
Durham E-Theses

Thermodynamics of Accelerating Black Holes

APPELS, MICHAEL,JOHN

How to cite:

APPELS, MICHAEL,JOHN (2018) Thermodynamics of Accelerating Black Holes, Durham theses, Durham
University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/12737/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, Durham University, University O�ce, Old Elvet, Durham DH1 3HP
e-mail: e-theses.admin@dur.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/12737/
 http://etheses.dur.ac.uk/12737/ 
htt://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk


Thermodynamics of Accelerating
Black Holes

Three years with the C-metric

Michael Appels

A thesis presented for the degree of
Doctor of Philosophy

Centre for Particle Theory
Department of Mathematical Sciences

Durham University
United Kingdom

July 2018





Thermodynamics of Accelerating
Black Holes

Three years with the C-metric

Michael Appels

Submitted for the degree of Doctor of Philosophy
July 2018

Abstract: We address a long-standing problem of describing the thermodynamics
of an accelerating black hole. We derive a standard first law of black hole thermo-
dynamics, with the usual identification of entropy proportional to the area of the
event horizon — even though the event horizon contains a conical singularity. We
show how to generalise this result, formulating thermodynamics for black holes with
varying conical deficits. We derive a new potential for the varying tension defects:
the thermodynamic length, both for accelerating and static black holes. We discuss
possible physical processes in which the tension of a string ending on a black hole
might vary, and also map out the thermodynamic phase space of accelerating black
holes and explore their critical phenomena. We then revisit the critical limit in
which asymptotically-AdS black holes develop maximal conical deficits, first for a
stationary rotating black hole, and then for an accelerated black hole, by taking
various upper bounds for the parameters in the spacetimes presented. We explore the
thermodynamics of these geometries and evaluate the reverse isoperimetric inequal-
ity, and argue that the ultra-spinning black hole only violates this condition when
it is nonaccelerating. Finally, we return to some of our earlier findings and adjust
them in light of new results; a new expression for the mass is obtained by computing
the dual stress-energy tensor for the spacetime and finding that it corresponds to a
relativistic fluid with a nontrivial viscous shear tensor. We compare the holographic
computation with the method of conformal completion showing it yields the same
result for the mass.
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Preface

The 1970s brought in a new era for research into black holes by drawing parallels
between the classical theory of thermodynamics and these gravitational solutions.
This newly found application for a century old machinery opened many avenues
for this research. Indeed, black holes have been discovered to display a wide and
diverse variety of phenomena, much of which were made evident from studies into
thermodynamics. Even more recently, black hole thermodynamics are often utilised
by string theorists seeking to deepen their understanding of quantum gravity via the
AdS/CFT correspondence.

In this thesis we seek to ascertain the validity of this framework when applied to
exotic solutions discovered — coincidentally, also around the 1970s — to describe
accelerating black holes. The work was initially motivated by the discovery that
rotating black holes in asymptotically anti-de Sitter space, in a special limit, exhibit
extraordinary thermodynamic behaviour. These solutions are unique in particular
as they possess two severe conical defects at each pole. Conical defects are an
inherent feature to accelerating black holes, hence the desire to investigate the
thermodynamics of accelerating black holes in a similar limit. To do so, we needed
to first develop a rigid framework for thermodynamics of these black holes.

As we will demonstrate, we have been able to propose a consistent set of thermo-
dynamic relations and quantities for static nonrotating charged accelerating black
holes. The situation is somewhat more problematic with the inclusion of rotation
and while we are unable to provide a full picture, we are able to form a sufficient
picture to investigate the aforementioned limit1.

The outline is as follows. We will begin by reviewing aspects of black hole thermo-
dynamics in chapter 1, covering some of the important more historical discoveries
as well as more recent developments that we have used elsewhere. In chapter 2, we
similarly review the C-metric, which describes a uniformly accelerating black hole, its
history, as well as certain derivations leading to the metrics we use further. We also

1A method for obtaining the thermodynamics of rotating accelerating black holes was discovered
in the later stages of production of this thesis [4]. These new results are summarised in the
concluding chapter.
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outline certain constraints that must be taken into consideration when working with
these solutions. In chapter 3, we develop the thermodynamical framework necessary
to admit varying conical deficits, and include the tensions of cosmic strings as new
extensive variables of our ensemble. This introduces a new potential, the thermody-
namic length. In chapter 4, we extend this formulation to include accelerating black
holes and consider independently varying conical deficits at the north and south
poles. With this framework in place, we explore the thermodynamic phase structure
of the solution. We then attempt to generalise this work to include rotating solu-
tions and investigate the thermodynamic properties of critical accelerating solutions,
which possess the aforementioned severe conical defects. Finally, in chapter 5, we
revisit some of our original conclusions and alter some of our results in light of new
calculations that use different techniques.

Conventions

Throughout this thesis we have used the mostly plus convention for metric signatures.
These metrics are expressed as the line element ds2 = gabdx

adxb in most cases. Unless
stated otherwise, we are working in 3+1 spacetime dimensions.

Quantities are expressed in Planck units such that c = G = 4πε0 = kB = 1, where
c is the speed of light in a vacuum, G is Newton’s gravitational constant in four
dimensions, ε0 is the permittivity of free space and kB is Boltzmann’s constant, and
~ = `2

p, Planck’s constant, is the only dimensionful fundamental constant. This
implies that physical quantities of length, time, mass and charge have the same
dimensions, and temperatures have dimensions L−1.

When a coordinate transformation is used, or any general transformation or re-
labelling, it will be represented in either one of the following manners. In going
from the coordinates/parameters {xi} to the coordinates/parameters {yi}, a simple
relation will be provided as either

xi = xi({yi}) or yi = yi({xi}),

where clarity will be the determining factor. Alternatively, it will be more desirable
to preserve some particular symbols on either ends of the transformation. when this
is the case, the set of coordinates/parameters {xi} is to be replaced, as they appear
in any expression, with, for example, a primed set {x′i}, for which a relation such
as those above will be provided. The replacement procedure is represented by an
arrow →, the direction of which indicates which variable is being replaced (the tail).
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This is then followed by the relation to the original variable. Explicitly,

xi → x′ei = x′i({xi}) or xi → x′i({xi}),

where we have introduced a commonly used shorthand in the second expression
signifying simply that “→” is to be interpreted as meaning “→ x′i =”.





Chapter 1

Black hole
thermodynamics/mechanics

1.1 The laws of black hole mechanics

In 1971, Stephen Hawking discovered that there exists an upper bound on the amount
of energy that can be released through gravitational radiation — or any other form
of energy release, for that matter — upon the collision of two black holes [5, 6]. This
result relies primarily on a proof that through any given physical process, such as
a collision or a capture of sorts, the total event horizon area should never decrease,
thereby constraining how much energy may be extracted. Now known as Hawking’s
black hole area theorem, the result of this proof is commonly written as:

A3 > A1 +A2 (1.1)

This theorem has an important role in the history of black hole thermodynamics as
it is responsible for much of the reasoning that was applied to this analogy, in that
it is clearly reminiscent of the second law of thermodynamics, and we shall explore
these parallels in greater depth below. Along with the area theorem, in [6], Hawking
also famously proves that under gravitational collapse, a body of matter will not
only form a black hole, but that the event horizon of the black hole formed will have
spherical topology, be stationary and axisymmetric.

At a summer school in 1972, Bardeen, Carter and Hawking (BCH) pursued the
aforementioned analogy between the macroscopic properties of black holes and ther-
modynamical systems, work which culminated in the formalisation of the four laws
of black hole mechanics [7], a homage to their statistical counterparts. Let us now
summarise these laws as such:
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• The zeroth law states that the surface gravity κ of a stationary black hole is
constant over its event horizon [7–11].

• The first law expresses conservation of energy during physical processes through
changes in the properties of the black hole such as its mass M , area A, angular
momentum J or charge Q with the following relation:

δM = κ

8πδA+ ΩδJ + ΦδQ, (1.2)

where Ω is the angular velocity of the black hole at its event horizon and
Φ is the electrostatic potential. This relation was proved using a variational
principle by BCH in the uncharged case, and Carter published the proof for the
charged case in the conference proceedings for the same 1972 summer school [9]
(repub. in [11]). We review this work in section 1.2.

• The second law is the area theorem itself. Following the current theme, we
re-express eq. (1.1) simply as:

δA > 0. (1.3)

• Finally, the third law states that it is impossible through any finite sequence
of physical processes to reduce the surface gravity κ to zero. At the time,
this law was only conjectured and argued for using logical arguments. It had
actually been shown that processes leading to such a configuration did exist if
one allowed for infinite divisibility of matter and infinite time [12, 13]. Werner
Israel proved the third law a decade later [14].

The analogy between black hole mechanics and classical thermodynamics is com-
plete once some form of identification is made between the surface gravity κ and
the temperature T , and between the horizon area A and the entropy S, both up to
some factor determined such that TδS = κδA/8π. The authors of [7] were initially
reluctant to make this identification and emphasized that while the similarities exis-
ted, these quantities should not lead to the interpretation of the black hole as having
either temperature or entropy, and understandably so — classically, the effective
temperature of a black hole is absolute zero, as it is (or at least was thought to be)
unable to emit any radiation. In fact, they point out that black holes transcend
the second law in that one might in theory be able to add entropy to a black hole
without changing its final state by much. The concept of horizon area as entropy
was not, however, a new one.

Little over half a year prior to The four laws of black hole mechanics being received
for publication, and only a couple of months before the aforementioned summer
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school during which much of this work was conceived (but a year after Hawking’s
initial paper on the area theorem was published), Jacob Bekenstein wrote a letter
addressing this specific apparent violation of the second law of thermodynamics [15].
In the letter, he proposes a generalised form of the second law of thermodynamics in
which the quantity that is observed to never decrease is given by the sum of common
entropy, the entropy of the spacetime outside the black hole and a new black hole
entropy proportional to the horizon area, i.e. Sbh = ηA, with η being, at the time, an
undetermined proportionality constant. This choice of having entropy proportional
to the horizon area was actually motivated by Hawking’s work on the area theorem [5]
as well as similar work by Christodoulou and Ruffini around the same time [12, 16]
on reversible and irreversible processes for black holes. In further works [17, 18],
Bekenstein attempts to establish the proportionality factor on heuristic grounds and
proposes a value for η = log(2)/8π. In fact, by considering a differential formula
akin to the first law (1.2), Bekenstein was actually able to postulate a possible
expression for the temperature, by considering the conjugate quantity to entropy;
however he too warns against interpreting this as a true temperature in the thermal
sense. That black holes could not seemingly have a nonzero temperature proved to
be the obstacle preventing Bekenstein’s work on black hole entropy from catching
on in other circles early on [19].

In the early 1970s, a classical mechanism for stimulated emission from a black
hole had been discovered, known as superradiance. It describes the amplification
of waves in a special superradiant regime, incident on a generic Kerr-Newman black
hole. The easiest way to see this effect is by considering a wave packet of frequency ω,
axial quantum number m and charge e, incident on a black hole. The first law (1.2)
should hold throughout the capture of this packet and one expects differentials in
the ratios of m : ω and e : ω. It therefore follows that(

1− Ωm
ω
− Φ e

ω

)
δM = κ

8πδA. (1.4)

Imposing the second law (1.3) allows for δM 6 0 for wave packets that satisfy

ω 6 Ωm+ Φe. (1.5)

In other words, we expect wave packets incident in this superradiant regime to be
scattered off the black hole with a larger amplitude.

This effect can be traced back to works by Yakov Zel’dovich [20, 21], however it
was also separately pointed out by Misner [22], apparently unaware of Zel’dovich’s
work. Other notable contributions to the understanding of these amplifications were
made by Press and Teukolsky [23], Starobinskii [24] and by Bekenstein [25]. While
most of the work cited above concerns itself with the amplification of superradiant in-
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cident waves through stimulated emission, Zel’dovich also suggested that, taking into
account quantum mechanical effects, one could in principle also expect spontaneous
emission in superradiant modes as well. Writing in his doctoral thesis, Don Page
describes how, oblivious to Zel’dovich’s work, he and Larry Ford had at the time
independently discovered this effect, eventually going on to have discussions with
Feynman, Thorne, Press and Teukolsky, before being made aware of the above [26]
(along with a few amusing anecdotes from the time in [27]).

What is important to note here is that while it was universally accepted that a
black hole could not radiate, a black hole emitting in superradiant modes would
technically not violate the second law of black hole mechanics, by definition. It
should come, therefore, as no surprise that when Hawking eventually heard about
this effect, as it made its way across research circles, his interest was piqued and,
after having discussions with Zel’dovich and Starobinskii while in Moscow, began
working on a field theory calculation that might help in validifying this quantum
phenomenon [27].

In 1974, Hawking made the groundbreaking discovery that not only did black
holes radiate in these superradiant modes, but that emission from black holes in
fact covered as much of the spectrum it could [28, 29]. Hawking himself later wrote,
in retrospect, about how he was initially embarrassed by the result and therefore
attempted to introduce various cutoffs in an effort to suppress these additional
modes [19]. He eventually accepted the result, citing the fact that the radiation was
identical to thermal radiation from a body with temperature κ/2π as the smoking
gun. Another reason Hawking ended up believing in his result was that it made
Bekenstein’s theory of black hole entropy consistent. This result has since been
verified by several other means [29–39] and is generally accepted as a correct result,
despite our lack, still to this day, of a consistent picture of quantum gravity.

Hawking temperature, in a sense, was the final piece of the puzzle and the reason
why black hole mechanics became black hole thermodynamics. With the expression
Hawking found, we are now able to rewrite the first law as

δM = THδSBH + ΩδJ + ΦδQ, (1.6)

where the temperature of the black hole is known as the Hawking temperature

TH = κ

2π , (1.7)

and the entropy of the black hole is known as the Bekenstein-Hawking entropy

SBH = A4 . (1.8)
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Similarly, we promote the second law to the aforementioned generalised second law,
with the black hole entropy given by a quarter the horizon area.

1.2 The first law

When Roy Kerr first presented the metric for a rotating black hole in 1963 [40], most
commonly written in Boyer-Lindquist1 coordinates as

ds2 = −f(r)
Σ (dt− a sin2 θdφ)2 + Σ

f(r)dr
2 + Σr2dθ2 + sin2 θ

Σr2 (adt− (r2 + a2)dφ)2,

f(r) = 1− 2m
r

+ a2 + e2

r2 , Σ = 1 + a2

r2 cos2 θ, (1.9)

along with the gauge potential

B = − e

Σr (dt− a sin2 θdφ), (1.10)

he provided an interpretation for the solution parameters m and a by comparing its
Taylor expansion to a previously known approximation of a spinning particle, and
concluded that to an observer at infinity this rotating black hole would be equivalent
to a particle of mass M = m and angular momentum J = ma. The charge term in
f(r) was later added by Newman et al. [42] and a similar line of reasoning leads one
to conclude that a Kerr-Newman black hole with nonzero charge parameter e has
an electric charge Q = e.

In 1969, Penrose provided a simple mechanism through which one could envision
extracting the rotational energy of a Kerr black hole [43], and in 1970, Christo-
doulou [12, 16] (with Ruffini, in 1971) showed using this picture that a black hole’s
mass could be decomposed using an irreducible mass Mir, which represents the mass
of the remaining black hole when all its rotational and electromagnetic energy is
stripped, according to the following formula:

M =

√√√√(Mir + Q2

4Mir

)2

+ J2

4M2
ir
. (1.11)

Christodoulou and Ruffini point out that this is equivalent in principle to Hawking’s
area theorem and one can indeed obtain eq. (1.11) by treating Mir as the mass of a
Schwarzschild black hole with equal area to a generic Kerr-Newman black hole. One
then deducesM2

ir = A/16π. An appealing aspect of this definition is the resemblance

1Boyer and Lindquist were responsible for the maximal extension of the Kerr metric [41].
Boyer-Lindquist coordinates are coordinates best suited for describing ellipsoids and are related to
cartesian coordinates through x =

√
r2 + a2 sin θ cosφ, y =

√
r2 + a2 sin θ sinφ and z = r cos θ.
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it bears to the energy of a relativistic particle, when expressed in terms of its rest
mass and momentum.

In 1972, Larry Smarr pointed out, using this relation, that if one expressed mass
as a function M = M(A, J,Q) of area, angular momentum and charge, the exact
differential

dM = T dA+ ΩdJ + ΦdQ (1.12)

could be used to obtain the invariant quantities T = (∂M/∂A)J,Q = κ/8π, referred
to at the time as the effective surface tension, Ω = (∂M/∂J)A,Q, the angular velocity
of the black hole, and Φ = (∂M/∂Q)A,J , the electromagnetic potential. Smarr then
simply observed that with these quantities, eq. (1.11) could be rewritten nicely as

M = 2T A+ 2ΩJ + ΦQ. (1.13)

In fact, this result follows immediately from Euler’s theorem on homogeneous func-
tions, given that M(λA, λJ, λ 1

2Q) = λ
1
2M(A, J,Q).

It is in fact quite common to use the exact differential in eq. (1.12) to establish
the first law itself. This was the method Bekenstein used in [17] to hypothesise a
black hole temperature, and this will also be how we will ultimately establish a first
law for accelerating black holes, the object of this thesis.

We began this section by pointing out that the origin of the interpretations of mass
and angular momentum as M = m and J = ma was a term-by-term comparison
with what might be expected in some low-energy limit. While this was a practical
approach, a formal method for identifying such conserved charges had in fact already
been developed by Arthur Komar in 1958 [44]. A conserved current can be formed
by contracting a killing vector k with the Ricci tensor. The corresponding conserved
quantity is obtained by integrating this current over a spacelike hypersurface S
normal to the killing vector. Using the fact that a killing vector satisfies

∇a∇akb = −Rb
ak

a, (1.14)

a Komar integral associated to a given killing vector is derived as

Ek ∼
∫
∂S
∇akb dΣab =

∫
∂S
∗dk, (1.15)

where a normalisation is needed, which can be determined at a later stage, and
dΣab is the volume element on ∂S, to give a conserved charge Ek. One finds that
for k = kt, the timelike killing vector, and for k = kφ, the rotational killing vector,
this integral, when evaluated at infinity ∂S∞ and normalised, yields M = m and
J = ma respectively, for the Kerr-Newman metric. One can construct a spacelike
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surface S which ends only on the boundary and extends through the horizons to the
singularity.

Bardeen, Carter and Hawking were able to prove Smarr’s relation, for the un-
charged case in a more general setting in [7] and Carter provided the proof for the
charged case in [9, 11]. Both methods use this as an intermediary step to deriving
the first law, showing how the aforementioned exact differential expression (1.12)
is in fact fully self-consistent. We will now briefly review this calculation, omitting
technical steps which can all be found in the original works.

Let us consider the Komar integrals for both killing vectors, evaluated over a
surface S which now extends from the boundary ∂S∞ and the event horizon ∂B.
Integrating both sides of eq. (1.14) will allow us to express mass and angular mo-
mentum as

M = 1
4π

∫
S
Ra

bk
b
t dΣa +MH, MH ≡ −

1
4π

∫
∂B
∇akbt dΣab,

J = − 1
8π

∫
S
Ra

bk
b
φ dΣa + JH, JH ≡

1
8π

∫
∂B
∇akbφ dΣab, (1.16)

whereMH and JH are the corresponding boundary integrals evaluated at the horizon.
For vacuum metrics, MH = M = m and JH = J = ma. The null generator of the
horizon can be defined as la = kat + ΩHk

a
φ, where ΩH is a scalar quantity which is

obtained from the requirement that l be orthogonal to the rotational killing vector
kφ. It can further be shown that ΩH, given by

ΩH = − gtφ
gφφ

, (1.17)

is constant over the horizon and represents its angular velocity. Making use of the
fact that the surface gravity κ can actually be defined in terms of this vector as
κ = nbl

a∇al
b, where n is the unit normal to the horizon, one eliminates MH from

eq. (1.16), establishing

1
2M =

∫
S

(
T ab −

1
2Tδ

a
b

)
kbt dΣa + ΩHJH + κA

8π , (1.18)

which reduces to the Smarr relation in the absence of charge and any external
matter. A further decomposition can be made by splitting the stress-energy tensor
T ab = T abM + T abF into its matter and electromagnetic parts, which in turn allows
us to express the total angular momentum J = JM + JF + JH in a similar fashion.
Finally, one can define the electric charge by integrating the electromagnetic current
ja = ∇bF

ab/4π over the same spacelike surface, and, in analogy to the mass and the
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angular momentum formulae in eq. (1.16) we write it as

Q = −
∫
S
ja dΣa +QH, QH ≡ −

1
4π

∫
∂B
F ab dΣab. (1.19)

It then follows that eq. (1.18) can be rearranged into

1
2M =

∫
S

(
T aM b −

1
2TMδ

a
b

)
kbt dΣa − ΩHJM −

1
2

∫
S
lcAcj

a dΣa +
∫
S
Abj

[bla] dΣa

+ ΩHJ + κA
8π + 1

2ΦHQH, (1.20)

and the Smarr relation is now recovered when the external matter fields and source
currents in the first line are switched off.

The formula in eq. (1.20) describes the total mass M of the system, which is
a time-conserved quantity. It is possible, however, to look at two neighbouring
configurations with slightly different M , and consider the corresponding variation
δM , similar to the way in which one varies the action. It is by performing this
variation that one obtains the first law in its most general form for a rotating
charged black hole surrounded by electric and matter fields:

δM =
∫

ΩδdJM +
∫

ΘδdS +
∫
µ(i)δdN(i) +

∫
ΦSδdQ

+ ΦHδQH + κ

8πδA+ ΩH(δJH + δJF), (1.21)

where Ω is the angular velocity of the fluid, Θ is its “effective” or “red-shifted”
temperature, µ(i) the effective chemical potential corresponding to each type of
particle, ΦS denotes the electromagnetic potential accross the surface S, and finally
the notation “

∫
δd” signifies a change in fluid angular momentum (JM), entropy (S)

or particle number (N(i)) crossing the surface S. This elegant result reduces to the
relation initially presented in eq. (1.2) when all external fields and sources are turned
off.

This derivation shows why the first law holds, at least for asymptotically flat
rotating black holes, from first principles. Starting with the definition of mass as a
Komar integral, we are able to show why variations of this quantity are related to
all the other variations present in the first law in the way that they are. Previously,
it had been known that one could express variations in the mass in this way, as the
exact differential (1.12), however this should be seen as more of an observation based
on final expressions obtained using independent definitions for mass, area, surface
gravity and other quantities. This elegant derivation shows not merely how all of
these expressions are related, but how their definitions are related.
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1.3 The Euclidean approach to black hole
thermodynamics

By the end of 1975, Hawking had already devised a way, with Jim Hartle, to
reproduce his black hole radiation calculation using the path-integral formulation
of quantum field theory [35]. In this approach, the central object is the partition
function, which has the form

Z =
∫
DgDΦ eiS[g,Φ], (1.22)

where we are integrating over the space of all possible metrics, including those
which are topologically distinct spacetimes such as black hole solutions, and all field
configurations. It was then shown, by Gibbons and Hawking in 1976 [45], that,
given a properly regularised gravitational action, it was possible to recover all the
thermodynamic behaviour of black hole mechanics from the partition function, in
analogy to regular euclidean field theory.

The action in eq. (1.22) for a generic gravitational solution is given by

S = 1
16π

∫
Y
d4x
√
−gR + 1

8π

∫
∂Y
d3x
√
−hK + SC + SM. (1.23)

It is computed within a region of spacetime Y and is made up of the Einstein-Hilbert,
Gibbons-Hawking, counter and matter terms respectively. R is the Ricci scalar for
the bulk metric gab, K is the extrinsic curvature of the boundary ∂Y and hab is its
induced three-dimensional metric. The counterterm SC is determined such that S
vanishes in flat space.

An issue that arises when computing the action of a black hole metric is that
singularities must be avoided. While it is known that crafty coordinate choices allow
one to patch over horizons, curvature singularities are intrinsic to the geometry and
may not be removed. It is possible, however, to construct a smooth patch which
avoids the singularity all together, by complexifying the timelike coordinate. The
subsequent spacetime will only be smooth provided the new coordinate τ = it is
made to have a periodicity β = 2π/κ, where κ is the surface gravity of the horizon.
Let us illustrate this with the Schwarzschild metric,

ds2 = −f(r)dt2 + dr2

f(r) + r2dΩ2, f(r) = 1− 2m
r
. (1.24)

In the vicinity of the horizon rh = 2m, the Euclidean Schwarzschild metric will take
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the form given by

ds2 = f ′(rh)(r − rh)dτ 2 + dr2

f ′(rh)(r − rh) + r2
hdΩ2. (1.25)

Introducing temporary coordinates ρ2 = 4(r − rh)/f ′(rh) and ϕ = f ′(rh)τ/2, it be-
comes clear that with β = f ′(rh)/4π = 8πm, these coordinates describe a spacetime
of topology S1 × S2. More precisely, each point in the τ − r subspace corresponds
to a 2-sphere of corresponding radius, and the subspace itself has an S1 symmetry
centred around the point r = rh. One could then compute the action on a region
bounded by the surface r = rb.

In Euclidean field theory, the periodicity of imaginary time ends up corresponding
to the temperature of the system through T = β−1. This is then used to express
the partition function of such a field theory. In the grand canonical ensemble,
such a system will have thermodynamically conserved quantities Qi, and respective
conjugate potentials Pi. The partition function can be expressed as

Z = Tr e−β(H−
∑

i
PiQi) = Tr e−βF , (1.26)

where F is the grand canonical free energy potential, or “grand potential” for short
— in the current text, however, this quantity will loosely be referred to as the free
energy potential, and will be defined according to the ensemble at hand.

Returning to the gravitational partition function, it follows from the path-integral
approach that the integral in eq. (1.22) will receive its most dominant contributions
from the on-shell metric, that which satisfies Einstein’s equations. This allows us
to use the following approximation for the partition function, using the euclidean
action,

Z ≈ e−SE[g,Φ]. (1.27)

In analogy with the nongravitational situation, we derive the free energy from the
partition function using eq. (1.26), and write

F = − logZ
β

= SE

β
. (1.28)

Finally, one recovers an expression for the mass of the black hole by reverse Legendre
transforming the free energy:

M = F + TS +
∑
i

PiQi

= 2TS + 2ΩJ + ΦQ, (1.29)
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where the final line was obtained by explicitly computing the action for the Kerr-
Newman black hole. Historically, this was used to affirm the expression for entropy
using the Smarr formula from eq. (1.13), however it could equally be used to verify
the converse.

1.4 Incorporating Λ

The story of Einstein reportedly calling his inclusion of a cosmological constant Λ the
“biggest blunder of his career” is an oft-repeated one (see [46]). On the contrary, over
the past two decades most gravitational research includes a cosmological constant.
Of most relevance to astronomers was the discovery that our universe seems to be de-
scribed by a cosmology with a small-but-nonzero cosmological constant (e.g. ref. [47]).
In the world of theoretical physics, arguably one of the most important discoveries,
by Maldacena in 1997 [48], was of the conjectured ADS/CFT correspondence, or
more generally, the gauge/gravity correspondence between strongly coupled nongrav-
itational field theories and weakly coupled gravitational theories with negative Λ of
one dimension higher.

The sign of the cosmological constant separates gravitational theories into two
camps: (asymptotically) de Sitter (dS) theories have Λ > 0 and (asymptotically)
anti-de Sitter (AdS) theories have Λ < 0. A classical gravitational field theory with
Λ 6= 0 then satisfies the following Einstein field equations (EFEs):

Rab −
1
2gabR + gabΛ = 8πTab. (1.30)

Finally, in order to make a connection with dimensionality and scale, the cosmological
constant of a D-dimenional theory is often parametrised in terms of the real-valued
(A)dS length scale ` according to

Λ = ±(D − 1)(D − 2)
2`2

D=4= ± 3
`2 . (1.31)

1.4.1 Thermodynamics of the Kerr-AdS black hole

A natural starting point for introducing a cosmological constant is to review how this
fits into the thermodynamic framework for studying black holes presented above. The
thermodynamics of black holes in the context of a cosmological constant were actually
first discussed in a paper by Gibbons and Hawking in 1976 [49], in which they consider
hawking radiation and black hole temperature in a de Sitter (Λ > 0) background,
a delicate topic since de Sitter space also has a cosmological horizon. The original
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motivation of the paper was in fact to better define the hawking radiation associated
to cosmological horizons. In 1982, Hawking and Page presented a thermodynamic
description of the Schwarzschild-AdS spacetime [50]. By computing the action using
a regularisation scheme similar to the method presented in section 1.3, adapted
to an asymptotically-AdS spacetime, Hawking and Page derive expressions for the
temperature and entropy of the black hole in this background and in fact used these
quantities to show that there existed a phase transition for black holes in an anti-de
Sitter background, which we will review below.

While the Kerr-AdS metric has been known since the late 1960s [51], its ther-
modynamics were only discussed near the turn of the century, when interest in
asymptotically-AdS solutions boomed due to the aforementioned AdS/CFT conjec-
ture [52–55]. The metric, in Boyer-Lindquist coordinates, is given by

ds2 = −f(r)
Σ

(
dt− a sin2 θ

dφ

Ξ

)2
+ Σ
f(r)dr

2 + Σr2

g(θ)dθ
2

+ g(θ) sin2 θ

Σr2

(
adt− (r2 + a2)dφΞ

)2
, (1.32a)

where

f(r) =
(

1 + a2

r2

)(
1 + r2

`2

)
− 2m

r
+ e2

r2 , g(θ) = 1− a2

`2 cos2 θ,

Σ = 1 + a2

r2 cos2 θ, Ξ = 1− a2

`2 . (1.32b)

The corresponding gauge potential is given by

B = − e

Σr

(
dt− a sin2 θ

dφ

Ξ

)
. (1.33)

Hawking, Hunter and Taylor-Robinson [52] were the first to present a set of ther-
modynamic quantities for the uncharged rotating black hole in AdS. By computing
the thermodynamics of rotating bulk spacetimes such as the Kerr-AdS metric, they
were able to reconcile the bulk partition function with the partition function of a
scalar field coupled to a three-dimensional2 rotating Einstein universe, which forms
the boundary of Kerr-AdS.

Computing the temperature from the metric (1.32) in its Euclidean form (for
rotation one must simultaneously take τ = it, α = −ia), and its entropy as a quarter

2They also perform this computation in a number of other dimensions; we single out this case
for its relevance.
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the horizon area, they find:

T = r2
+f
′(r+)

4π(r2
+ + a2) = r+

4π(r2
+ + a2)

[
1 + 3r2

+
`2 + a2

`2 −
a2

r2
+

]
,

S = π(r2
+ + a2)
Ξ , (1.34)

where r+ denotes the location of the outer event horizon. They compute the mass
M and angular momentum J using the timelike and angular killing vectors with
corresponding Komar integrals, noting that a background m = 0 subtraction is
needed for regularisation (see Magnon [56]), and find:

M = m

Ξ , J = am

Ξ2 . (1.35)

Finally, the thermodynamic conjugate to the angular momentum, the angular velo-
city Ω is given as

ΩH = − gtφ
gφφ

∣∣∣∣
r+

= aΞ
r2

+ + a2 , (1.36)

and with all of these quantities, they were able to show that the partition function
for this spacetime corresponded to the partition of a scalar field theory coupled to a
three-dimensional Einstein universe rotating with angular velocity ΩH + a/`2.

The authors of [52] did not, however, discuss the first law of thermodynamics,
and one can check that eq. (1.6) does not in fact hold with eqs. (1.34) to (1.36).
The following year, wanting to present a thorough thermodynamic description of
Kerr-Newman-AdS black holes, Caldarelli, Cognola and Klemm [53] addressed this
issue. When one computes the mass using a Komar integral, there lies an ambiguity
in the normalisation of the timelike killing vector used. In [52], the mass is computed
with the killing vector ∂t, however the authors of [53] compute it using the killing
vector ∂t/Ξ, while the angular momentum is still computed with ∂φ. This leads to
the following expressions for the mass and angular momentum:

M = m

Ξ2 J = am

Ξ2 . (1.37)

The justification for this choice of normalisation is that the resulting conserved
quantities above agree with expressions obtained using a Hamiltonian approach that
had been presented by Henneaux and Teitelboim [57] in 1985 for the uncharged case
and by Kostelecky and Perry [58] a decade later for the charged case. They also
show that the same expressions can be obtained using the Brown-York method [59].

Caldarelli et al. then derived a Christodoulou-Ruffini-like formula for the mass,
expressing it as a function M = M(S, J,Q). They then reverse-engineered the first
law to verify the quantities conjugate to the entropy, angular momentum and charge
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by computing the relevant partial derivatives. The temperature is found to agree
with the charged version of eq. (1.34), and the electrostatic potential is found to
agree with

Φ = Bµχ
µ

∣∣∣∣∞
r+

= er+

r2
+ + a2 , (1.38)

where B is the electric gauge potential from eq. (1.33) and χ = ∂t + ΩH∂φ is
the null generator of the horizon. Most significantly, however, they found that
Ω = (∂M/∂J)S,Q 6= ΩH, but rather that

Ω = a(1 + r2
+/`

2)
r2

+ + a2 = ΩH + a

`2 , (1.39)

This happens to coincide precisely with the difference between the angular velocity
at the horizon (1.36) and the angular velocity at infinity. It therefore makes sense
that the physical quantity relevant to thermodynamics be the agnostic quantity
Ω = ΩH − Ω∞ measuring the angular velocity of the black hole relative to the
boundary.

Finally, we would expect to be able to establish the Euler scaling relation that
we encountered earlier as Smarr’s formula in eq. (1.13). The statement as it stands
does not hold, despite the new quantities satisfying the first law. Instead, the
authors of [53] show that one may treat the cosmological constant Λ itself as a
thermodynamical variable, complete with a conjugate quantity Θ = (∂M/∂Λ)S,J,Q,
and we have the first law

δM = TδS + ΩδJ + ΦδQ+ ΘδΛ. (1.40)

This also allows us to rewrite the Christodoulou-Ruffini formula that Caldarelli et
al. had derived as

1
2M = TS + ΩJ + 1

2ΦQ−ΘΛ, (1.41)

which agrees with mass being a homogeneous function of S, J , Q and now Λ, after
Euler’s theorem is applied. We leave the discussion of Λ as a varying quantity to
the next section.

Finally, both [52, 53] find that the relation between their respective free energy
potentials agree with the euclidean action according to eq. (1.28):

F = M − TS − ΩJ − ΦQ = SE

β
. (1.42)

The fact that this relation is satisfied when using either eqs. (1.35) and (1.36), or
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eqs. (1.37) and (1.39) is merely a consequence of the relation

m

Ξ2 + Ω∞J = m

Ξ .

Silva [54] then showed that the entropy obtained from this thermodynamic pre-
scription agreed with the Cardy entropy [60, 61] by computing central charges of a
sub-algebra deduced from the metric (1.32); Gibbons, Perry and Pope [55] extend
this description to higher dimensional black holes, clarifying similar subtleties as the
one presented above. They also point out that the mass as expressed in eq. (1.37)
agrees with masses computed according to Abbott-Deser [62] and Ashtekar-Das-
Magnon [63, 64].

1.4.2 Pressure and volume of black hole spacetimes

While the entire discussion concerning having a dynamical cosmological constant
may be somewhat controversial to some, the argument can be made that whether
physical mechanisms allowing for Λ to change exist or not does not preclude us from
considering neighbouring configurations in parametric (incl. Λ) space. Nonetheless,
the idea of doing so was initially proposed in the mid 1980s, where, in a series
of papers [57, 65–69], Brown, Henneaux and Teitelboim introduce the cosmological
constant as an integration constant from a theory which has a 3-form gauge potential
coupled to the gravitational field. In this theory, there is a bubble radiation process
which reduces the cosmological constant. In [70], it is argued that a change in the
cosmological constant in the bulk is equivalent, via the AdS/CFT correspondence,
to a change in the number of colors in the nonabelian field theory on the boundary.
Finally, in recent work, Gregory, Kastor and Traschen [71, 72] studied the thermo-
dynamics of a black hole system in a background cosmology undergoing slow-roll
inflation and confirmed that it changes according to a first law with variable Λ.

The scaling relation (1.41) does, however, suggest that the cosmological constant
should be treated as a thermodynamical variable. After this research by Brown
et al. and the work above by Caldarelli et al. [53], this concept was revisited a
few times in [73–76], leading to a 2009 paper by Kastor, Ray and Traschen [70] in
which some of the computations from the previous section were put on much firmer
mathematical ground, and a new thermodynamic interpretation was presented, in
an aim to reconnect with traditional statistical mechanics.

In order to prove the Smarr relation, the authors of [70] were able to provide a
derivation similar to the one we presented in section 1.2, making use of the killing
potential, first introduced in [77, 78] to construct properly defined Komar integrals
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in asymptotically Λ 6= 0 geometries. The outcome of this derivation is that they
obtained an explicit definition of the conjugate quantity Θ = (∂M/∂Λ)S,J,Q that we
introduced in eq. (1.41). The cosmological constant can be interpreted as a pressure

P = − Λ
8π (1.43)

exerted on the spacetime, and in classical thermodynamics, the conjugate of a
pressure is the system’s volume. Indeed, Θ has units of volume and we introduce
the following quantity:

V = −8πΘ, (1.44)

known as the thermodynamic volume of a black hole. The definition obtained in
terms of killing potentials that was found in [70] reveals that this quantity (1.44)
may be interpreted as the volume excluded from the full spacetime by the event
horizon.

A consequence of the interpretation of the cosmological constant as pressure is
that the first law for an uncharged nonrotating black hole now takes the form:

δM = TδS + V δP. (1.45)

Classical thermodynamics teaches us that the mass of the black hole should therefore
not be thought of as the internal energy, but as the enthalpy [70]. The enthalpy is
related to the internal energy via the Legendre transform U(S, V ) = H(S, P )− PV .
It turns out that because H is linear with respect to P in black hole systems, this
transformation is generally noninvertible (see [79] for a recent more formal treatment
and discussion of the relation between the enthalpy and internal energy in black
hole thermodynamics). Dolan [80, 81] has since investigated the thermodynamical
consequences of this interpretation in terms of pressure, volume and enthalpy. In
particular, he notes that the heat capacities, whose sign determines local thermody-
namic stability, must be computed at constant pressure rather than constant volume,
and the free energy which is computed from the action coincides with the Gibbs free
energy

G(T,Ω,Φ, P ) = U(S, J,Q, V )− TS − ΩJ − ΦQ+ PV

= H(S, J,Q, P )− TS − ΩJ − ΦQ

= M − TS − ΩJ − ΦQ = SE

β
. (1.46)

More recently, Cvetič et al. [82] computed the thermodynamic volume in a number
of asymptotically-AdS black hole spacetimes, comparing it to the “naïve” geometric
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volume, as they refer to it, given by the integral

V ′ =
∫ r+

r0
dr
∫
dΩ
√
−g, (1.47)

from the singularity at r0 to the outer horizon at r+. In general, they find that these
quantities agree for static geometries, however differ by a term proportional to the
angular momentum, when it is nonzero. This led them to conjecture the reverse
isoperimetric inequality.

The traditional isoperimetric inequality is the general statement of Euclidean
geometry which says that the D-dimensional volume enclosed within a (D − 1)-
dimensional closed surface is maximised when that surface is spherical, or, if V ′ is
the volume enclosed and A is the area of the surface that encloses it, then

(
DV ′

ωD−1

) 1
D

6

(
A

ωD−1

) 1
D−1

, (1.48)

where ωD−1 is the area of a unit D-dimensional sphere. Cvetič et al. examined the
applicability of this relation to black hole spacetimes using the geometric volume V ′

and found the relation to be satisfied for uncharged black holes, however charged
black holes were found to violate this statement. When the volume they used was
the thermodynamic volume V , they found that all black hole spacetimes violated
the inequality, with the Schwarzschild-AdS geometry saturating the bound. This
led to the conjecture that all black holes satisfy the reverse isoperimetric inequality,
which is usually re-expressed as the ratio (increasing the number of dimensions by
one relative to eq. (1.48) to accommodate for time)

R =
(

(D − 1)V
ωD−2

) 1
D−1 (ωD−2

A

) 1
D−2

> 1, (1.49)

which is greater than unity when the conjecture is valid.

Physically, this conjecture is often interpreted to state that for a given thermo-
dynamic volume, the black hole entropy is maximised in a Schwarzschild geometry.
The inequality has been shown to hold for a plethora of asymptotically AdS and dS
geometries [82, 83], though notable exceptions have also been found [84–86].

1.4.3 Thermodynamic stability and phase transitions

The laws of thermodynamics require the existence of a state of equilibrium. In
flat space, one could envisage a system in a box which contains a black hole at
equilibrium with a thermal bath of radiation. If this radiation bath is held at a fixed
temperature, the equilibrium would be unstable: if a small excess of mass fell into the
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black hole, its temperature would decrease and would not be able to sustain the rate
of radiation necessary to recover equilibrium and the bath would eventually collapse
into the black hole; if it were to radiate too much at equilibrium, its temperature
would rise and the rate of radiation would exceed the rate of absoption and the black
hole would evaporate. In de Sitter (dS) space, the presence of a second, cosmological,
horizon implies that equilibrium may only be truly achieved in the special Nariai
limit [87, 88] of asymptotically dS black holes where the two horizons coincide, or,
if the black hole is charged, in the extremal limit [89, 90].

On the other hand, the negative curvature inherent to anti-de Sitter (AdS) geo-
metries allows the entire spacetime to act as the box we used above. Only massless
states are able to escape to infinity and one can have boundary conditions such
than the incoming and outgoing states cancel to maintain a thermal bath. In 1982,
Hawking and Page [50] studied the physical implications of such a system and made
several observations.

Parametrising the cosmological constant as Λ = −3/`2, the Schwarzschild-AdS
line element is

ds2 = −f(r)dt2 + dr2

f(r) + r2dΩ2
II, f(r) = 1− 2M

r
+ r2

`2 , (1.50)

where dΩ2
II is the volume element on the two-sphere, and M is the mass of the black

hole. If we then identify the temperature as the period of imaginary time required
to regularise the Euclidean section and the entropy as a quarter of the area, we find

T = f ′(rh)
4π = 1

4πr+

(
1 + 3r2

h
`2

)
, S = πr2

h, (1.51)

where rh is the location of the event horizon and we have used f(rh) = 0 to cast
the mass in terms of this parameter, though it should be noted that the mass
monotonically increases with respect to rh.

Local stability in thermodynamics requires positivity of the specific heat, which
is given by

CP = T

(
∂S

∂T

)
P

= −2πr2
h(1 + 3r2

h/`
2)

1− 3r2
h/`

2 . (1.52)

We notice therefore that black holes larger than rh = `/
√

3 may be in a locally stable
equilibrium, whereas for smaller black holes, equilibrium is unstable. This stable
equilibrium is achieved for larger black holes as gaining mass increases temperature,
thereby providing a higher rate of radiation for the horizon which may then lead
back to equilibrium. This turning point actually corresponds to a minimal black
hole temperature Tc =

√
3/2π`.
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Another criteria for stability of a thermodynamical system is that its configuration
be that of lowest free energy for the fixed intensive quantities. If more than one
configuration is possible, then those of higher free energy will have a tendency to
decay to the state of lowest free energy. The previous section tells us that the
quantity we are interested in is the Gibbs free energy potential given by

G = M − TS = rh

4

(
1− r2

h
`2

)
, (1.53)

for the Schwarzschild-AdS black hole. There is, however, another possible thermal
configuration that we may consider; vacuum AdS filled with a thermal bath has
negligible free energy, however is not able to sustain itself against gravitational
collapse beyond some temperature Tu ∼ s−

1
4 `−

1
2 where s is the effective number of

spin states of the radiation [50].

Figure 1.1 illustrates the situation we have described. For temperatures lower than
Tc, the only possible configuration is vacuum radiation. Above this temperature,
there are two branches corresponding to the larger stable black holes (lower branch)
and the smaller unstable black holes (upper branch). We see that for the lower branch,
there is a temperature THP = 1/π` above which large black holes on the stable branch
have negative free energy, lower than the corresponding radiation in pure AdS. There
is therefore a first order phase transition at THP, known as the Hawking-Page phase
transition. Between Tc < T < THP, there are three configurations possible, however
the vacuum radiation is still the most thermodynamically favoured and one would
expect black holes at this temperature to decay to radiation. For comparison, an
asymptotically flat black hole always has positive free energy and is therefore never
stable against decay to radiation. Via the AdS/CFT correspondence, it has been
shown that in the dual boundary conformal field theory, this phase transition may
be interpreted as a confinement/deconfinement phase transition [91].

This analysis may be extended to charged black holes. This was done by Chamblin
et al. [92] in the early days of holography. The inclusion of charge allows us to consider
either the canonical ensemble, where we fix charge itself or the grand canonical
ensemble, where we fix the electrostatic potential Φ and allow charge to vary. In the
latter case, the free energy potential we will be interested is given by

G′ = M − TS − ΦQ. (1.54)

In the canonical ensemble we may no longer compare black hole solutions at fixed
charge to pure AdS as the vacuum on-shell field equations do not allow for a charged
radiation bath in AdS. Referring to fig. 1.2a, we observe two different regimes. For
Q < Qc, there are three branches; a first branch of stable black holes with M < M1,
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Figure 1.1: The Hawking-Page phase transition. The black line
represents the Gibbs free energy of Schwarzschild-AdS black holes
at different temperatures. The critical temperature Tc separates the
upper and lower branches of this plot, corresponding to unstable
smaller black holes and stable larger black holes respectively. In
blue, we have vacuum radiation, which is unstable for temperatures
higher than Tu (which has been arbitrarily chosen here). The red
dashed line corresponds to asymptotically flat black holes and is
plotted for comparison. These curves have been produced for a
geometry which has ` = 1 in planck units.
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(a) (b)

Figure 1.2: The free energy diagrams for the canonical (left) and
grand canonical (right) ensembles are reproduced. For the canonical
ensemble, three curves at different charges (e = 0.05`, e = 0.12` and
e = 0.2`) are displayed over the uncharged case in black. The two
intermdiary curves display the characteristic “swallow tail” beha-
viour. For the grand canonical ensemble, we have again reproduced
three curves at fixed potential (Φ = 0.7, Φ = 1.0 and Φ = 1.2) over
the black uncharged plot. These figures have all been reproduced
for ` = 1.

a second intermediary branch of unstable black holes with M1 < M < M2, and a
third branch M > M2. In the free energy diagram, the first and third branches
intersect for some temperature T∗ at which there is a first order phase transition
between large and small black holes. These curves display what has been referred to
as a “swallow tail” behaviour, referring to the region enclosed by the three branches.
As the charge increases towards Qc, this region shrinks and beyond it, in the second
regime, the intersection disappears and the phase transition becomes continuous. It
has been noted that this characteristic is very reminiscent of the liquid/gas phase
transition of a Van-der-Waals fluid.

In the grand canonical ensemble we may still compare our solutions to a back-
ground of vacuum radiation in AdS with a correspondingly fixed electrostatic po-
tential. From fig. 1.2b, we see there is a critical value for this potential which we
denote Φc. Configurations with a potential smaller than this are similar to the un-
charged scenario, with the existence of a Hawking-Page-like phase transition for the
lower, stable, of two branches, and no black hole solutions existing below a certain
temperature. For larger potentials, the free energy is always negative and the black
hole solution is always preferred.

In this chapter, we have seen how the framework of black hole thermodynamics is
undoubtedly a fascinating one. The ability to breathe life back into as old a subject
as thermodynamics by applying it to modern and exotic solutions of gravitational
physics is certainly exciting. The rich phase structure that black holes possess,
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presented in the last section, is a powerful example of the utility of thermodynamics.



Chapter 2

Acceleration and the C-metric

2.1 Origins of the C-metric

The first nontrivial solution to the Einstein field equations of General Relativity
appeared in January 1916, little over a month after their initial publication in late
November 1915 [93, 94]. It was Karl Schwarzschild who initially discovered the space-
time and presented it as the most general solution to describe a spherically-symmetric
solution to the vacuum field equations [95–97]. This solution went largely misunder-
stood for the next few decades as various attempts were made to comprehend the
singularities the metric contains. It wasn’t until 1958 that David Finkelstein, using
a set of coordinates earlier discovered by Arthur Eddington that smoothly patched
over the coordinate singularity, provided the interpretation of this singularity as a
surface which could only be traversed in one direction [98]. The spacetime eventually
went on to become known as the Schwarzschild black hole, however it is easy to
forget how much time elapsed between the discovery of the solution and for a widely
accepted interpretation to be presented.

Within the first few years of the field equations being known, other solutions
were found. These were mostly mathematical solutions whose physical meanings
were unknown, much like the Schwarzschild metric. Of particular interest to this
thesis is a metric belonging to a larger class of solutions discovered by Levi-Civita
in 1918 [99].

This metric would then be rediscovered in the early 1960s, in a wave of research
presumably inspired by the aforementioned understanding of black holes, by Newman
and Tamburino [100], Robinson and Trautman [101] and then again by Ehlers and
Kundt [102]. In particular, Ehlers and Kundt explicitly take the initial body of work
laid out by Levi-Civita, cited above, and, in their own words, “follow his line of
thought” and “simplified and completed his derivations”. They continue on to present
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an invariant classification of degenerate static vacuum fields. Without delving into
the details, it is this classification of “A”, “B” and “C”-type metrics which gives its
name, to this day, to the C-metric, the axisymmetric vacuum solution describing an
accelerating black hole.

At that point in time, the C-metric was not yet fully understood, but it was
seen as a metric that bridges the gap between the Schwarzschild metric and its
charged counterpart (Reissner-Nordström), and the Weyl and Robinson-Trautman
solutions [103].

Eventually, in 1970, Kinnersley and Walker (KW) picked up the C-metric and
finally provided the interpretation of this solution as an accelerated black hole [103].
Let us now review how KW obtained their version of the C-metric. The Levi-Civita
solution is given in the form

ds2 = 1
(x+ y)2

(
−F (y)dt2 + dy2

F (y) + dx2

G(x) +G(x)dz2
)

(2.1)

where

G(x) = a0 + a1x+ a2x
2 + a3x

3 and F (y) = −G(−y), (2.2)

with a0 . . . a3 some set of parametrising constants. The metric admits a conformal
transformation given by

x→ ηβx+ ε, y → ηβy − ε, t→ ηt and z → ηz, (2.3)

with η, β and ε serving as real-valued parameters for the transformation and as long
as G(x)→ βG(x), which imposes the following relations between the coefficients of
G before (denoted by a tilde˜) and after the transformation:

βa0 = ã0 + ã1ε+ ã2ε
2 + ã3ε

3, (2.4a)

a1 = ηã1 + 2ηã2ε+ 3ηã3ε
2, (2.4b)

a2 = η2βã2 + 3η2βã3ε, (2.4c)

a3 = η3β2ã3. (2.4d)

This symmetry allows us to remove two degrees of freedom from the initial solution,
and it is this freedom of parametrisation which has led to some confusion as to its
interpretation. The final setup that Kinnersley and Walker present involves setting
a1 = 0, a0 = −a2 = 1 and then labelling β = A2 and a3 = −2mA. The final form
(including a charged term, introduced later) of the C-metric, as written in [103] is
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therefore given by

ds2 = 1
A2(x+ y)2

(
−F (y)dt2 + dy2

F (y) + dx2

G(x) +G(x)dz2
)

(2.5)

where

G(x) = 1− x2 − 2mAx3 − e2A2x4 and F (y) = −G(−y). (2.6)

This paper was published around the time Kinnersley published his doctoral thesis,
in which he also shows that the charged C-metric is simply obtained by adding in
the quartic term above, along with the gauge potential B = −eAydt. For now,
the parameters m and A can just be interpreted as the two remaining degrees of
freedom for this solution, however it will become apparent that these can be thought
of as (being related to) the mass and the acceleration of a massive particle/black
hole respectively. The Schwarzschild and Reissner-Nordström spacetimes are then
recovered by first changing y = 1/Ar and t → At, taking the limit as A → 0 and
then identifying x = cos θ and z = φ.

In order to understand the accelerating nature of this solution, it will be useful
to first briefly review Rindler coordinates, which are simply a set of coordinates
well-suited to uniformly accelerating trajectories. To see what this means, let us
consider the path of an uniformly accelerating object in flat 1+1-dimensional space.
The accelerations as measured locally by the object, α, and as measured in a static
lab frame, a, are related by

α = γ3a, (2.7)

where γ = (1− v2)−1/2 is the usual Lorentz factor, with v the instantaneous velocity
of the object as measured by the static observer. Solving this equation for its position,
denoted by x, reveals that the path taken by an accelerating observer satisfies

− t2 + x2 = 1
α2 . (2.8)

This is known as hyperbolic motion, and we have the following parametrisation:

x = 1
α

coshατ,

t = 1
α

sinhατ. (2.9)

We may use this parametrisation to obtain a set of coordinates which is centred
on the idea of accelerated objects, in other words, coordinates for which paths at
constant coordinate are these hyperbolic trajectories. Such a transformation is given
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by:

x = ξ

α
coshατ, t = ξ

α
sinhατ. (2.10)

This transformation gives rise to what is known as the Rindler metric,

ds2 = −ξ2dτ 2 + dξ2

α2 . (2.11)

These coordinates cover the region t2 < x2. This is due to the presence of an
acceleration horizon at t = ±x, or ξ = 0. The analytic continuation over the horizon
is simply done by reverting back to the original cartesian coordinates.

Let us now return to the C-metric and its interpretation. To see the accelerating
nature of the metric, we will work from its flat-space limit, which we obtain from
eq. (2.5) by setting m = e = 0. The metric is now

ds2 = 1
A2(x+ y)2

(
−(y2 − 1)A2dt2 + dy2

y2 − 1 + dx2

1− x2 + (1− x2)dz2
)
. (2.12)

Using the following nontrivial coordinate transformation:

ξ =
√
y2 − 1
x+ y

, ρ = 1
A

√
1− x2

x+ y
, t = Aτ, z = ϕ, (2.13)

we are able to recover the Rindler metric in 3+1-dimensional cylindrical coordinates:

ds2 = −ξ2dτ 2 + dξ2

A2 + dρ2 + ρ2dϕ2. (2.14)

This reinforces the interpretation of A as the acceleration parameter. The accel-
eration horizon, ξ = 0 is therefore located, in the original coordinates, at y = 1.
As mentioned above, it is also possible to write the C-metric in a pseudo-spherical
coordinate system with a radial coordinate r, related to y through the substitution
y = 1/Ar, and we find that the acceleration horizon is located at r = 1/A. Intuit-
ively, therefore, it makes sense that the acceleration horizon be located farther away
with vanishing acceleration. Similarly, we also have that the origin of this spherical
system, r = 0, which corresponds to ξ = 1, follows the trajectory (2.9) that our
initial accelerating object did.

2.2 The Plebański-Demiański metric

The Plebański-Demiański (PD) family of solutions [104] was published in 1976, and
was described as a new class of stationary and axisymmetric solutions to the Einstein-
Maxwell-Λ field equations. In their paper, PD show how, through a series of different
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coordinate transformations, one could obtain from their metric most of the known
black hole solutions, including, as we shall see below, the accelerating C-metric
as well as the rotating Kerr metric. Additionally, the solution also accounted for
electromagnetic fields, a cosmological constant Λ and even contains a parameter
which in certain limits can be identified as the NUT charge. In the sections below,
we will demonstrate how one recovers the C-metric from this solution, how the
Kerr metric is also obtained from this parent solution, and finally, we shall present
modern modifications to the metric that have vastly simplified calculations involving
the generalised (rotating, charged) C-metric. Before that, however, let us give the
Plebański-Demiański metric1:

ds2 = 1
(p+ q)2

(
− Q(q)

1 + (pq)2 (dτ + p2dσ)2 + 1 + (pq)2

Q(q) dq2

+1 + (pq)2

P (p) dp2 + P (p)
1 + (pq)2 (dσ − q2dτ)2

)
, (2.15)

where

Q = −Λ
6 + g2 − γ − 2nq + εq2 − 2mq3 +

(
−Λ

6 + e2 + γ

)
q4,

P = −Λ
6 − g

2 + γ − 2np− εp2 − 2mp3 +
(
−Λ

6 − e
2 − γ

)
p4, (2.16)

where m, n, e, g, ε and γ are real parameters of the solution. Additionally, it is worth
drawing attention to the presence of a cosmological constant term, as this term can
be carried through the derivation of the C-metric, yielding an accelerating black
hole with a nonzero Λ. While unfamiliar, the naming choice for these coordinates
facilitates an agnostic treatment of this solution. To simplify the derivations below,
we perform the parametric shift γ → γ+ g2 + Λ

6 . The metric functions are now given
by

Q = −Λ
3 − γ − 2nq + εq2 − 2mq3 +

(
γ + e2 + g2

)
q4,

P = γ − 2np− εp2 − 2mp3 −
(
γ + e2 + g2 + Λ

3

)
p4. (2.17)

Since the work presented in this thesis focusses on asymptotically AdS spacetimes,
we shall write

Λ = − 3
`2 .

1Compared to the original text, we have taken p, q and σ to have opposite signs, for consistency.
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2.2.1 From Plebański-Demiański to the C-metric

In order to show how the Plebański-Demiański metric contracts to the C-metric, we
must first perform the following rescaling of our coordinates:

p→
√
aAp, q →

√
aAq, τ →

√
a

A3 τ, σ →
√
a

A3σ, (2.18)

where we have introduced new nonzero parameters a and A in anticipation of what
follows. To compensate for this rescaling, we may simplify the metric with the
following parameter/function rescalings [104, 105]:

m→
(
A

a

) 3
2
m, n→

(
A

a

) 1
2
n, e→ A

a
e, g → A

a
g,

ε→ A

a
ε, γ → A2γ, P → A2P, Q→ A2Q. (2.19)

The resulting metric is given by

ds2 = 1
A2(p+ q)2

(
− Q(q)

1 + (aApq)2 (dτ + aAp2dσ)2 + 1 + (aApq)2

Q(q) dq2

+1 + (aApq)2

P (p) dp2 + P (p)
1 + (aApq)2 (dσ − aAq2dτ)2

)
, (2.20)

with

Q = 1
A2`2 − γ −

2nq
A

+ εq2 − 2mAq3 + A2
(
γa2 + e2 + g2

)
q4,

P = γ − 2np
A
− εp2 − 2mAp3 +

(
a2

`2 − A
2(γa2 + e2 + g2)

)
p4. (2.21)

Now, according to [104], the curvature invariants of this spacetime do not depend on
the parameters ε, n and γ. This tells us that these parameters are (locally) simple
gauge choices, and we may fix them without affecting the geometry. To recover the
C-metric, we first take the limit a→ 0, after which we are free to set ε = γ = 1 and
n = 0. The C-metric, as written in eq. (2.5), is then simply obtained by identifying
τ = t, q = y, p = x and σ = z. The metric (2.20) is actually known as the spinning
C-metric (SC-metric), as further work [105–108] showed that while not analytically
pleasant, this metric displays characteristics of a rotating black hole while preserving
its acceleratng nature.
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2.2.2 From Plebański-Demiański to the Kerr-Newman
metric

The rotating nature of the metric (2.20) becomes apparent when we switch to Boyer-
Lindquist-type, or pseudo-spherical, coordinates. The following transformation:

τ → A
(
τ − aσ

Ξ

)
, q → 1

Ar
, σ → σ

Ξ (2.22)

with Q→ Q

A2r4 , and Ξ = 1− a2

`2 +O(A), (2.23)

where we have included the possibility for a term in Ξ which may depend on accel-
eration but must vanish in its absence, produces the following metric:

ds2 = 1
(1 + Arp)2

(
− Q(r)
r2 + a2p2

(
dτ − a(1− p2)dσΞ

)2
+ r2 + a2p2

Q(r) dr2

+r
2 + a2p2

P (p) dp2 + P (p)
r2 + a2p2

(
adτ − (r2 + a2)dσΞ

)2
)
, (2.24)

with

Q = (γa2 + e2 + g2)− 2mr + εr2 − 2nr3 + r4
( 1
`2 − A

2γ
)
,

P = γ − 2np
A
− εp2 − 2mAp3 +

(
a2

`2 − A
2(γa2 + e2 + g2)

)
p4. (2.25)

The physical parameters of this solution are m, n, e and g, with γ and ε absent from
curvature invariants. Unfortunately, this metric does not present a convenient way
of writing p = p(θ) unless we set A = 0. The reason for this is that ordinarily, one
would write p = cos θ, however for terms to cancel out neatly, we would expect to
be able to factorise P such that a sin2 θ piece could be pulled out. For A = 0, we
are able to do this, provided we are able to set n = 0 and γ = 1 as before, and this
time ε = 1 + a2/`2, which gives the Kerr-Newman-AdS metric. In fact, in this limit,
the parameter n was identified in [104] as the NUT charge.

2.2.3 The factorised C-metric

The issue that prevented us in the previous section from expressing the C-metric in
pseudo-spherical coordinates was that we are unable to factorise the metric functions
for the transformation to be convincing. This was an ugly, but well-known, symptom
in C-metric calculations that results from the high order polynomials which make up
its components. Most computations with this metric will generically revolve around
the coordinate ranges, which are dictated by the metric functions and their root
configuration. An immediate example is the range of the azimuthal coordinate —
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covered in section 2.3.3 — which, if a regularity condition at one of the poles is
imposed, depends on one of the roots of P (≡ G).

Without rotation

Inspired by [109], in 2003, Hong and Teo (HT) realised that they could use the
symmetry in eq. (2.3) and eq. (2.4) to re-express the metric in a way that simplified
calculations [110]. HT realised that by re-tuning this set of function coefficients —
those that Kinnersley and Walker picked to provide the original interpretation —
they could express these polynomials in a factorised form with simple roots. In
the uncharged case, and using the same notation, this was achieved by setting
a0 = −a2 = 1 as before and a1 = −a3 = 2mA. The C-metric in Hong-Teo form is
then still given by eq. (2.5), however the metric functions now factorise nicely:

G(x) = (1− x2)(1 + 2mAx) and F (y) = −G(−y). (2.26)

It is important to stress that the constants m and A used here are not the same as
those in the KW form of the metric. The relation between the two metrics and their
parameters can be found by simply applying the coordinate transformation (2.3)
between the two parameter spaces. For the original metric, we had ã0 = −ã2 = 1,
ã1 = 0 and ã3 = −2m̃Ã. To preserve the metric (2.5), we see that the parameter
β of the transformation must be β = A2/Ã2. Equations (2.4a) to (2.4c) provide an
initial set of relations:

β = 1− ε2 − 2m̃Ã = A2

Ã2
, (2.27a)

mA = −ηε(1 + 3m̃Ãε), (2.27b)

η = β−
1
2 (1 + 6m̃Ãε)− 1

2 , (2.27c)

and eq. (2.4d) imposes the following condition on ε:

m̃Ã+ ε+ 8m̃Ãε2 + 16m̃2Ã2ε3 = 0. (2.27d)

As we show in section 2.3.2, there is an upper bound on mA for this spacetime. In
the Kinnersley-Walker parametrisation of the C-metric, 0 6 m̃Ã 6 1/(3

√
3), and

in this regime, the above constraint (2.27d) has only one solution for ε, which can
in turn be used to fully determine the remainder of the transformation. As it is
unpleasantly apparent, there is a sense in which the complicated root structure of
the KW parametrisation has been shifted and swept into the parameters themselves.
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With rotation

Following on from their work on the nonrotating C-metric, a year later, Hong and Teo
published a similarly factorised version of the C-metric which contained a rotation
parameter [111]. Unlike the spinning C-metric, however, due to the factorised nature
of this new metric, not only is it more pleasant to work with, but it may also
be fully written in Boyer-Lindquist-type coordinates, in such a way that either
the nonrotating (charged, AdS) C-metric or the Kerr-Newman-AdS metric may be
obtained simply by turning off their respective parameters.

In order to obtain such a metric, the starting point is different to the nonrotating
case. Rather than search for a convenient coordinate transformation, HT utilised
a top-down approach starting from the Plebański-Demiański metric (2.15). In fact,
the derivation requires making the same rescaling as we did earlier, therefore we will
pick up from eq. (2.20), the metric, and eq. (2.21), its functions. For convenience,
the latter are given by

Q = 1
A2`2 − γ −

2nq
A

+ εq2 − 2mAq3 + A2
(
γa2 + e2 + g2

)
q4,

P = γ − 2np
A
− εp2 − 2mAp3 +

(
a2

`2 − A
2(γa2 + e2 + g2)

)
p4. (2.28)

The gauge freedom in this solution is such that we are free to pick γ and ε without
affecting the physical geometry of the spacetime. Indeed, earlier this was used to
recover the nonrotating C-metric in the KW parametrisation. Additionally, the
parameter n can be related to the NUT charge l [112, 113]. The factorised metric
is obtained by the requirement that the NUT charge vanish, which sets n = −mA2.
We then use the aforementioned gauge freedom to set

γ = 1, ε = 1 + a2

`2 − A
2(a2 + e2 + g2).

With these choices, we have the following factorised metric functions, all the while
preserving the form of the rescaled Plebański-Demiański metric (2.20):

Q = 1
A2`2 (1 + a2A2q2) + (q2 − 1)(1− 2mAq + A2(a2 + e2 + g2)q2),

P = (1− p2)
(

1 + 2mAp+
(
A2(a2 + e2 + g2)− a2

`2

)
p2
)
. (2.29)

The nonrotating C-metric that HT first presented is recovered here for Λ = a =
0. The factorised nature of this solution allows us to write it in Boyer-Lindquist
coordinates with the following similar transformation to the one we used to derive
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the Kerr-AdS metric (2.23):

τ → A

(
t− aφ

K

)
, q → 1

Ar
, p→ cos θ, σ → φ

K
. (2.30)

The resulting metric is what we shall henceforth refer to as the generalised C-metric,
which we will use in future chapters. It is given by

ds2 = 1
Ω2

{
− f(r)

Σ

[
dt− a sin2 θ

dφ

K

]2
+ Σ
f(r)dr

2 + Σr2

g(θ)dθ
2

+ g(θ) sin2 θ

Σr2

[
adt− (r2 + a2)dφ

K

]2
}
, (2.31a)

and the metric functions are

f(r) = (1− A2r2)
[
1− 2m

r
+ a2 + e2 + g2

r2

]
+ r2 + a2

`2 ,

g(θ) = 1 + 2mA cos θ +
[
A2(a2 + e2 + g2)− a2

`2

]
cos2 θ,

Σ = 1 + a2

r2 cos2 θ, Ω = 1 + Ar cos θ. (2.31b)

The parameter K that we have introduced allows us to define φ such that it has a
2π-periodicity. We will discuss its role extensively in further sections; let it therefore
simply be said for now that it affects the distribution of conical defects in the
spacetime.

2.3 Reviewing the C-metric and its features

So far, we have seen how the C-metric and its interpretation were developed and
better understood. We will now dive in a little deeper and present some subtle
aspects of the solution, such as horizon structure, coordinate and parameter ranges
as well as clarifying this idea of having a conical defect along one axis. We will begin
with the nonrotating form for simplicity, before covering the generalised C-metric.

2.3.1 The nonrotating C-metric

We begin with the asymptotically AdS form of the C-metric. In asymptotically
flat space, the C-metric describes a configuration of two black holes accelerating in
opposite directions. Each black hole has unequal conical deficits extending from the
north and south poles of each event horizon to either the boundary or an acceleration
horizon that separates the two. The introduction of a cosmological constant, as we
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shall see, alters the picture if it is large enough. In that case, the solution describes
only one such black hole without an acceleration horizon, and both deficits extend out
to the boundary. Although the C-metric is well-known among relativists, there are
features of the specific form we will be using that are worth highlighting, discussing
how they depend on the parameters of the solution.

For convenience we rewrite the nonrotating charged AdS C-metric [110, 111]:

ds2 = 1
A2(x+ y)2

(
−F (y)dt2 + dy2

F (y) + dx2

G(x) +G(x)dz2
)
, (2.32a)

and its metric functions

F (y) = 1
A2`2 + (y2 − 1)(1− 2mAy + e2A2y2),

G(x) = (1− x2)(1 + 2mAx+ e2A2x2). (2.32b)

The factorised metric functions allow us to write this metric also in pseudo-spherical
coordinates given by

t→ At, y → 1
Ar

, x→ cos θ, z → φ

K
. (2.33)

The resulting metric is:

ds2 = 1
Ω2

[
f(r)dt2 − dr2

f(r) − r
2
(
dθ2

g(θ) + g(θ) sin2 θ
dφ2

K2

)]
. (2.34)

The conformal factor

Ω = 1 + Ar cos θ (2.35)

sets the location of the boundary at rbd = −1/A cos θ. The other metric functions
are given as

f(r) = (1− A2r2)
(

1− 2m
r

+ e2

r2

)
+ r2

`2 ,

g(θ) = 1 + 2mA cos θ + e2A2 cos2 θ. (2.36)

The remaining parameters, e, m, A > 0 are related to the charge, mass and acceler-
ation of the black hole. In the following sections we will discuss these coordinates
and their ranges and review various constraints we must impose on these parameters.
We will then also briefly discuss the existence of conical defects in the spacetime
before tackling the rotating solution.
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2.3.2 Coordinate ranges and parametric restrictions

While easier to interpret physically, Boyer-Lindquist coordinates are not the best
suited for the parametric analysis we will present. This is due to the location of the
boundary which is shifted from its usual location at r = ∞. The interpretation is
that for certain values of θ the boundary is closer than infinity, and that for others
it is in fact beyond infinity, in the sense that we must glue together the regions
0 < r < ∞ and −∞ < r < rbd. Rather, it is more appropriate to be using the
(t, y, x, z) coordinate system.

The premise we will be basing our analysis on is that we will require the signature
of the metric be preserved over the coordinate ranges allowed. Since the metric
depends on neither t nor z, it follows that we simply require these two coordinates
be real. We have also encountered the fact that z behaves like an angular coordinate,
and therefore should have some periodicity ∆z attributed to it. This will be the
subject of the next section. The Kretschmann scalar

RαβγδR
αβγδ = 24

`4 + (x+ y)6
(
48A6m2 +O(e2)

)
(2.37)

reveals curvature singularities at |x|, |y| → ∞. We have also seen that the Hong-
Teo [110] factorisation allows us to map x = cos θ. It therefore makes sense that
x ∈ [−1, 1], and we must require that G(x) be positive over this range. This condition
will be satisfied provided

e2A2 >

2mA− 1 if mA 6 1,

m2A2 if mA > 1.
(2.38)

In the absence of charge, this reduces to the simple requirement that 2mA 6 1. It is
for this reason that one may view this condition as an upper bound on acceleration,
however this is not so for larger values of charge e. The set of parameters excluded by
eq. (2.38) is reproduced as blue hatching in fig. 2.1. By this condition, configurations
with larger values of A would need to be charged.

We have also seen that y behaves like an inverse radial coordinate, and the zeros
of F (y) therefore correspond to horizons. From the metric (2.32a), the boundary is
located at ybd = −x. This distinguishes two possible regions for y, however, for the
positive parameter configurations we are restricting ourselves to, the region y < −x
will always have a naked singularity at y → −∞. With charge, generic configurations
will always have 0, 2, or 4 distinct horizons. Physically, we have a pair of inner and
outer horizons similar to those that characterise the regular Reissner-Nordström (RN)
solution which typically approach one another and vanish with larger charge. We
also have an acceleration horizon inherent to these accelerating spacetimes. When
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Figure 2.1: Parametric space for the nonrotating C-metric at m =
1.5`. The blue hatched region corresponds to solutions excluded
by eq. (2.38). The region above the solid black line is excluded via
cosmic censorship. The dashed black line corresponds to Acrit, and
separates solutions which have an acceleration horizon to the left,
and those that don’t to the right. The red lines delimit parametric
regions corresponding to spacetimes with additional horizons that
intersect the boundary.
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an acceleration horizon is present, there is a second “outer” acceleration horizon, and
both of these intersect with the boundary. Pairs of horizons divide the spacetime
into regions which share the same signature; a region (i) within the innermost RN
horizon which is excluded through cosmic censorship, a region (ii) between the outer
RN horizon and the regular acceleration horizon, which we are most interested in,
and finally a region (iii) beyond the outermost acceleration horizon which is of little
interest to the work we shall be presenting. In fig. 2.1, each line (other than the blue
line) delimits configurations with different numbers of horizons. First, the dashed
line corresponds to values of A beyond which there is an acceleration horizon, the
solid black line corresponds to the extremal limit above which we have a naked
singularity in region (ii). The space between the red lines also has four horizons;
another pair of inner and outer horizons forms in region (ii), however they too
intersect the boundary. This pair further subdivides region (ii), however neither
region is of interest as in one we have a curvature singularity visible to the boundary
and the other is similar to region (iii). At the uppermost red line in fig. 2.1, the
new intermediary region is “absorbed” by the two horizons that bound it, and we
are left with two horizons. These nuances were explored in [114], where many of
these horizons were sorted into two categories of horizons: black funnels — these are
the bulk duals of black holes strongly coupled to a field theory plasma, and black
droplets, which are dual to weakly coupled black holes.

2.3.3 The conical defect

A conical deficit δ = 2π−∆ϕ (here ϕ is a generic azimuthal coordinate) is associated
to the presence of a cosmic string with tension µ = δ/8π. One may introduce such
defects to familiar spacetimes. For example, one may write the Schwarzschild metric,
only this time with gSch

φφ = r2 sin2 θK−2. For K > 1, the result is a black hole with a
string running through its core [115]. The deficit along both the θ = 0 and θ = π

axes is the same, and the tension of the string is µ = 1
4(1−K−1). The C-metric has

unequal deficits, and the resulting string tension imbalance is what physically drives
the acceleration.

The conical defect inherent to the C-metric is controlled through the periodicity
of z. For simplicity, we pick a new coordinate φ = Kz such that its periodicity
∆φ = 2π, and the choice of K replaces the choice of ∆z. We choose to do this
(a) for familiarity and (b) so that this apparent degree of freedom is explicit in
computations. The angular part of the metric in eq. (2.34) near the poles is

ds2 ∼ 1
Ω2

r2

g(θ±)

[
dρ2 + g2(θ±)ρ2

K2 dφ2
]
. (2.39)
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(a) (b)

Figure 2.2: Embeddings of the nonrotating C-metric in E3, for the
black hole with A = 0.01`, m = 9` and (a) K = Ξ, (b) K = 1.2Ξ.

where θ = θ± ± ρ with θ+ = 0 and θ− = π. The conical deficits along each axis are
given by

δ± = 2π
[
1− g(θ±)

K

]
= 2π

[
1− 1± 2mA+ e2A2

K

]
. (2.40)

The tensions of cosmic strings connecting the event horizon to the boundary (or
acceleration horizon, if there is one) are related to the deficits, and given by µ± =
δ±/8π. It is now evident how our choice of K will impact the geometry of the
spacetime; specifically, along with A, it will regulate the distribution of tensions
along either axis. It is also worth mentioning that a negative deficit (corresponding
to an excess) is possible, however this would be sourced by a negative energy object.
We can remove one of the deficits for the C-metric by defining K = Ξ,Ξ′ where

Ξ,Ξ′ = 1± 2mA+ e2A2. (2.41)

Since having K = Ξ′ induces an excess at the other pole, it is generally the custom
to have K = Ξ, regularising the north pole, and only having a string at the south
pole. In fig. 2.2 we illustrate how changing K affects an embedding of the horizon
in E3.

2.3.4 The rotating C-metric

It will be of interest to extend the observations made in the previous section to the
rotating C-metric. The approaches used in this section will be very similar to what
is presented above, and the results obtained below follow accordingly. The metric
we will be using is the solution we derived earlier from the Plebański-Demiański
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metric (2.31),

ds2 = 1
Ω2

{
− f(r)

Σ

[
dt− a sin2 θ

dφ

K

]2
+ Σ
f(r)dr

2 + Σr2

g(θ)dθ
2

+ g(θ) sin2 θ

Σr2

[
adt− (r2 + a2)dφ

K

]2
}
, (2.42a)

The conformal factor Ω−2 is still given by eq. (2.35), and we have the following
metric functions:

f(r) = (1− A2r2)
[
1− 2m

r
+ a2 + e2

r2

]
+ r2 + a2

`2 ,

g(θ) = 1 + 2mA cos θ +
[
A2(a2 + e2)− a2

`2

]
cos2 θ,

Σ = 1 + a2

r2 cos2 θ. (2.42b)

It is worth noting that this form of the rotating C-metric, with A = 0, reduces to
the familiar Kerr-AdS metric written in Boyer-Lindquist coordinates — assuming
K is picked so as to regularise the poles — which allows us to identify a as being a
rotation parameter.

With the inclusion of rotation, we have the following parametric restrictions:

A2(a2 + e2)− a2

`2 >

2mA− 1 if mA 6 1

m2A2 if mA > 1
(2.43)

once again, obtained by requiring that the metric function g(θ) be positive over
0 6 θ < π. We reproduce different parametric spaces in fig. 2.3 and indicate once
again with blue hatching the regions excluded by eq. (2.43). As previously stated,
we see that for smaller parameter values, this condition acts as an upper bound on
the rotation and/or the acceleration. We have also included lines delimiting regions
which correspond to solutions with different numbers of horizons. As in the charged
nonrotating case, horizons come in pairs, and a generic configuration will have 0, 2
or 4. The meaning of each of these lines is the same as earlier, with the dashed line
indicating an acceleration horizon and the solid black line indicating extremal black
holes, with grey hatching indicating configurations ruled out by cosmic censorship.
For completion, we have also traced the red lines which correspond to further horizon
pairs coming in, however these do not concern us. It is worth noting that there are
configurations similar to fig. 2.3a in which the upper bound on rotation is due to
eq. (2.43) and not censorship. Interestingly, for larger mass and acceleration, these
two conditions combine to exclude all possibilities, as in fig. 2.3f.

Finally, we may also determine the conical deficits by looking at the region near
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(a) m = 0.5`, e = 0.3`. (b) m = 0.9`, e = 0.3`.

(c) m = 1.5`, a = 0.8`. (d) m = 1.5`, a = 2.0`.

(e) m = 0.6`, A = 0.5`−1. (f) m = 0.7`, A = 1.1`−1.

Figure 2.3: Allowed parametric regions for the C-metric. The
regions marked out with blue hatching correspond to those forbidden
by eq. (2.43), and those marked out in grey are excluded by cosmic
censorship. The dashed lines correspond to acceleration horizons
coming in and the red lines outline regions where an extra pair of
boundary-intersecting horizons are formed.
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each pole. The string tensions for the rotating C-metric are given by

µ± = δ±
8π = 1

4

[
1− g(θ±)

K

]
= 1

4

[
1− 1± 2mA+ A2(a2 + e2)− a2/`2

K

]
, (2.44)

and the expressions needed to regularise either pole are

Ξ,Ξ′ = 1± 2mA+
[
A2(a2 + e2)− a2

`2

]
. (2.45)

This brings our analysis of the C-metric to an end. See Dias and Lemos for
analyses of the coordinate ranges/parameter restrictions on the C-metric in AdS
space [116], dS space [117] and in special limiting cases [118]; Krtouš [119] for an
analysis of the maximal extension of the charged AdS C-metric; Hubeny, Rangamani
and Marolf [114] for a complete overview of the various spacetime solutions con-
tained in the nonrotating uncharged AdS C-metric for different choices of coordinate
ranges and different parameter values; and Chen, Ng and Teo [120, 121] for a recent
exhaustive analysis of the parametric space of the rotating C-metric.



Chapter 3

Thermodynamics of black holes
with conical defects

As we have seen so far, the space of solutions which appear to obey the laws of
thermodynamics is rich. Black hole solutions with various conserved charges, may it
be electromagnetic, rotational or NUT, in universes with or without a cosmological
constant and in any number of dimensions have all been shown to obey the first law
once the proper charges and thermodynamic potentials are correctly identified. Any
thermodynamic description requires the existence of an equilibrium. In asymptotic-
ally flat space, equilibrium is achieved by placing the black hole in a (big) box along
with some nondescript fluid surrounding it. In AdS space, the inherent negative
curvature of the background geometry allows for the entire spacetime to act as the
box containing the equilibrium. From here, one might question whether such a ther-
modynamic description might exist for the accelerating solutions we introduced in
the previous chapter. At a glance, one might be tempted to point at the acceleration
as directly preventing the existence of an equilibrium; after all, it must be driven
by some external force. This is a valid concern, however, as we will show, we can
recover the concept of equilibrium for slowly accelerating black holes in AdS space,
by a similar thought process as that for the nonaccelerating solution.

We have shown, in the previous chapter, how acceleration is driven by the existence
of a conical deficit corresponding to the influence of a cosmic string attached to the
horizon. It will therefore be necessary for us to first investigate how one might
formulate thermodynamics of spacetimes in the presence of conical defects, and to
simplify that task we restrict ourselves, for now, to nonaccelerating spacetimes.
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3.1 Thermodynamics with conical deficits

Let us commence with the basic geometry which describes a static black hole with
a cosmic string running through its core: a spacetime first studied by Aryal, Ford
and Vilenkin (AFV) [115]. AFV considered a conical deficit through a Schwarzschild
black hole:

ds2 = −f(r)dt2 + dr2

f(r) + r2dθ2 + r2 sin2 θ

(
dφ

K

)2

(3.1)

where f(r) = 1−2m/r. They considered a first law of thermodynamics to argue that
the entropy of the black hole remained at one quarter of its area, now containing a
factor of K: S = πr2

+/K. The thermodynamics of a black hole with a string was
also considered in greater thoroughness by Martinez and York [122], although the
tension of the cosmic string, (see section 2.3.3) was held fixed. The only context
in which a varying tension was considered was in [123], where the varying tension
was produced by the capture of a moving cosmic string by a black hole, and it was
argued that in the collision of a black hole and cosmic string, the black hole would
retain a portion of the string thus increasing its mass.

We revisit this static system first, as a means of exploring the impact of varying
tension on black hole thermodynamics. We will consider a charged black hole
represented by the metric (3.1), with

f(r) = 1− 2m
r

+ e2

r2 + r2

`2 , and B = −e
r
dt . (3.2)

The parameters m and e are related to the black hole’s mass and charge respectively,
B is the Maxwell potential, and we allow for a negative cosmological constant via
` =

√
−3/Λ.

In order to treat varying tension we leave the parameter K in eq. (3.1) unspecified.
As has already been explained, this parameter would typically simply be unity
(or a function of rotation in the Kerr-AdS case), however, by keeping K explicitly
in the metric we can study conical defects through a well-behaved system in a
straightforward manner.

Examining the geometry near θ+ = 0 and θ− = π reveals how the parameter K
relates to the conical defect. Near the poles, the metric becomes

ds2
II = r2

[
dϑ2 + ϑ2

K2dφ
2
]
, (3.3)

on surfaces of constant t and r, where ϑ = ±(θ − θ±) is the ‘distance’ to either
pole. If K 6= 1, there will be a conical defect along the axis of revolution, which
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corresponds to a cosmic string of tension

µ = δ

8π = 1
4

[
1− 1

K

]
, (3.4)

where δ is the conical deficit. The interpretation of tension is justified by analysing
the equations of motion for an actual cosmic string vortex in the presence of a black
hole [124], where (3.1) was obtained as the asymptotic form of the metric outside
the string core. A tensionless string corresponds to a regular pole, K = 1, and
in this metric, the tension along either polar axis is equal, allowing simultaneous
regularisation of the two poles. The static black hole is inertial, as the deficits
balance each other out. This exercise provides insight into the role K plays within
a metric. Different values for this parameter determine the severity of an overall
defect running through the black hole.

Now let us consider the temperature and entropy (as defined after eq. (3.1)) of
the black hole. We compute T by demanding regularity of the Euclidean section of
the black hole [45], giving

T = f ′(r+)
4π = 1

2πr2
+

[
m− e2

r+
+ r3

+
`2

]
(3.5)

thus

2TS = m

K
− e

r+

(
e

K

)
+ 2

( 3
8π`2

)(4π
3 r3

+

)
= M − ΦQ+ 2PV (3.6)

gives a Smarr formula [125] for the black hole, where M = m/K is the mass of the
black hole, Q = (4π)−1 ∫ ?dB = e/K is the charge on the black hole, Φ = e/r+ the
potential at the horizon, and P = 3/8π`2, V = 4πr3

+/3 the thermodynamic pressure
and volume respectively [66, 70, 81].

Now let us consider the effect of changing the parameters of the black hole a small
amount; the location of the horizon of the black hole will also shift so that f+δf = 0
at r+ + δr+:

0 = f ′(r+)δr+ −
2δm
r+

+ 2eδe
r2

+
− 2r2

+
δ`

`3 (3.7)

However, we can now replace the variation of the parametersm, e, ` with the variation
of the corresponding thermodynamic charges M , Q, P , and the variation of r+ with
that of entropy, with the important proviso that we must allow for the variation of
tension through K. Thus δm = KδM +MδK etc. and δK = 4K2δµ from eq. (3.4).
After some rearrangement, eq. (3.7) gives our first law of thermodynamics with
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varying tension:

δM = TδS + V δP + ΦδQ− 2λδµ (3.8)

where

λ = (r+ −m) (3.9)

is a thermodynamic length conjugate to the string tension.

This is an important ingredient to this formulation — that string tension (in this
case equal along each axis) could be thought of as analogous to a thermodynamic
charge that therefore has a corresponding thermodynamic potential. Rather than
write a single λδµ term, instead we write two such terms, referring to the deficits
emerging from each pole. Although these are obviously equal in this case, one
might envision situations where this is not the case. Indeed, our experience with
accelerating solutions is that these are spacetimes where the axial configuration
exhibits just that; attributing a λδµ term per pole is therefore justified.

3.1.1 A concrete example — capture of a cosmic string

Let us observe the following example to verify the first law in action: the capture,
and subsequent escape, of a cosmic string by a black hole. This example was first
proposed in [123] in the case of a charged vacuum black hole. The idea is that
the string is moving and gets briefly captured by the black hole. In the capture
process, the internal energy of the black hole should remain fixed: the physical
intuition is that if a cosmic string were to pass through a spherical shell of matter,
energy conservation would demand that the spherical shell still have the same total
energy throughout the process, thus either it would become denser, or its radius
would increase. Of course, in the case of the spherical shell, the cosmic string would
simply transit through, leaving the system. For the black hole however, we will see
this is not the case, and we have the interpretation of a segment of string having
been captured by the black hole, with the black hole increasing its mass accordingly.
This process was considered in the probe limit in [126, 127]. We therefore consider
the asymptotically flat Reissner-Nordström (RN) metric which has the following
structure function:

f(r) = 1− 2m
r

+ e2

r2 (3.10)

with the charge of the black hole being defined via Q = e/K, and the electric
potential being Φ = e/r+.
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Let us suppose that the string is light, or µ� 1, then in the first stage where the
black hole captures the string, fixing M and Q implies δm = 4mδµ and δe = 4eδµ
(to first order in µ). Thus

TδS = r+ − r−
4πr2

+

[
2πr+δr+ − 4πr2

+δµ
]

= (r+ − r−)δµ = 2λδµ (3.11)

as required. Interestingly, because the internal energy has been fixed, the event
horizon has to move outwards to compensate for the conical deficit. Since the
entropy contains just one factor of K, but two of r+, the net effect is an increase of
entropy, indicating this is an irreversible thermodynamic process, the one interesting
exception being an extremal black hole.

In the second step, the string pulls off the black hole, so δµ = −µ, and since
the string is uncharged, δQ must remain zero, and e returns to its original value.
However, since entropy cannot decrease, M must increase

δM = TδS + 2(r+ −m)µ = (r+ − r−)δr+

2r+
+ 2(r+ − r−)µ (3.12)

In [123], it was supposed that m did not change, leading to an increase in M of 4mµ,
which was then stated as being the mass of the string behind the event horizon,
however this is in fact only true for the uncharged black hole. Instead, it seems
more physically accurate to suppose that r+ does not decrease, as otherwise the local
geodesic congruence defining the event horizon would appear to be contracting in
contradiction to the area theorem. In this case, δM = 2(r+ − r−)µ, or the length of
cosmic string trapped between the inner and outer horizons. Even if one allows the
local horizon radius to shrink while maintaining constant entropy, δM = (r+− r−)µ:
half the former amount, but still an increase of mass due to the capture of a length
of cosmic string.

3.2 Thermodynamic length for the rotating
black hole

From here, we can look into extending this property to rotating spacetimes and
see how this affects the corresponding thermodynamic expressions. However, before
proceeding into detail, it will be useful to remind ourselves of some of the subtleties
introduced when discussing the thermodynamics of a rotating black hole in asymp-
totically AdS space, initially discussed by Hawking, Hunter and Taylor-Robinson
(HHT) in [52], which we covered in section 1.4. These subtleties were pointed out
in [53, 55], where it was shown that with a nonzero cosmological constant, the
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boundary is actually rotating with angular velocity

Ω∞ = lim
r→∞
− gtφ
gφφ

= aK
r2/`2

a2r2 sin2 θ/`2 − r2g(θ) = − a
`2
K

Ξ , Ξ = 1− a2

`2 (3.13)

implying that the angular velocity ought to be re-normalised and that Ω = ΩH−Ω∞
is the true total angular velocity. The mass was then found to be given byM = m/Ξ2

as opposed to m/Ξ, the expression originally given by HHT, which is obtained using
the Komar method when a normalisation of the timelike killing vector is omitted.
Similarly, the expression for thermodynamic volume,

V = 4π
3K

(
r+(r2

+ + a2) +ma2
)

(3.14)

contains a second, rotation-dependent term which may also be viewed as a re-
normalising shift.

Employing similar ideas and viewing thermodynamic potentials as having extra
regularising terms, we can actually show that these corrections to the thermodynamic
mass and angular velocity are required to satisfy the first law while simultaneously
obtaining these expressions for arbitrary and potentially varying string tensions.

The first step is to vary f(r+) = 0 to establish an initial thermodynamic relation.
Identifying S as a quarter of the horizon area and T as the temperature given by
the Euclideanisation procedure,

S = π

K
(r2

+ + a2) T = 1
2π(r2

+ + a2)

[
m− a2

r+
+ r3

+
`2

]
, (3.15)

will lead to the following statement:

δ
(
m

K

)
= TδS + V0δP + Ω0δJ − 2r+δµ+ mδK

2K2 , (3.16)

where we have written V0 and Ω0 in anticipation of correction terms, however it
is worth noting that Ω0 = ΩH is the angular velocity at the horizon and that V0,
the first term in eq. (3.14), satisfies a reduced Smarr relation given by m/K =
2(TS − PV0 + Ω0J). These quantities are given by the following relations:

Ω0 = aK

r2
+ + a2 , J = ma

K2 , V0 = 4π
3Kr+(r2

+ + a2), P = 3
8π`2 , (3.17)

where the expression for the angular momentum J is obtained unambiguously via
the Komar method using background (m = 0) subtraction, as per [56].

While eq. (3.16) looks like a first law, it is necessary to remember that K para-
metrises the tension and can therefore not appear as a standalone term. The aim of
this derivation is precisely to find such a first law. Let us now introduce a function
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γ = γ(a, `) in our expression for the mass. We know that γ will need to depend on a
and ` from the relation between K and µ. Using this ansatz for the mass and then
perturbing it, we have

M = m

K
γ(a, `), (3.18)

δM = δ
(
m

K

)
+ m

K
(γaδa+ γ`δ`)

= (γ − aγa)δ
(
m

K

)
+ γaKδJ + maγa

K2 δK + m

K
γ`δ`. (3.19)

Now, if we rewrite eq. (3.16) using Ω = Ω0 + Ω1, V = V0 + V1 as

TδS + V δP + ΩδJ − 2λδµ

= δ
(
m

K

)
+ Ω1δJ −

3V1

4π`3 δ`+ 2(r+ − λ)δµ− m

2K2 δK, (3.20)

we may require that eqs. (3.19) and (3.20) be equal to find constraints on γ. Using
eq. (4.49) and µ = δ/8π to express δK in terms of δµ, we can infer a differential
equation that γ ought to satisfy,(

1 + a2

`2

)
γ −

(
1− a2

`2

)
aγa − 1 = 0 (3.21)

as well as the following expressions for the correction terms, defining them in terms
of γ:

V1 = − 4π
3K

m`2

1 + a2/`2

((
1 + a2

`2

)
`γ` + 2a

2

`2 aγa + a2

`2

)
,

Ω1 = Kγa

(
1− 2a

2

`2
1

1 + a2/`2

)
− aK

`2
1

1 + a2/`2 ,

λ = r+ −
m

1 + a2/`2 (2aγa + 1) . (3.22)

We also require that the Smarr relation, which follows from the scaling properties of
the system, also be satisfied. Inserting the above expressions into

M = 2(TS − PV + ΩJ), (3.23)

we obtain another differential equation for γ,(
1 + a2

`2

)
(γ − `γ`)− 2aγa − 1 = 0. (3.24)
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It is then straightforward to solve eqs. (3.21) and (3.24) and one obtains

γ = 1
Ξ

(
1 + a

`
ζ
)
, λ = r+ −

m

Ξ2

(
1 + a2

`2 + 2a
`
ζ

)
,

Ω1 = a

`2
K

Ξ

(
1 + `

a
ζ

)
, V1 = 4π

3
ma2

KΞ

(
1 + `

a
ζ

)
, (3.25)

where ζ is an integration constant. We can fix it by identifying Ω1 = −Ω∞ provided
ζ = 0, which also assures that the angular velocity of the boundary vanishes for
a = 0. Similarly, we obtain the correct expression for thermodynamic volume if
ζ = 0. Finally with ζ 6= 0, γ would supposedly be sensitive to the direction of
rotation as given by the sign of a. This apparent asymmetry therefore requires the
constant to vanish.

Finally, one can repeat this derivation with the inclusion of charge Q = e/K and
introduce a correction term to the potential Φ = Φ0 + Φ1. This leads to a similar
expression for γ, with ζ now a function of charge

γ = 1
Ξ

[
1 + a

`
ζ

(
e2

`2
1

Ξ2

)]
. (3.26)

Eliminating the integration function through a similar line of reasoning as above
leads to the correction terms already written above, with the additional proviso that
the correction to the gauge potential Φ1 = 0.

3.3 The thermodynamic length

To recap, we have shown that, allowing for a varying conical deficit in black hole
spacetimes, the first law of thermodynamics becomes

δM = TδS + V δP + ΦδQ+ ΩδJ − 2λδµ, (3.27)

where the relevant thermodynamical variables are given in (4.38). In order to
accommodate varying tension, we have to define a thermodynamic length,

λ = r+ −
m

Ξ2

(
1 + a2

`2

)
(3.28)

for each conical deficit emerging from each pole. Surprisingly perhaps, this ther-
modynamic length is not simply the geometric length r+ of the string from pole to
singularity. Instead, the mass-dependent adjustment emphasises this is a potential,
rather than just an internal energy term that might more appropriately be placed
on the left hand side of the equation. Interestingly perhaps, in the absence of a
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Figure 3.1: Plot of the thermodynamic length for uncharged non-
rotating black holes in asymptotically AdS space. As the deficit is
increased, the effect on the length of adding mass is amplified.

cosmological constant, the thermodynamic length can actually be interpreted as half
the distance between the inner and outer horizons, λ = r+−r−

2 , though this is not
the case in AdS.

It is interesting to compare this mass-dependent shift of the thermodynamic length
to the correction of the thermodynamic volume for a rotating black hole [82, 128]:

V = 4π
3K

(
r+(r2

+ + a2) +ma2
)

(3.29)

In this case, the first term is the expected geometric volume of the interior of the
black hole, the second term being a rotation-dependent correction. It is with this
appropriately shifted thermodynamic volume, that the black hole always satisfies
the reverse isoperimetric inequality [82].

Notice that the correction term for this thermodynamic volume is always positive,
whereas the correction term for thermodynamic length is actually negative. This
means that for large enough mass, the thermodynamic length itself becomes negative,
as shown in fig. 3.1 for an uncharged black hole. The picture for a charged black hole
is similar, although the critical value of M for which λ becomes negative is larger.

From fig. 3.1, we see that the thermodynamic length becomes negative for ‘large’
black holes, i.e. those for which the thermodynamic mass is of similar order (or
higher) than the AdS scale. Setting this in the context of the ‘cosmic string’ capture
process considered in section 3.1 for the vacuum black hole, this would mean that
the thermodynamic mass must increase during a capture, as entropy cannot decrease.
This seems at first counter to the notion that the string itself does not carry ‘ADM’
mass, however, the heuristic argument of section 3.1 relies somewhat on the notion
that a cosmic string and black hole can be sufficiently separated so that one can
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consider their thermodynamical (and other) properties independently. For large
black holes in AdS this is manifestly not the case.



Chapter 4

Thermodynamics of accelerating
black holes

As we have already stated, our goal is to establish whether a thermodynamic in-
terpretation for accelerating black holes may be constructed. Accelerating black
holes have always presented a problem in this respect, partly due to the existence
of an external driving force which might indicate an inability to attain any kind
of equilibrium, but there is also an algebraic obstacle; the existence of a conical
deficit and an acceleration parameter for which we have no prior thermodynamic
interpretation. Add to that the fact that the boundary is displaced from r =∞ (in
Boyer-Lindquist coordinates) resulting in awkward asymptotics to deal with and the
existence of an acceleration horizon with its own temperature and it becomes clearer
why such a formulation did not exist.

There is at least one of these aspects about which we might feel more confident.
The previous chapter discussed how one could include the tension of cosmic strings
attached to black hole horizons as a thermodynamic variable, introducing the concept
of the thermodynamic length, the conjugate to the tension. Each of the configurations
we have dealt with up until now had equal deficits between the north and south poles,
however, as we reviewed in section 2.3.3, the C-metric represents an accelerated black
hole driven by an imbalance in the cosmic string tensions at each of the poles. What
must then be addressed is whether this construction, of black hole thermodynamics
with varying conical deficits, may be extended to allow for independent variations
in the tensions at the north and south poles. As we shall see below, this is possible,
and it will allow us to simultaneously address one of the other potential issues that
we brought up at the start of this chapter: whereas in the previous chapter we
showed that the parameter K is linked to the overall deficit in the spacetime and
that its variations could be re-expressed as variations in the string tension µ, we now
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have another variable A, representing acceleration, whose variations, together with
those for K, may be re-cast as independent variations in the north and south string
tensions, µ±.

We will first begin to develop this framework with the simplest case, the uncharged
nonrotating accelerating black hole and use the insight gained from the previous
chapter to choose to fix the tensions. This will be physically motivated in its own
right, and allows us to make initial assertions as to the necessary conditions to
formulate consistent thermodynamics. We will then extend this to include the
aforementioned generalisation of independently varying conical deficits, at least for
charged nonrotating accelerating black holes, deriving the thermodynamic lengths
for these solutions along the way.

4.1 Thermodynamics of the C-metric

4.1.1 Establishing a first law

For a general black hole spacetime containing conical defects, any disparity in the
sizes of the deficits produces an overall force in the direction of the largest conical
deficit, and the geometry is described by the C-metric [103], introduced in chapter 2.
Typically, C-metrics have both black hole and acceleration horizons. In order to
have any chance at constructing a thermodynamic description, we would like to be
able to eliminate the acceleration horizon which has its own temperature, different
to that of the black hole’s. This is possible in asymptotically anti-de Sitter space and
for that reason we shall be studying accelerating black holes in negative cosmological
constant universes. More specifically, we must restrict ourselves to the so-called
slowly accelerating C-metric [129], for which the acceleration is small enough that
the negative curvature prevents the existence of an acceleration horizon. With this
geometry, we may consider the entire spacetime, black hole and string(s) combined,
as forming a thermodynamic equilibrium. In the absence of an acceleration horizon,
the spacetime can be interpreted as having a black hole maintained a finite distance
from the centre of AdS by the cosmic string. We will revisit this shortly, for now let
us rewrite the metric here, for convenience. We have

ds2 = 1
Ω2

[
−f(r)dt2 + dr2

f(r) + r2
(
dθ2

g(θ) + g(θ) sin2 θ
dφ2

K2

)]
, (4.1)
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and

f(r) = (1− A2r2)
(

1− 2m
r

)
+ r2

`2 , (4.2)

g(θ) = 1 + 2mA cos θ,

Ω = 1 + Ar cos θ. (4.3)

The conical deficits this spacetime exhibits correspond to cosmic strings with tensions
given by (2.40)

µ± = 1
4

[
1− g(θ±)

K

]
= 1

4

[
1− 1± 2mA

K

]
. (4.4)

Further details concerning the spacetime and its subtleties can be found by referring
back to section 2.3.

We have already seen how the parameter K is related to the conical deficits in
chapters 2 and 3, however we would like to give some interpretation of the parameter
A, which was identified as the acceleration in section 2.1 for the asymptotically flat
solution by studying the weak field limitm = 0 and exposing it as a reparametrisation
of Rindler spacetime. In the presence of a cosmological constant it may be more
helpful to view it as the acceleration required to maintain the black hole some
distance away from the centre of AdS, as we alluded to previously. Setting m = 0
and K = 1 to eliminate the conical deficit in eq. (4.1) gives

ds2 = 1
Ω2

[
−
(

1 + r2

`2 (1− A2`2)
)
dt2 + dr2

1 + r2

`2
(1− A2`2)

+ r2(dθ2 + sin2 θdφ2)
]
.

(4.5)

This spacetime no longer has a conical singularity and is locally pure AdS, however in
these coordinates the boundary of AdS is not at r =∞, but at r = −1/(A cos θ). For
θ in the southern hemisphere, this occurs at finite r, but in the northern hemisphere
r =∞ actually lies within the AdS spacetime (see fig. 4.1). To transform to global
AdS coordinates {R,Θ}, one takes [129]

1 + R2

`2 = 1 + (1− A2`2)r2/`2

(1− A2`2)Ω2 , R sin Θ = r sin θ
Ω , (4.6)

resulting in the metric for anti-de Sitter space in global coordinates:

ds2
AdS = −(1− A2`2)

(
1 + R2

`2

)
dt2 + dR2

1 + R2

`2

+R2
(
dΘ2 + sin2 Θdφ

2

K2

)
. (4.7)

The boundary, R → ∞ now clearly corresponds to Ω → 0, and the origin of
Rindler coordinates corresponds to R0 = A`2/

√
1− A2`2, in other words, the Rindler
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θ=π/4

θ=0

θ=π

θ=π/2

θ=3π/4

AdS Boundary

�=ℓ

�=ℓ/�

�=�ℓ

�=��ℓ

r=∞

(a)

⨯⨯

(b)

Figure 4.1: (a) The slowly accelerating Rindler spacetime shown
here with A` = 1/4, and ` = 1 for simplicity. The spatial sections
of AdS have been compactified to a Poincaré disc, with the constant
r Rindler coordinate indicated in black and constant θ in blue. The
origin of the Rindler coordinates is clearly visible as being displaced
from the centre of the disc, with the limit of the r-coordinate being
the thick dashed black line. (b) The black hole distorts the Poincaré
disc with a conical deficit, and is displaced from the origin of AdS.
The spacetime is again static, and a cross section is shown.

coordinates represent those of an observer displaced from the origin of AdS.

Let us now define an important thermodynamic quantity. We suspect m to be
related to the mass of the black hole, however the computation required to obtain
such an expression is rather tricky. The awkward asymptotics do not lend themselves
well to a Komar approach. Instead, we used the method of conformal completion
[63, 64, 130]. This takes the electric part of the Weyl tensor projected along the
timelike conformal Killing vector, and integrates over a sphere at conformal infinity.
The calculation gives1

M = m

K
, (4.8)

thus m gives the mass of the black hole. Note that unlike the rapidly accelerating

1More details regarding this computation are provided in section 5.1.1. Though it should be
noted that the result stated here was later discovered to be incorrect. In particular, this is related
to an issue with the somewhat ambiguous scaling of the timelike killing vector which affects the
computation by an overall multiplying factor. Chapter 5 addresses the issue, however these details
were discovered in the later stages of the production of this thesis. The results stated in this chapter
hold despite this inconsistency.
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black hole, this is a genuine ADM-style mass, and not a “rearrangement” of dipoles
as discussed in [131], where a boost mass was introduced for the C-metric.

Meanwhile, we identify the entropy with a quarter of the horizon area

S = A4 = πr2
+

K(1− A2r2
+) , (4.9)

and calculate the temperature via the usual Euclidean method (see section 1.3) to
obtain

T = f ′(r+)
4π = 1

2πr+

(
m

r+

(
1 + A2r2

+

)
+ r2

+
`2 − A

2r2
+

)
. (4.10)

We now identify P with the pressure associated to the cosmological constant accord-
ing to P = 3

8π`2 , which allows us to rewrite the temperature as

TS = M

2 + P
4πr3

+
3K(1− A2r2

+)2 , (4.11)

which is nothing other than the Smarr relation M = 2(TS − PV ) provided we
identify the black hole thermodynamic volume as

V = 4πr3
+

3K(1− A2r2
+)2 . (4.12)

So far, this is a rewriting of a relation for the temperature, having identified
standard thermodynamic variables or charges for the solution. Now let us consider
the first law by considering a variation due to some physical process. Typically, one
derives the first law by observing the change in horizon radius during a physical
process. The horizon radius is given by a root of f(r+) = 0, and thus depends on m,
A and `. The specific form of this algebraic root is not vital, what matters is how
the mass varies in terms of the change in horizon area, thermodynamic volume, and
charge.

Originally, it was reasoned that during this process, the conical deficits (or lack
thereof) could not change, as these corresponded to the physical objects causing the
acceleration. Of course, as we have already shown by now, one could envisage physical
processes that would alter conical defects on a black hole horizon, nonetheless it is
simplest to restrict ourselves to the scenario where all tensions are held fixed. Thus
we must consider a variation of m, A and K that preserves the cosmic string tensions,
and it turns out that it is precisely through this physical restriction that we are able
to derive a first law.

To obtain the first law, we typically consider a perturbation of the equation that
determines the location of the event horizon of the black hole: f(r+) = 0. If we



60 Chapter 4. Thermodynamics of accelerating black holes

allow our parameters to vary, this will typically result in a perturbation also of r+,
hence we can write

∂f

∂r+
δr+ + ∂f

∂m
δm+ ∂f

∂A
δA+ ∂f

∂`
δ` = 0 (4.13)

where everything is evaluated at f(r+,m,A, `) = 0. Clearly we can replace δm and
δ` by variations of the thermodynamic parameters M and P , and δr+ is expressible
in terms of δS, δK and δA using the variation of eq. (4.9),

δS = 2πr+δr+

K(1− A2r2
+)2 + 2πr4

+AδA

K(1− A2r2
+)2 −

πr2
+

(1− A2r2
+)
δK

K2 . (4.14)

Finally, we replace (∂f/∂r+)m,A,` = 4πT , and use f(r+) = 0 to simplify the terms
multiplying δA to obtain:

(1− A2r2
+)(TδS + V δP )− δM − mAr2

+
K

δA+
(
r2

+
`2 − (1 + A2r2

+)
)
r+δK

4K2 = 0.

(4.15)

At the moment, it seems as if we have extra thermodynamic contributions, however,
we now use the physical input from the cosmic string that the conical deficits on
each axis must not change. To achieve this, we must require that both δµ± = 0. A
quick look at the linear combinations

µ+ + µ− = 1
2

[
1− 1

K

]
and µ+ − µ− = −mA

K
(4.16)

reveals that this is achieved by the conditions δK = 0 and δ(mA) = 0, or mδA =
−Aδm. Replacing δA in eq. (4.15) and rearranging, finally, indeed gives the first
law:

δM = TδS + V δP. (4.17)

Thus, this first pass at a thermodynamic construction for accelerating black holes is
indeed promising. Despite a few intuitive barriers, we have succeeded in establishing
a first law for this black hole solution, suggesting that it ought to display similar
thermal behaviour to other known solutions. This was the result we first presented
in [1]. We will carry out a survey of its thermodynamic features further on, however
we must now generalise this result to include electric charge as well as investigate
whether it is feasible to allow the string tensions to vary independently; this formed
the core of our following publication [2].
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4.1.2 Thermodynamics of the charged C-metric

Having shown that the C-metric appears to obey the laws of black hole thermody-
namics, at least in the uncharged case when the cosmic string tensions are held fixed,
we will now perform a similar analysis to verify this is the case for the charged black
hole, while this time including terms corresponding to each deficit. While at first
this might seem unnecessary, an example of a process which would involve a change
in the string tensions could be the collision of two accelerating black holes2. Keeping
the metric as in eq. (4.1), now with f(r) defined to be (2.36)

f(r) = (1− A2r2)
(

1− 2m
r

+ e2

r2

)
+ r2

`2 , (4.18)

we need the gauge potential B = − e
r
dt to satisfy the Einstein-Maxwell equations.

The charge of the black hole is obtained by integrating the electromagnetic field
strength tensor:

Q = 1
4π

∫
S2
?dB = e

K
. (4.19)

We start by finding the temperature and entropy of the black hole, using the
conventional relations

T = f ′(r+)
4π = 1

2πr+

(
m

r+

(
1 + A2r2

+

)
+ r2

+
`2 − A

2r2
+ −

e2

r2
+

)
,

S = A4 = πr2
+

K(1− A2r2
+) . (4.20)

Checking the Smarr relation, we compute

2TS = m

K
− e2

Kr2
+

+ r3
+

K`2(1− A2r2
+)2 . (4.21)

With the charge of the black hole (4.19), Q = e/K, the electric potential given by
ΦH = e/r+ and defining

V = 4πr3
+

3K(1− A2r2
+)2 (4.22)

as the thermodynamic volume, as it was in the previous section, we obtain

m

K
= 2TS +QΦH − 2PV. (4.23)

Although it is tempting to identifyM = m/K, this would be to ignore the asymptot-

2An unfortunate caveat of our model is that the two black holes would need to be accelerating
along the same axis.
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ics of the spacetime. As mentioned in earlier chapters (see sections 1.4 and 3.2), the
experience of the rotating AdS black hole is that thermodynamic potentials should
be normalised at infinity [53, 55], and in the case of rotation, expressing this solution
in ordinary Boyer-Lindquist coordinates results in a spacetime that has a rotating
boundary. Subtracting off this rotation leads to an extra renormalisation of the
thermodynamic mass, a correct Smarr formula and correct first law.

Here, however, we cannot simply perform a similar electromagnetic gauge trans-
formation. Our electrostatic potential no longer vanishes at infinity, and our bound-
ary has an electric flux from pole to pole given by

F = eA sin θ dt ∧ dθ, (4.24)

which, incidentally, also prevents us from carrying out an Ashtekar-Das [64] compu-
tation of the mass.

We obviously cannot subtract this charge, as that would be a physical change,
but it does lead us to suspect that there may be a renormalization of electrostatic
potential and thermodynamic mass. We will show how to do this shortly, but first
consider just the uncharged black hole, and consider variations in the position of the
horizon as in eq. (4.15):

δf(r+) = f ′+δr+ − 2δm
r+

(1− A2r2
+)− 2AδAr+(r+ − 2m)− 2r

2
+
`3 δ` = 0 (4.25)

The procedure is similar to the previous section, but we now have more algebra
involved in the variation of the thermodynamic parameters. For example, in relating
δr+ to δS, we had (4.14):

δS = 2πr+δr+

K(1− A2r2
+)2 + 2πr4

+AδA

K(1− A2r2
+)2 −

πr2
+

(1− A2r2
+)
δK

K2 (4.26)

where, now, our expressions for the tensions eq. (4.4) give

δK

K2 = 2 (δµ+ + δµ−) , m

K
δA = −

[
δµ+ − δµ− + Aδ

(
m

K

)]
, (4.27)

which we can substitute back into the variation of entropy.

As we are dealing with the uncharged black hole, we define M = m/K, and after
some algebra one gets

δM = V δP + TδS − δµ+

[
r+

1 + Ar+
−m

]
− δµ−

[
r+

1− Ar+
−m

]
. (4.28)

Thus, the accelerating black hole has the same thermodynamic first law as the
nonaccelerating black hole, but now with a thermodynamic length for the piece of
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string attaching at each pole:

λ± = r+

1± Ar+
−m (4.29)

This obviously agrees with eq. (3.9) for the string threading the black hole, where
r+ has now been replaced by r+/Ω(r+, θ±) at each pole.

Now let us consider the addition of charge. Following the same procedure of
varying the horizon as before leads to the relation

δ
(
m

K

)
= TδS + V δP + ΦHδQ−

r+δµ+

1 + Ar+
− r+δµ−

1− Ar+
+ mδK

2K2 (4.30)

where now our expressions for the tensions lead to

m

K
δA = −δµ+ + δµ− − Aδ

(
m

K

)
[1− e2A2] δK2K2 = A2eδQ− e2A2

m
δ
(
m

K

)
+ δµ+

[
1− Ae2

m

]
+ δµ−

[
1 + Ae2

m

]
(4.31)

Keeping an open mind, we define our thermodynamic mass and electrostatic
potential as:

M = m

K
γ(A, e), Φ = Φ0 + Φ1, (4.32)

where Φ0 = ΦH and Φ1 is a correction, re-zeroing the potential, analogous to the
correction of the angular potential of the Kerr-AdS black hole, but without the
corresponding interpretation of being the value of the original potential at infinity.
It also follows from eqs. (4.30) and (4.31) that we can assume γ to be independent
of `. The method here is to seek a consistent set of thermodynamic relations while
maintaining the temperature and entropy as defined earlier by the surface gravity
and area respectively.

Next, we compare

δM = γδ
(
m

K

)
+ m

K
(γeδe+ γAδA)

= γδ
(
m

K

)
+mγeδQ+meγe

δK

K2 + γA
m

K
δA (4.33)

to

TδS + V δP + ΦδQ− λ+δµ+ − λ−δµ− = δ
(
m

K

)
− Φ0δQ−

mδK

2K2

+
[

r+

1 + Ar+
− λ+

]
δµ+ +

[
r+

1− Ar+
− λ−

]
δµ−, (4.34)
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where λ± are to be determined. After some algebra, we obtain

δM − TδS − V δP − ΦδQ+ λ+δµ+ + λ−δµ−

=
[
(1− e2A2)γ − 2e3A2γe − A(1− e2A2)γA − 1

] δ (m/K)
(1− e2A2)

+
[
m(1 + e2A2)γe +mA2e+ (1− e2A2)Φ0

] δQ

(1− e2A2)

+
[
λ+ −

r+

1 + Ar+
− γA + (2eγe + 1)

1− e2A2

(
m− e2A

)]
δµ+

+
[
λ− −

r+

1− Ar+
+ γA + (2eγe + 1)

1− e2A2

(
m+ e2A

)]
δµ− (4.35)

for our first law to hold, clearly the right-hand side of this equation must vanish,
leading to a constraint for γ:

(1− e2A2)γ − 2e3A2γe − A(1− e2A2)γA = 1. (4.36)

This equation is solvable, and we obtain

γ = 1
1 + e2A2 + A`ζ

(
`

e
+ A2e`

)
, (4.37)

where requiring γ be unity in the absence of charge eliminates the integrating function
ζ(x). This specifies our thermodynamic mass, and we determine Φ1 and λ± from
eq. (4.35):

M = m

K(1 + e2A2)

Φ1 = − meA2

1 + e2A2

λ± = r+

1± Ar+
− m(1− e2A2)

(1 + e2A2)2 ∓
e2A

(1 + e2A2) (4.38)

This is a rather unusual set of relations, derived in [2], which gives consistent ther-
modynamics. The offset of the electrostatic potential depends on mass, and the
thermodynamic mass depends on charge. We view this as a consequence of the fact
that for the accelerating black hole, the electric potential cannot be gauged away at
infinity — there is a polar electric field at the AdS boundary, thus mass and charge
are inextricably intertwined. These results will be revisited in chapter 5, in light of
new studies on the subject.

Finally, we have that

m

K
= M + e2A2M = M + Φ1Q, (4.39)
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which ensures, along with eq. (4.23), that the Smarr relation will indeed be satisfied
with these new quantities.

It is also interesting to compare these results for varying tension to some of our
early work [1], which formed the basis of the previous introductory section where K
and µ± were held fixed but in the presence of charge. With these assumptions, both
the quantities eA and mA were fixed, however, we did not alter the thermodynamic
mass from m/K, nor the electrostatic potential from ΦH. The two sets of results are
consistent, since, as we have already pointed out,

Φ1Q = me2A2

K(1 + e2A2) = m

K

[
1− 1

1 + e2A2

]
= m

K
−M.

The correction to the electrostatic potential therefore balances the shift in thermody-
namic mass in both the Smarr formula, and indeed the first law with the assumptions
made in [1] since eA was required to be fixed. However, it is worth revisiting these
assumptions in the light of our work here on varying tension.

First, notice that our charged C-metric has parameters: m, relating to the mass of
the black hole, e to its charge, A to its acceleration, and K, that relates to an overall
conical deficit. K is the one parameter that has no immediately obvious physical
interpretation, indeed seems more like a parameter which fixes the periodicity of
the azimuthal coordinate, thus fixing K was natural. However, now armed with our
better understanding of the metric and its thermodynamics, we see that in fixing
the tensions of the deficits, we are fixing two physical quantities, thus we should
only find that two combinations of the solution parameters are fixed. Therefore, we
should not fix K a priori, but instead just the combinations of parameters that fix
the tensions:

2(µ+ + µ−) = 1− 1 + e2A2

K

µ+ − µ− = −mA
K

(4.40)

From these expressions, we see that if charge vanishes, then indeed fixing tensions
fixes K and the combination mA, but if charge does not vanish, then we can no
longer conclude that δK = 0. Instead

δK

K
= δ(mA)

mA
= 2eAδ(eA)

1 + e2A2 (4.41)

i.e. we have two constraints on the variation of our parameters. Thus, for example
if we throw a small mass m0 into the black hole, we expect δM = m0, δQ = δP = 0.
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Using the expression for M and the tensions we then find:

δK

K2 = −2e
2A2

m
δM δA = −(1− e2A2)AK

m
δM

δm = (1− 3e2A2)KδM δe = −2e
3A2K

m
δM (4.42)

indicating that the acceleration of the black hole drops, as expected.

For the accelerating black hole, we want to compare the volume dependence on r+

to the area dependence via the isoperimetric ratio as a consistency check, introduced
in section 1.4.2,

R =
(3V
ω2

) 1
3
(
ω2

A

) 1
2
, (4.43)

where V is the thermodynamic volume, A is the horizon area, and ω2 = 4π/K is
the area of a unit ‘sphere’. Using eq. (4.22) for V and eq. (4.20) for A, we find

R = 1
(1− A2r2

+)1/6 > 1. (4.44)

Thus these slowly accelerating black holes do indeed satisfy the reverse isoperimetric
inequality.

From here, it would be most interesting to proceed onto rotating black holes, nicely
tying the bow on this study of thermodynamics. Alas, the computations involved
have proved too tall an order3. We shall, however, revisit the topic further in the
chapter as we now take a turn to explore what these findings may teach us about
accelerating black holes.

4.2 Critical behaviour of accelerating black holes

Given that we are working in anti-de Sitter spacetime, we can ask whether there is
something analogous to a Hawking-Page phase transition [50] for our accelerating
black holes, although it is difficult to see how one could actually have a phase
transition between a system with a conical deficit along one polar axis only, and a
presumably totally regular radiation bath. However, recall, from section 1.4.3, that
a black hole in AdS behaves similarly to a black hole in a reflecting box, with the
negative curvature of the AdS providing the qualitative reflection. For small black
holes, the effect of the negative curvature is subdominant to the local curvature

3A method for obtaining the thermodynamics of rotating accelerating black holes was discovered
in the later stages of production of this thesis [4]. These new results are summarised in the
concluding chapter.
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Figure 4.2: (a) A plot of temperature as a function of mass (in
units of `) for the uncharged black hole. The slowly accelerating
regime is shown as a solid line, and the inferred local horizon tem-
perature for A` > 1 is shown dashed. Note how for larger string
tension (hence greater acceleration) the region of positive specific
heat increases. (b) A similar plot, but now showing the Gibbs free
energy as a function of temperature.

of the black hole, and the black hole has negative specific heat, as in the vacuum
Schwarzschild case. For black holes larger than the AdS radius, the vacuum curvature
dominates, and the black hole has positive specific heat; in particular, there is a
minimum temperature for a black hole in AdS. Below this temperature, only a
radiation bath can be a solution to the Einstein equations at finite T . Plotting the
Gibbs free energy as a function of temperature shows both the allowed states, as well
as the preferred one for a given temperature. At very low T , the only allowed state
is a radiation bath. Above a critical temperature Tc =

√
3/2π`, one can have either

a radiation bath, or a black hole (that may be either ‘small’ or ‘large’). However for
T > 1/π`, the large black hole is not only thermodynamically stable (in the sense of
positive specific heat) but thermodynamically preferred, and a radiation bath will
spontaneously transition into a large black hole.

First consider the situation where our accelerating black hole is uncharged.4 Fixing
the tension of the string, we can plot the temperature of our black hole as a function
of its mass, M , as shown in figure 4.2. This figure shows how increasing acceleration
actually makes a black hole of given mass more thermodynamically stable in the sense
of positive specific heat. Figure 4.2 also shows the corresponding Gibbs free energy,
indicating the would-be Hawking-Page transition occurs at lower temperatures as
acceleration increases.

4In all explicit examples and figures in this section we take the θ = 0 axis to be regular (µ+ = 0).
This is for simplicity, including a nonzero north pole tension does not alter the essential physics of
what we present here.
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At first sight, this is rather curious, as a naive examination of the uncharged
C-metric shows that the Newtonian potential, f(r) has the cosmological constant
ameliorated by the acceleration: f(r) = r2(1/`2−A2) ' r2/`2

eff . Given that one often
imagines that it is the black hole radius relative to the confining ‘box’ of AdS that is
causing the thermodynamic stability of the large black holes, this looks rather con-
fusing: increasing acceleration appears to counteract the AdS length scale. However,
this intuition is too naive: the relevant effect is the spacetime curvature in the vicinity
of the horizon, and whether the black hole or the cosmological constant is dominant
(larger black holes having smaller tidal forces). Computing the Kretschmann scalar
at the event horizon demonstrates that indeed, increasing acceleration for a given
mass lowers the local tidal forces due to the black hole. In fact, it is easy to compute
the “Hawking-Page” transition temperature, assuming the radiation bath to have
zero Gibbs energy from the expressions for TS and M in terms of r+, A and `. A
brief calculation gives

THP(r+, `, A) = 1
4πr+

[
3r2

+
`2(1− A2r2

+) + 1
]

' 1
2π`

(
1− 3

2A
2`2 +O(A4`4)

)
. (4.45)

While the acceleration parameter A is not a thermodynamic charge, instead being
related to the tension via M , nonetheless, the general picture is that increasing
tension increases acceleration, thereby decreasing the temperature at which the
“Hawking-Page” transition occurs.

Now consider adding a charge to the black hole, for which we might now expect a
richer phase structure, possibly with critical phenomena analogous to the isolated
charged AdS black hole [92, 132, 133]. The critical phenomena occur due to the
three possible phases of black hole behaviour for varying mass. In the presence of
charge, there is now a lower limit on the mass parameter of the black hole, set by
the extremal limit where the temperature vanishes. Increasing the mass of the black
hole moves it away from extremality, thus increasing temperature, rendering the
specific heat positive near this lower limit. For large mass black holes, we are also in
a positive specific heat regime where the local vacuum curvature is dominant in the
near horizon geometry. Depending on the size of the charge relative to the vacuum
energy, there can be an additional negative specific heat regime where the black
hole is small enough that its local curvature is dominant, but is far enough from
extremality that the usual Schwarzschild negative specific heat type of behaviour
pervades. Given that for uncharged accelerating black holes, increasing tension lowers
the critical temperature at which the transition to positive specific heat occurs, we
expect this “swallow tail” behaviour to be mitigated for charged accelerating black
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Figure 4.3: A plot of temperature as a function of mass for the
charged black hole, with fixed Q = 0.05`, and varying tension as
labelled. As before, the slowly accelerating regime is shown as a
solid line, and A > A∗ is shown dashed.
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Figure 4.4: A plot of the free energy as a function of temperature
for varying tension with Q = 0.05` on the left, and varying charge
with 4µ− = 0.3 on the right.

holes in the canonical ensemble, and indeed this is what is observed.

We first explore the accelerating black hole in the canonical ensemble, i.e. where
the charge, Q, of the black hole is fixed, but we allow M and µ− to vary. In fig. 4.3,
we give a representative plot of temperature as a function of black hole mass for
Q = 0.05` to illustrate how increasing tension gradually removes the negative specific
heat phase of the black hole.

Figure 4.4 shows the variation of the free energy F = M−TS with temperature for
varying tension and charge. As tension is increased, the swallow tail becomes smaller,
and eventually disappears, analogous to the situation where the charge is gradually
increased, shown on the right in fig. 4.4. The free energy plot tells us that at low
temperatures, we have the near extremal black hole, however as the mass of the black
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Figure 4.5: The coexistence line for the charged black hole shown
for varying tension and cosmological constant with the black hole
charge is fixed at Q = 0.05. (a) ` = 1, and the value of tension
at the critical point is µc = 0.219. (b) 4µ− = 0.3, and the critical
value of the AdS radius is `c = 0.36.

hole increases there is a critical value at which there is a spontaneous transition to
a larger black hole with positive specific heat. The existence of this transition relies
on the presence of the intermediate region of negative specific heat for the charged
black hole. For large enough tension (or charge relative to `), there is a critical point
at which this intermediate regime disappears, and the phase transition along with it.
Figure 4.5 shows the “Van der Waals”-like behaviour of this coexistence curve for
varying tension (in analogy to the varying potential plots of [92]), and cosmological
constant (in analogy to [134]).

Finally, for completeness, we consider the thermodynamics of the accelerating
charged black hole in the grand canonical ensemble, where we now allow charge to
vary. The Gibbs potential is now G = M − TS −QΦ, with

Φ = ΦH + Φ1 = e

r+
− meA2

1 + e2A2 (4.46)

kept fixed. The interesting feature of fixed potential, as noted in [92] for an isolated
RNAdS black hole, is that there is a critical value of Φ delineating two qualitatively
different behaviours of the black hole. For small fixed potentials, the charged AdS
black hole can never approach extremality. This can be seen by noting that f =
f ′ = 0 at extremality, where f(r) is the RNAdS black hole potential. Solving
these algebraic equations, and substituting ΦRN = e/r+, one finds the constraint
3r2

+/`
2 = Φ2

RN − 1, thus for |ΦRN| < 1 there is no possibility of extremality. In our
case, for the charged accelerating black hole, the algebraic relations for extremality at
fixed potential are considerably more complicated partly due to the extra acceleration
parameter, but mostly because of the complicated expression for Φ (4.46). However,
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Figure 4.6: The Gibbs potential in the grand canonical ensemble
as a function of temperature, on the left with 4µ− = 0.3 for varying
potential as labelled, and on the right with Φ = 0.9 and varying
tension as labelled in the plot.
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Figure 4.7: A plot of the critical value of Φc(µ−) at which a black
hole is always preferred for all temperatures as a function of the
tension.

the same principle applies, and we also observe a similar phase transition from
small to large Φ, where the critical value of Φ is now tension dependent. Figure 4.6
demonstrates this behaviour showing the analogous plot to [92] with acceleration
for fixed µ−, and also how the behaviour depends on µ− at fixed Φ, illustrating how
increasing µ− improves the thermodynamic viability of the black hole. Figure 4.7
shows how the critical value of the potential, where only positive specific heat black
holes are allowed, varies with tension.
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4.3 Critical black holes with teardrop-shaped
horizons

Another area of interest recently has been to search for and discover spacetimes
which do not satisfy the reverse isoperimetric inequality. A little context is needed.
In exploring possible black hole solutions in four-dimensional Fayet-Iliopoulos gauged
supergravities, Gnecchi et al. briefly presented a noncompact black hole horizon with
a finite area [135]. It was later clarified in a letter by Klemm that this solution
can be interpreted as the ultra-spinning limit of the Kerr-AdS solution, where the
rotation parameter is taken to be critically large [136]. This limit only becomes
sensible if one admits the existence of conical defects running along the main axis
of revolution, which in turn become maximal in this limit. The result is a horizon
which could be described as roughly spherical near its equator, with sharp conical
deficits at each pole that extrude to the boundary.

From here, in a series of papers, Hennigar et al. [84, 85, 137], explored the ther-
modynamic implications of having such an extraordinary spacetime. In particular,
they sought to verify the reverse isoperimetric inequality conjecture, which we first
introduced back in section 1.4.2, in the context of these solutions. If the nondiverging
area of a noncompact horizon was the initial “first of its kind” for this solution, these
papers established the second such instance. The ultra-spinning black hole was the
first solution found to violate this conjecture, leading the authors to impose more
stringent conditions under which the bound might be valid.

Let us now seek to determine the uniqueness of this latter discovery. A curious
feature of the ultra-spinning spacetime is that it is seemingly isolated from regularly-
spinning black holes by any physical process. It is interesting therefore to ponder
whether it truly is a special case, or whether this violation is present in further
extensions of this solution by introducing acceleration.

The C-metric is similar in form to Kerr-AdS, but is differentiated by a nonremov-
able conical defect and a boundary offset from the usual r →∞, if one treats r as a
generic radial coordinate centred on the black hole. The characteristic feature of the
ultra-spinning black hole is the pair of maximal deficits at each pole. The accelerated
solution has by default one deficit greater than the other, which means that we may
only have one such maximal defect. The term “ultra-spinning” to designate this
class of solutions in the context of acceleration is misleading, for unlike inertial black
holes, this state may be reached by maximising — more appropriately, as will be
explained in further sections, extremising — not only rotation but either acceleration
or even charge as well. The term critical, for lack of an original word, will therefore
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be used to designate any black hole solution which exhibits either a single or a pair
of 2π-deficit(s).

4.3.1 Critical black hole geometries

Let us first consider the nonaccelerating ultra-spinning black hole. We begin by
considering the rotating black hole in asymptotically AdS space, described by the
Kerr-AdS metric, which was given in eq. (1.32). In Boyer-Lindquist coordinates, it
is,

ds2 = −f(r)
Σ

[
dt− a sin2 θ

dφ

K

]2
+ Σ
f(r)dr

2 + Σr2

g(θ)dθ
2 + g(θ) sin2 θ

Σr2

[
adt− (r2 + a2)dφ

K

]2
,

(4.47)

where

f(r) = 1− 2m
r

+ a2

r2 + r2 + a2

`2 ,

g(θ) = 1− a2

`2 cos2 θ,

Σ(r, θ) = 1 + a2

r2 cos2 θ, (4.48)

and K is a parameter which we choose to leave unspecified. The parameters m
and a correspond to the mass and rotation of the spacetime and ` =

√
−3/Λ

is the AdS length scale. In chapter 1, we introduced the Kerr-AdS metric with
K = Ξ = 1 − a2/`2. This actually ensures the poles are regular; indeed, one may
check that with K undefined, this spacetime has a conical deficit given by

δ = 2π
[
1− 1− a2/`2

K

]
. (4.49)

The ultra-spinning limit is obtained by taking the limit in which a→ `. From the
expression above, it is clear that in this limit the deficit along the θ = 0 and θ = π

axes is maximal (2π). The φφ-component of the traditional metric, with regular
poles, diverges, and the workaround presented in [84] amounts to having K 6= Ξ.
Part of the reasoning behind naming this spacetime as ultra-spinning is that the
angular velocity evaluated on the boundary of the spacetime also diverges, despite
the adjusted metric. Figure 4.8 shows an embedding of this spacetime.

We now revisit accelerating black holes and the C-metric. We are now interested
in the generalised C-metric (2.42) which includes a rotation parameter a. Rewriting
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Figure 4.8: A θ–φ slice of the ultra-spinning black hole spacetime
for r = r+, the outer horizon.

it for convenience, we have

ds2 = 1
Ω2

{
− f(r)

Σ

[
dt− a sin2 θ

dφ

K

]2
+ Σ
f(r)dr

2 + Σr2

g(θ)dθ
2

+ g(θ) sin2 θ

Σr2

[
adt− (r2 + a2)dφ

K

]2
}
,

F = dB, B = − e

Σr

[
dt− a sin2 θ

dφ

K

]
. (4.50)

where

f(r) = (1− A2r2)
[
1− 2m

r
+ a2 + e2

r2

]
+ r2 + a2

`2 ,

g(θ) = 1 + 2mA cos θ +
[
A2(a2 + e2)− a2

`2

]
cos2 θ,

Σ = 1 + a2

r2 cos2 θ, Ω = 1 + Ar cos θ. (4.51)

Parametric restrictions exist for this solution and were given in section 2.3, along
with the following explicit expressions for the string tensions:

µ± = δ±
8π = 1

4

[
1− g(θ±)

K

]
= 1

4

[
1− 1± 2mA+ A2(a2 + e2)− a2/`2

K

]
, (4.52)

from which we see that setting K = Ξ ≡ 1 + 2mA + A2(a2 + e2 − a2/`2) removes
the conical deficit at the north pole, leaving a positive defect at the south pole.
One might also envisage removing the defect at the south pole by setting K =
Ξ′ ≡ 1− 2mA+ A2(a2 + e2 − a2/`2) which would leave an excess at the north pole.
Generally, however, it is preferable to avoid conical excesses as these would have to
be sourced by negative energy objects.

The C-metric provides a mechanism through which we can construct a black
hole with strings of unequal tension at either pole, through various choices of the
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(a) (b) (c)

Figure 4.9: Embeddings in E3 of the ultra-spinning C-metric for
m = 9`, A = 0.04`−1 and (a) K = Ξ, (b) K = 1.2Ξ, (c) K = 2Ξ.

parameters A and K. The term critical, in this section, is used to describe a black
hole where at least one of the tensions is maximal, as in the ultra-spinning black hole.
This occurs when the deficit is taken to its upper limit, 2π. While for Kerr-AdS, this
corresponds to an upper bound on rotation, for the generalised C-metric, it actually
corresponds to a set of bounds, upper and sometimes lower, for the parameters of
not only rotation, but charge and acceleration too.

The critical limit for the C-metric is defined as the parametric limit required for
δ− → 2π, since δ− > δ+. We read off, from our definition of the conical deficits (4.52),
that this occurs when g(θ−) = 0. We have already determined this in section 2.3.4,
when investigating parametric restrictions on this metric. The case we are interested
in actually corresponds, as long asmA < 1, to the solid blue lines in fig. 2.3, described
by the relation

a2 = `2 1− 2mA+ e2A2

1− A2`2 , (4.53)

the condition for criticality.

This relation, combined with eq. (2.43) provides more stringent conditions in
parametric space for which critical C-metrics exist. Indeed, requiring that the right-
hand side of eq. (4.53) be positive allows us to draw the following criteria. We have
two possibilities, either

A <
1
`
, and 2mA < min{1 + e2A2, 2}, (4.54)

or

A >
1
`
, e2A2 < 1, and 1 + e2A2 < 2mA < 2. (4.55)
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For this limit to be sensible physically, we must ensure that the singularity remain
shielded by an event horizon. While for the general C-metric we are limited to
numerical techniques in determining when a horizon is formed — this was displayed
in fig. 2.3 — we are able to analytically determine expressions for the horizons in
the absence of charge5.

We are interested in determining the relationship between the parameters A, `
and m (with a given by eq. (4.53)) for which the function f(r) exhibits a double root.
The adjacent sections in parameter space will then correspond to a naked singularity
and one which has (at least) a horizon. Let rdr denote the location of the extremal
horizon. We then use f(rdr) = 0 to find m = m(rdr) when the spacetime is extremal,
and use it to factorise

f(r)
∣∣∣
m=m(rdr)

= r − rdr

r2 f(r). (4.56)

Since rdr is a double root of f(r), we also have f(rdr) = 0, which yields a constraint
on the parameters,

(1 + Ardr)
[(
A2 − 1

`2

)
r2

dr − 1
] [(

A2 − 1
`2

)
r3

dr −
(
A2 − 1

`2

)
r2

dr + 3Ardr − 1
]

= 0.

(4.57)

This has a couple of possible solutions. The first two factors give

rdr = − 1
A

m = 1
2A3`2 ,

rdr = ± `√
A2`2 − 1

m = 0 (4.58)

with the corresponding value of m also given. The solutions to the cubic equation
in the third factor may be parametrised using hyperbolic or trigonometric functions.
To do so, we treat 0 6 A` 6 1 and A` > 1 separately as follows:

• for 0 6 A` 6 1, we write A` = sin 3χ. The three real solutions are then

rdr = `

tan χ̄ cos 3χ̄ , m = `

2 sin3 χ̄

1− 4 sin2 χ̄

8 sin2 χ̄− 5 , (4.59)

where χ̄ = χ+ 2πn/3, and n ∈ {−1, 0, 1}.

• for A` > 1, we write A` = cosh 3η. There is one real solution and it reads

rdr = `

coth η sinh 3η , m = `

2 cosh3 η

4 cosh2 η − 1
8 cosh2 η − 5

. (4.60)

5Again, we do not expect charge to dramatically alter the observations laid out in this section,
however it does mute our ability to perform this analysis analytically.



4.3. Critical black holes with teardrop-shaped horizons 77

Figure 4.10: Parametric space for the accelerated ultra-spinning
black hole. Blue hatched regions are excluded by virtue of the con-
ditions set out in eq. (4.54) and eq. (4.55). Red hatched regions
correspond to naked singularities and are therefore also excluded.
The remaining space is separated into two regions, one which de-
scribes slowly accelerating black holes without an acceleration hori-
zon (lighter shade), and another for spacetimes with an acceleration
horizon (darker shade).

The mapped output of these solutions is displayed in fig. 4.10, which displays the
parametric regions which result in spacetimes containing either no horizons, an outer
event horizon, an acceleration horizon, or both. More importantly, this confirms that
it is therefore indeed possible to reach this limit while avoiding a naked singularity.

4.3.2 Thermodynamics of the critical C-metric

We are interested in determining whether these critical black holes violate the reverse
isoperimetric inequality. As alluded to in the introduction to this section, regular
ultra-spinning black holes seem to have more entropy than they ought to by this
upper bound. In order to consider this for the critical C-metric, we will need
a thermodynamic description, which we have already provided in the absence of
rotation.

The super-entropic black hole

Let us return to the nonaccelerating solution (4.47) to review the ultra-spinning black
hole and why it is super-entropic. Consider now the a→ ` limit. As mentioned above,
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this causes the original, smooth, Kerr-AdS metric to diverge, and if precautionary
measures are taken to allow for conical defects, it has the effect of freezing out
the tension and decoupling K as a physical parameter. This can be seen from the
expression for conical deficits (4.49): in this limit, K is no longer linked to the deficit,
and, in turn, it is no longer linked to the tension. With the thermodynamic quantities
derived in chapter 3, we see that some of these, such as the mass M = m/KΞ, also
diverge, through their dependence on the function γ ∼ Ξ−1 = (1 − a2/`2)−1 which
was introduced as a function multiplying the “naive” mass M ′ = m/K to satisfy
the first law. In particular, the angular velocity of the boundary diverges hence
the ‘ultra-spinning’ label attributed to this limit. That γ diverges poses the main
problem for resolving the first law in this limit.

This decoupling of K from µ, or rather, that, combined with the fact that µ is
now seemingly constant, does however hold interesting implications for the primitive
first law in eq. (3.16),

δ
(
m

K

)
= TδS + V0δP + Ω0δJ − 2r+δµ+ mδK

2K2 , (4.61)

which, itself, does not diverge. The δµ piece obviously vanishes, and we are free
to set δK = 0 too, since it is purely a gauge choice at this point, it no longer has
physical significance. This leaves a functioning first law for the ultra-spinning black
hole, with thermodynamic potentials, given in eqs. (3.15) and (3.17),

S = π

K
(r2

+ + a2) T = 1
2π(r2

+ + a2)

[
m− a2

r+
+ r3

+
`2

]
, Ω0 = aK

r2
+ + a2 ,

J = ma

K2 , V0 = 4π
3Kr+(r2

+ + a2), P = 3
8π`2 , (4.62)

(with a = `) distinct from the regular Kerr-AdS black hole. These can be related to
those in [84, 85] by recognising that K = 2π/µ̄ (where the bar allows for distinction
from what we define as tension, and µ̄ is the periodicity of their redefined azimuthal
coordinate).

Having obtained expressions for the volume and horizon area of the black hole,
we may now discuss the reverse isoperimetric conjecture. We find that

R = 6

√√√√ r2
+

r2
+ + `2 6 1, (4.63)

and the conjecture is violated. The existence of a super-entropic black hole would
naively imply the existence of other near-ultra-spinning super-entropic black holes
however the physical discontinuity between this black hole and regular Kerr-AdS
spacetimes prevents this train of logic. In [84], new more stringent conditions on
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the validity of this inequality were proposed, stating that the inequality ought to be
conjectured to only hold for compact horizons. We can verify these new additional
conditions by exploring whether the reverse isoperimetric inequality is violated for
noncompact accelerating black hole horizons.

The critical nonrotating C-metric

We return now to the nonrotating C-metric discussed in the previous chapter. We
explored some of the conditions one must impose unto this solution in section 2.3.2.
In particular, we had the condition (2.38):

e2A2 >

2mA− 1 if mA 6 1,

m2A2 if mA > 1,
(4.64)

which ensures that the metric signature is preserved for the entire range of θ ∈ [0, π].
The conical deficits along each axis θ± = 0, π were also given (2.40) as

δ± = 2π
[
1− g(θ±)

K

]
= 2π

[
1− 1± 2mA+ e2A2

K

]
, (4.65)

and we see that a maximal deficit is obtained along the θ = π axis provided that
1−2mA+e2A2 = 0. This also prevents a maximal deficit from occurring at θ = 0 as
δ+ < δ−. This corresponds to saturating the bound (4.64) for mA 6 1. Saturating
the bound for mA > 1 is a different type of limit in which a double root is introduced
for g(θ) over 0 < θ < π, resulting in two separate positive regions over this domain,
all the while preserving the signature. Once again, we see that the 2π-deficit is
clearly independent of K.

This limit has already been mentioned in [138, 139]. Unlike the nonaccelerating
case however, we still have the possibility of a defect at θ = 0. The tension of the
string running from the north pole is µ+ = (K−2)/4K, and K does in fact still have
a physical role in the spacetime. All this means is that this fact, combined with the
absence of any divergences other than those at the horizons, implies that we do not
need to treat this spacetime any different to its noncritical counterpart.

Using the thermodynamic quantities we established in section 4.1.2, and turning
off the electric charge, which adds little qualitatively, we know therefore that the
first law of black hole thermodynamics,

δM = TδS + V δP − λ+δµ+ − λ−δµ−, (4.66)
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is satisfied with the following quantities,

M = m

K
, T = 1

2πr2
+

[
m(1− A2r2

+) + r3
+

`2(1− A2r2
+)

]
, S = A4 = πr2

+
K(1− A2r2

+) ,

V = 4πr3
+

3K(1− A2r2
+)2 , P = 3

8π`2 , λ± = r+

1± Ar+
−m, (4.67)

From here we can safely take the critical limit 2mA = 1. The last term in eq. (4.66)
vanishes and none of the quantities above diverge. Finally, seeing as µ+ is still related
to K and we therefore need not treat this particular limit any differently, we expect
the isoperimetric conjecture to be obeyed. The isoperimetric ratio is

R = 1
6
√

1− A2r2
+

= 1
6
√

1− r2
+/4m2

> 1. (4.68)

Therefore, despite the noncompact horizon, its entropy does fall below the bound
imposed unto it by the isoperimetric inequality, and cannot be considered as “super-
entropic”.

4.3.3 Thermodynamics for the rotating C-metric

We have already alluded to the fact that unfortunately, the thermodynamics of rotat-
ing accelerated black holes are not well understood, despite recent attempts [140]6.
Nonetheless, by taking a perturbative approach, one may hope to glance at these
thermodynamics by taking an approach similar to what we have already been doing
in previous sections, that is, to assume the first law be upheld, introduce correction
terms to potentials for which this would not be unreasonable and then solve the
ensuing equations. Using this line of analysis, we will attempt to make sufficient
headway so as to draw certain conclusions concerning the critical limit.

Once again, we seek to determine an expression for the mass of the black hole as
well as other thermodynamic quantities by demanding that the first law,

δM = TδS + ΩδJ + ΦδQ+ V δP − λ+δµ+ − λ−δµ−, (4.69)

hold. To do so in an appropriate fashion, we will impose that entropy be a quarter
of the outer horizon area, and that the temperature be that obtained by regularising

6A method for obtaining the thermodynamics of rotating accelerating black holes was discovered
in the later stages of production of this thesis [4]. These new results are summarised in the
concluding chapter.
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the Euclidean form of this metric. To clarify, we write out all expressions explicitly,

T = f ′(r+)
4π = 1

2π(r2
+ + a2)

(
m(1 + A2r2

+)− a2 + e2

r+
+ r3

+

( 1
`2 − A

2
))

,

S = A4 = π(r2
+ + a2)

K(1− A2r2
+) . (4.70)

We will also preserve the following forms for the charge Q, angular momentum J ,
pressure P ,

Q = e

K
, J = ma

K2 , P = − Λ
8π = 3

8π`2 , (4.71)

and complete the set of extensive variables by including the tensions µ± = δ±/8π
as defined by eq. (4.52). We will be decomposing the angular velocity Ω, electrical
potential Φ and thermodynamic volume V into two terms

X = X0 +X1 (4.72)

in order to separate reasonably7 well-defined quantities, denoted by X0, and correc-
tion terms, X1, whose existence is required to satisfy the first law, and whose explicit
form left to be determined in what follows. As a reminder, our use of correction
terms is justified by considering the precedent laid out by the thermodynamics of
Kerr-AdS [53, 55] which we covered in sections 1.4 and 3.1. We have, to begin
with [53],

Ω0 = − gtφ
gφφ

∣∣∣∣∣
r=r+

= aK

r2
+ + a2 , Φ0 = er2

+
r2

+ + a2 . (4.73)

The thermodynamic volume is usually determined through the Smarr/scaling Euler
relation. We will take V0 to be that which satisfies the following “reduced” Smarr
relation given as

m

K
= 2(TS − PV0 + Ω0J) + Φ0Q. (4.74)

A straightforward re-arrangement of eq. (4.70) reveals

V0 = 4πr+(r2
+ + a2)

3K(1− A2r2
+)2 . (4.75)

Finally, we introduce a function γ(A, a, e, l) which we will be using to determine an

7By reasonably, we are referring to conventional (see, for example [55]) ways of deriving the
quantities in question, but applying them to the current geometry. These are all well-motivated
for more standard black holes and therefore are reasonable choices.
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explicit form for the mass,

M = m

K
γ(A, a, e, l), (4.76)

as well as explicit expressions for the correction terms introduced above.

To establish the first law, one usually begins by considering perturbations of
f(r+) = 0. The result can usually simply then be massaged directly into the first law
itself. Proceeding this way, making use of all the definitions given above, the closest
one can get to an expression which resembles the first law is the full form of the
expression we have been using throughout the previous sections as the initial starting
point of this derivation. In fact, the procedure remains much the same, however we
will proceed in full, as this is a crucial part in this write-up. One eventually obtains

δ
m

K
= TδS + Ω0δJ + Φ0δQ+ V0δP −

r+

1 + Ar+
δµ+ −

r+

1− Ar+
δµ− + mδK

2K2 ,

(4.77)

which generalises eqs. (3.16) and (4.30). One then combines eq. (4.69) with eq. (4.77),
from which it follows that

δM = δ
m

K
+ Ω1δJ + Φ1δQ+ V1δP −

(
λ± −

r+

1± Ar−

)
δµ± −

m

2K2 δK. (4.78)

We will be comparing this to what a variation of M as defined in eq. (4.76) yields.
In order to be able to do so term-by-term, we must ensure that all the variations
are independent. In particular, using eq. (4.52), as well as variations of eq. (4.71),
we can re-express δK and, for good measure, δA as

δK = −2K2

m∆ (1 + a2A2 −∆)δm
K
− 2aK
m`2∆(1− A2`2)δJ + 2eA2K2

∆ δQ− 8πa2K

3∆ δP

+ 2K2

m∆
(
m∓ A(a2 + e2)

)
δµ±,

δA = −AK
m

δ
m

K
− K

m
δµ+ + K

m
δµ−, (4.79)

where ∆ ≡ 1− e2A2 + a2

`2
(1−A2`2). It immediately follows, from substituting these

into eq. (4.78), that

δM = δ
m

K

1 + a2A2

∆ + δJ

(
Ω1 + aK

`2∆(1− A2`2)
)

+ δQ

(
Φ1 −

meA2

∆

)

+ δP
(
V1 + 4πma2

3K∆

)
+ δµ±

(
r+

1± Ar+
− λ± −

1
∆
(
m∓ A(a2 + e2)

))
. (4.80)

To perform the term-by-term comparison, we must write out perturbations of M
in terms of the same quantities as those above. For this we can use variations Q
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and J (4.71) as well as those for K and A outlined above in eq. (4.79) to eventually
obtain

δM = δ
m

K

(
γ − AγA −

aγa
∆ (2 + 2A2a2 −∆) + 2e

∆ γe(1 + a2A2 −∆)
)

+ K

∆ δJ
(

(2− 2e2A2 −∆)γa −
2ea
`2 (1− A2`2)γe

)
+ m

∆δQ
(
∆γe − 2eaA2γa

)
− 4πmδP

3K∆
(
`3∆γ` + 2a2eγe + 2a3γa

)
− δµ±

( 2
∆
(
m∓ A(a2 + e2)

)
(aγa + eγe)∓ γA

)
. (4.81)

Now that we have obtained two expressions for the variation of M , one from its
explicit definition, and one through its relation with the first law, we can require
these be equal to determine what functional form γ must have to obtain a set of
thermodynamic quantities for this geometry that obey the first law. Doing so yields
a set of differential equations which can be separated out into five equations that
determine correction terms from γ

Ω1 = K

∆ (2− 2e2A2 −∆)γa + 2aeK
`2∆ (1− A2`2)γe −

aK

`2∆(1− A2`2),

Φ1 = m

∆

(
2eaA2γa + (∆ + 2e2A2)γe + eA2

)
,

V1 = − 4πm
3∆K (∆l3γ` + 2a3γa + 2a2eγe + a2),

λ± = r+

1± Ar+
± γA −

1
∆(2aγa + 2eγe + 1)

(
m∓ A(a2 + e2)

)
, (4.82)

and a differential equation for γ,

∆(γ − AγA)− 2eγe(1 + a2A2 −∆))− aγa(2 + 2a2A2 −∆)− 1− a2A2 = 0. (4.83)

We also need these quantities to satisfy the Smarr relation

M = 2(TS − PV + ΩJ) + ΦQ. (4.84)

We can use eqs. (4.71) to (4.76) together to reduce the Smarr relation above into
another differential equation for γ,

∆(γ − `γ`)− eγe(2 + 2a2A2 −∆)− 2aγa(1 + a2A2)− 1− a2A2 = 0. (4.85)

With these two differential equations, we can discuss solving them. Subtracting
one from the other provides a first hint at the form of γ, which is so familiar it could
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have been guessed at. We infer

aγa + eγe + `γ` − AγA = 0 ⇐⇒ γ(A, a, e, `) = φ
(
a

`
,
e

`
, A`

)
. (4.86)

We re-write eq. (4.83) in terms of new unitless parameters x = a2/`2, y = e2/`2 and
z = A2`2,

φ(1 + x− z(x+ y))− 2xφx(1− x+ z(3x+ y))− 4yφy(−x+ z(2x+ y))

− 2zφz(1 + x− z(x+ y))− 1− zx = 0. (4.87)

This equation has exact solutions for x = 0 and z = 0, either the nonrotating case
or the nonaccelerating case, as have been outlined in previous sections. It is possible
to solve this equation perturbatively with respect to either variable at least up to
order x2 or z2, however for brevity, we shall only keep next-to-leading order terms,
and set integration constants to 0. For example, writing φ = φ(0) + zφ(1) + O(z2),
we may use the zeroth order solution to solve the equation at first order, given by

x+ φ(0)(x+ y) + 2xφ(0)
x (3x+ y) + 4yφ(0)

y (2x+ y) + φ(1)(1 + x) + 2xφ(1)
x (1− x)− 4xyφ(1)

y

= (1 + x)(x2 + 2x+ y2)
(1− x)2 + φ(1)(1 + x) + 2xφ(1)

x (1− x)− 4xyφ(1)
y = 0. (4.88)

To second order in A (first order in z), γ is given by

γ(A`�1) = 1
1− a2/`2

− A2`2

4

(
1 + 4e2/`2 + 3a4/`4

(1− a2/`2)2 + `

2a

(
1− a2

`2

)
log 1− a/`

1 + a/`

)
+O(A4`4).

(4.89)

Alternatively, it is also possible to consider perturbations around x = 0, for small
rotation parameter. Performing much the same as above, we find

γ(a�`) = 1
1 + e2A2 + a2

4e2

(
1 + 4e2/`2 + 3A4e4

(1 + e2A2)2 −
(
1 + e2A2

) arctan(Ae)
Ae

)
+O

(
a4

`4

)
.

(4.90)

Obtaining these solutions means that we are now able to write down, admittedly
at low order, expressions for the correction terms and the mass in the small acceler-
ation and/or small rotation limit using eqs. (4.76) and (4.82) with the appropriate
expansion. For convenience, we re-write the mass

M = m

K
γ, (4.91)
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noting that we do recover known solutions both in the absence of rotation and the
absence of acceleration.

Let us now return to the critical limit introduced above and examine how this
limit affects the thermodynamics of the system using the results from the previously.
While the perturbative techniques used constrain us in parameter space, the initial
set-0 nature of the ultra-spinning case hints that either this behaviour extends
continuously to other critical limits away from A = 0, or it truly is set-0 and remains
disconnected from other geometries in physical parameter space. As explained above,
a characteristic feature of the ultra-spinning limit is that certain thermodynamical
quantities for the KNAdS solution blow up. This is a direct consequence of the fact
that γ, in the absence of acceleration, diverges for a→ `. However, the presence of
an acceleration parameter shifts this limit to what is presented in eq. (4.53). γ, in
the critical limit and for small acceleration, expands to

γ(A`�1)
∣∣∣∣
us

= 1
2Am −

A`4

8m3

(
1 + e2

`2

)2
− A`2

4m +O(A2`2). (4.92)

This is clearly finite for A 6= 0. We therefore expect similar behaviour for the
remaining potentials. The correction to the angular velocity, for example, expands
to

Ω(A`�1)
1

∣∣∣∣
us

= −K2` + K

2mA` −
AK`3

8m3

(
1 + e2

`2

)2
− AK

4m`(m2 − e2) +O(A2`2), (4.93)

which is well-behaved, even in this critical limit. It therefore seems reasonable to
infer that the set of thermodynamic quantities must not be redefined as they were
for the ultra-spinning black hole and, as a consequence, the reverse isoperimetric
inequality is expected to be upheld and critical black hole solutions that accelerate
would not, then, be super-entropic in general.





Chapter 5

Holographic thermodynamics of
accelerating black holes

The importance of black holes in advancing our understanding of physics cannot be
underestimated. They provide a setting for testing our most fundamental ideas about
gravity under extreme conditions and offer us insight into the underlying microscopic
degrees of freedom that may be associated with quantum gravity. The subject of
black hole thermodynamics [17, 18, 29] has proven to be an invaluable tool to this
end, and broad classes of black holes have been shown to exhibit a rich and varied
range of thermodynamic behaviour, particularly in anti-de Sitter spacetime [141].

The work we have presented so far ambitiously tackles the thermodynamics of
accelerated black holes, a topic which had remained largely misunderstood. We were
able to make progress by identifying the tension as the extensive property which is
added with conical defects. Therefore, surprisingly, even though these black holes
are not isolated by virtue of the cosmic strings’ presence, it is possible to derive
sensible-looking thermodynamics, although recent studies have apparently conflicting
results [1, 2, 140, 142], in particular regarding our earlier definitions for the mass
and temperature. Since this work failed to convince members of the community, we
felt the need to re-examine our work from first principles. Eventually this led to the
publication of [3], which forms the basis of this chapter.

5.1 Mass of an accelerated black hole

We consider here the interpretation of an accelerating black hole in anti-de Sitter
(AdS) spacetime, with a focus on a holographic interpretation of the thermodynamics.
We resolve conflicting issues that exist in the literature, obtain a distinct set of
thermodynamic variables that are now consistent with the gravitational action, and
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agree with both the conformal and holographic methods for computing conserved
charges. To this end, we focus our attention to black holes with no acceleration
horizon [129], so that there is no ambiguity as to which horizon temperature should
be considered, or as to whether there is an equilibrium thermodynamics for the
system. In addition, as we discuss, the holographic computation and interpretation
are also unambiguous and straightforward. We also comment on the cases when
the acceleration horizons appear and provide a novel interpretation of the boundary
geometry.

Recall that the metric used to describe an accelerating black hole in AdS is the
AdS C-metric, given by (2.34)

ds2 = 1
Ω2

[
− f(r)dt2 + dr2

f(r) + r2
(
dθ2

g(θ) + g(θ) sin2 θ
dφ2

K2

)]
, (5.1)

where

Ω = 1 + Ar cos θ, g(θ) = 1 + 2mA cos θ,

f(r) = (1− A2r2)
(

1− 2m
r

)
+ r2

`2 . (5.2)

The parameters A and ` characterise the acceleration and cosmological constant
respectively, m is tied to the mass and K controls the overall conical deficit at both
poles (and, in a sense, A controls the disparity of the defect at each pole). We also
introduced conditions on these parameters in section 2.3.2, thus we require 2mA < 1
to preserve the metric signature. The absence of an acceleration horizon yields the
constraint f(−1/A cos θ) > 0, in turn constraining the parameter space (m, `) to the
white region bounded by the blue and red lines in figure 5.1. It is straightforward to
show via a transformation [110] on the coordinates (x = cos θ, y = −1/Ar) that the
latter bound is equivalent to the absence of black droplets [114]. Looking at eq. (5.2),
we see that such an acceleration horizon is indeed present for large values of A. At
A` = 1, the horizon is located precisely at r = ∞, intersecting the boundary at
θ = π/2. For smaller values of A, the horizon progresses beyond r =∞ into largely
negative values of r until A reaches the aforementioned red line, at which point the
acceleration horizon, intersecting the boundary at some value 0 < θ < π/2, vanishes.
Finally, the tensions at the poles are given by (2.40)

µ± = δ±
8π = 1

4

(
1− g(θ±)

K

)
= 1

4

(
1− 1± 2mA

K

)
, (5.3)

where θ+ = 0 and θ− = π denote the poles.

An intriguing fact that we came across when studying this metric reveals itself
when one examines the geometry obtained by setting m = 0. As discussed in [2, 142]
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Figure 5.1: Parameter space for the AdS C-metric. The blue and
red lines denote the boundaries in the parameter space (mA,A`)
for which the holographic computation is valid. The hatched red
region is where acceleration horizons are present and the hatched
blue region is where the metric signature is not preserved, leaving
the white region as the physical parameter space.

as well as earlier in chapter 4, setting m = 0 removes the black hole horizon, and
leaves pure AdS spacetime in Rindler-type coordinates. Performing the coordinate
transformation [129]:

1 + R2

`2 = 1 + (1− A2`2)r2/`2

(1− A2`2)Ω2 , R sinϑ = r sin θ
Ω , (5.4)

recovers AdS in global coordinates:

ds2
AdS = −

(
1 + R2

`2

)
α2dt2 + dR2

1 + R2

`2

+R2
(
dϑ2 + sin2 ϑ

dφ2

K2

)
, (5.5)

however, note that the time coordinate is not the expected AdS time, but is rescaled
by a factor of α =

√
1− A2`2. Conventionally, we choose the normalisation of our

time coordinate so that it corresponds to the “time” of an asymptotic observer.
While this is potentially a slightly slippery concept in AdS, taken together with
the spherical asymptotic spatial coordinates, this scaling suggests that the correct
time coordinate is not in fact t, but rather τ = αt, giving a rescaling of the time-
coordinate in (5.1). As we will see, this will inevitably have consequences for the
thermodynamics of our spacetime, as the mass and temperature are both sensitive
to the definition of the time coordinate. To emphasise the point we have made, let
us re-write the metric that we ought to use henceforth, now with rescaled time, as

ds2 = 1
Ω2

[
− f(r)

1− A2`2dτ
2 + dr2

f(r) + r2
(
dθ2

g(θ) + g(θ) sin2 θ
dφ2

K2

)]
, (5.6)

where f(r), g(θ) and Ω retain their earlier definitions.

We now turn to correctly identifying the black hole mass, often the biggest chal-
lenge in studying thermodynamics of black holes with nontrivial asymptotics. In what
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follows, we will provide two independent arguments, beginning with the Ashtekar-
Das method [64, 130] applied to the metric (5.6). However, although consistency of
thermodynamical relations is a common method of deriving thermodynamics (used
for example in [140]), we do not consider this sufficient, hence return to our theme of
holography, computing the holographic stress tensor of the boundary theory, thereby
confirming our result. As an ancillary argument, we finally check consistency with a
computation of the free energy.

5.1.1 The Ashtekar-Das mass

The first argument uses the Ashtekar-Das definition of conformal mass [64, 130],
which extracts the mass via conformal regularisation of the AdS C-metric near the
boundary. The idea is to perform a conformal transformation on (5.6), ḡµν = Ω̄2gµν ,
to remove the divergence near the boundary, which allows us to compute and extract
the electric part of the Weyl tensor of the conformal metric

Eνµ = `2

Ω̄
NαNβC̄ν

αµβ, (5.7)

composed from the Weyl tensor itself, C̄µ
ανβ, and the normal to the boundary,

Nµ = ∂µΩ̄. When contracted with a Killing vector, this forms a conserved current,
providing us with a novel way of obtaining a conserved charge.

Even though the conformal completion is not unique, the charge thus obtained
is independent of the choice of conformal completion. We pick Ω̄ = `Ωr−1, which
provides a smooth conformal completion in the limit A = 0. This allows us to write
the conformal metric at the boundary as

ds2 = `2
(
−A

2F (−x)
1− A2`2 dτ

2 + dx2

A2`2F (−x)G(x) +G(x)dφ
2

K2

)
, (5.8)

where we have written x = cos θ and F and G are the Hong-Teo [110] metric functions
we introduced in chapter 2, explicitly given by (2.32b)

G(x) = 1
A2`2 − F (−x) = (1− x2)(1 + 2mAx). (5.9)

The spacelike surface element tangent to Ω̄ = 0 needed to integrate out the current is
then obtained by computing the determinant of this metric for a surface at constant
τ and multiplying it with a timelike unit normal, yielding

dS̄µ = δτµ
`2dxdφ

αK
, (5.10)

The nonvanishing components of the normal vector are given by Nr = −`/r2 and
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Nx = A`, meaning that the only relevant components of the Weyl tensor are

C̄rτrτ = − 2m`Ω̄
r4(1− A2`2) , C̄xτxτ = m`f(r)Ω̄

(1− A2`2)r2G(x) , (5.11)

provided we pick a suitable Killing vector for the mass, k = ∂τ . The mass is then
obtained by performing the appropriately normalised integral at the boundary

Q(k) = `

8π lim
Ω̄→0

∮
EνµkνdS̄µ, (5.12)

finally leading to

M = Q(∂τ ) =
∫ 1

−1

m

4Kα
(
2− 3A2`2G(x)

)
dx = m

K

√
1− A2`2, (5.13)

where we used the fact that x2f(−1
Ax

) = F (−x).

This is the first result which contradicts both our earlier findings from section 4.3
and results found elsewhere [1, 2, 140]. The absence of acceleration horizons ensures
that M vanishes in the limit A`→ 1 only for m = 0 and is positive otherwise.

5.1.2 Holographic derivation of the mass

We now turn to another method for deriving the thermodynamic mass, by computing
the holographic stress tensor. This provides an alternate and completely independent
method of computation, and will reveal the dual interpretation of this system. The
idea here is to perform a Fefferman-Graham expansion of the metric [143], identifying
the fall-off of subleading terms in the metric at the boundary. These are then used
to compute the dual stress-energy tensor that can be integrated to give the mass of
the system.

The action, including boundary counterterms [144–146], is

I[g] = 1
16π

∫
M
d4x
√
−g

[
R + 6

`2

]
+ 1

8π

∫
∂M

d3x
√
−hK

− 1
8π

∫
∂M

d3x
√
−h

[
2
`

+ `

2R (h)
]
, (5.14)

where Kab = ∇anb, with n the unit normal to the surface ∂M, is the extrinsic
curvature of the boundary metric, evaluated asymptotically in an appropriate co-
ordinate system, defined presently, and K = Kabhab is its trace on the boundary. hab
is the intrinsic metric on ∂M, and R its Ricci curvature. Varying the action gives
the energy-momentum tensor:

8πTab = `Gab (h)− 2
`
hab −Kab + habK . (5.15)



92 Chapter 5. Holographic Thermodynamics

To compute these terms requires new coordinates near the boundary of AdS,
typically parametrised by Fefferman-Graham coordinates, in which

ds2 = `2

ρ2dρ
2 + ρ2

(
γ

(0)
ab + 1

ρ2γ
(2)
ab + ...

)
dxadxb, (5.16)

placing the boundary now at ρ =∞. Although often one identifies a ρ coordinate
globally, due to the complexity of (5.1), we instead perform an asymptotic expansion
for the coordinate transformation, writing

1
Ar

= −ξ −
∑

Xn (ξ) ρ−n, cos θ = ξ +
∑

Yn (ξ) ρ−n, (5.17)

determining the functions Xn and Yn by requiring the metric be of the form in
eq. (5.16) up to O(ρ−3); we find this to be achievable by truncating the expansion
at n = 4. Requiring there be no cross-terms gρξ and then solving order by order,
allows us to fix X1, X2, X3 and X4 in terms of Yn without having to solve differential
equations. With these functions we also find that gρρ = `2/ρ2 is automatically
satisfied at leading order and we need only therefore eliminate the two subleading
terms. This is most easily achieved from here by fixing Y2, Y3 and Y4, which can be
done once again first at next-to-leading order for Y2, at next order for Y3 and again
similarly at next order for Y4. With only seven of the eight functions determined, we
find that γ(1)

ab = 0 as required and we are left with one functional degree of freedom
in Y1 which we parametrise as

Y1(ξ) = A2`3

ω(ξ)αG(ξ)
√
F (−ξ) (5.18)

in order to elucidate the conformal degree of freedom in the boundary metric, ω,
and where F and G are as in eq. (5.9). The boundary metric is then given, in these
coordinates, by:

ds2
(0) = −ω

2dτ 2

`2 + ω2α2dξ2

A4`4F (−ξ)2G(ξ) + ω2α2G(ξ)
A2`2F (−ξ)

dφ2

K2 , (5.19)

which agrees with eq. (5.8) up to an overall factor when ρ→∞, which ω(ξ) allows
for. Note that the transformation (5.17) is valid in general only when F (−ξ) > 0,
but this is precisely the constraint that acceleration horizons are absent.

The expectation value of the energy momentum of the CFT3 can then be calcu-
lated, yielding a relativistic fluid with a nontrivial viscous-shear tensor

〈Tab〉 = lim
ρ→∞

ρ

`
Tab = 3

2ρEUaUb + ρE

2 `
2γ

(0)
ab + πab , (5.20)

with U = ω−1∂τ , and boundary indices are raised and lowered with `2γ
(0)
ab . The
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energy density is

ρE = mA3`

8πα3ω3F (−ξ)3/2(2− 3A2`2G(ξ)) , (5.21)

yielding the mass

M =
∫
〈Tab〉 kaτdSb =

∫
ρE`

3
√
−γ(0) dxdφ = αm

K
, (5.22)

where kτ = ∂τ . This result agrees with eq. (5.13) from the Ashtekar-Das method
in the previous section. Note that this calculation is independent of the conformal
frame (the choice of ω).

Finally, for completeness, we include the shear tensor is

πxx = 3mA5`3

16πα3ω3G(ξ)F (−ξ)3/2 = −πφφ , (5.23)

with all other components vanishing. The equation of state is that of a thermal gas
of massless particles and the dual fluid is anisotropic, as expected from the strongly
distorted boundary.

5.2 Thermodynamics

The agreement from two indendent methods for determining the black hole mass hints
strongly that our suggested rescaling of time by a factor of α =

√
1− A2`2 is indeed

correct, and the time coordinate we ought to use when determining thermodynamics
is then in fact τ rather than the original coordinate t which we employed in previous
chapters. Of most relevance, we expect the temperature to be directly affected,
and indeed, computing the temperature associated with the black hole (also the
temperature of the boundary field theory) via the Euclidean method, we find:

T = f ′(r+)
4πα = 1

2παr+

(
m

r+

(
1 + A2r2

+

)
+ r2

+
`2 − A

2r2
+

)
, (5.24)

which is indeed α-shifted relative to our definition of temperature in chapter 4. It
is worth pausing to reflect on this result. In some of our past work [1, 2, 142],
which formed the basis of the previous chapter, it appeared to be a natural approach
to use the standard time coordinate appearing in the AdS C-metric to derive this
temperature, as the blackening factor of the metric was in its canonical form; however,
as pointed out in [55], normalising the time and timelike Killing vector is key to
obtaining the correct thermodynamics, although the method of obtaining this correct
normalisation was less transparent.
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Here, having uncovered this suggestive result, we now proceed carefully with
considering thermodynamics of the accelerating black hole. As usual, we will take
the entropy to be one quarter of the horizon area and the pressure defined as:

S = A4 = πr2
+

K(1− A2r2
+) , P = − 3

8π`2 . (5.25)

To verify the first law, a simple approach is to recycle a relation we have used
previously (4.30), which is obtained by varying the metric function f(r+), yielding:

δ
(
m

K

)
= T̄ δS + V̄ δP − r+

1± Ar+
δµ± + m

2K2 δK, (5.26)

with T̄ and V̄ corresponding to our previous definitions of temperature and volume
given in eqs. (4.10) and (4.12) as

T̄ = 1
2πr+

(
m

r+

(
1 + A2r2

+

)
+ r2

+
`2 − A

2r2
+

)
,

V̄ = 4πr3
+

3K(1− A2r2
+)2 . (5.27)

The variation of the definition in eq. (5.13) for the mass can be written as

δM = αδ
(
m

K

)
+ m

K
δα

= αδ
(
m

K

)
− A`2

α

m

K
δA− 4π

3
mA2`4

Kα
δP. (5.28)

The variations of A and K were also given earlier as (4.27):

δK

K2 = 2(δµ+ + δµ−), m

K
δA = −Aδ

(
m

K

)
+ δµ− − δµ+, (5.29)

which implies that eq. (5.28) can be re-expressed as

δM = 1
α
δ
(
m

K

)
− 4π

3
mA2`4

Kα
δP − A`2

α
(δµ− − δµ+)

= T̄

α
δS +

(
V̄

α
− 4π

3
mA2`4

Kα

)
δP − λ±δµ±, (5.30)

provided the thermodynamic length is now defined as

λ± = 1
α

(
r+

1± Ar+
−m∓ A`2

)
. (5.31)

Equation (5.30) constitutes the first law, and we may observe that our definition
for the temperature in eq. (5.24) is in agreement. The first law suggests that the
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●●

Figure 5.2: Free energy. The red curve is the Schwarzschild-AdS
case, illustrating the well-known Hawking-Page transition, situated
at a temperature given by the intersection of the red curve with
F = 0. We do not know of any such interpretation for all other
curves with µ− 6= 0. The upper parts of these curves do not continue
to arbitrarily largeM but terminate at the boundary given in figure
5.1; this is visible in the above plot only for 4µ− = 0.9.

thermodynamic volume is given by

V = V̄

α
− 4π

3
mA2`4

Kα
= 4

3
π

Kα

[
r3

+
(1− A2r2

+)2 +mA2`4
]
. (5.32)

This statement is easily verified by the Smarr relation [125], M = 2TS−2PV , which
can be shown to hold with the quantities defined as above.

Finally, let us return to the computation of the action (5.33). We find

I = β

2αK

(
m− 2mA2`2 −

r3
+

`2(1− A2r2
+)2

)
, (5.33)

using the time coordinate τ . Some simple algebra then yields the expected result
F = I/β = M − TS for the free energy, which we plot in figure 5.2.

Although similar in form, the behaviour of the free energy no longer indicates the
presence of a standard Hawking-Page transition [50]. As the string tension is fixed for
the curves in the plot, no transition to pure radiation (with zero tension) is possible.
One may, however, speculate that a transition to a different type of spacetime (for
example that of the expanding spherical wave with an attached semi-infinite string
of given tension, similar to [147]) may still be possible — such an investigation,
however, remains to be carried out.

We can also verify the reverse isoperimetric inequality, discussed in section 1.4, or
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that the weighted ratio of volume to area R =
(

3V
ω2

) 1
3
(
ω2
A

) 1
2 (recall ω2 = 4π/K here)

is greater than unity. Using eq. (5.25) and eq. (5.32), R may rather unpleasantly be
written as

R6 = 1 + A2`6

4r4
+α2(1− A2r2

+)

(
4r2

+
`2 + A2`2(1− A2r2

+)2
)(

(1− A2r2
+) + r2

+
`2

)2

,

(5.34)

which is greater than unity, provided that Ar+ < 1. This is guaranteed by the
geometry; from f(r+) = 0, Ar+ < 1 if and only if 2m > r+ which is always the case
in the presence of the cosmological constant.

Our full and consistent description of the thermodynamics of an accelerating
black hole reconciles discrepancies and conflicts that have appeared in previous
investigations of this system [1, 2, 140] which were covered in previous chapters. For
example, while a consistent set of thermodynamic variables for charged accelerating
black holes was obtained in [1, 2, 142] and in chapter 4, the resultant free energy
was not consistent with the action. Alternate expressions for mass and temperature
have been posited [140], with the tension of one deficit held fixed to zero. The
other tension, while allowed to vary, was not included in the first law, which was
derived by assuming integrability of a scaling of mass and temperature. However
no physical interpretation was given either for this scaling or for why the energy
content of the tension was thermodynamically irrelevant. Furthermore, the vacuum
accelerating black hole has an acceleration horizon, akin to a Rindler horizon, and
the full structure of the spacetime is that of two accelerating black holes in two
Rindler regions. Whether one should be considering a single thermodynamic mass
and first law with an additional horizon and black hole, or whether, as suggested
in [131], this should be considered as a single system with a mass dipole is an open
question.

Note that our computation is independent of the conformal frame, hence we can
compare to investigations of holographic C-metrics with an acceleration horizon. For
example, by choosing ω2 = A2`2F (−ξ)α−2, we recover the form of the boundary
metric employed in [114], and our coordinate transformation (5.17) is now valid
throughout ξ ∈ [−1, 1]. However, if the condition F (−ξ) > 0 is violated, then a black
droplet/black funnel is present, and we no longer have an equilibrium temperature
for the system in general. The boundary geometry corresponds to a black hole in a
spatially compact universe, and so there is no spatial asymptotic region as pointed
out in [114]. However, with the full conformal degree of freedom present in our
expression, we can easily remedy this shortcoming by, for example, multiplying the
ω above by 1√

1−ξ
, giving an AdS2 × S1 asymptotic region at ξ = 1 with the AdS2
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and S1 radius being equal. If we multiply by 1√
1−ξ2

then there are actually two

AdS2×S1 asymptotic regions at ξ = ±1 and γ(0)
ab yields the geometry of a wormhole

when there are no horizons at the boundary. The AdS2 × S1 asymptotic geometry
is supersymmetric and to our knowledge has been unnoticed so far in the literature.





Chapter 6

Concluding remarks and outlook

We began in chapter 1 by reviewing some of the remarkable discoveries [5–7, 15,
17, 18, 25, 28, 29, 39] concerning black holes that lead to the inception of a new
field of research in black hole thermodynamics. We saw how certain mathematical
properties of black holes were indeed very reminiscent of behaviour observed in
the study of classical thermodynamics, leading to the establishing of the four laws
of black hole mechanics [7]. The most important revelation in this process was
undoubtedly Hawking’s discovery that black holes emit spontaneous radiation and
could therefore be considered thermal objects after all [28, 29]. This, combined with
Bekenstein’s assertion that the area of the event horizon of a black hole directly
corresponds to its entropy [15, 17, 18] form the basis of what we now call black hole
thermodynamics.

In chapter 2, we introduced the accelerating black hole and its geometrical de-
scription via the C-metric. Most notably, the C-metric is an interesting geometry
as it possesses a conical defect which is interpreted as a cosmic string with positive
tension attached to the corresponding pole.

One of our main goals was to adapt the thermodynamic framework to encorporate
accelerating black holes. To that end, in chapter 3, we showed how to allow for a
varying conical deficit in black hole spacetimes, and found the relevant thermody-
namical variables to describe the system. We introduced the thermodynamic length
as the conjugate potential to the tension in the first law. This length consists of a
direct geometrical part which can be interpreted loosely as the radius of the black
hole and a mass-dependent shift. Having identified tension as the correct extensive
variable introduced with conical defects, we then move on to acceleration.

In chapter 4, we derive the first law for accelerating black holes, adding to the
arsenal of solutions already shown to display thermodynamic characteristics. By
considering only slowly accelerating asymptotically AdS solutions, we are able to
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form an equilibrium in the absence of horizons other than the event horizon. We
derive the thermodynamic length for charged accelerating black holes as well as
other thermodynamic potentials needed for the first law. Using this description, we
explore the thermodynamic phases of accelerating black holes and find that they
exhibit similar behaviour to their nonaccelerating AdS cousins, however, it does seem
as though the impact of acceleration is to improve the thermodynamic stability of
the black holes.

It is interesting to note that the first law indicates that if the tension of a defect
is fixed, then there is no contribution to the variation of M coming from tension,
yet, if the black hole increases its mass and hence its horizon radius, the horizon
will now have consumed a portion of the string along each pole. This does not
appear in the thermodynamic relation. This reinforces the interpretation of M as
the enthalpy of the black hole [70]. Although the black hole increases its internal
energy by swallowing some cosmic string, it has also displaced the exact same amount
of energy from the environment, resulting in no net overall gain in the total energy
of the thermodynamic system (other than the mass that was added to the black hole
in the first place).

We also employ this thermodynamic description to explore black hole solutions
with maximal deficits. The ultra-spinning black hole of [84, 135, 136] belongs to this
class of black holes, as do the “bottle-shaped” black holes mentioned in [114, 120].
It was discovered that ultra-spinning black holes violate the reverse isoperimetric
inequality, implying they exceed the maximal amount of entropy as allowed by a
bound determined with respect to their thermodynamic volume. We find that ultra-
spinning accelerating black holes are not “super-entropic” in this sense, although we
were only able to do so by making use of an incomplete thermodynamic description
of rotating accelerating black holes, obtained perturbatively in the neighbourhoods
of either vanishing acceleration or vanishing rotation.

Finally, in chapter 5, we address some issues that were raised in our original
models. We improve upon our thermodynamic definitions and verify the mass of
the black hole using a holographic approach. We also found that the dual stress
energy tensor for the accelerating black hole corresponds to a relativistic fluid with
a nontrivial viscous shear tensor proportional to the acceleration parameter. Given
that the acceleration parameter also determines the conical deficit, the source of
this anisotropy is clearly due to the impact of the deficit of the fluid. It would be
interesting to compare this to the weak coupling calculation of stress tensors in the
presence of conical deficits [148].

A caveat of this description is that we have been unable to incorporate charge in
any way; in particular, forming a holographic description of a charged accelerating
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black hole is expected to be a challenge due to the asymptotic structure of the
gauge field. In this sense then, a full description of the thermodynamics of charged
accelerated black holes is still lacking, however, our hope is that some of the ideas
presented here bring us that much closer to its discovery.

6.1 Thermodynamics of the rotating
accelerating black hole

During the final stages of the production of this thesis, some of the authors of [3]
have succeeded in obtaining a thermodynamic description of the accelerating black
hole with rotation [4]. The relevance to the work at hand is clear; we therefore deem
it necessary to include these most recent results, appending some final comments.
Although the work is not publicly available at the time of writing, the mass of
a rotating accelerating black hole, described by the generalised C-metric given in
eq. (2.31), was successfully obtained by computing the holographic stress tensor of
this geometry following approach as that presented in chapter 5. The resulting mass
is given as

M = m

K

√
1− A2`2(1 + a2A2)
1− a2

`2
(1− A2`2)

. (6.1)

By reworking the derivation presented in section 4.3.3 to account for the rescaling
t = τ/α = τ/

√
1− A2`2 of time, which we introduced in chapter 5, we can show

how this mass satisfies the first law along with other thermodynamic potentials we
provide below. First, an expression for the variation of mα/K can be obtained
simply by modifying eq. (4.77) which describes the variation of m/K:

δ
mα

K
= T̄

α
δS + Ω̄0

α
δJ +

(
V̄0

α
+ 4πmA2`4

3Kα

)
δP −

(
r+

α(1± Ar+) ∓
A`2

α

)
δµ± + mδK

2αK2

= TδS + Ω0δJ + V0δP −
(

r+

α(1± Ar+) ∓
A`2

α

)
δµ± + mδK

2αK2 , (6.2)

where the quantities

S = A4 = π(r2
+ + a2)

K(1− A2r2
+) , J = ma

K2 , P = − Λ
8π = 3

8π`2 ,

T̄ = f ′(r+)
4π = 1

2π(r2
+ + a2)

(
m(1 + A2r2

+)− a2

r+
+ r3

+

( 1
`2 − A

2
))

,

Ω̄0 = − gtφ
gφφ

∣∣∣∣∣
r=r+

= aK

r2
+ + a2 , V̄0 = 4πr+(r2

+ + a2)
3K(1− A2r2

+)2 , (6.3)
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are those which we derived in chapter 4 and satisfy

m

K
= 2T̄ S − 2PV̄0 + 2Ω̄0J. (6.4)

In turn, the relation above can also be rewritten as

mα

K
= 2TS − 2PV0 + 2Ω0J. (6.5)

From here, we may introduce the function γ = γ(A, a, `), and computing the
variation of mαγ/K, both directly and then indirectly using eq. (6.2), as we did in
chapter 4, allows us to derive correction terms from γ as follows:

V1 = 4πm
3Kα∆+

(
∆+(A2`4γ − α2`3γ`)− 2α2a3γa − a2 −∆+A

2`4
)
,

Ω1 = αK

∆+

(
− a
`2 + ∆−γa

)
,

λ± = r+

α(1± Ar+) −
m∓ a2A

α∆+
∓ A`2γ

α
− 2α(m∓ a2A)aγa

∆+
± αγA, (6.6)

where

∆± = 1± a2α2

`2 . (6.7)

In conjunction with the Smarr relation, we obtain a pair of differential equations,
which, together, allow us to specify that γ = γ(a2/`2, a2A2). Replacing γ = (1 +
a2A2)/∆−, as provided by [4], solves the remaining equation, confirming that the
first law is now satisfied.

Thus, the first law for a rotating accelerating black hole,

δM = TδS + ΩδJ + V δP − λ±δµ±, (6.8)

is satisfied with the following quantities:

T = 1
2απ(r2

+ + a2)

(
m(1 + A2r2

+)− a2

r+
+ r3

+

( 1
`2 − A

2
))

,

Ω = aK

α(r2
+ + a2) + a

`2
K

α∆−
,

V = 4π
3Kα

(
r+(r2

+ + a2)
(1− A2r2

+)2 +mA2`4 + ma2α2

∆−

)
,

λ± = r+

α(1± Ar+) −m
∆+

α∆2
−
∓ A`2

α
, (6.9)

along with the previously defined expressions for the entropy S, angular momentum
J , pressure P , tension µ± and finally the mass, given above, M .



6.1. Thermodynamics of the rotating accelerating black hole 103

(a) (b)

Figure 6.1: Parametric restrictions that apply to the rotating
accelerating black hole. The dashed lines correspond to acceleration
horizons and the solid black lines to the extremal limit. The blue
lines correspond to the critical limit in which one of the poles has
a maximal conical deficit. In (a) m = 0.7`, and in (b) m = 1.7`.

Equipped with these relations, we may now finally answer the question which
led to much of the work presented here. Is the critical rotating accelerating black
hole super-entropic? In other words, we must establish whether the critical rotating
C-metric violates the reverse isoperimetric inequality. As a reminder, in the critical
limit for this geometry (for mA < 1 only),

a2

`2 (1− A2`2) = 1− 2mA. (6.10)

For small mass, the conditions that there be no acceleration horizon and that there
be an event horizon shielding the singularity prevent this limit from being reached.
For larger mass, the parametric restrictions that apply are displayed in fig. 6.1, and
the blue lines directly correspond to the critical limit in each case. The expression
given by the reverse isoperimetric ratio is cumbersome, we therefore plot the quant-
ity R6 − 1, which is positive when the inequality holds, in fig. 6.2. As one may
observe, the reverse isoperimetric inequality is satisfied in both cases, provided the
parametric restrictions mentioned above are imposed. Our earlier conjecture, based
on perturbative arguments, that critical accelerated rotating black holes are not
super-entropic holds, and while we have not provided a mathematical proof that this
is always the case, fig. 6.2 strongly suggests that this statement is valid in general.
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Figure 6.2: The reverse isoperimetric inequality states that the
quantityR6−1 > 0 for all black holes. This is a plot of this quantity
with respect to the rotation parameter a at different values of the
mass parameter m. The represented geometries have parametric
restrictions which have been summarised in fig. 6.1.
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