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Abstract:

The Sakai-Sugimoto model [1, 2] is the leading model of holographic QCD. It has an

effective five-dimensional description in which baryons correspond to the bulk

topological solitons of a Yang-Mills-Chern-Simons theory. However, the large

dimensionality of the model means studying soliton solutions either analytically or

numerically is difficult.

Sakai-Sugimoto solitons in the high density limit should provide an analogue of cold,

dense QCD. Two competing theories for high-density solutions are the dyon salt

model [3], in which the appropriate crystal is a salt-like arrangement of dyons, and

the baryonic popcorn model [4, 5] in which a series of transitions occurs where the

three-dimensional soliton crystal develops extra layers in the holographic direction.

In this thesis we consider a range of low-dimensional analogues and approximations

to the Sakai-Sugimoto model. We first investigate an O(3) sigma model stabilised by

vector mesons, and a baby Skyrme model in pure AdS spacetime, before moving on

to consider homogeneous ansätze in both the holographic baby Skyrme and full Sakai-

Sugimoto models. In each case we look for analogues of the dyon salt and baryonic

popcorn configurations, and find evidence for new features in the high-density regime

of holographic QCD.
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Chapter 1

Introduction

Solitons are solitary waves, obtained as the solutions to certain classes of nonlinear

partial differential equations. Loosely speaking, they are spatially localised waves of

fixed form which can interact with other solitons and emerge from collisions unchanged.

Solitons were first observed in 1834 by Scottish engineer John Scott Russell in the

form of bow waves on the Union Canal [10]. Such solitary waves were later found

mathematically, in 1895, as nonlinear solutions to the Korteweg-de Vries equation [11].

The existence and stability of topological solitons can be attributed to topological

properties, often linked to boundary conditions of the system in question. To each

topological soliton solution one can assign an invariant, often integer-valued, known

as the topological charge or soliton number. This allows us to divide the space of

solutions into distinct classes. Solutions from different topological charge sectors cannot

be smoothly deformed into each other: more specifically they cannot be smoothly

deformed to a vacuum solution, thus providing their stability. Solitons of this form

were proposed as an approximate model of nuclear physics by Tony Skyrme [12, 13] to

describe baryons using a (3+1)-dimensional family of solitons known as Skyrmions. The

study of topological solitons has become an important aspect across a broad range of

physics, such as in the context of superfluids [14] and superconductors [15] in condensed

matter physics, cosmic strings [16] and magnetic monopoles [17, 18] in cosmology, and

even protein folding [19, 20] in biological physics.

In this introductory chapter we will begin by introducing four prototypical examples

of topological solitons in up to 4 spatial dimensions and use them to introduce some of

1



1.1. Solitons in 1-d: kinks 2

the key mathematical features of soliton theory that will be used in this thesis. We will

then introduce the idea of solitons in the context of holographic QCD, with particular

reference to the Sakai-Sugimoto model.

1.1 Solitons in 1-d: kinks

We start with a (1 + 1)-dimensional model given in terms of a single scalar field φ,

defined by the Lagrangian density

L = −1
2∂µφ∂

µφ− U(φ) . (1.1.1)

where U(φ) is some potential term (note we use the “mostly plus” metric convention

η00 = −1, ηij = δij, which we will use throughout the thesis). For U(φ) = 1 − cosφ

this is called the sine-Gordon model [21], and the associated field equation and static

energy for this model are given by

− ∂µ∂µφ+ sinφ = 0 , (1.1.2)

E =
∫ ∞
−∞

{1
2(φ′)2 + (1− cosφ)

}
dx . (1.1.3)

This system has vacua whenever U(φ) = 0 i.e. φ = 2πn, n ∈ Z. The presence of

multiple vacua gives rise to topological soliton solutions which interpolate between

different vacua. In 1-dimension, such solitons are known as kinks. The topological

charge of the kink is given by

N = φ+ − φ−
2π = 1

2π

∫ ∞
−∞

φ′ dx , (1.1.4)

where φ± are the vacuum values the field interpolates between as x → ±∞. The

system is invariant under transformations of the form φ→ φ± 2nπ, so we can always

perform such a transformation to set φ− = 0. Solutions with N < 0 are known as

anti-kinks.

We now introduce the first important concept in soliton theory: that of the Bogomolny

bound [22]. This is where we use the topological properties of the system to place a



1.1. Solitons in 1-d: kinks 3

lower bound on the static energy (1.1.3). Writing U(φ) = 1− cosφ we have(
1√
2
φ′ ±

√
U(φ)

)2

≥ 0

⇒ 1
2(φ′)2 + U(φ) ≥ ±

√
2U(φ)φ′

⇒ 1
2(φ′)2 + U(φ) ≥

∣∣∣∣√2U(φ)φ′
∣∣∣∣

(1.1.5)

where in the second line we have expanded the square. We can then integrate over

the full spatial domain, identifying the left-hand side with the static energy (1.1.3) to

obtain

E =
∫ ∞
−∞

{
1
2(φ′)2 + U(φ)

}
dx ≥

∫ ∞
−∞

∣∣∣∣√2U(φ)φ′
∣∣∣∣ dx

=
∫ φ+

0

∣∣∣∣√2U(φ)
∣∣∣∣ dφ

=
∫ 2πN

0
2
∣∣∣∣∣sin φ2

∣∣∣∣∣ dφ = 8|N | .

(1.1.6)

In the second and third lines we have performed a change of variable in the integration,

identified φ+ = 2πN from (1.1.4), substituted the explicit form for U(φ) back in and

computed the integral using N -fold symmetry of the integrand.

Such bounds are a typical feature of models that permit topological soliton solutions,

as we shall see in future examples. Saturation of the Bogomolny bound gives us a

first-order Bogomolny equation from the first line of (1.1.5)

φ′ = ±
√

2U(φ) = ±2 sin φ2 , (1.1.7)

whose solutions also satisfy the sine-Gordon field equation (1.1.2). In this case, the

Bogomolny equation can be integrated exactly to obtain

φ(x) = 4 arctan (exp (x− a)) , (1.1.8)

where a is a constant of integration describing the position of the kink. This solution

has φ+ = 2π, so we see that this does indeed describe a single kink. Multi-kink solutions

can be obtained via Bäcklund transformations [23], but these solutions are not static

so cannot be obtained from the Bogomolny equation (there is, in fact, a repulsive force

between kinks [24]).

The last key aspect of soliton theory we will introduce here is Derrick’s Theorem [25].
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This provides a non-existence theorem for topological solitons by considering spatial

rescalings (for any number of dimensions) of the form xxx→ Λxxx, Λ > 0. We denote the

static energy after rescaling by E(Λ). Derrick’s Theorem then states that, if E(Λ) has

no stationary points (with respect to spatial rescalings) for non-vacuum finite energy

field configurations, then the system can have no static, finite energy solutions to the

field equations other than the vacuum. For the sine-Gordon model above we can write

E =
∫ ∞
−∞

{1
2(φ′)2 + (1− cosφ)

}
dx ≡ E2 + E0 , (1.1.9)

where subscripts denote the order of the derivatives. We then have

E(Λ) = Λ−1E2 + ΛE0 , (1.1.10)

which is stationary when Λ =
√
E2/E0. We see that soliton solutions are not ruled

out.

1.2 Solitons in 2-d: sigma model lumps and baby

Skyrmions

One model that admits topological soliton-like solutions in 2 spatial dimensions is the

O(3) sigma model [26], described by a three-component unit vector field φφφ(xxx) with the

Lagrangian density

L = −1
2∂µφ

φφ · ∂µφφφ− 1
2λ(1− φφφ · φφφ) . (1.2.1)

The Lagrange multiplier λ is dependent on the field and enforces the constraint φφφ·φφφ = 1

as follows. By calculating the variation of (1.2.1) with respect to the field φφφ we find

λφφφ = −∂µ (∂µφφφ)

⇒ λ = −∂µ (∂µφφφ) · φφφ

= −∂µ ((∂µφφφ) · φφφ) + ∂µφφφ · ∂µφφφ

= ∂µφφφ · ∂µφφφ ,

(1.2.2)
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where we have eliminated the first term in the penultimate line using the constraint.

The associated field equation and static energy of this model are then given by

− ∂µ∂µφφφ− (∂µφφφ · ∂µφφφ)φφφ = 0 , (1.2.3)

E = 1
2

∫
∂iφφφ · ∂iφφφ d2xxx . (1.2.4)

We use lower case Greek letters µ, ν, . . . to indicate spacetime indices 0, 1, 2 and lower

case Latin letters i, j, . . . to indicate purely spatial indices 1, 2.

For finite energy field configurations we require the field φφφ to tend to a constant vector

at spatial infinity, which we can take to be φφφ∞ = (0, 0, 1) without loss of generality.

This compactifies space to R2∪{∞} ∼= S2, meaning that the field is a map φφφ : S2 → S2.

Such a field has an associated integer B, the topological degree of the map φφφ, arising

from the homotopy group π2(S2) = Z. This integer tells us how many times the domain

wraps around the target space under the mapping. In 1-dimension this is called the

winding number, and this terminology is sometimes also used for higher dimensional

systems. In topological soliton theory, the topological degree of a soliton is also known

as the topological charge.

The topological degree can be explicitly calculated as

B =
∫
φφφ?(Ω) , (1.2.5)

where φφφ?(Ω) is the pull-back of the normalised volume measure Ω on the target space.

In the case of the O(3) sigma model our target space is S2 and the volume measure on

this space (using spherical polar coordinates) is

Ω = 1
4π sin θ dθdφ . (1.2.6)

After the parametrisation φφφ(xxx) = (cos θ(xxx), sin θ(xxx) cosφ(xxx), sin θ(xxx) sinφ(xxx)) we can

then calculate the pull-back:

φφφ?(Ω) = 1
4π sin θ(xxx)J(xxx) d2xxx

= 1
4πφ
φφ · (∂1φφφ× ∂2φφφ) d2xxx

(1.2.7)

where J(xxx) = ∂1θ∂2φ− ∂2θ∂1φ is the Jacobian of the map at xxx. Finally, this yields an
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explicit expression for the topological charge:

B = 1
4π

∫
φφφ · (∂1φφφ× ∂2φφφ) d2xxx . (1.2.8)

The topological degree of a map is a very important concept in topological soliton

theory, and can be calculated in a number of other ways. One such way is by counting

pre-images: since the degree can be thought of as a generalised winding number, it is

equivalent to counting the pre-images of points on the target space with multiplicity

(see [27] for an detailed explanation of why the two definitions are equivalent).

As with kinks in 1-d, we can find a Bogomolny bound and Bogomolny equation for the

O(3) sigma model. By integrating the inequality

(∂iφφφ± εijφφφ× ∂jφφφ) · (∂iφφφ± εikφφφ× ∂kφφφ) ≥ 0 , (1.2.9)

we can find an inequality in terms of the static energy (1.2.4) and topological charge

(1.2.8), yielding E ≥ 4π|B|.

Exact solutions in this model for topological charge B can easily be found by re-writing

the problem in terms of Riemann sphere coordinates

W (ζ) = φ1 + iφ2

1− φ3
, (1.2.10)

where we have introduced the complex coordinate ζ = x1 + ix2. The static energy and

topological charge now take the form

E = 4
∫ |∂ζW |2 + |∂ζW |2

(1 + |W |2)2 d2xxx , (1.2.11)

B = 1
π

∫ |∂ζW |2 − |∂ζW |2
(1 + |W |2)2 d2xxx , (1.2.12)

where ∂ζ = 1
2(∂1 − i∂2) and ∂ζ = 1

2(∂1 + i∂2). Finite energy solutions satisfy W → ∞

as |ζ| → ∞ (since φφφ→ (0, 0, 1)), and the Bogomolny bound for B > 0 is saturated by

fields satisfying ∂ζW = 0 i.e. holomorphic functions of ζ. Recalling that the topological

degree of a map can be obtained by counting pre-images, and demanding finite energy,

gives soliton solutions as rational functions

W (ζ) = p(ζ)
q(ζ) , (1.2.13)
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where p(ζ) and q(ζ) are polynomials which share no common factors. In addition, p(ζ)

must be a polynomial of degree B and q(ζ) must have degree strictly less than B in

order to preserve the condition W →∞ as |ζ| → ∞.

Strictly speaking, solutions of this form are not solitons since they exhibit an instability

to spatial rescalings. This can be shown by looking to Derrick’s Theorem. The static

energy (1.2.4) is, in fact, invariant under spatial rescalings

E(Λ) = E2 = E , (1.2.14)

and so the solutions described above are sometimes instead called O(3) sigma lumps

(or instantons).

This problem can be circumvented by adding further terms to the Lagrangian. If a

scalar potential and a term fourth-order in derivatives are added then we can write

E = E2 + E0 + E4 , (1.2.15)

E(Λ) = E2 + Λ2E0 + Λ−2E4 , (1.2.16)

which now has stationary points with respect to spatial rescalings, and so true soliton

solutions are not ruled out. One well-studied example of this form is the baby Skyrme

model [28]

L = −1
2∂µφ

φφ · ∂µφφφ−m2(1− φφφ · nnn)− κ2

4 (∂µφφφ× ∂νφφφ) · (∂µφφφ× ∂νφφφ) (1.2.17)

where m and κ are positive constant parameters, and nnn is a constant unit vector,

usually set to nnn = (0, 0, 1). The topology is fixed by the winding number above, and

we find the same Bogomolny bound E ≥ 4π|B|. Further details of this model will be

described in Chapter 2 where we discuss the baby Skyrme model (and another related

model) in a curved spacetime as a low-dimensional analogue of holographic QCD. It

should be noted that the baby Skyrme model does exhibit multi-soliton solutions, but

none of these solutions (even for B = 1) saturate the Bogomolny bound.

Baby Skyrmions have been studied extensively as a low-dimensional analogue of

Skyrmions [28], and also manifest themselves in condensed matter physics, such as in

studies of the quantum Hall effect [29] and chiral ferromagnets [30].
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1.3 Solitons in 3-d: Skyrmions

The Skyrme model [12, 13] in (3+1)-dimensions is written in terms of an SU(2)-valued

field U(x) and is given by the Lagrangian density

L = 1
2Tr (RµR

µ) + 1
16Tr ([Rµ, Rν ][Rµ, Rν ]) , (1.3.1)

where Rµ = (∂µU)U−1. As before, finite energy configurations require the matrix U

to tend to a constant matrix at spatial infinity, which we can take to be the identity

matrix: U → 12 as |xxx| → ∞. This compactifies space to R3 ∪ {∞} ∼= S3 and so we

have a map U : SU(2) ∼= S3 → S3. Such maps have homotopy group π3(S3) = Z and

there is an associated integer winding number

B = 1
24π2

∫
εijkTr(RiRjRk) d3xxx , (1.3.2)

which provides the appropriate topological charge. The static energy of solutions within

this model is given by

E =
∫ {
−1

2Tr(RiRi)−
1
16Tr([Ri, Rj][Ri, Rj])

}
d3xxx , (1.3.3)

and there is an associated Bogomolny bound E ≥ 12π2|B|. The solitons of this model

are called Skyrmions.

The Skyrme model has been suggested as a candidate low-energy effective field theory

description of QCD in the large Nc limit, where Nc is the number of quark colours

[31, 32, 33], with the Skyrme field taking values in SU(Nf ) for Nf quark flavours (here

Nf = 2). The model is interpreted as a nonlinear theory of pions, and baryons arise

as the Skyrmions of the system, with the baryon number being identified with the

topological charge. This interpretation can be made more explicit by writing the field

U as

U(x) = σ(x)12 + iπππ(x) · τττ , (1.3.4)

where τττ are the Pauli matrices, πππ(x) are the pion fields and σ(x) is a scalar field

determined by the constraint σ2 + πππ · πππ = 1 arising from det(U) = 1.

The Skyrme model (with the addition of a pion mass term) has had many successes in
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describing baryons qualitatively, managing to successfully predict the stability of the

alpha particle [34] as well as the quantum numbers of excited states of light nuclei [35].

However, the Skyrme model does not accurately reproduce the physically observed

binding energies of nuclei, typically predicting them to be an order of magnitude larger

than observed [36, 37]. There have been many attempts to modify the Skyrme model

in order to reduce the binding energies predicted [38, 39, 40, 41, 42], each with varying

levels of success.

1.4 Solitons in 4-d: Yang-Mills instantons

The final class of solitons we will look at in this introduction are the Yang-Mills

instantons [43] defined in 4-dimensional Euclidean spacetime. The fourth spatial

dimension can be interpreted as a Wick rotation of the Minkowski time coordinate,

from which we derive the name “instanton”: they are localised around an “instant” of

Euclidean time.

The model is formulated as an SU(2) gauge theory with su(2)-valued gauge potential

AI and associated field strength tensor FIJ = ∂IAJ−∂JAI +[AI , AJ ], where upper case

Latin letters I, J, . . . denote the four spatial indices 1, 2, 3, 4. The Yang-Mills action is

given by

S = −1
2

∫
Tr(FIJFIJ) d4x , (1.4.1)

and the topological data is captured by the second Chern number

c2 = N = − 1
16π2

∫
Tr(FIJ ? FIJ) d4x ∈ Z , (1.4.2)

where we have defined the dual field strength

?FIJ = 1
2εIJKLFKL . (1.4.3)

The inequality−Tr((FIJ±?FIJ)(FIJ±?FIJ)) ≥ 0 along with the fact that Tr(FIJFIJ) =

Tr(?FIJ ? FIJ) yields the Bogomolny bound

S ≥ 8π2|N | , (1.4.4)
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and the bound is saturated by (anti-)self-dual fields satisfying

FIJ = ± ? FIJ . (1.4.5)

Under spatial rescalings we find that the action remains invariant; for this reason the

O(3) sigma lumps from Section 1.2 are sometimes considered to be a natural low-

dimensional analogue of Yang-Mills instantons.

Many sophisticated techniques have been developed to study Yang-Mills instantons,

most notably the ADHM construction [44] which generates N -instanton configurations

from quaternionic matrices satisfying nonlinear algebraic constraints.

Yang-Mills instantons also have connections with lower-dimensional solitons, normally

through dimensional reduction. One pertinent example relates Yang-Mills instantons

with Skyrmions. In 1989, Atiyah and Manton showed that good approximations to

static Skyrmion solutions could be obtained by computing the holonomy of a Yang-Mills

instanton in R4, formally writing the static Skyrme field as a time-ordered exponential

of the time-component of the Yang-Mills gauge field [45]. In fact, as explained in [46],

Yang-Mills instanton holonomies give exact solutions to a related BPS Skyrme model.

It is therefore possible to re-write the usual Yang-Mills instanton in terms of Skyrmion

fields coupled to an infinite tower of vector mesons. The Skyrme fields and vector

mesons were obtained by performing an eigenfunction expansion of the Yang-Mills

gauge field in one direction, with the resulting model being called BPS because the

solutions saturate the relevant Bogomolny bound (since the corresponding instantons

also saturate the bound). The result of Atiyah and Manton can then be seen to be a

first-order approximation to this procedure.

The construction described above bears some resemblance to the AdS/CFT

correspondence, proposed by Maldacena [47]. This principle suggests a duality

between string theories in anti-de Sitter spacetimes and conformal field theories on

the boundaries of such spaces. Using this idea, many theories of so-called holographic

QCD have been studied (for a review of modern string/gauge theory correspondence

ideas in QCD see [48]).
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1.5 The Sakai-Sugimoto model of holographic QCD

The leading theory of holographic QCD is the Sakai-Sugimoto model [1, 2]. The model

has a five-dimensional effective description as a Yang-Mills-Chern-Simons theory in an

AdS-like bulk, whose instantons correspond to Skyrmions (and therefore baryons) on

the boundary. There is an identification between baryon number and instanton charge,

so the study of baryons is equivalent to the study of Yang-Mills-Chern-Simons solitons

in a curved space. The earlier results by Atiyah and Manton, subsequently explained

by Sutcliffe, can then be seen as a flat-space analogue of the (effective) Sakai-Sugimoto

model. Throughout this thesis, this effective model will also be referred to as the

Sakai-Sugimoto model.

There has been interest in the connection between string theory and solitons for some

time. Superstring theories admit objects called Dp-branes which extend in p spatial

dimensions, and whose low-energy effective couplings are described by the Dirac-Born-

Infeld (DBI) action [49]. The presence of Dp-branes is vital in superstring theory for

spontaneously breaking some of the supersymmetries: in fact, Dp-branes break exactly

half of the supersymmetries of superstring theory and are called BPS states [22]. A

connection with soliton theory arises when we consider coincident D4-branes. In this

case the DBI action takes the form of a Chern-Simons term, which can be re-expressed

in terms of the second Chern number. This we recognise as the topological charge of

Yang-Mills instantons (1.4.2), and in this way the study of Yang-Mills instantons is

related to the study of BPS states in superstring theory.

In this thesis we will study the Sakai-Sugimoto model at zero temperature. The

model consists of Nc colour D4-branes wrapped on an S1, with antiperiodic boundary

conditions. The background metric is given by

ds2 =
(
U

R

)3/2 (
ηµνdx

µdxν + f(U)dτ 2
)

+
(
R

U

)3/2 ( dU2

f(U) + U2dΩ2
4

)
, (1.5.1)

f(U) = 1−
(
UKK
U

)3
, (1.5.2)

where UKK and R are constant parameters, the latter being related to the string length

and string coupling. The D4-branes extend in the xµ and τ directions. The dΩ2
4 is the

line element of a unit S4, and the holographic coordinate U is bounded below by the
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UKK

U0

τ

U

z

τ

z

Figure 1.1: A sketch of the background geometry in the Sakai-Sugimoto model. There
is a holographic radial direction U with horizon UKK , and the τ direction must be
periodic to avoid a conical singularity at the horizon. At U = UKK the radius of the
τ -circle shrinks to zero, so the geometry is cigar-shaped. The blue curve represents a
probe D8/D8-brane pair. The coordinate z is a coordinate along the D8/D8-brane
pair with z = 0 at the point where they merge, corresponding to U = U0. The left
image shows the D8/D8-brane in general, and the right image shows the D8/D8-brane
for antipodal separation.

condition U ≥ UKK . In order to avoid a conical singularity at U = UKK , the coordinate

τ must be periodic
(
with period 4π

3

√
R3/UKK

)
, which is a crucial ingredient of the

model. Importantly, the radius of this τ -circle shrinks as U decreases, vanishing at

the horizon U = UKK . This results in a cigar-shaped geometry (see Fig 1.1). In the

low-energy limit this metric reproduces pure 4-dimensional Yang-Mills theory.

To add quark degrees of freedom we embed Nf flavour D8/D8-branes, which extend

in all but the compactified τ direction. We assume Nf � Nc (i.e. we work in the large

Nc limit) and treat the D8/D8-branes as probes. Since the holographic coordinate U

is bounded below, the D8/D8-brane pairs are forced to merge at some critical point

U = U0. This is one of the chief successes of the Sakai-Sugimoto model: this merging

breaks the U(Nf )L × U(Nf )R chiral symmetry of the D8-branes to a single U(Nf )

symmetry group, and this is interpreted as a holographic realisation of spontaneous

chiral symmetry breaking.

We shall now restrict to Nf = 2 and the case U0 = UKK , which corresponds to

the D8/D8-branes having antipodal separation on the τ -circle (see right image of

Fig 1.1). The low-energy effective theory can then be formulated in a curved “AdS-like”
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spacetime given by the metric

ds2 = H(z)dxµdxµ + 1
H(z)dz

2 . (1.5.3)

The coordinate z is related to the holographic direction U , with z = 0 corresponding

to the point U = U0 where the D8/D8-branes merge. The warp factor H(z) is given

by

H(z) =
(

1 + z2

L2

)2/3

, (1.5.4)

and the length scale L can be set equal to 1 by a choice of units.

We say the spacetime is “AdS-like” since it possesses a conformal boundary and finite

negative scalar curvature everywhere. The conformal boundary can explicitly be seen

by transforming to conformal coordinates

ds2 = H(z(u))
(
dxµdx

µ + du2
)
, (1.5.5)

where the new coordinate u solves du/dz = 1/H(z). For large z we see the asymptotic

behaviour of u is u ∼ c1 + c2/z
1/3 i.e. u → c1 as z → ∞. We can also explicitly

calculate the Ricci curvature of the spacetime as

R = − 16 (3 + 4z2)
9 (1 + z2)4/3 , (1.5.6)

and we see that the result is finite and negative everywhere.

The DBI action of the D8-branes, after Kaluza-Klein reduction on the unit S4, can be

expressed in terms of a five-dimensional U(2) gauge field AΓ and field strength tensor

FΓ∆ = ∂ΓA∆ − ∂∆AΓ + i[AΓ,A∆], where we note that we are using conventions such

that the gauge fields are hermitian. Upper case Greek letters Γ,∆, . . . denote all five

spacetime indices in the low-energy description.

The effective action is given by

S = −1
2

∫ √
−g

{
Tr
(
FΓ∆FΓ∆

)}
d4xdz − π

9λ

∫
ω5(AΓ) d4xdz , (1.5.7)

where λ is the ’t Hooft coupling. The first term is simply that of a Yang-Mills theory,

and the second term is the five-dimensional Chern-Simons term. Here we see the

two key elements of the Sakai-Sugimoto model: the first term gives us the standard
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Yang-Mills action (in curved space), and the second term is the five-dimensional Chern-

Simons term.

We can decompose the fields into SU(2) and abelian parts (the latter denoted with a

hat) as AΓ = AΓ + 1
2ÂΓ and FΓ∆ = FΓ∆ + 1

2 F̂Γ∆. This allows us to write the action up

to total derivatives as:

S = −1
2

∫
H3/2

{
1
2 F̂µνF̂

µν + F̂µzF̂
µz + Tr (FµνF µν) + 2Tr (FµzF µz)

}
d4xdz

+ 1
Λ

∫
εΓ∆ΣΞΥ

{
ÂΓTr (F∆ΣFΞΥ) + 1

6ÂΓF̂∆ΣF̂ΞΥ

}
d4xdz ,

(1.5.8)

where we have introduced the rescaled ’t Hooft coupling Λ = 8λ/27π.

The appropriate static ansatz for soliton solutions in this model is

A0 = ÂI = 0 , AI = AI(xJ) , Â0 = Â0(xJ) , (1.5.9)

so that the abelian gauge potential sources an electric field F̂I0 = ∂IÂ0. The static

energy can then be written as:

E = 1
2

∫ {
− 1
H1/2

(
∂iÂ0

)2
−H3/2

(
∂zÂ0

)2

+ 1
H1/2Tr (FijFij) + 2H3/2Tr (FizFiz)

+ 8
ΛÂ0εijkTr (FizFjk)

}
d3xxxdz .

(1.5.10)

By integrating by parts and using the equation of motion for Â0 we can show that

E ≥ 8π2|N | , (1.5.11)

where

N = − 1
32π2

∫
εIJKLTr (FIJFKL) d3xxxdz

= 1
8π2

∫
εijkTr (FizFjk) d3xxxdz (1.5.12)

is the instanton number of the configuration.

We see that the Chern-Simons term takes the form of a coupling between an abelian

U(1) field Â0 and the instanton number density of the configuration (the integrand of

(1.5.12)).
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Solitons and multi-solitons are guaranteed in this model by considering scaling

behaviours and long-range soliton interactions. Single solitons of finite size are

guaranteed by considering the energy (1.5.10) applied to a flat-space Yang-Mills

instanton of finite size, as analysed in [50]. Here it was shown that the metric factors

induce the soliton size to shrink, but that this is stabilised by the Chern-Simons term

(the final term in (1.5.10)). Multi-solitons in the model are guaranteed by considering

the interaction potential between two solitons, calculated in [51] using a linear

approximation to the soliton tails. Here it was found that the first line of (1.5.10)

induces a monopole interaction leading to short-range repulsion, while the second line

of (1.5.10) induces a dipole interaction leading to long-range attraction.

Due to the large dimensionality of the Sakai-Sugimoto model, studying bulk soliton

solutions either analytically or numerically is difficult. Progress has been made by

observing that, in the limit where the bulk soliton size becomes small compared to

the curvature of the spacetime, the single Sakai-Sugimoto soliton can be well

approximated by a flat space, self-dual Yang-Mills instanton with a small size

[52, 53]. This approximation was verified by numerical field theory calculations [50],

where symmetry arguments could be applied to reduce the full four-dimensional

computation to a two-dimensional problem. Unfortunately, such symmetries cannot

be exploited when analysing multi-soliton solutions, and full four-dimensional

computations are beyond current computational capabilities.

1.6 Cold, dense QCD: salt and popcorn

The QCD phase diagram – describing the states quarks and gluons occupy as a function

of temperature and chemical potential – is a complicated thing to study (see [54] for

a review). Detailed analysis has only been possible for very high temperatures and

chemical potentials (due to the strongly coupled nature of the theory), and numerical

progress (primarily by lattice methods) has been restricted to zero chemical potential

due to the “sign problem”.

Figure 1.2 shows a sketch of the main features currently understood to exist in the phase

diagram of QCD. In the bottom-left corner of the diagram (low T and low µ) quarks
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Figure 1.2: A sketch of the key features of the QCD phase diagram, as a function of
temperature T and chemical potential µ. Pictured are the low-T , low-µ confined phase;
the high-T quark-gluon plasma; and the proposed low-T , intermediate-µ quarkyonic
phase.

and gluons are confined, forcing them to form colour-neutral states (primarily pions).

Chiral symmetry in this state is spontaneously broken. From here, as temperature

increases a phase transition is expected to occur in which quarks and gluons deconfine

and chiral symmetry is restored. In this state, known as the quark-gluon plasma, quarks

and gluons are asymptotically free. Moving from the bottom-left of the diagram along

the chemical potential axis, a transition to nuclear matter is expected in which quarks

condense into baryons. Beyond this, a number of exotic high-density behaviours have

been suggested, including the formation of colour-superconductor states [55].

A new phase of the QCD phase diagram was proposed in [56], called quarkyonic matter.

This state is predicted for low temperatures and intermediate chemical potentials, and

would be relevant in the physics of neutron stars. In this phase the quarks exist in

a confined state, forming a Fermi sea with a baryonic Fermi surface. Whether chiral

symmetry in this state is broken or restored is currently unknown.

The Sakai-Sugimoto model already captures some of the above features of the QCD

phase diagram. We have already seen how the geometry at zero temperature gives

rise to a confined geometry with broken chiral symmetry. As temperature increases

a competing geometry becomes energetically favourable: the AdS black hole. This

geometry is cylindrical and obtained by swapping the roles of the compactified τ -
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τ ix0

Figure 1.3: A sketch of the cigar-shaped Sakai-Sugimoto geometry at low temperatures
(left), forcing spontaneous chiral symmetry breaking, and the cylindrical black hole
geometry at high temperatures (right) in which chiral symmetry can be restored.

circle with the thermal circle (see Figure 1.3). The cylindrical geometry is interpreted

as a deconfined geometry, and allows for D8-brane pairs to have endpoints on the

horizon, leading to chiral symmetry restoration. Furthermore, recent advances in the

application of holographic techniques [57, 58] have led to the suggestion that the cold,

dense quarkyonic state may manifest as the formation of a four-dimensional structure

in the holographic bulk. The details of how the bulk Sakai-Sugimoto solitons explore

the holographic direction, however, are unknown.

There are two competing theories of how this happens in the Sakai-Sugimoto model.

The first is the dyon salt model [3] in which the appropriate crystal is a salt-like

arrangement of dyons, transforming in the high density limit into a cubic crystal of

half-instantons. This is dual to the well-known Skyrme crystal [59, 60]. The dyon salt

phenomenon is analogous to the splitting of periodic Yang-Mills instantons (calorons)

into monopole constituents at high densities [61].

An alternate proposal is the baryonic popcorn model [4, 5] which states that, with

increasing density, a series of phase transitions will occur where a three-dimensional

soliton crystal develops extra layers in the holographic direction. Such transitions have

been dubbed popcorn transitions. Unfortunately analytical or numerical investigation

of these phenomena has proved difficult.
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1.7 Outline

This thesis will attempt to gain insight into the features of the Sakai-Sugimoto model

and its high-density phase transitions by studying various low-dimensional analogues

and approximations.

In Chapter 2 we investigate a low-dimensional toy model based on O(3) sigma

instantons. We stabilise the model with the introduction of a vector meson term.

Solitons, multi-solitons and finite-density soliton chains are numerically computed,

and analogues of baryonic popcorn and dyon salt are both found. The baryonic

popcorn configuration is found to be energetically favourable.

Chapter 3 provides an investigation of baby Skyrmions in pure AdS spacetime. Full

numerical calculations are performed and a point-particle model is developed.

Analogues of baryonic popcorn transitions are found, in which the solutions form

concentric rings and develop extra layers.

In Chapter 4 we apply a homogeneous ansatz to a holographic baby Skyrme model

[62] to approximate high-density configurations. A set of popcorn transitions are

numerically computed, although such configurations are forced to lie in a dyon salt

regime. The approximation is found to qualitatively match with full numerical

results.

Finally, Chapter 5 applies two different homogeneous ansätze to the full Sakai-Sugimoto

model, reducing the model to an effective one-dimensional kink theory. Analogues of

both dyon salt and baryonic popcorn are discovered. A new, energetically favourable

high-density phase is also found in the form of a soliton bag.



Chapter 2

A low-dimensional analogue of

holographic QCD with vector

mesons

2.1 Introduction

To try to gain some further insight into the behaviour of the Sakai-Sugimoto solitons,

a low-dimensional analogue of the model was recently studied [62]. Since instantons

of O(3) sigma models in two space dimensions are well known natural analogues of

Yang-Mills instantons in four space dimensions, an O(3) sigma model was studied,

coupled to a baby Skyrme term in order to stabilise the solitons against the shrinking

due to the curvature of space (a role played by the Chern-Simons term in the full

Sakai-Sugimoto model). The advantage of the low-dimensional theory is that

numerical computations become more viable, and both isolated soliton solutions and

finite-density configurations were found. It was found that the dyon salt phase was

not energetically favourable, and that beyond a critical density the system undergoes

a first-order popcorn transition (albeit one qualitatively different to that predicted in

[4, 5]) in which a single chain of solitons splits suddenly into two aligned chains

separated in the holographic direction. At even higher densities another popcorn

transition was found where the double-chain splits into a triple-chain, and it was

conjectured that this procedure would continue so that at higher densities the

19
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configuration begins to resemble a portion of a two-dimensional crystal. It was also

shown that these chain solutions could be well approximated by periodic chains of

flat-space instantons.

However, an alternative low-dimensional analogue of the Sakai-Sugimoto model can be

obtained by replacing the baby Skyrme term with a vector meson term in which a new

vector field couples to the topological current of the O(3) sigma fields. This would be

a closer analogue to the full Sakai-Sugimoto model with the vector field playing the

role of the U(1) gauge field that couples to the topological current through the Chern-

Simons term (the final term in (1.5.10)). Such a model was studied in flat space in [63],

and found to be closely related to the baby Skyrme model. In this chapter we will study

the effect of replacing the baby Skyrme term with a vector meson term in a curved

background, and see how the isolated solitons and popcorn transitions of finite-density

configurations are affected. In addition, since full numerical field simulations are viable

in two dimensions, we will use the low-dimensional vector meson model as a testing

ground to check the validity of some common approximations used when studying the

full Sakai-Sugimoto model.

This chapter is based on my own work published in [6].

2.2 The holographic baby Skyrme and vector

meson models

We consider a (D + 2)-dimensional spacetime with a warped metric

ds2 = H(z)(−dt2 + dx2
1 + ...+ dx2

D) + 1
H(z)dz

2 (2.2.1)

with

H(z) =
(

1 + z2

L2

)p
. (2.2.2)

The warp factor, H(z) depends only on the holographic coordinate z, and L determines

some curvature length scale which we will set to unity. We will choose the constant

p shortly. The effective metric of the Sakai-Sugimoto model is recovered by choosing
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D = 3 and p = 2
3 , which ensures that the spacetime has a conformal boundary as

z →∞, and that the scalar curvature is negative and finite everywhere.

Following [62], we investigate a low-dimensional toy model of the Sakai-Sugimoto model

with D = 1. We choose the constant p to ensure that the scalar curvature of the metric

is finite and negative. The appropriate Ricci scalar is given by

R = −2p
(
1 + z2

)p−2 (
2 + (5p− 2)z2

)
(2.2.3)

and so finite, negative scalar curvature everywhere demands 2
5 ≤ p ≤ 1. Furthermore,

we can obtain another restriction on p by demanding that the flat-space instanton

approximation to the soliton solutions in this model have finite energy. This adds the

further restriction p < 2
3 , which we will justify in Section 2.3 when we introduce the

flat-space ansatz for radial soliton fields. It is therefore convenient to make the choice

p = 1
2 .

In [62] solitons in the baby Skyrme model in this spacetime were studied. The action

for this baby Skyrme (BS) model is

SBS =
∫ (
−1

2∂µφ
φφ · ∂µφφφ− κ2

4 (∂µφφφ× ∂νφφφ) · (∂µφφφ× ∂νφφφ)
)√

H dxdzdt (2.2.4)

where the first term is that of the O(3) sigma model, and the second term is the baby

Skyrme term with constant coefficient κ2. Greek indices run over the bulk spactime

coordinates t, x and z. The field φφφ = (φ1, φ2, φ3) is a three component unit vector.

We will refer to φφφ as the pion field since the baby Skyrme model can be seen as a

2-dimensional analogue of the Skyrme model where the corresponding φφφ field plays the

role of pions. The associated static energy of this model is

EBS = 1
2

∫ (
1√
H
|∂xφφφ|2 +H

√
H|∂zφφφ|2 + κ2

√
H|∂xφφφ× ∂zφφφ|2

)
dxdz . (2.2.5)

Here we will instead investigate solitons of an O(3) sigma model coupled to a massive

vector meson. The action for this vector meson (VM) model is given by

SVM =
∫ (
− 1

2∂µφ
φφ · ∂µφφφ− 1

4(∂µων − ∂νωµ)(∂µων − ∂νωµ)

− 1
2M

2ωµω
µ + gωµB

µ

)√
H dxdzdt (2.2.6)
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where the pion field φφφ = (φ1, φ2, φ3) is again a three component unit vector and ωµ is

a spacetime vector field with mass M . The fourth term, parametrised by the constant

g, is a coupling between the ωµ field and the topological current

Bµ = − 1
8π
√
H
εµαβφφφ · (∂αφφφ× ∂βφφφ) . (2.2.7)

We argue that this model is a low-dimensional analogue of the Sakai-Sugimoto model

as follows. The full five-dimensional model is written in terms of a U(2) gauge field

which can be decomposed into an abelian U(1) and an SU(2) field. Written in this way,

the Chern-Simons term is a coupling between the U(1) field and the topological current

associated with the SU(2) field (see the final term of (1.5.10)). Noting that both pure

SU(2) theory in (4 + 1) dimensions and the O(3) sigma model in (2 + 1) dimensions

are both scale invariant, we can take φφφ and ωµ to be the low-dimensional analogues

of the SU(2) and U(1) fields respectively. With this correspondence we see that the

fourth term in (2.2.6) is a low-dimensional analogue of the Chern-Simons term.

In this chapter we will be concerned with static soliton solutions in this model.

Looking at (2.2.7) it is easy to see that for static solutions the spatial components of

the topological current vanish (Bx = Bz = 0). These currents provide a source for ωµ,

so we see that ωx = ωz = 0 for static solutions. For notational convenience we will

write ω ≡ ω0 for the remainder of this chapter. We will refer to ω as the vector meson

field.

The associated static energy of this model is

EVM = Eφφφ + Eω (2.2.8)

with

Eφφφ = 1
2

∫ {
1√
H
|∂xφφφ|2 +H

√
H|∂zφφφ|2

}
dxdz (2.2.9)

Eω = 1
2

∫ {
− 1
H
√
H

(∂xω)2 −
√
H(∂zω)2

− M2ω2
√
H

+ gω

2πφ
φφ · (∂xφφφ× ∂zφφφ)

}
dxdz . (2.2.10)

For finite energy we then require φφφ→ (0, 0, 1) and ω → 0 as x2 + z2 →∞. This allows

us to compactify space from R2 to S2, meaning the pion field is now a map φφφ : S2 → S2
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with an associated winding number and topological charge

B =
∫
B0
√
H dxdz = − 1

4π

∫
φφφ · (∂xφφφ× ∂zφφφ) dxdz , (2.2.11)

which defines the instanton number of the planar O(3) sigma model. This topological

charge we identify with the baryon number of the configuration.

By calculating the variation of the action (2.2.6) with respect to the vector meson field

we obtain the Euler-Lagrange equation(
1

H
√
H
∂xx +

√
H∂zz + 1

2
H ′√
H
∂z −

1√
H
M2

)
ω + g

4πφ
φφ · (∂xφφφ× ∂zφφφ) = 0 . (2.2.12)

Multiplying this equation by ω and integrating by parts in (2.2.10) allows us to write

Eω = 1
2

∫ g

4πωφ
φφ · (∂xφφφ× ∂zφφφ) dxdz (2.2.13)

= 1
2

∫ (
1

H
√
H

(∂xω)2 +
√
H(∂zω)2 + M2ω2

√
H

)
dxdz . (2.2.14)

We then see that Eω ≥ 0 whenever the equation of motion for ω is satisfied and this,

together with the inequality∣∣∣∣∣ 1√
H
∂xφφφ±

√
Hφφφ× ∂zφφφ

∣∣∣∣∣
2

≥ 0 , (2.2.15)

yields the Bogomolny bound EVM ≥ 4π|B|. Note that we require ω to satisfy its

equation of motion in order to obtain the Bogomolny bound, which is unusual in

soliton theory. Without this requirement the energy (2.2.10) is, in fact, unbounded

below which could in principle lead to problems when applying gradient flow algorithms

later to numerically find soliton solutions. However, we have found that these problems

can be avoided by careful choices of initial conditions and gradient flow parameters.

By approximating the solution to (2.2.12) using a leading-order derivative expansion,

we can see how the BS and VM models are related [63]. Neglecting derivatives of ω in

(2.2.12) yields the approximation

ω ≈ g
√
H

4πM2φφφ · (∂xφφφ× ∂zφφφ) (2.2.16)

which can be substituted into (2.2.13) to obtain

Eω = 1
2

∫ g2
√
H

16π2M2 |∂xφφφ× ∂zφφφ|
2 dxdz (2.2.17)
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⇒ EVM = 1
2

∫ (
1√
H
|∂xφφφ|2 +H

√
H|∂zφφφ|2 + g2

√
H

16π2M2 |∂xφφφ× ∂zφφφ|
2
)
dxdz . (2.2.18)

This is precisely the static energy of the BS model (2.2.5) upon identifying

κ = g

4πM . (2.2.19)

Note that the approximation used above becomes more accurate as M and g increase

i.e. as the vector meson field becomes infinitely massive and its interaction becomes

point-like. We recover the exact BS model in the limit

M, g →∞ , κ = g

4πM = constant . (2.2.20)

We will justify this approximation and discuss its validity in the following section.

2.3 Solitons in the vector meson model

In flat space (H = 1) and in the absence of a vector meson (ωµ ≡ 0) the Bogomolny

bound (2.2.15) is saturated by the scale-invariant instanton solutions of the O(3) sigma

model. Using Riemann sphere coordinates W = (φ1 + iφ2)/(1 − φ3), obtained by

stereographic projection of the pion field φφφ, and recalling the discussion in Section 1.2,

the radially symmetric sigma-model instanton with topological charge B centred at

the origin can be written as W = (ζ/µ)B where µ is a positive real constant which

determines the arbitrary scale of the instanton. The associated pion field for this

solution is given by

φφφ = (sin f cos (Bθ), sin f sin (Bθ), cos f) (2.3.1)

where (r, θ) are polar coordinates in the (x, z)-plane and f(r) is the radial profile

function

f(r) = cos −1
(
r2B − µ2B

r2B + µ2B

)
. (2.3.2)

Now we can justify the restriction p < 2/3 imposed on the spacetime metric from

demanding this radial solution to have finite energy. For large r the profile function
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behaves as

f(r) ∼ 2µB
rB

, (2.3.3)

and so we see the solution with B = 1 has the slowest decay, and therefore will

provide the greatest restriction on p. Substituting this into (2.2.9), the leading-order

contribution to the energy at large r is given by

Eφφφ = 1
2

∫ {
H
√
H|∂zφφφ|2 + · · ·

}
dxdz

=
∫ {

2µ2 sin3pθ r3p−4 + · · ·
}
rdrdθ

=
∫ {

2µ2Cr3(p−1) + · · ·
}
dr

(2.3.4)

where C is a constant arising from the angular integral. To ensure this leads to a finite

energy we therefore require 3(p− 1) < −1⇒ p < 2/3, as stated before.

In the Sakai-Sugimoto model the ’t Hooft coupling is taken to be large, which results

in a small size for the Sakai-Sugimoto soliton compared to the length scale set by the

curvature of spacetime. The analogous regime in the BS model is to take κ small and

positive, and it was shown that in this regime the soliton can be well approximated

by a sigma model instanton. These instantons have an arbitrary size in flat space, but

a preferred size can be obtained by considering the leading-order contributions to the

energy from the spacetime curvature and the baby Skyrme term interaction. Here we

shall search for some parameter regime in (g,M)-space in the VM model analogous to

this situation, and demonstrate that this regime is consistent with the approximations

discussed above, and with the established relation between the VM and BS models.

Taking a flat-space (H = 1) radial ansatz for the vector meson field, and a flat-space

sigma instanton ansatz (2.3.1) for the pion field, we first find a parameter regime in

which the approximation (2.2.16) is valid. With these assumptions, the equation of

motion (2.2.12) for ω becomes

1
r
∂r(r∂rω) = M2ω + gB2µ2B

π

r2B−2

(r2B + µ2B)2 (2.3.5)

where B is the topological charge of the solution and µ is the size of the sigma instanton.
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Assuming that |1
r
∂r(r∂rω)| � |M2ω| yields the approximation

ω ≈ −gB
2µ2B

M2π

r2B−2

(r2B + µ2B)2 . (2.3.6)

We then find

∣∣∣M2ω
∣∣∣ = gB2µ2B

π

r2B−2

(r2B + µ2B)2 , (2.3.7)∣∣∣∣1r∂r(r∂rω)
∣∣∣∣ = 4gB2µ2B

M2π

r2B−4

(r2B + µ2B)4 Γ , (2.3.8)

where Γ =
∣∣∣(B + 1)2r4B − 2(2B2 − 1)µ2Br2B + (B − 1)2µ4B

∣∣∣. Therefore the inequality

above is consistent if

4
M2(r2B + µ2B)2

∣∣∣∣∣(B + 1)2r4B−2 − 2(2B2 − 1)µ2Br2B−2 + (B − 1)2µ
4B

r2

∣∣∣∣∣� 1 , (2.3.9)

For B = 1 the approximation (2.3.6) has a local minimum at the origin, and evaluating

the above expression there yields the condition

M � 2
√

2
µ

. (2.3.10)

For other topological charges we can find a similar condition by evaluating the above

expression at the extrema of the radial ansatz. We have therefore found that if we

seek a regime in which the soliton size is small compared to the curvature scale, and

in which derivatives of ω are small, we require a large mass for the vector meson field.

We will now insert this approximation into the curved space static energy and look at

the terms coming from the first-order expansion of the warp factor, H(z). We shall

also re-insert the explicit dependence of H on p (as in (2.2.2)) so that we can clearly

see which terms arise from the curvature of spacetime and which terms arise from

interactions between the pion and vector meson fields.

Expanding in the curvature, we have

Eφφφ = 1
2

∫ (
|∂xφφφ|2 + |∂zφφφ|2

)
dxdz + p

2

∫ (
−|∂xφφφ|2 + 3|∂zφφφ|2

)
z2 dxdz + · · · (2.3.11)

The first term in this expansion is the usual flat space sigma instanton energy, which

has the well-known value of 4πB. The second term is some contribution arising from

the curvature of spacetime and, after changing to polar coordinates and making the
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change of variable y = (r/µ)2, its leading-order contribution can be calculated as

Eφφφ = 4πB + pπB2µ2
∫ ∞

0

yB

(yB + 1)2 dy + · · · (2.3.12)

We see that the influence of the curvature term, therefore, is to reduce the size of the

instanton.

Using a similar expansion, the leading-order contribution from the vector meson part

of the energy can be calculated as

Eω = g2B4

2πM2µ2

∫ ∞
0

y2(B−1)

(yB + 1)4 dy + · · · (2.3.13)

In contrast to the curvature term, we see that the interaction with the vector meson

field resists the shrinking of the instanton.

For B = 2 we can evaluate these integrals explicitly and obtain the leading-order

correction to the energy as

EVM = 8π + pπ2µ2 + g2

4M2µ2 + · · · (2.3.14)

which is minimised when

µ =
√

g

2πM√p . (2.3.15)

We see that, as claimed, the radial flat-space approximations are valid for large g and

large M , and in this regime the instanton solutions in the VM model closely resemble

those in the BS model. In fact, substituting the expression for κ in (2.2.19) we find the

preferred instanton size is µ =
√

2κ/p1/4, which is in exact agreement with the analysis

performed in [62] for the BS model.

A similar calculation can be performed for all B ≥ 2 to show that the preferred

instanton size is proportional to
√
g/M in the regime of large g and large M .

However, the integral expressions in (2.3.12) and (2.3.13) do not converge for B = 1.

A similar problem was encountered in [62] when studying the BS model, which arises

since the quadratic approximation for H(z) does not capture the slow decay

behaviour of the B = 1 solution accurately enough. In analogy with this previous

paper, we can insert the instanton ansatz of size µ into the expression for the energy

(2.2.8) and minimise this numerically to find µ as a function of g and M . The result
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Figure 2.1: A plot of the soliton size µ against the model parameters g and M ∈
[10g, 100g] for the B = 1 soliton within the instanton approximation. The red surface
gives the numerical data, and the blue surface is a numerical fit to the data of the form
µ = c

√
g/(4πM) with constant c = 0.92. The plot at the base gives the difference

between these two surfaces, and is seen to be small.

for p = 1
2 is displayed in Figure 2.1 for g ∈ [5, 50] and M ∈ [10g, 100g] (roughly

corresponding to κ ∈ [0.01, 0.001] after the identification (2.2.19)), where the red

surface represents the numerical results and the blue surface is a fit to the data of the

form c
√
g/(4πM) with constant c = 0.92. The computation suggests that, in this

regime, the size of the B = 1 soliton still has an approximate size O(
√
g/M), in

agreement with the analytic calculation for the B = 2 above.

In this two-dimensional model it is possible to obtain full numerical static solutions

to the nonlinear field equations. All of the computations performed here are with

p = 1
2 and with the ratio g/M = 0.1 kept constant, so that in the large g, large M

limit we expect solutions to look like those of the BS model with parameter

κ = g/(4πM) ≈ 0.01. In this limit the size of the soliton should be small compared to

the curvature scale set by the metric. Numerical computations have been performed

by minimising the energy (2.2.8) using second-order accurate finite difference

approximations for spatial derivatives on a lattice with spacings ∆x = 0.005,

∆z = 0.005 and 2000 × 2000 numerical grid points. The energy minimisation
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algorithm is a modified gradient flow mechanism (see Appendix A).

The results of our field theory computations for the B = 1 soliton are shown in

Figure 2.2. The left image shows the φ3 component of the pion field, as a pictorial

representation of the soliton, for parameter values M = 50 and g = 5. The right

image shows the corresponding vector meson field ω. The left image is almost

indistinguishable from the numerical calculation of the B = 1 soliton in the BS model

with parameter value κ = 0.1/(4π) ≈ 0.008. This is confirmed by looking at the

energies of each solution: the energy of the B = 1 VM soliton with M = 50 is given

as E = 4π × 1.0107, while the corresponding BS soliton has energy E = 4π × 1.0115.

Numerical computations for smaller M and g show that, as the parameter values

decrease, the size of the VM soliton appears to decrease.

The numerical results for charge B = 2 are shown in Figure 2.3. For large parameter

values we again find that the solitons of the VM and BS model are almost

indistinguishable: an energy comparison yields E = 8π × 1.0072 for the VM model

soliton with M = 50, and E = 8π × 1.0075 for the corresponding BS soliton. In these

cases the B = 2 soliton resembles two B = 1 solitons separated by a small amount in

the non-holographic direction. However, as we approach the region in which the

approximation (2.3.10) breaks down (i.e. as M becomes small) we find qualitatively

different behaviour, in which the B = 1 components of the B = 2 soliton begin to

separate. For M < 20 the apparent separation between these components increases

dramatically, as shown in the final image in Figure 2.3. We also see that as the

parameters in the model decrease, the ω fields become more sharply localised around

their centres. This is consistent with the analysis above where we found small

derivatives in ω implied a large value of M .

Solitons with higher topological charge have also been numerically computed (see

Figure 2.4), and are found to resemble chains of solitons separated in the

non-holographic direction. This is to be expected due to the presence of the curvature

in the holographic direction.

In [4] a zigzag arrangement of holographic baryons was predicted in finite density

configurations in the Sakai-Sugimoto model, and in [62] it was argued that, for the

low-dimensional BS analogue of the Sakai-Sugimoto model, a zigzag arrangement could
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Figure 2.2: Plots of the numerically calculated B = 1 soliton fields for the M = 50
VM model. The third component of the pion field φ3 is shown in the left column and
the vector meson field ω is shown in the right column.

Figure 2.3: Plots of the numerically calculated B = 2 soliton fields for the M = 50
(top) and M = 15 (bottom) VM model. The third component of the pion field φ3 is
shown in the left column and the vector meson field ω is shown in the right column.
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Figure 2.4: Plots of the numerically calculated soliton fields for M = 50 in the VM
model with topological charges B = 3 (top), B = 4 (middle) and B = 5 (bottom).
The third component of the pion field φ3 is shown in the left column and the vector
meson field ω is shown in the right column.
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only be found if the preferred separation between pairs of solitons was much greater

than the size of a single soliton. We have seen that, at low parameter values, the B = 1

VM solitons decrease in size and the B = 2 solitons resemble more widely separated

B = 1 solitons, so it would be interesting to explore finite density chains of solitons

in the VM model for small values of g and M . However, at these parameter values

numerical solutions become more difficult to obtain (due to large derivatives of the ω

field), so we will instead study a regime in which the parameters are “small, but not

too small”.

2.4 Finite density chains: new phases of popcorn

As explained in [62], analytical and numerical solutions of solitons at finite density in

the Sakai-Sugimoto model are currently unavailable. Despite various levels of

approximation being applied, even the relevant flat-space instanton approximations

are not known explicitly after imposing periodic boundary conditions in multiple

directions. However, the low-dimensional analogue we have been studying so far gives

us the advantage of being able to numerically compute soliton solutions, and we shall

compare our field theory simulations to the numerical and analytical results in [62].

In particular, we will find the appropriate popcorn phase transition in the VM model,

and compare it both to the BS model, and to predictions made in [4] and [5] about

finite-density baryons in the full Sakai-Sugimoto model.

In order to numerically compute solitons at finite density we restrict our numerical

grid in the non-holographic direction to the range −L ≤ x ≤ L and impose suitable

boundary conditions for the fields at x = ±L. In the following simulations we will

always place periodic boundary conditions on φ3 and ω, but may place periodic or

anti-periodic boundary conditions on φ1 and φ2. There is still an integer topological

charge, B, defined by integrating the µ = 0 component of (2.2.7) in the range (x, z) ∈

[−L,L]× (−∞,∞), and this allows us to define a finite baryon density ρ = B/2L.

Initial conditions for numerical simulations are constructed as follows. First, by writing

the flat-space instanton of charge B = 1 using Riemann sphere coordinates, we can
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superpose a number of instanton solutions together using the product ansatz:

(W1(ζ),W2(ζ))→ W (ζ) = W1W2

W1 +W2
. (2.4.1)

This has the property that W vanishes wherever W1 or W2 vanishes, and that far away

fromW2 the solution looks likeW ≈ W1 (and vice-versa). Therefore this product ansatz

gives us a field configuration with the correct topological properties as a superposition

of solitons at the positions of W1 and W2. Superposing a large number of such solitons

with positions in the range x ∈ [−nL, nL] for some n ∈ Z using the flat-space instanton

ansatz from (2.3.1) and (2.3.2) can then give us an approximation to a periodic chain

of solitons in the range x ∈ [−L,L]. An initial condition for the ω field can then be

generated using (2.2.16). It should be noted that with this construction each soliton in

the chain can be given an independent phase shift χ corresponding to a shift θ → θ+χ

in the ansatz (2.3.1).

Inspired by the results found in [62], we will begin our investigation by searching for

two specific forms of finite-density chains by imposing certain symmetries, before going

on to find the global energy minima for periodic solutions in the VM model.

The first chain to consider is a straight, single chain of solitons. Flat-space instantons

of equal size separated in the non-holographic direction can be shown to be in the most

attractive channel when they are exactly out of phase [28] (i.e. when the solitons have

a relative phase shift of π), so we numerically seek these solutions by placing a single

B = 1 ansatz on our numerical grid and imposing anti-periodic boundary conditions

on φ1 and φ2. The datapoints in Figure 2.5 marked with a + represent the energy per

soliton for numerical solutions of this type.

Secondly, we consider a two-layer square chain by placing a pair of solitons (with a

relative phase shift of π) separated in the holographic direction, with anti-periodic

boundary conditions imposed on φ1 and φ2 at x = ±L. Symmetry constraints can

force the resultant energy minima to form a regular square configuration of solitons

(as observed in the BS model in [62]), although it can also allow configurations that

resemble zig-zags or single chains of 2-solitons. The data points in Figure 2.5 marked

with a × represent the energy per soliton for numerical solutions of this type.

Finally we consider initial conditions with four solitons placed in our grid in a line in the
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non-holographic direction, with periodic boundary conditions on φ1 and φ2. By itself

there would be a reflection symmetry z → −z which could force solutions to resemble

those of the straight chains above, so we perturb the fourth soliton in the chain by a

small amount in the holographic direction to break the symmetry. The symmetries of

the grid here allow the potential for the initial conditions to relax to configurations

resembling either the straight chains or the square chains, while also providing an

opportunity to relax to other configurations with less symmetry. Figure 2.6 shows φ3

and ω for different densities with M = 50, and the data points in Figure 2.5 marked

with a� represent the energy per soliton for the numerical solutions. We see that at low

and high densities respectively we can recreate the straight and square configurations

described above, lending confidence that those are indeed the energy minima at these

densities.

More interestingly we find that there exist configurations of solitons in the VM model

that were not found in [62]. For densities ρ ∈ [6.3, 7.6] (i.e. around the transition from

the chain to the square solutions) we first observe a second-order transition from a chain

to a period-4 wave. This is followed by a first-order transition to a wiggle, which then

undergoes a second-order transition to the two-layered square configuration. This is in

contrast with the results anticipated in [4] and [5], the former predicting a first-order

popcorn transition from a chain to a two-layered zig-zag, and the latter suggesting

a second-order transition from a chain to a period-3 wave followed by a first-order

transition to the square configuration. Imposing period-3 boundary conditions in this

low-dimensional model yielded solutions that were not energetically favourable to the

period-4 waves, suggesting that the anticipated period-3 waves are not global energy

minima. While the numerical investigations performed here are not definitive, the

evidence suggests that popcorn transitions in these models may be more subtle than

previously anticipated.

The results in both studies are, nonetheless, similar, and the differences could be

due to the lower dimensionality of the VM model studied here: in [5] chain solutions

were generated in the 4-dimensional space by imposing artificial curvature in the other

spatial directions, whereas in the 2-dimensional VM model studied here there are no

extra spatial dimensions.
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Numerical field calculations for finite-density solitons were also performed for M = 20

and g = 2. These parameter values are very close to limits of the bounds implied

by (2.3.10) and (2.3.15). Qualitatively similar results were obtained to the solutions

with parameter values M = 50 and g = 5, although investigation of smaller parameter

values beyond those bounds proved numerically difficult due to the presence of large

derivatives in the ω field.

The numerical differences in energy between the wave and wiggle configurations

compared to the chain and square configurations are incredibly close, differing by

roughly O(10−5). In light of this, it was instructive to return to the BS model and see

if these configurations did, in fact, occur but were missed due to this similarity. After

investigation it was found that the BS model does, indeed, exhibit these

configurations around the transition from the chain to the square.

Figure 2.5: A plot of E/(4πB) against density ρ for the forced chain and square
configurations, as well as the energy minimising solutions, for M = 50. The data
points represent the results of numerical simulations, whereas the curves represent the
results of applying various semi-analytical approximations. The dotted lines are the
results from approximating spacetime as flat, and the solid curves are the results from
performing a first-order expansion of the metric factor H(z).



2.4. Finite density chains: new phases of popcorn 36

Figure 2.6: The left column shows plots of φ3 for the energy minima of the VM model
finite density chains with M = 50 for densities ρ = 6.3 (chain), 6.6 (wave), 7.0 (wiggle)
and 7.6 (square), with density increasing from top to bottom. The right column shows
the associated ω fields.
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2.5 Semi-analytical methods of baryonic popcorn

Another advantage of the VM model over the BS model is that the ω field provides

a low-dimensional analogue of the U(1) gauge field in the full Sakai-Sugimoto model.

This means we can use the VM model to test the validity of certain assumptions that

are often made to simplify calculations in the full model. In [5] a number of assumptions

regarding the fields in the Sakai-Sugimoto model are made in order to make analytical

progress. These assumptions all rely on the solitons of the model being much smaller

than the length scale set by the spacetime curvature, in which case it is argued that

we can approximate spacetime as flat, and the fields by their flat-space counterparts.

The SU(2) gauge field is approximated by a flat-space self-dual Yang-Mills instanton,

allowing techniques using ADHM constructions to be used to generate solutions. The

U(1) gauge field is approximated by constraining it to satisfy its flat-space equations of

motion. In addition, the metric factors due to the curvature of spacetime are expanded

as a leading-order Taylor series.

Since we have been able to obtain full numerical solutions in our low-dimensional model,

we can apply analogues of these approximations to test their validity in the VM model.

Focusing on the forced chain and square configurations allows us to obtain analytical

approximations for the pion fields, and perform numerical minimisations to obtain the

corresponding ω fields.

For the chain configurations we can write a flat-space instanton solution (in Riemann

sphere coordinates) as

W (ζ) = sin (πρζ)
µπρ

. (2.5.1)

This has zeroes whenever x = n/ρ, n ∈ Z and obeys the symmetry relation

W (ζ + ρ−1) = −W (ζ), so describes a chain of instantons at density ρ where

neighbouring instantons are exactly out of phase with each other. To obtain the

square configurations we can simply take a product ansatz of the form (2.4.1) with

the choice

W1 = sin (πρ(ζ − iδ)/2)
µπρ

, W2 = − sin (πρ(ζ + iδ)/2)
µπρ

(2.5.2)
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to obtain a a pair of chains separated by a distance δ in the holographic direction.

Requiring that the ω field satisfies its flat-space equation of motion is equivalent to

setting H(z) = 1 in (2.2.12):

(∇2 −M2)ω = − g

4πφ
φφ · (∂xφφφ× ∂zφφφ) . (2.5.3)

Combining this equation with the instanton approximation above allows us to perform

numerical minimisation of the energy (2.2.8) over the parameters µ and/or δ for a

large number of densities, where at each value of {ρ, µ, δ} we solve (2.5.3) numerically

using a successive over-relaxation method with red-black ordering. The minimisation

in parameter space was performed with a golden section search method (in the case of

1 parameter) and a Nelder-Mead algorithm (in the case of 2 parameters). The results

of these investigations are shown by the curves in Figure 2.5. As can clearly be seen,

the energies associated with these approximations are very close to the full numerical

values, lending confidence to the credibility of these assumptions. In addition, the effect

of Taylor-expanding the metric factor H(z) to leading order in the energy density was

also investigated. The curves produced are also shown in Figure 2.5, although it is

difficult to see them since they essentially overlap with the flat-space approximation.

This suggests that Taylor-expanding the metric is also a reasonable assumption in this

regime of the model.

2.6 Conclusions

In this chapter we have investigated an alternative low-dimensional analogue of the

Sakai-Sugimoto model to describe holographic baryons, namely an O(3) sigma model

stabilised by vector mesons in a warped spacetime. We have found solitons, multi-

solitons and finite density solitons in this model and compared them to solitons in the

baby Skyrme model and to instanton approximations, and found all three to be similar

given certain parameter constraints. We have also shown that solitons in the vector

meson model can differ qualitatively when these parameters are allowed to violate such

constraints.

In addition, we have used the vector meson model to investigate the low-dimensional
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analogue of the baryonic popcorn phenomenon, and found a set of new phase

transitions (although such phase transitions are present in the baby Skyrme model,

but were previously overlooked). We have used the vector meson model to test

common approximations for the low-dimensional analogue of the U(1) gauge field of

the Sakai-Sugimoto model, and found that approximating the pion and vector meson

fields by flat-space solutions and using a leading-order expansion of the metric are

both good approximations.

When analysing the instanton approximations for finite-density solitons, only a very

restricted set of instanton configurations were considered. It might be of interest to

explore this area more fully to investigate the baryonic popcorn phase transition, by

numerically minimising the energy of solutions where more instanton moduli (i.e. their

positions and phases) are also allowed to vary. It may also be of interest to apply

the various approximations tested here to high-density lattices of solitons in the full

Sakai-Sugimoto model. Finally, although it is computationally much more difficult, it

would be interesting to see how the phenomena observed in the vector meson model

change for very small parameter values, since in this regime the model is no longer

well-approximated by the baby Skyrme model.



Chapter 3

Baby Skyrmions in anti-de Sitter

spacetime

3.1 Introduction

As described in Section 1.3, the Skyrme model is a nonlinear theory in (3 + 1)

dimensions, admitting soliton solutions called Skyrmions. It has been derived as a

low-energy effective field theory description of QCD and has recently been used to

study holographic models such as the Sakai-Sugimoto model (see Section 1.4). A key

feature of these holographic models is that the bulk spacetime is AdS-like, possessing

a conformal boundary and a finite, negative scalar curvature.

Solitons in pure anti de-Sitter spacetimes are also of interest. It has been shown that

Skyrmions with massless pions in hyperbolic space are closely related to Skyrmions with

massive pions in Euclidean space [64, 65]. Since constant time slices of AdS spacetimes

are hyperbolic we may expect similar results in pure AdS. In addition, monopoles and

monopole walls have been studied in AdS [66, 67], motivated as a magnetic version of

holographic superconductors.

The baby Skyrme model (see Section 1.2) is a natural low-dimensional analogue of the

Skyrme model, and in the previous chapter baby Skyrmions were studied in the context

of toy models of holographic QCD. In these toy models a series of so-called popcorn

transitions were observed in which finite-density chains of solitons split into multiple

layers with increasing density.

40
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In this chapter we will investigate the baby Skyrme model in a pure AdS background

and study the resulting soliton and multi-soliton solutions. The low dimensionality

of the model makes full numerical field computations viable, and we find that the

curvature of the spacetime allows us to find soliton solutions even without a pion mass

term. Multi-solitons beyond topological charge B = 3 are found to take the form of

ring-like structures, with popcorn-like phase transitions to multi-layered rings occurring

as the topological charge increases. Inspired by methods used to study aloof (loosely

bound) baby Skyrmions [68] we will derive a point-particle approximation to study

these phase transitions for higher topological charges.

This chapter is based on collaborative work published in [7].

3.2 AdS spacetime in (2 + 1) dimensions

AdS is the maximally symmetric spacetime with Minkowskian signature and constant

negative curvature, and in this chapter we will be interested in the (2 + 1)-dimensional

case. The metric, given in so-called sausage coordinates, can be written

ds2 = −
(

1 + r2

1− r2

)2

dt2 + 4L2

(1− r2)2

(
dx2 + dy2

)
. (3.2.1)

Here, L is the AdS radius (related to the cosmological constant Λ via Λ = −1/L2) and

r =
√
x2 + y2 ∈ [0, 1) is a radial coordinate. These coordinates are useful numerically

as they are global coordinates over a finite range. Later we will use that the geodesic

distance between two points xxx and yyy in this spacetime is given by

d(xxx,yyy) = L cosh−1
(

1 + 2|xxx− yyy|2
(1− |xxx|2)(1− |yyy|2)

)
. (3.2.2)

The following global coordinates give another useful way of writing the AdS metric:

ds2 = − cosh2 ρ

L
dt2 + dρ2 + L2 sinh2 ρ

L
dθ2 , (3.2.3)

where ρ ≥ 0. These coordinates are useful since the radial coordinate ρ coincides with

the geodesic distance from the origin in this model. The global and sausage coordinates

are related by r = tanh ρ
2L .
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Since constant time slices of AdS are hyperbolic space, it will be useful to define a

hyperbolic translation in sausage coordinates. A translation sending the origin to

some point aaa is given by

xxx 7→ (1− |aaa|2)xxx+ (1 + 2xxx · aaa+ |xxx|2)aaa
1 + 2xxx · aaa+ |aaa|2|xxx|2 . (3.2.4)

It should be noted that this is an isometry of only the constant time slices of the

spacetime, rather than the full spacetime, since the time component of the metric is

dependent on the radial coordinate r.

As a final note, the Ricci scalar curvature of AdS can be calculated as R = −6/L2. In

the limit L→∞ this curvature vanishes and we recover flat space.

3.3 The AdS baby Skyrme model

We will be interested in studying soliton solutions of the baby Skyrme model, given by

the action

SBS = −1
2

∫ {
∂µφφφ · ∂µφφφ+ κ2

2 (∂µφφφ× ∂νφφφ) · (∂µφφφ× ∂νφφφ)

+ 2m2(1− φφφ · nnn)
}√
− det g dxdydt .

(3.3.1)

The field φφφ = (φ1, φ2, φ3) is a three component unit vector. The first term is that of

the O(3) sigma model, and the second term is the baby Skyrme term with constant

coefficient κ2. The third term is a potential term containing the pion mass parameterm

(named in analogy with the pion mass term in the full Skyrme model), and a constant

unit vector nnn. Greek indices run over spacetime coordinates t, x and y, and later we

will use Latin indices to run over the purely spatial coordinates. The symmetry of the

action is O(3) for m = 0 and O(2) for m 6= 0.

The associated static energy of this model is

EBS = 1
2

∫ 1 + r2

1− r2

{
|∂xφφφ|2 + |∂yφφφ|2 + κ2(1− r2)2

4L2 |∂xφφφ× ∂yφφφ|2

+ 8L2m2

(1− r2)2 (1− φφφ · nnn)
}
dxdy ,

(3.3.2)

from which we can see the effect of our choice of time coordinate. Without the factor
√
−g00 = (1 + r2)/(1− r2), the hyperbolic translations (3.2.4) would be isometries of
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the static energy, and solutions translated from the origin would have equal energies.

The metric factor √−g00 can then be seen to energetically penalise solutions that lie

away from the spatial origin r = 0, since √−g00 ≥ 1.

The equations of motion for this model are then

∂ijjji ≡ ∂i

{
1 + r2

1− r2

(
φφφ× ∂iφφφ+ κ2(1− r2)2

4L2 ∂jφφφ(φφφ · ∂iφφφ× ∂jφφφ)
)}

= m2
√
− det gnnn× φφφ .

(3.3.3)

For finite energy we then require φφφ → nnn as r → 1. Without loss of generality we

can choose nnn = (0, 0, 1), and in the massless (m = 0) case this choice of boundary

value breaks the O(3) symmetry of the model to O(2). We can identify points on the

boundary r = 1 and treat the pion fields as maps φφφ : S2 → S2, giving rise to an

associated winding number and topological charge

B = − 1
4π

∫
φφφ · (∂xφφφ× ∂yφφφ) dxdy (3.3.4)

which we identify with the baryon number of the configuration. By noting the

inequalities

|∂xφφφ± φφφ× ∂yφφφ|2 ≥ 0 , 1 + r2

1− r2 ≥ 1 , (3.3.5)

we obtain the Bogomolny bound EBS ≥ 4π|B|.

3.4 Radial baby Skyrmions in AdS

We begin by discussing some properties of radially symmetric solitons in our model,

working in global coordinates (3.2.3). Due to the principle of symmetric criticality [69]

and the symmetries of both AdS and the action, we would expect static B = 1 solitons

in our model to posses radial symmetry and be centred at the origin ρ = 0. Static,

radially symmetric configurations with topological charge B are given by the hedgehog

ansatz

φφφ = (sin f(ρ) cos (B(θ − ψ)), sin f(ρ) sin (B(θ − ψ)), cos f(ρ)) (3.4.1)
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where f(ρ) is some profile function satisfying f(0) = π, f(∞) = 0. We set the

constant internal phase ψ to zero due to symmetry, although internal phase

differences will become important when we consider multi-solitons. Substituting into

(3.3.2) and performing the coordinate transformation yields the static energy

Erad = Lπ

2

∫ ∞
0

sinh 2ρ
L

{
f ′

2 + B2 sin2f

L2 sinh2 ρ
L

(1 + κ2f ′
2) + 2m2(1− cos f)

}
dρ (3.4.2)

and equation of motion

∂ρ

 sinh 2ρ
L

L2 + B2κ2 sin2f

sinh2 ρ
L

f ′


= sinh 2ρ
L

sin f
(
B2 cos f
sinh2 ρ

L

(1 + κ2f ′
2) +m2L2

)
.

(3.4.3)

We can numerically find the profile functions f(ρ) for different values of B by

minimising (3.4.2) using a modified gradient flow method. Figure 3.1 displays the

numerical results for topological charges 1 ≤ B ≤ 3 and parameter values κ = 0.1,

L = 1, where we have used fourth-order accurate approximations for derivatives on a

grid with 2001 points. As a comparison we can also perform full-field numerical

minimisations on (3.3.2) and extract the profile function associated with radially

symmetric fields. By using a hedgehog ansatz as an initial condition and performing

a gradient flow mechanism with fourth-order accurate derivatives on a grid with

501 × 501 gridpoints we find radial energy minima for charges 1 ≤ B ≤ 3 that are

identical to the numerical solutions to (3.4.3).

In other baby Skyrme models it has been found that radial solitons can be

well-approximated by flat-space instantons of the O(3) sigma model [62]. This

approximation has enabled an investigation of how the soliton sizes µ scale with the

baby Skyrme parameter κ. Unfortunately O(3) sigma instantons in AdS do not have

a convenient closed form expression, due to the presence of the non-constant time

component of the metric, preventing us from analytically exploring this relationship.

We can nevertheless perform a numerical investigation; since the profile function

interpolates between π and 0 we can define the size of the soliton as the value µ that

satisfies f(µ) = π/2.

Using this definition it is straightforward to numerically find how µ scales with κ and
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L for different values of B, as can be seen in Figure 3.2. In the massless case we find

the leading-order dependence is µ ∼
√
κL for small κ/L; looking at (3.4.2) we see that

nonlinear effects will dominate when κ/L is large. Comparing this to the scaling of

baby Skyrmions with mass parameter m > 0 in flat space, µ ∼
√
κ/m, we can see that

the curvature of AdS space can be interpreted as adding an effective pion mass.

Finally, we can calculate the leading-order decay of the soliton tails near the boundary

of our space. Assuming a radial ansatz, and using the fact that f(ρ) → 0 as ρ → ∞,

we can linearise the equations of motion to obtain

L2 sinh 2ρ
L
f ′′ + 2L cosh 2ρ

L
f ′ − sinh 2ρ

L

(
B2

sinh2 ρ
L

+m2L2
)
f = 0 . (3.4.4)

In the limit ρ→∞ we can obtain the asymptotic tail decay as

f(ρ) ∼ e−(1+
√

1+m2L2)ρ/L , (3.4.5)

independently of κ or B. This relation also holds in the special case m = 0. It is

interesting to note that, unlike baby Skyrme models in flat space, the addition of a

mass term is not required for the soliton tail to decay exponentially. This is in contrast

with baby Skyrmions in flat space which have large-radius asymptotic tail decays

f(r) ∼


r−B, if m = 0

1√
r
e−mr, if m 6= 0 .

(3.4.6)

In fact, these flat-space tail decays can be obtained from the linearised asymptotic

equations of motion by carefully taking the limit L→∞, as expected.

3.5 Multi-solitons in AdS

As we shall see, for topological charges B > 3, radial baby Skyrmions in AdS no longer

provide global minima for the energy functional (3.3.2). Analytic investigation of higher

charge solitons is difficult, but we are able to perform full numerical minimisations to

seek out local and global energy minima. The numerical results in this section were

obtained by performing a modified gradient flow method on the energy (3.3.2) with

parameter values κ = 0.1, L = 1, m = 0 on a grid with 501 × 501 gridpoints in
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Figure 3.1: Numerically computed radial AdS baby Skyrmion profile functions as a
function of geodesic distance ρ for topological charges 1 ≤ B ≤ 3, with κ = 0.1 and
L = 1.

Figure 3.2: Log-log plots demonstrating how the soliton size µ varies with the baby
Skyrme parameter κ (left, with fixed L = 1) and the AdS radius L (right, with fixed
κ = 0.1) for radial AdS baby Skyrmions with 1 ≤ B ≤ 3. The dashed lines have
gradient 0.5, showing that the sizes scale approximately as µ ∼

√
κL for small κ/L.
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(a) B = 1 (b) B = 2 (c) B = 3 (d) B = 4

(e) B = 5 (f) B = 6 (g) B = 7 (h) B = 8

(i) B = 9 (j) B = 10 (k) B = 11 (l) B = 12

(m) B = 13 (n) B = 14 (o) B = 15 (p) B = 16

(q) B = 17 (r) B = 18 (s) B = 19 (t) B = 20

Figure 3.3: Plots of the numerically calculated AdS baby Skyrmions for topological
charges 1 ≤ B ≤ 20 for κ = 0.1, L = 1 and m = 0. We plot φ3 in sausage coordinates
as a visual representation of the solitons.
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sausage coordinates. Derivatives were calculated using fourth-order finite difference

approximations. In addition, the numerical results were verified by applying a fourth-

order Runge-Kutta method to the full dynamical equations of motion.

In order to find local energy minima we investigated a range of different initial

conditions for our minimisation algorithms. Initial conditions were primarily

generated using the product ansatz (2.4.1) combined with the hyperbolic translations

(3.2.4), allowing us to generate configurations that resemble collections of radial baby

Skyrmions placed in different positions on our grid. We also used perturbed radial

fields as initial conditions.

Figure 3.3 shows colour contour plots of φ3 for numerically found global energy minima

for topological charges 1 ≤ B ≤ 20, with energies given in Table 3.1 and Figure 3.4.

For the pion mass term used in this section, radial solutions are preferred up to charge

B = 3, in contrast to baby Skyrmions in flat space which only have radial energy

minima for B ≤ 2.

For 4 ≤ B ≤ 7 the baby Skyrmions form regular polygons, with soliton positions at

the vertices. The relative phase differences between neighbouring soliton positions is

π or π ± π/B for even or odd charges respectively.

At charge B = 8 the ring structure deforms due to the centralising force induced by

the AdS metric. For B ≥ 9 the solutions form multi-layered concentric rings, and the

central layers for 9 ≤ B ≤ 16 resemble (normally slightly deformed) radial solutions.

These deformations appear to match the symmetries of the outer rings. We denote

multi-layered ring structures as {n1, n2, n3, . . . }, where ni denotes the topological

charge in the ith ring, counting out from the origin.

The transition from a single ring to a multi-ring structure with increasing baryon

number is reminiscent of the popcorn transition observed in low-dimensional analogues

of the Sakai-Sugimoto model of holographic QCD [62, 6], in which finite density chains

of solitons pop out into a holographic direction at some critical density. In light of this,

it would be interesting to see if the AdS baby Skyrme model studied here possesses

further popcorn-like transitions beyond B = 20.

This is a potentially difficult task to accomplish numerically. As higher charge solutions

are investigated the number of local energy minima increases drastically. This requires
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charge B E/4πB form charge B E/4πB form
1 1.2548 {1} 11 1.5368 {2, 9}
2 1.2312 {2} 12 1.5554 {2, 10}
3 1.2878 {3} 13 1.5788 {2, 11}
4 1.3384 {4} 14 1.6017 {2, 12}
5 1.3725 {5} 15 1.6250 {3, 12}
6 1.3886 {6} 16 1.6481 {3, 13}
7 1.4263 {7} 17 1.6714 {4, 13}
8 1.4541 {8} 18 1.6914 {4, 14}
9 1.4888 {1, 8} 19 1.7107 {5, 14}
10 1.5157 {1, 9} 20 1.7276 {6, 14}

Table 3.1: Energies per charge (in units of 4π) and forms for AdS baby Skyrmions with
topological charge 1 ≤ B ≤ 20.

Figure 3.4: Energies per charge E/(4πB) for AdS baby Skyrmions with topological
charge 1 ≤ B ≤ 20 (red). Also shown are the energies per charge for 26 ≤ B ≤ 28
(blue).
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a very large number of initial conditions to be tested in order to gain confidence that

a global energy minimum has indeed been found.

In the following sections we will formulate an approximation to our system in which

the solitons are modelled by point particles in a gravitational potential with an inter-

soliton interaction. We will use this model to predict the baryon numbers at which

further popcorn transitions occur, and use the predictions as a guide to finding further

global minima in the full model.

3.6 AdS baby Skyrmions as point particles

The numerical results from the previous section are reminiscent of the results of circle

packings within a circle [70]: finding the minimal area circle within which you can pack

B congruent circles. Solutions tend to be arranged as rings of points separated by at

least the diameter of the circles (∼ 2µ for our baby Skyrmions). However, using this as

an approximation to the AdS baby Skyrme model presents some problems. Firstly, the

popcorn transitions occur too early, the first two around B = 7 and B = 19. Secondly,

the configurations do not always remain “popped”: for example the B = 7 packing is

of the form {1, 6} whereas the B = 8 and B = 9 packings are single rings. This is

likely due to both the malleable and overlapping nature of the baby Skyrmions, and

the forces between them. However it does suggest that a point-particle approximation

could be able to qualitatively predict the form of solutions, if a better representation

of the soliton interactions can be found.

In order to derive a better point-particle approximation it will be necessary to obtain

numerical approximations to the effective gravitational potential and inter-soliton

interaction. We will make use of the hyperbolic translations (3.2.4), and assume that

the energies of radial fields translated in this way can approximate the energies of

constituent parts of multi-soliton configurations located at different points on our

grid. It should be clarified that such fields are not solutions to the equations of

motion since the hyperbolic translations are not isometries of AdS.
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3.6.1 The gravitational potential

We begin by deriving an approximate gravitational potential from the metric (3.2.1).

The geodesic equations associated with this metric are given by

t′′ = − 8
1− r4 (xx′ + yy′)t′ ,

x′′ = − x(1 + r2)
L2(1− r2)(t′)2 + 2x

1− r2 (y′)2 − 4x
1− r2x

′y′ ,

y′′ = − y(1 + r2)
L2(1− r2)(t′)2 + 2y

1− r2 (x′)2 − 4y
1− r2x

′y′ ,

(3.6.1)

where primes denote differentiation with respect to proper time. In the non-relativistic

limit x′, y′ � t′ we can write

ẍ = x′′

(t′)2 −
x′t′′

(t′)3 ≈
x′′

(t′)2 ≈ −
x(1 + r2)
L2(1− r2) ≡ −

x

r
∂rΦ , (3.6.2)

where we have implicitly defined the gravitational potential Φ(r). Integrating along

with the condition Φ(0) = 0 gives

Φ(r) =
∫ r

0

R(1 +R2)
L2(1−R2) dR = − 1

2L2 (r2 + 2 log (1− r2)) . (3.6.3)

To fit this potential to the AdS baby Skyrme model we are required to multiply it by

some constant factor α. We obtain a numerical approximation for the gravitational

potential by evaluating the energies of translated B = 1 radial fields and subtracting

off the energy of the true B = 1 solution. We then fit α to this data by performing

a least-squares fit. We fit only within the radius r = 0.6 because full numerical local

minima, even for high charges, do not lie much beyond this radius, and the hyperbolic

translated B = 1 fields become less accurate as approximations when closer to the edge

of the disc. In addition, we investigated different radii to fit our data to, and found

that choosing values larger than 0.6 resulted in point-particle approximations that did

not successfully estimate the full numerical results.

Figure 3.5 shows the analytic potential for α = 64.3 compared to the numerical

approximations with κ = 0.1, L = 1. The curves are in close agreement for radii in

the range r ∈ [0, 0.6], but diverge as r increases further, as expected.
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Figure 3.5: Numerical and analytical approximations for the gravitational potential
induced by the AdS metric, as a function of the AdS disc radius r. The analytic
approximation is Φ(r) = −α(r2+2 log (1− r2))/2L2 with α = 64.3 and L = 1. Energies
are given in units of 4π.

3.6.2 The inter-soliton interaction

We can obtain a numerical approximation for the inter-soliton interaction in a similar

way: we can numerically calculate the energy of a product ansatz of two translated

B = 1 solitons, subtract off the potential energies associated with each component

soliton (according to the numerical approximation above) and the energy of two B = 1

solutions, and plot the resulting energy as a function of the geodesic separation of the

positions of the solitons.

These static approximations are shown as red curves in Figure 3.7, where the upper

curve represents the inter-soliton energy of a pair of solitons in phase, and the lower

curve represents solitons out of phase. Relative phase differences are calculated with

respect to the geodesics that the particles lie on (see Fig 3.6), so that a pair of soliton

fields with internal phases ψa and ψb have a relative phase difference χ = χ(ψa, ψb).

In keeping with results found in flat space [28], we find that pairs of solitons at large

separations are in the maximally repulsive channel when they are in phase (χ = 0),

and in the maximally attractive channel when they are out of phase (χ = π).
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With this numerical data as a guide we can fit the out-of-phase interaction using a

Morse potential of the form

Uπ(ρ) = D
(
e2a(1−ρ/ρe) − 2ea(1−ρ/ρe)

)
, (3.6.4)

where ρ is the geodesic separation between the solitons, D is the depth of the potential

at its minimum, ρe is the separation at which the potential is minimised, and a is

a parameter controlling the width of the potential. These parameters can be fit by

performing a least-squares fit with the numerical data. Since the product ansatz is

only valid for well-separated solitons, we fit the data in the region where the separation

between the solitons is greater than twice the size of a single soliton. This yields

parameter values D = 0.76, ρe = 0.73 and a = 1.13.

In order to introduce a dependence of the potential on the relative phase difference of

the two solitons, χ, we assume that the solitons are at their most attractive when they

are out of phase, and their most repulsive when they are in phase i.e.

Uχ(ρ) = D
(
e2a(1−ρ/ρe) + 2 cos (χ)ea(1−ρ/ρe)

)
. (3.6.5)

Plots of U0 and Uπ are given by the upper and lower blue curves in Figure 3.7

respectively.

3.7 Baby Skyrmion rings and shells

We now seek energy minima of the point-particle approximation above for various

values of B. For a configuration of B solitons with disc coordinates xxxa and internal

phases ψa (where 1 ≤ a ≤ B) we seek to minimise the energy

EB =
B∑
a=1

Φ(ra) +
∑
b>a

Uχ(ψa,ψb)(d(xxxa,xxxb))
 , (3.7.1)

where ra ≡ |xxxa|, Φ(r) and Uχ(ρ) are the potentials given above and d(xxxa,xxxb) is the

geodesic distance (3.2.2) between points xxxa and xxxb.

We minimise the point-particle energy using a multi-start stochastic hill-climbing

method, where a randomly generated initial condition is allowed to relax iteratively.
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Figure 3.6: Diagram illustrating the geodesics connecting pairs of particles on the disc,
with the top pair being in phase (the maximally repulsive channel) and the bottom pair
being out of phase (the maximally attractive channel). Particles are coloured according
to their internal phase, using the bar on the right.

Figure 3.7: Numerical and analytic approximations for the inter-soliton interaction as
a function of the geodesic separation ρ. The upper curves are the results for baby
Skyrmions in phase, and the lower curves are for baby Skyrmions out of phase. The
blue curves are given by the analytic Morse potential (3.6.5) with D = 0.76, ρe = 0.73
and a = 1.13. Energies are given in units of 4π.
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For each topological charge we used randomly generated initial conditions, and the

minimum energy configurations found are presented in Fig 3.8. Solutions were

verified using a finite temperature annealing method. Particles are coloured according

to their phases (see Fig 3.6).

We find that the point-particle approximation we have derived also favours

configurations that form concentric ring-like structures. Furthermore, the qualitative

forms of the energy minima predicted by the point-particle approximation are very

close to the forms of the full numerical solutions found in Fig 3.3, although the

results of the point-particle approximation are much more symmetric. This is to be

expected since solitons in the full model have a finite size, and so can overlap and

interact in more complicated ways.

For charges B ≤ 7 the approximation accurately predicts not only the ring structure of

the configurations, but also the alignment of internal phases. For even and odd charges

the particles have internal phase differences of π and π±π/B respectively, as observed

in the full model. At B = 8 the approximation gives the correct distribution of phases,

although it does not reproduce the deformed ring structure.

Furthermore, the point-particle approximation correctly captures the first popcorn

transition at B = 9, and closely estimates the qualitative forms of the ring structures

for all B ≤ 20. The point-particle minima disagree with the full numerical results

at charges B = 11, 13, 15, 16, 19 and 20. This may be due to the point-particle

approximation not taking into consideration the radial forms of the B = 2 and 3

solitons, or may be a result of assuming the solitons can be approximated by particles

with zero size. However, even when the exact forms do not agree, the difference is only

by the position of a single particle.

These results suggest that the point-particle approximation may be a useful tool in

qualitatively estimating the forms taken by AdS baby Skyrmions for higher charges.

Performing further numerical minimisations of (3.7.1) allows us to predict a second

popcorn transition at charge B = 27. In fact, by using the predicted forms as a

guide for choosing initial conditions, full numerical energy minimisations reveal the

popcorn transition to three layers around charge B = 27, 28, although it is difficult to

say exactly when the transition occurs due to the presence of two local minima with
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(a) B = 1 (b) B = 2 (c) B = 3 (d) B = 4

(e) B = 5 (f) B = 6 (g) B = 7 (h) B = 8

(i) B = 9 (j) B = 10 (k) B = 11 (l) B = 12

(m) B = 13 (n) B = 14 (o) B = 15 (p) B = 16

(q) B = 17 (r) B = 18 (s) B = 19 (t) B = 20

Figure 3.8: Minimal energy configurations for the point-particle approximation for
topological charges 1 ≤ B ≤ 20. Particles are coloured according to their internal
phases (see Fig 3.6).
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(a) B = 26 (b) B = 27 (c) B = 28

(d) B = 26 (e) B = 27 (f) B = 27∗ (g) B = 28

Figure 3.9: The top row shows minimal energy configurations for the point-particle
approximation for topological charges 26 ≤ B ≤ 28. A popcorn transition to a three-
layer solution is clearly seen at B = 27. This is confirmed by full numerical field
calculations (below) which demonstrate a popcorn transition around B = 27, 28. At
B = 27 two local minima with the same energy (to five significant figures) were found,
indicated by the asterisk.

(a) B = 53 (b) B = 54

(c) B = 93 (d) B = 94 (e) B = 95

Figure 3.10: Minimal energy configurations of the point-particle approximation
demonstrating popcorn transitions to four and five layers at charges B = 54 and
B = 95 respectively. The lower charges pictured show how the inner-most ring of each
configuration becomes deformed just before a pop.



3.7. Baby Skyrmion rings and shells 58

charge B E/4πB form
26 1.8357 {9, 17}
27 1.8546 {9, 18}
27* 1.8546 {1, 9, 17}
28 1.8723 {1, 9, 18}

Table 3.2: Energies per soliton (in units of 4π) and forms for AdS baby Skyrmions
with topological charge 26 ≤ B ≤ 28. Two local minima of the same energy (to five
significant figures) were found at B = 27, as indicated by the asterisk.

similar energies (shown in Fig 3.9, with energies given in Table 3.2).

The point-particle approximation predicts a third and fourth popcorn transition at

charges B = 54 and B = 95 (see Fig 3.10). Since these charges are very large it would

be difficult to perform an extensive search for the global minima in the full numerical

model, even with the guidance provided by the point-particle approximation. However,

the previous success of the model would indicate that the true popcorn transitions

would, indeed, be near these points.

Finally, investigation of the results predicted by the point-particle approximation for

still higher charges may be able to provide clues as to the lattice structure preferred

by the baby Skyrmions in the infinite charge limit. The energy minimum for charge

B = 200 and B = 250 can be seen in Fig 3.11. While clear rings can still be observed

in the outermost layers, the centre of the configuration is heavily deformed and may

indicate an emerging lattice structure.

(a) B = 200 (b) B = 250

Figure 3.11: The minimal energy configuration of the point-particle approximation at
charges B = 200 and 250. The ring structure near the origin is no longer clear, and
may indicate the emergence of a lattice structure.
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3.8 Conclusions

We have investigated the static solitons and multi-solitons of the massless baby Skyrme

model in a (2 + 1)-dimensional anti de-Sitter spacetime. We have found that the

spacetime curvature acts by adding an effective mass to the model which allows us

to find static solutions to the equations of motion without a mass term. Solitons for

topological charges 1 ≤ B ≤ 3 were found to have a radially symmetric form, while

higher-charge multi-solitons were found to form concentric ring-like solutions.

As B increases, a series of transitions occur where the minimal energy solutions take the

form of concentric rings with increasing numbers of layers, a phenomenon reminiscent

of the baryonic popcorn transitions studied recently in the context of dense holographic

QCD. In order to investigate these transitions further a point-particle approximation

was derived which was able to qualitatively estimate the forms of minimal energy

solutions for a wide range of topological charges, as well as accurately predict the

charges at which further popcorn transitions occur.

The point-particle approximation derived may indicate an emerging lattice structure

for baby Skyrmions in AdS in the limit B → ∞. The minimum energy configuration

found for B = 200 and B = 250 displayed clear rings towards the edge of the space,

although near the origin the structure appeared significantly less ring-like, and seemed

suggestive of an emergent lattice formation. Further investigation into this area would

be required to make any further claims.

The O(3) sigma model stabilised by a baby Skyrme term has previously been studied

in an AdS-like spacetime as a low-dimensional toy model of holographic QCD [62],

specifically the Sakai-Sugimoto model. It has been argued that a better

low-dimensional analogue of this model would involve stabilising an O(3) sigma

model using a vector meson term, and such a model has been studied in a parameter

regime where the two toy models are similar [6], although investigation of a more

interesting parameter regime proved difficult. It would therefore be interesting to

study the vector meson model in pure AdS to see if a parameter regime could be

found to give qualitatively different results to the baby Skyrme model.

Finally, the natural extension to this chapter is to study the full (3 + 1)-dimensional
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Skyrme model in AdS. We have demonstrated that a multi-ring like structure exists

in two dimensions for AdS baby Skyrmions and this property may translate to the

higher dimensional model. This could manifest as spherical multi-shells with polyhedral

symmetry groups and hence be approximated by multi-shell rational maps, and it would

be interesting to study AdS Skyrmions to see if such configurations give lower energy

solutions.



Chapter 4

Salty popcorn in a homogeneous

low-dimensional toy model of

holographic QCD

4.1 Introduction

In Chapter 2 we explored the idea of using low-dimensional toy models as analogues

of the Sakai-Sugimoto model, especially in the context of high-density phenomena.

However, studying the true Sakai-Sugimoto model is much more difficult than these

toy models due to the increased analytical and numerical complexity of the problem.

One way to circumvent this would be to make a spatially homogeneous

approximation, motivated by expected results in a high-density regime, effectively

reducing the dimensionality of the system.

One might worry that such an approximation might give rise to qualitatively different

results. To test for this, we here develop a homogeneous ansatz in the low-dimensional

toy model studied in [62]. We will find an ansatz of spatially dependent fields that

gives rise to energy and baryon number densities that are homogeneous in the non-

holographic direction. We find an ansatz that can only give solutions in the dyon salt

phase, and find baryonic popcorn transitions within this sector, which we refer to as

“salty popcorn”. We analyse the behaviour of the model in the limiting cases of high

61
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baryon number density and flat space, and find counter-intuitive scaling results. We

also find that the homogeneous ansatz provides a good approximation to true solutions

in the low-dimensional model by comparing the homogeneous solutions to full numerical

calculations.

This chapter is based on my own work published in [8].

4.2 A homogeneous baby Skyrme model

The low-dimensional toy model of holographic QCD studied in [62] is written in terms

of a three-component unit vector φφφ(x, z) with spacetime metric (2.2.1) and energy and

baryon number as given in (2.2.5) and (2.2.7). Our homogeneous ansatz will be to

write:

φφφ(x, z) =


(sinf(z) cos(πρx),− sinf(z) sin(πρx), cosf(z)) , z ≥ 0

(sinf(z) cos(πρx),+ sinf(z) sin(πρx), cosf(z)) , z ≤ 0
(4.2.1)

where f(z) is some profile function dependent on the holographic coordinate and ρ is

the baryon number density in the x-direction. The sign flip in the second component

over z = 0 is to ensure the configuration has nonzero topological charge, and is related

to the internal phases of the constituent solitons in the non-homogeneous model. The

corresponding energy and soliton number (per unit length in the x-direction) are then

E =
∫ ∞

0

{
π2ρ2

H
sin2f +H (f ′)2 + κ2π2ρ2 (f ′)2 sin2f

}√
H dz , (4.2.2)

ρ̃ = −ρ2

∫ ∞
0

f ′ sinf dz . (4.2.3)

We impose boundary conditions f(0) = π and f(±∞) = 0, which then imply the

pion field satisfies φφφ(x, 0) = (0, 0,−1) and φφφ(x,±∞) = (0, 0, 1). Since these field

values in the baby Skyrme model correspond to the centre of a soliton and the vacuum

respectively, we interpret our ansatz as a homogeneous line of soliton material located

at z = 0. We interpret the soliton number per unit length ρ̃ as the baryon number

density (in fact, with the boundary conditions on f(z) we can identify ρ̃ ≡ ρ).

We should note that this ansatz corresponds to the dyonic salt configuration, which is

an analogue of the splitting of high-density calorons into monopole constituents with
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half the topological charge. Here, the baryon number density is proportional to sinf ,

and so vanishes at z = 0 and z = ±∞. The baryon number density must therefore

be localised around two points away from the origin, rather than be localised around

z = 0, which is characteristic of the splitting behaviour of the dyonic salt. This already

leads to problems with the homogeneous ansatz, in that we cannot use it to predict

whether a baryonic popcorn phase is preferred over a dyon salt phase at high densities.

In fact, it can be shown that any field ansatz in the toy model periodic in x with

boundary conditions φφφ(x, 0) = (0, 0,−1) and φφφ(x,∞) = (0, 0, 1) must correspond to a

salty ansatz (see Appendix B).

It is now a straightforward exercise to numerically compute the profile functions that

minimise this energy using gradient flow methods. The equation of motion for the

profile function is given by(
1 + κ2π2ρ2

H
sin2f

)
f ′′ + z

2H2

(
3 + κ2π2ρ2

H
sin2f

)
f ′

− π2ρ2

2H2

(
1−Hκ2(f ′)2

)
sin 2f = 0 ,

(4.2.4)

although in practice it is convenient to transform the holographic direction onto the

finite region u ∈ [−π
2 ,

π
2 ] via z = tan u. Numerical solutions were obtained using a

gradient flow algorithm on a grid of 1000 points, and the corresponding profile functions

and soliton number densities for κ = 0.01 can be seen in Figure 4.1. By plotting

the energy per soliton number as a function of the baryon number density ρ, as in

Figure 4.2, we also see that the optimum density for the homogeneous single-layer is

ρ = 5.5. This is roughly twice the optimal density in the holographic baby Skyrme

model [62].

We observe that the width of the homogeneous layer decreases with increasing ρ, which

is in agreement with the full numerical results in [62]. This, however, seems counter-

intuitive as one would expect the width of the layer to increase with increasing ρ. This

would allow the solitonic material to explore the holographic direction, which has been

proposed as a holographic description of the quarkyonic phase [56] and chiral symmetry

restoration [57].

To understand this effect we can look at limiting cases within the model. In the high-

density, flat-space limit (ρ→∞, H = 1) the equation of motion for the profile function
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Figure 4.1: Plots of the numerically calculated single-layer profile functions (left) and
soliton number densities (right) with κ = 0.01 in the homogeneous baby Skyrme model
for baryon number densities ρ = 5.5 (red) and ρ = 10 (blue).

Figure 4.2: Energy per baryon number density (in units of 4π) as a function of baryon
number density ρ for the single-layer (red) and double-layer (blue) configurations in
the homogeneous baby Skyrme model with κ = 0.01.
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reduces to

κ2 sin ff ′′ − (1− κ2(f ′)2) cos f = 0 , (4.2.5)

which has a compact solution

f(z) =


π − z/A , 0 ≤ z ≤ Aπ

0 otherwise
(4.2.6)

when A = κ. Note here we have restricted to z ≥ 0 and we extend to z < 0 by

symmetry. We can now substitute an ansatz of the form (4.2.6) into the energy (4.2.2)

and take the flat-space limit to obtain

E =
∫ Aπ

0

{
1
A2 + π2ρ2 sin2

(
π − z

A

)(
1 + κ2

A2

)}
dz , (4.2.7)

= π

2

(
π2ρ2A+ 2 + π2ρ2κ2

A

)
, (4.2.8)

which is minimised by

A =
√

2 + π2ρ2κ2

πρ
. (4.2.9)

We note that A → κ as ρ → ∞, which justifies the use of the compact ansatz. We

also note that A decreases as ρ increases, explaining why the soliton size shrinks with

increasing baryon number density.

To determine the region of validity of the compact ansatz we must determine when the

flat-space approximation is applicable. The flat-space approximation should be valid

when the size of the soliton is small compared to the curvature scale. In other words,

we require the region on which the profile function is nonzero to be in z ∈ [0, ε], where

ε� 1. In the high-density limit this yields κπ � 1, which gives

κ� 1
π
∼ 0.3 . (4.2.10)

We see then that a value of κ = 0.01 is within this regime. Figure 4.3 shows the profile

function and associated soliton number density for ρ = 100 and 1000, and we see that

the solution does indeed approach a compact form.
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Figure 4.3: Plots of the numerically calculated single-layer profile functions (left) and
soliton number densities (normalised by the baryon number density) (right) with κ =
0.01 in the homogeneous baby Skyrme model for very high baryon number densities
ρ = 100 (red) and ρ = 1000 (blue). The black dotted lines show the associated high
density compact solutions.

4.3 Baryonic popcorn in the homogeneous model

In order to investigate the presence of baryonic popcorn in this salty homogeneous

model we must first generalise our single-layer ansatz to a multi-layer ansatz. One

straightforward way to do this for a double-layer configuration, with layers localised

around z = ±z0, is to patch together two single-layer solutions in a continuous manner:

φφφ(x, z) =



(sinf(z) cos(πρ1x),− sinf(z) sin(πρ1x), cosf(z)) , z0 ≤ z

(sinf(z) cos(πρ2x),+ sinf(z) sin(πρ2x), cosf(z)) , 0 ≤ z ≤ z0

(sinf(z) cos(πρ2x),− sinf(z) sin(πρ2x), cosf(z)) , −z0 ≤ z ≤ 0

(sinf(z) cos(πρ1x),+ sinf(z) sin(πρ1x), cosf(z)) , z ≤ −z0

(4.3.1)

and requiring f(0) = f(±∞) = 0 and f(±z0) = π. We have introduced parameters ρ1

and ρ2 ≡ ρ−ρ1 to allow topological charge to distribute itself between the components

of the layers, and imposed symmetry in z → −z (up to the sign flip in the second

component). Again, the repeated sign flips in the second components of the field are

required to ensure nonzero topological charge. There is an additional sign flip in the

first and second components of the pion field (equivalent to f(z) → −f(z)) between

z > 0 and z < 0, to ensure that the two layers are out of phase with each other, to



4.3. Baryonic popcorn in the homogeneous model 67

match results found in [62], although this has no overall effect on the calculations.

We should also note that, as in the single-layer case, the layers in this ansatz correspond

to two layers of dyonic salt: the vanishing of the soliton number density at z = ±z0

implies that the soliton layers have already split into constituent half-layers. Again,

this is a drawback since we cannot determine whether the dyon salt or the popcorn

phase is preferred at high densities. Since we have found an analogue of the baryonic

popcorn phase within a dyon salt ansatz, we refer to this phase as “salty popcorn”.

With this salty popcorn ansatz we can now numerically solve for the profile function

and density fraction ρ1 at constant ρ = ρ1 + ρ2 and z0 piecewise in each region using a

gradient flow algorithm. We then minimise with respect to z0 by performing a golden

section search on these solutions. The resulting profile functions and soliton number

densities are displayed in Figure 4.4.

Figure 4.4: Plots of the numerically calculated double-layer profile functions (left) and
soliton number densities (right) with κ = 0.01 in the homogeneous baby Skyrme model
for baryon number densities ρ = 10 (red) and ρ = 15 (blue).

Again, we observe that the widths of the layers decrease with increasing ρ. In addition,

we find that both the separation between the layers and the relative proportion of

topological charge in the inner layer both decrease with increasing baryon number

density ρ. We also notice that the solutions within the homogeneous ansatz become

less smooth as ρ increases: this could be worrying as we would expect the ansatz

to become more accurate (and hence more smooth) with increasing baryon number

density. This can, once again, be explained by considering a compact solution in the

high density, flat-space limit. Restricting to z ≥ 0 (and extending to z < 0 using
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symmetry), the ansatz

f(z) =



πz/z0 , 0 ≤ z ≤ z0

π(A− z)/(A− z0) , z0 ≤ z ≤ A

0 otherwise

(4.3.2)

again satisfies the equations of motion in the high density limit so long as z0 → πκ

and (A− z0)→ πκ as ρ1, ρ2 →∞. Substituting this ansatz into the energy (4.2.2) and

taking the flat-space limit yields

E =
∫ z0

0

{
π2

z2
0

+ π2ρ2
1 sin2

(
πz

z0

)(
1 + κ2π2ρ2

1
z2

0

)}
dz

+
∫ A

z0

{
π2

(A− z0)2 + π2ρ2
2 sin2

(
π(A− z)
A− z0

)(
1 + κ2π2ρ2

2
(A− z0)2

)}
dz

= π2

2

(
ρ2

1z0 + 2 + κ2π2ρ2
1

z0
− ρ2

2(A− z0)− 2 + κ2π2ρ2
2

A− z0

)
.

(4.3.3)

Minimising with respect to z0, A and ρ1 yields

ρ1 = ρ2 = ρ/2 , (4.3.4)

z0 =
√

8 + κ2π2ρ2

ρ
, (4.3.5)

A = 2z0 . (4.3.6)

We note that z0 → πκ and (A− z0)→ πκ as ρ→∞, justifying the use of the compact

ansatz. We also see that we require A = 2z0 → 2πκ � 1 for the flat-space ansatz to

be valid, yielding κ� 1/(2π) ∼ 0.16.

We find that the high density limit of the double-layer solution takes the form of two

equal sized layers with baryon number density distributed equally among them. This

limiting behaviour can be confirmed by numerically solving (4.2.4) for the double-layer

case for very high densities. Figure 4.5 shows the profile functions and soliton number

densities for such solutions with κ = 0.01 and baryon number densities ρ = 200 and

ρ = 2000. The existence of the compact solution also explains the breakdown of

smoothness of the ansatz at higher densities, since the compact limit does not yield a

smooth solution.

Finally, we do observe a popcorn transition in this homogeneous model. By comparing
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Figure 4.5: Plots of the numerically calculated double-layer profile functions (left)
and soliton number densities (normalised by the baryon number density) (right) with
κ = 0.01 in the homogeneous baby Skyrme model for very high baryon number densities
ρ = 200 (red) and ρ = 2000 (blue). The black dotted lines show the associated high
density compact solutions.

the energy per baryon number density of the single- and double-layer configurations

in Figure 4.2 we can clearly see a transition point around ρ = 11.4 beyond which the

double-layer configurations become energetically favourable compared to the single-

layer configurations. This, again, is roughly twice the density at which the first popcorn

transition is observed in the non-homogeneous baby Skyrme model. We can also see

that such a popcorn transition must occur by looking at the high density compact

solutions: we have

Esingle = π2ρ
√

2 + π2κ2ρ2 , (4.3.7)

Edouble = π2ρ

2

√
8 + π2κ2ρ2 , (4.3.8)

and so we see that Edouble → Esingle/2 as ρ→∞.

4.4 Comparison with full numerical solutions

The advantage of the two-dimensional toy model is that we can actually compare the

predictions made by the homogeneous ansatz to numerical solutions obtained in the full

model. In [62] full numerical periodic solutions in the holographic baby Skyrme model

were found for a range of baryon densities, with boundary conditions used to specify

different numbers of layers. An analogue of the dyon salt phase was found, manifest by
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single-layer solutions becoming more homogeneous with increasing density. In addition,

double- and triple-layer configurations were found to be energetically favourable beyond

some critical densities, demonstrating popcorn transitions. Crucially, these popcorn

transitions occurred at densities well below the analogues of the dyon salt. It was

conjectured that further popcorn transitions beyond three layers would also occur.

Figure 4.6 shows the pion field φ3 for both the homogeneous ansatz and the full

numerical solution for single-layer configurations at densities ρ = 5 and ρ = 10, and

Figure 4.7 shows the same information for double-layer configurations at densities

ρ = 10 and ρ = 50. In each case, numerical computations were performed on a grid

containing one unit of topological charge per layer and periodic boundary conditions

on φ3. Anti-periodic boundary conditions on φ1 and φ2 were imposed to ensure

solutions took the form of either a single chain or a regular square chain respectively

(as in the multi-layer computations in Chapter 2). The plots themselves show more

units of topological charge, for the sake of clarity.

In both cases we find the qualitative appearances of the solutions to be very similar

for higher densities. We also calculate the energies of the different solutions (displayed

in Table 4.1) and find them to also be in close agreement at higher densities.

We also notice that, for the double-layer configurations, the homogeneous ansatz

predicts the layers to be more widely separated, even for higher densities. This could

be because the homogeneous ansatz does not allow the separate layers to interact, as

the ansatz forces the fields to take the vacuum value on the line z = 0. In the full

numerical solutions the separate layers are out of phase with each other, causing an

attraction between them, and the homogeneous ansatz cannot capture this feature.

Whether this difference can be resolved or not is still an open problem.

4.5 Multi-layer solutions and popcorn transitions

We can use our flat-space compact approximations to shows the existence of further

popcorn transitions in this model beyond two layers. For simplicity we will consider

an N -layer solution for N odd, although this can be easily generalised for N even.

Restricting to z ≥ 0 we construct a multi-layer ansatz with soliton layers localised
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density ρ single-layer E/(4πρ) double-layer E/(4πρ)
homogeneous numerical homogeneous numerical

5 1.023 1.012 1.088 1.013
10 1.037 1.034 1.048 1.021
50 1.608 1.608 1.189 1.187

Table 4.1: Energies per baryon number density (in units of 4π) for single- and
double-layer solutions, both within the homogeneous ansatz and from full numerical
computations.

Figure 4.6: The third component of the pion field φ3 for the single-layer configurations
within the homogeneous ansatz (left) and from full numerical computations (right).
Each plot shows four units of topological charge. The solutions are calculated
at densities ρ = 5 (top) and ρ = 10 (bottom). We see that the homogeneous
approximation is reasonable for moderately high densities.
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Figure 4.7: The third component of the pion field φ3 for the double-layer configurations
within the homogeneous ansatz (left) and from full numerical computations (right).
The solutions are calculated at densities ρ = 10 (top, 12 units of topological charge
displayed) and ρ = 50 (bottom, 20 units of topological charge displayed). We see that
the homogeneous approximation is reasonable for moderately high densities.
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around the positions z ∈ {z0 = 0, z1, . . . , z(N−1)/2} by piecewise gluing together compact

solutions of the form above. Explicitly we write

f(z) =



π(An − z)/(An − zn) , zn ≤ z ≤ An

π(z − An)/(zn+1 − An) , An ≤ z ≤ zn+1

0 otherwise

, (4.5.1)

where 0 ≤ n ≤ (N − 1)/2 and zn < An < zn+1. This ensures f(zn) = π and f(An) = 0.

This ansatz can then be substituted into the energy (4.2.2), which can be integrated

in the flat-space limit to obtain

E =
N−1∑
k=0

Ek , (4.5.2)

where we denote the partial energies as

E2k = π2

2

(
(Ak − zk)ρ2

2k + 2 + κ2π2ρ2
2k

Ak − zk

)
, 0 ≤ k ≤ (N − 1)/2 (4.5.3)

E2k+1 = π2

2

(
(zk+1 − Ak)ρ2

2k+1 + 2 + κ2π2ρ2
2k+1

zk+1 − Ak

)
, 0 ≤ k ≤ (N − 3)/2 (4.5.4)

and ρk are the partial baryon number densities satisfying ρ = ∑N−1
k=0 ρk.

We can now minimise with respect to zn and An to obtain

Ak − zk =

√
2 + κ2π2ρ2

2k

ρ2k
, 0 ≤ k ≤ (N − 1)/2 (4.5.5)

zk+1 − Ak =

√
2 + κ2π2ρ2

2k+1

ρ2k+1
, 0 ≤ k ≤ (N − 3)/2 (4.5.6)

Ek = π2ρk
√

2 + κ2π2ρ2
k , 0 ≤ k ≤ N − 1 (4.5.7)

Further minimising with respect to ρk yields ρk = ρ/N and we find that, within this

ansatz, the baryon number density of each layer component is equal. This then gives

us

Ak − zk = zk+1 − Ak =
√

2N2 + κ2π2ρ2

ρ
, (4.5.8)

E =
N−1∑
k=0

Ek = π2ρ

N

√
2N2 + κ2π2ρ2 , (4.5.9)

and we see that the widths of each layer component are also all equal, tending to κπ as
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ρ→∞. As above, this implies that this ansatz solves the flat-space equation of motion

in the high density limit. The flat-space approximation is valid when Nκπ � 1, which

for our value of κ = 0.01 gives N � 1/(0.01π) ∼ 32. We can also see that, as long as

the flat-space approximation is valid, the N -layer solution will always be preferable in

the high density limit: we have EN-layer → Esingle/N as ρ→∞.

The analysis above is only valid when the flat-space approximation is legitimate; beyond

this regime the effect of curved space would need to be taken into account. This is

difficult both numerically and analytically due to the large number of extra parameters

we have introduced. We can, however, construct an ansatz for three layers subject to

further approximations, and deduce the existence of further popcorn transitions.

Using simpler notation than the multi-layer analysis above, we construct a three-layer

ansatz by introducing parameters z1 > z0 and imposing f(0) = f(±z1) = π and

f(±z0) = f(±∞) = 0 (with appropriate sign flips in the second components of the

associated φφφ fields). Numerically minimising with respect to all of these parameters,

in addition to the partial baryon number densities in each layer component, is

challenging. Instead, we assume the baryon number density is equally spread across

the configuration (by setting all the partial baryon number densities equal to ρ/3)

and then minimise with respect to z1 for a range of fixed z0. By doing this we can

clearly see that for high densities, there will be a three-layer solution that is

energetically preferable when compared to the double-layer (see Figure 4.8). When

combining this result with the above analysis it would seem reasonable to conjecture

further popcorn transitions will occur to four or more layers as density increases even

further, as conjectured in the non-homogeneous holographic baby Skyrme model [62].

One would, however, expect the curvature of spacetime to become more relevant as

the number of layers increases, and the effect of this on the number of popcorn

transitions is currently unknown.

4.6 Conclusions

We have successfully employed a homogeneous ansatz which has reproduced some of

the qualitative behaviour of the full holographic baby Skyrme model. We find a series
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Figure 4.8: Energy per baryon number density (in units of 4π) as a function of layer
position z0 for ρ = 20 (left) and ρ = 50 (right) in the homogeneous baby Skyrme model
with κ = 0.01. The black dotted lines show the corresponding double-layer energies at
these densities, and the energies of the three-layer configurations are given by red +’s.

of single-layer configurations, with an optimal density and a popcorn transition (albeit

a salty one) to a double-layer configuration at roughly twice the true numerically

calculated densities. We also find evidence for a second popcorn transition in this

model, qualitatively matching the full numerical results previously studied. These

successes demonstrate that a homogeneous ansatz can be a useful tool for studying cold,

dense QCD. In fact, in Chapter 5 we shall employ homogeneous ansätze in the five-

dimensional Sakai-Sugimoto model, and discover a new alternative to the previously

mentioned dyon salt and baryonic popcorn configurations for high baryon density.

Unfortunately the ansatz falls short in that it can only generate solutions that are

already in the dyon salt phase. This prevents making any comparisons between the

energy of this phase with the energy of the baryonic popcorn phase. In fact, we have

shown that imposing any homogeneity in this toy model via periodic fields will always

have this problem. When we develop the homogeneous ansätze for the five-dimensional

Sakai-Sugimoto model in Chapter 5 we shall find one ansatz that also shares a similar

problem to this. However, the properties of the higher-dimensional model will enable

us to find a different ansatz that is much more satisfying, and gives rise to interesting

new results. This different ansatz will then reveal key differences between the five-

dimensional model and the low-dimensional toy models.



Chapter 5

Homogeneous approximations of

the Sakai-Sugimoto model

5.1 Introduction

To simplify the problem of studying the Sakai-Sugimoto model at high baryon

number density one can assume spatial homogeneity in the non-holographic

directions, reducing calculations to an effective one-dimensional problem. This

approximation is justified by the studies of low-dimensional toy models, as in

Chapter 4, in which the homogeneous approximation was found to qualitatively

reproduce results from full numerical calculations.

In the higher-dimensional case it is easy to show that there are no smooth, spatially

homogeneous gauge potentials with non-zero baryon number density and finite energy.

One way to circumvent this, as in [58], is to impose homogeneity using singular gauge

fields. This reduces the problem to the calculation of a single profile function dependent

only on the holographic coordinate. Another approach is to replace the Euclidean

spatial volume with a three-sphere [71], since then there are smooth, finite energy,

spatially homogeneous gauge potentials whose finite baryon number density can be

varied by changing the radius of the three-sphere.

In this chapter we begin by briefly discussing the singular configurations first introduced

in [58], before introducing a new homogeneous approximation that can be viewed as a

76
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hybrid of the two approaches mentioned above. We introduce homogeneity at the level

of the field strength, rather than the gauge potential, in such a way that produces an

expression for the field strength that is similar to that obtained on the three-sphere.

However, where the study in [71] fixed dependence on the holographic direction by

imposing self-duality conditions, here we will retain the arbitrary dependence on the

holographic direction, leading us to an effective kink theory in the holographic direction.

This kink theory demonstrates a first-order transition to lightly bound nuclear matter,

as in QCD, and can be interpreted as a smeared crystal. We also expect the energy of

the smeared crystal to provide a lower bound on the energy of the true soliton crystal,

and justify this by analysing the simpler case of the Skyrme crystal (see Appendix C).

We will look for analogues of both the dyon salt and baryonic popcorn configurations in

these homogeneous models. In our study of the singular model we only find analogues

of the baryonic popcorn phase, while in the homogeneous kink model we find not only

that there are analogues of the dyon salt and baryonic popcorn, but also that at high

densities the popcorn phase is energetically preferred over the dyon salt, a result that

was found when studying low-dimensional toy models [62, 6] based on sigma model

instantons. We also find that the kink model predicts only one pop, rather than an

infinite sequence of pops, and explain all the results in the kink model by analysing

the form of the potential term in the effective Lagrangian.

We also find that the double-layer configurations in the kink model form the surface

of a soliton bag that increases in size with increasing density. The interior of the bag

is filled with abelian electric potential, and the instanton charge density is localised

on the surface of the bag. This is similar to the magnetic bags [72] that approximate

coincident non-abelian BPS monopoles, where the role of the abelian electric potential

is played by the modulus of the Higgs field. It is, however, qualitatively different from

the instanton bag proposed in [73], where monopole walls are embedded into the Sakai-

Sugimoto model to produce a bag where the instanton charge density fills the interior,

instead of being localised on the surface of the bag.

This chapter is based on collaborative work published in [9].
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5.2 The Sakai-Sugimoto model

As previously mentioned (see Section 1.5), the Sakai-Sugimoto model is a candidate

model for holographic QCD where, in its low energy description, solitons in a (4 + 1)-

dimensional bulk correspond to baryons. This low energy model has a curved, “AdS-

like” spacetime given by the metric

ds2 = H(z)dxµdxµ + 1
H(z)dz

2 , (5.2.1)

where z is the holographic direction and we have used the (−,+,+,+,+) metric

signature. The warp factor H(z) is given by

H(z) =
(
1 + z2

)2/3
. (5.2.2)

The static energy within this effective model is written in terms of an SU(2) gauge

field AI and an abelian electric potential Â0 as

E = 1
2

∫ {
− 1
H1/2

(
∂iÂ0

)2
−H3/2

(
∂zÂ0

)2

+ 1
H1/2Tr (FijFij) + 2H3/2Tr (FizFiz)

+ 8
ΛÂ0εijkTr (FizFjk)

}
d3xxxdz .

(5.2.3)

Upper case Latin letters I, J, . . . denote all four spatial directions, and lower case

Latin letters i, j, . . . denote the three non-holographic spatial directions. The constant

parameter Λ = 8λ/27π is the rescaled ’t Hooft coupling.

The high dimensionality of the Sakai-Sugimoto model makes numerical calculations

within it very difficult, so we now seek a homogeneous ansatz to reduce the field

equations to ODEs.

5.3 The singular ansatz: homogeneous gauge fields

Our first homogeneous ansatz is for a single layer of solitons at z = 0, and introduces

the homogeneity at the level of the gauge fields. This ansatz is, arguably, less effective

than the kink ansatz we will see later, and for this reason we will only perform a detailed
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enough analysis in this subsection to reveal some key elements to be compared with

the later ansatz.

The singular ansatz is given by

Â0 = ω(z) , Ai = −α2 h(z)σi , Az = 0 ,

Fij = −α
2

2 h(z)2εijkσk , Fiz = α

2 h(z)′σi .
(5.3.1)

The boundary conditions on the profile functions are limz→0± h(z) = ±1 and

h(±∞) = 0. The discontinuity of h(z) at z = 0 is required for the topology of the

soliton solutions to be nontrivial.

The constant α is fixed by calculating the baryon number density (i.e. the instanton

number per spatial 3-volume V ):

ρ ≡ N

V
= − α3

8π2

∫ ∞
−∞

(
h3
)′
dz = − α3

4π2

∫ ∞
0

(
h3
)′
dz = α3

4π2 . (5.3.2)

For the analysis of the singular ansatz we shall work in the canonical ensemble (i.e.

work at fixed baryon number density ρ, with zero chemical potential), giving boundary

conditions on the abelian electric potential ω(z) as ω(±∞) = 0. This is because, in

holographic QCD, the boundary value of the abelian electric potential is proportional

to the chemical potential [74, 75]. We also impose symmetries that h(z) and ω(z) are

odd and even functions of z respectively, since we expect the energy minimising bulk

solutions to have instanton number density and abelian electric potential that are even

functions of z localised around z = 0.

In the following calculations we shall work in the domain z ≥ 0 and extend to z < 0

using symmetry. The static energy per 3-volume for this ansatz is

E ≡ E

V
= EYM + ECS , (5.3.3)

where

EYM =
∫ ∞

0

{
3α2H3/2 (h′)2 + 3α4

H1/2h
4 −H3/2 (ω′)2

}
dz , (5.3.4)

ECS =
∫ ∞

0

{
−8α3

Λ ω
(
h3
)′}

dz . (5.3.5)
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The equations of motion for ω(z) and h(z) are

δω :
(
H3/2ω′

)′
= 4α3

Λ
(
h3
)′
, (5.3.6)

⇒ H3/2ω′ = 4α3

Λ
(
h3 − c1

)
, (5.3.7)

δh :
(
H3/2h′

)′
= 2α2

H1/2h
3 + 4α

Λ h2ω′

= 2α2

H1/2h
3 + 16α4

Λ2H3/2h
2
(
h3 − c1

)
, (5.3.8)

where c1 is an integration constant to be fixed. We can now see the leading-order decay

behaviour of the profile function h(z): for large z the equation of motion gives

z2h′′ + 2zh′ = 0 ⇒ h(z) ∼ 1
z
. (5.3.9)

We can now eliminate the abelian electric potential, ω, from integrals (5.3.4) and

(5.3.5). First note that we can substitute (5.3.7) directly into (5.3.4) to obtain

EYM =
∫ ∞

0

{
3α2H3/2 (h′)2 + 3α4

H1/2h
4 − 16α6

Λ2H3/2 (h3 − c1)2
}
dz . (5.3.10)

Next, we multiply (5.3.6) by ω to get

4α3

Λ
(
h3
)′
ω =

(
H3/2ω′ω

)′
−H3/2 (ω′)2

, (5.3.11)

and substitute into (5.3.5) to obtain

ECS =
∫ ∞

0

{
32α6

Λ2H3/2

(
h3 − c1

)2
}
dz −

[
2H3/2ω′ω

]∞
0

=
∫ ∞

0

{
32α6

Λ2H3/2

(
h3 − c1

)2
}
dz + 8α3

Λ (1− c1)ω(0) ,
(5.3.12)

where we have used ω′(0) = 4α3(1 − c1)/Λ from (5.3.7). This yields the final energy

expression:

E =
∫ ∞

0

{
3α2H3/2 (h′)2 + 3α4

H1/2h
4 + 16α6

Λ2H3/2

(
h3 − c1

)2
}
dz

+ 8α3

Λ (1− c1)ω(0) .
(5.3.13)

The variation of the integral part of this energy reproduces the equation of motion

(5.3.8), so we can now fix c1 = 1 to ensure the constant piece vanishes.

Notice that this value for c1 in (5.3.7) then implies that ω′(0) = 0, meaning that even
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Figure 5.1: Energy per instanton number E/ρ (in units of 8π2) as a function of baryon
number density ρ for the single-layer (red) and double-layer (blue) solutions in the
singular homogeneous ansatz with Λ = 10.

though h(z) is discontinuous at z = 0 for this ansatz, ω′ is continuous. This should be

expected, since ω′ is a gauge invariant (and therefore physical) quantity.

Furthermore, we can take the limit of (5.3.7) as z →∞ to obtain

lim
z→∞

z2ω′ = −4α3

Λ = −16π2ρ

Λ . (5.3.14)

This then reproduces the usual holographic result relating the asymptotic behaviour

of the abelian electric potential to the baryon number density [76, 77]:

ω(z) = 16π2ρ

Λz + o
(1
z

)
, (5.3.15)

where we recall that we are working in the canonical ensemble with zero chemical

potential.

We can find numerical solutions to (5.3.8) by using a gradient flow method, along

with a change of variable z = tan u to map the holographic coordinate onto a finite

range. The solutions described below were obtained on a grid of 2000 points equally

spaced in u > 0, with u < 0 obtained by symmetry. Derivatives were calculated using

fourth-order accurate approximations.
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The red curve in Figure 5.1 shows the ratio of the energy per instanton number to the

lower bound E/(8π2ρ) as a function of the baryon number density ρ for the numerically

obtained single-layer solutions. We find a critical density at ρ1 = 0.044 at which the

energy per soliton is minimal, corresponding to an analogue of the nuclear matter

density in QCD.

Figure 5.2 shows the profile functions and instanton number densities per unit

3-volume of single-layer solutions with ρ = 0.1 and ρ = 2 and Λ = 10. Note that, even

at high densities, it is difficult to see a clear indicator of the dyon salt configuration

emerging, whereby the soliton splits into a number of constituents with fractional

topological charge. This is another major drawback of the singular ansatz when

compared to the kink ansatz, as we will see later. In fact, this is reminiscent of the

problems encountered in the study of the low-dimensional homogeneous

approximation of Chapter 4; there, the homogeneous ansatz forced solutions to lie in

the dyon salt regime and so comparisons between salt and popcorn were impossible.

Previous work on low-dimensional toy models [62, 6] suggest that a popcorn

transition [4] should appear before the formation of a dyonic salt. In other words, at

high densities there should be a competing configuration corresponding to a

double-layer of solitons with lower energy than any of the above configurations

discussed. While it is difficult to identify the dyon salt within this singular ansatz, we

nonetheless proceed by constructing such a double-layer solution, and find that at

high densities the double-layer is indeed energetically favourable.

5.3.1 Baryonic popcorn in the singular ansatz

To create a solution with two layers of solitons separated in the holographic direction

we add a discontinuity in h(z) at some z = z0 and minimise (5.3.3) piecewise in both

z ∈ (0, z0) and z ∈ (z0,∞), obtaining the profiles for z < 0 by symmetry. Our boundary

conditions are now h(0) = h(∞) = ω(∞) = ω′(0) = 0, h(z±0 ) = ±1 and we demand

ω′ to be continuous across the discontinuity, since this should be a physical quantity.

Furthermore, h(z) and ω′ should be odd functions of z.
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Figure 5.2: Profile functions h(z) (top) and instanton number densities per unit 3-
volume (bottom) for single-layer solutions in the singular homogeneous ansatz with
ρ = 0.1 (left) and ρ = 2 (right) for Λ = 10.

The baryon number density is given by

ρ = − α3

4π2

∫ ∞
0

(
h3
)′
dz = − α3

4π2 (−h3(z+
0 ) + h3(z−0 )) = α3

2π2 , (5.3.16)

which implies α = (2π2ρ)1/3. We see each layer carries half of the total baryon number

density of the full configuration.

Piecewise, the equations of motion for the fields are the same as in (5.3.7) and (5.3.8),

although we need to fix different integration constants in each piece. In z ∈ (0, z0) we

set c1 = 0 to ensure ω′ is odd. Following similar steps to the previous section, we then

find we can write

E0<z<z0 =
∫ z0

0

{
3α2H3/2 (h′)2 + 3α4

H1/2h
4 + 16α6

Λ2H3/2h
6
}
dz + 8α3

Λ ω(z−0 ) , (5.3.17)

where we have used h(z−0 ) = −1.

Fixing c1 = 0 in z ∈ (0, z0) then implies (H3/2ω′)(z0) = −4α3

Λ , so for continuity we set
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c1 = 2 in z ∈ (z0,∞). Using the same manipulations again we now find

Ez>z0 =
∫ ∞
z0

{
3α2H3/2 (h′)2 + 3α4

H1/2h
4 + 16α6

Λ2H3/2

(
h3 − 2

)2
}
dz − 8α3

Λ ω(z+
0 ) . (5.3.18)

If we require ω(z) to be continuous across the discontinuity then the constant terms in

(5.3.17) and (5.3.18) cancel, and the variations of the two functionals yield consistent

equations of motion for h(z) in both pieces. As a further consistency check, substituting

our choice c1 = 2 for z ∈ (z0,∞) into (5.3.7) and taking the limit as z →∞ gives

lim
z→∞

z2ω′ = −8α3

Λ = −16π2ρ

Λ , (5.3.19)

and we obtain the same holographic relation (5.3.14) as in the single-layer case.

The ratio of the energy per instanton number to the lower bound E/(8π2ρ) as a function

of the baryon number density ρ for the double-layer is shown by the blue curve in

Figure 5.1, and we can clearly see a critical density ρ2 = 0.30 at which a double-

layer of solitons becomes more energetically favourable than a single layer. This is

the analogue of a popcorn transition in this singular model. The profile functions and

instanton number densities per unit 3-volume of double-layer solutions with ρ = 0.1

and ρ = 2 can be found in Figure 5.3.

For the double-layer solutions it is easy to see that the layers begin to explore the

holographic direction at higher densities, since the instanton number density peaks

become more separated. However, it is difficult to compare the double-layer popcorn

transition to the dyon salt configuration since the salt is not easily identifiable.

To conclude this section, we have (briefly) analysed a singular homogeneous ansatz

for the Sakai-Sugimoto model and found that this does, indeed, predict a popcorn

transition to a two-layered configuration at some critical density. However, the

singular nature of the ansatz and the difficulty in identifying an analogue of the dyon

salt arrangement make this ansatz somewhat undesirable. One could speculate that

there would exist further popcorn transitions in this model, to further multi-layered

configurations. These ansätze could be constructed by generalising the above method

and adding extra discontinuities at the locations of each layer. However, we shall not

perform such an analysis here, due to the aforementioned drawbacks of the ansatz,

and will instead save this analysis for the following discussion of the kink ansatz.
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Figure 5.3: Profile functions h(z) (top) and instanton number densities per unit 3-
volume (bottom) for double-layer solutions in the singular homogeneous ansatz with
ρ = 0.1 (left) and ρ = 2 (right) for Λ = 10.

5.4 The kink ansatz: homogeneous field strengths

When we studied homogeneous approximations in the low-dimensional toy model in

Chapter 4 we found that the combination of imposing spatial homogeneity on the

boundary conditions and periodicity in the non-holographic direction forced solutions

to lie in the dyon salt phase. However, the nature of the high-dimensional model allows

us to explore other options for imposing homogeneity. Crucially, the five-dimensional

Sakai-Sugimoto model is a gauge theory and the boundary condition on the gauge fields

is that they must approach pure gauge at z = ∞. The boundary values of the gauge

fields must then satisfy a zero curvature condition, and this allows us to construct a

new homogeneous approximation as detailed below. The low-dimensional model, on

the other hand, approximates the gauge theory by an O(3) sigma model. There is no

such zero curvature condition we can exploit, and so the boundary conditions on the

model force solutions to be salty.
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Static solutions in the Sakai-Sugimoto model satisfy Az = 0. On the other hand, in

Az = 0 gauge the gauge fields can be decomposed into eigenfunctions in the holographic

direction as

Ai(xxx, z) = iRi(xxx)ψ(z) +
∞∑
n=1

Vn(xxx)ψn(z) , (5.4.1)

where Ri = (∂iU)U−1, U ∈ SU(2) and ψ(z) → 1, ψn(z) → 0 as z → ∞. The Ri’s

satisfy the zero curvature condition

∂iRj − ∂jRi = [Ri, Rj] . (5.4.2)

At leading order (i.e. ignoring Vn), the field strength is then given by

Fij = −i[Ri, Rj]ψ(ψ − 1) , Fiz = −iRiψ
′ . (5.4.3)

We now apply a homogeneous approximation at the level of the field strength tensors by

substituting Ri = iβσi/2. It is crucial we substitute into (5.4.3) as the approximation

does not satisfy the zero curvature condition (5.4.2). The result gives

Â0 = ω(z) , Fij = −β
2

2 ψ(ψ − 1)εijkσk , Fiz = β

2ψ
′σi , (5.4.4)

where ψ(z) is both smooth and continuous with boundary conditions ψ(−∞) = 0 and

ψ(∞) = 1. The advantage of this approximation is that it is no longer necessary to

introduce any discontinuities of the fields since nontrivial topology now comes from a

winding of the fields at z =∞.

It is worth stressing that this approximation is not a solution to the field equations

derived from (5.2.3), since we have utilised the zero-curvature condition which

homogeneous fields do not satisfy. The approximation is, nevertheless, helpful and

allows us to reduce a 4-dimensional problem to that of a kink in 1-dimension. We

interpret our homogeneous approximation as a smeared version of the true spatial

distribution of the fields in the non-holographic directions, which we expect to form a

soliton crystal. We also expect the smeared approximation to provide a lower bound

on the true crystal energy since the imposed homogeneity is an unattainable

idealisation. This claim is justified by an analysis of the simpler case of the Skyrme

crystal, which will be found in Appendix C.
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Furthermore, the expressions in (5.4.4) are very similar to those that appear by

replacing the Euclidean spatial volume by a finite radius three-sphere, as studied in

[71]. The parameter β is then analogous to the inverse radius of the three-sphere.

However, in [71] the form of the analogue of the kink function ψ(z) was fixed to be of

self-dual form, preventing a study of how the bulk soliton explores the holographic

direction, which is the main purpose of this chapter. It may be interesting to repeat

the analysis here for the case of the three-sphere without freezing the form of the kink

field, since then a genuine homogeneous ansatz is possible.

We can (loosely) interpret the homogeneous approximation in Euclidean space as a

spatial average of the three-sphere solution at infinite radius. After re-writing the

three-sphere ansatz from [71] in a Cartesian basis, Euclidean space can be recovered

by sending the three-sphere radius to infinity, and the approximation (5.4.4) can be

obtained by taking an O(1) expansion in the angular variables around ψ = θ = φ = 0.

We now seek solutions to the homogeneous approximation (5.4.4). Again, we begin by

working in the canonical ensemble (i.e. zero chemical potential), so the abelian electric

potential is also a smooth, continuous function with boundary condition ω(±∞) = 0.

The constant β is, again, fixed by calculating the baryon number density of the ansatz,

ρ = −3β3

8π2

∫ ∞
−∞

(
ψ3

3 −
ψ2

2

)′
dz = β3

16π2 , (5.4.5)

and the static energy per 3-volume is

E ≡ E

V
= EYM + ECS , (5.4.6)

where

EYM = 1
2

∫ ∞
−∞

{
3β2H3/2 (ψ′)2 + 3β4

H1/2ψ
2(ψ − 1)2 −H3/2 (ω′)2

}
dz , (5.4.7)

ECS = 1
2

∫ ∞
−∞

{
−24β3

Λ ω

(
ψ3

3 −
ψ2

2

)′}
dz . (5.4.8)

With this ansatz the equations of motion for ω(z) and ψ(z) are

δω :
(
H3/2ω′

)′
= 12β3

Λ

(
ψ3

3 −
ψ2

2

)′
, (5.4.9)

⇒ H3/2ω′ = 12β3

Λ

(
c1 + ψ3

3 −
ψ2

2

)
, (5.4.10)
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δψ :
(
H3/2ψ′

)′
= β2

H1/2ψ(ψ − 1)(2ψ − 1) + 4β
Λ ψ(ψ − 1)ω′

⇒ ψ′′ + 3H ′
2H ψ′ = β2

H2ψ(ψ − 1)
[
(2ψ − 1) + 48β2

Λ2H

(
c1 + ψ3

3 −
ψ2

2

)]
, (5.4.11)

where c1 is a constant of integration that needs to be fixed. The leading order tail

decay of the profile function is given by ψ(z) ∼ 1 + 1/z.

Since the profile functions are all continuous, the constant c1 can be fixed by requiring

limz→±∞H
3/2ω′ = ±C. This gives c1 = 1/12 and C = −β3/Λ. In other words,

lim
z→∞

H3/2ω′ = lim
z→∞

z2ω′ = −β
3

Λ = −16π2ρ

Λ , (5.4.12)

and we obtain the same holographic relation (5.3.14) as before.

We can now eliminate the abelian electric potential from integrals (5.4.7) and (5.4.8)

by multiplying (5.4.9) by ω and integrating by parts. The resulting boundary term

vanishes and leaves us with

E = 1
2

∫ ∞
−∞

{
3β2H3/2 (ψ′)2 + 3β4

H1/2ψ
2(ψ − 1)2

+ 144β6

Λ2H3/2

(
1
12 + ψ3

3 −
ψ2

2

)2 }
dz ,

(5.4.13)

whose variation with respect to ψ(z) then reproduces (5.4.11).

Note that imposing the self-duality equations on our ansatz (5.4.4) yields the equation

ψ′ = −βψ(ψ − 1) , (5.4.14)

which has the explicit solution

ψ(z) = 1
1 + e−βz . (5.4.15)

Substituting this into the energy, ignoring the Chern-Simons term and going to the

flat-space limit (H = 1) gives E = β3/2 = 8π2ρ, and we recover the BPS behaviour of

flat-space instantons.

We can find numerical solutions to (5.4.11) by using a gradient flow method, along with

a change of variable z = tan u to map the holographic coordinate onto a finite range.

Solutions were obtained on a grid of 2000 points equally spaced in u > 0, with u < 0

obtained by symmetry: again, the energy is minimised by a bulk configuration localised
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Figure 5.4: Energy per instanton number E/ρ (in units of 8π2) as a function of baryon
number density ρ for the single-layer (red) and double-layer (blue) solutions in the
second homogeneous ansatz with Λ = 10.

around z = 0 so we impose ω(−z) = ω(z) and ψ(−z) = 1 − ψ(z) to ensure that the

instanton number density and abelian electric potentials are both even functions of z.

Derivatives were calculated using fourth-order accurate approximations.

The red curve in Figure 5.4 shows the ratio of the energy per instanton number to the

lower bound E/(8π2ρ) as a function of baryon number density ρ for the numerically

obtained single-layer solutions. We find there is a critical density ρ1 = 0.027 at which

the energy per instanton number is minimal, corresponding to an analogue of the

QCD nuclear matter density. This optimal density corresponds to a first-order phase

transition to an equilibrium of nuclear matter, as described below.

So far we have worked in a canonical ensemble (i.e. fixed baryon number density),

but an alternative approach is to work in a grand canonical ensemble where we fix

a chemical potential µ and allow the baryon number density to vary. In holographic

theories a chemical potential usually corresponds to a boundary value for Â0 [74, 75],

and we can recover this from the above by transforming the energy into the grand

potential (also known as the Landau free energy) Ω = E − µρ. To do this we shift ω



5.4. The kink ansatz: homogeneous field strengths 90

by a constant, ω → ω − µΛ/32π2, which then gives us

ω(∞) = − µΛ
32π2 . (5.4.16)

The free energy Ω can then be minimised with respect to the chemical potential µ,

and the resulting function Ω(µ) can be seen in Figure 5.5. The associated relationship

between the baryon number density ρ and the chemical potential µ can be seen in

Figure 5.6. We find that the equilibrium baryon number density is zero below a critical

chemical potential µ1 = 97.5, where µ1 is the critical value of the chemical potential at

which the baryon number density is, indeed, equal to ρ1 (for Λ = 10).

On general grounds, the critical chemical potential should be the same order as the

baryon mass. With our choice of units, the flat space instanton approximation gives

the baryon mass (to leading order in 1/Λ) as

MB = 2π2

4 + 32
Λ

√
2
15

 , (5.4.17)

(see [50]) which, when substituting in Λ = 10 gives us MB = 102. This is seen to be

greater than the critical chemical potential µ1 = 97.5, and so the baryons form bound

states. In fact, the percentage binding energy, given by

∆ =
(

1− µ1

MB

)
× 100% , (5.4.18)

yields ∆ = 4% for our chosen value of Λ = 10. In the limit Λ→∞ we recover the BPS

limit, MB → 8π2 and µ1 →MB, which gives zero binding energy. Although we expect

holographic QCD to only give qualitative predictions about physical three-colour QCD,

our result implies that there should be a value of Λ greater than 10 at which a realistic

binding energy of ∆ ∼ 0.9% is obtained; we compute that the appropriate value is

Λ ∼ 18.

Returning to our value of Λ = 10, Figure 5.7 shows the profile functions, instanton

number densities per 3-volume and abelian electric potentials of single-layer solutions

with ρ = 0.1 and ρ = 2. At the higher density we observe the predicted dyon salt

behaviour, where the instanton layer splits into two constituents, each carrying half

the instanton charge of the full solution. This corresponds to the fact that a periodic

instanton (a caloron) splits into monopole constituents at high density. Note that these
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Figure 5.5: Landau free energy Ω = E − µρ as a function of chemical potential µ for
single- (red) and double- (blue) layer configurations in the homogeneous kink ansatz
with Λ = 10.

Figure 5.6: Baryon number density ρ as a function of chemical potential µ in the
homogeneous kink ansatz with Λ = 10. The lower curve (red) corresponds to single-
layer solutions and demonstrates a fist-order transition to nuclear matter just below
the baryon mass, at µ = µ1 = 97.5. The upper curve (blue) corresponds to double-layer
solutions, demonstrating a first-order transition to baryonic popcorn at µ = µ2 = 189.
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half-kinks cannot exist in isolation as they interpolate between values that differ by 1/2,

but this difference must be either 0 or ±1 for finite energy. This mirrors the splitting of

calorons at high density, where the monopole constituents themselves are not solutions

to the field equations in isolation, but combine to form a periodic instanton.

The emergence of the dyon salt splitting at high densities can be easily understood by

looking at the potential terms in the effective energy (5.4.13). The term proportional

to β4 has an explicit spatial dependence that grows like z−2/3 for large z, which does

not decay fast enough to be integrable. This means that, as z → ±∞, the multiplying

factor must tend to zero. This, in fact, forces the boundary condition ψ(±∞) ∈ {0, 1}.

The term proportional to β6, on the other hand, has explicit spatial dependence that

grows like z−2, which does decay fast enough to be integrable. This means that this

term is minimised when the multiplying factor vanishes, which only occurs when ψ(z) =

1/2. As the baryon number density increases, the sixth-order term dominates over the

fourth-order term, which induces the profile function ro remain as close to the value 1/2

over an increasingly large range of z, while still remaining fixed on the boundary due

to the fourth-order term and finite energy requirement. This generates the splitting of

the kink into a pair of half-kinks, and gives rise to the dyon salt configuration.

5.4.1 Baryonic popcorn and soliton bags in the kink model

One way to generate an ansatz for a double-layer configuration, in order to search for

the possibility of baryonic popcorn, is to continuously patch together the kink solution

with an anti-kink. An anti-kink with boundary conditions ψ(−∞) = 1 and ψ(∞) = 0

can be obtained by transforming ψ → 1− ψ; such a solution has the same energy per

unit 3-volume as the kink but with negative baryon number density. However, if we

also make the transformation Fij → −Fij in (5.4.4) we can make this baryon number

density positive again, thus finding an anti-kink formulation of a single-layer solution

that is equivalent to that described by a kink in the previous section.

We now patch together these two single-layer solutions in a continuous manner to create

a double-layer solution. Explicitly, for z ≥ 0 we take the kink solution (5.4.4) above

with boundary conditions on the half-line, ψ(0) = 0 and ψ(∞) = 1. For z ≤ 0 we

take the same approximation but with Fij → −Fij and solve for anti-kink boundary
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Figure 5.7: Profile functions ψ(z) (top), instanton number densities per unit 3-volume
(middle) and abelian electric potentials ω(z) (bottom) for single-layer solutions in the
homogeneous kink ansatz with ρ = 0.1 (left) and ρ = 2 (right) for Λ = 10.
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conditions on the half-line, ψ(−∞) = 1 and ψ(0) = 0. This implies that ψ(z) and

ω(z) must be even functions of z. Furthermore, the instanton number density (per 3-

volume) is continuous across the join (it vanishes at z = 0), although it is not smooth

there. It should be noted that the sign flip in Fij across z = 0 is analogous to the sign

flip in the second component of φφφ in the homogeneous ansatz in the low-dimensional

toy model.

Restricting to z ≥ 0, the baryon number density is then given by

ρ = −3β3

4π2

∫ ∞
0

(
ψ3

3 −
ψ2

2

)′
dz = β3

8π2 . (5.4.19)

For the double-layer we fix the constant in the integrated field equation (5.4.10) using

the new boundary conditions ω′(0) = 0 and ψ(0) = 0, to obtain c1 = 0. Taking the

limit of this equation as z →∞ then gives us the holographic relation

lim
z→∞

z2ω′ = −2β3

Λ = −16π2ρ

Λ , (5.4.20)

and the correct asymptotic behaviour is reproduced once again.

As in the single-layer case, we can perform an integration by parts to obtain an

expression for the double-layer energy,

E =
∫ ∞

0

3β2H3/2 (ψ′)2 + 3β4

H1/2ψ
2(ψ − 1)2 + 144β6

Λ2H3/2

(
ψ3

3 −
ψ2

2

)2
 dz , (5.4.21)

which has no explicit dependence on the abelian electric potential ω. The double-

layer solution can then be obtained by numerically solving the field equation arising

from the variation of this energy with respect to ψ(z). The ratio of the energy per

instanton number to the lower bound E/(8π2ρ) as a function of the baryon number

density ρ is shown by the blue curve in Figure 5.4 and we can clearly see a critical

density ρ2 = 0.22 at which the double-layer becomes more energetically favourable

than the single-layer. This is the analogue of a popcorn transition in this homogeneous

model. Crucially we find that this transition occurs well below the density at which

the dyon salt configuration manifests, which is in agreement with the aforementioned

low-dimensional studies.

The profile functions, instanton number densities (per unit 3-volume) and abelian

electric potentials for double-layer solutions with ρ = 2 and ρ = 10 can be found in
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Figure 5.8: Profile functions ψ(z) (top), instanton number densities per unit 3-volume
(middle) and abelian electric potentials ω(z) (bottom) for double-layer solutions in the
homogeneous kink ansatz with ρ = 2 (left) and ρ = 10 (right) for Λ = 10.
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Figure 5.8. Although there are qualitative similarities between the double-layer and

the dyon salt configurations, the two solutions are mathematically distinct since the

half-layer constituents of the dyon salt may not exist in isolation. Furthermore, there

are significant quantitative differences between the two, most notably that the double-

layer configurations at these high densities have significantly lower energies per baryon

number.

As before, we can extract the relationship between baryon number density and

chemical potential for the double-layer by analysing the free energy of the

configurations. The blue curve in Figure 5.5 shows the minimal free energies for the

double-layer configurations as a function of the chemical potential, and we see a

transition from the single- to the double-layer around chemical potential µ2 = 189.

Furthermore, Figure 5.6 shows that this is a first-order phase transition: there is a

discontinuous jump around µ = µ2 as the curve switches from the single- to the

double-layer. It should be noted that both curves shown in Figure 5.6 extend beyond

the regions plotted, but in these extended regions the corresponding solutions are no

longer global minima, and so are physically irrelevant.

We have also plotted the variation of the critical chemical potentials µ1 and µ2 as

functions of the rescaled ’t Hooft coupling Λ. The red and blue curves in Figure 5.9

correspond to the baryon onset and critical popcorn transition potentials respectively,

and we see that the system tends towards a BPS limit in which the critical densities

coincide with the baryon mass MB = 8π2 in the large Λ limit (as expected).

One might expect the individual layers of the double-layer configuration to split into

half-kink constituents at high density, just as the single-layer splits into half-kink

constituents. However, the plots in the right column of Figure 5.8 provide strong

evidence to suggest that this does not occur, and instead the two layers simply

increase their separation with increasing density. Once again there is a simple

explanation for this behaviour which we can obtain by looking at the form of the

effective kink potential in (5.4.21). This time, the sixth-order term is only minimised

when ψ = 0 (if ψ ∈ [0, 1]), and so this term does not induce the field to stay close to

any non-boundary value with increasing density. For this reason, the double-layer

solutions do not undergo any splitting as the baryon number density increases, and
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Figure 5.9: Critical chemical potentials µ1 and µ2 corresponding to the baryon onset
(red) and first popcorn transition (blue) as a function of the ’t Hooft coupling Λ in the
homogeneous kink ansatz. The black dotted line corresponds to the chemical potential
µ = 8π2, which coincides with the baryon mass in the large Λ limit.

instead their separation simply increases.

As the density increases it seems reasonable to expect further popcorn transitions to

occur, to three- or four-layered configurations, and indeed this is what has been

observed in a low-dimensional toy model [62]. As the layers of the double-layer

configuration separate, one might expect a third layer to be generated in the region

between them, localised around z = 0. However, this expectation ignores the fact

that the region between the two layers is not empty, and is in fact filled with abelian

electric potential, as demonstrated in Figure 5.8. The two layers form the surface of a

soliton bag, whose interior is filled with (an almost constant) non-zero abelian electric

potential. The electric potential decays to its boundary value outside the bag, and

this transition region identifies the surface of the bag. The instanton number density

(per unit 3-volume) and the electric field are then localised on the surface of the bag.

This is similar to the magnetic bag description of large-charge non-abelian monopoles

[72], where the surface of the bag separates regions of zero and non-zero values of the

modulus of the Higgs field. Since the kink model studied here is periodic in three

spatial directions (as approximated by homogeneity) the surface of the bag is not a
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single connected component, as in the monopole case, but instead consists of two

disconnected components separated in the holographic direction. This is why the

soliton bag requires two layers.

Further popcorn transitions would produce a multi-layered bag configuration, and these

have been studied in the context of magnetic monopoles in [78]. It was found that

solutions took the form of a single bag surrounded by layers of isolated unit charge

monopoles; any attempt at creating a multi-layered bag rules out the possibility of an

interior bag carrying any significant fraction of the topological charge. Therefore, the

soliton bag found in the homogeneous Sakai-Sugimoto model suggests that no further

popcorn transitions occur beyond the first one. This view is further supported by an

investigation into three- and four-layered ansätze within the kink model, obtained by

continuously patching together longer strings of kinks and anti-kinks (with associated

sign flips in Fij at each join). The locations of the joins and the fraction of baryon

number density held by each kink/anti-kink were allowed to vary, and the resulting

energy minima were calculated numerically. In the four-layer case, as expected from

the magnetic monopole bag study, no significant baryon number density was found in

the inner layers, and only the outer layers were relevant. Similar results were also found

in the three-layer case. This is in agreement with recent studies [79, 80] which, using

different approximations, reached the same conclusion that a double-layer is preferred

at high densities and no additional layers are generated. It is worth noting that these

studies use the full string theory description of the Sakai-Sugimoto model, using a

symmetric trace prescription to deal with the non-abelian DBI action, rather than the

five-dimensional effective formulation we use here.

These results are qualitatively very different to those obtained in the low-dimensional

toy models studied in [62] and Chapters 2 and 4, in which an infinite number of

popcorn transitions were conjectured, and evidence for three-layer configurations were

found. While the toy models were justified as low-dimensional analogues of

Sakai-Sugimoto using (as described in Section 2.2), the fundamental difference

between the two classes of model — O(3) sigma model versus gauge theory — may

be the source of the significant qualitative differences in their solutions. This has

already been seen in the construction of the homogeneous approximations themselves:
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in the high-dimensional case we were able to use the zero curvature condition of the

boundary gauge fields to construct the kink ansatz, whereas there is no analogy of

this technique in the toy models.

Finally, it should be emphasised that the soliton bag found here is not the same as the

instanton bag proposed in [73] as a description of the high-density phase of the Sakai-

Sugimoto model. In this paper the bag is obtained via a compactification of one spatial

direction to allow the embedding of a monopole wall. A pair of such monopole walls are

then patched together to form the surface of the instanton bag, and the interior of the

bag is filled with instanton charge density. The soliton bag found in this kink model

contrasts with this, since the instanton number density is localised on the surface of

the bag. With an appropriate choice of shape for the kink profile function, the kink

model introduced here could produce a bag filled with instanton number density, but

such a shape does not appear when numerically minimising the effective kink model

energy.

5.5 Conclusions

Understanding the phases of cold, dense holographic nuclear matter as a function of

baryon number density or chemical potential is an open problem in theoretical physics.

The distribution of baryonic matter is unknown in both the holographic and non-

holographic directions, and this has led to the proposal of a number of approximate

phenomena that may occur. In this chapter we have assumed spatial homogeneity

in the non-holographic directions in two different ways in order to investigate the

distribution in the holographic direction. Since the holographic coordinate corresponds

to an energy scale in the boundary theory, an understanding of this distribution is likely

to be important in discovering a holographic description of the baryonic Fermi surface

of a quarkyonic phase.

Our first homogeneous ansatz assumed homogeneity at the level of the U(2) gauge

fields in the Sakai-Sugimoto model, and it was found that singular gauge fields were

required for nontrivial topology. Within this ansatz there was no clear analogue of the

proposed dyon salt phase, although a transition to a double-layer baryonic popcorn
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phase was found to be preferable over a single-layer at high baryon number densities.

The second homogeneous ansatz imposed homogeneity at the level of the field

strength, and reduced the U(2) gauge theory to an effective kink model in one

direction. Within this ansatz, no singular configurations were required, and the

model was found to be capable of realising a number of previously suggested phases,

including dyon salt, baryonic popcorn and soliton bags. The unification of these

phases allows the preferred phases to be determined as the baryon chemical potential

varies. The effective kink model also successfully predicted a first-order transition to

lightly bound nuclear matter, as found in QCD.

Furthermore, we have found that the five-dimensional Sakai-Sugimoto model behaves

qualitatively differently from the low-dimensional toy models, at least at the level of

homogeneous approximations. There are a number of reasons why this may occur.

Firstly, the toy model only has two spatial dimensions, as opposed to the four spatial

dimensions of Sakai-Sugimoto, which could play a role. Secondly, the toy model uses a

sigma model to approximate a gauge theory, and the differences between these classes

of model could have significant effects. Finally, looking back to the vector meson model

studied in [6] we see that the vector meson field, which plays the role of the abelian

electric potential Â0 in the Sakai-Sugimoto model, must have a nonzero mass term to

allow for finite energy configurations, whereas there is no corresponding mass term in

the Sakai-Sugimoto model. The presence of this mass means that the homogeneous

equation of motion for the vector meson is no longer once-integrable, and the field

cannot be eliminated from the Lagrangian as it was in this chapter.

In holographic QCD, the masses of the vector and axial vector mesons are determined

by the spectrum of fluctuations in the holographic direction. As the background

solution changes with increasing baryon number density so too does the spectrum,

and this has been proposed [57] as a mechanism for approximate chiral symmetry

restoration, with the vector and axial vector meson masses converging in the high

density limit. The details of the correct background solutions, however, are

unavailable, and studies so far into this idea have been primarily qualitative. This

would still be a nontrivial calculation within the homogeneous kink model introduced

here, but may be a tractable problem that would merit future research.



Chapter 6

Conclusions and outlook

The primary question in this thesis, motivated by an interest in finding a holographic

analogue of cold, dense QCD, has been: “What structure does solitonic material have

in the Sakai-Sugimoto model at finite density?” A variety of candidate configurations

have been proposed in the literature, most notably dyonic salt and baryonic popcorn,

although finding which state (if either) is preferred has been severely hampered by

numerical and analytical limitations.

Despite full numerical solutions still being beyond the scope of this thesis, we have

nevertheless been able to make progress by utilising a variety of toy models and

approximations to study the validity of common methods used to simplify the

Sakai-Sugimoto model.

In Chapter 2 we studied a low-dimensional analogue of the Sakai-Sugimoto model in

the form of an O(3) sigma model coupled to a vector meson term. We were able to

find full numerical solutions for solitons, multi-solitons and finite density

configurations, and compare these with both solitons of the holographic baby Skyrme

model and instanton approximations. All three solutions were found to be similar

within a certain parameter regime, and qualitative differences between the vector

meson and holographic baby Skyrme model solutions were found outside this regime.

The vector meson solutions at finite density allowed us to explore whether a dyon salt

or baryonic popcorn configuration was preferred at high densities. A series of popcorn

transitions was found to be energetically favourable, which was then conjectured to

continue indefinitely. This then allowed us to test some common approximations
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used, namely approximating spacetime as flat (for small soliton size) and using a

leading-order series expansion of the spacetime metric. Both approximations were

found to be energetically very close to the true solutions in the parameter regime

studied.

In Chapter 3 we studied the static solitons and multi-solitons of baby Skyrmions in

AdS spacetime. The curvature of the underlying spacetime was found to act by adding

an effective mass to the model, allowing us to investigate solutions to the equations of

motion without an explicit mass term. Solitons for a wide range of topological charges

were numerically calculated, with higher charge solutions taking the forms of concentric

rings of soliton constituents. The transitions to extra layers were reminiscent of the

baryonic popcorn transitions examined earlier. A point-particle approximation for this

model was then developed, and was able to accurately replicate the ring-like structures

of multi-solitons for a large number of charges, as well as estimate with good accuracy

the topological charges at which further popcorn transitions would occur.

Finally, in Chapters 4 and 5 we studied homogeneous approximations to finite density

configurations in a low-dimensional toy model and the full Sakai-Sugimoto model.

The homogeneous approximation was found to have a good qualitative fit to the toy

model at high baryon number densities, reproducing evidence for an infinite number of

popcorn transitions as baryon number density increased further. The main drawback

of the homogeneous toy model was that it was unable to produce analogues of the dyon

salt phase: the solutions were forced to be “salty” due to the constraint of homogeneity.

When applied to the true Sakai-Sugimoto model, however, the homogeneous

approximation yielded strikingly different results. Firstly we imposed homogeneity at

the level of the gauge fields, leading to a singular model in which no clear analogue of

the dyon salt phase could be found. However, applying homogeneity at the level of

the field strengths allowed us to find a kink model in which analogues of both the

dyon salt and baryonic popcorn phases could be numerically calculated and

compared. The kink model predicted one single popcorn-like transition, beyond

which the energetically favourable finite density solution took a new form: that of a

soliton bag filled with abelian electric potential, with the baryon density localised

around the surface of the bag. The previous success of the homogeneous
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approximation in the toy model led us to believe that this difference in behaviour was

likely due to fundamental differences between the Sakai-Sugimoto model and the

low-dimensional toy model. In particular, it was suggested that the low-dimensional

model is not a very good analogue to the full Sakai-Sugimoto model.

There are a number of potential directions further research into this topic could take.

The first would be to explore properties of the Sakai-Sugimoto model at finite nonzero

temperature [81]. At a critical temperature Tc the underlying geometry of the Sakai-

Sugimoto model undergoes a transition, and becomes cylinder-shaped as opposed to

cigar-shaped. This is interpreted as a quark confinement/deconfinement transition. In

this regime the D8/D8-brane pairs no longer necessarily merge and so chiral symmetry

restoration in the model occurs above (or at, depending on the model parameters) the

deconfinement temperature. Exploring solutions of the Sakai-Sugimoto model in the

deconfined phase would be of phenomenological interest, such as in the context of heavy

ion collisions in hot QCD [82], and analysis of high-density configurations would be a

useful way of probing the QCD phase diagram.

Additional analysis of low-dimensional geometries as analogues of holographic QCD

would also merit further study. As we discovered in Chapter 5, at least at the level of

homogeneous approximations, static solutions of the Sakai-Sugimoto and holographic

baby Skyrme models give qualitatively very different results. One potential cause of

this is the fact that the two theories are fundamentally quite different: the higher-

dimensional model is a gauge theory whereas the lower-dimensional analogue is an

O(3) sigma model. Whether or not a low-dimensional gauge theory analogue of the

Sakai-Sugimoto could be found is still an open question and, if such a model existed and

could qualitatively reproduce the results of the Sakai-Sugimoto model at high densities,

it would provide a useful tool for further analysing the properties of holographic QCD.

In addition to this, there is more work that could be done studying the homogeneous

approximations themselves. The homogeneous approximation used in Chapter 5 was

not a true solutions to the equations of motion since the field equations were derived

using the zero-curvature condition, which the homogeneous fields do not satisfy.

However, as has been mentioned, replacing the spatial R3 with an S3 allows

homogeneous fields to be true solution to the equation of motion. This model has
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been studied already [71] assuming the fields take self-dual form, but a more detailed

numerical study would allow an investigation of how the bulk solitons explore the

holographic direction in this geometry.

Although there are other avenues of research that could be taken to follow on from

the work in this thesis, any work in this area will ultimately remain speculative until

full numerical computations or more sophisticated analytical techniques can be

applied to the full Sakai-Sugimoto model. Until then, this thesis has demonstrated

that understanding the Sakai-Sugimoto model is an interesting and open question in

theoretical physics with many features still left to be uncovered.



Appendix A

Numerical gradient flow methods

Throughout this thesis, a number of numerical field calculations are performed as a

way of gaining insight into the various problems studied. Most of these calculations

will involve the minimisation of some functional, usually an energy associated with the

fields in a model, so this appendix will outline and discuss the numerical algorithms

most commonly employed.

Consider some energy functional E[φφφ(xxx)]. An initial field configuration, φφφ, can be

relaxed to a (local) minimum of E, by implementing a gradient flow, or heat flow,

method. To do this we introduce an artificial time coordinate, t, and allow φφφ to evolve

via the first-order equation

φ̇φφ = −δE[φφφ]
δφφφ

(A.0.1)

where the overdot denotes differentiation with respect to t. It is easy to show that

E decreases along trajectories of this evolution equation, and that stationary points

satisfy δE
δφφφ

= 0. Therefore, if E is taken to be the static energy of some system, this

evolves the initial condition towards an energy minimising solution and thus gives

static solutions to the field equations. This is a functional analogue of the steepest

descent method used to minimise real-valued functions of many variables. If the initial

conditions are chosen to be within a given topological sector then this enables us to

find static soliton solutions with a given topological charge.

While this method usually converges even for poor choices of initial condition, its

convergence is usually very slow. It can be shown that if we approximate the field on a
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lattice with spacing ∆x and approximate the time-steps between iterations by ∆t then

a necessary condition for numerical convergence is ∆t ≤ 1
2(∆x)2.

A numerical scheme with faster convergence can be obtained by replacing the left-hand

side of equation (A.0.1) by φ̈φφ. This we will refer to as a modified gradient flow method.

Since this scheme is second-order in time derivatives, rather than first-order, numerical

convergence now requires ∆t ≤ ∆x.

This allows us to take much larger time-steps when numerically evolving initial

conditions, aiding the speed of convergence. However, evolution of φ̇φφ introduces extra

kinetic energy into the system, so the algorithm typically oscillates around the energy

minimising solution. This can be avoided by artificially introducing a damping term

to (A.0.1) to remove this excess energy and allow much faster convergence than

regular gradient flow methods. We will usually impose a damping procedure by

artificially removing the kinetic energy of the fields under circumstances in which the

energy of the fields begins to grow.

These methods were explored by numerically finding static solitons in the massive, flat-

space baby Skyrme model. The Lagrangian density for this system is as in (1.2.17),

subject to the constraint φφφ ·φφφ = 1. Numerically this can be accounted for by adding a

Lagrange multiplier λ to the gradient flow equation via

φ̇φφ = −δE[φφφ]
δφφφ

− λφφφ . (A.0.2)

The constraint implies φ̇φφ · φφφ = 0, which then allows us to calculate the Lagrange

multiplier at each numerical iteration, yielding:

φ̇φφ = −δE[φφφ]
δφφφ

+
(
δE[φφφ]
δφφφ

· φφφ
)
φφφ . (A.0.3)

Again, this flow equation can be replaced by one second-order in time derivatives to

improve the speed of convergence. As was previously mentioned, this necessitates some

damping mechanism to make the method more efficient - this was achieved numerically

by forcing the first derivative φ̇φφ back to zero each time the energy of the configuration

began to increase.

Figure A.1 shows the rates of convergence for the different gradient flow methods

discussed above when applied to finding the static baby Skyrmion in flat space with
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κ = 1 and m =
√

1/10. Calculations were performed on a numerical grid with

201 × 201 gridpoints and ∆x = 0.2. Derivatives were calculated using fourth-order

accurate finite differences. We can clearly see the oscilliatory behaviour of the

undamped modified gradient flow method and the significantly faster convergence

rate of the damped modified gradient flow method.

Figure A.1: Energies (in units of 4π) of the intermediate configurations during the
calculation of the static flat-space baby Skyrmion with parameter values κ = 1 and
m =

√
1/10 using (a) the usual gradient flow method with ∆t = 0.1(∆x)2, (b) the

modified method with ∆t = 0.1∆x, but without damping and (c) the modified method
with damping.



Appendix B

Salt and homogeneity in the baby

Skyrme model

Here we show that a salty ansatz is unavoidable when imposing periodicity in the

(holographic) baby Skyrme model with the boundary conditions φφφ(x, 0) = (0, 0,−1)

and φφφ(x,∞) = (0, 0, 1). Note that the boundary condition at z = 0 corresponds

to requiring a layer of solitonic material located there, and is unique to making the

homogeneous ansatz. It is not a general feature of periodic baby Skyrmions.

The general form for the pion field φφφ is given by

φφφ(x, z) =
(
f1(x, z), f2(x, z),±

√
1− f 2

1 − f 2
2

)
, (B.0.1)

and periodicity can be imposed in the x direction by expanding the functions f1 and

f2 as Fourier series:

f1(x, z) =
∑
n∈Z

αn(z)e2inπx/L ,

f2(x, z) =
∑
m∈Z

βm(z)e2imπx/L .
(B.0.2)

The boundary conditions then imply αn(0) = αn(∞) = βm(0) = βm(∞) = 0. The

topological charge density of such a configuration is then given by

B = − 1
4πφ
φφ · (∂xφφφ× ∂zφφφ) (B.0.3)

= −1
4π
√

1− f 2
1 − f 2

2

(∂xf1∂zf2 − ∂xf2∂zf1) (B.0.4)

108



Appendix B. Salt and homogeneity in the baby Skyrme model 109

= −1
2
√

1− f 2
1 − f 2

2

∑
n,m

in

L
(αnβ′m − α′mβn) e2i(n+m)πx/L . (B.0.5)

We then see that the boundary conditions imply that B must vanish at z = 0 and

z = ∞. In other words, the topological charge density, and therefore baryon number

density, must be localised around a point away from z = 0. This means that, by

imposing periodicity in the non-holographic direction, we have forced the homogeneous

ansatz to be salty.



Appendix C

A homogeneous Skyrme crystal

In this appendix we consider the Skyrme model and explain how a homogeneous

approximation may be thought of as a smeared version of the Skyrme crystal. This

approximation is an unattainable idealisation that provides a lower bound on the

energy of the true Skyrme crystal.

The static energy and baryon number (in Skyrme units) of the Skyrme model are given

by

E = 1
2

∫ {
Tr(RiRi)−

1
8Tr([Ri, Rj][Ri, Rj])

}
d3xxx , (C.0.1)

B = i

24π2

∫
εijkTr(RiRjRk) d3xxx , (C.0.2)

where Ri = i(∂iU)U−1 are the hermitian currents associated with the Skyrme field

U(xxx) ∈ SU(2). The Fadeev-Bogomolny bound gives E ≥ 12π2B, but this cannot be

saturated for nonzero B since it would require the Skyrme field to be an isometry from

R3 to SU(2), which are not isometric spaces.

The energy minimising solution closest to the bound is the triply periodic Skyrme

crystal [59, 60], which has energy per baryon E/B = 12π2 × 1.04. The crystal is

formed on a cubic lattice of side length L = 4.7 containing four Skyrmions, giving rise

to a baryon number density B = 4/L3 = 0.04.

Substituting an idealised homogeneous ansatz Ri = −βσi/2 into (C.0.1) and (C.0.2)

yields energy per unit volume E and baryon number density B as

E = 3
4β

2 + 3
16β

4 , B = 1
16π2β

3 . (C.0.3)
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We can then recover the Fadeev-Bogomolny bound via a simple manipulation:

E = 3
4

(
β − 1

2β
2
)2

+ 3
4β

3 ≥ 3
4β

3 = 12π2B . (C.0.4)

Within the homogeneous approximation, the bound is attained by the value β = 2,

which corresponds to baryon number density B = 1/(2π2) = 0.05. These values provide

a good estimate of both the energy and baryon number density of the Skyrme crystal,

and also provide a lower bound for the true Skyrme crystal energy since there are no

Skyrme fields that can generate the idealised homogeneous currents required to attain

the bound.
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