
Durham E-Theses

The scattering of solitons in classes of (1+1)
dimensional models

BARON, HELEN,ELIZABETH

How to cite:

BARON, HELEN,ELIZABETH (2016) The scattering of solitons in classes of (1+1) dimensional models,
Durham theses, Durham University. Available at Durham E-Theses Online:
http://etheses.dur.ac.uk/11663/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

http://www.dur.ac.uk
http://etheses.dur.ac.uk/11663/
 http://etheses.dur.ac.uk/11663/ 
htt://etheses.dur.ac.uk/policies/


Academic Support O�ce, Durham University, University O�ce, Old Elvet, Durham DH1 3HP
e-mail: e-theses.admin@dur.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

2

http://etheses.dur.ac.uk


The scattering of solitons in
classes of (1+1) dimensional

models

Helen Elizabeth Baron

A Thesis presented for the degree of

Doctor of Philosophy

Centre for Particle Theory

Department of Mathematical Sciences

University of Durham

England

March 2016



Dedicated to
My patient husband.



The scattering of solitons in classes of (1+1)

dimensional models

Helen Elizabeth Baron

Submitted for the degree of Doctor of Philosophy

March 2016

Abstract

We investigate the validity of the collective coordinate approximation to the scat-

tering of two solitons in several classes of (1+1) dimensional field theory models.

First we consider the collision of solitons in the integrable NLS model and com-

pare the results of the collective coordinate approximation with results obtained

using a full numerical simulation. We find that the approximation is accurate

when the solitons are some distance apart and is reasonably good during their

interaction.

We then consider a modification of the NLS model with a deformation param-

eter which changes the integrability properties of the model, either completely

or partially (the model becomes quasi-integrable). As the collective coordinate

approximation does not allow for the radiation of energy out of a system we pay

particular attention to how the approximation fares when the model is quasi-

integrable and therefore has asymptotically conserved charges (i.e. charges Q(t)

for which Q(t → −∞) = Q(t → ∞)). We find that the approximation accu-

rately reproduces the physical properties of the solitons, and even their anoma-

lous charges, for a large range of initial values. The only time the approximation

is not totally reliable is for the scatterings when the solitons come very close

together (within one width of each other).

To determine whether these results hold in a model with topological solitons

we then consider a modified sine-Gordon model. The deformation preserves the

topology of the model but changes the integrability properties in a similar way
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to the modified NLS model. In this model we find that the approximation is

accurate when the model is either integrable or quasi-integrable, but the accuracy

was much reduced when the model was completely non-integrable.

To further explore this link between the accuracy of the collective coordinate

approximation in a modified sine-Gordon model and the integrability proper-

ties of the system, we then consider soliton scattering in a double sine-Gordon

model. The double sine-Gordon model allows us to vary between two integrable

sine-Gordon models, and when the model is not integrable it still possesses the

additional symmetries necessary for quasi-integrability. We find that for all val-

ues of our deformation parameters the approximation is accurate and that, as

expected, the anomalous charges are asymptotically conserved.
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Chapter 1

Introduction

In this chapter we give an overview of various concepts which are intrinsic to this

work. We discuss the links between integrability and solitons in (1+1) dimensions

and briefly outline some useful results that can be obtained in integrable systems.

We examine the concept of quasi-integrability and give some motivation for our

choice of modified models that we investigate in later chapters. We discuss the

collective coordinate approximation and give details on the numerics that we

use in our simulations that we present throughout this work. The contents of

this chapter are based on the work of others with the necessary references given

throughout.

The term ‘soliton’ can mean various things depending on the context in which

it is used. Topological solitons are particle-like solutions of non-linear field theo-

ries with a topology which is different from the vacuum. Topological solitons have

smooth energy densities which are spatially finite and they are stable due to their

topological distinctiveness, i.e. they can not simply decay into a topologically

trivial field. Associated with topological solitons is an integer topological charge,

N , which is the generalised winding number of the field and can be thought of

as the particle number (so one soliton has N = 1). Examples of topological

solitons exist in various dimensions and include kinks, monopoles, vortices and

Skyrmions; for a review see [1].

Solitons can be defined in a slightly different sense as special localised solutions

1



1.1. Integrability and solitons 2

of non-linear evolution equations that maintain their shape and energy as they

propagate. They collide without radiating out any energy. The only difference

a long time after they interact is a shift in the position of the soliton compared

to where it would have been if no interaction had taken place. Non-linear partial

differential equations have a sharpening non-linear term and a dispersive term,

and the balancing of these terms results in solitons. Soliton solutions occur in

integrable systems though commonly people also use the term soliton to refer to

soliton-like solutions which can exist in non-integrable systems, as we do later.

Topological solitons exist in theories which are generally non-integrable, with the

exception of the sine-Gordon model which is an integrable model which possesses

topological solitons.

In chapter 2 we present work based on the published paper [2]. Chapters 3

and 4 concern material relating to the preprint [3]. Chapter 5 relates to work

that is currently ongoing.

Integrability and solitons

Integrable systems, i.e. non-linear differential equations which are exactly solv-

able, are incredibly important in mathematical physics. Although integrable sys-

tems are rare, integrability gives rise to interesting mathematics in many areas,

from differential geometry to complex analysis, and there is a wide and varied

background of research on integrability. Integrability is also central to many

physical systems, for example solitons in integrable systems can be used to model

information transfer in optical systems (NLS solitons) [4]; protein folding (sine-

Gordon solitons) [5]; and shallow water waves (KdV solitons) [6]. In this work

we focus on the behaviour of solitons in integrable (and, later, non-integrable)

systems.

Integrable solitons often occur in (1+1) dimensional integrable systems, i.e.

the equations of motion in these models can be rewritten as a zero curvature con-

dition (also known as the Lax-Zakharov-Shabat equation) [7], [8]. When a system

is integrable exact solutions can be constructed via the inverse scattering trans-
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form. This was introduced by Gardner et al in 1967 for the KdV equation [9].

From the zero curvature condition an infinite number of conserved quantities can

also be found [10], and the interesting behaviour of solitons is a result of these

conserved charges constraining the soliton dynamics. The conserved charges can

be constructed from the zero curvature condition by implementing the abelian-

ization procedure [11] (also known as the Drinfeld-Sokolov reduction [12]), and

we use this procedure to construct these quantities explicitly for the non-linear

Schrödinger equation in chapter 2.

Quasi-integrability

While integrable systems possess interesting solutions and can be analysed using

various mathematical techniques, most physical phenomena are well described by

systems that are not integrable. However, lots of physical systems do demonstrate

similar characteristics to integrable systems, such as soliton like solutions which

preserve their physical properties when they interact. For example, in the scatter-

ing of particles at hight energies at CERN the elastic cross sections correspond to

about 20% of the total cross section which is surprising considering the amount of

energy available for the production of particles. But considered in terms of simple

mathematical solitonic models particle production is described by energy radia-

tion so this lack of particle production could be related to the almost integrability

of the system. These observations have led to the development of the concept of

‘quasi-integrability’ [13] - [17]. Equations of motion in quasi-integrable systems

can be rewritten in terms of an anomalous zero curvature connection. We demon-

strate this explicitly in the case of a modified NLS model in chapter 3. This leads

to solitons with an infinite number of charges Q(t) which do vary in time but are

the same a long time before and after any interaction, i.e. they possess an infinite

number of asymptotically conserved charges Q(t = −∞) = Q(t =∞). However,

unlike in the integrable theories, the possession of these characteristics was shown

to be dependent on the field configurations and only configurations with addi-

tional symmetries demonstrated these integrability-like properties. It was found
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that these charges are asymptotically conserved in the scattering of two-soliton

configurations when the fields are eigenstates of the space-time reflection around

a point for some choice of (x∆, t∆), given by

P : (x̃, t̃)→ (−x̃,−t̃), with x̃ = x− x∆ and t̃ = t− t∆. (1.2.1)

The collective coordinate approximation

The idea of using collective coordinates to describe the main features of the

scattering of solitons and other extended structures is quite old. An early work in

this area was performed by Thiele [18] who suggested an equation which describes

the dynamics of solitons. This was further generalised by Tretiakov and others [19]

to a larger systems of variables (see also a recent paper [20] which uses such an

approach to discuss perturbed NLS equations). In our work we use the approach

of Manton [1], [21], which can be used to model the dynamics of solitons in a wide

variety of systems and generally reproduces the results of the full simulations in

such systems with good accuracy. Any collective coordinate approach reduces

an infinite-dimensional problem to a finite dimensional system described by a set

of ODEs and so is much quicker to implement than a full numerical simulation.

However, the important issue here involves choosing the variables that describe,

as accurately as possible, the full problem (see for example [22]). The main

observation that helps here is the realisation that for a system that possesses free

parameters a slow change of these parameters has only a minimal effect on the

total energy of the full system and so may be a good approximation to its slow

dynamics. Thus one starts with a static solution ψ(x, q1, ..., qn). The energy of

this solution is independent of the parameters but changing the field configuration

can only increase the energy, so in the field space there are low energy valleys in

the direction of the parameters of the solution. Consider now moving solitons.

For small velocities of the solitons the motion requires the least amount of energy

to move along the valleys described by the parameters of the static solution (as

then the increase of the energy is only due to the kinetic energy associated with

this change which, for very slow changes, is very small). Therefore, it makes
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sense to approximate the dynamics of slow moving solitons by allowing these

parameters to vary in time, i.e. qi = qi(t), and assume that these parameters

describe most of the solitons’ dynamics.

The collective coordinate approximation is similar to the moduli space ap-

proximation [23]. The moduli space approximation requires theories to have a

moduli space of exact multi-soliton static solutions. The low energy dynamics

of the solitons is then assumed to be geodesic motion on the moduli space. The

coordinates which span the moduli space are generally referred to as the collective

coordinates.

The collective coordinate approximation neglects other modifications of the

fields and, in particular, all radiative corrections to the solitons and so is valid

only for very slow motions and when the solitons are well separated. When

solitons interact with each other the approximation becomes less accurate as some

radiation may be sent out and the solitons are mutually distorted. However, for

many field theories of interest the radiative corrections are small and the collective

coordinate approximation is a useful tool which has been studied in detail in many

papers (see [24], [25] for the study of the sine-Gordon case).

To describe the dynamics of the collective coordinates we proceed as follows

[1]. We start with an approximation ansatz whose form is based on the stationary

solution with a suitable choice of parameters which become collective coordinates

qi(t); these coordinates generally describe physical properties of the soliton such

as position, height, etc. This ansatz is then substituted into the Lagrangian

density of the system and the relevant spatial degrees of freedom (in our case x)

are integrated out to obtain an effective Lagrangian for the collective coordinates.

From the effective Lagrangian a coupled system of ODEs for the coordinates can

be derived. Solving these ODEs describes the time evolution of the coordinates,

which in turn tells us how the field evolves in time. In some cases, and sometimes

with further simplifying assumptions, the equations of motion for the collective

coordinates can be solved analytically; such is the case in [26]. In our work the

equations of motion need to be solved numerically and for this we use a 4th order

Runge-Kutta method.
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General comments on the numerical approach

The work described in these chapters involves several different numerical tech-

niques. They include performing ‘full numerical simulations’ and the calculations

involving the collective coordinates. The two approaches are then compared to

each other to assess the validity of the collective coordinate approximations.

There are many different numerical methods available for evolving nonlinear

PDEs, each with their own advantages and disadvantages (a review of the various

methods can be found here [27]). Symplectic methods preserve the invariant of a

system, such as its energy and momentum, and have been shown to be effective

for long time simulations [28] though it can be computationally expensive. The

Runge-Kutta method is another numerical method which is often used to solve

nonlinear PDEs, and because it does not specifically preserve the energy of a

system it means that the conservation of energy during a simulation can be used

as a check on the numerics. Throughout this work we use a 4th order Runge-

Kutta method of simulating the time evolution. We chose this method as it has

previously been successfully used to simulate solitons in [16] and [17], and because

it is suitably efficient and accurate for our simulations. We were able to use the

energy conservation as a check of our numerics and found that in the NLS case

there is no change of energy at all during the simulations.

For the full simulations the implementations are different in the two classes of

models (NLS and sine-Gordon) as the NLS equation involves only first derivatives

with respect to time and the phase of the complex field ψ performs fast rotations

with the increase of time, while the modified sine-Gordon model involves only a

nonlinear wave motion.

Thus, in the NLS case we choose to perform the simulation in a rotating

frame (i.e. we go to the frame in which the phase rotation involves only the ad-

ditional dynamical variation relative to this global rotation). The global rotation

is calculated at each value of time and the equation is transformed to that frame.

Therefore, in this frame, the further phase variation is small and it is only due

to the dynamics of the system of solitons. Consequently, for a given time and
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position steps of the program, the changes of the derivatives of ψ are kept small.

Our approach is a standard procedure for such fields and more discussion of

its use in the NLS case can be found in [16] where it is shown that it has worked

very well in this case. The numerical errors are negligible and the results of our

simulations are essentially the same when we tested the method by varying a

little the parameters of our numerical approach. To obtain reliable simulations

we experiment by using various lattice sizes, various numbers of points etc. until

we are satisfied that we can ‘trust’ our results; i.e. when the numerical errors are

very small and so are insignificant.

Then we perform many simulations as described in this work. In fact, most of

the results we present here have been obtained on a lattice involving N = 5001

grid points with lattice spacing dx = 0.01. As in [16] the initial configurations

involve two one soliton fields, with solitons placed at x = ±x0 (as discussed in

chapter 2) and with the fields tied together at x = 0. Luckily, at small values of

x the values of the fields are very close to each other and so the numerical errors

due to this joining procedure are negligible (in fact we even smooth the fields

there over 3 lattice points).

For our calculations, as the equations are first order in time derivative, we

have to take a small time step. We have varied this too and found that we can

trust our results when dt = 0.00002 or smaller. Most of our results that we report

in this work are obtained with this value of dt. To determine whether the solution

is stable for this value of dt we calculated a linearised stability bound for the NLS

equation (i.e. treating the nonlinearity part of the NLS equation as a constant)

for a 4th order Runge-Kutta method with our boundary conditions, as in [29],

and find that we need dt
dx2

< 3
√

2
8

to ensure stability. For our chosen values of dt

and dx we are satisfied that the solution is stable.

In the modified sine-Gordon model the equations are of the wave type and so

the numerical calculations are simpler than in the NLS case. We use the fixed

boundary conditions with N = 10001 points, with the lattice spacing dx = 0.01

and dt = 0.0001. We absorb the energy at the boundaries by multiplying the

fields there by a constant which varies from 1 to 0.9 over 10 points (with the
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constant being 1 in the centre and 0.9 near the edge). This absorption makes

very little difference because almost no energy ever reaches the boundaries as the

scatterings are very elastic.

In the collective coordinate approximation the ODEs are solved numerically

with dt = 0.005, (the simulations were also run with various values of dt to find a

value for which the simulations are efficient and the results are accurate, and we

are satisfied with the accuracy of the results using the values mentioned above).

In the modified models that we investigate we are required to integrate the

effective Lagrangian density over x in order to obtain the effective Lagrangian,

but in the integrable NLS model we were able to integrate the effective Lagrangian

analytically using the residue theorem. This allowed us to check our numerical

integration in the limiting case of the modified NLS where it reduces to the

integrable NLS (i.e. when ε = 0) by comparing our numerical integrations with

the integrations performed analytically, and we were satisfied with the accuracy

of the numerical integration for our chosen value of dx = 0.01. In the double

sine-Gordon model that we consider the two deformation parameters, A0 and

λ0, change the steepness of the fields, and we choose our values of dx for each

simulation based on the values of A0 and λ0 by considering the initial soliton

configuration.



Chapter 2

The nonlinear Schrödinger model

The nonlinear Schrödinger equation (NLS) is an important model in mathemat-

ical physics, with applications in many fields which includes nonlinear optics,

plasma physics, biophysics and Bose-Einstein condensates (BECs) [30], [31], [32].

Interactions between NLS solitons are particularly important; for example in

soliton-based optical communications the NLS equation describes information

transfer in optical fibres [33], and soliton interactions fundamentally limit the

capacity of these communication systems [34].

As the NLS equation is integrable its exact soliton solutions can be found ana-

lytically via the inverse scattering transform [8] (see e.g. [35]). However, given the

rather involved nature of this approach, the complicated form of these solutions

and the fact that they hold only for the exact form of the NLS equation it is useful

to look at other approaches to this problem. This is particularly true if one wants

to get a ‘physical feeling’ about the forces governing the scattering of solitons i.e.

to see whether they are attractive or repulsive, how they depend on the various

parameters of the solutions and how they respond to small perturbations of these

solutions or the equation itself.

Hence, the equation has also been studied numerically [36] - [39] and an at-

tempt has been made to introduce a collective coordinate approximation to a two

soliton field configuration [26]. Several other papers have also looked at NLS soli-

tons perturbed by external fields or in interaction with them [40], [41], [42], [22]

9
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but though very interesting, these papers have not approximated the dynamics of

the system of solitons by a full Lagrangian based collective coordinate model [23],

which has recently been shown [1], [24], [43] (in relativistic models) to be a very

good approximation for the investigation of soliton dynamics.

In their paper Zou and Yan [26] consider the scattering of two solitons in

the NLS model. As this paper does not present many explicit results we have

modified its approach a little and have looked at the interaction of two solitons

in some detail. We have found that the collective coordinate approach, which is

expected to describe the properties of the solitons when they are far apart from

each other, works quite well even when the solitons are close together and so may

be a somewhat unexpectedly good approximation to the description of the two

soliton scattering at all times. Thus this chapter discusses this approximation

and its validity for the integrable NLS model in (1+1) dimensions.

NLS model

The non-relativistic Lagrangian describing the dynamics of the NLS field ψ(t, x)

and its complex conjugate ψ∗(t, x) is given by

L =

∫
dx

i

2
(ψ∗∂tψ − ψ∂tψ∗)− ∂xψ∗∂xψ − V

(
|ψ|2

)
, (2.1.1)

with the NLS potential V = VNLS = η |ψ|4. Variation of this Lagrangian with

respect to ψ∗(t, x) gives us

i∂tψ = −∂2
xψ + 2η|ψ|2ψ, (2.1.2)

which is the NLS equation for ψ(t, x) (variation of the Lagrangian with respect

to ψ(t, x) gives the complex conjugate of (2.1.2) which is the NLS equation for

ψ∗(t, x)).

Solutions to (2.1.2) with boundary conditions |ψ|x=−∞ = |ψ|x=∞; ∂xψ → 0 as

x → ±∞ have conserved Noether charges as a result of the symmetries of the

action.
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Thus the invariance of the action under time translations gives the energy

conservation:

E =

∫ ∞
−∞

dx
(
|∂xψ|2 + η|ψ|4

)
. (2.1.3)

Conservation of momentum results from the invariance of the action under

space translations:

P = i

∫ +∞

−∞
dx (ψ∗∂xψ − ψ∂xψ∗) . (2.1.4)

And, finally, the internal U(1) symmetry of the action, ψ → eiαψ for a constant

α, gives the conservation of the normalisation

N =

∫ +∞

−∞
dx |ψ|2. (2.1.5)

As is well known for η < 0, (2.1.2) has the one soliton solution (called ‘bright

soliton’)

ψ =
b√

|η| cosh [b (x− vt− x0)]
e
i
[(
b2− v

2

4

)
t+ v

2
x
]
, (2.1.6)

where b, v and x0 are real parameters of the solution. This solution is clearly

defined up to an overall constant phase due to the U(1) symmetry of (2.1.1). It

describes a soliton moving with velocity v, which at t = 0 is positioned at x0. The

parameter b, which describes the ‘height’ and ‘width’ of the soliton, is related to

N and so is, in fact, fixed.

Similarly, for η > 0 there exists the one soliton solution (called ‘dark soliton’)

ψ =
b√
|η|

tanh [b (x− vt− x0)]e
i
[
v
2
x−
(

2b2+ v2

4

)
t
]
. (2.1.7)

Conserved charges for NLS

Here we demonstrate the construction of an infinite number of conserved quan-

tities in the integrable NLS model, following the abelianization procedure used

in [16].

The NLS equation of motion in (1+1) dimensions is given by (2.1.2). As this

model is integrable the equation of motion can be expressed as a zero curvature
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condition of the form

∂tAx − ∂xAt + [Ax, At] = 0, (2.2.1)

where the connection Aµ is given by

Ax = −iT 1
3 + γ∗ ψ∗ T 0

+ + γ ψ T 0
−, (2.2.2)

At = iT 2
3 + i

δV

δ|ψ|2T
0
3 −

(
γ∗ ψ∗ T 1

+ + γ ψ T 1
−
)
− i

(
γ∗ ∂xψ

∗ T 0
+ − γ ∂xψ T

0
−
)
,

where the parameter γ is defined to be

γ = i σ
√
|η| ei θ, with σ = sign η and θ ∈ R so γγ∗ = η, (2.2.3)

and T nj , j = 3,+,− and n = 0, 1, 2, ..., are generators which satisfy the SL(2)

loop algebra commutation relations[
Tm3 , T

n
±
]

= ±Tm+n
± ;

[
Tm+ , T

n
−
]

= 2Tm+n
3 . (2.2.4)

This can be represented by the finite SL(2) loop algebra generators T nj ≡ λnTj

where λ is the spectral parameter.

Thus the curvature is given by

∂tAx − ∂xAt + [Ax, At] = XT 0
3 (2.2.5)

+ i γ∗
(
−i∂tψ∗ + ∂2

xψ
∗ − ψ∗ δV

δ|ψ|2
)
T 0

+

− i γ

(
i∂tψ + ∂2

xψ − ψ
δV

δ|ψ|2
)
T 0
−,

where X is given by

X ≡ −i∂x
(
δV

δ|ψ|2 − 2η |ψ|2
)
. (2.2.6)

When the equations of motion (2.1.2) are satisfied the parts proportional to T 0
+

and T 0
− vanish, and when the potential is taken to be the NLS potential VNLS

then X also vanishes. When both of these conditions are met then the curvature

is equal to zero, and this vanishing of the curvature makes the NLS equation

integrable.

In order to implement the abelianization procedure we first rewrite the wave

function in terms of its modulus and phase

ψ ≡
√
Rei

ϕ
2 . (2.2.7)
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And we use a new basis of the SL(2) loop algebra defined as

bn = T n3 , F n
1 =

σ

2

(
T n+ − T n−

)
, F n

2 =
σ

2

(
T n+ + T n−

)
, (2.2.8)

with commutation relations

[bm, bn] = 0; [bn, F
m
1 ] = F n+m

2 ; [bn, F
m
2 ] = F n+m

1 ; [F n
1 , F

m
2 ] = σbn+m.

(2.2.9)

This basis splits the SL(2) loop algebra G into the kernel and image of its adjoint

action, with bn a basis of the kernel and F n
i , i = 1, 2, a basis of the image.

We perform the gauge transformation

Aµ → Ãµ ≡ g̃ Aµ g̃
−1 + ∂µ g̃ g̃

−1; with g̃ = ei (
ϕ
2

+φ) b0 , (2.2.10)

so the connection becomes

∂tÃx − ∂xÃt +
[
Ãx, Ãt

]
= 0, (2.2.11)

with components

Ãx = −i b1 +
i

2
∂xϕ b0 − 2 i

√
|η|
√
RF 0

1 , (2.2.12)

Ãt = i b2 +
i

2
∂tϕ b0 + i

δV

δR
b0 + 2 i

√
|η|
√
RF 1

1

+
√
|η|
√
R

(
−∂xR

R
F 0

2 + i ∂xϕF
0
1

)
. (2.2.13)

Now we perform the usual abelianization technique [11], [12], [15], by performing

a further gauge transformation

Ãµ → aµ = g Ãµ g
−1 + ∂µg g

−1; with g = exp

(
∞∑
n=1

F (−n)

)
, (2.2.14)

where

F (−n) ≡ ζ
(−n)
1 F−n1 + ζ

(−n)
2 F−n2 . (2.2.15)

The parameters ζ
(−n)
1,2 are chosen such that ax and at are rotated into an abelian

subalgebra spanned by the generators bn, as we will discuss below. Now we define

the grading operator d as

d ≡ λ
d

dλ
, [d , bn ] = n bn,

[
d , F n

j

]
= nF n

j . (2.2.16)
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The generators in Ãx are grade 0 and 1, and the gauge transformation (2.2.14)

is an exponential of negative grade operators, so the ax component has grades

ranging from 0 to −∞. We can expand ax in terms of its eigen-subspaces under

the grading operator: ax =
∑∞

n=−1 a
(−n)
x , to get

a(1)
x = − i b1, (2.2.17)

a(0)
x = i

[
b1 , F (−1)

]
+ Ã(0)

x ,

a(−1)
x = i

[
b1 , F (−2)

]
+
[
F (−1) , Ã(0)

x

]
− i

2!

[
F (−1) ,

[
F (−1) , b1

] ]
+ ∂xF (−1),

a(−2)
x = i

[
b1 , F (−3)

]
+
[
F (−2) , Ã(0)

x

]
− i

2!

[
F (−2) ,

[
F (−1) , b1

] ]
− i

2!

[
F (−1) ,

[
F (−2) , b1

] ]
+

1

2!

[
F (−1) ,

[
F (−1) , Ã(0)

x

] ]
− i

3!

[
F (−1) ,

[
F (−1) ,

[
F (−1) , b1

] ] ]
+ ∂xF (−2)

+
1

2!

[
F (−1) , ∂xF (−1)

]
,

...

where Ã
(0)
x = i

2
∂xϕ b0 − 2 i

√
|η|
√
RF 0

1 is the part of Ãx with grade zero opera-

tors.

Notice that F (−n) first appears in the expansion of ax in the a−n+1
x component

and in the form
[
b1 , F (−n)

]
. So the parameters ζ

(−n)
1,2 can be chosen to cancel

the image component of a−n+1
x and this can be done recursively, therefore with

appropriately chosen parameters (see appendix A.1.1 for the first few explicit ex-

pressions of ζ
(−n)
1,2 ) the gauge transformation (2.2.14) can rotate the ax component

of the connection into the abelian subalgebra generated by the bn’s, i.e.

ax = −i b1 +
∞∑
n=0

a(3,−n)
x b−n, (2.2.18)

with the first few components of a
(3,−n)
x given in appendix A.1.1.

Ãx depends on the fields R and ∂xϕ, so the components a
(3,−n)
x are polynomials

of these fields and their x derivatives and have no dependence on the potential V .

Ãt depends on V , and for the NLS potential V = VNLS the gauge transformation

(2.2.14), with the parameters ζ−n1,2 we have determined, rotates Ãt into the abelian
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subalgebra spanned by bn, i.e.

at = i b2 +
∞∑
n=0

a
(3,−n)
t b−n, (2.2.19)

with the first few components of a
(3,−n)
t given in appendix A.1.1.

Now it is clear that this gauge transformation gives

∂ta
(3,−n)
x − ∂xa

(3,−n)
t = 0; n = 0, 1, 2, ... (2.2.20)

Integrating this over space gives us∫ ∞
−∞

dx ∂ta
(3,−n)
x − a

(3,−n)
t (x =∞) + a

(3,−n)
t (x = −∞) = 0; n = 0, 1, 2, ...

(2.2.21)

and if a
(3,−n)
t satisfies the boundary condition a

(3,−n)
t (x =∞) = a

(3,−n)
t (x = −∞)

then we have an infinite number of charges

Q(n) =

∫ ∞
−∞

dx a(3,−n)
x , (2.2.22)

and these charges are conserved, i.e.

dQ(n)

dt
= 0. (2.2.23)

The two-soliton configuration for NLS

Here we construct a set of collective coordinates for the study of the scattering

of two solitons in the NLS equation with η = −1. In the NLS case there exists

an explicit expression for the two moving solitons. However, this expression

is not very transparent and when the solitons are far apart it reduces to the

superposition approximation ansatz which we detail below. Moreover, when we

go beyond the pure NLS model (i.e. when we modify it slightly) we do not have

explicit expressions for two solitons and we are obliged to start by constructing a

sensible approximation ansatz, so our work also involves a check for the suitability

of our approximation ansatz.
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The motivations for our approximation ansatz is the observation that when

the solitons are far away from each other each one of them is well described by the

one soliton solution (2.1.6). The overlap between them is very small so we take

the two soliton field in the form of a superposition of two independent solitons

i.e. we take

ψ = ψ1 + ψ2. (2.3.1)

Where ψ1 and ψ2 are solutions of (2.1.2) when they are far apart. Following

from Zou and Yan, [26], we assume that the two solitons are of equal height,

constant width, and move symmetrically around their centre of mass. So we take

ψ1 = ϕ1e
−iθ1 and ψ2 = ϕ2e

iθ2 where

ϕ1 =
a(t)

cosh (b(x+ ξ(t)))
, θ1 = µ(t) (x+ ξ(t))− b2t− λ(t)− δ1, (2.3.2)

ϕ2 =
a(t)

cosh (b(x− ξ(t))) , θ2 = µ(t) (x− ξ(t)) + b2t+ λ(t) + δ2,

and then treat a(t), ξ(t), µ(t) and λ(t) as our collective coordinates.

When |ξ| → ∞ this approximation ansatz models two one solitons with posi-

tions ±ξ, heights a, width parameter b, velocities ±v = ±µ
2
, phase parameter λ

and relative phase δ = δ2 − δ1. This can be seen in figure 2.1 where we present a

plot of |ψ|2 ≡ |ψ1 + ψ2|2 at t = 0 with ξ = 10, a = 1, b = 1, v = 0.05, λ = 0 and

δ1 = δ2 = 0.

Effective Lagrangian for our collective coordinates for

NLS

To construct the effective Lagrangian for our collective coordinates we put our

approximation ansatz (2.3.1) into our Lagrangian (2.1.1), this yields an effective

Lagrangian density which can be written in terms of the non-interacting part L0

and the interacting part L12.
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Figure 2.1: Plot of |ψ|2 against x, for ψ the 2-soliton approximation of the NLS

model.

Introducing ω1 ≡ x+ ξ and ω2 ≡ x− ξ, the non-interacting part becomes

L0 = a2
(
µξ̇ − b2 − λ̇− µ2

)( 1

cosh2(bω1)
+

1

cosh2(bω2)

)
(2.3.3)

− a2b2

(
tanh2(bω1)

cosh2(bω1)
+

tanh2(bω2)

cosh2(bω2)

)
+ a4

(
1

cosh4(bω1)
+

1

cosh4(bω2)

)
+ a2µ̇

(
ω1

cosh2(bω1)
− ω2

cosh2(bω2)

)
,

where dot denotes the differential with respect to time. Integrating this over all

space gives us the effective Lagrangian of free solitons

L0 =
4a2µξ̇

b
− 16a2b

3
− 4a2µ2

b
− 4a2λ̇

b
+

8a4

3b
. (2.3.4)

Defining δ = δ2 − δ1 and θ1 + θ2 = ∆ and noting that ∆ = 2µx + δ, the

interacting Lagrangian density becomes

L12 = −a2b
(
ξ̇ + 2µ

)( sinh(bω1)

cosh(bω2) cosh2(bω1)
+

sinh(bω2)

cosh(bω1) cosh2(bω2)

)
sin ∆

+ 2a2
(
µ2 + µ̇ξ + µξ̇ − b2 − λ̇

) cos ∆

cosh(bω1) cosh(bω2)

− 2a2b2 sinh(bω1) sinh(bω2)

cosh2(bω1) cosh2(bω2)
cos ∆

+ 4a4

(
1

cosh3(bω1) cosh(bω2)
+

1

cosh3(bω2) cosh(bω1)

)
cos ∆

+
2a4

cosh2(bω1) cosh2(bω2)
cos (2∆) +

4a4

cosh2(bω1) cosh2(bω2)
, (2.3.5)
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which, when integrated over space, and after some rearranging yields

L12 =

(
µ̇ξ − µ2 − λ̇+

4a2µ2

b2

)
4πa2 sin(2µξ) cos (δ)

b sinh(πµ
b

) sinh(2bξ)
(2.3.6)

+

(
1− 2a2

b2

)
8πa2b sin(2µξ) cos (δ)

sinh(πµ
b

) sinh3(2bξ)
+ 32a4ξ

cosh(2bξ)

sinh3(2bξ)

+

(
2a2

b2
− 1

)
8πµa2 cos(2µξ) cosh(2bξ) cos (δ)

sinh(πµ
b

) sinh2(2bξ)
− 16a4

b sinh2(2bξ)

+
8πa4 cosh(2bξ) sin(4µξ) cos(2δ)

b sinh(2πµ
b

) sinh3(2bξ)
− 16πa4µ cos(4µξ) cos(2δ)

b2 sinh(2πµ
b

) sinh2(2bξ)
.

The integrals given here have been evaluated using the residue theorem; some

of these calculations are presented in detail in appendix A.2.

Equations of motion for NLS

Next we determine the equations for our collective coordinates. First we note

that the total Lagrangian is given by

L =
4a2

b

(
µξ̇ − 4b2

3
− µ2 − λ̇+

2a2

3

)
+

(
1− 2a2

b2

)
8πa2b sin(2µξ) cos (δ)

sinh(πµ
b

) sinh3(2bξ)

+

(
µ̇ξ − µ2 − λ̇+

4a2µ2

b2

)
4πa2 sin(2µξ) cos (δ)

b sinh(πµ
b

) sinh(2bξ)
+ 32a4ξ

cosh(2bξ)

sinh3(2bξ)

+

(
2a2

b2
− 1

)
8πµa2 cos(2µξ) cosh(2bξ) cos (δ)

sinh(πµ
b

) sinh2(2bξ)
− 16a4

b sinh2(2bξ)

+
8πa4 cosh(2bξ) sin(4µξ) cos(2δ)

b sinh(2πµ
b

) sinh3(2bξ)

− 16πa4µ cos(4µξ) cos(2δ)

b2 sinh(2πµ
b

) sinh2(2bξ)
. (2.3.7)

This expression agrees with the Lagrangian given in Zou and Yan’s paper [26] if

we take their approximation by neglecting higher order terms of µ, λ and their

time derivatives.

From our full Lagrangian we can calculate the Euler-Lagrange equations for

our collective coordinates a(t), ξ(t), µ(t) and λ(t).

For λ we have

d

dt

∂L

∂λ̇
− ∂L

∂λ
= 0→ d

dt

(
4a2

b

(
1 +

π sin(2µξ) cos (δ)

sinh(πµ
b

) sinh(2bξ)

))
= 0, (2.3.8)
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which implies that

4a2

b

(
1 +

π sin(2µξ) cos (δ)

sinh(πµ
b

) sinh(2bξ)

)
= constant, (2.3.9)

is a conserved quantity corresponding to the normalisation N . So we can write

N =

∫ +∞

−∞
dx |ψ|2 =

4a2

b

(
1 +

π sin(2µξ) cos (δ)

sinh(πµ
b

) sinh(2bξ)

)
≡ N0 +N12, (2.3.10)

where N has been split into interacting and non-interacting parts.

Next we fix N , which is conserved and so does not depend on t, by putting

solitons initially far apart, i.e. taking x0 very large. In our two soliton approxima-

tion ψ1 and ψ2 are one soliton solutions for the solitons far apart, if we compare

this to the one soliton solution (2.1.6) we see that for our solitons initially far

apart µ ≈ −v
2
, ξ ≈ x0 − vt and a ≈ b, and therefore N12 ≈ 0, N0 ≈ 4b.

Then we have

a2 =
b2

1 + π sin(2µξ) cos(δ)
sinh(πµ

b
) sinh(2bξ)

≡ b2

1 + ω
, (2.3.11)

where we have defined ω ≡ π sin(2µξ) cos(δ)
sinh(πµ

b
) sinh(2bξ)

for convenience.

Equation (2.3.9) can be used to eliminate a(t) from the equations of motion

for µ(t) and ξ(t), giving a system of coupled first order equations involving µ,

ξ, their derivatives and λ̇. The dependence in λ̇ can be eliminated if we use the

equation of motion for a(t), leaving us with

F1(µ, ξ)µ̇+G1(µ, ξ)ξ̇ +H1(µ, ξ) = 0, (2.3.12)

F2(µ, ξ)µ̇+G2(µ, ξ)ξ̇ +H2(µ, ξ) = 0.

Explicit expressions for F1,2, G1,2 and H1,2 are given in appendix A.3. Finally we

solve these to derive the system of equations

µ̇ =
G1H2 −G2H1

F1G2 − F2G1

, ξ̇ =
F2H1 − F1H2

F1G2 − F2G1

. (2.3.13)

We can rewrite the equation for µ̇ in the form of a conservation equation by

setting µ̈ = Ṗ and integrating over time to get

µ̇2

2
=
P 2

2
+ E , (2.3.14)
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where E is an integration constant determined by the initial conditions. Similarly

we can do this for the expression for ξ̇ by setting ξ̈ = P and integrating to get

ξ̇2

2
=
P 2

2
+ Ẽ , (2.3.15)

so we have two energy-like conservation formulas. If we consider ξ̇2

2
to be like

kinetic energy, −P 2

2
to be like a potential and Ẽ to be like total energy then we

can plot potential curves as −P 2 up to a constant (we take this constant to be

the square of the initial velocity), see figure 2.7.

Results for NLS

In our work we have used a fourth-order Runge-Kutta method to solve numerically

our system of equations (2.3.13), (see section 1.4 for details on the numerics).

Each one soliton configuration, ψ1 and ψ2, possesses a U(1) symmetry so we

can choose each phase arbitrarily and consider the dependence on their phase

difference δ. In our analysis we have considered only small values of velocity

(ξ̇(0)) describing the initial motion of the solitons towards each other, as the

collective coordinate approximation is a good approximation for slowly moving

solitons. Throughout we have taken b = 1 and a(0) = 1, we have chosen these

values in order to compare our results with those of Zou and Yan in [26].

Our simulations of the collective coordinate approximation have shown that

the interaction between the solitons depends on their initial phase difference and

their velocity at the time of interaction. Solitons with the same initial phase

(δ = 0) attract each other the most and, if their velocity is sufficiently small,

they become trapped and oscillate around each other with constant frequency.

Solitons with the opposite initial phase (δ = π) are in the repulsive channel

and so they repel each other. The attractive/repulsive forces vary continuously

between δ = 0, π with complex interactions taking place around δ = π
2

where

the solitons experience an initial attraction and so come together, then repel and

move away from each other with a constant velocity. The range of interactions

can be seen in figure 2.2 where the relative position between the solitons is plotted

as a function of time, for a simulation with the initial position ξ = −5, initial
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velocity v = −0.01 so that they are sent towards each other, and for δ = 0, π
4
, π

2
,

3π
4

and π.
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Figure 2.2: The distance of a soliton from the centre of mass of a system with

time. The system consists of two solitons initially placed at±5 each with an initial

velocity of v = −0.01 towards the centre of mass. The initial phase difference

between the two solitons is: δ = 0 (red line), δ = π
4

(green line), δ = π
2

(dark blue

line), δ = 3π
4

(pink line) and δ = π (light blue line).
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Figure 2.3: The distance of a soliton from the centre of mass of a system with

time. The system consists of two solitons initially placed at±5 each with an initial

velocity of v = −0.01 towards the centre of mass and initial phase difference δ = π;

results of the full simulation is the dashed line (green) and the approximation is

the solid line (red).
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Figure 2.4: The distance of a soliton from the centre of mass of a system with

time. The system consists of two solitons initially placed at±5 each with an initial

velocity of v = −0.01 towards the centre of mass and initial phase difference δ =

3π
4

; results of the full simulation is the dashed line (green) and the approximation

is the solid line (red).
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Figure 2.5: The distance of a soliton from the centre of mass of a system with

time. The system consists of two solitons initially placed at±5 each with an initial

velocity of v = −0.01 towards the centre of mass and initial phase difference δ = 0;

results of the full simulation is the dashed line (green) and the approximation is

the solid line (red).

Comparison of the approximation with the full simulation confirms the ob-

served dependence of the soliton scattering on the initial phase difference between

the solitons, δ, and shows that the approximation describes the dynamics of the
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Figure 2.6: The distance of a soliton from the centre of mass of a system with

time. The system consists of two solitons initially placed at±5 each with an initial

velocity of v = −0.01 towards the centre of mass and initial phase difference δ =

π
32

; results of the full simulation is the dashed line (green) and the approximation

is the solid line (red).

soliton scattering with varying levels of accuracy for different values of δ. For

δ = π the approximation is very accurate, this can be seen in figure 2.3 where the

results of the full simulation and the approximation are both plotted for solitons

initially at ξ = −5 and with an initial velocity v = −0.01 (so that they are sent

towards each other), and with relative phase δ = π. In the repulsive cases, δ & π
2
,

the results for the full simulation and the approximation are very close, see figure

2.4 where the full simulation and approximation results are compared for δ = 3π
4

,

and initial ξ = −5, v = −0.01 as before.

However, for values of δ . π
2

our collective coordinate approximation does not

fully capture the soliton dynamics. For small values of δ in the full simulation

the solitons initially attract and oscillate as in the approximation, but over time

the oscillations weaken and the solitons start to repel each other. For small non

zero values of δ the decay starts immediately and the approximation does not

match the full simulation as well, though it does give a close approximation for

the period of the oscillations, this can be seen in figure 2.6 where the results are

compared for δ = π
32

. For values of δ closer to π
2

the attraction is so weak that the

solitons only move towards each other for a short period of time before repelling



2.4. Results for NLS 24

-6

-5

-4

-3

-2

-1

0

-4 -2 0 2 4

po
te

nt
ia

l c
ur

ve
s

x

(a)

-0.006

-0.004

-0.002

0

0.002

0.004

0.006

-8 -7 -6 -5 -4 -3

po
te

nt
ia

l c
ur

ve
s

x

(b)

Figure 2.7: Potential curves for solitons initially at ξ = −10 and v = −0.1 with

a) from top to bottom δ = π
2
, π

4
, 0, and b) from top to bottom δ = π, 3π

4
, π

2
, π

4
, 0

away. This is different to the results of the approximation where the solitons

move together slowly and come on top of each other before slowly oscillating (or

eventually repelling if initial velocity is too high). These differences could be due

to the phase difference being a constant in our collective coordinate approximation

but free to vary in time in the full simulation, therefore allowing solitons initially

in an attractive channel to end up in a repulsive channel. This is explored in

chapter 3 by changing the choice of collective coordinates to allow the solitons’

phases to vary separately in time.

For δ = 0 the approximation remains accurate for a long time as the oscilla-

tions only start to decay at around t = 900, see figure 2.5. We consider the exact

two soliton solution of the NLS equation to see whether the oscillation decay that

occurs in the full simulation is a real or numerical effect. In [38] Gordon considers

the exact two soliton solution to the NLS equation and from this solution derives

an approximate expression for the two soliton solution when the separation of the

solitons is large. From this approximate expression Gordon demonstrates ana-

lytically that two in-phase solitons with equal velocities execute periodic motion.

We see this periodic motion for in-phase solitons indefinitely in the collective co-

ordinate approximation (compared to an eventual separation of the solitons in

the full simulation), so it is possible that in this case the collective coordinate

approximation provides more accurate results.

We have confirmed our observations by considering the conserved quantity
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Figure 2.8: Potential curves for solitons initially at ξ = −10, δ = π
2

and from top

to bottom v = −0.000001, −0.5, −1, −1.5, −2

resulting from our expression for ξ̇. This we have done by interpreting (2.3.15) as

an energy conservation formula. This means that the movement of each soliton is

like the motion of a unit mass particle moving in a potential −P 2

2
. We calculate

the potential −P 2

2
in simulations with various initial values and plot it against ξ

to get potential curves. We do this so that we may directly compare our results

with those of Zou and Yan in [26] (as they primarily evaluate their results using

the potential curves that they calculate).

In figure 2.7 we have plotted the potential curves for initial velocity v = −0.1,

initial position ξ = −10, and various values of δ. Note that in figure 2.7(b) the

lines for δ = π and δ = 3π
4

are only plotted up to about ξ = −3.8 because for

the simulations with initial phase difference δ = π and δ = 3π
4

the solitons do not

come any closer together (see figures 2.3 and 2.4) so the potential could not be

calculated for any smaller values of |ξ| .

If we consider figure 2.7 we see that δ = 0, π do indeed correspond to the

attractive and repulsive potentials, respectively. Our potential curves are similar

to those in Zou and Yan’s results in [26] but with a few differences as we have

not made any approximations in our calculations. Firstly, our potential curves

have a dependence on the initial velocity which is demonstrated in figure 2.8 by

plotting potential curves for δ = π
2
, initial position ξ = −10 and various values of

initial velocity. Secondly our potential curves are more symmetric about δ = π
2
,



2.5. Comments and conclusions for NLS 26

i.e. in our results solitons with δ = π / δ = 0 feel repulsion/attraction at the

same relative distance, whereas in Zou and Yan’s results solitons with δ = π feel

repulsion whilst further apart than solitons with δ = 0 feel attraction. Finally,

our potential curve for δ = π
2

is much more attractive than theirs for all values of

the initial velocity (see figure 2.7(a)).

Comments and conclusions for NLS

In this chapter we have presented a collective coordinate approximation (based on

a modification of the approach of Zou and Yan [26]) for the study of the dynamics

of two interacting bright solitons in a NLS model and then we have used it to

investigate these dynamics in some detail. We have observed that the initial

relative phase between the solitons determines whether they feel an attractive or

repulsive force towards each other, and for a small enough velocity the solitons

can form a bound state and continue to oscillate around each other indefinitely.

In comparing our results to those of full numerical simulations we had good

agreement in most cases, suggesting that our collective coordinate approximation

can be used to reproduced the dynamics of the solitons even when the solitons

are close together. We have also observed some discrepancies for small values

of relative phase which we resolve in later chapters by adjusting our choice of

collective coordinates.



Chapter 3

The modified NLS model

In the previous chapter we found that the collective coordinate approximation

works well in the integrable NLS model, and here we consider the NLS model

with a modified potential that breaks the integrability of the system. We do this

to assess how the integrability properties of the system effects the usefulness of

the approximation, and as a chance to consider the effects of using an improved

collective coordinate ansatz in the limit where the modified model reduces to

the integrable NLS model. We choose to consider a particular modification of

the NLS model for which the integrability properties have already been studied

in [16].

Modified NLS model

We consider the Lagrangian and equation of motion given in the previous chapter

(2.1.1), (2.1.2) but now with a general potential V (that retains the η parameter).

The equation of motion with this general potential admits an anomalous zero

curvature representation (2.2.5) with the connection given by (2.2.2). When the

wave function ψ is a solution to the equation of motion then the terms on the

right hand side of the curvature equation proportional to T 0
+ and T 0

− vanish, and

all that remains is the term XT 0
3 with X given by (2.2.6). For the NLS potential

X is equal zero and the theory is integrable, but this is not true for a general

27
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potential.

For a general potential we can carry out the abelianization technique of the

integrable field theories like in section 1.1. This calculation is performed in [16]

and we give a short overview here. We start as before by rewriting the connection

components in terms of a new basis of the SL(2) loop algebra described in 2.2.8

and in terms of the R and ϕ fields defined as ψ ≡
√
Rei

ϕ
2 . We then perform

the gauge transformation (2.2.10) and the anomalous zero curvature condition

becomes

∂tÃx − ∂xÃt +
[
Ãx, Ãt

]
= Xb0, (3.1.1)

with connection components Ãµ given in (2.2.12).

Now when we perform the gauge transformation as in (2.2.14) the ax compo-

nents can still be transformed into the abelian subalgebra as Ãx is independent

of the choice of potential. Ãt is dependent on the potential, and with a general

choice of potential under the gauge transformation (2.2.14) the at components

are

at = i b2 +
∞∑
n=0

(
a

(3,−n)
t b−n + a

(1,−n)
t F−n1 + a

(2,−n)
t F−n2

)
. (3.1.2)

Note that at has no b1 component because the coefficient of F 0
1 in Ãx and the

coefficient of F 1
1 in Ãt are the same up to a sign, (see (2.2.12)). The curvature

becomes

∂tax − ∂xat = Xg b0 g
−1, (3.1.3)

where we can write

g b0 g
−1 =

∞∑
n=0

(
α(3,−n) b−n + α(1,−n) F−n1 + α(2,−n) F−n2

)
. (3.1.4)

Since ax lies in the kernel of b1 the commutator [at, ax] has components only in

the image of b1, and from (3.1.3) and (3.1.4) we get

∂ta
(3,−n)
x − ∂xa(3,−n)

t = Xα(3,−n); n = 0, 1, 2, ... (3.1.5)

Explicit expressions for the first few expressions of α(3,−n) are given in appendix

A.1.1. Now we integrate (3.1.5) over space to get∫ ∞
−∞

dx ∂ta
(3,−n)
x − a

(3,−n)
t (x =∞) + a

(3,−n)
t (x = −∞) =

∫ ∞
−∞

dxXα(3,−n),

(3.1.6)



3.1. Modified NLS model 29

for n = 0, 1, 2, .... When a
(3,−n)
t satisfies the boundary condition a

(3,−n)
t (x =∞) =

a
(3,−n)
t (x = −∞) we have an infinite number of anomalous charges

Q(n) =

∫ ∞
−∞

dx a(3,−n)
x . (3.1.7)

This gives us an infinite number of anomalous conservation laws:

dQ(n)

dt
= βn; with βn =

∫ ∞
−∞

dxX α(3,−n) (3.1.8)

for n = 0, 1, 2, .... It is clear that when the potential corresponds to the NLS

potential, i.e. VNLS = η |ψ|4, the anomaly X given in (2.2.6) vanishes and so do

the integrals βn. Therefore, the theory with the potential VNLS is integrable as it

has an infinite number of conserved charges Q(n).

In our modified model we use a perturbation of the NLS potential as in [16]

V =
2

2 + ε
η
(
|ψ|2

)2+ε
, (3.1.9)

note that it becomes the unperturbed NLS potential in the case ε = 0.

As shown in [16], for η < 0, this model has a one-soliton solution given by

Ψ =

(√
2 + ε

2 |η|
b

cosh [(1 + ε) b (x− vt− x0)]

) 1
1+ε

e
i
[(
b2− v

2

4

)
t+ v

2
x
]
+iφ
, (3.1.10)

where b, φ, v and x0 are real parameters of the solution.

For two interacting solitons, as argued in [17], we can take

ψ = ψ1 + ψ2, (3.1.11)

where ψ1 = Ψ (x, t, x0, v, φ1) and ψ2 = Ψ (x, t,−x0,−v, φ2). Such fields describe

well two solitons (each at ±x0 with velocity ±v and their phase difference of

(φ1−φ2)) when they are far apart as then, for any point in x, there is a significant

contribution from (at most) one ψi due to the localised nature of the one soliton

solution. Such a field configuration was successfully used in [17] as an initial

configuration for the numerical investigations of two soliton scatterings, and so

we use it here too.

It was shown in [17] that if the field of (3.1.11) ψ = ψ1 + ψ2 ≡
√
Rei

ϕ
2

transforms under the parity

P : (x̃, t̃)→ (−x̃,−t̃), with x̃ = x− x∆ and t̃ = t− t∆, (3.1.12)
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as

P : R→ R; ϕ→ −ϕ+ constant, (3.1.13)

then X (2.2.6) is odd under P and α(3,−n) is even under P (see appendix A.1.1).

And, for field configurations which transform as in (3.1.13) we have∫ t̃0

−t̃0
dt

∫ x̃0

−x̃0
dxX α(3,−n) = 0, (3.1.14)

where t̃0 and x̃0 are given fixed values of the shifted time and space coordinates

in (3.1.12).

Note that (3.1.8) shows that Q(n)(t2) = Q(n)(t1) +
∫ t2
t1
βn(t′)dt′ where we have

already taken x̃0 → ∞. Taking t1 and t2 appropriately we find that we have

non-conserved charges (3.1.8) that vary in time but are symmetric with respect

to t = t∆. Taking further t̃0 →∞ we find that the system has an infinite number

of asymptotically conserved charges, i.e.

Q(n)(t = +∞) = Q(n)(t = −∞). (3.1.15)

This all assumes that the symmetry, which was shown to hold for the initial

configuration (3.1.11) holds at all times, but the studies in [17] did show that the

initial approximation is very good at all times and the charges are asymptotically

conserved. Of course, the question then still arises whether this is also true in the

collective coordinate approximation. This is what we discuss in the next section.

The two-soliton configuration for modified NLS

Here we construct a set of collective coordinates for the study of the scattering of

two solitons with η = −1 in the NLS system with our modified potential. Guided

by the ideas of [17] we use a natural extension of our approximation ansatz in [2],

and so we take our approximation ansatz for two solitons in the modified NLS

system also in the form of the sum of two one soliton fields similar to (3.1.11).

Therefore we use an ansatz of the form

ψ = ψ1 + ψ2 = ϕ1e
iθ1 + ϕ2e

iθ2 , (3.2.1)
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where

ϕ1 =

(√
2 + ε

2

a1(t)

cosh [(1 + ε) a1(t) (x+ ξ1(t))]

) 1
1+ε

,

θ1 = −µ1(t)

2

(
x+

ξ1(t)

2

)
+ a2

1(t) t+ λ1(t),

ϕ2 =

(√
2 + ε

2

a2(t)

cosh [(1 + ε) a2(t) (x+ ξ2(t))]

) 1
1+ε

,

θ2 = −µ2(t)

2

(
x+

ξ2(t)

2

)
+ a2

2(t) t+ λ2(t), (3.2.2)

and ai(t), ξi(t), µi(t) and λi(t) for i = 1, 2 are our collective coordinates. Note

that, as is clear from (3.1.10), ξi(t) = (−1)i (vt+ x0) when the solitons are far

away from each other. So velocity is given by µi(t) and is also contained in ξi(t).

This approximation ansatz models two lumps which, when they are far apart,

resemble two one-soliton solutions akin to (3.1.10) with heights ai(t), positions

ξi(t), velocities µi(t) and phases λi(t).

In the case ε = 0 the system is integrable and this ansatz is similar to the

one we used in [2] with the additional features of a time dependence in the width

of the solitons. Also the height, position, velocity and phase of each soliton are

allowed to vary independently (whereas previously we insisted that a1(t) = a2(t),

ξ1(t) = −ξ2(t), µ1(t) = −µ2(t) and λ1(t) = λ2(t)). In particular this allows a

previously static parameter, the phase difference between the solitons δ ≡ λ1−λ2,

to vary in time. These changes have been made based on our observations in [2],

and we have later found that this improved approximation ansatz gives more

accurate results for the NLS solitons when we compare them with our results

in [2]. For ε = 0 the ansatz (3.2.1) is invariant under the parity defined in

(3.1.12).

For ε 6= 0 and δ = nπ, where n ∈ Z, the approximation ansatz (3.2.1) trans-

forms under the parity defined in (3.1.12) as in (3.1.13). Thus the field configu-

ration possesses the additional symmetries mentioned before that are necessary

for the system to be quasi-integrable. Therefore, for these values of δ the system

has asymptotically conserved charges.
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For ε 6= 0 and δ 6= nπ the approximation ansatz does not transform under the

parity defined in (3.1.12) as required for quasi-integrability, and so the system

appears to be non-integrable and there are no constraints on the charges.

Implementing the approximation in modified NLS

In order to proceed with the collective coordinate approximation we insert our

approximation ansatz (3.2.1) into the Lagrangian (2.1.1) to obtain an effective

Lagrangian:

L = Ia1 ȧ1 + Ia2 ȧ2 + Iξ1 ξ̇1 + Iξ2 ξ̇2 + Iµ1µ̇1 + Iµ2µ̇2 + Iλ1λ̇1 + Iλ2λ̇2 − V, (3.2.3)

where the dot denotes differentiation with respect to time; and the I’s and V

are functions of a1,2(t), ξ1,2(t), µ1,2(t), λ1,2(t) and t. These functions are fully

described in appendix A.3.

From this effective Lagrangian we derive equations of motion as a set of cou-

pled ODEs of the form:

İq−ȧ1
∂Ia1
∂q
−ȧ2

∂Ia2
∂q
−ξ̇1

∂Iξ1
∂q
−ξ̇2

∂Iξ2
∂q
−µ̇1

∂Iµ1
∂q
−µ̇2

∂Iµ2
∂q
−λ̇1

∂Iλ1
∂q
−λ̇2

∂Iλ2
∂q

+
∂V

∂q
= 0,

(3.2.4)

where q denotes the collective coordinates q = a1, a2, ξ1, ξ2, µ1, µ2, λ1, λ2. We

decouple these equations, and solve them using a 4th order Runge-Kutta method

(for details on the numerics see section 1.4).

Results for NLS (ε = 0)

Here we describe the results of our analysis of the scattering of two solitons for

the cases when ε = 0 which correspond to the non-perturbed, integrable NLS.

We consider the results of our collective coordinate approximation for a range of

initial values of the collective coordinates, and compare them against those given

by a full numerical simulation. This allows us to determine the effective range of

parameters for our choice of the approximation ansatz. In all our studies we use

η = −1 and take our initial height/width parameter to be a1 = a2 = 1. We start

our solitons from initial positions ξ1 = −5, ξ2 = 5 (i.e. far enough apart not to
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affect one another initially) and send each one of them towards the other with

some initial velocity v = µ1 = −µ2 .

As shown in our previous work [2] the solitons’ scattering is highly dependent

on the relative phase between them, i.e. δ ≡ λ1 − λ2; so initially we compare

the solitons’ dynamics between the collective coordinate approximation and full

numerical simulation for a range of δ. In each case only the trajectory of the

right hand soliton has been plotted, calculated by each method, in order to keep

the plots clearer. Figure 3.1 compares the trajectories for solitons with initial

velocity v = 0.01 and initial phase difference δ = 0, π
4
, π

2
, 3π

4
, π (the results are

symmetric around π and periodic in 2π). This figure shows that for most values

of δ (whenever δ 6= 0) both approaches produce almost identical trajectories,

i.e. it is difficult to see the difference between the lines in plots 3.1(b) - (e).

To quantify the agreement between the two methods we calculated a percentage

difference in the trajectories a significant time after the solitons’ collision (in this

case at t = 250), and we found a percentage difference of 0.53% for δ = π
4
; 0.026%

for δ = π
2
; 0.0067% for δ = 3π

4
; and 0.0039% for δ = π. It is evident from these

values that the earlier the solitons repel the more accurate the approximation is.

In the case of δ = 0 both results show excellent qualitative agreement for

the first 3 oscillations, but the solitons in the collective coordinate approxima-

tion break away from oscillating around each other much earlier than in the full

simulation. However, the qualitative results remain the same, and one possible

cause for any disagreement between the collective coordinate approximation and

full simulation is because in the full simulation the solitons deform one another

away from the form given by (3.2.1) when they are in close proximity and the

collective coordinate approximation does not allow such a deformation.

We can see how much the solitons deform each other as they come together by

considering the difference between the collective coordinate ansatz and the soliton

solution used in the full simulation, both at the beginning of the simulation and

some time later (after the solitons have interacted). We do this by calculating

the difference between |ψ|2 for the collective coordinate, |ψcc|2, and |ψ|2 for the
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full simulation, |ψfs|2, at a set time and integrate it over space, i.e.

difference =

∫ ∞
−∞
||ψcc(x)|2 − |ψfs(x)|2|dx. (3.3.5)

Calculating this at the beginning of the simulation, with ε = 0 and initial values

δ = 0, v = 0.01, ξ1,2 = ±5, a1,2 = 1, we found a difference of 2.6 × 10−6. This

demonstrates that the wave functions are very similar at the beginning of the

simulation. After the solitons collide (when they are positioned at ±3.8) we find

a difference of 7.0 × 10−5. So we see a slight deformation from the ansatz form

in the full simulation after the solitons collide, but they still have a very similar

shape.

The usefulness of the collective coordinate approximation for ε = 0 is further

explored by comparing the heights of the solitons as they collide, calculated using

the collective coordinate approximation and using the full numerical simulation,

for a variety of initial values of phase difference δ. Figure 3.2 compares the heights

of the solitons during collision, calculated by each method, for solitons with initial

velocity v = 0.01 and initial phase difference δ = π
4
, π

2
. It is clear that in the cases

where the trajectories show excellent qualitative agreement, i.e. when δ = π
4
,

π
2
, the heights of the solitons also show excellent qualitative agreement. This

can be seen from figure 3.2 where the plotted lines are essentially coincident, to

quantify this the percentage difference in the heights of the solitons as calculated

by each method, at t = 250, is of the order 10−3% (comparing the right and

left hand solitons separately). Figure 3.3 is similar to figure 3.2 but with initial

phase difference δ = 0, and only the heights of the right hand solitons have been

plotted to maintain clarity (the results for the heights of the left hand solitons

are similar). In this case the heights of the solitons peak when the solitons come

together in a similar way in both the approximation and the full simulation; the

heights of the solitons in the approximation cease peaking when the solitons cease

to oscillate around each other which happens earlier in the collective coordinate

approximation than in the full simulation (for the trajectories see figure 3.1(a)).

These observations support those drawn when comparing the trajectories of the

solitons.

We also consider the phase difference between the solitons as they collide to
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Figure 3.1: The distance of a soliton from the centre of mass of a system as

a function of time. The system consists of two solitons initially placed at ±5

and sent towards their centre of mass with an initial velocity v = 0.01. Initial

height/width parameter of each soliton is 1 and the initial phase difference be-

tween them is: (a) δ = 0, (b) δ = π
4
, (c) δ = π

2
, (d) δ = 3π

4
,(e) δ = π. For each

plot the solid line (red) has been obtained using the collective coordinate approx-

imation and the dashed line (green) is the result of the full simulation (these may

be indistinguishable).
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Figure 3.2: The heights of colliding solitons as a function of time. The system

consists of two solitons initially placed at ±5 and sent towards their centre of

mass with an initial velocity v = 0.01. Initial height/width parameter of each

soliton is 1 and the initial phase difference between them is: (a) δ = π
4
, (b) δ = π

2
.

For each plot the increasing lines are the results for the right hand solitons for

the collective coordinate approximation (red solid line) and the full simulation

(green long dashed line), these are very similar. The decreasing lines are results

for the left hand soliton for the collective coordinate approximation (purple short

dashed line) and the full simulation (pink dotted line), these are also very similar.
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Figure 3.3: The heights of colliding solitons as a function of time. The system

consists of two solitons initially placed at ±5 and sent towards their centre of

mass with an initial velocity v = 0.01. Initial height/width parameter of each

soliton is 1 and the initial phase difference between them is δ = 0. The solid line

(red) has been obtained using the collective coordinate approximation and the

dashed line (green) is the result of the full simulation (for t up to 350 these are

difficult to distinguish).
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Figure 3.4: The phase difference between solitons as a function of time. The

system consists of two solitons initially placed at ±5 and sent towards their

centre of mass with an initial velocity v = 0.01. Initial height/width parameter

of each soliton is 1 and the initial phase difference between them is: (a) δ = 0

and (b) δ = π
2
. For each plot the solid line (red) has been obtained using the

collective coordinate approximation and the dashed line (green) is the result of

the full simulation (these may be indistinguishable).

gain more information. Figure 3.4 compares the phase difference between the

solitons during collision, as calculated by each method, for solitons with initial

velocity v = 0.01 and initial phase differences δ = 0, π
2
. This figure shows

excellent agreement in the case δ = π
2
, the percentage difference in the results

at t = 250 is 0.87%. When δ = 0 the phase difference between the solitons in

the collective coordinate approximation varies around zero between ±π
4

as the

solitons come together then increases as the solitons repel (for the trajectory see

figure 2.5), in the full numerical simulation the phase difference varies when the

solitons come together but only by±5×10−5. The dissimilarity between the phase

difference in the two methods for solitons starting in the most attractive channel

(δ = 0) suggests that the approximation struggles to model exactly how the phase

difference changes as the solitons come close together. This may explain the small

differences in the physical properties of the solitons that have been noted in the

δ = 0 case.

Next we consider the effect of the initial velocity on the accuracy of the col-
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lective coordinate approximation. Figure 3.5 compares the trajectories given by

the collective coordinate approximation and those given by the full numerical

simulation for solitons with initial phase difference δ = π
4

and initial velocity

v = 0.1 and v = 0.2. Although we expect the collective coordinate approxima-

tion to be better at smaller velocities, as mentioned in section 1.3, the total effect

of the initial velocity on the accuracy of the collective coordinate approximation

is difficult to gauge in full generality. This is because, when the initial velocity

is changed, the amount of time the solitons spend close together during their

interaction changes which, as we have already surmised, affects the accuracy of

the approximation. Figure 3.5 shows that, as expected, increasing initial velocity

decreases the accuracy of the approximation slightly. To be able to compare the

agreement between the two methods for various initial velocities we calculated

the percentage difference in position of the solitons a significant time after their

collision for the different initial values and found a percentage difference of 1.3%

for initial velocity v = 0.1 (at t = 100) and a percentage difference 3.9% for initial

velocity v = 0.2 (at t = 50). This shows that for solitons which do not spend

much time close together during their interaction the approximation is still very

good up to an initial velocity of at least v = 0.2. As the collective coordinate ap-

proximation assumes slow moving solitons (see section 1.3) our results show that

the approximation is extremely reliable for low velocity and for higher velocities

it is more reliable than could have been reasonably expected. As the collective

coordinate approximation neglects any radiative corrections to the solitons, this

agreement for velocities of up to v = 0.2 suggests that the radiative corrections

are small for these initial values. This is confirmed by considering how the energy

of the system varies with time in the full numerical simulation. In simulations

with ε = 0 there is no change at all to the energy during the simulations (as we

mentioned in section 1.4). When ε 6= 0 the energy change is minute when the

solitons do not come close together (of the order of 10−6%) and is very small

when they do come together (∼ 1% for ε = 0.06, δ = 0 and v = 0.01).
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Figure 3.5: The distance of a soliton from the centre of mass of a system as a

function of time. The system consists of two solitons initially placed at ±5, with

initial height/width parameter of 1 and the initial phase difference between them

of δ = π
4
. The solitons move towards the centre of mass with initial velocity (a)

v = 0.1, and (b) v = 0.2. For each plot the solid line (red) describes the outcome

obtained in the collective coordinate approximation and the dashed line (green)

shows the result of the full simulation (these may be indistinguishable).

Results for modified NLS

In the case ε 6= 0 the modified NLS system of two solitons is no longer integrable;

this means that the system no longer has an infinite number of conserved quan-

tities and so some energy can be lost as radiation during soliton interactions. As

before each simulation starts with solitons with initial positions ξ1 = −5, ξ2 = 5,

initial height/width parameter a1 = a2 = 1, and various initial phase differences

and velocities towards each other. As in the ε = 0 case we find that the accu-

racy of the approximation depends on the amount of time the solitons spend in

close proximity of each other during their interaction. This can be seen in figure

3.6 which compares the trajectories of solitons with initial velocities v = 0.01,

ε = ±0.06 and δ = 0, π
4
, π

2
(plots for δ = 3π

4
, π show excellent agreement so are

not included). We note that for ε = ±0.06 and δ 6= 0 the results of the collective

coordinate approximation show excellent qualitative agreement with the results

of the full numerical simulation. As before we calculate the percentage difference
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in the positions of the solitons at a significant time after the collision to quantify

the agreement of the two methods. For an initial phase difference δ = π
4

the per-

centage difference is 9.4% for ε = 0.06 (at t = 400) and 0.29% for ε = −0.06 (at

t = 250); the percentage difference in the positions of the solitons for initial phase

difference δ = π
2

is 0.034% for ε = 0.06 (at t = 250) and 0.041% for ε = −0.06

(at t = 250). Though the percentage difference for δ = π
4

and ε = −0.06 is by

far the largest, the trajectory for these initial values is the most complicated and

the collective coordinate approximation captures that complexity well.

However, for ε = ±0.06 and δ = 0 the differences between the approximation

and full simulation are more pronounced than in the ε = 0 case: the collective

coordinate approximation accurately describes the initial coming together of the

solitons, but it does not capture the decreasing amplitude and increasing fre-

quency of the oscillations demonstrated by the full simulation before the solitons

eventually repel. This increased difference is probably because, for the ε 6= 0 case,

the solitons deform each other to a greater extent as they approach each other.

We can test this as we did before (in the ε = 0 case) by calculating the

difference between |ψ|2 for the collective coordinate approximation and the full

simulation. The difference (3.3.5) at the beginning of the simulation, with ε =

0.06 and initial values δ = 0, v = 0.01, ξ1,2 = ±5, a1,2 = 1, was found to be

5.9× 10−4. Calculating the difference after the solitons collide, with the solitons

positioned at ±2.9, we found a difference of 1.1 × 10−3. This shows that during

their collision the solitons do deform slightly in the full simulation from the ansatz

form assumed in the collective coordinate approximation. Comparing this to the

difference values found in the ε = 0 case we see that the differences are overall

larger for ε = 0.06, but the proportional variation in the difference during the

simulation is comparable.

Another possible reason that the two methods give different results for ε =

±0.06 and δ = 0 is that, when ε 6= 0, some energy is radiated out which is not

accounted for in the approximation. The amount of energy lost by the solitons in

the full simulation is shown in figure 3.7 where we plot the energy of the system

during a scattering for ε = 0.06, and δ = 0, π
4
, π

2
and for the same initial conditions
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Figure 3.6: The distance of a soliton from the centre of mass of a system as

a function of time. The system consists of two solitons initially placed at ±5

each with an initial velocity of v = 0.01 towards the centre of mass. Initial

height/width parameter of each soliton is 1 with δ = 0 and (a) ε = 0.06, (b)

ε = −0.06; δ = π
4

and (c) ε = 0.06, (d) ε = −0.06; δ = π
2

and (e) ε = 0.06, (f)

ε = −0.06. For each plot the solid line (red) is result of the collective coordinate

approximation and the dashed line (green) is the result of the full simulation

(these may be indistinguishable).
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Figure 3.7: The time dependency of the energy of the solitons for ε = 0.06 placed

initially at ±5. Each soliton is of initial height/width parameter of 1 and is sent

towards the centre of mass with initial velocity v = 0.01. δ = 0 corresponds

to the solid line (red), δ = π
4

the dotted line (blue) and δ = π
2

the dashed line

(green).

as those used in the trajectory plots (plots for ε = −0.06 are very similar), and

we do not plot the results of the collective coordinate approximation as this

approximation does not allow the loss of energy. Over time the cases δ = π
4
, π

2

demonstrate an incredibly small energy change; when t = 300 (i.e. at a significant

time after any collisions) they both have a percentage energy loss of 1.4×10−6%.

In the case δ = 0 the energy is constant until the solitons come together at which

point some energy is radiated out. The system then evolves as two separate

solitons and emits some small energy waves which we absorb as they reach the

boundary so we see that the total energy of the soliton decreases. The percentage

energy loss in this case is 1.1%.

As in the ε = 0 case we consider the phase difference between the solitons

as they collide. Figure 3.8 compares the phase difference between the solitons

during collision, as calculated by each method, for solitons with ε = 0.06, initial

velocity v = 0.01 and initial phase difference δ = 0. This figure resembles the

one for the ε = 0 case: the phase difference calculated using the approximation

peaks when the solitons come together and steadily increases when the solitons

cease oscillating around each other, the phase difference calculated using the full

simulation has very small peaks when the solitons come together and also steadily

increases when the solitons repel. Comparing this figure to figure 3.4 shows that

the change in ε has no obvious effect on the how well the collective coordinate
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Figure 3.8: The phase difference between solitons as a function of time. The

system consists of two solitons initially placed at ±5 and sent towards their

centre of mass with an initial velocity v = 0.01. Initial height/width parameter

of the soliton is 1 and the initial phase difference between them is δ = 0. The

solid line (red) has been obtained using the collective coordinate approximation

and the dashed line (green) is the result of the full simulation.

approximation models the time dependence of the phase difference.

We also consider the effect of the initial velocity on the accuracy of the collec-

tive coordinate approximation when ε = 0.06. Figure 3.9 compares the trajecto-

ries obtained in the collective coordinate approximation and those found by the

full numerical simulation for solitons with initial values as in figure 3.5 but with

ε = 0.06. These results show that the accuracy of the approximation is still quite

good up to v = 0.2, with percentage difference in position of the solitons of 4.4%

for v = 0.1 (at t = 100) and 9.2% for v = 0.2 (at t = 50). The trajectories of the

solitons for these initial values show slightly less agreement than in the equivalent

simulations with ε = 0 (this can be seen by comparing figures 3.9 and 3.5).

Next we increase the parameter ε to investigate its effect on the accuracy

of the approximation. Figure 3.10 presents the plots of the trajectories derived

in the collective coordinate approximation and the full numerical simulation for

solitons with initial phase difference δ = π
4
, and various values of ε and initial

velocity. This figure also shows that, for solitons which do not spend much time

in close proximity of each other, increasing the value of ε reduces the accuracy

of the approximation very slightly with excellent qualitative agreement up to at

least ε = 0.3, the percentage difference in the positions of the solitons is 0.51%
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Figure 3.9: The distance of a soliton from the centre of mass of a system as a

function of time with ε = 0.06. The system consists of two solitons initially placed

at ±5, with initial height/width parameter of 1 and the initial phase difference

between them of δ = π
4
. The solitons move towards the centre of mass with initial

velocity (a) v = 0.1, and (b) v = 0.2. For each plot the solid line (red) is result of

the collective coordinate approximation and the dashed line (green) is the result

of the full simulation.

for ε = 0.1, v = 0.01 at t = 250, and 1.4% for ε = 0.3, v = 0.1 at t = 100.

In our numerical simulations we calculate and compare the quasi-conservation

of the first non-trivial charge beyond the energy and momentum, i.e. the charge

Q(4) defined in (3.1.8). We do this by computing the corresponding anomaly β4,

defined in (3.1.8) (X is defined in (2.2.6) and an explicit expression for α(3,−4) is

given in appendix A.1.1), and by integrating it over time to get the integrated

anomaly:

χ(4)(t) ≡
∫ t

−∞
dt′ β4 =

∫ t

−∞
dt′
∫ ∞
−∞

dxXα(3,−4) (3.4.6)

= −2i

∫ t

−∞
dt′
∫ ∞
−∞

dx ((ε+ 1)Rε − 1) ∂xR× (3.4.7)[
−6R2 +

3

2
(∂xϕ)2R− 2 ∂2

xR +
3

2

(∂xR)2

R

]
.

This is written in terms of the fields R and ϕ which are defined by writing each

soliton field ψ in the form ψ ≡
√
Rei

ϕ
2 . We calculate the time-integrated anomaly

at each point in time during the simulations using the equation (3.4.8).
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Figure 3.10: The distance of a soliton from the centre of mass of a system as a

function of time. The system consists of two solitons initially placed at ±5, with

initial height/width parameter of 1 and the initial phase difference between them

of δ = π
4
. For (a) the solitons have initial velocity v = 0.01 and ε = 0.1, and for

(b) the solitons have initial velocity v = 0.1 and ε = 0.3. For each plot the solid

line (red) is result of the collective coordinate approximation and the dashed line

(green) is the result of the full simulation.

In figure 3.11 we present the plots of the time-integrated anomaly for each

of the trajectories shown in figure 3.6. We note that the results are very similar

for each method although not as exact as some of the trajectories. The time

integrated anomalies are most different in the case δ = 0 as the collective co-

ordinate approximation shows a distinct peak when the solitons come together

when compared to the results seen in the full simulation which displays only a

minute deviation from zero at these points (of the order 10−7). However, when

the solitons are far apart the time-integrated anomaly does return to zero as pre-

dicted in [16] when δ is an integer value of π, as this corresponds to the case

when the parity symmetry described in (3.1.13) is present. When δ is not an

integer multiple of π this symmetry is not present and the integrated anomalies

do not return to zero, and the collective coordinate method shows similar time-

integrated anomalies to those found in the full simulation. This shows that, in

addition to the trajectories, the collective coordinate approximation also does re-

produce quite well the results for the anomalies obtained using the full numerical
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method.

Conclusions for the modified NLS

In this chapter we have considered the applicability of the collective coordinate

approximation to the description of the scattering of solitons in a deformation

of the NLS model. The deformation of this model moves it away from being

integrable, either completely or partially (the model becomes quasi-integrable for

δ = nπ, n ∈ Z). We considered a modified NLS for which the trajectories were

already known from full simulations studied in [16]. Moreover, in [16], it was

also suggested that quasi-integrability could be related to a particular symmetry

of the field configurations (for configurations possessing the necessary symmetry

the anomaly terms could vanish and so lead to quasi-integrability), so we looked

at these properties using the collective coordinate approximation.

In the modified NLS the approximation works very well in the majority of

cases and for a good range of initial conditions with a well chosen approximation

ansatz. Comparing the results in the limit where the modified model reduces

to the integrable NLS model, i.e. when ε = 0, to the results we gained in

chapter 2 we find that the improved ansatz (3.2.1) is indeed superior to the

ansatz we used previously (2.3.1). Allowing the coordinates of each soliton to

vary independently (which particularly allowed the phase difference between the

two solitons to vary with time) lead to better agreement between the two methods

for all initial conditions when ε = 0.

The predominant influence on the accuracy of the approximation is the time

the two solitons spend in close proximity of each other during their interaction;

and for simulations where the solitons do not come closer together than the width

of one soliton the collective coordinate approximation accurately reproduces the

scattering of the solitons and their anomaly even for values of initial velocity

up to v = 0.2. In these cases the trajectories, heights and phase difference of

the solitons during their scattering, calculated using the collective coordinate

approximation, are often indistinguishable from the those calculated using a full
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Figure 3.11: The time-integrated anomaly, χ(4)(t), for the soliton interactions

shown in figure 3.6 with δ = 0 and (a) ε = 0.06, (b) ε = −0.06; δ = π
4

and (c)

ε = 0.06, (d) ε = −0.06; δ = π
2

and (e) ε = 0.06, (f) ε = −0.06. For each plot

the solid line (red) is result of the collective coordinate approximation and the

dashed line (green) is the result of the full simulation.
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numerical method. Moving the system away from integrability, i.e. increasing

the deformation parameter ε, reduces the accuracy only slightly when the solitons

stay far enough apart during their scattering and the results are very good for

ε up to at least ε = 0.3. For the vast majority of initial conditions the solitons

maintain enough distance from each other during their interaction to ensure the

accuracy of the approximation, and even show good qualitative agreement for the

time-integrated anomalies.

When the solitons come closer together than the width of one soliton during

their interaction the general behaviour of the solitons (trajectory, height and

anomaly) is still reproduced but the accuracy of the approximation is reduced.

We think this is probably because in the full simulation the solitons deform one

another away from the form given by (3.2.1) when they are in close proximity. We

have compared the waveforms given by the approximation and the full simulation

when the solitons are far apart and when they come together, and have found

that there is indeed some slight deformation as the solitons approach each other.

Another possible reason for the reduced accuracy is that, for ε 6= 0, the full

simulation can radiate out energy and the collective coordinate approximation

does not allow this to happen. The collective coordinate ansatz can be adjusted

to allow for the radiation of energy, see for example [44] and [45]. In order to

model the radiation using the collective coordinate method a specific form for

the radiation must be assumed, and the necessary computing time would be

increased. Since we see a very small energy loss in most of our simulations the

additional effort of modelling radiation using collective coordinates is unlikely to

be worth the potential increase in the accuracy of the approximation.

These effects are exacerbated as the system moves away from integrability

because the radiation/deformation effect increases with increasing ε.

The effect of quasi-integrability in the modified NLS is difficult to assess fully,

as the collective coordinate approximation is incredibly reliable in the quasi-

integrable case i.e. for the initial phase difference of δ = nπ where n are odd

integers. However, for the remaining initial values of the phase difference where

the system is quasi-integrable (δ = nπ for n even integers) the effect of the prox-
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imity of the solitons (as discussed above) eclipses any effect of quasi-integrability

on the accuracy of the approximation.



Chapter 4

The modified sine-Gordon model

So far we have looked at the scattering of solitons in modified NLS models, i.e.

models in which the solitons are non-topological, and we have demonstrated the

usefulness of using the collective coordinate approximation as a tool to investi-

gate their properties. But one may ask if this is also the case for models which

involve topological solitons; this is what we consider in this section. We base our

discussion on the example of a modified sine-Gordon model previously studied

in [17].

Modified sine-Gordon model

We consider the Lagrangian given by

L =

∫
dx

1

2

(
(∂tψ)2 − (∂xψ)2)− V (ψ). (4.1.1)

For the sine-Gordon potential V = VSG = 1
8

sin2(2ψ) there are static one-soliton

solutions of the form

ψ = arctan
(
e±(x−x0)

)
. (4.1.2)

A modification on this model was suggested in [17] by taking a change of variable

ψ → φ given by

ψ(φ) =
cφ√

1 + εφ(φ− 2γ)
, (4.1.3)

50
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which has two free parameters ε and γ, and the parameter c chosen to be

c =

√
1 + επ

(π
4
− γ
)
, (4.1.4)

such that φ(ψ = 0) = 0 and φ(ψ = π
2
) = π

2
. The parameters ε and γ must be

chosen such that 1 + επ
(
π
4
− γ
)
> 0 and 1 + εφ (φ− 2γ) > 0. To ensure ψ(φ)

is monotonous for φ 6 π
2

we choose ε and γ such that εγ < 2
π
. The domain of

(4.1.3) that we are interested in is ψ = [−π
2
, π

2
]. For our choice of ε and γ the

range of (4.1.3) is φ = (−∞, π
2
].

Then φ, obtained by calculating φ = φ(ψ) from (4.1.3) and using ψ given by

(4.1.2), is a solution of the static Euler-Lagrangian equation associated to (4.1.1)

with the potential

V (φ) =

(
dφ

dψ

)2

VSG =
1

8

(1 + εφ (φ− 2γ))3

c2 (1− εγφ)2 sin2 (2ψ(φ)) . (4.1.5)

In the case ε = 0 the parameter γ becomes irrelevant and the potential (4.1.5)

returns to the unperturbed sine-Gordon potential and φ = ψ. For ε 6= 0 and γ = 0

the model has the symmetry φ = −φ, while for ε, γ 6= 0 there is no symmetry.

This can be seen in figure 4.1 where we plot the potential as a function of φ for

ε = 0.05 and γ = 0 and γ = 1. By varying the parameters ε and γ the effects

of this symmetry on the theory can be seen. Note that the topological charge

of φ(ψ), for ψ given by (4.1.2), is conserved for any value of ε and γ within the

constraints we have described. The construction of this modified model uses the

procedure discussed in [46] which is a generalisation of the procedure discussed

in [47].

The sine-Gordon model is an integrable model, and in a similar manner to the

NLS case the equations of motion can be rewritten in terms of a zero curvature

condition

∂+A− − ∂−A+ + [A+, A−] = 0, (4.1.6)

with connection components

A− =
1

2
b−1 −

iω

2
∂−φF0, (4.1.7)

A+ =
1

2

(
ω2V −m

)
b1 − iω

dV

dφ
F1,
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Figure 4.1: The modified potential V (φ) against φ for ε = 0.05 and (a) γ = 0,

(b) γ = 1.

for real parameters ω and m, and where the SL(2) loop algebra generators bn

and Fn have commutation relations

[
b2m+1, F2n+1

]
= −2F2(m+n+1),

[
b2m+1, F2n

]
= −2F2(m+n)+1,[

F2m+1, F2n

]
= −2b2(m+n)+1.

Here we have used light-cone coordinates

x± =
1

2
(t± x) with ∂± = ∂t ± ∂x and ∂+∂− = ∂2

t − ∂2
x ≡ ∂2. (4.1.8)

From the zero curvature condition an infinite number of conserved quantities can

be derived via the abelianization procedure, similar to the NLS integrable model.

For the sine-Gordon model with a general potential there is an anomalous

zero curvature condition

∂+A− − ∂−A+ + [A+, A−] = X̃F1 −
iω

2

(
∂2φ+

∂V

∂φ

)
F0, (4.1.9)

with the connection components as in (4.1.7) and X̃ equal to

X̃ =
i ω

2
∂−φ

[
d2V

dφ2
+ ω2V −m

]
. (4.1.10)

When the equation of motion is satisfied the right hand side of the anomalous

zero curvature condition proportional to F0 vanishes, and when the potential is

taken to be the sine-Gordon potential X̃ also vanishes for the choice of parameters
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ω = 4 and m = 1, and the system is integrable. With a general potential we can

apply the abelianization procedure as in [17], gauge transforming the anomalous

zero curvature condition and making use of the grading operator of the algebra,

to obtain equations of the form

∂tã
(2n+1)
x − ∂xã(2n+1)

t = X̃α̃(2n+1) n = 0, 1, 2, ..., (4.1.11)

(the first few expressions of α̃(2n+1) are given in appendix A.1.2). Integrating over

space gives∫ ∞
−∞

dx ∂tã
(2n+1)
x − ã(2n+1)

t (x =∞) + ã(2n+1)(x = −∞) =

∫ ∞
−∞

dx X̃α̃(2n+1),

(4.1.12)

for n = 0, 1, 2, .... When ã
(2n+1)
t satisfies the boundary conditions ã

(2n+1)
t (x =

∞) = ã
(2n+1)
t (x = −∞) we have an infinite number of anomalous charges

Q̃(2n+1) =

∫ ∞
−∞

dx ã(2n+1)
x , (4.1.13)

which gives us an infinite number of anomalous conservation laws

dQ̃(2n+1)

dt
= β̃2n+1; with β̃(2n+1) =

∫ ∞
−∞

dx X̃ α̃(2n+1). (4.1.14)

When the potential is taken to be the sine-Gordon potential X̃ is zero, and we

have an infinite number of conserved charges.

If the field configuration transforms under the parity defined in (1.2.1) as

P (φ) = −φ+ const., (4.1.15)

and if the potential evaluated on such a solution is even under the parity, i.e.

P (V ) = V, (4.1.16)

then it follows that ∫ t̃0

−t̃0
dt

∫ x̃0

−x̃0
dx X̃α̃(2n+1) = 0, (4.1.17)

where t̃0 and x̃0 are given fixed values of the shifted time and space coordinates

t̃, x̃ introduced in (1.2.1). Taking x̃0 → ∞ the anomalous charges satisfy the

following time-symmetry around the point t∆

Q(2n+1)(t = t̃0 + t∆) = Q(2n+1)(t = −t̃0 + t∆) n = 0, 1, 2, ... (4.1.18)
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Now taking t̃0 → ∞ we have an infinite set of conserved quantities which are

conserved asymptotically, i.e.

Q(2n+1)(t = +∞) = Q(2n+1)(t = −∞). (4.1.19)

To summarise: this modified model, when ε = 0, becomes the sine-Gordon model,

therefore the system is integrable and has an infinite number of conserved quanti-

ties. When ε 6= 0 and γ = 0 then the field configuration and potential transform

under the parity described in (1.2.1) as in (4.1.15) and (4.1.16); therefore the

system is quasi-integrable and possesses an infinite number of asymptotically

conserved charges. When ε 6= 0 and γ 6= 0 then the symmetries necessary for

quasi-integrability are not present; the system is non-integrable and there are no

constraints on the charges.

The two-soliton configuration for modified

sine-Gordon

As in the NLS case we construct an appropriate two-soliton ansatz for the sine-

Gordon in the collective coordinate approximation by patching together two one-

kink solutions. We do this in the following way:

tan(ψ) = e(x−a) − e−(x+a) = 2 sinh(x) e−a, (4.2.1)

where a is our collective coordinate. When a is large (4.2.1) represents two well

separated kinks; one placed at −a whose field varies between [−π
2
, 0] and one

placed at a which varies between [0, π
2
]. For energetic reasons it must be that

a > 0 for all times. This ansatz was used in [24] to test the collective coordinate

approximation for the scattering of sine-Gordon kinks and was found to work

remarkably well, so our ansatz for our modified sine-Gordon model will be based

on a generalisation of this ansatz.

To construct a modified approximation ansatz we perform the change of vari-
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able as in (4.1.3), for ψ given by (4.2.1), to get

φ =
ψ2εγ +

√
ψ2c2 + ψ4ε (−1 + γ2ε)

ψ2ε− c2
for x < 0, (4.2.2)

φ =
ψ2εγ −

√
ψ2c2 + ψ4ε (−1 + γ2ε)

ψ2ε− c2
for x > 0,

and take this as our two soliton ansatz for the Euler-Lagrange equation associated

to (4.1.1) with the potential given by (4.1.5). This ansatz returns to the ansatz

for the unmodified sine-Gordon in the case ε = 0. For ε 6= 0, γ = 0 the kinks

are altered but the potential retains the symmetry V (φ) = V (−φ), whereas for

ε 6= 0, γ 6= 0 this symmetry is lost due to the shift in the vacua which can be seen

in figure 4.1(b).

Implementing the approximation in modified sine-Gordon

We substitute our approximation ansatz (4.2.2) into the Lagrangian (4.1.1) (with

the change of variable (4.1.3) and modified potential (4.1.5)) to find our effective

Lagrangian:

L =
g(a)

2
ȧ2 − V (a), (4.2.3)

where the dot refers to a differentiation with respect to time. The expression for

g(a) is given by (remembering the definition of c given by (4.1.4))

g(a) = 4e2ac4

∫ ∞
∞

dx
A(x, a)

B(x, a)
, (4.2.4)

where

A(x, a) = sinh2(x)
(
−2c2ε tan−1

(
2e−a sinh(x)

)2 (
α
(
1− 4γ2ε

)
+ 2γc2

)
+ ε2 tan−1

(
2e−a sinh(x)

)4 (
α
(
8γ2ε

(
γ2ε− 1

)
+ 1
)

+ 4γc2
(
2− 3γ2ε

))
−4γε3

(
γ2ε
(
2γ2ε− 3

)
+ 1
)

tan−1
(
2e−a sinh(x)

)6
+ αc4

)
, (4.2.5)

B(x, a) = α
(
e2a + 4 sinh2(x)

)2
(
c2 − ε tan−1

(
2e−a sinh(x)

)2
)4

×
(
ε
(
γ2ε− 1

)
tan−1

(
2e−a sinh(x)

)2
+ c2

)
. (4.2.6)
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Moreover, V (a) is:

V (a) = 2e2ac4

∫ ∞
∞

dx
C(x, a)

D(x, a)
, (4.2.7)

where C(x, a) and D(x, a) are given by:

C(x, a) = cosh(2x)
(
c2 tan−1

(
2e−a sinh(x)

)2 (
4αγε

(
3− 8γ2ε

)
+ 3c2

(
6γ2ε− 1

))
+ε
(
ε tan−1

(
2e−asinh(x)

)4 (
c2
(
12γ2ε

(
4γ2ε− 3

)
+3
)
− 2αγε

(
4γ2ε−3

) (
4γ2ε− 1

))
+ε2

(
2γ2ε− 1

) (
16γ2ε

(
γ2ε− 1

)
+ 1
)

tan−1
(
2e−a sinh(x)

)6 − 6αc4γ
)

+ c6
)
,

(4.2.8)

D(x, a) =
(
e2a + 4 sinh2(x)

)2
(
c2 − ε tan−1

(
2e−a sinh(x)

)2
)4

(−αγε

+ε
(
γ2ε− 1

)
tan−1

(
2e−a sinh(x)

)2
+ c2

)2

. (4.2.9)

For the clarity of the expressions we have introduced and defined α to be:

α ≡
√
c2 tan−1 (2e−a sinh(x))2 + ε (γ2ε− 1) tan−1 (2e−a sinh(x))4. (4.2.10)

When ε = 0 and γ = 0 the expressions for g(a), V (a) revert to those given in [24].

From the Lagrangian (4.2.3) we derive the equation of motion

gä+
1

2

dg

da
ȧ2 +

dV

da
= 0, (4.2.11)

which we solve using a 4th order Runge-Kutta method (for details on the numerics

see section 1.4).

Results for sine-Gordon

First we analyse the scattering of our two kinks for the case ε = 0 which cor-

responds to the integrable sine-Gordon model. We compare the trajectories of

the kinks as determined using the collective coordinate approximation and using

the full numerical simulation for a range of initial velocities v = ȧ(0) in order to

determine the effective range of validity of our choice of approximation ansatz.

In figure 4.2 we compare the trajectories of the kinks initially placed at a = 10

and with initial approach velocities of v = 0.3 and v = 0.6 (note that the speed
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Figure 4.2: The distance of a soliton from the centre of mass of a system as a

function of time. The system consists of two solitons initially with a = 10 and

ε = 0, with an initial velocity towards the centre of mass of (a) v = 0.3 and (b)

v = 0.6. For each plot the solid line (red) is result of the collective coordinate

approximation and the dashed line (green) is the result of the full simulation

(these may be indistinguishable).

of light is c = 1). We see that in the integrable system the collective coordinate

approximation with our choice of ansatz gives excellent qualitative agreement

with the full numerical simulation up to a high velocity, with percentage difference

in soliton positions after collision of 0.21% for v = 0.3 at t = 100 and 0.44% for

v = 0.6 at t = 50. This gives us confidence in our modified approximation ansatz

as applied to our modified model.

Results for modified sine-Gordon

Now we consider the scattering of solitons when the system is no longer integrable,

i.e. for ε 6= 0, and analyse the scattering of the two kinks for various values of the

parameters ε and γ (within the constraints described in section 4.1). For each set

of values we compare the trajectories of the solitons calculated using the collective

coordinate approximation with those using the full numerical simulation, and in

each simulation we take the initial positions of the solitons corresponding to

a(0) = 10. In the collective coordinate approximation the positions of the kinks

are equivalent to ±a when ε = 0, but when ε 6= 0 the two are no longer equivalent.

The location can be taken to be the position of the maximum of the energy peak,
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though when the solitons come close together this is not always well defined.

Alternatively, the location can be determined by the position where the soliton

takes half of its maximum value. We compare the location determined by both

of these definitions and find that they coincide where they are both well defined.

Therefore we take the position of the soliton to be where it takes half of its

maximum value.

In figure 4.3 we present a series of plots of trajectories for solitons sent together

with an initial velocity of v = 0.3 for different values of ε and γ. From these plots

we can see that the two approaches show excellent agreement when the symmetry

necessary for quasi-integrability is present, i.e. when ε 6= 0 and γ = 0, and the

percentage difference in soliton positions at t = 100 is 0.21% for ε = −0.2, 0.43%

for ε = 0.4, and 0.78% for ε = 1. However, when the system moves away from

quasi-integrability, i.e. ε 6= 0 and γ 6= 0, the two methods show good agreement

as the solitons approach each other but the solitons scatter at slightly different

distances and with different velocities (though these differences are fairly small).

This suggests that quasi-integrability is a sufficient condition for the collective

coordinate approximation to accurately model trajectories of kinks in modified

sine-Gordon systems.

We also consider the quasi-conservation of the first non-trivial charge be-

yond the energy itself, namely, Q̃(3)(t) defined in (4.1.14) by calculating both the

anomaly β̃(3) and the time integrated anomaly which is given by:

χ̃(3) = −1

2

∫ t

t0

dt′ β̃(3) = 4

∫ t

t0

dt′
∫ ∞
−∞

dx ∂−φ ∂
2
−φ

[
d2 V

dφ2
+ 16V − 1

]
, (4.4.12)

where ∂− = ∂t − ∂x and t0 is the initial time of the simulation which is usually

taken to be zero.

Figure 4.4 is the plot of the time-integrated anomaly as a function of time

for solitons placed at a = 20 with initial velocity v = 0.05, with ε = 0.000001

and various values of γ. Notice that in the full simulation the time-integrated

anomaly is always slowly increasing prior to the scattering of the solitons and

slowly decreasing after the scattering; this is due to slight fluctuations away from

zero in the anomaly which by itself is probably a result of numerical errors rather

than any physical effect. This error increases as ε increases and so it becomes
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Figure 4.3: The distance of a soliton from the centre of mass of a system as a

function of time. The system consists of two solitons initially with a = 10, each

with an initial velocity of 0.3 towards the centre of mass. Initial parameter are

(a) ε = −0.2, γ = 0; (b) ε = 0.4, γ = 0; (c) ε = 1, γ = 0; (d) ε = 0.4, γ = 0.1; (e)

ε = 0.4, γ = 0.2; and (f) ε = 0.4, γ = −0.2. For each plot the solid line (red) is

result of the collective coordinate approximation and the dashed line (green) is

the result of the full simulation (for (a), (b) and (c) these are indistinguishable).
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difficult to compare the results, this is why we present plots only for a small value

of ε. We see that when γ is small the collective coordinate approximation and

the full simulation are in excellent agreement, and far away from the scattering

the time-integrated anomaly is close to zero, as expected, when γ is small and

the model is close to the symmetry described in (4.1.15) and (4.1.16). When γ

is taken further from zero we move from a model with approximate symmetry

to a model where this symmetry is broken. This is confirmed by our results as

seen in figure 4.4 which show that the further γ is from zero the further the time-

integrated anomaly is from zero after the scattering of the solitons. Moreover, the

figures 4.4(b) and 4.4(e) show that the symmetry can be broken in either direction

depending on the sign of γ, with the time-integrated anomaly (calculated using

the approximation) being close to χ̃(3) ∓ 4 × 10−8 for γ = ±0.002 a long time

after the solitons interact. The collective coordinate approximation still gives a

good qualitative approximation to the behaviour of the time-integrated anomaly

as we move away from the symmetric case, though the values are not exactly

the same as seen in full simulations. These observations have been checked for

several values of ε.

Conclusions for modified sine-Gordon

In this chapter we have considered the applicability of the collective coordinate

approximation to a modified sine-Gordon model with two deformation parameters

γ and ε, variation of these parameters changes the integrability properties of the

system. The system is either integrable (ε = 0), quasi-integrable (ε 6= 0 and

γ = 0) or non integrable (ε 6= 0 and γ 6= 0).

We find that the approximation very accurately describes the trajectories

and anomalies of scattering kinks when the system is either integrable or quasi-

integrable (i.e. γ = 0) up to initial velocities of v = 0.6 and for values of up

to ε = 1. However, when the field configuration moves away from the symmetry

necessary for quasi-integrability (i.e. when γ moves away from 0) the collective

coordinate approximation becomes less accurate for both the trajectories and the
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Figure 4.4: The time-integrated anomaly for solitons initially with a = 20 with

velocity 0.05 towards the centre of mass and ε = 0.000001. γ is chosen to be (a)

γ = 0.00001, (b) γ = 0.002, (c) γ = 0.004, (d) γ = 0.1 and (e) γ = −0.002. The

solid lines (red) are the results for the collective coordinate approximation and

the dashed lines (green) are results for the full simulation.
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anomalies. In this model the presence of the symmetries necessary for quasi-

integrability seem to be a sufficient condition to ensure accuracy.



Chapter 5

The double sine-Gordon model

In the previous chapter we considered a modified sine-Gordon model with defor-

mation parameters ε and γ which moved the model away from integrability in a

controlled way. In this chapter we consider the double sine-Gordon model as this

model allows us to vary smoothly between two integrable sine-Gordon models.

Kink-antikink interactions in the double sine-Gordon model have already been

considered in several papers [48], [49], [50], [51] and the collective coordinate

approximation has been applied to double sine-Gordon kinks interacting with

kinks [52] and with an external potential [53]. Here we have investigated the

interactions between kinks in the double sine-Gordon model using the collective

coordinate approximation and a full numerical method, considering a range of

initial parameters and how this affects the integrability properties of the model.

Double sine-Gordon model

We consider the Lagrangian

L =

∫
dx

[(
∂ψ

∂t

)2

−
(
∂ψ

∂x

)2

− λ2
0 sin2(ψ)− A2

0

4
sin2(2ψ)

]
, (5.1.1)

where λ0 and A0 are real parameters. When λ0 or A0 vanishes the model reduces

to the sine-Gordon model.
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The equations of motion are

∂2ψ

∂t2
− ∂2ψ

∂x2
+
λ2

0

2
sin(2ψ) +

A2
0

4
sin(4ψ) = 0. (5.1.2)

We expect a kink shaped solution so to find a one soliton solution we rewrite ψ

in the form

ψ = 2 tan−1
(√

u
)
, (5.1.3)

and find that this solves the equation of motion when

u =
e−2θ

2 (A2
0 + λ2

0)

(
2A2

0e
2θ + λ2

0

(
1 + e4θ

)
+ νW

)
, (5.1.4)

where for convenience we have defined

W =

√
−4 (A2

0 + λ2
0)

2
e4θ + (2A2

0e
2θ + λ2

0 (1 + e4θ))
2
,

θ = (x+ x0 + tv)
√
A2

0 + λ2
0.

(5.1.5)

Here ν = −1 for x < x0 + vt and ν = 1 for x > x0 + vt. It should be noted that

in the construction of this solution we have assumed that λ0 6= 0, so we cannot

take this solution to the limit of the integrable sine-Gordon in that direction (if

you take λ0 = 0 then u loses its dependence on x). However, we can take λ0 = 0

in the equations of motion (5.1.2) and repeat the construction to find the usual

sine-Gordon kink solution). We can take A0 = 0 in u directly and in this limit

the solution becomes the usual sine-Gordon kink: ψ = 2 tan−1
(
e(x+x0+vt)λ0

)
.

To demonstrate how varying the parameters A0, λ0 affects the system we have

plotted the potential and our one-soliton solution for x0 = 10 at various values of

A0 and λ0 in figure 5.1. For A0 → 0 and λ0 = constant 6= 0 the Lagrangian (5.1.1)

becomes the sine-Gordon Lagrangian whose potential has minima at ψ = nπ and

the soliton becomes the sine-Gordon kink, see figures 5.1(a),(b). When A0 and

λ0 are both non-zero and of a similar value the maxima of the potential broadens

out, and as λ0 decreases this develops into a new minima at ψ = (n + 1
2
)π and

the solution starts to split into sub-kinks, see figures 5.1(c),(d). Then for λ0 → 0

and A0 = constant 6= 0 the Lagrangian becomes the sine-Gordon Lagrangian

whose potential has minima at ψ = (n + 1
2
)π and kink effectively splits into two

independent kinks, see figures 5.1(e),(f).
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Figure 5.1: On the left the potential V (ψ) for various values of the parameters

A0 and λ0 and on the right the corresponding one double sine-Gordon kink ψ

centred at x0 = 10. The values are A0 = 1, λ0 = 10 for (a) and (b); A0 = 10,

λ0 = 10 for (c) and (d); A0 = 10, λ0 = 1 for (e) and (f).
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The double sine-Gordon model can be considered to be a modified sine-Gordon

with a Lagrangian as in (4.1.1) with the potential V = VDSG = 2λ2
0sin2(ψ) +

A2
0

2
sin2(2ψ). We can then use the same arguments that we employed in chapter

4 to construct anomalous conserved charges for this model as given in (4.1.13),

but now with the potential taken to be VDSG and with different choices for the

parameters ω and m contained in the anomalous conserved charges and first

introduced in the connection components (4.1.7). When λ0 = 0 the model reduces

to a sine-Gordon model with V =
A2

0

2
sin2(2ψ), and when the parameters ω and m

are chosen to be ω = 4 and m = 4A2
0 we find that X̃ (given in (4.1.10)) vanishes,

then we have a zero curvature connection and therefore an infinite number of

conserved charges as the model is integrable. When A0 = 0 the model reduces

to a sine-Gordon model with V = 2λ2
0 sin2(ψ), and with the parameters chosen

to be ω = 2 and m = 4λ2
0 then X̃ vanishes and again we have a zero curvature

connection and an infinite number of conserved charges.

In a similar manner to the modified sine-Gordon, when the potential V and

the field configuration ψ transform under the parity P defined in (1.2.1) as

P (ψ) = −ψ + const. P (V ) = V, (5.1.6)

then the anomalous charges are conserved asymptotically and the system is quasi-

integrable.

For two interacting solitons we take

ψ = 2 tan−1
(√

u(x+ x0 + vt)
)

+ 2 tan−1
(√

u(−x+ x0 + vt)
)
− π,

(this is discussed in more detail in the next section), and it is clear from this that

the field configuration ψ does transform as in (5.1.6) under the parity P (1.2.1),

(recalling that the sign dependence of W in (5.1.4) will change). From this it

is also easy to see that the potential VDSG transforms as in (5.1.6) under the

parity P. Therefore we have the symmetries necessary for quasi-integrability and

we expect the anomalous charges to be asymptotically conserved for any values

of A0 and λ0, and completely conserved when one or other of A0 and λ0 is zero

as the system is then integrable.
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The two-soliton configuration for double

sine-Gordon

We construct an appropriate two-soliton ansatz for the double sine-Gordon in the

collective coordinate approximation by patching together two one-kink solutions

in the following way:

ψ = 2 tan−1
(√

u(x+ a)
)

+ 2 tan−1
(√

u(−x+ a)
)
− π (5.2.1)

where a = x0 + vt is one of our collective coordinates. When a is large (5.2.1)

represents two well separated double sine-Gordon kinks centred at ±a, and for

energetic reasons it must be that a > 0 for all times.

From a previous study of kink-kink collisions in the double sine-Gordon [52] we

know that the distance between the sub-kinks can change with time. Therefore,

we also take A0 and λ0 within the solution (5.2.1) to be collective coordinates,

i.e. we allow them to vary with time. To discriminate between these coordinates

and A0, λ0 appearing in the Lagrangian (5.1.1) from now on we refer to them as

A and λ, and naturally we always take A(0) = A0 and λ(0) = λ0.

Implementing the approximation in double sine-Gordon

We proceed with the collective coordinate approximation as in previous chap-

ters by inserting our approximation ansatz (5.2.1) into the Lagrangian (5.1.1) to

obtain an effective Lagrangian of the form:

L =
(
Iaȧ+ IAȦ+ Iλλ̇

)2

− V, (5.2.2)

where the dot denotes differentiation with respect to time; and the I’s and V are

functions of a(t), A(t), and λ(t). Explicit expressions of Ia,A,λ and V are given in

appendix A.5.

From this effective Lagrangian we derive equations of motion as a set of cou-

pled ODEs of the form:

ä2IaIq + Ä2IAIq + λ̈2IλIq +Hq(a, ȧ, A, Ȧ, λ, λ̇) = 0, (5.2.3)
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for q = a,A, λ, and Hq a function of the coordinates and their first derivative

with time. We decouple these equations and solve them using the 4th order

Runge-Kutta method (for details on the numerics see section 1.4).

Results for double sine-Gordon

We consider the trajectories for double sine-Gordon kinks as they scatter, com-

paring the results for the full numerical simulation and the collective coordinate

approximation. In each simulation we start the solitons at x0 = 10 and send

them towards the centre of mass with an initial velocity ȧ(0) = 0.1 so that they

interact. As A0 and λ0 always appear squared we take, without loss of generality,

A0 > 0 and λ0 > 0 throughout. When λ0
A0

< 1 the initial solution for the double

sine-Gordon soliton starts to separate into sub-kinks, and in this case we also in-

vestigate the trajectories of the sub-kinks and the distance between them, which

we denote as d, as the solitons collide.

In figure 5.2 we have plotted the trajectories of the double sine-Gordon kinks

as they collide for a range of values of A0 and λ0, calculated using the collective

coordinate approximation and using the full numerical simulation. We find that

the trajectories calculated using each method are virtually indistinguishable for

all the values of A0 and λ0 that we have run simulations for. This can be seen

by considering the plots in figure 5.2, so the collective coordinate approximation

is accurate in the double sine-Gordon model. We observed in chapter 4 that

in a modified sine-Gordon model the presence of the symmetries necessary for

quasi-integrability are sufficient for the collective coordinate approximation to be

accurate, and as we have determined that for all values of A0 and λ0 the double

sine-Gordon system is quasi-integrable it is not surprising that we find that the

approximation is accurate for all values of A0 and λ0.

For λ0
A0

> 1 our initial two soliton solution looks like two sine-Gordon kinks, see

figure 5.1, and the trajectory of the collision is similar to those of the sine-Gordon

kinks, i.e. the kinks travel towards each other with the initial velocity ȧ(0) and

when they come close together they repel and travel away from each other with
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Figure 5.2: Trajectories of the colliding double sine-Gordon kinks for various

values of A0 and λ0. The solid line (red) corresponds to the results of the collective

coordinate approximation and the dashed line (green) corresponds to the results

for the full numerical simulation, and the values of A0, λ0 are (a) A0 = 0, λ0 = 10;

(b) A0 = 10, λ0 = 10; (c) A0 = 10, λ0 = 1; (d) A0 = 10, λ0 = 0.1; and (e) A0 = 10,

λ0 = 0.001.
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a constant velocity, see figure 5.2(a),(b). When λ0
A0
< 1 each soliton in the initial

solution starts to split into sub-kinks, see figure 5.1(f), and the sub-kinks become

more distinct (the distance between the sub-kinks increases) as λ0
A0

decreases. The

trajectory of solitons for λ0
A0

< 1 shows that the solitons come together with an

initial velocity ȧ(0), then the trajectory is constant for a time before the solitons

start to repel, see figure 5.2(c)-(e). The constant period in the trajectory starts

when the sub-kinks that are closest to the centre of mass of the system (the inner

sub-kinks) repel each other and start to travel in the opposite direction, and the

sub-kinks which are furthest from the centre of mass (the outer sub-kinks) are

still moving in their original direction, i.e. the sub-kinks within one soliton move

towards each other and the position of the soliton is constant. As the sub-kinks

within the soliton come together they also repel each other and both change their

direction of travel, so now the inner sub-kinks travel towards the centre of mass

and the outer sub-kinks travel away from it. The final interaction happens when

the inner sub-kinks repel each other again and the entire soliton starts to move

away from the centre of mass with constant velocity. The distance between the

sub-kinks within a soliton, d, after the collision returns to the original distance

between them on average; and when 0.01 6 λ0
A0
< 1 the distance between the sub-

kinks oscillates slightly after collision. These details are shown in figure 5.3 where

we have plotted the trajectories of the double sine-Gordon kink and its sub-kinks,

and the distance between the sub-kinks, for various values of A0 and λ0. In this

plot we have used just used the results calculated by the collective coordinate

approximation to keep the plot clear, as the results from the full simulation are

essentially identical.

To further explore the double sine-Gordon model we consider the anoma-

lous conserved charges previously discussed, and we calculate the time integrated

anomaly for the first non-trivial charge Q̃(3)(t) defined in (4.1.14), i.e.

χ̃(3) = −1

2

∫ t

t0

dt′ β̃(3) = 4

∫ t

t0

dt′
∫ ∞
−∞

dx ∂−φ ∂
2
−φ

[
d2 V

dφ2
+ ω2V −m

]
, (5.3.4)

where ∂− = ∂t− ∂x and t0 is the initial time of the simulation (in our simulations

t0 = 0).

As discussed in section 5.1, when the model is considered to be a deformation



5.3. Results for double sine-Gordon 71

 0

 1

 2

 3

 4

 5

 6

 7

 60  80  100  120  140

x

time

(a)

 0.52

 0.54

 0.56

 0.58

0.60

 0.62

 60  80  100  120  140

d
time

(b)

 0

 1

 2

 3

 4

 5

 6

 7

 60  80  100  120  140

x

time

(c)

 0.4

 0.6

 0.8

1.0

 1.2

 1.4

 1.6

 1.8

2.0

 2.2

 60  80  100  120  140

d

time

(d)

Figure 5.3: On the left the trajectories of the double sine-Gordon kink and its

sub-kinks for various values of A0 and λ0. The solid line (red) is the kink, the

dashed line (green) is the inner sub-kink and the dotted line (blue) is the outer

sub-kink. On the right the corresponding distance between the sub-kinks, d. The

values are A0 = 10, λ0 = 1 for (a) and (b); and A0 = 10, λ0 = 0.001 for (c) and

(d).
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away from the sine-Gordon model with the potential V =
A2

0

2
sin2(2ψ) (i.e. λ0 =

0) we choose ω = 4 and m = 4A2
0, so whenever λ0

A0
< 1 we use these values of ω

and m when calculating the time integrated anomaly χ̃(3) (5.3.4). Similarly when

the model is considered to be a deformation away from the sine-Gordon model

with the potential V = 2λ2
0 sin2(ψ) (i.e. A0 = 0) we choose ω = 2 and m = 4λ2

0,

so whenever λ0
A0

> 1 we use these values of ω and m in (5.3.4). The question

arises, what values of ω and m to use when λ0
A0

= 1, and in this case we calculated

the time integrated anomaly using both sets of values and found the results to

be equivalent.

In figure 5.4 we plot the time integrated anomaly χ̃(3), calculated using the full

numerical simulation, for various values of A0 and λ0. The first thing to notice

from this figure is that for all values of A0 and λ0 the time integrated anomaly is

the same before and after the soliton collisions, i.e. the anomalous charge Q̃
(3)
t is

asymptotically conserved; this is expected as we have determined the system to

be quasi-integrable.

In figure 5.4 we see a peak in the time integrated anomaly whenever there

is an interaction between kinks, and the closer the model is to integrability (i.e.

when λ0
A0
� 1 or λ0

A0
� 1) the smaller the peak is and so the closer the charge

is to being conserved at all times. For the cases λ0
A0

> 1, where the double sine-

Gordon kinks resemble sine-Gordon kinks, there is one peak which occurs when

the kinks repel, see figures 5.4(c) and (d). When λ0
A0

< 1 the kinks start to split

into sub-kinks and we see additional peaks which correspond to the interactions

between the sub-kinks, see figures 5.4(a) and (b).

One final observation from figure 5.4 is that the time integrated anomaly

oscillates throughout the interaction, this is particularly evident in figure 5.4(c),

and this is probably due to the oscillations between the sub-kinks in the double

sine-Gordon kink as it propagates.
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Figure 5.4: The time integrated anomaly χ̃(3) for various values of A0 and λ0.

The values are (a) A0 = 10, λ0 = 0.000001; (b) A0 = 10, λ0 = 0.1; (c) A0 = 10,

λ0 = 10; and (d) A0 = 1, λ0 = 10.
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Conclusions for double sine-Gordon

In this chapter we have used the collective coordinate approximation to model

the scattering of double sine-Gordon kinks. We considered a range of values of

the parameters A0 and λ0, moving between two integrable sine-Gordon models,

i.e. when A0 = 0 and λ0 6= 0 and when A0 6= 0 and λ0 = 0 (though in order

to construct our solution we assumed λ0 6= 0 so we could only get close to the

integrable model in that direction by taking λ0 very small). Whenever the model

is not integrable we have shown that the field configuration does possess the

symmetries necessary to be deemed quasi-integrable.

When λ0
A0

> 1 our initial field configuration closely resembles two sine-Gordon

kinks and the trajectories are very similar to those of two interacting sine-Gordon

kinks. When λ0
A0

< 1 each double sine-Gordon kink behaves as two sub-kinks,

with the sub-kinks becoming more distinct and distant from each other as λ0
A0

gets

smaller. In these cases the sub-kinks interact with each other and the trajectories

begin to look like four sine-Gordon kinks interacting.

By comparing the soliton trajectories, calculated using the collective coor-

dinate approximation and using a full numerical simulation, we found that the

approximation accurately reproduced the scattering of the solitons for all values

of A0 and λ0 that we considered. We also found that, as expected in a quasi-

integrable system, the first non-trivial anomalous charge Q̃(3)(t) is asymptotically

conserved for all values of A0 and λ0. The accuracy of the approximation in this

system is therefore not a surprise, as in chapter 4 we observed that the approx-

imation is accurate in a modified sine-Gordon model whenever that model has

asymptotically conserved charges.



Chapter 6

Conclusions

We have investigated the collision of two solitons in several different nonlinear

models in (1 + 1) dimensions using the collective coordinate approximation. We

did this initially in the integrable NLS equation where we were able to calculate

the equations of motion analytically, we then evolved the system numerically

using the fourth-order Runge-Kutta method. It is well known that the scattering

of NLS solitons is highly dependent on the phase difference between the solitons

δ, varying from greatest attraction between the solitons for δ = nπ for odd

integer n and greatest repulsion for δ = nπ for even integer n. We compared the

trajectories of the solitons found using the approximation to results gained using

a full numerical simulation for a range of initial phase differences and found that

the approximation works well for most values except in the most attractive cases

where the phase difference between them is small. In these cases the trajectories

in the full simulation show that the solitons start in an attractive channel but

over time they begin to repel each other, whereas the trajectories calculated

using the collective coordinate approximation show that if the solitons start in

an attractive channel they continue to attract each other. This suggested that

the differences may have been a result of our choice of ansatz for the collective

coordinate approximation, as the ansatz we used did not allow for the phase

difference to vary in time.

We then progressed to considering a modification of the NLS model with a

75
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deformation parameter ε that allows us to determine the effect of changing the

integrability of the model on the scattering solitons, and on the applicability of

the collective coordinate approximation. We used a new approximation ansatz

based on the one we used in the integrable NLS, with the new ansatz allowing

the solitons to be less symmetric and also allowing the phase difference between

them to vary in time. In the NLS case (i.e. ε = 0) with the new ansatz the results

for the trajectories of the solitons were greatly improved, with the trajectories

so similar that they were frequently indistinguishable. We also compared other

variables, such as the heights and phase differences of the solitons, for a greater

range of initial values and saw excellent agreement between the results for the

collective coordinate approximation and for the full simulation in the majority of

cases. There was still some slight disagreement in the cases where the solitons

come into close proximity, and we suspect that this is because the solitons deform

each other away from the form assumed in the approximation ansatz as they come

together, and this is not accounted for in the approximation.

In the modified NLS the two methods continued to show good agreement when

the model moves away from integrability, i.e. for ε 6= 0, when the solitons stay

far enough apart during their interaction. Increasing ε decreases the accuracy of

the approximation slightly, with good agreement up to at least ε = 0.3. When

the solitons come closer together than the width of one soliton the accuracy is

reduced; the solitons are well modelled as they come together initially but after

that the trajectories differ. In addition to the deformation the solitons experience

when they are close, the solitons are also able to radiate out some energy as they

come together in the non-integrable case (i.e. when ε 6= 0). This is not allowed

in the collective coordinate approximation which may explain why increasing ε

reduced the accuracy of the approximation when the solitons come close together.

It is difficult to fully determine whether the collective coordinate approxima-

tion is more accurate for the fields which satisfy conditions for quasi-integrability

compared to those which are completely non-integrable. This is because the

quasi-integrable cases correspond to the values of the phase difference for which

the solitons are most and least attractive (i.e. δ = nπ for n integer) and the effect
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of the soliton proximity eclipses any effect of quasi-integrability on the accuracy

of the approximation.

The NLS model is integrable and therefore has an infinite number of conserved

charges. The modified NLS has similar quantities - anomalous charges - which

are not conserved in time, but when the fields possess additional symmetries

necessary for quasi-integrability these quantities are asymptotically conserved.

This gave us an additional check on our approximation by allowing us to calculate

and compare the time-integrated anomaly, and we found that the approximation

shows good agreement with the full simulation for the time-integrated anomaly.

Next we considered a modified sine-Gordon model to see if these effects hold in

a model with topological solitons. This model has two deformation parameters γ

and ε; when they are both zero the model is integrable, when ε 6= 0 and γ = 0 the

model maintains the symmetries necessary for quasi-integrability, and when both

parameters are both not equal to zero the model is completely non-integrable. We

compared the trajectories and time-integrated anomalies for a variety of initial

conditions and found that there was excellent agreement between the two methods

when the system was either integrable or quasi-integrable, but the accuracy was

much reduced when the system was completely non-integrable.

To further explore this we then considered kink-kink collisions in a double

sine-Gordon model with parameters A0 and λ0 which allowed us to smoothly

vary between two integrable sine-Gordon models. When the double sine-Gordon

model is not in the limit of an integrable sine-Gordon model (i.e. A0 and λ0 are

both non zero) the field configuration possesses the necessary symmetries for the

model to be considered quasi-integrable. When λ0
A0

> 1 the double sine-Gordon

kinks are similar to sine-Gordon kinks and the trajectories are similar to kink-kink

collisions in the sine-Gordon model; but when λ0
A0

< 1 the double sine-Gordon

kink starts to separate into two sub-kinks and in these cases the interactions

between the sub-kinks resulted in the double sine-Gordon kinks being stationary

for a time before repelling. For all the values of A0 and λ0 that we considered,

we found that the collective coordinate approximation accurately reproduces the

trajectories of the double sine-Gordon kinks. We also found that, as expected,
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for all values of A0 and λ0 the anomalous charges were asymptotically conserved.

Overall, these observations suggest that the collective coordinate approxima-

tion with a well chosen ansatz is a very useful tool to study various properties

of the scatterings of solitons, topological or not, and so can be used also to

investigate quasi-integrability in other perturbations of integrable models. In

modified sine-Gordon models the presence of the symmetries necessary for quasi-

integrability seem to be a sufficient condition to ensure accuracy, but in any model

care should be taken if the solitons have the opportunity to strongly deform each

other. We hope that these observations allow the collective coordinate approxi-

mation to be used with confidence in future investigations into soliton collisions

in suitable modified models.

A natural extension to this work would be to use the collective coordinate ap-

proximation to investigate soliton collisions in modified models in (1+1) dimen-

sions. A potentially interesting project would be to use the collective coordinate

approximation to consider kink-antikink collisions in the double sine-Gordon, if

a suitable approximation ansatz could be constructed. This would be a valuable

area to explore because the double sine-Gordon system is often used to describe

nonlinear phenomena in real physical systems [54] - [57], and because there is a

wide range of possible soliton interactions in this system.

A more challenging open question is to define the concept of quasi-integrability

in higher dimensions. The collective coordinate approximation has often been

successfully used to investigate the dynamics of solitons in higher dimensional

systems (for example [23], [58], [59]), so the collective coordinate approximation

could be a useful tool in considering the integrability properties of systems in

higher dimensions. However, in higher dimensions integrability is not as pre-

cisely defined as in 1 dimension as one cannot simply find the Lax pair of an

equation (see [60], [61] for a discussion on integrability), and it would be diffi-

cult to construct quasi-conserved quantities for models in higher dimensions, but

perhaps a definition could be constructed based on symmetries of the system. De-

spite these difficulties it would be a worthwhile area of study, as it would result

in a better understanding of physical systems which, while not well described by
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integrable models, still exhibit characteristics similar to integrable systems such

as soliton like solutions which undergo nearly elastic collisions.
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Appendix A

A.1 Explicit expressions used in gauge

transformation (2.2.14)

A.1.1 For NLS

The parameters ζ
(−n)
i , i = 1, 2 used in the gauge transformation (2.2.14):

ζ
(−1)
1 = 0,

ζ
(−1)
2 = 2

√
|η|
√
R,

ζ
(−2)
1 =

i
√
|η| ∂xR√
R

,

ζ
(−2)
2 =

√
|η| ∂xϕ

√
R,

ζ
(−3)
1 =

i
(√
|η| ∂xϕ∂xR +

√
|η| ∂2

xϕR
)

√
R

,

ζ
(−3)
2 =

16σ |η|3/2R3 + 3
√
|η| (∂xϕ)2 R2 − 6

√
|η| ∂2

xRR + 3
√
|η| (∂xR)2

6R3/2
,

...

The components a
(3,−n)
x as calculated in [16], (in terms of the fields R and ϕ
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as defined in (2.2.7)) are:

a(3,0)
x =

i

2
∂xϕ,

a(3,−1)
x = 2 i η R,

a(3,−2)
x = i η ∂xϕR,

a(3,−3)
x =

i

2R

(
4 η2R3 + η (∂xϕ)2 R2 − 2 η ∂2

xRR + η (∂xR)2) ,
a(3,−4)
x =

i

4R

(
12 η2 ∂xϕR

3 − 6 η R
(
∂2
xϕ∂xR + ∂xϕ∂

2
xR
)

+ 3 η ∂xϕ (∂xR)2

+ η
(
(∂xϕ)3 − 4 ∂3

xϕ
)
R2
)
.

The components a
(3,−n)
t (in terms of the fields R and ϕ as defined in (2.2.7)) are:

a
(3,0)
t =

i

2
∂tϕ ,

a
(3,−1)
t = − 2 i η R ∂xϕ,

a
(3,−2)
t = − i η

(
2η R2 + (∂xϕ)2 R − ∂2

xR +
(∂xR)2

R

)
,

a
(3,−3)
t = − i η

2

(
12 η ∂xϕR

2 − 2 ∂2
xϕ∂xR − 4 ∂xϕ∂

2
xR + 3 ∂xϕ

(∂xR)2

R

+ (∂xϕ)3 R − 2 ∂3
xϕR

)
.

The components α(3,−n) introduced in (3.1.4) (in terms of the fields R and ϕ as

defined in (2.2.7)) are:

α(3,0) = 1,

α(3,−1) = 0,

α(3,−2) = 2 η R,

α(3,−3) = 2 η ∂xϕR,

α(3,−4) = 6 η2R2 +
3

2
η (∂xϕ)2 R − 2 η ∂2

xR +
3 η (∂xR)2

2R
.
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A.1.2 For sine-Gordon

The components α̃(2n+1) introduced in (4.1.11) (using the light cone coordinates

described in (4.1.8)) are:

α̃(1) = 0,

α̃(3) = i ω ∂2
−φ,

α̃(5) = i ω

(
3ω2

2
(∂−φ)2 ∂2

−φ+ ∂4
−φ

)
.

A.2 Calculation of integrals for the effective

Lagrangian in the NLS model

A.2.1 Contour for calculation of integrals

i⇡

2

i⇡

!

�

R�R

Friday, 29 March 13

Figure A.1: Appropriate contour (called C) for all the integrals: only one of the

infinitely many poles is picked.

Here we present a few details which show the way we have performed the

calculations of the integrals in section 2.3.1.

A.2.2 I =
∫ +∞
−∞

dx
cosh2(b(x+ξ(t))) cosh2(b(x−ξ(t)))

Defining ω = b(x+ ξ(t)) we can write:

I =

∫ +∞

−∞

dx

cosh2(b(x+ ξ(t))) cosh2(b(x− ξ(t))) =
1

b

∫ +∞

−∞

dω

cosh2(ω) cosh2(ω − 2bξ)
.
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Consider the following complex integral along the closed contour C (see figure

A.1) in the plane z = ω + iφ∮
C

f(z)dz =

∮
C

z

cosh2(z) cosh2(z − 2bξ)
dz.

We have chosen our contour such that the integrand is analytic except for two

second-order poles z1 = iπ/2, z2 = iπ/2 + 2bξ, and in the limit R → ∞ the

integrals along the vertical paths z = ±R + iφ, φ ∈ [0, iπ] vanish. From the

residue theorem we have∮
C

f(z)dz = −iπbI = 2πi
∑
k=1,2

Resf(zk),

where the residues can be calculated as usual:

Resf(z1) = lim
z→z1

d

dz
(z − z1)2f(z) =

iπ cosh(2bξ)

sinh3(2bξ)
+

1

sinh2(2bξ)

Resf(z2) = lim
z→z2

d

dz
(z − z2)2f(z)

= −(iπ + 4bξ) cosh(2bξ)

sinh3(2bξ)
+

1

sinh2(2bξ)
.

Combining these we have:

I =
8ξ cosh(2bξ)

sinh3(2bξ)
− 4

b sinh2(2bξ)
.

A.2.3 I =
∫ +∞
−∞

cos(2µx+δ)
cosh(b(x+ξ)) cosh(b(x−ξ))dx

Rewriting this with the definition ω = b(x+ ξ) we have:

I =
1

b

∫ +∞

−∞

cos(2µω
b

) cos(δ − 2µξ)− sin(2µω
b

) sin(δ − 2µξ)

cosh(ω) cosh(ω − 2bξ)
dω,

which can be expressed as

I =
cos(δ − 2µξ)

b
Re

[∫ +∞

−∞

ei
2µω
b

cosh(ω) cosh(ω − 2bξ)
dω

]

− sin(δ − 2µξ)

b
Im

[∫ +∞

−∞

ei
2µω
b

cosh(ω) cosh(ω − 2bξ)
dω

]
.

We consider the following complex function integrated around C:∮
C

f(z)dz =

∮
C

ei
2µz
b

b cosh(z) cosh(z − 2bξ)
dz.
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Using the residue theorem we have:∮
C

f(z)dz = (1− e− 2µπ
b )

∫ +∞

−∞

ei
2µω
b

b cosh(ω) cosh(ω − 2bξ)
dω = 2πi

∑
k=1,2

Resf(zk),

and we can calculate the residues as before to find:

I =
2π cos(δ) sin(2µξ)

b sinh(πµ
b

) sinh(2bξ)
.

A.3 Details for the collective coordinate

approximation in the NLS

Here we present the explicit expressions for F1,2, G1,2 and H1,2 introduced in

equation 2.3.12.

F1(µ, ξ) = 0,

G1(µ, ξ) =
π cos(δ)

(1 + ω) sinh(2bξ) sinh(πµ
b

)

(
4µξ cos(2µξ)

− 2bξ sin(2µξ) cosh(2bξ)

sinh(2bξ)
− πµ sin(2µξ) cosh(πµ

b
)

b sinh(πµ
b

)

)
+ w − 1,

H1(µ, ξ) =
πcos(δ)

sinh(2bξ) sinh(πµ
b

)

(
2ξ cos(2µξ)− πsin(2µξ) cosh(πµ

b
)

b sinh(πµ
b

)

)(
α

+
µ2(ω − 3)

(1 + ω)
+

2b2(1− ω)

(1 + ω) sinh2(2bξ)

)
− 8µω

(1 + ω)
+ 2µ(1 + ω)

+
2πb(ω − 1) cos(δ) cosh(2bξ)

(1 + ω) sinh2(2bξ) sinh(πµ
b

)

(
−µ
(

2ξ sin(2µξ) +
π cos(2µξ) cosh(πµ

b
)

b sinh(πµ
b

)

)
+ cos(2µξ)

)
+

4πb cos(2δ)

(1 + ω)sinh2(2bξ) sinh(2πµ
b

)

(
cos(4µξ)

+
cosh(2bξ)

sinh(2bξ)

(πsin(4µξ)cosh(2πµ
b

)

sinh(2πµ
b

)
− 2bξcos(4µξ)

)
− 2µ

(
2ξsin(4µξ) +

π cos(4µξ) cosh(2πµ
b

)

b sinh(2πµ
b

)

))
,

F2(µ, ξ) =
π cos(δ)

(1 + ω) sinh(2bξ) sinh(πµ
b

)

(
− 4µξ cos(2µξ)

+
2bξ sin(2µξ) cosh(2bξ)

sinh(2bξ)
+
πµ sin(2µξ) cosh(πµ

b
)

b sinh(πµ
b

)

)
− w + 1,

G2(µ, ξ) = 0,
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H2(µ, ξ) =
2πcos(δ)

sinh(πµ
b

) sinh(2bξ)

(
µcos(2µξ)− b sin(2µξ) cosh(2bξ)

sinh(2bξ)

)(
α

+
µ2(ω − 3)

(1 + ω)

)
+

4πb cos(δ)(1− ω)

sinh(πµ
b

) sinh(2bξ)(1 + ω)

(
b

sinh2(2bξ)

(
µcos(2µξ)

− 3b sin(2µξ) cosh(2bξ)

sinh(2bξ)

)
− µ

(
b cos(2µξ)− µ sin(2µξ) cosh(2bξ)

sinh(2bξ)

− 2b cos(2µξ) cosh2(2bξ)

sinh2(2bξ)

))
− 8b3

(1 + ω)sinh2(2bξ)

(
3 cosh(2bξ)

sinh(2bξ)

+ 2ξb
(

1− 3cosh2(2bξ)

sinh2(2bξ)

))
+

4πbcos(2δ)

(1 + ω)sinh(2πµ
b

) sinh2(2bξ)

(
− b2 sin(4µξ)

− 2µb cos(4µξ) cosh(2bξ)

sinh(2bξ)
+

3b sin(4µξ) cosh(2bξ)

sinh2(2bξ)

− 4µ
(
µ sin(4µξ) +

b cos(4µξ) cosh(2bξ)

sinh(2bξ)

))
.

For convenience we have defined

ω =
π sin(2µξ) cos(δ)

sinh(πµ
b

) sinh(2bξ)
,

α =
b

(1 + ω)

(
− µ2(1 + ω)

b
− 4bω

3(1 + ω)
+

8ωµ2

b(1 + ω)

+
2π(ω − 3) cos(δ)

(1 + ω)sinh(πµ
b

) sinh2(2bξ)

(
b sin(2µξ)

sinh(2bξ)
− µ cosh(2bξ)cos(2µξ)

)
+

8b

(1 + ω) sinh2(2bξ)

(2bξ cosh(2bξ)

sinh(2bξ)
− 1
)

+
4πcos(2δ)

(1 + ω) sinh(2πµ
b

) sinh2(2bξ)

(
b sin(4µξ) cosh(2bξ)

sinh(2bξ)
− 2µ cos(4µξ)

))
.



Appendix A. 90

A.4 Component functions for the effective

Lagrangian of the modified NLS

For convenience we have defined ωi = (1 + ε) ai(t) (x+ ξi(t)) for i = 1, 2, and

θ = θ1 − θ2.

Iξ1 =

∫ ∞
−∞

dx
1

4

(
a1

√
ε+2

cosh(ω1)

) 1
ε+1

(
4 a1 sin (θ) tanh(ω1)

(
a2

√
ε+2

cosh(ω2)

) 1
ε+1

+µ1

((
a1

√
ε+2

cosh(ω1)

) 1
ε+1

+cos (θ)

(
a2

√
ε+2

cosh(ω2)

) 1
ε+1

))

Iξ2 =

∫ ∞
−∞

dx
1

4

(
a2

√
ε+2

cosh(ω2)

) 1
ε+1

(
− 4 a2 sin (θ) tanh(ω2)

(
a1

√
ε+2

cosh(ω1)

) 1
ε+1

+µ2

(
cos (θ)

(
a1

√
ε+2

cosh(ω1)

) 1
ε+1

+

(
a2

√
ε+2

cosh(ω2)

) 1
ε+1

))

Iµ1 =

∫ ∞
−∞

dx
(ξ1+2x)

4

(
a1

√
ε+2

cosh(ω1)

) 1
ε+1

((
a1

√
ε+2

cosh(ω1)

) 1
ε+1

+cos (θ)

(
a2

√
ε+2

cosh(ω2)

) 1
ε+1

)

Iµ2 =

∫ ∞
−∞

dx
(ξ2+2x)

4

(
a2

√
ε+2

cosh(ω2)

) 1
ε+1

(
cos (θ)

(
a1

√
ε+2

cosh(ω1)

) 1
ε+1

+

(
a2

√
ε+2

cosh(ω2)

) 1
ε+1

)

Ia1 =

∫ ∞
−∞

dx
1

a1

(
sin (θ)

(
a1(ξ1+x) tanh(ω1)− 1

ε+1

)(
a2

√
ε+2

cosh(ω2)

) 1
ε+1

−2a2
1 t

((
a1

√
ε+2

cosh(ω1)

) 1
ε+1

+cos (θ)

(
a2

√
ε+2

cosh(ω2)

) 1
ε+1

))(
a1

√
ε+2

cosh(ω1)

) 1
ε+1

Ia2 =

∫ ∞
−∞

dx
1

a2

(
+sin (θ)

(
−a2(ξ2+x) tanh(ω2) +

1

ε+1

)(
a1

√
ε+2

cosh(ω1)

) 1
ε+1

−2a2
2 t

(
cos (θ)

(
a1

√
ε+2

cosh(ω1)

) 1
ε+1

+

(
a2

√
ε+2

cosh(ω2)

) 1
ε+1

))(
a2

√
ε+2

cosh(ω2)

) 1
ε+1
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Iλ1 = −
∫ ∞
−∞

dx

(
a1

√
ε+2

cosh(ω1)

) 1
ε+1

((
a1

√
ε+2

cosh(ω1)

) 1
ε+1

+cos (θ)

(
a2

√
ε+2

cosh(ω2)

) 1
ε+1

)

Iλ2 = −
∫ ∞
−∞

dx

(
a2

√
ε+2

cosh(ω2)

) 1
ε+1

(
cos (θ)

(
a1

√
ε+2

cosh(ω1)

) 1
ε+1

+

(
a2

√
ε+2

cosh(ω2)

) 1
ε+1

)

V =

∫ ∞
−∞

dx

(
a2

1

(
a1

cosh(ω1)

) 2
ε+1 (

1 + tanh2 (ω1)
)

+a2
2

(
a2

cosh(ω2)

) 2
ε+1 (

1 + tanh2 (ω2)
)

+
(
a2

1 + a2
2 + 2a1a2tanh (ω1) tanh (ω2)

)
cos (θ)

(
a1a2

cosh(ω1)cosh(ω2)

) 1
ε+1

− 2

2 + ε

((
a1

cosh(ω1)

) 2
ε+1

+

(
a2

cosh(ω2)

) 2
ε+1

+ 2cos (θ)

(
a1a2

cosh(ω1)cosh(ω2)

) 1
ε+1

)2 + ε

+
1

4

(
µ2

1

(
a1

cosh(ω1)

) 2
ε+1

+ µ2
2

(
a2

cosh(ω2)

) 2
ε+1

))

A.5 Component functions for the effective

Lagrangian of the double sine-Gordon

Here we present expressions for Ia,A,λ introduced in (5.2.2). For convenience we

have defined:

u+ =
e−2θ+

2 (A2
0 + λ2

0)

(
2A2

0e
2θ+ + λ2

0

(
1 + e4θ+

)
+ νW+

)
,

u− =
e−2θ−

2 (A2
0 + λ2

0)

(
2A2

0e
2θ− + λ2

0

(
1 + e4θ−

)
+ µW−

)
,

where

W± =

√
−4 (A2

0 + λ2
0)

2
e4θ± + (2A2

0e
2θ± + λ2

0 (1 + e4θ±))
2
,

θ± = (±x+ a)
√
A2

0 + λ2
0.
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Here ν = −1 for x < a and ν = 1 for x > a; µ = −1 for x < −a and µ = 1 for

x > −a.

Ia =
∂au+√

u+(1 + u+)
+

∂au−√
u−(1 + u−)

IA =
∂Au+√

u+(1 + u+)
+

∂Au−√
u−(1 + u−)

Iλ =
∂λu+√

u+(1 + u+)
+

∂λu−√
u−(1 + u−)

V = λ2
0 sin2 (2 arctan(

√
u+) + 2 arctan(

√
u−))

+
A2

0

4
sin2 (4 arctan(

√
u+) + 4 arctan(

√
u−))

+

(
∂xu+√

u+(1 + u+)
+

∂xu−√
u−(1 + u−)

)2


