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Abstract: Supersymmetric indices for σ-models are known to compute topological

invariants of the target space on which the σ-model is built. In the case where

the target space is a K3 surface, the worldsheet of the σ-model enjoys an N = 4

superconformal symmetry. A supersymmetric index known as the elliptic genus can

be constructed for this theory and decomposed into a sum of massless and massive

characters of the N = 4 superconformal algebra governing the symmetries. This

index exhibits a phenomenon known as Mathieu moonshine, in which the coefficients

of the massive characters in that decomposition are dimensions of representations

of the sporadic group Mathieu 24. In this thesis, motivated by this moonshine

phenomenon for theories with N = 4 superconformal symmetries, we consider σ-

models which exhibit a larger N = 4 superconformal symmetry on the worldsheet,

and discuss two supersymmetric indices which could be applied to such σ-models in

search of a new moonshine. We discuss the states which contribute to these indices

and calculate one of them for some specific theories.
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Chapter 1

Introduction

The world is both relativistic and quantum mechanical. The Standard Model of

particle physics is a quantum field theory which reconciles the principles of special

relativity and quantum mechanics and is, simultaneously, a gauge theory that unifies

three of the four fundamental forces of Nature. It is perhaps the most well-tested

theory of modern physics. Its success tells us that any fundamental theory should

look like a quantum field theory at sufficiently low energies. However, incorporating

gravity within this framework has proven impossible so far, as quantum corrections to

general relativity diverge very badly. The inability to reconcile quantum mechanics

and general relativity suggests that the quantum theory which will unify the four

fundamental forces may not even be a field theory, although it must encompass the

Standard Model as an effective low energy theory.

String theory is one such quantum theory. By nature, a relativistic quantum string

theory is a theory of general relativity that contains gauge interactions and avoids the

ultraviolet divergences that plague quantum theories of relativistic particles. This

is because its fundamental objects, the one-dimensional strings, do not interact at

spacetime points. String theory has been an active area of research since the 1960’s

and many good introductory texts on the subject exist, such as [Ton09; BBS06;

Pol98; GSW87; Kir11; BLT12; Zwi04] among others.

In string theory, the string sweeps out a two-dimensional surface known as the string
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worldsheet as it evolves. Two-dimensional non-linear sigma models (σ-models) there-

fore arise naturally in the context of string theory, where the fields are interpreted as

spacetime coordinates, i.e. they are maps from the string worldsheet into the ‘target

space’, which we call spacetime. The Polyakov action, that is the classical free bosonic

string action, is invariant under global spacetime Poincaré transformations, local

changes of scale (Weyl transformations) and two-dimensional reparameterisations,

which include local conformal transformations. The quantisation of the Polyakov

action may be achieved through the path integral formalism, and requires the elimin-

ation of as much of the redundancy encoded in the local symmetries of the Polyakov

action as possible, through a process called ‘gauge-fixing’. After gauge-fixing, there

remains enough symmetry to fix the two-dimensional intrinsic metric through combin-

ing a local conformal transformation and a Weyl rescaling. This residual symmetry

allows a portion of the Polyakov action to be considered as an action where the

intrinsic two-dimensional metric is fixed (also called a non-linear σ-model), which

therefore corresponds to a two-dimensional conformal field theory (CFT). Since the

bosonic string theory propagating on D-dimensional Minkowski space is consistent

only if D = 26, one might consider substituting 22 of the string spacetime coordin-

ates with a CFT through the use of the residual symmetry described above, and

interpret this as a compactification from 26 to 4 spacetime dimensions. The bosonic

string, however, suffers from the presence of tachyons and the absence of fermions,

two facts that are in stark contradiction with observations.

It is remarkable that the introduction of fermions in string theory naturally leads to

the concept of supersymmetry, which in turn eliminates tachyons from the theory.

The basic idea is to introduce one fermionic partner for each bosonic string coordinate

in the form of a two-dimensional spinor in the Polyakov action, and to impose a two-

dimensional (or worldsheet) supersymmetry that transforms bosonic and fermionic

degrees of freedom into each other. This leads to a superstring theory which is

consistent only in 10 dimensions. As in the case of bosonic string theory, the

superstring action retains some residual symmetry after gauge-fixing. It is again
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possible to replace a portion of the (super) Polyakov action by the action of a (super)

CFT, a supersymmetric non-linear σ-model, and use this mechanism to compactify

down from 10 spacetime dimensions in an attempt to model Nature realistically.

The choice of compactified space (target manifold) determines the spectrum of the

theory after compactification. In particular, Calabi-Yau 3-folds have received a lot of

attention as their geometry allows for spacetime supersymmetry, which guarantees

a tachyon-free theory. Furthermore, the existence of covariantly constant complex

structures on the target manifold is intimately linked to the presence of extended

supersymmetry on the worldsheet, and therefore Calabi-Yau 3-folds allow for N = 1

spacetime supersymmetry and N = 2 extended worldsheet supersymmetry. This

may sound phenomenologically promising, but the number of non-diffeomorphic

Calabi-Yau 3-folds is unknown and the problem of knowing how to choose one is

known as the string landscape problem.

A classification of supersymmetric σ-models was provided in [AF81], and the authors

argued that N = 4 was the largest amount of worldsheet supersymmetry one could

obtain for a σ-model. In particular, they showed that N = 4 extended supersym-

metry occurs when the target space is hyperkähler. In two complex dimensions,

such a space is either a 2-tori or a K3 surface, which is a simply connected compact

Kähler manifold of complex dimension two admitting a Ricci-flat metric. All K3

surfaces are diffeomorphic.

K3 theories, on the other hand, are N = (2, 2) superconformal field theories at

central charges c = 6, c̄ = 6 with spacetime supersymmetry, integral left and right-

moving u(1) charges and elliptic genus (discussed further on page 4) given by the

elliptic genus of K3 [Wit88; HBJL92; Gri00; Wen15]. In other words, a K3 theory is

an N = (4, 4) superconformal field theory at central charges c = 6, c̄ = 6 and elliptic

genus given by the (geometric) elliptic genus of K3. Although a proof that every K3

theory allows a non-linear σ−model interpretation on a K3 surface does not exist to

date, compelling arguments put forward in [Wen15; NW01; Wen00] strengthen the

expectation that the statement is correct. It is in this string-related context that
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the Mathieu moonshine phenomenon, which we elaborate on below, was observed.

The underlying algebraic structure of K3 theories is a left and a right N = 4

superconformal algebra (SCA) at central charge c = 6. The modular properties

of the N = 4, c = 6 characters, which are the building blocks of the worldsheet

partition function, are such that it has been impossible so far to write a generic

modular invariant partition function for the c = 6, c̄ = 6, N = (4, 4) SCFT (i.e. for

a generic point in the moduli space of SCFTs describing strings compactified on

K3). However we know how to do so at specific points in that moduli space. In

particular, one way of constructing such an N = (4, 4) partition function is through

the use of Gepner models [Gep87]. Their construction involves taking the tensor

product of minimal N = 2 theories in order to construct a theory with c = 6, and

augmenting the algebra generated by the N = 2 SCA of each factor by the operator

of two-fold spectral flow [EOTY89]. This gives a method of constructing modular

invariant partition functions for N = (4, 4) theories based on the known modular

properties of the minimal N = 2 characters. Such a partition function depends on

variables q, q̄, z, z̄, and can be written as a power series in q, q̄ with a typical term

being of the form c(m,n, j, j̄) qmq̄ n zj z̄ j̄ where c(m,n, j, j̄) is the number of states

with conformal weights (m,n) and u(1) charges (j, j̄). Here u(1) is the zero mode

subalgebra of the û(1) Kac-Moody subalgebra of N = 2 (or of the ŝu(2) Kac-Moody

subalgebra of N = 4). The partition functions of these theories clearly depend on

the combination of minimal N = 2 theories which are tensored together. However,

one can construct a moduli-independent quantity known as the (conformal field

theoretic) elliptic genus, a quantity first introduced in the context of field theories

by Witten [Wit87]. For an N = 2 or N = 4 theory the elliptic genus may be defined

as the restriction of the partition function to the R̃ sector (the sector where fermions

are periodic in both torus periods) and evaluated at the point z̄ = 1. This has the

effect of projecting onto only right-moving ground states, and hence this quantity

counts 1
4 -BPS states.

The elliptic genus is an example of a supersymmetric index, that is a quantity which
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is invariant under small perturbations of the relevant moduli. The first example of

such a quantity is the Witten index Tr(−1)F , introduced by Witten in order to study

supersymmetry breaking [Wit82]. The Witten index counts all bosonic states with

a +1, and all fermionic states with a −1. In a theory with spontaneously broken

supersymmetry, where the ground state has positive energy, all bosonic states have

fermionic partners, and hence a suitably regularised version of this sum is guaranteed

to be zero. In an unbroken theory, this quantity gives the difference between the

number of bosonic and fermionic ground states. Witten showed that for a one-

dimensional non-linear σ-model with target space M , Tr(−1)F is equal to the Euler

characteristic χ(M). As an index, the elliptic genus of a two-dimensional σ-model

is also moduli space invariant and can be shown to be related to other topological

invariants of the target space. As a specialisation of the modular invariant partition

function, the elliptic genus also has well defined modular properties and can be

shown to be a weak Jacobi form of weight zero and index one. The space of such

forms is one-dimensional and hence the elliptic genus can easily be written in terms

of Jacobi theta functions [EOT11].

Since the elliptic genus is constant across connected components of the moduli space

of K3 compactifications, the Gepner models give a simple way to calculate the el-

liptic genus of any K3 compactification [EOTY89]. Eguchi, Ooguri and Tachikawa

[EOT11] observed that when this elliptic genus was expanded in terms of the char-

acters of the underlying N = 4 SCA, a mock-modular form Σ(τ), multiplied by

the massive N = 4 characters at threshold was obtained. Furthermore, the first

few coefficients of Σ(τ) as a q-series were calculated, and were all observed to be

dimensions of representations of the sporadic group Mathieu 24 (M24). This suggests

that a graded module of M24 with Σ(τ) as its graded dimension exists.

This phenomenon has become known as ‘Mathieu moonshine’ due to its similarities

with a phenomenon called ‘monstrous moonshine’. In monstrous moonshine the

coefficients in the q-expansion of a particularly important modular function known

as Klein’s j-invariant (or simply, the j function) were noticed to coincide with dimen-
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sions of representations of the largest sporadic group, the Fischer-Griess Monster

(M) [CN79]. It was therefore conjectured that there existed a Monster module which

had j(τ) as its graded dimension. A proof of this follows from bosonic string theory

compactified on a Z2-orbifold of a real 24-dimensional torus known as the Leech

torus TΛ24 [DGH88]. This torus is formed by quotienting R24 by the unique even

unimodular rank-24 lattice without roots, the famous Leech lattice Λ24 [CS13]. The

chiral part of the CFT describing the worldsheet theory has an action of M and

partition function given by j(τ). Given the similarities between the monstrous and

Mathieu moonshines, one should consider moonshine to be the study of surprising

connections between the representation theory of sporadic groups and modular (as

well as mock-modular) forms.

Gannon has proved that in Σ(τ) = q−1/8(−2 +∑
n∈NAnq

n), the coefficients An are

all characters of representations of M24 [Gan16] and hence proved the existence of

the conjectured Mathieu moonshine module. However, the graded module of M24

has not been explicitly constructed and the origin of M24 symmetry in K3 σ-models

is still poorly understood.

Subsequently, Mathieu moonshine has been incorporated into a larger theory of

moonshine known as ‘umbral moonshine’ [CDH14a; CDH14b]. In umbral moonshine,

the Niemeier lattices, the remaining 23 even unimodular rank-24 lattices (with roots),

are also connected to a moonshine. These lattices are uniquely determined by their

root systems, which admit an ADE classification. The Niemeier lattices are therefore

referred to as (X)+, where X is an ADE root system whose components all have

the same Coxeter number. Specifically, there exists a process for constructing a

(vector-valued) mock modular form known as the umbral form, for each lattice (X)+.

For each form the coefficients in the q-expansion are observed to be dimensions of

representations of a group known as the umbral group GX (which is defined for each

lattice (X)+). When one takes the Niemeier lattice (A24
1 )+, the umbral group can be

shown to be M24, and the (single component, vector valued) umbral form is Σ(τ). In

this way Mathieu moonshine may be viewed as one component of umbral moonshine.
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However, based on the above definition of moonshine, it should be noted that not all

of the umbral groups are sporadic, and so the definition of moonshine should perhaps

be weakened to include finite non-sporadic groups. Umbral moonshine has also been

connected to the elliptic genus of K3 σ-models through the ADE classification of du

Val singular points that a K3 surface may possess [CH15]. In particular, a way to

split the elliptic genus into a ‘singularity’ term and a term dependent on the (vector

valued) umbral forms was described. As for the other examples of moonshine, for

each of the umbral groups a graded module is conjectured to exist whose graded

dimension gives the umbral forms. That such a module exists in each case has

been proved [DGO15], though as for Mathieu moonshine, in all but one case no

construction of the module exists [DH14]. There also exist moonshine conjectures

for other sporadic groups including the pariahs [GM16; DMO17a; DMO17b] though

a discussion of these is beyond the scope of this thesis.

In the Mathieu and umbral moonshines (viewed separately), the N = 4 symmetry

plays a key role. In Mathieu moonshine, the importance of N = 4 came from

decomposing the elliptic genus into N = 4 characters and identifying the function

multiplying the massive character at threshold. In the umbral moonshine case, the

N = 4 characters are used to construct the umbral forms. Moreover, the splitting

of the elliptic genus of K3 in [CH15] is also defined in terms of N = 4 characters.

However, as shown in [SSTV88a; STVS88] if Wess-Zumino terms are added to the

σ-model then, on non-abelian group manifolds, a larger SCA than the usual ‘small’

N = 4 SCA discussed above can be obtained, namely the Aγ SCA we now introduce.

Besides Calabi-Yau manifolds, other types of target manifolds include orbifolds and

group manifolds. This thesis will be primarily concerned with SCFTs with N = 4

extended worldsheet supersymmetry, known as ‘large’ N = 4 theories, or again as

Aγ theories, where γ is a real parameter. These were first studied in [SSTV88a;

STVS88] and are related there to compactifications on group manifolds. The Aγ

SCA also provides a unifying viewpoint in the context of N = 4 Liouville theory,

as for two specific values of the Aγ central charge, corresponding to two different
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dilaton background charges, the theory reduces to the Coulomb branch (‘short string’

sector) and the Higgs branch (‘long string’ sector) of a string theory in an NS5-NS1

background [ES16; CHS91]. As we shall see, the algebra Aγ contains a greater number

of operators than the ‘small’ N = 4 algebra associated with K3 compactifications,

which we shall just refer to as the N = 4 SCA. The ultimate motivation of this thesis

has been, in analogy with Mathieu Moonshine, to identify a moonshine phenomenon

in the context of certain theories exhibiting Aγ symmetry; that is, to discover a

number theoretic function (possibly a mock modular form) whose q-series expansion

exhibits coefficients that are the dimensions of representations of a finite group. In

light of the previous discussion of N = 4 theories, a natural question is then whether

there exists an index for Aγ theories which could be used to track a new moonshine

phenomenon. Although one can show that the trivial extension of the definition of

the elliptic genus to Aγ theories is identically zero, an alternative index which we call

I1 has been proposed for Aγ theories in [GMMS04]. Furthermore, a coset method

exists to construct a class of partition functions exhibiting Ãγ symmetry, with Ãγ

an algebra closely related to Aγ [OPT92; PT93].

The work presented here provides an understanding of the Aγ representation theory

and of the I1 index generalising the Witten index, offering an original description of

the states it counts in terms of representations of the zero mode subalgebra of Aγ

(which is shown to be equivalent to su(2|2) in the Ramond sector). Young supert-

ableaux [BB81] are utilised to consider the branching of Ramond representations of

Aγ into its zero mode subalgebra su(2|2) [Fea18]. This thesis also aims to construct

a modular invariant partition function for a theory with Aγ symmetry and calculate

the index I1 of this theory. This requires us to understand the character sum rules,

derived from the knowledge that realisations of Ãγ on certain group cosets together

with a number of free fermions exist. In particular, in order to capture a potential

new moonshine phenomenon, one must understand better the contributions to the

sum rules from the massive representations of Aγ within the sum rules. We present

here a relatively simple example of partition function, as part of a wider project with
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collaborators [FTT18].

The structure of this thesis is as follows. In Chapter 2, we give an introduction

to two-dimensional superconformal algebras. After briefly recapping the notion

of a conformal algebra, we review the results of [AF81] and [SSTV88a; STVS88],

showing how a σ-model on a non-abelian group manifold can possess the ‘large’

N = 4 superconformal algebra known as Aγ. In particular, we explicitly construct

an almost-quaternionic structure on the SU(3) group manifold, since this example

will be relevant later in the thesis.

We then discuss the representation theory of Aγ in Chapter 3, developed in [GPTV89].

In particular, we discuss the existence of an isomorphism known as spectral flow for

Aγ [DST88], and how this implies that there is no unique highest weight state for a

Ramond representation of Aγ . This introduces some subtleties in the representation

theory of Aγ, such as the representation being labelled by charges which no state

actually possesses. We also discuss the relation betweenAγ and the non-linear algebra

Ãγ. We then show how one can construct the character formulae for irreducible

representations of Aγ [PT90a; PT90b].

In Chapter 4 we introduce the supersymmetric indices which play a role in the

Mathieu moonshine story, namely the Witten index [Wit82] and the elliptic genus

[Wit87] of a field theory. We show how for a 1d σ-model, the Witten index and

the signature of a target space manifold M may be defined as the analytical index

of a supercharge, and how this demonstrates the results of the Atiyah-Singer index

theorem from the perspective of the σ-model [Alv83]. The elliptic genus is then

seen to be a generalisation of the Witten index to the case of the two-dimensional

σ-model and is the analytical index of an operator on the loop space of M [Wit88].

Furthermore, the elliptic genus is known independently in the mathematical literature

as a homomorphism from the cobordism ring into a ring of modular functions [Och09]

and we therefore discuss the relation of the two definitons.

We then show that the obvious extension of the definition of the elliptic genus for

N = 4 theories is identically zero for any theory with Aγ symmetry at the start
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of Chapter 5. Since the elliptic genus is of no use for these theories, we therefore

introduce the index I1 [GMMS04]. This index counts the spectral flow orbits of

the massless Aγ highest weight states appearing in the theory [Sau05] and hence

counts states throughout the massless representations which satisfy the masslessness

conditions [GMMS04]. This index therefore obtains contributions of theta functions

from massless representations of Aγ [GMMS04]. We show how the factorisation

of Aγ into the non-linear Ãγ and the algebra AQU may be used to interpret the

contributions to the index. Next, we show how one can describe the contributions

of a representation of Aγ using Young supertableaux. We show that the zero mode

subalgebra of Ramond representations of Aγ is the Lie superalgebra su(2|2) and

explicitly construct a basis for su(2|2) which satisfies the algebra of Aγ. We then

introduce the representation theory of su(2|2) and describe how such representations

may be classified by supertableaux [BB81]. We introduce the supertableaux method

for the branching of su(2|2) into su(2)×su(2)×u(1) [BB82]. This can then be applied

to Aγ and we show how supertableaux can be used to branch Aγ into su(2|2). We

compare this with earlier results to identify the representations of su(2|2) containing

the states of Aγ which are counted by I1.

In Chapter 6, we then apply the results of the previous chapter to explicitly calculate

the index I1 for a class of theories with Aγ symmetry. We introduce the character

sum rules for Ãγ, relating characters of Ãγ to those of ŝu(3) [OPT92; PT93]. We

investigate the massive Ãγ contributions to the sum rules and obtain results for

k̃+ ∈ {2, 3, 4, 5}. We then use the sum rules to construct modular invariant diagonal

Aγ theories and show how one may calculate their I1 index.

Finally, we conclude the thesis in Chapter 7, summarising the main points and

suggesting avenues for future research.



Chapter 2

2d Superconformal Algebras

The aim of this chapter is to remind the reader of the structure of the 2d Conformal

charge algebra (the Virasoro algebra) and to introduce its superconformal extensions,

the ‘Small’ N = 4 SCA and the ‘Large’ N = 4 SCA. We briefly discuss the

representation theory of the Virasoro algebra before discussing the representation

theory of Aγ in Chapter 3. We shall assume the reader has some familiarity with 2d

Conformal Field Theories (CFTs); there are many excellent texts on CFTs, readers

who would like to familiarise themselves with anything not covered in details here are

referred to [DMS97; Ton09; Sch96; Sch08; Gin88]. Section 2.1 is very standard and

similar discussions will appear in many introductory CFT texts. We include it here in

order to introduce some basic terminology and definitions which we will use later in a

less standard context. In section 2.2 we introduce the notion of the σ-model and the

Wess-Zumino-Novikov-Witten model (WZW model). Following [AF81; SSTV88a;

STVS88], we then discuss the possibility for extended supersymmetry on σ-models

and WZW models. In particular, we introduce an N = 4 SCA known as Aγ and

show that a WZW model on SU(3) has this algebra for its charge algebra.
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2.1 The Conformal Charge Algebra

2.1.1 The Stress-Energy Tensor for a 2d CFT

In this work we are primarily interested in 2d conformal field theories. We define a

2d conformal transformation to be an invertible change of coordinates which fixes

the metric up to a scale,

xµ → x′µ, g′µν(x′) = Λ(x)gµν(x), µ, ν ∈ {0, 1}. (2.1.1)

For an infinitesimal transformation x′µ = xµ + εµ and Λ(x) = 1− 2λ(x), and for the

Euclidean metric δµν , eq. (2.1.1) yields the 2d Cartan-Killing equation

∂µεν + ∂νεµ = δµν∂ρε
ρ. (2.1.2)

A quantum field theory is said to be conformal if both the action and the measure

are invariant under such transformations.

In two dimensions, it is convenient to introduce complex coordinates on the plane,

given in terms of the cartesian coordinates as

z := x0 + ix1, z̄ := x0 − ix1, (2.1.3)

along with the Wirtinger derivatives,

∂ := ∂z ≡
1
2(∂0 − i∂1), ∂̄ := ∂z̄ ≡

1
2(∂0 + i∂1). (2.1.4)

It is usual to extend the domain of the cartesian coordinates xµ to C such that

eq. (2.1.3) defines a change of coordinates on C2 and z, z̄ are are then viewed as

independent complex variables. We must then remember that physically relevant

answers lie in the real subspace R2 ⊂ C2 defined by z̄ = z∗, where z∗ now defines

the complex conjugate of z.

Under the change of coordinates eq. (2.1.3), and defining ε(z, z̄) := ε0 + iε1, ε̄(z, z̄) :=
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ε0− iε1, requirement eq. (2.1.2) that the metric change only by a scale factor implies,

∂z̄ε(z, z̄) = 0 and ∂z ε̄(z, z̄) = 0, (2.1.5)

which is equivalent to the Cauchy-Riemann equations for a holomorphic (antiholo-

morphic) function. Any holomorphic function ε(z) (respectively antiholomorphic

function ε̄(z̄)) satifies the first (respectively second) equation in eq. (2.1.5), so that

any infinitesimal transformation

z → z + ε(z) (respectively z̄ → z̄ + ε̄(z̄)) (2.1.6)

is conformal. It follows that finite 2d conformal transformations are coordinate

transformations given by

z → ω(z) and z̄ → ω̄(z̄) (2.1.7)

for ω(z) (respectively ω̄(z̄)) an arbitrary holomorphic (respectively antiholomorphic)

function. We refer to z and z̄ as the holomorphic and antiholomorphic variables

respectively.

Whenever we have a continuous symmetry, parameterised by a set of infinitesimals

ωα, Noether’s theorem tells us that we have a classically conserved current jµα and

an associated conserved charge Qα =
∫

dd−1x j0
α. At the quantum level we will be

interested in statements about correlation functions, where consistency conditions

due to symmetry are known as Ward identities. The conserved charge Qα can

then be seen to be the generator of the symmetry on the operators of the theory.

The conserved current associated with translation symmetry, a simple example of a

conformal symmetry, is known as the energy-momentum tensor, whose tracelessness

is a key feature of a classically conformally invariant system.

Example 2.1.1. Let us consider some of the features of conformal field theories

mentioned above in the simple example of a free scalar field theory. We begin by

writing the action for a free scalar field on the plane in cartesian coordinates with
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the standard flat metric,

S =
∫

d2x ∂µφ ∂
µφ. (2.1.8)

If we let the new coordinates x′µ be given by

(x′ 0, x′ 1) = (z, z̄) := ( (f−1)0(x0, x1), (f−1)1(x0, x1) ), (2.1.9)

where, using eq. (2.1.3),

x0 = z + z̄

2 =: f 0(z, z̄), x1 = z − z̄
2i =: f 1(z, z̄), (2.1.10)

then the action transforms as

S → S ′ =
∫

d2x′g′µν
∂

∂x′µ
φ′(x′) ∂

∂x′ν
φ′(x′), (2.1.11)

where g′µν is the transformed metric tensor.

The measure transforms as

dx0 dx1 → 1
2 dz dz̄. (2.1.12)

Note that this is the standard volume form

ω =
√
g′ dz dz̄, (2.1.13)

where g′ is the determinant of the matrix (g′) whose components are those of the

metric tensor, i.e. (g′)ab = g′ab, for a, b ∈ {z, z̄} in that order. The matrix (g′) and

its inverse are given by,

(g′) =


0 1

2

1
2 0

 , (g′)−1 =


0 2

2 0

 . (2.1.14)

Finally, the derivatives of the fields transform as

∂

∂xµ
φ(x)→ ∂

∂x′µ
φ′(x′) = ∂

∂x′µ
φ(f(x′)), (2.1.15)
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so we have
S ′ =

∫
(1
2 dz dz̄)g′ab ∂

∂x′a
φ(f(x′)) ∂

∂x′b
φ(f(x′))

= 2
∫

dz dz̄ ∂φ ∂̄φ.
(2.1.16)

We now consider the effect of an infinitesimal translation

x′′µ = x′µ + ωµ, φ′′(x′′) = φ(x′). (2.1.17)

Clearly this is a symmetry of the action and so we have an associated Noether

current, the energy-momentum tensor (sometimes called the stress-energy tensor)

given by

T µν := ∂L
∂(∂µφ)∂νφ− δ

µ
νL, (2.1.18)

where L is the Lagrangian density. Applying this to eq. (2.1.16), we therefore have

T zz = 2(∂̄φ ∂φ− ∂φ ∂̄φ) = 0, T zz̄ = 2∂̄φ ∂̄φ,

T z̄z̄ = 2(∂φ ∂̄φ− ∂φ ∂̄φ) = 0, T z̄z = 2∂φ ∂φ.
(2.1.19)

We can therefore see that the energy-momentum tensor is traceless

T µµ = 0, µ ∈ {z, z̄}. (2.1.20)

In fact, this is a feature of conformal invariance at the classical level. A proof of this

can be found in, for example, [DMS97].

If we lower the indices using the metric we get

Tzz̄ = 0, Tz̄z̄ = ∂̄φ∂̄φ,

Tz̄z = 0, Tzz = ∂φ∂φ.

(2.1.21)

The classical conservation equation ∂µT µν = 0 becomes

∂̄Tzz = ∂Tz̄z̄ = 0, (2.1.22)

and so we see that Tzz, Tz̄z̄ must be holomorphic and antiholomorphic respectively.
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This motivates the definitions

T (z) := −2πTzz = −2π∂φ∂φ,

T̄ (z̄) := −2πTz̄z̄ = −2π∂̄φ∂̄φ,
(2.1.23)

where the normalisation will turn out to be convenient later. It might not be clear

that the expressions for Tzz, Tz̄z̄ in eq. (2.1.21) are holomorphic and antiholomorphic

respectively, but the conservation equation ∂µT µν = 0 holds for solutions obeying

the equations of motion which for this example are

∂∂̄φ = 0, (2.1.24)

with the general solution

φ(z, z̄) = φ(z) + φ̄(z̄), (2.1.25)

and hence T (z) and T̄ (z̄) are clearly holomorphic and antiholomorphic respectively.

4

2.1.2 The Witt Algebra

We now consider the generators of local 2d conformal transformations. As dis-

cussed in the previous section, the finite 2d conformal transformations are given by

eq. (2.1.7), or infinitesimally by eq. (2.1.6) where we can expand the holomorphic

function ε(z) as a Laurent series

ε(z) =
∞∑
−∞

anz
n+1. (2.1.26)

While we are living in the extended coordinate space of C2, where z and z̄ are

independent, then we should view ε̄(z̄) as an independent function. From here on,

we shall only write down statements about the holomorphic coordinate z and the

effects of the infinitesimal conformal transformation given by ε, and shall take it for

granted that all such statements have an antiholomorphic counterpart.
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The change of coordinates is generated by

ln := −zn+1∂, (2.1.27)

by which we mean that spinless, dimensionless fields transform as

δφ = −ε(z)∂φ− ε̄(z̄)∂̄φ =
∞∑
−∞

(anlnφ+ ānl̄nφ). (2.1.28)

The labelling of the Laurent modes may appear odd, but with this choice the

generators satisfy the Witt algebra,

[lm, ln] = (m− n)lm+n. (2.1.29)

The antiholomorphic l̄n generate another copy of the Witt algebra

[l̄m, l̄n] = (m− n)l̄m+n, (2.1.30)

which commutes with the holomorphic copy, i.e. [lm, l̄n] = 0.

We should note that the infinitesimal transformations given in eq. (2.1.6) do not

necessarily exponentiate to globally defined invertible transformations. In fact the

Witt algebra has a finite subalgebra generated by l−1, l0 and l1 isomorphic to sl(2,R),

and the direct product of the finite subalgebras of the holomorphic and antiholo-

morphic Witt algebras, sl(2,R)× sl(2,R) ∼= sl(2,C) ∼= so(3, 1) is the Lie algebra of

globally defined conformal transformations.

Up to this point we have not been concerned with quantising our theories, that is

we have really been discussing 2d classical conformal field theory. When we quantise

the theory we expect to obtain a Hilbert space of states which could be described by

a projective representation of the classical symmetry algebra. We therefore should

be interested in the projective representations of the Witt algebra. However, we can

instead lift projective representations of the Witt algebra to true (non-projective)

representations of the unique central extension of the Witt algebra, the Virasoro

algebra. We will not discuss the Virasoro algebra in this context further, but instead

refer the interested reader to [Sch08].
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2.1.3 Operator Product Expansions and Ward Identities

The preceding sections have focussed on 2d CFT; we now turn our attention to

the quantised version of a classical CFT theory with action S[φ], bearing in mind

that a Wick rotation might be necessary. In the quantum theory we will mainly be

interested in the correlation functions of some operators Oi(xi), each at position xi.

The correlation function of n operators is defined as

〈O1(x1) . . .On(xn)〉 := 〈0| T (O1(x1) . . .On(xn)) |0〉

= 1
Z

∫
Dφ e−S[φ]O1(x1) . . .On(xn),

(2.1.31)

where T is the time-ordering operator, defined by

T (O1(x1)O2(x2)) =


O1(x1)O2(x2) ⇐⇒ x0

1 ≥ x0
2,

O2(x2)O1(x1) ⇐⇒ x0
2 > x0

1,

(2.1.32)

and

Z =
∫
Dφ e−S[φ], (2.1.33)

is known as the partition function.

The operator product expansion (OPE ) states that inside correlation functions, the

product of two operators at nearby points can be approximated by a sum of operators

at one of the points, with radius of convergence given by the location of the nearest

other operator in the product. That is, two fields O1(z),O2(w) have an operator

product expansion of the form

〈O1(z)O2(w)X〉 = 〈(
n∑
−∞

Õi(w)
(z − w)i )X〉, (2.1.34)

where X denotes the product of other operators

X = O3(xµ3
3 ) . . .Ok(xµkk ).

The radius of convergence for this statement around w would be given by |w − xj|

if xj is the nearest other operator in the insertion. This is shown in fig. 2.1, where

the dashed line shows the radius of convergence of the OPE.
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Figure 2.1: The Operator Product Expansion

The OPE is usually written without the explicit brackets for the correlator, 〈〉, so

we would typically write eq. (2.1.34) as

O1(z)O2(w) =
n∑
−∞

Õi(w)
(z − w)i , (2.1.35)

where the product is implicitly assumed to belong to a time-ordered correlator.

In the classical theory, Noether’s theorem told us that for every continuous symmetry

we should have an associated current; the energy-momentum tensor was defined as

such a current, associated to translation invariance. In the quantum theory, the effect

of a symmetry (defined to leave the partition function invariant) is expressed through

the Ward identities. For brevity we shall not give the derivation as this is standard

and may be found for example in [DMS97]. Given an infinitesimal transformation

defined by

O′(x) = O(x)− iωaGaO(x), (2.1.36)

such that

δO = −iωaGaO (2.1.37)

for a set of infinitesimals ωa, the Ward identity for the current jµa is

∂µ〈jµa (x)O1(x1) . . .On(xn)〉 = −i
n∑
i=1

δ(x− xi)〈O1 . . . GaOi(xi) . . .On(xn). (2.1.38)

Ga is then defined to be the generator of the transformation. Equation (2.1.38) can
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then be integrated to identify the conserved charges

Qa :=
∫

dd−1x j0
a(x), (2.1.39)

as the generators of the transformation,

[Qa,O] = −iGaO. (2.1.40)

Taking the transformation to be an infinitesimal conformal transformation given by

eq. (2.1.6) leads to the conformal Ward identity

δε,ε̄〈X〉 = − 1
2πi

∮
C

dz ε(z)〈T (z)X〉+ 1
2πi

∮
C

dz̄ ε̄(z̄)〈T̄ (z̄)X〉, (2.1.41)

where X denotes a product of local fields at positions xi, and C is taken to be a

contour containing the positions of all the fields in X. Since the conformal current

ε(z)T (z) is holomorphic, we can compute the (holomorphic) integral appearing in

eq. (2.1.41) using the residue theorem. We can therefore use this conformal Ward

identity to calculate the OPEs of fields with the energy-momentum tensor if we know

how the field transforms under a conformal transformation. Since this information

is encapsulated by the singular terms of the OPE, these will be the only terms

of the OPE that we are interested in; we therefore suppress non-singular terms

when writing down OPEs in the following and use ∼ to indicate equivalence up to

non-singular terms.

To be able to make use of the conformal Ward identity to calculate OPEs, we therefore

need to know how fields transform under conformal transformations. Under a local

infinitesimal conformal transformation z → z + ε(z), a primary field φ is one which

transforms as

δεφ = −(h∂εφ+ ε∂φ), h = ∆ + s

2 , (2.1.42)

for ∆ the scaling dimension and s the spin of φ. h is called the weight of the

field, sometimes known as the conformal dimension. Primary fields also have an

antiholomorphic weight h̄ defined similarly. From this transformation, we can read
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off the T (z)φ(ω) OPE as

T (z)φ(ω) ∼ hφ(ω)
(z − ω)2 + ∂φ(ω)

z − ω
. (2.1.43)

In fact, this gives an alternate definition of a primary field of weight h as one whose

OPE with T (z) is of the form in eq. (2.1.43).

Example 2.1.2. Let us return to the example of the free boson. Our starting point

is the propagator for φ,

〈φ(z)φ(ω)〉 = − 1
4π ln(z − ω). (2.1.44)

We will not prove this here for brevity, but as the Green’s function for the operator

(−∂2) it may be calculated using standard methods.

Due to the logarithmic behaviour of the propagator of φ we will be more interested

in the behaviour of ∂φ whose OPE with itself is

∂φ(z)∂φ(ω) ∼ − 1
4π(z − ω)2 . (2.1.45)

This OPE with one singular term is characteristic of a free field; this is crucial in

order for us to define the energy-momentum tensor. We already calculated the form

of T (z) for the free scalar field in example 2.1.1 for the classical case as

T (z) = −2π∂φ∂φ.

Now we are interested in the quantum theory, and the product of operators at the

same point is badly defined, so we should normal order. For a free field, whose OPE

with itself contains only one singular term, we can normal order by subtracting the

propagator which ensures the vanishing of the vacuum expectation value;

T (z) = −2π : ∂φ(z)∂φ(z) : := −2π lim
ω→z

(∂φ(z)∂φ(ω)− 〈∂φ(z)∂φ(ω)〉). (2.1.46)

We want to calculate the T∂φ OPE as a valid statement inside a time-ordered

correlator. Wick’s theorem tells us that the time-ordered product is equal to the



22 Chapter 2. 2d Superconformal Algebras

normal-ordered product plus the sum of all possible contractions. We therefore

calculate the time ordered OPE as

T (z)∂φ(ω) = −2π : ∂φ(z)∂φ(z) : ∂φ(ω) = − 4π : ∂φ(z)∂φ(z) : ∂φ(ω)

∼ ∂φ(z)
(z − ω)2 ∼

∂φ(ω)
(z − ω2) + ∂2

ωφ(ω)
z − ω

,
(2.1.47)

where we have expanded ∂φ(z) around ω to put the OPE in the form of eq. (2.1.35).

As explained previously, it is the poles of the OPE that contain the information we

are interested in, and so we have suppressed all regular terms. Comparing this to

eq. (2.1.43), we see that the field ∂φ is a primary field of weight one. This is what

we should expect, since in two dimensions the free scalar φ has scaling dimension

0, hence ∂φ is spin 1 and dimension 1, giving a conformal weight of one using

eq. (2.1.42).

Finally we calculate the TT OPE in a similar manner to above,

T (z)T (ω) = 4π2 : ∂φ(z)∂φ(z) :: ∂φ(ω)∂φ(ω) :

= 8π2 : ∂φ(z)∂φ(z) :: ∂φ(ω)∂φ(ω) : +16π2 : ∂φ(z)∂φ(ω) :: ∂φ(z)∂φ(ω) :

∼ 1/2
(z − ω)4 + 2T (ω)

(z − ω)2 + ∂T (ω)
z − ω

.

(2.1.48)

The energy-momentum tensor is therefore not a primary field. 4

As the previous example showed, T (z) is not a primary field, since its OPE with

itself contained a (z − ω)−4 term. T (z) is an example of a quasi-primary field of

weight 2, meaning it has an OPE of the form

T (z)O(ω) ∼
∑
n≥4

On(ω)
(z − ω)n + hO(ω)

(z − ω)2 + ∂O(ω)
z − ω

, (2.1.49)

for n ∈ N and On of dimension 4−n, or alternatively that T (z) transforms according

to eq. (2.1.42) only for global conformal transformations. The most singular term

a quasi-primary operator of weight 2 can have in a unitary CFT, is a term c-



2.1. The Conformal Charge Algebra 23

proportional to (z − ω)−4 and hence the most general form for the TT OPE is

T (z)T (ω) ∼ c/2
(z − ω)4 + 2T (ω)

(z − ω)2 + ∂T (ω)
z − ω

, (2.1.50)

where c is known as the central charge of the algebra.

2.1.4 The Virasoro Algebra

Being able to relate OPEs to (anti)commutation relations is a useful skill as it the

symmetry information encoded in the OPEs to be expressed in operator language.

The method for this is described in standard CFT books, such as [DMS97]. For brev-

ity, we only give a few pointers here that can be used to relate the OPE eq. (2.1.50)

to the Virasoro algebra.

1. The radial quantisation of 2d CFTs is particularly helpful in this context

as the time ordering within correlation functions becomes radial ordering.

Consequently, the left hand side of OPEs must also be radially ordered.

One way to think of the process of radial quantisation is from the point of view

of closed string theory, where the Euclidean worldsheet CFT is naturally defined

on an infinite cylinder, parameterised by the complex coordinate ω = iσ + τ ,

for σ ∈ [0, 2π) and τ ∈ R, indicating that we take the cylinder to be of radius

1 here. We can then make the conformal transformation

z = eω, (2.1.51)

which maps the infinite cylinder to the punctured plane as shown in fig. 2.2.

Spatial slices of the cylinder therefore get mapped to circles in the plane, where

a later time slice gets mapped to a circle of greater radius than a earlier time

slice; this is shown with the dashed lines in fig. 2.2. One does not have to start

with a string picture in order to consider radial quantisation however; on the

Euclidean plane, there is no preferred direction to be chosen as the time-like
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direction, and so one may still freely choose to identify spatial slices as circles

around the origin.

τ

t1

t2

σ

t1

t2

Figure 2.2: A map from the cylinder to the plane

2. The quantisation of a field φ(z, z̄) with conformal dimensions (h, h̄) proceeds

from Laurent expanding it as,

φ(z, z̄) =
∑
n,n̄∈Z

z−n−h z̄−n̄−h̄ φn,n̄, (2.1.52)

and promoting the modes φn,n̄ to operators. This is consistent with first

considering the theory on a cylinder, Fourier expanding φ(σ, τ), promoting the

Fourier coefficients to operators via quantisation, and then mapping to the

plane using eq. (2.1.51).

We note here that, if one drops the antiholomorphic dependence of the field φ,

the Laurent expansion takes the form

φ(z) =
∑
n∈Z

z−n−hφn, (2.1.53)

where

φn = 1
2πi

∮
dz zn+h−1φ(z). (2.1.54)

3. Radial quantisation suggests that well-defined asymptotic states for Euclidean

time τ → −∞ should be defined as

|φin〉 ≡ |h, h̄〉 := lim
z,z̄→0

φ(z, z̄) |0〉 = φ−h,−h̄ |0〉 , (2.1.55)

given eq. (2.1.51) and assuming that a vacuum state |0〉 exists and that the

Hilbert space for the theory is built by acting on it with creation operators.
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Note that this requires that the operators satisfy,

φn,n̄ |0〉 = 0, whenever n > −h or n̄ > −h̄. (2.1.56)

We can also construct a well-defined asymptotic out state through the hermitian

conjugate field,

φ(z, z̄)† := z̄−2hz−2h̄φ(1/z̄, 1/z), (2.1.57)

with Laurent expansion,

φ(z, z̄)† =
∑
n,n̄∈Z

z̄n−hzn̄−h̄φn,n̄, (2.1.58)

where,

(φn,n̄)† = φ−n,−n̄. (2.1.59)

This yields, for ξ = 1/z and ξ̄ = 1/z̄,

〈φout| := lim
z,z̄→0

〈0|φ(z, z̄)† = lim
ξ,ξ̄→∞

ξ2hξ̄2h̄ 〈0|φ(ξ, ξ̄) = 〈0|φh,h̄. (2.1.60)

Given two operators Oi, i ∈ {1, 2} written as contour integrals of holomorphic

fields oi(z),

Oi =
∮
oi(z) dz, (2.1.61)

their commutator can be calculated as

[O1,O2] =
∮

0
dw

∮
w
dz o1(z)o2(w), (2.1.62)

where the z-integral is taken around w, and the w-integral is taken around the

origin.

We demonstrate the usefulness of radial quantisation by returning to the conformal

Ward identity, eq. (2.1.41). We shall consider the variation of a single field φ under a

conformal variation ε(z), and we focus only on the holomorphic part of the identity,

δεφ(ω) = − 1
2πi

∮
C

dz ε(z)T (z)φ(ω), (2.1.63)

where we recall that C was to be a contour containing ω and which we therefore
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take to be a small circle centred on ω. Since we have radially quantised, the implicit

time-ordering T in the correlator becomes radial ordering R,

R(O1(z)O2(ω)) =


O1(z)O2(ω) ⇐⇒ |z| > |ω|,

O2(ω)O1(z) ⇐⇒ |ω| > |z|.
(2.1.64)

We therefore need to split the contour up to account for this radial ordering, which

we can do as indicated in fig. 2.3, where the contour on the left-hand side represents

the contour C around ω.

ω

z

C

= ω

z

C1

C2

Figure 2.3: Contour for radial ordering

We see that the integral in the conformal Ward identity (eq. (2.1.63)) then becomes,

δεφ(ω) = − 1
2πi(

∮
C1

dz ε(z)T (z)φ(ω)−
∮
C2

dz φ(ω)ε(z)T (z))

= −[Qε, φ(ω)],
(2.1.65)

where we have defined the conformal charge

Qε := 1
2πi

∮
dz ε(z)T (z), (2.1.66)

which by eq. (2.1.40) we recognise as the generator of conformal transformations.

If we expand the energy-momentum tensor into modes as in eq. (2.1.53), we get

T (z) =
∑
n

z−n−2Ln, Ln = 1
2πi

∮
dz zn+1T (z), (2.1.67)
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and so if we also expand

ε(z) =
∑
m∈Z

εmz
m+1, (2.1.68)

then we can identify the conformal charge defined in eq. (2.1.66) as

Qε =
∑
m∈Z

εmLm. (2.1.69)

We therefore see that the modes Ln of the energy-momentum tensor are the generat-

ors of local conformal transformations in the quantum theory in the same way that

the ln of eq. (2.1.29) generated the classical local conformal transformations.

We can now calculate the charge algebra of the Ln’s.

[Lm, Ln] = −1
4π2

(∮
dz
∮

dω −
∮

dω
∮

dz
)
zm+1ωn+1T (z)T (ω)

= −1
4π2

∮
dω

∮
ω

dz zm+1ωn+1T (z)T (ω)

= 1
2πi

∮
dω Resz=ω

[
zm+1ωn+1

(
c/2

(z − ω)4 + 2T (ω)
(z − ω)2 + ∂T (ω)

z − ω

)]

= 1
2πi

∮
dω ωn+1(ωm+1∂T (ω) + 2(m+ 1)ωmT (ω) + c

12m(m2 − 1)ωm−2)

= (m− n)Lm+n + c

12m(m2 − 1)δm+n,0,

(2.1.70)

where in the second line, for fixed ω we recognise the radially ordered integrals as

equal to integrating z in a contour around ω as in fig. 2.3.

We see that the Ln satisfy an almost identical algebra to the Witt algebra, but with

a central extension C = cI from which the central charge c gets its name. This

algebra is known as the Virasoro algebra and can be shown to be the unique central

extension of the Witt algebra, [Sch08]. Obviously, in all of the preceding discussion

we have been ignoring the antiholomorphic parts, and hence the full algebra for the

quantum theory is given by two commuting copies of the Virasoro algebra,

[Lm, Ln] = (m− n)Lm+n + c

12m(m2 − 1)δm+n,0,

[L̄m, L̄n] = (m− n)L̄m+n + c̄

12m(m2 − 1)δm+n,0,

[Lm, L̄n] = 0.

(2.1.71)
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Note that for T (z) |0〉 to be well-defined in the limit z → 0 we must have

Ln |0〉 = 0 n ≥ −1. (2.1.72)

We therefore have that L−1, L0 and L1 all annihilate the vacuum. Since these

elements generate the algebra of global conformal transformations sl(2,C), this

means the vacuum is invariant under global conformal transformations.

2.1.5 Representations of the Virasoro Algebra

In the previous section we have seen that the local conformal transformation gen-

erators are the modes of the energy-momentum tensor Ln. In fact, by considering

eq. (2.1.69) we see that for a dilation on the plane with ε(z) = ε0z then the conformal

charge is given by Qε = ε0L0. Since we have seen that the conformal charge is the

generator of the transformation, this means that L0 is the generator of dilations on

the plane. In radial quantisation however, the dilations are time translations, and

hence the Hamiltonian is proportional to L0.

The importance of primary fields is now demonstrated through the state-operator cor-

respondence, which gives a bijection between states of the theory and local operators

through the asymptotic ‘in’ states of eq. (2.1.55), now extended to all fields1

|φin〉 := lim
z→0

φ(z) |0〉 .

For primary fields of weight h, we also refer to the state as |h〉. We now show that

these states are eigenstates of the Hamiltonian L0. We will need

[Ln, φ(ω)] = h(n+ 1)ωnφ(ω) + ωn+1∂φ(ω), (2.1.73)

which is easily shown using the same contour technique used in eq. (2.1.65). We

1Here again, we drop the antiholomorphic dependence of fields for simplicity.
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therefore have
L0 |h〉 := lim

ω→0
L0φ(ω) |0〉 = lim

ω→0
[L0, φ(ω)] |0〉 ,

= lim
ω→0

hφ(ω) |0〉 = h |h〉 ,
(2.1.74)

where we have used the fact that L0 |0〉 = 0. Since the conformal weight h is the

eigenvalue of the Hamiltonian L0 we will also refer to h as the energy of the state

|h〉. Note that since h is the eigenvalue of the Hamiltonian, it must be real for the

Hamiltonian to be a Hermitian operator.

Using the commutation relations of the Virasoro algebra eq. (2.1.71), we can imme-

diately see the effect of acting on a state of energy h with the generators Ln,

L0Ln |h〉 = ([L0, Ln] + LnL0) |h〉 ,

= (h− n)Ln |h〉 .
(2.1.75)

For n > 0 then, the operators Ln lower the energy of the state |h〉, whilst the

operators L−n raise the energy of the state. We therefore refer to Ln and L−n as

lowering and raising modes respectively. Obviously we want the energy spectrum of

our theory to be bounded below and for the primary states |h〉 we see that this is

exactly what happens, since for n > 0

Ln |h〉 = lim
ω→0

[Ln, φ(ω)] |0〉 ,

= 0,
(2.1.76)

where we used eqs. (2.1.72) and (2.1.73). Taking Hermitian conjugates leads to a

similar requirement for the dual states,

〈h|L−n = 0 ∀ n > 0. (2.1.77)

Given a primary state |h〉, we therefore have a lowest-weight representation of the

Virasoro algebra with lowest-weight state |h〉. We note here that although |h〉

behaves like a lowest-weight state, it is commonly referred to as a highest weight

state in the literature. The basis for this representation is taken to be the descendant
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states,

L−npL−np−1 . . . L−n1 |h〉 , 1 ≤ n1 ≤ . . . ≤ np, (2.1.78)

where the commutation relations eq. (2.1.71) of the Virasoro algebra have been used

to put each descendant into a standard ordering as indicated. We define the level of

a descendant state to be,

N = n1 + n2 + . . .+ np, (2.1.79)

and the level of the primary state |h〉 to be 0. Clearly a descendant state of a primary

state |h〉 of level N has energy h+N . States at level n = n1 + . . .+nk are orthogonal

to all states at level m = m1 + . . .+mq for m 6= n, since the relevant inner product

is of the form,

〈h|Lm1 . . . LmqL−np . . . L−n1 |h〉 , (2.1.80)

where without loss of generality we assume that m > n. In writing this inner product

we have used eq. (2.1.59) to write the hermitian conjugates of the raising operators,

L†−n = Ln. (2.1.81)

We now commute the positive modes Lmi past the negative modes Lnj , using the

Virasoro commutation relations eq. (2.1.71). Since the positive modes Lmi annihilate

|h〉 formi > 0, and the non-central piece of the commutator [Lmi , Lnj ] is proportional

to Lmi+nj and by assumption m > n, the states are orthogonal.

As mentioned above, since local conformal transformations are generated by the

modes Ln, the set of a primary, lowest-weight state and all its conformal descendants

form a module for the Virasoro (Vir) algebra. Knowing the set of primary operators

for a given theory, or equivalently their associated primary states, is equivalent to a

full understanding of the Hilbert space of the theory. A (highest-weight) Vir-module

is characterised by the weight of the lowest-weight state it is built from and the

central charge of the Virasoro algebra; we therefore label such a Vir-module as

V (c, h).
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To each Vir-module we can assign a character

χc,h(τ) := TrV (c,h) q
L0−c/24, (2.1.82)

where q = e2πiτ , τ ∈ H, H the Poincaré upper half-plane and the trace is taken

over the Vir-module in question. The character is the generating function for the

degeneracy of states at each energy level,

χc,h(τ) =
∑

n∈Z≥0

dim(Vn+h)qn+h−c/24, (2.1.83)

where Vn+h is the linear subspace of the Vir-module of states of weight h + n.

The highest-weight free Vir-module generated by the modes L−n is known as a

Verma module. The character of a Verma module is easily computed by considering

eq. (2.1.79); a state at level N may be obtained from any partition of N , interpreted

as the Virasoro raising modes to apply to the primary state |h〉.

Example 2.1.3. For example, beginning with a primary state |h〉, the states at

level 5 are given in table 2.1. 4

Partition State

(1,1,1,1,1) L5
−1 |h〉

(2,1,1,1) L−2L
3
−1 |h〉

(2,2,1) L2
−2L−1 |h〉

(3,1,1) L−3L
2
−1 |h〉

(3,2) L−3L−2 |h〉

(4,1) L−4L−1 |h〉

(5) L−5 |h〉

Table 2.1: The states of a Verma module at level 5.

It is therefore easy to see that the number of states at level n in a Verma module

is given by p(n), the number of partitions of n. The generating function for the
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partition numbers is easily seen to be,

∑
n∈Z≥0

p(n)qn =
∏

n∈Z>0

1
1− qn =: q1/24η−1(τ), (2.1.84)

in terms of the Dedekind eta function, η(τ). Using this we can write the character

for the Verma module as

χc,h(τ) = qh+(1−c)/24η−1(τ). (2.1.85)

Since the states of a conformal field theory must fall into irreducible representations

of the Virasoro algebra, it is more interesting to study the irreducible unitary highest-

weight representations of the Virasoro algebra. It is easy to see that the physical

requirement of unitarity, the lack of negative-norm states, puts restrictions on the

parameters of a Vir-module. If we have a primary state |h〉 of positive norm then

|L−1 |h〉 |2 = 〈h|L1L−1 |h〉 = 〈h| [L1, L−1] |h〉 = 〈h| 2L0 |h〉 = 2h 〈h|h〉 , (2.1.86)

giving us the requirement h ≥ 0 in order for this state to be of non-negative norm.

Similarly considering the state

|L−n |h〉 |2 = 〈h|LnL−n |h〉 = 〈h| [Ln, L−n] |h〉 =
(

2nh+ c

12n(n2 − 1)
)
〈h|h〉 ,

(2.1.87)

which will be negative for sufficiently large n if c < 0. Unitarity therefore requires

c ≥ 0 and h ≥ 0.

Further, it is possible that in a given representation of the Virasoro algebra, some

states may be singular, that is there may exist some state ρ other than the lowest-

weight state |h〉 which satisfies

Ln |ρ〉 = 0 ∀ n > 0. (2.1.88)

This state is orthogonal to the entire Vir-module, since

〈h|Lnp . . . Ln1 |ρ〉 = 0. (2.1.89)
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Moreover, each descendant of |ρ〉 is also orthogonal to the whole Vir-module;

〈h|Lnp . . . Ln1L−m1 . . . L−mq |ρ〉 = 0. (2.1.90)

Clearly if the states are of different levels then they are automatically orthogonal

as described before. If not, then letting m = ∑
jmj, n = ∑

i ni, we must have

n > m, since n = m+M where n is the level of the descendant state and M is the

level of |ρ〉. The state |ρ〉 is then itself the lowest-weight state for an entire Verma

module of null states - states of zero-norm - since all these states are orthogonal to

themselves. Such a Verma module is known as a null submodule. If such states exist

in a Vir-module, then the module is not irreducible, since the module built from

the singular state |ρ〉 gives a non-trivial submodule. In order to form irreducible

highest-weight Vir-modules, one should quotient the Verma module by its maximal

proper submodule, identifying states if they differ by a null state in the module. In

fact, given any null state |ω〉, we can apply raising operators until we reach a singular

state |ρ〉, and hence if we work in the irreducible module obtained by quotienting out

all null submodules we have removed all states of zero-norm. Since the irreducible

modules are obtained through the process of quotienting out null submodules, their

characters are not given by eq. (2.1.85) but instead depend on the embedding of null

states in the Verma module [FF90].

2.2 Superconformal Algebras

In this section we will introduce theories with extended conformal symmetry, that

is theories whose current algebra contains the Virasoro algebra as a subalgebra. As

well as additional bosonic currents, it is possible to introduce fermionic currents in

theories with supersymmetry. The first supersymmetric extension to the Virasoro

algebra was introduced by Ramond in the context of introducing fermions into

what was then known as the Dual Resonance Model [Ram71]. Shortly after, a

different model was considered by Neveu and Schwarz which also attempted to add
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fermionic operators to the theory [NS71a; NS71b]. The modern perspective is that

these algebras are the algebras of superconformal field theories, which are usually

introduced from the point of view of string theory, where the worldsheet theory is

now a 2d superconformal field theory (SCFT). The modes of the fermionic currents

satisfy anticommutation relations as opposed to the commutation relations of the

Virasoro algebra, eq. (2.1.71). This means that the SCAs have the structure of Lie

superalgebras rather than simply the Lie algebra structure of the Virasoro algebra.

Lie superalgebras are discussed for example in [Cor89] and some relevant definitions

may be found in Appendix D.

The main goal of this section is to introduce and discuss a family of so-called ‘large’

N = 4 SCA, which was first discovered during an investigation into the possibility

of extended supersymmetry on 2d σ-models [SSTV88a; STVS88; STV88] building

on earlier work by [AF81]. In particular, the σ-models considered in [SSTV88a;

STVS88; STV88] add a Wess-Zumino term to the usual σ-model action [Wit84] and

take the target manifold to be an absolutely parallelisable group manifold.

2.2.1 The Wess-Zumino-Novikov-Witten Model

The Wess-Zumino-Novikov-Witten model, also known as the Wess-Zumino-Witten

model and referred to hereafter as the WZW model is a 2d σ-model with the

addition of a Wess-Zumino term. We briefly introduce the non-linear σ-model and

discuss the WZW model and its charge algebra in this section before considering its

supersymmetric generalisation in the section which follows.

Bosonic strings evolving in spacetime sweep a two-dimensional worldsheet X whose

shape depends on the type of strings considered. The bosonic string quantisation

proceeds from taking the Polyakov action

SPolyakov(φ, h) = −T2

∫
X

d2x
√
−hhµν ηab∂µφa∂νφb, (2.2.1)

where φ : X → M is a differentiable map from the worldsheet space X to a d-
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dimensional target space M , taken to be spacetime with Minkowski metric ηab, and so

φa, a ∈ {1, . . . d} are the string coordinates. The symmetric tensor hµν , µ, ν ∈ {0, 1}

is the intrinsic metric on X. In the case of closed strings, X is an infinite cyclinder

parameterised by x0 ∈ R and x1 ∈ [0, 1]. The parameter T is the string tension.

As is well-known, the Polyakov action is invariant under global spacetime Poincaré

transformations, local changes of scale (Weyl transformations) and two-dimensional

reparametrisations, which include local conformal transformations. The theory

can then be quantised using the path integral technique. The massless spectrum

of the closed string contains a rank-2 symmetric tensor (graviton gab), a rank-2

antisymmetric tensor (b-field bab) and a scalar (dilaton Φ). These zero modes are

emitted and absorbed by the closed strings and, from the target space perspective,

they are massless particles.

A non-linear σ-model in this context encodes the effect of these massless particles as

a background in which the string evolves. The action is given by [FT85; CFMP85],

S :=
∫

d2x
[√
−hhµνg(φ)ab∂µφa∂νφb + εµνb(φ)ab∂µφa∂νφb +

√
−hΦ(φ)R(2)(h)

]
(2.2.2)

where g(φ)ab, b(φ)ab and the dilaton Φ(φ) are couplings chosen to ensure the resulting

theory is consistent quantum mechanically. In the above, R(2) is the worldsheet

Ricci scalar. Turning on the background fields potentially destroys the conformal

invariance of the theory. Since the conformal invariance of string theory is a gauge

symmetry it needs to survive quantisation for the theory to be consistent. The

conditions on the background fields to ensure conformal invariance at the lowest

order of approximation are a set of differential equations worked out in [CFMP85],

and amount to calculating the so-called β-function for the non-linear σ-model at

first loop in string perturbation theory and setting it to zero. Alongside a 3-form

h = db, these equations involve connections and curvatures that are calculated with

the metric gab(φ).

The background field equations may be obtained as the Euler-Lagrange equations
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of a d-dimensional action which, when the dilaton field is set to zero (we are only

interested in this case here), is given by [GSW87]

S ′ :=
∫

ddx
√
−g R(Γ̃), (2.2.3)

where the Ricci curvature R(Γ̃)ab is calculated using the connection

Γ̃abc := Γabc −
1
2g

adhbcd, (2.2.4)

with Γabc the Levi-Civita connection and the totally antisymmetric tensor hbcd (from

h = db) being the generator of a torsion. It turns out that the background field

equations are encoded in the field equations

R(Γ̃)ab = 0. (2.2.5)

One way to solve the equations eq. (2.2.5) is to select a group manifold as target

space, as such manifolds are parallelisable, i.e. one can construct a connection with

torsion and zero curvature on them.

The action of the WZW model that we describe next provides the correct framework

to study strings propagating on a group manifold. We take the target space to be a

compact simply-connected Lie group G and we let the map from the worldsheet to

target space be given by,

φ : S2 → G, (2.2.6)

where we have extended the worldsheet space from the complex plane to the Riemann

sphere. The first step is to rewrite the first term of the non-linear σ-model action

eq. (2.2.2), which involves the spacetime metric g(φ)ab - call it Sg - in terms of a

group element

φ := exp(φATA), A ∈ {1, . . . , dimG}, (2.2.7)

with TA the generators of the Lie algebra g of G satisfying the commutation relations

[TA, TB] = f C
AB TC .
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On the group manifold the Killing form,

K(x, y) = Tr (ad (x) ad (y)) , (2.2.8)

induces a metric since all invariant bilinear forms are simply scalar multiples of the

Killing form. In terms of the Lie algebra structure constants, the Killing form is

given by KAB = f D
AC f C

BD . Using this we can write the standard kinetic term for

the σ-model on a group manifold as

Sφ = C
∫
S2

d2x Tr(∂µφ−1∂µφ), (2.2.9)

where C is a normalisation factor, proportional to the Dynkin index if φ is taken in

a representation other than the adjoint.

Note that the σ-model has global G × G symmetry; that is under φ → aφ(x)b for

a, b ∈ G we have

Sφ → C
∫
S2

d2x Tr(∂µ(b−1φ−1a−1)∂µ(aφb)),

= C
∫
S2

d2x Tr(b−1∂µφ
−1a−1a∂µφb) = Sφ,

(2.2.10)

due to the cyclicity of the trace.

We rewrite eq. (2.2.9) as

S = −C
∫
S2

d2x Tr(φ−1∂µφφ
−1∂µφ) (2.2.11)

and we take g in the adjoint representation as we wish to use the Killing form as

metric. With the help of eq. (2.2.7), we get

φ−1∂µφ = eAa ∂µφ
a TA (2.2.12)

where eAa is the vielbein, and the action Sg is recovered with g(φ)ab = δABe
A
ae
B
b.

As we have just seen, the above construction is based on a metric built up from

the vielbein, and therefore the curvature of the manifold would be computed with

the Levi-Civita connection. In general, i.e. for groups other than tori, this would

not yield a zero Ricci curvature as in eq. (2.2.5), and the conformal invariance of
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the theory would be lost. In order to ensure conformal invariance, a topological

term containing a totally antisymmetric coupling was added to eq. (2.2.9) by Witten

[Wit84]. This term is the Wess-Zumino term

SWZ = D
∫
B3

d3y εijk Tr(φ̃−1∂iφ̃ φ̃
−1∂jφ̃ φ̃

−1∂kφ̃), (2.2.13)

where again D is a normalisation factor, and φ̃ represents the extension of the map

φ : S2 → G to the 3-ball B3, whose boundary is the original space S2. Since the

second homotopy group π2(G) describes the homotopic equivalence classes of maps

S2 → G, and since π2(G) = 0 for any compact, connected Lie group, any map φ̃ on

B3 is homotopically equivalent to φ when restricted to the boundary ∂B3 = S2. The

group manifold G has a 3-form defined in terms of the structure constants fabc, and

the Wess-Zumino term can be seen to be the pullback of this 3-form to B3. Roughly,

this can be seen by realising that the structure constants can be obtained from the

Killing form evaluated on an orthonormal basis with respect to the Killing form,

K(TA, [TB, TC ]) = K(TA, f D
BC TD) = f D

BC δAD = fABC . (2.2.14)

If a basis of TxB3 is given by ∂yi , then γ̃ defines a map dγ̃x : TxB3 → Tγ̃(x)G known

as the pushforward. Since we can translate on a Lie manifold by using the left group

action, we can identify the tangent space Tγ̃(x)G with the Lie algebra – the tangent

space at the identity – by now translating by γ̃−1. We therefore see that the γ̃−1 ∂γ̃
∂yi

are elements of the Lie algebra of G, and that the Wess-Zumino term just pulls

this back to X as stated. Note that since this gives a 3-form on a 3-manifold it is

automatically closed.

The extension of φ to φ̃, that is from S2 to B3 is not unique. The difference between

two extensions can be seen to be equivalent to a map from S3 → G; since the two

extensions φ̃1 and φ̃2 both restrict to φ on the boundary, the difference between

them therefore gives an embedding of their union, S3 to G. The third homotopy

group π3(G) gives the homotopic equivalence classes of maps from S3 → G, and

for a compact, connected, simple Lie group G we have π3(G) = Z. The pull-back
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of the 3-form to S3 is then proportional to the winding number of the map. If

the normalisation of the Wess-Zumino term is chosen such that SWZ is well-defined

modulo 2π, then the path integral will be equivalent for any integer multiple of SWZ .

We have the Wess-Zumino term given schematically by

SWZ =
∫
B3
γ∗ω, (2.2.15)

where ω represents the closed 3-form and γ∗ denotes the pull-back by γ. Poincaré’s

lemma states that the closed 3-form is locally exact – locally G ∼= Rn and Poincaré’s

lemma states that all closed forms are exact on Rn – and hence, using this and

Stoke’s theorem, we have schematically

SWZ =
∫
B3
γ∗ω =

∫
B3
γ∗ db =

∫
∂B3=S2

γ∗b, (2.2.16)

where locally ω = db. Using this, we can rewrite the Wess-Zumino term eq. (2.2.13)

as

SWZ = D
∫
S2

d2xεµνbab(φ)∂µφa∂νφb. (2.2.17)

To summarise, the full action for the WZW model,

SWZW
k = k

16πχR

∫
S2

d2x Tr(∂µφ−1∂µφ)+ k

24πχR

∫
B3

d3y εijk Tr(φ−1∂iφ φ
−1∂jφ φ

−1∂kφ),

(2.2.18)

is conformally invariant at the quantum level [Wit84]. The Dynkin index χR has

been introduced to allow for g to be taken in any unitary representation. The integer

k is known as the level of the WZW model.

Furthermore, in order to make contact with the next section, we note that the action

eq. (2.2.18) can equivalently be written in the form

SWZW
k =

∫
S2

d2xgab(φ)∂µφa∂µφb + bab(φ)εµν∂µφa∂νφb, (2.2.19)

where the kinetic term has been written in terms of the metric g and the Wess-Zumino

term has been written in the form of eq. (2.2.17).

The equation of motion for eq. (2.2.18) [Wit84; DMS97], written in terms of the
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complex variables z, z̄,

∂z(φ−1∂z̄φ) = 0, (2.2.20)

implies the conservation of the antiholomorphic current

Jz̄(z̄) := φ−1∂z̄φ, ∂zJz̄ = 0, (2.2.21)

which in turn implies the conservation of the holomorphic current,

Jz(z) := ∂zφφ
−1, ∂z̄Jz = 0, (2.2.22)

since
∂z(φ−1∂z̄φ) = ∂zφ

−1∂z̄φ+ φ−1∂z∂z̄φ,

= φ−1∂z̄(∂zφφ−1)φ,
(2.2.23)

where we have used ∂µφ−1 = −φ−1∂µφφ
−1, which itself follows simply from ∂(φ−1φ) =

0. The conservation of the two currents results from the invariance of the action

eq. (2.2.18) under local G(z)×G(z̄) transformations,

φ(z, z̄)→ A(z)φ(z, z̄)Ā−1(z̄), (2.2.24)

for independent A, Ā ∈ G.

Expanding the currents in a basis of the Lie algebra g of G of dimension r,

J(z) =
r∑

A=1
JA(z)TA, (2.2.25)

and using the methods of section 2.1.3, one can show that the currents satisfy the

current algebra

JA(z)JB(ω) ∼ kδAB
(z − ω)2 +

∑
c

fABC
JC(ω)
z − ω

, (2.2.26)

where as usual f C
AB are the structure constants of the Lie algebra g,

[TA, TB] = f C
AB TC , (2.2.27)

and we have suppressed all non-singular terms in the right-hand side of the OPE.
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Expanding the currents in terms of Laurent modes,

JA(z) =
∑
n∈Z

JAn z
−n−1, (2.2.28)

and using the methods of section 2.1.4 one can then show that this OPE is equivalent

to the commutation rules for the modes,

[JAm, JBn ] =
∑
C

f C
AB JCn+m + kmδABδm+n,0, (2.2.29)

which are the commutation rules for the affine Lie algebra at level k, ĝk.

A process known as the Sugawara construction can be used to construct the energy-

momentum tensor for the WZW model as a bilinear in the currents JA [DMS97].

The very fact that the energy-momentum tensor can be constructed out of bilinears

in the currents is the reason why the resulting algebra underlying the symmetries

of the WZW model is larger than the Virasoro algebra. With respect to this energy

momentum tensor, the current Ja is primary with conformal dimension 1 and the

central charge for the algebra is given in terms of Lie algebra ĝk data as,

c = k dim g

k + h∨
, h∨ :=

r∑
i=1

ai
∨ + 1, (2.2.30)

where h∨ is known as the dual Coxeter number, r is the rank of the Lie algebra g

and the ai∨ are known as the comarks, being the coefficients of the highest root of

ĝk, θ in the basis of the coroots αi∨,

θ =
r∑
i=1

ai
∨αi

∨. (2.2.31)

2.2.2 σ-models with Extended Supersymmetry

In [AF81], Alvarez-Gaume and Freedman investigated the possibility of a supersym-

metric σ-model having extended supersymmetry. Beginning with a supersymmetric

extension to the sigma model eq. (2.2.2) (without potential),

S[Φ] = 1
4i

∫
d2x d2θ gij(Φ)D̄Φi DΦj, (2.2.32)
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for a superfield with component expansion,

Φi(x, θ) = φi(x) + θ̄ψi(x) + 1
2 θ̄θF

i(x), (2.2.33)

and spinor derivative Dα = ∂
∂θ̄α
− i( ¯θγµα∂µ), the action eq. (2.2.32) can be expanded

in terms of component fields as [FT81; AF81]

S[φ, ψ] = 1
2

∫
d2x

(
gij(φ)∂µφi∂µφj + igij(φ)ψ̄iγµDµψ

j + 1
6Riklj(ψ̄iψk)(ψ̄lψj)

)
,

(2.2.34)

with covariant derivative Dµψ
i = ∂µψ

i + Γijk∂µφjψk. The bosonic fields φi still

parameterise the manifoldM for which gij is the metric, and the covariant derivative

Dµ shows that the fermionic fields ψi transform as tangent vector fields on M .

The action eq. (2.2.32) is invariant under the supersymmetric transformation of the

component fields defined by

δφi = ε̄ψi, δψi = −i/∂φiε− Γijk(εψj)ψk, (2.2.35)

where /∂ uses the Feynman slash notation,

/∂ := γµ∂µ. (2.2.36)

The authors of [AF81] show that the requirement for the existence of additional

supersymmetries is that the manifold M can be equipped with covariantly constant

almost-complex structures which preserve the metric. That is, a second supersym-

metry requires a degree (1,1) tensor f satisfying

f 2 = −1, g(f · u, f · v) = g(u, v), ∇xf = 0, (2.2.37)

for all vectors u, v, x ∈ TpM and all points p ∈ M . The above requirements on f

are the requirements for M to be a Kähler manifold. Furthermore, they show that

the existence of a third supersymmetry, or equivalently a second almost-complex

structure f ′ automatically implies the existence of a fourth supersymmetry given by

f ′′ = f · f ′, and these four supersymmetries define a quaternionic structure on the
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tangent space of M .

As we have seen however, the general (potential-free) σ-model action described

by eq. (2.2.2), which was extended to a supersymmetric action in eqs. (2.2.32)

and (2.2.34) by [AF81], can be generalised to include a Wess-Zumino term as in

eq. (2.2.19), defining the WZW model. One can ask therefore what the requirements

for extended supersymmetry are if one starts from a supersymmetric generalisation of

the WZW model action 2.2.19; this is the question discussed in [SSTV88a; STVS88;

SSTV88b] which we shall now review.

Starting with the bosonic WZW action for a manifold M as described in eq. (2.2.19)

and defining the spinors ψa as the supersymmetric partners of the bosonic fields φa,

δφa = ε̄ψa, (2.2.38)

the requirement that the commutator of two supersymmetries acts as a translation

for all fields leads to the supersymmetric WZW-model with action [SSTV88a]

S[φ, ψ] =− 1
2π

∫
d2x

(
gab(φ)∂µφa∂µφb + λabε

µν∂µφ
a∂νφ

b

+ gabψ̄
a /Dψb − 1

4 ψ̄
a
+γµψ

b
+ψ̄

c
−γ

µψd−Rabcd(Γ+)
)
,

Dµψ
a =∂µψa + (Γ+

a
bcψ

b
+ + Γ−abcψb−)∂µφc.

(2.2.39)

Dµ defines the covariant derivative and Γ± defines the torsionful connection,

Γ±abc = 1
2g

ad(gdb,c + gdc,b − gbc,d ± 2Tdbc), (2.2.40)

for a totally antisymmetric torsion tensor T . This action is invariant under the

supersymmetry defined by

δφa = ε̄ψa, δψa = /∂φaε−ψb+(ε+Γ+
a
bcψ

c
−+ε−S+

a
bcψ

c
+)+ψb−(ε−Γ−abcψc++ε+S−abcψc−).

(2.2.41)

Similarly to the σ-model without Wess-Zumino term considered in [AF81], the

authors of [SSTV88a] then investigate the restrictions on the model that the existence

of further supersymmetries impose. Given a generic supersymmetric transformation
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of the bosonic field

δφa = ε−J+
a
bψ

b
+, (2.2.42)

the invariance of the action eq. (2.2.39) under the transformation requires that J+
a
b

is covariantly conserved and preserves the metric,

J+
a
b;c = 0, J+

c
agcdJ+

d
b = gab. (2.2.43)

This can be used to show that the action is invariant under the supersymmetry

transformation defined by replacing ψa+ with J+
a
bψ

b
+ in eq. (2.2.41).

Ensuring that these two supersymmetries obey the extended supersymmetry algebra

imposes the requirements

J+
b
a + J+

a
b = 0, N c

ab = 0, (2.2.44)

where N c
ab is the Nijenhuis tensor, defined as

N c
ab = J+

d
aJ+

c
[b,d] − J+

d
bJ+

c
[a,d]. (2.2.45)

It is simple to show that eqs. (2.2.43) and (2.2.44) together imply that J+ is an

almost complex structure,

J+
a
cJ+

c
b = −δab, (2.2.46)

and the vanishing of the Nijenhuis tensor eq. (2.2.44) is known to be the integrability

condition of the almost complex structure, that is the almost complex structure

is induced by a unique complex structure on M . Note that the existence of an

almost complex structure implies that M must be even (real) dimensional. We now

recognise the second condition of eq. (2.2.43) as the hermiticity condition for the

metric and the first condition of eq. (2.2.43) as the requirement that the complex

structure J is preserved by parallel transport. Equation (2.2.43) is therefore the

Kähler condition, and M is therefore a Kähler manifold.

If there exist more almost complex structures Ji, then requiring the corresponding

supersymmetries satisfy the extended supersymmetry algebra means imposing a
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Clifford algebra structure on the complex structures,

Ji
a
cJj

c
b + Jj

a
cJi

c
b = −2δabδij. (2.2.47)

These almost complex structures are also required to obey the Nijenhuis conditions,

N a
ij bc := J d

(i [bJ
a

j) c],d + J a
(i d,[cJ

d
j)b] = 0. (2.2.48)

The original supersymmetry can be included in the above by identifying

J0
a
b = J0

a
b = δab. (2.2.49)

If Rabcd 6= 0, eq. (2.2.43) constrains the possible total number of supersymmetries

which one can define on a super WZW model. Since J is covariantly constant, it

is invariant under the action of the holonomy group. The map Ji : TpM → TpM

therefore defines an endomorphism of the holonomy module. Assuming the manifold

is irreducible, that is the action of the holonomy group has no invariant subspaces,

then by Schur’s lemma the endomorphism ring of this module is thus a division

algebra over the reals, and hence is at most four-dimensional. This shows that there

can be no more than four supersymmetries defined for a super WZW model on an

irreducible manifold with curvature, that is we have N ≤ 4. The authors therefore

consider the case that M is a manifold without curvature and with completely

antisymmetric torsion, they therefore restrict to the case of absolutely parallelisable

manifolds [SSTV88a].

We now focus on the specific case of the SU(3) group manifold, as this will be

particularly relevant to the ‘sum rules’ discussed in Chapter 6. In the following

example, we show how the almost-quaternionic structure (that is, the three complex

structures which satisfy the Clifford algebra structure of eq. (2.2.47)) can be defined

on su(3).

Example 2.2.1. We denote the generators of su(3) in the fundamental representa-

tion as

T̃i = 1
2λ

i, (2.2.50)
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where λi are the standard Gell-Mann matrices. Following [SSTV88a], we rename

these generators as

T1 = T̃1, T1̄ = T̃2, T2 = T̃4, T2̄ = T̃5,

T3 = T̃6, T3̄ = T̃7, T4 = T̃3, T4̄ = T̃8.

(2.2.51)

Since λ3 and λ8, are the diagonal Gell-Mann matrices, we have the Cartan subalgebra

(CSA) generated by T4, T4̄. We now define the first complex structure J on su(3) as

JTi = −Tī, JTī = Ti, (2.2.52)

where the second equation follows from the first since we have J2 = −I. This ensures

that J takes the standard general form

J =


0 Id/2

−Id/2 0

 , (2.2.53)

for d the dimension of the Lie algebra, 8 in this example, and where we order the

generators such that the first d/2 indices refer to the generators Ti and the second

d/2 indices refer to the generators Tī.

From the generators of the real Lie algebra defined above, we can define the generators

of the complexification in the standard way,

T̂i = Ti + iTī, T̂i∗ = Ti − iTī = (T̂i)∗, (2.2.54)

where here, the ∗ denotes complex conjugation. In terms of the complex generators,

JT̂i = JTi + iJTī = −Tī + iTi = iT̂i, JT̂i∗ = −iT̂i∗ , (2.2.55)

hence J is diagonalised on this new basis. This satisfies the general construction of

[SSTV88a], namely

JH = H, JEα = iEα, JE−α = −iE−α, (2.2.56)

where Eα = T̂α and E−α = −T̂α∗ and hence the Nijenhuis condition eq. (2.2.44) is
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automatically satisfied. Note the complex basis is a Cartan-Weyl basis for su(3).

The positive roots corresponding to T̂1, T̂2 and T̂3 are

T̂1 → α1 = (1), T̂2 → α2 =
(

1
2 + i

√
3

2

)
, T̂3 → α3 =

(
−1

2 + i

√
3

2

)
,

(2.2.57)

and with this (non-standard) labelling we have α1 and α3 as the simple roots and

α2 = α1 + α3 as the highest root, which from here on we refer to as θ. We therefore

also refer to T̂2 as T̂θ. This set of non-zero roots for su(3) is shown in fig. 2.4.

α1

α2 = θα3

−α1

−α2 = −θ −α3

Figure 2.4: The root system of su(3)

The requirement to be able to define a second complex structure on the algebra is as

follows. First, split the positive roots into two sets, those orthogonal to the highest

root θ form a set ∆⊥θ and those positive roots not orthogonal to θ form a set ∆θ.

From ∆⊥θ, take a highest root of this subset of roots perpendicular to θ, which we

will call θ′. We then repeat the process, dividing ∆⊥θ into subsets depending on

whether or not the roots are orthogonal to θ′ and so on. The highest roots obtained

at each step are known as basic roots. Eventually this process will terminate when

we get to a basic root θ̃ for which ∆̃⊥ is empty. The hermiticity condition on the

metric then gives the requirement

θmθ′m = 0, (2.2.58)

where θm = −(θm)∗. For this example of su(3) we have θ = α2 as the highest root,

and no roots orthogonal to θ. Since θ is therefore the only basic root, there is no

obstruction to defining a second complex structure.
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The action of K is then given by

KEα = 1
4kθ(1 + iJ)[E−θ, Eα]− 1

4k
∗
θ(1− iJ)[Eθ, Eα], (2.2.59)

where kθ is a complex number whose phase is arbitrary and whose modulus is given

by

θmθ
m|kθ|2 = −1. (2.2.60)

For our example, we have θm =
(

1
2 + i

√
3

2

)
and hence θm =

(
−1

2 + i
√

3
2

)
. This gives,

|kθ| = 1, (2.2.61)

and since the phase is irrelevant, we set the phase equal to 0. We therefore find

the action of the second complex structure on the generator corresponding to the

highest root (letting α = θ),

KT̂2 = 1
4(1 + iJ)(T4 +

√
3T4̄) = 1

4(1 + i
√

3)T̂4∗ , (2.2.62)

and its conjugate,

KT̂2∗ = 1
4(1− iJ)(T4 +

√
3T4̄) = 1

4(1− i
√

3)T̂4, (2.2.63)

Finally we calculate the action of K on T̂1 by letting α = 1 in eq. (2.2.59),

KT̂1 = 1
4(1 + iJ)[−T̂2∗ , T̂1]− 1

4(1− iJ)[T̂2, T̂1],

= −1
4(1 + iJ)T̂3∗ = −1

2 T̂3∗ ,

(2.2.64)

and similarly

KT̂1∗ = 1
4(1 + iJ)[−T̂2∗ , T̂1∗ ]−

1
4(1− iJ)[T̂2, T̂1∗ ],

= 1
4(1− iJ)T̂3 = 1

2 T̂3.

(2.2.65)

The action of K on T̂3, T̂3∗ , T̂4 and T̂4∗ is now easily obtained using K2 = −1. One



2.2. Superconformal Algebras 49

can also easily check that J and K anticommute, for example

JKT̂2 = 1
4(1 + i

√
3)JT̂4∗ = −i14(1 + i

√
3)T̂4∗ ,

KJT̂2 = iKT̂2 = i
1
4(1 + i

√
3)T̂4∗ ,

(2.2.66)

and therefore as expected we have,

{J,K}T̂2 = 0. (2.2.67)

Finally, a third complex structure L, can be defined similarly to the second, however

requiring the second and third complex structures to anticommute forces lθ = ikθ.

Note that this is equivalent to defining

L := KJ, (2.2.68)

which makes the anticommutativity of L with K and with J clear since

LJ = KJJ = −K, JL = JKJ = −JJK = K, (2.2.69)

where we have used the fact that J and K are already known to anticommute. One

can show the anticommutativity of L and K in the same way. We therefore have

LT̂1 = − i2 T̂3∗ , LT̂2 = i

4(1 + i
√

3)T̂4∗ ,

LT̂1∗ = − i2 T̂3, LT̂2∗ = − i4(1− i
√

3)T̂4,

(2.2.70)

with the action of L on the remaining generators being found using that L2 = −1.

We now see that the maximum number of complex structures that can be defined

on su(3), or in fact on any other non-abelian group manifold, is at most 3. If there

were a fourth complex structure Q, it would act in the same way as the second, but

with qθ = ±ikθ in order for K and Q to anticommute. However, we would then have

that L and Q commute rather than anticommute.

We have therefore constructed 3 anticommuting complex structures that along with

δab, satisfy the Clifford algebra structure of eq. (2.2.47). This therefore defines the

almost-quaternionic structure on su(3) and hence the super-WZW model on SU(3)
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has N = 4 supersymmetry. 4

The previous example of su(3) is particularly simple, since the process of iteratively

defining the second complex structure on the Lie algebra generators corresponding

to elements of ∆θ for some highest root θ then continuing from the set ∆⊥θ, only has

a single step, since ∆⊥θ = φ. In this case, the quaternionic structure acts between

the generators Eθ, E−θ and the two Cartan generators of su(3), which form an

su(2)× u(1) subalgebra, but also on the four non-orthogonal roots which span the

tangent space at the identity coset of the homogeneous space

W (3) := SU(3)
SU(2)× U(1) . (2.2.71)

More generally, we always have the generators corresponding to the highest root θ

and its negative transforming into 2 elements of the CSA under the second complex

structure. The su(2)× u(1) subalgebra they form is hence fixed by the action of the

complex structure. The quaternionic structure also acts on the other 4(h∨− 2) roots

(h∨ is the dual Coxeter number) which are not orthogonal to the highest root θ and

which are associated with a Wolf space. In other words, at this stage of the process,

the set of generators corresponding to ∆⊥θ forms a pointwise fixed subalgebra, and

the remaining Lie algebra generators corresponding to ∆θ form a coset algebra,

∆θ

∆⊥θ × su(2)× u(1) , (2.2.72)

where by an abuse of notation we have labelled the algebras by the sets corresponding

to the appropriate roots. The associated symmetric spaces

G

H × SU(2)× U(1) , (2.2.73)

correspond, up to the factor of U(1) in the denominator, to the quaternionic Kähler

symmetric spaces, also known as Wolf spaces [Wol65]. We recall that a symmetric

space is a homogeneous space G/H where infinitesimally, g = h ⊕ k such that

[h, h] ⊆ h, [h, k] ⊆ k and [k, k] ⊆ h. We therefore see that the quaternionic structure

is defined at each stage on the su(2)× u(1) subalgebra corresponding to the highest
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root, its negative, and 2 elements of the CSA and on the Wolf space spanned by the

remaining generators whose roots are not orthogonal to θ. The most relevant Wolf

space for our purposes is the space

W (N) = SU(N)
SU(N − 2)× SU(2)× U(1) , (2.2.74)

where our previous example corresponded to the case N = 3. We defined the

quaternionic structure on the Lie algebra associated to W (3) and the Lie algebra

su(2) × u(1) such that the structure was then defined on su(3). So the Lie group

SU(3) is a quaternionic group manifold of dimension 8.

Note that of the N2 −N non-zero roots of su(N), N2 − 5N + 6 lie in the su(N − 2)

orthogonal to the highest root of su(N) and 2 lie in the su(2) × u(1) in which the

highest root transforms, leaving 4(N − 2) in the Wolf space W (N). Indeed, in the

case where G = SU(N), the dual Coxeter number is h∨ = N .

2.2.3 Current Algebras on Supersymmetric σ-Models

In the previous subsection we showed how one can define a supersymmetric σ-model

on a group manifold which supports two supersymmetries if there is a complex

structure defined on the Lie algebra and which supports four supersymmetries if it is

possible to define an almost-quaternionic structure (three complex structures which

satisfy the Clifford algebra structure of eq. (2.2.47)).

On group manifolds, the super-WZW action eq. (2.2.39) considered in the previous

subsection can be written as

S = − k

4πχR

(1
2

∫
d2x Tr[∂µg−1∂µg − ψ̄ /∂ψ]− 1

3

∫
d3x εabc Tr[g−1g,ag

−1g,bg
−1g,b]

)
,

(2.2.75)

and can be shown [STVS88] to be invariant under conformal and supersymmetry

transformations, as well as under Kac-Moody and super Kac-Moody transformations.

Each of these symmetries has a corresponding Noether current and just as we have

seen for the Virasoro algebra in section 2.1.3, the OPEs between these currents give
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rise to an affine Lie algebra structure for the modes of the currents; as in section 2.1.4,

the modes of the energy-momentum tensor T (z) generate the Virasoro algebra, and

as we saw in section 2.2.1, associated to a Kac-Moody transformation for the group

G is a current J(z) whose modes satisfy the ĝ affine Lie algebra. Due to the existence

of the supersymmetries present in this model, we also have dimension-1
2 currents

associated with the super Kac-Moody symmetry. These super Kac-Moody currents

are just given by the fermions ψ(z). The Sugawara construction can be used to

construct an energy-momentum tensor from these Kac-Moody currents; in the case

of a quaternionic structure defined in stages as explained in the previous subsection,

the energy momentum tensor is defined using the GKO coset construction [GKO86]

for each stage individually. For example in the case of the simple group SU(2M +

1), on which the quaternionic structure may be defined in M ′ stages of the form

W (2M ′ + 1)× SU(2)× U(1) for 1 ≤M ′ ≤M , the energy-momentum tensor at the

first stage is given by

L = LF + LSU(2M+1) − LSU(2M−1). (2.2.76)

Here, LF is the contribution of the 8M free fermions (the dimension of W (2M +

1) × SU(2) × U(1)), 4(2M − 1) of which span the Wolf space W (2M + 1) and 4

corresponding to the highest root ψθ, its negative ψθ and the 2 elements of the CSA

ψm, ψm which the quaternionic structure transforms ψθ and ψθ into. LSU(2M+1) is

the energy-momentum tensor created using the standard Sugawara construction for

the Kac-Moody currents associated to SU(2M + 1) and similarly LSU(2M−1) is the

Sugawara energy-momentum tensor for SU(2M − 1).

In the case that we have an almost-quaternionic structure on the group manifold,

and hence that the super-WZW model has N = 4 supersymmetry, the complex

structures can be used to construct further dimension-1
2 operators. Explicitly,

ψδ(z) ≡ ψ(z) = δψ(z), ψJ(z) = Jψ(z), ψK(z) = Kψ(z), ψL(z) = Lψ(z).

(2.2.77)
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For each operator ψi(z), i ∈ {δ, J,K, L} one can construct a dimension-3
2 oper-

ator associated to the superconformal transformations which is usually denoted

Gi(z) [STVS88]; this operator Gi should not be confused with the group G on which

the super-WZW model is built. The OPEs are simplified if instead of considering

the Gi, one forms the complex linear combinations [STVS88]

G± = 1
2(Gδ + iGJ), G±K = 1

2(Gδ + iGK). (2.2.78)

As for the energy-momentum tensor, in the quaternionic case these operators should

be defined separately for the different stages of the algebra.

If all possible OPEs between these operators are considered, extra dimension-1

operators will need to be introduced in order to close the algebra. The net result

is a superconformal algebra defined at each stage of the construction reviewed

above, containing the dimension-2 energy momentum tensor T (z), four dimension-
3
2 supercharges Ga(z), seven dimension-1 operators corresponding to an ŝu(2) ×

ŝu(2) × û(1) Kac-Moody algebra and 4 dimension-1
2 operators Qa(z) where here

a ∈ {±,±K}; these dimension-1
2 operators correspond to the fermions associated

with the su(2)×u(1) subalgebra. Operators defined at different stages of the algebra

commute and hence one obtains a copy of this N = 4 SCA for each stage of the

algebra. This SCA is governed by 2 parameters, namely the levels of the 2 affine

ŝu(2). The ŝu(2) are usually referred to as ŝu(2)
±
and the levels are therefore denoted

k±. The central charge for the algebra is given in terms of these levels as

c = 6k+k−

k+ + k−
= 6k+k−

k
, (2.2.79)

where we have defined k = k+ + k−.

This N = 4 superconformal algebra is known in the literature as Aγ, where

γ = k−

k
, (2.2.80)

and the central charge c = 6kγ(1− γ) are the quantities which appear most directly

in the algebra. The algebra is also referred to as the ‘Large’ N = 4 SCA in order
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to differentiate it from the ‘small’ N = 4 SCA of Ademollo et al. [Ade+76b], which

contains only a single ŝu(2) Kac-Moody subalgebra. The OPEs for these operators

can be found in the original paper [STVS88] - the commutation relations that the

modes of these operators satisfy can be found in Appendix A.

In summary, all operators defined at different stages commute, and all operators

defined at a given stage are primary with respect to the energy-momentum tensor

at that stage. At each stage, these operators satisfy the commutation relation of the

large N = 4 superconformal algebra Aγ [STVS88]. As a consequence of this fact,

one cannot assert that the super WZW model describing a superstring propagating

on an arbitrary group manifold exhibits Aγ symmetry, but rather, that several Aγ

SCA emerge in stages within the model. If there is more than one stage (M ′ > 1),

there is no action that provides the currents representing Aγ at any stage. If there is

exactly one stage however, the situation is obviously different. In fact, superstrings

propagating on the 4-dimensional quaternionic group manifold SU(2)× U(1) or the

8-dimensional quaternionic group manifold SU(3) are described by a super WZW

model which exhibits Aγ symmetry. We will return to the SU(3) quaternionic group

manifold in chapter 6, where we set the scene for the potential discovery of a new

moonshine phenomenon.

In the following chapter we will consider the representation theory of Aγ where the

commutation relations will be of more direct use than the OPEs.



Chapter 3

The Representation Theory of Aγ

In this chapter we study the representation theory of the Large N = 4 SCA Aγ

introduced in the previous chapter. It will be advantageous to also briefly discuss

the related algebra Ãγ, which is formed from Aγ by decoupling the four dimension-
1
2 operators and the dimension-1 operator corresponding to the û(1) Kac-Moody

subalgebra as described in [GS88]. The representations of interest to physics will be

unitary representations whose spectrum is bounded below, that is unitary highest

weight representations (UHWRs) and hence these are the representations which

we will be interested in here. We will discuss the structure of UHWRs of Aγ, first

studied in [GPTV89] before discussing character formulae for these representations as

developed in [PT90a; PT90b]. The Ramond sector of the Aγ algebra is complicated

by the fact that there is no unique highest weight state for any representation and so

we first discuss the Neveu-Schwarz representations in section 3.2, before introducing

an isomoprhism between the two sectors and using this to discuss the Ramond

representations in section 3.3. Finally in section 3.4 we first derive the formulae for

Verma modules of Aγ and sketch how one constructs the character formulae for the

irreducible modules of Aγ from the characters of the associated Verma modules.
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3.1 Aγ and Ãγ

We first recall from section 2.2.3 that Aγ is a SCA containing the dimension-2

energy-momentum tensor T (z), 4 dimension-3
2 supercharges Ga(z), for a ∈ {±,±K},

7 dimension-1 operators forming an ̂su(2)+
k+ × ̂su(2)−k− × û(1) Kac-Moody subalgebra

and 4 dimension-1
2 operators Qa(z), for a ∈ {±,±K}. The modes of these operators

satisfy the commutation relations listed in Appendix A. The central charge of the

algebra is given in terms of the levels k± and k = k+ + k− as,

c = 6k+k−

k
. (3.1.1)

In physically relevant representations of Aγ, the representations of the subalgebras

ŝu(2)± must be integrable representations, meaning the projection on to the su(2)

subalgebra associated to any real root of ŝu(2)± must be finite dimensional. This

is because correlation functions involving the primary fields associated to highest

weights of non-integrable representations of ŝu(2)± are zero, hence such primary fields

decouple from the theory [DMS97]. The ̂su(2)±k± affine algebras admit integrable

representations if the levels satisfy,

k± ∈ Z+. (3.1.2)

This implies that the Aγ central charge c is bounded from below (3 ≤ c). We then

see that Aγ is a one parameter family of SCAs, the one parameter being given by

γ = k−

k
, or alternatively by 1− γ = k+

k
.

As shown in [GS88], one can decouple the free fermionic fields as well as the bosonic

û(1) current from the rest of the algebra, leaving a non-linear algebra known in

the literature as Ãγ containing an energy-momentum tensor T̃ (z), four fields G̃a(z)

which have weight 3
2 under the new energy-momentum tensor T̃ (z) and six fields

T̃±i(z) which have weight 1 under T̃ (z). The central charge c̃ of T̃ (z) is given by

c̃ = c− 3, (3.1.3)
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and the weight 1 fields T̃±i(z) form an ̂su(2)+
k̃+ × ̂su(2)−

k̃−
Kac-Moody subalgebra,

where the levels are given by

k̃± = k± − 1. (3.1.4)

Explicitly, the fields in Ãγ are given in terms of the fields in Aγ by [GPTV89]

L̃ = L+ 1
k

(UU + ∂QaQa),

G̃a = Ga + 2
k
UQa −

2
3k2 εabcdQ

bQcQd − 4i
k
Qb(α+i

ba T̃
+
i − α−iba T̃−i ),

T̃±i = T±i − i

k
α±iabQ

aQb,

(3.1.5)

where normal ordering is implicit and the non-zero values of α±iab are

α±3
+ − = − i4 , α+−

+ +K = i

2 , α−+
− +K = − i2 ,

α±3
+K −K = ∓ i4 , α++

− −K = − i2 , α−−+ −K = i

2 .
(3.1.6)

3.2 Representations of Aγ in the Neveu-Schwarz

Sector

In this section we describe representations of Aγ in the Neveu-Schwarz sector. Fol-

lowing the notation of [GPTV89; PT90a; PT90b] we derive the allowed ranges of the

quantum numbers for these representations. The results are summarised in table 3.1

at the end of the section.

In a unitary highest weight representation (UHWR) of Aγ , we have a highest weight

|Ω〉 defined to satisfy

Ln |Ω〉 = T±in |Ω〉 = Un |Ω〉 = T±+
0 |Ω〉 = Qa

r |Ω〉 = Ga
r |Ω〉 = 0, (3.2.1)

for n ∈ Z+ = {1, 2, . . .}, and r ∈ Z+ − 1
2 (Neveu-Schwarz (NS) sector) or r ∈ Z+

(Ramond (R) sector). NS representations of Aγ are classified by the eigenvalues of

their highest weight state (HWS) |Ω〉 under the zero modes of the algebra,

L0 |Ω〉 = h |Ω〉 , U0 |Ω〉 = −iu |Ω〉 , T±3
0 |Ω〉 = l±Ω |Ω〉 , (3.2.2)
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and hence a UHWR of Aγ is labelled by the quantum numbers h, u, l±Ω as well as

the central charge of the algebra c and the paramater γ. The classification of R

representations is more subtle due to the non-trivial structure of the ground level,

which is built by acting on a state |Ω〉 satisfying eq. (3.2.1) with the zero modes of

the Aγ generators. Besides c and γ, R representations are labelled by the maximal

values of ŝu(2)± charges appearing at ground level. Unlike in the NS sector, these

charges correspond to the T± 3
0 eigenvalues of different zero mode states.

Since we may also construct a representation of the sister algebra Ãγ on |Ω〉, it is

clear that in the Neveu-Schwarz sector, where the fermionic generators do not have

zero modes, the state |Ω〉 has the same charge under the ŝu(2)± of Aγ as the ŝu(2)±

of Ãγ. That is

T̃±3
0 |Ω〉 = l̃±Ω |Ω〉 , T±3

0 |Ω〉 = l±Ω |Ω〉 , l±Ω = l̃±Ω . (3.2.3)

We now consider the allowed values for the quantum numbers h, u, l±Ω in a UHWR.

As we shall shortly see, the Ramond sector is slightly more complicated and we

therefore begin by considering the Neveu-Schwarz sector. First, we consider the

quantum number u; since the generator of the û(1) current algebra was a free

boson we see from Appendix A that the zero mode U0 commutes with all the other

generators of Aγ and hence all states in a UHWR have the same charge under the

û(1). We see that unitarity does not give any restrictions on u other than u ∈ R,

|U0 |Ω〉 |2 ≡ 〈Ω| − U0U0 |Ω〉 = −(−iu)(−iu) 〈Ω|Ω〉 = u2, (3.2.4)

where the minus sign is due to U being an antihermitian operator, so the hermitian

conjugate U †n = −U−n as in Appendix A. Unitarity of the representation hence

requires |U0 |Ω〉 |2 ≥ 0 ⇐⇒ u ∈ R. Note that one must be careful with Bra-Ket

notation when dealing with antihermitian operators such as U . Recall that the

Bra-Ket notation just refers to an inner product on the Hilbert space. It is usual to

think of operators between the Bra and the Ket as acting on either the left or right,
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as for a Hermitian operator H,

〈Ω, HΩ〉 = 〈HΩ,Ω〉. (3.2.5)

For non-hermitian operators such as U this does not hold and hence we must always

treat non-hermitian operators as acting on the Ket. Since this notation is common

in the literature we choose to use it here regardless and hence all operators will be

taken to be acting on the right.

Next we consider the allowed values for the quantum numbers l±Ω , the charges under

the two ŝu(2)±. Firstly, from the general theory of Kac-Moody algebras, we know

that for integrable representations of ŝu(2)k with highest weight λ̂, the Dynkin labels

satisfy

λi ∈ Z+, (3.2.6)

and the zeroth Dynkin label is given by

λ0 = k − (λ, θ), (3.2.7)

where λ is the finite part of the affine weight λ̂ and θ is the highest root of su(2).

There are therefore only a finite number of integrable highest weight representations

of ŝu(2)k labelled by the spin l,

0 ≤ l ≤ k

2 , l ∈ 1
2Z, (3.2.8)

where the factor of half is obtained in the change from the Chevalley to the spin

basis of su(2) where,

T3 |λ〉 = l |λ〉 = λ1

2 |λ〉 . (3.2.9)

We therefore expect the quantum numbers l±Ω to satisfy 0 ≤ l±Ω ≤ k±

2 . As shown in

[GPTV89], the ̂su(2)±k± charges cannot obtain the maximum value of k±

2 in the NS

sector. To see this one can consider the states T±+
−1 |Ω〉, assuming l± = k±

2 . These

states have norm squared

〈Ω|T±−1 T±+
−1 |Ω〉 = 〈Ω| (−2T±3

0 + k±) |Ω〉 = 0, (3.2.10)
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and hence in an irreducible representation of Aγ, where we have quotiented out

null-modules, these states must be identically zero and hence so must all their

descendants. However, the descendant states Q−−1/2T
±+
−1 |Ω〉 ≡ −Q±K−1/2 |Ω〉 have

positive norm, giving a contradiction.

Given that any representation of Aγ gives rise to a representation of Ãγ as explained

in section 3.1, we find another way to demonstrate the restricted maximum value of

l±. Writing the allowed values of l± as

0 ≤ l± ≤ (k± − 1)
2 = k̃±

2 , (3.2.11)

using eq. (3.1.4), we realise that the maximum value of l± already obtained is

the maximum one should expect using the general Kac-Moody argument for a

representation of Ãγ with levels k̃± = k± − 1.

Finally let us consider the conformal weight of the state |Ω〉 in the NS sector. We

obtain a unitarity bound by considering the norm of the state Q+
−1/2G

+
−1/2 |Ω〉,

|Q+
−1/2G

+
−1/2 |Ω〉 |2 = 1

4
(
kh− k+l− − k−l+ − (l+ − l−)2 − u2

)
, (3.2.12)

which implies that in a unitary representation we have

kh ≥ k+l− + k−l+ + (l+ − l−)2 + u2, (3.2.13)

where saturation of this bound implies that the state Q+
−1/2G

+
−1/2 |Ω〉 is identically 0

in a unitary representation, since such representations are formed by quotienting out

all null modules as explained in section 2.1.5. A representation where the conformal

weight saturates this bound and the aforementioned state disappears is known as

a ‘massless’ or ‘short’ representation of Aγ. When the conformal weight lies above

this bound the representation is said to be ‘massive’ or ‘long’. The ground level is

therefore identical for both massless and massive representations of Aγ in the NS

sector and a generic such ground level is shown in fig. 3.1. The highest weight state

|Ω〉 is the top right state in this figure, which shows the ground states of a massless

representation of Aγ, where the ŝu(2)+ charge has been plotted against the ŝu(2)−
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charge and the states are labelled by their multiplicities. As for all representations

of Aγ in the Neveu-Schwarz sector, one has a singular hws which in this example

forms a triplet of ŝu(2)+ and a quintuplet of ŝu(2)− as expected given the charges.

Figure 3.1: The ground states of a massless NS representation of Aγ. This
representation has k+ = 5, k− = 7, l+ = 1, l− = 2.

At the ground level of a representation of Aγ in the NS sector, there is no difference

between a massless and a massive representation. The only exception to this is

when one or both of the ŝu(2)± charges takes their maximum allowed values of

l± = k̃±

2 = k±−1
2 , as in this case the representation is forced to be massless; no

unitary massive representations can exist where either of these charges obtains its

maximum value as we will now show. We will assume that the ŝu(2)+ charge is the

one which obtains its maximum, l+ = k̃+

2 as the argument for the other charge is

very similar. We consider the norm of the state T++
−1 G

+
−1/2 |Ω〉,

|T++
−1 G

+
−1/2 |Ω〉 |2 = 〈Ω|G−1/2T+−

1 T++
−1 G

+
−1/2 |Ω〉 = 0, (3.2.14)

as is easily shown using Appendix A. So in a unitary representation we must have

T++
−1 G

+
−1/2 |Ω〉, as well as all descendants identically equal zero. In particular we
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therefore have

0 = Q−K1/2 T
++
−1 G

+
−1/2 |Ω〉 = Q+

−1/2G
+
−1/2 |Ω〉+ 1

2T
++
−1 T

−+
0 |Ω〉 , (3.2.15)

but since |Ω〉 is a hws, it is annihilated by T−+
0 , and so we have Q+

−1/2G
+
−1/2 |Ω〉 = 0

and hence the representation is massless. This may also be shown more simply in

Ãγ, since in this algebra we must have T̃++
−1 |Ω〉 = 0 if l+ = k̃+

2 and by a similar

argument to the one used above this implies we have G̃+
−1/2 |Ω〉 = 0. This is the

massless condition for Ãγ and implies that the corresponding representation of Aγ

is also massless.

One can also see that when this bound is saturated, the level 1 states Q+
−1/2 |Ω〉 and

G+
−1/2 |Ω〉 become linearly dependent; in this case there is therefore one less maximal

ŝu(2)+ × ŝu(2)− multiplet at level 1 as for a massive representation. In fig. 3.2 we

see the level 1 states for a massless and massive representation of Aγ ; it is clear that

in fig. 3.2a there is one less ŝu(2)+-quadruplet, ŝu(2)−-sextuplet as in fig. 3.2b.

To summarise the results for the Neveu-Schwarz sector, a UHWR of Aγ for fixed γ

and c is given in terms of four quantum numbers, h, l±, u. The quantum number

u is required to be a real number, u ∈ R, and the other charges are as shown in

table 3.1.

Type of Rep. ŝu(2)± Charges Conformal Weight

Aγ Massless 0 ≤ l±NS ≤ k̃±

2 khNS = u2 + (l+NS − l−NS)2 + k−l+NS + k+l−NS

Aγ Massive 0 ≤ l±NS ≤ k̃±−1
2 khNS > u2 + (l+NS − l−NS)2 + k−l+NS + k+l−NS

Table 3.1: A summary of the charges of Aγ representations in the
NS sector

3.3 Representations of Aγ in the Ramond Sector

Having considered representations of Aγ in the Neveu-Schwarz sector in the previous

subsection, we now turn to the Ramond sector. The highest weight state for such a
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(a) Massless

(b) Massive

Figure 3.2: The difference between massless and massive representations of
Aγ in the NS at level 1; although these figures look similar we see
that the multiplicities of states differ between the two. These
figures show the level 1 states for the massless and massive
representations of Aγ with parameters k+ = 5, k− = 7, l+ =
1, l− = 2 as in the previous figure.
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representation is still defined to satisfy eq. (3.2.1) and as we shall see shortly a hws

|Ω〉 for a representation in the Ramond sector also satisfies

Q+,+K
0 |Ω〉 = 0, G+,+K

0 |Ω〉 = 0. (3.3.1)

To study the properties of representations in the Ramond sector we will make use

of the spectral flow automorphism [DST88].

Proposition 3.3.1. There exists an automorphism of Aγ known as spectral flow. In

terms of the Laurent modes of the algebra, spectral flow is an automorphism relating

different modings; explicitly we have the following automorphism,

Lρ,ηm = Lm − (ρT+3
m + ηT−3

m ) +
(
k+

4k ρ
2 + k−

4k η
2
)
δm,0,

Gρ,η;±
m±(ρ+η)/2 = G±m ±

(
ρ
k+

k
− ηk

−

k

)
Q±m,

Gρ,η;±K
m±(ρ−η)/2 = G±Km ±

(
ρ
k+

k
+ η

k−

k

)
Q±Km ,

T ρ,η;+3
m = T+3

m −
(
ρ
k+

2

)
δm,0,

T ρ,η;−3
m = T−3

m −
(
η
k−

2

)
δm,0,

Uρ,η
m = Um,

Qρ,η;±
m±(ρ+η)/2 = Q±m,

Qρ,η;±K
m±(ρ−η)/2 = Q±Km ,

T ρ,η;+±
m±ρ = T+±

m ,

T ρ,η;−±
m±η = T−±m ,

(3.3.2)

If one considers this automorphism in the case of ρ = −1, η = 0, one obtains

an isomorphism between the Ramond and Neveu-Schwarz modings. In fact, this

automorphism extends to an isomorphism between representations; given a hws

|Ω;h, l+, l−, u〉 for a representation of Aγ in the NS sector, the state |ΩR〉 :=(
T++
−1

)k+−2l+;NS
|Ω〉 is a hws for a representation of Aγ in the Ramond sector1. It

is straightforward to check that the positive modes of the Ramond representation

annihilate this state; it is more work to check that the zero modes in eqs. (3.2.1)

and (3.3.1) annihilate this state so we shall demonstrate that this is indeed the case.

1Alternatively one can flow with ρ = 0, η = −1, flowing in the ŝu(2)− direction instead of the
ŝu(2)+ direction obtaining a state known in the literature as |Ω−〉 which could equally be treated
as a highest weight state, though now annihilated by Q{+,−K}

0 , G
{+,−K}
0 .
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Firstly, showing that the zero mode of T−+ annihilates this state is trivial. Under

the spectral flow isomorphism with ρ = −1, η − 0, we have

(T−+
m )NS ↔ (T−+

m )R. (3.3.3)

We therefore need to consider

(T−+
0 )R |ΩR〉 ∼= (T−+

0 )NS(T++
−1 )k+−2l+;NS |Ω〉 = (T++

−1 )k+−2l+T−+
0 |Ω〉 = 0, (3.3.4)

since [T−im , T+i
n ] = 0 and since |Ω〉 is a highest weight state of the NS representation

and hence is annihilated by T−+
0 .

Before we check the remaining zero modes, we prove a short lemma that will be

useful for the remaining calculations.

Lemma 3.3.2. Let |χ〉 be a hws for a representation of Aγ. Then,

|(T++
−1 )p |χ〉 |2 ≡ 〈χ| (T+−

1 )p(T++
−1 )p |χ〉

=


p! (k+−2l+)!

(k+−2l+−p)! , p ≤ k+ − 2l+

0, p > k+ − 2l+.

(3.3.5)

Proof. Firstly, we have

〈χ| (T+−
1 )p(T++

−1 )p |χ〉 = p(k+ − 2l+ − [p− 1]) 〈χ| (T+−
1 )p−1(T++

−1 )p−1 |χ〉 . (3.3.6)

Note that if p = k+ − 2l+ + 1 this gives zero norm. Next we proceed by induction,

and hence if p > k+ − 2l+ there will be a factor of 0 somewhere in this product and

hence the state has zero norm. If p ≤ k+ − 2l+ we have

〈χ| (T+−
1 )p(T++

−1 )p |χ〉 =p(k+ − 2l+ − [p− 1]) 〈χ| (T+−
1 )p−1(T++

−1 )p−1 |χ〉 ,

=p! (k+ − 2l+)!
(k+ − 2l+ − p)! .

(3.3.7)

Next, we check that (T−+
−1 )k+−2l+;NS |Ω〉 is annihilated by (T++

0 )R, we hence need to
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consider

(T++
0 )R |ΩR〉 ↔ (T++

−1 )k+−2l++1;NS |Ω〉 = 0, (3.3.8)

since it has zero norm by applying lemma 3.3.2.

Since under the spectral flow automorphism Ga → Ga + Qa (schematically), it is

easiest to next check that (Q{+,+K}0 )R |ΩR〉 = 0; the two calculations are very similar.

Under spectral flow,

(Q{+,+K}0 )R |ΩR〉 ↔ (Q{+,+K}−1/2 )NS(T++
−1 )k+−2l+;NS |Ω〉 . (3.3.9)

To see that this is zero, we consider the norm of these state in the NS sector. Using

Appendix A and lemma 3.3.2 we obtain

|(Qp
−1/2)NS(T++

−1 )k+−2l+;NS |Ω〉 |2 = −〈Ω| (T+−
1 )k+−2l+Qm

1/2Q
p
−1/2(T++

−1 )k+−2l+ |Ω〉 ,

= 0,
(3.3.10)

where {m, p} ∈ {{−,+}, {−K,+K}}. Since the states have zero norm, in a unitary

representation of Aγ they must be identically zero and hence we must have

(Q{+,+K}0 )R |ΩR〉 = 0. (3.3.11)

Checking that (G{+,+K}0 )R annihilates the Ramond ground state is similar to the

calculation above for Q{+,+K}0 . The steps for (G+
0 )R and (G+K

0 )R are identical. We

have,

(G+
0 )R |ΩR〉 ↔ (G+

−1/2 + k+

k
Q+
−1/2)NS(T++

−1 )k+−2l+;NS |Ω〉 , (3.3.12)

and since by eq. (3.3.11) we already know that Q+
1/2 annihilates (T++

−1 )k+−2l+;NS |Ω〉,

we need only consider the norm of (G+
−1/2)NS(T++

−1 )k+−2l+;NS |Ω〉.

|(G+,+K
−1/2 )NS(T++

−1 )k+−2l+;NS |Ω〉 |2 = 〈Ω| (T+−
1 )k+−2l+G−1/2G

+
−1/2(T++

−1 )k+−2l+ |Ω〉 ,

= 0,
(3.3.13)

using Appendix A and lemma 3.3.2 as before. Since this is a state of zero norm, it
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must be identically zero in a unitary representation. Hence,

(G{+,+K}0 )R |ΩR〉 = 0. (3.3.14)

A highest weight state for a Ramond representation therefore satisfies eqs. (3.2.1)

and (3.3.1) as previously claimed.

Under the spectral flow isomorphism with ρ = −1, η = 0, we have

(L0)R = (L0)NS − (T+3
0 )NS + k+

4 ,

(T+3
0 )R = (T+3

0 )NS − k+

2 ,

(U0)R = (U0)NS,

(T−3
0 )R = (T−3

0 )NS,
(3.3.15)

and hence the representation of Aγ in the R sector has quantum numbers,

L0 |ΩR〉 =
(
h− l+ + k+

4

)
|ΩR〉 ,

T+3
0 |ΩR〉 =

(
k+

2 − l
+
)
|ΩR〉 ,

U0 |ΩR〉 = iu |ΩR〉 ,

T−3
0 |ΩR〉 = l− |ΩR〉 ,

(3.3.16)

This now allows us to comment on the allowed values of the quantum numbers for

unitary representations of Aγ. Since the allowed values of l± for a hws of an NS

representation were 0 ≤ l± ≤ k̃±

2 , then the charges

T+3
0 |ΩR〉 = l+ΩR |ΩR〉 , T−3

0 |ΩR〉 = l−ΩR |ΩR〉 , (3.3.17)

must satisfy
1
2 ≤ l+ΩR ≤

k+

2 , 0 ≤ l−ΩR ≤
k̃−

2 . (3.3.18)

Similarly, if one flows from a massless representation in the NS sector, whose con-

formal weight satisfies hk = k+l− + k−l+ + (l+ − l−)2 + u2, then one obtains a

representation in the R sector with conformal weight

L0 |ΩR〉 = hΩR |ΩR〉 , (3.3.19)
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satisfying

k

(
hΩR + k+

4 − l
+
ΩR

)
= k+l−ΩR + k−

(
k+

2 − l
+
ΩR

)
+
(
k+

2 − l
+
ΩR − l

−
ΩR

)2

+ u2
ΩR ,

khΩR =
(
l+ΩR + l−ΩR

)
+ u2

ΩR + k+k−

4 .

(3.3.20)

A representation of Aγ in the R sector whose conformal weight satisfies eq. (3.3.20)

is known as a massless representation. If one considers the state Q−K0 G−K0 |ΩR〉 one

finds it has norm

|Q+K
0 G+K

0 |ΩR〉 |2 = 1
4

(
khΩR − [l+ΩR + l−ΩR ]2 − u2

ΩR −
k+k−

4

)
, (3.3.21)

and hence in the Ramond sector one has a unitarity bound of

khΩR ≥
(
l+ΩR + l−ΩR

)
+ u2

ΩR + k+k−

4 . (3.3.22)

The saturation of this bound agrees with the previously identified conformal weight

for a massless representation in the Ramond sector and hence for a massless rep-

resentation of Aγ in the Ramond sector one has Q−K0 G−K0 |ΩR〉 = 0 and the states

Q−K0 |ΩR〉 and G−K0 |ΩR〉 become linearly dependent. In this case, the generic sixteen

su(2)× su(2) hws which exist in the massive representation [PT90a] and which are

shown in fig. 3.3a are reduced to eight su(2)× su(2) hws shown in fig. 3.3b.

In a Ramond representation of Aγ , the state |ΩR〉 satisfies the definition of a highest

weight state, that is it is annihilated by both T++
0 and T−+

0 . However, unlike in

the NS sector, it is not the ground state with the highest ŝu(2)− charge, merely the

top state of the ŝu(2)− multiplet from the largest ŝu(2)+ multiplet. In a massless R

representation, the state |Ω−〉 := G−K0 |ΩR〉 has charges

L0 |Ω−〉 = hΩR |Ω−〉 , T+3
0 |Ω−〉 =

(
l+ΩR −

1
2

)
|Ω−〉 , T−3

0 |Ω−〉 =
(
l−ΩR + 1

2

)
|Ω−〉 ,

(3.3.23)

and is the unique ground state with highest ŝu(2)− charge. In a massive R repres-
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(a) The sixteen su(2)× su(2) Ramond hws in a massive Aγ representation
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(b) The eight su(2)× su(2) Ramond hws in a massless Aγ representation

Figure 3.3: The su(2) × su(2) hws of a Ramond representation of
Aγ for massive compared to massless representations.
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entation, the state |Ω−〉 := Q−K0 G−K0 |ΩR〉 has charges

L0 |Ω−〉 = hΩR |Ω−〉 , T+3
0 |Ω−〉 =

(
l+ΩR − 1

)
|Ω−〉 , T−3

0 |Ω−〉 =
(
l−ΩR + 1

)
|Ω−〉 ,

(3.3.24)

and is the unique ground state with highest ŝu(2)− charge. In both cases, the state

|ΩR〉 is known in the literature as |Ω+〉 and the ground state with highest ŝu(2)−

charge is known as |Ω−〉. As noted above, |Ω−〉 is the state we would have obtained

as our hws if we had flowed in the ŝu(2)− direction rather than the ŝu(2)+ direction.

If the ŝu(2)± charges are labelled as

T+3
0 |Ω+〉 = l++ |Ω+〉 , T−3

0 |Ω+〉 = l−+ |Ω+〉 ,

T+3
0 |Ω−〉 = l+− |Ω−〉 , T−3

0 |Ω−〉 = l−− |Ω−〉 ,
(3.3.25)

then the representation of Aγ is labelled by the charges

l+R := l++, l−R := l−−. (3.3.26)

In terms of the representation labels l±R, the allowed ranges of the ŝu(2)± charges

now take the more symmetric form

1
2 ≤ l± ≤ k±

2 , (3.3.27)

and if either charge is equal to 1
2 we automatically have a massless representation.

The massless bound for Ramond representations should also be given in terms of

the representation label l±R as

hk =
(
l+R + l−R −

1
2

)2
+ u2 + k+k−

4 , (3.3.28)

though we should perhaps note that the bound for a massive representation is

hk >
(
l+R + l−R − 1

)2
+ u2 + k+k−

4 , (3.3.29)

due to the existence of the state Q−K0 G−K0 |ΩR〉 in a massive representation.

In fig. 3.4, we show the difference between the ground levels of massless and massive

representations of Aγ in the Ramond sector with parameters k+ = 4, k− = 3, l+ =
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3
2 , l
− = 1. The massless representation is easily distinguished due to the non-existence

of a state with (ŝu(2)+, ŝu(2)−) charges (l+ΩR − 1, l−ΩR + 1) compared to the ground

state with charges (l+ΩR , l
−
ΩR).

To summarise the results for the Ramond sector, a UHWR of Aγ for fixed γ and

c is given in terms of four quantum numbers, h, l±, u. The quantum number u is

required to be a real number, u ∈ R, and the other charges are as shown in table 3.2.

Type of Rep. ŝu(2)± Charges Conformal Weight

Aγ Massless 1
2 ≤ l±R ≤ k±

2 khR = u2 + (l+R + l−R − 1
2)2 + k+k−

4

Aγ Massive 1 ≤ l±NS ≤ k±−1
2 khR > u2 + (l+R + l−R − 1)2 + k+k−

4

Table 3.2: A summary of the charges of Aγ representations in the
R sector
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(a) Massless

(b) Massive

Figure 3.4: The difference between massless and massive Ramond represent-
ations of Aγ at level 0. Both representations have levels k+ = 4
and k− = 3. The massless representation is taken to have
charges l+ = 3

2 , l
− = 1

2 . The massive representation is taken to
have charges l+ = 3

2 , l
− = 1. Note that this means the highest

weight state |Ω+〉 has the same charges in both representations.
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3.4 Characters for Aγ

In section 2.1.5 we defined the character of a module V (c, h) of the Virasoro algebra

as

χc,h(τ) := TrV (c,h) q
L0−c/24.

We can similarly define characters for Aγ-modules such as discussed in the preceding

subsection. As discussed in sections 3.2 and 3.3, at fixed values of k± (or equivalently,

at fixed values of c and γ), representations of Aγ are classified by quantum numbers

{h, l+, l−}. We therefore define the characters of a module V (c, h, l+, l−) of Aγ

as [PT90a],

χAγ ,{NS,R}(k+, k−, h, l+, l−; q, z+, z−) := TrV (c,h,l+,l−)(qL0−c/24z
2T+3

0
+ z

2T−3
0

− ), (3.4.1)

where as usual we have q = e2πiτ and now we have two further variables corresponding

to the two ŝu(2)± charges defined as z± = e2πiω± for ω± ∈ C. Note that we have

suppressed a possible dependence on the U0 charge (this corresponds to setting the

variable χ = 1 in [PT90a] equation 2.17). In the following we will primarily be

concerned with characters of Ramond modules of Aγ. Once we know the Ramond

characters, we will be able to obtain the Neveu-Schwarz characters simply by utilising

the spectral flow isomorphism discussed in section 3.3. Explicitly, since the modules

are isomorphic, we have (for a massive representation)

χAγ ,NS(h, l+, l−, u; q, z+, z−) = TrV (qLNS0 −c/24z
2T+3,NS

0
+ z

2T−3,NS
0

− ),

= TrV (qLR0 +T+3,R
0 +k+/4−c/24z

2T+3,R
0 +k+/2

+ z
2T−3,R

0
− ),

= qk
+/4z

k+/2
+ TrV (qLR0 −c/24[q1/2z+]2T

+3,R
0 z

2T−3,R
0

− ),

= qk
+/4z

k+/2
+ χAγ ,R(h− l+ + k+

4 ,
k+

2 − l
+, l− + 1; q, q1/2z+, z−),

(3.4.2)

where we have suppressed the levels of the subalgebras in the character as these are

unaffected by the spectral flow isomorphism, and we have called the Aγ module V .

Note that the character is labelled by the greatest ŝu(2)± charges from any ground

state, and hence although the spectral flow does not alter the ŝu(2)− charge of our
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highest weight state, it does affect the representations labels as in eq. (3.3.26). This

isomorphism also exists at the level of Ãγ [PT90b] where the characters are related

by,

χ
Ãγ ,NS
Massive(h, l̃+, l̃−; q, z+, z−) =

qk̃
−/4zk̃

−

− χ
Ãγ ,R
Massive

(
h− l̃− + k̃−

4 , l̃+ + 1
2 ,
k̃−

2 − l̃
−; q, z+, q

1
2 z−

)
,

χ
Ãγ ,NS
Massless(l̃+, l̃−; q, z+, z−) = qk̃

−/4zk̃
−

− χ
Ãγ ,R
Massless

(
l̃+,

k̃−

2 − l̃
−; q, z+, q

1
2 z−

)
.

(3.4.3)

Note that these previous equations correspond to flowing in z− rather than z+ and

equivalent expressions exist for the case one flows in z+.

As in the case of the Virasoro algebra, the character of a Verma module of Aγ

can be calculated very simply. We saw in section 2.1.5 that each of the bosonic

raising modes Ln contributed a factor of (1− qn)−1 and hence taking all the raising

modes into account gave a contribution of ∏n∈Z>0(1 − qn)−1. In Aγ we have four

such sets of raising modes which simply increase the conformal weight, specifically

Ln, Un, T+3
n and T−3

n , for n < 0. Each of these therefore contributes a factor of∏
n∈Z>0(1 − qn)−1 to the character of Aγ. We also have the bosonic ŝu(2)± raising

and lowering operators T±,+n and T±,−n . Clearly we may not act with the zero

modes of raising operators on the highest weight state and hence for the raising

operators T±,+n we require n > 0. Each time we act with a raising operator, we

increase the ŝu(2)± charge by 1, and so the raising modes give a contribution to the

character of ∏n∈Z>0(1− z2
+q

n)−1(1− z2
−q

n)−1. For the lowering operators we are also

allowed to act with the zero modes. Similarly to the raising modes, each action of a

lowering operators lowers the ŝu(2)± charge by 1 and so the lowering operators give

a contribution of ∏n∈Z≥0(1− z−2
+ qn)−1(1− z−2

− qn)−1. Let us therefore define

B+−(q, z+, z−) :=
∞∏
n=1

(1−z2
+q

n)−1(1−z−2
+ qn−1)−1(1−z2

−q
n)−1(1−z−2

− qn−1)−1(1−qn)−2,

(3.4.4)

as the contribution to the character of the ŝu(2)± operators.
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For the fermionic operators we may not act with any particular mode more than

once due to the anti- commutation relations these operators satisfy. If we consider

one particular fermionic operator, say Q+K , then the modes Q+K
n for n < 0 raise

the conformal weight by n and change the ŝu(2)+ and ŝu(2)− charges by 1
2 and

−1
2 respectively. The contribution of these modes to the character is therefore∏∞
n=1(1 + z+z

−1
− qn). The contribution from all 8 fermionic operators (excluding the

zero modes momentarily) is therefore [FR(q, z+, z−)]2, where

FR(q, z+, z−) :=
∞∏
n=1

(1 + z+z−q
n)(1 + z+z

−1
− qn)(1 + z−1

+ z−q
n)(1 + z−1

+ z−1
− qn), (3.4.5)

since the contribution from the Qa’s is identical to the contribution from the Ga’s.

In the NS sector the result is similarly given by

FNS(q, z+, z−) :=
∞∏

n=1/2
(1 + z+z−q

n)(1 + z+z
−1
− qn)(1 + z−1

+ z−q
n)(1 + z−1

+ z−1
− qn),

= q−1/12η−2(q)θ3(q, z+z−)θ3(q, z+z
−1
− )

(3.4.6)

where now n runs over the positive half-integers. For the second line, we use the

definitions of the Jacobi theta functions as in Appendix B. Finally, in the R sector

we may act on our highest weight state with fermionic zero modes. By eq. (3.3.1),

we may not act with Q{+,+K}0 or G{+,+K}0 , so we only have the contributions from

Q
{−,−K}
0 and G{−,−K}0 , namely (1 + z−1

+ z−)2(1 + z−1
+ z−1

− )2.

Combining all these contributions, we finally get the character for the full reducible

Aγ module in the Ramond sector as

χ
Aγ ,R
reducible(k+, k−, h, l+, l−; q, z+, z−) =B+−(q, z+, z−)[FR(q, z+, z−)]2(1 + z−1

+ z−)2

× (1 + z−1
+ z−1

− )2
∞∏
n=1

(1− qn)−2.

(3.4.7)

To find the characters for the irreducible modules of Aγ , we must now subtract mod-

ules built on singular vectors, the null modules mentioned at the end of section 2.1.5.

As described in section 2.1.5, in order to obtain an irreducible Aγ-module, we should

take the quotient of the Aγ Verma module by its maximal proper submodule. To
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complete the calculation for characters of the irreducible modules we therefore need

to identify all the singular vectors of Aγ. It turns out to be simpler to consider the

singular vectors of Ãγ and hence to give the irreducible characters of Ãγ from which

the characters of Aγ can be found using

ChAγ ,I(h, lI±) = ChAQU ,I ×ChÃγ ,I(h, l̃I±), (3.4.8)

where I ∈ {NS,R} and AQU is the algebra of the four fermions and the û(1)

generator that were removed from Aγ to obtain Ãγ as explained in Section 3.1. We

have [PT90a] l̃NS± = lNS± and l̃R± = lR± − 1
2 due to the fermionic zero modes in AQUR.

The quantum numbers in eq. (3.4.8) are therefore equal for the NS sector, but differ

by 1
2 for the R sector.

Using similar reasoning to above, the character for AQU is easily seen to be

ChAQU ,NS(u; q, z+, z−) = qu
2/k−1/8FNS(q, z+, z−)

∞∏
n=1

(1− qn)−1, (3.4.9)

since the central charge of the four fermions and one boson gives c = 3 and by

eq. (3.2.13) the bosonic generator contributes u2

k
to the conformal weight. In the

Ramond sector we must also take into account the fermionic zero modes. The hws of

AQU has quantum numbers l+ = 1
2 , l
− = 0 (see [PT90a; GPTV89; GS88] for details)

and hence the contribution from the fermionic zero modes is q1/4z+(1 + z−1
+ z−1

− )(1 +

z−1
+ z−). We therefore have,

ChAQU ,R(u; q, z+, z−) = qu
2/k+1/8FR(q, z+, z−)

∞∏
n=1

(1− qn)−1(1 + z−1
+ z−1

− )(z+ + z−)

=
(
qu

2/k 1
η(q)

)
×
(
θ2(q, z+z−)θ2(q, z−1

+ z−)
η2(q)

)

=: ChAU ,R(u; q)× ChAQ,R(q, z+, z−).
(3.4.10)

As stated above, we now consider singular vectors of Ãγ . In lemma 3.3.2 we showed

that the ŝu(2)+ operator (T++
−1 )k+−2l++1 annihilated the hws of the representation.

Since this argument only relied on the ŝu(2)+ subalgebra of Aγ, which is identical

in Ãγ, it also applies to a hws of Ãγ, with level k̃+. Furthermore, the argument
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presented relied only on the condition that T++
1 annihilated the hws. It therefore

holds for any singular state if one replaces the charge l+ with the ŝu(2)+ charge

of the singular state, since by definition singular states are also annihilated by the

positive modes of operators as in section 2.1.5. Since we are considering Ãγ here, a

state is singular (of the + type) if

L̃n |ρ〉 = T̃±in |ρ〉 = G̃a
n |ρ〉 = T̃±+

0 |ρ〉 = G̃
{+,+K}
0 |ρ〉 = 0, n ∈ Z+, a ∈ {±,±K}

(3.4.11)

where the tilde operators are the operators of Ãγ formed from those of Aγ by removing

the {Qa, U} system as in [GPTV89; GS88]. We therefore find that for singular |ρ〉,

the state (T̃++
−1 )k̃+−2L++1 |ρ〉 is singular, where T̃+3

0 |ρ〉 = L+ |ρ〉. Similarly the state

(T̃−−0 )2L++1 |ρ〉 is singular as one would expect for ŝu(2)− and satisfies the conditions

eq. (3.4.11).

As discussed in section 3.3 in the case of Aγ, given a R hws |Ω+〉 there is a second

state which can be considered to be a R hws known as |Ω−〉 and which is annihilated

by G{+,−K}0 . Given a singular state |ρ〉 ≡ |ρ+〉, there also therefore exists a singular

state |ρ−〉 (of the − type) which satisfies all but the final condition of eq. (3.4.11)

and instead satisfies

G̃
{+,−K}
0 |ρ−〉 = 0. (3.4.12)

From this singular state one can also construct the further singular states (T̃+−
0 )2L−+1 |ρ−〉

and (T̃−+
−1 )k̃−−2L−+1 |ρ−〉, where T̃−3

0 |ρ−〉 = L− |ρ−〉.

As discussed in detail in [PT90b], these form chains of singular states, the modules

built on which must be successively removed and added into the reducible character

to obtain the irreducible character of Ãγ. Further care must be taken as to which

fermionic zero modes can be used to construct the module built on each singular

state. To construct the irreducible character of the module built on a hws |Ω̃〉, one

therefore starts with the character for the Verma module buit on |Ω̃〉 (given by

eq. (3.4.7) divided by eq. (3.4.9) or eq. (3.4.10) depending on the sector). From this,

one then subtracts characters with quantum numbers appropriate for the singular
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state being considered and with the appropriate fermionic zero mode factors removed,

then adds characters for doubly removed states and so on (the relevant embedding

diagrams are simple chains). Finally, one obtains the irreducible character formulae

for Ãγ [PT90b],

ChÃγ ,NSMassive(k̃+, k̃+, l̃+, l̃−, h; q, z+, z−) = qh−c/24+1/8FNS(q, z+, z−)B+−(q, z+, z−)

×
∞∏
n=1

(1− qn)−1

×
∞∑

m,n=−∞
qn

2k̃++m2k̃−+2nl̃++2ml̃−qm+nz−1
+ z−1

−

×
∑

ε+,ε−∈{±1}
ε+ε−z

ε+
+ z

ε−
− z

2ε+ (̃l++nk̃+)
+ z

2ε− (̃l−+mk̃−)
− ,

(3.4.13)
ChÃγ ,RMassive(k̃+, k̃+, l̃+, l̃−, h; q, z+, z−) = qh−c/24+1/8FR(q, z+, z−)B+−(q, z+, z−)

×
∞∏
n=1

(1− qn)−1(z−1
+ + z−1

− )(1 + z−1
+ z−1

− )

×
∞∑

m,n=−∞
qn

2k̃++m2k̃−+2nl̃++2ml̃−

×
∑

ε+,ε−∈{±1}
ε+ε−z

2ε+ (̃l++nk̃+)
+ z

2ε− (̃l−+mk̃−)
− ,

(3.4.14)
ChÃγ ,NSMassless(k̃+, k̃+, l̃+, l̃−; q, z+, z−) = qh−c/24+1/8FNS(q, z+, z−)B+−(q, z+, z−)

×
∞∏
n=1

(1− qn)−1

×
∞∑

m,n=−∞
qn

2k̃++m2k̃−+2nl̃++2ml̃−qm+nz−1
+ z−1

−

×
∑

ε+,ε−∈{±1}
ε+ε−z

ε+
+ z

ε−
− z

2ε+ (̃l++nk̃+)
+ z

2ε− (̃l−+mk̃−)
− (1 + qn+m+1/2z

ε+
+ z

ε−
− )−1,

(3.4.15)
ChÃγ ,RMassless(k̃+, k̃+, l̃+, l̃−; q, z+, z−) = qh−c/24+1/8FR(q, z+, z−)B+−(q, z+, z−)

×
∞∏
n=1

(1− qn)−1(z−1
+ + z−1

− )(1 + z−1
+ z−1

− )

×
∞∑

m,n=−∞
qn

2k̃++m2k̃−+2nl̃++2ml̃−

×
∑

ε+,ε−∈{±1}
ε+ε−z

2ε+ (̃l++nk̃+)
+ z

2ε− (̃l−+mk̃−)
− (z−ε++ q−n + z

−ε−
− q−m)−1,

(3.4.16)



3.4. Characters for Aγ 79

where B+− and F I are as defined in eqs. (3.4.4) to (3.4.6). The characters for Aγ are

then finally given by multiplying the above expressions by eq. (3.4.9) or eq. (3.4.10)

depending on the relevant sector.

Finally, we note that the characters of Ãγ satisfy

ChÃγ ,NSMassless(k̃+, k̃+, l̃+, l̃−; q, z+, z−)+ ChÃγ ,NSMassless(k̃+, k̃+, l̃+ + 1
2 , l̃
− + 1

2; q, z+, z−)

= ChÃγ ,NSMassive(k̃+, k̃+, l̃+, l̃−, hMassless; q, z+, z−),
(3.4.17)

where hMassless denotes the value of h which saturates the massless bound for Ãγ . A

massive character formally evaluated at this value of h is said to be at threshold.



Chapter 4

The Witten Index and The

Elliptic Genus

Index theory, rooted in topology, offers insights on several areas of mathematics and

theoretical particle physics. The classical index theory we refer to is based on the

celebrated Atiyah-Singer theorem as formulated for a smooth compact manifold M

of dimension d = 2n. In this context, the representation theory of spin groups and of

classical Lie groups plays a prominent role [Ati14]. Indices are topological invariants

that can be used as tools to help decide whether two mathematical objects might

be equivalent. For instance one can consider the Euler characteristic of a manifold;

since this is a topological invariant, two manifolds with different Euler characteristics

cannot be homeomorphic. In general however one cannot conclude that two manifolds

with the same Euler characteristic are homeomorphic, as for example both the 2-

sphere and Mobiüs strip have Euler characteristic 0, but the Mobiüs strip is non-

orientable and so cannot be homeomorphic to the sphere. Classical index theory

has been beautifully related to field theory, which describes the physics of point

particles, through the work of several particle physicists building on a seminal paper

by Witten, where constraints on supersymmetry breaking are explored [Wit82]. In

field theories, the spectrum of massless particles is governed by index theorems – the

index of the Dirac operator /D for example, is the difference between the number of
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massless fermions of positive and negative chiralities – which encode information on

the topology of the manifold on which the particles evolve.

In 1984, the first ‘string revolution’ was triggered by the discovery that the cancel-

lation of anomalies in string theory constrained the possible gauge groups [GS84]

and physicists began to take string theory seriously as a candidate for a theory

of quantum gravity. Since the Atiyah-Singer index theorem is instrumental in the

discussion of anomalies in field theory, this classical theory was revisited with a

view to applying it to string theory and studying conditions for anomaly-free string

theories. This was the line of attack taken by Alvarez, Killingback, Mangano and

Windey in 1985 in an unpublished work entitled The index of the Ramond operator

and later revisited by them in [AKMW87b; AKMW87a]. By then, Witten had pub-

lished his paper on Elliptic genera and quantum field theory [Wit87] and Schellekens,

Warner and Pilch had published their works on anomalies [PSW87; SW86a; SW86b;

SW87]. Not surprisingly, the natural framework turned out to involve loop spaces

of manifolds instead of the manifolds themselves, and the representation theory of

loop groups, generalising the framework of the classical index theory and leading to

the theory of elliptic genera. One of the difficulties encountered when operators act

on infinite dimensional spaces is that their kernel might be infinite dimensional, and

the calculation of their indices is considerably easier if the kernel can be partitioned

in an infinite set of finite-dimensional subspaces, which transform according to dif-

ferent representations of some group. This partitioning may be realised through a

character-valued index, as is discussed by Witten for the equivariant Dirac-Ramond

operator in [Wit85; Wit87]. There is a rich literature on this subject, which highlights

the intense activity amongst mathematicians and theoretical particle physicists over

almost four decades. In the following we will focus on these indices as topological

invariants and their application to questions of anomalies will not be studied further

here. Although the theory of elliptic genera is by now pretty much established from

a mathematics point of view, we will see that the formulation of some elliptic genera

in terms of mock modular forms in the context of closed superstring theory uncovers
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a new type of moonshine that has not yet received a satisfactory explanation within

string theory.

As a build-up to the material presented in the following chapter, it feels appropriate to

provide a brief review of Witten’s field-theoretic approach to what has become known

as the supersymmetric Witten index - and which belongs to classical index theory -

and of subsequent works by several authors (including Witten) on the elliptic genus,

as they illustrate the power of topological invariants both in mathematics and physics.

The material in the present chapter is not new. The Witten index is introduced and

discussed in [Wit82] and the relation to the Atiyah-Singer index theorem is presented

in [Alv83]. The elliptic genus appears in [Wit87] and is discussed in relation to index

theorems in [Wit88; AKMW87b; AKMW87a]. Since the motivation driving our

thesis has been the hope to establish whether a theory with Aγ symmetry can

exhibit some kind of moonshine phenomenon, we felt it was necessary to understand

the elliptic genus as it applies to small N = 4 theories before discussing indices

for Aγ. We therefore review the above mentioned papers, adding material from the

mathematical literature [HBJL92; Och09; Gri00] in an attempt to present a wider

picture.

The first section highlights some well-known aspects of classical index theory. We

consider indices which can be defined for supersymmetric field theories. In particular,

we discuss the Witten index [Wit82], which for a one-dimensional σ-model turns

out to be related to the Euler characteristic of the target space. We then turn to

the elliptic genus [Wit87] which, for a two-dimensional σ-model, encodes the Euler

characteristic of the target space as well as other classical topological invariants such

as the Hirzebruch signature of the target manifold. We show how the elliptic genus

may be thought of as the index of an operator on the loop space of a manifold. Special

attention is given to the elliptic genus calculated from data encoded in superstring

theories compactified on a K3 manifold, whose worldsheet supersymmetry is governed

by the small N = (4, 4) superconformal algebra at central charges (c, c̄) = (6, 6).

This allows us to summarise the emergence of Mathieu moonshine in section 4.2.3.
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In Chapter 5 however we will see that applying the prescription to obtain the (field-

theoretic) elliptic genus of an N = (4, 4) SCFT to the partition function of any

SCFT with large N = (4, 4) symmetry yields a vanishing quantity. In this case one

may consider instead a generalisation of the elliptic genus.

4.1 The Witten Index

In this section, we recall how the Atiyah-Singer index theorem naturally appears

in the context of the one-dimensional σ-model. In particular, we highlight how

the generalised Gauss-Bonnet and Hirzebruch signature theorems (theorem C.4.12)

appear in this context. This section largely follows [Wit82; Alv83; FW84], though

we have expanded the on the underlying topological aspects in order to make it more

accessible. We provide Appendix C to introduce some of the mathematical concepts

used in this chapter.

4.1.1 The Index of the Supercharge

For notational ease, we restrict to the case of N = 1 supersymmetry (SUSY) for

this section. In one dimension, the supersymmetry algebra is given by [Alv83]

{Q,Q†} = 2H, {Q,Q} = {Q†, Q†} = 0, (4.1.1)

where H is the Hamiltonian and Q is the supercharge. From Q and Q†, one can

form a hermitian operator,

Q̃ = Q+Q†√
2

, (4.1.2)

which clearly satisfies Q̃2 = H. We see that the energy of any state in the theory is

bounded from below by 0, since Q̃ is hermitian and hence has real eigenvalues. In fact,

in a system with unbroken supersymmetry, where the ground state is annihilated by

the supercharges, this state must necessarily have zero energy. If the ground state

of a theory is non-zero we therefore must have broken supersymmetry.
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Given a spin operator J3, whose eigenvalues take values in 1
2Z, we can define an

operator (−1)F which anticommutes with the supercharges as,

(−1)F = e2πiJ3
, {(−1)F , Q} = {(−1)F , Q†} = {(−1)F , Q̃} = 0. (4.1.3)

We now see that states of non-zero energy are paired under supersymmetry. Consider

a bosonic eigenstate of the Hamiltonian |b〉, with non-zero energy E.

H |b〉 = E |b〉 , E > 0. (4.1.4)

We can now act with Q̃ on |b〉 to obtain another state with opposite fermion number

which we call |f〉. This state is also an eigenstate of the Hamiltonian with non-zero

energy E,

H |f〉 := HQ̃ |b〉 = Q̃H |b〉 = E |f〉 , (4.1.5)

since clearly we have {Q̃,H} = 0. However, a bosonic state of zero energy must

satisfy Q̃ |b〉 = 0, since we have Q̃2 = H. We therefore see that whilst positive energy

states are paired under symmetry, zero energy states are not. We denote the number

of bosonic zero-energy states as nE=0
B and the number of fermionic zero-energy states

as nE=0
F .

If we now consider varying the parameters of the theory (the volume, the masses

or the coupling constants), the states of non-zero energy will move about in energy

level, remaining in Bose-Fermi pairs. If a pair of states drop to the ground energy

level, then both nE=0
B and nE=0

F will increase by one. Similarly if the parameters are

varied in such a way that states of zero-energy gain non-zero energy, then both nE=0
B

and nE=0
F must increase by one, since as soon as a state gains a non-zero energy

it must have a supersymmetric partner of the same energy level. The difference

nE=0
B − nE=0

F is therefore invariant under a change of parameters.

The invariant quantity nE=0
B −nE=0

F may now be regarded as the trace of the operator

(−1)F , since states of non-zero energy do not contribute to that trace. Indeed, bosonic

states have integer J3-eigenvalues and hence each contributes (+1) to the trace of

(−1)F , while fermionic states have J3-eigenvalues in Z+ 1
2 and hence each contributes
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(-1) to that trace. Since the non-zero energy states always come in pairs consisting

of one bosonic state and one fermionic state of the same energy, the net contribution

to the trace solely comes from nE=0
B − nE=0

F . Now we note that the infinite sum

over the Hilbert space is not well-defined; since the infinite series is not absolutely

convergent, it depends on the ordering of the terms. We must therefore regularise

the trace and this is achieved by inserting the regulator e−βH with β an arbitrary

positive real number in the trace. Since states with E 6= 0 do not contribute to the

regularised trace, the regularised trace does not depend on β and we are at leisure

to evaluate it at any value of β we see fit. In the limit β → 0 one recovers Tr(−1)F .

We therefore have,

Tr(−1)F e−βH = nE=0
B − nE=0

F , (4.1.6)

a topological invariant known as the Witten Index of the theory. If the Witten

index is non-zero, the net number of zero-energy states in the theory is non-zero

and hence supersymmetry is not broken. However, a zero Witten index does not

imply broken supersymmetry, since it is possible to have nE=0
B = nE=0

F 6= 0, and

to therefore still have unbroken supersymmetry. The Witten index thus provides

a powerful tool in the context of supersymmetry breaking: for instance, given that

there is no clear evidence of supersymmetry in experiments to date, the knowledge

of whether a candidate field theory exhibiting supersymmetry at tree level remains

unbroken when quantum corrections are taken into account is extremely valuable.

We will now see that the quantity Tr(−1)F should be thought of as the index of an

operator. Let us split the Hilbert space H into bosonic and fermionic subspaces,

H = HB ⊕HF . Since the supercharge Q̃ maps bosons to fermions and vice versa

it takes the form of an off-diagonal operator,

Q̃ =


0 Q†

Q 0

 , (4.1.7)

acting on states of the form, (B|F )T , where T denotes the transpose.
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Now, as discussed above, since H = Q̃2, the states of zero-energy are those which

are annihilated by Q̃. Zero-energy bosonic states are therefore the states φ ∈ HB

such that Qφ = 0 and zero-energy fermionic states are therefore states φ ∈HF such

that Q†φ = 0. Since Q† is the adjoint of Q we therefore have

Tr(−1)F e−βH = nE=0
B − nE=0

F ,

= {no. of solutions to Qφ = 0} − {no. of solutions to Q†φ = 0},

= dim Ker Q− dim Ker Q† = dim Ker Q− dimCoker Q,

=: Index(Q).
(4.1.8)

4.1.2 The Witten Index for a Simple σ-Model

We first comment on the Witten index for a σ-model with 0 + 1-dimensional world-

sheet. We will see that in this simple case we can already identify the Witten index

with a well known topological invariant, specifically the Euler characteristic of the

associated target manifold. Furthermore, we show how a path integral formulation

for this index recreates the Gauss-Bonnet theorem.

We take as our starting point the supersymmetric sigma model eq. (2.2.34) with

worldsheet space S1, target space M of dimension d and fields φj, ψk with j, k ∈

{1, 2, . . . , d} functions of x0 only,

S[φ, ψ] = 1
2

∫
dx0

(
gij(φ)φ̇iφ̇j + igij(φ)ψ̄iγ0D0ψ

j + 1
6Riklj(ψ̄iψk)(ψ̄lψj)

)
D0ψ

i = ψ̇i + Γijkφ̇jψk,
(4.1.9)

where ˙ := ∂0 and the covariant derivative is with respect to the Levi-Civita

connection. As noted in section 2.2.2, this shows that the fermions ψi transform as

vector fields on M .

Following [Wit82], we change to a basis in which γ0 = diag(1,−1) and ψj = (χj, χ†j)T ,

where χ†j is the hermitian conjugate of χj and these Weyl spinors satisfy the anti-
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commutation relations

{χi, χj} = {χ†i , χ
†
j} = 0, {χi, χ†j} = gij (4.1.10)

with gij functions of the fields φk. We can therefore interpret χj and χ†j as annihilation

and creation operators respectively. The supercharges are calculated using Noether’s

theorem as

Q = i
d∑
i=1

χ†ipi, Q† = −i
d∑
i=1

χipi, (4.1.11)

where pi is the momentum conjugate to φi. These supercharges satisfy the super-

symmetry algebra

Q2 = (Q†)2 = 0, {Q,Q†} = H. (4.1.12)

Now an important and far reaching realisation is that the Hilbert space of this model

is described by the space of square-integrable differential forms on the manifold: if

a state |Ω〉 satifies χi |Ω〉 = 0 ∀i, it is bosonic and must be given by a (complex)

function of only the scalar coordinates, A(φk); acting on such a state with χ†i creates

a fermionic state of type i, which must therefore be given by a (complex) function

with one index tangent to the manifold, Ai(φk); applying χ†j, j 6= i on the latter

state yields a two-fermion state which must be given by a (complex) function Aij(φk),

antisymmetric in the indices i, j to account for the anticommutation of the creation

operators χ†i , χ
†
j. In general a state containing k < d fermions in this theory must be

represented by an antisymmetric rank-k tensor field A1,...,k(φi), while a state with d

fermions is given by a scalar function by Hodge duality. This construct is exactly

the (complex valued) de Rham complex of the manifold M .

In this differential geometry context, we remark that the supercharge operator

Q = i
∑d
i=1 χ

†
ipi acts as the exterior derivative of the de Rham complex decribed

above. Indeed, the exterior derivative of a p-form ω is a (p+ 1)-form given by,

dω = (∂iωi1,...,ip)dxi ∧ dxi1 ∧ . . . ∧ dxip . (4.1.13)

The action of Q on the p-form A, with components Ai1,...,ip(φk), produces a sum
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of states, each with an extra fermion created by a different χ†i , and at the same

time Q differentiates the original state with respect to φi since the momentum pi

conjugate to φi is contracted with χ†i in Q. Therefore the form QA has antisymmetric

components,

(QA)[i,i1,...,ip] = D[iAi1,...,ip](φk), (4.1.14)

where pi = Di := −i D
Dφi

. The creation of a fermion via χ†i has the effect of changing

the form from a p to a (p + 1)-form while differentiating the components of the

p-form and hence, as announced,

Q = d. (4.1.15)

In a similar manner, the operator Q† = −i∑i χipi can be identified with the adjoint

of the exterior derivative, d∗. The Hamiltonian

H = QQ† +Q†Q = dd∗ + d∗d, (4.1.16)

is therefore equivalent to the Laplace-deRham operator ∆ = (d+ d∗)2. The states of

zero energy, those satisfying H |ϕ〉 = 0, where |ϕ〉 may be bosonic or fermionic, are

therefore exactly equivalent to the harmonic forms ∆AI(φk) = 0, where I is some

set of fermionic indices. The Hodge theorem states that there is an isomorphism

from the space of harmonic forms to the de Rham cohomology of M and hence the

space of harmonic k-forms with complex coefficients and the kth cohomology class

Hk(M,C) have the same complex dimension. This dimension is by definition the

kth Betti number bk. See Appendix C for a brief introduction to cohomology. Since

our indices {i1, . . . , ip} tell us the number of fermions in a given state, the p-forms

are to be regarded as bosonic in the case that p is even and fermionic in the case

that p is odd. This brings us to the result

Tr (−1)F e−βH = nE=0
B − nE=0

F =
d∑
p=0

(−1)p bp = χ(M), (4.1.17)

where χ(M) is the Euler number of M and d is the dimension of M .

As is well known, the trace appearing in the Witten index has a path integral
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representation. Since the Hamiltonian is the generator of time translations, the

Witten index describes a path integral over the bosonic and fermionic fields of the

theory. The Witten index can therefore be expressed as

Tr (−1)F e−βH ≡ STr e−βH =
∫
PBC
Dϕ Dψ Dψ̄e−SE , (4.1.18)

where the integral is taken over all field configurations with periodic boundary con-

ditions. The (−1)F insertion comes from taking the fermions to be periodic in time.

This is explained in more detail in many textbooks, but see for example [DMS97].

As shown in [Alv83], for the one-dimensional (worldsheet) σ-model considered in

this subsection, if the dimension of the target space M is even, d = 2n this integral

can be evaluated to give

χ(M) = Tr (−1)F e−βH = (−1)n
2dn!πn

∫
M

d(vol) εi1j1...injnεk1l1...knlnRi1j1k1l1 . . . Rinjnknln ,

= 1
(2π)n

∫
M

Pf(Ω),

(4.1.19)

where Pf(Ω) denotes the Pfaffian of the curvature two-form,

Ωab = 1
2Rabcde

c ∧ ed. (4.1.20)

The curvature form on a d = 2n dimensional Riemannian manifold is a two-form

which takes values in the Lie algebra so(d) of the holonomy group SO(d). We can

therefore think of the curvature form in this case as a d× d skew-symmetric matrix

whose elements are two-forms on M . The Pfaffian of this matrix is therefore of order

n in two-forms and hence is a top form and can be integrated over the manifold. We

now recognise eq. (4.1.19) as the generalised Gauss-Bonnet formula.

4.1.3 Other Indices in the 1d σ-Model

In the previous subsection we saw how theWitten index Tr(−1)F for a one-dimensional

(worldsheet) σ-model calculated the Euler characteristic of the target space manifold

M . In this subsection we briefly show how other topological invariants of M can be
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calculated as indices.

The σ-model defined in eq. (4.1.9) has a discrete chiral symmetry given by ψ → γ5ψ

[Alv83]. Defining Q5 to be the operator which implements this symmetry and

considering two supersymmetry operators of definite chirality Q±, we note that

these operators satisfy the relation

Q5Q± = ±Q±Q5. (4.1.21)

The condition Q5Q− = −Q−Q5 can be thought of as analogous to the relation

(−1)FQi = −Qi(−1)F and we can repeat similar arguments as in sections 4.1.1

and 4.1.2 with Q5 now in place of (−1)F . For states of non-zero energy we therefore

have for each eigenstate |ψ〉 of Q5 with eigenvalue +1, an eigenstate given by Q− |ψ〉

which necessarily has Q5 eigenvalue −1, since Q5Q− |ψ〉 = −Q−Q5 |ψ〉 = −Q− |ψ〉.

As before, states of zero-energy are annihilated by Q− and so form one-dimensional

representations of the supersymmetry algebra and do not necessarily come in pairs.

We can therefore define a quantity Tr Q5 which is given entirely by the zero-energy

states. As before, the quantity Tr Q5 is independent of small changes to the

parameters of the theory.

We can again interpret this in terms of the (complex valued) de Rham complex.

The creation and annihilation operators χ and χ† were defined as eigenstates of γ0

with eigenvalues +1 and −1 respectively. Now since γ5γ0 = −γ0γ5, the operator

implementing this chiral symmetry Q5 exchanges the operators of eigenvalue +1 and

−1; that is, Q5 exchanges χ↔ χ†. Considering a 0-form in the de Rham complex,

which by definition is a state annihilated by any of the annihilation operators, we

realise it must be mapped under Q5 to a state which is annihilated by all the

creation operators; we therefore realise this must be an d-form if M is of dimension

d. Similarly, a 1-form containing one creation operator χ†i must be mapped to an

annihilation operator χi acting on the n-form containing all of the creation operators,

schematically

χ†i
∣∣∣φk〉 Q5−→ χiχ

†
1χ
†
2 . . . χ

†
d

∣∣∣φk〉 . (4.1.22)
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We can now use the anticommutation relations of the χ and χ† operators to remove

one of the creation operators resulting in a state containing n− 1 creation operators,

which we recognise as an (d− 1)-form in the de Rham complex. In general Q5 sends

p-forms to (d− p)-forms; Q5 should be identified as the Hodge ∗ operation.

Tr Q5 (or Tr Q5e
−βH) is therefore given by the number of harmonic forms in the

positive eigenspace of the Hodge ∗ operation minus the number of harmonic forms in

the negative eigenspace of ∗. Let us consider a form in the positive eigenspace of ∗,

α = α0 + . . .+αd, where each αi is an i-form. Since ∗ sends p-forms to (d− p)-forms,

it must be the case that ∗α0 = αd and ∗αd = α0. Hence α0 + αd is itself in the

positive eigenspace of ∗. However we now realise that α0−αd must be in the negative

eigenspace of ∗. In general for any state formed as the sum of a p-form (p 6= d
2) and

an (d− p)-form in the positive eigenspace of ∗, there must be a state in the negative

eigenspace of ∗. However for n-forms, where d = 2n, ∗ is a map from n-forms to

n-forms. Hence we have

Tr Q5 = nE=0(Q5 = +1)− nE=0(Q5 = −1) = dim Hn
+ − dim Hn

−, (4.1.23)

where Hn
+ is to be understood as the space of harmonic n-forms in the positive

eigenspace of ∗ and similarly for the negative eigenspace.

If we consider the non-degenerate bilinear form

I : Hn ×Hn → C

(α, β) 7→
∫
M
α ∧ β̄,

(4.1.24)

where β̄ denotes the complex conjugate, then we see that I is positive-definite on

Hn
+ ×Hn

+ and negative-definite on Hn
− ×Hn

−, as given α ∈ Hn
+ and β ∈ Hn

−

I(α, α) = I(α, ∗α) =
∫
M
α ∧ ∗ᾱ = 〈α, α〉 ≥ 0,

I(β, β) =− I(β, ∗β) = −
∫
M
β ∧ ∗β̄ = −〈β, β〉 ≤ 0,

I(α, β) =− I(α, ∗β) = −〈α, β〉 = −〈β, α〉

= −I(β, ∗α) = −I(β, α) = −I(α, β) = 0,

(4.1.25)
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where

〈α, β〉 :=
∫
M
α ∧ ∗β̄, (4.1.26)

defines an inner product on p-forms.

Again, by the Hodge de Rham theorem the space of harmonic p-forms is isomorphic

to the pth cohomology group of M . Hence the above bilinear form I is equivalent to

the intersection form

H : Hn(M,C)×Hn(M,C)→ C,

(α, β) 7→ 〈α ^ β, [M ]〉,
(4.1.27)

where ^ denotes the cup product which is defined in Appendix C. In the case that

M is of dimension d = 4k, then the cup product on 2k-forms is symmetric, since for

αp a p-form and βq a q-form,

αp ^ βq = (−1)pq(βq ^ αp). (4.1.28)

In this case, the difference between the dimension of the positive eigenspace and

negative eigenspace of the associated symmetric bilinear form, the signature of the

form, is known as the Hirzebruch signature of the manifold (cf. definition C.4.10).

Therefore for a d = 4k-dimensional manifold M we have

Tr Q5e
−βH = dim H2k

+ − dim H2k
− = dim H2k

+ − dim H2k
− = τ(M), (4.1.29)

where τ(M) is the Hirzebruch signature of the manifold.

As in the previous subsection, we can compute the index density by using the func-

tional integral form of Tr(Q5e
−βH). Since the operator Q5 splits the fermionic space

into a positive and negative eigenspace, we now have to integrate over periodic

boundary conditions for bosonic and fermionic configurations in the negative ei-

genspace, but antiperiodic boundary conditions for fermionic configurations in the

positive eigenspace of Q5. We then obtain [Alv83]

τ(M) = Tr(Q5e
−βH) =

∫
M

∏
α

χα
tanh(χα) , (4.1.30)
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where χα are the (skew-)eigenvalues of the skew-symmetric matrix 1
2πΩab. Since

these eigenvalues are two-forms for all α, as discussed in section 4.1.2, the function

L(M) :=
∏
α

χα
tanh(χα) , (4.1.31)

known as the Hirzebruch polynomial, defined through its Taylor expansion contains

a finite number of terms, terminating with a top form. We therefore obtain the

signature of M by integrating this top form over M .

If we now define Q(x) = x
tanh(x) such that L(M) = ∏d

i=1Q(xi), then as discussed

in Appendix C.4, we expect to be able to write L(M) as a homogeneous multiplic-

ative sequence in the elementary symmetric polynomials ei(x2
i ); that is, L(M) is a

polynomial in Pontryagin classes. The top form that we should take to calculate

eq. (4.1.30) is the homogeneous term of weight d from this multiplicative sequence,

where as above, d is the dimension of M . This is exactly the definition of the genus

associated to the characteristic series Q(x), the L-genus. We therefore find

τ(M) = Tr(Q5e
−βH) = φL(M), (4.1.32)

and we have reproduced the Hirzebruch signature theorem from the σ-model.

One can similarly find the index of the Dirac operator i /D and the Dolbeault index,

ind(∂̄), over spin and complex manifolds respectively. The densities for these indices

take a similar form to that of eq. (4.1.30),

ind(i /D) =
∫
M
Â(M), ind(∂̄) =

∫
M
td(M), (4.1.33)

where

Â(M) =
∏
α

χα/2
sinh(χα/2) , td(M) =

∏
α

ωα
1− e−ωα , (4.1.34)

define characteristic polynomials for the indices. In each case the characteristic

polynomial gives a finite polynomial in two-forms terminating in a top form and it

is this form we should integrate over the manifold. The ωα appearing in eq. (4.1.34)
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are the eigenvalues of the curvature form in complex coordinates,

Ωαβ̄ := i

2πRαβ̄γδ̄ dzγ dz̄δ. (4.1.35)

The previous calculations for the index densities can be combined into the following

equation known as the Atiyah-Singer index theorem for compact, oriented, differen-

tiable manifolds of dimension d = 2n [HBJL92; EGH80],

ind(D) = (−1)n
(∑m

i=0(−1)i ch(Ei)
e(TM) td(TM ⊗ C)

)
[M ], (4.1.36)

where D = (Di : ΓEi → ΓEi+1), i ∈ {1, . . . ,m} is an elliptic complex and e(E) =∏n
1 xi is the Euler class of the bundle, written in terms of the Chern classes xi of the

bundle E. In the case of the Euler characteristic, where by eqs. (4.1.8) and (4.1.15)

we have χ(M) = ind(d), the elliptic complex is given by the complex-valued de

Rham complex Λi(T ∗ ⊗ C) with the exterior derivative acting on the forms. In

the case of the signature τ(M) = ind(Q−), the elliptic complex is given by the ±1

eigenspaces of ∗ ∼= Q5 where Q− moves from the +1 eigenspace to the −1 eigenspace

and vice-versa.

We do not define an elliptic complex in general, but for an elliptic complex we

always have DiDi−1 = 0, and we can therefore consider the cohomology of the

elliptic complex

H i = Ker(Di)
Im(Di−1) . (4.1.37)

This allows us to define the index of an elliptic complex.

Definition 4.1.1. The index of an elliptic complex D where Di : ΓEi → ΓEi+1 for

i ∈ {1, . . . ,m} is given by

indD =
m∑
i=0

(−1)i dimCH
i =

m∑
i=0

(−1)ihi, (4.1.38)

where we define hi = dimCH
i.

Note that if m = 1 then we have a single D0 : ΓE0 → ΓE1 and

ind(D) ≡ ind(D0) := dimC Ker D0 − dimC Coker D0. (4.1.39)
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As shown in Appendix C,

td(TM ⊗ C) = td(TM ⊕ T ∗M) =
n∏
i=1

(−1)n xi
1− e−xi

xi
1− exi , (4.1.40)

where here n = d
2 , and so we can formally factor out the Euler class,

e(TM) =
n∏
i=1

xi, (4.1.41)

to give the formal equation [HBJL92],

ind(D) =
( m∑

i=0
(−1i) ch(Ei)

)
n∏
j=1

(
xj

1− e−xj
1

1− exj
) [M ]. (4.1.42)

We now show through examples how this reduces to give the index densities for the

Euler characteristic and the signature.

Example 4.1.2. By eq. (C.2.29) we have,

ch(
m∑
i=0

Λi(T ∗ ⊗ C)yi) =
n∏
j=1

(1 + yexj)(1 + ye−xj). (4.1.43)

For y = −1, this is exactly the sum of Chern characters appearing in eq. (4.1.42)

since as described above, this is the relevant elliptic complex for this case. This sum

of Chern characters therefore exactly cancels the denominator from the Todd class,

leaving

ind(d) =
n∏
j=1

xj[m] = e(M)[M ] = χ(M). (4.1.44)

Note that we may also define the Euler class to be given by 1
(2π)n Pf(Ω). This then

gives

χ(M) =
∫
M

1
(2π)n Pf(Ω), (4.1.45)

in agreement with eq. (4.1.19). 4

Example 4.1.3. For the signature, the elliptic complex is given by the positive

and negative eigenspaces of Q5 (in the mathematical literature this is the operator

τ = ip(p−1)+n∗ which acts on the spaces Λp(T ∗ ⊗ C) and satisfies τ 2 = I) which we

call E+ and E− respectively. As explained in section 4.1.3, we define the signature
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for a manifold of dimension d = 4k, then we have [HBJL92]

ch(E+)− ch(E−) =
2k∏
i=1

(exi − e−xi). (4.1.46)

Substituting this into eq. (4.1.42) gives,

τ(M) =
 2k∏
j=1

(exj − e−xj)
2k∏
j=1

(
xj

1− e−xj
1

1− exj
) [M ],

=
 2k∏
j=1

xj(exj/2 + e−xj/2)
exj/2 − e−xj/2

 [M ],

=
 2k∏
j=1

xj
tanh(xj/2)

 [M ] =
 2k∏
j=1

xj
tanh(xj)

 [M ],

(4.1.47)

where the final two products only agree in the homogeneous term of weight 2k. This

however is a cohomology class in H4k(M), and is therefore the class that we need

to integrate over the manifold. It is therefore the only term that needs to agree.

We therefore see that

τ(M) =
( 2k∏
i=1

xi
tanh(xi)

)
[M ] = L(M)[M ] (4.1.48)

in agreement with eqs. (4.1.30) and (4.1.31). 4

4.2 The Elliptic Genus

The previous section introduced the Witten index Tr(−1)F e−βH and showed how

it was given by the index of the supercharge Q. For a one-dimensional σ-model,

it was shown how this was related to the Euler characteristic as well as how other

topological invariants arose as indices. The σ-models which we discussed in Chapter 2

and those of relevance to string theory are two-dimensional σ-models which describe

maps from the string worldsheet to a target space M . In this section, we therefore

want to discuss indices for two-dimensional σ-models and in particular, we want to

introduce the elliptic genus. We first give a general definition of the elliptic genus

and discuss the geometric interpretation of the index. We then define the elliptic

genus more specifically for the case of a two-dimensional N = (2, 2) or N = (4, 4)
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σ-models. The elliptic genus is particularly important to our story, as this is the

index which exhibits moonshine in the case of N = 4 theories.

4.2.1 Elliptic Genus for a 2d Super-σ-Model

In the previous section, we regularised the Witten index with a factor of e−βH . The

resulting expression Tr(−1)F e−βH may therefore be interpreted as the partition

function of the theory with the insertion of the (−1)F operator. We then used a

path integral representation of the partition function to evaluate the index of the

supercharge. Let us now consider the partition function for a two-dimensional σ-

model. In analogy with the one-dimensional case, we therefore consider the conformal

field theory on the cylinder, compactified in the time direction. As in the one-

dimensional case, the Hamiltonian H of the theory generates the time translations,

but in two dimensions a state may also be translated in space and these translations

are generated by the momentum P . Consider a bosonic two-dimensional conformal

field theory on a torus with complex periods ω1 and ω2, that is a torus formed by

taking the quotient of C by the lattice Λ = ω1Z⊕ ω2Z. It is common to work with

the equivalent lattice L = 1
ω1

Λ = Z ⊕ τZ. If we let τ = τ1 + iτ2, then we require

τ1 ∈ R and τ2 ∈ R+ which we can always achieve by permuting ω1 and ω2 if necessary.

We will always assume that ω1 and ω2 are chosen such that τ := ω2
ω1
∈ H for H the

upper half-plane. The partition function is then given by,

Z(τ) := TrH e−2πτ2H+2πiτ1P , (4.2.1)

where H is the Hilbert space of the theory and where the momentum and Hamilto-

nian are given by

H = L0 + L̄0 −
c

12 , P = L0 − L̄0. (4.2.2)

Defining q = e2πiτ and q̄ = e−2πiτ̄ , τ̄ = τ1− iτ2, we can therefore rewrite the partition

function as,

Z(τ) = TrH qL0−c/24q̄L̄0−c/24. (4.2.3)
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Witten first introduced the (conformal field theoretic) elliptic genus for a superstring

σ-model with Ramond boundary conditions for the right-movers and Neveu-Schwarz

boundary conditions for the left-movers [Wit87]. Here, the elliptic genus was defined

as the index of a right-moving supercharge Q which anticommutes with a right-

moving fermion operator,

Q(−1)FR + (−1)FRQ = 0. (4.2.4)

As in eq. (4.1.8), by index we mean the dimension of the kernel of Q minus the

dimension of the cokernel of Q. Since Q now also commutes with the momentum

operator P one can consider the index of Q on individual eigenspaces of the mo-

mentum operator separately. This leads to the definition of the character-valued

index.

Definition 4.2.1. Consider the subspace Hλ defined as the subspace of the Hilbert

space where the momentum operator has eigenvalue λ. Denote the index of Q

restricted this subspace Hλ as hλ. We then define the character-valued index of Q

in terms of a formal variable q to be,

F (q) =
∑
λ

hλq
λ. (4.2.5)

We can now write this character-valued index as the trace of an operator on the

Hilbert space as

F (q) = Tr
(
(−1)FRqL0−c/24q̄L̄0−c/24

)
, (4.2.6)

since F (q) is only counting supersymmetric states which necessarily have L̄0 =
c

24 . States with L̄0 6= c
24 drop out of the above trace due to the pairing by Q.

By eq. (4.2.2), such states have momentum L0 − c
24 , and we therefore see that

eq. (4.2.6) calculates the index of the eigenspaces of momentum as in definition 4.2.1.

Comparing this with eq. (4.2.3), we see that this elliptic genus is an insertion of

(−1)FR into the partition function for a the two-dimensional conformal field theory.

Since Q acts on states representing string configurations this is the index of an
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operator on a space known as the loop space of the target space M , LM .

Definition 4.2.2. The free loop space of M is given by

LM = {g : S1 →M |g is differentiable}. (4.2.7)

The rotation of the string generated by the momentum operator P therefore defines

an S1 action on the loop space of M . Under a few assumptions, this allows us to

define an S1-equivariant index on M [HBJL92].

Definition 4.2.3. Suppose M is a complex manifold of dimension d with an elliptic

complex D = (Di : ΓEi → ΓEi+1). If there is a topological group G which acts onM

by holomorphic maps, and if the G action extends to the bundles Ei and commutes

with Di, then for g ∈ G we can define an equivariant index,

ind(g,D) =
m∑
i=0

(−1)i TrHi g. (4.2.8)

Since the trace of the identity gives the dimension of the space we clearly have

ind(D) ≡ ind(I,D), (4.2.9)

where ind(D) is defined as in definition 4.1.1.

Consider a fixed point submanifold under the G-action, M g
i . Since M is assumed to

be complex, for any p ∈M there exists a Hermitian metric on the tangent space TpM

and hence g acts unitarily on TpM . This tangent space therefore decomposes into a

sum of eigenspaces for eigenvalues of modulus one, and one obtains an eigenbundle

over M g
i . One can show that the equivariant index can be computed as the sum

over i of the fixed point submanifolds M g
i . The contribution to the index from each

fixed component can be calculated using the regular Atiyah-Singer index theorem

(eq. (4.1.42)) modified to take account of the decomposition of the tangent bundle

overM into eigenbundles overM g
i [HBJL92]. When the action is a U(1)-action, since

all representations of U(1) are one-dimensional, the tangent bundle ofM decomposes

into a sum of bundles Nk, on each of which g ∈ G acts as multiplication by gk, for
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k ∈ Z.

The loop space LM has a U(1) action given by,

u(g(x)) = g(x− u), (4.2.10)

for g ∈ LM and u ∈ U(1). The fixed point set under this U(1)-action is M itself,

embedded in LM as the set of constant loops g(x) = m ∈ M, ∀x ∈ U(1). The

tangent bundle of the loop space LM restricted to M , embedded in LM as above

can then be shown to decompose as [HBJL92],

T (LM)|M = TM
⊕
n>0

qnTC, (4.2.11)

with TC ≡ TXC defined as in definition C.2.13. By the discussion in the preceding

paragraph, we see that the U(1)-equivariant index of a an elliptic complex D on the

loop space LM can be calculated using the regular Atiyah-Singer index theorem on

M taking into account the contributions of the decomposition in eq. (4.2.11). After

evaluating the Atiyah-Singer index theorem on M , one therefore obtains a q series

where the coefficient of qk is given by the index of D on the eigenbundle where q

acts by multiplication by qk. This is the character valued index of D.

F (q), the character-valued index of Q, is now seen to be a U(1)-equivariant index

of Q on the loop space of M . Witten [Wit87; Wit88] showed that the index of

this operator (known as the Dirac-Ramond operator) on the loop space LM can be

calculated using the Atiyah-Singer index theorem as,

indQ = q−d/16

Â(M) ch(
⊗

k∈Z≥0+ 1
2

ΛqkT
⊗
l∈Z>0

SqlT )

 [M ], (4.2.12)

where ΛqkT, SqlT are defined as in eq. (C.2.21) for the antisymmetric and symmetric

powers of the tangent bundle to M respectively, and where d is the dimension of M .

This generalises the Â-genus of M to a U(1)-equivariant index on the loop space of

M . Equation (4.2.12) makes it clear that the elliptic genus is a topological invariant,

since we have written it purely in terms of topological data of M .
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4.2.2 Elliptic Genus for N = (2, 2) or N = (4, 4) Theories

In the previous subsection, we saw how the addition of a U(1) action generated by

the momentum, led to a graded index of the σ-model known as the elliptic genus.

When calculated for a σ-model with N = (1, 1) supersymmetry and where we take

left-moving fermions with NS boundary conditions and right-moving fermions with

Ramond boundary conditions we obtained a generalisation of the Â-genus.

If our σ-model admits a second U(1) action generated by K which commutes with

the supercharge, we may consider the index of the supercharge restricted to states

with momentum λ and K eigenvalue k. We then obtain a character-valued index

F̃ (q, θ) =
∑
λ,k

hλ,kq
λeiθk, (4.2.13)

where hλ,k is the index of Q restricted to Hλ,k, the space of states of charge k and

momentum λ. As in the previous subsection, we can write this new index as a trace

on the Hilbert space of states,

Tr
(
(−1)FRqL0−c/24q̄L̄0−c/24eiθK

)
(4.2.14)

since as before, states with L0 = h > c
24 , K = k will cancel from the trace as they

will be paired by Q.

In the case of an N = (2, 2) theory, the right moving U(1)-charge J0 can be treated

as the generator of the additional U(1) mentioned above and so we define the elliptic

genus of an N = (2, 2) theory as the index of one of the right-moving supercharges.

Definition 4.2.4. For an N = (2, 2) theory, we define the elliptic genus to be given

by

ε(τ, y) := TrH (−1)F qL0−c/24q̄L̄0−c̄/24zJ0 , (4.2.15)

where q = e2πiτ , z = e2πiy, τ, y ∈ C, Im(τ) > 0. Here we take H ≡ H R ⊗H R to

be the sector of the theory where both right and left moving fermions have Ramond

boundary conditions. Note that we also now use the left-right fermion number

operator (−1)F := e2πi(J0−J̄0).
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The elliptic genus of an N = (2, 2) theory may also be given in terms of the partition

function of the theory.

Definition 4.2.5. In an N = (2, 2) theory, as well as having conformal weights

h, h̄, states are also charged under the U(1) symmetry giving them ‘isospins’ l, l̄, the

charge under J0, J̄0. The partition function for an N = (2, 2) conformal field theory

is then defined by

Z(q, q̄, z, z̄) = TrH qL0−c/24q̄L̄0−c̄/24zJ0 z̄J̄0 , (4.2.16)

where q = e2πiτ , z = e2πiy, z, τ ∈ C, Im(τ) > 0.

The elliptic genus is then given by,

ε(τ, y) = ZH R̃(q, q̄, z, z̄ = 1), (4.2.17)

where ZH R̃ denotes the partition function restricted to H R, with a (−1)F insertion,

that is with the fermions periodic in time rather than antiperiodic.

For a theory with N = (4, 4) SUSY, one can define the elliptic genus similarly to

the N = (2, 2) case. The N = 4 SCA contains an ŝu(2) subalgebra and so the zero

mode T 3
0 generates a U(1) algebra. We can therefore grade states by their charges

under this U(1), and hence define an equivariant partition function for theories with

N = (4, 4).

Definition 4.2.6. The partition function for an N = (4, 4) conformal field theory

is given by

Z(q, q̄, z, z̄) = TrH qL0−c/24q̄L̄0−c̄/24z2J3
0 z̄2J̄3

0 , (4.2.18)

where q = e2πiτ , z = e2πiy, z, τ ∈ C, Im(τ) > 0.

The elliptic genus for an N = (4, 4) theory is then defined in a similar way as for

the N = (2, 2) case (cf. definition 4.2.4 and eq. (4.2.17)).

Definition 4.2.7. The elliptic genus for an N = (4, 4) theory is defined by

ε(q, z) := ZR̃(q, q̄, z, z̄ = 1) = TrH R(−1)F qL0−c/24q̄L̄0−c̄/24z2J3
0 . (4.2.19)



4.2. The Elliptic Genus 103

Note that the right-moving contribution to the index is given by,

TrH (−1)FR q̄L̄0−c/24, (4.2.20)

where now H is the right-moving Hilbert space and this is simply the Witten index

for the right-movers.

Note that the boundary conditions in definition 4.2.7 differ to those in section 4.2.1.

However, similarly to the Aγ algebra discussed in Chapter 3, the N = 4 algebra has

an isomorphism known as spectral flow [SS87], which allows us to relate the NS and

R sectors of the theory. Using this, we can also relate the elliptic genus to other

topological invariants which we have already discussed.

Proposition 4.2.8. The elliptic genus of an N = (4, 4) σ-model with target space

M can be evaluated at different values of y in order to obtain other topological

invariants.

ε(τ, 0) = TrH R(−1)F qL0−c/24q̄L̄0−c̄/24 = χ(M),

ε(τ, 1/2) = TrH R(−1)FRqL0−c/24q̄L̄0−c̄/24 = Fσ(q),

ε(τ, (τ + 1)/2) = TrH NS⊗H R(−1)FRqL0−c/24q̄L̄0−c̄/24 = FÂ(q) ≡ F (q)

(4.2.21)

where H NS ⊗ H R denotes the sector with left-moving NS conditions and right-

moving Ramond conditions, Fσ(q) is the loop-space index generalising the signature,

and FÂ(q) ≡ F (q) is the index introduced in section 4.2.1 which generalises the

Â-genus.

We now notice that the topological invariants obtained by evaluating the elliptic

genus at the particular values of y discussed above, (0, 1
2 ,

τ+1
2 ) are the invariants

associated with the χy genus at the values (−1, 1, 0) respectively (example C.4.15).

We should therefore expect the elliptic genus to be the equivariant generalisation of

the χy genus. The χy genus can be given by the Atiyah-Singer formula eq. (4.1.42)

as

χy(M) = ch(ΛyT
∗) td(M)[M ], (4.2.22)
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where ΛyT
∗ is defined as in eq. (C.2.21) and T is the holomorphic tangent bundle

T 1,0M . The elliptic genus can then be defined similarly [Gri00; Wen15].

Definition 4.2.9. The (geometric) elliptic genus of a complex d-dimensional mani-

fold M can be given in terms of characteristic classes of M as

ε(M) = ch(Eq,y) td(M)[M ], (4.2.23)

where Eq,y is the bundle

Eq,y := yd/2
⊗
n≥1

Λ−y−1qn−1T ⊗ Λ−yqnT ∗ ⊗ SqnT ⊗ SqnT ∗, (4.2.24)

for T the holomorphic tangent bundle and where SnT is defined as in eq. (C.2.21)

but for symmetric rather than antisymmetric products.

We briefly comment on the modularity of the elliptic genus for N = (2, 2) and

N = (4, 4) theories.

Definition 4.2.10. A weak Jacobi form of weight k and index p is a holomorphic

function φ on H× C satisfying

φ(γ · τ, z

cτ + d
) = (cτ + d)ke2πipcz2/(cτ+d)φ(τ, z),

φ(τ, z + λτ + µ) = (−1)2p(λ+µ)e−2πitλ(λτ+2z)φ(τ, z),
(4.2.25)

for γ =


a b

c d

 ∈ SL(2,Z), λ, µ ∈ Z, and with Fourier expansion satisfying

φ(τ, z) =
∑
n≥0
l∈t+Z

f(n, l)e2πi(nτ+lz). (4.2.26)

Proposition 4.2.11. The elliptic genus of an N = (2, 2) or N = (4, 4) theory on

a Calabi-Yau d-fold M transforms as a weak Jacobi form of weight 0 and index d
2 .

This is proved using the field-theoretic definition of the elliptic genus in [KYY94]

and using the geometric definition in [Gri00].
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4.2.3 Elliptic Genus and Moonshine

The motivation for this thesis was in investigating whether a similar phenomenon to

that of Mathieu moonshine exists when the conformal algebra of the theory has Aγ

(i.e. large N = 4) symmetry rather than N = 4 symmetry. Having now introduced

the elliptic genus for N = 4 theories, we are in a position to state what the Mathieu

moonshine observation is. There is much one could discuss about moonshine and so

this subsection will not try to be exhaustive, but simply mention some of the basic

features of moonshine as it is known to relate to the elliptic genus.

By proposition 4.2.11, we know the elliptic genus of a σ-model with a Calabi-Yau

(CY) d-fold target space is a weak Jacobi form of weight 0 and index d
2 . If we consider

Calabi-Yau 2-folds, then the only possibilities are tori and K3 surfaces.

Proposition 4.2.12. The elliptic genus of a σ-model with target space T 4 or K3 is

given respectively by,

εT 4(q, z) = 0, εK3(q, z) = 8
(θ2(q, z)

θ2(q, 0)

)2

+
(
θ3(q, z)
θ3(q, 0)

)2

+
(
θ4(q, z)
θ4(q, 0)

)2
 .

(4.2.27)

Proof. The elliptic genus for such a σ-model must be a weak Jacobi form of weight

0 and index 1. The space of such forms is one dimensional [Gri00], and one may

take as a generator the form

φ0,1(q, z) =
(
θ2(q, z)
θ2(q, 0)

)2

+
(
θ3(q, z)
θ3(q, 0)

)2

+
(
θ4(q, z)
θ4(q, 0)

)2

, (4.2.28)

where θi(q, z) are the Jacobi theta functions.

By proposition 4.2.8, the elliptic genus evaluated at z = 0 gives the Euler character-

istic. We clearly have

φ0,1(q, 0) = 3, (4.2.29)

and hence for a σ-model with target space M a CY 2-fold,

εM(q, z) = χ(M)
3 φ0,1(q, z). (4.2.30)
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Since the torus T 4 has χ(T 4) = 0 and K3 has χ(K3) = 24, we therefore obtain the

result.

K3 is a hyper-Kähler manifold, and hence by section 2.2.2 a σ-model on K3 must

have N = (4, 4) SUSY. One therefore expects to be able to express the partition

function for the σ-model in terms of characters of the left and right N = 4 SCA.

The elliptic genus must then also be expressible in terms of N = 4 characters, since

by definition 4.2.7 the elliptic genus is just the partition function in a particular

subsector, evaluated at z̄ = 1. Although there is no known complete classification

of modular invariant partition functions for K3 theories, some modular invariant

partition functions have been calculated at particular points of the moduli space of

K3 theories, namely for Gepner models or T 4/Z2 orbifold theories [EOTY89]. Since

the elliptic genus is a topological invariant, it can be calculated at any point on

the moduli space, and thus, for instance, at a Gepner point. It is given in terms of

N = 4 characters as [EOTY89; EH09; Oog89],

εK3(q, z) = 20 ChR̃h=1/4, l=0(q, z)−2 ChR̃h=1/4, l=1/2(q, z)+
∑
n≥1

2An ChR̃h=n+1/4, l=1/2(q, z),

(4.2.31)

where ChR̃ denotes a trace taken in the Ramond sector with a (−1)F insertion, and

h, l indicate the conformal charge and isospin respectively. As the elliptic genus

computes the Witten index for the right movers, then massive representations of

N = 4 (which necessarily have Witten index 0) do not contribute, and hence the

only contribution from the right-moving sector is the Witten index of the massless

representations of N = 4. The explicit values of An were calculated for small n in

[Oog89; EH09]. The first eight are,

n 1 2 3 4 5 6 7 8

An 45 231 770 2277 5796 13915 30843 65550

(4.2.32)

and in [EOT11] it was noted that the first five coefficients are dimensions of irredu-

cible representations of the sporadic group Mathieu 24, or M24. Gannon [Gan16]
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proved that the coefficients An are indeed the dimensions of representations (re-

ducible or not) of M24 for all n. This is reminiscent of ‘Monstrous Moonshine’ in

which the coefficients of the modular function j(τ) are all expressible in terms of

dimensions of representations of the Monster group, which is the largest sporadic

group. Furthermore, the analogue of the McKay-Thompson series which appear in

Monstrous Moonshine were computed for M24 in [EH11; GHV10a; GHV10b; Che10]

and it was confirmed that these so-called twining genera have the required proper-

ties for a ‘Mathieu Moonshine’ to hold. This strongly suggests the existence of an

analogue to the Monster module V\, but despite sustained efforts, this module has

not been constructed so far. The fact that there is no K3 σ-model possessing full

M24 symmetry [GHV11] is intriguing, and the nature of the M24 action on the K3

σ-model model is still poorly understood.

Having discussed supersymmetric indices in general, and as applied to theories with

N = 4 SCAs, in Chapter 5 we consider the indices that may be applied to Aγ

theories and the states which contribute to these indices. In the following Chapter

we take a representation theoretic approach to indices for Aγ following eq. (4.2.17).

In [GMMS04; Sau05] an attempt is made to give a geometric interpretation of one

of these indices.



Chapter 5

Indices for Aγ Theories

Having discussed the structure of representations of Aγ in Chapter 3, and having

introduced the idea of indices in Chapter 4, we can now discuss supersymmetric

indices that may be applied to theories with Aγ symmetry. Although the Mathieu

moonshine phenomenon seems rooted in the elliptic genus (section 4.2.3), there has

been work which shows that generalisations of the elliptic genus may be instrumental

in a deeper understanding on moonshine [KT17; Son17; Wen17]. As we will first show,

the ‘field-theoretic’ elliptic genus that we have reviewed in the previous chapter is not

an interesting index for such theories as it always vanishes. In 2004, Gukov, Martinec,

Moore and Strominger [GMMS04] introduced an index I1, which generalises the

‘new index’ of Cecotti, Fendley, Intriligator and Vafa [CFIV92] with a view to probe

symmetric product theories with Aγ symmetry. In this chapter we introduce the

index I1 and study in detail which states it counts when applied to the partition

function of an Aγ theory. In particular, we will show how one may calculate the

contribution to the index from the representation of Ãγ on which a representation of

Aγ is built. We will also consider which representations of the zero mode subalgebra

of Aγ in the Ramond sector contribute to the index I1. Realising that this zero mode

subalgebra is described by su(2|2) we will use the technique of Young supertableaux

to consider the index I1 applied to representations of the zero mode subalgebra. The

work contained in this chapter is currently being prepared for publication [Fea18].
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5.1 The Elliptic Genus for Aγ Theories

In section 2.2 we introduced the ‘large’ N = 4 algebra Aγ and we then studied

its representation theory in Chapter 3. In particular in section 3.4 we defined the

character of an Aγ module V (c, h, l+, l−) as,

ChAγ ,S(q, z+, z−) ≡ χAγ ,S(k+, k−, h, l+, l−; q, z+, z−),

:= TrV (c,h,l+,l−)(qL0−c/24z
2T+3

0
+ z

2T−3
0

− ),
(5.1.1)

where q = e2πiτ , z± = e2πiω± , τ, ω± ∈ C, Im(τ) > 0. Due to the two ŝu(2) subalgebras

of Aγ under which states are charged there is some ambiguity in how one should

define the elliptic genus for a theory with Aγ symmetry. For the N = 2 and N = 4

cases we defined the elliptic genus to be given by the partition function in the R̃

sector, specialising the right-moving superconformal characters to z̄ = 1 (or more

precisely to ω̄ = 0 where z̄ = e2πiω̄). This means that the resulting quantity loses

track of the right-moving U(1) charge of all right-moving states. An important

feature about the elliptic genus is that it counts only short (massless, BPS) right-

moving multiplets. That is, the elliptic genus of a bilinear in N = 4 characters gives

the left-moving module multiplied by the Witten index of the right-moving module.

This means that the elliptic genus only counts supersymmetric (or BPS) states and

hence as the index of the supercharge, is constant through smooth deformations of

the moduli of the theory.

Given the recent interest in Mathieu moonshine, it is tempting to explore whether

theories with Aγ symmetry could hide a new moonshine phenomenon in one of their

genera. In this case, we have two affine ŝu(2) Kac-Moody algebras and hence two

u(1) charges in both the left and right-moving sectors of the theory. There are

therefore more choices of right-moving u(1) charges to ‘lose track of’. For instance,

one might define an index by setting z̄+ = 1 whilst keeping the angular variable z̄−,

or by setting some linear combination of z̄+ and z̄− to 1 instead. In each case, the

right-moving sector retains a dependence in one angular variable, which signals a
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departure from the ‘small’ N = 4 situation. In analogy with the latter, it is tempting

to define an elliptic genus for Aγ through a natural extension of the elliptic genus of

N = 4 theories.

Definition 5.1.1. The elliptic genus of a theory with Aγ symmetry for both left-

movers and right-movers is given by

ε(q, z+, z−) := TrH R(−1)FL+FRqL0−c/24q̄L̄0−c̄/24z
2T+3

0
+ z

2T−3
0

− ,

= ZH R̃(q, z+, z−, q̄, z̄+ = z̄− = 1),
(5.1.2)

where (−1)FL := e2πiT−3
0 and (−1)FR := e2πiT̄−3

0 . Here and in the following we take

z± = e2πiω± and z̄± = e2πiω̄± for ω±, ω̄± ∈ C. Any state which is not annihilated

by Ḡa
0 for a ∈ {±,±K} has a partnered state with the same conformal weight but

opposite sign under (−1)F = (−1)FL+FR . The same is true for any state not annihil-

ated by Q̄a
0 for a ∈ {±,±K}. This index therefore counts only states annihilated by

Q̄a
0Ḡ

a
0 for a ∈ {±,±K}.

We can also form an index which counts only states annihilated by Q̄a
0Ḡ

a
0 for a ∈

{±K} by taking the trace,

φ(q, z+, z−) := TrH R(−1)F qL0−c/24q̄L̄0−c̄/24z
2T+3

0
+ z

2T−3
0

− z̄2(T̄+3
0 +T̄−3

0 ),

= ZH R̃(q, z+, z−, q̄, z̄+ = z̄− = z̄).
(5.1.3)

Similarly, we can form an index which counts only states annihilated by Q̄a
0Ḡ

a
0

for a ∈ {±} by instead taking the partition function in the R̃ sector and setting

z̄+ = z̄−1
− .

However, none of the elliptic genus or the other two indices mentioned above are

useful invariants of Aγ theories due to the following proposition.

Proposition 5.1.2. Both the massless and massive Ramond characters of Aγ have

a zero at z+ = −z−.

Proof. By eq. (3.4.8), the characters of Aγ factor into those of Ãγ and those of AQU .
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Recall that the characters of AQU in the Ramond sector are given by eq. (3.4.10),

ChAQU ,R(u; q, z+, z−) = qu
2/k+1/8FR(q, z+, z−)

∞∏
n=1

(1−qn)−1(1+z−1
+ z−1

− )(1+z−1
+ z−)z+,

(5.1.4)

where the contribution from the zero modes is

(1 + z−1
+ z−1

− )(1 + z−1
+ z−)z+. (5.1.5)

which clearly has a zero at z+ = −z−. Therefore, both the massless and massive

Ramond characters of Aγ have a zero at z+ = −z− due to this zero mode contribution.

Corollary 5.1.3. The elliptic genus of a theory with Aγ symmetry is identically 0.

Proof. As previously stated, the partition function for an Aγ theory can be expressed

in bilinears of characters of Aγ. To calculate the elliptic genus for the theory by

definition 5.1.1, one should evaluate the right-moving characters of Aγ in the R̃

sector at z̄+ = z̄− = z̄. Given that (−1)FR was defined as (−1)FR := e2πiT̄−3
0 in

definition 5.1.1, we can flow from the Ramond sector to the R̃ sector by letting

ω̄− → ω̄− + 1
2 such that z̄2T̄−3

0
− → (−z̄−)2T̄−3

0 . The elliptic genus is therefore given by

evaluating the right-moving Ramond characters at z̄+ = −z̄−. By proposition 5.1.2

all such characters are 0 and hence the elliptic genus is zero.

Note that the above proof also shows that the other two indices mentioned above are

identically zero since the proof of the above corollary relied only on z̄+ = −z̄−, not

the explicit value of z̄±. In the case where one evaluates at z̄+ = −z̄−1
− one uses the

fact that T̄−3
0 → −T̄−3

0 gives an isomorphic algebra (where the roles of the various

raising and lowering operators are switched).

5.2 A New Index for Aγ Theories

If one considers the characters of Ãγ in the Ramond sector as given in eqs. (3.4.14)

and (3.4.16), then one can see that the massive Ãγ characters also have a zero at
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z+ = z− whereas the massless characters do not have a zero at this point. Following

[GMMS04], one can therefore define an index for Aγ which we refer to as I1.

Definition 5.2.1. Since the massless Ramond characters of Aγ have only an order

one zero at z+ = −z− one can form a non-zero index by taking a derivative. Given

a theory D, with partition function ZD, we therefore define the left-index I1 as

I1(D)(q, z+, z−, q̄, z̄) := −z̄+
∂

∂z̄−
ZD

H R̃(q, z+, z−, q̄, z̄+, z̄−)
∣∣∣∣∣
z̄+=z̄−=z̄

,

= TrH R

(
−FR(−1)F qL0−c/24q̄L̄0−c̄/24z

2T+3
0

+ z
2T−3

0
− z̄2(T̄+3

0 +T̄−3
0 )
)
,

(5.2.1)

where as before (−1)FR := e2πiT̄−3
0 , and ZD

H R̃ denotes the restriction of the partition

function to the R̃ sector.

The index I1 is constructed so that only massless representations of Aγ can contribute

on the right, and we now consider the contribution of a massless representation of

Aγ to the index. This contribution is elegantly expressed in terms of level-k theta

functions which we first define.

Definition 5.2.2. The level-k theta functions Θµ,k(τ, ω) for k ∈ Z, µ ∈ Z2k are

defined in terms of z = e2πiω, q = e2πiτ by,

Θµ,k(τ, ω) =
∑
`∈Z,

`=µ mod 2k

q
`2
4k z` = q

µ2
4k zµ

∑
n∈Z

qkn
2+nµz2kn, (5.2.2)

These theta functions satisfy

Θµ,k(τ,−ω) = Θ−µ,k(τ, ω). (5.2.3)

We therefore define the even and odd theta functions,

Definition 5.2.3. The even and and odd level-k theta functions are given by

Θ±µ,k(τ, ω) := Θµ,k(τ, ω)±Θ−µ,k(τ, ω),

= q
µ2
4k
∑
n∈Z

qkn
2+nµ(z2kn+µ ± z−2kn−µ),

(5.2.4)
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where we take the + sign for the even theta functions and the − sign for the odd

theta functions.

The only non-zero contribution to I1 from massless representations of Aγ comes from

taking the derivative of the zero mode term of AQU . Using the odd level-k theta

functions one then obtains the following contribution to the index from a massless

representation of Aγ [GMMS04].

Proposition 5.2.4. The contribution to the index I1 from a massless representation

of Aγ is described by,

−z+
d

dz−
ChAγ(l+,l−),R̃

0

∣∣∣∣∣
z+=z−

= (−1)2l++1q
u2
k Θ−µ,k(ω, τ), (5.2.5)

where k = k+ + k− is the sum of the levels of the affine ŝu(2)’s, µ = 2(l+ + l−)− 1

and z = e2πiω.

Note that in a massless representation of Ãγ, the hws is annihilated by G̃a
0 for

a ∈ {+,±K}. The ground level of an Ãγ representation therefore has a bosonic

ŝu(2)+ × ŝu(2)− multiplet containing (2[l+ − 1
2 ] + 1)(2[l− − 1

2 ] + 1) states, and one

fermionic ŝu(2)+ × ŝu(2)− multiplet containing (2[l+ − 1] + 1)(2[l− − 1] + 1) states.

The quantity µ = 2(l+ + l−)− 1 is therefore the Witten index of the representation

of Ãγ.

Short representations of Aγ are known to combine into long threshold ones as encoded

in the character formula

ChAγ ,R0 (l+, l−) + ChAγ ,R0 (l+ − 1
2 , l
− + 1

2) = Ĉhm(h, l+, l− + 1
2), (5.2.6)

where Ch0, ˆChm denote massless and massive threshold characters of Aγ respect-

ively. Using proposition 5.2.4 we can now verify that I1 is invariant under BPS
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representations joining to become non-BPS representations, since

I1(ChAγ ,R0 (l+, l−) + ChAγ ,R0 (l+ − 1
2 , l
− + 1

2)),

= I1(ChAγ ,R0 (l+, l−)) + I1(ChAγ ,R0 (l+ − 1
2 , l
− + 1

2))),

= (−1)2l−+1qu
2/kΘ−2(l++l−)−1,k(τ, ω) + (−1)2l−qu

2/kΘ−2(l++l−)−1,k(τ, ω),

= 0.
(5.2.7)

Furthermore, modular invariance under T -transformations requires that the bilinears

appearing in the partition function satisfy h− h̄ ∈ Z. Since the index I1 only counts

massless representations of Aγ, whose conformal weights are discrete, then under

any smooth deformation of the parameters of the theory, the conformal weights of

the massive representations appearing in the index must also be fixed. The index I1

is therefore invariant under any smooth deformation of the parameters and hence

truly is an index for Aγ theories, as already argued in [GMMS04].

A simple but important observation is that the contribution to the index I1 of a right-

moving massless representation of Aγ as given in proposition 5.2.4 is a q̄-series. This

index therefore counts more than just the ground states, it also receives contributions

from excited states with L̄0 charge given by kn2 +nµ for n ∈ Z. This is qualitatively

different from the elliptic genus discussed in section 4.2.2, where the right-moving

massless representations contribute to the index by way of their Witten index which

is simply an integer. In the next sections we therefore consider the nature of the

states which contribute to I1.

5.3 Right-Moving States Contributing to I1

We now briefly discuss the states which contribute to the index I1. We return to

this question in section 5.4, where we consider the question from the point of view

of the su(2|2) representations that Aγ branches into.

Recall that the index I1 counts only right-moving massless Ramond representations
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of Aγ and specifically that the index applied to such representations gives an odd

level-k theta function as in proposition 5.2.4. Unlike the elliptic genus for N = 2

or N = 4 theories, which counted right moving massless representations simply by

their Witten index, the index I1 is a function of q̄, and hence receives contributions

from throughout the massless representation. We can understand the nature of these

states by considering their charges. By definition 5.2.1, the power of z̄ in eq. (5.2.5)

is the charge of the state under 2(T̄+3
0 + T̄−3

0 ). Equation (5.2.5) then tells us that

the states counted by I1 have

2(T̄+3
0 + T̄−3

0 ) = ±µ̄ (mod2k), (5.3.1)

where µ̄ = 2(l̄+ = l̄−)− 1, the Witten index of the underlying right-moving repres-

entation of Ãγ. Similarly, the power of q̄ in eq. (5.2.5) tells us the charge of the

states under L̄0 − c̄
24 . We therefore have

L̄0 −
c̄

24 = u2

k
+ 1
k

(
T̄+3

0 + T̄−3
0

)2
. (5.3.2)

When applied to the hws, we recognise eq. (5.3.2) as the condition for the rep-

resentation to be massless. The states counted by I1 therefore satisfy the massless

eq. (3.3.20) in terms of their own charges. These ‘massless’ states behave like massless

ground states by the following proposition.

Proposition 5.3.1. All states contributing to the index I1 are annihilated by Q̄−K0 Ḡ−K0 .

Proof. This follows easily by contradiction. Assume there exists some state |χ〉 ≡

|h̄; l̄+, l̄−〉 which contributes to the index I1 (that is, it does not cancel in the index)

which is not annihilated by Q̄−K0 Ḡ−K0 . Then we have four linearly independent states

|χ〉 , Q̄−K0 |χ〉 , Ḡ−K0 |χ〉 , Q̄−K0 Ḡ−K0 |χ〉. Their contribution to the character ChAγ ,R

is therefore given by

ChAγ ,R = q̄h̄(z̄2l̄+
+ z̄2l̄−

− + 2z̄2(l̄+−1/2)
+ z̄

2(l̄−+1/2)
− + z̄

2(l̄+−1)
+ z̄

2(l̄−+1)
− ) + . . . . (5.3.3)

After flowing to the R̃ sector, and assuming without loss of generality that l̄− ∈ Z,
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we therefore have,

ChAγ ,R̃ = q̄h̄(z̄2l̄+
+ z̄2l̄−

− − 2z̄2(l̄+−1/2)
+ z̄

2(l̄−+1/2)
− + z̄

2(l̄+−1)
+ z̄

2(l̄−+1)
− ) + . . . . (5.3.4)

If we then take the index we have

− z̄+ ∂

∂z̄−
ChAγ ,R̃ |z̄+=z̄−=z̄ = q̄h̄(2l̄− − 4l̄− − 2 + 2l̄− + 2)z̄2(l̄++l̄−) = 0. (5.3.5)

Hence |χ〉 does not contribute to the index, contradicting our initial assumption.

The index I1 therefore only counts states annihilated by Q̄−K0 Ḡ−K0 (for the right

movers).

As noted by [Sau05], the conditions given in eqs. (5.3.1) and (5.3.2) are invariant

under symmetric spectral flow.

Proposition 5.3.2. The conditions given in eqs. (5.3.1) and (5.3.2) are invariant

under ‘symmetric’ spectral flow as in eq. (3.3.2) with ρ = η = 2n for n ∈ Z.

Proof. Under this isomorphism, we have

L2n,2n
− = L0−2n(T+3

0 +T−3
0 )+kn2, T+3;2n,2n

0 = T+3
0 −nk+, T−3;2n,2n

0 = T−3
0 −nk−.

(5.3.6)

We therefore have,

2(T+3;2n,2n
0 + T+3;2n,2n

0 ) = 2(T+3
0 + T+3

0 )− 2kn,

= ±µ+ 2k(m− n),

L2n,2n
0 − c

24 = L0 − 2n(T+3
0 + T−3

0 ) + kn2 − c

24 ,

= u2

k
+ 1
k

(T+3
0 + T−3

0 )2 − 2n(T+3
0 + T−3

0 ) + kn2,

= u2

k
+ 1
k

(T+3;2n,2n
0 + T+3;2n,2n

0 )2,

(5.3.7)

and so we see that eqs. (5.3.1) and (5.3.2) are satisfied after the spectral flow.

We now realise that each state counted by I1 can be thought of as the image

under spectral flow (for some n) of the states counted at the ground level, namely
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|Ω+〉 , G−K |Ω+〉 ≡ |Ω−〉 , (T+−
0 )2l++(T−−0 )2l−+ |Ω+〉 , (T+−

0 )2l+−(T−−0 )2l−−G−K |Ω+〉 ≡

(T+−
0 )2l+−(T−−0 )2l−− |Ω−〉, where l++ and l−− are defined as in eq. (3.3.26), as per the

following proposition.

Proposition 5.3.3. The states counted by the index I1 are the spectral flow orbits of

|Ω+〉, |Ω−〉, (T+−
0 )2l++(T−−0 )2l−+ |Ω+〉 and (T+−

0 )2l+−(T−−0 )2l−− |Ω−〉 under spectral flow

as in eq. (5.3.6).

Proof. Firstly, as noted above, only states satisfying eqs. (5.3.1) and (5.3.2) can

contribute to the index I1. We now show that all such states lie in spectral flow orbits

of the four states mentioned above. Let us call the states (T+−
0 )2l++(T−−0 )2l−+ |Ω+〉

and (T+−
0 )2l+−(T−−0 )2l−− |Ω−〉, |−Ω+〉 and |−Ω−〉 respectively, since the charges of the

states are the negatives of |Ω+〉 and |Ω−〉 respectively.

Firstly, we note that the above four states themselves satisfy eqs. (5.3.1) and (5.3.2).

In a massless Ramond representation, |Ω+〉 is the state with charges |h, l+, l− − 1/2〉.

We therefore have

2(T+3
0 + T−3

0 ) |Ω+〉 = µ,

2(T+3
0 + T−3

0 ) |−Ω+〉 = −µ,

2(T+3
0 + T−3

0 ) |Ω−〉 = µ,

2(T+3
0 + T−3

0 ) |−Ω−〉 = −µ,
(5.3.8)

and hence these four states all satisfy eq. (5.3.1). That |Ω+〉 satisfies eq. (5.3.2) is

clear, since |Ω+〉 was our hws. Since all the states at the ground level have the same

conformal charge h, and all states in the module have charge −iu under the U(1),

then the only change in contribution to eq. (5.3.2) between the states is their charges

under ŝu(2)±. However, since eq. (5.3.2) depends only on the square of the sum of

these charges, then clearly all four states have the same contribution and hence all

four satisfy the massless bound.

Now assume there is some state |χ〉 which satisfies eqs. (5.3.1) and (5.3.2) and is not

a ground level state already considered. Firstly, we note that |χ〉 cannot be another

ground state, since it would have to satisfy

(T+3
0 + T−3

0 ) |χ〉 = ±(T+3
0 + T−3

0 ) |Ω+〉 . (5.3.9)
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As discussed in section 3.3, in a massless Ramond representation of Aγ, Q−K0 |Ω+〉

and G−K0 |Ω+〉 are linearly dependent and Q−K0 G−K0 annihilates |Ω+〉. There are

therefore only two states |ρ〉 which satisfy,

(T+3
0 + T−3

0 ) |ρ〉 = (T+3
0 + T−3

0 ) |Ω+〉 , (5.3.10)

namely |Ω±〉. Similarly there are only two states which satisfy

(T+3
0 + T−3

0 ) |ρ〉 = −(T+3
0 + T−3

0 ) |Ω+〉 , (5.3.11)

namely |−Ω±〉. The state |χ〉 can therefore not be a ground state unless it is one of

the states already considered.

Since |χ〉 satisfies eq. (5.3.1), then without loss of generality let us assume it satisfies

2(T+3
0 + T−3

0 ) |χ〉 = µ+ 2mk, (5.3.12)

for some particularm ∈ Z. By eq. (5.3.7) with n = m, |χ〉 is a state with 2(T+3;2m,2m
0 +

T−3;2m,2m
0 ) |χ〉 = µ. But by proposition 5.3.2, eqs. (5.3.1) and (5.3.2) are preserved

under spectral flow. Since the only states at the ground level satisfying eqs. (5.3.1)

and (5.3.2) are |Ω±〉 , |−Ω±〉, then |χ〉 is in the spectral flow orbit of one of the

states |Ω±〉 , |−Ω±〉.

We consider a brief example which hopefully should make this clear.

Example 5.3.4. The massless representation of Aγ with k+ = 3, k− = 2, l+ =
1
2 , l

− = 1
2 is particularly simple, since for these values of l±, the underlying repres-

entation of Ãγ has a singular ground state. The ground level of this representation

is shown in fig. 5.1.

Clearly these states all have diagonal ŝu(2) charge equal to µ = 1, that is we have

2(T+3
0 + T−3

0 ) |±Ω+〉 = ±1 |±Ω+〉 (mod k),

2(T+3
0 + T−3

0 ) |±Ω−〉 = ±1 |±Ω−〉 (mod k).
(5.3.13)

If we let the conformal charges of these states be given by h, then the next two

contributions to the index I1 come from states at level h+ 4 and h+ 6, as can easily
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Figure 5.1: The ground level of a massless Ramond representation
of Aγ with k+ = 3, k− = 2, l+ = 1

2 , l
− = 1

2

be calculated from eq. (5.2.5). The levels h+ 4 and h+ 6 of this representation of

Aγ are shown in fig. 5.2. If we focus on the states with both ŝu(2)± charges positive,

then the states contributing to the index at level h+ 4 have

2(T+3
0 + T−3

0 ) |χh+4〉 = 9 |χh+4〉 = (−µ+ 2k) |χh+4〉 . (5.3.14)

Similarly those at level h+ 6 have

2(T+3
0 + T−3

0 ) |χh+6〉 = 11 |χh+6〉 = (µ+ 2k) |χh+6〉 . (5.3.15)

We therefore see that the states |χh+4〉 (where we mean the pair of states of maximal

diagonal charge at level h+ 4) are in the orbit of |−Ω±〉, since by eq. (5.3.6),

L−2,−2
0 |−Ω+〉 = (h− 1 + 5) |−Ω+〉 ,

T+3;−2,−2 |−Ω+〉 = (−1
2 + 3) |−Ω+〉 , T−3;−2,−2 |−Ω+〉 = (0 + 2) |−Ω+〉 ,

(5.3.16)

which are the correct charges for the bosonic state at level h+ 4. Note that since the

ŝu(2)± charges change by k± ∈ Z under the symmetric spectral flow, then a bosonic

state always flows to another bosonic state and a fermionic state flows to a fermionic
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state. We can similarly check that |−Ω−〉 flows to the maximal-diagonally charged

fermionic state at level h+ 4.

Similarly, the states |χh+6〉 are in the orbit of |Ω±〉;

L2,2
0 |Ω+〉 = (h+ 1 + 5) |Ω+〉 ,

T+3;2,2 |Ω+〉 = (1
2 + 3) |Ω+〉 , T−3;2,2 |Ω+〉 = (0 + 2) |Ω+〉 ,

(5.3.17)

and similarly for |Ω−〉. 4

As described in Chapter 3, given a representation of Aγ one can always consider

the underlying representation of Ãγ formed by decoupling the algebra AQU of the

four free fermions and the free boson from Aγ. We can therefore consider how the

states which contribute to the index I1 break into a contribution from Ãγ and a

contribution from AQU due to the factorisation of characters described in eq. (3.4.8).

This leads to the following proposition.

Proposition 5.3.5. By proposition 5.2.4 we know that the states which contribute

to the index I1 are described by the theta function Θ−µ,k(q, z). The contributions to

this index from AQU and Ãγ are described by

Θ−µ,k(q, z) :=qµ2/4k ∑
n∈Z

qkn
2+nµ(z2kn+µ − z−2kn−µ),

= q1/8︸︷︷︸
AQU

Ãγ︷ ︸︸ ︷
qh̃−c̃/24 ∑

n∈Z
qn(2n+1)︸ ︷︷ ︸
AQU

Ãγ︷ ︸︸ ︷
q(k̃++k̃−)n2+2n(l̃++l̃−)

×

z4n+1︸ ︷︷ ︸
AQU

Ãγ︷ ︸︸ ︷
z2n(k̃++k̃−)+2(l̃++l̃−)− z−4n−1︸ ︷︷ ︸

AQU

Ãγ︷ ︸︸ ︷
z−2n(k̃++k̃−)−2(l̃++l̃−)

 ,
(5.3.18)

where as in Chapter 3, ~’s refer to objects in Ãγ. Since the representation of Ãγ is

massless, h̃ could be written in terms of the charges l±.

Proof. This follows since AQU is itself a representation of Aγ with k± = 1, l± =
1
2 [GS88; PT90a]. Since a representation AQU is a representation of Aγ we can

therefore consider whether the states in AQU fall into ‘massive’ multiplets of the zero
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(a) Level h+ 4

(b) Level h+ 6

Figure 5.2: The states contributing to the index I1 at levels h + 4
and h+6 from a massless Ramond representation of Aγ
with k+ = 3, k− = 2, l+ = 1

2 , l
− = 1

2 .
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mode algebra as described in proposition 5.3.1 or ‘massless’ multiplets. If we consider

a ‘massive’ multiplet of AQU then the multiplet of Aγ formed by multiplying this

multiplet against a fixed state of Ãγ must also cancel from the index I1 as argued

in proposition 5.3.1. We therefore realise that the only contributions to I1 must be

described by ‘massless’ multiplets of AQU . But we already know how to count all

such ‘massless’ multiplets which contribute to the index, by proposition 5.2.4 they

are given by odd level-k theta functions. We therefore find that the index of AQU is

given by,

−z+
d

dz−
ChAQU ,R̃

∣∣∣∣∣
z+=z−

= q
u2
k Θ−1,2(ω, τ) = q

u2
k

+ 1
8
∑
n∈Z

qn(2n+1)
(
z4n+1 − z−4n−1

)
.

(5.3.19)

Now at any fixed power of q, we know by eq. (5.3.1) that the power of z of any

state in Aγ contributing to the index must be ±µ+ 2kn. Considering the positively

charged states, we therefore require that the contribution to the power of z from Ãγ

plus the power of z identified as coming from AQU above satisfies

4n+ 1 +m = µ+ 2kn,

m = 2(l+ + l− − 1) + 2n(k − 2),

= 2(l̃+ + l̃−) + 2n(k̃+ + k̃−),

(5.3.20)

where m is the power of z coming from Ãγ . Similarly, by proposition 5.2.4 we know

that for fixed n the power of q must be given by µ2

4k + kn2 + nµ. For fixed n, having

identified the contribution to the power of q coming from AQU we can therefore

calculate the contribution to the power of q coming from Ãγ. We therefore find

u2

k
+ 1

8 + n(2n+ 1) + p = u2

k
+ µ2

4k + kn2 + nµ,

p = (k̃+ + k̃−)n2 + 2n(l̃+ + l̃−) + h̃− c̃

24 ,
(5.3.21)

where p is the power of q coming from Ãγ. Here we have used the expression for h̃
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and c̃ in terms of the representation data k±, l± as [PT90b],

h̃ = k̃+k̃−

4k + (l̃+ + l̃−)(l̃+ + l̃− + 1),

= k+k− − k + µ2

4k ,

c̃

24 = k+k−

k
− 1

8 .

(5.3.22)

We therefore find that the theta function which gives the contribution to the index

may be written in terms of the states coming from AQU and those coming from Ãγ

as claimed.

5.4 A Description of I1 Using Supertableaux

In this section, we investigate the contributions to the index I1 [GMMS04] considered

in section 5.2, in terms of representations of the zero mode algebra of Aγ. We first

show that the zero mode subalgebra of Aγ in the Ramond sector is described by the

Lie superalgebra su(2|2). Note that in the case of the NS sector, the finite (super)

subalgebra now contains the 1
2 and −1

2 modes of the odd elements and in fact is

described by the sum of the finite superalgebra D(2|1;α) and a u(1) [STV88], where

α = γ
1−γ . Since the index I1 is calculated in the R̃ sector, we will have no use for this

in the following. We then discuss the representation theory of su(2|2) and describe

the classification of representations of su(2|2) by Young supertableaux. We then

discuss the branching of su(2|2) into its bosonic subalgebra, su(2)× su(2)×u(1) and

use this branching to investigate the index I1 of Aγ.

5.4.1 From the Lie Supergroup SU(M |N) to the Lie

Superalgebra su(M |N)

We avoid going into detail about the general structure of Lie supergroups and their

associated algebras, referring the interested reader to [Cor89]. In this section we

show how to obtain first the real ‘super’ Lie algebra associated to the supergroup
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SU(M |N) and then the Lie superalgebra su(M |N) from this real Lie algebra. This

will be done more as an example, referencing the relevant theorems as we require

them. For readers unfamiliar with superalgebra and supermatrices, some important

definitions may be found in Appendix D.

Since we are interested specifically in su(2|2) and hence SU(2|2) we focus on this

example. An element of the supergroup SU(2|2) is an even supermatrix G satisfying

G‡G = I4, SDetG = 1CBI . (5.4.1)

An element of the ‘super’ Lie algebra of SU(2|2), g, is then defined by

g‡ + g = 0Mp|q(CBI), STr g = 0CBI . (5.4.2)

If the element g is written in terms of its submatrices as in definition D.2.1, then

the first condition of eq. (5.4.2) becomes the conditions,

(A#)t + A = 0, (D#)t +D = 0, (B#)t + C = 0. (5.4.3)

Similarly, the second condition of eq. (5.4.2) becomes the condition

TrA = TrD, (5.4.4)

where we have used the fact that g is even – as explained in Appendix D.3 – to

expand the supertrace.

The elements of A are elements of CBI,0, hence we can split A into its real and

imaginary parts as

A = Ar + iAi, (5.4.5)

where now Ar and Ai are matrices whose matrix elements are elements of RBI,0.

Using proposition D.1.11 we see that,

A# = (Ar + iAi)# = A#
r + (iAi)# = Ar − iAi. (5.4.6)

The condition (A#)t + A = 0 now becomes Atr − iAti + Ar + iAi = 0. We therefore
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have that Ar is antisymmetric and Ai is symmetric. Similarly we can split D into

its real and imaginary parts Dr and Di and find that Dr is antisymmetric and Di is

symmetric. Obviously TrAr = TrDr = 0, hence the trace condition (5.4.4) becomes

TrAi = TrDi. (5.4.7)

Since B has its elements in CBI,1,

B# = B#
r + (iBi)# = −iBr −Bi, (5.4.8)

so the condition (B#)t + C = 0 becomes −Bt
i + Cr + i(Ci −Bt

r) = 0, implying

Bt
r = Ci, Bt

i = Cr, (5.4.9)

where we have written B and C in terms of real and imaginary parts as before.

We can now write a general element g of the ‘super’ Lie algebra as

g =



iX1 X2 + iX3 Θ1 + iΘ2 Θ3 + iΘ4

−X2 + iX3 iX4 Θ5 + iΘ6 Θ7 + iΘ8

Θ2 + iΘ1 Θ6 + iΘ5 iX5 X6 + iX7

Θ4 + iθ3 Θ8 + iΘ7 −X6 + iX7 iX1 + iX4 − iX5



. (5.4.10)

We therefore find the generators for the ‘super’ Lie algebra to be given by

M1 =



iεφ 0 0 0

0 0 0 0

0 0 0 0

0 0 0 iεφ



, M2 =



0 εφ 0 0

−εφ 0 0 0

0 0 0 0

0 0 0 0



, M3 =



0 iεφ 0 0

iεφ 0 0 0

0 0 0 0

0 0 0 0



,

(5.4.11)
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M4 =



0 0 0 0

0 iεφ 0 0

0 0 0 0

0 0 0 iεφ



,

M7 =



0 0 0 0

0 0 0 0

0 0 0 iεφ

0 0 iεφ 0



,

N3 =



0 0 0 εφ

0 0 0 0

0 0 0 0

−iεφ 0 0 0



,

N6 =



0 0 0 0

0 0 iεφ 0

0 −εφ 0 0

0 0 0 0



,

M5 =



0 0 0 0

0 0 0 0

0 0 iεφ 0

0 0 0 −iεφ



,

N1 =



0 0 εφ 0

0 0 0 0

−iεφ 0 0 0

0 0 0 0



,

N4 =



0 0 0 iεφ

0 0 0 0

0 0 0 0

−εφ 0 0 0



,

N7 =



0 0 0 0

0 0 0 εφ

0 0 0 0

0 −iεφ 0 0



,

M6 =



0 0 0 0

0 0 0 0

0 0 0 εφ

0 0 −εφ 0



,

N2 =



0 0 iεφ 0

0 0 0 0

−εφ 0 0 0

0 0 0 0



,

N5 =



0 0 0 0

0 0 εφ 0

0 −iεφ 0 0

0 0 0 0



,

N8 =



0 0 0 0

0 0 0 iεφ

0 0 0 0

0 −εφ 0 0



,

(5.4.12)
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where M and N refer to even and odd generators respectively.

In terms of these generators, the general element g in the ‘super’ Lie algebra can be

written as

g =
7∑
i=1

X iM i +
8∑
j=1

ΘjN j. (5.4.13)

Note that the generators N i do not satisfy the condition given in proposition D.3.2,

but the combination ΘiN i does indeed satisfy this condition for 1 ≤ i ≤ 8 as we

demonstrate in the following example.

Example 5.4.1. Consider the generator

N4 =



0 0 0 iεφ

0 0 0 0

0 0 0 0

−εφ 0 0 0



.

Then using definition D.2.4 we have

g = Θ4N4 =



0 0 0 iΘ4

0 0 0 0

0 0 0 0

Θ4 0 0 0



, g‡ =



0 0 0 −iΘ4

0 0 0 0

0 0 0 0

−Θ4 0 0 0



, (5.4.14)

since Θ4 is an odd element.

We therefore have g‡ + g = 0 as expected 4

It should now hopefully be clear that any g = ∑7
i=1X

iM i +∑8
j=1 ΘjN j, for M i, N i

as defined in eqs. (5.4.11) and (5.4.12), satisfies the conditions of proposition D.3.2

and hence is an element of the ‘super’ Lie algebra.

From the ‘super’ Lie algebra, we wish to construct the Lie superalgebra su(2|2).
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Definition 5.4.2. A complex Lie Superalgebra is a complex super algebra (as in

definition D.1.1) Ls = L0⊕L1, whose product is given by the superbracket [, ]s. The

superbracket is defined to obey the following properties:

1. [A,B]s ∈ Ls, ∀ A,B ∈ Ls,

2. [A, βB + γC]s = β[A,B]s + γ[A,C]s, ∀A,B,C ∈ Ls, β, γ ∈ C,

3. For homogeneous elements A,B, the element [A,B]s has degree (degA+degB)

modulo 2. This is necessary by definition, as the superbracket must respect

the grading of the algebra.

4. [B,A]s = −(−1)degA degB[A,B]s, ∀A,B ∈ Ls,

5. For homogeneous elements A,B,C ∈ Ls the superbracket satisfies the general-

ised Jacobi identity

(−1)degAdegC [A, [B,C]s]s+(−1)degB degA[B, [C,A]s]s+(−1)degC degB[C, [A,B]s]s = 0.

Following the common physics notation, we use [, ] for the superbracket if one

or both of the elements is even, and {, } for the superbracket between two odd

elements of the algebra. A real Lie superalgebra is defined similarly, as a real super

algebra satisfying the same properties as above, now restricted only to real linear

combinations in property 2.

Given any associative superalgebra, one can define the superbracket to be the super-

commutator

[A,B] = AB − (−1)degAdegBBA, (5.4.15)

for all elements A,B of the superalgebra. It is easy to check that such a definition of

the superbracket satisfies the properties of definition 5.4.2. When the superbracket

is defined as in eq. (5.4.15) we shall refer to [, ] and {, } as the commutator and

anticommutator respectively.
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Definition 5.4.3. We can now define the Lie superalgebra su(2|2). If we let

M i = εφm
i, N i = εφn

i, (5.4.16)

for M i, N i as in eqs. (5.4.11) and (5.4.12), then the complex matrices mi, ni are the

generators of a real Lie superalgebra, su(2|2).

Example 5.4.4. The following example shows how the supercommutator of the Lie

superalgebra su(2|2) (definition 5.4.3) appears naturally from the commutator of

the ‘super’ Lie algebra. We shall consider the generators N1 and N3. First, in the

‘super’ Lie algebra, we calculate the commutator [Θ1N1,Θ3N3], recalling that the

‘bare’ generators themselves are not elements of the algebra (eq. (5.4.13)). Note that

by definition D.2.4 we think of Θ1 and Θ3 as diagonal matrices and hence we can

commute Θi and N j, since N j involves only the Grassmann identity.

[
Θ1N1,Θ3N3

]
= Θ1N1Θ3N3 −Θ3N3Θ1N1 = Θ1Θ3(N1N3 +N3N1),

= Θ1Θ3εφ(n1n3 + n3n1) = Θ1Θ3{n1, n3} = −Θ1Θ3m7 = −Θ1Θ3M7,

(5.4.17)

4

5.4.2 su(2|2) Basis Satisfying the Aγ Zero Mode Algebra

As described in section 5.4.1, su(2|2) is a real Lie superalgebra, with the even basis

elements given by the mi of definition 5.4.3 and the odd basis elements given by the

ni. That is, a general element of the superalgebra can be written as

g =
7∑
i=1

αimi +
8∑
i=1

βini,

for real numbers αi, βi and square complex supertraceless matrices mi, ni. From

eq. (5.4.3) and definition 5.4.3 we can see that these matrices satisfy

(mi)∗ + (mi)t = 0, i(nj)∗ + (nj)t = 0, (5.4.18)
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and are ‘block-diagonal’ and ‘block-antidiagonal’ respectively, in the sense that

mi =


A 0

0 D

 , ni =


0 B

C 0

 . (5.4.19)

These conditions can in fact be taken as the definition of su(2|2).

The goal of this subsection will be to show that (the complexification of) this

superalgebra is isomorphic to the zero mode algebra of Aγ in the Ramond sector.

We will argue this in two ways, first by appealing to structure theorems of simple

Lie superalgebras and the classification of such algebras [Kac77]. We also construct

the isomorphism explicitly, by changing basis in su(2|2) such that the new basis

satisfies the commutation relations of Aγ. Since we therefore write elements of Aγ

as four by four square matrices, that is we take our elements of su(2|2) to be given

by the fundamental representation, this clearly gives a representation of Aγ and we

will see that it is the representation with l+ = l− = 1
2 . In general, one could start

with a representation of su(2|2) other than the fundamental in order to construct a

representation of Aγ with l+, l− 6= 1
2 .

If we denote the zero mode algebra of Aγ in the Ramond sector as Aγ0, then we

can immediately see that Aγ0 is the direct sum of the one dimensional abelian Lie

(super)algebra generated by L0 – or U0 which is linearly dependent with L0 – and a

simple Lie superalgebra

Aγ0 = L⊕ A, (5.4.20)

where we have denoted the abelian Lie algebra generated by L0 as L and the simple

Lie superalgebra as A. By a simple Lie superalgebra, we mean that A does not

contain a Z2-graded ideal. This simple Lie superalgebra A is a classical Type

I complex superalgebra, which means the representation of the even part of the

algebra A0 on the odd part A1 – formed by letting A0 act on A1 through the

adjoint action – is the direct sum of two irreducible representations of A0. This

is clear by considering the commutation relations of Aγ, specifically eqs. (A.0.11)
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and (A.0.14), as A0 is the direct sum of the two su(2) algebras, and the Qa and Ga

zero modes of A1 both transform as four dimensional irreducible representations of

su(2)⊕su(2). A is therefore a classical complex simple Lie superalgebra of rank 2, the

Cartan subalgebra being generated by T±3
0 . Considering the classification of simple

superalgebras [Kac77], we see that there are four families of Type 1 superalgebras,

the families known as

A(r|s), r > s ≥ 0,

C(s), s ≥ 2,

A(r|r), r ≥ 1,

C(r), r ≥ 2.

If we consider the family members of rank 2, we find that A(1|0) has a 3 dimensional

even subalgebra, C(2) has a four dimensional even subalgebra, P (2) has an 8 dimen-

sional even subalgebra and A(1|1) has a 6 dimensional subalgebra. On dimensional

grounds we therefore see that A must be isomorphic to A(1|1). A(1|1) has a real

form given by the quotient of su(2|2) by the one dimensional ideal generated by the

identity I4 and hence Aγ0 is isomorphic to the complexification of su(2|2) as claimed.

We now construct the isomorphism between su(2|2) explicitly. The relevant commut-

ation relations of Aγ can be found in Appendix A. Since we are trying to construct

a matrix representation of Aγ, writing the generators in terms of the mi and ni of

definition 5.4.3, we see that L and U have to be scalar multiples of the identity. By

definition, L acts on the highest weight state of the representation as multiplication

by the conformal dimension of the representation, h. Therefore we necessarily have

L =



h 0 0 0

0 h 0 0

0 0 h 0

0 0 0 h



. (5.4.21)
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Similarly, U acts on the highest weight state as multiplication by −iu, so

U =



−iu 0 0 0

0 −iu 0 0

0 0 −iu 0

0 0 0 −iu



. (5.4.22)

In terms of the su(2|2) generators mi (using eqs. (5.4.11) and (5.4.12) and defini-

tion 5.4.3), we can write the identity as

I = i(m1 +m4 +m5), (5.4.23)

and hence we find

L = hi(m1 +m4 +m5), U = u(m1 +m4 +m5). (5.4.24)

Identifying the remaining bosonic generators is also straightforward. Since we are con-

structing a four-dimensional representation of Aγ (using four-dimensional matrices)

and the smallest representation of su(2) is the fundamental two-dimensional repres-

entation, the two orthogonal su(2)s must both be two-dimensional representations.

Recalling that the even elements are represented only in blocks A and D in the

sense of eq. (5.4.19), to ensure orthogonality and without loss of generality we will

assume that su(2)+ is represented in submatrix A and that su(2)− is represented in

submatrix D. As is well known, the two-dimensional representation of su(2) can be

constructed using the Pauli matrices

σ1 =


0 1

1 0

 , σ2 =


0 −i

i 0

 , σ3 =


1 0

0 −1

 , (5.4.25)

as

T± = 1
2(σ1 ± iσ2), T 3 = 1

2σ3. (5.4.26)
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We can therefore represent su(2)± as

T+± =


T± 0

0 0

 , T+3 =


T 3 0

0 0

 ,

T−± =


0 0

0 T±

 , T−3 =


0 0

0 T 3

 ,
(5.4.27)

where T±, T 3 are as in eq. (5.4.26).

In terms of the su(2|2) generators, we therefore have

T++ = 1
2(m2 − im3), T+− = 1

2(m2 + im3), T+3 = −i2 (m1 −m4),

T−+ = 1
2(m6 − im7), T−− = 1

2(m6 + im7), T−3 = −i2 (m5),
(5.4.28)

With the bosonic generators identified, knowing that the fermionic generators have

entries only in submatrices B and C, we can deduce the form of the fermionic

generators using the commutation relations of Aγ. We will show some of the main

steps in deducing the fermionic generators; we start by considering Q+, which as an

odd element must have the general form

Q+ =



0 0 b1 b2

0 0 b3 b4

c1 c2 0 0

c3 c4 0 0



.

Now we consider the relations

[T±3, Q+] = 1
2Q+,
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and explicitly calculate the commutator on the LHS to obtain

0 0 ±b1/2 b2/2

0 0 0 0

0 c2/2 0 0

0 ±c4/2 0 0



=



0 0 b1/2 b2/2

0 0 b3/2 b4/2

c1/2 c2/2 0 0

c3/2 c4/2 0 0



,

and hence b1 = b3 = b4 = c1 = c3 = c4 = 0.

The relations between T±3 and each of the Qa for a ∈ {±,±K} can be used to

reduce each of the Qa to only 2 degrees of freedom (DOF). Next, the various relations

between T±+ and the Qa, as well as T±− and the Qa can be used to show that there

can be only be a maximum of 2 DOF in total among all the Qa. Finally, the relations

{Q+, Q−} = {Q+K , Q−K} = −k
4I show that there is only a single DOF for all the

Qa. Explicitly we find

Q+ =



0 0 0 −k
4q

0 0 0 0

0 q 0 0

0 0 0 0



, Q− =



0 0 0 0

0 0 −k
4q 0

0 0 0 0

q 0 0 0



,

Q+K =



0 0 −k
4q 0

0 0 0 0

0 0 0 0

0 −q 0 0



, Q−K =



0 0 0 0

0 0 0 k
4q

q 0 0 0

0 0 0 0



,

in terms of the one remaining DOF which we have now called q.

Similarly, the relations between the two su(2)s and the Ga for a ∈ {±,±K} show
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that the Ga are of the form

G+ =



0 0 0 h−c/24
g

0 0 0 0

0 g 0 0

0 0 0 0



, G− =



0 0 0 0

0 0 h−c/24
g

0

0 0 0 0

g 0 0 0



,

G+K =



0 0 h−c/24
g

0

0 0 0 0

0 0 0 0

0 −g 0 0



, G−K =



0 0 0 0

0 0 0 −h−c/24
g

g 0 0 0

0 0 0 0



,

in terms of one DOF g.

Finally, the relations between the Qa and Gã can be used to show that the two DOF

are related as g = 2q
k

(1
2 + iu) and that the representation of Aγ must satisfy the

massless requirement k(h − c
24) = u2 + 1

4 . Note that since we are representing the

two su(2)s as doublets, we have l+ = l− = 1
2 . Our four basis states are therefore

|Ω+〉 , G− |Ω+〉 , G−K |Ω+〉 and G−G−K |Ω+〉, where |Ω+〉 is the ‘highest weight state’

(c.f. section 3.3).

Since |Ω+〉 is the highest weight state, we require

T++ |Ω+〉 = T−+ |Ω+〉 = G+ |Ω+〉 = G+K |Ω+〉 = 0,

this requires

|Ω+〉 = (1, 0, 0, 0)t . (5.4.29)

Similarly,

T++G−K |Ω+〉 = T−+G−K |Ω+〉 = G+G−K |Ω+〉 = G−KG−K |Ω+〉 = 0,
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and therefore

G−K |Ω+〉 = (0, 0, 1, 0)t . (5.4.30)

Solving this equation, in terms of the matrix representation of G−K that we have

constructed, requires us to fix g = 1 and so our representation is now fully determined

in terms of the representation labels of Aγ.

The odd elements of Aγ (in the l± = 1
2 massless representation) can therefore be

written in terms of su(2|2) generators as

Q+ = −q2 (n6 − in5)− k

8q (n3 − in4),

Q− = −q2 (n4 − in3)− k

8q (n5 − in6),

Q+K = q

2(n8 − in7)− k

8q (n1 − in2),

Q−K = −q2 (n2 + in1) + k

8q (n7 − in8),

G+ = −1
2 (n6 − in5) +

(
h− c

24

)
(n3 − in4),

G− = −1
2 (n4 − in3) +

(
h− c

24

)
(n5 − in6),

G+K = 1
2(n8 − in7) +

(
h− c

24

)
(n1 − in2),

G−K = −1
2 (n2 − in1)−

(
h− c

24

)
(n7 − in8),

(5.4.31)

where
q = k

1 + 2iu,

(h− c

24) = 1
k

(u2 + 1
4).

(5.4.32)

Hence these two algebras are isomorphic, as claimed.

5.4.3 su(2|2) Representations and Supertableaux

In section 5.4.2 we saw that the zero mode algebra of Aγ is isomorphic to the Lie

superalgebra su(2|2). We can therefore study the branching of Aγ representations

into su(2|2) representations, where clearly each level of Aγ will be able to be written

in terms of su(2|2) representations. In this subsection we will therefore introduce

the representation theory of su(2|2) and show how su(2|2) representations can be

identified with Young supertableaux as first introduced by [BB81]. This will be seen

to be very similar to the way that representations of su(n) can be given by Young

tableau.
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We begin by considering the fundamental representation of the supergroup SU(2|2).

We let SU(2|2) act on the complex Grassmann space CB2,2
I using matrix multiplic-

ation as in Appendix D.2. Following the notation of [BB81] we denote the basis

vectors of CB2,2
I as,

ξA =


φa

ψα

 , (5.4.33)

where a,∈ {1, 2}, α ∈ {3, 4} run over the even and odd parts of the space. This

fundamental representation is therefore a 4-dimensional representation. These basis

vectors then transform under g ∈ SU(2|2) as,

ξA → ξ′A = gBAξB, (5.4.34)

where as usual, repeated indices are to be summed over (Einstein summation).

Clearly this can be expanded linearly to all of CB2,2
I , such that a vector Ψ = ΨAξA

transforms under g ∈ CB2,2
I as

Ψ→ Ψ′ = g · (ΨBξB),

= (−1)deg (B) deg (A−B)ΨBgABξA = gABΨBξA,

(5.4.35)

so we can think of the components transforming as

ΨA → Ψ′A = gABΨB, (5.4.36)

as is common in the physics literature. Clearly, since CB2,2
I is a complex vector

space, the components ΨA can be taken to be complex. However, it wil be useful for

us to consider CB2,2
I as a supermodule as defined in definition D.1.14, such that the

components ΨA can be taken to be arbitrary elements of CBI .

As explained in [BB81], there are actually two fundamental representations of SU(2|2)

which are known as Type I and Type II fundamental representations. In a Type

I representation, we let ξa = φa live in the even part of the Grassmann space,

CB2,0
I and ξα = ψα live in the odd part of the Grassmann space, CB0,2

I . In a
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Type II representation, we instead let ξa live in the odd part of the Grassmann

space and ξα live in the even part of the space. The representation theory of Type I

representations and Type II representations can be seen to be identical [BB81], that is

every Type I representation is a Type II representation with the grading reversed. If

we therefore consider tensor products of Type I or Type II representations exclusively

then we may choose to only consider representations of Type I. Here we will not

need representations on mixed tensors and so we will assume all our fundamental

representations are of Type I.

It will be convenient to associate a Young diagram to our representations as in the

case for SU(N), so we will associate to the (Type I) fundamental representation of

SU(2|2) the single box tableau in fig. 5.3.

Figure 5.3: The fundamental representation of SU(2|2)

Similarly, one may define a conjugate fundamental representation where g ∈ SU(2|2)

is defined to act on the dual of CB2,2
I as

ξ⊥ → ξ′⊥ = g‡ξ⊥, (5.4.37)

for ξ⊥ ∈ CB2,2 ⊥
I . This is the same definition of the conjugate fundamental repres-

entation as for SU(N), and following [Kin70] can be associated the single dotted

Young tableau shown in fig. 5.4.

Figure 5.4: The conjugate fundamental representation of SU(2|2)

As in the case of SU(N), more representations can be constructed from tensor

products of the fundamental and conjugate fundamental representations. As before,

we shall consider CB2,2
I to be a supermodule, so we now want to define the tensor

product on CB2,2
I as a supermodule.
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Definition 5.4.5. Given two rings R, S, an R-S-bimodule is an abelian group (V,+)

such that

• V is a left R-module,

• V is a right S-module,

• (rv)s = r(vs)∀ r ∈ R, s ∈ S,m ∈ V .

An R-R-bimodule will be simply called an R-bimodule.

Given a supercommutative (definition D.1.4) superalgebra A, then every left A-

supermodule V may be regarded as an A-superbimodule by letting

a · v ≡ (−1)|a||v|v · a, (5.4.38)

for all homogeneous elements a ∈ A, v ∈ V and extending linearly. In this manner

we can think of CB2,2
I as a superbimodule by defining the right action as above, since

CBI is supercommutative.

Definition 5.4.6. The tensor product of two A-superbimodules V,W can now be

defined as,

V ⊗W := F (V ×W )/E, (5.4.39)

where F (V ×W ) is the free module generated by the cartesian product of V and

W , and E is the submodule generated by the equivalence relations,

(v1, w1) + (v2, w1) ∼ (v1 + v2, w1),

(v1, w1) + (v1, w2) ∼ (v1, w1 + w2),

(v1 · a, w1) ∼ (v1, a · w1),

a · (v1, v2) ∼ (a · v1, v2),
(5.4.40)

for vi, wi ∈ V,W respectively and a ∈ A.

V ⊗W has a grading defined by,

(V ⊗W )i =
⊕

(j,k)|j+k=i (mod 2)
Vj ⊗Wk, (5.4.41)

and is therefore a left A-supermodule.
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We can now define a representation of SU(2|2) on the tensor product CB2,2
I ⊗CB2,2

I

by letting SU(2|2) act with the fundamental action on each of the factors of the

tensor product. Since each fundamental representation was 4-dimensional, this

tensor product representation is therefore a 16-dimensional representation. Consider

ξ ⊗ ξ̃ ∈ CB2,2
I ⊗ CB2,2

I , then g ∈ SU(2|2) acts as,

(ξ ⊗ ξ̃)→ (ξ ⊗ ξ̃)′ = (gξ ⊗ gξ̃). (5.4.42)

This action can then be extended linearly to arbitrary elements of CB2,2
I ⊗CB2,2

I . As

it is common in the physics literature to write this action in terms of the components

of the tensor, we can use the description of CB2,2
I as a CBI module to write ξ =

ξAeA, where eA has εφ in the Ath position and 0 in all remaining positions. Using

definition 5.4.6 and eq. (5.4.35) we can therefore expand (ξ ⊗ ξ̃) as,

(ξ ⊗ ξ̃) = (ξA′eA′ ⊗ ξ̃B
′
eB′) = ξA

′(eA′ ξ̃B
′ ⊗ eB′),

= ξA
′(ξ̃B′eA′ ⊗ eB′) = ξA

′
ξ̃B
′(eA′ ⊗ eB′),

(5.4.43)

and similarly,

(ξ ⊗ ξ̃)′ = (gξ ⊗ gξ̃) = (gA′A ξAeA′ ⊗ gB
′

B ξ̃
BeB′),

= gA
′

A ξ
A(eA′gB

′

B ξ̃
B ⊗ eB′) = gA

′

A ξ
A(gB′B ξ̃BeA′ ⊗ eB′),

= gA
′

A ξ
AgB

′

B ξ̃
B(eA′ ⊗ eB′),

(5.4.44)

such that one may consider the components of eq. (5.4.45) transforming as,

ξAξ̃B → (ξAξ̃B)′ = gAA′ξ
A′gBB′ ξ̃

B′ . (5.4.45)

Clearly, one can now define an action of g ∈ SU(2|2) on (CB2,2
I )⊗m ⊗ (CB2,2

I )⊥⊗n

for arbitrary m,n ∈ Z+ by applying g or g‡ to each factor as appropriate.

The tensor product representation is not irreducible however [BB81], as may be seen

by considering a permutation operator,

P : V ⊗W → W ⊗ V,

v ⊗ w 7→ w ⊗ v,
(5.4.46)
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for v ∈ V,w ∈ W . This can be seen to commute with the action of SU(2|2) on the

tensor product,
P (g(ξ ⊗ ξ̃)) = P (gξ ⊗ gξ̃) = (gξ̃ ⊗ gξ),

= g(ξ̃ ⊗ ξ) = g(P (ξ ⊗ ξ̃)),
(5.4.47)

and yet is not a multiple of the identity operator on CB2,2
I ⊗ CB2,2

I , and so by

Schur’s lemma, the tensor product is not irreducible. However, as for the case of

SU(N), irreducible representations of SU(2|2) are given by suitably symmeterised

and antisymmeterised tensor products of CB2,2
I and (CB2,2

I )⊥, each of which may

be associated to a supertableau as in fig. 5.5 (the dashed diagonals are explained

later in section 5.4.4). Note that since the Levi-Civita tensor is not an invariant of

SU(M |N), a tableau containing dotted boxes (that is a representation on tensors

containing covariant indices) may not be converted to a tableau containing only

undotted boxes.

Figure 5.5: A generic representation of SU(2|2)

Example 5.4.7. Let us consider the example of the symmetric tensor product on

two copies of CB2,2
I . This is described by the supertableau in fig. 5.6.

The symmetric tensor product of ξ, ξ̃ ∈ CB2,2
I , which we will denote as Ξ, is given

by

Ξ = ξ ⊗ ξ̃ + ξ̃ ⊗ ξ, (5.4.48)
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which, as in eqs. (5.4.43) and (5.4.44), we can expand in terms of components as

Ξ = ξ ⊗ ξ̃ + ξ̃ ⊗ ξ = (ξAξ̃B + ξ̃AξB)(eA ⊗ eB),

= (ξAξ̃B + (−1)|A||B|ξB ξ̃A)(eA ⊗ eB).
(5.4.49)

We now see that the components of this tensor are symmetric unless both A and

B take values in the odd part of the space (i.e A = α,B = β as in eq. (5.4.33)),

in which case the components are antisymmetric. Using the usual convention of

parentheses to denote symmetric indices, we therefore have

Ξ(AB) = ξAξ̃B + (−1)|A||B|ξB ξ̃A. (5.4.50)

The dimension of the symmetric space is therefore the sum of the number of independ-

ent components of Ξab, Ξaβ and Ξαβ. These have three, four and one independent

components respectively, since the first two are symmetric and the final one is an-

tisymmetric, for a, b,∈ {1, 2} and α, β ∈ {3, 4}, so Ξ(AB) has eight independent

components and the symmetric space is 8-dimensional. 4

Figure 5.6: The 2-fold symmetric representation of SU(2|2)

It is now clear that, due to the Grassmann nature of the odd part of the space,

whenever we symmeterise two indices, the components behave as antisymmetric

indices when both indices lie in the odd part of the space. For this reason, [BB81] refer

to the tensors as ‘symmeterised’ and ‘supersymmeterised’, to mean symmeterised

on the even part of the space and antisymmeterised on the odd part of the space.

Similarly, when we antisymmeterise indices, the components behave symmetrically

when both indices lie in the odd part of the space; there is therefore no limit to the

length of a column for a supertableau.

Definition 5.4.8. It will be useful to define the horizontal and vertical eccentricity

of a (totally un-dotted) supertableau to be the number of boxes in the first row and
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first column respectively. The supertableau show in fig. 5.7 has horizontal eccentricity

m and vertical eccentricity n. Such a tableau will be said to have eccentricity (m,n).

m

n

Figure 5.7: A supertableau of horizontal eccentricity m and vertical
eccentricity n

Definition 5.4.9. A (totally un-dotted) supertableau of eccentricity (m,n) contain-

ing N boxes will be called maximally eccentric if

N = m+ n− 1, (5.4.51)

and non-maximally eccentric if

N ≥ m+ n. (5.4.52)

Hence the tableau in fig. 5.7 is maximally eccentric, whereas the tableau shown in

fig. 5.8 is non-maximally eccentric.

m

n

Figure 5.8: A non-maximally eccentric supertableau of eccentricity
(m+ 2, n+ 2).

Now, given the generators mi and nj of definition 5.4.3, we can write a generic

element of the superalgebra su(2|2) as

m =
7∑
i=1

ximi +
8∑
j=1

θjnj, (5.4.53)

for xi, θj ∈ R and similarly a generic element of the ‘Super’ Lie algebra as

M =
7∑
i=1

X iM i +
8∑
j=1

ΘjN j =
7∑
i=1

∑
µ

X i
µεµm

i +
8∑
j=1

∑
µ

Θj
µεµn

j, (5.4.54)
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for X i
µ,Θj

µ ∈ R. Elements of the Lie supergroup SU(2|2) near the identity are then

given by,

G = exp (M) = exp (
7∑
i=1

X imi +
8∑
j=1

Θjnj), (5.4.55)

where now X i,Θj are elements of RBI close to the identity. The Lie superalgebra

elements are therefore the linear terms appearing in the expansion of the supergroup

elements, and hence as for Lie groups and Lie algebras, a representation of the Lie

supergroup SU(2|2) gives a natural representation of the Lie superalgebra su(2|2) as

the linearised action of the supergroup. A more formal description of the connection

between tensor representations of supergroups and the associated superalgebras is

discussed in the case of GL(M/N) in [Fio11].

An irreducible representation of su(M |N) can therefore be described using a supert-

ableaux which describes the suitably symmeterised tensors on which su(M |N) acts

as the tensor product of fundamental and conjugate fundamental representations as

necessary.

In section 5.4.2 we showed how the fundamental representation of su(2|2) was iso-

morphic to the zero mode algebra of a massless representation of Aγ with l± = 1
2 in

the Ramond sector. Thanks to the results of this subsection, this can therefore be

summarised as

ChAγ ,R0,l±= 1
2

=
( )

qh + . . . . (5.4.56)

5.4.4 Branching Rules for su(2|2)

Having shown that the su(2|2) superalgebra is isomorphic to the Aγ zero mode

algebra in section 5.4.2, we know that the even subalgebra of su(2|2) is su(2) ×

su(2) × u(1). It is clear that given a representation (Γ, V ) of an algebra g, with

subalgebra h ⊂ g, then (Γ, V ) also provides a representation of the subalgebra h. In

general, this representation will be reducible, and so will be given by the direct sum



5.4. A Description of I1 Using Supertableaux 145

of several irreducible representations. This decomposition,

(Γ, V ) 7→
⊕
n

an(Γn, Vn), (5.4.57)

where (Γn, Vn) are irreducible representations of the subalgebra h and an are the

multiplicities at which they appear in the decomposition, is known as a branching

rule for the algebra g. In this subsection we will show how to calculate the branching

of an irreducible representation of su(2|2) into irreducible representations of the

bosonic subalgebra su(2|2) 7→ su(2) × su(2) × u(1) using Young (super)tableaux

[BB82].

Following [BB82], we first describe the process for calculating the branching of a

representation of SU(M + N) 7→ SU(M) × SU(N). Given an irreducible repres-

entation of SU(M), (Γ1, V1) described by a Young Tableau T1 and an irreducible

representation of SU(N), (Γ2, V2) described by a second Young tableau T2, then

the representation (Γ1 ⊗ Γ2, V1 ⊗ V2) of dimension dim(V1) dim(V2) appears in the

decomposition of an irreducible representation, (Ω,W ) with multiplicity equal to

the multiplicity of (Ω,W ) in the decomposition of the tensor product of T1 and T2

now treated as representations of SU(M +N). This is hopefully made clear in the

following example.

Example 5.4.10. Consider the representation of SU(3) described by

which has dimension 8, and the representation of SU(4) described by

which has dimension 10. We want to check whether the 40-dimensional representation

of SU(3)× SU(4) described by  ,


appears in the decomposition of the 882-dimensional representation of SU(7) de-
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scribed by

.

We therefore want to calculate the Clebsch-Gordan decomposition of

× ,

where now the tableaux are understood to refer to representations of SU(7). As is

well known, this decomposition can easily be found using the Littlewood-Richardson

rule. In this example this gives the result,

× = + + + ,

112 × 28 = 1008 + 882 + 756 + 490,
(5.4.58)

where the dimension of each representation is shown underneath the corresponding

tableau.

From this calculation we conclude that the representation ,


of SU(3) × SU(4) appears with multiplicity 1 in the decomposition of the SU(7)

representation

.

To fully calculate the branching from SU(7) to SU(3)× SU(4), we therefore need

to check which other representations of SU(3)× SU(4) contain the representation

of SU(7) in their Clebsch-Gordan decomposition (when treated as tableaux of SU(7)).

Note that since we treat the tableaux of both SU(3) and SU(4) a tableaux of SU(7),

then on the level of the diagrams the decomposition must be symmetric with respect

to the factors, as the tensor product is symmetric. However after appropriately
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symmeterising the tableaux, one must still simplify the tableau such that no columns

are of length greater than N for a tableau of SU(N). The full decomposition is then

7→

 , 1
 +

1,


+
 ,

 +
 ,


+

 ,

 +
 ,


+

(
,

)
+

(
,

)

+
 ,

 +
 ,


+

 ,

 +
 ,

 ,

(5.4.59)

where 1 denotes the singlet representation – the empty tableau. In terms of the

dimensions of the various representations this is

882 7→ 15 + 60 + 24 + 60 + 60 + 135 + 100 + 120 + 48 + 60 + 80 + 120, (5.4.60)

where the order of the representations has been kept the same as the tableaux in

the previous equation. 4

The branching for su(M |N) 7→ su(M)×su(N)×u(1) works similarly, by considering

the superspace CBm,n
I to be the direct sum CBm

I,0 ⊕CBn
I,1 [BB82]. The even part of

the space therefore transforms under the su(M) and is a singlet under the su(N),

while the odd part of the space transforms under the su(N) and is a singlet under

the su(M). Additionally, the u(1) generator is embedded in su(M |N) as

u =


1
M

0

0 1
N

 , (5.4.61)

such that is supertraceless. Therefore a vector in the even part of the space has

u(1) charge 1
M
, while a vector in the odd part of the space has charge 1

N
. We can
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therefore branch a (totally contravariant, using only un-dotted boxes) representation

of su(M |N) in the same way as we branch SU(M + N). However since supert-

ableaux show supersymmeterisation of the tensor space, we should reflect the su(N)

tableau through its diagonal as indicated in fig. 5.5 in order to show the correct

symmeterisation for the odd part of the space, as described in section 5.4.3.

We now consider an example of branching an su(2|2) representation into a sum of

su(2)× su(2)× u(1) representations.

Example 5.4.11. Consider the representation

of su(2|2). In example 5.4.10, we calculated the decomposition of this tableau for

SU(M +N) (in fact we assumed M = 3, N = 4, but on the level of the tableau the

answer is valid for any M,N as long as we did not simplify the tableau, which we

did not), so now to calculate the branching of su(2|2), we simply have to transpose

the tableau in the second part of each product on the right hand side. This gives

7→

 , 1


5
2 +0

+

1,


0+ 5

2

+
 ,


2+ 1

2

+
 ,


1
2 +2

+
 ,


2+ 1

2

+

 ,


1
2 +2

+
 ,


3
2 +1

+

 ,


1+ 3

2

+
 ,


3
2 +1

+
 ,


1+ 3

2

+
 ,


3
2 +1

+
 ,


1+ 3

2

,

(5.4.62)
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7→
(

, 1
)

5
2

+
(

1,
)

5
2

+
(

, 1
)

5
2

+
(

,
)

5
2

+
(

, 1
)

5
2

+
(

, 1
)

5
2

+
(

1,
)

5
2

+
(

,
)

5
2

+
(

,
)

5
2

,

(5.4.63)

where we have labelled each representation of su(2)× su(2) with the u(1) charges for

both the even part of the space and the odd part separately in the first line, then

written the total charge only in the second line while simultaneously simplifying the

tableau due to any 2 box columns being equal to a singlet.

4

Branching supertableaux also gives us a way to see that we must allow supertableaux

with more than 4 rows for su(2|2).

Example 5.4.12. We know that it is not possible to take the antisymmetric 5-fold

representation of su(4) – we cannot antisymmeterise more than four basis vectors

without repetition:

dim



 = 0. (5.4.64)

However, if we branch the 5-fold antisymmetric representation for su(2|2), it is clear

that we obtain the following branching rule (note that the u(1) is clearly 5
2 for each
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representation, so the u(1) charge is not shown in the following):

7→

 , 1

 +

 ,

 +

 ,



+
 ,

 +
(

,
)

+
(

1,
)
,

=
(

1,
)

+
(

,
)

+
(

1,
)
,

(5.4.65)

and therefore

dim



 = (1× 4) + (2× 5) + (1× 6),

= 20 6= 0.

(5.4.66)

4

Example 5.4.13. This branching rule also gives an easy way to show that the

dimension of the n-fold symmetric tensor representation of su(2|2) is 4n.

n

7→


n

, 1

+


n− 1

,

+


n− 2

, 1

 , (5.4.67)

and hence

dim


n

 = ([n+ 1]× 1) + (n× 2) + ([n− 1]× 1),

= 4n.

(5.4.68)

4

When we calculate the tensor product of two representations defined by tableaux,

using the Littlewood-Richardson rule to decompose as a sum of irreducible represent-

ations, we do not care about the order of the two factors. Our method for checking

whether an irreducible representation of su(M) × su(N) appears in the branching
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of a representation of su(M + N) is dependent on whether the tableau describing

the representation of su(M +N) appears in the decomposition of the tensor product

of the su(2) representations. Therefore, it is clear that the representation described

by (T1, T2) appears in the branching of a representation T of su(4) if and only if

the representation (T2, T1) also appears in the branching, where T, T1 and T2 are to

represent suitable Young tableaux. We then branch the representation of su(M |N)

described by the (super)tableau T by reflecting the su(N) tableau in each of the

summands calculated by branching T as an su(M + N) representation. This is

demonstrated in eqs. (5.4.59), (5.4.62) and (5.4.63) for the case of su(4) (or equival-

ently SU(4)) and su(2|2) respectively. We therefore have the following propositions,

the first two of which appear in [BB82].

Proposition 5.4.14. The irreducible representation of su(M) × su(N) described

by (T1, T2) appears in the branching of the irreducible representation of su(N +M)

described by T if and only if the irreducible representation described by (T2, T1) also

appears in the branching. We summarise this rule as,

(T1, T2) ∈ T ⇐⇒ (T2, T1) ∈ T.

Proposition 5.4.15. The irreducible representation of su(M) × su(N) described

by (T1, (T2)t) appears in the branching of the irreducible representation of su(M |N)

described by T if and only if the irreducible representation described by (T2, (T1)t) also

appears in the branching, where (Ti)t denotes the transpose of Ti on the diagonals

indicated in fig. 5.5. We summarise this rule as

(
T1, (T2)t

)
∈ T ⇐⇒

(
T2, (T1)t

)
∈ T.

Proposition 5.4.16. Let the branching of an irreducible representation of su(M |N)

described by supertableau T be given by

T 7→
∑
i

(Ti1 , Ti2),
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then

T t 7→
∑
i

(
(Ti1)t, (Ti2)t

)
. (5.4.69)

The final two propositions give the immediate corollary for su(N/N):

Corollary 5.4.17. Given an irreducible representation of su(N/N) described by

supertableau T , then

dim (T ) = dim (T t).

Proof. By proposition 5.4.15, if the branching of T contains (T1, (T2)t), then it also

contains (T2, (T1)t) of dimensions (dim (T1)× dim ((T2)t) and (dim (T2)× dim ((T1)t)

respectively. Then by proposition 5.4.16, the branching of T t contains ((T1)t, T2) and

((T2)t, T1) of dimensions (dim ((T1)t)× dim (T2)) and (dim ((T2)t)× dim (T1)).

It will also be useful for us to note that since we are interested specifically in su(2|2)

and its branching into su(2) × su(2), that representations described by tableau with

more that 2 rows of length strictly greater than 2, as shown in fig. 5.9, are zero

representations. This is due to the supersymmeterisation of the su(M |N) indices; if

we branch the su(2|2) representation to find the su(2) × su(2) content, one of the

two representations of su(2) must be described by a tableau with at least 3 rows

which is clearly a zero representation of su(2).

p q

r

s

Figure 5.9: A zero representation of su(2|2)
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5.4.5 The Index of Aγ Using Supertableaux

We have established that the zero mode algebra of Aγ in the Ramond sector is

su(2|2) section 5.4.2 and that we can study the su(2) × su(2) × u(1) content of

an su(2|2) representation by studying the branching of the supertableau describing

the su(2|2) representation section 5.4.4. We can therefore now identify su(2|2)

representations whose su(2) × su(2) content matches representations of Aγ at a

given level; The general method to do this is described in example 5.4.19.

Example 5.4.18. We have already considered the case of a massless representation

of Aγ with l± = 1
2 in section 5.4.2, and in section 5.4.3 we identified the ground level

of this Aγ representation with the fundamental representation of su(2|2). Now that

we have seen how to branch su(2|2) supertableaux, we can branch the fundamental

representation as

7→
(

, 1
)

1
+
(

1,
)

1
, (5.4.70)

and recognise the two su(2) doublets (one of su(2)+ and one of su(2)−) which appear

at ground level in Aγ as shown in fig. 5.1.

Figure 5.10: The ground level of a Ramond representation of Aγ
k+ = 3, k− = 2, l+ = 1

2 , l
− = 1

2



154 Chapter 5. Indices for Aγ Theories

As noted at the end of section 5.4.3, we therefore have

ChAγ ,R0,k+=3,k−=2,l±= 1
2

=
( )

qh + . . . . (5.4.71)

4

Example 5.4.19. Similarly, we can consider the level 1 states of the same repres-

entation of Aγ (k+ = 3, k− = 2, l+ = 1
2 , l
− = 1

2) shown in fig. 5.11.

Figure 5.11: Level 1 states of a Ramond representation of Aγ with
k+ = 3, k− = 2, l+ = 1

2 , l
− = 1

2

To find the su(2|2) representations which contain the right su(2) × su(2) content we

follow the following method: We identify the largest multiplet of su(2)+, in this case

the quadruplet which is a singlet of su(2)−; We identify the smallest representation

of su(2|2) which contains this su(2) × su(2) content, in this case the representation

described by

;

We calculate the branching of this representation of su(2|2) (suppressing the u(1)

charge),

7→
(

, 1
)

+
(

,
)

+
(

, 1
)

;
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We now identify the next largest multiplet of su(2)+, in this case the one remaining

copy of (
,

)
,

and find the smallest representation of su(2|2) which contains this but does not

contain any representations of su(2) × su(2) already considered, namely

;

We now identify the next largest representation of su(2)+ and continue this process.

Using the method described above, one finds this representation of Aγ can be

branched into su(2|2) representations as

ChAγ ,R0,k+=3,k−=2,l±= 1
2

=
( )

qh+

 + 2 +

 qh+1+. . . . (5.4.72)

4

This process can easily be continued to higher levels of the Aγ representation. For

the massless representation with l± = 1
2 we have calculated branchings into su(2|2)

representations up to the sixth excited level.

We can also of course calculate the branching of other representations of Aγ. We

first give examples showing the branching of the ground level for a few different

representations of Aγ, before giving the general statement of the branching for the

ground level.

Example 5.4.20. Next, we consider the ground states of the k+ = 3, k− = 2, l+ =

1, l− = 1 Aγ representation shown in fig. 5.12.

This can be solved in terms of su(2|2) representations as

ChAγ ,R0,k+=3,k−=2,l+=1,l−=1 =
  qh + . . . . (5.4.73)

4
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Figure 5.12: The ground level of a Ramond representation of Aγ
with k+ = 3, k− = 2, l+ = 1, l− = 1

Example 5.4.21. The ground states of the k+ = 4, k− = 3, l+ = 3
2 , l
− = 1 Aγ

representation shown in fig. 5.13 can be solved in terms of su(2|2) representations as

ChAγ ,R0,k+=4,k−=3,l+= 3
2 ,l
−=1 =

  qh + . . . . (5.4.74)

4

Example 5.4.22. The ground states of the k+ = 5, k− = 7, l+ = 5
2 , l
− = 7

2 Aγ

representation shown in fig. 5.14 can be solved in terms of su(2|2) representations as

ChAγ ,R0,k+=5,k−=7,l+= 5
2 ,l
−= 7

2
=




qh + . . . . (5.4.75)

4

It is clear that in all of these examples, the ground level is described by a single

maximally eccentric supertableau. This can be made precise with the following

proposition.
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Figure 5.13: The ground level of a Ramond representation of Aγ
with k+ = 4, k− = 3, l+ = 3

2 , l
− = 1

Figure 5.14: The ground level of a Ramond representation of Aγ
with k+ = 5, k− = 7, l+ = 5

2 , l
− = 7

2
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Proposition 5.4.23. The ground level of a unitary irreducible representation of Aγ

described by parameters k+, k− and quantum numbers l+, l− is described by a single

representation of the superalgebra su(2|2), which is in turn described by a maximally

eccentric Young supertableau of eccentricity (2l+, 2l−).

Proof. We have already showed in section 5.4.2 that su(2|2) satisfies the zero mode

algebra of Aγ and so it is clear the the ground level of an irreducible representation of

Aγ can be given by a representation of su(2|2). This representation of su(2|2) must

be irreducible, since the representation of Aγ was assumed to be. We are therefore

left only to show that this irreducible representation is described by a maximally

eccentric supertableau of eccentricity (2l+, 2l−).

In section 3.3 we saw that the generic massless Ramond representation of Aγ had 8

highest weight states of su(2) × su(2), as shown in fig. 3.3b. We therefore have that

the ground level of Aγ is given by

ChAγ ,R0,l+,l− =
(
χ+
l+χ
−
l−− 1

2
+ χ+

l+− 1
2
χ−l− + 2χ+

l+− 1
2
χ−l−−1 + 2χ+

l+−1χ
−
l−− 1

2

+ χ+
l+−1χ

−
l−− 3

2
+ χ+

l+− 3
2
χ−l−−1

)
qh + . . . ,

(5.4.76)

where

χ±l := χl(z±)

is the su(2)± character for a representation of dimension 2l + 1. We now want to

calculate the branching of
2l+

2l−

to check the su(2) × su(2) content of this representation.



5.4. A Description of I1 Using Supertableaux 159

2l+

2l−
7→


2l+ + 1

,

2l− − 1
 +


2l+

,

2l− − 1


+


2l+ − 2

,

2l− − 1
 +


2l+ − 2

,

2l− − 3


+


2l+ − 2

,

2l− − 1
 +


2l+ − 1

,

2l− − 2


+


2l+ − 1

,

2l−
 +


2l+ − 3

,

2l− − 2
 ,

(5.4.77)

where we have suppressed the u(1) charges and simplified trivial columns of length

2 on the right hand side.

The representation of su(2) described by

n

is the (n+ 1)-dimensional representation with character

χn
2
(z),

and so by comparing eq. (5.4.76) and eq. (5.4.77) we see that the ground level of a

massless representation of Aγ in the Ramond sector with su(2) charges l+ and l− is

described by the supertableau

2l+

2l−

as claimed.

Similarly we can recognise the su(2|2) representation that describes the ground level
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of a massive representation of Aγ in the Ramond sector. We first give a lemma on

the branching of non-maximally eccentric supertableau that will be useful for the

massive case.

Lemma 5.4.24. Under branching into su(2) × su(2) representations we have the

following equivalence:

2l+ − 2

2l− − 2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
su(2)×su(2)

≡



2l+ − 1

2l−
+

2l+

2l− − 1



∣∣∣∣∣∣∣∣∣∣∣∣∣
su(2)×su(2)

.

(5.4.78)

Proof. This is proved simply by branching both sides and checking that they agree.

Proposition 5.4.25. The ground level of a unitary irreducible representation of

Aγ described by parameters k+, k− and quantum numbers l+, l− is described by a

single representation of the superalgebra su(2|2), which is in turn described by a

non-maximally eccentric Young supertableau of eccentricity (2l+, 2l−), as shown in

fig. 5.15.

2l+ − 2

2l− − 2

Figure 5.15: A supertableau which describes the ground level of
a representation of Aγ with su(2) quantum numbers
l+, l−.

Proof. In section 3.3 we saw that the generic massive Ramond representation of Aγ

had 16 highest weight states of su(2) × su(2), as shown in fig. 3.3a. We therefore
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have that the ground level of Aγ is given by

ChAγ ,Rm,l+,l− =
(
χ+
l+χ
−
l−−1 + 2χ+

l+− 1
2
χ−
l−− 1

2
+ 2χ+

l+− 1
2
χ−
l−− 3

2

+ χ+
l+−1χ

−
l− + 4χ+

l+−1χ
−
l−−1 + χ+

l+−1χ
−
l−−2

+ 2χ+
l+− 3

2
χ−
l−− 1

2
+ 2χ+

l+− 3
2
χ−
l−− 3

2
+ χ+

l+−2χ
−
l−−1

)
qh + . . . ,

(5.4.79)

Using lemma 5.4.24 and the branching of a maximally eccentric supertableau given

in the proof of proposition 5.4.23, it is simple to check that the su(2) × su(2)

multiplets which appear in the branching of the representation of su(2|2) shown in

fig. 5.15 agree with eq. (5.4.79). We therefore see that the ground level of a massive

representation of Aγ in the Ramond sector with su(2) charges l+ and l− is described

by the supertableau
2l+ − 2

2l− − 2

as claimed.

Before commenting on the index of Aγ, we note one more useful fact about the

branching of su(2|2) supertableaux.

Proposition 5.4.26. The generic non-zero totally-contravariant representation of

su(2|2) described by a supertableau as shown below satisfies the following equivalence

under branching into su(2)× su(2) representations:

p q

r

s

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
su(2)×su(2)

≡

q

s

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
su(2)×su(2)

. (5.4.80)
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Proof. Step 1: We argue that we have the branching equivalence for p > 2

p q
∣∣∣∣∣∣∣∣
su(2)×su(2)

≡
p− 1 q

∣∣∣∣∣∣∣∣
su(2)×su(2)

. (5.4.81)

To show this, we first calculate the branching of a supertableau of the type shown

in eq. (5.4.81):

p q

7→

 p q

, 1

 +

 p− 1 q + 1

,


†

+

 p q − 1

,


∗

+

 p− 2 q + 2

,


††

+

 p q − 2

,


∗∗

+

 p− 1 q

,


†

+

 p− 1 q

,


†

+

 p− 1 q − 1

,


†∗

+

 p− 2 q + 1

,


††

+

 p− 2 q

,


††

,

(5.4.82)

where we have not simplified trivial columns of two boxes on the right hand side.

The representations indicated by ∗ will appear only for q ≥ 1 and the representation

indicated by ∗∗ will appear only for q ≥ 2. Similarly, the representations indicated

by † will only appear for p ≥ 1 and the representations indicated by †† will appear

only for p ≥ 2. Therefore all representations appear when p ≥ 2, q ≥ 2. Since the

block of columns of length two may be trivially cancelled for su(2), we will get an

equivalent set of representations of su(2) × su(2) on both sides of eq. (5.4.81) if

p > 2.

Now as noted in the proof of corollary 5.4.17, if a supertableau contains the branching

component (T1, (T2)t) then the transposed supertableau T t contains the component

((T2)t, T1). We therefore immediately get the following equivalence for r > 2 as a
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corollary to the previous equivalence:

r

s

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
su(2)×su(2)

≡

r − 1

s

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
su(2)×su(2)

. (5.4.83)

Step 2: We argue that the equivalence

p q

s

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
su(2)×su(2)

≡

p− 1 q

s

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
su(2)×su(2)

.

(5.4.84)

for p > 1 follows easily from eq. (5.4.81). This is done by noting that the column of

length s must be moved to the right hand factor of su(2) and transposed, otherwise

the left hand factor of su(2) will have a column of length > 3 and hence will be

a zero representation. Clearly the result of moving this column over to the right

hand factor, taking the appropriate tensor products where necessary, does not affect

the p dependence of the branching. It is therefore clear that after cancelling trivial

columns of length two, the branching of the two sides of eq. (5.4.84) agree as long

as we have p > 1.

Step 3: This previous step can trivially be extended to give the branching equival-

ence

p q

r

s

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
su(2)×su(2)

≡

p− 1 q

r

s

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
su(2)×su(2)

,

(5.4.85)

for p > 1 using the same argument as for the previous step, except for now we must
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clearly take the two columns of lengths r + s and s to the right hand side, again

taking tensor products where necessary. Again, this will not affect the p dependence

of the branching and so after cancelling trivial columns of length two, the branching

of the two sides of eq. (5.4.85) agree as long as we have p > 1.

Step 4: Finally we again use the proof of corollary 5.4.17 to obtain the equivalence

p q

r

s

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
su(2)×su(2)

≡

p q

r − 1

s

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
su(2)×su(2)

,

(5.4.86)

for r > 1.

Using Step 3 p times and Step 4 r times we now obtain

p q

r

s

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
su(2)×su(2)

≡

q

s

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
su(2)×su(2)

, (5.4.87)

as required.

We can now finally calculate the index I1 for all totally covariant supertableaux as

appear in our decompositions of Aγ representations.

Proposition 5.4.27.

I1



m

n

 = (−1)n
(
z−m−n+1 − zm+n−1

)
. (5.4.88)
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Proof. In the proof of proposition 5.4.23 we calculated the branching of a maximally

extremal supertableau into su(2) × su(2) representations and checked that the su(2)

characters contained in this branching agree with the su(2) characters that appear

in a massless representation of Aγ at the ground level as given in eq. (5.4.76). We

therefore have

Ch



m

n

 =χ+
m
2
χ−n−1

2
+ χ+

m−1
2
χ−n

2
+ 2χ+

m−1
2
χ−n

2−1

+ 2χ+
m
2 −1χ

−
n−1

2
+ χ+

m
2 −1χ

−
n−3

2
+ χ+

m−3
2
χ−n

2−1.

(5.4.89)

In this sense, we think of the supertableaux as describing the representation con-

tent of Aγ in the Ramond sector. Recall that the contribution to the index of a

representation of Aγ is given by

I1
(
ChAγ ,R

)
:= −z+

∂

∂z−
ChAγ ,R̃

∣∣∣∣∣
z−=z+≡z

, (5.4.90)

therefore to calculate the index we need to flow to the R̃ sector, that is to consider

the supercharacter rather than the character of the representation of su(2|2),

SCh


m

n

(z+, z−) := Ch


m

n

(z+,−z−). (5.4.91)

By some straightforward algebra one then obtains,

SCh


m

n

(z+, z−) =
(
χ 1

2
(z+)− χ 1

2
(z−)

) (
(−1)n−1χm−1

2
(z+)χn−1

2
(z−)

+(−1)nχm
2 −1(z+)χn

2−1(z−)
)
.

(5.4.92)

The index I1 as defined in eq. (5.4.90) is evaluated at z+ = z− and clearly we have(
χ 1

2
(z+)− χ 1

2
(z−)

)∣∣∣
z+=z−

= 0. Therefore we need only consider the term where the
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differential ∂
∂z−

is applied to this zero. We therefore have

I1


m

n

 = (−1)n+1
(
z−1 − z

) (
χm

2 −1(z)χn
2−1(z)

− χm−1
2

(z)χn−1
2

(z)
)
.

(5.4.93)

We now use the identity

χl(z) = z−2l − z2(l+1)

1− z2 , (5.4.94)

to show that

(
χm

2 −1(z)χn
2−1(z)− χm−1

2
(z)χn−1

2
(z)
)

= −χm+n
2 −1(z). (5.4.95)

Substituting this into eq. (5.4.93) we finally obtain

I1


m

n

 = (−1)n
(
z−1 − z

)
χm+n

2 −1(z),

= (−1)n
(
z−m−n+1 − zm+n−1

)
.

(5.4.96)

We now have the immediate corollary due to lemma 5.4.24.

Corollary 5.4.28.

I1



m

n


= 0. (5.4.97)

Proof. Since the index at a given level of Aγ is dependent only on the su(2) × su(2)

information, we simply use the branching of the supertableau in lemma 5.4.24 to
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obtain

I1



m

n

 =I1


m+ 2

n+ 1

+ I1


m+ 1

n+ 2

 ,

=(−1)n+1
(
z−m−n−2 − zm+n+2

)
+ (−1)n

(
z−m−n−2 − zm+n+2

)
,

=0.
(5.4.98)

We also have the following corollary due to proposition 5.4.26.

Corollary 5.4.29.

I1



p q

r

s


= 0, (5.4.99)

which follows immediately from corollary 5.4.28 and proposition 5.4.26.

Finally, since they give zero representations, we clearly have

I1



p q

r

s


= 0, (5.4.100)

as well as

I1(T ) = 0, (5.4.101)

for any tableau larger than those already considered.

Since they are the only supertableaux with non-zero index, we now see that the

only contributions to I1 from representations of Aγ come from these maximally
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eccentric representations of the zero mode subalgebra su(2|2). Using eq. (5.2.5) we

can therefore summarise the su(2|2) representation content of Aγ relevant to I1 as

ChAγ ,R0,l+,l− =



2l+

2l−

 q
h

+ (non-maximally eccentric su(2|2) representations) qh+1

+ . . .+ q
µ2+4u2

4k +k−µ(maximally eccentric representation with 2k − µ boxes) + . . .

ChAγ ,Rm,l+,l− =



2l+ − 2

2l− − 2


qh

+ (non-maximally eccentric su(2|2) representations) qh+1 + . . . .
(5.4.102)

Now that we have a more comprehensive understanding of the states contributing

to I1, we calculate the index for a set of Aγ theories in the following chapter.



Chapter 6

Aγ Character Sum Rules and the

Index I1

Having developed a deeper understanding of the type of states counted by the new

index I1 in the context of ‘abstract’ unitary highest weight representations of Aγ

and Ãγ in the previous chapter, we now pave the way for the potential discovery

of a new moonshine phenomenon. In order to do so, we first return in Section 6.1

to the super WZW model describing superstrings propagating on the 8-dimensional

quaternionic group manifold SU(3) that was reviewed in sections 2.2.2 and 2.2.3

and exploit character sum rules introduced in [OPT92; PT93] in this context. One

of the challenges with the sum rules is to identify their explicit dependence in Aγ

massive characters, with a view to constructing explicit modular invariant partition

functions in terms of Aγ massless and massive characters. Once such a partition

function has been constructed, the new index I1 may be applied to the right moving

massless and massive Aγ characters, in analogy with the procedure followed with

the Witten index in K3 theories which led to Mathieu moonshine. In Section 6.2,

we identify an infinite set of Aγ massive characters appearing in every sum rule,

encoded as threshold characters multiplied by q-series Fi(q) (q = exp 2πiτ) for which

we do not have a closed form in most cases at present. One can however proceed

and apply the index I1 on diagonal partition functions of interest and analyse the
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results obtained. This is sketched in Section 6.3, and is work in progress [FTT18].

6.1 Character Sum Rules

We saw in sections 2.2.2 and 2.2.3 that the super WZW model with the SU(3)

group manifold as target space possesses Aγ symmetry. The underlying SCA can be

characterised by two integers k± which are the levels of the two ŝu(2)± Kac-Moody

subalgebras of Aγ. We also know from Section 3.1 that four free fermions and one

boson corresponding to the û(1) subalgebra of Aγ can be decoupled, leaving the

non-linear SCA Ãγ characterised by the levels k̃± = k± − 1 of its two ŝu(2)± Kac-

Moody algebras. We are interested in realisations of Ãγ on SU(3), built by defining

the action of Ãγ on W (3) and on SU(2) × U(1) where W (3) is a 4-dimensional

Wolf space to which 4 free fermionic fields are associated as in section 2.2.3. We

naturally call these fermions the ‘Wolf space fermions’. These are used to construct

a realisation of the ŝu(2)− currents, while the ŝu(2)+ currents may be constructed

from the currents associated to the highest root ŝu(2) subalgebra of ̂su(N)k̃+ , where

N := k− + 1. Hereafter we choose k− = 2 for simplicity.

In [PT93], the authors consider the space,

H(Λ, k̃+) := HWS ⊗Hŝu(3)k̃+
Λ , (6.1.1)

where HWS is the Fock space of the 4 Wolf space fermions and Hŝu(3)k̃+
Λ is an

ŝu(3)k̃+ module with highest weight Λ. This space is shown to provide not only

representations for Ãγ, but also the rational torus algebra A3k, an extension of the

û(1) subalgebra of Aγ.

The aforementioned equivalence between representation spaces,

H(Λ, k̃+) =
⊕
i

(
HÃγ

0,l+i ,l
−
i
⊗HA3k

mi

)⊕
j

(
⊕nHÃγ

hn,l
+
j
⊗HA3k

mj

)
(6.1.2)
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leads to the character sum rules, which can be expressed in the NS sector as

χWS,NSχ
su(3)
Λ = {χWS,NSχ

su(3)
Λ }0 + {χWS,NSχ

su(3)
Λ }m, (6.1.3)

where {χWS,NSχ
su(3)
Λ }0 contains the contributions from the massless representations

of Ãγ and {χWS,NSχ
su(3)
Λ }m contains the massive contributions. We will now explain

this sum rule in more detail, showing how the massless and massive parts are written

in terms of Ãγ and A3k characters.

Firstly, we will need expressions for the various characters involved in the sum rules.

The character for the Wolf space fermions in the NS sector is given by

χWS,NS(q, z−, zy) = q−1/12 ∏
n≥1

(1 + z−zyq
n−1/2)(1 + z−1

− z−1
y qn−1/2)

× (1 + z−z
−1
y qn−1/2)(1 + z−1

− zyq
n−1/2),

= θ3(q, z−zy)
η(q)

θ3(q, z−z−1
y )

η(q) ,

(6.1.4)

where θ3(q, z) is defined as in Appendix B.

The other character we need to construct the left-hand side of the character sum

rule is that of an ̂su(3)k̃+ representation with highest (affine) weight Λ. We therefore

make a few definitions for characters of affine Lie algebras.

Definition 6.1.1. The character of an integrable highest weight representation of

an affine Lie algebra ĝ with highest weight Λ is given by,

ch(Λ) =
∑
λ∈ΩΛ

multΛ(λ)eλ, (6.1.5)

where ΩΛ is the weight space of the representation and multΛ(λ) denotes the multi-

plicity of the weight λ in the representation.

Such a character may be evaluated at an affine weight ξ = −2πi(ζ, τ, t) where – up

to the factor of −2πi – ζ is the finite weight, τ the level and t the grade (of ξ), by

defining

eλ(ξ) := e(λ,ξ). (6.1.6)

In order to calculate the ̂su(3)k̃+ characters of interest, we will make use of the affine
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Weyl-Kac formula, written in terms of generalised theta functions.

Definition 6.1.2. Given two affine weights Λ and ξ = −2πi(ζ, τ, t) of an affine Lie

algebra ĝ, we define the generalised theta function evaluated at ξ as,

ΘΛ(ξ) = e−2πikt ∑
α∨∈Q∨

e−πi[2k(α∨,ζ)+2(λ,ζ)−τk|α∨+λ/k|2], (6.1.7)

where α∨ is a coroot in the coroot lattice Q∨ and λ is the finite part of Λ.

The affine Weyl-Kac formula now gives us an expression for normalised characters

χΛ(ξ) of the module Λ of ĝ evaluated at the point ξ as [DMS97],

χΛ(ξ) =
∑
ω∈W ε(ω)Θω(Λ+ρ̂)(ξ)∑
ω∈W ε(ω)Θωρ̂(ξ)

, (6.1.8)

whereW is the (finite) Weyl group of ĝ, ε(ω) ∈ {±1} is the signature of ω and ρ̂ is the

affine Weyl vector. We evaluate the character at the point ξ = −2πi(∑r
i=1 ziα

∨
i , τ, 0)

such that this character then calculates [DMS97]

χΛ(τ, z) := χΛ(ξ) = TrΛ e
2πiτL0e−2πi

∑r

j=1 zjh
j

, (6.1.9)

where hj is a generator of the affine Lie algebra in the Chevalley basis and we used

the shorthand z = (z1, . . . , zr).

The derivation of the characters for Ãγ was outlined in section 3.4, and the formulae

for the massless and massive characters of Ãγ in the NS sector may be found in

eqs. (3.4.13) and (3.4.15). In the character formulas in [PT93; OPT92] however, the

massless Ãγ characters appear in the linear combinations,

ChÃγ ,NS0 (L = 0; q, z±) :=− ChÃγ ,NSMassless

(
l̃+ = 0, l̃− = 1

2; q, z±
)
,

ChÃγ ,NS0 (L = 1, . . . , k − 3; q, z±) :=1
2

[
ChÃγ ,NSMassless

(
l̃+ = 1

2(L− 1), l̃− = 0; q, z±
)

− ChÃγ ,NSMassless

(
l̃+ = L

2 , l̃
− = 1

2; q, z±
)]
,

ChÃγ ,NS0 (L = k − 2; q, z±) :=− ChÃγ ,NSMassless

(
l̃+ = 1

2(k − 3), l̃− = 0; q, z±
)
,

(6.1.10)

where the k̃± labels and (q, z±) dependency has been suppressed for legibility.



6.1. Character Sum Rules 173

We consider only dominant highest weight representations of ŝu(3), which are neces-

sarily integrable representations and this guarantees the unitarity of the representa-

tion spaces.

Definition 6.1.3. A highest weight representation of an affine Lie algebra ĝ with

highest weight Λ is said to be dominant if all the Dynkin labels of the highest weight

are non-negative integers. That is if in the basis of fundamental weights

Λ =
r∑
i=0

λiω̂i + lδ, (6.1.11)

where ω̂i are the fundamental weights and δ is the imaginary root, the Dynkin labels

λi are all non-negative integers.

Since the zeroth Dynkin index satisfies

λ0 = k − (λ, θ), (6.1.12)

where λ is the finite part of Λ and θ is the longest root, we see that for a dominant

highest weight representation we have

k ≥ (λ, θ) =
r∑
i=1

a∨i λi. (6.1.13)

There are therefore a finite number of dominant highest weight representations of ĝ.

For ŝu(N), the comarks a∨i are all 1, and hence we have

λ0 = k −
r∑
i=1

λi, (6.1.14)

with the requirement that all λi ≥ 0. We label the set of dominant weights at level k

P k
+. If we therefore consider ŝu(3) at level 2, the possible dominant highest weights

of interest are then given in terms of Dynkin labels as

P 2
+ = {[0, 0, 2], [0, 1, 1], [0, 2, 0], [1, 0, 1], [1, 1, 0], [2, 0, 0]}. (6.1.15)

For consistency with [PT93] we label the finite part of Λ as λ = (a1, a2) with
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a1,2 ∈ Z≥0 and by the above, satisfying

a1 + a2 ≤ k̃+, (6.1.16)

for a representation of ŝu(3)k̃+ .

Massive Ãγ characters appear in the sum rules at threshold.

Definition 6.1.4. A massive character of Aγ (Ãγ) is said to be at threshold if

the conformal charge h (h̃) is taken at the saturating value of the massless bound

eq. (3.2.13). These characters (written here in the case of Aγ but equivalently for

Ãγ) are then denoted,

ĈhAγ ,NSm (k±, l±; q, z +±) = q−∆h ChAγ ,NS(k±, l±, h; q, z±), (6.1.17)

where

∆h = h− 1
k

(k+l− + k−l+ + (l+ − l−)2 + u2). (6.1.18)

Finally, the characters of A3k are given by [DVVV89],

χ3k
m (q, zy) := 1

η(q)
∑
n∈Z

q3k(n+m
6k)

2

z
2k(n+m

6k)
y =

θm,3k(q, z2/3
y )

η(q) . (6.1.19)

We can now give the expressions for the massive and massless parts of the sum rule

as [PT93],

{χWS,NS(q, z−, zy)χsu(3)
Λ }m =

k̃+−1∑
2l̃+=0

∑
n∈Zk

M̂Λ
2l+,n(q, z+, z−, zy)FΛ

2l̃+,n(q), (6.1.20)

where the massive matrix M̂Λ
2l+,n is given by,

M̂Λ
2l+,n(q, z+, z−, zy) = ĈhÃγ ,NSm (l±; q, z±)χ3k

−2a1+2a2+6l̃++6n(q, zy). (6.1.21)

and

{χWS,NS(q, z−, zy)χsu(3)
Λ (q, z+, zy}0 =

k−2∑
L=0

ML
Λ (q, zy) ChÃγ ,NS0 (L; q, z±), (6.1.22)
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where the massless matrix ML
Λ is given by,

ML
Λ (q, zy) =− δL,0

[
δa1,0χ

3k
2a2+3(q, zy) + δa2,0χ

3k
−2a1−3(q, zy)

+ δa1+a2,k−3χ
3k
a1−a2+3k(q, zy)

]
+ δL,k−2

[
δa1,0χ

3k
2a2−3(k−1)(q, zy) + δa2,0χ

3k
−2a1+3(k−1)(q, zy)

+ δa1+a2,k−3χ
3k
a1−a2(q, zy)

]
+ (1− δL,0)(1− δL,k−2)

[
δL,k−2−a1χ

3k
a1+2a2−3(k−1)(q, zy)

+ δL,k−2−a2χ
3k
−2a1−a2+3(k−1)(q, zy) + δL,a1+a2+1χ

3k
a1−a2(q, zy)

− δL,a1χ
3k
a1+2a2+3(q, zy)− δL,a2χ

3k
−2a1−a2−3(q, zy)

− δL,k−3−a1−a2χ
3k
a1−a2+3k(q, zy)

]
,

(6.1.23)

6.2 The Functions Fi(q)

The only n dependence in the massive matrix given by eq. (6.1.21) is in the m index

of the rational torus model character χ3k
m , which gives three times the u(1) charge

of the highest weight state of the torus module modulo 6k. These characters are

therefore identical under m→ m+ 6kn for n ∈ Z, as can clearly be seen from their

character formula in eq. (6.1.19). This implies that the q-series FΛ
2l̃+,n – which when

multiplied by the finite number of threshold characters in the massive matrix give

the contribution from an infinite number of massive characters not at threshold –

are also only well defined for n modulo Zk. That is, these functions satisfy

FΛ
2l̃+,n(q) = FΛ

2l̃+,n+k(q). (6.2.1)

These functions can also be shown to satisfy the following equivalences,

FΛ
2l̃+,n(q) = FΛC

2l̃+,−n−2l̃+(q), FΛ
2l̃+,n(q) = FΛ

k̃+−1−2l̃+,n+2l̃++2(q),

FΛ
2l̃+,n(q) = F

φε(Λ)
2l̃+,n+ε+ 1

2 (ε−1)a1+ 1
2 (ε+1)a2

(q),
(6.2.2)

where for Λ =
(
(a1, a2), k̃+, 0

)
, ΛC is the conjugate representation given by

ΛC =
(
(a2, a1), k̃+, 0

)
, (6.2.3)
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and with ε = ±1, the order 3 function φ is defined by

φ(a1, a2) := (a2, k̃
+ − (a1 + a2)), φ(Λ) := (φ(a1, a2), (̃k+), 0). (6.2.4)

As an example we now give the sum rule for the representation Λ = ((0, 0), 2, 0)

of ŝu(3)2. Although the sum rules in [PT93] are written in terms of the linear

combinations of massless characters introduced in eq. (6.1.10), since we will shortly

discuss partition functions we find it clearer to have all modules appearing with

positive integer multiplicities. We therefore use eq. (3.4.17) to re-write massive

threshold characters as sums of massless characters in order to achieve this.

Example 6.2.1. As stated at the start of this subsection, we take k̃− = 1 and we

now also fix k̃+ = 2. We then consider the singlet representation of ŝu(3)2 with

Λ = ((0, 0), 2, 0). The sum rule in this case is then,

χWS,NS(q, z−, zy)χsu(3)
Λ (q, z+, zy) = ChÃγ ,NS0

(
0, 1

2; q, z±
) [
χ15

3 (q, zy) + χ15
−3(q, zy)

]
+ ChÃγ ,NS0 (0, 0; q, z±)χ15

0 (q, zy) + ChÃγ ,NS0

(
1, 1

2; q, z±
)
χ15

15(q, zy)

+ ChÃγ ,NS0 (1, 0; q, z±)
[
χ15

12(q, zy) + χ15
−12(q, zy)

]
+Ĉhm(0, 0; q, z±)

[
F1(q)χ15

0 (q, zy) + F2
(
χ15

6 (q, zy) + χ15
−6(q, zy)

)
+ F3(q)

(
χ15

12(q, zy) + χ15
−12(q, zy)

)]
+Ĉhm

(1
2 , 0; q, z±

) [
F1(q)χ15

15(q, zy) + F2
(
χ15

9 (q, zy) + χ15
−9(q, zy)

)
+ F3(q)

(
χ15

3 (q, zy) + χ15
−3(q, zy)

)]
,

(6.2.5)

where we used the slightly condensed notation,

ChÃγ ,NS0

(
l̃+, l̃−; q, z±

)
≡ ChÃγ ,NSMassless

(
k̃+, k̃−, l̃+, l̃−; q, z±

)
.

We also rename the equivalence classes of the FΛ
2l̃+,n functions where,

F1(q) ∼ F
((0,0),2,0)
0,0 (q)− 1

2 , F2(q) ∼ F
((0,0),2,0)
0,1 (q), F3(q) ∼ F

((0,0),2,0)
0,2 (q),

F4(q) ∼ F
((1,0),2,0)
0,0 (q), F5(q) ∼ F

((1,0),2,0)
0,1 (q)− 1

2 , F6(q) ∼ F
((1,0),2,0)
0,2 (q),

(6.2.6)
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up to equivalence. The factors of 1
2 appearing in F1 and F5 come from rewriting the

massless combinations of eq. (6.1.10) which appear in the sum rules into a sum of

massless representations with positive inter coefficients using eq. (3.4.17). 4

We now want to make some comments on the functions FΛ
2l̃+,n. Firstly, we can easily

count how many independent functions there are.

Lemma 6.2.2. Let the number of functions FΛ
2l̃+,n, ignoring the relations in eq. (6.2.2),

be given by ND(k̃+), then

ND(k̃+) = 1
2 k̃

+(k̃+ + 1)(k̃+ + 2)(k̃+ + 3). (6.2.7)

Proof. First note that the number of pairs (a1, a2) ∈ Z2
≥0 such that a1 + a2 ≤ k̃+ is

the triangular number given by

(k̃+ + 1)(k̃+ + 2)
2 .

Then l̃+ lies in the range 0 ≤ 2l̃+ ≤ k̃+ − 1 containing k̃+ values and n ∈ Zk has

k = k̃+ + 3 values and hence the number of (dependent) functions FΛ
2l̃+,n is given by

lemma 6.2.2.

We now calculate the effect of the relations given in eq. (6.2.2). In the following, we

let Λ = ((a1, a2), k̃+, 0) and recall that 0 ≤ 2l̃+ ≤ k̃+ − 1.

Proposition 6.2.3. Let the number of independent functions FΛ
2l̃+,n under the equi-

valences of eq. (6.2.2) be given by NI(k̃+) then,

NI(k̃+) = 1
24 k̃

+(k̃+ + 1)(k̃+ + 2)(k̃+ + 3) + 1
2

⌈
k̃+

2

⌉ ⌈
k̃+ + 2

2

⌉
. (6.2.8)

Proof. The first observation we make is that a general FΛ
2l̃+,n lies in an equivalence

class of 12 elements under the relations given in eq. (6.2.2). This can be seen by

noting that the first and second of these transformations commute, for fixed ε the

second and third commute, and that the effect of applying the first transformation

followed by the third with ε = 1 is equivalent to first applying the third with ε = −1
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and then applying the first. Since the first 2 transformations are of order 2 and the

third is of order 3, then the general equivalence class is of order 12.

However, there are two cases in which an equivalence class can be smaller than 12

elements. The first of the equivalence relations in eq. (6.2.2) has fixed points when,

a1 = a2, 2n+ 2l̃+ ≡ 0 (k). (6.2.9)

When k̃+ is even, such that k is odd, then 2 is an invertible element in Zk and hence

for each value of l̃+, there is a unique value of n such that 2n+ 2l̃+ ≡ 0(k). When

k̃+ is odd, then 2n+ 2l̃+ ≡ 0(k) has 2 solutions when l̃+ ∈ Z and 0 solutions when

l̃+ ∈ Z + 1
2 . These fixed points are paired under the action of the second equation

in eq. (6.2.2), which itself never has fixed points, so one obtains shorter equivalence

classes of 6 elements, each of which contains 2 elements fixed under the first equation

in eq. (6.2.2).

The other case leading to smaller equivalence classes is if the image of FΛ
2l̃+,n under

the first relation in eq. (6.2.2) is the same as the image under the second equation.

This occurs when

a1 = a2, 4l̃+ = k − 4, 2n ≡ 2 (k). (6.2.10)

This can only occur when k̃+ is odd as 2l̃+ ∈ Z. When k̃+ is odd there are then two

solutions to eq. (6.2.10) which necessarily lie in the same equivalence class.

There are
⌊
k̃+

2

⌋
+ 1 representations Λ which are invariant under conjugation, that

is with a1 = a2. Putting this all together, when k̃+ is even, there are k̃+

2 + 1 pairs

a1 = a2, no solutions to eq. (6.2.10) and k̃+

2 pairs of solutions to eq. (6.2.9) for each

pair a1 = a2, giving 1
4 k̃

+
(
k̃+ + 2

)
short equivalence classes of 6 elements. When k̃+

is odd, there are
⌊
k̃+

2

⌋
+ 1 pairs of solutions to eq. (6.2.9) and one pair of solutions

to eq. (6.2.10) for each pair a1 = a2, giving a total of 1
4

(
k̃+ + 1

) (
k̃+ + 3

)
short

equivalence classes of 6 elements. The total number of short classes, NS(k̃+) can
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then be given by

NS(k̃+) =
⌈
k̃+

2

⌉ ⌈
k̃+ + 2

2

⌉
. (6.2.11)

Finally we can count the number of independent functions FΛ
2l̃+,n, NI(k̃+) as,

NI(k̃+) = ND(k̃+)
12 + NS(k̃+)

2 ,

= 1
24 k̃

+(k̃+ + 1)(k̃+ + 2)(k̃+ + 3) + 1
2

⌈
k̃+

2

⌉ ⌈
k̃+ + 2

2

⌉
.

(6.2.12)

We can now use the sum rules eqs. (6.1.3), (6.1.20) and (6.1.22) to calculate the

early terms in the q-expansion for the independent FΛ
2l̃+,n which we will henceforth

refer to simply as Fi for i in an indexing set of size NI(k̃+). We have carried out

these calculations using Mathematica and we give our results for the case k̃+ = 2

below.

Example 6.2.4. As explained above in proposition 6.2.3, when k̃+ = 2 there are

NI(2) = 6 independent functions Fi. We have calculated the first 29 terms for each

of these 6 functions which we give the first 16 of below, along with a representative

of each equivalence class.

F1(q) ∼ F
((0,0),2,0)
0,0 (q)− 1

2 = q(1 + q + q3 + q4 + 2q5 + q6 + q7 + q8 + 3q9

+ 2q10 + 3q11 + 3q12 + 3q13 + 3q14 + 5q15 + . . .),

F2(q) ∼ F
((0,0),2,0)
0,1 (q) = q2/5(1 + q2 + q3 + q4 + 2q6 + q7 + 2q8 + 2q9 + 2q10

+ 2q11 + 3q12 + 2q13 + 4q14 + 4q15 + . . .),

F3(q) ∼ F
((0,0),2,0)
0,2 (q) = q8/5(1 + q2 + q3 + q4 + q5 + 2q6 + q7 + 2q8 + 2q9

+ 3q10 + 2q11 + 4q12 + 3q13 + 4q14 + 4q15 + . . .),

F4(q) ∼ F
((1,0),2,0)
0,0 (q) = q1/5(1 + q + q2 + q3 + 2q4 + q5 + 2q6 + 2q7 + 3q8 + 3q9

+ 3q10 + 3q11 + 5q12 + 5q13 + 5q14 + 6q15 + . . .),
(6.2.13)
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F5(q) ∼ F
((1,0),2,0)
0,1 (q)− 1

2 = q(1 + q + q2 + q3 + 2q4 + 2q5 + 2q6 + 2q7 + 3q8 + 3q9)

+ 4q10 + 4q11 + 5q12 + 5q13 + 6q14 + 6q15 + . . .),

F6(q) ∼ F
((1,0),2,0)
0,2 (q) = q3/5(1 + 2q2 + q3 + q4 + 2q5 + 2q6 + 2q7 + 3q8 + 3q9

+ 4q10 + 3q11 + 5q12 + 4q13 + 6q14 + 7q15 + . . .).
(6.2.14)

Note that the factors of 1
2 appearing here in F1 and F5 are as in 6.2.1. 4

Remark 6.2.5. Up to the offset, the power of q factored out at the front in

eqs. (6.2.13) and (6.2.14), the coefficients of these functions agree – to as many

coefficients as we have been able to calculate, ∼30 – with some known functions. In

particular, the q-expansions we have obtained agree with,

F2(q) ∼ q2/5 f(−q5)2

f(−q2,−q3) ,

F4(q) ∼ q1/5 f(−q5)2

f(−q,−q4) ,

F3(q) ∼ q−2/5Ψ1(q),

F5(q) ∼ Ψ0(q),
(6.2.15)

where

f(a, b) =
∑
n∈Z

an(n+1)/2bn(n−1)/2, f(−a) = f(−a,−a2), (6.2.16)

is the Ramanujan general theta function [Ber12], and Ψ0(q) and Ψ1(q) are 5th order

mock theta functions. The expansions of these four functions may be found at [Somb;

Hicb; Soma; Hica] respectively. The 5th order mock-theta functions used here seem

to have first appeared in [Hic88]. Although we have not been able so far to identify a

compact form for the series F1(q) and F6(q), it is clear from the sum rules eq. (6.2.5)

that we expect forms of weight 1/2 (modular or mock-modular). For the complete

theory of mock-modular forms, see [Zwe02; B+04; Zag09].This could be inferred

from the identifications eq. (6.2.15) as mock-theta functions are mock-modular forms

of weight 1/2. We will comment further on this in the next section, after reviewing

the concept of modular invariance and covariance.
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As noted in [PT93], for k̃− = 1, k̃+ = 5, the central charge from Aγ is

c = 6(k̃+ + 1)(k̃− + 1)
k̃+ + k̃− + 2

= 9, (6.2.17)

and could therefore be relevant for string compactification. We have therefore

calculated the first 11 terms in the q-expansion for each independent Fi(q) for

k̃+ ∈ {2, 3, 4, 5}. The results for k̃+ = 2 are presented above in 6.2.4 and the results

for k̃+ ∈ {3, 4, 5} are tabulated in Appendix E.

One would like to obtain exact analytic expressions for these functions rather than

simply the first terms in a q-expansion. Hoping to derive the modular transforma-

tions of these functions we have begun work to derive the modular transformation

properties of the Ãγ characters directly rather than in linear combinations as used

in [PT93]. Since the authors of [PT93] make an assumption as to the independ-

ence of their massless and massive sectors under modular transformations, a direct

calculation would provide a useful alternative method. Since the modular trans-

formation properties of the other characters in the sum rules are known, one could

then determine the modular properties of the Fi functions and then hope to use

known properties of the vector spaces they inhabit to deduce the exact form of these

functions from their early coefficients. Calculating the S-transformations of the

massless Ãγ characters has proven to be technically challenging and so this work is

still ongoing. We hope to publish these S-transformations alongside the implications

for the functions Fi soon [FTT18].

6.3 Diagonal Theories and the Index I1

The quantisation of the bosonic string can be performed through the path integral

formalism, and leads, among others, to the so-called vacuum-to-vacuum amplitude

for closed bosonic strings, interacting or not. It is given by,

Z(τ, τ̄) =
∞∑
γ=0

(gs)2(γ−1)
∫
DdΣaDhµν e−S

Polyakov(Σ,h), (6.3.1)
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where SPolyakov(Σ, h) was introduced in eq. (2.2.1). The discrete sum is over compact

Riemann surfaces, classified by their genus γ and weighted by a power of the string

coupling constant gs, with an offset of g−2
s to ensure Z has the right dimensions. The

combination 2(γ − 1) which therefore appears as the power of the string coupling is

the topological quantity known as the Euler characteristic discussed in Chapter 4.

This discrete sum therefore counts all possible worldsheets swept by a closed string

evolving in spacetime from the infinite past to the infinite future – the string state

at infinity is given by the insertion of the appropriate vertex operator (the identity

operator in the case of the vacuum to vacuum amplitude) and a conformal trans-

formation allows us to bring the leg at infinity to a finite distance, we therefore

have a worldsheet given by a Riemann surface as expected. For genus γ = 0, the

Riemann surface is a sphere and models free closed strings. The torus (γ = 1) is the

worldsheet of a closed string splitting into two closed strings that later rejoin – the

relative power of g2
s compared to the vacuum weighs the splitting and the rejoining.

The integral
∫
Dhµν is over all intrinsic shapes of a particular Riemann surface (that

is, over all metrics for the Riemann surface), while the integral
∫
DdΣa is over all

different ways to embed the two-dimensional surface in spacetime.

In the context of string theory, the one-loop partition function is the name given

to the vacuum-to-vacuum amplitude on the torus and this is often simply referred

to as the partition function. The torus is parameterised by a complex variable τ

(its modulus), and one expects the partition function not to depend on how the

torus is parameterised. The group of τ -transformations that do not change the

shape of the torus (i.e. that do not change the underlying lattice) is SL(2,Z). This

is readily seen when expressing the modulus in terms of the periods ω1 and ω2

of the underlying lattice, say τ = ω2
ω1

[BBS06]. These transformations are global

conformal transformations called modular transformations. Since {±I} ⊂ SL(2,Z)

yield the same transformed modulus, it is common to consider the modular trans-

formations in PSL(2,Z) := SL(2,Z)/{±I} instead, which are generated by the two

transformations S : τ → −1/τ and T : τ → τ + 1 with S2 = (ST )3 = 1.
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For the bosonic string, the partition function takes the general form,

ZB(τ, τ̄) =
∑
a,ā

Maā χ
Vir
a (τ)χVir

ā (τ̄), (6.3.2)

where χVir
a (τ) is the character of the unitary representation of the Virasoro algebra

with highest weight state |a〉 corresponding to the (left-moving, holomorphic) primary

field labelled by φa, that is,

χVir
a (τ) = TrHa e

2πiτ(L0− c
24 ) (6.3.3)

with the trace taken over the Hilbert space of all positive norm states descending

from the highest weight state |a〉. Similar conventions are taken for the right-moving,

anti-holomorphic sector. The partition function sums over all the physical states of

the theory, and therefore the multiplicities Maā ∈ Z≥0. If (a, ā) = (0, 0) labels the

vacuum state, then one requires M0,0 = 1 to ensure unicity of the vacuum.

Characters of the Virasoro algebra transform covariantly under the modular group,

by which we mean that each transforms into a (discrete) sum of all Virasoro characters

of that theory under PSL(2,Z). In particular,

χVir
a (τ + 1) =

∑
b

Tab χ
Vir
b (τ) and χVir

a (−1/τ) =
∑
b

Sab χ
Vir
b (τ), (6.3.4)

with T a diagonal matrix of phases and S is a unitary, symmetric matrix. If

the states of a particular theory are then organised into such representations of

the Virasoro algebra, then it is reasonably easy to construct a modular invariant

partition function, i.e. to find multiplicities Maā that ensure eq. (6.3.2) is modular

invariant. In matrix notations, modular invariance of the partition function requires

[M,T ] = [M,S] = 0, where we have already argued that M is a matrix of non-

negative integers with M00 = 1. The classification of modular invariant partition

functions has been successfully performed in certain classes of theories, for which

the first was in [CIZ87b; CIZ87a].

In the case where the symmetries of a theory are governed by an extended Virasoro

algebra – in particular, a SCA – one argues along the same lines as before, with
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the Virasoro characters replaced by the characters of the SCA in question. If

one is interested in constructing modular invariant partition functions that could

correspond to theories whose symmetries are governed by superconformal algebras,

the torus partition function must sum over all states in the theory, including summing

over all spin structures, which correspond to the various periodicity conditions for the

left-moving and right-moving fermions when they wrap the two cycles of the torus.

We note in passing that being able to exhibit a modular invariant partition function

does not guarantee the existence of an underlying physical theory: alongside the

modular invariant partition function, the correlation functions must also be modular

invariant.

The task we want to perform here is to construct modular invariant partition func-

tions built on the Ãγ characters presented in Chapter 3. We are in the process of

calculating analytically the behaviour of Ãγ characters under S and T [FTT18], but

we already know that the S-transformation of the massless characters exhibits fea-

tures that are reminiscent of those encountered in dealing with the S-transformation

of massless N = 4 characters, and which are actually at the origin of the Mathieu

moonshine observation. In fact, in the sector of the theory relevant to a potential

new moonshine, the massless Ãγ characters can be written as finite sums where each

term is the product of a ratio of Jacobi theta functions and Dedekind functions

(transforming with weight k′ = −1) and of an Appell function at level ` = 2k+k−

[STT05], which is a mock modular form of weight k = 1. In practical terms, this

means that the S-transformation of our massless Ãγ characters at levels k± − 1

involve an integral over the massive Ãγ characters alongside a finite sum of massless

Ãγ characters. This integral complicates matters greatly if we were to use brute

force techniques to construct a modular invariant partition function, and this is out

of scope at present, as it was in the case of K3 theories. In order to circumvent this

difficulty, we resort to looking for special types of theories where the building blocks

of the partition function are discrete – albeit infinite – sums, where each term is

the product of an Ãγ character and some rational torus character, and which can
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be expressed in terms of a finite set of characters from other theories that trans-

form among themselves under PSL(2,Z). What we are looking for is precisely the

structure encountered in the character sum rules of Section 6.1.

The sum rules were shown to relate modules of Ãγ to those of ŝu(3)k̃+ , and we can

use invariants of ŝu(3) to construct invariants for ‘extended’ Ãγ theories. Having

constructed modular invariant partition functions we can then calculate the index

I1 for these models using definition 5.2.1 and proposition 5.2.4.

By definition 5.2.1, the index I1 depends only on the R̃ sector of the partition

function. We therefore need to write the sum rules of eq. (6.1.3) in the R̃ sector,

rather than the NS sector. As discussed in sections 3.3 and 3.4, there exists an

isomorphism of the algebra Ãγ which relates the characters for representations of

Ãγ through spectral flow eq. (3.4.3). For instance, we may flow from the NS sector

to the R̃ sector by evaluating the NS sum rules at −z−q−1/2 instead of z− with the

characters of Ãγ flowing as,

ChÃγ ,NSMassless(l̃+, l̃−; q, z+,−z−q−1/2) = q−k̃
−/4(−z−)k̃− ChÃγ ,R̃Massless(l̃+,

k̃−

2 − l̃
−; q, z+, z−).

(6.3.5)

Under spectral flow, the Wolf space fermion character eq. (6.1.4) also ‘flows’ as,

χWS,NS(q,−z−q−1/2, zy) := η−2(q)θ3(q,−q−1/2z−zy)θ3(q,−q−1/2z−z
−1
y ),

= − q−1/4z−η
−2(q)θ1(q, z−zy)θ1(q, z−z−1

y ),

= − q−1/4z−χ
WS,R̃(q, z+, z−),

(6.3.6)

as is easily shown using the product formulae for the θ-functions as in Appendix B.

We are ultimately interested in partition functions involving Aγ characters rather

than Ãγ characters in the present framework of sum rules. A close look at eq. (6.1.2)

reveals that the sum rules we have considered involve a rational torus theory with

characters χ3k
m (q, zy) eq. (6.1.19), which is the extension of a û(1) algebra by a

dimension-3k operator and its hermitian conjugate [DVVV89]. We may view this

û(1) affine algebra as the subalgebra of Aγ whose current U decouples alongside the
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four fermionic currents Q±, Q±K when considering Ãγ [OPT92]. So to obtain sum

rules with Aγ characters, we multiply both sides of the sum rules by the character

for the four free fermions. In the R̃ sector, these are given by,

ChAQ,R̃(q, z+, z−) = θ1(q, z+z−)θ1(q, z−1
+ z−)

η2(q) , (6.3.7)

as can be checked by sending z− → −z− in ChAQ,R(q, z+, z−) from eq. (3.4.10).

Defining ChAγ ,R̃0 (L; q, z±) as the spectral flow of ChÃγ ,NS0 (L; q, z±) multiplied by

ChAQ,R̃(q, z+, z−), we write the sum rules for Aγ in the R̃ sector as,

θ1(q, z+z−)θ1(q, z−1
+ z−)

η2(q) ·
θ1(q, z−zy)θ1(q, z−z−1

y )
η2(q) χ

su(3)
Λ (q, z+, zy)

=
k−2∑
L=0

η(q)ML
Λ (q, zy) ChAγ ,R̃0 (L; q, z±)

+
k̃+−1∑
2l̃+=0

∑
n∈Zk

ĈhAγ ,R̃m (l±; q, z±) η(q)χ3k
−2a1+2a2+6l̃++6n(q, zy)FΛ

2l̃+,n(q),

(6.3.8)

where we have set u = 0. By ĈhAγ ,R̃m , we mean the massive character of Aγ in the

R̃ sector taken at the threshold value of the conformal weight h, as for the NS

sector. As explained in section 6.2, although the massless characters appear in linear

combinations with negative coefficients in eq. (6.3.8), in practice we can always use

eq. (3.4.17) to rewrite the sum rule in such a way that all characters appear with

positive integer coefficients.

Before proceeding, we wish to come back on the nature of the FΛ
2l̃+,n(q) series that

appear in the sum rules eq. (6.1.20), as promised at the end of the previous section.

Examining the sum rules in the R̃ sector, we note that the LHS is a product of the

character of four Wolf space fermions (which is invariant under S) and of characters

which transform covariantly under S with weight 0. The RHS has terms which are

either products of rational torus characters and massless Ãγ characters, or products

of rational torus characters, massive Ãγ characters and Fi(q) functions. The rational

torus characters transform covariantly under S with weight 0 and the massless Ãγ

characters are mock modular forms of weight 0. On the other hand, the massive Ãγ
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characters, which are not mock, transform with weight −1/2. We therefore expect

at least some of the functions FΛ
2l̃+,n(q) to be mock modular forms of weight 1/2,

while the rest are modular of weight 1/2.

Using Appendix B as well as the well known diagonal ŝu(3) invariant [Gan94], we

see that we can write the R̃− R̃ sector of a modular invariant partition function for

a theory with ‘extended’ Ãγ symmetry as,

ZR̃,R̃ =
∑

Λ∈P k̃+
+

∣∣∣∣∣θ1(q, z+z−)θ1(q, z−1
+ z−)

η2(q)
θ1(q, z−zy)θ1(q, z−z−1

y )
η2(q) χ

su(3)
Λ (q, z+, zy)

∣∣∣∣∣
2

,

(6.3.9)

where P k̃+
+ is as in eq. (6.1.15). Having finally constructed the R̃ − R̃ sector of a

modular invariant partition function, we can now calculate the index I1 for such a

theory.

As discussed in section 5.2, the index I1 annihilates right-moving massive repres-

entations of Aγ and counts right-moving massless representations as per eq. (5.2.5).

Recall that as well as the quantum numbers flowing under spectral flow, the rep-

resentation labels can also change when multiplying by a representation of AQU

as discussed in section 3.4. One can easily check that starting from an Ãγ NS

representation, flowing to the R sector then tensoring against AQU gives the same

representation as first tensoring against AQU and then flowing to R. Either way the

net result is,

ChÃγ ,NSMassless(l̃+, l̃−)→ ChAγ ,RMassless

(
l̃+ + 1

2 ,
k−

2 − l̃
−
)
, (6.3.10)

ChÃγ ,NSMassive,threshold(l̃+, l̃−)→ ChAγ ,RMassive,threshold

(
l̃+ + 1, k

−

2 − l̃
−
)
. (6.3.11)

Labelling the R̃− R̃ sector of the partition function of the diagonal theory as ZDk̃+

R̃,R̃
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and the theory itself as Dk̃+ , we can now calculate the index I1 of this theory as,

I1(Dk̃+)(q, z+, z−, zy; q̄, z̄, z̄y) := −z̄+
∂

∂z̄−
Z
Dk̃+

R̃,R̃

∣∣∣∣∣
z̄+=z̄−

,

= |η(q)|2
∑

Λ∈P k̃+
+

(
k−2∑
L=0

ML
Λ (q, zy) ChAγ ,R̃0 (L; q, z±)

+
k̃+−1∑
2l̃+=0

∑
n∈Zk

M̂Λ
2l+,n(q, z+, z−, zy)FΛ

2l̃+,n(q)
 · I1

(
k−2∑
L=0

ML
Λ (q̄, z̄y) ChAγ ,R̃0 (L; q̄, z̄±)

)
.

(6.3.12)

We abuse notation in the above by defining,

I1

(
k−2∑
L=0

ML
Λ ChAγ ,R̃0 (L)

)
:= −z̄+

∂

∂z̄−

(
k−2∑
L=0

ML
Λ ChAγ ,R̃0 (L)

)∣∣∣∣∣
z̄+=z̄−

, (6.3.13)

to mean the contribution to the index from the massive part of the sum rule.

Example 6.3.1. Let us consider the case k̃+ = 1. By proposition 6.2.3, we see that

there are only 2 independent functions in this case and they have been calculated

as [OPT92],

F1(q) ∼ F
((0,0),1,0)
0,0 (q)− 1

2 =
∞∑
n=1

qn
2
, F2(q) ∼ F

((0,0),1,0)
0,1 (q) =

∞∑
n=1

q(2n−1)2/4.

(6.3.14)

The contributions I1

(∑k−2
L=0M

L
Λ ChAγ ,R̃0 (L)

)
can then be calculated by eq. (5.2.5),

recalling that we have set u = 0 (or equivalently cancelled the qu2/k term from both

sides of eq. (6.3.8)) as,

I1

( 2∑
L=0

ML
((0,0),1,0)(q̄, z̄y) ChAγ ,R̃0 (L; q̄, z̄±)

)
= θ−2,4(q̄, z̄)χ12

0 (q̄, z̄y)− θ−2,4(q̄, z̄)χ12
12(q̄, z̄y)

− θ−3,4(q̄, z̄)
(
χ12

9 (q̄, z̄y) + χ12
−9(q̄, z̄y)

)
+ θ−1,4(q̄, z̄)

(
χ12

3 (q̄, z̄y) + χ12
−3(q̄, z̄y)

)
,

(6.3.15)

I1

( 2∑
L=0

ML
((0,1),1,0)(q̄, z̄y) ChAγ ,R̃0 (L; q̄, z̄±)

)
= θ−2,4(q̄, z̄)χ12

−4(q̄, z̄y)− θ−2,4(q̄, z̄)χ12
8 (q̄, z̄y)

− θ−3,4(q̄, z̄)
(
χ12
−7(q̄, z̄y) + χ12

−1(q̄, z̄y)
)

+ θ−1,4(q̄, z̄)
(
χ12

5 (q̄, z̄y) + χ12
11(q̄, z̄y)

)
,

I1

( 2∑
L=0

ML
((1,0),1,0)(q̄, z̄y) ChAγ ,R̃0 (L; q̄, z̄±)

)
= θ−2,4(q̄, z̄)χ12

−8(q̄, z̄y)− θ−2,4(q̄, z̄)χ12
4 (q̄, z̄y)

− θ−3,4(q̄, z̄)
(
χ12

1 (q̄, z̄y) + χ12
7 (q̄, z̄y)

)
+ θ−1,4(q̄, z̄)

(
χ12
−11(q̄, z̄y) + χ12

−5(q̄, z̄y)
)
.

(6.3.16)



6.3. Diagonal Theories and the Index I1 189

4

Example 6.3.2. When k̃+ = 2 we only have the first terms of the q-expansions for

the functions Fi, i ∈ {1, . . . , 6} as given in example 6.2.4.

The massive contributions to the sum rules can be calculated as in example 6.3.1 to

give,

I1

( 3∑
L=0

ML
((0,0),2,0)(q̄, z̄y) ChAγ ,R̃0 (L; q̄, z̄±)

)
= θ−1,5(q̄, z̄)

(
χ15

3 (q̄, z̄y) + χ15
−3(q̄, z̄y)

)
+ θ−2,5(q̄, z̄)χ15

0 (q̄, z̄y) + θ−3,5(q̄, z̄)χ12
15(q̄, z̄y) + θ−4,5(q̄, z̄)

(
χ15

12(q̄, z̄y) + χ12
−12(q̄, z̄y)

)
,

I1

( 3∑
L=0

ML
((0,1),2,0)(q̄, z̄y) ChAγ ,R̃0 (L; q̄, z̄±)

)
= θ−1,5(q̄, z̄)χ15

5 (q̄, z̄y)

− θ−2,5(q̄, z̄)
(
χ15
−4(q̄, z̄y) + χ15

14(q̄, z̄y)
)
− θ−3,5(q̄, z̄)

(
χ15

11(q̄, z̄y) + χ15
−1(q̄, z̄y)

)
+ θ−4,5(q̄, z̄)χ15

−10(q̄, z̄y),

I1

( 3∑
L=0

ML
((1,0),2,0)(q̄, z̄y) ChAγ ,R̃0 (L; q̄, z̄±)

)
= θ−1,5(q̄, z̄)χ15

−5(q̄, z̄y)

− θ−2,5(q̄, z̄)
(
χ15

4 (q̄, z̄y) + χ15
−14(q̄, z̄y)

)
− θ−3,5(q̄, z̄)

(
χ15
−11(q̄, z̄y) + χ15

1 (q̄, z̄y)
)

+ θ−4,5(q̄, z̄)χ15
10(q̄, z̄y),

I1

( 3∑
L=0

ML
((1,1),2,0)(q̄, z̄y) ChAγ ,R̃0 (L; q̄, z̄±)

)
= θ−1,5(q̄, z̄)χ15

15(q̄, z̄y)

− θ−2,5(q̄, z̄)
(
χ15

6 (q̄, z̄y) + χ15
−6(q̄, z̄y)

)
− θ−3,5(q̄, z̄)

(
χ15

9 (q̄, z̄y) + χ15
−9(q̄, z̄y)

)
+ θ−4,5(q̄, z̄)χ15

0 (q̄, z̄y),

I1

( 3∑
L=0

ML
((0,2),2,0)(q̄, z̄y) ChAγ ,R̃0 (L; q̄, z̄±)

)
= θ−1,5(q̄, z̄)

(
χ15

7 (q̄, z̄y) + χ15
−17(q̄, z̄y)

)
+ θ−2,5(q̄, z̄)χ15

10(q̄, z̄y) + θ−3,5(q̄, z̄)χ12
−5(q̄, z̄y) + θ−4,5(q̄, z̄)

(
χ15
−8(q̄, z̄y) + χ12

−2(q̄, z̄y)
)
,

I1

( 3∑
L=0

ML
((2,0),2,0)(q̄, z̄y) ChAγ ,R̃0 (L; q̄, z̄±)

)
= θ−1,5(q̄, z̄)

(
χ15
−7(q̄, z̄y) + χ15

17(q̄, z̄y)
)

+ θ−2,5(q̄, z̄)χ15
−10(q̄, z̄y) + θ−3,5(q̄, z̄)χ12

5 (q̄, z̄y) + θ−4,5(q̄, z̄)
(
χ15

8 (q̄, z̄y) + χ12
2 (q̄, z̄y)

)
.

(6.3.17)

4

From these examples, we see that the index I1 counts an infinity of states in the right-

moving sector, and although we gained an understanding of the Aγ states counted
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in Chapter 5, much remains to be studied, even within these simple examples. If

there is a moonshine phenomenon here, one would expect it to appear in the term

of the form k̃+−1∑
2l̃+=0

∑
n∈Zk

M̂Λ
2l+,n(q, z+, z−, zy)FΛ

2l̃+,n(q)
 · I1

(
k−2∑
L=0

ML
Λ (q̄, z̄y) ChAγ ,R̃0 (L; q̄, z̄±)

)
,

(6.3.18)

from eq. (6.3.12). This is work in progress.



Chapter 7

Conclusion

This thesis was motivated by Mathieu moonshine, where the decomposition of the

elliptic genus for a K3 theory into characters of the ‘small’ N = 4 superconformal

algebra at central charge c = 6 has revealed a surprising connection with the sporadic

group M24. Since the underlying N = 4 symmetry is important to this observation

in the context of strings propagating on a K3 manifold, it is natural to ask whether

a theory with the ‘large’ N = 4 symmetry governed by the Aγ SCA could exhibit

a similar phenomenon. The algebra Aγ was discovered in the late 1980’s [IKL88b;

IKL88a; Sch88] and studied in [SSTV88a; STVS88; STV88] in the context of super

Wess-Zumino-Witten models describing superstring propagating on group manifolds

allowing a quaternionic structure.

The Aγ SCA has 8 bosonic operators which, apart from the energy-momentum tensor

of conformal weight 2, includes the 6 bosonic generators of two ŝu(2)±k± subalgebras

and the bosonic generator U(z) of a u(1) subalgebra, as well as 4 conformal weight 3/2

operators corresponding to the supersymmetry generators and 4 generators Qa(z)

of conformal weight 1/2 corresponding to free fermions. Unitary representations

require γ = k−

k−+k+ with k± ∈ N.

Amongst the elementary quaternionic group manifolds, only two yield a theory with

a single energy-momentum tensor: SU(2)× U(1) and SU(3). In the first case, the

bosonic currents of the σ-model satisfy the OPEs of an ŝu(2) algebra at integer level
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n and of a û(1) algebra at level 1. These bosonic currents together with their four

fermionic superpartners – whose OPEs are standard free fermion OPEs – generate

a representation of Aγ for k− = 1 and k+ = n + 1, which yields a central charge

c = 6(n+ 1)/(n+ 2). Although the limit n→∞ is known to reduce the Aγ algebra

to the ‘small’ N = 4 algebra at c = 6 [STV88], this corresponds to a limit where

the SU(2) × U(1) group manifold becomes U(1)4, and such a theory describing

superstrings propagating on a 4-torus has elliptic genus zero [NW01; Wen00]. The

elliptic genus of a theory with Aγ symmetry is also zero for all finite values of k±,

as shown in Chapter 5 and discussed already in [GMMS04]. The emergence of a

moonshine phenomenon through the elliptic genus in this framework is therefore

doomed. A similar conclusion can be reached starting with the group manifold SU(3),

where the 8 σ-model bosonic currents and their fermionic superpartners generate a

representation of Aγ at k− = 2 and k+ = n+ 1, with the n→∞ limit being ‘small’

N = 4 with central charge c = 12. In this case however, the theory is richer than in

the previous situation, as the root diagram of su(3) has a non-empty set of non-zero

roots, non-orthogonal to the highest root, and which span the 4-dimensional Wolf

space SU(3)/(SU(2) × U(1)) as in section 2.2.2. We have thus chosen the super

WZW model for SU(3) as a test bed for ideas that might lead to a new moonshine.

Although the elliptic genus for such a theory is trivial, another supersymmetric

index I1 (defined in section 5.2) was introduced in the context of theories with

Aγ symmetries in [GMMS04] as a generalisation of the new index of [CFIV92].

The motivation there was to identify a holographic dual to a string theory on

AdS3 × S3 × S3 × S1 [GMMS05; BPS99; EFGT99]. In this thesis, we have not

followed this line, but instead revisited the approach initiated in [OPT92; PT93] of

constructing modular invariant partition functions for theories with Aγ symmetry.

The building blocks of these partition functions are provided by the character sum

rules of Chapter 6, which exploit realisations of Ãγ on cosets [SSTV88a; STVS88;

GPTV89; Van89; ST90], in particular on SU(N)/SU(N − 2) via a realisation on

W (N) and on SU(2)×U(1) where W (N) is a Wolf space – we have focussed on the
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case N = 3, as in this case there is a single energy-momentum tensor. In section 3.1,

we recall how the non-linear algebra Ãγ is obtained by decoupling the four free

fermion generators Qa(z) and the û(1) bosonic generator U(z) from Aγ . In the case

of interest (N = 3), the four Qa(z) generators correspond to the superpartners of the

bosonic generators associated with the SU(2)×U(1) factor, which means that after

they decouple and Aγ reduces to Ãγ, the only remaining fermionic generators are

those corresponding to the Wolf space W (3), i.e. to the four non-zero roots of su(3)

other than the highest root and it negative. The character sum rules of interest to

us encode realisations of Ãγ extended by a rational torus algebra – itself obtained

through extension of the û(1) subalgebra of Aγ by a dimension 3(k+ + k−) operator

and its hermitian conjugate – where one uses the four free Wolf space fermions and

the currents of ŝu(3)k+−1 with k+ − 1 = n.

Manufacturing modular invariant partition functions is reasonably straightforward

since the sum rules relate the Ãγ characters to those of free Wolf space fermions

multiplied by ŝu(3)k+−1 characters, for which the modular transformations are known

[Kac94; Gan94]. Here we have considered diagonal invariants for the two simplest

values of k+ = 2 and k+ = 3, building on the work of [OPT92; PT93]. The case

k+ = 2 is somehow special as it corresponds to γ = 1
2 (since k− = 2 here) and

yields the N = 4 SCA with so(4) subalgebra at c = 6 of Ademollo et al. [Ade+76b;

Ade+76a]. We have in particular concentrated on the massive sector of the sum

rules, i.e. on the contribution from massive Ãγ characters to the sum rules. In the

R̃ sector, these appear as infinite sums of the form ∑∞
n=1 cn ChAγ ,R̃m (h̃+ n, l±), for h̃

the threshold conformal weight and with all coefficients cn positive, and correspond

to unitary representations of Aγ built on primary fields with conformal weights

h̃+n ∀n ∈ N. These sums of characters can be written in terms of threshold massive

characters using ∑∞n=1 cn ChAγ ,R̃m (h̃+ n, l±) = ĈhAγ ,R̃m (h̃, l±)∑∞n=1 cnq
n. These series∑∞

n=1 cnq
n, generically labelled F (q) for q = e2πiτ , are expected to be either modular

or mock modular forms of weight 1/2 as discussed in section 6.3. We have compelling

evidence that in the case k+ = 3, some are 5th-order mock theta functions, and some
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are ratios of Ramanujan theta functions, but we are still studying the nature of

these series for a range of k+-values. We provide the first 11 (16 in the case k+ = 3)

coefficients of the series Fi(q) for k+ ∈ {3, 4, 5, 6} in Appendix E.

As mentioned in section 6.2, we had hoped to find formulae for the S-transformations

of the massless and massive characters of Ãγ . Although the calculations for massive

characters are reasonably straightforward, those for the massless characters of Ãγ

have proven technically challenging and so this work is still ongoing. Once we have

calculated these S-transformations, we hope to be able to provide exact expressions

for the functions Fi(q), which at present are only accessible via their Fourier expan-

sions within the character sum rules (see Appendix E). We are encouraged to pursue

this avenue, as some of the forms appearing in umbral moonshine can be written

similarly in terms of mock theta functions [CDH14b]. Ultimately, we want to under-

stand the dimension of the vector space spanned by the functions Fi(q) pertaining

to a particular theory characterised by k− = 2 and arbitrary integer k+ ≥ 2.

Also in Chapter 6, and in analogy with the pathway to the Mathieu moonshine

discovery, which involves the calculation of the elliptic genus, we have calculated the

supersymmetric index I1 on the partition functions constructed from the character

sum rules of section 6.3. In the case of Mathieu moonshine, the elliptic genus

was found to be a weak Jacobi form for H × C (where H is the upper half-plane).

The contribution to the elliptic genus from right-moving massless representations

of N = 4 is the Witten index of these representations (integers). The partition

function is there reduced from a function from H2 × C2 to a function from H × C

under the elliptic genus. The factor multiplying the massive threshold characters in

the elliptic genus, the mock modular form identified in section 4.2.3, is just a function

of q. The index I1 for Aγ is more complicated. As we saw in section 5.2, massless

representations of Aγ contribute to the index I1 in the form of theta functions

θ−µ,k(q̄, z̄), where µ is the Witten index of the underlying Ãγ representation. The

contribution of massive threshold characters of Aγ to I1 is therefore a function of the

form A(q, z±, zy; q̄, z̄y, z̄) as in eq. (6.3.12). We expect any moonshine phenomenon,
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if any, to emerge from this massive threshold contribution corresponding to the

left-moving massive Aγ characters multiplied by I1 applied to the right-moving Aγ

characters. This is quite a complex analysis, which is still ongoing.

In our journey to Chapter 6, we have had to learn a substantial amount of background

material, which is not new but which we present from our personal viewpoint in

Chapters 1 to 4 and some appendices, focusing on aspects which are essential for our

work in Chapter 6. This abundance of background material reflects how moonshine

phenomena lie at the interface of group and representation theory, algebraic geometry

and number theory, as well as string theory. We go from the emergence of Aγ

symmetry in super WZW models on group manifolds with quaternionic structures

introduced in Chapter 2 to the representation theory of Aγ and Ãγ in Chapter 3, and

to the notion of supersymmetric indices as topological invariants in one- and two-

dimensional σ-models, embedded in a synthesis of the mathematical and physical

literature surrounding these supersymmetric indices in Chapter 4.

Chapter 5, which builds on the broad ideas of index theory reviewed in Chapter 4,

contains original work. Contributions to the supersymmetric index I1 were shown to

come from spectral flow orbits of four particular ground states, a fact observed by

Saulina earlier [Sau05]. We also demonstrate how the contributions to the index I1

split into contributions from Ãγ and from AQU , the algebra of 4 fermions Qa(z) and

one boson U(z). After introducing the notion of a Lie supergroup and its associated

Lie superalgebra, it was proved that the superalgebra su(2|2) describes the zero

mode subalgebra of Aγ in the Ramond sector by constructing a basis of su(2|2)

which satisfies the commutation relations of Aγ. Young supertableaux were used to

classify representations of su(2|2) and, by considering the branching of su(2|2) into

su(2) × su(2) × u(1), we have shown how one may organise the finite-dimensional

representations of the zero mode subalgebra of Aγ occurring at any given level, into

su(2|2) representations. We also indicated how to consider the index I1 acting on

a supertableau and showed that the only supertableaux which contribute to I1 are

the maximally eccentric ones which contain the ‘massless’ states of Aγ – those in
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the spectral flow orbits of massless Aγ highest weight states (and their su(2)× su(2)

lowest weight counterparts) [Fea18].



Appendix A

The Commutation Relations of the

Large N = 4 Algebra Aγ

We present here the commutation relations for the ‘large’ N = 4 algebra, Aγ first

discovered in [STVS88] with the commutation relations first given in [STV88]. This

algebra contains the energy-momentum operator T (z) of conformal dimension 2,

four supercurrents Ga(z) of dimension 3
2 , as well as operators T±i(z) and U(z) of

dimension 1 and Qa(Z) dimension 1
2 .

The Virasoro modes satisfy the usual Virasoro algebra with central charge c,

[Lm, Ln] = (m− n)Lm+n + c

12m(m2 − 1)δm+n,0, (A.0.1)

with commutation relations between the Virasoro modes and the modes of the other

operators fixed by the conformal dimensions of the operators,

[Lm, φn] = [(dφ − 1)m− n]φm+n, (A.0.2)

where dφ is the conformal dimension of φ, i.e dG = 3
2 , d
±i
T = dU = 1, dQ = 1

2 for

i ∈ {+,−, 3}.
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The modes of the supercharges satisfy the commutation relations,

{G+,m, G−,n} = Lm+n + c

6(m2 − 1
4)δm+n,0 − (n−m)

[
γ+T+3

m+n + γ−T−3
m+n

]
,

{G+K,m, G−K,n} = Lm+n + c

6(m2 − 1
4)δm+n,0 − (n−m)

[
γ+T+3

m+n − γ−T−3
m+n

]
,

{G±,m, G+K,n} = ±γ±(n−m)T±±m+n, {G±,m, G−K,n} = ±γ∓(n−m)T∓±m+n,

(A.0.3)

where we use the notation,

γ+ = γ = k−

k
, γ− = 1− γ = k+

k
, k = k+ + k−, (A.0.4)

where k+, k− are the levels of the two affine ŝu(2) algebras known as ŝu(2)± respect-

ively. The central charge of the Virasoro algebra is defined in terms of the levels of

the affine algebras as,

c = 6k
+k−

k
. (A.0.5)

The modes of the affine ŝu(2)± satisfy the usual affine commutation relations,

[T±+
m , T±−n ] = 2T±3

m+n +mk±δm+n,0,

[T±3
m , T±3

n ] = 1
2mk

±δm+n,0,

[T±3
m , T±+

n ] = T±+
m+n,

[T±3
m , T±−n ] = −T±−m+n.

(A.0.6)

The modes of the four dimension 1
2 operators Q±,±K satisfy the following relations

with the modes of the ŝu(2)+,

[T++
m , Q+,n] = 0,

[T++
m , Q+K,n] = 0,

[T+−
m , Q+,n] = −Q−K,m+n,

[T+−
m , Q+K,n] = Q−,m+n,

[T+3
m , Q+,n] = 1

2Q+,m+n,

[T+3
m , Q+K,n] = 1

2Q+K,m+n,

[T++
m , Q−K,n] = −Q+,m+n,

[T++
m , Q−,n] = Q+K,m+n,

[T+−
m , Q−K,n] = 0,

[T+−
m , Q−,n] = 0,

[T+3
m , Q−K,n] = −1

2Q−K,m+n,

[T+3
m , Q−,n] = −1

2Q−,m+n,

(A.0.7)
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and similarly with the modes of the ŝu(2)−,

[T−+
m , Q+,n] = 0,

[T−+
m , Q−K,n] = 0,

[T−−m , Q+,n] = −Q+K,m+n,

[T−−m , Q−K,n] = Q−,m+n,

[T−3
m , Q+,n] = 1

2Q+,m+n,

[T−3
m , Q−K,n] = 1

2Q−K,m+n,

[T−+
m , Q+K,n] = −Q+,m+n,

[T−+
m , Q−,n] = Q−K,m+n,

[T−−m , Q+K,n] = 0,

[T−−m , Q−,n] = 0,

[T−3
m , Q+K,n] = −1

2Q+K,m+n,

[T−3
m , Q−,n] = −1

2Q−,m+n.

(A.0.8)

These equations can be condensed considerably by forming the doublets,

(Q1, Q2) = (Q+,−Q−K) or (Q+K , Q−) for ŝu(2)+,

(Q1, Q2) = (Q+,−Q+K) or (Q−K , Q−) for ŝu(2)−,
(A.0.9)

and letting τ i for i ∈ {+,−, 3} be the standard doublet representation of SU(2),

τ+ =


0 1

0 0

 , τ− =


0 0

1 0

 , τ 3 =


1
2 0

0 −1
2

 , (A.0.10)

such that these doublets transform under the ŝu(2)± as,

[T±im , (Q1, Q2)n] = (Q1, Q2)m+nτ
i. (A.0.11)



200 Appendix A. Aγ Commutation Relations

The supercharge modes transform under the SU(2)+ modes as

[T++
m , G+,n] = 0, [T+3

m , G+,n] = 1
2G+,m+n − γ−mQ+,m+n,

[T++
m , G+K,n] = 0, [T+3

m , G+K,n] = 1
2G+K,m+n − γ−mQ+K,m+n,

[T+−
m , G−K,n] = 0, [T+3

m , G−K,n] = −1
2G−K,m+n + γ−mQ−K,m+n,

[T+−
m , G−,n] = 0, [T+3

m , G−,n] = −1
2G−,m+n + γ−mQ−,m+n,

[T++
m , G−K,n] = −G+,m+n + 2γ−mQ+,m+n,

[T++
m , G−,n] = G+K,m+n − 2γ−mQ+K,m+n,

[T+−
m , G+,n] = −G−K,m+n + 2γ−mQ−K,m+n,

[T+−
m , G+K,n] = G−,m+n − 2γ−mQ−,m+n,

(A.0.12)

and under the SU(2)− modes as

[T−+
m , G+,n] = 0, [T−3

m , G+,n] = 1
2G+,m+n + γ+mQ+,m+n,

[T−+
m , G−K,n] = 0, [T−3

m , G−K,n] = 1
2G−K,m+n + γ+mQ−K,m+n,

[T−−m , G+K,n] = 0, [T−3
m , G+K,n] = −(1

2G+K,m+n + γ+mQ+K,m+n),

[T−−m , G−,n] = 0, [T−3
m , G−,n] = −(1

2G−,m+n + γ+mQ−,m+n),

[T−+
m , G+K,n] = −(G+,m+n + 2γ+mQ+,m+n),

[T−+
m , G−,n] = G−K,m+n + 2γ+mQ−K,m+n,

[T−−m , G+,n] = −(G+K,m+n + 2γ+mQ+K,m+n),

[T−−m , G−K,n] = G−,m+n + 2γ+mQ−,m+n.

(A.0.13)

As for the modes of the Qa, these equations can be condensed considerably as,

[T±im , (G1, G2)n] =
(
(G1, G2)m+n ∓ 2γ∓m(Q1, Q2)m+n

)
τ i, (A.0.14)

where i ∈ {+,−, 3} and (G1, G2) given similarly to equation (A.0.9)

(G1, G2) = (G+,−G−K) or (G+K , G−) for ŝu(2)+,

(G1, G2) = (G+,−G+K) or (G−K , G−) for ŝu(2)−. (A.0.15)
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Finally, the remaining non-trivial commutation relations are given by

{Q±,m, G∓,n} = ∓1
2(T+3

m+n − T−3
m+n) + 1

2Um+n,

{Q±K,m, G∓K,n} = ∓1
2(T+3

m+n + T−3
m+n) + 1

2Um+n,

{Q+K,m, G±,n} = −1
2T
±±
m+n,

[Um, Ga,n] = mQa,m+n,

{Q+,m, Q−,n} = −1
4kδm+n,0,

{Q±,m, G+K,n} = 1
2T
±±
m+n,

{Q±,m, G−K,n} = −1
2T
∓±
m+n,

{Q−K,m, G±,n} = 1
2T
∓±
m+n,

[Um, Un] = −1
2mkδm+n,0,

{Q+K,m, Q−K,n} = −1
4kδm+n,0,

(A.0.16)

where a ∈ {±,±K}.

The hermiticity properties of the modes are given by

L†n = L−n,

G†+K,n = G−K,−n,

U †n = −U−n,

Q†+K,n = −Q−K,−n,

G†+,n = G−,−n,

(T±3
n )† = T±3

−n ,

Q†+,n = −Q−,−n,

(T±+
n )† = T±−−n .

(A.0.17)



Appendix B

Theta Functions and the Dedekind

Eta Function

This short appendix is included as a reference for the definitions of the Jacobi theta

functions and the Dedekind eta function, as well as their transformation properties

under the modular group. The modular transformations either follow immediately

from the definitions (in the case of the T -transformations), or are proved using

Poisson summation (in the case of the S-transformations). These are classical

results and as such are available in many places including for example [DMS97].

In this appendix we repeatedly abuse notation by writing functions of τ in the upper

half-plane H and ω ∈ C in terms of the nome q = e2πiτ and z = e2πiω. In all the

following definitions we always take τ ∈ H and ω ∈ C.

Definition B.0.1. The Dedekind η-function is defined as,

η(τ) := q1/24
∞∏
n=1

(1− qn). (B.0.1)

The Dedekind η-function is also commonly written in terms of the Euler φ-function

as,

η(τ) = q1/24φ(τ), φ(τ) :=
∞∏
n=1

(1− qn). (B.0.2)

We also define the Jacobi theta functions as functions from H× C→ C.



203

Definition B.0.2. The four Jacobi theta functions are defined as,

θ1(τ, ω) := i
∞∑

n=−∞
(−1)nq 1

2 (n− 1
2 )2
zn−

1
2 ,

θ2(τ, ω) :=
∞∑

n=−∞
q

1
2 (n− 1

2 )2
zn−

1
2 ,

θ3(τ, ω) :=
∞∑

n=−∞
q
n2
2 zn,

θ4(τ, ω) :=
∞∑

n=−∞
(−1)nq n

2
2 zn.

(B.0.3)

Using the Jacobi triple product, one can write product formulae for these theta

functions as,

θ1(τ, ω) = iq1/8z−1/2
∞∏
n=1

(1− qn)(1− qn−1z)(1− qnz−1),

θ2(τ, ω) = q1/8z−1/2
∞∏
n=1

(1− qn)(1 + qn−1z)(1 + qnz−1),

θ3(τ, ω) =
∞∏
n=1

(1− qn)(1 + qn−1/2z)(1 + qn−1/2z−1),

θ4(τ, ω) =
∞∏
n=1

(1− qn)(1− qn−1/2z)(1− qn−1/2z−1).

(B.0.4)

Proposition B.0.3. The modular transformations of η(τ) as well as the Jacobi

theta functions are given by,

η(τ)S := η(−1
τ

) =
√
−iτη(τ),

θi(τ, z)S := θi(−
1
τ
,
ω

τ
),

θ1(τ, z)S = −i(−iτ) 1
2 eπi

ω2
τ θ1(τ, ω),

θ2(τ, ω)S = (−iτ) 1
2 eπi

ω2
τ θ4(τ, ω),

θ3(τ, ω)S = (−iτ) 1
2 eπi

ω2
τ θ3(τ, ω),

θ4(τ, ω)S = (−iτ) 1
2 eπi

ω2
τ θ2(τ, ω),

η(τ)T := η(τ + 1) = e
πi
12η(τ),

θi(τ, z)T := θi(τ + 1, ω),

θ1(τ, ω)T = e
πi
4 θ1(τ, ω),

θ2(τ, ω)T = e
πi
4 θ2(τ, ω),

θ3(τ, ω)T = θ4(τ, ω),

θ4(τ, ω)T = θ3(τ, ω).

(B.0.5)



Appendix C

Characteristic Classes and Genera

The aim of this appendix is to introduce some mathematical notions, which while

standard in the mathematical literature are less well known in the physics literature.

In particular, we wish to define a genus as a homomorphism from the cobordism

ring to some unital Q-algebra and this section introduces the basic definitions that

we need for this. We start by briefly introducing the dual notions of homology and

cohomology, as cohomology classes will be key for much of this chapter. We then

introduce the notion of characteristic classes, which associate cohomology classes

to bundles over a base space. Next we define the equivalence notion of bordism

as a courser way to classify manifolds than through diffeomorphically equivalent

manifolds. In particular we show that the equivalences classes of manifolds up to

bordisms has a ring structure. Finally we use characteristic classes to define a genus

as a homomorphism from the (oriented) bordism ring to some Q-algebra Λ. We

finish this appendix by explaining what it means for a genus to be elliptic and give

some examples of elliptic genera.
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C.1 Homology and Cohomology

C.1.1 Simplicial Homology

In general, homology theory is a procedure for associating a sequence of abelian

groups to an object such as a topological space. There are many different types of

homology theory that one can consider, but here we will consider simplicial homology

as this enables us to consider the homology in a visual way. For spaces which admit

a triangulation, simplicial homology is isomorphic to singular homology which we

consider in Appendix C.1.2.

Definition C.1.1. The convex hull of a set T in Euclidian space is the smallest

convex set that contains T .

Definition C.1.2. A k-simplex is a k-dimensional polytope in Euclidian space which

is the convex hull of its k+ 1 vertices in general position as taken with the subspace

topology. This simply gives us the point, the closed line, the triangle, the tetrahedron

etc. Further, we refer to the convex hull of any subset of (m−1) points of a k-simplex

as an m-face of the simplex.

Note that this definition does not require the simplex to be regular, if the simplex

is regular then it is called a regular simplex.

Definition C.1.3. A simplicial complex Σ, is a topological space formed as the

union of k-simplices of possibly different dimensions which satisfies the following two

conditions:

1. The face of any simplex X ∈ Σ is also a simplex in Σ.

2. The intersection of any two simplices σ1, σ2 ∈ Σ is a face of both σ1 and σ2.

A simplicial complex can easily be constructed from k-simplices of increasing dimen-

sion. If we begin with a point set (0-simplices), then we may attach lines (1-simplices)

to the set freely, as long as we ensure that each line ends on a simplex in order to
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satisfy property 1 of definition C.1.3 and as long as the lines do not intersect away

from the vertex set in order to satisfy condition 2 of definition C.1.3 . We may now

attach triangles (2-simplices) to our complex in a similar manner; the triangles must

have their edges as lines in the complex and must not intersect each other at any

points not already in our complex. We can continue attaching simplices of higher

dimensions in this manner until we stop after attaching a set of n-simplices. We

then refer to our complex as having dimension n.

If we label the vertices of our simplex as 0, . . . , n, then our simplices naturally inherit

an orientation. The edges are oriented as (i, j) if i < j and as (j, i) otherwise, where

i, j are the vertices. Similarly, a k-simplex is oriented in increasing order of its

vertices.

Realising a topological space in terms of a simplicial complex is known as a tri-

angulation of the space. Any real, differentiable manifold can be seen to admit a

triangulation by the Whitney embedding theorem.

Definition C.1.4. The chain group Ck(X) of a simplicial complex X, is defined as

the Q-vector space over Xk, where Xk is the set of all k-simplices in X.

An element x ∈ Ck(X) is called a k-chain on X.

Example C.1.5. It is clear that for fig. C.1 we have

e1 = (v1, v2), e5 = (v3, v4), σ1 = (v1, v2, v3). (C.1.1)

The chain groups are

C0(X) = Span{v1, v2, v3, v4}, C1(X) = Span{e1, e2, e3, e4, e5},

C2(X) = Span{σ1, σ2}.
(C.1.2)

4

We introduced homology in order to help us describe the topology of a space. The

preceding definitions have been introduced to allow us to define the notion of a

boundary in a manner that agrees with our intuitive understanding of the notion of
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X

v1

v2

v3

v4

e1 e3 e5

e4

e2

σ1

σ2

Figure C.1: A simple chain complex

a boundary. We define a boundary operator as a linear map ∂ : Ck(X)→ Ck−1(X)

for some complex X.

Definition C.1.6. Let (v0, v1, . . . , vk) ≡ [0, 1, . . . , k] and let [0, . . . , n̂, . . . , k] be the

simplex with all the vertices 0, . . . , k aside from n, then we can define,

∂[0, . . . , k] =
k∑

n=0
(−1)n[0, . . . , n̂, . . . , k]. (C.1.3)

One can easily check that this agrees with our standard notion of boundary.

Example C.1.7. Consider the closed path e3 + e5 − e4.

∂(e3 + e5 − e4) := ∂[2, 3] + ∂[3, 4]− ∂[2, 4],

= [2]− [3] + [3]− [4]− [2] + [4] = 0,
(C.1.4)

which shows a closed path has no boundary as expected. 4

Lemma C.1.8.

∂2 = 0. (C.1.5)

Proof. ∂2[0, . . . , k] = ∑k
m,n=0[(−1)n+m + (−1)n+m−1][0, . . . , m̂, . . . , n̂, . . . , k] = 0

Definition C.1.9. k-cycles on X are chains in Ker ∂, denoted Zk(X)

Zk(X) = Ker(∂k).

k-boundaries are chains in Im ∂, denoted Bk(X)

Bk(X) = Im(∂k+1).
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Now since we have proved that ∂ necessarily satisfies ∂2 = 0, by lemma C.1.8, we have

that k-cycles are boundariless, that is Bk(x) ⊂ Zk(X), so Bk(X) is a linear subspace

of Zk(X). Since our chain groups are abelian groups and we have Zk(x) ⊂ Ck(X),

then Zk(X) is abelian and hence Bk(X) is normal in Zk(X).

It therefore makes sense to define the quotient group and this is what we define as

the kth homology group of a simplicial complex X.

Definition C.1.10. We define the kth homology group of a simplicial complex X as

Hk(X) = Zk(X)
Bk(X) (C.1.6)

and we can construct a chain complex for our example C.1.5

. . .
0−→ 0 0−→ C2(X) ∂2−→ C1(X) ∂1−→ C0(X) 0−→ 0 0−→ . . .

that satisfies ∂2 = 0, or more precisely ∂1 ◦ ∂2 = 0.

Geometrically we can think of ‘holes’ in the space X as cycles in Zk(X) that are

not the boundaries of higher dimensional simplices. This is exactly the information

captured by the homology groups of X.

Definition C.1.11. The nth Betti number bn of a topological space X is the rank

of the nth homology group Hn(X)

bn(X) = rank Hn(X).

The Betti numbers can be thought of as the number of k-dimensional holes in X.

The Betti number b0 tells us the number of connected components of X.

C.1.2 Singular Homology

In singular homology we begin by considering singular chains of standard n-simplices.
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Definition C.1.12. The standard n-simplex is the set

∆n = {(t0, . . . , tn) ∈ Rn+1|
∑
i

ti = 1, ti ≥ 0, i = 0, . . . , n}

This definition agrees with our understanding of the simplex as defined in defini-

tion C.1.2. Note that we could also choose to define the standard n-simplex in Rn

instead, but this embedding into Rn+1 automatically defines us a regular n-simplex.

Definition C.1.13. Given a space X, a singular n-simplex is a continuous map

σ : ∆n → X. This map need not be injective. For instance, any constant map from

a n-simplex to X may be viewed as a singular n-simplex.

As in the case of simplicial homology (Appendix C.1.1), we can now use the singular

n-simplices to form singular n-chains.

Definition C.1.14. • A singular n-chain is a formal linear combination of sin-

gular n-simplices, ∑i niσi.

• The singular chain group, Sn(X), is the free abelian group with a basis of

the set of all singular n-simplices on X. A singular n-chain is therefore any

element of the chain group Sn(X).

The advantage of considering singular homology rather than simplicial homology is

that in simplicial homology we needed to state that the homology groups obtained

are independent of the triangulation of the space. In singular homology, since we

are considering all maps from the standard simplices into the space X, then this

ambiguity is removed, but in return we are left with much larger (usually uncountable)

chain groups.

We can now define the boundary of a singular n-simplex as a formal sum of the

singular (n−1)-simplices obtained by restricting the singular simplex σ to the faces of

the standard n-simplex and taking an alternating sign to take account of orientation
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as in the simplicial case. That is, for the vertices, we have

∂nσn(∆n) =
n∑
i=0

(−1)iσ ◦ ι(0,...,̂i,...,n), (C.1.7)

where ιS is the natural embedding of the standard simplex spanned by S into the

standard n-simplex, and as before, S = (0, . . . , î, . . . , n) is taken to mean the set of

points of S not including i.

C.1.3 Cohomology

Cohomology arises by considering the algebraic dualisation of homology. Rather

than considering the chain groups Ck and the linear boundary maps ∂k between

them, we consider the dual spaces C∗k , the cochain groups, and the transpose of

the boundary operators, δn : C∗n−1 → C∗n, the coboundary operators or differentials.

The coboundary maps clearly satisfy δn+1δn = 0 since δn+1δn = (∂n+1)t(∂n)t =

(∂n∂n+1)t = (0)t = 0 and hence we can form a cochain complex

. . .
δn+1
←−− C∗n

δn←− C∗n−1
δn−1
←−− . . .

We can then define the nth cohomology group Hn(X) = Ker(δn+1)
Im(δn) .

In cohomology it is possible to define a product operation on the elements of the

cohomology groups in order to obtain a cohomology ring. This operation, known as

the cup product, defines a way of combining a p-cocycle with a q-cocycle to obtain a

p+ q-cocycle. It can then be shown that this cup product on the cocycles induces

a product on the cohomology classes. Having introduced singular homology in

Appendix C.1.2 we will now use this to define the cup product in singular cohomology.

In singular cohomology the cup product of a p cocycle, cp, and a q cocycle, dq is

given by

(cp ^ dq)(σp+q) = cp(σp+q ◦ ι0,...,p) · dq(σp+q ◦ ιp,...,p+q), (C.1.8)

where ιS is the natural embedding of the standard S-simplex into the standard

(p+ q)-simplex. σp+q ◦ ι0,...,p and σp+q ◦ ιp+1,...,p+q are often referred to as the pth front
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face and qth back face of σp+q respectively.

Since the coboundary map δ is the dual of the boundary map ∂, we have

δc(σ) = c(∂σ) =
∑
i

(−1)ic(σ ◦ ι0,...,̂i,...,n+1). (C.1.9)

This leads to the following standard lemma,

Lemma C.1.15.

δ(cp ^ dq) = (δcp ^ dq) + (−1)p(cp ^ δdq). (C.1.10)

From this we have two simple corollaries.

Corollary C.1.16. The cup product of two cocylces, cp, dq is a cocycle, δ(cp ^ dq) =

0.

Corollary C.1.17. The cup product of a cocycle and a coboundary is a coboundary.

The cup product therefore induces a product for the cohomology classes

Hp(X)×Hq(X)→ Hp+q(X). (C.1.11)

One important example of a cohomology theory is de Rham cohomology. In de

Rham cohomology, the cochains are the elements of the spaces Ωk(M) of k-forms on

the smooth manifold M and the differential is the exterior derivative d : Ωk → Ωk+1.

We call a form α exact if it is the image of a form under the exterior derivative,

α = dβ. We call a form α closed if its exterior derivative is equal to 0, dα = 0. Since

d2 = 0, all exact forms are closed and we can consider the quotient space of closed

forms modulo exact forms. We call these spaces the de Rham cohomology groups,

Hk
dR(M). In de Rham cohomology, one can realise the cup product as the wedge

product of differential forms.
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C.2 Characteristic Classes

Characteristic classes are a way to associate cohomology classes of a space X to

vector and principal bundles on the space. Specifically we wish to consider the Chern

classes and the Pontryagin classes.

Chern classes are characteristic classes which are associated to complex vector

bundles – bundles whose fibres are complex vector spaces with C-linear transition

functions. The Chern classes of a complex vector bundle E over a manifold M

are elements of the cohomology ring H∗(M,Z). Specifically, the ith Chern class

ci(E) ∈ H2i(M,Z).

We take the Chern classes to be defined in the following way.

Definition C.2.1. To a complex vector bundle E of complex rank n over a smooth

manifold M , we may associate distinguished elements of the cohomology ring

H∗(M,Z) known as Chern classes. The Chern classes may be given by the coefficients

of the characteristic equation of the curvature form Ω on E,

det
(
itΩ
2π + I

)
=
∑
i

ci(E)ti. (C.2.1)

This follows from the Chern-Weil homomorphism and hence is independent of the

choice of connection on E.

Definition C.2.2. The total Chern class for a rank n complex bundle E is given by

c(E) =
∞∑
i=1

ci(E) ∈ H∗(X,Z). (C.2.2)

Note that we always have c0(E) = 1 for all complex bundles E.

An alternate axiomatic definition is given in [HBJL92].

Definition C.2.3. Given a complex vector bundle E over a manifold X, we may

define the Chern classes as characteristic classes uniquely satisfying the following

properties:
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1. ci(E) ∈ H2i(X,Z), c0(E) = 1.

2. ci(f ∗E) = f ∗ci(E), where f : Y → X is a continuous map.

3. c(E⊕F ) = c(E) · c(F ), where F is another complex vector bundle over X and

E ⊕F is the Whitney sum of the two bundles, that is the fibrewise direct sum

of the bundles.

4. c(H) = 1−g, where H is the Hopf bundle over CP n and g ∈ H2(CP n,Z) is the

generating element of the cohomology ring of CP n. (Cn)× ≡ Cn\{0} naturally

fibres over CP n; If CP n is seen as the image of the map ρ : (Cn)× → CP n

defined by ρ(λz1, λz2) = (z1, z2) for non-zero λ ∈ C, then the restriction of ρ to

the unit norm elements of Cn defines the fibration known as the Hopf fibration.

For notational ease we also make the following standard definition.

Definition C.2.4. We can define the Chern classes of a smooth manifold M as the

Chern classes of the tangent bundle to the manifold,

ci(M) := ci(TM). (C.2.3)

We use the following proposition, taken from [Hat03] without proof.

Proposition C.2.5. Given a manifold M , the group of isomorphism classes of com-

plex line bundles on M under tensor products is isomorphic to the second cohomology

group of M , H2(M,Z). Specifically the isomorphism is given by c1, so for complex

line bundles L1, L2 we have

c1(L1 ⊗ L2) = c1(L1) + c1(L2). (C.2.4)

This has the following simple corollary,

Corollary C.2.6. Given a manifold M , consider a complex line bundle L with first

Chern class c1(L). Then the first Chern class of the dual bundle L∗ is given by

c1(L∗) = −c1(L).
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Proof. We note that the tensor product of L with L∗, L ⊗ L∗ = Hom(L,L) is a

trivial bundle, since it is a rank 1 bundle with a nowhere vanishing section given by

the identity map. We then have

0 = c1(Hom(L,L)) = c1(L⊗ L∗) = c1(L) + c1(L∗), (C.2.5)

and hence c1(L∗) = −c1(L).

We note the following theorem about the tangent bundle to CP n, a proof of which

may be found in [Coh98].

Theorem C.2.7.

TCP n ⊕ ε1 ∼= ⊕n+1H
∗, (C.2.6)

where ε1 is a trivial line bundle and H∗ is the dual to the Hopf bundle defined in

definition C.2.3.

Using this theorem we can prove the following lemma.

Lemma C.2.8. The total Chern class of CP n is given by

c(CP n) = (1 + g)n+1, (C.2.7)

where g is the generating element of the cohomology ring of CP n as in definition C.2.3,

and where by the Chern class of a manifold we implicitly mean the Chern class of

the tangent bundle.

Proof. We have
c(CP n) := c(TCP n) = c(TCP n ⊕ ε1),

= c(⊕n+1H
∗) = c(H∗)n+1,

= (1 + g)n+1,

(C.2.8)

where in the first line we use proposition C.2.5 to show that c(ε1) = 1 + c1(ε1) = 1.

Since the trivial line bundle is the identity of the group structure on the isomorphism

classes of line bundles it gets mapped to zero under the isomorphism to H2(M,Z)
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given by c1. We then use the Whitney sum rule as defined in definition C.2.3 to split

the Chern classes of the direct sum bundles into the products of their Chern classes.

In the final line we also used corollary C.2.6.

A theorem known as the ‘splitting principle’ [HBJL92], means one can consider any

statement about Chern classes as a statement on sums of line bundles.

Theorem C.2.9. Consider a vector bundle π : E → X of rank n. Then there exists

a space Fl(E), known as the flag bundle of E and a map ρ : Fl(E)→ X such that

• the induced homomorphism of cohomology, ρ∗ : H∗(X)→ H∗(Fl(E)) is inject-

ive.

• the pullback bundle ρ∗π : ρ∗(E) → Fl(E) breaks up as a direct sum of line

bundles, ρ∗(E) = E1 ⊕ E2 ⊕ . . .⊕ En.

The point is that we may always consider any statement about the Chern classes on

the flag bundle Fl(E) and then push forward to the space X with ρ. The fact that

ρ∗ is injective on the cohomology rings means that any equation which the Chern

classes satisfy in H∗(Fl(E)) holds in H∗(X).

Using this principle we can calculate the total Chern class of some specific vector

bundles.

Example C.2.10. Consider a rank n complex vector bundle E. By the splitting

principle, in any calculation about Chern classes, we may consider E to be given

by the direct sum of n complex line bundles, E = E1 ⊕ E2 ⊕ . . . ⊕ En. These line

bundles have total Chern class

c(Ei) = 1 + c1(Ei), (C.2.9)

and so let us define xi := c1(Ei). The total Chern class of E is then given by the
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Whitney sum rule as,
c(E) = c(E1 ⊕ E2 ⊕ . . .⊕ En),

= c(E1) · . . . · c(En),

=
n∏
i=1

(1 + xi).

(C.2.10)

Now let us calculate the Chern class of the dual bundle c(E∗) = c(E∗1 ⊕ . . .⊕ E∗n),

c(E∗) = c(E∗1 ⊕ . . .⊕ E∗n),

= c(E∗1) · . . . · c(E∗n),

=
n∏
i=1

(1− xi).

(C.2.11)

and so we have

c(E∗) =
n∑
i=1

(−1)nci(E). (C.2.12)

Let us also calculate the Chern class of ΛkE,

c(ΛkE) = c(
⊕

1≤i1<...<ik≤n
Li1 ⊗ . . .⊗ Lik),

=
∏

1≤i1<...<ik≤n
(1 + xi1 + . . .+ xik).

(C.2.13)

Combining these two results gives

c(ΛkE∗) =
∏

1≤i1<...<ik≤n
(1− (xi1 + . . .+ xik)). (C.2.14)

4

In order to make contact with the Atiyah-Singer index theorem, we will also need

to define the Chern character.

Definition C.2.11. Given a complex vector bundle E of rank n, the splitting

principle (theorem C.2.9) shows that it has total Chern class

c(E) =
n∏
i=1

(1 + xi), (C.2.15)
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where xi := c1(Ei). We then define the Chern character as

ch(E) :=
n∑
i=1

exi . (C.2.16)

By definition we have

ch(E1 ⊕ E2) = ch(E1) + ch(E2), (C.2.17)

for the Chern character.

Example C.2.12. We can now calculate the Chern character of the bundles con-

sidered in the previous example.

For E∗, we showed that c(E∗) = ∏n
i=1(1− xi), and hence we have

ch(E∗) =
n∑
i=1

e−xi . (C.2.18)

For ΛkE, we showed that c(ΛkE) = ∏
1≤i1<...<ik≤n(1 + xi1 + . . .+ xik), and hence

ch(ΛkE) =
∑

1≤i1<...<ik≤n
exi1+...+xik , (C.2.19)

and similarly

ch(ΛkE∗) =
∑

1≤i1<...<ik≤n
e−(xi1+...+xik ). (C.2.20)

If we now define

ΛtE :=
∞∑
i=0

(ΛiE) · ti, (C.2.21)

then we have the following formula for the Chern character of the dual bundle to E,

ch(ΛtE
∗) := ch(

n∑
i=0

(ΛiE∗)ti),

:=
n∑
i=0

ch(ΛiE∗)ti,

=
n∏
i=1

(1 + te−xi),

(C.2.22)

where in the second line we used the additivity for the Chern character noted in

definition C.2.11. 4

Given a real vector bundle, one can form a complex vector bundle.
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Definition C.2.13. Given a real vector bundle E, one can form a complex vector

bundle known as the complexification of E,

EC := E ⊗ ε1, (C.2.23)

where as in theorem C.2.7, ε1 is the 1-dimensional trivial complex line bundle. We

will also denote the complexification by EC = E ⊗ C, where here C stands for the

trivial complex line bundle.

Similarly, given a complex vector bundle, we can easily create a real vector bundle.

Definition C.2.14. Given a complex vector bundle E of rank n, we can form a real

vector bundle of rank 2n which we denote ER by forgetting the complex structure

on the fibres.

Lemma C.2.15. Given a complex vector bundle E of rank n, we have

(ER)C := ER ⊗ C = E ⊕ Ē, (C.2.24)

where Ē is a complex vector bundle known as the conjugate bundle to E which is

isomorphic to E as a real vector bundle, but where complex numbers act on the fibres

through their conjugates.

Proof. E has structure group GLn(C). On the underlying real bundle ER, we let

m = mr + imi ∈ GLn(C) act through the map r(m), where

r(m) =


mr −mi

mi mr

 . (C.2.25)

On the complexification of this bundle (ER)C, we should be able to act with arbitrary

complex numbers, and hence the structure group is GL2n(C). Denote the inclusion
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map from GLn(R) to GLn(C) by C. Consider the matrix η ∈ GL2n(C),

η = 1√
2


I iI

iI I

 , (C.2.26)

then we have

ηC(r(m))η−1 =


m 0

0 m̄

 . (C.2.27)

We therefore see that acting on the vector space (ER)C with am ∈ GLnC is equivalent

to acting on the vector space E ⊕E with m⊕ m̄, and therefore we have the bundle

isomorphism (ER)C ∼= E ⊕ E as claimed.

We can now calculate the total Chern class and Chern character for real vector

bundles.

Example C.2.16. For a real rank 2n bundle E, we can use the splitting principle

to treat it as the direct sum of n rank 2 bundles E = ⊕ni=1Ei. The 2-dimensional

fibres all have a natural complex structure, and so we can define xi = c1(Ei) as

before. The Chern character for EC is therefore given by

c(EC) = c((E1 ⊗ C)⊕ . . .⊕ (En ⊗ C)),

= c(E1 ⊗ C) . . . c(En ⊗ C),

= c(E1 ⊕ E1) . . . c(En ⊕ En),

= c(E1 ⊕ E∗1) . . . c(En ⊕ E∗n),

=
n∏
i=1

(1 + xi)(1− xi),

(C.2.28)

where we used lemma C.2.15 since the Ei are the underlying real bundles of complex

line bundles. Note also that a Hermitian metric on the bundle gives an isomorphism

between E and E∗.

The Chern character of EC is therefore zero as one would expect by the addition

property given in definition C.2.11.
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Finally, we can calculate the Chern character for Λt(E∗C) := ∑n
i=0(Λi(E∗ ⊗C))ti as,

ch(Λt(E∗C)) = ch(
n∑
i=0

(Λi(E∗ ⊗ C))ti),

=
n∏
i=1

((1 + texi)(1 + te−xi)),
(C.2.29)

using eq. (C.2.22) 4

The Pontryagin classes, pi, are characteristic classes associated to real vector bundles

over a manifold. We define the Pontryagin classes as follows:

Definition C.2.17. Given a real vector bundle E over a manifold M , we define the

Pontryagin classes, pi, by

pi(E) = (−1)ic2i(E ⊗ C) ∈ H4i(X,Z). (C.2.30)

Similarly to the case for Chern classes we then define the total Pontryagin class as

p(E) =
∞∑
i=0

pi(E) ∈ H∗(X,Z). (C.2.31)

As for the Chern classes, we also define the Pontryagin classes of a manifold M to

be the Pontryagin classes of the tangent bundle to the manifold,

pi(M) := pi(TM). (C.2.32)

Lemma C.2.18. For a complex vector bundle E,

∞∑
i=0

(−1)ipi(ER) = c(E) ·
∞∑
i=0

(−1)ici(E) (C.2.33)

Proof. By lemma C.2.15, given a complex vector bundle E we have ER⊗C ∼= E⊕E.

We therefore have
∞∑
i=0

(−1)ipi(ER) =
∞∑
i=0

c2i(ER ⊗ C) =
∞∑
i=0

c2i(E ⊕ E)

=
∞∑
i=0

(c2i(E) + c2i−1(E) · c1(E) + . . .

+ c1(E) · c2i−1(E) + c2i(E)

=c(E) ·
∞∑
i=0

(−1)ici(E).

(C.2.34)
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Lemma C.2.19.

p(CP n) = (1 + g2)n+1 (C.2.35)

Proof. By lemma C.2.18, we have
∞∑
i=0

(−1)ipi(CP n) = c(CP n)
∞∑
i=0

(−1)ici(CP n) = (1 + g)n+1(1− g)n + 1,

= (1− g2)n+1,

(C.2.36)

using lemma C.2.8. Then by considering the dimensions of the Pontryagin classes

as elements of the cohomology ring we obtain,

p(CP n) = (1 + g2)n+1 (C.2.37)

as claimed.

We can use the Pontryagin classes to obtain Pontryagin numbers by pairing them

with the fundamental class of the manifold, which we will first define.

Proposition C.2.20. The top homology group of a closed, connected, orientable

manifold Hn(X) is isomorphic to Z.

Proof. First consider a triangulation of M . If the manifold is of dimension n, then

by definition there are no simplices of dimension (n+ 1) in the triangulation. Hence

the top homology group, Hn(X), is generated by Ker(∂n). The set of n-cycles of the

manifold is generated by the sum of all the n-simplices. Hence the top homology

group is isomorphic to Z.

Definition C.2.21. The fundamental class of an oriented manifold M of dimension

n is an element of the top homology group of M . By Proposition C.2.20 we know

that this homology group is isomorphic to Z. Therefore this homology group has a

single generator, which we call the fundamental class, [M ] ∈ Hn(M,Z).
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Definition C.2.22. Consider a smooth manifold, M , of dimension 4n and a parti-

tion of n, (i1, i2, . . . , ik), i.e.
∑k
j=1 ij = n. Recall that the cup product endows the

cohomology groups with the structure of a graded ring,

^ : Hp(M)×Hq(M)→ Hp+q(M). (C.2.38)

If we take the cup product of the Pontryagin classes then we have ∏k
j=1 pij(M) ∈

H4n(M). Now we recall that the cohomology classes are dual spaces to the homology

classes, hence we can evaluate the above product of Pontryagin classes against an

element of H4n(M); we have a natural such element - the fundamental class [M ].

This product of Pontryagin classes is known as the Pontryagin number of M4n for a

partition (i1, . . . , ik) of n

Pi1,i2,...,ik = pi1(M) ^ pi2(M) ^ . . . ^ pik(M)[M ]. (C.2.39)

We will now consider the Chern classes on a direct sum of line bundles and see that

we may think of the Chern classes as symmetric functions. Consider a complex

vector bundle E of rank n, which is the direct sum of complex line bundles Ei,

E = E1 ⊕ E2 ⊕ . . .⊕ En. The total Chern class of the bundle E is by definition

c(E) = 1 + c1(E) + . . . cn(E). (C.2.40)

Now since the bundles Ei are line bundles, the only non-zero Chern classes are

c0(Ei) = 1 and c1(Ei) := xi. We therefore have c(Ei) = (1 + xi). Now by property 3

of Definition C.2.3, we have

c(E) = c(E1) · c(E2) · . . . · c(En)

= (1 + x1)(1 + x2) . . . (1 + xn)

= 1 +
n∑

m=1
em(x1, . . . , xn),

(C.2.41)

where em(x1, . . . , xn) is the mth elementary symmetric polynomial in the xi’s. Now
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by considering the dimensions of the cohomology classes we see that we have

ci(E) = ei(x1, . . . , xn). (C.2.42)

We may do something similar for the Pontryagin classes. We consider the real

vector bundle ER of rank 2n. It can be shown that the Pontryagin classes satisfy

p(E ⊕ F ) = p(E) · p(F ) mod 2. By the splitting principle we therefore have

p(ER) = p(ER,1) . . . p(ER,n) (C.2.43)

for 2-dimensional bundles Ei,R. Now for the 2-dimensional bundles Ei,R we have

p(Ei,R) = 1 + p1(ER,i) = 1− c2(ER,i ⊗ C)

= 1− c2(Ei ⊕ Ēi) = 1− c2(Ei)− c1(Ei) · c1(Ēi)− c2(Ēi).
(C.2.44)

Now since Ei, Ēi are of complex dimension 1, then c2(Ei) = c2(Ēi) = 0. By

eq. (C.2.12) we have ci(Ē) = (−1)ici(E) and hence

p(Ei,R) = (1 + c1(Ei)2) = (1 + x2
i ), (C.2.45)

where we let xi := c1(Ei) as before. As before, by considering the dimensions of the

cohomology classes, we therefore see that we have

pi(E) = ei(x2
1, . . . , x

2
n). (C.2.46)

C.3 Oriented Bordism

In order to make a precise definition for a genus, we need to briefly introduce the

notion of oriented bordism. For more details, see for instance [Wal60] or the lecture

notes by Alexander Kupers [Kup12].

It is known that it is impossible to algorithmically decide if two manifolds are

diffeomorphic. One way to proceed is to introduce invariants, which can tell whether

two manifolds are not diffeomorphic. Another way to proceed is to introduce a new
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equivalence relation, which can then be used to classify manifolds; this relation is

oriented bordism. As in the diffeomorphic case, invariants can then be found which

can be used to decide whether two manifolds are equivalent up to bordism. For the

following, by manifold we mean a smooth compact manifold, possibly with boundary.

Definition C.3.1. Given two oriented d-dimensional manifolds Md, Nd, we say M

and N are bordant if ∃ W d+1 such that ∂W is diffeomorphic toM tN as an oriented

d-dimensional manifold, where N is defined as N with the opposite orientation, and

t denotes the disjoint union. We refer to W as a cobordism (or simply bordism)

between M and N .

Example C.3.2. In fig. C.2, we have a cobordism from the disjoint union of two

S1’s to a single S1. 4

Figure C.2: A cobordism from the union of two copies of S1 to a
single S1.

Note that since ∂2M = 0, then our cobordism must be a manifold with boundary

by definition, but the manifolds M and N which are bordant must be manifolds

without boundary.

Lemma C.3.3. Bordism is an equivalence relation between manifolds, that is it

satisfies the properties of identity, symmetry and reflexitivity.

Proof. The manifold M × I gives a cobordism between M and itself for any oriented

M , so the identity property is clear. If W provides a cobordism between M and N ,



C.3. Oriented Bordism 225

then W defines a cobordism between N and M , so cobordism satisfies the symmetry

property. Finally, if W defines a cobordism between M and N , and W ′ defines a

cobordism between N and O, then the manifold W ′′, formed by gluing together

W and W ′ on the boundary given by N for each cobordism, provides a cobordism

between M and O.

Since bordism is an equivalence relation between manifolds, it defines equivalence

classes. We denote the class of all manifolds equivalent under bordism to M as [M ].

The set of bordism classes forms an abelian group under the disjoint union of

manifolds. We think of the empty set φ as an n-dimensional manifold for any n and

the disjoint union of any manifold M with φ clearly has the same cobordism class

as M . φ is therefore the identity in each bordism class. The inverse of a manifold

M is then M , since M × I with boundary M t M gives a bordism between M

and M , and hence also gives a cobordism between M tM and φ. We require that

the group operation respects the equivalency condition, but it clearly does since if

M1 ∼M2 and N1 ∼ N2 then M1 tN1 ∼M2 tN2 by taking the disjoint union of the

cobordisms.

Definition C.3.4. ΩSO
d is the set of all d-dimensional oriented manifolds modulo

bordism. As we will only discuss oriented bordism here we will henceforth drop the

superscript SO.

We can enrich Ωd with a ring structure by considering the cartesian product of

manifolds. Given Mm and Nn with orientation, M ×N is an (m+ n)-dimensional

manifold with a canonical orientation inherited from its factors. As long as this

product respects the equivalence relations then we have a graded ring with identity

Ω∗ = ⊕
i∈N Ωi. We now check that this is well-defined.

Lemma C.3.5.

M ∼M ′, N ∼ N ′ =⇒ M ×N ∼M ′ ×N ′ (C.3.1)
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Proof. Let W be the cobordism from M to M ′ and let V be the cobordism from N

to N ′. Then W ×N is a cobordism from M ×N to M ′ ×N . Similarly M ′ × V is a

cobordism from M ′ ×N to M ′ ×N ′. Taking the union of these manifolds at their

common boundary M ′ ×N gives a cobordism from M ×N to M ′ ×N ′ and hence

this product is well-defined on the bordism groups.

One can consider the tensor product of an abelian group with the rationals, Q, to

obtain the so called free or torsion-free part.

Example C.3.6. Consider Z2 ⊗ Q. Elements in this group are of the form a ⊗ b

where a ∈ Z2, b ∈ Q. Then we have a ⊗ b = a ⊗ 2b
2 = 2a ⊗ b

2 = 0 ⊗ b
2 = 0, by

bilinearity. 4

Then, due to the fundamental theorem of finitely generated abelian groups, any

finitely generated abelian group G is isomorphic to the direct sum of primary cyclic

groups and infinite cyclic groups. We can write G ∼= Zn ⊕ Zq1 ⊕ . . .⊕ Zqr , where qi

is a prime power and n is the rank of the group.

In [Tho54] Thom studied the structure of Ω∗ ⊗Q. From this we have the following

theorem which we will not prove here.

Theorem C.3.7. The structure of Ω∗ ⊗Q:

• Ωn ⊗Q = 0 for 4 - n

• Ω4k is a finitely generated abelian group of rank equal to the number of partitions

of k.

• The spaces CP 2n, of dimension 4n, are a basis sequence of Ω∗ ⊗Q. That is,

Ω∗ ⊗Q = Q[CP 2,CP 4, . . .].

We can now define a genus, following [HBJL92; Och09].

Definition C.3.8. Let Λ be a unital Q-algebra. A genus is a ring homomorphism

φ : Ω∗ → Λ. (C.3.2)
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C.4 Genera and Multiplicative Sequences

We have already defined a genus in Appendix C.3 as a homomorphism from the

oriented bordism ring to some other ring Λ. In this section we will develop the idea

of a genus by considering multiplicative genera and define the notion of an elliptic

genus as introduced by [Och09].

From definition C.2.22, we have that the Pontryagin numbers are a dual space for the

oriented bordism ring Ω∗⊗Q, which in turn (by theorem C.3.7) has the spaces CP 2n

as a basis sequence, i.e. Ω∗ ⊗Q = Q[CP 2,CP 4, . . .]. In definition C.3.8 we defined

a genus, φ, as a homomorphism from the cobordism ring to a ring Λ, φ : Ω∗ → Λ.

Since we have a good understanding of the structure of Ω∗⊗Q, we will now consider

our genus only on this free part, which is mapped through φ to an integral domain R.

Our goal will be to be able to express this genus in terms of a power series. We want

to find a polynomial expression related to the power series that, when we substitute

the Pontryagin numbers of a manifold M into the expression, gives us the value of

the genus on M .

Consider an even power series Q(x) with constant term 1 and coefficients ai ∈ R,

Q(x) = 1 + a2x
2 + a4x

4 + . . . (C.4.1)

A product Q(x1)Q(x2) . . . Q(xn) is symmetric in the xi.

Example C.4.1.

Q(x1)Q(x2)Q(x3) = 1 + a2(x2
1 + x2

2 + x2
3) + a2

2(x2
1x

2
2 + x2

1x
2
3 + x2

2x
2
3)

+ a4(x4
1 + x4

2 + x4
3) + a3

2(x2
1x

2
2x

2
3)

+ a2a4(x4
1x

2
2 + x4

1x
2
3 + x4

2x
2
3 + x2

1x
4
2 + x2

1x
4
3 + x2

2x
4
3)

+ a6(x6
1 + x6

2 + x6
3) + . . .

(C.4.2)

We now use

(x4
1 + x4

2 + x4
3) = (x2

1 + x2
2 + x2

3)2 − 2(x2
1x

2
2 + x2

1x
2
3 + x2

2x
2
3)

= e2
1 − 2e2,

(C.4.3)
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where, as before, ei are the elementary symmetric polynomials though now in terms

of the x2
i , as well as

(x4
1x

2
2 + x4

1x
2
3 + x4

2x
2
3 + x2

1x
4
2 + x2

1x
4
3 + x2

2x
4
3) = e1e2 − 3e3, (C.4.4)

and

(x6
1 + x6

2 + x6
3) = e3

1 − 3e1e2 + 3e3, (C.4.5)

to obtain

Q(x1)Q(x2)Q(x3) = 1 + a2e1 + a4e
2
1 + (a2

2 − 2a4)e2 + (a3
2 − 3a4a2 + 3a6)e3

+ (a4a2 − 3a6)e1e2 + a6e
3
1 + . . .

(C.4.6)

Hence we have

Q(x1)Q(x2)Q(x3) = 1 +K1(e1) +K2(e1, e2) +K3(e1, e2, e3) + . . . (C.4.7)

where the terms Ki(e1, . . . , ei) are homogeneous polynomials in x2
i , written in terms

of the elementary symmetric polynomials ei. 4

In general [HBJL92], we have

Q(x1) . . . Q(xn) = 1 +K1(e1) +K2(e1, e2) + . . .

+Kn(e1, . . . , en) +Kn+1(e1, . . . , en, 0) + . . .

(C.4.8)

where the polynomials Ki for 1 ≤ i ≤ n do not depend on n. We call the sequence

{Ki} of polynomials Ki, the multiplicative sequence of polynomials associated to the

power series Q(x).

Lemma C.4.2. The polynomials Ki are multiplicative in the sense that the identity

∑
i

eiz
i =

∑
j

e′jz
j ·
∑
k

e′′kz
k (C.4.9)

implies that

∑
i

Ki(e1, . . . , ei)zi =
∑
j

Kj(e′1, . . . , e′j)zj ·
∑
k

Ki(e′′1, . . . , e′′k)zk. (C.4.10)
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We do not give a proof of this lemma here, but it may be found in [HBS66].

Example C.4.3. Consider the Ki we obtained in the previous example

K1 = a2e1, K2 = a4e
2
1 + (a2

2 − 2a4)e2,

K3 = (a3
2 − 3a4a2 + 3a6)e3 + (a4a2 − 3a6)e1e2 + a6e

3
1.

(C.4.11)

Considering the powers of z, eq. (C.4.9) implies we have e1 = e′1 + e′′1. Then

K1(e1) = a2(e′1 + e′′1) = K1(e′1) + K1(e′′1). Similarly, eq. (C.4.9) implies we have

e2 = e′2 + e′′2 + e′1e
′′
1. If we substitute this into K2 we get

K2(e1, e2) = a4e
2
1 + (a2

2 − 2a4)e2

= a4(e′1 + e′′1)2 + (a2
2 − 2a4)(e′2 + e′′2 + e′1e

′′
1)

= K2(e′1, e′2) +K2(e′′1, e′′2) + a2
2e
′
1e
′′
1

= K2(e′1, e′2) +K2(e′′1, e′′2) +K1(e′1) ·K1(e′′1),

(C.4.12)

which satisfies equation (C.4.10). Similarly equation (C.4.9) implies that we have

e3 = e′3 + e′′3 + e′1e
′′
2 + e′2e

′′
1. Substituting this into K3 shows that K3 also satisfies

eq. (C.4.10). 4

Now we can define how to obtain a genus φ : Ω∗ ⊗Q→ R from a power series Q(x).

Definition C.4.4. The genus corresponding to a power series Q(x), φQ, is defined

for every compact oriented differentiable manifold M of dimension 4n by

φQ(M) := Kn(p1, . . . , pn)[M ] ∈ R, (C.4.13)

where pi = pi(M) ∈ H4i(M,Z), and we set φQ = 0 if the dimension of the manifold

is not divisible by four.

The genus belonging to a power series Q is therefore a linear combination of Pontry-

agin numbers.

Lemma C.4.5. A genus φQ defined from a power series Q is a well-defined homo-

morphism, φQ : Ω∗ ⊗Q→ R, for R an integral domain.
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We do not prove this here, but the proof is found in [HBJL92].

We now want to define the logarithm of a genus φQ.

Definition C.4.6. Given an even power series, Q(x), with constant term 1 and

coefficients in R, we define f(x) := x
Q(x) . This is an odd power series with first

term x and coefficients in R. Now let y = f(x) and put g = f−1 as the inverse of

f, g(f(x)) = g(y) = x. The power series g is known as the logarithm of the genus

φQ.

The logarithm gives us important information about the genus by the following

lemma.

Lemma C.4.7.

g′(y) =
∞∑
n=0

φQ(CP n) · yn. (C.4.14)

Proof. By lemma C.2.19, the total Pontryagin class of CP n is given by,

p(CP n) = (1 + x2)n+1, (C.4.15)

where we have renamed the generator of H∗(CP n,Z) from g to x as we want to

interpret the Pontryagin classes of TCP n as symmetric polynomials in x as in

eq. (C.2.46).

Since the sequence of polynomials associated with the power series Q(x) is multi-

plicative, we therefore have

K(p1, . . . , pn) = K(p1)n+1 = Q(x)n+1. (C.4.16)

Therefore

φQ(CP n) =
(

x

f(x)

)n+1

[CP n] = the coefficient of xn in
(

x

f(x)

)n+1

= 1
2πi

∫
κ

(
1

f(x)

)n+1

dx = 1
2πi

∫
f(κ)

1
yn+1 g

′(y)dy

= the coefficient of yn in g′(y)

(C.4.17)

by the residue theorem.
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Example C.4.8. Consider the power series

Q(x) = x

tanh(x) = 1 + x2

3 −
1
45x

4 + 2
945x

6 + . . . (C.4.18)

Let f(x) := x
Q(x) = tanh(x). Then we have

f ′(x) = 1−f(x)2,
dy
dx = 1−y2, g′(y) = 1

1− y2 = 1+y2 +y4 + . . . (C.4.19)

Hence we have a genus that takes that value 1 on all the spaces CP n. This genus is

known as the L-genus, φL.

Using the general multiplicative sequence calculations from example C.4.3, we can

write the first three elements of the multiplicative sequence associated to the L-genus

in terms of the Pontryagin classes as

K1(p1) = 1
3p1, K2(p1, p2) = 1

45(7p2 − p2
1),

K3(p1, p2, p3) = 1
945(62p3 − 13p1p2 + 2p3

1)
(C.4.20)

4

Example C.4.9. Consider the power series

Q(x) = x/2
sinh(x/2) = 1− x2

24 + 7
5760x

4 − 31
967680x

6 + . . . . (C.4.21)

The genus associated to this power series is known as the Â-genus. The first three

elements of the multiplicative sequence associated to the Â-genus in terms of the

Pontryagin classes are

K1(p1) = − 1
24p1, K2(p1, p2) = 1

5760(−4p2 + 7p2
1),

K3(p1, p2, p3) = 1
967680(−16p3 + 44p1p2 − 31p3

1).
(C.4.22)

4

Definition C.4.10. LetM be a connected oriented manifold of dimension 4n. Then

the cup product induces a non-degenerate, symmetric bilinear form

H2n(M,R)⊗H2n(M,R)→ H4n(M,R) ∼= R. (C.4.23)
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The signature σ(M) of M is the signature of this bilinear form. We can trivially

extend this definition to non-connected manifolds of dimension 4n by adding the

signatures of the components.

The signature satisfies the following important lemma.

Lemma C.4.11. If M and N are bordant manifolds of dimension 4n, [M ] = [N ],

then σ(M) = σ(N).

The signature is therefore an invariant of bordism of the type mentioned at the start

of Appendix C.3. The signature can therefore be used to check if two manifolds

are not bordant; if the signature for the two manifolds does not agree then the two

manifolds can not be bordant. Having the same signature is not enough to ensure

that two manifolds are bordant however.

It is known that the signature of the spaces CP n is equal to 1 ∀n, and hence we

have:

Theorem C.4.12. Hirzebruch Signature Theorem

For all 4n-dimensional manifolds M

σ(M) = φL(M). (C.4.24)

Since the spaces CP n form a basis sequence for the cobordism ring, it is sufficient

to check the result on these spaces. We know that the signature of these spaces is

always 1, and by our example C.4.8 the L-genus is always 1 on these spaces too, so

we are done.

Since the signature is given by a genus, specifically the L-genus, we now have a proof

of lemma C.4.11 since by lemma C.4.5, such a genus is a well defined homomorphism

from the (free) bordism classes to the ring R.

Having shown that the signature is a genus, it is natural to wonder whether the

Euler characteristic is also a genus.
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Lemma C.4.13. The Euler characteristic is not a genus.

Proof. This follows quickly by contradiction. Suppose the Euler characteristic is

a genus, then by lemma C.4.5 it must be equivalent for different representatives

of a given bordism class. All handle-bodies are bordant to the empty manifold,

since they are the boundary of the solid handle-body, and so form a single bordism

class. However 2 = χ(S2) 6= χ(T 2) = 0, and we have a contradiction. The Euler

characteristic is therefore not a genus.

We should perhaps be careful here to clarify which bordism ring we are discussing the

Euler characteristic as a possible genus from. The context in this section has been

that of oriented bordism, though as a sum of Betti numbers the Euler characterstic

may be defined for unoriented manifolds such as real projective space in even dimen-

sions. One can define unoriented bordism and hence the unoriented bordism ring

ΩO
∗ and one might wonder if the Euler characteristic is a genus for the unoriented

bordism ring. The same argument as used in the proof of lemma C.4.13 shows that

it cannot be a genus for this bordism ring either. However χ(mod2) is a genus for

unoriented manifolds.

Another cobordism ring one can form is the complex cobordism ring. We can

therefore define complex genera as homomorphisms from the complex cobordism

ring to some other ring R. Given a complex manifold M of real dimension 2n and a

power series Q(x), one can now define the genus corresponding to Q(x) as

φ(M) = Kn(c1, . . . , cn)[M ], (C.4.25)

where as usual the ci are the Chern classes of M and Kn is the homogenous polyno-

mial of degree n formed from Q(x) as in eq. (C.4.8). Note that this complex genus

is now defined for Q(x) not necessarily even.

Example C.4.14. Consider the power series

Q(x) = x

1− e−x . (C.4.26)
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The genus associated to this power series is known as the Todd genus, td(M). 4

Example C.4.15. Given y ∈ C, consider the power series

Q(x) = x(1 + ye−x(1+y))
1− e−x(1+y) . (C.4.27)

This is the characteristic power series associated with a genus known as Hirzebruch

χy genus. This complex genus is particularly interesting, since at particular values

of y it reduces to other characteristic power series that we have already seen.

When y = 0

Q(x, 0) = x

1− e−x , (C.4.28)

and we have

χ0(M) ≡ td(M). (C.4.29)

When y = 1

Q(x, 1) = x(1− e−2x)
1− e−2x = x

tanh(x) , (C.4.30)

and we have

χ1(M) ≡ τ(M). (C.4.31)

There is one other value of y for which we want to consider Q(x), namely y = −1.

At this value of y, both the numerator and denominator go to 0 and the value of

Q(x) is undetermined. However we can consider Q(x) in the limit y → −1 and use

l’Hôpital’s rule,

lim
y→−1

Q(x) = lim
y→−1

∂yx(1 + ye−x(1+y))
∂y1− e−x(1+y) = 1 + x. (C.4.32)

This power series can be associated with the Euler characteristic χ(M) [HBJL92].

We also note that

Q(x, 0) = x

1− e−x = ex/2
x/2

sinh(x/2) , (C.4.33)

and so

χ0(M) = td(M) = ec1/2Â(M). (C.4.34)

4
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We can now give the definition of an elliptic genus.

Definition C.4.16. A genus φ is called an elliptic genus if its odd power series

f(x) = x
Q(x) satisfies one of the three following equivalent conditions:

• f ′2 = 1− 2δ · f 2 + ε · f 4

• f(u+ v) = f(u)f ′(v)+f ′(u)f(v)
1−ε·f(u)2f(v)2

• f(2u) = 2f(u)f ′(u)
1−ε·f(u)4

Example C.4.17. Consider the L-genus defined by f(x) = tanh(x), then we have

f ′(x) = 1 − f(x)2 i.e. f ′(x)2 = 1 − 2f 2(x) + f 4(x) which is therefore elliptic with

δ = ε = 1. 4

Example C.4.18. Consider the Â-genus defined by f(x) = 2 sinh(x/2), then

f ′(x) = cosh(x/2),

(f ′(x))2 = cosh2(x/2) = 1 + sinh2(x/2),

= 1 + 1
4f

2(x),

(C.4.35)

hence the Â-genus is elliptic with δ = −1
8 , ε = 0. 4

Given a lattice L = ω1Z⊕ ω2Z, the Weierstrauss ℘-function,

℘(z;L) = 1
z2 +

∑
ω∈L\{0}

(
1

(z − ω)2 −
1
ω2

)
, (C.4.36)

is an elliptic function which satisfies the differential equation

℘′(z) = 4(℘(z)− e1)(℘(z)− e2)(℘(z)− e3), (C.4.37)

where

e1 := ℘(ω1

2 ), e2 := ℘(ω2

2 ), e3 := ℘(ω1 + ω2

2 ). (C.4.38)

These points are known as the 2-division points of L, since they are the unique points

p satisfying −p ≡ p (modL) or equivalently 2p ≡ 0 (modL).
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The function f(z) = 1/
√

(℘(z)− e1) then satisfies [HBJL92]

f ′(z)2 = 1− 2δf(z)2 + εf(z)4, (C.4.39)

where δ = −3
2e1 and ε = (e1− e2)(e1− e3). The function Q(z) = 1

f(z) =
√

(℘(z)− e1)

is therefore an elliptic genus. We therefore have an elliptic genus associated to every

lattice L, or equivalently if we have an elliptic genus, we may find δ and ε and hence

determine an associated lattice L. Note that the elliptic genus discussed explicitly

so far, the L-genus with δ = ε2 = 1 and the Â-genus with δ = −1
8 , ε = 0 arise from

degenerate lattices.

If we consider an equivalent lattice Ω′ = αΩ, α ∈ C \ {0}, then the 2-division point

e′i for this new lattice is

e′i(αΩ) = α−2ei(Ω), (C.4.40)

since clearly

℘(αz;αL) = α−2℘(z;L). (C.4.41)

We therefore find that δ = −3
2e1 is a lattice invariant of weight 2 and ε = (e1 −

e2)(e1−e3) is a lattice invariant of weight 4. Due to the differential equation given in

definition C.4.16 that f(z) satisfies, f(z) is therefore a homogenous polynomial in δ

and ε. Q(z) = z
f(z) is therefore also a homogeneous polynomial in δ and ε, where the

coefficient of z2n in Q(z) is a polynomial of weight 2n. Since the genus associated to

Q(z) is obtained by substituting homogenous polynomials of weight k in Pontryagin

classes in place of powers of z2k, and then evaluating against the fundamental class,

the genus picks out the z2n term from Q(z). The elliptic genus of a manifold M of

dimension 4n is therefore a homogeneous polynomial in δ and ε of weight 2n.

Given a homogeneous lattice function of weight k, we can associate to it a modular

form.

Lemma C.4.19. Consider a function

F : {(L, ω)| L a lattice, ω ∈ L, Nω ≡ 0 (modL)} → C, (C.4.42)
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which is homogeneous of degree k,

F (αL, αω) = α−kF (L, ω). (C.4.43)

Then the function f(τ) := F (τZ⊕ Z, 1/N) satisfies the modular transformation

f(γτ) = (cτ + d)kf(τ), (C.4.44)

for all γ ∈ Γ1(N), where

Γ1(N) = {γ ∈ SL(2,Z)|γ ≡


1 ∗

0 1

 (modN)}. (C.4.45)

Proof.

f(γτ)(cτ + d)−k = F

(
aτ + b

cτ + d
Z⊕ Z, 1/N

)
(cτ + d)−k,

= F

(
(aτ + b)Z⊕ (cτ + d)Z, cτ + d

N

)
,

= F

(
τZ⊕ Z,

c

N
τ + d

N

)
,

= F (τZ⊕ Z, 1/N),

= f(τ).

(C.4.46)

Note that Γ1(2) ≡ Γ0(2), where

Γ0(2) := {γ ∈ SL(2,Z)| c ≡ 0 (mod2)}, (C.4.47)

and hence e1 := ℘(ω1
2 ;L) defines a modular form of weight 2 for Γ0(2). Since

δ = −3
2e1, δ similarly defines a modular form of weight 2 for Γ0(2). In the same way,

ε defines a modular form of weight 4 for Γ0(2). In fact, using the valence formula,

one can show that the ring of modular forms for Γ0(2) is generated by δ and ε,

M∗(Γ0(2)) ∼= C[δ, ε]. (C.4.48)
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Since the elliptic genus of a manifold of dimension 4n is a homogeneous polynomial

of weight 2n in δ and ε, it is therefore a modular form of weight 2n for Γ0(2).



Appendix D

Superalgebras and Supermatrices

D.1 Superalgebras

The algebra Aγ is an example of an affine Lie superalgebra. To make clear the

connection between Aγ and su(2|2), we shall first introduce the group SU(M |N)

which will be the focus of this section. All the material in this section is standard

and may be found for example in [Cor89]. We include it here for reference. Although

we introduce su(2|2) starting from the supergroup SU(2|2), note that one may also

use super Harish-Chandra pairs, which consist of a real (resp. complex) Lie group

and a Lie superalgebra (satisfying certain natural conditions) without requiring the

notion of a Lie supergroup [Kos82].

Definition D.1.1. A superalgebra A is an associative Z2-graded algebra.

Such a superalgebra A, admits a decomposition into its even and odd parts,

A = A0 ⊕ A1, (D.1.1)

where A0 is the subspace of A generated by the even elements of the basis and

similarly A1 is the odd subspace.

Definition D.1.2. An element a of a superalgebra A is homogeneous if a ∈ A0 or

a ∈ A1.
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Definition D.1.3. The degree of a homogeneous element a of a superalgebra A is

given by

deg a :=


0 a ∈ A0,

1 a ∈ A1.

We also use the notation deg a ≡ |a|.

Definition D.1.4. A superalgebra A is supercommutative if

y · x = (−1)|x|·|y|x · y,

for x, y ∈ A.

The particular Lie superalgebras we are interested in may be defined in terms of

supermatrices. These are matrices whose elements are elements of a Grassmann

algebra.

Definition D.1.5. A Grassmann algebra is a supercommutative associative algebra

generated by a finite set of I elements ωi for i ∈ {1, . . . , I}, such that

ωi · ωj = −ωj · ωi,

for i, j ∈ {1, . . . , I}. Clearly therefore ωi · ωi = −ωi · ωi = 0, ∀ ωi.

Note that by generated by the elements ωi, we mean that the elements of the algebra

are polynomials in the elements ωi and the identity 1, with coefficients in C (or

similarly R). The identity element is defined by

1 · ωi = ωi · 1 = ωi, ∀ ωi. (D.1.2)

Note that every element of the Grassmann algebra can be uniquely put into the form

ωi · ωj · . . . · ωk, where 1 ≤ i < j < k ≤ I. We shall call an element ordered in this

way in terms of the generators in standard ordering.

Definition D.1.6. A non-zero product of the generators of the Grassmann algebra,

in standard ordering, has level equal to the number of generators. We use the

notation N(εi) for the level of the element εi.
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Definition D.1.7. To each set of integers µ = {µ1, . . . , µN(µ)}, ordered such that

1 ≤ µ1 < µ2 < . . . < µN(µ) ≤ I we can uniquely associate an element of the

Grassmann algebra in standard ordering

εµ = ωµ1 · ωµ2 · ωµN(µ) . (D.1.3)

Note that this element has level N(εµ) = N(µ). In this notation, the identity element

1CBI is given by εφ.

Using this notation, we see that

εµ · εν =


0 µ ∩ ν 6= φ,

±ερ := ±εµ∪ν µ ∩ ν = φ,

(D.1.4)

where the sign of ερ depends on the number of exchanges of generators required to

put ερ into standard ordering.

Definition D.1.8. The Complex Grassmann Superalgebra, denoted by CBI , is the

Grassmann algebra defined in definition D.1.5, over C, with grading given by the

degree

deg εi := N(εi) (mod 2). (D.1.5)

The algebra CBI is of complex dimension 2I and both the even and odd subspaces

are of dimension 2I−1.

Concretely, using the notation of definition D.1.7 elements of CBI are of the form

E =
∑
µ

Eµεµ, (D.1.6)

for Eµ in C.

We can similarly define the real Grassmann superalgebra by taking the base field to

be R. This is denoted RBI and is of real dimension 2I .

To define the supergroup SU(M |N), we clearly need some notion of an adjoint. We

define this first for CBI in two steps as follows:
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Definition D.1.9. The complex conjugate of an element E = ∑
µEµεµ of CBI is

given by

E∗ =
∑
µ

E∗µεµ, (D.1.7)

where E∗µ is the complex conjugate of Eµ.

Definition D.1.10. The adjoint of an element E = ∑
µEµεµ of CBI is given by

E# =
∑
µ

E∗µε
#
µ , (D.1.8)

where we define

ε#µ =


εµ deg εµ = 1,

−iεµ deg εµ = −1.
(D.1.9)

Proposition D.1.11. Two important properties that the Grassmann adjoint satisfies

are, given E,E ′ ∈ CBI ,

1. (E + E ′)# = E# + E ′#.

2. (E · E ′)# = E ′# · E#.

The proof may be found in [Cor89] for example.

Let us now define the real Grassmann space RBm,n
I .

Definition D.1.12. The real Grassmann space RBm,n
I is defined to be m copies of

the even subspace RBI,0 and n copies of the odd subspace RBI,1. Following [Cor89],

an element of the space RBm,n
I will be written as (X1, X2, . . . , Xm,Θ1,Θ2, . . . ,Θn),

or more concisely as (X; Θ), where

(X; Θ) = (X1, X2, . . . , Xm,Θ1,Θ2, . . . ,Θn), (D.1.10)

in the obvious way. Each of the components X i and Θi are real Grassmann elements,

with the X i even and the Θi odd, and therefore have expansions of the as described

in definition D.1.7.

X i =
∑
µ

X i
µεµ, Θi =

∑
µ

Θi
µεµ. (D.1.11)
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We similarly define the complex Grassmann space CBm,n
I , where now the X i and Θi

are complex Grassmann elements.

RBm,n
I and CBm,n

I form real and complex vector spaces of dimension m+ n respect-

ively, but we would like to be able to multiply elements of RBm,n
I and CBm,n

I by

elements of RBI and CBI respectively. Since these Grassmann algebras are not

fields, we cannot define RBm,n
I and CBm,n

I to be ‘Grassmann vector spaces’, but

instead we can define them to be Grassmann supermodules.

Definition D.1.13. Given a ring R, a left R-module V , is an abelian group (V,+)

with an R-action ·V : R× V → V which, ∀ r, s ∈ R and v, w ∈ V satisfies

• r ·V (v + w) = r ·V v + r ·V w,

• (r + s) ·V v = r ·V v + s ·V v,

• (r ·R s) ·V v = r ·V (s ·V v),

• 1R ·V v = v,

where 1R is the multiplicative identity of R.

Similarly a right R-module is an abelian group (V,+) with an R-action ·V : V ×R→

V satisfying the same requirements, except with the R action now from the right

rather than the left.

Definition D.1.14. Given a superalgebra G, a left G-supermodule V is a left G-

module with a direct sum decomposition

V = V0 ⊕ V1, (D.1.12)

such that under the left action of G,

Gi ·G Vj ⊆ Vi+j, (D.1.13)

for i, j ∈ Z2.

CBm,n
I is then a left CBI-supermodule.
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D.2 Supermatrices

The supergroup SU(M |N) is a matrix group like its non-super counterpart. We

therefore need to define the set of even supermatrices.

Definition D.2.1. A block matrix of dimensions (p+ q)× (r + s)

M =


A B

C D

 , (D.2.1)

where

• A is a p× r matrix and D is a q × s matrix both with entries in CBI,0,

• B is a p× s matrix and C is a q × r matrix both with entries in CBI,1,

is an even supermatrix of dimension (p|q)× (r|s).

Similarly. one can define an odd supermatrix by letting A and D take values in the

odd part of the Grassmann algebra and B and C take values in the even part of the

Grassmann algebra.

We can put a grading on the space of supermatrices by introducing a degree

Definition D.2.2. The degree of a supermatrix M is given by

degM =


0 M even,

1 M odd.
(D.2.2)

We then define the setMp|q(CBI) to be the set of all supermatrices with p = r, q = s.

These are sometimes known as square supermatrices, though we should note that

whilst A and D (in the sense of definition D.2.1) are square matrices, B and C are

not required to be.

We can define a group structure for invertible matrices, using the standard rules for

multiplying two matrices. Note that the multiplication of supermatrices respects
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the Z2-grading on the space and hence the set of even supermatrices is closed under

multiplication.

Definition D.2.3. We call the element Ip+q = Diag(1CBI , . . . , 1CBI ) the identity

supermatrix. Note that this is an even supermatrix. For any other supermatrix Mp|q

Ip+q ·Mp|q = Mp|q · Ip+q = Mp|q (D.2.3)

We shall need to define the scalar multiplication between a supermatrix and a

homogeneous element of the Grassmann algebra B ∈ CBI,0 or CBI,1.

Definition D.2.4. Let M ∈ Mp|q(CBI be partitioned as in definition D.2.1, then

given a B ∈ CBI,0 or CBI,1 we define

B ·M =


BIp 0

0 (−1)degBBIq

 ·

A B

C D

 , (D.2.4)

and

M ·B =


A B

C D

 ·

BIp 0

0 (−1)degBBIq

 . (D.2.5)

Definition D.2.5. An invertible supermatrix is an M ∈Mp|q(CBI) such that there

exists an inverse matrix M−1 ∈Mp|q(CBI) satisfying

M ·M−1 = M−1 ·M = Ip+q. (D.2.6)

It should now be clear that the set of square even invertible supermatrices, which

we denote GLp|q(CBI) (for supermatrices of dimension p|q) forms a group under

multiplication. It is not enough to simply check the determinant to see if an even

supermatrix is invertible, though a theorem which may be found with proof in

[Cor89] states,

Theorem D.2.6.
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• An element M ∈Mp/0(CBI) may be decomposed as

M =
∑
µ

Mµεµ, (D.2.7)

where Mµ is a complex matrix of dimension p × p. M is invertible if the

Grassmann identity component Mφ is invertible as a complex matrix.

• Let M ∈Mp|q(CBI). M is invertible if its even submatrices A,D, as in defini-

tion D.2.1, are invertible as elements of Mp|0(CBI) and Mq|0(CBI) respectively.

To define SU(M |N), and subsequently its Lie Algebra su(M |N), we need to define

the trace, determinant and adjoint as used for supermatrices.

Definition D.2.7. The supertrace for a supermatrix M , in terms of its submatrices

as in definition D.2.1, is given by

STrM = TrA− (−1)degM TrD, (D.2.8)

where Tr is the usual matrix trace. Since we are mainly interested in even super-

matrices, we note that for an even supermarix M the supertrace is given by

STrM = TrA− TrD. (D.2.9)

We now see why we defined scalar multiplication as in definition D.2.4, since if the

scalar B ∈ CBI is odd and the supermatrix M is even, then BM is odd. The scalar

multiplication we have defined ensures we still have the expected properties

STr(BM) = B STr(M), STr(MB) = STr(M)B. (D.2.10)

Definition D.2.8. The superdeterminant of an M ∈ GLp|q(CBI), in terms of its

submatrices as in definition D.2.1, is given by

SDetM = Det(A−BD−1C)
DetD . (D.2.11)

Two properties of the superdeterminant, found in [Cor89], which we state here

without proof, are



D.3. SU(M |N) and the associated ‘Super’ Lie Algebra 247

Theorem D.2.9.

1. SDet(MN) = (SDetM)(SDetN),

2. SDet(exp[M ]) = exp[STrM ].

The final definition we need is the notion of an adjoint for the supermatrices

Definition D.2.10. The superadjoint of a supermatrix M ∈Mp|q(CBI) is

M ‡ =


(A#)t (C#)t

(B#)t (D#)t

 , (D.2.12)

where (A#)t denotes the transpose of the matrix (A#), which in turn is the matrix

whose components are the Grassmann adjoints D.1.10 of A. That is,

[(A#)t]ab = (Aba)#. (D.2.13)

Proposition D.2.11. Given M,N ∈Mp|q(CBI), the superadjoint satisfies

(M ·N)‡ = N ‡ ·M ‡. (D.2.14)

D.3 The Supergroup SU(M |N) and the

Associated ‘Super’ Lie Algebra

We can finally define the supergroup SU(M |N).

Definition D.3.1.

SU(M |N) = {G ∈ GLM |N(CBI) | G‡G = Ip+q, SDetG = 1CBI ≡ εφ} (D.3.1)

We note that this is indeed a subgroup of GLM |N(CBI), since by D.2.9 and D.2.11,

given M,N ∈ SU(M |N), SDet(M · N) = SDet(M) · SDet(N) = 1CBI ≡ εφ and

(M ·N)‡ = N ‡ ·M ‡ = Ip+q.
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Since all Lie supergroups can be seen to also be real Lie groups (essentially since

RBm,n
I can be thought of as a real vector space of dimension (m + n)2I−1), then

SU(M |N) has an associated real Lie algebra, which we refer to as the real ‘super’

Lie algebra. This is not a real Lie superalgebra. Since elements of the real Lie group

near the identity can be found by exponentiating elements of the real Lie algebra,

we can write elements G(X,Θ) of SU(M |N) as

G(X,Θ) = exp[g(X,Θ)], (D.3.2)

for g(X,Θ) a generic element of the real ‘super’ Lie algebra.

Proposition D.3.2. The defining relations of the ‘super’ Lie algebra of SU(N/M)

are

g‡ + g = 0Mp|q(CBI), STr g = 0CBI . (D.3.3)

The proof of this is standard and follows using theorem D.2.9 as well as standard

properties of exp.

Note that since the even element M ∈ SU(M |N) is given by M = exp[g], then g

must also be an even supermatrix in order to guarantee the evenness of M after

exponentiating.



Appendix E

Coefficient Data for the Functions

Fi(q) with k̃+ ∈ {3, 4, 5}

In this Appendix, we present the coefficient data for the functions Fi(q) of section 6.2

in the cases k̃+ ∈ {2, 3, 4, 5}. In each table below, one for each value of k̃+, we

label the function Fi alongside a representative of its equivalence class and give the

coefficients up to q10. In each case we have factored out an overall power of q which

we call the offset such that the first term is q0.

E.1 k̃+ = 2

Name Representative Coefficient of qi

Fi FΛ
2l̃+,n offset q0 q1 q2 q3 q4 q5 q6 q7 q8 q9 q10

F1 F
((0,0),2,0)
0,0 − 1

2 q 1 1 0 1 1 2 1 1 1 3 2

F2 F
((0,0),2,0)
0,1 q2/5 1 0 1 1 1 0 2 1 2 2 2

F3 F
((0,0),2,0)
0,2 q8/5 1 0 1 1 1 1 2 1 2 2 3

F4 F
((1,0),2,0)
0,0 q1/5 1 1 1 1 2 1 2 2 3 3 3

F5 F
((1,0),2,0)
0,1 − 1

2 q 1 1 1 1 2 2 2 2 3 3 4

F6 F
((1,0),2,0)
0,2 q3/5 1 0 2 1 1 2 2 2 3 3 4

Table E.1: The coefficients of the 6 independent functions Fi ap-
pearing in the sum rules when k̃+ = 2
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E.2 k̃+ = 3

Name Representative Coefficient of qi

Fi FΛ
2l̃+,n offset q0 q1 q2 q3 q4 q5 q6 q7 q8 q9 q10

F1 F
((0,0),3,0)
0,0 − 1

2 q 1 1 1 1 1 3 3 4 4 6 6

F2 F
((0,0),3,0)
0,1 q1/2 1 0 1 1 2 1 3 2 5 5 7

F3 F
((0,0),3,0)
0,2 q2 1 0 1 2 2 2 4 4 6 7 9

F4 F
((0,0),3,0)
0,3 q5/2 1 0 2 1 2 3 5 4 7 7 11

F5 F
((0,0),3,0)
1,0 q5/3 1 1 1 2 3 3 5 6 7 10 12

F6 F
((0,0),3,0)
1,1 q2/3 1 0 1 2 2 2 4 4 6 8 9

F7 F
((1,0),3,0)
0,0 q1/6 1 1 2 1 3 3 5 5 8 9 13

F8 F
((1,0),3,0)
0,1 − 1

2 q 1 1 2 2 3 4 6 7 9 11 15

F9 F
((1,0),3,0)
0,2 q5/6 1 0 2 2 3 3 6 6 9 10 15

F10 F
((1,0),3,0)
0,3 q5/3 1 1 2 2 4 5 6 8 11 13 17

F11 F
((1,0),3,0)
0,4 q5/2 1 1 2 2 4 4 7 7 11 12 17

F12 F
((1,0),3,0)
0,5 q1/3 1 1 1 2 3 3 5 5 8 10 13

F13 F
((1,0),3,0)
1,0 − 1

2 q 1 2 2 3 4 6 8 10 13 16 20

F14 F
((1,0),3,0)
1,1 q1/3 1 1 2 2 4 5 6 8 11 14 18

F15 F
((1,0),3,0)
1,2 q2/3 1 1 2 3 4 5 7 9 12 15 19

F16 F
((1,1),3,0)
0,0 q1/2 1 1 2 3 4 5 7 9 12 16 19

F17 F
((1,1),3,0)
0,1 − 1

2 q 1 2 2 3 5 6 8 11 13 17 22

F18 F
((1,1),3,0)
1,0 q1/6 1 2 2 4 5 6 10 12 15 20 26

Table E.2: The coefficients of the 18 independent functions Fi ap-
pearing in the sum rules when k̃+ = 3



E.3. k̃+ = 4 251

E.3 k̃+ = 4

Name Representative Coefficient of qi

Fi FΛ
2l̃+,n offset q0 q1 q2 q3 q4 q5 q6 q7 q8 q9 q10

F1 F
((0,0),4,0)
0,0 − 1

2 q 1 1 1 2 1 3 4 6 7 11 11

F2 F
((0,0),4,0)
0,1 q4/7 1 0 1 1 2 2 4 3 7 8 12

F3 F
((0,0),4,0)
0,2 q16/7 1 0 1 2 3 3 6 6 11 13 18

F4 F
((0,0),4,0)
0,3 q22/7 1 0 2 2 3 4 8 8 13 16 23

F5 F
((0,0),4,0)
1,0 q12/7 1 1 2 2 4 5 8 10 14 19 26

F6 F
((0,0),4,0)
1,1 q6/7 1 0 1 2 3 3 6 7 11 14 20

F7 F
((0,0),4,0)
1,2 q15/7 1 1 1 3 4 6 8 11 15 22 27

F8 F
((0,0),4,0)
1,3 q18/7 1 1 2 3 5 5 10 13 18 23 32

F9 F
((1,0),4,0)
0,0 q1/7 1 1 2 2 3 4 7 8 13 16 23

F10 F
((1,0),4,0)
0,1 − 1

2 q 1 1 2 3 4 5 9 11 16 21 29

F11 F
((1,0),4,0)
0,2 q 1 0 2 2 4 5 8 10 16 20 28

F12 F
((1,0),4,0)
0,3 q15/7 1 1 2 3 6 7 11 15 21 28 39

F13 F
((1,0),4,0)
0,4 q17/7 1 1 3 3 6 8 12 16 24 30 42

F14 F
((1,0),4,0)
0,5 q13/7 1 1 2 3 5 7 11 13 20 26 36

F15 F
((1,0),4,0)
0,6 q3/7 1 1 1 2 4 4 7 9 13 17 25

F16 F
((1,0),4,0)
1,0 − 1

2 q 1 2 3 4 6 9 13 18 26 34 46

F17 F
((1,0),4,0)
1,1 q3/7 1 1 2 3 5 7 11 14 21 28 39

F18 F
((1,0),4,0)
1,2 q 1 1 2 4 6 8 13 17 25 33 45

F19 F
((1,0),4,0)
1,3 q12/7 1 2 3 5 7 11 16 22 30 42 55

Table E.3: The coefficients of the 38 independent functions Fi ap-
pearing in the sum rules when k̃+ = 4, Part 1



252 Appendix E. The Functions Fi(q)

Name Representative Coefficient of qi

Fi FΛ
2l̃+,n offset 0 1 2 3 4 5 6 7 8 9 10

F20 F
((1,0),4,0)
1,4 q11/7 1 2 3 4 8 10 15 21 30 39 54

F21 F
((1,0),4,0)
1,5 q4/7 1 1 2 3 5 8 11 15 21 30 40

F22 F
((1,0),4,0)
1,6 q5/7 1 1 3 3 6 8 12 16 23 31 43

F23 F
((2,0),4,0)
0,0 q2/7 1 1 2 2 4 5 9 10 16 20 30

F24 F
((2,0),4,0)
0,1 q10/7 1 1 3 3 6 7 12 15 23 28 41

F25 F
((2,0),4,0)
0,2 q12/7 1 1 3 3 6 8 13 16 24 30 44

F26 F
((2,0),4,0)
0,3 q8/7 1 0 2 3 5 5 11 13 20 25 37

F27 F
((2,0),4,0)
1,0 q2/7 1 1 3 3 6 8 13 17 25 33 47

F28 F
((2,0),4,0)
1,1 − 1

2 q 1 2 3 5 7 11 15 23 30 43 56

F29 F
((2,0),4,0)
1,2 q6/7 1 1 3 4 7 10 15 20 30 39 55

F30 F
((2,0),4,0)
1,6 q5/7 1 2 2 5 7 10 14 21 28 39 52

F31 F
((1,1),4,0)
0,0 q3/7 1 1 3 3 6 8 12 16 23 32 43

F32 F
((1,1),4,0)
0,1 − 1

2 q 1 2 3 4 7 10 14 20 28 37 51

F33 F
((1,1),4,0)
0,2 q5/7 1 1 2 4 6 8 13 17 25 34 46

F34 F
((1,1),4,0)
0,3 q11/7 1 2 3 5 8 11 17 23 32 44 59

F35 F
((1,1),4,0)
1,0 q1/7 1 2 3 5 8 11 17 24 34 47 64

F36 F
((1,1),4,0)
1,1 q2/7 1 2 3 5 8 12 18 25 35 49 66

F37 F
((1,1),4,0)
1,2 q4/7 1 2 3 6 9 13 19 28 38 53 72

F38 F
((1,1),4,0)
1,3 − 1

2 q 1 3 4 7 10 15 23 32 44 60 82

Table E.4: The coefficients of the 38 independent functions Fi ap-
pearing in the sum rules when k̃+ = 4, Part 2
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E.4 k̃+ = 5

Name Representative Coefficient of qi

Fi FΛ
2l̃+,n offset q0 q1 q2 q3 q4 q5 q6 q7 q8 q9 q10

F1 F
((0,0),5,0)
0,0 − 1

2 q 1 1 1 2 2 3 4 7 9 14 16

F2 F
((0,0),5,0)
0,1 q5/8 1 0 1 1 2 2 5 4 8 10 16

F3 F
((0,0),5,0)
0,2 q5/2 1 0 1 2 3 4 7 8 14 18 26

F4 F
((0,0),5,0)
0,3 q29/8 1 0 2 2 4 5 10 11 19 24 36

F5 F
((0,0),5,0)
0,4 q4 1 0 2 3 4 5 11 13 20 27 39

F6 F
((0,0),5,0)
1,0 q7/4 1 1 2 3 4 6 10 13 19 27 37

F7 F
((0,0),5,0)
1,1 q 1 0 1 2 3 4 7 9 14 20 28

F8 F
((0,0),5,0)
1,2 q5/2 1 1 1 3 5 7 11 15 22 32 44

F9 F
((0,0),5,0)
1,3 q13/4 1 1 2 4 6 8 14 19 28 40 54

F10 F
((0,0),5,0)
2,0 q9/4 1 1 2 3 5 8 12 17 24 34 48

F11 F
((0,0),5,0)
2,1 q9/8 1 0 1 2 4 4 8 10 18 22 34

F12 F
((0,0),5,0)
2,3 q21/8 1 1 3 3 7 8 14 18 29 38 56

F13 F
((1,0),5,0)
0,0 q1/8 1 1 2 2 4 4 8 10 16 21 32

F14 F
((1,0),5,0)
0,1 − 1

2 q 1 1 2 3 5 6 10 14 21 28 41

F15 F
((1,0),5,0)
0,2 q9/8 1 0 2 2 4 6 10 12 21 27 41

F16 F
((1,0),5,0)
0,3 q5/2 1 1 2 3 7 9 14 20 31 42 60

F17 F
((1,0),5,0)
0,4 q25/8 1 1 3 4 8 10 18 24 37 50 73

F18 F
((1,0),5,0)
0,5 q3 1 1 3 4 7 11 17 23 36 49 70

F19 F
((1,0),5,0)
0,6 q17/8 1 1 2 3 6 8 14 18 28 37 56

F20 F
((1,0),5,0)
0,7 q1/2 1 1 1 2 4 5 8 11 17 23 34

F21 F
((1,0),5,0)
1,0 − 1

2 q 1 2 3 5 7 11 16 24 35 49 69

F22 F
((1,0),5,0)
1,1 q1/2 1 1 2 3 6 8 13 19 28 40 57

F23 F
((1,0),5,0)
1,2 q5/4 1 1 2 4 7 10 16 24 35 50 71

F24 F
((1,0),5,0)
1,3 q9/4 1 2 3 6 9 15 23 33 48 69 96

F25 F
((1,0),5,0)
1,4 q5/2 1 2 4 6 11 16 24 36 53 74 105

Table E.5: The coefficients of the 76 independent functions Fi ap-
pearing in the sum rules when k̃+ = 5, Part 1
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Name Representative Coefficient of qi

Fi FΛ
2l̃+,n offset q0 q1 q2 q3 q4 q5 q6 q7 q8 q9 q10

F26 F
((1,0),5,0)
1,5 q2 1 2 3 5 9 14 21 31 45 64 90

F27 F
((1,0),5,0)
1,6 q3/4 1 1 2 3 6 9 14 20 30 43 61

F28 F
((1,0),5,0)
1,7 q3/4 1 1 3 4 6 10 15 21 32 44 63

F29 F
((1,0),5,0)
2,0 q13/8 1 2 4 5 10 14 23 31 48 66 96

F30 F
((1,0),5,0)
2,1 q3/4 1 1 2 4 6 10 16 23 34 49 70

F31 F
((1,0),5,0)
2,2 q9/8 1 1 3 4 8 11 19 26 40 55 81

F32 F
((1,0),5,0)
2,3 q7/4 1 2 4 6 10 15 23 34 49 70 98

F33 F
((2,0),5,0)
0,0 q1/4 1 1 2 3 4 6 11 14 22 30 44

F34 F
((2,0),5,0)
0,1 q11/8 1 1 3 4 7 9 16 20 33 43 64

F35 F
((2,0),5,0)
0,2 q7/4 1 1 3 4 7 10 17 23 35 48 69

F36 F
((2,0),5,0)
0,3 q11/8 1 0 2 3 6 7 14 18 30 40 60

F37 F
((2,0),5,0)
0,4 q9/4 1 1 3 4 8 11 19 26 39 54 79

F38 F
((2,0),5,0)
0,5 q19/8 1 1 4 4 9 12 20 27 43 56 84

F39 F
((2,0),5,0)
0,6 q7/4 1 1 3 4 7 10 17 23 35 48 69

F40 F
((2,0),5,0)
0,7 q3/8 1 1 2 2 5 6 11 14 23 30 46

F41 F
((2,0),5,0)
1,0 q1/4 1 1 3 4 7 10 17 24 36 52 74

F42 F
((2,0),5,0)
1,1 − 1

2 q 1 2 3 6 9 14 21 32 46 67 94

F43 F
((2,0),5,0)
1,2 q 1 1 3 5 8 13 21 30 45 65 92

F44 F
((2,0),5,0)
1,3 q5/4 1 1 3 5 9 14 22 32 49 69 99

F45 F
((2,0),5,0)
1,4 q7/4 1 2 4 7 11 17 27 40 58 83 117

F46 F
((2,0),5,0)
1,5 q3/2 1 2 4 6 11 16 25 37 54 77 110

F47 F
((2,0),5,0)
1,6 q1/2 1 1 3 4 7 11 18 26 39 55 79

F48 F
((2,0),5,0)
1,7 q3/4 1 2 3 5 9 13 20 30 43 62 88

F49 F
((2,0),5,0)
2,0 − 1

2 q 1 2 4 6 10 16 24 36 53 76 108

F50 F
((2,0),5,0)
2,1 q3/8 1 1 3 4 8 11 20 27 43 59 89

Table E.6: The coefficients of the 76 independent functions Fi ap-
pearing in the sum rules when k̃+ = 5, Part 2
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Name Representative Coefficient of qi

Fi FΛ
2l̃+,n offset q0 q1 q2 q3 q4 q5 q6 q7 q8 q9 q10

F51 F
((2,0),5,0)
2,2 q 1 2 3 6 10 16 24 36 53 76 108

F52 F
((2,0),5,0)
2,3 q7/8 1 1 4 5 10 14 24 33 52 71 105

F53 F
((1,1),5,0)
0,0 q3/8 1 1 3 4 6 10 15 21 32 45 63

F54 F
((1,1),5,0)
0,1 − 1

2 q 1 2 3 5 8 12 18 27 39 55 78

F55 F
((1,1),5,0)
0,2 q7/8 1 1 2 4 7 10 16 24 35 51 72

F56 F
((1,1),5,0)
0,3 q2 1 2 3 6 10 15 24 35 50 73 102

F57 F
((1,1),5,0)
0,4 q19/8 1 2 4 7 11 17 27 39 57 82 114

F58 F
((1,1),5,0)
1,0 q1/8 1 2 3 6 9 14 22 33 48 70 101

F59 F
((1,1),5,0)
1,1 q3/8 1 2 3 6 9 15 24 35 52 75 107

F60 F
((1,1),5,0)
1,2 q7/8 1 2 3 7 11 17 28 41 60 88 125

F61 F
((1,1),5,0)
1,3 q13/8 1 3 5 9 15 23 36 54 78 112 159

F62 F
((1,1),5,0)
2,0 q5/8 1 2 4 7 12 19 29 44 65 94 134

F63 F
((1,1),5,0)
2,1 q1/2 1 2 4 6 11 18 28 42 62 90 128

F64 F
((1,1),5,0)
2,3 − 1

2 q 1 3 5 9 14 22 34 51 75 108 152

F65 F
((2,1),5,0)
0,0 q5/8 1 1 3 4 8 11 19 26 40 56 82

F66 F
((2,1),5,0)
0,1 q3/2 1 2 4 6 11 16 25 36 54 76 108

F67 F
((2,1),5,0)
0,2 q13/8 1 2 4 6 11 16 26 37 56 77 112

F68 F
((2,1),5,0)
0,3 q 1 1 2 5 8 12 20 28 44 62 89

F69 F
((2,1),5,0)
0,7 − 1

2 q 1 2 4 5 9 14 22 31 46 65 94

F70 F
((2,1),5,0)
1,0 q1/2 1 2 4 7 12 19 29 44 65 94 134

F71 F
((2,1),5,0)
1,1 − 1

2 q 1 3 5 9 14 23 35 53 77 112 158

F72 F
((2,1),5,0)
1,2 q3/4 1 2 4 7 13 20 31 47 70 101 144

F73 F
((2,1),5,0)
1,6 q1/4 1 2 4 6 11 17 27 40 60 87 124

F74 F
((2,1),5,0)
2,0 q1/8 1 2 4 6 12 18 29 42 66 94 137

F75 F
((2,1),5,0)
2,1 q1/4 1 2 4 7 12 19 30 46 68 99 142

F76 F
((2,1),5,0)
2,2 q5/8 1 3 4 9 14 23 35 54 77 115 160

Table E.7: The coefficients of the 76 independent functions Fi ap-
pearing in the sum rules when k̃+ = 5, Part 3
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