(λ)
i`

≡ w
(λ)
ik

(2.4.10)

where w(λ)
ik is the posterior probability that observation y(λ)

i comes from component

k, and f (λ)
ik depends via equation (2.4.4) implicitly on the current values of ẑk, β̂ and

σ̂2. Note that the Jacobian term cancels out as it does not depend on k.

M-step: Calculate ẑ(λ)
k , σ̂2(λ), β̂(λ) and π̂(λ)

k using current w(λ)
ik ,

∂`∗

∂zk
= − 1

2σ2 (2)
n∑
i=1

w
(λ)
ik (y(λ)

i − xTi β − zk)(−1) = 0

n∑
i=1

w
(λ)
ik (y(λ)

i − xTi β − zk) = 0

2.4. Box-Cox transformations for random effect models 43

n∑
i=1

w
(λ)
ik y

(λ)
i −

n∑
i=1

w
(λ)
ik x

T
i β −

n∑
i=1

w
(λ)
ik zk = 0

n∑
i=1

w
(λ)
ik zk =

n∑
i=1

w
(λ)
ik y

(λ)
i −

n∑
i=1

w
(λ)
ik x

T
i β

=⇒ ẑ
(λ)
k =

∑n
i=1 w

(λ)
ik (y(λ)

i − xTi β)∑n
i=1 w

(λ)
ik

(2.4.11)

Similarly

∂`∗

∂β
= − 1

2σ2 (2)
n∑
i=1

K∑
k=1

w
(λ)
ik (−xi)(y(λ)

i − xTi β − zk) = 0

n∑
i=1

K∑
k=1

w
(λ)
ik xi(y

(λ)
i − xTi β − zk) = 0

n∑
i=1

K∑
k=1

w
(λ)
ik xiy

(λ)
i −

n∑
i=1

K∑
k=1

w
(λ)
ik xix

T
i β −

n∑
i=1

K∑
k=1

w
(λ)
ik xizk = 0

n∑
i=1

xiy
(λ)
i

K∑
k=1

w
(λ)
ik −

n∑
i=1

xix
T
i β

K∑
k=1

w
(λ)
ik −

n∑
i=1

xi
K∑
k=1

w
(λ)
ik zk = 0

n∑
i=1

xiy
(λ)
i −

n∑
i=1

xix
T
i β −

n∑
i=1

xi
K∑
k=1

w
(λ)
ik zk = 0

=⇒ β̂(λ) =
(

n∑
i=1

xix
T
i

)−1 (n∑
i=1

xiy
(λ)
i −

n∑
i=1

xi
K∑
k=1

w
(λ)
ik zk

)

=
(

n∑
i=1

xix
T
i

)−1 n∑
i=1

xi

(
y

(λ)
i −

K∑
k=1

w
(λ)
ik zk

)
(2.4.12)

and

∂`∗

∂σ
=

n∑
i=1

K∑
k=1

w
(λ)
ik

[
− 1
σ

+ 1
σ3 (y(λ)

i − xTβ − zk)2
]

= 0

−
n∑
i=1

K∑
k=1

w
(λ)
ik +

n∑
i=1

K∑
k=1

w
(λ)
ik

σ2 (y(λ)
i − xiTβ − zk)2 = 0

n =
n∑
i=1

K∑
k=1

w
(λ)
ik

σ2 (y(λ)
i − xiTβ − zk)2

nσ2 =
n∑
i=1

K∑
k=1

w
(λ)
ik (y(λ)

i − xiTβ − zk)2

=⇒ σ̂2(λ) =
n∑
i=1

K∑
k=1

w
(λ)
ik (y(λ)

i − xTβ − zk)2

n
(2.4.13)

44 Chapter 2. Box-Cox transformations for random effect models

Since ∑K
k=1 πk = 1, we apply a lagrange multiplier,

∂
(
`∗ − θ(∑K

k=1 πk − 1)
)

∂πk
= 0 k = 1,, K

=⇒
∑n
i=1 w

(λ)
ik

πk
− θ = 0 =⇒ πk =

∑n
i=1 w

(λ)
ik

θ

1 =
K∑
k=1

πk =
K∑
k=1

n∑
i=1

w
(λ)
ik

θ
= 1
θ

n∑
i=1

K∑
k=1

w
(λ)
ik = 1

θ
· n⇒ θ = n

=⇒ π̂
(λ)
k =

∑n
i=1 w

(λ)
ik

n
(2.4.14)

where π̂(λ)
k is the average posterior probability for component k. This leads to the

four reconciled equations (the notation emphasizes the dependence on λ explicitly)

ẑ
(λ)
k =

∑n
i=1 w

(λ)
ik (y(λ)

i − xTi β̂(λ))∑n
i=1 wik

(2.4.15)

β̂(λ) =
(

n∑
i=1

xix
T
i

)−1 n∑
i=1

xi

(
y

(λ)
i −

K∑
k=1

w
(λ)
ik ẑ

(λ)
k

)
(2.4.16)

σ̂2(λ) =
n∑
i=1

K∑
k=1

w
(λ)
ik (y(λ)

i − xT β̂(λ) − ẑ(λ)
k)2

n
(2.4.17)

π̂
(λ)
k =

∑n
i=1 w

(λ)
ik

n
(2.4.18)

Apparently, finding the MLE of the model parameters can be straightforward.

Equation (2.4.16) in matrix notation is

β̂(λ) =

X
T︸︷︷︸

p × n
X︸︷︷︸

n × p︸ ︷︷ ︸
p × p

−1

XT︸︷︷︸
p × n

Y (λ)︸ ︷︷ ︸
n × 1

−W (λ)︸ ︷︷ ︸
n × K

Ẑ(λ)︸ ︷︷ ︸
K × 1︸ ︷︷ ︸

n × 1︸ ︷︷ ︸
n × 1

(2.4.19)

where Y (λ) is as in Equation (2.3.16). ẑ(λ)
k and β̂(λ) are obtained by iterating between

Equations (2.4.15) and (2.4.19) a small number of times in each M-step. Replacing

the results into Equation (2.4.6) we get the non-parametric profile log-likelihood

function.

2.4. Box-Cox transformations for random effect models 45

`P (λ) =
n∑
i=1

log
 K∑
k=1

π̂
(λ)
k

− 1
2 log 2π − log σ̂(λ) − 1

2σ̂2(λ) (y(λ)
i − xTi β̂(λ) − ẑ(λ)

k)2

+ (λ− 1) log yi

 (2.4.20)

Now let

ξ
(λ)
ik = y

(λ)
i − xTi β̂(λ) − ẑ(λ)

k (2.4.21)

= y
(λ)
i − xTi β̂(λ) −

∑n
m=1 w

(λ)
mk(y(λ)

m − xTmβ̂(λ))∑n
m=1 w

(λ)
mk

=
∑n
m=1 w

(λ)
mky

(λ)
i −

∑n
m=1 w

(λ)
mkx

T
i β̂

(λ) −∑n
m=1 w

(λ)
mky

(λ)
m −

∑n
m=1 w

(λ)
mkx

T
mβ̂

(λ)∑n
m=1 w

(λ)
mk

=⇒ ξ
(λ)
ik =

∑n
m=1 w

(λ)
mk

(
(y(λ)
i − y(λ)

m)− (xTi − xTm)β̂(λ)
)

∑n
m=1 w

(λ)
mk

(2.4.22)

The non-parametric profile log-likelihood function is thus

`P (λ) =
n∑
i=1

log
 K∑
k=1

π̂
(λ)
k

− 1
2 log 2π − log σ̂(λ) − 1

2σ̂2(λ) (ξ(λ)
ik)2

+(λ− 1) log yi

. (2.4.23)

The non-parametric profile log-likelihood can then be written as

`P (λ) =
n∑
i=1

log
(K∑
k=1

π̂
(λ)
k f̂

(λ)
ik

)
. (2.4.24)

where f̂ (λ)
ik = f(yi, λ|ẑk). The non-parametric profile maximum likelihood (NPPML)

estimate of λ is therefore given by

λ̂ = arg max
λ

`P (λ). (2.4.25)

Equation (2.4.24) is maximized over a given grid of values for λ using the values for

ẑ
(λ)
k , β̂(λ), σ̂2(λ) and π̂(λ)

k given in Equations (2.4.15), (2.4.16), (2.4.17) and (2.4.18).

46 Chapter 2. Box-Cox transformations for random effect models

2.4.2 Estimation of the transformation parameter

In this section, we investigate the possibility of using a simpler approach that obtains

the estimate of λ directly by deriving the log–likelihood with respect to λ. From

equation (2.4.1), the complete log-likelihood for (λ 6= 0) can be written as

`∗ =
n∑
i=1

K∑
k=1

Gik log πk +Gik

− 1
2 log 2π − log σ − 1

σ

((yλi − 1
λ

)
− xTi β − zk

)2

+(λ− 1) log yi

(2.4.26)

Now we differentiate equation (2.4.26) with respect to λ using w(λ)
ik , as follows

∂`∗

∂λ
=

n∑
i=1

K∑
k=1

w
(λ)
ik

[
− 2
σ

(
yλi log yi

λ
− yλi − 1

λ2

)((
yλi − 1
λ

)
− xTi β − zk

)
+ log yi

]

=
n∑
i=1

K∑
k=1

w
(λ)
ik

[
− 2
σ

(
λyλi log yi − yλi + 1

)(
λ
(
yλi − 1

)
− λ2xTi β − λ2zk

)
+ λ2 log yi

]

=
n∑
i=1

K∑
k=1

w
(λ)
ik

[
− 2
σ

(
λyλi log yi − yλi + 1

)(
λyλi − λ− λ2xTi β − λ2zk

)
+ λ2 log yi

]

=
n∑
i=1

K∑
k=1

w
(λ)
ik

[
− 2
σ

(
λyλi log yi − yλi + 1

)(
λyλi − λ− λ2xTi β − λ2zk

)
+ λ2 log yi

]

=
n∑
i=1

K∑
k=1

w
(λ)
ik

[
− 2
σ

(
λ2y2λ

i log yi − λ2yλi log yi − λ3yλi log yixTi β − λ3yλi log yizk − λy2λ
i

− λyλi − λ2yλi x
T
i β − λ2yλi zk + λyλi − λ− λ2xTi β − λ2zk

)
+ λ2 log yi

]

=
n∑
i=1

K∑
k=1

w
(λ)
ik

[
− 2
σ

(
− λ3yλi log yi(xTi β + zk) + λ2

(
y2λ
i log yi − yλi (log yi + xTi β + zk)

− (xTi β + zk)
)
− λ(y2λ

i + 1)
)

+ λ2 log yi
]

(2.4.27)

This method leads to complicated score functions and is therefore not considered

further. However, solving the score function just involves root finding and a numerical

approach could be used, such as uniroot.

2.5. Technical details 47

2.5 Technical details

2.5.1 Non-iterative solution for β̂(λ)

Equation (2.4.15) can be plugged into Equation (2.4.16) to yield the equation of the

estimate β̂:

β̂(λ) =
(

n∑
i=1

xix
T
i

)−1 n∑
i=1

xi

(
y

(λ)
i −

K∑
k=1

w
(λ)
ik ẑ

(λ)
k

)
(2.5.1)

=
(

n∑
i=1

xix
T
i

)−1 n∑
i=1

xi

y(λ)
i −

K∑
k=1

w
(λ)
ik

∑n
m=1 w

(λ)
mk(y(λ)

m − xTmβ̂(λ))∑n
m=1 w

(λ)
mk

=
(

n∑
i=1

xix
T
i

)−1 n∑
i=1

xi

 K∑
k=1

w
(λ)
ik y

(λ)
i −

K∑
k=1

w
(λ)
ik

∑n
m=1 w

(λ)
mk(y(λ)

m − xTmβ̂(λ))∑n
m=1 w

(λ)
mk

=
(

n∑
i=1

xix
T
i

)−1 n∑
i=1

xi
K∑
k=1

w
(λ)
ik

y(λ)
i −

∑n
m=1 w

(λ)
mk(y(λ)

m − xTmβ̂(λ))∑n
m=1 w

(λ)
mk

=

n∑
i=1

xi
K∑
k=1

w
(λ)
ik

(
n∑
i=1

xix
T
i

n∑
m=1

w
(λ)
mk

)−1 (
y

(λ)
i

n∑
m=1

w
(λ)
mk −

n∑
m=1

w
(λ)
mk(y(λ)

m − xTmβ̂(λ))
)

=
n∑
i=1

xi
K∑
k=1

w
(λ)
ik

(
n∑
i=1

xix
T
i

n∑
m=1

w
(λ)
mk

)−1

y
(λ)
i

n∑
m=1

w
(λ)
mk

−
n∑
i=1

xi
K∑
k=1

w
(λ)
ik

(
n∑
i=1

xix
T
i

n∑
m=1

w
(λ)
mk

)−1 n∑
m=1

w
(λ)
mk(y(λ)

m − xTmβ̂(λ))

=
n∑
i=1

xi
K∑
k=1

w
(λ)
ik

(
n∑
i=1

xix
T
i

n∑
m=1

w
(λ)
mk

)−1

y
(λ)
i

n∑
m=1

w
(λ)
mk

−
n∑
i=1

xi
K∑
k=1

w
(λ)
ik

(
n∑
i=1

xix
T
i

n∑
m=1

w
(λ)
mk

)−1 n∑
m=1

w
(λ)
mky

(λ)
m

+
n∑
i=1

xi
K∑
k=1

w
(λ)
ik

(
n∑
i=1

xix
T
i

n∑
m=1

w
(λ)
mk

)−1 n∑
m=1

w
(λ)
mkx

T
mβ̂

(λ)

=⇒ β̂(λ) −
n∑
i=1

xi
K∑
k=1

w
(λ)
ik

(
n∑
i=1

xix
T
i

n∑
m=1

w
(λ)
mk

)−1 n∑
m=1

w
(λ)
mkx

T
mβ̂

(λ) =

n∑
i=1

xi
K∑
k=1

w
(λ)
ik

(
n∑
i=1

xix
T
i

n∑
m=1

w
(λ)
mk

)−1 (
y

(λ)
i

n∑
m=1

w
(λ)
mk −

n∑
m=1

w
(λ)
mky

(λ)
m

)

=⇒
Ip − n∑

i=1
xi

K∑
k=1

w
(λ)
ik

(
n∑
i=1

xix
T
i

n∑
m=1

w
(λ)
mk

)−1 n∑
m=1

w
(λ)
mkx

T
m

 β̂(λ) =

n∑
i=1

xi
K∑
k=1

w
(λ)
ik

(
n∑
i=1

xix
T
i

n∑
m=1

w
(λ)
mk

)−1 (
y

(λ)
i

n∑
m=1

w
(λ)
mk −

n∑
m=1

w
(λ)
mky

(λ)
m

)

48 Chapter 2. Box-Cox transformations for random effect models

=⇒ β̂(λ) =
Ip − n∑

i=1
xi

K∑
k=1

w
(λ)
ik

(
n∑
i=1

xix
T
i

n∑
m=1

w
(λ)
mk

)−1 n∑
m=1

w
(λ)
mkx

T
m

−1

n∑
i=1

xi
K∑
k=1

w
(λ)
ik

(
n∑
i=1

xix
T
i

n∑
m=1

w
(λ)
mk

)−1 (
y

(λ)
i

n∑
m=1

w
(λ)
mk −

n∑
m=1

w
(λ)
mky

(λ)
m

)

=⇒ β̂(λ) =
 n∑
i=1

xix
T
i −

n∑
i=1

xi
K∑
k=1

w
(λ)
ik

(
n∑

m=1
w

(λ)
mk

)−1 n∑
m=1

w
(λ)
mkx

T
m

−1

n∑
i=1

xi
K∑
k=1

w
(λ)
ik

y(λ)
i −

(
n∑

m=1
w

(λ)
mk

)−1 n∑
m=1

w
(λ)
mky

(λ)
m

=⇒ β̂(λ) =

 n∑
i=1

xi

 K∑
k=1

w
(λ)
ik x

T
i −

K∑
k=1

w
(λ)
ik

(
n∑

m=1
w

(λ)
mk

)−1 n∑
m=1

w
(λ)
mkx

T
m

−1

n∑
i=1

xi
K∑
k=1

w
(λ)
ik

y(λ)
i −

(
n∑

m=1
w

(λ)
mk

)−1 n∑
m=1

w
(λ)
mky

(λ)
m

=⇒ β̂(λ) =

 n∑
i=1

xi
K∑
k=1

w
(λ)
ik

xTi −
(

n∑
m=1

w
(λ)
mk

)−1 n∑
m=1

w
(λ)
mkx

T
m

−1

n∑
i=1

xi
K∑
k=1

w
(λ)
ik

y(λ)
i −

(
n∑

m=1
w

(λ)
mk

)−1 n∑
m=1

w
(λ)
mky

(λ)
m

=⇒ β̂(λ) =

 n∑
i=1

xi
K∑
k=1

w
(λ)
ik

xTi −
∑n
m=1 w

(λ)
mkx

T
m∑n

m=1 w
(λ)
mk

−1

n∑
i=1

xi
K∑
k=1

w
(λ)
ik

y(λ)
i −

∑n
m=1 w

(λ)
mky

(λ)
m∑n

m=1 w
(λ)
mk

=⇒ β̂(λ) =
(

n∑
i=1

xi
K∑
k=1

w
(λ)
ik

(
xTi − x̄Tk

))−1 n∑
i=1

xi
K∑
k=1

w
(λ)
ik

(
y

(λ)
i − ȳ

(λ)
k

)
(2.5.2)

where

Ip =

1

. . .

1

(2.5.3)

and x̄k and ȳ(λ)
k are just the weighted mean for the variables x and y(λ), respectively.

specifically,

x̄k =
∑n
m=1 w

(λ)
mkx

T
m∑n

m=1 w
(λ)
mk

; ȳ
(λ)
k =

∑n
m=1 w

(λ)
mky

(λ)
m∑n

m=1 w
(λ)
mk

(2.5.4)

2.5. Technical details 49

Equation (2.5.2) can be represented in matrix form as follows,

β̂(λ) =

 X̃T︸︷︷︸
P × nK

W̃ (λ)︸ ︷︷ ︸
nK × nK

(X̃ −
...
X)︸ ︷︷ ︸

nK × P

−1

X̃T︸︷︷︸
P × nK

W̃ (λ)︸ ︷︷ ︸
nK × nK

(Ỹ (λ) −
...
Y

(λ))︸ ︷︷ ︸
nK × 1

(2.5.5)

where

W̃ (λ) =

W (λ) · · · · · · W (λ)

...

...

...

W (λ) · · · · · · W (λ)

︸ ︷︷ ︸
n times

K times , W (λ) =

w
(λ)
11 · · · · · · w

(λ)
1K

...

...

...

w
(λ)
n1 · · · · · · w

(λ)
nK

Ỹ (λ) =

y1

...

yn

y1

...

yn

...

...

y1

...

yn

k = 1

k = 2

k = K

, X̃ =

x11 x12 · · · x1p

...

xn1 xn2 · · · xnp

x11 x12 · · · x1p

...

xn1 xn2 · · · xnp

...

...

x11 x12 · · · x1p

...

xn1 xn2 · · · xnp

k = 1

k = 2

k = K

50 Chapter 2. Box-Cox transformations for random effect models

...
Y

(λ) =

ȳ
(λ)
1

...

ȳ
(λ)
1

ȳ
(λ)
2

...

ȳ
(λ)
2

...

...

ȳ
(λ)
K

...

ȳ
(λ)
K

n

n

n

and
...
X =

x̄11 · · · · · · x̄1P

...

x̄11 · · · · · · x̄1P

x̄21 · · · · · · x̄2P

...

x̄21 · · · · · · x̄2P

...

...

x̄K1 · · · · · · x̄KP

...

x̄K1 · · · · · · x̄KP

n

n

n

This is essentially what we would get if we worked with the usual expanded

data (n × K copies) and fitted a model with the required linear predictor and a

factor for zk with a different level for each copy. Equation (2.5.5) will be considered

in the following subsection. However, in practice, we will use Equations (2.4.15) and

(2.4.16) because ẑ(λ)
k is still needed to get the weights.

2.5.2 The standard error of the parameter estimates

SE(β̂(λ))

The EM algorithm does not automatically produce standard errors of the estimates

(SE). Several procedures have been proposed to compute the variance-covariance

2.5. Technical details 51

matrices from which the SE estimates can be obtained for a low–dimensional para-

meter. However, these methods cannot be easily used for a large number of paramet-

ers (Xu et al., 2014). Murphy and Van der Vaart (2000) presented a semiparametric

profile likelihoods technique for SE estimation which can be used whenever the

infinite–dimension of the observed information presents. They pointed out that the

standard error of the model parameter can be estimated via the curvature of the

log profile likelihood graph which is known as the observed information. A method

for computing the observed information in the context of EM has been presented in

Louis (1982). The method requires computation of the second derivative matrix of

the complete–data log–likelihood with respect to the model parameters and the SE

estimation can be extracted directly from the EM iteration. Baker (1992) pointed out

that the expected information matrix is often easier to calculate than the observed

information matrix. Friedl and Kauermann (2000) derived an approximation of the

variance-covariance matrix, which is based on the expected information matrix, for

computing standard errors of EM algorithm for NPML estimation in generalized

linear models with unknown random effects. This approximation can also be invoked

at the last EM iteration.

The accuracy of estimates can be assessed using the standard error. The

smaller the standard error, the more accurate the estimate. The standard error of

the coefficient is a measure of the spread of the data, therefore, it can not be negative.

To obtain the standard errors of the parameter estimates SE(β̂i
(λ)) in the final model,

we take the square root of the diagonal elements of the variance-covariance matrix,

Σ.

Σ(λ)
i,j ≡ Cov(β̂i

(λ)
, β̂j

(λ)) (2.5.6)

52 Chapter 2. Box-Cox transformations for random effect models

where

Cov(β̂i
(λ)
, β̂i

(λ)) = V ar(β̂i
(λ)) (2.5.7)

Refer to Equation (2.5.5), the diagonal elements of the variance-covariance matrix

could be computed as follows:

V ar(β̂(λ)) = V ar
((

X̃T W̃ (λ)(X̃ −
...
X)
)−1

X̃T W̃ (λ)
(
Ỹ (λ) −

...
Y

(λ)
))

=
((

X̃T W̃ (λ)(X̃ −
...
X)
)−1

X̃T W̃ (λ) V ar
(
Ỹ (λ) −

...
Y

(λ)
)((

X̃T W̃ (λ)(X̃ −
...
X)
)−1

X̃T W̃ (λ)
)T
.

(2.5.8)

Consideration of this term has not, to our knowledge, been given attention. The

analytical calculation of Equation (2.5.8) is not straightforward, however, we can

approximate the standard error from the linear model equation in R by fitting the

linear model given in Equation (2.5.1) which is equivalent to Equation (2.5.5) and

then extract the approximate SE from it as

ŜE(β̂i
(λ)) =

√
Σ(λ)
i,i (2.5.9)

where

Σ = s2(XTX)−1

where s2 is the error variance of the linear model fitted to the response (Y (λ) −

W (λ)Ẑ(λ)), and X is given in (2.3.16). Note that the standard errors of β̂i
(λ) here are

computed conditionally on λ and ẑ(λ)
k . From this, one can calculate the t-value as

t-value = β̂i
(λ)

SE(β̂i
(λ))

(2.5.10)

2.5. Technical details 53

That is related to a t distribution with n−p degrees of freedom, where n is the sample

size, p represents the number of parameters of the fitted model. The parameter

estimate is statistically significant if the absolute value of the t-value is larger than

2 at the 0.05 significance level. However, the parameter significances may change

once random effects are introduced (Gray, 2016). Therefore, the standard errors of

the parameter estimates are needed to test the significance of the parameters. We

refer the reader to Section 2.7 where we prove that the use of the approximation of

the SE is usually good.

2.5.3 Starting point selection and the first cycle

In the first cycle of the algorithm, the model is fitted initially without a random effect,

giving some starting values β0 and σ0. We now discuss in more detail the choice of

starting mass points z0
k and corresponding masses π0

k, for which the implementation

of boxcoxmix allows us to choose from the two different methods as outlined below:

• Gauss-Hermite quadrature points (Einbeck and Hinde, 2006) have been de-

scribed in Section 2.3.2 but the fitted model here is y(λ)
i = xTi β + εi and ε̂(λ)

i is

the residuals that are defined as the difference between the observed data of

the dependent variable y(λ)
i and the fitted values ŷi(λ)(i.e. ε̂(λ)

i = y
(λ)
i − ŷi(λ) =

y
(λ)
i − xTi β̂(λ)).

• Quantile-based version

z
(λ)
k = ȳ(λ) + tol× q(λ)

k (2.5.11)

where ȳ(λ) is the mean of the responses y(λ)
i , tol is a positive scalar (usually,

54 Chapter 2. Box-Cox transformations for random effect models

0 < tol <= 2) and q(λ)
k = k

K
− 1

2K are quantiles of the empirical distribution

of y(λ)
i − ȳ(λ).

From this one obtains the extended linear predictor for the k-th componentE(y(λ)
i |zk) =

xTi β + zk. Using formula (2.4.10) with current parameter estimates, one gets an

“initial E-step" and in the subsequent M-step one obtains the parameter estimates

by solving the score equations. From the resulting estimates of this cycle, one gets

an updated value of the weights, and so on. Since we run several iterations of the

EM-algorithm, one needs to stop the EM-algorithm when it reached its convergence

point. Polańska (2003) defined this convergence criterion as the absolute change in

the successive log-likelihood function (disparity = −2`P (λ)) values being less than

a certain threshold such as 0.0001.

First, we need to indicate a range over which the optimization of λ will

occur. For each λ, we iterate between β̂(λ) and ẑ
(λ)
k in the each M-step a small

number of times. And in each iteration of the EM-algorithm, we have ẑ(λ)
k , σ̂2(λ), β̂(λ)

, π̂(λ)
k and w(λ)

ik that are used together to update the NPPML (`P (λ)). We end up

with `P (λ) for each λ; the optimal choice for λ is the one that maximizes `P (λ). In

other words, Equation (2.4.24) is maximized over a given grid of values for λ using

ẑ
(λ)
k , σ̂2(λ), β̂(λ) , π̂(λ)

k and w(λ)
ik .

2.6 Software description

Fitting random effect models using response transformations with an unspecified

mixing distribution can be done with the R package boxcoxmix (Almohaimeed and

2.6. Software description 55

Einbeck, 2017). The main function is optim.boxcox() that performs a grid search

over the parameter λ and then optimizes over this grid, to calculate the maximum

likelihood estimator of the transformation. It produces a plot of the non-parametric

profile likelihood function (2.4.25) that summarises information concerning λ, includ-

ing a vertical line indicating the best value of λ that maximizes the non-parametric

profile log-likelihood.

In order to fit models with fixed value of λ, one can use the function

np.boxcoxmix() that can be used for overdispersed generalized linear models and

variance component models. It produces a plot of the disparity with the iteration

number on the x-axis and the mass points on the y-axis. It also produces normal Q-Q

plots to determine how well a set of values follow a normal distribution. Furthermore,

it plots the control charts of the residuals of the data before and after applying the

transformation that are ε̂i = yi − ŷi = yi − xTi β̂ − ẑi and ε̂
(λ)
i = y

(λ)
i − ŷi

(λ) =

y
(λ)
i − xTi β̂(λ) − ẑ(λ)

i , respectively, where ẑi = ∑K
k=1 wikẑk and ẑ

(λ)
i = ∑K

k=1 w
(λ)
ik ẑ

(λ)
k

and that is to detect special causes of variation. There are many possible causes of

an out-of-control point, including non-normal data and the number of classes, K.

Additionally, it produces the parameter estimates, the standard errors of

the estimates, t-value and the log-likelihood value. Alternative methods of assess-

ing model fit other than t-value are the Akaike’s Information Criterion (AIC) and

Bayesian Information Criteria (BIC),

AIC = −2`P (λ) + 2× (p+ 2K − 1 + c) (2.6.1)

BIC = −2`P (λ) + log(n)× (p+ 2K − 1 + c) (2.6.2)

56 Chapter 2. Box-Cox transformations for random effect models

where `P (λ) is the profile log-likelihood function given in (2.4.24) which is obtained

by substituting the maximum likelihood estimators of the model parameters (i.e.

zk = ẑ
(λ)
k , πk = π̂

(λ)
k , β = β̂(λ) and σ = σ̂(λ)), and the second part of the AIC and BIC

equations computes the number of parameters estimated in the model. Note that, σ

is a constant term in any given model, even though σ̂(λ) depends on zk and λ, this

parameter σ is of no relevance for the problem of the model selection, therefore, it

should not be included in the degrees of freedom (df) of the model. p is the number

of regression parameters in β̂(λ), K is the number of mixture classes, c is the value 1

if the transformation parameter is estimated and zero otherwise, and n is the number

of observations (see Table 2.6.1). As such, given a set of models, the best model in

terms of relative quality will be the one with minimum AIC or BIC value. Claeskens

(2016) discussed the model selection process via the information criteria such as AIC

and BIC in details. They remarked that “a good model should fit well and not be

too complex”.

Parameters df

ẑ
(λ)
1 , . . . , ẑ

(λ)
K K

π̂
(λ)
1 , . . . , π̂

(λ)
K−1 K − 1

β̂
(λ)
1 , . . . , β̂(λ)

p p

λ̂ 1

Table 2.6.1: number of parameters

Skewness of the distribution of residuals can occur if the data is not normally

distributed or if the number of the classes K is insufficient. For this, the function

2.6. Software description 57

Kfind.boxcox() was created to search over a selected range of K and find the

best. For each number of classes, a grid search over tol is performed and the

tol with the lowest AIC or BIC value is considered as the optimal. Having the

minimal AIC or BIC values for a whole range of K that have been selected, the

function Kfind.boxcox() can find the best number of components as the one with

the smallest AIC or BIC value. The full range of values of K and their corresponding

optimal tol is provided by the Kfind.boxcox()’s output and can be used with other

boxcoxmix functions as arguments.

In addition, boxcoxmix also can be used to perform a grid search over tol

with a fixed number of classes using the function tolfind.boxcox() to identify

optimal starting values for the mass points, and to produce some useful diagnostic

plots of objects generated by the functions np.boxcoxmix(), optim.boxcox(),

Kfind.boxcox() and tolfind.boxcox(), using the generic function plot(). The

plots to be printed depend on the choice of the argument plot.opt,

• 1, the disparities with the iteration number against the mass points;

• 2, the fitted values against the responses of the untransformed and the trans-

formed data;

• 3, probability plot of residuals of the untransformed against the transformed

data;

• 4, individual posterior probabilities;

• 5, control charts of residuals of the untransformed against the transformed

data;

58 Chapter 2. Box-Cox transformations for random effect models

• 6, the histograms of residuals of the untransformed against the transformed

data;

• 7, plots the specified range of tol against the disparities (works only for the

function tolfind.boxcox());

• 8, gives the profile likelihood function that summarises information concerning

λ (works only for the function optim.boxcox()).

• 9, plots the specified range of K against the disparities (works only for the

function Kfind.boxcox());

• 10, gives the profile likelihood function that summarises information concerning

λ (works only for the function boxcoxtype()). This function is used for logistic-

type models.

Other generic functions for boxcoxmix are summary() and print() that print output

summaries of fitted models.

When λ =1 (no transformation), the results of the proposed approach

will be very similar to that of the npmlreg function alldist(). However, the

function np.boxcoxmix() is not a copy or extension of the function alldist(); the

implementation is based on directly computing (2.4.15)-(2.4.18) rather than relying

on the output of the function glm(). We refer the interested reader to Appendix

A.4 and Almohaimeed and Einbeck (2017) for more information on the boxcoxmix

package.

2.7. Simulation studies 59

2.7 Simulation studies

In this section, we perform two simulation studies. Each has two ways of examining

the performance of the proposed approach; by using fixed values of the transforma-

tion parameters (λ) to estimate the model parameters (β), and by using unknown

transformation parameters to estimate the transformation and regression parameters

simultaneously. Similar to Gurka et al. (2006) and Maruo et al. (2017), we use two

different designs of the simulations to determine the effect of misspecification of the

the error term distribution on the estimation and inference about β and λ. The

procedure used for the simulation studies is given in the appendix, Figure A.3.1.

Simulation Study 1

Firstly, we are interested in examining the method’s ability to estimate the true

parameter values. In order to do that, we simulate data by applying the inverse of

the Box–Cox transformation given in equation (2.4.2) to a dataset that follows a

normal distribution using a set of λ’s values. For each value of λ`, ` = 1, 2, 3, 4, we

generate 1000 datasets of 100 observations as follows,

ζi` = ŷ(ηi, λ`), i = 1, · · · , 100 (2.7.1)

ŷ(ηi, λ`) =

(
1 + λ`ηi

)1/λ` (λ` 6= 0),

eηi (λ` = 0)

ηi = 3 x1,i + 0.5 x2,i + zi + εi

X1 ∼ U(−1, 1), X2 ∼ U(−3, 3)

ε ∼ N(0, 0.52)

60 Chapter 2. Box-Cox transformations for random effect models

λ1 = 0, λ2 = 0.5, λ3 = 1, λ4 = 2

zi ∼ Multinomial{1, (z1, . . . , z4)|π1, . . . , π4}

zk = (15, 20, 30, 35) with masses πk = 1/4, k = 1, ..., 4.

To make it simple, we are going to break down the simulation process into well–

defined steps in the following flowchart,

Generate a
dataset

from normal
distribution

Apply the inverse
Box-Cox

transformation
using a set of λ

values
to create non-normal

datasets

Apply the Box-
Cox

transformation
to get the datasets

back to their
original positions.

Simulation
process

Estimation
method

Figure 2.7.1: Flow chart of the methodology followed in the simu-
lation study 1

First, in the simulation process, we generate a dataset from a normal

distribution and then we apply inverse Box–Cox transformation denoted by ŷ(·) in

(2.7.1) for λ` to create non–normal datasets using the boxcoxmix function yhat().

We end up with four datasets ζi` in each simulation run, where each dataset has

a specific value of λ. Basically, we are trying to obtain an estimate of β that

matches its true value from a data that is transformed to a normal distribution using

our approach. We are also estimating the proposed standard errors of parameters

(SE(β̂)) to compare them with the standard deviation of the estimated β to judge

their accuracy. One could consider this as a ‘trivial’ scenario since in effect no

transformation takes place, but we consider this as a baseline test that the machinery

is correctly set up. For the interested reader, Appendix A provides a brief discussion

of this case together with the R code that was used to generate the simulated data.

2.7. Simulation studies 61

To verify the performance of our approach, boxplots are used to compare

the actual parameter values with the estimated values obtained from the simulated

data. The boxplots display the range of variation in the estimated parameter values

from the simulation results and also show the ability of the simulations to reproduce

the actual parameter values.

Figure 2.7.2: Simulation Study 1: boxplots for the parameter es-
timates of the transformed random effect model using a fixed value
of λ that is 0, 0.5, 1 and 2, respectively, from 1000 simulations.

Figure 2.7.2 shows the boxplots for 1000 estimates of the transformed model

parameters using K = 4 and a fixed value of λ that is 0, 0.5, 1 and 2, respectively.

The top and bottom of each box reflect the third and first quartiles, respectively. The

line in the middle of the boxes is the median of the estimated β. Two lines extend

from each box to reach the maximum and minimum values. We added reference

lines in the boxplots which indicate the actual values of β = (3, 0.5), to display the

62 Chapter 2. Box-Cox transformations for random effect models

position of the estimated β for each boxplot. The parameter estimates given in

Figure 2.7.2 are consistent with the true parameter values for each plot.

The interquartile range (IQR) can be used as a robust measure of the

standard deviation of the estimated β since it is less influenced by outliers than the

standard deviation. The IQR is the difference between the first quartile (Q1) and

the third quartile (Q3). We can compute the IQR of the estimated β as follows

IQR = Q3 − Q1 (2.7.2)

Via normal reference, the IQR can be mapped back to the scale of the standard

deviations by division through 1.349 (Silverman, 1986). We call the resulting robust

estimate of standard deviation RESD(β̂).

β1 3 β2 0.5

Mean(β̂1) 3.005379 Mean(β̂2) 0.5000106

Median(β̂1) 3.002567 Median(β̂2) 0.5010484

RESD(β̂1) 0.09044292 RESD(β̂2) 0.03115203

Mean(ŜE(β̂1)) 0.1128143 Mean(ŜE(β̂2)) 0.037569

Median(ŜE(β̂1)) 0.08587615 Median(ŜE(β̂2)) 0.02858872

Table 2.7.1: Simulation Study 1: Summary of simulation results for
λ = 0

Table 2.7.1 displays RESD(β̂) values along with means and medians of EM–

based standard errors, ŜE(β̂), which were obtained by extraction from the model

fitted in the last M–step refer to Section (2.5.9). The first row is the true values of

2.7. Simulation studies 63

β from which the simulation data sets were generated. Since the results for all λ’s

values are identical in this case, only the results of one value of λ are presented. It is

conceptually clear that such EM–based standard errors cannot be ‘correct’ as they

ignore the variation caused by the EM algorithm itself, but we see from Table 2.7.1

that they are still satisfyingly close to their empirical counterparts.

Next, we return to the earlier simulation design Equation (2.7.1) to test the

ability of our approach to estimate the transformation and regression parameters

simultaneously. The simulation process is the same and only the estimation method

is diffrent. Here we estimate λ by applying a grid search over λ for ζi` given in

Equation (2.7.1) via the function optim.boxcox() and estimate β together with the

SE(β̂) using the optimal value of λ. Importantly, the design of the simulation affects

the final results so before running the simulations we need to choose the covariates

X and the starting points zk, K, β and σ, carefully (refer to Appendix A for details).

As we mentioned beforehand we are interested in transforming the data

to be normal or close to normal. Now we apply the backward transformation to

ηi using a fixed value of λ that is 0, 0.5, 1 and 2, respectively. In the next step,

we transform the simulated data (ζi`) to bring it back to the normal distribution

using the boxcoxmix function optim.boxcox() which uses a range of λ’s values to

estimate the optimum λ. The aim here is to get estimates of λ and β that are

approximately equal to the actual values using fixed value of K that was used in the

simulation step (K = 4). Thus, we repeat the simulation for 1000 times to obtain

1000 estimates of the optimum λ and their corresponding estimates of β and SE(β̂)

at once. From this, we obtain the median of the estimated parameters using the

64 Chapter 2. Box-Cox transformations for random effect models

boxplots and compare it with their true values.

Figure 2.7.3: Simulation Study 1: estimates β̂, in each plot for true
λ` = 0, 0.5, 1, 2 (from left to right). The lower plot is exactly the
upper plot with logarithmic scale in the vertical axis. Horizontal
lines indicate the true values.

2.7. Simulation studies 65

Figure 2.7.4: Simulation Study 1: estimated λ, for true λ` =
0, 0.5, 1, 2 (from left to right).

Figure 2.7.3 shows the boxplots for the parameter estimates, for each model

transformed by the optimal λ that was obtained after applying a grid search over

λ where the true λ = 0, 0.5, 1, 2. The horizontal lines in the boxplots indicate the

actual values of β = (3, 0.5). It is clear that the median of the estimated β is close

to the true value in each plot. The boxplots for the estimated values of λ is plotted

in Figure 2.7.4 for each transformed model using a grid search over λ for ζi` where

the actual value of λ are 0, 0.5, 1 and 2. We added reference lines which perform

the actual values of λ. One can see that the median of the estimated λ matches

the true value in each plot. The medians of the estimated β and λ parameters are

also provided in Table 2.7.2; we see that the medians for the regression parameters

approximately equal the actual parameter values, and those of the transformation

parameters are exactly equal to their true values.

66 Chapter 2. Box-Cox transformations for random effect models

Table 2.7.2 displays the mean and median of the estimated standard errors

of the regression parameters together with the RESD(β̂). Column value of λ and

row value of β are considered the true values from which the simulation data sets

were generated.

λ = 0 λ = 0.5 λ = 1 λ = 2

Mean(λ̂) 0.0006 0.5057 1.0046 2.0013

Median(λ̂) 0 0.5 1 2

β1 3 3 3 3

Mean(β̂1) 3.44953 4.348057 3.629167 3.307425

Median(β̂1) 3.001169 3.002301 2.991664 2.981476

RESD(β̂1) 0.09800532 0.1393788 1.304201 0.9044531

Mean(ŜE(β̂1)) 0.1428246 0.1394787 0.1185957 0.1031293

Median(ŜE(β̂1)) 0.08647465 0.08530036 0.08469066 0.08446234

β2 0.5 0.5 0.5 0.5

Mean(β̂2) 0.5742274 0.7197623 0.604555 0.5541792

Median(β̂2) 0.5011232 0.5027145 0.5017513 0.5042211

RESD(β̂2) 0.03227793 0.04796036 0.1920292 0.1632745

Mean(ŜE(β̂2)) 0.04739289 0.04663437 0.03962645 0.03443026

Median(ŜE(β̂2)) 0.02874361 0.02825081 0.02810237 0.02809227

Table 2.7.2: Simulation Study 1: Summary of simulation results
using λ̂, in each column for true λ` = 0, 0.5, 1, 2

As shown in Table 2.7.2, RESD(β̂) differs from the median and the mean

of ŜE(β̂) for λ = 1 and λ = 2, however, for a smaller value of λ the the median

and the mean of ŜE(β̂) come closer to the RESD(β̂) value. A closer look at the

boxplots in Figure 2.7.4 shows that the variation around the true value increases

2.7. Simulation studies 67

as λ gets larger and that causes the variability of the parameter estimates, yielding

biases of the estimated standard errors of the parameters for larger values of λ. As

mentioned before, the EM–based standard errors ignore the variation caused by the

EM algorithm itself. Hence, this aspect of variation of the parameter estimates here

was ignored, leading to wrong standard errors for larger values of λ.

Simulation Study 2

We investigate the effects of the varying structures of the simulated dataset on the

estimation method. In this case, the simulation process and the estimation method

are the same as in the previous study. We only replace the design of generated data

in (2.7.1) by the following design,

ζi` = ŷ(ηi, λ`), ` = 1, ..4, i = 1, ..100 (2.7.3)

ŷ(ηi, λ`) =

(
1 + λ`ηi

)1/λ` (λ` 6= 0),

eηi (λ` = 0)

ηi = 5x1,i + 3x2,i + zi + εi

X1 ∼ U(−1, 1), X2 ∼ U(0, 4)

ε ∼ N(0, 0.52)

λ1 = 0, λ2 = 0.5, λ3 = 1, λ4 = 2

zi ∼ Multinomial{1, (z1, . . . , z4)|π1, . . . , π4}

zk = (15, 20, 30, 35) with masses πk = 1/4, k = 1, ..., 4.

In this case, the same error and random effects distributions that have been used

in the previous study were employed and the only differences between these two

68 Chapter 2. Box-Cox transformations for random effect models

simulation studies are the true values of the coefficient β and the distribution of

the second covariate X2. In these studies, the residuals are expressed as ε̂(λ)
i =

η
(λ)
i − η̂i(λ) = η

(λ)
i −xTi β̂(λ)− ẑ(λ)

i where ẑ(λ)
i = ∑K

k=1 w
(λ)
ik ẑ

(λ)
k . Note that, for this case,

the combination of the distributions from residuals, discrete random effects and the

covariates did not lead to a normal distribution of residuals. The residuals plots

from the fit of the model to the simulated data in their original forms (i.e. without

transformation) for these two studies are shown in Appendix A for comparison. Now

we repeat the simulation for 1000 times for each fixed value of λ to obtain 1000

estimates of β using our approach with the same value of λ that was used to generate

the data set.

Figure 2.7.5: Simulation Study 2: boxplots for the parameter es-
timates of fixed lambda, for each transformed model using the true
value of lambda 0, 0.5, 1 and 2, respectively, from 1000 simulations.

Figure 2.7.5 shows the boxplots for the parameter estimates, for a fixed

value of λ = 0, 0.5, 1 and 2, respectively, with K = 4. We added the actual values

of β = (5, 3) as dotted lines in the boxplots. The median of the parameters being

2.7. Simulation studies 69

estimated is close to the true value, although the estimates have some variations

around the true values. However, the boxplots of the previous study presented in

Figure 2.7.2 showed a stronger consistency of the parameter estimates.

As in the previous simulation study, we generate 1000 datasets as in (2.7.3)

for each λ to obtain 1000 estimates of β and λ simultaneously by applying a grid

search over λ seting K = 4. In the following graphs, we attempt to illustrate how

the design of the simulated data impact the estimation results. Figure 2.7.6 shows

the boxplots of the parameter estimates for each model transformed by the optimal

λ that were obtained after applying a grid search over λ for ζi` where the true values

of λ are 0, 0.5, 1 and 2. Again, the horizontal lines in the boxplots indicate the

actual values of the parameters. It is clear that the medians of the estimated β are

much further from the true value for λ̂2, λ̂3 and λ̂4. In contrast, the median of the

estimated β is close to the actual value for λ̂1. The same manner is seen in Figure

2.7.7 which shows the boxplots for the transformation parameters estimates, only

the median of λ̂1 captured the actual value of 0, whereas the medians of the rest

of the boxplots are far from the actual values of each λ`, ` = 2, 3, 4. By taking

another look at the boxplots in Figures 2.7.6 and 2.7.7, we notice that the bias in

λ̂ causes the bias in β̂. The reason for this bias appearing for λ 6= 0 lies in the

fact that the ηi were originally not normally distributed due to the impact of the

discrete distribution for the random effects and the distributions of the covariates on

the underlying distribution of the residuals. Thus, if we transform them backwards

followed by a forwards transformation using the same value of λ, we would bring

them back to the non-normal distribution which is not the way that our approach

actually works. Therefore, our approach selected the best estimates of λ that are

70 Chapter 2. Box-Cox transformations for random effect models

as expected different than the true values towards transforming the data into a

closer-to-normal distribution.

Figure 2.7.6: Simulation Study 2: estimates β̂, in each plot for true
λ` = 0, 0.5, 1, 2 (from left to right). The lower plot is exactly the
upper plot with logarithmic scale in the vertical axis. Horizontal
lines indicate the true values.

2.8. To transform or not to transform? 71

Figure 2.7.7: Simulation Study 2: estimated λ, for true λ` =
0, 0.5, 1, 2 (from left to right).

2.8 To transform or not to transform?

If λ that maximizes
the profile log-

likelihood is close
or equal to the

value of one then
no transformation

is needed,

Grid of K
for fixed λ
(set λ=1)

Grid of λ
for each K,
separately

Select the
optimal tol
for each K

Select the
optimal K

based on the
AIC and BIC

criteria

If λ that maximizes
the profile log-
likelihood is not

close or equal to the
value of one then

some transformation
is needed.

Use a graphical
approach to
give further

support to the
selected model.

Select the
optimal λ

for each K,
separately

Figure 2.8.1: to transform or not to transform

72 Chapter 2. Box-Cox transformations for random effect models

Figure 2.8.1 shows the flow chart for the choice of the ‘best’ model in terms of which

to transform data or not to transform. First, we find the optimal tol for each

number of classes K setting λ = 1 (i.e. no transformation) where the optimal tol

is the one that minimizes the AIC or BIC value and then perform a grid search

over λ for each K with its corresponding tol. As we mentioned earlier, the NPML

estimation may require an unnecessarily high number of components to maximize

the likelihood whereas well-fitting models with a small number of components are

usually preferred (Leroux and Puterman, 1992). Therefore, we use AIC and BIC

together in model selection to find a model that is favoured by both criteria or is

favoured by one of them but it has a fewer number of classes. If one is, furthermore,

uncertain about whether to transform the data or not to transform, use the available

graphical measures such as control charts, probability plots, histograms of residuals,

and plots of the fitted values against the response of the untransformed and the

transformed data.

2.9 Applications

Example 2.9.1. the Strength data

We have already fitted the random effects model to the strength data (see Example

2.3.1). We extend this analysis to the Box–Cox transformation. Again, the objective

here is to investigate the effects of the covariates lot and cut on the impact strength.

The random effect model that is fitted to the strength data is as follows,

y
(λ)
ij = γi + βj + δij + z, i = 1, 2, j = 1, 2, .., 5, (2.9.1)

2.9. Applications 73

where γ1 = 0, β1 = 0, δ1,1 = δ1,2 = · · · = δ1,5 = δ2,1 = 0, and z is the random effect

with an unspecified mixing distribution, g(z). To obtain initial guesses for zk and

πk we used the Gauss-Hermite quadrature points method.

Shuster and Miura (1972) considered Inverse Gaussian distribution as ad-

equate distribution in modelling strength data. We therefore suggest to fit a number

of models including the Inverse Gaussian model and compare the results using the

Akaike Information Criteria (AIC) defined in Equation (2.6.1). The model with the

lowest AIC value is considered as the best. Here we use a three–component mixture

model for all fitted models because it is the maximum number of classes that we can

use for this data with the Inverse Gaussian family of the model function given in

(2.9.1) using alldist() function; otherwise, alldist() will output an error message.

And of course, we have compared the one and two–component mixture models with

the three–component mixture model and the latter has the lowest values of disparity

and AIC. For the starting point selection, the optimal value of tol is selected using

a grid search over tol using boxcoxmix function tolfind.boxcox() (see Figure

2.9.1).

R Note:

Perform a grid search over tol for the random effect model,

library(boxcoxmix)

maxtol <- tolfind.boxcox(y ~ cut*lot, data = strength,

K = 3, start = "gq" , lambda=1)

Minimal Disparity: -86.61931 at tol= 1.8

Minimal Disparity with EM converged: -86.61931 at tol= 1.8

74 Chapter 2. Box-Cox transformations for random effect models

plot(maxtol, 7)

Figure 2.9.1: A grid search over tol for the random effect models of
the strength data, using K = 3 and λ = 1

From Figure 2.9.1, one could state that the disparity of the fitted model

varies continuously in the specified range of tol (from zero to two) with a minimum

disparity value of −86.61931 at tol= 1.8. Using now our grid search method

optim.boxcox() that calculates and plots the non–parametric profile log–likelihood

values for the fitted model (2.9.1) against a set of λ values, and locates the NPPML

of λ̂ (see Figure 2.9.2):

R Note:

Perform a grid search over λ for the random effect model,

maxlambda <- optim.boxcox(y ~ cut*lot, data = strength,

K = 3, tol = 1.8, start = "gq")

#Maximum profile Log-likelihood: 49.01121 at lambda= 0.1

plot(maxlambda,8)

2.9. Applications 75

Figure 2.9.2: A grid search over λ for the random effect models of
strength data, using K = 3 and tol= 1.8

Figure 2.9.2 shows that the best value of λ that maximizes the non–

parametric profile log-likelihood is 0.1 which is close to zero, suggesting that some

transformation need to be carried out to make the data distribution appears more nor-

mal. Now, we fit the Inverse Gaussian model using the npmlreg function alldist()

with the optimal value of tol selected using the npmlreg function tolfind(). For

a fixed value of λ, we use the boxcoxmix function np.boxcoxmix() with λ = −1 for

the reciprocal transformed model and λ = 1 for the untransformed model.

R Note:

Fit the random effect model with the Inverse Gaussian family,

library(npmlreg)

invgauss <- alldist(y ~ cut*lot, data = strength,

k = 3, tol=0.45, family = "inverse.gaussian")

R Note:

Fit the random effect model with fixed value of λ, λ = 1 and λ = −1,

respectively, where λ = 1 means no transformation is applied

76 Chapter 2. Box-Cox transformations for random effect models

lambda1 <- np.boxcoxmix(y ~ cut*lot, data = strength,

K = 3, tol = 1.8, start = "gq", lambda=1)

lambdaneg1 <- np.boxcoxmix(y ~ cut*lot, data = strength,

K = 3, tol = 1.8, start = "gq", lambda=-1)

Inv.Gauss λ = −1 λ̂ = 0.1 λ = 1

γ2 0.3611 -0.4174 -0.2943 -0.2555

β2 -0.3280 -0.1310 -0.0887 -0.0801

β3 0.4435 -0.4522 -0.3175 -0.2722

β4 0.0857 -0.0338 -0.2383 -0.2203

β5 2.2516 -0.8161 -0.6845 -0.5401

δ2,2 -0.5111 0.4965 0.3715 0.3323

δ2,3 0.5146 0.1813 0.1141 0.1554

δ2,4 -0.1999 0.3404 0.4604 0.4070

δ2,5 -0.1923 0.2595 0.3378 0.3536

σ 0.3966 0.06169 0.0207 0.0206

−2`P (λ) -68 -73.70853 -98.02242 -86.61931

AIC -40 -45.7085 -68.02242 -58.6193

Table 2.9.1: Comparison of results from untransformed & trans-
formed strength data, using K = 3.

Table 2.9.1 displays summary statistics for the Inverse Gaussian distribu-

tion model (Inv.Gauss), the transformed model using λ = −1 and λ̂ = 0.1, and the

untransformed model (λ = 1). Note that comparing the coefficients makes no sense

2.9. Applications 77

since the estimates of β vary greatly with a very minor change of choice of λ̂. Also,

the Inverse Gaussian model is not the same as a reciprocal transformation model

(λ = −1), as it is clear from the subsequent output. The Inverse Gaussian model

gives the worst AIC. Better AIC values are given by the transformed model using

λ = −1, the Gaussian (λ = 1) and λ̂. The lowest AIC found was for the transformed

model using λ̂ with −68.0224. The parameter estimates of the untransformed and

the Box–Cox–transformed model using λ̂ are in agreement but the latter has better

disparity and AIC values. However, the results from the other models are quite

different and the largest disparity value was founded for the Inverse Gaussian model.

K λ = −1 λ = 0.1 λ = 1

1 -30.01438 -33.57915 -29.45051

2 -50.10725 -56.71019 -44.64449

3 -45.70853 -70.02242 -58.61931

4 -50.42968 -59.40018 -52.4271

5 -57.4437 -60.17015 -49.17725

6 -64.53892 -51.40021 -44.42724

7 -49.44363 -52.17016 -54.39248

Table 2.9.2: Comparison of AIC values for strength data

The appropriate number of classes K given tol= 1.8, could be obtained

by comparing the AIC from fitting several mixture models with different numbers of

classesK. Among the four models above, the one with λ = 0.1 provides the best fit of

the data with K = 3 (see Tables 2.9.1 and 2.9.2), which does not necessarily support

78 Chapter 2. Box-Cox transformations for random effect models

the model choice taken in Shuster and Miura (1972). In the case of fixed effect

model, the Box–Cox transformation for this data suggests that a transformation is

needed and the natural log transformation would be appropriate.

Example 2.9.2. Fabric data

In this example, we consider a data set available as part of the R package npmlreg

(Einbeck et al., 2014), which consists of 32 observations. The data set is analyzed

by McLachlan and Peel (2004) and Aitkin et al. (2005) using NPML estimates for

two and three mass-points for the Poisson mixture regression model. Furthermore,

Aitkin (1996a), Hinde and Demétrio (2007) and Einbeck and Hinde (2009) fitted

several overdispersion models to this data and compared their results with those for

Poisson/non–parametric mixture model.

We are interested in the effect of the number of faults in rolls of fabrics y

on the log of the length of the roll given by the variable x. For comparison, we apply

the transformation for fixed and random effects models. The fixed effect model of

interest for the fabric data is as follows

y
(λ)
i = β0 + β1 · xi (2.9.2)

For random effect model, a random effect zi with an unspecified mixing distribution

g(z) is added to the linear predictors. That is

y
(λ)
i = β1 · xi + zi. (2.9.3)

Again, in order to select the appropriate number of classes, the model in (2.9.3) is

fitted with λ = 1 for a set of K values, K ∈ [2, 8]. The optimal tol’s values, the

disparities, AIC and BIC values for each K are given in Table 2.9.3, where K=1

2.9. Applications 79

refers to the fixed effect model given in (2.9.2). From Table 2.9.3, one could state

that the AIC and BIC values of the untransformed data (λ = 1) varies continuously

in the specified range of K (from one to eight) with minimum AIC and BIC values

at K = 1.

K 1 2 3 4 5 6 7 8

optim tol – 1.5 1.5 1.5 1.4 0.1 0.1 0.1

−2`P (λ) 194.2763 192.2114 192.2114 192.2114 192.2114 192.2112 192.2096 181.1997

AIC 200.2763 202.2114 206.2114 210.2114 214.2114 218.2112 222.2096 215.1997

BIC 204.6735 209.5401 216.4715 223.4030 230.3345 237.2658 244.1957 240.1172

Table 2.9.3: Comparison of results from the untransformed fabric
data (λ = 1), using K from 1 to 8

The AIC and BIC values of the model after applying the response trans-

formation for K from 1 to 8 are shown in Figure 2.9.3 and Table 2.9.4, while Figure

2.9.4 plots λ̂ as a function of K with the optimal tol for each number of classes.

K 1 2 3 4 5 6 7 8

λ̂ 0.1 -0.3 -0.3 -0.3 -0.3 -0.4 -0.4 -2.8

−2`P (λ̂) 175.6536 171.8758 171.8758 171.8758 171.8757 164.9376 162.3069 142.5834

AIC 183.6536 181.8758 185.8758 189.8758 193.8757 190.9376 192.3069 176.5834

BIC 189.5166 189.2044 196.1360 203.0674 209.9988 209.9922 214.2930 201.5009

Table 2.9.4: Comparison of results from the transformed fabric
data using λ̂, using K from 1 to 8

80 Chapter 2. Box-Cox transformations for random effect models

Figure 2.9.3: AIC and BIC values of the model after applying the
response transformation to the fabric data for K ∈ [1, 8]

Figure 2.9.4: λ̂ as a function of K with the optimal tol of each
class for modelling fabric data

The minimal AIC value occurred at K = 8 with λ = −2.8 (AIC=176.5834),

while the minimal BIC value occurred at K = 2 with λ = −0.3 (BIC=189.2044), see

Figure 2.9.3 and Table 2.9.4. In this example, the two–component transformed model

amongst the considered models is selected as the ‘best model’. Figure 2.9.4 shows a

strong need of a transformation as we increase the number of classes. That provides

2.9. Applications 81

additional evidence for a better fit to the transformed data. Figure 2.9.5 shows the

Box–Cox transformation for the fixed and random effects models. It can be seen that

the best estimate of λ that maximizes the profile log–likelihood for fixed effect model

is 0.1 as shown in Figure 2.9.5(a) while λ that maximizes the non–parametric profile

log–likelihood for random effect model in Figure 2.9.5(b) is −0.3, suggesting that

both models need to be transformed to make the data distributions look more normal.

(a) transformed fixed effect model (b) transformed random effects with K=2 and

tol=1.5

Figure 2.9.5: the Box–Cox transformation for the fixed (left) and
random effects models (right) to the fabric data

The comparison of the fitted values against the transformed response plots

for fixed effect model (K =1) with λ = 0.1 to those of random effect model (K =2)

with λ = −0.3 in Figure 2.9.6 demonstrates the importance of adding the random

effect, where it is shown that the widely spread points of the fixed effect model

become closer to a straight line. This plot can also be used as an alternative method

for selecting the number of classes of the model. Aitkin (1996a), McLachlan and

Peel (2004) and Einbeck and Hinde (2009) suggested using only two mass–points for

82 Chapter 2. Box-Cox transformations for random effect models

fitting Poisson mixture model with NPML to this data.

Figure 2.9.6: The fitted values against the transformed response of
the fabric data for fixed effect model (left) and those for random
effect model (right)

Figure 2.9.7: Control Chart of residuals of the untransformed (top
plot) against the transformed fabric Data (bottom plot), using
K=2, λ = −0.3 and tol=1.5

The control charts can be used as a tool to assess the normality of the data

2.10. Special case: Box-Cox transformations for pure mixture model 83

and/or the homogeneity of variance. There are many possible causes of an out of

control point, including non-normal distribution and/or non-constant variance. The

control charts of residuals of the data before and after applying the transformation

using λ = −0.3, with K=2 are shown in Figure 2.9.7, the top plot shows an out-

of-control point beyond the control limits of the untransformed data. Another look

at the control charts reveals that the points of the transformed data (the bottom

plot) are much closer to the centerline of the chart than those of the untransformed

data, that shows some variance stabilisation. This supplies the evidence that the

transformed random effect model is more appropriate for this data.

For K =2, where λ̂ is close to zero, the log transformation would be a more

natural choice, since it would correspond to V ar(Y) ≈ µ2 which is quite compatible

with many overdispersed Poisson distributions, such as the negative binomial that

fit these data well. It is also what we get if we take a Poisson log-linear model and

include a random effect in the linear predictor — the marginal variance is quadratic

and so a log-transformation can work well. While for a standard Poisson model (not

overdispersed) a square-root transformation would be variance stabilising.

2.10 Special case: Box-Cox transformations for

pure mixture model

In this section, the Box-Cox transformation is adapted to the random effect model

without any independent variables (we call it a ‘pure mixture model’ to distinguish

84 Chapter 2. Box-Cox transformations for random effect models

it from a more general type of mixture model ‘mixed effect model’). Recall the

equation for the Box-Cox transformation of the response yi above

y
(λ)
i =

yλi − 1
λ

(λ 6= 0),

log yi (λ = 0)

(2.10.1)

and that for yi > 0, i = 1, ..., n. The aforementioned approach is carried out to

estimate the likelihood in the same way as the random effect models with some

related changes.

2.10.1 Estimation of finite mixtures

In the case of pure mixture model, it is assumed that there is a value of λ for which,

y
(λ)
i |zi ∼ N(zi, σ2) (2.10.2)

where zi is again unspecified. Taking account of the Jacobian of the transformation

from y to y(λ), the conditional probability density function of yi given zi is

f(yi, λ|zi) = yλ−1
i√
2πσ2

exp
[
− 1

2σ2 (y(λ)
i − zi)2

]
(2.10.3)

The likelihood can again be approximated using NPML approach as in equation

(2.4.5), yielding the log-likelihood

` =
n∑
i=1

log
(K∑
k=1

πkf
(λ)
ik

)
(2.10.4)

2.10. Special case: Box-Cox transformations for pure mixture model 85

where f (λ)
ik = f(yi, λ|zk). Refer to (2.3.7) and (2.4.7), the complete log-likelihood

would be

`∗ =
n∑
i=1

K∑
k=1

[
Gik log πk +Gik log f (λ)

ik

]
(2.10.5)

where

log f (λ)
ik = log

(
yλ−1
i√
2πσ2

exp
[
− 1

2σ2 (y(λ)
i − zk)2

])

=
(
−1

2 log 2π − log σ − 1
2σ2 (y(λ)

i − zk)2 + (λ− 1) log yi
)
, (2.10.6)

then

`∗ =
n∑
i=1

K∑
k=1

Gik log πk +Gik

− 1
2 log 2π − log σ − 1

2σ2 (y(λ)
i − zk)2

+(λ− 1) log yi

. (2.10.7)

Applying the EM approach to approximate the MLE of the model para-

meters:

E-step: This is identical to (2.4.10), but f (λ)
ik here is as in (2.10.3).

M-step: Calculate ẑ(λ)
k , σ̂2(λ) and π̂(λ)

k using current w(λ)
ik ,

∂`∗

∂zk
= − 1

2σ2 (2)
n∑
i=1

w
(λ)
ik (y(λ)

i − zk)(−1) = 0

n∑
i=1

w
(λ)
ik (y(λ)

i − zk) = 0

n∑
i=1

w
(λ)
ik y

(λ)
i −

n∑
i=1

w
(λ)
ik zk = 0

n∑
i=1

w
(λ)
ik zk =

n∑
i=1

w
(λ)
ik y

(λ)
i

=⇒ ẑ
(λ)
k =

∑n
i=1 w

(λ)
ik y

(λ)
i∑n

i=1 w
(λ)
ik

(2.10.8)

86 Chapter 2. Box-Cox transformations for random effect models

Similarly

∂`∗

∂σ
=

n∑
i=1

K∑
k=1

w
(λ)
ik

[
− 1
σ

+ 1
σ3 (y(λ)

i − zk)2
]

= 0

−
n∑
i=1

K∑
k=1

w
(λ)
ik +

n∑
i=1

K∑
k=1

w
(λ)
ik

σ2 (y(λ)
i − zk)2 = 0

n =
n∑
i=1

K∑
k=1

w
(λ)
ik

σ2 (y(λ)
i − zk)2

nσ2 =
n∑
i=1

K∑
k=1

w
(λ)
ik (y(λ)

i − zk)2

=⇒ σ̂2(λ) =
n∑
i=1

K∑
k=1

w
(λ)
ik (y(λ)

i − zk)2

n
(2.10.9)

and π̂(λ)
k is as in equation (2.4.14).

Replacing the results into Equation (2.10.4) we get the non-parametric profile log-

likelihood function.

`P (λ) =
n∑
i=1

log
[K∑
k=1

π̂k

(
− 1

2 log 2π−log σ̂(λ)− 1
2σ̂2(λ) (y(λ)

i −ẑ
(λ)
k)2+(λ−1) log yi

)]

(2.10.10)

Now let

ξ
(λ)
ik = y

(λ)
i − ẑ

(λ)
k (2.10.11)

= y
(λ)
i −

∑M
m=1 w

(λ)
mky

(λ)
m∑M

m=1 w
(λ)
mk

=
∑M
m=1 w

(λ)
mky

(λ)
i −

∑M
m=1 w

(λ)
mky

(λ)
m∑M

m=1 w
(λ)
mk

=⇒ ξ
(λ)
ik =

∑M
m=1 w

(λ)
mk(y

(λ)
i − y(λ)

m)∑M
m=1 w

(λ)
mk

(2.10.12)

The non-parametric profile log-likelihood function is thus

`P (λ) =
n∑
i=1

log
[K∑
k=1

π̂k

(
− 1

2 log 2π − log σ̂(λ) − 1
2σ̂2(λ) (ξ(λ)

ik)2

+(λ− 1) log yi
)]

(2.10.13)

2.11. Applications 87

The non-parametric profile log-likelihood can then be written as

`P (λ) =
n∑
i=1

log
[K∑
k=1

π̂kf̂
(λ)
ik

]
(2.10.14)

where f̂ (λ)
ik = f(yi, λ|ẑk). The non-parametric profile maximum likelihood (NPPML)

is therefore given by

λ̂ = arg max
λ

`P (λ) (2.10.15)

which can be found through a grid search over λ.

2.11 Applications

Example 2.11.1. the Airline Passenger data

We consider the AirPassengers data from the R library datasets (R Core Team,

2016) which is a monthly airline passenger numbers from 1949-1960 of size n = 144.

In this example, we follow the steps given in the flow chart in Figure 2.8.1. First,

we search for the optimal tol that can be used to set the initial values for a set of

K values in order to obtain the best solution.

R Note:

Import the AirPassengers data into R, then:

library(boxcoxmix)

AirP<-Kfind.boxcox(AirPassengers~1,data=AirPassengers,

find.k = c(2,8),steps.tol =15 ,model.selection = "aic", lambda=1)

#Minimal AIC: 1775.689 at K= 4

88 Chapter 2. Box-Cox transformations for random effect models

K 1 2 3 4 5 6 7 8

optim tol – 1.4 1.1 0.4 0.3 1.1 0.7 0.4

−2`P (λ) 1787.371 1772.195 1762.054 1757.689 1755.062 1752.650 1751.885 1746.646

AIC 1789.371 1782.195 1776.054 1775.689 1777.062 1778.650 1781.885 1780.646

BIC 1792.341 1797.044 1796.843 1802.417 1809.730 1817.258 1826.432 1831.133

Table 2.11.1: Comparison of results from the untransformed
AirPassengers data (λ = 1), using K from 1 to 8

Concerning the choice of K, it is apparent from Table 2.11.1 that there

is no gain in going up more than K = 4 as the AIC values in fact increase when

doing so. There is a consistent improvement, however, when increasing the number

of mass points from K = 1 to K = 4. In contrast, BIC seems to favour fixed effect

model. In this example, for the untransformed data, the appropriate value of K is

1. By using a range of K values together with the optimal tol for each number of

classes, we can perform a grid search over λ and then optimize over this grid.

K 1 2 3 4 5 6 7 8

λ̂ 0.1125 0.7250 0.8125 0.6375 0.7250 0.9875 1.1625 0.9875

−2`P (λ̂) 1768.777 1763.530 1758.627 1754.678 1752.177 1752.590 1751.066 1746.580

AIC 1772.777 1771.530 1770.627 1770.678 1772.177 1776.590 1779.066 1778.580

BIC 1778.716 1783.409 1788.446 1794.437 1801.875 1812.228 1820.644 1826.097

Table 2.11.2: Comparison of results from the transformed
AirPassengers data using K from 1 to 8

2.11. Applications 89

Figure 2.11.1: λ̂ as a function of K with the optimal tol for each
K of modelling AirPassengers data

Figure 2.11.2: AIC and BIC values of the model after applying the
response transformation to the AirPassengers data for K ∈ [1, 8]

The λ/K trade-off is rather clear from Figure 2.11.1 and Table 2.11.2. For

larger K no need for any transformation, perhaps as excess variation is already

90 Chapter 2. Box-Cox transformations for random effect models

accounted for. Alternatively, with K = 1 something like a log-transformation works.

Comparing the BIC and disparity values −2`P (λ) for the transformed response of

the pure mixture models for K = 1 with those for K > 1, it appears that the

smallest BIC value occurs when the fixed effect model is fitted for the transformed

case (λ̂ = 0.1125) with BIC = 1778.716, see Table 2.11.2 and Figure 2.11.2.

Example 2.11.2. the Internet Usage data

We consider the WWWusage data from the R library datasets (R Core Team, 2016)

which is a time series of 100 minutes recording how many users an internet server had

every minute. The paper by Qarmalah et al. (2018) indicated that the data follows

a mixture of either three or four normal distributions. To examine that, as in the

previous example, we follow the flow chart in Figure 2.8.1 by searching for the optimal

tol for each number of classes and then applying the Box–Cox transformation for

each number of classes with their optimal tol. The model which minimizes either

AIC or BIC with a small number of classes is selected as the best–fitting model.

The AIC and BIC of the untransformed data (λ = 1) differ continuously over the

specified range of K (from two to eight) as shown in Table 2.11.3, the best model

which minimizes the AIC is the 8–component model with AIC = 972.814, whereas

the lowest BIC value is 1004.635 at K= 4. In this case, the optimal number of

classes is taken as 4.

2.11. Applications 91

K 1 2 3 4 5 6 7 8

optim tol – 1.1 0.6 0.2 0.1 0.1 0.2 0.1

−2`P (λ) 1021.561 1016.7139 992.3199 963.1884 963.1885 958.0025 955.6785 938.8141

AIC 1023.561 1026.7139 1006.3199 981.1884 985.1885 984.0025 985.6785 972.8141

BIC 1026.166 1039.740 1024.556 1004.635 1013.845 1017.870 1024.756 1017.102

Table 2.11.3: Comparison of results from the untransformed
WWWusage data (λ = 1), using K from 1 to 8

K 1 2 3 4 5 6 7 8

λ̂ 0.1417 0.1417 1.0167 0.9 0.9 0.6083 1.3667 0.725

−2`P (λ) 1015.7589 1014.7539 992.5683 963.1301 963.1301 957.7279 953.9402 936.7462

AIC 1019.7589 1022.7539 1004.5683 979.1301 983.1301 981.7279 981.9402 968.7462

BIC 1024.9693 1033.1746 1020.1993 999.9715 1009.1818 1012.9899 1018.4125 1010.4290

Table 2.11.4: Comparison of results from the transformed WWWusage
data (λ = 1), using K from 1 to 8

Figure 2.11.3: λ̂ as a function of K with the optimal tol for each
number of classes of modelling the WWWusage data

92 Chapter 2. Box-Cox transformations for random effect models

Figure 2.11.4: AIC and BIC values of the model after applying the
response transformation to the WWWusage data for K ∈ [1, 8]

Comparing the results of both criteria for the transformed data for each K

in Figure 2.11.4 and Table 2.11.4, we notice that the minimal AIC value occurred at

K = 8 with λ̂ =0.725 (AIC=968.7462) while the minimal BIC value occurred at K =

4 with λ̂ = 0.9 (BIC=999.9715). More evidence of the λ/K trade-off is shown in Table

2.11.4. Again, the four–component model is considered as the best model. Figure

2.11.3 shows that the best estimate of λ that maximizes the non–parametric profile

log–likelihood is close to the value of 1, suggesting that no transformation is needed.

That supports the suggestion given in paper by Qarmalah et al. (2018) that the

WWWusage data follows a normal distribution subject to heterogeneity. The residuals

plots for WWWusage data before and after applying the response transformation for

K ∈ [1, 4] are shown in Appendix A.

2.12. Discussion 93

2.12 Discussion

It is common to normalize the non–normal data via a normalizing transformation

prior to analysis. In order to select an appropriate transformation parameter for

the linear model with random effects of unspecified distribution we have developed

methodology for simultaneous response transformation and estimation of regression

parameters. This is achieved by extending the “Nonparametric Maximum Likelihood”

towards a “Nonparametric Profile Maximum Likelihood” technique.

In this Chapter, we have introduced a new R package boxcoxmix that iden-

tifies the appropriate power transformation for achieving normality of the response

distribution in random effect models with a non–parametric setting. To the best

of our knowledge, there is no other widely available statistical package that has

implemented the Box–Cox power transformation of the linear mixed effects model

with an unspecified random effect distribution. boxcoxmix is able to estimate the

transformation and regression parameters simultaneously through its main function

optim.boxcox() but K has to be fixed in this process. This function operates

similarly to the existing R function boxcox(), by creating a profile likelihood and

carrying out a grid search over the transformation parameter λ but our method is

based on non–parametric estimation of λ. It is noted that, just as in boxcox(),

this procedure cannot make use of built–in R optimization routines such as optim()

or optimize() since the profile likelihood itself depends on estimated parameters,

estimation of which involves a full EM algorithm. In addition, boxcoxmix also can

be used to fit models with fixed value of λ using function np.boxcoxmix(), and to

perform a grid search over tol using the function tolfind.boxcox() to identify

94 Chapter 2. Box-Cox transformations for random effect models

optimal starting values for the mass points. Our package provides some further

diagnostic tools, such as a QQ–plot and a control chart of residuals, which help

validating the need for transformation.

To assess the performance of the proposed approach, we conducted two

simulation studies. In the first simulation study in which the residuals of the fitted

model were normal on the original scale before being non–normal by applying the

inverse transformation in the simulation process, we have seen that the method is

able to transform the data back to its original position when λ’s are fixed. Also,

the simulations where λ’s are unknown showed that the method is able to spot the

true value of λ. The results demonstrated the effectiveness of the proposed method

in estimating the regression parameters. Furthermore, comparing the robust estim-

ate of the standard deviation with the EM–based standard errors of the regression

parameter estimates revealed the biases of the estimated standard errors of the para-

meters due to ignoring the variation of the estimates of the regression parameters

that results from the variables with the transformation parameters estimates. The

second study based on non–normal distribution of the fitted model on the original

scale due to the effect of the discrete distribution for the random effects and the dis-

tributions of the covariates on the underlying distribution of the residuals, which was

determined by the graphical method for normality given in Appendix A. The related

results showed a large bias when λ 6= 0, the cause of which was considered that the

generated data had originally a non–normal distribution prior to applying the inverse

of the transformation. Thus, in order to tranform the data to a close-to-normal dis-

tribution our method selected λ̂ that transforms the data far from its original scale.

Taken together, the simulation results indicate that there is a strong relationship

2.12. Discussion 95

between the regression and transformation parameters. The bias in the regression

parameter estimates increases as the bias in the transformation parameter estimates

increases. In the Gaussian random effect distribution case, Gurka (2004) showed

the correlation between the estimation of the transformation and regression para-

meters. He observed that the bias in the estimate of the transformation parameter

results in incorrect conclusions about the estimation of the regression parameters.

He concluded that transforming the response impacts the inference about the fixed

effect when compared to the response with no transformation. Furthermore, our

simulation results suggest that the estimation method may be influenced by the

varying structures of the simulated dataset.

The simulation results also showed a strong consistency of the parameter

estimates when the log–transformation is the most appropriate transformation for

the simulated data. However, as demonstrated by Gurka (2004) in the Gaussian

random effect distribution case, there may be a computational problem when λ = 0 is

the most suitable transformation. In the univariate case, Asar et al. (2017) proposed

different approaches to estimate the Box-Cox power transformation parameter and

implement simulation studies to compare their effectiveness, and the related results

indicated that all of the methods, including the one that was not preferred to

estimate λ, performed well at λ = 0 regardless of what design is used to generate

the data. Changyong et al. (2014) showed that the log transformation does not

necessarily make data conform more closely to the normal distribution. From this

arises the question whether the restriction on the response to be greater than zero

has an effect on the results of the log–transformation. Accordingly, it would be

interesting to examine the possibility of using a small value of λ that is close to

96 Chapter 2. Box-Cox transformations for random effect models

zero for transformaing the response instead of log–transformation when λ = 0 is

selected as the optimum. This solution has been taken before; see, for instance,

Gurka (2004). In further research, the effect of the sample size of the generated data

in the estimation results of the transformation should be studied.

Additionally, we have shown how boxcoxmix can successfully fit models

through response transformation rather than adjustment of the response distribu-

tion. The examples have demonstrated that the proposed approach works well in

finding the model with maximum likelihood. As in the univariate case, the Box-Cox

transformation does not guarantee that the assumptions of homoscedasticity and nor-

mality of the response distribution in the random effects model is met after applying

the transformation, however, it provides a data for which the homoscedasticity and

normality assumptions are more reasonable than not applying the transformation at

all. All transformed models using λ̂ that were obtained by the boxcoxmix function

optim.boxcox() gave substantially better fits than the untransformed models, when

considering the AIC and BIC criteria or the disparity (−2`P (λ)). It should be added

that it is not possible to report a simple likelihood–based confidence interval for λ̂

as in R function boxcox(), the reason being that the likelihood in the considered

model class is highly non–concave, as visible for instance from Figure 2.9.2. Hence,

when faced with the decision on whether or not needing to transform the response,

not only the value of λ̂ but also the relevant model selection criteria such as AIC

and BIC should be taken into account. It is then essential that these are always

based on likelihoods which are reported on the original response scale, as in model

(2.4.5), of course, this is the case for the values −2`P (λ), AIC and BIC provided in

our summary output. In contrast, comparing the coefficients make no sense since

2.12. Discussion 97

the estimates of β vary greatly with a very minor change of choice of λ̂.

In the Example 2.11.2, λ̂ for classical boxcox was much further away from

λ = 1 than for boxcoxmix, therefore, it is beneficial to test the need for a transform-

ation of the response of random effect model even if the classical boxcox does need

transformation! This gives us further support for our method because it can tell us

if the data really needs to be transformed or only the right number of components

needs to be found in order to have a normal distribution. Moreover, Example 2.9.2

showed a strong need of a transformation as we increase the number of classes (Fig-

ure 2.9.4). Concerning the choice of the number of components, Lukociene (2010)

indicated that the NPML estimation may yield an unnecessarily high number of

components. McLachlan and Peel (2004) and Aitkin et al. (2005) suggested using

the penalized-log–likelihood criteria, such as AIC and BIC, by increasing the number

of components in the fitted model until the decrease in these criteria stabilizes. As

demonstrated by the real data examples, a large number of classes is required to min-

imize the disparity although well-fitting models can be found with a smaller number

of components. The experimental results verify the accuracy and the efficiency of

the proposed approach and its implemented package boxcoxmix.

Chapter 3

Box-Cox transformations for

two–level models

3.1 Introduction

In the previous chapter, we have presented a general introduction to the Box–Cox

transformation for the univariate linear model. Then, we have explored the random

effect model that accounts for an individual random effect on an observation. Fi-

nally, the transformation has been extended to the random effect models. A brief

description of the boxcoxmix package with real data examples and simulations have

been presented and discussed. However, assume one wishes to analyze a dataset

containing observations that share a random effect (e.g. classes or schools), and

repeated individual observations over time (longitudinal data). This leads to the

two–level variance component models, which we wish to introduce in this Chapter,

and onto which we will apply the Box–Cox transformation in a similar manner as

100 Chapter 3. Box-Cox transformations for two–level models

for the random effect models with some associated changes.

Section 3.2 provides an introduction to the two–level variance component

models, followed by a real data example. In Section 3.3, the Box-Cox transformation

is extended to the variance component model, along with some software descriptions

in Section 3.4. We demonstrate the applicability of the proposed approach using

simulated and real data examples in Sections 3.5 and 3.6. Finally, we provide a

discussion in Section 3.7.

3.2 Two-level models

For data with a two–level structure, such as longitudinal data, correlation of responses

within upper–level units can be induced by adding a random effect zi to the linear

predictor xTijβ, with the upper-level indexed by i = 1, . . . , r, and the lower-level

indexed by j = 1, . . . , ni,
∑r
i ni = n. Conditional on the random effect, the responses

yij are independently distributed with mean function

E(yij|zi) = xTijβ + zi, (3.2.1)

which is also known as a variance component model. As in Chapter 2, we make no

assumption about the distribution of the zi. When ni ≡ 1, it reduces to the random

effect models, presented in Chapter 2.

3.2. Two-level models 101

3.2.1 Estimation of finite mixtures

This is a simple variant of estimation in Chapter 2, with the same issues of iteration.

The conditional probability density function of yij given zi is given by

f(yij|zi) = φ(yij;xTijβ + zi, σ
2) = 1√

2πσ2
exp

[
− 1

2σ2 (yij − xTijβ − zi)2
]

(3.2.2)

As in Chapter 2, the likelihood is again approximated using NPML estimation

(Aitkin et al., 2009).

L(β, σ2, g) =
r∏
i=1

∫ ni∏
j=1

f(yij|zi)
 g(zi)dzi ≈

r∏
i=1

K∑
k=1

πkmik (3.2.3)

where mik = ∏ni
j=1 f(yij|zk). The log-likelihood is then

` = logL = log
(r∏
i=1

K∑
k=1

πkmik

)
=

r∑
i=1

log
(K∑
k=1

πkmik

)
(3.2.4)

Using notation as defined in (2.3.7), the "complete data" likelihood would be

L∗ =
r∏
i=1

K∏
k=1

(πkmik)Gik (3.2.5)

The complete log-likelihood is thus

`∗ = logL∗ =
r∑
i=1

K∑
k=1

[Gik log πk +Gik logmik] (3.2.6)

where

logmik =
ni∑
j=1

log f(yij|zk)

=
ni∑
j=1

log
(

1√
2πσ2

exp
[
− 1

2σ2 (yij − xTijβ − zk)2
])

=
ni∑
j=1

(
−1

2 log 2π − log σ − 1
2σ2 (yij − xTijβ − zk)2

)

= −ni2 log 2π − ni log σ − 1
2σ2

ni∑
j=1

(yij − xTijβ − zk)2, (3.2.7)

102 Chapter 3. Box-Cox transformations for two–level models

then

`∗ =
r∑
i=1

K∑
k=1

Gik log πk +Gik

−ni2 log 2π − ni log σ − 1
2σ2

ni∑
j=1

(yij − xTijβ − zk)2

 .
(3.2.8)

We apply the EM approach as before, with the following adjustments:

E-step: This is similar to that in (2.3.12), but with fik replaced by mik.

M-step: Calculate ẑk, σ̂2, β̂ and π̂k using the current wik that defined in the E-step,

∂`∗

∂zk
= − 1

2σ2

r∑
i=1

2wik

 ni∑
j=1

(yij − xTijβ − zk)
 (−1) = 0

r∑
i=1

wik

 ni∑
j=1

(yij − xTijβ − zk)
 = 0

r∑
i=1

ni∑
j=1

wikzk =
r∑
i=1

wik

 ni∑
j=1

(yij − xTijβ)

r∑
i=1

niwikzk =
r∑
i=1

wik

 ni∑
j=1

(yij − xTijβ)

=⇒ ẑk =
∑r
i=1 wik

[∑ni
j=1(yij − xTijβ)

]
∑r
i=1 niwik

(3.2.9)

Similarly

∂`∗

∂β
= − 1

2σ2

r∑
i=1

K∑
k=1

ni∑
j=1

2wik(−xij)(yij − xTijβ − zk) = 0

r∑
i=1

K∑
k=1

ni∑
j=1

wikxij(yij − xTijβ − zk) = 0

r∑
i=1

K∑
k=1

ni∑
j=1

wikxijyij −
r∑
i=1

K∑
k=1

ni∑
j=1

wikxijx
T
ijβ −

r∑
i=1

K∑
k=1

ni∑
j=1

wikxijzk = 0

r∑
i=1

ni∑
j=1

xijyij
K∑
k=1

wik −
r∑
i=1

ni∑
j=1

xijx
T
ijβ

K∑
k=1

wik −
r∑
i=1

ni∑
j=1

xij
K∑
k=1

wikzk = 0

3.2. Two-level models 103

r∑
i=1

ni∑
j=1

xijyij −
r∑
i=1

ni∑
j=1

xijx
T
ijβ −

r∑
i=1

ni∑
j=1

xij
K∑
k=1

wikzk = 0

=⇒ β̂ =
 r∑
i=1

ni∑
j=1

xijx
T
ij

−1 r∑
i=1

ni∑
j=1

xijyij −
r∑
i=1

ni∑
j=1

xij
K∑
k=1

wikzk

=
 r∑
i=1

ni∑
j=1

xijx
T
ij

−1
r∑
i=1

ni∑
j=1

xij

(
yij −

K∑
k=1

wikzk

)
(3.2.10)

Equation (3.2.10) in matrix notation is

β̂ =

X
T︸︷︷︸

p × n

X︸︷︷︸
n × p︸ ︷︷ ︸

p × p

−1

XT︸︷︷︸
p × n

Y︸︷︷︸

n × 1

− W︸︷︷︸
n × K

Z︸︷︷︸
K × 1︸ ︷︷ ︸

n × 1︸ ︷︷ ︸
n × 1

(3.2.11)

where

Y =

y1

...

yn1

y1

...

yn2

...

...

y1

...

ynr

n1

n2

nr

, X =

x11 x12 · · · x1p

...

xn11 xn12 · · · xn1p

x11 x12 · · · x1p

...

xn21 xn22 · · · xn2p

...

...

x11 x12 · · · x1p

...

xnr1 xnr2 · · · xnrp

n1

n2

nr

104 Chapter 3. Box-Cox transformations for two–level models

W =

w11 · · · · · · w1K

...

...

wnr1 · · · · · · wnrK

n times and Z =

z1

...

...

zK

and the score for σ is

∂`∗

∂σ
=

r∑
i=1

K∑
k=1

wik

−ni
σ

+ 1
σ3

 ni∑
j=1

(yij − xTijβ − zk)2

 = 0

=⇒
r∑
i=1

K∑
k=1

wikniσ
2 =

r∑
i=1

K∑
k=1

wik

 ni∑
j=1

(yij − xTijβ − zk)2

=⇒ σ̂2 =

∑r
i=1

∑K
k=1 wik

[∑ni
j=1(yij − xTijβ − zk)2

]
∑r
i=1 ni

∑K
k=1 wik

=⇒ σ̂2 =
∑r
i=1

∑K
k=1 wik

[∑ni
j=1(yij − xTijβ − zk)2

]
∑r
i=1 ni

(3.2.12)

The derivatives of the log-likelihood with respect to πk as in Section 2.3, but with n

replaced by r.

π̂k =
∑r
i=1 wik
r

. (3.2.13)

3.2.2 Existing R implementation: allvc()

To fit variance component models, we can use the npmlreg function allvc() (Ein-

beck et al., 2014). Similar to the case in the function alldist() described in Section

2.3.2, the function allvc() relies on the output of the function glm() rather than

computing (3.2.10),(3.2.9),(3.2.12) and (3.2.13) directly.

3.2. Two-level models 105

Example 3.2.1. the heights of boys in Oxford data

The dataset has been analyzed by Aitkin et al. (2009). The heights of 26 boys

in Oxford were recorded on nine equally spaced occasions over two years, yielding a

total of 234 observations (nlme; Pinheiro et al., 2016). The response variable height

is defined as the height of the boy in (cm), associated with the covariate age that

is the standardized age (dimensionless). Actual heights attained at each age are

shown in Figure 3.2.1 for each boy. The individual boys are represented by points

joined by lines.

R Note:

Import the Oxboys data into R, then:

Oxboys$boy <- gl(26,9)

Oxboys$tage <- Oxboys$age+13

plot(Oxboys$age[Oxboys$boy==1],Oxboys$height[Oxboys$boy==1],

ylim=c(125,175),type=’b’,pch=1,xlab=’age’,ylab=’height’)

for (i in 2:nlevels(Oxboys$Subject))

lines(Oxboys$age[Oxboys$boy==i],Oxboys$height[Oxboys$boy==i],

pch=1,col=i,type=’b’)

106 Chapter 3. Box-Cox transformations for two–level models

Figure 3.2.1: Heights of 26 boys in Oxford over two years.

The function allvc() is used to fit the variance component model,

E(yij|zi) = agej + zi (3.2.14)

where zi is a boy–specific random effect and agej is the j-th standardized age meas-

urement, j = 1, . . . , 9, which is equal for all boys for fixed j.

R Note:

library(npmlreg)

Oxboys.vc <- allvc(height~age,random=~1|boy,data=Oxboys,

random.distribution="np",k=8)

summary(Oxboys.vc)

Call: allvc(formula = height ~ age, random = ~1 | boy,

data = Oxboys, k = 8, random.distribution = "np")

#

3.2. Two-level models 107

Coefficients:

Estimate Std. Error t value

age 6.523808 0.05599468 116.5076

MASS1 130.200172 0.18461208 705.2635

MASS2 138.416626 0.10659164 1298.5692

MASS3 143.382396 0.10659052 1345.1702

MASS4 147.350112 0.08256950 1784.5585

MASS5 151.267275 0.06978777 2167.5326

MASS6 155.789087 0.09230962 1687.6798

MASS7 159.521547 0.18461217 864.0901

MASS8 164.883638 0.13054343 1263.0559

#

Mixture proportions:

MASS1 MASS2 MASS3 MASS4 MASS5

0.03846154 0.11538462 0.11538469 0.19230765 0.26921962

MASS6 MASS7 MASS8

0.15385725 0.03846155 0.07692308

#

Component distribution - MLE of sigma: 1.433

Random effect distribution - standard deviation: 7.917343

#

-2 log L: 931.4 Convergence at iteration 10

108 Chapter 3. Box-Cox transformations for two–level models

plot(Oxboys.vc)

Figure 3.2.2: Fitting the variance component with NPML to the
Oxboys data using the function allvc, with k=6 and tol=0.5

Figure 3.2.2 shows how the posterior splits the data into 8 distinct classes.

3.3 Box-Cox transformations for two-level

models

In this Section, we shall see how the approach for applying the Box–Cox trans-

formation to this model closely parallels that for random effect model but the EM

algorithm gets a bit more complicated, yields a quite straightforward way to extend

the transformation to the two-level models. Under the scenario of model (3.2.1), the

3.3. Box-Cox transformations for two-level models 109

transformation by Box and Cox (1964) can be written as

y
(λ)
ij =

yλij − 1
λ

(λ 6= 0),

log yij (λ = 0)

(3.3.1)

and that for yij > 0, i = 1, ..., r, j = 1,, ni, and
∑
ni = n. From the inversion of

3.3.1 we get

ŷij =

(
1 + ληij

)1/λ
(λ 6= 0),

eηij (λ = 0)

(3.3.2)

where ηij = xTijβ + zi.

3.3.1 Estimation of finite mixtures

In the case of two-level variance component models, it is assumed that there is a

value of λ for which,

y
(λ)
ij |zi ∼ N(xTijβ + zi, σ

2) (3.3.3)

where zi again has an unknown mixing distribution g(zi). Taking account of the

Jacobian of the transformation from yij to y(λ)
ij , the conditional probability density

function of yij given zi is given by

f(yij, λ|zi) = φ(y(λ)
ij ;xTijβ + zi, σ

2)yλ−1
ij =

yλ−1
ij√
2πσ2

exp
[
− 1

2σ2 (y(λ)
ij − xTijβ − zi)2

]
(3.3.4)

The likelihood can now be approximated using NPML estimation (Aitkin et al.,

2009).

L(λ, β, σ2, g) =
r∏
i=1

∫ ni∏
j=1

f(yij, λ|zi)
 g(zi)dzi ≈

r∏
i=1

K∑
k=1

πkm
(λ)
ik (3.3.5)

110 Chapter 3. Box-Cox transformations for two–level models

where m(λ)
ik = f(yij, λ|zk). The log-likelihood is then

` = logL = log
(r∏
i=1

K∑
k=1

πkm
(λ)
ik

)
=

r∑
i=1

log
(K∑
k=1

πkm
(λ)
ik

)
(3.3.6)

Refer to (2.3.7), the “complete data” log-likelihood would be

`∗ = logL∗ =
r∑
i=1

K∑
k=1

[
Gik log πk +Gik logm(λ)

ik

]
(3.3.7)

where

logm(λ)
ik =

ni∑
j=1

log f(yij, λ|zk)

=
ni∑
j=1

log
(

yλ−1
ij√
2πσ2

exp
[
− 1

2σ2 (y(λ)
ij − xTijβ − zk)2

])

=
ni∑
j=1

(
−1

2 log 2π − log σ − 1
2σ2 (y(λ)

ij − xTijβ − zk)2 + (λ− 1) log yij
)

= −ni2 log 2π − ni log σ − 1
2σ2

ni∑
j=1

(y(λ)
ij − xTijβ − zk)2 + (λ− 1)

ni∑
j=1

log yij,

(3.3.8)

then

`∗ =
r∑
i=1

K∑
k=1

Gik log πk +Gik

− ni
2 log 2π − ni log σ − 1

2σ2

ni∑
j=1

(y(λ)
ij − xTijβ − zk)2

+ (λ− 1)
ni∑
j=1

log yij

. (3.3.9)

Applying the EM approach to approximate the MLE of the model para-

meters:

E-step: This is exactly that in (2.4.10), but with f (λ)
ik replaced by m(λ)

ik .

M-step: Calculate ẑ(λ)
k , σ̂2(λ), β̂(λ) and π̂(λ)

k using current w(λ)
ik ,

3.3. Box-Cox transformations for two-level models 111

∂`∗

∂zk
= − 1

2σ2

r∑
i=1

2w(λ)
ik

 ni∑
j=1

(y(λ)
ij − xTijβ − zk)

 (−1) = 0

r∑
i=1

w
(λ)
ik

 ni∑
j=1

(y(λ)
ij − xTijβ − zk)

 = 0

r∑
i=1

ni∑
j=1

w
(λ)
ik zk =

r∑
i=1

w
(λ)
ik

 ni∑
j=1

(y(λ)
ij − xTijβ)

r∑
i=1

niw
(λ)
ik zk =

r∑
i=1

w
(λ)
ik

 ni∑
j=1

(y(λ)
ij − xTijβ)

=⇒ z

(λ)
k =

∑r
i=1 w

(λ)
ik

[∑ni
j=1(y(λ)

ij − xTijβ)
]

∑r
i=1 niw

(λ)
ik

(3.3.10)

Similarly

∂`∗

∂β
= − 1

2σ2

r∑
i=1

K∑
k=1

ni∑
j=1

2w(λ)
ik (−xij)(y(λ)

ij − xTijβ − zk) = 0

r∑
i=1

K∑
k=1

ni∑
j=1

w
(λ)
ik xij(y

(λ)
ij − xTijβ − zk) = 0

r∑
i=1

K∑
k=1

ni∑
j=1

w
(λ)
ik xijy

(λ)
ij −

r∑
i=1

K∑
k=1

ni∑
j=1

w
(λ)
ik xijx

T
ijβ −

r∑
i=1

K∑
k=1

ni∑
j=1

w
(λ)
ik xijzk = 0

r∑
i=1

ni∑
j=1

xijy
(λ)
ij

K∑
k=1

w
(λ)
ik −

r∑
i=1

ni∑
j=1

xijx
T
ijβ

K∑
k=1

w
(λ)
ik −

r∑
i=1

ni∑
j=1

xij
K∑
k=1

w
(λ)
ik zk = 0

r∑
i=1

ni∑
j=1

xijy
(λ)
ij −

r∑
i=1

ni∑
j=1

xijx
T
ijβ −

r∑
i=1

ni∑
j=1

xij
K∑
k=1

w
(λ)
ik zk = 0

=⇒ β(λ) =
 r∑
i=1

ni∑
j=1

xijx
T
ij

−1 r∑
i=1

ni∑
j=1

xijy
(λ)
ij −

r∑
i=1

ni∑
j=1

xij
K∑
k=1

w
(λ)
ik zk

=
 r∑
i=1

ni∑
j=1

xijx
T
ij

−1
r∑
i=1

ni∑
j=1

xij

(
y

(λ)
ij −

K∑
k=1

w
(λ)
ik zk

)
(3.3.11)

and

∂`∗

∂σ
=

r∑
i=1

K∑
k=1

w
(λ)
ik

−ni
σ

+ 1
σ3

 ni∑
j=1

(y(λ)
ij − xTijβ − zk)2

 = 0

112 Chapter 3. Box-Cox transformations for two–level models

r∑
i=1

K∑
k=1

w
(λ)
ik niσ

2 =
r∑
i=1

K∑
k=1

w
(λ)
ik

 ni∑
j=1

(y(λ)
ij − xTijβ − zk)2

=⇒ σ2(λ) =

∑r
i=1

∑K
k=1 w

(λ)
ik

[∑ni
j=1(y(λ)

ij − xTijβ − zk)2
]

∑r
i=1 ni

∑K
k=1 w

(λ)
ik

=
∑r
i=1

∑K
k=1 w

(λ)
ik

[∑ni
j=1(y(λ)

ij − xTijβ − zk)2
]

∑r
i=1 ni

(3.3.12)

and the average posterior probability π(λ)
k for component k is as in (3.2.13), but with

wik replaced by w(λ)
ik .

This leads to the four reconciled equations (emphasizes the dependence on

λ explicitly)

ẑ
(λ)
k =

∑r
i=1 w

(λ)
ik

[∑ni
j=1(y(λ)

ij − xTijβ̂(λ))
]

∑r
i=1 niwik

(3.3.13)

β̂(λ) =
 r∑
i=1

ni∑
j=1

xijx
T
ij

−1
r∑
i=1

ni∑
j=1

xij

(
y

(λ)
ij −

K∑
k=1

w
(λ)
ik ẑ

(λ)
k

)
(3.3.14)

σ̂2(λ) =
∑r
i=1

∑K
k=1 w

(λ)
ik

[∑ni
j=1(y(λ)

ij − xTijβ̂(λ) − ẑ(λ)
k)2

]
∑r
i=1 ni

(3.3.15)

π̂
(λ)
k =

∑r
i=1 w

(λ)
ik

r
(3.3.16)

Equation (3.3.14) in matrix notation is

β̂(λ) =

X
T︸︷︷︸

p × n

X︸︷︷︸
n × p︸ ︷︷ ︸

p × p

−1

XT︸︷︷︸
p × n

Y (λ)︸ ︷︷ ︸
n × 1

−W (λ)︸ ︷︷ ︸
n × K

Ẑ(λ)︸ ︷︷ ︸
K × 1︸ ︷︷ ︸

n × 1︸ ︷︷ ︸
n × 1

(3.3.17)

Replacing the results into Equation (3.3.6) we get the non-parametric profile

log-likelihood function.

3.3. Box-Cox transformations for two-level models 113

`P (λ) =
n∑
i=1

log
 K∑
k=1

π̂
(λ)
k

− ni
2 log 2π − ni log σ̂(λ)

− 1
2σ̂2(λ)

 ni∑
j=1

(y(λ)
ij − xTijβ̂(λ) − ẑ(λ)

k)2

+ (λ− 1) log
ni∑
j=1

yij

 (3.3.18)

Now let

ξ
(λ)
ijk = y

(λ)
ij − xTijβ̂(λ) − ẑ(λ)

k (3.3.19)

= y
(λ)
ij − xTijβ̂(λ) −

∑r
m=1 w

(λ)
mk(y

(λ)
mj − xTmjβ̂(λ))∑r

m=1 w
(λ)
mk

=
∑r
m=1 w

(λ)
mky

(λ)
i −

∑r
m=1 w

(λ)
mkx

T
i β̂

(λ) −∑r
m=1 w

(λ)
mky

(λ)
m −

∑r
m=1 w

(λ)
mkx

T
mβ̂

(λ)∑r
m=1 w

(λ)
mk

=⇒ ξ
(λ)
ijk =

∑r
m=1 w

(λ)
mk

(
(y(λ)
ij − y

(λ)
mj)− (xTij − xTmj)β̂(λ)

)
∑r
m=1 w

(λ)
mk

(3.3.20)

The non-parametric profile log-likelihood function is thus

`P (λ) =
n∑
i=1

log
 K∑
k=1

π̂
(λ)
k

− ni
2 log 2π − ni log σ̂(λ) − 1

2σ̂2(λ)

ni∑
j=1

(
ξ

(λ)
ijk

)2

+ (λ− 1) log
ni∑
j=1

yij

 (3.3.21)

The non-parametric profile log-likelihood can then be written as

`P (λ) =
n∑
i=1

log
 K∑
k=1

π̂
(λ)
k m̂

(λ)
ik

. (3.3.22)

where m̂(λ)
ik = f(yij, λ|ẑk). The non-parametric profile maximum likelihood

(NPPML) estimate of λ is therefore given by

λ̂ = arg max
λ

`P (λ). (3.3.23)

which can be found through a grid search over λ.

114 Chapter 3. Box-Cox transformations for two–level models

3.4 Software description

As with the random effect models, the methodology is implemented in the R package

boxcoxmix. This package is described in detail in Section 2.6. We can use the

same functions used for random effect case and in the same way, however, the only

difference is that the groups argument in the boxcoxmix functions was equal 1 (i.e.

ni ≡ 1) in the random effect models and here we use the grouping variable instead.

3.5 Simulation study

The simulation study for the Box–Cox transformed variance component model paral-

lels exactly that in Chapter 2. We conduct two scenarios to assess the performance

of our approach using fixed and unknown values of the transformation parameters

(λ) to estimate the model parameters (β).

We are interested in examining the method’s ability to estimate the true

parameter values. Therefore, we first simulate data by applying the Box–Cox trans-

formation ‘backwards’ to a dataset that follows a normal distribution using a set of

λ values. Specifically, for each of four given values λ`, ` = 1, 2, 3, 4, we generate 1000

datasets with 100 observations as follows,

ζij` = ŷ(ηij, λ`), i = 1, ..., 20, j = 1, ..., 5 (3.5.1)

ŷ(ηij, λ`) =

(
1 + λ`ηij

)1/λ` (λ` 6= 0),

eηij (λ` = 0)

3.5. Simulation study 115

ηij = 3 xij + zi + εij

X ∼ U(−4, 4), ε ∼ N(0, 0.52)

λ1 = 0, λ2 = 0.5, λ3 = 1, λ4 = 2

zi ∼ Multinomial{1, (z1, . . . , z4)|π1, . . . , π4}

zk = (15, 20, 30, 35) with masses πk = 1/4, k = 1, ..., 4.

Note that ŷ(·) denotes the ‘backward’ Box–Cox–transformation, and that the gener-

ated data possess a variance component structure due to the random effect terms zi.

The reader refer to Appendix A to see how data were generated in R.

The simulation process and the estimation method are exactly that for

random effect model, discussed in Chapter 2. As before we consider this scenario to

test the machinery’s accuracy. In Figure 3.5.1, the actual and estimated parameter

values obtained from the simulation data are displayed. We also investigate the

standard errors of the regression parameter estimates of the variance component

model by comparing it with the robust estimate of standard deviation RESD(β̂).

We give in Table 3.5.1 the mean and median of the estimated β and its estimated

standard errors together with the RESD(β̂). Row value of β is considered the actual

values from which ζij` was simulated. Since, for all λ’s values, the estimators have

the same performance, only the results of one value of λ are presented in the table.

If we look at Figure 3.5.1, the lines inside each box represent the median and the

dots above and below the box are the outliers. A reference line is added to Figure

3.5.1 which indicates the actual value of 3 in which to display the position of the

estimated parameter. For each boxplot, the parameter estimate is close to the true

parameter value with some variation around the true value. Table 3.5.1 shows that

116 Chapter 3. Box-Cox transformations for two–level models

Median(ŜE(β̂)) is nearly equal to RESD(β̂).

Figure 3.5.1: Simulation results: estimated β for fixed λ` =
0, 0.5, 1, 2 with K = 4(from left to right).

β 3

Mean(β̂) 3.001097

Median(β̂) 3.000435

RESD(β̂) 0.0248572

Mean(ŜE(β̂)) 0.02751033

Median(ŜE(β̂)) 0.02153946

Table 3.5.1: Summary of simulation results for λ = 0

In the second case, it is more complex scenario, as we are estimating λ and

β simultaneously using K = 4, yielding for each (true) value of λ a total of 1000

estimates of λ̂ and β̂.

3.5. Simulation study 117

Figure 3.5.2: Simulation results: Estimates β̂, in each plot for true
λ` = 0, 0.5, 1, 2 (from left to right). The lower plot is exactly the
upper plot with logarithmic scale in the vertical axis. Horizontal
lines indicate the true values.

118 Chapter 3. Box-Cox transformations for two–level models

Figure 3.5.3: Simulation results: estimated λ, for true λ` =
0, 0.5, 1, 2 (from left to right).

In Figures 3.5.2 and 3.5.3 we graph the boxplots for the regression and

transformation parameters estimates, respectively. Again, the reference lines in the

Figures indicate the actual values of the parameters. It is clear that the medians of

the estimated β and λ is approximately equal to the true value in each plot. There

are some outliers in each of the plots; in fact the outliers in the transformation

estimates cause the outliers in the regression estimates as they shift the scale of the

linear predictor. The medians of the estimated β and λ parameters are also provided

in Table 3.5.2; we see that the medians for the transformation parameters sit exactly

at their true values, and those of the regression parameters approximately so.

3.6. Applications 119

λ = 0 λ = 0.5 λ = 1 λ = 2

Mean(λ̂) 0 0.5026 1.0028 2.0049

Median(λ̂) 0 0.5 1 2

β 3 3 3 3

Mean(β̂) 2.999629 3.0901 3.077008 3.109035

Median(β̂) 3.000329 3.000122 3.000329 3.000563

RESD(β̂) 0.02456314 0.02513099 0.02552865 0.0335325

Mean(ŜE(β̂)) 0.02563301 0.02674056 0.02643427 0.02683076

Median(ŜE(β̂)) 0.02140653 0.02137434 0.02137203 0.02141723

Table 3.5.2: Summary of simulation results using unknown values
of λ

We see from Table 3.5.2 that the EM–based standard errors are close to their

robust counterparts. The simulation results show that our approach is able to obtain

estimates close to the real values of the parameters. Comparing this simulation to

that for random effect models, there was much less variability in the estimates of the

transformation and regression parameters of the variance components model. This is

the reason for the standard errors to be better behaved here. Note that outliers were

ignored by RESD(β̂), but ŜE(β̂) ignored the uncertainty due to the EM algorithm

itself.

3.6 Applications

Example 3.6.1. the heights of boys in Oxford data

We are going to take another look at the Oxboys data that we have investigated earlier

without transformations, in Example 3.2.1. The data has been explained in Figure

120 Chapter 3. Box-Cox transformations for two–level models

3.2.1. A further analysis of the model given in (3.2.14) is presented in this example

using the Box–Cox transformation. We begin with the function Kfind.boxcox()

which returns the optimal tol’s together with the disparities, AIC and BIC values

for each class K, K ∈ [2, 10]:

R Note:

library(boxcoxmix)

testK <- Kfind.boxcox(height ~ age, groups = Oxboys$boy,

data = Oxboys, find.k = c(2,10), model.selection = "bic")

#Minimal BIC: 1019.743 at K= 9

K 1 2 3 4 5 6 7 8 9 10

optim tol – 1.5 1.2 0.2 0.8 1.1 0.5 0.5 0.5 0.3

−2`P (λ) 1641.93 1466.7617 1320.8801 1212.6595 1132.8487 1048.2698 1017.2692 931.3750 916.0921 908.0036

AIC 1649.875 1476.7617 1334.8801 1230.6595 1154.8487 1074.2698 1047.2692 965.3750 954.0921 950.0036

BIC 1658.296 1494.038 1359.067 1261.757 1192.857 1119.189 1099.099 1024.116 1019.743 1022.565

Table 3.6.1: Comparison of results from the untransformed Oxboys
data (λ = 1), using K from 1 to 10

Concerning the choice of K for the untransformed data, it is transparent

from Table 3.6.1 that there is a consistent improvement when increasing the number

of mass points from K = 1 to K = 9. Aitkin et al. (2009) recommend the use of

K = 8 mass points for this data set. Table 3.6.1 also shows the optimal tol that

minimizes the disparity value for each K which can be then used in performing a

grid search over λ to achieve the best results.

3.6. Applications 121

K 1 2 3 4 5 6 7 8 9 10

λ̂ 0.8625 -0.9375 0.1875 0.4125 -0.1500 -0.3325 0.4125 -0.1900 -0.5200 0.0750

−2`P (λ̂) 1641.8793 1457.8640 1318.4705 1211.3445 1121.0861 1025.2499 1002.9139 887.4878 878.5608 866.7590

AIC 1649.8793 1467.8640 1332.4705 1229.3445 1143.0861 1051.2499 1032.9139 921.4878 916.5608 908.7590

BIC 1663.7005 1485.1406 1356.6578 1260.4424 1181.0946 1096.1691 1084.7437 980.2283 982.2119 981.3207

Table 3.6.2: Comparison of results from the transformed Oxboys
data using K from 1 to 10

Figure 3.6.1: AIC and BIC values of the model after applying the
response transformation to the Oxboys data for K ∈ [1, 10]

As measures of model fit, AIC and BIC values of the model after applying

the response transformation for each class are presented in Table 3.6.2 and Fig-

ure 3.6.1. BIC criteria indicates that an 8–component model is the best choice,

even though 10 component are necessary to reduce the disparity (−2`P (λ̂)) and

hence maximize the non-parametric profile log–likelihoods (`P (λ)) equation given in

(3.3.22). The results before and after applying the response transformation are sum-

marized in Table 3.6.1 and Table 3.6.2. As can be seen from these tables, comparing

AIC and BIC values of the untransformed model fit (λ = 1) and our method using

K = 1, ..., 10, respectively, showed a better performance of the NPPML approach. In

other words, using the response after applying the transformation leads to a better

122 Chapter 3. Box-Cox transformations for two–level models

fitting model than the original data. For the specified range of K from 1 to 10, λ̂’s

values that maximize `P (λ)’s are shown in Figure 3.6.2. We can see here a different

behaviour between K and λ. Until we include more than one component there is no

strong evidence that transformation works, but once we go to 3 or more classes we

see that a log-transformation (λ = 0) is not so far off the mark and to some extent

intuitively appealing with height ∝ age. The minimal BIC value occurred at K=8

with λ̂ = −0.19 and tol= 0.5 (BIC=980.2283), indicating a better fit. Figure 3.6.2

also shows a strong need of a transformation as we increase the number of classes.

This provides additional evidence for a better fit to the transformed data.

Figure 3.6.2: λ̂ as a function of K with the optimal tol for each
class of the Oxboys data

R Note:

fitk8 <- np.boxcoxmix(height ~ age, groups = Oxboys$boy,

data = Oxboys, K = 8, tol =0.5, start = "gq", lambda=-0.19)

3.7. Discussion 123

Figure 3.6.3: The disparities (−2 logL) against EM iteration num-
ber for the 8 mass–points transformed model of the Oxboys data
using λ = −0.19 and tol = 0.5.

The posterior probabilities for the transformed data with 8 mixture classes

are plotted in Figure 3.6.3, the distance between the classes is clearly visible, indic-

ating that the posterior probabilities are all nicely converged to either 0 or 1 (or

close to it).

3.7 Discussion

In this Chapter, we have applied the Box–Cox transformation to the variance com-

ponent models using NPPML approach in the same fashion as in the random effects

model. Two simulation scenarios are carried out to assess the performance of our

approach using fixed and unknown values of the transformation parameters by the

same simulation process and estimation method which were used for random effects

124 Chapter 3. Box-Cox transformations for two–level models

model. To some extent, the results of this simulation differ from those of the random

effects models. As expected, these results have lower variability in the transformation

and regression parameters estimates, yielding more accurate standard errors because

there is much more information about the random effects as these are now shared

between lower–level units in each upper-level units, rather than being unique to each

observation as in the random effect models considered in Chapter 2 (see Aitkin et al.

(2005)).

As we noted in Chapter 2, the variability of λ̂ increases for larger values of

λ and this variability is the main cause of the variation in the regression parameters

estimates. Similar to the case in the random effects model, there is a strong consist-

ency of the parameter estimates when λ = 0 is the most suitable transformation for

the simulated data. For this simulation, we have used 20 clusters with a length of 5

units for each cluster. For future research, the effect of a large number of clusters in

the estimation results of the proposed approach should be examined. Another line

of future investigation would be studying the impact of adding further explanatory

variables to our simulation model.

Additionally, searching for the minimizer of the model selection criteria AIC

and BIC for the Oxboys data found that all transformed models using λ̂ obtained

from our proposed approach yielded substantially better fits than the models without

transformation at all. Also for this data, there is a strong need of a transformation

as we increase the number of components as shown in Figure 3.6.2 that provides a

further support for the needs of considering the two–level random effects model in

such transformation.

Chapter 4

Transformations for logistic

regression models

4.1 Introduction

The logistic regression model is a statistical technique that is well suited to applied

statistical analyses. It is commonly used to model and solve classification problems.

To analyze the dependence of binary response on predictor variables it is common

to connect the success probabilities to the linear predictors through a link function.

In such case, a common link function is the logistic (logit) function that transforms

the interval (0, 1) to (−∞,∞). We will employ the Box–Cox transformations that

include the logistic and the power transformations to carry out the analysis of

binary response. This approach allows the data to meet its needs via a suitable

transformation that gives a simpler or better fit. Aranda-Ordaz (1981) applied

parametric family of transformations to the success probability in order to achieve

126 Chapter 4. Transformations for logistic regression models

additivity for binary response data. Guerrero and Johnson (1982) suggested to apply

the Box–Cox transformation to the odds–ratio to generalize the logistic model. In

this Chapter, our proposal is similar to the Guerrero and Johnson (1982) idea but

is implemented in a different way.

Section 4.2 provides an introduction to the binary logistic regression models.

In Section 4.3, the Box-Cox transformation is applied to the binary regression model,

along with a software description in Section 4.4. The applicability of the proposed

approach is demonstrated by simulated and real data examples in Sections 4.5 and

4.6. Finally, we provide a discussion in Section 4.7.

4.2 Logistic regression model

Binary logistic regression is a method that is used to assess the associations between

a set of independent variables and a single binary dependent variable. When the

response variable is binary, then the probability distribution of the number of suc-

cesses in a sample of a particular size, for given values of the predictor variables,

is called a Bernoulli distribution. Here, we assume the response Yi, i = 1, . . . , n,

follows a binomial distribution with Yi ∼ B(mi, Pi) where mi is the number of trials

and Pi is a vector with fixed success probabilities for each trial within each category.

The probability distribution function of Yi is given by

f(Yi = yi) =
(
mi

yi

)
P yi
i (1− Pi)mi−yi (4.2.1)

where yi = 0, 1, ...,mi, P yi
i (1−Pi)mi−yi is the probability of havingmi−yi failures and

yi successes in a particular order, and the number of ways of observing yi successes

4.2. Logistic regression model 127

in mi trials is given by the binomial coefficient. It follows that E(Yi) = miPi and

var(Yi) = miPi(1 − Pi). If mi = 1, then Yi follows a Bernoulli distribution with

mean and variance as E(Yi) = Pi and var(Yi) = Pi(1− Pi), respectively. Note that,

for both cases the mean and the variance depend on the probability of the responses

Pi. Factors affecting this probability will alter both the mean and the variance of

the observations (Rodriguez, 2012).

4.2.1 The logit link function

To get the logit of the probability, we make a transformation of the linear probability

function Pi = ηi, where ηi = xTi β is the linear predictor (Rodriguez, 2012). The

difficulty is that the linear predictor ηi on the right-hand-side can be any real number,

but the probability Pi on the left-hand-side is bounded between the values of zero

and one. To solve this, first, we express the probability of the response in terms of

odds as

oddsi = Pi
1− Pi

= eηi , (4.2.2)

which maps Pi from [0, 1] to [0,∞]. Second, if we take the logarithms of the odds,

then log(Pi/1− Pi) goes from −∞ to ∞. The mathematical form of the logit

transformation follows from (4.2.2),

logit(Pi) = log
(

Pi
1− Pi

)
= ηi. (4.2.3)

Note that Pi and 1 − Pi have to be positive and so do the odds. As Pi → 0,

Pi/(1 − Pi) → 0 and as Pi → 1, Pi/(1 − Pi) → ∞. Now, the logistic function in

128 Chapter 4. Transformations for logistic regression models

terms of the probability of the response is called the inverse of the transformation:

Pi = logit−1(ηi) = eηi

1 + eηi
= 1

1 + e−ηi
(4.2.4)

The cumulative distribution function (cdf) for the binomial distribution is F (ηi) = Pi,

for −∞ < ηi <∞.

4.2.2 Maximum likelihood estimation of the regression

parameters

The likelihood function for n independent observations is a product of probability

densities given in (4.2.1). The log-likelihood can be written as

` = logL =
n∑
i=1

log f(yi) (4.2.5)

where

log f(yi) = yi logPi + (mi − yi) log(1− Pi)

= mi log(1− Pi) + yi log Pi
(1− Pi)

= −mi log(1 + eηi) + yiηi (4.2.6)

then

` =
n∑
i=1

[
−mi log(1 + eηi) + yiηi

]
(4.2.7)

The maximum likelihood estimator of the parameters are those values of β̂

that maximize the likelihood function. The estimate of β can be obtained by setting

4.3. Transformations for binary regression models 129

the Score vector

∂`

∂βj
= 0 , j = 0, 1, ..., r,

where

∂`

∂βj
=

n∑
i=1

xij

[
−miPi + yi

]
, (4.2.8)

and solve for β. The standard errors of the parameter estimates, β̂, are computed

using the information matrix which is obtained by taking the second derivatives of

the log-likelihood function with respect to β.

4.2.3 Existing R implementation: glm(), alldist()

To compute the parameter estimates of the logistic (logit) model, we can use

the available statistical packages in R. The npmlreg (Einbeck et al., 2014) func-

tion alldist() can fit the aforementioned model by setting k = 1 and family =

binomial(link="logit"). The results of which are identical to those of the stats

(R Core Team, 2016) function glm(). For real data examples see (Dalgaard, 2008,

p. 226) and (Rao and Rao, 2014, p. 257).

4.3 Transformations for binary regression

models

In this section, the Box-Cox transformation is extended to the logistic regression

model. Guerrero and Johnson (1982) assumed that the power transformation of the

130 Chapter 4. Transformations for logistic regression models

odds ratio results in a linear model. That is

{
Pi/(1− Pi)

}(λ)
= xTi β = ηi , i = 1, ..., n. (4.3.1)

The Box-Cox transformation of the odds–ratio is thus,

{
Pi/(1− Pi)

}(λ)
=

{
Pi/(1− Pi)

}λ
− 1

λ
(λ 6= 0),

log
{
Pi/(1− Pi)

}
(λ = 0)

(4.3.2)

where the restrictions 0 < Pi < 1 and Pi/(1−Pi) > 0 apply. Note that the Box-Cox

transformation here is used as a parametric link function that is very different from

the response transformation in the previous chapters. Now for λ 6= 0

{
Pi/(1− Pi)

}λ
− 1

λ
= ηi{

Pi/(1− Pi)
}λ
− 1 = ληi{

Pi/(1− Pi)
}λ

= 1 + ληi

Pi/(1− Pi) =
(

1 + ληi

)1/λ

Pi = (1− Pi)
(

1 + ληi

)1/λ

Pi =
(

1 + ληi

)1/λ
− Pi

(
1 + ληi

)1/λ

Pi + Pi

(
1 + ληi

)1/λ
=
(

1 + ληi

)1/λ

Pi

(
1 +

(
1 + ληi

)1/λ)
=
(

1 + ληi

)1/λ

Pi =

(
1 + ληi

)1/λ

1 +
(

1 + ληi

)1/λ

4.3. Transformations for binary regression models 131

= 1(
1 + ληi

)−1/λ
+ 1

=⇒ Pi =
{(

1 + ληi

)−1/λ
+ 1

}−1
(4.3.3)

and

1− Pi = 1−
{(

1 + ληi

)−1/λ
+ 1

}−1

= 1− 1(
1 + ληi

)−1/λ
+ 1

=

(
1 + ληi

)−1/λ
+ 1− 1(

1 + ληi

)−1/λ
+ 1

=

(
1 + ληi

)−1/λ

(
1 + ληi

)−1/λ
+ 1

= 1

1 +
(

1 + ληi

)1/λ

=⇒ 1− Pi =
{(

1 + ληi

)1/λ
+ 1

}−1
(4.3.4)

Now

Pi
1− Pi

=

{(
1 + ληi

)−1/λ
+ 1

}−1

{(
1 + ληi

)1/λ
+ 1

}−1

=

{(
1 + ληi

)1/λ
+ 1

}
{(

1 + ληi

)−1/λ
+ 1

}

=
(

1 + ληi

)1/λ

{(
1 + ληi

)1/λ
+ 1

}
{(

1 + ληi

)1/λ
+ 1

}

=⇒ Pi
1− Pi

=
(

1 + ληi

)1/λ
(4.3.5)

132 Chapter 4. Transformations for logistic regression models

It follows from Equation (4.3.5) and the general properties of the exponential function

that

lim
λ→0

(
1 + ληi

)1/λ
= eηi .

Also, from Equation (4.3.3), Pi approaches 1 as λ approaches ±∞. Note that λ

and ηi should be both positive values or both negative values to avoid having roots

of negative numbers in the odds, and hence the probability. From the inversion of

(4.3.2) we get

P̃i =

{(

1 + ληi
)−1/λ

+ 1
}−1

(λ 6= 0),

{
1 + e−ηi

}−1
(λ = 0)

(4.3.6)

4.3.1 Maximum likelihood estimation of the regression

parameters

The probability density function of Yi is given by

f(yi) =
(
mi

yi

)
P̃ yi
i (1− P̃i)mi−yi (4.3.7)

The likelihood function can be written as

L(λ, β) =
n∏
i=1

f(yi) (4.3.8)

The log-likelihood is thus

` = logL =
n∑
i=1

log f(yi) (4.3.9)

4.3. Transformations for binary regression models 133

where

log f(yi) = yi log P̃i + (mi − yi) log
(
1− P̃i

)
= mi log

(
1− P̃i

)
+ yi log

{
P̃i/(1− P̃i)

}
= −mi log

((
1 + ληi

)1/λ
+ 1

)
+ yi log

(
1 + ληi

)1/λ

= −mi log
((

1 + ληi
)1/λ

+ 1
)

+ yi
λ

log
(
1 + ληi

)
(4.3.10)

then

` =
n∑
i=1

[
−mi log

((
1 + ληi

)1/λ
+ 1

)
+ yi
λ

log
(
1 + ληi

)]
(4.3.11)

Note that, in contrast to the linear model in Chapters 2 and 3, no Jacobian is needed

for this case because the transformation does not act on the distribution of the data.

The estimate of β can be obtained by taking the derivative of Equation (4.3.11) with

respect to β, setting it equal to zero and solve for β.

∂`

∂β
=

n∑
i=1

−mi

λxi(1/λ)
(
1 + ληi

)(1/λ)−1

(
1 + ληi

)1/λ
+ 1

+ yi
λ

λxi(
1 + ληi

)

=
n∑
i=1

−mi

xi
(
1 + ληi

)1−λ/λ

(
1 + ληi

)1/λ
+ 1

+ yixi
(
1 + ληi

)−1

=
n∑
i=1

−mi

xi
(
1 + ληi

)−1

(
1 + ληi

)−1/λ
+ 1

+ yixi
(
1 + ληi

)−1

=

n∑
i=1

xi
(
1 + ληi

)−1
[
−mi

{(
1 + ληi

)−1/λ
+ 1

}−1
+ yi

]

=⇒ ∂`

∂β
=

n∑
i=1

xi
(
1 + ληi

)−1
[
−miP̃i + yi

]
(4.3.12)

134 Chapter 4. Transformations for logistic regression models

Replacing the results into Equation (4.3.11) we get the profile log-likelihood function.

`P (λ) =
n∑
i=1

[
−mi log

((
1 + λη̂i

)1/λ
+ 1

)
+ yi
λ

log
(
1 + λη̂i

)]
(4.3.13)

The profile maximum likelihood estimate of λ is therefore given by

λ̂ = arg max
λ

`P (λ). (4.3.14)

which can be found through a grid search over λ. In practice, we maximize Equation

(4.3.13) over a given grid of values for λ using an iterative process between the

estimation of β(λ).

4.3.2 Estimation of the transformation parameter

Here, we are seeking for a direct way of obtaining NPPML estimate of the trans-

formation parameter by deriving equation (4.3.11) with respect to λ as follows

∂`

∂λ
=

n∑
i=1

−mi

(
1 + ληi

)1/λ
(

ηi

λ
(
1 + ληi

) − log
(
1 + ληi

)
λ2

)
(
1 + ληi

)1/λ
+ 1

+ yi

(
ηi

λ
(
1 + ληi

) − log
(
1 + ληi

)
λ2

)

=
n∑
i=1

(
ηi

λ
(
1 + ληi

) − log
(
1 + ληi

)
λ2

)−mi

(
1 + ληi

)1/λ

(
1 + ληi

)1/λ
+ 1

+ yi

=
n∑
i=1

(
ηi

λ
(
1 + ληi

) − log
(
1 + ληi

)
λ2

)−mi
1(

1 + ληi
)−1/λ

+ 1
+ yi

=
n∑
i=1

(
ηi

λ
(
1 + ληi

) − log
(
1 + ληi

)
λ2

)−mi

{(
1 + ληi

)−1/λ
+ 1

}−1
+ yi

4.4. Software description 135

= 1
λ

n∑
i=1

(
ηi
(
1 + ληi

)−1
+ λ−1 log

(
1 + ληi

)−1
)−miP̃i + yi

 (4.3.15)

There is no analytical solution for the estimate of λ given that ∂`
∂λ

= 0. Therefore,

we do not consider it further in this thesis. However, it can be solved numerically.

Guerrero and Johnson (1982) suggested obtaining the ML estimates by setting

Equations (4.3.12) and (4.3.15) equal to zero and solving for β and λ by a quasi-

Newton procedure.

4.4 Software description

The proposed approach is implemented for fixed λ as a link function which is applic-

able to both functions glm() and alldist(), by setting family = binomial(link=

boxcoxpower(Lambda)) where Lambda can be any value. However, one can perform

a grid search over λ using the boxcoxmix (Almohaimeed and Einbeck, 2017) function

boxcoxtype() with k = 1. We will experiment this method on simulated and real

data sets in the two next sections. The R code for the boxcoxmix link function

boxcoxpower(Lambda) which is an implementation of the Box–Cox transformation

and its inverse given in Equations (4.3.2) and (4.3.6), respectively.

R Note:

boxcoxpower <- function(Lambda=0)

{

136 Chapter 4. Transformations for logistic regression models

linkfun <- function(mu){ if(Lambda==0) log(mu/(1-mu))

else (((mu/(1-mu))^Lambda)-1)/Lambda}

linkinv <- function(eta) { if(Lambda==0) plogis(eta)

else (((1+Lambda*eta)^(-1/Lambda))+1)^(-1)}

mu.eta<- function(eta) { if(Lambda==0)

ifelse(abs(eta)>30,.Machine$double.eps,

exp(eta)/(1+exp(eta))^2) else

pmax(((1+ Lambda*eta)^((1/Lambda) -1))/

((1+ Lambda*eta)^(1/Lambda) +1)^2, .Machine$double.eps)}

valideta <- function(eta) TRUE

link <-paste("boxcoxpower(",Lambda,")", sep="")

structure(list(linkfun = linkfun, linkinv = linkinv,

mu.eta = mu.eta, valideta = valideta,

name = link),

class = "link-glm")

}

4.5 Simulation study

In this Section, we conduct two simulation studies. First one is based on the compar-

ison of logistic model and Box-Cox-type models, and the second study is based on

4.5. Simulation study 137

investigating the ability of the proposed methods in estimating the transformation

and regression parameters simultaneously. The procedure used for the simulation

studies is given in the appendix, Figure A.3.2.

Simulation Study 1

To assess the accuracy of our approach, we first simulate data by applying the

Box–Cox transformation ‘backwards’ to a success probability Pi using a set of λ

values. Specifically, for each of five given values λ`, ` = 1, 2, 3, 4, 5, we generate 1000

datasets with 100 observations as follows,

yi` ∼ B(40, P̃i(λ`)), i = 1, ..., 100, (4.5.1)

P̃i(λ`) =

{(

1 + λ`ηi
)−1/λ` + 1

}−1
(λ` 6= 0),

{
1 + e−ηi

}−1
(λ` = 0)

ηi = 2 + xi

X ∼ U(−1, 1)

λ1 = −0.2, λ2 = 0, λ3 = 0.2, λ4 = 0.5, λ5 = 1

Note that P̃i(·) denotes the ‘backward’ Box–Cox–transformation. Refer to Appendix

A for the R code that was used for generating these simulated data sets. In the

estimation method, we apply the Box–Cox transformation forwards to the odds–

ratio using fixed value of λ via the function alldist() with k = 1 and family =

binomial(link= boxcoxpower(Lambda)), where Lambda is the same λ` that has

been used in the simulation process for each dataset.

138 Chapter 4. Transformations for logistic regression models

Figure 4.5.1: Simulation results: estimated β for fixed λ compared
with logistic model, from left to right: λ1 = −0.2, logistic model,
λ` = 0, 0.2, 0.5, 1, respectively.

Figure 4.5.1 shows the boxplots for logistic model coloured by red and the

rest for the Box–Cox–type models with fixed λ as given in (4.5.1), to compare the

results of the logit and boxcoxpower(Lambda) links functions. In this example,

Figure 4.5.1 reflects the estimated values of β per 1000 simulations. We added refer-

ence lines in the boxplots which indicate the actual values of β = (2, 1) to display

the position of the estimated β for each boxplot. One can see that the the boxplots

of the logistic and Box–Cox–type with λ = 0 are exactly the same. However, the

rest of λ values reflect some interesting differences. Although the median of all of

the boxplots captured the actual values of β’s, the variation around the median of

the boxplots can be compared. The boxplots of the Box–Cox–type with λ = −0.2

displays estimates that have less variation than any of the other plots. It is also

4.5. Simulation study 139

clear that there is increased variability in the β estimates as λ increases. This may

suggest that the proposed link works better with negative λ values. However, as we

discussed before, the odds (and hence probability) depend on λ and ηi. If λ or ηi has

a negative value, then the resulting odds (and hence probability) can be undefined

as it would be a root of a negative value.

Simulation Study 2

In this case, we are interested in examining the ability of our approach to estimate

the transformation and regression parameters simultaneously through the function

boxcoxtype() by performing a simulation and analyzing the results. The structure

of the data in this study is the same as in (4.5.1) and the simulation process is

conducted along the same lines as in the previous study, except that we now use

unknown values of λ in the estimation method rather than fixed. We estimate λ by

applying a grid search over λ and estimate β using the obtimal value of λ, yielding

for each (true) value of λ a total of 1000 estimates of λ̂ and β̂. Figure 4.5.2 shows

the estimates β̂ for true λ` = −0.2, 0, 0.2, 0.5, 1, respectively. The horizontal lines in

the boxplots represent the actual values of β = (2,1). Obviously the medians of the

estimated β’s are approximately matching their true values with more variability

as λ becomes larger. However, when λ = 0, the boxplots of β̂ have more outliers

than any of the other plots. A plot of the estimated λ appears in Figure 4.5.3 with

horizontal lines indicating the actual values of λ = (-0.2,0,0.2,0.5,1). In each boxplot,

it is clear that the median of the estimated λ tends to be very close to the true

underlying value with an increase in variance as λ becomes larger.

140 Chapter 4. Transformations for logistic regression models

Figure 4.5.2: Simulation results: Estimates β̂, in each plot for true
λ` = −0.2, 0, 0.2, 0.5, 1 (from left to right).

Figure 4.5.3: Simulation results: estimated λ, for true λ` =
−0.2, 0, 0.2, 0.5, 1 (from left to right).

4.5. Simulation study 141

(a) (b)

(c) (d)

(e) (f)

Figure 4.5.4: Simulation results: estimated regression parameters
against estimated transformation parameters. In each plot for true
β = 2, 1 (from left to right) and for true λ = −0.2, 0, 0.2 (from top
to bottom),

142 Chapter 4. Transformations for logistic regression models

(a) (b)

(c) (d)

Figure 4.5.5: Simulation results: estimated regression parameters
against estimated transformation parameters. In each plot for true
β = 2, 1 (from left to right) and from top to bottom, λ = 0.5, 1.

Figures 4.5.4 and 4.5.5 show scatterplots of the estimated regression para-

meters β̂ against the estimated transformation parameters λ̂, in each plot for true

βj = 2, 1, j = 0, 1 (from left to right) and λ` = −0.2, 0, 0.2, 0.5, 1 (from top to

bottom). The boxplots in the margins of each scatterplot visualize the position and

spread of the estimated parameters whereas the regression line inside the scatterplot

explains the trend of the points to help us better understand the statistical relation-

ship between the two parameters. We observe that the median of each boxplot is

very close to the true underlying values of the two parameters β and λ. We also

4.5. Simulation study 143

find that, for all scatterplots, there are nearly linear relationships between λ̂ and β̂

and the variances about the regression lines seem relatively constant, meaning that

the transformation parameters λ influence the regression parameters β. As in the

previous Chapters, the outliers in the transformation estimates cause the outliers in

the regression estimates as they shift the scale of the linear predictor.

(a) λ = −0.2 (b) λ = 0

(c) λ = 0.2 (d) λ = 0.5

(e) λ = 1

Figure 4.5.6: Simulation results: in each plot, β̂1 vs β̂0 for true
λ = −0.2, 0, 0.2, 0.5, 1 (from top to bottom).

144 Chapter 4. Transformations for logistic regression models

In Figure 4.5.6, we use scatterplots to identify patterns that result from

the correlation between β̂0 and β̂1 given λ̂1, λ̂2, λ̂3, λ̂4 and λ̂5, respectively. They

provide insights for why the variabilities and outliers in the boxplots in Figure 4.5.2

exist. The two coefficients have a positive association because as β̂1 increases, so

does β̂0. The relationships between β̂0 and β̂1 become stronger as λ becomes smaller.

A considerable amount of variability exists in the estimates of β obtained for λ > 0.

In contrast, for λ = 0 or close to zero, there are less variabilities in the estimates of

β but more outliers.

4.6 Application

Example 4.6.1. the UCBAdmissions data

The UCBAdmissions data (R Core Team, 2016) involves applications to graduate

school at Berkeley for the six largest departments in 1973 classified by admission

and sex. The data is in a 3–dimensional array (2×2×6) that is Admit (Admit-

ted/Rejected) × Gender (Male/Female) × Dept (A, B, C, D, E, F). We adopt the

way of creating a data frame from this multi-way table UCBAdmissions in Maindon-

ald and Braun (2006, p. 258).

R Note:

Import the UCBAdmissions data into R, then:

UCB <- as.data.frame.table(UCBAdmissions["Admitted", ,])

4.6. Application 145

names(UCB)[3] <- "admit"

UCB$reject <- as.data.frame.table(UCBAdmissions["Rejected", ,

])$Freq

UCB$Gender <- relevel(UCB$Gender, ref="Male")

Add further columns total and p (proportion admitted)

UCB$total <- UCB$admit + UCB$reject

UCB$p <- cbind(UCB$admit,UCB$total-UCB$admit)

The logistic model (or logit model) can be fitted by either the "logit" link

or our boxcoxpower(Lambda) link with Lambda=0. The code and summary outputs

for the two link functions are:

R Note:

library(npmlreg)

model1 <- alldist(p ~ Dept+ Gender, data = UCB, k=1, family=

binomial(link="logit"))

summary(model1)

Call: alldist(formula = p ~ Dept + Gender, family =

binomial(link = "logit"), data = UCB, k = 1)

#

Coefficients:

Estimate Std. Error t value

146 Chapter 4. Transformations for logistic regression models

MASS1 0.58205140 0.06899260 8.4364326

DeptB -0.04339793 0.10983890 -0.3951053

DeptC -1.26259802 0.10663289 -11.8406063

DeptD -1.29460647 0.10582342 -12.2336476

DeptE -1.73930574 0.12611350 -13.7915909

DeptF -3.30648006 0.16998181 -19.4519642

GenderFemale 0.09987009 0.08084647 1.2353055

#

Mixture proportions:

MASS1

1

#

Random effect distribution - standard deviation: 0

#

-2 log L: 89.1 Convergence at iteration 0

library(boxcoxmix)

model2<-alldist(p ~ Dept+ Gender, data = UCB, k=1, family=

binomial(link=boxcoxpower(0)))

summary(model2)

Call: alldist(formula = p ~ Dept + Gender, family =

binomial(link = boxcoxpower(0)), data = UCB, k = 1)

4.6. Application 147

#

Coefficients:

Estimate Std. Error t value

MASS1 0.58205140 0.06899260 8.4364326

DeptB -0.04339793 0.10983890 -0.3951053

DeptC -1.26259802 0.10663289 -11.8406063

DeptD -1.29460647 0.10582342 -12.2336476

DeptE -1.73930574 0.12611350 -13.7915909

DeptF -3.30648006 0.16998181 -19.4519642

GenderFemale 0.09987009 0.08084647 1.2353055

#

Mixture proportions:

MASS1

1

#

Random effect distribution - standard deviation: 0

#

-2 log L: 89.1 Convergence at iteration 0

As shown above, the results of the two link functions used in fitting our

model are identical when λ=0. It means that our approach includes the logistic

model as well as the Box-Cox-type models and that allows us to select the best of

these models. To find the obtimal λ that maximizes the profile log–likelihood we

use the function boxcoxtype() as follows

148 Chapter 4. Transformations for logistic regression models

R Note:

optim.model <- boxcoxtype(p ~ Dept+ Gender, data = UCB, k=1,

s=100,find.in.range = c(-3.75,3))

#Maximum Profile Log-likelihood: -36.08529 at lambda= -3.75

summary(optim.model$fit)

Call: alldist(formula = formula, random = formula(random),

family = binomial(link = boxcoxpower(lambda.max)), data = data,

k = k, random.distribution = random.distribution,

weights = weights, plot.opt = 0, verbose = FALSE)

Coefficients:

Estimate Std. Error t value

MASS1 2.291159e-01 8.907721e-03 25.7210488

DeptB -6.265574e-03 9.878346e-03 -0.6342736

DeptC -2.673655e+00 6.970282e-01 -3.8357917

DeptD -3.204026e+00 9.071019e-01 -3.5321561

DeptE -1.585447e+01 5.673514e+00 -2.7944703

DeptF -6.074866e+03 3.472572e+03 -1.7493850

GenderFemale 3.670963e-02 8.926909e-03 4.1122443

4.6. Application 149

Mixture proportions:

MASS1

1

Random effect distribution - standard deviation: 0

-2 log L: 72.2 Convergence at iteration 0

Figure 4.6.1: For the UCB data, a grid search over λ

λ̂ = −3.75 λ = 0

AIC 90.17059 107.144

BIC 94.53475 151.3138

Table 4.6.1: Comparison of results from logistic & power trans-
formed models for the UCB data

150 Chapter 4. Transformations for logistic regression models

Figure 4.6.2: Residuals against fitted values plots for the UCB data
using λ̂ = −3.75 and λ = 0 (logit model). The middle plot is exactly
the left plot but with logarithmic scale in the vertical axis.

Figure 4.6.1 shows the plot of the profile likelihood function which summar-

ises information concerning λ, including a vertical line indicating the best estimate

of λ. The value λ̂ is far away from zero, indicating that the log–transformation is

not the best choice for this data. Accordingly, the power transformation is suggested

with λ̂ = −3.75. Moreover, AIC and BIC criteria defined in (2.6.1) and (2.6.2),

are used as model selection criteria, minimum AIC and BIC values are preferred.

Table 4.6.1 compares the results from the logit model (λ = 0) with those of the

power transformed model (λ̂ = −3.75). We observed that the power transformed

model is significantly better than the logit model in terms of AIC and BIC. However,

the −3.75 estimate for λ is at the lower limit of our range, which implies that the

4.7. Discussion 151

estimation process is trying to send λ to −∞. As one can see in Figure 4.6.1, this is

a very strange profile likelihood that quickly grows to infinity as λ→ −∞. Similar

effects could be observed in the paper of Guerrero and Johnson (1982).

Like the case for the Box-Cox transformed linear mixed model, we cannot

compare the estimates of β as they came from completely different models. A very

small change of the choice of λ̂ leads to a considerable change in the estimate of

β. However, DeptF has very low admit probabilities in the logit model and the

same happens with the parametric link function. We conduct a residual analysis

by plotting the residuals versus the fitted values to detect non-linearity pattern,

unequal error variances, and outliers. Figure 4.6.2 shows scatterplots of residuals on

the y-axis and fitted values on the x-axis. It is notable that the power link function

changes the distribution of the data even though the transformation does not act

on the distribution! For λ = −3.75, the spread of the residuals is decreasing as the

fitted values changes, but the local average residual would still be far from 0 with

some outliers (extreme values) such as 0/m for the binomial distribution. When

λ = 0, the residuals are randomly scattered about zero with a few outliers. This

suggests that the assumption that the relationship is linear is more reasonable in

the logit model than the power transformed model.

4.7 Discussion

In this Chapter, we tried to offer an alternative to the traditional logit approach

using our Box-Cox-type link function for modeling binomial data with the hope

152 Chapter 4. Transformations for logistic regression models

of improving the model fits, but with no success. Our R package boxcoxmix has

implemented the Box–Cox power transformation of the binary regression model via

the function boxcoxtype() that operates similarly to the function optim.boxcox()

for linear models, by creating a profile likelihood and carrying out a grid search

over the transformation parameter λ. Also, the boxcoxmix package provides a link

function boxcoxpower(Lambda) that is applicable to the existing R functions glm()

and alldist(), to fit models with fixed value of λ.

We conducted two simulation studies. The first one was based on examining

the performance of the boxcoxpower(Lambda) link against the "logit" link. The

related results showed that the latter one was more efficient than the proposed link.

However, when λ is close to zero, the proposed link was performing at least as good

as the logit model and it was identical to the logit model when λ = 0. The second

study was based on investigating the ability of the proposed method to estimate the

transformation and regression parameters simultaneously. The results demonstrated

that the proposed method was able to spot the true values of β and λ simultaneously

through the function boxcoxtype() with more variability as λ gets bigger. However,

our simulation studies have fairly large binomial sample sizes (mi = 40) and so

this may give approximate normality. It would be interesting to perform simulation

with small binomial sample sizes to have better understanding of the performance of

proposed approach. In the Example 4.6.1, our method was trying to send λ to −∞

with a very strange profile likelihood that quickly grows to infinity as λ approaches

−∞. Similar effects were also observed in the paper of Guerrero and Johnson (1982).

This could indicate that there is a potential problem with the proposed approach.

4.7. Discussion 153

Aranda-Ordaz (1981) used the parametric family of transfomations given

by

Tλ(P) = 2P λ − (1− P)λ
2P λ + (1− P)λ

where P is the probability of success and λ is the transformation parameter, in order

to achieve additivity for binary response data. When λ = 0, this family reduces to

the logistic model and to the linear model when λ = 1. This family of transformation

could be used as an alternative link function as it may be better behaved than the

odds-ratio transformations considered here.

Chapter 5

Transformations for mixed–effects

logistic models

5.1 Introduction

In this chapter, we focus on binary regression with random effects, following on fixed–

effect binary regression models which were presented in Chapter 4. As an alternative

to using the log-transformation of the odds-ratio to generalize these models, one may

use the Box–Cox transformed link as in the previous Chapter. In this case, we make

no assumption about the mixing distribution of the random effects and estimate

this distribution using NPML estimation approach as discussed in Chapters 2 and 3.

In consideration of the NPML method, Lukociene and Vermunt (2009) studied the

performance of the nonparametric and parametric specification of the random effects

in multilevel logistic regression models in terms of bias and efficiency. Furthermore,

156 Chapter 5. Transformations for mixed–effects logistic models

Lesperance et al. (2014) developed an algorithm that computes the NPML estimates

of the mixing distribution of the random effects in the logistic regression model.

This Chapter is organized as follows. Section 5.2 employs the Box–Cox link

function discussed in Chapter 4 for mixed–effects binary regression models using

the non–parametric profile maximum likelihood technique (NPPML). In a similar

way, Section 5.3 uses the link function for the two–level binomial data scenario.

Section 5.4 provides a software description of the proposed approach. Results of

the simulation study are presented in Section 5.5. Applications to real data sets are

given in Section 5.6. Section 5.7 concludes the Chapter.

5.2 Transformations for mixed–effects binary

regression models

We now consider the logistic mixed–effects model in which an unobserved random

effect zi, i = 1, . . . , n, with an unspecified distribution g(z) is added to the linear

predictor xTi β for the i-th response, where the response Yi follows a binomial distri-

bution with success probability Pi and mi trials, Yi ∼ B(mi, Pi). The logit form of

the logistic model is defined as

log
{
Pi/(1− Pi)

}
= xTi β + zi = ηi , i = 1, ..., n. (5.2.1)

where the restrictions 0 < Pi < 1 and Pi/(1− Pi) > 0 apply.

5.2. Transformations for mixed–effects binary regression models 157

Now the Box–Cox transformation is extended to the generalized linear

mixed-effects model. We assume that the power transformation of the odds ratio

results in a linear model. That is

{
Pi/(1− Pi)

}(λ)
= xTi β + zi = ηi , i = 1, ..., n. (5.2.2)

The Box–Cox transformation of the odds–ratio is thus,

{
Pi/(1− Pi)

}(λ)
=

{
Pi/(1− Pi)

}λ
− 1

λ
(λ 6= 0),

log
{
Pi/(1− Pi)

}
(λ = 0)

, (5.2.3)

where for λ 6= 0

P̃i =
{(

1 + ληi

)−1/λ
+ 1

}−1
(5.2.4)

and

1− P̃i =
{(

1 + ληi

)1/λ
+ 1

}−1
. (5.2.5)

5.2.1 Maximum likelihood estimation of the regression

parameters

The conditional probability density function of Yi is given by

f(yi|P̃i) =
(
mi

yi

)
P̃ yi
i (1− P̃i)mi−yi (5.2.6)

where P̃i depends on ηi and hence zi via (5.2.1). The likelihood function is thus

L(λ, β, g) =
n∏
i=1

∫
f(yi|P̃i)g(zi)dzi (5.2.7)

158 Chapter 5. Transformations for mixed–effects logistic models

Recall from our analyses in the previous chapters that the NPML estimate

of the (unspecified) mixing distribution g(z) is a discrete distribution involving

a finite number K of mass-points zk, with masses πk (Aitkin et al., 2009). The

likelihood is then

L(λ, β, z1,, zk, π1,, πk) =
n∏
i=1

K∑
k=1

πkf(yi|P̃ik) (5.2.8)

The log-likelihood is then

` = logL = log
(n∏
i=1

K∑
k=1

πkf
(λ)
ik

)
=

n∑
i=1

log
(K∑
k=1

πkf
(λ)
ik

)
(5.2.9)

where f (λ)
ik = f(yi|P̃ik). As in (2.3.7), the “complete data” log-likelihood would be

`∗ =
n∑
i=1

K∑
k=1

[
Gik log πk +Gik log f (λ)

ik

]
(5.2.10)

where

log f (λ)
ik = yi log P̃ik + (mi − yi) log

(
1− P̃ik

)
= mi log

(
1− P̃ik

)
+ yi log

{
P̃ik/(1− P̃ik)

}
= −mi log

((
1 + ληik

)1/λ
+ 1

)
+ yi
λ

log
(
1 + ληik

)
(5.2.11)

then

`∗ = logL∗ =
n∑
i=1

K∑
k=1

Gik log πk +Gik

(
−mi log

((
1 + ληik

)1/λ
+ 1

)

+yi
λ

log
(
1 + ληik

) (5.2.12)

As in the linear case in Chapter 2, we apply the EM approach to approx-

imate the MLE of the model parameters:

5.2. Transformations for mixed–effects binary regression models 159

E–step: This is identical to (2.4.10), but f (λ)
ik here is as in (5.2.6).

M–step: Calculate ẑ(λ)
k , β̂(λ) and π̂(λ)

k using current wik,

∂`∗

∂zk
=

n∑
i=1

wik

−mi

λ(1/λ)
(
1 + ληik

)(1/λ)−1

(
1 + ληik

)1/λ
+ 1

+ yi
λ

λ(
1 + ληik

)

=
n∑
i=1

wik

−mi

(
1 + ληik

)1−λ/λ

(
1 + ληik

)1/λ
+ 1

+ yi
(
1 + ληik

)−1

=
n∑
i=1

wik

−mi

(
1 + ληik

)−1

(
1 + ληik

)−1/λ
+ 1

+ yi
(
1 + ληik

)−1

=

n∑
i=1

wik

[
−mi

(
1 + ληik

)−1{(
1 + ληik

)−1/λ
+ 1

}−1
+ yi

(
1 + ληik

)−1
]

=⇒ ∂`∗

∂zk
=

n∑
i=1

wik
(
1 + ληik

)−1
[
−miP̃ik + yi

]
(5.2.13)

Similarly

∂`∗

∂β
=

n∑
i=1

K∑
k=1

wik

−mi

λxi(1/λ)
(
1 + ληik

)(1/λ)−1

(
1 + ληik

)1/λ
+ 1

+ yi
λ

λxi(
1 + ληik

)

=
n∑
i=1

K∑
k=1

wik

−mi

xi
(
1 + ληik

)1−λ/λ

(
1 + ληik

)1/λ
+ 1

+ yixi
(
1 + ληik

)−1

=
n∑
i=1

K∑
k=1

wik

−mi

xi
(
1 + ληik

)−1

(
1 + ληik

)−1/λ
+ 1

+ yixi
(
1 + ληik

)−1

=

n∑
i=1

K∑
k=1

wik

[
−mixi

(
1 + ληik

)−1{(
1 + ληik

)−1/λ
+ 1

}−1
+ yixi

(
1 + ληik

)−1
]

=⇒ ∂`∗

∂β
=

n∑
i=1

K∑
k=1

wikxi
(
1 + ληik

)−1
[
−miP̃ik + yi

]
(5.2.14)

and π̂(λ)
k is as in equation (2.4.14).

160 Chapter 5. Transformations for mixed–effects logistic models

Replacing the results into Equation (5.2.9) we get the non-parametric profile

log-likelihood function.

`P (λ) =
n∑
i=1

log
 K∑
k=1

π̂
(λ)
k f̂

(λ)
ik

. (5.2.15)

The NPPML estimate of λ is therefore given by

λ̂ = arg max
λ

`P (λ). (5.2.16)

which can be found through a grid search over λ.

5.3 Transformations for the two–level binary

regression model

The analysis can also be extended to the two–level structure. Let Yij denote the

binomial response of the lower-level units j = 1, . . . , ni, belonging to the upper-level

clusters i = 1, . . . , r, where ∑r
i ni = n. So Yij follows a binomial distribution with

Yij ∼ B(mij, Pij) with success probability Pij and mij trials. In this case, it is

assumed that there is a value of λ for which,

{
Pij/(1− Pij)

}(λ)
= xTijβ + zi = ηij (5.3.1)

where 0 < Pij < 1 and Pij/(1− Pij) > 0.

In this section, the Box-Cox transformation is extended to the two–level

5.3. Transformations for the two–level binary regression model 161

logistic regression model as

{
Pij/(1− Pij)

}(λ)
=

{
Pij/(1− Pij)

}λ
− 1

λ
(λ 6= 0),

log
{
Pij/(1− Pij)

}
(λ = 0)

(5.3.2)

For λ 6= 0

P̃ij =
{(

1 + ληij

)−1/λ
+ 1

}−1
(5.3.3)

and

1− P̃ij =
{(

1 + ληij

)1/λ
+ 1

}−1
(5.3.4)

5.3.1 Maximum likelihood estimation of the regression

parameters

The conditional probability density function of Yij is given by

f(yij|P̃ij) =
(
mij

yij

)
P̃
yij
ij (1− P̃ij)mij−yij (5.3.5)

The likelihood can now be approximated using NPML estimation (Aitkin et al.,

2009).

L(λ, β, g) =
r∏
i=1

∫ ni∏
j=1

f(yij|P̃ij)
 g(zi)dzi ≈

r∏
i=1

K∑
k=1

πkξ
(λ)
ik (5.3.6)

where ξ(λ)
ik = ∏ni

j=1 f(yij|P̃ijk) where P̃ijk depends on ηijk = xTijβ + zk. The log-

likelihood is then

` = logL = log
(n∏
i=1

K∑
k=1

πkξ
(λ)
ik

)
=

n∑
i=1

log
(K∑
k=1

πkξ
(λ)
ik

)
(5.3.7)

162 Chapter 5. Transformations for mixed–effects logistic models

Using notation as defined in (2.3.7), the “complete data” log-likelihood would be

`∗ =
n∑
i=1

K∑
k=1

[
Gik log πk +Gik log ξ(λ)

ik

]
(5.3.8)

where

log ξ(λ)
ik =

ni∑
j=1

log f(yij|P̃ijk)

=
ni∑
j=1

[
yij log P̃ijk + (mij − yij) log

(
1− P̃ijk

)]
(5.3.9)

=
ni∑
j=1

mij log
(
1− P̃ijk

)
+

ni∑
j=1

yij log
{
P̃ijk/(1− P̃ijk)

}

= −
ni∑
j=1

mij log
((

1 + ληijk
)1/λ

+ 1
)

+
ni∑
j=1

yij
λ

log
(
1 + ληijk

)
(5.3.10)

then

`∗ = logL∗ =
n∑
i=1

K∑
k=1

Gik log πk +Gik

ni∑
j=1

−mij log
((

1 + ληijk
)1/λ

+ 1
)

+yij
λ

log
(
1 + ληijk

)
(5.3.11)

As in the linear case in Chapter 3, we apply the EM approach to approx-

imate the MLE of the model parameters:

E–step: This is as before but with f (λ)
ik replaced by ξ(λ)

ik .

M–step: Calculate ẑ(λ)
k , β̂(λ) and π̂(λ)

k using current wik,

∂`∗

∂zk
=

r∑
i=1

wik

ni∑
j=1

−mij

λ(1/λ)
(
1 + ληijk

)(1/λ)−1

(
1 + ληijk

)1/λ
+ 1

+ yij
λ

λ(
1 + ληijk

)

=
r∑
i=1

wik

ni∑
j=1

−mij

(
1 + ληijk

)1−λ/λ

(
1 + ληijk

)1/λ
+ 1

+ yij
(
1 + ληijk

)−1

5.3. Transformations for the two–level binary regression model 163

=
r∑
i=1

wik

ni∑
j=1

−mij

(
1 + ληijk

)−1

(
1 + ληijk

)−1/λ
+ 1

+ yij
(
1 + ληijk

)−1

=

r∑
i=1

wik

ni∑
j=1

[
−mij

(
1 + ληijk

)−1{(
1 + ληijk

)−1/λ
+ 1

}−1
+ yij

(
1 + ληijk

)−1
]

=⇒ ∂`∗

∂zk
=

r∑
i=1

wik

ni∑
j=1

(
1 + ληijk

)−1
[
−mijP̃ijk + yij

]
(5.3.12)

Similarly

∂`∗

∂β
=

r∑
i=1

K∑
k=1

wik

ni∑
j=1

−mij

λxij(1/λ)
(
1 + ληijk

)(1/λ)−1

(
1 + ληijk

)1/λ
+ 1

+ yij
λ

λxij(
1 + ληijk

)

=
r∑
i=1

K∑
k=1

wik

ni∑
j=1

−mij

xij
(
1 + ληijk

)1−λ/λ

(
1 + ληijk

)1/λ
+ 1

+ yijxij
(
1 + ληijk

)−1

=
r∑
i=1

K∑
k=1

wik

ni∑
j=1

−mij

xij
(
1 + ληijk

)−1

(
1 + ληijk

)−1/λ
+ 1

+ yijxij
(
1 + ληijk

)−1

=

r∑
i=1

K∑
k=1

wik

ni∑
j=1

[
−mijxij

(
1 + ληijk

)−1{(
1 + ληijk

)−1/λ
+ 1

}−1

+ yijxij
(
1 + ληijk

)−1

=⇒ ∂`∗

∂β
=

r∑
i=1

K∑
k=1

wik

ni∑
j=1

xij
(
1 + ληijk

)−1
[
−mijP̃ijk + yij

]
(5.3.13)

and π̂(λ)
k is as in equation (3.3.16).

Replacing the results into Equation (5.3.7) we get the non-parametric profile

log-likelihood function.

`P (λ) =
n∑
i=1

log
 K∑
k=1

π̂
(λ)
k ξ̂

(λ)
ik

 (5.3.14)

The NPPML estimate of λ is then,

λ̂ = arg max
λ

`P (λ). (5.3.15)

164 Chapter 5. Transformations for mixed–effects logistic models

which can be found through a grid search over λ.

5.4 Software description

The npmlreg (Einbeck et al., 2014) function alldist() can be used again to fit

mixed–effects logistic regression model without transformation by setting family

= binomial(link=logit) and k > 1, see Einbeck and Hinde (2009). We also can

use the npmlreg function allvc() to fit the two–level logistic regression model in

the same fashion. The proposed approach can be implemented for fixed λ using

the npmlreg functions with our link function by setting family = binomial(link=

boxcoxpower(Lambda)) where Lambda can be any value. In order to perform a grid

search over λ, one can use the boxcoxmix function boxcoxtype() with k > 1. In

the following sections, we illustrate the use of these functions with simulated and

real datasets.

5.5 Simulation study

We are interested in examining the ability of our approach to estimate the trans-

formation and regression parameters of the mixed–effects binary regression models.

Accordingly, we conduct two scenarios by following the steps involved in the simula-

tion studies from the previous chapter.

5.5. Simulation study 165

Simulation Study 1

In this case, we generate 1000 datasets with 100 observations by applying the Box–

Cox transformation ‘backwards’ to the success probabilities Pi for each of four given

values λ`, ` = 1, 2, 3, 4. The structure of the simulation data is described briefly in

the following,

yi` ∼ B(40, P̃i(λ`)), i = 1, ..., 100, (5.5.1)

P̃i(λ`) =

{(

1 + λ`ηi
)−1/λ` + 1

}−1
(λ` 6= 0),

{
1 + e−ηi

}−1
(λ` = 0)

(5.5.2)

ηi = 3x1,i + 0.5x2,i + zi

X1 ∼ U(−1, 1), X2 ∼ U(−1, 1)

λ1 = 0, λ2 = 0.2, λ3 = 0.5, λ4 = 1.

zi ∼ Multinomial{1, (z1, z2, z3)|π1, π2, π3}

zk = (5, 35, 60) with masses πk = 1/3, k = 1, 2, 3.

As in Chapter 4, P̃i(·) denotes the ‘backward’ Box–Cox–transformation. In

addition, the generated data possess a mixed–effects logistic structure due to the

random effect terms zi. Appendix A provides a detailed description of how data

were generated in R. Comparing the results of the proposed power link with the logit

link for fitting mixed–effects binary regression model shows that the performance

of our models seems to be better than the logistic model. However, the proposed

link with λ = 0 corresponds exactly to the logistic model and their results appear

identical (Figure 5.5.1).

166 Chapter 5. Transformations for mixed–effects logistic models

Figure 5.5.1: Simulation results: estimated β for logistic model
compared with fixed λ` = 0, 0.2, 0.5, 1 and K = 3 (from left to
right), the horizontal lines in the boxplots indicate the actual values
of β = 3, 0.5.

Simulation Study 2

We generated 600 datasets for each value of λ as in the aforementioned study

and then estimate the transformation and regression parameters simultaneously

through the function boxcoxtype(). Figures 5.5.2 and 5.5.3 show the estimates of

the regression and transformation parameters, it is clear that the log–transformation

(logit model) has some bias. Furthermore, the consistency of the regression parameter

estimates becomes stronger as λ increases, and this increases the accuracy of our

link compared to the logit link. Unsurprisingly, there are some biases for λ = 0 or

close to zero in terms of estimating the transformation parameters, meaning that

the latter biases cause the former. Note that in Figure 5.5.2 (top panel), it is hard to

see much here for λ 6= 0 because of the extreme values for λ = 0 that are distorting

5.5. Simulation study 167

the scale. Therefore, a cropped version of this plot is provided in the bottom panel.

Figure 5.5.2: Simulation results: Estimates β̂, in each plot for true
λ` = 0, 0.2, 0.5, 1, setting K = 3 (from left to right). The lower plot
is exactly the upper plot with adjusted limits in the vertical axis in
the range of -5 to 30. Horizontal lines indicate the true values β =
3, 0.5.

168 Chapter 5. Transformations for mixed–effects logistic models

Figure 5.5.3: Simulation results: estimated λ, for true λ` =
0, 0.2, 0.5, 1, setting K = 3 (from left to right). Horizontal lines
indicate the true values of λ.

(a) (b)

(c) (d)

Figure 5.5.4: Simulation results: estimated regression parameters
against estimated transformation parameters, in each plot for true
βj = 3, 0.5 (from left to right) and λ1 = 0. The lower plots are
exactly the upper plots with logarithmic scale in the vertical axes.

5.5. Simulation study 169

(a) (b)

(c) (d)

(e) (f)

Figure 5.5.5: Simulation results: estimated regression parameters
against estimated transformation parameters, in each plot for true
β = 3, 0.5 (from left to right) and λ` = 0.2, 0.5, 1 (from top to
bottom).

The scatterplots of the estimated regression parameters β̂ against the es-

170 Chapter 5. Transformations for mixed–effects logistic models

timated transformation parameters λ̂ for true β = 3, 0.5 and λ` = 0, 0.2, 0.5, 1, are

shown in Figures 5.5.4 and 5.5.5, respectively. As before, boxplots are added at

the margins of each scatterplot to display the position and spread of the estimated

parameters and the regression line is used to clarify the trend of the points. The scat-

terplots suggest that there are curvilinear trends of points, and the variances about

the regression lines appear to increase for smaller values of λ. This is unsurprising,

as the medians of the estimated transformation parameters for smaller values of

λ have some biases, see Figures 5.5.3 and Figure 5.5.4. However, the relationship

between the λ̂ and β̂ is nearly equivalent to the relationship observed with the Box-

Cox transformed fixed–effect binary regression model in Figures 4.5.4 and 4.5.5. In

Figure 5.5.6, we use scatterplots to identify patterns that result from the correlation

between β̂1 and β̂2 given λ̂1, λ̂2, λ̂3 and λ̂4, respectively. The points patterns in the

plots have no direction, the shapes are almost round with some outliers that seem

to increase as λ becomes smaller.

An obvious limitation of this simulation is the difficulty of generating data

sets for different values of λ given the same starting values. I submitted 5000 jobs

to condor queue, each has a single run of simulation but only 600 jobs successfully

completed. The rest of jobs experienced an error due to the range of λ that did not

work with some simulated data sets; the range of λ needs to be close to the true

value of λ that had been used in the simulated data. R codes for the simulation

studies are shown in Appendix A. Also, as in the random effect model presented in

Chapter 2, the final results are likely sensitive to the design of the simulation. The

simulation studies here have binomial sample sizes mi of 40 which are large relative

to the random samples size yi where i = 1, . . . , 100, this may give approximate

5.5. Simulation study 171

normality. In practice, one can start by defining a range for λ randomly, if any of λ

value causes a problem the function boxcoxtype() will return an error message that

shows which λ value does not work and suggests specifying another range of λ values.

(a) λ = 0 (b) λ = 0, log(β1)

(c) λ = 0.2

(d) λ = 0.5 (e) λ = 1

Figure 5.5.6: Simulation results: in each plot, β̂2 vs β̂1 for true
λ = 0, 0.2, 0.5, 1. Plot (b) is exactly Plot (a) with logarithmic scale
in the vertical axis.

172 Chapter 5. Transformations for mixed–effects logistic models

5.6 Application

Example 5.6.1. the rainfall data

In order to demonstrate this methodology, we consider the rainfall data, also

named toxoplasmosis data from the R library forward (Scrucca, 2012) which gives

the numbers of Cases and the Total number of observations with a positive test for

toxoplasmosis in 34 cities in El Salvador with annual rainfall Rain in millimetre. The

data have been analyzed in Aitkin et al. (2005) and Einbeck and Hinde (2009) using

logistic regression with random effects. We adopt their way of creating the covariates

x, x2 and x3, from the variable Rain. In this case, we perform a grid search over

λ via the proposed power link function that fits logistic–type overdispersion model

with two and three mass points separately. Furthermore, AIC and BIC information

criteria is used to check model fit, the best–fitting model is the one that minimizes

either AIC or BIC with a small number of classes.

R Note:

Import the rainfall data into R, then:

rainfall$x<-rainfall$Rain/1000

rainfall$x2<- rainfall$x^2; rainfall$x3<- rainfall$x^3

library(boxcoxmix)

model2 <- boxcoxtype(cbind(Cases,Total-Cases) ~ x+x2+x3,

data = rainfall, k=2, s=100,find.in.range = c(-0.9,0.7))

#Maximum Profile Log-likelihood: -70.92818 at lambda= 0.636

summary(model2$fit)

5.6. Application 173

Call: alldist(formula = formula, random = formula(random),

family = binomial(link = boxcoxpower(lambda.max)), data = data,

k = k, random.distribution = random.distribution,

weights = weights, plot.opt = 0, verbose = FALSE)

Coefficients:

Estimate Std. Error t value

x 567.28081 127.19973 4.459764

x2 -294.83734 65.84321 -4.477870

x3 50.70019 11.30168 4.486075

MASS1 -361.38785 81.48378 -4.435089

MASS2 -360.38376 81.44905 -4.424652

Mixture proportions:

MASS1 MASS2

0.81303 0.18697

Random effect distribution - standard deviation: 0.391483

-2 log L: 141.9 Convergence at iteration 21

model2$bic

#[1] 166.5409

model2$aic

174 Chapter 5. Transformations for mixed–effects logistic models

#[1] 155.8564

model3 <- boxcoxtype(cbind(Cases,Total-Cases) ~ x+x2+x3,

data = rainfall, k=3, s=100,find.in.range = c(-0.7,0.7))

#Maximum Profile Log-likelihood: -70.75196 at lambda= 0.392

summary(model3$fit)

Call: alldist(formula = formula, random = formula(random),

family = binomial(link = boxcoxpower(lambda.max)), data = data,

k = k, random.distribution = random.distribution,

weights = weights, plot.opt = 0, verbose = FALSE)

Coefficients:

Estimate Std. Error t value

x 576.18347 135.97064 4.237558

x2 -299.93358 70.26897 -4.268364

x3 51.67687 12.04390 4.290710

MASS1 -367.35906 87.27250 -4.209334

MASS2 -366.57687 87.27619 -4.200193

MASS3 -365.66443 87.23292 -4.191817

Mixture proportions:

MASS1 MASS2 MASS3

0.0935396 0.7291589 0.1773015

5.6. Application 175

Random effect distribution - standard deviation: 0.4438361

-2 log L: 141.5 Convergence at iteration 22

model3$bic

#[1] 173.2412

model3$aic

#[1] 159.5039

(a) K = 2 (b) K = 3

Figure 5.6.1: A grid search over λ, using K = 2 (left) and K = 3
(right), of the rainfall data

Both AIC or BIC select the two–component model as the one that agrees

well with the data. The best estimates of λ that maximize `P (λ) for the two–

component model is λ̂ = 0.636, that is significantly different from zero (Figure

5.6.1(a)). We finally compare the results of our link function boxcoxpower(Lambda)

using the optimum λ with those obtained from the logit link,

176 Chapter 5. Transformations for mixed–effects logistic models

R Note:

library(npmlreg)

logmodel <- alldist(cbind(Cases,Total-Cases) ~ x+x2+x3,

data = rainfall, k=2, family=binomial(link="logit"))

summary(logmodel)

Call: alldist(formula = cbind(Cases, Total - Cases) ~ x + x2 + x3

, family = binomial(link = "logit"), data = rainfall, k = 2)

Coefficients:

Estimate Std. Error t value

x 592.31583 140.64756 4.211348

x2 -307.70309 72.24154 -4.259365

x3 52.90094 12.30745 4.298285

MASS1 -377.63689 90.86130 -4.156191

MASS2 -376.71432 90.81860 -4.147986

Mixture proportions:

MASS1 MASS2

0.8269785 0.1730215

Random effect distribution - standard deviation: 0.3489753

-2 log L: 143.1 Convergence at iteration 30

5.6. Application 177

powermodel <- alldist(cbind(Cases,Total-Cases) ~ x+x2+x3

, data = rainfall, k=2, family=binomial(link=boxcoxpower(0.636)))

summary(powermodel)

Call: alldist(formula = cbind(Cases, Total - Cases) ~ x + x2 + x3

, family = binomial(link = boxcoxpower(0.636)), data = rainfall,

k = 2)

Coefficients:

Estimate Std. Error t value

x 567.28081 127.19973 4.459764

x2 -294.83734 65.84321 -4.477870

x3 50.70019 11.30168 4.486075

MASS1 -361.38785 81.48378 -4.435089

MASS2 -360.38376 81.44905 -4.424652

Mixture proportions:

MASS1 MASS2

0.81303 0.18697

Random effect distribution - standard deviation: 0.391483

-2 log L: 141.9 Convergence at iteration 21

178 Chapter 5. Transformations for mixed–effects logistic models

Figure 5.6.2: Residuals against fitted values plots for the rainfall
data with K = 2 using the logit (left plot) and power (right plot)
link functions.

link logit boxcoxpower(0.636)

AIC 155.1264 153.8564

BIC 164.2845 163.0145

Table 5.6.1: Comparison of results from logistic & power trans-
formed models for the rainfall data

We can see that the proposed power link function performs rather well for

this data according to the AIC and BIC comparisons given in Table 5.6.1. Besides,

if we look at the residuals against the fitted values plots given in Figure 5.6.2, we

can see that our link function does not change the distribution of the data as the

transformation acts on the odds instead of the distribution of the data.

Example 5.6.2. the Beta blockers data

The betablocker data is a 22–centre clinical trial of β–blockers for reducing mor-

5.6. Application 179

tality after myocardial infarction in patients from the R package Flexmix (Leisch,

2004). The data set is analyzed in detail using a finite mixture of binomial logit re-

gressions in Aitkin (1999b) and Grün and Leisch (2007). In the current case, we first

use our approach to model overdispersion and then we add the center classification

to allow the random effect to have upper–level defined by centers, and lower–level

defined by patients. In order to choose the appropriate number of components, a

grid search over λ is performed for each component K ∈ [2, 5], separately, and the

AIC and BIC information criteria are used to determine the best model. For this

data, the search range for λ is restricted to mainly negative values because the other

values of λ beyond this range do not seem to work, computationally. This happens

due to the very strong dependence of the proposed link on the sign of the data and λ.

R Note:

Import the betablocker data into R, then:

beta2 <-boxcoxtype(cbind(Deaths, Total - Deaths) ~ Treatment,

data = betablocker, find.in.range = c(-2,0.4), s=40, k=2,

random.distribution=’np’)

#Maximum Profile Log-likelihood: -187.8999 at lambda= -0.56

summary(beta2$fit)

Call: alldist(formula = formula, random = formula(random),

family = binomial(link = boxcoxpower(lambda.max)), data = data,

k = k, random.distribution = random.distribution,

180 Chapter 5. Transformations for mixed–effects logistic models

weights = weights, plot.opt = 0, verbose = FALSE)

Coefficients:

Estimate Std. Error t value

TreatmentTreated -0.9857028 0.1733138 -5.687388

MASS1 -5.1692365 0.1450352 -35.641264

MASS2 -2.7001677 0.1297462 -20.811158

Mixture proportions:

MASS1 MASS2

0.6448312 0.3551688

Random effect distribution - standard deviation: 1.181609

-2 log L: 375.8 Convergence at iteration 9

beta3 <-boxcoxtype(cbind(Deaths, Total - Deaths) ~ Treatment,

data = betablocker, find.in.range = c(-2,0.4), s=40, k=3,

random.distribution=’np’)

#Maximum Profile Log-likelihood: -168.3984 at lambda= 0.4

summary(beta3$fit)

5.6. Application 181

Call: alldist(formula = formula, random = formula(random),

family = binomial(link = boxcoxpower(lambda.max)), data = data,

k = k, random.distribution = random.distribution,

weights = weights, plot.opt = 0, verbose = FALSE)

Coefficients:

Estimate Std. Error t value

TreatmentTreated -0.08917667 0.02011624 -4.433068

MASS1 -1.72997669 0.02556276 -67.675668

MASS2 -1.48598955 0.01663915 -89.306842

MASS3 -1.16620838 0.02703896 -43.130664

Mixture proportions:

MASS1 MASS2 MASS3

0.2032775 0.5547424 0.2419801

Random effect distribution - standard deviation: 0.1899316

-2 log L: 336.8 Convergence at iteration 8

beta4 <-boxcoxtype(cbind(Deaths, Total - Deaths) ~ Treatment,

data = betablocker, find.in.range = c(-2,0.3),

s=40, k=4, random.distribution=’np’)

182 Chapter 5. Transformations for mixed–effects logistic models

Maximum Profile Log-likelihood: -165.155 at lambda= 0.3

summary(beta4$fit)

Call: alldist(formula = formula, random = formula(random),

family = binomial(link = boxcoxpower(lambda.max)), data = data,

k = k, random.distribution = random.distribution,

weights = weights, plot.opt = 0, verbose = FALSE)

Coefficients:

Estimate Std. Error t value

TreatmentTreated -0.1305365 0.02575462 -5.068468

MASS1 -1.9518379 0.03453112 -56.524021

MASS2 -1.6573206 0.02135073 -77.623616

MASS3 -1.2384186 0.03265475 -37.924612

MASS4 -1.4818923 0.04058244 -36.515606

Mixture proportions:

MASS1 MASS2 MASS3 MASS4

0.2006178 0.4361638 0.2291456 0.1340728

Random effect distribution - standard deviation: 0.2410122

5.6. Application 183

-2 log L: 330.3 Convergence at iteration 28

beta5 <-boxcoxtype(cbind(Deaths, Total - Deaths) ~ Treatment,

data = betablocker, find.in.range = c(-1,0.3),

s=40, k=5, random.distribution=’np’)

#Maximum Profile Log-likelihood: -165.3097 at lambda= 0.235

summary(beta5$fit)

Call: alldist(formula = formula, random = formula(random),

family = binomial(link = boxcoxpower(lambda.max)), data = data,

k = k, random.distribution = random.distribution,

weights = weights, plot.opt = 0, verbose = FALSE)

Coefficients:

Estimate Std. Error t value

TreatmentTreated -0.1512355 0.03000781 -5.0398701

MASS1 -2.1233508 5.31711641 -0.3993425

MASS2 -2.1233499 0.04192477 -50.6466640

MASS3 -1.7727755 0.02478336 -71.5308826

MASS4 -1.2963667 0.03634424 -35.6691097

MASS5 -1.5690090 0.04675815 -33.5558411

184 Chapter 5. Transformations for mixed–effects logistic models

Mixture proportions:

MASS1 MASS2 MASS3 MASS4

1.180478e-05 2.008938e-01 4.362146e-01 2.294046e-01

MASS5

1.334752e-01

Random effect distribution - standard deviation: 0.2791726

-2 log L: 330.6 Convergence at iteration 25

(a) K = 2 (b) K = 3

(c) K = 4 (d) K = 5

Figure 5.6.3: A grid search over λ, using K = 2, 3, 4 and 5, of the
betablocker data

5.6. Application 185

Figure 5.6.4: λ̂ as a function of K with the optimal tol for each
class of the betablocker data

Figure 5.6.5: AIC and BIC values of the Box–Cox–type models for
K ∈ [2, 5] of the betablocker data

The best value of λ that maximizes the non–parametric profile log-likelihood

of the fitted for each class separately is shown in Figure 5.6.3, while Figure 5.6.4 plots

λ̂ as a function of K with the optimal tol for each K. It can be seen that the best

186 Chapter 5. Transformations for mixed–effects logistic models

estimates of λ that maximize `P (λ) are λ̂ = −0.56, 0.4, 0.3 and 0.235, respectively,

suggesting transformations other than log (logit model). Figure 5.6.5 shows the AIC

and BIC values of the Box–Cox–type models of the betablocker data. In this case

a model with three components with λ̂ = 0.4 is preferred according to the BIC. We

now analyze this data under the two–level structure of the response,

R Note:

betavc2 <-boxcoxtype(cbind(Deaths, Total - Deaths) ~ Treatment,

random=~1|Center, data = betablocker, find.in.range = c(-2,0.4),

s=40,k=2,random.distribution=’np’)

#Maximum Profile Log-likelihood: -180.8621 at lambda= -0.5

summary(betavc2$fit)

Call: allvc(formula = formula, random = formula(random),

family = binomial(link = boxcoxpower(lambda.max)), data = data,

k = k, random.distribution = random.distribution,

weights = weights, plot.opt = 0, verbose = FALSE)

Coefficients:

Estimate Std. Error t value

TreatmentTreated -0.7872692 0.1523583 -5.167221

MASS1 -4.6687894 0.1227162 -38.045411

5.6. Application 187

MASS2 -2.4942646 0.1193573 -20.897456

Mixture proportions:

MASS1 MASS2

0.698617 0.301383

Random effect distribution - standard deviation: 0.9977996

-2 log L: 361.7 Convergence at iteration 9

betavc3 <-boxcoxtype(cbind(Deaths, Total - Deaths) ~ Treatment,

random=~1|Center, data = betablocker, find.in.range = c(-2,0.4),

s=40, k=3,random.distribution=’np’)

#Maximum Profile Log-likelihood: -158.6025 at lambda= -0.56

summary(betavc3$fit)

Call: allvc(formula = formula, random = formula(random),

family = binomial(link = boxcoxpower(lambda.max)), data = data,

k = k, random.distribution = random.distribution,

weights = weights, plot.opt = 0, verbose = FALSE)

Coefficients:

Estimate Std. Error t value

188 Chapter 5. Transformations for mixed–effects logistic models

TreatmentTreated -0.9032108 0.1716431 -5.262146

MASS1 -7.1485025 0.3739917 -19.114066

MASS2 -4.5399919 0.1404007 -32.335952

MASS3 -2.5254135 0.1343205 -18.801398

Mixture proportions:

MASS1 MASS2 MASS3

0.2392820 0.5116901 0.2490279

Random effect distribution - standard deviation: 1.619826

-2 log L: 317.2 Convergence at iteration 5

betavc4 <-boxcoxtype(cbind(Deaths, Total - Deaths) ~ Treatment,

random=~1|Center, data = betablocker, find.in.range = c(-2,0.3),

s=40, k=4,random.distribution=’np’)

#Maximum Profile Log-likelihood: -155.4829 at lambda= -0.275

summary(betavc4$fit)

Call: allvc(formula = formula, random = formula(random),

family = binomial(link = boxcoxpower(lambda.max)), data = data,

k = k, random.distribution = random.distribution,

5.6. Application 189

weights = weights, plot.opt = 0, verbose = FALSE)

Coefficients:

Estimate Std. Error t value

TreatmentTreated -0.4805054 0.09204964 -5.220068

MASS1 -4.3389597 0.16304392 -26.612215

MASS2 -3.1364710 0.07490597 -41.872110

MASS3 -2.2800572 0.11050737 -20.632627

MASS4 -1.7356582 0.10690538 -16.235461

Mixture proportions:

MASS1 MASS2 MASS3 MASS4

0.23967915 0.48299445 0.09816545 0.17916095

Random effect distribution - standard deviation: 0.876322

-2 log L: 311 Convergence at iteration 14

betavc5 <-boxcoxtype(cbind(Deaths, Total - Deaths) ~ Treatment,

random=~1|Center, data = betablocker, find.in.range = c(-2,0.3),

s=40, k=5,random.distribution=’np’)

#Maximum Profile Log-likelihood: -155.0474 at lambda= -0.275

190 Chapter 5. Transformations for mixed–effects logistic models

summary(betavc5$fit)

Call: allvc(formula = formula, random = formula(random),

family = binomial(link = boxcoxpower(lambda.max)), data = data,

k = k, random.distribution = random.distribution,

weights = weights, plot.opt = 0, verbose = FALSE)

Coefficients:

Estimate Std. Error t value

TreatmentTreated -0.4775353 0.09201865 -5.189549

MASS1 -4.6510676 0.24433044 -19.035973

MASS2 -4.0425405 0.21141213 -19.121611

MASS3 -3.1368324 0.07489620 -41.882399

MASS4 -2.2790565 0.11076010 -20.576511

MASS5 -1.7368351 0.10692608 -16.243326

Mixture proportions:

MASS1 MASS2 MASS3 MASS4 MASS5

0.16000526 0.07963806 0.48420564 0.09699676 0.17915429

Random effect distribution - standard deviation: 0.9242998

-2 log L: 310.1 Convergence at iteration 13

5.6. Application 191

(a) K = 2 (b) K = 3

(c) K = 4 (d) K = 5

Figure 5.6.6: A grid search over λ, using K = 2, 3, 4 and 5 for the
two–level model of the betablocker data

As with the overdispersion model, λ̂’s are different from zero, meaning that

logit transformation is not appropriate for this data, see Figures 5.6.6 and 5.6.7.

Regarding the suitable number of components, the three mass-points model has the

lowest BIC values, indicating that the model with K = 3 and λ̂ = −0.56 is the

appropriate model for this data (see Figure 5.6.8). Furthermore, the inclusion of the

grouping variable (Center) in the fitted model with three mass–points reduces the

BIC value from 363.2862 to 343.6942.

192 Chapter 5. Transformations for mixed–effects logistic models

Figure 5.6.7: λ̂ as a function of K with the optimal tol for each
class of the two–level model of the betablocker data

Figure 5.6.8: AIC and BIC values of the Box–Cox–type models for
K ∈ [2, 5] for the two–level model of the betablocker data

To see how do conclusions from this model differ from those of other models

for this data, we fit the two–level logistic model with K = 3.

5.6. Application 193

betavcK3logit <-allvc(cbind(Deaths, Total - Deaths) ~ Treatment,

random=~1|Center, data = betablocker, family = binomial(link =

logit), k=3,random.distribution=’np’)

summary(betavcK3logit)

Call: allvc(formula = cbind(Deaths, Total - Deaths) ~ Treatment,

random = ~1 |Center, family = binomial(link = logit),

data = betablocker, k = 3, random.distribution = "np")

Coefficients:

Estimate Std. Error t value

TreatmentTreated -0.258143 0.04974320 -5.189513

MASS1 -2.833725 0.07368763 -38.455909

MASS2 -2.250088 0.03993349 -56.345898

MASS3 -1.609401 0.05137105 -31.328941

Mixture proportions:

MASS1 MASS2 MASS3

0.2392002 0.5119035 0.2488963

Random effect distribution - standard deviation: 0.4280793

-2 log L: 318.7 Convergence at iteration 5

194 Chapter 5. Transformations for mixed–effects logistic models

Figure 5.6.9: Residuals against fitted values plots for the two–level
model of the betablocker data with K = 3 using the power (left
plot) and logit (right plot) link functions.

Figure 5.6.9 shows the residuals against the fitted values for the two–level

model of the betablocker data with K = 3 using the power and logit link functions.

The patterns of the two plots are similar indicating that our link function does not

change the distribution of the data.

Example 5.6.3. Mehta Trial data

In this example, we investigate the Mehta data (Leisch, 2004) that is a 22-centre

clinical trial in a two-level structure whereby each patient that is reported for Drug, is

nested within one centre (Site), where Drug indicates treatment with two groups con-

trol and receiving a new drug. Note that this data set is similar to the betablocker

data set analyzed earlier. The data were also studied in Aitkin (1999b) using NPML

for logistic regression models with two and three mass–points, and reanalyzed in

5.6. Application 195

Grün and Leisch (2007). In this example, we are interested in comparing the ad-

equacy of the proposed family of power link with the logit link functions in modelling

the Mehta data.

R Note:

Import the Mehta data into R, then:

Meh2 <-boxcoxtype(cbind(Response, Total - Response)~ Drug,

random=~1|Site, data = Mehta, find.in.range = c(-4,0.1),

s=40, k=2,random.distribution=’np’)

#Maximum Profile Log-likelihood: -64.67649 at lambda= -2.975

summary(Meh2$fit)

Call: allvc(formula = formula, random = formula(random),

family = binomial(link = boxcoxpower(lambda.max)), data = data,

k = k, random.distribution = random.distribution,

weights = weights, plot.opt = 0, verbose = FALSE)

Coefficients:

Estimate Std. Error t value

DrugControl 21619.11 19045.46 1.135132

MASS1 -21921.85 19044.97 -1.151057

196 Chapter 5. Transformations for mixed–effects logistic models

MASS2 -21618.78 19045.46 -1.135115

Mixture proportions:

MASS1 MASS2

0.95454535 0.04545465

Random effect distribution - standard deviation: 63.12982

-2 log L: 129.4 Convergence at iteration 31

Meh3 <-boxcoxtype(cbind(Response, Total - Response)~ Drug,

random=~1|Site, data = Mehta, find.in.range = c(-3,0.1),

s=40, k=3,random.distribution=’np’)

#Maximum Profile Log-likelihood: -62.62554 at lambda= -2.3025

summary(Meh3$fit)

Call: allvc(formula = formula, random = formula(random),

family = binomial(link = boxcoxpower(lambda.max)), data = data,

k = k, random.distribution = random.distribution,

weights = weights, plot.opt = 0, verbose = FALSE)

Coefficients:

Estimate Std. Error t value

5.6. Application 197

DrugControl 1600.710 1186.010 1.3496604

MASS1 -8963.740 10038.516 -0.8929348

MASS2 -1645.052 1185.904 -1.3871708

MASS3 -1600.298 1186.010 -1.3493126

Mixture proportions:

MASS1 MASS2 MASS3

0.23797093 0.71657445 0.04545462

Random effect distribution - standard deviation: 3117.75

-2 log L: 125.3 Convergence at iteration 18

Meh4 <-boxcoxtype(cbind(Response, Total - Response)~ Drug,

random=~1|Site, data = Mehta, find.in.range = c(-3,0.1),

s=40, k=4,random.distribution=’np’)

#Maximum Profile Log-likelihood: -62.62573 at lambda= -1.8375

summary(Meh4$fit)

Call: allvc(formula = formula, random = formula(random),

family = binomial(link = boxcoxpower(lambda.max)), data = data,

k = k, random.distribution = random.distribution,

198 Chapter 5. Transformations for mixed–effects logistic models

weights = weights, plot.opt = 0, verbose = FALSE)

Coefficients:

Estimate Std. Error t value

DrugControl 373.2994 226.4685 1.648350

MASS1 -1744.1467 1649.7733 -1.057204

MASS2 -415.1653 226.9457 -1.829360

MASS3 -390.5525 226.4438 -1.724721

MASS4 -372.8052 226.4685 -1.646168

Mixture proportions:

MASS1 MASS2 MASS3 MASS4

0.21388608 0.27148057 0.46917877 0.04545458

Random effect distribution - standard deviation: 552.0953

-2 log L: 125.3 Convergence at iteration 51

Meh5 <-boxcoxtype(cbind(Response, Total - Response)~ Drug,

random=~1|Site, data = Mehta, find.in.range = c(-4,0),

s=40, k=5,random.distribution=’np’)

#Maximum Profile Log-likelihood: -62.62772 at lambda= -2.3

5.6. Application 199

summary(Meh5$fit)

Call: allvc(formula = formula, random = formula(random),

family = binomial(link = boxcoxpower(lambda.max)), data = data,

k = k, random.distribution = random.distribution,

weights = weights, plot.opt = 0, verbose = FALSE)

Coefficients:

Estimate Std. Error t value

DrugControl 1596.032 1178.923 1.3538054

MASS1 -15780.070 67276.219 -0.2345564

MASS2 -8890.628 10645.452 -0.8351574

MASS3 -1650.442 1178.874 -1.4000156

MASS4 -1630.093 1178.962 -1.3826511

MASS5 -1595.619 1178.923 -1.3534552

Mixture proportions:

MASS1 MASS2 MASS3 MASS4 MASS5

0.02468101 0.20706198 0.45030763 0.27249478 0.04545460

Random effect distribution - standard deviation: 3520.92

-2 log L: 125.3 Convergence at iteration 36

200 Chapter 5. Transformations for mixed–effects logistic models

(a) K = 2 (b) K = 3

(c) K = 4 (d) K = 5

Figure 5.6.10: A grid search over λ, using K = 2, 3, 4 and 5 of the
Mehta data

Figure 5.6.11: λ̂ as a function of K with the optimal tol for each
class of the Mehta data

5.6. Application 201

Figure 5.6.12: AIC and BIC values of the Box-Cox-type model for
K ∈ [2, 5] of the Mehta data

In Figure 5.6.10, we plot the non–parametric profile log–likelihood values

for the fitted model against a set of λ values for each K, K = 2, 3, 4, 5, separately.

Figure 5.6.11 shows λ̂ as a function of K with the optimal tol for each class. It is

clear that λ̂ differs considerably from 0, for all fitted classes. That provides additional

evidence for a better fit of the Box-Cox-type model to the data. We use the AIC

and BIC criteria to compare the fitted models, see Figure 5.6.12. The model with

two component and λ̂ = −2.975 yields a significantly better fit of the data according

to the BIC.

Again, we fit the two level logistic model to with K = 3, to compare results

from these models for this data.

R Note:

Meh2logit <-allvc(cbind(Response, Total - Response)~ Drug,

202 Chapter 5. Transformations for mixed–effects logistic models

random=~1|Site, data = Mehta, family = binomial(link =logit),

k=2,random.distribution=’np’)

summary(Meh2logit)

Call: allvc(formula = cbind(Response, Total - Response) ~

Drug, random = ~1 |Site, family = binomial(link = logit),

data = Mehta, k = 2, random.distribution = "np")

Coefficients:

Estimate Std. Error t value

DrugControl 1.693484 0.3282503 5.159125

MASS1 -4.147107 0.3169039 -13.086323

MASS2 -2.718306 0.3301630 -8.233225

Mixture proportions:

MASS1 MASS2

0.8444613 0.1555387

Random effect distribution - standard deviation: 0.5178226

-2 log L: 143.5 Convergence at iteration 30

As previously observed for the simpler logistic model with no random effect,

the power link function changes the distribution of the data even though the trans-

5.6. Application 203

formation does not act on the distribution! (see Figure 5.6.13). Given this result

with the results from the two previous examples, we conclude that if λ is a relatively

large negative value then the power link function will change the distribution of the

data. For logit model, the spread of the residuals is increasing as the fitted values

changes with few outliers. When λ = −2.975, the residuals in some sense appear to

be nonrandom with outliers (extreme values) such as 0/m and m/m for the binomial

distribution. This suggests that the assumption that the relationship is linear is

more reasonable in the logit model than the power transformed model.

Figure 5.6.13: Residuals against fitted values plots of the Mehta
data with K = 2 using the power (left plot) and logit (right plot)
link functions.

204 Chapter 5. Transformations for mixed–effects logistic models

5.7 Discussion

In this chapter, we introduced the Box-Cox transformation to the mixed–effects

binary regression model as a flexible link function. This family of transformations

includes the logit as well as the power transformed models. Simulation results

demonstrated that the proposed link is able to spot the true value of λ and hence β

for several λ values. However, all of the λ values considered here in the simulation

studies are positive, It would be useful to further investigate what would happen for

negative values. In some sense, there is some symmetry as for negative values one

is simply transforming the odds of the event not happening, than the usual odds of

the event occurring for positive λ values. Also, throughout the simulations we used

K = 3 in the fitting and the simulation. One may try to determine K, this may

help to understand the links between K and λ. Furthermore, we have seen that the

proposed family link is straightforward to implement and computationally efficient.

From the examples in Section 5.6, we found that all transformed models

using λ̂ that were obtained by the boxcoxmix function boxcoxtype() gave better

fits than the logit transformed model when considering the AIC and BIC criteria

or the disparity (−2`P (λ)), however, by looking at the residuals against the fitted

values plots we found that the power link function changed the distribution of the

data when λ was a relatively large negative value that led to extreme binomial values

such as 0/m and m/m. There may be a computational problem that causes difficulty

in estimating λ.

Chapter 6

Conclusions and

Recommendations

In this thesis, we proposed a transformation approach by extending the Box–Cox

transformation to overdispersion and two–level data scenarios in linear models to

induce normality and homoscedasticity. We also proposed an alternative link function

using the Box–Cox transformation for mixed-effects binary regression models for

linearizing purposes. Using the transformation in the presence of random effects with

an unspecified mixing distribution can be achieved by using the NPPML technique.

To the best of my knowledge, the approach turns out to be the only one of its kind

that has implemented the Box–Cox power transformation of the linear and logistic

mixed–effects model with unknown random effect distributions.

A number of simulation studies were carried out to evaluate the performance

of the proposed methods for linear and logistic mixed–effects models in terms of

206 Chapter 6. Conclusions and Recommendations

bias and efficiency. The results demonstrated that our methods are able to obtain

estimates of the transformation and regression parameters simultaneously that are

very close to their true values as long as the simulated data is correctly specified.

The simulation results were obtained from a misspecified structure of the simulated

dataset suggested that the estimation bias for λ causes the estimation bias for β.

In the binary regression model framework, the largest number of outliers of the

regression parameter estimates found when the true λ = 0. However, for fixed

effect case, a considerable amount of variability exists in the estimates of β obtained

for λ > 0. Surprisingly, the proposed link works better for the binary model with

random effects. The potential impact of outliers would be an interesting avenue to

explore.

In linear models context, standard errors for the parameter estimates have

been proposed and investigated through the simulation data sets, the related results

were compared with the robust measure of the standard deviation of the estimated

parameters. Although conceptually clear, the EM–based standard errors cannot be

‘correct’ as they ignore the variation caused by the EM algorithm itself, the simulation

results showed that they are satisfyingly close to their empirical counterparts if the

variability in the estimates of β was small.

Further simulation analysis to look at model stability would be beneficial to

gain a better understanding in the effect of extending the Box–Cox transformation

to the linear and logistic models with unknown random effects. All of the λ values

considered in the simulation studies were positive, hence, more simulation need to

be conducted with negative values of λ before such a conclusion can be arrived at.

207

In some sense there is some symmetry for binary model as for negative values one

is simply transforming the odds of the event not happening, than the usual odds of

the event occurring for positive λ values. Also, all of the K values in the simulation

studies were fixed, therefore, using K value in the estimation step different from the

one that was used in the simulation step can be valuable to explore the interaction

between the selection of the transformation and the appropriateness of the random

effect.

The question of whether or not to use the Box-Cox transformation for linear

and logistic models with unobserved random effects has been answered through real

datasets analyses. We are particularly interested in the convergence to normality

and homogeneity of variance for the linear model and to improve the fit of the

binary regression model. When faced with the decision on whether or not needing to

transform the response, not only the value of λ̂ but also the relevant model selection

criteria such as AIC and BIC should be taken into account. It is then essential that

these are always based on likelihoods which are reported on the original response scale.

Besides, graphical methods were used for measuring normality and homogeneity of

variance such as probability plots, control charts, and histograms of residuals. As

in the univariate case, the Box-Cox transformation does not guarantee that the

assumptions of homoscedasticity and normality of the response distribution in the

random effects model is met after applying the transformation, however, it provides a

data for which the homoscedasticity and normality assumptions are more reasonable

than not applying the transformation at all.

All analyses were conducted in R using the boxcoxmix package that is

208 Chapter 6. Conclusions and Recommendations

an implementation of the aforementioned methods. boxcoxmix applies the Box-

Cox-type transformations to linear and logistic models with random effects using

NPML estimation. The function optim.boxcox() performs a grid search over the

parameter λ for overdispersed and variance component linear models and then

optimizes over this grid, to calculate the NPPML estimator of the transformation,

while the function boxcoxtype() does the same but for binary regression models

with fixed effect and mixed-effects with one or two random effect levels. The results

allow one to conclude that there is a trade-off between transformation and mixed-

effect models, both of them change the nature of the variance explained by the model.

Additionally, all transformed models using λ̂ that were obtained by the boxcoxmix

functions optim.boxcox() and boxcoxtype() gave significantly better fits than

the untransformed models, when considering the model selection criteria or the

disparity. An attempt was unsuccessfully made, in both linear and logistic regression

settings, to obtain an easier method that finds the transformation parameter values

that maximize the likelihood by deriving the log–likelihood with respect to the

transformation parameter. Accordingly, the NPPML estimate of λ that is obtained by

plugging in the parameter estimates that were acquired from the EM algorithms tends

to be much simpler, straightforward to implement and computationally efficient.

Mixture modeling can also be used to model skewed data, as recognized

by Pearson (1895) and McLachlan and Peel (2004). McLachlan and Peel (2004)

noted in his book of finite mixture models that “the choice between the log normal

and normal mixture model is much interest”. As we have seen in Chapter 2, our

method can tell us if the data really needs to be transformed or only the right

number of components needs to be found in order have a constant variance and

209

normal distribution. The components of the mixture do not necessarily correspond

to clusters of participants within the population (Lubke and Muthén, 2005). In

terms of selecting the correct number of classes, Lubke and Muthén (2005) raised

the question of whether an extra class can provide a useful information about the

heterogeneity. The interplay between normal mixture models and transformations

to achieve homogeneous variances deserves considerable attention.

Chapter 2 raised the question of whether the restriction on the response to

be greater than zero has an effect on the results of the transformation. Therefore, it

would be interesting to apply in a similar fashion the shifted power transformation

to the linear and logistic models with random effects. An interesting alternative

approach to that for binary models is to consider the Aranda-Ordaz (1981) families

of transformations of the probability that may be better behaved than the odds-ratio

transformations considered in Chapters 4 and 5. Further research is recommended

that extends our approach to generalized linear mixed models with Box–Cox type

link functions. Note that this idea was explored extensively in the special case of

logistic models in Chapters 4 and 5. It would be also interesting to combine the

Box-Cox type link with the standard Box-Cox response transformation for linear

mixed models. Moreover, one could easily consider the proposed approaches using

gaussian quadrature, where instead of estimating zk and πk, one uses fixed values

as tabulated by Hinde (1982). Our approaches assumed a single λ for all of the

components, alternatively one could use a different λ for each component K, i.e.

λk, it seems plausible that each of these components need to be transformed in a

different way.

210 References

References

Agresti, A., Caffo, B., and Ohman-Strickland, P. (2004). Examples in which misspe-

cification of a random effects distribution reduces efficiency, and possible remedies.

Computational Statistics & Data Analysis, 47(3):639–653.

Aitkin, M. (1995). NPML estimation of the mixing distribution in general statistical

models with unobserved random effects. Statistical Modelling, pages 1–9.

Aitkin, M. (1996a). A General Maximum Likelihood Analysis of Overdispersion in

Generalized Linear Models. Statistics and Computing, 6(3):251–262.

Aitkin, M. (1996b). Empirical Bayes shrinkage using posterior random effect means

from nonparametric maximum likelihood estimation in general random ef- fect mod-

els. Statistical Modelling: Proceedings of the 11th IWSM, pages 87–94.

Aitkin, M. (1999a). A General Maximum Likelihood Analysis of Variance Compon-

ents in Generalized Linear Models. Biometrics, 55(1):117–128.

Aitkin, M. (1999b). Meta-analysis by random effect modelling in generalized linear

models. Statistics in Medicine, 18(17-18):2343–2351.

Aitkin, M. A., Francis, B., and Hinde, J. (2005). Statistical Modelling in GLIM 4,

volume 32. Oxford University Press, USA.

Aitkin, M. A., Francis, B., Hinde, J., and Darnell, R. (2009). Statistical Modelling

in R. Oxford University Press Oxford.

Akaike, H. (1998). Information theory and an extension of the maximum likelihood

principle. In Selected Papers of Hirotugu Akaike, pages 199–213. Springer.

Almohaimeed, A. and Einbeck, J. (2017). boxcoxmix: Response Transformations for

References 211

Random Effect and Variance Component Models. R package version 0.13.

Aranda-Ordaz, F. J. (1981). On two families of transformations to additivity for

binary response data. Biometrika, 68(2):357–363.

Asar, Ö., Ilk, O., and Dag, O. (2017). Estimating Box-Cox power transformation

parameter via goodness-of-fit tests. Communications in Statistics-Simulation and

Computation, 46(1):91–105.

Assaf, A. G., Oh, H., and Tsionas, M. G. (2016). Unobserved heterogeneity in

hospitality and tourism research. Journal of Travel Research, 55(6):774–788.

Baker, S. G. (1992). A simple method for computing the observed information matrix

when using the em algorithm with categorical data. Journal of Computational and

Graphical Statistics, 1(1):63–76.

Bhat, H. S. and Kumar, N. (2010). On the derivation of the bayesian information

criterion. School of Natural Sciences, University of California.

Bock, R. D. and Aitkin, M. (1981). Marginal Maximum Likelihood Estimation of

Item Parameters: Application of an EM Algorithm. Psychometrika, 46(4):443–459.

Bowman, A. and Evers, L. (2017). Nonparametric Smoothing Lecture Notes.

Box, G. E. and Cox, D. R. (1964). An Analysis of Transformations. Journal of the

Royal Statistical Society. Series B (Methodological), pages 211–252.

Butler, S. M. and Louis, T. A. (1992). Random effects models with non-parametric

priors. Statistics in medicine, 11(14-15):1981–2000.

Böhning, D., Kuhnert, R., Viwatwongkasem, C., and Rattanasiri, S. (2006). Non-

parametric Profile Likelihood Estimation in Meta-Analysis with Individually Pooled

Data.

212 References

Carroll, R. J. (1982). Prediction and power transformations when the choice of

power is restricted to a finite set. Journal of the American Statistical Association,

77(380):908–915.

Changyong, F., Hongyue, W., Naiji, L., Tian, C., Hua, H., and Ying, L. (2014).

Log-transformation and its implications for data analysis. Shanghai archives of

psychiatry, 26(2):105.

Claeskens, G. (2016). Statistical model choice.

Clark, T. S. and Linzer, D. A. (2015). Should I use fixed or random effects? Political

Science Research and Methods, 3(2):399–408.

da Silva-Júnior, A. H. M., da Silva, D. N., and Ferrari, S. L. P. (2014). mdscore: An

R Package to Compute Improved Score Tests in Generalized Linear Models. Journal

of Statistical Software, 61(2):1–16.

Dalgaard, P. (2008). Introductory statistics with R. Springer Science & Business

Media.

Davies, R. (1987). Mass Point Methods for Dealing with Nuisance Parameters in

Longitudinal Studies. Longitudinal Data Analysis, pages 88–109.

Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum Likelihood from

Incomplete Data via the EM Algorithm. Journal of the Royal Statistical Society,

Series B, pages 1–38.

Einbeck, J., Darnell, R., and Hinde, J. (2014). npmlreg: Nonparametric Maximum

Likelihood Estimation for Random Effect Models. R package version 0.46-1.

Einbeck, J. and Hinde, J. (2006). A Note on NPML Estimation for Exponential

References 213

Family Regression Models with Unspecified Dispersion Parameter. Austrian Journal

of Statistics., 35(2&3):233–243.

Einbeck, J. and Hinde, J. (2009). Nonparametric Maximum Likelihood Estimation

for Random Effect Models in R. Vignette to R package npmlreg version 0.44.

Einbeck, J., Hinde, J., and Darnell, R. (2007). A New Package for Fitting Random

Effect Models. R news., 7(1):26–30.

Foster, A., Tian, L., and Wei, L. (2001). Estimation for the Box-Cox transformation

model without assuming parametric error distribution. Journal of the American

Statistical Association, 96(455):1097–1101.

Fotouhi, A. R. (2003). Comparisons of estimation procedures for nonlinear multilevel

models. J Stat Softw, 8:1–39.

Friedl, H. and Kauermann, G. (2000). Standard errors for em estimates in generalized

linear models with random effects. Biometrics, 56(3):761–767.

Gray, E. (2016). Constructing league tables using random effect models.

Grün, B. and Leisch, F. (2007). Applications of finite mixtures of regression mod-

els. URL: http://cran. r-project. org/web/packages/flexmix/vignettes/regression-

examples. pdf.

Guerrero, V. M. and Johnson, R. A. (1982). Use of the Box-Cox transformation

with binary response models. Biometrika, 69(2):309–314.

Gurka, M. J. (2004). The box-cox transformation in the general linear mixed model

for longitudinal data.

Gurka, M. J., Edwards, L. J., Muller, K. E., and Kupper, L. L. (2006). Extending

214 References

the Box-Cox Transformation to the Linear Mixed Model. Journal of the Royal

Statistical Society: Series A (Statistics in Society), 169(2):273–288.

Heckman, J. and Singer, B. (1984). A Method for Minimizing the Impact of Dis-

tributional Assumptions in Econometric Models for Duration Data. Econometrica:

Journal of the Econometric Society, pages 271–320.

Hinde, J. (1982). Compound poisson regression models. In GLIM 82: Proceedings of

the International Conference on Generalised Linear Models, pages 109–121. Springer.

Hinde, J. and Demétrio, C. (2007). Overdispersion: Models and Estimation A Short

Course for SINAPE 1998. Statistics.

Hou, Q., Mahnken, J. D., Gajewski, B. J., and Dunton, N. (2011). The Box-Cox

Power Transformation on Nursing Sensitive Indicators: Does it Matter if Structural

Effects are Omitted During the Estimation of the Transformation Parameter? BMC

Medical Research Methodology, 11(1):1.

Ji, Y., Wang, L., Zhang, H., and Zhou, Y. (2017). Semiparametric estimation of

a Box-Cox transformation model with varying coefficients model. Science China

Mathematics, 60(5):897–922.

Karlis, D. and Xekalaki, E. (2003). Choosing Initial Values for the EM Algorithm

for Finite Mixtures. Computational Statistics & Data Analysis, 41(3):577–590.

Laird, N. (1978). Nonparametric Maximum Likelihood Estimation of a Mixing

Distribution. Journal of the American Statistical Association, 73(364):805–811.

Leisch, F. (2004). Flexmix: A general framework for finite mixture models and latent

glass regression in R.

Leroux, B. G. and Puterman, M. L. (1992). Maximum-penalized-likelihood estim-

References 215

ation for independent and Markov-dependent mixture models. Biometrics, pages

545–558.

Lesperance, M., Saab, R., and Neuhaus, J. (2014). Nonparametric estimation of the

mixing distribution in logistic regression mixed models with random intercepts and

slopes. Computational Statistics & Data Analysis, 71:211–219.

Lindsay, B. G. (1983). The Geometry of Mixture Likelihoods: a General Theory.

The Annals of Statistics, 11(1):86–94.

Lindstrom, M. J. and Bates, D. M. (1988). Newton—Raphson and EM algorithms

for linear mixed-effects models for repeated-measures data. Journal of the American

Statistical Association, 83(404):1014–1022.

Louis, T. A. (1982). Finding the observed information matrix when using the EM

algorithm. Journal of the Royal Statistical Society. Series B (Methodological), pages

226–233.

Lubke, G. H. and Muthén, B. (2005). Investigating population heterogeneity with

factor mixture models. Psychological methods, 10(1):21.

Lukociene, O. (2010). Latent class models for categorical data with a multilevel

structure. Universiteit van Tilburg.

Lukociene, O. and Vermunt, J. K. (2009). Logistic regression analysis with mul-

tidimensional random effects: A comparison of three approaches. Submitted for

publication.

Maindonald, J. and Braun, J. (2006). Data analysis and graphics using R: an

example-based approach, volume 10. Cambridge University Press.

Maruo, K., Isogawa, N., and Gosho, M. (2015). Inference of median difference

216 References

based on the Box–Cox model in randomized clinical trials. Statistics in medicine,

34(10):1634–1644.

Maruo, K., Yamaguchi, Y., Noma, H., and Gosho, M. (2017). Interpretable inference

on the mixed effect model with the Box–Cox transformation. Statistics in Medicine,

36(15):2420–2434.

McLachlan, G. and Peel, D. (2004). Finite mixture models. John Wiley & Sons.

Murphy, S. A. and Van der Vaart, A. W. (2000). On profile likelihood. Journal of

the American Statistical Association, 95(450):449–465.

Nawata, K. (1994). Estimation of Sample Selection Bias Models by the Max-

imum Likelihood Estimator and Heckman’s Two-Step Estimator. Economics Letters,

45(1):33–40.

Nawata, K. (2013). A new estimator of the Box-Cox Transformation Model Using

Moment Conditions. Economics Bulletin, 33(3):2287–2297.

Osborne, J. W. (2010). Improving your data transformations: Applying the Box-Cox

transformation. Practical Assessment, Research & Evaluation, 15(12):2.

Ostle, B. and Malone, L. C. (1954). Statistics in Research: Basic Concepts and

Techniques for Research Workers. Technical report, JSTOR.

Pearson, K. (1895). Contributions to the mathematical theory of evolution. ii. skew

variation in homogeneous material. Philosophical Transactions of the Royal Society

of London, 186(Part I):343–424.

Piepho, H.-P. and McCulloch, C. E. (2004). Transformations in mixed models:

Application to risk analysis for a multienvironment trial. Journal of agricultural,

biological, and environmental statistics, 9(2):123–137.

References 217

Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., and R Core Team (2016). nlme:

Linear and Nonlinear Mixed Effects Models. R package version 3.1-128.

Polańska, J. (2003). The EM Algorithm and its Implementation for the Estimation

of Frequencies of SNP-Haplotypes. International Journal of Applied Mathematics

and Computer Science, pages 419–429.

Qarmalah, N. M., Einbeck, J., and Coolen, F. P. A. (2018). k-Boxplots for mixture

data. Statistical Papers, 59(2):513–528.

R Core Team (2016). R: A Language and Environment for Statistical Computing. R

Foundation for Statistical Computing, Vienna, Austria.

Rabe-Hesketh, S., Pickles, A., and Skrondal, A. (2003). Correcting for covariate

measurement error in logistic regression using nonparametric maximum likelihood

estimation. Statistical Modelling, 3(3):215–232.

Rao, M. B. and Rao, C. R. (2014). Computational Statistics with R, volume 32.

Elsevier.

Rodriguez, G. (2012). Generalized linear models. Notes [assessed on 1 May 2010].

available at http://data. princeton. edu/wws509/notes.

Sakia, R. (1992). The Box-Cox transformation technique: a review. The statistician,

pages 169–178.

Scrucca, L. (2012). forward: Forward search. R package version 1.0.3.

Shin, Y. (2008). Semiparametric estimation of the Box–Cox transformation model.

The Econometrics Journal, 11(3):517–537.

Shuster, J. and Miura, C. (1972). Two-Way Analysis of Reciprocals. Biometrika,

59(2):478–481.

218 References

Silverman, B. W. (1986). Density estimation for statistics and data analysis.

Sofroniou, N., Einbeck, J., and Hinde, J. (2006). Analyzing Irish suicide rates with

mixture models. National University of Ireland.

Solomon, P. (1985). Transformations for Components of Variance and Covariance.

Biometrika, 72(2):233–239.

Spitzer, J. J. (1982). A primer on Box-Cox estimation. The Review of Economics

and Statistics, pages 307–313.

Sugasawa, S. and Kubokawa, T. (2015). Box-Cox transformed linear mixed models

for positive-valued and clustered data. Manuscript.

Trovato, G. and Caiazza, S. (2004). Extending Logistic Approach to Risk Modelling

Through Semiparametric Mixing. Technical report, Tor Vergata University, CEIS.

Venables, W. N. and Ripley, B. D. (2002). Modern Applied Statistics with S. Springer,

New York, fourth edition. ISBN 0-387-95457-0.

Verbeke, G. and Molenberghs, G. (2013). The gradient function as an explorat-

ory goodness-of-fit assessment of the random-effects distribution in mixed models.

Biostatistics, 14(3):477–490.

Wang, L. (2004). Parameter estimation for mixtures of generalized linear mixed-

effects models. PhD thesis, University of Georgia.

Wang, P., Tsai, G. f., and Qu, A. (2012). Conditional inference functions for mixed-

effects models with unspecified random-effects distribution. Journal of the American

Statistical Association, 107(498):725–736.

Xu, C., Baines, P. D., and Wang, J. L. (2014). Standard error estimation using the

References 219

EM algorithm for the joint modeling of survival and longitudinal data. Biostatistics,

15(4):731–744.

Appendix A

Appendix A

A.1 R codes for the simulation studies

The following R codes are used for the simulation studies in Chapters 2, 3, 4 and 5,

respectively:

A.1.1 Box-Cox transformations for random effect models

R Note:

Simulation study 1:

library(boxcoxmix)

#Simulation using fixed lambda

beta1 <- 3

222 Appendix A. Appendix A

beta2 <- 0.5

beta <- c(beta1,beta2)

n<-100 ## sample size

N <-1000 # number of simulation runs

save.coef1<-matrix(0,N,2)

save.coef2<-matrix(0,N,2)

save.coef3<-matrix(0,N,2)

save.coef4<-matrix(0,N,2)

save.se1<-matrix(0,N,2)

save.se2<-matrix(0,N,2)

save.se3<-matrix(0,N,2)

save.se4<-matrix(0,N,2)

mass.point <- c(15,20,30,35)

K <- 4

mass <- rep(1/K, K)

for(j in 1:N){

x1 <- runif(n, min = -1, max = 1)

x2 <- runif(n, min = -3, max = 3)

x<-cbind(x1,x2)

error <- rnorm(n, mean = 0, sd = 0.5)

z <- sample(mass.point,size=n,mass,replace=TRUE)

Generate the response eta_ij that is normally distributed

eta1 <- x%*% beta +z+error ## this will be used in Section A.2

A.1. R codes for the simulation studies 223

zeta1 <- yhat(eta1,0)

zeta2 <- yhat(eta1,0.5)

zeta3 <- yhat(eta1,1)

zeta4 <- yhat(eta1,2)

dat1 <- cbind(eta1,zeta1,zeta2,zeta3,zeta4,x1,x2)

dat1 <- as.data.frame(dat1)

colnames(dat1)<-c("eta1","zeta1","zeta2","zeta3","zeta4",

"x1","x2")

fit1 <- np.boxcoxmix(zeta1~x1+x2, data = dat1,lambda = 0,

K = 4, plot.opt=0, verbose = FALSE,

na.print=TRUE, start = "gq")

save.coef1[j,]<-fit1$beta

save.se1[j,]<-fit1$se

fit2 <- np.boxcoxmix(zeta2~x1+x2, data = dat1,lambda = 0.5,

K = 4, plot.opt=0, verbose = FALSE,

na.print=TRUE, start = "gq")

save.coef2[j,]<-fit2$beta

save.se2[j,]<-fit2$se

fit3 <- np.boxcoxmix(zeta3~x1+x2, data = dat1, lambda = 1,

K = 4, plot.opt=0, verbose = FALSE,

na.print=TRUE, start = "gq")

save.coef3[j,]<-fit3$beta

save.se3[j,]<-fit3$se

224 Appendix A. Appendix A

fit4 <- np.boxcoxmix(zeta4~x1+x2, data = dat1, lambda = 2,

K = 4, plot.opt=0, verbose = FALSE,

na.print=TRUE, start = "gq")

save.coef4[j,]<-fit4$beta

save.se4[j,]<-fit4$se

sml2opt<-save(save.coef1, save.coef2, save.coef3, save.coef4,

save.se1, save.se2, save.se3, save.se4,

file = "~/Desktop/re/resmlfix.Rdata")

}

#Simulation using unknown lambda

beta1 <- 3

beta2 <- 0.5

beta <- c(beta1,beta2)

n<-100 ## sample size

N <-1000 # number of simulation runs

save.lambda1<-rep(0,N)

save.lambda2<-rep(0,N)

save.lambda3<-rep(0,N)

save.lambda4<-rep(0,N)

save.coef1<-matrix(0,N,2)

save.coef2<-matrix(0,N,2)

A.1. R codes for the simulation studies 225

save.coef3<-matrix(0,N,2)

save.coef4<-matrix(0,N,2)

save.se1<-matrix(0,N,2)

save.se2<-matrix(0,N,2)

save.se3<-matrix(0,N,2)

save.se4<-matrix(0,N,2)

mass.point <- c(15,20,30,35)

K <- 4

mass <- rep(1/K, K)

for(j in 1:N){

x1 <- runif(n, min = -1, max = 1)

x2 <- runif(n, min = -3, max = 3)

x<-cbind(x1,x2)

error <- rnorm(n, mean = 0, sd = 0.5)

z <- sample(mass.point,size=n,mass,replace=TRUE)

Generate the response eta_ij that is normally distributed

eta1 <- x%*% beta +z+error ## this will be used in Section A.2

zeta1 <- yhat(eta1,0)

zeta2 <- yhat(eta1,0.5)

zeta3 <- yhat(eta1,1)

zeta4 <- yhat(eta1,2)

dat1 <- cbind(eta1,zeta1,zeta2,zeta3,zeta4,x1,x2)

dat1 <- as.data.frame(dat1)

226 Appendix A. Appendix A

colnames(dat1)<-c("eta1","zeta1","zeta2","zeta3","zeta4",

"x1","x2")

fit1 <- optim.boxcox(zeta1~x1+x2, data = dat1,

find.in.range = c(-.2, 2), K = 4, plot.opt=0, s=22,

verbose = FALSE, na.print=TRUE, start = "gq")

save.coef1[j,]<-fit1$beta

save.se1[j,]<-fit1$se

save.lambda1[j]<-fit1$Maximum

fit2 <- optim.boxcox(zeta2~x1+x2, data = dat1,

find.in.range = c(-.2, 2), K = 4, plot.opt=0, s=22,

verbose = FALSE, na.print=TRUE, start = "gq")

save.coef2[j,]<-fit2$beta

save.se2[j,]<-fit2$se

save.lambda2[j]<-fit2$Maximum

fit3 <- optim.boxcox(zeta3~x1+x2, data = dat1,

find.in.range = c(-.2, 2), K = 4, plot.opt=0, s=22,

verbose = FALSE, na.print=TRUE, start = "gq")

save.coef3[j,]<-fit3$beta

save.se3[j,]<-fit3$se

save.lambda3[j]<-fit3$Maximum

fit4 <- optim.boxcox(zeta4~x1+x2, data = dat1,

find.in.range = c(-.2, 3), K = 4, plot.opt=0, s=32,

verbose = FALSE, na.print=TRUE, start = "gq")

A.1. R codes for the simulation studies 227

save.coef4[j,]<-fit4$beta

save.se4[j,]<-fit4$se

save.lambda4[j]<-fit4$Maximum

sml2opt<-save(save.coef1, save.coef2, save.coef3, save.coef4,

save.se1, save.se2, save.se3, save.se4,save.lambda1,

save.lambda2, save.lambda3, save.lambda4,

file = "~/Desktop/re/resmlopt.Rdata")

}

R Note:

Simulation study 2:

#Simulation using fixed lambda

beta1 <- 5

beta2 <- 3

beta <- c(beta1,beta2)

n<-100 ## sample size

N <-1000 # number of simulation runs

save.coef1<-matrix(0,N,2)

save.coef2<-matrix(0,N,2)

save.coef3<-matrix(0,N,2)

save.coef4<-matrix(0,N,2)

228 Appendix A. Appendix A

save.se1<-matrix(0,N,2)

save.se2<-matrix(0,N,2)

save.se3<-matrix(0,N,2)

save.se4<-matrix(0,N,2)

mass.point <-c(15,20,30,35)

K <- 4

mass <- rep(1/K, K)

for(j in 1:N){

x1 <- runif(n, min = -1, max = 1)

x2 <- runif(n, min = 0, max = 4)

x<-cbind(x1,x2)

error <- rnorm(n, mean = 0, sd = 0.5)

z <- sample(mass.point,size=n,mass,replace=TRUE)

Generate the response eta_ij that is normally distributed

eta2 <- x%*% beta +z+error ## this will be used in Section A.2

zeta1 <- yhat(eta2,0)

zeta2 <- yhat(eta2,0.5)

zeta3 <- yhat(eta2,1)

zeta4 <- yhat(eta2,2)

dat2 <- cbind(eta2,zeta1,zeta2,zeta3,zeta4,x1,x2)

dat2 <- as.data.frame(dat2)

colnames(dat2)<-c("eta2","zeta1","zeta2","zeta3","zeta4",

"x1","x2")

A.1. R codes for the simulation studies 229

fit1 <- np.boxcoxmix(zeta1~x1+x2, data = dat2,lambda = 0,

K = 4, plot.opt=0, verbose = FALSE,

na.print=TRUE, start = "gq")

save.coef1[j,]<-fit1$beta

save.se1[j,]<-fit1$se

fit2 <- np.boxcoxmix(zeta2~x1+x2, data = dat2,lambda = 0.5,

K = 4, plot.opt=0, verbose = FALSE,

na.print=TRUE, start = "gq")

save.coef2[j,]<-fit2$beta

save.se2[j,]<-fit2$se

fit3 <- np.boxcoxmix(zeta3~x1+x2, data = dat2, lambda = 1,

K = 4, plot.opt=0, verbose = FALSE,

na.print=TRUE, start = "gq")

save.coef3[j,]<-fit3$beta

save.se3[j,]<-fit3$se

fit4 <- np.boxcoxmix(zeta4~x1+x2, data = dat2, lambda = 2,

K = 4, plot.opt=0, verbose = FALSE,

na.print=TRUE, start = "gq")

save.coef4[j,]<-fit4$beta

save.se4[j,]<-fit4$se

sml2opt<-save(save.coef1, save.coef2, save.coef3, save.coef4,

save.se1, save.se2, save.se3, save.se4,

file = "~/Desktop/re2/resmlfix2.Rdata")

}

230 Appendix A. Appendix A

#Simulation using unknown lambda

beta1 <- 5

beta2 <- 3

beta <- c(beta1,beta2)

n<-100 ## sample size

N <-1000 # number of simulation runs

save.lambda1<-rep(0,N)

save.lambda2<-rep(0,N)

save.lambda3<-rep(0,N)

save.lambda4<-rep(0,N)

save.coef1<-matrix(0,N,2)

save.coef2<-matrix(0,N,2)

save.coef3<-matrix(0,N,2)

save.coef4<-matrix(0,N,2)

save.se1<-matrix(0,N,2)

save.se2<-matrix(0,N,2)

save.se3<-matrix(0,N,2)

save.se4<-matrix(0,N,2)

mass.point <-c(15,20,30,35)

K <- 4

mass <- rep(1/K, K)

for(j in 1:N){

x1 <- runif(n, min = -1, max = 1)

A.1. R codes for the simulation studies 231

x2 <- runif(n, min = 0, max = 4)

x<-cbind(x1,x2)

error <- rnorm(n, mean = 0, sd = 0.5)

z <- sample(mass.point,size=n,mass,replace=TRUE)

Generate the response eta_ij that is normally distributed

eta2 <- x%*% beta +z+error ## this will be used in Section A.2

zeta1 <- yhat(eta2,0)

zeta2 <- yhat(eta2,0.5)

zeta3 <- yhat(eta2,1)

zeta4 <- yhat(eta2,2)

dat2 <- cbind(eta2,zeta1,zeta2,zeta3,zeta4,x1,x2)

dat2 <- as.data.frame(dat2)

colnames(dat2)<-c("eta2","zeta1","zeta2","zeta3","zeta4",

"x1","x2")

fit1 <- optim.boxcox(zeta1~x1+x2, data = dat2,

find.in.range = c(-.2, 2), K = 4, plot.opt=0, s=22,

verbose = FALSE, na.print=TRUE, start = "gq")

save.coef1[j,]<-fit1$beta

save.se1[j,]<-fit1$se

save.lambda1[j]<-fit1$Maximum

fit2 <- optim.boxcox(zeta2~x1+x2, data = dat2,

find.in.range = c(-.2, 2), K = 4, plot.opt=0, s=22,

verbose = FALSE, na.print=TRUE, start = "gq")

232 Appendix A. Appendix A

save.coef2[j,]<-fit2$beta

save.se2[j,]<-fit2$se

save.lambda2[j]<-fit2$Maximum

fit3 <- optim.boxcox(zeta3~x1+x2, data = dat2,

find.in.range = c(-.2, 2), K = 4, plot.opt=0, s=22,

verbose = FALSE, na.print=TRUE, start = "gq")

save.coef3[j,]<-fit3$beta

save.se3[j,]<-fit3$se

save.lambda3[j]<-fit3$Maximum

fit4 <- optim.boxcox(zeta4~x1+x2, data = dat2,

find.in.range = c(-.2, 3), K = 4, plot.opt=0, s=32,

verbose = FALSE, na.print=TRUE, start = "gq")

save.coef4[j,]<-fit4$beta

save.se4[j,]<-fit4$se

save.lambda4[j]<-fit4$Maximum

sml2opt<-save(save.coef1, save.coef2, save.coef3, save.coef4,

save.se1, save.se2, save.se3, save.se4,save.lambda1,

save.lambda2, save.lambda3, save.lambda4,

file = "~/Desktop/re2/resmlopt2.Rdata")

}

A.1. R codes for the simulation studies 233

A.1.2 Box-Cox transformations for two–level models

R Note:

#Simulation using fixed lambda

beta <- 3

r <- 20 # No. of upper-level groups

n_i <- rep(5, r) # No. of lower-level within i-th group

n <- sum(n_i) # sample size

N <-1000 # number of simulation runs

save.coef1<-rep(0,N)

save.coef2<-rep(0,N)

save.coef3<-rep(0,N)

save.coef4<-rep(0,N)

save.se1<-rep(0,N)

save.se2<-rep(0,N)

save.se3<-rep(0,N)

save.se4<-rep(0,N)

mass.point <- c(15,20,30,35)

K <- 4

mass <- rep(1/K, K)

for(s in 1:N){

x_ij <- runif(n, min = -4, max = 4)

Xbeta <-beta * x_ij

234 Appendix A. Appendix A

Generate e_ij from a normal.

e_ij<-rnorm(n, mean = 0, sd = 0.5)

#random effect

z <- sample(mass.point,size=r,mass,replace=TRUE)

#the same cluster has the same random effect

z_i<-rep(z, n_i)

Generate the response eta_ij that is normally distributed

eta_ij <- Xbeta +z_i+e_ij

zeta1 <- yhat(eta_ij ,0)

zeta2 <- yhat(eta_ij ,0.5)

zeta3 <- yhat(eta_ij ,1)

zeta4 <- yhat(eta_ij ,2)

gr <- gl(20,5) # groups

dat <- cbind(eta_ij ,zeta1,zeta2,zeta3,zeta4,x_ij,gr)

dat <- as.data.frame(dat)

colnames(dat)<-c("eta","zeta1","zeta2","zeta3","zeta4","X","gr")

fit1 <- np.boxcoxmix(zeta1~X, groups = dat$gr , data = dat,

plot.opt=0, lambda = 0, K = 4, verbose = FALSE,

na.print=TRUE, start = "gq")

save.coef1[s]<-fit1$beta

save.se1[s]<-fit1$se

fit2 <- np.boxcoxmix(zeta2~X, groups = dat$gr , data = dat,

plot.opt=0, lambda = 0.5, K = 4, verbose = FALSE,

A.1. R codes for the simulation studies 235

na.print=TRUE, start = "gq")

save.coef2[s]<-fit2$beta

save.se2[s]<-fit2$se

fit3 <- np.boxcoxmix(zeta3~X, groups = dat$gr , data = dat,

plot.opt=0, lambda = 1, K = 4, verbose = FALSE,

na.print=TRUE, start = "gq")

save.coef3[s]<-fit3$beta

save.se3[s]<-fit3$se

fit4 <- np.boxcoxmix(zeta4~X, groups = dat$gr , data = dat,

plot.opt=0, lambda = 2, K = 4, verbose = FALSE,

na.print=TRUE, start = "gq")

save.coef4[s]<-fit4$beta

save.se4[s]<-fit4$se

sml2opt<-save(save.coef1, save.coef2, save.coef3, save.coef4,

save.se1, save.se2, save.se3, save.se4,

file = "~/Desktop/vc/vcsmlfix.Rdata")

}

#Simulation using unknown lambda

beta <- 3

r <- 20 # No. of upper-level groups

236 Appendix A. Appendix A

n_i <- rep(5, r) # No. of lower-level within i-th group

n <- sum(n_i) # sample size

N <-1000 # number of simulation runs

save.lambda1<-rep(0,N)

save.lambda2<-rep(0,N)

save.lambda3<-rep(0,N)

save.lambda4<-rep(0,N)

save.coef1<-rep(0,N)

save.coef2<-rep(0,N)

save.coef3<-rep(0,N)

save.coef4<-rep(0,N)

save.se1<-rep(0,N)

save.se2<-rep(0,N)

save.se3<-rep(0,N)

save.se4<-rep(0,N)

mass.point <- c(15,20,30,35)

K <- 4

mass <- rep(1/K, K)

for(s in 1:N){

x_ij <- runif(n, min = -4, max = 4)

Xbeta <-beta * x_ij

Generate e_ij from a normal.

e_ij<-rnorm(n, mean = 0, sd = 0.5)

#random effect

A.1. R codes for the simulation studies 237

z <- sample(mass.point,size=r,mass,replace=TRUE)

#the same cluster has the same random effect

z_i<-rep(z, n_i)

Generate the response eta_ij that is normally distributed

eta_ij <- Xbeta +z_i+e_ij

zeta1 <- yhat(eta_ij ,0)

zeta2 <- yhat(eta_ij ,0.5)

zeta3 <- yhat(eta_ij ,1)

zeta4 <- yhat(eta_ij ,2)

gr <- gl(20,5) # groups

dat <- cbind(eta_ij ,zeta1,zeta2,zeta3,zeta4,x_ij,gr)

dat <- as.data.frame(dat)

colnames(dat)<-c("eta","zeta1","zeta2","zeta3","zeta4","X","gr")

fit1 <- optim.boxcox(zeta1~X, groups = dat$gr ,data = dat,

find.in.range = c(-.2, 2), K = 4, plot.opt=0, s=22,

verbose = FALSE, na.print=TRUE, start = "gq")

save.coef1[s]<-fit1$beta

save.se1[s]<-fit1$se

save.lambda1[s]<-fit1$Maximum

fit2 <- optim.boxcox(zeta2~X, groups = dat$gr ,data = dat,

find.in.range = c(-.2, 2), K = 4, plot.opt=0, s=22,

verbose = FALSE, na.print=TRUE, start = "gq")

save.coef2[s]<-fit2$beta

save.se2[s]<-fit2$se

238 Appendix A. Appendix A

save.lambda2[s]<-fit2$Maximum

fit3 <- optim.boxcox(zeta3~X, groups = dat$gr ,data = dat,

find.in.range = c(-.2, 2), K = 4, plot.opt=0, s=22,

verbose = FALSE, na.print=TRUE, start = "gq")

save.coef3[s]<-fit3$beta

save.se3[s]<-fit3$se

save.lambda3[s]<-fit3$Maximum

fit4 <- optim.boxcox(zeta4~X, groups = dat$gr ,data = dat,

find.in.range = c(-.2, 3), K = 4, plot.opt=0, s=32,

verbose = FALSE, na.print=TRUE, start = "gq")

save.coef4[s]<-fit4$beta

save.se4[s]<-fit4$se

save.lambda4[s]<-fit4$Maximum

sml2opt<-save(save.coef1, save.coef2, save.coef3, save.coef4,

save.se1, save.se2, save.se3, save.se4,save.lambda1,

save.lambda2, save.lambda3, save.lambda4,

file = "~/Desktop/vc/vcsmlopt.Rdata")

}

A.1. R codes for the simulation studies 239

A.1.3 Transformations for fixed–effect binary regression

models

R Note:

#Simulation using fixed lambda

beta0 <- 2

beta1 <- 1

beta <- c(beta0,beta1)

n <- 100 # sample size

N <-1000 # number of simulation runs

m<-40 # number of trails

save.coefg<-matrix(0,N,2)

save.coef0<-matrix(0,N,2)

save.coef1<-matrix(0,N,2)

save.coef2<-matrix(0,N,2)

save.coef3<-matrix(0,N,2)

save.coef4<-matrix(0,N,2)

for(j in 1:N){

x1 <- runif(n, min = -1, max = 1)

etai<- cbind(1,x1)%*% beta

pi0<- exp(etai)/(1+exp(etai)) #lambda=0

pi1<- ((1-0.2*etai)^(-1/-0.2)+1)^(-1) #lambda=-0.2

pi2<- ((1+0.2*etai)^(-1/0.2)+1)^(-1) #lambda=0.2

240 Appendix A. Appendix A

pi3<- ((1+0.5*etai)^(-1/0.5)+1)^(-1) #lambda=0.5

pi4<- ((1+1*etai)^(-1/1)+1)^(-1) #lambda=1

y0<-rbinom(n,m, pi0)

y1<-rbinom(n,m, pi1)

y2<-rbinom(n,m, pi2)

y3<-rbinom(n,m, pi3)

y4<-rbinom(n,m, pi4)

dat <- cbind(y0,y1,y1,y2,y3,y4,x1)

dat <- as.data.frame(dat)

fitg <- alldist(y0/40~x1, weights = rep(40, 100),data = dat,

family=binomial(link=logit),k=1)

fit0 <- alldist(y0/40~x1, weights = rep(40, 100),data = dat,

family=binomial(link=boxcoxpower(0)),k=1)

fit1 <- alldist(y1/40~x1, weights = rep(40, 100),data = dat,

family=binomial(link=boxcoxpower(-0.2)),k=1)

fit2 <- alldist(y2/40~x1, weights = rep(40, 100),data = dat,

family=binomial(link=boxcoxpower(0.2)),k=1)

fit3 <- alldist(y3/40~x1, weights = rep(40, 100),data = dat,

family=binomial(link=boxcoxpower(0.5)),k=1)

fit4 <- alldist(y4/40~x1, weights = rep(40, 100),data = dat,

family=binomial(link=boxcoxpower(1)),k=1)

save.coefg[j,]<- fitg$coef

save.coef0[j,]<-fit0$coef

A.1. R codes for the simulation studies 241

save.coef1[j,]<-fit1$coef

save.coef2[j,]<-fit2$coef

save.coef3[j,]<-fit3$coef

save.coef4[j,]<-fit4$coef

smlfixb<-save(save.coefg,save.coef0,save.coef1,

save.coef2, save.coef3, save.coef4,

file = "~/Desktop/fixedbinary/smlfix.Rdata")

}

#Simulation using unknown lambda

beta0 <- 2

beta1 <- 1

beta <- c(beta0,beta1)

n <- 100 # sample size

N <-1000 # number of simulation runs

m<-40 # number of trails

save.coeff0<-matrix(0,N,2)

save.coeff1<-matrix(0,N,2)

save.coeff2<-matrix(0,N,2)

save.coeff3<-matrix(0,N,2)

save.coeff4<-matrix(0,N,2)

242 Appendix A. Appendix A

save.llambda0<-rep(0,N)

save.llambda1<-rep(0,N)

save.llambda2<-rep(0,N)

save.llambda3<-rep(0,N)

save.llambda4<-rep(0,N)

for(j in 1:N){

print(j)

x1 <- runif(n, min = -1, max = 1)

etai<- cbind(1,x1)%*% beta

pi0<- exp(etai)/(1+exp(etai)) #lambda=0

pi1<- ((1-0.2*etai)^(-1/-0.2)+1)^(-1) #lambda=-0.2

pi2<- ((1+0.2*etai)^(-1/0.2)+1)^(-1) #lambda=0.2

pi3<- ((1+0.5*etai)^(-1/0.5)+1)^(-1) #lambda=0.5

pi4<- ((1+1*etai)^(-1/1)+1)^(-1) #lambda=1

y0<-rbinom(n,m, pi0)

y1<-rbinom(n,m, pi1)

y2<-rbinom(n,m, pi2)

y3<-rbinom(n,m, pi3)

y4<-rbinom(n,m, pi4)

dat <- cbind(y0,y1,y2,y3,y4,x1)

dat <- as.data.frame(dat)

#colnames(dat)<-c("y0","y1","y2","y3","y4","x1")

fit0 <- boxcoxtype(y0/40~x1,data=dat, trials = 40,

A.1. R codes for the simulation studies 243

find.in.range = c(-0.3, 1.2), s = 16,k=1)

save.coeff0[j,]<-fit0$coef

save.llambda0[j]<-fit0$Maximum

fit1 <- boxcoxtype(y1/40~x1,data=dat, trials = 40,

find.in.range = c(-0.4, 1), s = 16,k=1)

save.coeff1[j,]<- fit1$coef

save.llambda1[j]<-fit1$Maximum

fit2 <- boxcoxtype(y2/40~x1,data=dat, trials = 40,

find.in.range = c(-0.2, 1.3), s = 16,k=1)

save.coeff2[j,]<- fit2$coef

save.llambda2[j]<-fit2$Maximum

fit3 <- boxcoxtype(y3/40~x1,data=dat, trials = 40,

find.in.range = c(-0.2, 1.5), s = 18,k=1)

save.coeff3[j,]<- fit3$coef

save.llambda3[j]<-fit3$Maximum

fit4 <- boxcoxtype(y4/40~x1,data=dat, trials = 40,

find.in.range = c(-0.2, 1.6), s = 19,k=1)

save.coeff4[j,]<- fit4$coef

save.llambda4[j]<-fit4$Maximum

sml2opt1000b<-save(save.coeff0,save.coeff1,save.coeff2,

save.coeff3,save.coeff4, save.llambda0,save.llambda1,

save.llambda2,save.llambda3, save.llambda4,

file = "~/Desktop/fixedbinary/smlopt.Rdata")

}

244 Appendix A. Appendix A

A.1.4 Transformations for mixed–effects binary regression

models

R Note:

#Simulation using fixed lambda

beta1 <-3

beta2 <- 0.5

beta <- c(beta1,beta2)##

n<- 100 ## sample size

N <-1000 # number of simulation runs

m<-40 # number of trails

save.coefg<-save.coef0<-matrix(0,N,2)

save.coef1<-save.coef2<-save.coef3<-matrix(0,N,2)

mass.point <- c(35,60,5)

K <- 3 #number of clusters

mass <- rep(1/K, K)

for(j in 1:N){

print(j)

x1 <- runif(n, min = -1, max =1)

x2 <- runif(n, min = -1, max =1)

x<-cbind(x1,x2)

z <- sample(mass.point,size=n,mass,replace=TRUE)

etai<- x%*% beta + z

A.1. R codes for the simulation studies 245

pi0<- exp(etai)/(1+exp(etai)) #lambda=0

pi1<- ((1+0.2*etai)^(-1/0.2)+1)^(-1) #lambda=0.2

pi2<- ((1+0.5*etai)^(-1/0.5)+1)^(-1) #lambda=0.5

pi3<- ((1+1*etai)^(-1/1)+1)^(-1) #lambda=1

y0<-rbinom(n,m, pi0)

y1<-rbinom(n,m, pi1)

y2<-rbinom(n,m, pi2)

y3<-rbinom(n,m, pi3)

dat <- cbind(y0,y1,y2,y3,x1,x2,z)

dat <- as.data.frame(dat)

fitg <- alldist(y0/40~x1+x2,k=3, weights = rep(40, 100),

data = dat, verbose=FALSE, family=binomial(link=logit),

plot.opt = 0)

save.coefg[j,]<- fitg$coefficients[1:abs(length

(fitg$coefficients)-length(fitg$mass.points))]

fit0 <- alldist(y0/40~x1+x2, k=3,weights = rep(40, 100),

data = dat, verbose=FALSE, family=binomial(link=boxcoxpower(0)),

plot.opt = 0)

save.coef0[j,]<-fit0$coefficients[1:abs(length

(fit0$coefficients)-length(fit0$mass.points))]

fit1 <- alldist(y1/40~x1+x2,k=3, weights = rep(40, 100),

data = dat, verbose=FALSE, family=binomial(link=

boxcoxpower(0.2)), plot.opt = 0)

246 Appendix A. Appendix A

save.coef1[j,]<- fit1$coefficients[1:abs(length

(fit1$coefficients)-length(fit1$mass.points))]

fit2 <- alldist(y2/40~x1+x2, k=3,weights = rep(40, 100),

data = dat, verbose=FALSE, family=binomial(link=

boxcoxpower(0.5)), plot.opt = 0)

save.coef2[j,]<- fit2$coefficients[1:abs(length

(fit2$coefficients)-length(fit2$mass.points))]

fit3 <- alldist(y3/40~x1+x2,k=3, weights = rep(40, 100),

data = dat, verbose=FALSE, family=binomial(link=boxcoxpower(1)),

plot.opt = 0)

save.coef3[j,]<- fit3$coefficients[1:abs(length

(fit3$coefficients)-length(fit3$mass.points))]

smlmixfixb<-save(save.coefg,save.coef0,save.coef1,save.coef2,

save.coef3, file = "~/Desktop/mixedbinary/smlmixfix.Rdata")

}

#Simulation using unknown lambda

beta1 <-3 #3

beta2 <- 0.5

beta <- c(beta1,beta2)##

n<- 100 ## sample size

N <-1000 # number of simulation runs

A.1. R codes for the simulation studies 247

m<-40 # number of trails

save.coef0<-save.coef1<-save.coef2<-save.coef3<-matrix(0,N,2)

save.llambda0<-save.llambda1<-rep(0,N)

save.llambda2<-save.llambda3<-rep(0,N)

mass.point <- c(35,60,5)

K <- 3 #number of clusters

mass <- rep(1/K, K)

for(j in 1:N){

x1 <- runif(n, min = -1, max =1)

x2 <- runif(n, min = -1, max =1)

x<-cbind(x1,x2)

z <- sample(mass.point,size=n,mass,replace=TRUE)

etai<- x%*% beta + z

pi0<- exp(etai)/(1+exp(etai)) #lambda=0

pi1<- ((1+0.2*etai)^(-1/0.2)+1)^(-1) #lambda=0.2

pi2<- ((1+0.5*etai)^(-1/0.5)+1)^(-1) #lambda=0.5

pi3<- ((1+1*etai)^(-1/1)+1)^(-1) #lambda=1

y0<-rbinom(n,m, pi0)

y1<-rbinom(n,m, pi1)

y2<-rbinom(n,m, pi2)

y3<-rbinom(n,m, pi3)

dat <- cbind(y0,y1,y2,y3,x1,x2,z)

dat <- as.data.frame(dat)

248 Appendix A. Appendix A

fit0 <- boxcoxtype(y0/40~x1+x2,k=3,data=dat,

trials = 40, find.in.range = c(-0.1,1), s = 12)

save.coef0[j,]<-fit0$coef

save.llambda0[j]<-fit0$Maximum

fit1 <- boxcoxtype(y1/40~x1+x2,k=3,data=dat,

trials = 40, find.in.range = c(-0.1,1), s = 12)

save.coef1[j,]<- fit1$coef

save.llambda1[j]<-fit1$Maximum

fit2 <- boxcoxtype(y2/40~x1+x2,k=3,data=dat,

trials = 40, find.in.range = c(-0.1,1.5), s = 16)

save.coef2[j,]<- fit2$coef

save.llambda2[j]<-fit2$Maximum

fit3 <- boxcoxtype(y3/40~x1+x2,k=3,data=dat,

trials = 40, find.in.range = c(-0.1,1.5), s = 16)

save.coef3[j,]<- fit3$coef

save.llambda3[j]<-fit3$Maximum

smlmixoptb<-save(save.coef0,save.coef1,save.coef2,save.coef3,

save.llambda0, save.llambda1, save.llambda2, save.llambda3,

file = "~/Desktop/mixedbinary/smlmixopt.Rdata")

}

A.2. A comparison of the simulation studies of the random effect
models 249

A.2 A comparison of the simulation studies of

the random effect models

In this section, the results from the fit of the random effect model to the simulated

data in their original forms (i.e. without transformation) for the two studies presented

in Section 2.7 are shown for comparison. In the simulation step, we need to ensure

that the simulated data ηi is normally distributed before applying the inverse of the

transformation. An assessment of the normality of data can be carried out using a

graphical method. The normal probability plots (QQ–plot) and histograms are used

to represent the distribution of the data. In the histogram, the data follows a normal

distribution if its points represented as a bell-shaped curve. In the following graphs,

we attempt to illustrate the effects of the design of the data on its distribution’s

shape using the function np.boxcoxmix() in R, setting λ = 1 (i.e. no transformation).

From the outputs, we plot a histogram and a QQ–plot for the residuals of fitted

model ηi, which are expressed as ε̂i = ηi− η̂i = ηi−xTi β̂− ẑi, where ẑi = ∑K
k=1 wikẑk.

For the first simulation study, we generated the random sample from normal

distribution for sample size 100 as

ηi1 = 3 x1,i + 0.5 x2,i + zi + εi (A.2.1)

X1 ∼ U(−1, 1), X2 ∼ U(−3, 3)

ε ∼ N(0, 0.52)

λ1 = 0, λ2 = 0.5, λ3 = 1, λ4 = 2

zi ∼ Multinomial{1, (z1, . . . , z4)|π1, . . . , π4}

250 Appendix A. Appendix A

zk = (15, 20, 30, 35) with masses πk = 1/4, k = 1, ..., 4.

and for the second simulation study, we generated the random sample from normal

distribution for sample size 100 as

ηi2 = 5x1,i + 3x2,i + zi + εi (A.2.2)

X1 ∼ U(−1, 1), X2 ∼ U(0, 4)

ε ∼ N(0, 0.52)

λ1 = 0, λ2 = 0.5, λ3 = 1, λ4 = 2

zi ∼ Multinomial{1, (z1, . . . , z4)|π1, . . . , π4}

zk = (15, 20, 30, 35) with masses πk = 1/4, k = 1, ..., 4.

See Subsections A.1.1 and A.1.1. We now fit these models ηi1 and ηi2 given in

(A.2.1) and (A.2.2) , respectively, using the boxcoxmix function np.boxcoxmix()

with λ = 1 (i.e. no transformation).

R Note:

We obtain the residuals of the first study as follow,

test1 <- np.boxcoxmix(eta1 ~ x1+x2, data = dat1, K=4,lambda=1)

Res1<-test1$residuals

for the residuals of the second study we use,

test2 <- np.boxcoxmix(eta2 ~ x1+x2, data = dat2, K=4,lambda=1)

Res2<-test2$residuals

A.2. A comparison of the simulation studies of the random effect
models 251

Figure A.2.1: Simulation Study 1: an assessment of the normality
of the residuals for simulated data of the first study using QQ-plot
and Histogram

Figure A.2.2: Simulation Study 2: an assessment of the normality of
the residuals for simulated data of the second study using QQ-plot
and Histogram

Figure A.2.1 shows the results of the first study while the results of the

second study are shown in Figure A.2.2. The QQ–plots for the residuals of simulated

252 Appendix A. Appendix A

data sets are shown on the left-hand side while the histograms are on the right-hand

side of the Figures. From the two QQ–plots it appears that the model fit of the first

study produces a normally distributed residuals while the model fit of the second

study shows curvature at some points along the curve. The histograms confirm this

since the histogram of the first study has a perfect bell-shaped while the histogram

of the second study looks quite different from a bell. Note that this compression is

before applying any transformation (neither backwards nor forwards).

A.3 Simulations using fixed λ

Transforming a data set backwards followed by a forwards transformation using

the same value of λ means no transformation takes place. To prove that recall the

equation for the ‘forwards’ Box-Cox transformation of the response yi,

y
(λ)
i =

yλi − 1
λ

(λ 6= 0),

log yi (λ = 0)

(A.3.1)

and that for yi > 0, i = 1, ..., n. From that the ‘backward’ Box–Cox–transformation

is

ŷi =

(
1 + ληi

)1/λ
(λ 6= 0),

eηi (λ = 0)

(A.3.2)

where ηi = xTi β + zi. Now using the λ’s values in Section 2.7, the ‘backward’

transformations for each value of λ are

A.3. Simulations using fixed λ 253

ŷi =

eηi (λ = 0),

(
1 + ηi

2
)2

(λ = 0.5),

(
1 + ηi

)
(λ = 1),

(
1 + 2ηi

)1/2
(λ = 2)

(A.3.3)

Applying the Box–Cox transformation forwards to (A.3.3) using the same

value of λ yields

y
(λ)
i =

log eηi = ηi (λ = 0),((
1 + (ηi/2)

)2
)1/2
− 1

1/2 = 2
((

1 + (ηi/2)
)
− 1

)
=

= 2 + ηi − 2 = ηi (λ = 0.5),

(
1 + ηi

)
− 1 = ηi (λ = 1),((

1 + 2ηi
)1/2

)2
− 1

2 =

(
1 + 2ηi

)
− 1

2 =

= 2ηi
2 = ηi (λ = 2)

(A.3.4)

This is the reason for having identical boxplots for different values of λ in Figures

(2.7.2), (2.7.5) and (3.5.1). Note that this is not the case for the binary regression

models in Figures (4.5.1) and (5.5.1) because we generated the data after applying

the ‘backward’ Box–Cox transformation to the success probabilities for each value

of λ whereas in the linear models we started with generating a data set then we

applied the ‘backward’ Box–Cox transformation to this data for each value of λ (see

Figures A.3.1 and A.3.2).

254 Appendix A. Appendix A

	
	

⌃
⌃ 	

 ⌃

 ⌃

⌃
⌃

⌃

Figure A.3.1: Algorithm for simulation studies for the linear models
with fixed λ values

A.3. Simulations using fixed λ 255

	

 ⌃
	

 ⌃
	

� 	

(λ

)
(λ

)
(λ

)
(λ

)
1

2
3

4

~

~

~
~

~

~
~

~
~

~
i

i
i

i

Figure A.3.2: Algorithm for simulation studies for the binary models
with fixed λ values

256 Appendix A. Appendix A

A.4 Residual Plots

Figure A.4.1 shows some residuals plots for WWWusage data before and after applying

the response transformation for K ∈ [1, 4] (see Example 2.11.2).

Figure A.4.1: The residuals plots for WWWusage data before and
after applying the response transformation for K ∈ [1, 4]

Package ‘boxcoxmix’
June 5, 2018

Type Package

Title Box-Cox-Type Transformations for Linear and Logistic Models with
Random Effects

Version 0.20

Date 2018-6-5

Author Amani Almohaimeed and Jochen Einbeck

Maintainer Amani Almohaimeed <amani.almohaimeed@gmail.com>

Depends R (>= 3.3.0)

Imports statmod(>= 1.4.27), qicharts(>= 0.5.4), npmlreg(>= 0.46-1)

Suggests nlme, mdscore, flexmix, utils

LazyLoad yes

Description Box-Cox-type transformations for linear and logistic models
with random effects using non-parametric profile maximum
likelihood estimation. The main functions are optim.boxcox()
and boxcoxtype().

License GPL (>=3)

RoxygenNote 6.0.1

VignetteBuilder utils

R topics documented:

boxcoxmix-package . 2
boxcoxtype . 2
Kfind.boxcox . 5
np.boxcoxmix . 6
np.estep . 9
optim.boxcox . 11
plot . 14
print.boxcoxmix . 15
tolfind.boxcox . 15

Index 18

1

2 boxcoxtype

boxcoxmix-package Box-Cox-Type Transformations for Linear and Logistic Models with
Random Effects

Description

Box-Cox-type transformations for linear and logistic models with random effects using non-parametric
profile maximum likelihood estimation. The main functions are optim.boxcox() and boxcoxtype().

Details

Package: boxcoxmix
Type: Package
Version: 0.20
Date: 2018-6-5
License: GPL (>=3)

Author(s)

Amani Almohaimeed and Jochen Einbeck

References

Box G. and Cox D. (1964). An analysis of transformations. Journal of the Royal Statistical Society.
Series B (Methodological), pages 211-252.

Aitkin, M. A., Francis, B., Hinde, J., and Darnell, R. (2009). Statistical modelling in R. Oxford
University Press Oxford.

Jochen Einbeck, Ross Darnell and John Hinde (2014). npmlreg: Nonparametric maximum likeli-
hood estimation for random effect models. R package version 0.46-1.

R Core Team (2016). R: A language and environment for statistical computing. R Foundation for
Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Maintainer: Amani Almohaimeed <amani.almohaimeed@gmail.com>

boxcoxtype Box-Cox-type link function for logistic mixed-effects Models

Description

The boxcoxtype() performs a grid search over the parameter Lambda for logistic mixed-effects
models and then optimizes over this grid, to calculate the maximum likelihood estimator of the
transformation.

boxcoxtype 3

Usage

boxcoxtype(formula, random = ~1, k = 3, trials = 1, data,
find.in.range = c(-2, 2), s = 20, plot.opt = 1,
random.distribution = "np", ...)

boxcoxpower(Lambda = 0)

binomial(link = boxcoxpower(0))

Arguments

formula a formula describing the transformed response and the fixed effect model (e.g.
y ~ x).

random a formula defining the random model. Set random= ~1 to model logistic-type
overdispersion model. For a two-level logistic-type model, set random= ~1|groups,
where groups are at the upper level.

k the number of mass points.

trials optional prior weights for the data. For Bernoulli distribution, set trials=1.

data a data frame containing variables used in the fixed and random effect models.

find.in.range search in a range of Lambda, with default (-2,2) in step of 0.1.

s number of points in the grid search of Lambda.

plot.opt Set plot.opt=1, to plot the profile log-likelihood against Lambda. if plot.opt=0,
no plot is printed.

random.distribution

the mixing distribution, Gaussian Quadrature (gq) or NPML (np) can be set.

... extra arguments will be ignored.

Lambda the power of the transformation

link the link function to be used.

Details

The Box-Cox transformation (Box & Cox, 1964) is applied to the logistic mixed-effects models
with an unspecified mixing distribution. The NPML estimate of the mixing distribution is known
to be a discrete distribution involving a finite number of mass-points and corresponding masses
(Aitkin et al., 2009). An Expectation-Maximization (EM) algorithm is used for fitting the finite
mixture distribution, one needs to specify the number of components k of the finite mixture in ad-
vance. This algorithm can be implemented using the npmlreg function alldist for the logistic-type
overdispersion model and the npmlreg function allvc for the two-level logistic-type model, setting
family = binomial(link = boxcoxpower(Lambda)) where Lambda is the value of the power
transformation. When k=1, the npmlreg function alldist() fits the logistic regression model with-
out random effects.

boxcoxtype() performs a grid search over the parameter Lambda and then optimizes over this grid,
to calculate the maximum likelihood estimator of the transformation. It produces a plot of the
profile likelihood function that summarises information concerning Lambda, including a vertical
line indicating the best value of Lambda that maximizes the profile log-likelihood.

4 boxcoxtype

Value

Maximum the best estimate of Lambda found.

objective the value of the profile log-likelihood corresponding to Maximum.

coef the vector of coefficients.

profile.loglik the profile log-likelihood of the fitted regression model.

fit the fitted alldist object from the last EM iteration.

aic the Akaike information criterion of the fitted regression model.

bic the Bayesian information criterion of the fitted regression model.

The other outcomes are not relevant to users and they are intended for internal use only.

Author(s)

Amani Almohaimeed and Jochen Einbeck

References

Box G. and Cox D. (1964). An analysis of transformations. Journal of the Royal Statistical Society.
Series B (Methodological), pages 211-252.

Aitkin, M. A., Francis, B., Hinde, J., and Darnell, R. (2009). Statistical modelling in R. Oxford
University Press Oxford.

Jochen Einbeck, Ross Darnell and John Hinde (2014). npmlreg: Nonparametric maximum likeli-
hood estimation for random effect models. R package version 0.46-1.

See Also

np.boxcoxmix, optim.boxcox, tolfind.boxcox, Kfind.boxcox.

Examples

#Beta blockers data
data("betablocker", package = "flexmix")
library(npmlreg)
betavc <-allvc(cbind(Deaths, Total - Deaths) ~ Treatment, data = betablocker,random=~1|Center,
k=3,random.distribution='np',family = binomial(link = boxcoxpower(0)))

betavc$disparity
#[1] 318.7211
betavc3 <-boxcoxtype(cbind(Deaths, Total - Deaths) ~ Treatment,random=~1|Center,
data = betablocker, find.in.range = c(-2,0.4),s=40,k=3,random.distribution='np')
#Maximum Profile Log-likelihood: -158.6025 at lambda= -0.56
betavc3fitdisparity
#[1] 317.2049
betavc3$aic
#[1] 331.2049
betavc3$bic
#[1] 343.6942

Kfind.boxcox 5

Kfind.boxcox Grid search over K for NPML estimation of random effect and vari-
ance component models

Description

A grid search over the parameter K, to set the best number of mass-points.

Usage

Kfind.boxcox(formula, groups = 1, data, lambda = 1, EMdev.change = 1e-04,
steps = 500, find.k = c(2, 10), model.selection = "aic", start = "gq",
find.tol = c(0, 1.5), steps.tol = 15, ...)

Arguments

formula a formula describing the transformed response and the fixed effect model (e.g.
y ~ x).

groups the random effects. To fit overdispersion models , set groups = 1.

data a data frame containing variables used in the fixed and random effect models.

lambda a transformation parameter, setting lambda=1 means ’no transformation’.

EMdev.change a small scalar, with default 0.0001, used to determine when to stop EM algo-
rithm.

steps maximum number of iterations for the EM algorithm.

find.k search in a range of K, with default (2,10) in step of 1.
model.selection

Set model.selection="aic", to use Akaike information criterion as model se-
lection criterion or model.selection="bic", to use Bayesian information cri-
terion as model selection criterion.

start a description of the initial values to be used in the fitted model, Quantile-based
version "quantile" or Gaussian Quadrature "gq" can be set.

find.tol search in a range of tol, with default (0,1.5) in step of 1.

steps.tol number of points in the grid search of tol.

... extra arguments will be ignored.

Details

Not only the shape of the distribution causes the skewness it may due to the use of an insufficient
number of classes, K. For this, the Kfind.boxcox() function was created to search over a selected
range of K and find the best. For each number of classes, a grid search over tol is performed and the
tol with the lowest aic or bic value is considered as the optimal. Having the minimal aic or bic
values for a whole range of K that have been specified beforehand, the Kfind.boxcox() function
can find the best number of the component as the one with the smallest value. It also plots the
aic or bic values against the selected range of K, including a vertical line indicating the best value
of K that minimizes the model selection criteria. The full range of classes and their corresponding
optimal tol can be printed off from the Kfind.boxcox()’s output and used with other boxcoxmix
functions as starting points.

6 np.boxcoxmix

Value

MinDisparity the minimum disparity found.

Best.K the value of K corresponding to MinDisparity.
AllMinDisparities

a vector containing all minimum disparities calculated on the grid.

AllMintol list of tol values used in the grid.

All.K list of K values used in the grid.

All.aic the Akaike information criterion of all fitted regression models.

All.bic the Bayesian information criterion of all fitted regression models.

Author(s)

Amani Almohaimeed and Jochen Einbeck

See Also

tolfind.boxcox.

Examples

Fabric data
data(fabric, package = "npmlreg")
teststr<-Kfind.boxcox(y ~ x, data = fabric, start = "gq", groups=1,
find.k = c(2, 3), model.selection = "aic", steps.tol=5)
Minimal AIC: 202.2114 at K= 2

np.boxcoxmix Response Transformations for Random Effect and Variance Compo-
nent Models

Description

The function np.boxcoxmix() fits an overdispersed generalized linear model and variance compo-
nent models using nonparametric profile maximum likelihood.

Usage

np.boxcoxmix(formula, groups = 1, data, K = 3, tol = 0.5, lambda = 1,
steps = 500, EMdev.change = 1e-04, plot.opt = 1, verbose = TRUE,
start = "gq", ...)

np.boxcoxmix 7

Arguments

formula a formula describing the transformed response and the fixed effect model (e.g.
y ~ x).

groups the random effects. To fit overdispersion models , set groups = 1.

data a data frame containing variables used in the fixed and random effect models.

K the number of mass points.

tol a positive scalar (usually, 0< tol <= 2)

lambda a transformation parameter, setting lambda=1 means ’no transformation’.

steps maximum number of iterations for the EM algorithm.

EMdev.change a small scalar, with default 0.0001, used to determine when to stop EM algo-
rithm.

plot.opt Set plot.opt=1, to plot the disparity against iteration number. Use plot.opt=2
for tolfind.boxcox() and plot.opt=3 for optim.boxcox().

verbose If set to FALSE, no printed output on progress.

start a description of the initial values to be used in the fitted model, Quantile-based
version "quantile" or Gaussian Quadrature "gq" can be set.

... extra arguments will be ignored.

Details

The Box-Cox transformation (Box & Cox, 1964) is applied to the overdispersed generalized lin-
ear models and variance component models with an unspecified mixing distribution. The NPML
estimate of the mixing distribution is known to be a discrete distribution involving a finite num-
ber of mass-points and corresponding masses (Aitkin et al., 2009). An Expectation-Maximization
(EM) algorithm is used for fitting the finite mixture distribution, one needs to specify the num-
ber of components K of the finite mixture in advance. To stop the EM-algorithm when it reached
its convergence point, we need to defined the convergence criteria that is the absolute change
in the successive log-likelihood function values being less than an arbitrary parameter such as
EMdev.change = 0.0001 (Einbeck et at., 2014). This algorithm can be implemented using the func-
tion np.boxcoxmix(), which is designed to account for overdispersed generalized linear models
and variance component models using the non-parametric profile maximum likelihood (NPPML)
estimation.

The ability of the EM algorithm to locate the global maximum in fewer iterations can be affected
by the choice of initial values, the function np.boxcoxmix() allows us to choose from two different
methods to set the initial value of the mass points. When option "gq" is set, then Gauss-Hermite
masses and mass points are used as starting points in the EM algorithm, while setting start= "quan-
tile" uses the Quantile-based version to select the starting points.

Value

mass.point the fitted mass points.

p the masses corresponding to the mixing proportions.

beta the vector of coefficients.

sigma the standard deviation of the mixing distribution (the square root of the vari-
ance).

se the standard error of the estimate.

w a matrix of posterior probabilities that element i comes from cluster k.

8 np.boxcoxmix

loglik the log-likelihood of the fitted regression model.
complete.loglik

the complete log-likelihood of the fitted regression model.

disparity the disparity of the fitted regression model.

EMiteration provides the number of iterations of the EM algorithm.

EMconverged TRUE means the EM algorithm converged.

call the matched call.

formula the formula provided.

data the data argument.

aic the Akaike information criterion of the fitted regression model.

bic the Bayesian information criterion of the fitted regression model.

fitted the fitted values for the individual observations.
fitted.transformed

the fitted values for the individual transformed observations.

residuals the difference between the observed values and the fitted values.
residuals.transformed

the difference between the transformed observed values and the transformed
fitted values.

predicted.re a vector of predicted residuals.

The other outcomes are not relevant to users and they are intended for internal use only.

Author(s)

Amani Almohaimeed and Jochen Einbeck

References

Box G. and Cox D. (1964). An analysis of transformations. Journal of the Royal Statistical Society.
Series B (Methodological), pages 211-252.

Aitkin, M. A., Francis, B., Hinde, J., and Darnell, R. (2009). Statistical modelling in R. Oxford
University Press Oxford.

Jochen Einbeck, Ross Darnell and John Hinde (2014). npmlreg: Nonparametric maximum likeli-
hood estimation for random effect models. R package version 0.46-1.

See Also

optim.boxcox, tolfind.boxcox.

Examples

#Pennsylvanian Hospital Stay Data
data(hosp, package = "npmlreg")
test1 <- np.boxcoxmix(duration ~ age + wbc1, data = hosp, K = 2, tol = 1,

start = "quantile", lambda = 1)
round(summary(test1)$w, digits = 3)
[1,] 1.000 0.000

Refinery yield of gasoline Data
data(Gasoline, package = "nlme")
test2.vc <- np.boxcoxmix(yield ~ endpoint + vapor, groups = Gasoline$Sample,

np.estep 9

data = Gasoline, K = 3, tol = 1.7, start = "quantile", lambda = 0)
test2.vc$disparity
[1] 176.9827

np.estep Internal boxcoxmix functions

Description

auxiliary functions are not intended to be directly called from the user.

Usage

np.estep(y, x, lambda, p, beta, z, sigma)

np.zk(y, x, w, beta, lambda)

fik(y, x, lambda, beta, z, sigma)

np.theta(y, x, lambda, beta, z)

yhat(v, lambda = 1)

ytrans(y, lambda = 1)

np.bhat(y, x, w, z, lambda)

np.mstep(y, x, beta, lambda, w)

np.em(y, x, K, lambda = 1, steps = 500, tol = 0.5, start = "gq",
EMdev.change = 1e-04, plot.opt = 1, verbose = TRUE, ...)

np.boxcox(formula, groups = 1, data, K = 3, tol = 0.5, lambda = 1,
steps = 500, EMdev.change = 1e-04, plot.opt = 1, verbose = TRUE,
start = "gq", ...)

vc.estep(Y, X, sizes = 1, lambda, p, beta, z, sigma)

zk(Y, X, sizes, w, beta, lambda)

bhat(Y, X, sizes, w, z, lambda)

mik(Y, X, sizes, lambda, beta, z, sigma)

10 np.estep

vc.theta(Y, X, sizes, lambda, beta, z)

vc.mstep(Y, X, sizes = 1, beta, lambda, w)

vc.em(y, x, sizes = 1, K, lambda, steps = 500, tol = 0.5, start = "gq",
EMdev.change = 1e-04, plot.opt = 1, verbose = TRUE, ...)

vc.boxcox(formula, groups = 1, data, K = 3, tol = 0.5, lambda = 1,
steps = 500, EMdev.change = 1e-04, plot.opt = 1, verbose = TRUE,
start = "gq", ...)

gqz(numnodes = 20, minweight = 1e-06)

masspoint.class(object)

Arguments

y ..
x ..
lambda a transformation parameter, setting lambda=1 means ’no transformation’.
p ..
beta ..
z ..
sigma ..
w ..
v ..
K the number of mass points.
steps maximum number of iterations for the EM algorithm.
tol a positive scalar (usually, 0< tol <= 2)
start a description of the initial values to be used in the fitted model, Quantile-based

version "quantile" or Gaussian Quadrature "gq" can be set.
EMdev.change a small scalar, with default 0.0001, used to determine when to stop EM algo-

rithm.
plot.opt Set plot.opt=1, to plot the disparity against iteration number. Use plot.opt=2

for tolfind.boxcox and plot.opt=3 for optim.boxcox.
verbose If set to FALSE, no printed output on progress.
... extra arguments will be ignored.
formula a formula describing the transformed response and the fixed effect model (e.g.

y ~ x).
groups the random effects. To fit overdispersion models , set groups = 1.
data a data frame containing variables used in the fixed and random effect models.
Y ..
X ..
sizes ..
numnodes ..
minweight ..
object ..

optim.boxcox 11

Details

Internal boxcoxmix functions

Author(s)

Amani Almohaimeed and Jochen Einbeck

optim.boxcox Response Transformations for Random Effect and Variance Compo-
nent Models

Description

The optim.boxcox() performs a grid search over the parameter lambda for overdispersed gener-
alized linear models and variance component models and then optimizes over this grid, to calculate
the maximum likelihood estimator of the transformation.

Usage

optim.boxcox(formula, groups = 1, data, K = 3, steps = 500, tol = 0.5,
start = "gq", EMdev.change = 1e-04, find.in.range = c(-3, 3), s = 60,
plot.opt = 3, verbose = FALSE, noformat = FALSE, ...)

Arguments

formula a formula describing the transformed response and the fixed effect model (e.g.
y ~ x).

groups the random effects. To fit overdispersion models, set groups = 1.

data a data frame containing variables used in the fixed and random effect models.

K the number of mass points.

steps maximum number of iterations for the EM algorithm.

tol a positive scalar (usually, 0<tol <= 2)

start a description of the initial values to be used in the fitted model, Quantile-based
version "quantile" or Gaussian Quadrature "gq" can be set.

EMdev.change a small scalar, with default 0.0001, used to determine when to stop EM algo-
rithm.

find.in.range search in a range of lambda, with default (-3,3) in step of 0.1.

s number of points in the grid search of lambda.

plot.opt Set plot.opt=3, to plot the disparity against iteration number and the profile
log-likelihood against lambda. Use plot.opt=0, to only plot the profile log-
likelihood against lambda.

verbose If set to FALSE, no printed output on progress.

noformat Set noformat = TRUE, to change the formatting of the plots.

... extra arguments will be ignored.

12 optim.boxcox

Details

The Box-Cox transformation (Box & Cox, 1964) is applied to the overdispersed generalized lin-
ear models and variance component models with an unspecified mixing distribution. The NPML
estimate of the mixing distribution is known to be a discrete distribution involving a finite num-
ber of mass-points and corresponding masses (Aitkin et al., 2009). An Expectation-Maximization
(EM) algorithm is used for fitting the finite mixture distribution, one needs to specify the num-
ber of components K of the finite mixture in advance. To stop the EM-algorithm when it reached
its convergence point, we need to defined the convergence criteria that is the absolute change
in the successive log-likelihood function values being less than an arbitrary parameter such as
EMdev.change = 0.0001 (Einbeck et at., 2014). This algorithm can be implemented using the func-
tion np.boxcoxmix(), which is designed to account for overdispersed generalized linear models
and variance component models using the non-parametric profile maximum likelihood (NPPML)
estimation.

The ability of the EM algorithm to locate the global maximum in fewer iterations can be affected
by the choice of initial values, the function optim.boxcox() allows us to choose from two different
methods to set the initial value of the mass points. When option "gq" is set, then Gauss-Hermite
masses and mass points are used as starting points in the EM algorithm, while setting start= "quan-
tile" uses the Quantile-based version to select the starting points.

optim.boxcox() performs a grid search over the parameter lambda and then optimizes over this
grid, to calculate the maximum likelihood estimator of the transformation. It produces a plot of
the non-parametric profile likelihood function that summarises information concerning lambda,
including a vertical line indicating the best value of lambda that maximizes the non-parametric
profile log-likelihood.

Value

All.lambda list of lambda values used in the grid.

Maximum the best estimate of lambda found.

objective the value of the profile log-likelihood corresponding to Maximum.

EMconverged 1 is TRUE, means the EM algorithm converged.

EMiteration provides the number of iterations of the EM algorithm.

mass.point the fitted mass points.

p the masses corresponding to the mixing proportions.

beta the vector of coefficients.

sigma the standard deviation of the mixing distribution (the square root of the vari-
ance).

se the standard error of the estimate.

w a matrix of posterior probabilities that element i comes from cluster k.

loglik the profile log-likelihood of the fitted regression model.

profile.loglik the profile complete log-likelihood of the fitted regression model.

disparity the disparity of the fitted regression model.

call the matched call.

formula the formula provided.

data the data argument.

aic the Akaike information criterion of the fitted regression model.

fitted the fitted values for the individual observations.

optim.boxcox 13

fitted.transformed

the fitted values for the individual transformed observations.

residuals the difference between the observed values and the fitted values.
residuals.transformed

the difference between the transformed observed values and the transformed
fitted values.

predicted.re a vector of predicted residuals.

The other outcomes are not relevant to users and they are intended for internal use only.

Author(s)

Amani Almohaimeed and Jochen Einbeck

References

Box G. and Cox D. (1964). An analysis of transformations. Journal of the Royal Statistical Society.
Series B (Methodological), pages 211-252.

Aitkin, M. A., Francis, B., Hinde, J., and Darnell, R. (2009). Statistical modelling in R. Oxford
University Press Oxford.

Jochen Einbeck, Ross Darnell and John Hinde (2014). npmlreg: Nonparametric maximum likeli-
hood estimation for random effect models. R package version 0.46-1.

See Also

np.boxcoxmix, tolfind.boxcox.

Examples

The strength Data
data(strength, package = "mdscore")
maxlam <- optim.boxcox(y ~ cut*lot, data = strength, K = 3,

start = "gq" , find.in.range = c(-2, 2), s = 5)
Maximum profile log-likelihood: 33.6795 at lambda= -0.4

data(Oxboys, package = "nlme")
Oxboys$boy <- gl(26,9)
maxlamvc <- optim.boxcox(height ~ age, groups = Oxboys$boy,

data = Oxboys, K = 2, start = "gq",
find.in.range=c(-1.2,1), s=6, plot.opt = 0)

maxlamvc$Maximum
#[1] -0.8333333
plot(maxlamvc,8)

14 plot

plot Plot diagnostics for boxcoxmix functions

Description

plot() is a generic function used to produce some useful diagnostic plotting of the functions:
np.boxcoxmix(), optim.boxcox() and tolfind.boxcox().

Usage

S3 method for class 'boxcoxmix'
plot(x, plot.opt = 1, ...)

Arguments

x an object for which a plot is desired.

plot.opt an integer value between 1 and 8.

... additional arguments.

Details

Plot diagnostics for boxcoxmix functions

Value

The plots to be printed depend on the number given in plot.opt, for the np.boxcoxmix(), optim.boxcox()
and tolfind.boxcox() functions:

1 the disparities with the iteration number against the mass points

2 the fitted value against the response of the original and the transformed Data.

3 probability plot of residuals of the original against the transformed data.

4 individual posterior probabilities.

5 control charts of residuals of the original against the transformed data.

6 The histograms of residuals of the original against the transformed data.

7 works only for the tolfind.boxcox() function and plots the specified range of
tol against the disparities

8 works only for the optim.boxcox() function and gives the profile likelihood
function that summarises information concerning lambda.

9 works only for the Kfind.boxcox() function and plots the specified range of K
against the AIC or BIC information criteria

10 works only for the boxcoxtype() function and gives the profile likelihood func-
tion that summarises information concerning lambda for generalized linear Mixed-
effects Models.

print.boxcoxmix 15

print.boxcoxmix Summary of boxcoxmix functions

Description

summary() and print() are generic functions used to produce the results of the functions: np.boxcoxmix(),
optim.boxcox() and tolfind.boxcox().

Usage

S3 method for class 'boxcoxmix'
print(x, digits = max(3, getOption("digits") - 3),

na.print = "", ...)

S3 method for class 'boxcoxmixpure'
print(x, digits = max(3, getOption("digits") - 3),

na.print = "", ...)

S3 method for class 'boxcoxmix'
summary(object, digits = max(3, getOption("digits") - 3),

...)

S3 method for class 'boxcoxmixpure'
summary(object, digits = max(3, getOption("digits") -

3), ...)

Arguments

x an object for which a summary is desired.

digits an integer number format.

na.print a character string which is used to indicate NA values output format.

... additional arguments.

object an object for which a summary is desired.

Details

Summary of boxcoxmix functions

tolfind.boxcox Grid search over tol for NPPML estimation of random effect and vari-
ance component models

Description

A grid search over the parameter tol, to set the initial values of the EM algorithm.

16 tolfind.boxcox

Usage

tolfind.boxcox(formula, groups = 1, data, K = 3, lambda = 1,
EMdev.change = 1e-04, plot.opt = 2, s = 15, steps = 500,
find.in.range = c(0, 1.5), start = "gq", verbose = FALSE,
noformat = FALSE, ...)

Arguments

formula a formula describing the transformed response and the fixed effect model (e.g.
y ~ x).

groups the random effects. To fit overdispersion models , set groups = 1.

data a data frame containing variables used in the fixed and random effect models.

K the number of mass points.

lambda a transformation parameter, setting lambda=1 means ’no transformation’.

EMdev.change a small scalar, with default 0.0001, used to determine when to stop EM algo-
rithm.

plot.opt Set plot.opt=2, to plot the EM trajectories and the development of the disparity
over iteration number. And plot.opt=0, for none of them.

s number of points in the grid search of tol.

steps maximum number of iterations for the EM algorithm.

find.in.range search in a range of tol, with default (0,1.5) in step of 0.1 .

start a description of the initial values to be used in the fitted model, Quantile-based
version "quantile" or Gaussian Quadrature "gq" can be set.

verbose If set to FALSE, no printed output on progress.

noformat Set noformat = TRUE, to change the formatting of the plots.

... extra arguments will be ignored.

Details

A grid search over tol can be performed using tolfind.boxcox() function, which works for
np.boxcoxmix() to find the optimal solution.

Value

MinDisparity the minimum disparity found.

Mintol the value of tol corresponding to MinDisparity.
AllDisparities

a vector containing all disparities calculated on the grid.

Alltol list of tol values used in the grid.
AllEMconverged

1 is TRUE, means the EM algorithm converged.

aic the Akaike information criterion of the fitted regression model.

bic the Bayesian information criterion of the fitted regression model.

Author(s)

Amani Almohaimeed and Jochen Einbeck

tolfind.boxcox 17

See Also

np.boxcoxmix.

Examples

The Pennsylvanian Hospital Stay Data
data(hosp, package = "npmlreg")
test1 <- tolfind.boxcox(duration ~ age , data = hosp, K = 2, lambda = 0,

find.in.range = c(0, 2), s = 10, start = "gq")
Minimal Disparity: 137.8368 at tol= 2
Minimal Disparity with EM converged: 137.8368 at tol= 2

Effect of Phenylbiguanide on Blood Pressure
data(PBG, package = "nlme")
test2 <- tolfind.boxcox(deltaBP ~ dose , groups = PBG$Rabbit, find.in.range = c(0, 2),

data = PBG, K = 2, lambda = -1, s = 15, start = "quantile", plot.opt = 0)
test2$Mintol
[1] 1.6
test2$MinDisparity
[1] 449.5876

Index

∗Topic Kfind
Kfind.boxcox, 5

∗Topic boxcoxtype
boxcoxtype, 2

∗Topic boxcox
Kfind.boxcox, 5
np.boxcoxmix, 6
optim.boxcox, 11
tolfind.boxcox, 15

∗Topic em
np.estep, 9

∗Topic optim
optim.boxcox, 11

∗Topic package
boxcoxmix-package, 2

∗Topic random
np.boxcoxmix, 6

∗Topic tolfind
tolfind.boxcox, 15

∗Topic variance
np.boxcoxmix, 6

alldist, 3
allvc, 3

bhat (np.estep), 9
binomial (boxcoxtype), 2
boxcoxmix (boxcoxmix-package), 2
boxcoxmix-package, 2
boxcoxpower (boxcoxtype), 2
boxcoxtype, 2

fik (np.estep), 9

gqz (np.estep), 9

Kfind.boxcox, 4, 5

masspoint.class (np.estep), 9
mik (np.estep), 9

nb.se (np.estep), 9
np.bhat (np.estep), 9
np.boxcox (np.estep), 9
np.boxcoxmix, 4, 6, 13, 17

np.em (np.estep), 9
np.estep, 9
np.mstep (np.estep), 9
np.theta (np.estep), 9
np.zk (np.estep), 9

optim.boxcox, 4, 8, 11

plot, 14
print.boxcoxmix, 15
print.boxcoxmixpure (print.boxcoxmix),

15

summary.boxcoxmix (print.boxcoxmix), 15
summary.boxcoxmixpure

(print.boxcoxmix), 15

tolfind.boxcox, 4, 6, 8, 13, 15

vc.boxcox (np.estep), 9
vc.em (np.estep), 9
vc.estep (np.estep), 9
vc.mstep (np.estep), 9
vc.se (np.estep), 9
vc.theta (np.estep), 9

yhat (np.estep), 9
ytrans (np.estep), 9

zk (np.estep), 9

18

