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Abstract: In this thesis we explore identities which can be proven on multiple zeta values using the

derivation operators Dr from Brown’s motivic MZV framework. We then explore identities which occur

on multiple polylogarithms by way of the symbol map S, and the multiple polylogarithm coproduct ∆.

On multiple zeta values, we consider Borwein, Bradley, Broadhurst, and Lisoněk’s cyclic insertion

conjecture about inserting blocks of {2}ai between the arguments of ζ({1, 3}n). We generalise this

conjecture to a much broader setting, and give a proof of a symmetrisation of this generalised cyclic

insertion conjecture. This proof is by way of the block-decomposition of iterated integrals introduced

here, and Brown’s motivic MZV framework. This symmetrisation allows us to prove (or to make

progress towards) various conjectural identities, including the original cyclic insertion conjecture, and

Hoffman’s 2ζ(3, 3, {2}n) − ζ(3, {2}n, 1, 2) identity. Moreover, we can then generate unlimited new

conjectural identities, and give motivic proofs of their symmetrisations.

We then consider the task of relating weight 5 multiple polylogarithms. Using the symbol map, we

determine all of the symmetries and functional equations between depth 2 and between depth 3 iterated

integrals with ‘coupled-cross ratio’ arguments [cr(a, b, c, d1), . . . , cr(a, b, c, dk)]. We lift the identity for

I4,1(x, y)+I4,1( 1
x ,

1
y ) to an identity holding exactly on the level of the symbol and prove a generalisation

of this for Ia,b(x, y). Moreover, we further lift the subfamily In,1 to a candidate numerically testable

identity using slices of the coproduct.

We review Dan’s reduction method for reducing the iterated integral I1,1,...,1 to a sum in ≤ n − 2

variables. We provide proofs for Dan’s claims, and run the method in the case I1,1,1,1 to correct Dan’s

original reduction of I1,1,1,1 to I3,1 and I4. We can then compare this with another reduction to find

I3,1 functional equations, and their nature. We then give a reduction of I1,1,1,1,1 to I3,1,1, I3,2 and I5,

and indicate how one might be able to further reduce to I3,2 and I5.

Lastly, we use and generalise an idea suggested by Goncharov at weight 4 and weight 5. We find

Lin terms when certain Li2, Li3 and Li4 functional equations are substituted into the arguments of

symmetrisations of Im,1(x, y). By expanding Im,1(Lik equation,Li` equation) in two different ways we

obtain functional equations for Li5 and Li6. We make some suggestions for how this might work at

weight 7 and weight 8 giving a potential route to Li7 and Li8 functional equations.
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Chapter 1

(Motivic) multiple zeta values

We review the basic definitions and theory surrounding multiple zeta values, including some of their

history. The definition of an MZV (Definition 1.1.1) is motivated by considering products of Riemann

zeta values. We consider Euler’s results on evaluating ζ(2k) (Theorem 1.1.6) and on reducing the

double zeta values ζ(1, k) to polynomials in ζ(n)’s (Theorem 1.1.8). We see how to represent MZV’s

as iterated integrals (Proposition 1.1.16), and how multiplying them gives a shuffle product operation,

which complements the stuffle product obtained by multiplying the series representation (Section 1.1.4).

We then consider some reasons for the interest in MZV’s, particularly questions dealing with the

transcendentality aspects that have so far defied solution (Section 1.1.5).

Then we turn to the idea of a motivic MZV, originally defined by Goncharov (Section 1.2.2) and extended

by Brown. Motivic MZV’s provide a purely algebraic lifting of the usual MZV’s, that eliminates

transcendentality problems from the start. We review Goncharov’s Hopf algebra of motivic iterated

integrals (Section 1.2.1), and see how the coproduct (Theorem 1.2.1) provides new insight into the

structure of the usual iterated integrals, and MZV’s (Proposition 1.2.6). Finally we introduce Brown’s

motivic MZV framework (Section 1.2.3), and the combinatorial tools it provides to algorithmically

decompose MZV’s. These combinatorial tools include the family of derivations Dr (Definition 1.2.12),

and Brown’s characterisation of the kernel of this family kerD<N (Theorem 1.2.15).

1.1 Multiple zeta values

1.1.1 Definitions

Multiple zeta values (which we may henceforth abbreviate as MZV’s) are an intriguing class of real

numbers, first studied by Euler in the special case of double zeta values. Systematic study of the general

case begins with Hoffman [Hof92]. The multiple zeta function is a generalisation of the Riemann zeta

function to a k-tuple of arguments, but for number theoretic reasons, we are mainly interested in the

case where the arguments are positive integers.

1



1.1. Multiple zeta values 2

The definition of a multiple zeta value can be somewhat motivated by considering what happens when

we multiply the Riemann zeta values ζ(a) and ζ(b). This will involve a sum over the first quadrant

Z>0 × Z>0, which can then be decomposed into a sum over a diagonal piece, an upper trianglar piece

and a lower triangular piece.

1 2 3 4 5 6

1

2

3

4

5

6

0

0

We find

ζ(a)ζ(b) =
∞∑
n=1

∞∑
m=1

1
namb

=
(∑
n<m

+
∑
n=m

+
∑
n>m

)
1

namb

=: ζ(a, b) + ζ(a+ b) + ζ(b, a) .

Now we give the more general definition of a multiple zeta value.

Definition 1.1.1 (Multiple zeta values). Let s1, s2, . . . , sk ∈ C. Then the multiple zeta function

ζ(s1, s2, . . . , sk) is defined as follows

ζ(s1, s2, . . . , sk) :=
∑

0<n1<n2<···<nk

1
ns1

1 n
s2
2 · · ·n

sk
k

.

Taking s1, s2, . . . , sk to be integers in Z>0, we obtain the multiple zeta value ζ(s1, s2, . . . , sk).

Warning 1.1.2. There are two competing conventions about the index of summation. Some take

n1 > n2 > · · · > nk > 0, rather than the index 0 < n1 < n2 < · · · < nk used above. This essentially has

the effect of reversing the arguments to the multiple zeta function, so no information is lost. However,

one must be aware of which convention is in use, especially when numerically checking identities.

Multiple zeta values can be viewed as special values of the multiple polylogarithms, to be introduced

later in Chapter 3. We won’t need this point of view, except for the fact that multiple polylogarithms

(and hence MZV’s) can be written as iterated integrals.

Auxiliary to the definition of an MZV are the notions of depth and weight.

Definition 1.1.3 (MZV weight, MZV depth). Given an MZV ζ(s1, s2, . . . , sk) we define the following.
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• The sum of the arguments s1 + s2 + · · ·+ sk is called the weight of ζ(s1, s2, . . . , sk).

• The number k of its arguments is called the depth of ζ(s1, s2, . . . , sk).

Proposition 1.1.4. Suppose s1, s2, . . . , sk ∈ Z>0. Then the MZV ζ(s1, s2, . . . , sk) is convergent if

and only if sk > 1.

Proof sketch: Since the series consists only of positive terms, it converges if and only if it converges

absolutely. In particular the summation order does not matter.

‘⇒’: If sk = 1, then by taking the subseries where ni = i, for i = 1, . . . , k − 1, we obtain

ζ(s1, . . . , sk−1, 1) ≥ 1
1s12s2 · · · (k − 1)sk−1

∞∑
nk=k

1
n1
k

,

but the latter series is (a multiple of a tail of) the harmonic series. In particular this diverges. Hence

ζ(s1, . . . , sk−1, 1) is divergent by comparison. So by the contrapositive, ζ(s1, s2, . . . , sk) is convergent

implies sk > 1.

‘⇐’: Suppose that sk ≥ 2. Let I = { 1 ≤ i < k | si > 1 }, and J = { 1 ≤ i < k | si = 1 }.

By fixing some nk, we have that

∑
0<n1<···<nk−1<nk

1
ns1

1 · · ·n
sk−1
k−1

≤
nk∑

n1,...,nk−1=1

1
ns1

1 · · ·n
sk−1
k−1

=
k−1∏
i=1

nk∑
ni=1

1
nsii

.

For the terms i ∈ I where si > 1, we have that
nk∑
ni=1

1
nsii

<

∞∑
ni=1

1
nsii

= ζ(si) .

For the terms i ∈ J , where si = 1, we can apply the integral test to obtain the upper bound
nk∑
ni=1

1
n1
i

< log(nk) + 1 .

So we obtain

ζ(s1, . . . , sk) ≤
∏
i∈I

ζ(si)
∞∑

nk=1

(log(nk) + 1)#J

nskk
.

Since

lim
n→∞

1 + log(n)
nε

= 0 ,

for any ε > 0, we can take ε = 1
2 , so that

lim
n→∞

(log(nk) + 1)#J

n
1/2
k

=

 lim
nk→∞

log(nk) + 1

n
1

2#J
k

#J

= 0 .

This means that the sequence is bounded, and so there is a constant C such that

(log(nk) + 1)#J < Cn
1
2
k ,
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for all nk.

Plugging this back into the upper bound for ζ(s1, . . . , sk) gives us that

ζ(s1, . . . , sk) ≤
∏
i∈I

ζ(si)
∞∑

nk=1

(log(nk) + 1)#J

nskk
< C

∏
i∈I

ζ(si)
∞∑

nk=1

1
n
sk−1/2
k

.

But this latter series is convergent since sk ≥ 2 means that sk − 1/2 > 1.

Combining both directions shows that ζ(s1, . . . , sk) converges iff sk > 1, as claimed.

1.1.2 Euler’s results

1.1.2.1 Evaluation of ζ(even)

Perhaps one of Euler’s most famous results is the successful evaluation of ζ(2), and by extension all

ζ(2k). This leads to an answer to the question of the algebraic nature of ζ(even), namely ζ(even) is a

transcendental number.

To state Euler’s result, we first need to define the Bernoulli numbers B2n.

Definition 1.1.5 (Bernoulli numbers). The Bernoulli numbers B2n are defined by the following

generating series
z

ez − 1 =:
∞∑
k=0

Bk
k! z

k .

Theorem 1.1.6 (Euler, [Eul43]). Let k ∈ Z>0. The following evaluation of ζ(2k) holds.

ζ(2k) = (2π)2k(−1)k+1B2k

2(2k)! . (1.1.1)

In particular, ζ(2k) is a rational multiple of π2k.

Proof sketch (not Euler’s proof): The following series converges to πz cot(πz)

πzcot(πz) = 1 + 2z2
∞∑
n=1

1
z2 − n2 .

But πz cot(πz) is holomorphic at 0, so we can use this series to find the power series expansion of

πz cot(πz) at z = 0. For |z| < 1, we obtain

πz cot(πz) = 1 + 2z2
∞∑
n=1

1
z2 − n2

= 1− 2z2
∞∑
n=1

1
n2(1− (z/n)2)

= 1− 2z2
∞∑
n=1

( ∞∑
k=0

( z
n

)2k
)

.

We can interchange the order of summation to obtain

= 1− 2
∞∑
k=0

( ∞∑
n=1

1
n2k+2

)
z2k+2
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= 1− 2
∞∑
k=1

ζ(2k)z2k . (1.1.2)

On the other hand, we can write

πz cot(πz) = πiz e
2πiz + 1
e2πiz − 1 = (2πiz)

e2πiz − 1 + πiz .

Expanding this out using the power series definition from Definition 1.1.5, we obtain

= 1 +
∞∑
k=1

Bk
(k!) (2πiz)k . (1.1.3)

Comparing coefficients between Equation 1.1.2 and Equation 1.1.3 leads to

−2ζ(2k) = B2k

(2k)! (2πi)2k ,

which can be rearranged to give Equation 1.1.1.

From this evaluation, we can conclude that ζ(2k) is irrational, and in fact transcendental, using

Linderman’s theorem on the transcendentality of π. Moreover, since π is transcendental, all ζ(2k) are

Q-linearly independent. Euler, however, was not able to evaluate ζ(3), nor any other ζ(odd), and the

algebraic nature of ζ(odd) still remains largely a mystery.

1.1.2.2 ζ(1, 2) = ζ(3), and reduction of double zeta values

The earliest results on genuine multiple zeta values date back to Euler’s investigations of double zeta

values, i.e. those where the depth is 2. His goal was to reduce these double zeta values to polynomials

in ζ(n)’s. One of the simplest examples of this reduction is the following result of Euler.

Proposition 1.1.7 (Euler, [Eul75]). The following identity relates ζ(3) and ζ(1, 2).

ζ(3) = ζ(1, 2)

Proof. There are many, many different proofs of this identity ranging from direct proofs involving

manipulating series, to subtler proofs which establish generalisations for q-multiple zeta values, or for

Witten multiple zeta values. Details of these proofs and more can be found in [BB06]. Perhaps the

quickest proof, which appears at the start of section 2 of [BB06], and is credited to Steinberg [Ste52],

is the following.

Consider

S :=
∞∑

n,k=1

1
nk(n+ k) .

We can write
1

nk(n+ k) = 1
n2

(
1
k
− 1
n+ k

)
,
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to obtain

S =
∞∑

n,k=1

1
n2

(
1
k
− 1
n+ k

)
=
∞∑
n=1

1
n2

(
n∑
k=1

1
k

)
,

since the inner sum telescopes. Then by splitting the k sum into k < n and k = n terms, this is equal

to

=
∞∑
n=1

n−1∑
k=1

1
n2k

+
∞∑
n=1

1
n3

= ζ(1, 2) + ζ(3) .

Alternatively, one can write
1

nk(n+ k) =
(

1
n

+ 1
k

)
1

(n+ k)2 ,

to obtain

S =
∞∑

n,k=1

(
1
n

+ 1
k

)
1

(n+ k)2 = 2
∞∑

n,k=1

1
n(n+ k)2 .

This is by using the n ↔ k symmetry of the two terms in the first expression. Then by changing

variables, ` = n+ k, we obtain

= 2
∑

0<n<`

1
n`2

= 2ζ(1, 2) .

Comparing these two expressions for S gives immediately

ζ(1, 2) = ζ(3) ,

as claimed.

This is an instance of the so-called duality of MZV’s. Once the idea of duality is introduced more gen-

erally below, this identity will be an effortless one-line result. However, Euler provided a generalisation

of this ζ(1, 2) = ζ(3) result in a different direction.

Theorem 1.1.8 (Euler, [Eul75]). For m ≥ 2 ∈ Z, the following reduction, of the double zeta value

ζ(1,m) to a polynomial in Riemann zeta values ζ(n), holds.

2ζ(1,m) = mζ(m+ 1)−
m−2∑
j=1

ζ(j + 1)ζ(m− j) .

Although Euler’s goal was to reduce all depth 2 MZV’s to polynomials in Riemann zeta values ζ(n), he

did not succeed. For example, no reduction for ζ(3, 5) appears to exist, although the fact that ζ(3, 5)

is ‘irreducible’ is still only conjectural. We will revisit the question of the irreducibility of ζ(3, 5) in

Proposition 1.2.6, where we sketch Goncharov’s proof of this result on motivic MZV’s.

1.1.3 Iterated integrals

As already remarked, iterated integrals will give us another way of writing MZV’s. This integral

representation enriches the algebraic structure of MZV’s, and will play an important role in the motivic
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framework introduced first by Goncharov, and subsequently improved by Brown.

Definition 1.1.9. Write

ω(ai) = dt
t− ai

for the unique differential form of degree 1, holomorphic on P1(C) \ { ai }, which has a pole of order 1

and residue +1 at ai.

Definition 1.1.10 (Chen iterated integral, [Che77]). Let x0, . . . , xm+1 be complex numbers. Then a

(Chen) iterated integral is defined by

Iγ(x0;x1, . . . , xm;xm+1) :=
∫

∆γ

dt1
t1 − x1

∧ · · · ∧ dtm
tm − xm

=
∫

∆γ

ω(x1)(t1) ∧ · · · ∧ ω(xm)(tm) ,

where γ is a path from x0 to xm+1 in C \ {x1, . . . , xm}, and the region of integration ∆γ consists of all

m-tuples (γ(t1), . . . , γ(tm)), with t1 ≤ t2 ≤ · · · ≤ tm.

The integral Iγ(x0;x1, . . . , xm;xm+1) depends on the choice of path γ between x0 and xm+1, so it is a

multivalued function of x0, . . . , xm+1.

Remark 1.1.11. We will often drop γ from the iterated integral notation Iγ(x0;x1, . . . , xm;xm+1) and

simply write I(x0;x1, . . . , xm;xm+1) instead. In the case of MZV’s, this is because there is a standard

choice for the path γ, (Proposition 1.1.16). In the case of multiple polylogarithms (Chapter 3) we

will be more interested in the algebraic properties of I(x0;x1, . . . , xm;xm+1), rather than the analytic

properties (when computing the coproduct (Theorem 1.2.1), or the symbol (Section 3.3.2), say).

Remark 1.1.12. We may also use the following notation

I(x0;x1, . . . , xm;xm+1) =
∫ xm+1

x0

ω(a1) ◦ · · · ◦ ω(an)

=
∫
x0≤t1≤···≤tm≤xm+1

ω(a1)(t1) ∧ · · · ∧ ω(an)(tn)

to write these integrals.

These integrals deserve the name iterated integrals because we can integrate each variable ti one-by-one

in a recursive way ∫ xn+1

x0

I(x0;x1, . . . , xn−1; t)ω(ai)(t)

=
∫ xn+1

x0

(∫
x0≤t1≤t2≤···≤tn−1≤tn

ω(a1) ◦ · · · ◦ ω(an−1)
)
ω(an)

=
∫
x0≤t1≤t2≤···≤tn≤xn+1

ω(a1) ◦ · · · ◦ ω(an)

= I(x0;x1, . . . , xn;xn+1) .

These integrals are convergent if x0 6= x1, and xn 6= xn+1. Otherwise they are divergent.

These integrals satisfy a number of standard, and well known properties.
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Property 1.1.13 (Chen, [Che77]). The iterated integrals Iγ(x0;x1, . . . , xn, xn+1) satisfy the following

properties.

i) (Equal boundaries) If n ≥ 1, x0 = xm+1, and γ is the trivial path from x0 to xm+1 = x0, then

Iγ(x0;x1, . . . , xn;xn+1) = 0 .

ii) (Unit/Empty integral) For any x0, x1, we have Iγ(x0;x1) = 1.

iii) (Path composition) Let y ∈ C be fixed. Let α be a path from x0 to y, and β be a path from y to

xm+1. Denote by αβ the composite path obtained by following α and then following β. Then

Iαβ(x0;x1, . . . , xn;xn+1) =
n∑
k=0

Iα(x0;x1, . . . , xk; y)Iβ(y;xk+1, . . . , xn;xn+1) .

iv) (Shuffle product) Two iterated integrals, with the same limits, can be multiplied using the shuffle

product (explained fully below)

Iγ(a;x1, . . . , xm; b)Iγ(a;xm+1, . . . , xm+n; b) = Iγ(a; (x1 · · ·xm)� (xm+1 · · ·xm+n); b) .

v) (Reversal of paths) Let γ be a path from x0 to xn+1, and denote by γ−1 the reversed path. Then

reversing the path of integration gives

Iγ(x0;x1, . . . , xn;xn+1) = (−1)nIγ−1(xn+1;xn, . . . , x1;x0) .

vi) (Functoriality) Given a (piecewise) smooth map f : C→ C, we have

Iγ(x0;x1, . . . , xm;xm+1) =
∫

∆f(γ)

f∗
dt1

t1 − x1
∧ · · · ∧ f∗ dtm

tm − xm
.

In particular, under f(t) = 1− t, we obtain

Iγ(x0;x1, . . . , xm;xm+1) = I1−γ(1− x0; 1− x1, . . . , 1− xm; 1− xm+1) .

Remark 1.1.14. The definition of an iterated integral, and the above properties, hold more generally.

One does not need to restrict to the particular differential forms

ω(ai) := dt
t− ai

.

Any family of differential forms ω1, . . . , ωk will work; as long as the path γ of integration avoids the

poles of the ωi’s, the resulting integral is well-defined. In particular, in Chapter 5, we shall generalise

ω(ai) to a form ω(ai, x), which agrees with ω(ai) when x =∞.
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Definition 1.1.15 (Shuffle product). Given two words w = a1 · · · am and v = am+1 · · · am+n over

some alphabet, the shuffle product w� v is defined as follows.

w� v =
∑

σ∈Sm,n

aσ(1) · · · aσ(m+n) ,

where Sm,n is the set of (m,n)-shuffles

Sm,n := { σ ∈ Sn+m | σ(1) < σ(2) < · · · < σ(m) and σ(m+ 1) < σ(m+ 2) < · · · < σ(m+ n) } .

Alternatively, the shuffle product can be defined recursively by the following conditions.

i) For any word w, 1� w = w� 1 = w, where 1 is the empty word.

ii) For any words w1, w2, and letters a, b, we have

(aw1)� (bw2) = a(w1 � (bw2)) + b((aw1)� w2) .

The idea to keep in mind with the shuffle product is that the letters of the words w and v are permuted

together, but individual letters of w remain in order, as do the individual letters of v. The words w

and v are riffle shuffled, like a deck of cards.

According to Zagier [Zag94], Kontsevich was the first to notice how MZV’s can be written using these

iterated integrals.

Proposition 1.1.16 (Kontsevich). Let ζ(s1, . . . , sk) be an MZV. Then

ζ(s1, . . . , sk) = (−1)kI(0; 1, {0}s1−1, . . . , 1, {0}sk−1; 1) ,

where here {0}s := 0, . . . , 0︸ ︷︷ ︸
s times

means the string formed by repeating 0 a total of s times. (Here the path

of integration is the straight line path from 0 to 1.)

Proof. This is actually a special case of a corresponding statement for multiple polylogarithms. The

sketch proof of the general case is presented in Theorem 3.1.5. Essentially, it involves expanding out

the integrand as geometric series, and integrating term by term.

1.1.4 Algebraic structure of MZV’s and standard relations

Using the Kontsevich integral representation, we are motivated to encode an MZV as a string of 0’s

and 1’s, or rather as a string of y’s and x’s in the non-commutative polynomial ring Q〈x, y〉. This

approach, explained below, is described in detail in [Hof05]. It provides a very elegant framework for

stating important families of relations on MZV’s.

With this encoding, we match the word yxs1−1 · · · yxsk−1 with the multiple zeta value ζ(s1, . . . , sk).

Since ζ(s1, . . . , sk) is convergent if and only if sk > 1, this correspondence above lands in the vector

subspace H0 of admissible words.
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Definition 1.1.17 (Subspace H0). The subspace of admissible words h0 is the subspace of Q〈x, y〉,

which is generated by words which start with a y, and end with an x.

We can then view ζ as a Q-linear map ζ : H0 → R, sending yxs1−1 · · · yxsk−1 to the numerical value

ζ(s1, . . . , sk).

1.1.4.1 Duality of MZV’s

Define the anti-automorphism τ : Q〈x, y〉 → Q〈x, y〉 by τ(x) = y, and τ(y) = x. Then we have the

following theorem.

Theorem 1.1.18 (Duality, Section 9 of [Zag94]). Let w ∈ H0 be any admissible word. Then

ζ(w) = ζ(τ(w)) .

Proof. This theorem is essentially proven by considering the integral representation. Let the admissible

word w = yxs1−1 · · · yxsk−1. We have

ζ(w) = (−1)kI(0; 1, {0}s1−1, . . . , 1, {0}sk−1; 1) .

Then apply the change of variables t′ = 1− t in the iterated integral, to arrive at

= (−1)kI(1; 0, {1}s1−1, . . . , 0, {1}sk−1; 0) .

Now apply the reversal of paths property from Property 1.1.13 to get

= (−1)k(−1)2+s1+···+skI(0; {1}sk−1, 0, . . . , {1}s1 , 0; 1) .

However, this last integral has depth (sk − 1) + · · ·+ (s1− 1) = s1 + · · ·+ sk − k. We can recognise the

encoded word as τ(w), since the word has been reversed and we have interchanged 0↔ 1. So this is

= (−1)k(−1)2+s1+···+sk(−1)s1+···+sk−kζ(τ(w))

= ζ(τ(w)) ,

as claimed.

From this theorem we get the promised one line proof of Euler’s ζ(3) = ζ(1, 2) result, Proposition 1.1.7.

Consider ζ(3). This is encoded by the word w = yx2. But τ(w) = y2x, which encodes ζ(1, 2), so we

obtain ζ(3) = ζ(1, 2) by the Duality theorem (Theorem 1.1.18).

Remark 1.1.19 (Duality of iterated integrals). A restatement of the Duality theorem in terms of

iterated integrals follows by applying the reversal of paths property, and the functoriality property

under t 7→ 1− t from Property 1.1.13. We have

I(0; a1, . . . , an; 1) = (−1)nI(1; an, . . . , a1; 0) = (−1)nI(0; 1− an, . . . , 1− a1; 1)
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1.1.4.2 Shuffle product of MZV’s

We know from the shuffle product property of iterated integrals in Property 1.1.13 that two iterated

integrals with the same limits can be multiplied using the shuffle product. Since the integral represen-

tation of an MZV always has lower limit 0 and upper limit 1, we can multiply MZV’s by multiplying

their iterated integral representations.

The shuffle product � endows (Q〈x, y〉,�) with the structure of a commutative algebra. Since iterated

integrals multiply with the shuffle product, we find that ζ is a homomorphism

ζ : (Q〈x, y〉,�)→ (R, · ) .

More explicitly, this means that for any two words w1 and w2 in H0, we have

ζ(w1)ζ(w2) = ζ(w1 � w2) .

Example 1.1.20. We can multiply out ζ(2)ζ(2) using the shuffle product. We have that ζ(2) is

encoded by w = yx. We get that

yx� yx = 2 · yxyx+ 4 · yyxx .

So

ζ(2)ζ(2) = ζ(2 · yxyx+ 4 · yyxx) = 2ζ(2, 2) + 4ζ(1, 3) .

1.1.4.3 Stuffle product of MZV’s

Alternatively, we can multiply MZV’s by multiplying their series representations. The product of two

such series can be written as a sum of other MZV-type series, where the indices of summation are

taken in all possible ways compatible with the original indices.

Rehashing the motivation for defining an MZV, we have the following example.

Example 1.1.21. Consider multiplying the series for ζ(2) with itself. We obtain

ζ(2)ζ(2) =
∑
n>0

1
n2

∑
m>0

1
m2 .

By splitting up the summation region Z>0 × Z>0 into an upper triangle region, a lower triangular

region, and a diagonal region, we obtain

=
∑

n>m>0

1
m2n2 +

∑
m>n>0

1
n2m2 +

∑
n=m>0

1
n2m2

= ζ(2, 2) + ζ(2, 2) + ζ(4)

= 2ζ(2, 2) + ζ(4) .

This example generalises, and the associated multiplication is reflected in the stuffle product ∗ on

Q〈x, y〉. For further details see [Hof92].
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Definition 1.1.22 (Stuffle product). The stuffle product ∗ on Q〈x, y〉 is defined recursively as follows.

i) For any word w, we have 1 ∗ w = w ∗ 1 = w, where 1 is the empty word,

ii) For any word w and any integer n ≥ 1, we have

xn ∗ w = w ∗ xn = wxn ,

iii) For any words w1, w2 and integers p, q ≥ 0, we have

yxpw1 ∗ yxqw2 = yxp(w1 ∗ yxqw2) + yxq(yxpw1 ∗ w2) + yxp+q+1(w1 ∗ w2) .

The stuffle product has a better interpretation on the MZV arguments themselves, rather than the

xy-encoding strings. This interpretation can be obtained from the third part of Definition 1.1.22,

namely: the MZV arguments are shuffled in all possible ways (coming from the first two terms), and

two arguments can be stuffed into the same slot (coming from the third term, and alternatively just

called ‘extra stuff ’).

This endows (Q〈x, y〉, ∗) with a different commutative algebra structure. Since the MZV series multiply

with the ∗-product we find that ζ is a homomorphism

ζ : (Q〈x, y〉, ∗)→ (R, · ) .

More explicitly, this means for any two words w1 and w2 in H0, we have

ζ(w1)ζ(w2) = ζ(w1 ∗ w2) .

1.1.4.4 (Regularised or extended) double shuffle on MZV’s

We have two distinct ways of multiplying MZV’s, so they demand to be compared. By expanding out

a product of MZV’s in the two different ways, the difference between both sides will be 0. This gives

us linear relations between MZV’s.

Example 1.1.23. In Example 1.1.20 we have an expression for ζ(2)ζ(2) using the shuffle product.

And in Example 1.1.21 we have an expansion for ζ(2)ζ(2) using the stuffle product. Comparing the

two leads to

2ζ(2, 2) + ζ(4) stuffle= ζ(2)ζ(2) shuffle= 2ζ(2, 2) + 4ζ(1, 3) .

The difference between the left and right hand sides gives the identity

4ζ(1, 3) = ζ(4) .

Remark 1.1.24. This identity (after evaluating ζ(4)) is in fact a special case of the Zagier-Broadhurst

identity that will form part of the background to Chapter 2.
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Identity 1.1.25 (Double shuffle). For any w1, w2 ∈ H0, the following standard family of linear

relations on MZV’s holds:

ζ(w1 ∗ w2 − w1 � w2) = 0 .

It is known that the relations in Identity 1.1.25 are insufficient for generating all linear relations

between MZV’s. For example, the minimum possible weight of a double shuffle relation is 4, coming

from ζ(2)� ζ(2)− ζ(2) ∗ ζ(2), so the weight 3 result ζ(1, 2) = ζ(3) cannot arise. However, we can fix

things by allowing a formal symbol ζ(1) for the divergent MZV, and extending the map ζ to certain

non-admissible words. Comparing shuffle and stuffle leads to all divergent terms (formally) cancelling,

and new linear relations appearing.

Identity 1.1.26 (Extended double shuffle). For any w1 ∈ H1 := Q1 + yQ〈x, y〉 and w2 ∈ H0, the

following standard family of linear relations on MZV’s holds:

ζ(w1 ∗ w2 − w1 � w2) = 0 .

Here H1 := Q1 + yQ〈x, y〉 corresponds to the inclusion of words not ending in x. Equivalently H1

describes divergent MZV’s ζ(n1, n2, . . . , nk) with nk = 1.

Example 1.1.27. Consider expanding ζ(2)ζ(1) using the stuffle and shuffle products. For the stuffle

product we obtain

ζ(2) ∗ ζ(1) = ζ(yx ∗ y) = ζ(yyx+ yxy + yxx) = ζ(1, 2) + ζ(2, 1) + ζ(3) ,

whereas for the shuffle product we obtain

ζ(2)� ζ(1) = ζ(yx� y) = ζ(2 · yyx+ yxy) = 2ζ(1, 2) + ζ(2, 1) .

The divergent term ζ(2, 1) cancels when comparing the two equations, and leads to another proof of

Euler’s identity Proposition 1.1.7:

ζ(1, 2) = ζ(3) .

Remark 1.1.28. As it currently stands, Example 1.1.27 above is still only a formal proof. To be

made rigorous one has to show that the formal cancellation of the divergent MZV’s ζ(2, 1) is actually

allowed. This is proven rigorously in Sections 2 and 3 of [IKZ06], by defining certain regularisation

procedures for the divergent MZV’s, wherein the divergent ζ(1) is replaced by an indeterminate T . In

Theorem 1 of [IKZ06], a comparison of these regularisation procedures gives relations between different

MZV’s. It is later shown in Theorem 2 of [IKZ06] that this comparison is equivalent to (among other

things) the extended/regularised double shuffle relations in Identity 1.1.26.

Part of the procedure in [IKZ06] involves extracting the coefficient term of a polynomial in T (the

formal symbol replacing ζ(1)). This ends up setting T = 0, so one can interpret this as regularising

ζ(1) reg= 0, to get finite values for the divergent MZV’s. We will see this again when we discuss the

shuffle regularisation of motivic iterated integrals in Section 1.2.3.1.
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Conjecturally, all relations between MZV’s come from this regularised comparision of shuffle and stuffle.

Zudilin gives a precise version of this statement as follows.

Conjecture 1.1.29 (MZV relations, Conjecture 2 in [Zud03]). The kernel of the ζ map, which

describes all linear relations between MZV’s, is given by

ker ζ = {u� v − u ∗ v | u ∈ H1, v ∈ H0} ,

where H1 := Q1 + yQ〈x, y〉 corresponds to the inclusion of words not ending in x. Equivalently H1

describes divergent MZV’s ζ(n1, n2, . . . , nk) with nk = 1.

1.1.4.5 Examples of relations on MZV’s

It is evident from the double-shuffle identities in Section 1.1.4.4 that MZV’s should satisfy a large

number of relations (something which is confirmed by the Dimension conjecture, in Section 1.1.5.3

below). Typically double-shuffle generates very messy and unstructured identities; one needs to combine

carefully chosen double-shuffle relations to obtain more aesthetically pleasing identities. The purpose

of this section is just to give a selection of these interesting or pretty identities, to make the theory a

little concrete.

Identity 1.1.30. Borwein, Bradley and Broadhurst [BBB97] use generating function methods to

recover the following identity

ζ({2}n) = 2(2π)2n

(2n+ 1)!

(
1
2

)2n+1
= π2n

(2n+ 1)! ,

which can also be established using a variant of Euler’s method for evaluating ζ(2). More generally, they

establish that ζ({2k}n) ∈ π2knQ = ζ(2kn)Q, with explicit expressions for small cases. The evaluations

have a very particular form: a factor 2k(2π)2nk

(2kn+k)! multiplied by a sum over certain algebraic numbers.

For example,

ζ({8}n) = 8(2π)8n

(8n+ 4)!

((
1 + 1√

2

)4n+2
+
(

1− 1√
2

)4n+2
)

.

Identity 1.1.31 (Broadhurst-Zagier). The following identity was conjectured by Zagier [Zag94] on

the basis of much numerical evidence. A proof was later provided by Broadhurst [BBBL01] using

hypergeometric functions.

ζ({1, 3}n) = 2π4n

(4n+ 2)! .

This identity is but the simplest example of a (largely) conjectural family of ‘cyclic-insertion’ identities

that will be the focus of Chapter 2. The identity itself will be revisited in Section 2.1.1 when we sketch

Broadhurst’s proof, and fit the identity into a broader context.

Identity 1.1.32 (Gangl-Kaneko-Zagier, [GKZ06]). The following identity on double zeta values ζ(a, b)

is the first in an infinite family of identities which arise in connection to modular forms. There is a

similar identity at weight k, whenever there is a non-trivial cusp form of weight k on Γ1. The weight
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k = 12 identity is

28ζ(3, 9) + 150ζ(5, 7) + 168ζ(7, 5) = 5197
691 ζ(12) .

Identity 1.1.33 (Cyclic derivations, Ohno). The following, very short, identity arises from applying

Ohno’s ‘cyclic derivations’ identity [HO03] to the word w = (yx2)n. One obtains

ζ({3}n, 4) = ζ(1, 3, {3}n) + ζ(2, {3}n, 2) .

1.1.5 Open questions about MZV’s, and reasons for interest

With regard to multiple zeta values, one of the main areas of focus is the attempt to fully understand

all the relations they satisfy. We have from Conjecture 1.1.29 a conjectural description of the space

of all relations. This description entails plenty of further consequences, whose truth is still largely

unknown.

1.1.5.1 Direct sum conjecture

All known relations between MZV’s break up into relations between MZV’s of the same weight.

Conjecturally, all relations between MZV’s are homogeneous, and so the vector space of MZV’s is in

fact weight graded. The Direct sum conjecture in [Fur03] essentially states:

Conjecture 1.1.34 (Direct sum conjecture). When regarded as a Q-vector space, the space of MZV’s

is the direct sum of the subspaces Zk of MZV’s of weight k, so that all relations are homogeneous with

respect to weight.

From Conjecture 1.1.29, we have a conjectural description of the space of all MZV relations. It is clear

from the statement of Conjecture 1.1.29 that the relations produced by comparing shuffle and stuffle

are homogeneous.

1.1.5.2 Irrationality and transcendence

The irrationality, transcendence and linear independence properties of these numbers are still very

mysterious. Thanks to Euler (Theorem 1.1.6) we know that ζ(2k) ∈ π2kQ, so that all even zetas are

irrational and Q-algebraically dependent. Moreover, since π is transcendental, they are Q-linearly

independent.

The only other explicit result on irrationality of MZV’s is due to Apéry, as recently as 1978, when he

proved that ζ(3) is irrational [Apé79]. No one yet can even prove that ζ(5) is irrational, and aside

from some curious non-explicit results like ‘one of ζ(5), ζ(7), ζ(9) and ζ(11) is irrational’, and ‘infinitely

many ζ(odd) are irrational’ [Riv00], little more is known. The question of proving ζ(5) and ζ(3) are

even Q-linearly independent, i.e. ζ(5)/ζ(3) is irrational, seems hopelessly out of reach.

Morally, we do know what happens. We expect the following.
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Conjecture 1.1.35 (Algebraic independence conjecture, Conjecture 1 in [Zud03]). The numbers

π, ζ(3), ζ(5), ζ(7), ζ(9), . . . ,

are algebraically independent over Q.

Moreover, as indicated above, no-one since Euler has been able to reduce ζ(3, 5) to a polynomial in

Riemann zeta values ζ(n). So in fact, we even expect

ζ(3, 5), π, ζ(3), ζ(5), ζ(7), ζ(9), . . . ,

to be algebraically independent over Q.

1.1.5.3 Dimension and basis conjectures

Following extensive numerical computations, searching for linear relations between MZV’s, Zagier

found numerically that the dimension of the space Zk of MZV’s of weight k is given by:

k 2 3 4 5 6 7 8 9 10 11 12

dimQZk 1 1 1 2 2 3 4 5 7 9 12

This leads to the general conjecture in Section 9 of [Zag94] that dimQZk is given by the coefficient of

xk in the expansion of 1
1−x2−x3 , or equivalently by dk, where dk is defined by the recurrence relation: dk = dk−2 + dk−3 with,

d2 = d3 = d4 = 1

Conjecture 1.1.36 (Dimension conjecture, in Section 9 of [Zag94]). The dimension of the space Zk
of MZV’s of weight k is given by dk, satisfying the recurrence dk = dk−2 + dk−3 with initial conditions

d2 = d3 = d4 = 1.

This recurrence relating weight k MZV’s to weight k − 2 and weight k − 3 in turn lead Hoffman to

propose a candidate basis for the space Zk might be given by ζ(w), where the word w is of weight k

and satisfies w ∈ {2, 3}×. That is, a basis might consist of zetas where the arguments are 2’s and 3’s

only.

Conjecture 1.1.37 (Basis conjecture, Conjecture C in [Hof97].). A basis for the space Zk is given by

the Hoffman elements ζ(n1, . . . , nr), where n1, . . . , nr ∈ {2, 3}, with weight k.

It has since been proved, by various authors such as Goncharov [Gon02], Terasoma [Ter02] and Brown

[Bro12a], that the upper bound dimQZk ≤ dk indeed holds. It is also known from Brown’s work with

motivic MZV’s that the Hoffman elements, ζ(w) with w ∈ { 2, 3 }×, do span the space of MZV’s. Later,

we can sketch some ideas from one proof of this which uses Brown’s motivic MZV’s, to be introduced

below.
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The reverse inequality is much harder to tackle. We don’t even have a single proven instance where

dimQZk > 1. Nobody seriously entertains the notion that dimQZk = 1, for k ≥ 5, but for all we know

the MZV’s of weight k are all rational multiples of ζ(k), with immensely complicated rational factors

we haven’t identified yet.

1.2 Motivic MZV’s

Motivic MZV’s provide a way to study MZV’s from a purely algebraic point of view, free from the

analytic ‘fiddleyness’ that plagues the real-valued MZV’s. Goncharov [Gon05, end of Section 1.2] goes

as far as to claim that in his opinion “. . . an understanding of the transcendental aspects of the iterated

integrals is impossible without investigation of the corresponding motivic objects”.

Goncharov provides a construction of motivic iterated integrals. These motivic iterated integrals

have a richer algebraic structure than the classical iterated integrals, in that form a Hopf algebra

with coproduct ∆. By analogy with the Kontsevich integral representation of MZV’s, Goncharov

can then define motivic MZV’s and make use of this Hopf algebra structure to study motivic MZV’s.

Unfortunately Goncharov’s motivic MZV’s are not completely satisfactory because his ζM(2) element

is necessarily 0. Brown’s motivic MZV framework provides a refinement to this, further lifting the Hopf

algebra of iterated integrals to a comodule where ζm(2) 6= 0. The exact details of Gonchaov’s motivic

iterated integral construction, and the further refinements for Brown’s motivic MZV framework, are

not essential to the rest of this thesis, so we will provide only an overview of the construction.

The most important aspects of the motivic MZV framework for us are the combinatorial tools (namely

the derivations Dr giving the infinitesimal coproduct, and Brown’s theorem characterising kerD<N )

which make it possible for us to algorithmically decompose motivic MZV’s.

1.2.1 Goncharov’s Hopf algebra of motivic iterated integrals

After fixing an embedding Q ↪→ C, Goncharov [Gon05] shows how the iterated integrals

I(x0;x1, . . . , xn;xn+1), defined in Section 1.1.3 above, can be upgraded to framed mixed Tate motives

over Q, at least when the parameters xi are algebraic numbers. This procedure gives us a motivic

iterated integral:

IM(x0;x1, . . . , xn;xn+1) ∈ An(Q)

that by definition lies in a commutative, graded Hopf algebra A•(Q).

Assuming the parameters xi are algebraic numbers, there are only finitely many, so one can suppose

they lie in some number field F , rather than just in Q. Then the graded, commutative Hopf algebra

A•(F ) is the (unipotent quotient of the) fundamental de Rham Hopf algebra of the abelian category

MT (F ) of mixed Tate motives over F .
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Since the motivic iterated integrals lie in a Hopf algebra, they admit a coproduct ∆. This is a

genuinely new algebraic structure on iterated integrals; it is completely invisible at the level of numbers.

Goncharov [Gon05] proves that the coproduct is as follows.

Theorem 1.2.1 (Goncharov, Theorem 1.2 in [Gon05]). The coproduct on the Hopf algebra of motivic

iterated integrals is given by the formula

∆IM(a0; a1, . . . , an; an+1) =∑
0=i0<i1<...<ik<ik+1=n+1

IM(a0; ai1 , . . . , aik ; an+1)⊗
k∏
p=0

IM(aip ; aip+1, . . . , aip+1−1; aip+1)

Remark 1.2.2. This formula has an elegant interpretation in terms of cutting off segments of a

semicircular polygon. For example, the term:

IM(a0; a1, a3, a6; a9)⊗ IM(a0; a1)IM(a1; a2; a3)IM(a3; a4, a5; a6)IM(a6; a7, a8; a9)

in the coproduct ∆IM(a0; a1, . . . , a8; a9) corresponds to cutting off the indicated segments from the

semicircular polygon below:

a0

a1

a2

a3
a4 a5

a6

a7

a8

a9

The other terms arise from taking all other possible choices of segments.

There is a canonical surjective homomorphism:

pσ : A•(F )→ Pσ• (F )

IM(a0; a1, . . . , an; an+1) 7→ I(σ(a0);σ(a1), . . . , σ(an);σ(an+1))

that realises a motivic iterated integral by the projection of its classical counterpart to the associated

graded Pσ• (F ) of the filtered algebra Pσ(F ) of periods of mixed Tate motives over F . (Here σ : F ↪→ C

is an embedding of F into C.) Roughly, this means that any relations satisfied on the motivic level

also hold on the level of classical integrals, modulo integrals of lower weight.

Conjecturally this map pσ should in fact define an isomorphism from the Q-vector space of motivic

iterated integrals to the Q-vector space of periods of mixed Tate motives over F . Whether or not

this is true, as a purely algebraic lifting of iterated integrals to motivic iterated integrals, we gain

the structure of a Hopf algebra, and eliminate the transcendence problems that plague the classical

iterated integrals. We can therefore use these motivic iterated integrals to gain new insights into the

classical iterated integrals.
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1.2.2 Goncharov’s motivic MZV’s

With the Kontsevich integral representation of multiple zeta values, we can make the following definition

to obtain Goncharov’s motivic MZV’s.

Definition 1.2.3. Goncharov’s motivic multiple zeta value ζM(s1, . . . , sk) is defined by

ζM(s1, . . . , sk) = (−1)kIM(0; 1, {0}s1−1, . . . , 1, {0}sk−1; 1) .

With this definition, Goncharov notes that ζM(2k) = 0 because (2πi)−2kζ(2k) ∈ Q and A = O(UM),

the ring of regular functions on the unipotent part of the motivic Galois group. However, ζM(2k+1) 6= 0

in this setting, and here we get to see the first success of the motivic viewpoint in eliminating the

analytic difficulties of MZV’s.

Proposition 1.2.4 (Goncharov, [Gon05]). Although no-one can prove yet that the numbers ζ(2k + 1)

are linearly independent over Q, we have that the motivic elements

ζM(2k + 1) ∈ A2k+1(Q)

are linearly independent over Q.

Proof. The elements belong to components of different degrees in A•(Q). Therefore they must be

linearly independent over Q.

In fact we can prove even more than this. Not only are the elements ζM(2k + 1) linearly independent

over Q, they are in fact algebraically independent over Q, as expected from Conjecture 1.1.35.

Theorem 1.2.5. The odd motivic multiple zeta values ζM(3), ζM(5), ζM(7), . . . , ζM(2n+ 1), . . . are

algebraically independent over Q.

Proof. We will prove this by a induction on the size of the purported algebraically dependent set.

Firstly we observe that the odd motivic MZV ζM(2n+1) is transcendental over Q. That is, ζM(2n+1)

is not a root of any non-zero polynomial f(x) ∈ Q[x]. This is an easy observation because of the weight

grading of motivic MZV’s. Suppose that f(x) =
∑k
i=0 αix

i is a non-zero polynomial of degree k which

has ζM(2n+ 1) as a root. Then we have ak 6= 0 and ai = 0 for i < k because of the weight grading. So

weight (2n+ 1)k part of this relation is only αkζM(2n+ 1)k = 0. Since ζM(2n+ 1) 6= 0, we conclude

that αk = 0, contradicting our definition of f .

We thus have that any size 1 set of odd motivic MZV’s is algebraically independent over Q. Suppose

now that S =
{
ζM(a1), . . . , ζM(a`)

}
is a set of ` odd motivic MZV’s, and that any set of size ≤ `− 1

other odd motivic MZV’s is algebraically independent over Q. We will prove that S is also algebraically

independent over Q.
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Suppose to the contrary, that S is algebraically dependent over Q. Without loss of generality, assume

that a1 < a2 < · · · < a`. Let

f(x1, . . . , x`) =
∑
i1,...,i`

αi1,...,i`x
i1
1 · · ·x

i`
`

be the minimal polynomial witnessing this algebraic dependence. Here the sum runs over i1, . . . , i` ≥ 0

with
∑
ajij = N , for some fixed weight N , and minimal means in terms of the total degree. With this

polynomial we have f(ζM(a1), . . . , ζM(a`)) = 0. Now apply the coproduct, and look at the weight

(a1, N − a1) component. In the coproduct, ζM(a1) 7→ 1⊗ ζM(a1) + ζM(a1)⊗ 1, so the only way to

obtain ζM(a1) ⊗ · · · is via the ζM(a1) ⊗ ζM(a1)i1−1 term from ∆ζM(a1)i1 , and the 1 ⊗ ζM(ak)ik

terms from each ∆ζM(ak)ik . We get that the weight (a1, N − a1) component is

ζM(a1)⊗

 ∑
i1,...,i`

αi1,...,i`

(
i1
1

)
ζM(a1)i1−1ζM(a2)i2 · · · ζM(a`)i`

 .

Here the sum runs over i1 ≥ 1 and i2, . . . , i` with
∑
ajij = N .

Since the coproduct ∆f(ζM(a1), . . . , ζM(a`)) = ∆0 = 0, we must have that this (a1, N − a1) degree

component already vanishes. Since ζM(a1) 6= 0, we obtain∑
i′1,...,i

′
`

αi′1+1,i′2,...,i′`(i
′
1 + 1)ζM(a1)i

′
1ζM(a2)i

′
2 · · · ζM(a`)i

′
` = 0

after changing variables i′1 = i′1 − 1, and otherwise i′j = ij . Here the sum runs over all i′1, . . . , i′` ≥ 0

with
∑
ajij = N − a1.

We see that this combination is a strictly lower degree polynomial under which the algebraic dependence

of ζM(a1), . . . , ζM(a`) is witnessed. This is not possible by out assumption that f is the minimal

such polynomial, so we conclude that αi′1+1,i′2,...,i′`(i
′
1 + 1) = 0. Since i′1 + 1 ≥ 0 + 1 = 1, we find that

αi′1+1,i′2,...,i′` = 0, for i′j ≥ 0.

Plugging this information about α back into the polynomial f , we obtain

f(x1, . . . , x`) =
∑
i2,...,i`

α0,i2,...,i`x
i2
2 · · ·x

i`
` =: f̃(x2, . . . , x`)

is independent of x1. Since S′ =
{
ζM(a2), . . . , ζM(a`)

}
is algebraically independent over Q by

assumption (being a set of size ` − 1), we must have that α0,i2,...,i` = 0 also, to ensure that f̃ is

identically 0.

This now shows that f itself is identically 0. So the polynomial witnessing the algebraic dependence of

S =
{
ζM(a1), . . . , ζM(a`)

}
is identically 0. This is a contradiction since such a polynomial must be

non-zero. Hence the set S is in fact algebraically independent over Q.

Since we established directly that any set of size 1 is algebraically independent over Q, we obtain by

induction a proof that any finite set S of odd motivic MZV’s is algebraically independent over Q. This

proves the claim about the Q-algebraic independence of ζM(3), ζM(5), ζM(7), . . . , ζM(2k + 1), . . ..
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In the same paper [Gon05], Goncharov gives an application of this motivic iterated integral framework,

and motivic multiple zeta value framework, to the detailed study of the motivic double zeta values.

One application is to show that ζM(3, 5) is irreducible.

Proposition 1.2.6 (Goncharov, [Gon05]). The motivic MZV ζM(3, 5) is irreducible, so cannot be

expressed as a polynomial in Riemann zeta values ζM(n).

Sketch proof: Make use of the restricted coproduct ∆′, defined by ∆′(x) = ∆(x)− 1⊗ x− x⊗ 1. One

has that if ∆′(x) = ∆′(y) = 0, then ∆′(xy) = x⊗ y + y ⊗ x.

One computes that

∆′(ζM(3, 5)) = −5 · ζM(3)⊗ ζM(5) .

Since ζM(2n+ 1) 6= 0, this shows that ζM(3, 5) 6= 0 also.

Moreover if ζM(3, 5) were a (sum of) products of Riemann zeta values, we could antisymmetrise and

the result would vanish by the computation ∆′(xy) above.

But antisymmetrising ∆′(ζM(3, 5)) = −5 · ζM(3)⊗ ζM(5) gives −5 · ζM(3) ∧ ζM(5) 6= 0. This proves

that ζM(3, 5) cannot be expressed as a polynomial in Riemann zeta values, so is irreducible.

A second application Goncharov gives is to prove that the motivic double shuffle relations suffice to

generate all relations on motivic double zeta values.

Theorem 1.2.7 (Goncharov, Theorem 6.5 in [Gon05]). Consider the generating series ζM(t0, t1, t2) :=

ζ
M(t1, t2), where t0 + t1 + t2 = 0, and ζM is the projection of ζM modulo products and depth 1 terms.

We have

i) The generating series ζM(t0, t1, t2) satisfies the dihedral symmetry relations

ζ
M(t0, t1, t2) = ζ

M(t1, t2, t0) = −ζM(t0, t2, t1) = ζ
M(−t0,−t1,−t2) ,

which are the motivic analogue of the (regularised) double shuffle relations.

ii) And there are no other relations between the coefficients of the generating series ζM(t0, t1, t2).

Goncharov’s motivic iterated integrals, and motivic MZV’s, do provide new insight into the structure

of real MZV’s. However, they are not a perfect tool for studying real MZV’s: the motivic element

ζM(2) vanishes, so we miss out on this part of the story. Because ζM(2) = 0, there is no period map

down to C, so we cannot compare numerically with the real valued classical MZV relations. Brown’s

motivic MZV framework plugs this gap.

1.2.3 Brown’s motivic MZV’s

In [Bro12a], Brown shows how Goncharov’s motivic iterated integrals can be further lifted in such a

way that ζm(2) is non-zero. (Brown uses the notation m for his motivic elements.)
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For parameters ai ∈ { 0, 1 }, the motives corresponding to Goncharov’s motivic iterated integrals

IM(a0; a1, . . . , an; an+1) are unramified over Z, so they lie in AMT := A•(Z). We can then introduce

a trivial comodule over AMT , defined by

HMT + := AMT ⊗Q Q[f2] ,

where f2 is taken to be of degree 2. This f2 will correspond to the non-zero lifting of Goncharov’s

ζM(2).

In Theorem 3.5 of [Bro12b] Brown then proves that there is a Hopf subalgebra A of AMT , and a

graded comodule H = H• over A, satisfying the following properties. (See section 2 of [Bro12a], or the

summary in Theorem 3.5 of [Bro12b])

• It is spanned by the motivic iterated integrals

Im(a0; a1, . . . , an; an+1) ∈ Hn ,

with ai ∈ { 0, 1 }, satisfying the standard properties of iterated integrals given in Section 1.1.3.

• There is a period map

per : H → R (1.2.1)

Im(a0; a1, . . . , an; an+1) 7→ I(a0; a1, . . . ; an; an+1) , (1.2.2)

which is a ring homomorphism. This means that motivic relations descend exactly to relations

on classical MZV’s.

• There is a non-canonical isomorphism of Hopf algebra comodules

H ∼= A⊗Q Q[ζm(2)] ,

and a non-canonical embedding of Hopf algebra comodules H ↪→ HMT + , which sends ζm(2) =

−Im(0; 1, 0; 1) to f2. ζm(2) is non-zero in this incarnation.

Given Brown’s motivic iterated integrals, we can make an analogous definition of a motivic multiple

zeta value.

Definition 1.2.8. Brown’s motivic multiple zeta value ζm(s1, . . . , sk) is defined by

ζM(s1, . . . , sk) = (−1)kIm(0; 1, {0}s1−1, . . . , 1, {0}sk−1; 1) .

1.2.3.1 Shuffle regularisation of (motivic) MZV’s

When dealing with (motivic) MZV’s, we obtain iterated integrals from x0 = 0 to xn+1 = 1 which start

with x1 = 1 and end with xn = 1, as in I(0; 1, . . . , 0; 1). In particular the corresponding real-valued

integrals are always convergent. It will be convenient (indeed necessary) to expand the class of allowed
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integrals to include divergent integrals by assigning them a finite value in a precise way. This process

of assigning a finite value to divergent integrals is known as regularisation.

The procedure for regularising iterated integrals is described by Brown, in Section 2.4 of [Bro12b]

for the real-valued MZV’s. A more explicit and precise procedure for doing this for motivic iterated

integrals is given in Section 5.1 of [Bro12b], in the paragraph following the list of relations. This

motivic procedure is equally applicable to the real-valued integrals.

After regularising the divergent integral Im(0; 0; 1) reg= 0, using property I1 [Theorem 3.5 in Bro12b], we

can regularise any divergent integral with parameters xi ∈ { 0, 1 } that starts Im(0; 0, . . .) by repeated

application of the shuffle product formula. Any remaining divergences must be integrals that end

Im(. . . , 1; 1), which can be reduced to the previous case by duality.

Specifically, this regularisation is by way of relation R2 [Section 5.1 in Bro12b].

(−1)kIm(0; {0}k, 1, {0}n1−1, . . . , 1, {0}nr−1; 1) =∑
i1+···+ir=k

(
n1 − 1 + i1

i1

)
· · ·
(
nr − 1 + ir

ir

)
Im(0; 1, {0}n1+i1−1, . . . , 1, {0}nr+ir−1; 1) , (1.2.3)

to deal with divergences where the integral starts Im(0; 0, . . .). This is is proven by repeated application

of the shuffle product identity

0 = Im(0; 0; 1)Im(0;w; 1) = Im(0; 0� w; 1) ,

coupled with the result that Im(0; 0; 1) reg= 0. Divergences where the integral ends Im(. . . , 1; 1), are

dealt with by applying duality, to reduce to the above case.

Example 1.2.9. For example, to regularise z = I(0; 0, 1, 0, 1, 1; 1), we first apply rule R2 to get

z = I(0; 0︸︷︷︸
k=1

, 1, 0︸︷︷︸
n1=2

, 1︸︷︷︸
n2=1

, 1︸︷︷︸
n3=1

; 1)

= (−1)1
∑

i1+i2+i3=1

(
1 + i1
i1

)(
0 + i2
i2

)(
0 + i3
i3

)
I(0; 1, {0}1+i1 , 1, {0}0+i2 , 1, {0}0+i3 ; 1)

= −2I(0; 1, 0, 0, 1, 1; 1)− 1I(0; 1, 0, 1, 0, 1; 1)− 1I(0; 1, 0, 1, 1, 0; 1) .

The third term is now okay. Apply duality to the first and second, to get

z = −2I(0; 0, 0, 1, 1, 0; 1)− 1I(0; 0, 1, 0, 1, 0; 1)− 1I(0; 1, 0, 1, 1, 0; 1) .

Now we can apply the rule R2 procedure to the first and second terms to obtain

z = − 2(I(0; 1, 0, 0, 1, 0; 1) + 2I(0; 1, 0, 1, 0, 0; 1) + 3I(0, 1, 1, 0, 0, 0; 1)) +

− (−2I(0; 1, 0, 0, 1, 0; 1)− 2I(0; 1, 0, 1, 0, 0; 1)) +

− I(0; 1, 0, 1, 1, 0; 1)

= 2I(0; 1, 0, 1, 0, 0, 1)− I(0; 1, 0, 1, 1, 0; 1) + 6I(0; 1, 1, 0, 0, 0; 1) .
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At last, these integrals can be converted to MZV’s, and we obtain

z = 2ζ(2, 3) + ζ(2, 1, 2) + 6ζ(1, 4)

This regularisation procedure is closely related to the regularisation procedure mentioned in Re-

mark 1.1.28, which is used in rigorously defining the extended double shuffle relations. There one

regularises ζ(1) reg= 0. This is equivalent to regularising Im(0; 0; 1) reg= 0 here by duality. One can then

reinterpret Example 1.1.27 in a perhaps more rigorous way.

Firstly, we compute the following regularisation of ζ(2, 1). We have that ζ(2, 1) = I(0; 1, 0, 1; 1) =

−I(0; 0, 1, 0; 1) by duality. Then

I(0; 0︸︷︷︸
k=0

,

n1=2︷︸︸︷
1, 0 , 1) = (−1)k

∑
i1=1

(
n1 − 1 + i1

i1

)
I(0; 1, {0}n1−1+i1 ; 1)

= −2I(0; 1, 0, 0; 1)

= 2ζ(3) ,

so that ζ(2, 1) reg= −2ζ(3).

Example 1.2.10. Recall the computations from Example 1.1.27, where we established

ζ(1) ∗ ζ(2) = ζ(2, 1) + ζ(1, 2) + ζ(3)

ζ(1)� ζ(2) = ζ(2, 1) + 2ζ(1, 2) .

Apply to this the regularisation ζ(2, 1) reg= −2ζ(3) computed above, and we get

ζ(1) ∗ ζ(2) reg= ζ(1, 2)− ζ(3)

ζ(1)� ζ(2) reg= −2ζ(3) + 2ζ(1, 2) .

The comparison between regularised values is allowed by Theorem 2 of [IKZ06], and so we derive once

again ζ(1, 2) = ζ(3).

1.2.3.2 ‘Levels’ of motivic MZV’s

In section 3.3 of [Bro12b], Brown explains how these motivic MZV’s exist on a number of different

levels. On the highest level we have the comodule H, where ζm(2) 6= 0.

Then we have the Hopf algebra

A = H/ζm(2)H ,

in which ζm(2) is killed. Brown writes ζa for the image of ζm under the quotient map H → A. The

elements ζa(n1, . . . , nr) are Goncharov’s motivic MZV’s, discussed in Section 1.2.2 above.

Finally have the Lie coalgebra

L = A>0

A>0A>0
,
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of indecomposable elements in A. This Lie coalgebra will play a role in the ‘infinitesimal’ version of

the coaction to be introduced below. Brown denotes the image in L of an element ζm as ζL.

The same notation is used for the image of a motivic iterated integral Im in A, and in L, namely Ia

and IL respectively.

This is summarised in equation 3.13 of [Bro12b], as follows

H A L

ζm(w) ζa(w) ζL(w)

Im(w) Ia(w) IL(w)

1.2.3.3 Coaction, and the infinitesimal coaction

As discussed in Section 1.2.1, Goncharov [Gon05] showed how to compute the coproduct ∆: A⊗QA → A

for his motivic iterated integrals Ia(a0; a1, . . . , an; an+1) = IM(a0; a1, . . . , an; an+1). By lifting A to

the comodule H, we now get a coaction ∆: H → A⊗Q H.

In Theorem 2.4 of [Bro12a], Brown shows that the coaction for his motivic MZV’s is given by the same

formula as Goncharov’s coproduct, up to swapping the factors:

Theorem 1.2.11 (Brown, Theorem 2.4 in [Bro12a]). The coaction for the motivic multiple zeta values

is given by the following formula

∆Im(a0; a1, . . . , an; an+1) =∑
0<i0<i1<···<ik<ik+1=n+1

(
k∏
p=0

Ia(aip ; aip+1, . . . , aip+1−1; aip+1)
)
⊗ Im(a0; ai1 , . . . , aik ; an+1) .

In order to make explicit calculations with the coaction more tractable, Brown wants to consider an

infinitesimal version of it which factors through a family of operators Dr. The coaction above involves

an exponential number of terms, as the weight grows. But the infinitesimal coaction will only have a

quadratic number of terms (each operator Dr has a linear number of terms, and there are a linear

number of Dr operators as the weight grows).

In section 4 of [Bro12b], Brown shows how the infinitesimal coproduct factors through the family of

operators Dr, for odd r ≥ 3.

Definition 1.2.12 (Definition 4.4 in [Bro12b]). The operators Dr, for odd r ≥ 3 are defined as the

projection onto the Lie coalgebra of the weight (r,N − r)-graded part of the coaction. Namely

Dr : HN
∆r,N−r−−−−−→ Ar ⊗Q HN−r

π⊗id−−−→ Lr ⊗Q HN−r .

Here Lr refers to the degree r component of the Lie coalgebra of indecomposables L. Similarly ∆r,N−r

is the part of the coproduct which lands in the degree (r,N − r) component of A⊗Q H. Finally π is
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the quotient map

π : A>0 → L := A>0

A>0 · A>0
.

From the computation of the coaction ∆ above, Brown obtains the following computation of the action

of Dr.

Proposition 1.2.13. The operator Dr acts in the following way on the element Im(a0; a1, . . . , an; an+1).

DrI
m(a0; a1, . . . , an; an+1) =

n−r∑
p=0

IL(ap; ap+1, . . . , ap+r; ap+r+1)⊗ Im(a0; a1, . . . , ap, ap+r+1, . . . , an; an+1) .

Like Goncharov’s coproduct, these derivations have an interpretation in terms of cutting segments out

of a semicircular polygon. The operator Dr can be viewed as cutting off a segment with r points, from

the semicircular polygon. By cutting off all such possible segments, we get Dr.

a0

a1

ap−1

ap

ap+1

ap+r
ap+r+1

ap+r+2

an

an+1

· · ·

· · ·

· ·
·

It is important to note that the boundary terms ap and ap+r+1 appear in both the left- and right-hand

factors of Dr, so they are part of both the main polygon, and the cut-off segment above.

It is convenient to give names to the left and right hand terms appearing above. Brown uses the

relation between the formula for Dr, and the Connes-Kreimer coproduct for a certain class of graphs

to make the following definitions.

Definition 1.2.14 (Subsequence, quotient sequence, trivial subsequence). In the formula for

DrI
m(a0; a1, . . . , an; an+1), we name the terms as follows:

• The sequence appearing on the left

(ap; ap+1, . . . , ap+r; ap+r+1)

is called the subsequence.

• The sequence appearing on the right

(a0; a1, . . . , ap, ap+r, . . . , an; an+1)

is called the quotient sequence.
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Notice that the subsequence for Dr contains r interior points, for a total of r + 2 points.

If ap = ap+r+1 in the subsequence, we will call the subsequence trivial. This is because the integral

IL(ap; ap+1, . . . , ap+r; ap+r+1) = 0 by the equal boundaries property in Property 1.1.13

Roughly, these operators Dr are used to decompose a motivic MZV into a chosen basis. The operator

Dr extracts the coefficient of ζm(2k + 1) as a polynomial in this basis. This forms part of an

‘exact-numerical’ algorithm to decompose an MZV, as explained in section 5 of [Bro12b].

The upshot of this algorithm, and the operators Dr, is the following theorem. This theorem gives us

very combinatorial tools for producing and checking identities on MZV’s. For many purposes, the tools

themselves can be applied easily, without worrying about the motivic framework behind them.

Theorem 1.2.15 (Brown, Theorem 3.3 in [Bro12b]). Consider the operator

D<N :=
⊕

3≤2k+1<N
D2k+1 .

Then the kernel of D<N is ζm(N)Q in weight N.

In other words, if the operators D2k+1, for 3 ≤ 2k + 1 < N , all simultaneously vanish on a given

combination of weight N motivic MZV’s. Then this combination is in ζm(N)Q.

Remark 1.2.16 (Evaluation of the rational). Given some combination X in the kernel of D<N , we

know from Theorem 1.2.15 that it must be a rational multiple q of ζm(N).

How can this rational be determined? So far there does not seem to be any conceptual or algorithmic

way of determining the rational exactly. Certainly one could determine and combine sufficiently many

MZV relations using the regularised double shuffle relations from Section 1.1.4.4. Eventually one should

find the exact relation X − qζ(N) = 0, from which the rational q is now known exactly. However, this

is a very impractical way of determining q because the number of relations from regularised double

shuffle increases rapidly with the weight, and it becomes difficult to choose the right ones to combine

to get the relation X − qζ(N).

Instead, the method we will employ to determine this rational q is by numerical evaluation, using the

period map. Given some motivic relation, with unknown q ∈ Q,

X − qζm(N) = 0 ,

apply the period map to this and rearrange to obtain

q = X/ζ(N) .

We can then use some algorithms to numerically compute ζ(N), and the multiple zeta values in X. For

example zetamult, which is built into recent versions of GP/PARI [GP], can do this. From this, in

turn, we can compute q to high accuracy, to hundreds or to thousands of decimal places. We can then

find the best rational approximation to this numerical value of q using convergents of the continued
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fraction of q; this gives the best approximation with the denominator be small compared to the number

of decimal places. This approximation can be achieved using the bestappr command in GP/PARI

[GP].

We can now be pretty sure that we have determined the value of q exactly, although there is of course

still the very small chance that we have merely found a very good approximation to it. For more

certainty one could recompute the result of X − qζ(N) to more and more decimal places, checking the

result is 0, to within the error bounds imposed by the zetamult algorithm, or compute q to higher

accuracy and compare with the initial approximation.

In section 5.3, item iii) of [Bro12b], Brown briefly discusses some potential directions that might

eventually lead to an exact way of computing q, such as finding bounds in the prime powers which can

appear in the denominator of q, or by finding a different (say, p-adic) realisation of motivic MZV’s.

We can give a simple example of these combinatorial tools, as follows. Chapter 2 deals with identities

established in the same way for more general and complicated families of MZV’s and iterated integrals.

Example 1.2.17. As a simple example of this, we can show that ζm(4, 4) is a rational multiple of

ζm(8).

We have that ζm(4, 4) = Im(0; 1, 0, 0, 0, 1, 0, 0, 0; 1). Let us mark out the subsequences for D3 on

Im(0; 1, 0, 0, 0, 1, 0, 0, 0; 1) in a table, for clarity. Each term vanishes because the subsequence starts

and ends with the same digit – this means the associated integral has equal boundaries so is 0. It is

what we called a trivial subsequence in Definition 1.2.14.

Subsequence Term in D3

Im(0; 1, 0, 0, 0, 1, 0, 0, 0; 1) IL(0; 1, 0, 0; 0)⊗ Im(0; 0, 1, 0, 0, 0; 1) = 0

Im(0; 1, 0, 0, 0, 1, 0, 0, 0; 1) IL(1, 0, 0, 0; 1)⊗ Im(0; 1, 1, 0, 0, 0; 1) = 0

Im(0; 1, 0, 0, 0, 1, 0, 0, 0; 1) IL(0, 0, 0, 1, 0)⊗ Im(0; 1, 0, 0, 0, 0; 1) = 0

Im(0; 1, 0, 0, 0, 1, 0, 0, 0; 1) IL(0, 0, 1, 0, 0)⊗ Im(0; 1, 0, 0, 0, 0; 1) = 0

Im(0; 1, 0, 0, 0, 1, 0, 0, 0; 1) IL(0, 1, 0, 0, 0)⊗ Im(0; 1, 0, 0, 0, 0; 1) = 0

Im(0; 1, 0, 0, 0, 1, 0, 0, 0; 1) IL(1, 0, 0, 0; 1)⊗ Im(0; 1, 0, 0, 0, 1; 1) = 0

Overall we obtain that

D3ζ
m(4, 4) = 0 .

Let us mark out the subsequences for D5 on Im(0; 1, 0, 0, 0, 1, 0, 0, 0; 1). Two terms in this already

vanish because they involve trivial subsequences.

Subsequence Term in D5

Im(0; 1, 0, 0, 0, 1, 0, 0, 0; 1) IL(0; 1, 0, 0, 0, 1, 0)⊗ Im(0; 0, 0, 0; 1) = 0

Im(0; 1, 0, 0, 0, 1, 0, 0, 0; 1) IL(1, 0, 0, 0, 1, 0, 0)⊗ Im(0; 1, 0, 0; 1)

Im(0; 1, 0, 0, 0, 1, 0, 0, 0; 1) IL(0, 0, 0, 1, 0, 0, 0)⊗ Im(0; 1, 0, 0; 1) = 0

Im(0; 1, 0, 0, 0, 1, 0, 0, 0; 1) IL(0, 0, 1, 0, 0, 0; 1)⊗ Im(0; 1, 0, 0; 1)
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So we obtain that

D5ζ
m(4, 4) = IL(1; 0, 0, 0, 1, 0; 0)⊗ Im(0; 1, 0, 0; 1) +

+ IL(0, 0, 1, 0, 0, 0; 1)⊗ Im(0; 1, 0, 0; 1) .

Now apply the reversal of paths property from Property 1.1.13 to the subsequence in the first term of

D5. We have that

IL(1; 0, 0, 0, 1, 0; 0) = (−1)5IL(0; 0, 1, 0, 0, 0; 1) ,

so the terms in D5 cancel, giving

D5ζ
m(4, 4) = 0 .

Finally, let us mark out the subsequences for D7 on Im(0; 1, 0, 0, 0, 1, 0, 0, 0; 1). Each term in this also

vanishes because it involves a trivial subsequence.

Subsequence Term in D7

Im(0; 1, 0, 0, 0, 1, 0, 0, 0; 1) IL(0; 1, 0, 0; 0, 1, 0, 0; 0)⊗ Im(0; 0; 1) = 0

Im(0; 1, 0, 0, 0, 1, 0, 0, 0; 1) IL(1; 0, 0, 0, 1, 0, 0, 0; 1)⊗ Im(0; 1; 1) = 0

So we obtain that

D7ζ
m(4, 4) = 0 .

We have computed that D<8ζ
m(4, 4) = 0, so by Theorem 1.2.15, we conclude that ζm(4, 4) ∈ ζm(8)Q.

This is confirmed by Identity 1.1.30, where Borwein, Bradley and Broadhurst’s result [BBB97] that

ζ({2k}n) ∈ π2knQ is discussed. For this we may write

ζm(4, 4) Q= ζm(8) ,

to mean they are equal up to a rational (see Appendix A).

So we have that

ζm(4, 4) = qζm(8) ,

for some rational q ∈ Q. By numerically evaluating as in Remark 1.2.16, we can find that q ≈ 1
12 to

any accuracy we care to try. So we have that

ζm(4, 4) = 1
12ζ

m(8) .

Applying the period map to this, we get the corresponding identity on the level of real numbers

ζ(4, 4) = 1
12ζ(8) = 32π8

10! .

Remark 1.2.18. The example above is rather trivial in the sense that the exactly identity can be

deduced very quickly from the stuffle multiplication. We have

ζ(4)2 stuffle= 2ζ(4, 4) + ζ(8) .



1.2. Motivic MZV’s 30

Then using Euler’s evaluation of ζ(2k) from Theorem 1.1.6, we get

ζ(4, 4) = 1
2(ζ(4)2 − ζ(8)) = 1

2

((
π4

90

)2

− π8

9450

)
= 32π8

10! .

However, the idea of the motivic proof can be generalised to show that ζm({2k}n) ∈ ζm(2kn)Q,

corroborating the evaluations Borwein, Bradley, and Broadhurst produce [BBB97], as discussed in

Identity 1.1.30.

A perhaps less trivial identity (in that sense that to obtain it, one needs to more carefully combine

various shuffle and stuffle identities) that can be proven motivically (up to Q) is the following.

Example 1.2.19. Consider the combination

X = ζm(1, 2, 3) + 3ζm(4, 2) .

I claim that

X = ζm(1, 2, 3) + 3ζm(4, 2) = 97
48ζ

m(6) .

We will show that this is in kerD<N , and then numerically evaluate to find the coefficient 97
48 .

Firstly convert this combination of motivic MZV’s to motivic iterated integrals. We get

X = −Im(0, 1, 1, 0, 1, 0, 0, 1) + 3Im(0, 1, 0, 0, 0, 1, 0, 1) .

We dispose quickly with the computation of D5. All of the terms vanish because they already involve

a trivial subsequence.

Subsequence Term in D5

−Im(0; 1, 1, 0, 1, 0, 0; 1) −IL(0; 1, 1, 0, 1, 0; 0)⊗ Im(0; 0; 1) = 0

−Im(0; 1, 1, 0, 1, 0, 0; 1) −IL(1; 1, 0, 1, 0, 0; 1)⊗ Im(0; 1; 1) = 0

3Im(0; 1, 0, 0, 0, 1, 0; 1) 3IL(0; 1, 0, 0, 0, 1; 0)⊗ Im(0; 0; 1) = 0

3Im(0; 1, 0, 0, 0, 1, 0; 1) 3IL(1; 0, 0, 0, 1, 0; 1)⊗ Im(0; 1; 1) = 0

Now we compute D3. We will need to make use of the regularisation (as in Section 1.2.3.1) that

Im(0, 0︸︷︷︸
k=1

,

n1=2︷︸︸︷
1, 0 , 1) = (−1)k

∑
i1=1

(
n1 − 1 + i1

ni

)
Im(0, 1, {0}n1−1+i1 , 1)

= −2Im(0, 1, 0, 0, 1)

= 2ζm(3) .

We also need to use ζm(1, 2) = ζm(3), various instances of reversal of paths, and functoriality under

t 7→ 1− t. We obtain the following non-trivial subsequences.
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Subsequence Term in D3

−Im(0; 1, 1, 0, 1, 0, 0; 1) −IL(0; 1, 1, 0; 1)⊗ Im(0; 1, 0, 0; 1) = ζL(3)⊗ ζm(3)

−Im(0; 1, 1, 0, 1, 0, 0; 1) −IL(1; 1, 0, 1; 0)⊗ Im(0; 1, 0, 0; 1) = 2ζm(3)⊗ ζm(3)

−Im(0; 1, 1, 0, 1, 0, 0; 1) −IL(1; 0, 1, 0; 0)⊗ Im(0; 1, 1, 0; 1) = 2ζm(3)⊗ ζm(3)

−Im(0; 1, 1, 0, 1, 0, 0; 1) −IL(0; 1, 0, 0; 1)⊗ Im(0; 1, 1, 0; 1) = ζm(3)⊗ ζm(3)

3Im(0; 1, 0, 0, 0, 1, 0; 1) 3Im(0; 0, 1, 0; 1)⊗ Im(0; 1, 0, 0; 1) = −6ζm(3)⊗ ζm(3)

The total contribution to D3 is therefore 0.

Since both D3 and D5 vanish on X, we have that X ∈ kerD<N , so we obtain

X = ζm(1, 2, 3) + 3ζm(4, 2) ∈ ζm(6)Q ,

using Theorem 1.2.15. Therefore, there is some q ∈ Q such that

ζm(1, 2, 3) + 3ζm(4, 2) = qζm(6) .

Applying the period map and numerically evaluating as in Remark 1.2.16 shows that q ≈ 97
48 , so we get

the identity

ζm(1, 2, 3) + 3ζm(4, 2) = 97
48ζ

m(6) .

Applying the period map gives the corresponding identity on the level of real numbers

ζ(1, 2, 3) + 3ζ(4, 2) = 97
48ζ(6) = 97

9
π6

7! .

Further examples of this motivic approach to proving (infinite families of) identities are given in

Chapter 2. In Section 2.1.1 we start by revisiting the Broadhurst-Zagier identity and giving a motivic

proof that ζ({1, 3}n) ∈ π4nQ. We then set the Broadhurst-Zagier identity into a broader context, and

generalise it to a much larger family of identities which we can prove motivically.

1.2.4 Applications of Brown’s motivic MZV’s

With this motivic MZV framework, Brown was able to provide a new proof for the bound dimQZk ≤ dk
on the dimension of the space of weight k MZV’s. However, a more significant application was to

provide a proof that the Hoffman elements ζ(w), with w a word containing only 2’s and 3’s, span the

space of MZV’s. This was accomplished by proving that the motivic Hoffman elements are a basis for

the space of motivic MZV’s. This gives some progress towards Conjecture 1.1.37.

We will sketch some of the ideas involved in these proofs. Complete details are found in [Bro12a;

Bro12b].
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1.2.4.1 Dimension of the space of MZV’s

The following is the combination of Lemma 3.3 and Remark 3.7 in [Bro12b]. By the period map, and

by construction of H ↪→ HMT + , we have:

dimQZk ≤ dimQHk ≤ dimQHMT+
k .

By computing the Poincaré series (the generating series of the dimensions of the graded pieces), we will

determine dimQHMT +
k = dk. Brown says that AMT is non-canonically isomorphic to the cofree Hopf

algebra on cogenerators f2r+1 in degree 2r + 1 ≥ 3, so that the comodule has the following structure:

HMT + ∼= Q〈f3, f5, . . . , f2r+1, . . .〉 ⊗Q Q[f2]

The Poincaré series for Q〈f3, f5, . . .〉 is given by:

1
1− t3 − t5 − · · · − t2r+1 − · · ·

= 1− t2

1− t2 − t3 .

Multiplying this by the Poincaré series for Q[f2], which is 1
1−t2 , gives the Poincaré series for HMT + as:

∑
k≥1

dimQ

(
HMT +
k

)
tk = 1

1− t2
1− t2

1− t2 − t3 = 1
1− t2 − t3 =

∑
k≥1

dkt
k .

So we obtain dimQHMT +
k = dk as required.

This shows that upper bound dimQZk ≤ dk of Zagier’s Dimension conjecture, Conjecture 1.1.36 above,

does indeed hold.

1.2.4.2 Basis for the space of motivic MZV’s, and a spanning set for MZV’s

In considering the elements ζm(2’s and 3’s), Brown is able to show they are linearly independent over

Q, [Theorem 7.4 in Bro12a]. Their number in weight k is dk, so gives the lower bound dimQHk ≥ dk on

the space of motivic iterated integrals of weight k. Overall this establishes an isomorphism H ∼= HMT + ,

not just an embedding.

Brown’s proof that ζ(w), w a word in 2’s and 3’s, are linearly independent over Q works inductively

on the level, defined to be the number of 3’s in the word w of the argument of ζm. The base case

is provided by the fact that all Hoffman MZV’s of level 0, i.e. the elements ζm({2}n), are linearly

independent over Q. This is clear because they have different weights, so lie in components with

different grading.

The induction assumption is that all Hoffman MZV’s of level < ` are linearly independent over Q.

Brown shows how a relation between Hoffman MZV’s of level ` must imply a relation between Hoffman

MZV’s of strictly smaller level, which contradicts the induction assumption. Establishing this relies

heavily on an explicit computation of ζ(2, . . . , 2, 3, 2, . . . , 2) by Zagier [Zag12], and the 2-adic properties

of coefficients in this expansion.
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The linear independence of ζm(w), w a word in 2’s and 3’s, and the number dk of them in each weight

k, means they form a basis for the space of motivic MZV’s of weight k. So every motivic MZV can be

written as a unique Q-linear combination of these motivic Hoffman elements. Applying the period

map shows that the elements Hoffman elements ζ(w), w a word in 2’s and 3’s, must span the space of

classical MZV’s, confirming one part of Hoffman’s proposed Basis conjecture, Conjecture 1.1.37.

1.2.4.3 Structure of the motivic Galois group GMT ′

Finally, with the previous results Brown settles one conjecture about the structure of the motivic

Galois group GMT ′ ofMT ′(Z). HereMT ′(Z) is the full Tannakian subcategory ofMT (Z) generated

by the motivic fundamental group of P1 \ {0, 1,∞}, andMT (Z) is the category of mixed Tate motives

unramified over Z. The conjecture is that the map GMT � GMT ′ is an isomorphism, where GMT is

the motivic Galois group ofMT (Z). A further consequence of this is that the periods ofMT (Z), of

mixed Tate motives unramified over Z, are Q[ 1
2πi ]-linear combinations of MZV’s.





Chapter 2

Block decomposition of iterated

integrals, cyclic insertion on MZV’s

and motivic identities

In this chapter we introduce a new combinatorial structure on iterated integrals, called the block

decomposition (Definition 2.2.4). After defining reflection operators (Definition 2.2.15) and the

reflective closure (Definition 2.2.22) of a block decomposition, we show that summing all permutations

of these blocks forces the resulting combination to cancel to 0 under Brown’s motivic MZV derivation

operators Dk. Using Brown’s characterisation of kerD<N , this leads to a way of generating infinite

families of identities by summing all permutations starting from some arbitrary iterated integral block

decomposition (“Symmetric insertion” Theorem 2.4.4).

Numerical experimentation on the resulting identities shows that they typically break up into sums over

cyclic shifts of the blocks. This leads to a vast conjectural generalisation (“Generalised cyclic insertion”

Conjecture 2.5.1) of the previous Borwein-Bradley-Broadhurst-Lisoněk cyclic insertion conjecture on

sums obtained by cyclically inserting blocks of 2 into the MZV ζ({1, 3}n) (Conjecture 2.1.5). We also

obtain a unification with Hoffman’s conjectural identity 2ζ(3, 3, {2}n)− ζ(3, {2}n, 1, 2) = −ζ({2}n+3)

(Conjecture 2.1.9). The block decomposition framework is powerful enough to prove Hoffman’s identity

(up to Q) (Theorem 2.6.5), and produce a symmetrised version of the BBBL cyclic insertion conjecture

(Theorem 2.6.2, [Cha15]) which provides something of a refinement to the Bowman-Bradley theorem

(Theorem 2.1.7).

We provide many further examples (Section 2.6) of the generalised cyclic insertion conjecture, and

the resulting symmetrisations. We focus mainly on identities generated from a subclass of MZV’s,

which we call 123-MZV’s (Definition 2.4.8), because these cyclic/symmetric insertion identities are

already sums of MZV’s and do not need regularising. Moreover, we can describe cyclic insertion

on 123-MZV’s purely by way of a ‘cyclic operator’ which manipulates the arguments of the MZV

35
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(Proposition 2.5.12). Finally, we numerically investigate some other identities (Section 2.8) which can

be described elegantly in terms of the block decomposition, such as alternating sums over the odd

position blocks (Conjecture 2.8.2).

2.1 Background to the cyclic insertion conjecture

We will start by recalling the cyclic insertion conjectured as proposed by Borwein, Bradley, Broadhurst,

and Lisoněk, and will set this in its historical context. The cyclic insertion conjecture is obtained

by successively generalising an identity of Zagier, by inserting blocks of 2. So far the conjecture has

resisted proof, but some limited progress has been made via the Bowman-Bradley theorem which is

implied by the conjecture.

2.1.1 Broadhurst-Zagier identity

Firstly, recall the Broadhurst-Zagier identity, which as originally written, states

ζ({1, 3}n) = 2π4n

(4n+ 2)! .

This was conjectured by Zagier on the basis of much numerical evidence in [Zag94]. A proof was later

provided by Broadhurst in Section 11 of [BBBL01], using hypergeometric functions. Because of its

historical interest it is worth giving the ideas of this proof.

Generating series proof (exact). First interpret ζ({1, 3}n) as a special value z = 1 of the ‘single variable’

multiple polylogarithm

Lis1,...,sk(z) :=
∑

0<n1<n2<···<nk

znk

ns1
1 n

s2
2 · · ·n

sk
k

.

In the paper the notation L is used, and this is defined in terms of a function λ used earlier. To be

self-contained I use the above. Then one has

d
dz Lis1,...,sk(z) =


1
z Lis1,...,sk−1(z) if sk ≥ 2

1
1−z Lis1,...,sk−1(z) if sk = 1.

In Theorem 11.1 of [BBBL01], Broadhurst shows that

∞∑
n=1

Li{1,3}n(z)t4n = F2 1 (t (1+i)
2 ,−t (1+i)

2 ; 1; z) F2 1 (t (1−i)
2 ,−t (1−i)

2 ; 1; z) .

Here F2 1 (a, b; c; z) is the Gauss hypergeometric function defined by

F2 1 (a, b; c; z) :=
∞∑
n=0

(a)n(b)n
(c)n

zn ,

and (q)n := q(q + 1) · · · (q + n− 1) is the rising Pochhammer symbol.
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Broadhurst proves this theorem by noting that both sides of the identity are annihilated by the

differential operator (
(1− z) d

dz

)2(
z

d
dz

)2
− t4 ,

and both sides have the same initial conditions. Namely both sides start

1 + t4

8 z
2 + t4

18z
3 + t8 + 44t4

1536 z4 +O(z5) .

In Corollary 2, following this theorem, Broadhurst uses Gauss’s F2 1 summation theorem to say

F2 1 (a,−a; 1; 1) = sin(πa)
πa

.

By setting z = 1 above, Broadhurst obtains
∞∑
n=0

ζ({1, 3}n)t4n =
2 sin( 1+i

2 πt) sin( 1−i
2 πt)

π2t2

= cosh πt− cosπt
π2t2

=
∞∑
n=0

2π4nt4n

(4n+ 2)! .

Comparing coefficients of t4n gives Zagier’s identity.

Given the role this will play later, it is also worth noting that a non-explicit version of this result follows

readily from Brown’s motivic MZV framework. Indeed, in [Bro12b], Brown uses this as an illustration

of how much information the operators D2r+1 yield about MZV’s and their motivic versions. Note,

however, that in various versions of [Bro12b] the proof Brown gives is not quite correct.

Motivic proof (up to Q). To show Zagier’s identity motivically, it suffices to compute the operators

D2r+1, for r ≥ 1, on ζm({1, 3}n), and show they all simultaneously vanish. The result follows by

Theorem 1.2.15, and applying the period map.

Firstly, as an iterated integral, we have

ζm({1, 3}n) = Im(0, {1, 1, 0, 0}n, 1) .

So computing D2r+1ζ
m({1, 3}n) involves marking out substrings of length 2r + 3 (recall 2r + 1 is the

number of interior points) on the word w := 0(1100)n1.

Brown claims in [Bro12b] that all subsequences on Im(0; {1, 1, 0, 0}n; 1) start and end with the same

letters, unfortunately this is not correct. Observe that the word w is periodic with period 4. So if r is

odd, then 2r + 2 is a multiple of 4, and any subsequence of length 2r + 3 on w will start and end with

the same letters. So trivially D2r+1ζ
m({1, 3}n) = 0, in this case, and Brown’s claim holds.

But, if r is even, the subsequences start and end with different letters, and Brown’s claim does not

hold! However, this is not a problem. Write r = 2s, and label the positions of the word w starting
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with the first digit as index 0. For convenience rewrite w as (0011)n01. If the subsequence starts at

position i, we obtain different contributions according to the value of i (mod 4).

For example, when i = 4k, we mark out the following subsequence

(0110) · · · (0110)︸ ︷︷ ︸
k blocks

subsequence

(0110)s011 0 (0110) · · · (0110)︸ ︷︷ ︸
n− k − s− 1 blocks

01 ,

to obtain the term

IL((0110)s011)⊗ Im((0110)k0 | 10(0110)n−k−s−101)

in D2r+1ζ
m({1, 3}n). In this expression, | is just a notational device to denote the location of the cut

out sequence. We will also often drop the commas for notational ease.

Similarly, we obtain the following terms according to i (mod 4):

i = 4k IL((0110)s011)⊗ Im((0110)k0 | 10(0110)n−k−s−101)

i = 4k + 1 IL(110(0110)s)⊗ Im((0110)k01 | 0(0110)n−k−s−101)

i = 4k + 2 IL(10(0110)s0)⊗ Im((0110)k011 | 0110(0110)n−k−s−201)

i = 4k + 3 IL(0(0110)s01)⊗ Im((0110)k0110 | 110(0110)n−k−s−201)

Observe that the Im factors agree in i = 4k and i = 4k+1, and the IL factors are reverses of each other.

Since the IL factors have odd length, they differ by a minus sign. This means the 4k term cancels

with the 4k + 1 term. Similarly the Im factors agree in i = 4k + 2 and i = 4k + 3, and the IL factors

are reverses of each other, so differ by a minus sign. This shows that the 4k + 2 term cancels with the

4k+ 3 term. Also note that the last term in D2r+1 occurs for i such that i+ (2r+ 3)− 1 = (4n+ 2)− 1,

in particular for i odd.

Now D2r+1ζ
m({1, 3}n) is the sum of these terms from i = 0 to i = 4n− 2r − 1. Since the first term

has even index, and the last term has odd index, each even index term cancels with the odd index

term following it. This means D2r+1ζ
m({1, 3}n) cancels completely to give 0.

Since D2r+1ζ
m({1, 3}n) is always 0, we find that ζm({1, 3}n) ∈ kerD≤N . By Theorem 1.2.15, we

conclude ζm({1, 3}) ∈ ζm(4n)Q. Upon taking the period map, we obtain

ζ({1, 3}n) ∈ ζ(4n)Q = π4nQ .

This proves the claim.

Before continuing, I wish to slightly rewrite Zagier’s identity so that it fits better into the general

context. I also want to introduce some convenient notation.

Definition 2.1.1 (wt). In any expression involving MZV’s, which is homogeneous in the weight, write

wt for the weight.
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Example 2.1.2. In Zagier’s identity, the weight is 4n. So with this notation, the identity can be

rewritten as follows,

ζ({1, 3}n) = 2π4n

(4n+ 2)!

= π4n

(2n+ 1)(4n+ 1)!

= 1
2n+ 1

πwt

(wt + 1)! .

2.1.2 Borwein-Bradley-Broadhurst-Lisoněk cyclic insertion conjecture

As we will now explain, later work by Borwein, Bradley, Broadhurst, and Lisoněk (BBBL) has provided

a vast conjectural generalisation of this identity. In [BBBL98], these authors manage to prove some

special cases of the identity. Bowman and Bradley [BB02] have also proven a family of identities which

arises as a consequence of this conjecture.

First let us introduce some notation from [BBBL98] to make writing the identities easier.

Definition 2.1.3. Let n ∈ Z≥0. For 0 ≤ i ≤ 2n, let ai ∈ Z≥0, to obtain a list of 2n+ 1 non-negative

integers. Then define

Z(a0, . . . , a2n+1) := ζ({2}a0 , 1, {2}a1 , 3, . . . , 1, {2}a2n−1 , 3, {2}a2n) .

That is, Z(a0, . . . , a2n+1) is the MZV obtained by inserting the string {2}ai into the i-th gap of the

arguments of ζ({1, 3}n).

Definition 2.1.4. Let n and ai be as above. Let σ ∈ S2n+1, viewed as a permutation of the letters

{ 0, 1, . . . , 2n }. Then we define a version of Z with arguments permuted by σ as follows

Zσ(a0, . . . , a2n) := Z(aσ(0), . . . , aσ(2n)) .

Then BBBL make the following conjecture, which we have slightly rewritten to fit with the notation

introduced above.

Conjecture 2.1.5 (BBBL cyclic insertion, Conjecture 1 in [BBBL98]). Let n and ai be as above. Let

C2n+1 = 〈(0 1 · · · 2n)〉 be the cyclic group of order 2n+ 1, viewed as a subgroup of S2n+1. Then∑
σ∈C2n+1

Zσ(a0, . . . , a2n) ?= πwt

(wt + 1)! .

Here ?= denotes an identity which holds numerically in all cases tested, to several hundred decimal

places. (See Appendix A).

This conjecture does indeed represent a generalisation of Zagier’s identity. Take a0 = a1 = · · · = a2n = 0.
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Then we have

Z(a0, . . . , a2n) = ζ({2}0, 1, {2}0, 3, . . . , 1, {2}0, 3, {2}0)

= ζ({1, 3}n) .

But for any σ ∈ S2n+1

Zσ(0, 0, . . . , 0) = Z(0, 0, . . . , 0) .

So taking the sum over σ ∈ C2n+1, we obtain∑
σ∈C2n+1

Zσ(0, 0, . . . , 0) =
∑

σ∈C2n+1

ζ({1, 3}n)

= (2n+ 1)ζ({1, 3}n) .

On the other hand, the conjecture would say that∑
σ∈C2n+1

Zσ(0, 0, . . . , 0) ?= πwt

(wt + 1)! .

Putting these two equalities together gives

(2n+ 1)ζ({1, 3}n) ?= πwt

(wt + 1)! ,

from which Zagier’s identity is obtained by dividing through by 2n+ 1.

In [BBBL98], Borwein, Bradley, Broadhurst, and Lisoněk manage to prove a special case of this

conjecture, which gives Zagier’s identity “dressed with 2”, as follows.

Theorem 2.1.6 (Theorem 2 in [BBBL98]). The following identity holds∑
σ∈C2n+1

Zσ(1, 0, . . . , 0) = πwt

(wt + 1)! .

That is the case a0 = 1, a1 = a2 = · · · = a2n+1 = 0 case of the conjecture holds, as does any cyclically

equivalent choice.

The above theorem can be viewed not only as inserting all cyclic permutations of the blocks of 2’s

given by {2}1, {2}0, · · · , {2}0, but also as inserting all possible blocks of 2’s whose total length sum to

1. It is in this direction that Borwein, Bradley, Broadhurst, and Lisoněk have succeeded in proving

and explicitly evaluating such combinations of MZV’s. This reduces to the previous when m = 1.

Theorem 2.1.7 (Bowman-Bradley, Corollary 5.1 in [BB02]). Let n,m ∈ Z≥0 be a non-negative

integers. Then ∑
a0+···+a2n=m

ai≥0

Z(a0, a1, . . . , a2n) = 1
2n+ 1

πwt

(wt + 1)!

(
m+ 2n

2n

)
.

It should be noted that the statement in the theorem above is obtained after slightly rewriting the

result of Corollary 5.1 in [BBBL98].
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Simpler and more refined proofs of this result have since been given by Zhao [Zha08] and Muneta

[Mun09].

This result is compatible with the cyclic insertion conjecture. Any composition
∑2n
k=0 jk = m of m into

2n+ 1 parts remains a composition of m into 2n+ 1 parts when cyclically shifted. Hence the terms in

the Bowman-Bradley sum can be re-grouped into subsums, where each subsum is taken over a set of

compositions which differ by a cyclic shift. Conjecturally, each of these subsums is then a rational

multiple of πwt; explicitly it should be α
2n+1

πwt

(wt+1)! , where α is the number of distinct compositions

obtained by cyclically shifting a representative composition appearing in this subsum. So on average

each of the
(
m+2n

2n
)
compositions contributes 1

2n+1
πwt

(wt+1)! , giving a total which agrees with the above.

2.1.3 Family of evaluable MZV’s

If the BBBL cyclic insertion conjecture is true, then one consequence will be the evaluability of a

certain two-parameter family of MZV’s, for which Zagier’s ζ({1, 3}n) is one of the simplest examples.

This family was conjectured by Borwein, Bradley, and Broadhurst in [BBB97].

Conjecture 2.1.8 (Equation 18 of [BBB97]). Let n,m ∈ Z≥0 be non-negative integers. Then

ζ({{2}m, 1, {2}m, 3}n, {2}m) ?= 1
2n+ 1

πwt

(wt + 1)! .

This family is obtained as the a0 = a1 = · · · = a2n = m case of the cyclic insertion conjecture. And in

the case where m = 0, we recover Zagier’s identity.

2.1.4 Hoffman’s identity

Another conjectural family of identities, attributed to Hoffman in equation 5.6 of [BZ], is the following

Conjecture 2.1.9 (Hoffman). Let n ∈ Z≥0 be a non-negative integer. Then

2ζ(3, 3, {2}n)− ζ(3, {2}n, 1, 2) ?= −ζ({2}n+3) = − πwt

(wt + 1)! .

This family of identities has much the same flavour as the cyclic insertion conjecture. A certain length

block {2}n is inserted into some MZV’s, and the resulting sum is (up to sign) πwt

(wt+1)! . This result has

been checked up to weight 22, where n = 8, using tables of known MZV relations by Vermaseren [BZ].

2.1.5 Unification of identities and progress towards proofs

It turns out that Hoffman’s identity, and the BBBL cyclic insertion conjecture, both arise from the

same procedure applied to (what I call) the block decomposition of an MZV. That is to say, both

of these conjectural identities are part of the same, and indeed much larger, family of conjectural

identities.
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The goal of this chapter is therefore two-fold. Firstly, we want to illustrate the procedure which

unifies these two families of identities into a generalised cyclic insertion conjecture (Conjecture 2.5.1).

Secondly, although we cannot prove this generalised conjecture exactly, we will use Brown’s motivic

MZV framework to show that a sufficiently symmetrised version of the identity holds up to a rational

(Theorem 2.5.4).

I proved this for the original BBBL cyclic insertion conjecture much earlier, and this was written up

and published in [Cha15]. The results here for the general cyclic insertion conjecture are therefore new.

The main result in [Cha15], Theorem 2.6.2 below, becomes a simple consequence of Theorem 2.5.4.

In Section 5.10 of [Zha16], Zhao notes that “by a tedious computation” using the idea of [Cha15],

Hoffman’s identity can indeed be proved up to Q. In what follows, we will establish a general framework

by which Hoffman’s identity can be proven, and indeed generalised (Conjecture-Example 2.6.6 and its

symmetrisation, Theorem 2.6.7), by quick and elegant calculations on block decompositions.

2.2 Block decomposition and reflection operators

2.2.1 Block decomposition of iterated integrals

In order to formulate a generalisation of the BBBL cyclic insertion conjecture, and to prove some results

in this direction, we need to introduce a new way of encoding/describing MZV’s, and by extension

iterated integrals over the alphabet { 0, 1 }.

Firstly, we introduce notation for the two basic strings which serve as building-blocks for the words

over { 0, 1 }, which define the iterated integrals.

Definition 2.2.1 (Strings W0 and W1). Let W0 denote the (infinite) string

W0 := 01010101 . . . ,

consisting of an alternating sequence of 0’s and 1’s, beginning with a 0. And letW1 denote the (infinite)

string

W1 := 10101010 . . . ,

consisting of an alternating sequence of 1’s and 0’s, beginning with a 1.

We write W `
i to denote the string obtained by taking the first ` letters of Wi.

Notation 2.2.2. Given two words w and u over the alphabet { 0, 1 }, the concatenation of w and u

can be denoted simply by the juxtaposition wu. For emphasis it may be denoted using ⊕, as in w ⊕ u.

Lemma 2.2.3. Let w be a word over { 0, 1 }. Then the word w can be expressed as a concatenation of

words of the form W `i
i , for i = 1, . . . , n, where the last letter of W `j

j agrees with first letter of W `j+1
j+1 .

Moreover, this representation is unique.
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Proof. It is of course trivial that w can be expressed as a concatenation of W0’s and W1’s because

W 1
0 = 0 and W 1

1 = 1. Requiring that the last digit of W `j
j agrees with the first digit of W `j+1

j+1 is less

trivial.

Uniqueness: First let us deal with the uniqueness claim. Suppose that B1 = W `1
ε1
⊕ · · · ⊕W `n

εn

and B2 = W k1
δ1
⊕ · · · ⊕W km

δm
are two (ostensibly) different decompositions of w, satisfying the above

conditions. We want to show that n = m, and that δi = εi and ki = `i, for i = 1, . . . , n.

We may remove any leading terms W `j
j from B1 and B2 which happen to agree. If this leaves two

copies of the empty word, we are done, so we assume that it does not.

This procedure cannot result in only one copy of the empty word. Suppose B1 leaves an empty word

B′1 = ∅, but B2 leaves a non-empty word B′2. Then B′1 and B′2 have different lengths, respectively 0

and > 0. We obtain the original words B1 and B2 by prepending the same word, B0 = W `1
ε1
⊕W `n′

εn′ of

length L to both. This will mean B1 has length 0 + L = L, and B2 has length > 0 + L = L. This

shows that B1 and B2 cannot express the same word.

So after removing any identical leading terms, we may assume that the first difference between B1 and

B2 occurs in the first term. Since the words described by B1 and B2 are equal, their first letters in

particular are equal. Therefore we have ε1 = δ1. Now consider the lengths `1 and k1. Since there is a

difference in the first term, we must have `1 6= k1, and by swapping B1 ↔ B2, we can assume that

`1 < k1.

Now compute the letter at position `1 + 1. Using B1, we find this is equal to the ε1 + (`1 − 1) (mod 2),

as illustrated

(0101 . . . 01︸ ︷︷ ︸
`1 symbols

)( 1︸︷︷︸
position `1 + 1

0 . . . 10) .

But using B2, we find that is is equal to δ1 + (`1) (mod 2), as illustrated

(0101 . . . 01︸ ︷︷ ︸
`1 symbols

0︸︷︷︸
position `1 + 1

. . .) .

Since these must be equal, we must have ε1 + (`1 − 1) = δ1 + (`1) (mod 2). Knowing ε1 = δ1, this

entails 0 = 1 (mod 2), a contradiction.

We conclude, then, that it is not possible to have two different decompositions for the word w.

Existence: Now let us show that such a decomposition does indeed exist. This will be by induction.

We can explicitly check the case where w has length L = 1, since

w = 0 decomposes as W 1
0 , and

w = 1 decomposes as W 1
1 .
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Suppose now that all words of length < L can be so decomposed. Let w be a word of length L. If w

does not contain the substring 00, and does not contain the substring 11, then w must be an alternating

sequence of 0’s and 1’s. Therefore w = WL
ε1
, where εi is the first digit of w.

Otherwise, we can find the first occurrence of 00 or 11 in w. We split w into w1 and w2 at this point,

so that w1 ends at the first 0 of 00, and w2 starts at the second 0 or 00. (Or the equivalent if we

find 11 occurs first.) Since w2 has length < L, we can decompose it as W `2
ε2
⊕ · · · ⊕W `n

εn , using the

induction hypothesis. As w1 does not contain the substring 00 and does not contain the substring 11

(since we cut in the middle of the first such occurrence), we can express it as w1 = W `1
ε1

for some ε1
and some `1, as above.

Since the first digit of W `2
ε2

agrees with the last digit of W `1
ε1

by construction, we can put these together

to obtain

w = W `1
1 ⊕ · · · ⊕W `n

n ,

as a decomposition for w. This completes the proof.

Definition 2.2.4 (Block decomposition). Let w be a word over { 0, 1 }, and let

w = W `1
ε1
⊕ · · · ⊕W `n

εn

be the decomposition of w as produced by Lemma 2.2.3. We define the block decomposition of w to be

block(w) := (ε1; `1, . . . , `n) .

If ε1 = 0, then we may write (`1, . . . , `n) instead of (0; `1, . . . , `n).

Remark 2.2.5. Notice that only ε1 is required in this description. We can calculate εi+1 from εi

by knowing that the first digit of W `i+1
εi+1 is equal to the last digit of W `i

εi . The last digit of W `i
εi is

εi + (`i − 1) (mod 2), so εi+1 = εi + (`i − 1) (mod 2). We can therefore recover w from block(w).

Definition 2.2.6 (word). Given a block decomposition B = (ε1; `1, . . . , `n), we will write

word(B) := W `1
ε1
⊕ · · · ⊕W `n

εn .

This recovers the word which gives the indicated block decomposition.

Remark 2.2.7. It will often be helpful to use the block and word functions to identify a block

decomposition with the word it encodes. That is, give a word w and a block decomposition B, we may

write B = w to mean word(B) = w, or equivalently B = block(w).

Definition 2.2.8 (Block integral, number of blocks). Given a block decomposition B = (ε1; `1, . . . , `n),

we define the block integral Imbl(B) as follows:

Imbl(B) := Im(word(B)) .

We shall call n the number of blocks in the integral.
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If ε1 = 0, we may write

Imbl(`1, . . . , `n) := Imbl(0; `1, . . . , `n) = Im(word(0; `1, . . . , `n))

for simplicity.

Example 2.2.9. Suppose, for example, we take the integral

Im(w) = Im(001010011101010110011) .

We find that the word w can be decomposed as follows

w = (0)⊕ (01010)⊕ (01)⊕ (1)⊕ (1010101)⊕ (10)⊕ (01)⊕ (1)

= W 1
0 W

5
0 W

2
0 W

1
1 W

7
1 W

2
1 W

2
0 W

1
1 .

Therefore the block decomposition of w is given by

block(w) = (0; 1, 5, 2, 1, 7, 2, 2, 1) .

As a block integral, we have the following. Here the separators | are just a visual device to make

identifying the blocks more straightforward.

Im(w) = Im(0 | 01010 | 01 | 1 | 1010101 | 10 | 01 | 1)

= Imbl(0; 1, 5, 2, 1, 7, 2, 2, 1)

= Imbl(1, 5, 2, 1, 7, 2, 2, 1) ,

since ε1 = 0. This integral consists of 8 blocks.

Notation 2.2.10. It is convenient to introduce some notation to refer directly to different aspects of

the i-th block of a block decomposition. Let B = (ε1; `1, . . . , `n) be a block decomposition. We will

write BL
i := `i to mean the length of the i-th block. We shall write Bst

i to mean the initial digit of the

i-th block, that is Bst
i := εi. We shall also write Ben

i to mean the final digit of the i-th block, so that

Ben
i := εi + (`i − 1) (mod 2).

Here we collect some simple facts about the block integral, and block decompositions.

Lemma 2.2.11. Let Imbl(ε1; `1, . . . , `n) be a block integral. Then the integral has weight −2 +
∑
i `i.

We use this connection to define the weight of a block decomposition as −2 +
∑
i `i

Proof. The word w = word(ε1; `1, . . . , `n) has length
∑
i `i because the i-th block has length `i. But

this word includes the upper and lower bound of the iterated integral Im(w), which we must discount.

So the weight is −2 +
∑
i `i.

Lemma 2.2.12. Let I = Imbl(B) be a block integral with weight t and n blocks. Then the upper and

lower bounds are equal, meaning Imbl(B) = 0, if and only if t = n (mod 2). Such a block decomposition

B will be called non-trivial if the upper and lower bounds of the corresponding integral are different.
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Remark 2.2.13. It is interesting to compare the structure of this with Tsumura’s depth-partiy

theorem [Tsu04]. Both results have that form that an object simplifies (to zero in this case, or to lower

depth in Tsumura’s case) if some parity condition holds (equal parity in this case, and opposite parity

in Tsumura’s case). Of course this result is just a trivial observation that the bounds of integration are

equal, whereas [Tsu04]’s result is highly non-trivial.

Proof of Lemma 2.2.12. Say B = (ε1; `1, . . . , `n). Then first letter of I is ε1, this is the lower bound

of Imbl(B).

We claim that the first letter of the j-th block is ε1 +
∑j−1
i=1 (`i − 1) (mod 2). This can be shown by

induction. In the case j = 1, we obtain the first digit as ε1 +
∑0
i=1(`i − 1) = ε1. Suppose this holds for

j − 1. Then we know that Bst
j = Ben

j−1, and Ben
j−1 = Bst

j−1 + (BL
j−1 − 1). Therefore we get for j

Bst
j = Bst

j−1 + (BL
j−1 − 1) = (ε1 +

j−2∑
i=1

(`i − 1)) + (`j−1 − 1)

= ε1 +
j−1∑
i=1

(`i − 1) (mod 2) .

So the last letter of the n-th block is

Ben
n = Bst

n + (`n − 1) = ε1 +
n−1∑
i=1

(`i − 1) + (`n − 1) (2.2.1)

= ε1 +
n∑
i=1

(`i − 1) = ε1 − 2 + t− n (mod 2) .

So the last letter of I is ε1 + t − n (mod 2), this is the upper bound of Imbl(B). This is equal to the

lower bound ε1 if and only if t− n = 0 (mod 2), which is if and only if t = n (mod 2).

Lemma 2.2.14. Let I = Imbl(B) be a block integral with n blocks and weight t. Suppose that t 6=

n (mod 2), and t ≥ 2. Then I is divergent if and only if BL
1 = 1 or BL

n = 1.

Proof. Recall from Section 1.1.3 that an integral Im(a0; a1, . . . , am; am+1) with weight m ≥ 2 amd

a0 6= am+1 is said to be divergent if a0 = a1 or am = am+1. The condition t 6= n (mod 2) is equivalent

to a0 6= am+1, and t ≥ 2 is equivalent to m ≥ 2.

If BL
1 = 1, Bst

2 = Ben
1 = Bst

1 , so word(B) = W 1
ε1
W `2
ε1
⊕ · · ·, which starts ε1ε1 · · ·. So a0 = a1, and the

integral is divergent. Similarly if BL
n = 1, then Ben

n−1 = Bst
n = Ben

n . So word(B) = · · · ⊕Wεn−1W
1
εn ,

which ends · · · εnεn. This means am = am−1 and the integral is divergent.

On the other hand, if BL
1 > 1 and BL

n > 1, then word(B) = W>1
ε1
⊕· · ·⊕W>1

εn which starts (ε1)(1−ε1) · · ·

and ends · · · (1− ε1)(ε1). This means a0 6= a1 and am 6= am+1, and the integral is not divergent.
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2.2.2 Reflection operators

We are now going to define reflection operators on the set of all words over { 0, 1 }, via their block

encoding. Later, this will be lifted to define a reflection operator on subsequences of words, in order to

compute the derivations D2r+1 as applied to some combination of motivic iterated integrals.

Definition 2.2.15 (Reflection Rj,k). Let B = (ε1; `1, . . . , `n) be a block decomposition with n

blocks. For each 1 ≤ j < k ≤ n, we define the reflection operator Rj,k as follows. We set Rj,kB :=

(ε′1; `′1, . . . , `′n), where ε′1 := ε1, and

`′i :=

`i for i < j, or i > k, and

`k+j−i for j ≤ i ≤ k.
.

We then set Rj,kw := word(Rj,k block(w)) to define the reflection operators directly on words over

{ 0, 1 }.

This operator reverses the block lengths from positions j to k, inclusive.

Remark 2.2.16. The duality relation on MZV’s and iterated integrals is closely related with the

reflection operator R1,n, which reflects an entire block decomposition B consisting of n blocks.

Assuming that B = (ε1; `1, . . . , `n) is a non-trivial block decomposition (in the sense of Lemma 2.2.12)

with n blocks and weight t. Then the dual to the integral Imbl(B) = Imbl(ε1; `1, . . . , `n) is the integral

(−1)tImbl(R1,nB) = (−1)tIbl(ε1; `n, . . . , `1).

Lemma 2.2.17. The reflection operator Rj,k preserves the weight, and number of blocks, when applied

to a block decomposition B.

Proof. This is clear by the definition ofRj,k on the block decomposition B = block(w) = (ε1; `1, . . . , `n).

The result of RjkB is another block decomposition with n blocks, and the weight is still −2 +
∑
i `i,

although the `i are summed in a different order.

Lemma 2.2.18. Where defined, the operator Rj,k is an involution. So for 1 ≤ j < k ≤ n, each Rj,k
defines an automorphism on the set

{B | B has n blocks }

of block decompositions with n blocks.

Proof. Let B = (ε1; `1, . . . , `n), and 1 ≤ j < k ≤ n be given. Say that RjkB = (ε′1; `′1, . . . , `′n). Then

Rj,k is defined on Rj,kB. So suppose RjkRjkB = (ε′′1 ; `′′1 , . . . , `′′n).

By definition we know that ε′′1 = ε′1 = ε1. Now look at `′′i . For i < j, or i > k, we have that `′′i = `′i = `i.

For j ≤ i ≤ k we have `′′i = `′k+j−i. But notice that j ≤ k+ j − i ≤ k, for this range of i. We therefore

compute `′k+j−i = `k+j−(k+j−i) = `i.

Overall this means `′′i = `i, for all 1 ≤ i ≤ n. Hence RjkRjkB = B, and the claim is proved.
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Example 2.2.19. Consider again the integral from Example 2.2.9,

Im(w) = Im(0 | 01010 | 01 | 1 | 1010101 | 10 | 01 | 1) .

The word w describing this integral has block decomposition

B = block(w) = (0; 1, 5, 2, 1, 7, 2, 2, 1) .

We can compute R2,5B to be

R2,5B = (0; 1, 7, 1, 2, 5︸ ︷︷ ︸
reversed

, 2, 2, 1) .

This is the block encoding of the word

word(R2,5B) = (0)(0101010)(0)(01)(10101)(10)(01)(1) .

Later one, in Section 2.2.4 and Section 2.3 we will use the Rj,k to define a reflection operator R on

subsequences of words, and use this to cancel terms in D<N . Thus we will be able to cancel a subset

of terms in D<N between

Im(0 | 01010 | 01 | 1 | 1010101 | 10 | 01 | 1) and

Im(0 | 0101010 | 0 | 01 | 10101︸ ︷︷ ︸
reversed

| 10 | 01 | 1)

= Im(R2,5 0 | 01010 | 01 | 1 | 1010101 | 10 | 01 | 1) .

Remark 2.2.20. The reflection operator Rj,k is only defined on words, and not in the motivic iterated

integrals themselves. This is because these the reflection operators and block decompositions do not

respect the relations satisfied by motivic iterated integrals.

Indeed, even the number of blocks is not preserved under all relations, as the follow shows. The MZV

ζ({1, 3}n) has block decomposition

ζm({1, 3}n) = Im(01 | 10 | · · · | 01) = Imbl({2}2n+1) ,

consisting of 2n+ 1 blocks of length 2. Whereas the MZV ζ({2}2n) has block decomposition

ζm({2}2n) = Im(0101 . . . 01) = Imbl(4n+ 2) ,

consisting of a single block of length 4n+2. However, by the Broadhurst-Zagier identity (Identity 1.1.31),

we get the following equality

(2n+ 1)Imbl({2}2n+1) = Imbl(4n+ 2) ,

which relates a 1 block integral, and a 2n+ 1 block integral.

In the above case, the reflection operator R1,2n+1 is defined for the block decomposition B1 =

(0; {2}2n+1). However, R1,2n+1 it is not defined on the block decomposition B2 = (0; 4n + 2), even

though the corresponding integrals are equal (up to a rational multiple).
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By abuse of notation, we could extend the notion of reflection operators to integral Im(w). However,

this would only be with the understanding that the reflection operator act on the particular choice

of word w appearing as the argument of the iterated integral. We would not be allowed to use any

relations rewrite Im(w) in another form, before computing Rj,k.

2.2.3 Reflectively closed sets

We are now in a position to define the main objects which will be used to create identities on iterated

integrals and MZV’s.

Definition 2.2.21 (Reflectively closed sets). Let S be a subset of

{B | B is a block decomposition, with n blocks, and weight t } .

We say that S is reflectively closed if for every B ∈ S, the result of Rj,kB is already in S, for

i ≤ j < k ≤ n.

Definition 2.2.22 (Reflective closure). Let S be a subset of

{B | B is a block decomposition, with n blocks, and weight t } .

We define the reflective closure of S, written 〈S〉R, to be the smallest reflectively closed set containing

S. That is, 〈S〉R is such that 〈S〉R is a subset of any other reflectively closed set containing S.

Remark 2.2.23. Using the identification in Remark 2.2.7, we may extend the notion of reflective

closure from block decompositions B to words w whose block decompositions have a fixed number of

blocks n, and fixed weigh t.

Proposition 2.2.24. Let S be a subset of

H := {B | B is a block decomposition, with n blocks, and weight t } .

Then the reflective closure of S exists, and it may be computed as the intersection of all reflectively

closed sets containing S.

Proof. Observe that some reflectively closed set containing S does indeed exist. We may take that

set to be all of H. Since Rj,k preserves the weight, and number of blocks, in an iterated integral, we

certainly have Rj,kB ∈ H, for every B ∈ H, and every 1 ≤ j < k ≤ n.

We show that the intersection of a family of reflectively closed sets containing S is a reflectively closed

set containing S. Let F be such a family. Then we have S ⊂ F for every F ∈ F , so that S ⊂
⋂
F .

Moreover, let B ∈
⋂
F , then B ∈ F for every F ∈ F . But by the reflective closure of F we see

that Rj,kB ∈ F , so Rj,kB ∈ F for every F ∈ F , and we conclude Rj,kB ∈
⋂
F . Therefore F is a

reflectively closed set containing S.
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Finally let F = { F | F is a reflectively closed set containing S }. We show that

T =
⋂
F

is the reflective closure of S. Certainly we know that T is a reflectively closed set containing S. We

show that it is the smallest. Let U be another reflectively closed set containing S. Then U ∈ F , so

that
⋂
F ⊂ U . Therefore T ⊂ U . Thus we have T = 〈S〉R.

Example 2.2.25. Consider the word w = 0101001101 which describes the iterated integral

Im(0101001101) = ζm(2, 3, 1, 2). The word w has block decomposition B = (0; 5, 2, 3) = (5, 2, 3).

The block decomposition B has weight 8, and consists of 3 blocks. If we continually apply Rj,k to this

block decomposition, and all subsequently generated block decompositions, we find the following set of

block decompositions.

S̃ = { (0; 3, 5, 2), (0; 3, 2, 5), (0; 5, 3, 2),

(0; 5, 2, 3), (0; 2, 5, 3), (0; 2, 3, 5) }

Upon using the identification between block decompositions and words from Remark 2.2.7, we can say

this is

= { 010 | 01010 | 01, 010 | 01 | 10101, 01010 | 010 | 0,

0101 | 001 | 101, 01 | 10101 | 101, 01 | 101 | 10101 } .

One can check that this set S is indeed reflectively closed. Moreover, since every element of this arises

by applying some sequence of reflection operators Rj,k, this is the smallest possible reflectively closed

set containing 0101001101. Therefore

S̃ = 〈(0; 5, 2, 3)〉R = 〈01010 | 01 | 101〉R .

As a foreshadowing of what is to come in Theorem 2.3.8 and Corollary 2.3.9, let us integrate these

block decompositions, and convert the results back to MZV’s. Remembering the (−1)depth, we obtain

the following set of MZV’s

S = {−ζm(3, 2, 3), ζm(3, 1, 2, 2),−ζm(2, 3, 3),

ζm(2, 3, 1, 2),−ζm(1, 2, 2, 1, 2),−ζm(1, 2, 1, 2, 2)} .

It turns out that ∑
s∈S̃

Imbl(s) =
∑

s∈S
s = 2ζm(2, 2, 2, 2) ∈ ζm(8)Q ,

so in particular

per
(∑

s∈S
s
)

= 2ζ(2, 2, 2, 2) = 2π
8

9! ∈ ζ(8)Q = π8Q .

Here the weight is low enough that a brute force evaluation using tables of known MZV relations is

possible.
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Here is a useful proposition giving a condition for determining what the reflective closure of a particular

block integral is. This result is visible already in Example 2.2.25.

Proposition 2.2.26. Let B be a block decomposition. Suppose B = (ε1; `1, . . . , `n). Then

〈B〉R =
{

(ε1; `σ(1), . . . , `σ(n))
∣∣ σ ∈ Sn } .

That is, the reflective closure consists of block decompositions arising from all possible permutations of

the `i.

Proof. Since the reflection operators include the operators Ri,i+1 which give transpositions (i, i+ 1)

on the `i, we necessarily generate every permutation of the `i. But then this set is reflectively closed.

Applying Rj, k, then merely gives a permutation of the `i, all of which are already in the set.

We will need the following lemma in order to compute (or rather disregard) certain subsequences from

the calculation of D<n.

Lemma 2.2.27. Suppose that B is the block decomposition of some iterated integral, and further

suppose that RjkB = B, for some j, k. Then, in particular, BL
k−i = BL

j+i, for 0 ≤ i ≤ k− j. Moreover,

if k − j + 1 is even, or if k − j + 1 is odd and BL
j+(k−j)/2 is odd, then Bst

j = Ben
k .

Proof. By the definition of Rjk on B, it is clear that BL
j+i = BL

k−i since BL
j+i = (RjkB)L

j+i =

BL
k+j−(j+i) = BL

k−i.

By removing blocks < j, and removing blocks > k, we can assume that the computation is of R1nB,

with B having n blocks. The case where k− j + 1 is even corresponds to n even, and the case k− j + 1

is odd corresponds to n odd.

For n = 2m even, we have that Ben
m = Bst

m+1 by the definition of a block decomposition. Since

BL
m = BL

m+1, we see that Bst
m = Ben

m+1. Continue this outwards until we get Bst
1 = Ben

n .

For n = 2m + 1 odd, we have (R1nB)st
m+1 = Bst

m+1 by assumption. We have that (j + (k − j)/2)

corresponds to 1 + (2m + 1 − 1)/2 = m + 1, so that BL
m+1 is odd. This means that Ben

m+1 =

Bst
m+1 + (BL

m+1 − 1) = Bst
m+1 (mod 2). Then use the argument above to work outwards to get

Bst
1 = Ben

n .

Example 2.2.28. These examples will illustrate block decompositions which are invariant under some

Rj,k, and how the start/end point of various blocks behave.

i) For example, the block decomposition B = (0; 3, 4, 4, 3) is invariant under R1,4. This corresponds

to the word

010 | 0101 | 1010 | 010 ,

and indeed Bst
1 = Ben

4 .
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ii) The block decomposition B = (0; 3, 4, 2, 4, 3) is invariant under R1,5. This corresponds to the

word

010 | 0101 | 10 | 0101 | 101 .

The middle block has even length, so we do not have Bst
1 = Ben

5 .

iii) However, the block decomposition B = (0; 3, 4, 1, 4, 3) is also invariant under R1,5. In this case

the middle block has odd length. This corresponds to the word

010 | 0101 | 101 | 1010 | 010 ,

and indeed Bst
1 = Ben

5 .

2.2.4 Reflection operators on subsequences

Using the reflection operators defined above on iterated integrals, we will now define a reflection

operator on subsequences marked out on iterated integrals. Using this we can compute Dk, and

ultimately prove identities. A special case of this encoding is given in [Cha15], but here we extend the

encoding of subsequences to the more general case via the following.

Definition 2.2.29 (Encoding of a subsequence). Suppose w is a word describing some iterated integral

Im(w), and let P be a subsequence of w of length ≥ 2, in the sense of the derivation’s Dr. Then the

encoding of the subsequence P on w is given by the following data:

• the block encoding B = block(w) of the word w, upon which P is defined,

• the block s in which P starts,

• the block t in which P finishes,

• the number of letters ` before P in the block s, and

• the number of letters m after P in the block t.

We assemble these into the tuple, and identify it with the subsequence to write

P = (B; s, t; `,m) .

We may also say that P is a subsequence on the block decomposition B

Observation 2.2.30. From these data, we can calculate the length of the subsequence as
∑t
i=sB

L
i −

`−m.

Lemma 2.2.31. An encoding (B; s, t; `,m) of a subsequence is valid (that is, corresponds to a subse-

quence of length ≥ 2) if and only if the following conditions hold

i) 1 ≤ s ≤ t ≤ n, where n is the number of blocks in B,
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ii) 0 ≤ ` < BL
s ,

iii) 0 ≤ m < BL
t , and

iv) if s = t, we must have `+m+ 2 ≤ BL
s .

Proof. The conditions are necessary for the following reasons. Item i) corresponds to the fact that a

subsequence starts before it finishes, and lies within the word w. Item ii) corresponds to the fact that

the subsequence may start as early as the first letter of a block (so has 0 letters before it), or can start

as late as the last letter of the block (so has BLs − 1 letters before it). Similarly for item iii). Item iv)

corresponds to the fact that when a subsequence lies entirely within one block, it must start before it

finishes and have length ≥ 2.

Conversely, given a subsequence encoding satisfying these conditions, we can mark uniquely a sub-

sequence on the word w = word(B) as follows. Find blocks s and t in B; the first condition ensures

blocks with these indices exist, and that block s is before block t. Count ` letters from the start of

block Bs to find the starting point of the subsequence. This is within block s by condition ii). Similarly,

count m letters from the end of block Bt to find the ending point of the subsequence. This is within

block t by condition iii).

In the case that s = t, condition iv) ensures the start point occurs before the end point, and enough

room is left for the sequence to have length ≥ 2. In the case s 6= t, the start point occurs before the

end point because the start block occurs before the end block. The subsequence necessarily has length

≥ 2 because it consists of at least one point from each of two different blocks.

We now define the reflection of a subsequence using the reflection operators defined earlier on words

and block decompositions.

Definition 2.2.32 (Reflection of a subsequence). Let P = (B; s, t; `,m) be a subsequence on some

word w with block decomposition B, which describes some iterated integral Im(w). Then the reflection

operator R is defined on P by

RP = (RstB; s, t;m, `) .

One should check that this actually does describe a subsequence on some word. For this we have

Lemma 2.2.33. On applying the reflection operator R to a subsequence P = (B; s, t; `,m), we obtain

a valid(!) subsequence on the word w = word(RstB).

Proof. We need to check the conditions in Lemma 2.2.31 hold. We have that RP = (Rs,tB; s, t;m, `),

so the ‘subsequence’ is defined on Rs,tB.

Condition i) requires 1 ≤ s ≤ t ≤ m, where m is the number of blocks in Rs,tB. But since Rs,t
preserves the number of blocks by Lemma 2.2.17, m = n, where n is the number of blocks in B. Since

P is a valid subsequence we know 1 ≤ s ≤ t ≤ n holds. So we conclude condition i) holds for RP .
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Condition ii) requires 0 ≤ m < (Rs,tB)L
s . But by definition (Rs,tB)L

s = BL
(s+t)−s = BL

t . And then

0 ≤ m < BL
t holds because it is condition iii) for P .

Similarly iii) requires 0 ≤ ` < (Rs,tB)L
t . But (Rs,tB)L

t = BL
(s+t)−t = BL

s . And then 0 ≤ ` < BL
s holds

because it is condition ii) for P .

Lastly condition iv) requires m + ` + 2 ≤ BL
s if s = t. But this condition is exactly the same as

condition iv) for P , so it holds.

Therefore RP defines a valid subsequence on RstB.

Lemma 2.2.34. The operator R preserves the length of a subsequence.

Proof. Let P = (B; s, t; `,m) be a subsequence. Then RP = (Rs,tB; s, t;m, `). Using Observa-

tion 2.2.30 we compute the length of RP to be

t∑
i=s

(RstB)L
i −m− ` =

t∑
i=s

BL
t+s−i − `−m =

t∑
i=s

BL
i − `−m ,

which is exactly the length of P .

Lemma 2.2.35. The operator R is an involution on the set of all subsequences on block decompositions

with weight t and n blocks.

Proof. Let P be a subsequence on some block decomposition B with weight t and n blocks. We have

from Lemma 2.2.18, that Rs,t is an involution on this set of iterated integrals, so that RstRstB = B.

Therefore, we compute

RRP = R(RstB; s, t;m, `)

= (RstRstB; s, t; `,m)

= (B; s, t; `,m)

= S .

Example 2.2.36. Consider the indicated subsequence on the following word.

0 | 01 010 | 01 | 1 | 1 010101 | 10 | 01 | 1 .

We know the block decomposition from Example 2.2.9. The encoding of this subsequence is therefore

(
(0; 1, 5, 2, 1, 7, 2, 2, 1); 2, 5; 2, 6

)
.

We compute that

R
(
(0; 1, 5, 2, 1, 7, 2, 2, 1); 2, 5; 2, 6

)
=
(
R2,5(0; 1, 5, 2, 1, 7, 2, 2, 1); 2, 5; 6, 2

)
=
(
(0; 1, 7, 1, 2, 5, 2, 2, 1); 2, 5; 6, 2

)
,
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using the computation of R2,5 from Example 2.2.19. We therefore obtain the following subsequence on

the transformed word

0 | 010101 0 | 0 | 01 | 101 01 | 10 | 01 | 1 .

Here we gather some facts about subsequences and their behaviour under the reflection operator RR,

which will be used in the following section to generate identities.

Lemma 2.2.37. Let P = (B; s, t; `,m) be a subsequence. Then as words, the subsequence RP is either

the reverse of P , or the dual of P , i.e. the reverse with 0↔ 1.

Proof. By removing the blocks < s, and the blocks > t, we may assume s = 1 and t = n, where n is

the number of blocks in B.

In the case where Bst
1 = Ben

n , we will show that the subsequence RP is the reverse of the subsequence

P . Let B = (ε1; `1, . . . , `n). The first digit of P is then ε1 + `. And R1nB = (ε1; `n, . . . , `1), so the

last digit of RP is (R1nB)en
n − `. As in Equation 2.2.1 in the proof of Lemma 2.2.12, we have that

(R1nB)en
n = ε1 +

∑n
i=1(`i − 1) = Ben

n (mod 2) and by assumption this is = Bst
1 (mod 2). So the last

digit of RP is Bst
1 − `, which equals the first.

We can repeat this one letter at a time to see that the subsequence RP is exactly the reverse of P .

In the case where Bst
1 6= Ben

n , the RP is the dual of the subsequence P . Observe that in this case we

have that the last digit is 1−Bst
1 − `, so at every point we have the extra step of taking 1−Ben

i . Not

only is the subsequence reversed, but we also interchange 0↔ 1, giving the dual overall.

Recall from Definition 1.2.14 that a subsequence (of odd length ≥ 3) is called trivial if the first and

last digits are the same. When the first and last digit are the same, the integral of the subsequence

is trivially 0 by the equal boundaries property from Property 1.1.13, so it will contribute nothing to

D≤N .

Lemma 2.2.38. Suppose that the subsequence P is a fixed point of the reflection operator R. Further,

suppose that P has odd length. Then P is trivial.

Proof. If P = (B; s, t; `,m) is a fixed point, then we must have RstB = B, and ` = m by the definition

of R.

Firstly we show that it is not possible for P to have odd length, be a fixed point, and have t− s+ 1

even. For if this were the case, by Lemma 2.2.27 we necessarily have B`s+i = B`t−i, and no ‘middle

block’. This means P has length
∑t
i=sB

L
i − `−m = 2

∑s+(t−s)/2
i=s B`i − 2` = 0 (mod 2).

Therefore we are in the case where t− s+ 1 is odd. Here we claim that we must have B`s+(t−s)/2 odd.

Otherwise as before, P would have length
∑t
i=sB

`
i − ` −m = 2

∑s+(t−s)/2
i=s B`i + Bs+(t−s)/2 − 2` =

0 (mod 2).

Now we can apply Lemma 2.2.27 to conclude that Bst
s = Ben

t , for the subsequence P . Therefore the

first digit of P is Bst
s + `, whilst the last digit of P is Ben

t −m = Bst
s − ` = Bst

s + ` (mod 2). Thus the

subsequence is trivial.
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Example 2.2.39. Following on from Example 2.2.28, these examples will illustrate when we can have

odd length subsequences which are invariant under R, and illustrate the result that these subsequences

are in fact trivial.

i) For example, the subsequence P = ((0; 3, 4, 4, 3); 1, 4; 2, 2) is invariant under R1,4. It is the

following subsequence

01 0 | 0101 | 1010 | 0 10 ,

but this subsequence has even length 1 + 4 + 4 + 1 = 10.

ii) The subsequence P = ((0; 3, 4, 2, 4, 3); 1, 5; 2, 2) is invariant under R1,5. It is the following

subsequence

01 0 | 0101 | 10 | 0101 | 1 01 .

The middle block has even length, so this subsequence has even length 1 + 4 + 2 + 4 + 1 = 12.

iii) However the subsequence P = ((0; 3, 4, 1, 4, 3); 1, 5; 2, 2) is also invariant under R1,5. In this case

the middle block has odd length. It is the following subsequence

01 0 | 0101 | 101 | 1010 | 0 10 ,

This subsequence has odd length 1 + 4 + 3 + 4 + 1 = 13, and is indeed trivial. The first and last

digits of the subsequence are both 0.

2.3 Identities from reflectively closed sets

We are now in a position to use this framework to prove the main theorem of this chapter, from which

we can then produce a lot of new identities on MZV’s and iterated integrals. These identities will

include some motivic proofs, up to a rational, of some currently conjectural results. We give some

auxiliary results first, which will be combined to prove the theorem.

In what follows, let S be a reflectively closed subset of

H := {B | B is a block decomposition, with weight t and n blocks } .

And let T be the set of all odd length subsequences on the block decompositions in S.

Lemma 2.3.1. The reflection operator R defines a map from T → T .

Proof. Let P be a subsequence in T ; then P = (B; s, t; `,m) for B a block decomposition in S, and

some s, t, `,m. We have that RP = (RstB; s, t;m, `). But from the assumption, S is reflectively closed,

and therefore RstB is some (possibly different) block decomposition in S. We know from Lemma 2.2.33

that RP defines a subsequence on RstB. Therefore RP ∈ T , as required.
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We know from Lemma 2.2.35 that R is an involution on T , meaning that R2 = idT . We can consider

the group G = { idT ,R }, and its action on the set T of subsequences.

Lemma 2.3.2. The group G = { idT ,R } acts on T .

Proof. This is clear since G is a group of functions, and the action is function application. The rule

for evaluating (f ◦ g)(x) as f(g(x)) is one of the condition for a group action. That the function idT is

the identity function on T is the other condition for a group action.

Lemma 2.3.3. The set T breaks up into orbits of size ≤ 2 under the action of G = { idT ,R }.

Proof. By the Orbit-Stabilizer theorem, the size of an orbit under this action divides the size of G,

which is 2.

Lemma 2.3.4. Let O be an orbit of T under G, which has size 1. Then the subsequence in O is

trivial, since it has odd length. (Recall, this means the end points of the subsequence are equal.)

Proof. Suppose O = { P }. Then we must have RP = P , so the subsequence P in O is a fixed point

of R. Now, since O has odd length, we know from Lemma 2.2.38 that it is trivial.

Lemma 2.3.5. Suppose that O is an orbit of T under G, which has size 2. Then either O contains

two trivial subsequences, or it contains two non-trivial subsequences.

Proof. Suppose that O = { P1, P2 }, and that P1 = (B; s, t; `,m) is non-trivial. We have therefore that

the first digit of P1, which is Bst
s + `, and the last digit of P1, which is Ben

t −m, are distinct.

Now compute the first and last digit of P2 = (RstB; s, t;m, `). In the case where Bst
s = Ben

t , we

get (RstB)st
s = Ben

t and (RstB)en
t = Bst

t , so that the first and last digits of P2 are Ben
t + m =

Ben
t − m (mod 2), and Bst

s − ` = Bst
s + ` (mod 2). These are the same as those of P1, so are still

distinct.

In the case where Bst
s 6= Ben

t , we find (RstB)st
s = 1− Ben

t and (RstB)en
t = 1− Bst

t , so that the first

and last digits of P2 are 1−Ben
t +m = 1 +Ben

t −m (mod 2), and 1−Bst
s − ` = 1 +Bst

s + ` (mod 2).

Since these are the opposite of those of P1, they are also distinct.

Lemma 2.3.6. Let O be an orbit of T under G, which consists of two non-trivial subsequences. Then

the quotient sequences determined by these subsequences are equal, and the integrals of the subsequences

are negatives of each other.

Proof. Let the two subsequence be P1 = (B; s, t; `,m) and P2 = RP1 = (RstB; s, t,m, `). Say

B = (ε1; `1, . . . , `n). Then for i < s and i > t, the blocks of B and RstB agree, so the quotient

sequences agree here. Since P1 is non-trivial, the first and last letters are different. Suppose P starts

with x, then it ends with 1− x. Set δ = Bst
s . Then the quotient sequence is

W `1
ε1
· · ·W `s−1

εs−1
W `+1
δ ⊕Wm+1

1−x W
`t+1
εt+1
· · ·W `n

εn .
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Since W `+1
δ ends with x, and Wm+1

1−x starts with 1− x, we have

W `+1
δ ⊕Wm+1

1−x = W `+m+2
δ .

So the blocks in B are joined by the word W `+m+2
δ .

But for the same reason, the blocks in RstB are joined by Wm+`+2
ε , where ε = (RstB)st

s = Bst
s , by the

definition of Rst. Therefore the quotient sequences Q1 from P1 and Q2 from P2 are both identical. So

we certainly have Im(Q1) = Im(Q2).

Using Lemma 2.2.37, we know that the subsequences P1 and P2 are either the reverse, or the dual, of

each other. If P2 is the reverse of P1, then by the reversal of paths property from Property 1.1.13, we

have IL(P1) = −IL(P2) since P1 and P2 have odd length. If P2 is the dual of P1, then by duality, we

also have IL(P1) = −IL(P2), since P1 and P2 have odd length.

Lemma 2.3.7. Let O be an orbit of T under G. Then the sum of the terms this gives rise to in D<N

is 0.

Proof. If O has size 1, then by Lemma 2.3.4, the subsequence in O is trivial, and the orbit O contributes

0 to D<N .

If O has size 2, and the two subsequences it contains are trivial, then the orbit O contributes 0 to

D<N . Otherwise, by Lemma 2.3.5, the two subsequences P1 and P2 in O are non-trivial. But then by

Lemma 2.3.6 we have IL(P1) = −IL(P2), and Im(Q1) = Im(Q2), where Qi is the quotient sequence

obtained from Pi. Then the orbit O contributes

IL(P1)⊗ Im(Q1) + IL(P2)⊗ Im(Q2)

= IL(P1)⊗ Im(Q1)− IL(P1)⊗ Im(Q1)

= 0 .

At this point we can state and prove the main theorem of this chapter.

Theorem 2.3.8. Let S be a reflectively closed set of block decompositions with a fixed weight t, and

fixed number of blocks. Then the sum of the corresponding block integrals satisfies the following∑
s∈S

Imbl(s) ∈ ζm(t)Q .

Proof. The goal is to compute D<N , for weight N = t on the sum
∑
s∈S I

m
bl(s). Since the coefficients of

all the integrals in the sum are +1, the terms of D<N arise exactly from the set of all odd subsequences

on the block decompositions in S. Write T for the set of all odd subsequences on S.

By Lemma 2.3.3 we know that the set T breaks up into orbits of size ≤ 2 under the action of the

group { idT ,R } generated by the reflection operator. From Lemma 2.3.7 we know that all of these

orbits contribute 0 to D<N .
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Therefore D<N

∑
s∈S I

m
bl(s) = 0, and by Brown’s characterisation of kerD<N , Theorem 1.2.15, we

have
∑
s∈S I

m
bl(s) ∈ ζm(t)Q, as required.

In particular we have the following corollary, which gives a way to generate identities, by finding the

reflective closure of the block decompositions associated to some initial set of iterated integrals.

Corollary 2.3.9. Let S̃ = { Im(wi) } be a set of iterated integrals, with corresponding block decompo-

sitions S = {Bi }. Suppose that S consists of block decompositions with a fixed weight N , and a fixed

number of blocks, but that S is not necessarily reflectively closed. Then∑
s∈〈S〉R

Imbl(s) ∈ ζm(N)Q .

Proof. The set 〈S〉R is reflectively closed by definition, so this result follows immediately from

Theorem 2.3.8.

Remark 2.3.10. By applying the period map from Equation 1.2.1 to Theorem 2.3.8, and Corol-

lary 2.3.9, we obtain analogous results on the level of real numbers for the classical iterated integrals

and multiple zeta values.

This corroborates the observation in Example 2.2.25, that starting from the integral Im(01010 | 01 |

101) = ζm(2, 3, 1, 2) with block decomposition (0; 5, 2, 3), the sum∑
s∈S′

Imbl(s) ,

over the reflective closure S′ = 〈(0; 5, 2, 3)〉R, has period in π8Q = ζ(8)Q.

2.4 Examples of identities following from reflective closure

In this section we will collect a number of identities which follow from this construction.

Proposition 2.4.1. Let

H(t, n) :=
{
B
∣∣ B is a block decomposition, with weight t and n blocks, and Bst

1 = 0
}
.

Then ∑
s∈H(t,n)

Imbl(s) ∈ ζm(t)Q .

And applying the period map shows that

per
(∑

s∈H(t,n)
Imbl(s)

)
∈ ζ(t)Q .

Proof. The set H(t, n) is reflectively closed because Lemma 2.2.17 shows that the reflection operators

preserve weight and number of blocks. They also preserve Bst
1 . The result follows from Theorem 2.3.8.
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Corollary 2.4.2. Let

H(t) :=
{
B
∣∣ B is a block decomposition, with weight t and Bst

1 = 0
}
.

Then ∑
s∈H(t)

Imbl(s) ∈ ζm(t)Q .

And applying the period map shows that

per
(∑

s∈H(t)
Imbl(s)

)
∈ ζ(t)Q .

Proof. Technically, we cannot appeal directly to reflective closure, since the number of blocks is not

constant in H(t). However, we can write

H(t) =
t+2⋃
n=1

H(t, n) ,

where the union is disjoint. It is clear that any integral has at least one block. An integral of weight t

is described by a word of length t+ 2. If this is the word constant word 000 · · · 0, then at t+ 2 blocks

are required (one block for every symbol).

Proposition 2.4.1 shows that
∑
s∈H(t,n) I

m
bl(s) ∈ ζm(t)Q. Therefore we have

∑
s∈H(t)

Imbl(s) =
t+2∑
n=1

 ∑
s∈H(t,n)

Imbl(s)

 ∈ ζm(t)Q .

Remark 2.4.3. In the above proposition, we could (should) also impose the condition that the number

of blocks in B is different from t modulo 2. If they are equal, the integrals of such blocks are trivially

0 using Lemma 2.2.12, so
∑
s∈H(n,t) I

m
bl(s) = 0 if n = t (mod 2).

A more interesting family of identities is the following. They form the most ‘basic’ type of identity

provable within this framework. These identities will arise when we discuss a generalisation of the

cyclic insertion conjecture; they will enable us to make some partial progress towards it.

Theorem 2.4.4 (Symmetric insertion). Let n ∈ Z>0, and let `1, . . . , `n be given. Set t := −2+
∑n
i=1 `i,

to be the weight of the integral block decomposition (0; `1, . . . , `n), and assume t ≥ 2. Then∑
σ∈Sn

Imbl(0; `σ(1), . . . , `σ(n)) ∈ ζm(t)Q .

Proof. Essentially this result is equivalent to Theorem 2.3.8, although we restrict to reflectively closed

sets generated by one element, and give the corresponding result explicitly in terms of permutations of

the blocks.

From Proposition 2.2.26, we have that

S := 〈(0; `1, . . . , `n)〉R =
{

(0; `σ(1), . . . , `σ(n))
∣∣ σ ∈ Sn } .
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Since S = 〈(0; `1, . . . , `n)〉R is reflectively closed by definition, we conclude by Theorem 2.3.8, that∑
σ∈Sn

Imbl(0; `σ(1), . . . , `σ(n)) =
∑
s∈S

Imbl(s) ∈ ζm(t)Q .

Remark 2.4.5. At odd weight, all of the above results are, in fact, trivial. This is because, as

discussed in Remark 2.2.16, the reflection operator R1n acting on a block decomposition B with n

blocks returns the block decomposition of the dual integral, up to sign. If t is the weight, the duality

relation then shows that Imbl(R1nB) = (−1)tImbl(B). So when summing the integrals of a reflectively

closed set of odd weight, the terms merely cancel in pairs.

However, at even weight the results are definitely non-trivial, as we shall later see.

2.4.1 Relations on MZV’s

It behooves us to consider what sort of identities these results give us about MZV’s. We know that every

iterated integral Im(w) can be expressed in terms of MZV’s, by shuffle-regularising the divergences

away, as in Section 1.2.3.1. However, this procedure can obscure much of the structure of the original

identity. When can we convert directly back to MZV’s?

From Lemma 2.2.14, we know divergent integrals correspond to block decompositions B which start

with BL
1 = 1, or end with BL

n = 1. Proposition 2.2.26 shows that a reflectively closed set contains all

permutations of the lengths BL
i , so to be guaranteed a convergent integral, we must require BL

i > 1

for all i.

Definition 2.4.6. A block decomposition B (with weight different from number of blocks mod 2)

which has BL
i > 1 for all i will be called always convergent.

Proposition 2.4.7. Always convergent block decompositions describe MZV’s z = ζm(a1, . . . , ak)

satisfying the following conditions:

i) each argument ai is contained in { 1, 2, 3 }, and

ii) there is no consecutive pair of arguments ai = ai+1 = 1.

Proof. An argument ai > 3 in MZV’s corresponds to the substring

10ai−1 = 1 00 · · · 0
≥ 3 symbols

.

This corresponds to the following decomposition into blocks

10 | 0 | · · · | 0 ,

and so cannot occur because length 1 blocks are forbidden.

Similarly consecutive arguments ai = ai+1 = 1 correspond to the following substring

· · · 1 | 1 | 1
≥ 3 symbols

· · · ,
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which cannot occur because length 1 blocks are forbidden.

Definition 2.4.8. Suppose ζ(a1, . . . , ak) is an MZV satisfying the two conditions

i) each argument ai is contained in { 1, 2, 3 }, and

ii) there is no consecutive pair of arguments ai = ai+1 = 1.

We will call this a 123-MZV.

Using this, we can prove an identity involving a sum of this type of MZV.

Proposition 2.4.9. Let

S := { 123-MZV’s of weight t } .

Then ∑
z∈S

(−1)dp(z)z ∈ ζ(t)Q ,

where dp is the depth of the MZV.

Proof. First convert this to a statement of iterated integrals. The factor (−1)dp(z) disappears when we

do this conversion.

These MZV’s exactly correspond to always convergent block decompositions of weight t, where the

number of blocks is different from the weight modulo 2. Including those where number of blocks =

weight (mod 2) will not change the sum, as they contribute trivially 0.

The sum then reads ∑
s∈T

Imbl(s) ,

where T :=
{
B
∣∣ B is a block decomposition, with weight t, Bst

1 = 0, and all BL
i > 1

}
Break this into a disjoint union over sets

T (n) :=
{
B
∣∣ B is a block decomposition, with weight t, n bocks, Bst

1 = 0, and all BL
i > 1

}
,

which contain block decompositions with a fixed number of blocks. We see that each of these sets is

reflectively closed; the reflection operators permute the lengths, so they do not change whether the

lengths are all > 1.

So we conclude by Theorem 2.3.8 that∑
z∈S

(−1)dp(z)z =
∑
n

(∑
s∈T (n)

Imbl(s)
)
∈ ζ(t)Q .

Remark 2.4.10. This identity breaks up into smaller sums which involve only permutations of some

fixed blocks, using Theorem 2.4.4.
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Example 2.4.11. At weight 8, there are 17 such 123-MZV’s. We obtain the following sums with the

indicated block lengths.

Lengths (10): ζ(2, 2, 2, 2) = π8

9!

Lengths (2, 2, 6): ζ(1, 3, 2, 2) + ζ(1, 2, 2, 3) + ζ(2, 2, 1, 3) = π8

9!

Lengths (2, 3, 5): −ζ(3, 2, 3) + ζ(2, 3, 1, 2)− ζ(1, 2, 1, 2, 2) +

− ζ(2, 3, 3) + ζ(3, 1, 2, 2)− ζ(1, 2, 2, 1, 2) = 2π8

9!

Lengths (2, 4, 4): ζ(1, 2, 3, 2) + ζ(2, 1, 3, 2) + ζ(2, 1, 2, 3) = π8

9!

Lengths (3, 3, 4): ζ(3, 3, 2)− ζ(3, 2, 1, 2) + ζ(2, 1, 2, 1, 2) = π8

9!

Lengths (2, 2, 2, 2, 2): ζ(1, 3, 1, 3) = π8

5 · 9!

Here the weight here is low enough that tables of relations can be used to explicitly evaluate these

combinations. Alternatively, one can obtain the rational multiple of π8/9! in each identity by numerically

evaluating as in Remark 1.2.16, and finding the rational to sufficiently high precision to be confident

in the result.

For the sum in Proposition 2.4.9, over

S := { 123-MZV’s of weight 8 }

we obtain ∑
z∈S

(−1)dp(z)z = 31
5
π8

9!

2.5 The (generalised) cyclic insertion conjecture

In this section, we will introduce a generalisation of the cyclic insertion conjecture proposed by Borwein,

Bradley, Broadhurst, and Lisoněk in [BBBL98]. Some shadow of this conjecture can be seen in the

evaluations presented in Example 2.4.11 above, specifically in the fact that each sum evaluates to a

very precise multiple of π
8

9! .

The name of this conjecture comes from the first instance conjectured in [BBBL98]. In this instance,

blocks of 2’s were being inserted cyclically into the arguments of another MZV. Whilst the generalisation

does not have this particular quality, it still uses a cyclical shifting and so the name remains apt.

Conjecture 2.5.1 (Generalised cyclic insertion). Let B = (0; `1, . . . , `n) be a block decomposition of

weight t. Let Cn = 〈(1 2 · · · n)〉 be the cyclic group of order n viewed as a subgroup of Sn, generated

by the n-cycle (1 2 · · · n).
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i) If B has even weight, n is odd so that the integrals are not trivially zero, and there does not exist

a consecutive pair of lengths BL
i = BL

i+1 = 1, then∑
σ∈Cn

Imbl(`σ(1), . . . , `σ(n))
?= Imbl(t+ 2) = (−1)t/2ζm({2}t/2) .

And applying the period map would give∑
σ∈Cn

Ibl(`σ(1), . . . , `σ(n))
?= (−1)t/2 πt

(t+ 1)! ∈ π
tQ .

ii) If B has odd weight, n is even so that the integrals are not trivially zero, and there does not exist

a consecutive pair of lengths BL
i = BL

i+1 = 1, then∑
σ∈Cn

Imbl(`σ(1), . . . , `σ(n))
?= Imbl(t+ 2) = 0 ,

with the same result after applying the period map.

One could paraphrase this conjecture as saying roughly that at a given weight, cyclically symmetrised

block integrals have a constant value. The restrictions on the BL
i are necessary, as shown in Remark 2.5.3

below.

Evidence and outlook. In Section 2.8 we present tables of the dimensions of cyclic insertion relations

(Conjecture 2.5.1), symmetric insertion relations (Theorem 2.5.4), and other numerically verified block

relations. In particular, we tested the cyclic insertion conjecture for every valid block decomposition

up to weight 16, plus numerous other examples in higher weight.

It appears that the identities in Conjecture 2.5.1 satisfy some sort of ‘stability’ under the derivations

D<N , which opens up a potential avenue to a partial ‘proof by recursion’ using the motivic framework.

For further details, see the later Remark 2.6.18 where we can explicitly refer to examples that illustrate

this stability. Be aware though, that the motivic framework cannot yet provide a full proof of these

results, since the rational multiple needs to be numerically evaluated.

Remark 2.5.2. Briefly revisiting Example 2.4.11, we should look at the block decompositions with

lengths (2, 3, 5) and (2, 2, 2, 2, 2) in a little more detail, just to clarify some points of potential confusion.

The lengths (2, 3, 5) give rise to the following sum

−ζ(3, 2, 3) + ζ(2, 3, 1, 2)− ζ(1, 2, 1, 2, 2) +

− ζ(2, 3, 3) + ζ(3, 1, 2, 2)− ζ(1, 2, 2, 1, 2) = 2π8

9! .

Each row of this is itself an instance of the cyclic insertion conjecture. The first row cyclically sums

over (2, 3, 5), whilst the second row cyclically sums over (2, 5, 3). Each row sums to π8

9! according to

the cyclic insertion conjecture, explaining the coefficient 2 in the result.



2.5. The (generalised) cyclic insertion conjecture 65

Whereas, for the lengths (2, 2, 2, 2, 2), the cyclic insertion conjecture produces 5 copies of the blocks

Imbl(2, 2, 2, 2, 2) because the blocks are already cyclically symmetric. So we get

5Imbl(2, 2, 2, 2, 2) ?= Ibl(10) or

5Im(0; 1, 1, 0, 0, 1, 1, 0, 0; 1) ?= Im(0; 1, 0, 1, 0, 1, 0, 1, 0; 1) .

Converting to MZV’s and applying the period map gives

5ζ(1, 3, 1, 3) = ζ(2, 2, 2, 2) = π8

9! ,

we can then divide through by 5, to get the result in Example 2.4.11, which explains the coefficient 1
5 .

Remark 2.5.3. The restrictions that there is no pair BL
i = BL

i+1 in both cases, seems somewhat

ad-hoc. It appears that these (conjectural) identities are just an easy version of some statement which

holds even more generally. These restrictions are most certainly necessary, as shown by the following

examples.

In even weight, applying the cyclic insertion conjecture to the blocks [`i] = [1, 1, 2, 3, 3] does not

produce even a rational multiple of π8, despite this block decomposition having weight 8. In this case

we obtain ∑
σ∈C5

Ibl(`σ(1), . . . , `σ(5)) = 27.89973142 . . . π
8

9! .

However, we do obtain (by use of Theorem 2.5.4 below) that the fully symmetrised sum does produce

a rational multiple of π8, namely∑
σ∈S5

Ibl(`σ(1), . . . , `σ(5)) = −18π
8

9! ∈ π
8Q .

Similarly, in the odd weight case, applying the cyclic insertion conjecture to the blocks [`i] = [1, 1, 2, 3]

produces a non-zero result in contrast to the result of 0 we would desire. Specifically∑
σ∈C4

Ibl(`σ(1), . . . , `σ(4)) = 3.95460870059 . . .

= 2ζ(2)ζ(3) .

In the context of Remark 2.6.18, this cyclic combination for [`i] = [1, 1, 2, 3] appears as part of the

computation of D3 for the cyclic combination [`i] = [1, 1, 2, 3, 3] above. This in fact leads to the result

that for [`i] = [1, 1, 2, 3, 3], ∑
σ∈C5

Ibl(`σ(1), . . . , `σ(5)) = ζ(2)ζ(3)2 − 63π
8

9! .

Alternatively (after applying some identities), this may be written as

= 2ζ(2)ζ(1, 2, 1, 2) + ζ(2, 2, 2, 2, 2)

= −2Ibl(4)Ibl(2, 3, 3) + Ibl(10) ,
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where the blocks [2, 3, 3] from [`i] make a second appearance.

This indeed offers a suggestion for how to generalise the cyclic insertion conjecture to all block

decompositions. From recent cursory investigations, it appears a general result holds for [`i] =

[k1, . . . , kn−2, 1, 1], where k1 6= 1, kn−2 6= 1, and there is no pair ki = ki+1 = 1. The result is as follows.∑
σ∈Cn

Ibl(`σ(1), . . . , `σ(n))
?= −2Ibl(4)Ibl(k1, . . . , kn) + Ibl(k1 + · · ·+ kn−2 + 2) .

Generalisations to [`i] = [k1, . . . , kn−3, 1, 1, 1] and beyond also appear to hold.

We claim now that the generalised cyclic insertion conjecture (Conjecture 2.5.1) is a generalisation of

both the BBBL cyclic insertion conjecture, and of Hoffman’s identity. This will be shown explicitly

in Conjecture-Example 2.6.1 and Conjecture-Example 2.6.4. It is not surprising then that we cannot

prove this conjecture. We can make some progress towards it in the form of the following theorem,

which is a restatement and reinterpretation of Theorem 2.4.4 applied to the context of Conjecture 2.5.1.

Theorem 2.5.4 (Generalised symmetric insertion). Let B = (0; `1, . . . , `n) be a block decomposition

of even weight t. Then some sufficiently symmetrised version of Conjecture 2.5.1 holds. More precisely

the following evaluation, consisting of a sum of (n− 1)! cyclic insertion identities, holds∑
σ∈Sn

Imbl(`σ(1), . . . , `σ(n)) ∈ ζm({2}t/2)Q = ζm(t)Q .

So applying the period map produces∑
σ∈Sn

Ibl(`σ(1), . . . , `σ(n)) ∈ ζ({2}t/2)Q = ζ(t)Q = πtQ .

Proof. This result is a restatement and reinterpretation of Theorem 2.4.4. The equalities follow using

the evaluations (and their motivic counterparts) which state

ζ({2}k) = π2k

(2k + 1)!

ζ(2k) = (−1)k+1B2k(2π)2k

2(2k)! .

The result holds in fact for any choice of `i, including in the case where some consecutive pair

`i = `i+1 = 1 occurs.

Remark 2.5.5. An analogous result for odd weight does hold, but is trivial. The symmetrisation

produced by Theorem 2.4.4 cancels pairwise, an integral with its dual, to give 0.

In the following section we will present a number of examples of conjectural identities given by the cyclic

insertion conjecture, Conjecture 2.5.1, along with the proven symmetrisations from Theorem 2.5.4.

Typically we will restrict these examples to 123-MZV’s, since they produce ‘nice’ identities, so I am

content to give two simple examples of the general case of cyclic insertion here.
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Example 2.5.6. Consider the MZV z = −ζ(4, 1, 2), which corresponds to the integral I(010 | 0 | 01 |

101), with block decomposition Ibl(3, 1, 2, 3).

Taking [`1, `2, `3, `4] = [3, 1, 2, 3], we form the sum∑
σ∈C4

Ibl(`σ(1), . . . , `σ(4))

= Ibl(3, 1, 2, 3) + Ibl(1, 2, 3, 3) + Ibl(2, 3, 3, 1) + Ibl(3, 3, 1, 2)

= I(010 | 0 | 01 | 101) + I(0 | 01 | 101 | 101) +

+ I(01 | 101 | 101 | 1) + I(010 | 010 | 0 | 01) .

The first and last integrals can be converted directly to the MZV’s −ζ(4, 1, 2) and ζ(3, 4) respectively.

The second and third require shuffle-regularising, as in Section 1.2.3.1. They give the following

I(001101101) = −I(010101101)− 2I(011001101)− I(011010101)− 2I(011011001)

= −ζ(2, 2, 1, 2)− 2ζ(1, 3, 1, 2)− ζ(1, 2, 2, 2)− 2ζ(1, 2, 1, 3)

I(011011011) = 3I(010001001) + 3I(010010001)

= 3ζ(4, 3) + 3ζ(3, 4) .

Thus we obtain the sum∑
σ∈C4

Ibl(`σ(1), . . . , `σ(4)) = (−ζ(4, 1, 2)) + (ζ(3, 4)) + (3ζ(4, 3) + 3ζ(3, 4)) +

+ (−ζ(2, 2, 1, 2)− 2ζ(1, 3, 1, 2)− ζ(1, 2, 2, 2)− 2ζ(1, 2, 1, 3)) ,

which indeed equals 0, using tables of known MZV relations. This is the result expected by cyclic

insertion.

Example 2.5.7. Consider the MZV z = −ζ(1, 1, 2, 2, 4), which corresponds to the integral I(01 | 1 |

101010 | 0 | 01), with block decomposition Ibl(2, 1, 6, 1, 2).

Take [`i] = [2, 1, 6, 1, 2], and form the sum∑
σ∈C5

Ibl(`σ(1), . . . , `σ(5)) .

We obtain

Ibl(2, 1, 6, 1, 2) + Ibl(1, 6, 1, 2, 2) + Ibl(6, 1, 2, 2, 1) + Ibl(1, 2, 2, 1, 6) + Ibl(2, 2, 1, 6, 1)

= I(01 | 1 | 101010 | 0 | 01) + I(0 | 010101 | 1 | 10 | 01) + I(010101 | 1 | 10 | 01 | 1) +

+ I(0 | 01 | 10 | 0 | 010101) + I(01 | 10 | 0 | 010101 | 1)

These integrals shuffle regularise to give the following sum of MZV’s, where some terms have been

combined via duality. The first integral gives the first term. The second and fifth integrals give the
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third term. And the third and fourth integrals give the second term.

= − ζ(1, 1, 2, 2, 4) +

+ 2 · (−2ζ(1, 4, 2, 3)− 2ζ(1, 4, 3, 2)− 4ζ(1, 5, 2, 2)− ζ(2, 4, 2, 2)) +

+ 2 · (3ζ(2, 2, 1, 1, 4) + ζ(2, 2, 1, 2, 3) + ζ(2, 2, 2, 1, 3) +

+ 2ζ(2, 3, 1, 1, 3) + 2ζ(3, 2, 1, 1, 3)) = −π
10

11! .

This evaluation is obtained using tables of known MZV relations. This is indeed the result expected

by cyclic insertion.

2.5.1 Cyclic insertion on 123-MZV’s

If we restrict to the class of 123-MZV, the associated block decomposition never contains a block

of length 1. So any cyclic permutation of the block lengths is guaranteed to produce a convergent

integral. This means that the terms produced by the cyclic insertion conjecture can be converted

directly to MZV’s, and will produce relatively short and highly structured conjectural identities. It is

worth considering, then, how these terms can be generated directly from an initial MZV without going

through the block decomposition first.

Lemma 2.5.8. The arguments of a 123-MZV are composed of an arbitrary string formed by concate-

nating a unique combination of substrings of the following type

i) {2}`, 3, where ` ≥ 0. This contributes 1 block.

ii) {2}`, 1, {2}n, 3, where `, n ≥ 0. This contributes 2 blocks.

iii) {2}`, (1, 2), {2}m1 , . . . , (1, 2), {2}mk︸ ︷︷ ︸
k repetitions

, 1, {2}n, 3, where `,mi, n ≥ 0. This contributes k + 2 blocks.

Then ending with

iv) {2}`, where ` ≥ 0. This contributes 1 block.

v) {2}`, (1, 2), {2}m1 , . . . , (1, 2), {2}mk︸ ︷︷ ︸
k repetitions

, where `,mi ≥ 0. This contributes k + 1 blocks.

Here the notation (1, 2) is just to emphasise that in these MZV’s (1, 2) seems to function as one

argument. One should perhaps view it as 3, the dual of 3.

Proof. In the block decomposition, consider the position of the first block after B1 which has Bst
i = 0.

Suppose this block occurs at position i = 2, the first such available position. Since the first block must

end 0 to make Bst
2 = 0, the first block must have odd length. Since we restrict to 123-MZV’s, all

lengths must be > 1. So the word in the integral representation of the MZV must begin

0(10)`10 | 0 · · · = W 2`+3
0 ⊕ · · · ,
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where ` ≥ 0. This gives case i).

Now suppose the block occurs at position i > 2. Then the first block must end 1, meaning it has

even length. The blocks in position j = 2, . . . , i− 2 must start 1 and end 1, giving them odd length.

Finally the block in position i− 1 must end 0, giving it even length. Restricting to 123-MZV’s forces

all lengths to be > 1. So the word in the integral representation of the MZV must begin

0(10)`1 | 10(10)m11 | · · · | 10(10)mk1 | 10(10)n | 0 · · ·

= W 2`+2
0 W 2m1+3

1 · · ·W 2mk+3
1 W 2n+2

1 ⊕ · · · ,

where `,m1, . . . ,mk, n ≥ 0. This gives case ii) and iii).

After dealing with all such blocks, there will be blocks with Bst
i = 0 remaining. Then the word in the

integral representation of the MZV must look as follows

0(10)`1 | 10(10)m11 | · · · | 10(10)mk1 ,

where `,mi ≥ 0. The first block cannot end with 0, otherwise the second block starts with 0. Similarly

all subsequence blocks must end with 1. Since they also start with 1, this forces their lengths to be

odd. Finally restricting to 123-MZV’s means that all block lengths are > 1. This gives case iv) and v)

since no further blocks can occur.

Notation 2.5.9. It is convenient to separate the blocks of 2’s from the surrounding arguments above,

and write

ζ(a1, . . . , ak | b1, . . . , bk, bk+1) := ζ({2}b1 , a1, {2}b2 , a2, . . . , {2}bk , ak, {2}bk+1) ,

where ai ∈ { 1, 3, (1, 2) }. The substrings in Lemma 2.5.8 forbid consecutive arguments ai = (1, 2) and

ai+1 = 3. This will consist of k + 1 blocks.

Definition 2.5.10 (Cyclic operator). Let z = ±ζ(a1, . . . , ak | b1, . . . , bk+1) be a 123-MZV with

corresponding block decomposition Ibl(`1, . . . , `n), where n = k + 1. Assume the sign is chosen so that

we have equality. Let i be the first position for which Bst
i = 0, not including B1. Define

Cz = w ,

where w is the 123-MZV with block decomposition

Ibl(`i, `i+1, . . . , `n, `1, . . . , `i−1) .

If no such i exists, set

Cz = w

where w is the 123-MZV with block decomposition

Ibl(`2, `3, . . . , `n, `1)
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Proposition 2.5.11. Let ±ζ(a1, . . . , ak | b1, . . . , bk+1) be a 123-MZV with corresponding block decom-

position Ibl(`1, . . . , `n), where n = k + 1. Assume the sign is chosen so that we have equality. Then

the set {
Ciz

∣∣ i = 0, . . . , n− 1
}

contains exactly the same terms as produced by sum
∑
Cn
Ibl(`σ(1), . . . , `σ(n)), from the cyclic insertion

conjecture.

That is ∑
σ∈Cn

Ibl(`σ(1), . . . , `σ(n)) =
n−1∑
i=0
Ciz .

Proof. From the definition it is clear that each term is one of the terms from the cyclic insertion

conjecture. Namely, each application of C produces a cyclic shifting of the block decomposition. We

only have to show that eventually any `i is moved to the first position.

Let S = { i > 1 | Bst
i = 0 }, and T = { i > 1 | Bst

i = 1 }. The block corresponding to the j-th element

of S is moved to position one by applying Cj . Application of C changes the starting digit of the blocks

`1, . . . , `i which are moved to the end. This is because the starting digit of Bst
1 = 0 must be flipped to

match the last digit Ben
n = 1. Therefore the block corresponding to the j-th element of T is moved to

position one by applying C|S|+j .

Proposition 2.5.12. Let ζ(a1, . . . , ak | b1, . . . , bk+1) be a 123-MZV. In accordance with the cases in

Lemma 2.5.8, application of the cyclic operator C has the following results.

i) ζ(3, rest | `, rest) 7→ −ζ(rest, (1, 2) | rest, `),

ii) ζ(1, 3, rest | `, n, rest) 7→ ζ(rest, 1, 3 | rest, `, n) and

iii) ζ({(1, 2)}k, 1, 3, rest | `,m1, . . . ,mk, n, rest) 7→

(−1)kζ(rest, 1, 3, {3}k | rest, `,m1, . . . ,mk, n) .

Otherwise, only the final substrings appear, and we have

iv) ζ(∅ | `) 7→ ζ(∅ | `),

v) ζ({(1, 2)}k | `,m1, . . . ,mk) 7→ ζ({3}k | m1, . . . ,mk, `).

Proof. The proof of Lemma 2.5.8 made use of the position of the first block beginning Bst
i = 0. So C

interacts well with the structure presented there. So we can check on a case by case basis.

Case i): The word describing the integral corresponding to the MZV starts

0(10)`10 | 0 · · · = W 2`+3
0 ⊕ · · · .
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So only the first block is moved in this case. The 0 at the start of the second block becomes the lower

bound of the integral, so the arguments after {2}`, 3 will remain unchanged. Moving this block to the

end, we obtain

· · · 1 | 1(01)`01 = · · · ⊕W 2`+3
1 .

The upper bound of the integral now becomes the start of the next argument at the end of the MZV.

This gives new arguments

(1, 2), {2}`

at the end. The depth changes by one, 3 becoming (1, 2), so we pick up a minus sign when converting

from the integral back to an MZV.

Case ii) and iii): The word describing the integral starts

0(10)`1 | 10(10)m11 | · · · | 10(10)mk1 | 10(10)n | 0 · · ·

= W 2`+2
0 W 2m1+3

1 · · ·W 2mk+3
1 W 2n+2

1 ⊕ · · · .

In this case the first k + 2 blocks are moved. The 0 at the start of the (k + 3)-th block becomes the

lower bound of the integral, so the arguments after our initial string will remain unchanged. Moving

these blocks to the end gives

· · · 1 | 1(01)`0 | 01(01)m10 | · · · | 01(01)mk0 | 01(01)n

= · · · ⊕W 2`+2
1 W 2m1+3

0 · · ·W 2mk+3
0 W 2n+2

0 ⊕ · · · .

The upper bound of the integral now becomes the start of the next argument at the end of the MZV.

This gives new arguments

1, {2}`, 3, {2}m1 , 3, . . . , {2}mk , 3, {2}n

at the end. The depth changes by k, as k arguments of the form (1, 2) become arguments of the form

3. So we pick up sign (−1)k when converting from the integral back to an MZV.

Case iv) and v): The word describing the integral is

0(10)`1 | 10(10)m11 | · · · | 10(10)mk1 = W 2`+2
0 W 2m1+3

1 · · ·W 2mk+3
1 .

By definition, we only move one block to the end in this case. We obtain

01(01)m10 | · · · | 01(01)mk0 | 0(10)`1 = W 2m1+3
0 · · ·W 2mk+3

0 W 2`+2
1 .

This gives the MZV

(−1)kζ({2}m1 , 3, . . . , {2}mk , 3, {2}`) .

The depth changes by k since k arguments (1, 2) become arguments 3. So we pick up a sign (−1)k.

We will give examples of this proposition in action in the following section, where we present various
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examples of cyclic insertion and symmetric insertion.

2.6 Examples of cyclic insertion, and symmetrisations

In this section, we will present various examples of the kind of identities one can obtain from cyclic

insertion. We will also present the motivically provable symmetrisations which give currently best

known identities in that direction. We will at last show how the BBBL cyclic insertion conjecture, and

Hoffman’s identity, arise from the general conjecture.

Conjecture-Example 2.6.1 (BBBL cyclic insertion). Consider

z = (−1)dζ({2}a1 , 1, {2}a2 , 3, {2}a3 , . . . , 1, {2}a2n , 3, {2}a2n+1)

= (−1)dζ({1, 3}n | a1, . . . , a2n+1) ,

where d = 2n+
∑
i ai is the depth, so that the corresponding integral has coefficient 1.

Applying the cyclic operator C produces

Cz = (−1)dCζ(1, 3, {1, 3}n−1 | a1, a2, a3, . . . , an)

= (−1)dζ({1, 3}n−1, 1, 3 | a3, . . . , an, a1, a2)

= (−1)dζ({1, 3}n | a3, . . . , an, a1, a2) .

That is, the blocks of two {2}ai are cycled around by two steps.

One finds that the integral describing z has 2n+ 1 blocks, namely

z = I(0(10)a11 | 10(10)a2 | · · · | 0(10)a2n+11)

= Ibl(2a1 + 2, 2a2 + 2, . . . , 2a2n+1 + 2) . (2.6.1)

Since there are an odd number of blocks of 2, we conclude that
n∑
i=0
Ciz = (−1)d

∑
σ∈C2n+1

ζ({1, 3}n | aσ(1), . . . , aσ(2n+1)) .

From Proposition 2.5.11, we know this matches with the sum in the general cyclic insertion conjecture

Conjecture 2.5.1. Then that conjecture tells us to expect

(−1)d
∑

σ∈C2n+1

ζ({1, 3}n | aσ(1), . . . , aσ(2n+1))
?= (−1)t/2 πt

(t+ 1)! ,

as the weight t = 4n + 2
∑
ai, even. Since (−1)t/2 = (−1)2n+

∑
i
ai = (−1)d, the sign on the RHS

matches the sign on the LHS. Therefore we can write wt for the weight, and simplify this to∑
σ∈C2n+1

ζ({1, 3}n | aσ(1), . . . , aσ(2n+1))
?= πwt

(wt + 1)! .

This is exactly the statement of the BBBL cyclic insertion conjecture from Conjecture 2.1.5.
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Theorem 2.6.2 (Symmetrised BBBL, [Cha15]). Theorem 2.5.4 shows the following symmetrisation

of Conjecture-Example 2.6.1 holds.∑
σ∈S2n+1

ζ({1, 3}n | aσ(1), . . . , aσ(2n+1)) ∈ πwtQ .

This is Theorem 3.1 in [Cha15].

Moreover, we have ∑
σ∈S2n+1

ζ({1, 3}n | aσ(1), . . . , aσ(2n+1))
1= (2n)! πwt

(wt + 1)! .

Here 1= denotes an identity which holds up to Q, and where the expected rational is 1. (See Appendix A)

Proof. To obtain the symmetrisation, Theorem 2.5.4 tell us to replace
∑
σ∈C2n+1

with
∑
σ∈S2n+1

.

Doing this in the above case we obtain∑
σ∈S2n+1

Ibl(2aσ(1) + 2, 2aσ(2) + 2, . . . , 2aσ(2n+1) + 2) .

Using Equation 2.6.1, we can convert this to

±
∑

σ∈S2n+1

ζ({1, 3}n | aσ(1), . . . , aσ(2n+1)) .

But Theorem 2.5.4 shows us

±
∑

σ∈S2n+1

ζ({1, 3}n | aσ(1), . . . , aσ(2n+1)) ∈ ζ(t)Q ,

where the weight t = 4n+ 2
∑
i ai is even. Since ± does not change rationality, we get∑

σ∈S2n+1

ζ({1, 3}n | aσ(1), . . . , aσ(2n+1)) ∈ πwtQ ,

as claimed.

Moreover, this is made up of (2n + 1)!/(2n + 1) = (2n)! cyclic insertion identities, each of which

conjecturally contribute one lot of πwt

(wt+1)! . Adding these gives the expected identity above.

By setting a1 = a2 = · · · = a2n+1 = m above, we obtain 2n + 1 copies of the same MZV. Dividing

through by 2n+ 1 we obtain the following corollary which partially confirms Conjecture 2.1.8.

Corollary 2.6.3 (Evaluable family of MZV’s). The following result holds

ζ({{2}m, 1, {2}m, 3}n, {2}m) 1= 1
2n+ 1

πwt

(wt + 1)! ,

so at least is ∈ πwtQ.

Let us consider how Hoffman’s identity fits into this picture. We have the following more general

version.
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Conjecture-Example 2.6.4 (Hoffman’s identity). Consider

z = (−1)dζ({2}a, 3, {2}b, 3, {2}c) = (−1)ζ(3, 3, | a, b, c) .

Where d = 2 + a+ b+ c is the depth. This has 3 blocks, and one can check it has block decomposition

z = I(0(10)a10 | 0(10)b10 | 0(10)c1) = Ibl(2a+ 3, 2b+ 3, 2c+ 2) . (2.6.2)

Applying C gives

Cz = −(−1)dζ(3, (1, 2) | b, c, a) = Ibl(2b+ 3, 2c+ 2, 2a+ 3) (2.6.3)

C2z = (−1)dζ((1, 2), (1, 2) | c, a, b) = Ibl(2c+ 2, 2a+ 3, 2b+ 3) . (2.6.4)

So from Proposition 2.5.11 and Conjecture 2.5.1 we expect

(−1)d(ζ(3, 3 | a, b, c)− ζ(3, (1, 2) | b, c, a) + ζ((1, 2), (1, 2) | c, a, b)) ?= (−1)t/2 πt

(t+ 1)! ,

as the weight t = 6 + 2(a+ b+ c) is even. Since (−1)t/2 = (−1)3+a+b+c = −(−1)d, we obtain

ζ(3, 3 | a, b, c)− ζ(3, (1, 2) | b, c, a) + ζ((1, 2), (1, 2) | c, a, b) ?= − πwt

(wt + 1)! .

In particular, the case a = b = 0 produces Hoffman’s original conjectural family, as given in Conjec-

ture 2.1.9.

Theorem 2.6.5 ((Symmetrised) Hoffman’s identity). Symmetrising Hoffman’s conjectural identity

Conjecture-Example 2.6.4 using Theorem 2.5.4 shows that the following identity holds

ζ(3, 3, | a, b, c)− ζ(3, (1, 2) | b, c, a) + ζ((1, 2), (1, 2) | c, a, b) +

+ ζ(3, 3, | b, a, c)− ζ(3, (1, 2) | a, c, b) + ζ((1, 2), (1, 2) | c, b, a) 1= −2 πwt

(wt + 1)! .

Applying duality shows that

2ζ(3, 3, | a, b, c)− 2ζ(3, (1, 2) | b, c, a) + 2ζ((1, 2), (1, 2) | c, a, b) 1= −2 πwt

(wt + 1)!

So that we obtain a proof of (twice) Conjecture-Example 2.6.4 up to a rational, and in particular a

proof of (twice) Hoffman’s conjectural identity, up to a rational in the case a = b = 0.

Proof. To obtain the symmetrisation, Theorem 2.5.4 tell us to sum over all permutations of the block

lengths. So we get the following 3! = 6 terms

Ibl(2a+ 3, 2b+ 3, 2c+ 2) + Ibl(2b+ 3, 2c+ 2, 2a+ 3) + Ibl(2c+ 2, 2a+ 3, 2b+ 3) +

+ Ibl(2b+ 3, 2a+ 3, 2c+ 2) + Ibl(2a+ 3, 2c+ 2, 2b+ 3) + Ibl(2c+ 2, 2b+ 3, 2a+ 3) .

Using Equations 2.6.2 to 2.6.4, we convert these back to the given MZV’s up to ±1. Since the weight

is even, the result is in πwtQ.
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Moreover, each line is an instance of the cyclic insertion conjecture, so it expected to contribute one

lot of − πwt

(wt+1)! .

By duality, we have that ζ(3, 3 | a, b, c) = ζ((1, 2), (1, 2) | c, b, a), ζ(3, (1, 2) | b, c, a) = ζ(3, (1, 2) | a, c, b),

so the terms combine as indicated.

Conjecture-Example 2.6.6 (Generalised Hoffman identity). A higher version of Hoffman’s identity

arises from considering

z = (−1)dζ({3}2n | a1, . . . , a2n, c) ,

where d = 2n+
∑
i ai + c is the depth. This has 2n+ 1 blocks, and block decomposition

z = Ibl(2a1 + 3, 2a2 + 3, . . . , 2a2n + 3, 2c+ 2) .

We calculate

Cz = (−1)d+1ζ({3}2n−1, (1, 2) | a2, . . . , a2n, c, a1)

= Ibl(2a2 + 3, . . . , 2a2n + 3, 2c+ 2, 2a1 + 3)

C2z = (−1)d+2ζ({3}2n−2, {(1, 2)}2 | a3, . . . , a2n, c, a1, a2)

= Ibl(2a3 + 3, . . . , 2a2n + 3, 2c+ 2, 2a1 + 3, 2a2 + 3) .

And by induction

Ciz = (−1)d(−1)iζ({3}2n−i, {(1, 2)}i | ai+1, . . . , a2n, c, a1, . . . , ai) (2.6.5)

= Ibl(2ai+1 + 3, . . . , 2a2n + 3, 2c+ 2, 2a1 + 3, . . . , 2ai + 3) . (2.6.6)

By Proposition 2.5.11 and Conjecture 2.5.1 we obtain

2n∑
i=0
Ciz = (−1)d

2n∑
i=0

(−1)iζ({3}2n−i, {(1, 2)}i | ai+1, . . . , a2n, c, a1, . . . , ai)

?= (−1)t/2 πt/2

(t+ 1)! ,

as the weight t = 3× 2n+ 2
∑
i ai + 2c is even. Since (−1)t/2 = (−1)n+d we can write this as

2n∑
i=0

(−1)iζ({3}2n−i, {(1, 2)}i | ai+1, . . . , a2n, c, a1, . . . , ai)
?= (−1)n πwt

(wt + 1)! .

Theorem 2.6.7 (Symmetrised generalised Hoffman identity). Symmetrising the generalised Hoffman

identity, Conjecture-Example 2.6.6, using Theorem 2.5.4 shows the following identity holds,

∑
σ∈S2n

2n∑
i=0

(−1)iζ({3}2n−i, {(1, 2)}i | aσ(i+1), . . . , aσ(2n), c, aσ(1), . . . , aσ(i))

1= (−1)n(2n)! πwt

(wt + 1)! .

Proof. Theorem 2.5.4 says we need to sum over all permutations of the block lengths. We can group
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these permutations by the position of the even length block 2c+ 2 to obtain the following sum

∑
σ∈S2n

2n∑
i=0

Ibl(2aσ(i+1) + 3, . . . , 2aσ(2n) + 3, 2c+ 2, 2aσ(1) + 3, . . . , 2aσ(i) + 3) ∈ πwtQ .

Using Equation 2.6.6, this is converted into the MZV’s above.

Moreover, for each fixed σ ∈ S2n, we obtain a cyclic insertion conjecture identity of the original starting

type as the inner sum. So this is a sum of (2n)! cyclic insertion identities, each of which is expected to

contribute (−1)n πwt

(wt+1)! .

The above instances of the cyclic insertion conjecture have already been proposed. However, the

generalised cyclic insertion conjecture Conjecture 2.5.1 can generate plenty of new identities which can

be numerically verified. Henceforth we may begin to skip some details, since these ideas should now be

familiar.

Notation 2.6.8. It is convenient to write ζC(a1, . . . , an | b1, . . . , bn+1) to mean the sum obtained by

applying the cyclic insertion conjecture to ζ(a1, . . . , an | b1, . . . , bn+1).

We will also use the notation Sym{ x1,...,xn } to mean the sum of over all permutations of the variables

xi. That is

Sym{ x1,...,xn } f(x1, . . . , xn) :=
∑
σ∈Sn

f(xσ(1), . . . , xσ(n))

Conjecture-Example 2.6.9 (ζ(1, 3, 3, 3)). Consider

z = (−1)dζ(1, 3, 3, 3 | a1, a2, a3, a4, a5) ,

where d = 4 +
∑
i ai is the depth. It has even weight t = 10 + 2

∑
i ai, and block encoding

z = Ibl(2a1 + 2, 2a2 + 2, 2a3 + 3, 2a4 + 3, 2a5 + 2) ,

with 5 blocks.

We find

Cz = (−1)dζ(3, 3, 1, 3 | a3, a4, a5, a1, a2) = Ibl(2a3 + 3, 2a4 + 3, 2a5 + 2, 2a1 + 2, 2a2 + 2)

C2z = −(−1)dζ(3, 1, 3, (1, 2) | a4, a5, a1, a2, a3) = Ibl(2a4 + 3, 2a5 + 2, 2a1 + 2, 2a2 + 2, 2a3 + 3)

C3z = (−1)dζ(1, 3, (1, 2), (1, 2) | a5, a1, a2, a3, a4) = Ibl(2a5 + 2, 2a1 + 2, 2a2 + 2, 2a3 + 3, 2a4 + 3)

C4z = (−1)dζ((1, 2), (1, 2), 1, 3 | a2, a3, a4, a5, a1) = Ibl(2a2 + 2, 2a3 + 3, 2a4 + 3, 2a5 + 2, 2a1 + 2) .

Since (−1)t/2 = (−1)1+d, we obtain the conjectural identity

ζC(1, 3, 3, 3 | a1, a2, a3, a4, a5)

= ζ(1, 3, 3, 3 | a1, a2, a3, a4, a5) + ζ(3, 3, 1, 3 | a3, a4, a5, a1, a2) +

− ζ(3, 1, 3, (1, 2) | a4, a5, a1, a2, a3) + ζ(1, 3, (1, 2), (1, 2) | a5, a1, a2, a3, a4) +

+ ζ((1, 2), (1, 2), 1, 3 | a2, a3, a4, a5, a1) ?= − πwt

(wt + 1)! .
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Conjecture-Example 2.6.10 (ζ(1, 3, 3, (1, 2))). Consider

z = (−1)dζ(1, 3, 3, (1, 2) | a1, a2, a3, a4, a5) ,

where d = 5 +
∑
i ai is the depth. It has even weight t = 10 + 2

∑
i ai, and block encoding

z = Ibl(2a1 + 2, 2a2 + 2, 2a3 + 3, 2a4 + 2, 2a5 + 3) ,

with 5 blocks.

We find

Cz = (−1)dζ(3, (1, 2), 1, 3 | a3, a4, a5, a1, a2) = Ibl(2a3 + 3, 2a4 + 2, 2a5 + 3, 2a1 + 2, 2a2 + 2)

C2z = −(−1)dζ((1, 2), 1, 3, (1, 2) | a4, a5, a1, a2, a3) = Ibl(2a4 + 2, 2a5 + 3, 2a1 + 2, 2a2 + 2, 2a3 + 3)

C3z = (−1)dζ((1, 2), 1, 3, 3 | a2, a3, a4, a5, a1) = Ibl(2a2 + 2, 2a3 + 3, 2a4 + 2, 2a5 + 3, 2a1 + 2)

C4z = −(−1)dζ(3, 1, 3, 3 | a5, a1, a2, a3, a4) = Ibl(2a5 + 3, 2a1 + 2, 2a2 + 2, 2a3 + 3, 2a4 + 2) .

Since (−1)t/2 = (−1)d, we obtain the conjectural identity

ζC(1, 3, 3, (1, 2) | a1, a2, a3, a4, a5)

= ζ(1, 3, 3, (1, 2) | a1, a2, a3, a4, a5) + ζ(3, (1, 2), 1, 3 | a3, a4, a5, a1, a2) +

− ζ((1, 2), 1, 3, (1, 2) | a4, a5, a1, a2, a3) + ζ((1, 2), 1, 3, 3 | a2, a3, a4, a5, a1) +

− ζ(3, 1, 3, 3 | a5, a1, a2, a3, a4) ?= πwt

(wt + 1)! .

Theorem 2.6.11. Applying Theorem 2.5.4 to the identity in Conjecture-Example 2.6.9 above, shows

the following identity holds

Sym{ 1,2,5 } Sym{ 3,4 }
(
ζC(1, 3, 3, 3 | a1, a2, a3, a4, a5)

− ζC(1, 3, 3, (1, 2) | a1, a2, a3, a5, a4)
) 1= −4! πwt

(wt + 1)! .

Notice this also works as a symmetrisation of Conjecture-Example 2.6.10.

Proof. If we symmetrise the above identity, we must sum over all permutations of block lengths. There

are 5! = 120 permutations. These are grouped into 5!/5 = 24 cyclic insertion identities. The odd

lengths can be permuted in 3! = 6 ways without changing the type of MZV’s which appear. Similarly

the even lengths can be permuted in 2! = 2 ways without changing the types of MZV’s which appear.

This reduces the number of permutations to consider to

5!
5 · 2! · 3! = 2 .

These ‘basic’ permutations are

Ibl(2a1 + 2, 2a2 + 2, 2a3 + 3, 2a4 + 3, 2a5 + 2) and

Ibl(2a1 + 2, 2a2 + 2, 2a3 + 3, 2a5 + 2, 2a4 + 3) .
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They do not differ by a cyclic shift because in the first the odd length block are consecutive, and in

the second the odd length blocks are separated by 1. They respectively correspond to the MZV’s

(−1)dζ(1, 3, 3, 3 | a1, a2, a3, a4, a5) and

− (−1)dζ(1, 3, 3, (1, 2) | a1, a2, a3, a5, a4) ,

where d = 4 +
∑
i ai is the depth of the first MZV.

To get all permutations from these, we sum over the cyclic shifts, giving the cyclic insertion terms

above. We also sum over all permutations of a1, a2, a5, and all permutations of a3, a4, giving the

Sym{ 1,2,5 } and Sym{ 3,4 }’s. Finally, each of the 24 = 4! cyclic insertion identities is expected to

contribute − πwt

(wt+1)! to the total.

Remark 2.6.12. In the case where the number of blocks n is composite, more care is necessary when

choosing the representatives of all permutations modulo cyclic shifts, permutations of evens lengths

and permutations of odd lengths. This is because S{ even lengths } × S{ odd lengths } × Cn no longer acts

freely on Sn.

For example in the case n = 9, the block decomposition

(2a4 + 3, 2a5 + 3, 2a6 + 2, 2a7 + 3, 2a8 + 3, 2a9 + 2, 2a1 + 3, 2a2 + 3, 2a3 + 2)

is obtained from

(2a1 + 3, 2a2 + 3, 2a3 + 2, 2a4 + 3, 2a5 + 3, 2a6 + 2, 2a7 + 3, 2a8 + 3, 2a9 + 2)

in two ways. It is obtained either by a cyclic shift of 3 left, or by permuting even lengths as (a3, a6, a9)

and the odd lengths as (a1, a4, a7)(a2, a5, a8).

To work out the number of representatives, one could use Burnside’s counting theorem. To work

out the representatives, one can always first quotient by Cn and by the larger of S{ even lengths } or

S{ odd lengths }.

Conjecture-Example 2.6.13. Consider

z = ζ(1, 3, 1, 3, 3, 3 | a1, a2, a3, a4, a5, a6, a7) ,

where d = 6+
∑
i ai is the depth. The weight t = 14+2

∑
i ai is even. And (−1)t/2 = (−1)d+1 = −(−1)d.

So applying the cyclic operator C gives the conjectural identity

ζC(1, 3, 1, 3, 3, 3 | a1, a2, a3, a4, a5, a6, a7)

= ζ(1, 3, 1, 3, 3, 3 | a1, a2, a3, a4, a5, a6, a7) +

+ ζ(1, 3, 3, 3, 1, 3 | a3, a4, a5, a6, a7, a1, a2) +

+ ζ(3, 3, 1, 3, 1, 3 | a5, a6, a7, a1, a2, a3, a4) +

− ζ(3, 1, 3, 1, 3, (1, 2) | a6, a7, a1, a2, a3, a4, a5) +
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+ ζ(1, 3, 1, 3, (1, 2), (1, 2) | a7, a1, a2, a3, a4, a5, a6) +

+ ζ(1, 3, (1, 2), (1, 2), 1, 3 | a2, a3, a4, a5, a6, a7, a1) +

+ ζ((1, 2), (1, 2), 1, 3, 1, 3 | a4, a5, a6, a7, a1, a2, a3)

?= − πwt

(wt + 1)! .

Theorem 2.6.14. The motivically proven symmetrisation of Conjecture-Example 2.6.13 is

Sym{ a1,a2,a3,a4,a7 } Sym{ a5,a6 }

(
ζC(1, 3, 1, 3, 3, 3 | a1, a2, a3, a4, a5, a6, a7) +

− ζC(1, 3, (1, 2), 1, 3, 3 | a1, a2, a3, a5, a4, a6, a7) +

+ ζC(1, 3, 3, 1, 3, 3 | a1, a2, a5, a3, a4, a6, a7)
)

1= −6! πwt

(wt + 1)! .

Proof. The integral corresponding to z has block decomposition

Ibl(2a1 + 2, 2a2 + 2, 2a3 + 2, 2a4 + 2, 2a5 + 3, 2a6 + 3, 2a7 + 2) ,

with 7 block.

We must sum over all permutations of the lengths. Permuting the even block lengths 2a1 + 2, 2a2 +

2, 2a3 + 2, 2a4 + 2, 2a7 + 2 in 5! ways, and the odd block lengths 2a5 + 3, 2a6 + 3 in 2! ways, will not

change the type of MZV’s which occur. This gives the Sym{ a1,a2,a3,a4,a7 } and Sym{ a5,a6 }. We can

also group together the terms which come from the same cyclic insertion identity. This means grouping

together 7 cyclic permutations of each block length.

This leaves 7!
7·5!2! = 3 permutations to consider. We find

Ibl(2a1 + 2, 2a2 + 2, 2a3 + 2, 2a4 + 2, 2a5 + 3, 2a6 + 3, 2a7 + 2)

Ibl(2a1 + 2, 2a2 + 2, 2a3 + 2, 2a5 + 3, 2a4 + 2, 2a6 + 3, 2a7 + 2)

Ibl(2a1 + 2, 2a2 + 2, 2a5 + 3, 2a3 + 2, 2a4 + 2, 2a6 + 3, 2a7 + 2) ,

which give the MZV’s above.

Conjecture-Example 2.6.15. Consider

z = (−1)dζ(1, 3, 3, 3, 3, 3 | a1, a2, a3, a4, a5, a6, a7) ,

where d = 6+
∑
i ai is the depth. The weight t = 16+2

∑
i ai is even. And (−1)t/2 = (−1)d+2 = (−1)d.

So applying the cyclic operator C gives the conjectural identity

ζC(1, 3, 3, 3, 3, 3 | a1, a2, a3, a4, a5, a6, a7)

= ζ(1, 3, 3, 3, 3, 3 | a1, a2, a3, a4, a5, a6, a7) +

+ ζ(3, 3, 3, 3, 1, 3, | a3, a4, a5, a6, a7, a1, a2) +

− ζ(3, 3, 3, 1, 3, (1, 2) | a4, a5, a6, a7, a1, a2, a3) +
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+ ζ(3, 3, 1, 3, (1, 2), (1, 2) | a5, a6, a7, a1, a2, a3, a4) +

− ζ(3, 1, 3, (1, 2), (1, 2), (1, 2) | a6, a7, a1, a2, a3, a4, a5) +

+ ζ(1, 3, (1, 2), (1, 2), (1, 2), (1, 2) | a7, a1, a2, a3, a4, a5, a6) +

+ ζ((1, 2), (1, 2), (1, 2), (1, 2), 1, 3 | a2, a3, a4, a5, a6, a7, a1)

?= πwt

(wt + 1)! .

Theorem 2.6.16. The motivically proven symmetrisation of Conjecture-Example 2.6.15 is

Sym{ a1,a2,a7 } Sym{ a3,a4,a5,a6 }

(
ζC(1, 3, 3, 3, 3, 3 | a1, a2, a3, a4, a5, a6, a7) +

− ζC(1, 3, 3, 3, 3, (1, 2) | a1, a2, a3, a4, a5, a7, a6) +

+ ζC(1, 3, 3, 3, (1, 2), (1, 2) | a1, a2, a3, a4, a7, a5, a6) +

− ζC(1, 3, 3, (1, 2), (1, 2), (1, 2) | a1, a2, a3, a7, a4, a5, a6) +

+ ζC((1, 2), 1, 3, (1, 2), (1, 2), (1, 2) | a1, a3, a2, a4, a7, a5, a6)
)

1= 6! πwt

(wt + 1)! .

Proof. The integral corresponding to z has block decomposition

Ibl(2a1 + 2, 2a2 + 2, 2a3 + 3, 2a4 + 3, 2a5 + 3, 2a6 + 3, 2a7 + 2) ,

with seven blocks.

We must sum over all permutations of the lengths. Permuting the even block lengths 2a1 + 2, 2a2 +

2, 2a7 + 2 in 3! ways, and the odd block lengths 2a3 + 3, 2a4 + 3, 2a5 + 3, 2a6 + 3 in 4! ways, will not

change the type of MZV’s which occur. This gives the Sym{ a1,a2,a7 } and Sym{ a3,a4,a5,a6 }. We can

also group together the terms which come from the same cyclic insertion identity. This means grouping

together 7 cyclic permutations of each block length.

This leaves 7!
7·3!4! = 5 permutations to consider. We find

Ibl(2a1 + 2, 2a2 + 2, 2a3 + 3, 2a4 + 3, 2a5 + 3, 2a6 + 3, 2a7 + 2)

Ibl(2a1 + 2, 2a2 + 2, 2a3 + 3, 2a4 + 3, 2a5 + 3, 2a7 + 2, 2a6 + 3)

Ibl(2a1 + 2, 2a2 + 2, 2a3 + 3, 2a4 + 3, 2a7 + 2, 2a5 + 3, 2a6 + 3)

Ibl(2a1 + 2, 2a2 + 2, 2a3 + 3, 2a7 + 2, 2a4 + 3, 2a5 + 3, 2a6 + 3)

Ibl(2a1 + 2, 2a3 + 3, 2a2 + 2, 2a4 + 3, 2 + 2a7, 2a5 + 3, 2a6 + 3) ,

which give the MZV’s above.

It should be clear that we can continue stating conjectural identities, and producing provably true

symmetrised versions which hold motivically, ad nauseum.

Before finishing this section, we will give two further examples of the cyclic insertion conjecture; one
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example in the odd weight case, and one example of what happens when it is applied in a ‘degenerate’

case.

Conjecture-Example 2.6.17. Consider

z = (−1)dζ(1, 3, 3 | a1, a2, a3, a4) .

where d = 3 +
∑
i ai. The weight 7 + 2

∑
i ai is odd.

Applying the cyclic operator leads to the identity

ζC(1, 3, 3 | a1, a2, a3, a4) = ζ(1, 3, 3 | a1, a2, a3, a4) + ζ(3, 1, 3 | a3, a4, a1, a2) +

− ζ(1, 3, (1, 2) | a4, a1, a2, a3)− ζ((1, 2), 1, 3 | a2, a3, a4, a1)
?= 0 .

(There is no point producing a symmetrisation in this case, since the terms will cancel pairwise using

the duality of MZV’s.)

Remark 2.6.18. It should be mentioned here that the above identity occurs when trying to investigate

the exact BBBL cyclic insertion conjecture motivically. When computing D<N , and attempting to

check it vanishes, one obtains this combination of MZV’s. In order for D<N to vanish this combination

needs to be 0 motivically. A similar feature holds in other cases of the generalised cyclic insertion

conjecture. See Example 2.6.19 a) for a specific example of this phenomenon.

This suggests that it might be possible to partially tackle the general conjecture motivically using

some kind of recursion procedure. Indeed, Glanois [Gla16] has a notion of families of identities that

are stable under the derivations. This allows her to lift analytically known families of identities to

motivic identities, via recursion. The procedure, though, requires an analytic version of the identity to

start the procedure, and to compute the rational at each step.

Other versions of cyclic insertion do always appear when computing the derivations D2k+1. A

subsequence which crosses i blocks, has α letters before it starts, and β letters after it finishes (as in

Definition 2.2.29), gives rise to the following term in D2k+1.

Imbl(`j , . . . , `n, `1, `2, . . . , `i, `i+1, . . . , `j−1)

 ILbl(`1 − α, `2, . . . , `i−1, `i − β)⊗ Imbl(`j , . . . , `n, `1 + · · ·+ `i − (2k + 1), `i+1, . . . , `j−1) .

By taking those cases where the blocks `1, . . . , `i are contiguous, we can mark the corresponding

subsequence, as above. Thus in D2k+1 we obtain the (n+ 1− i)-term cyclic insertion identity

ILbl(`1 − α, `2, . . . , `i−1, `i − β)⊗
∑
cycle

Imbl(`1 + · · ·+ `i − (2k + 1), `i+1, . . . , `n) .

The cases were `1, . . . , `i are not contiguous do not contribute anything to this, since the corresponding

subsequence does not exist here.
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One can potentially use this to make progress towards the conjecture. Knowledge of the cyclic insertion

conjecture at all weights < N could potentially be used to prove a motivic version of the cyclic insertion

conjecture at weight N via cancellation in the derivations. However, a complete proof of the cyclic

insertion conjecture at weight N would still require explicitly evaluating the rational factor, which

cannot yet be done motivically. It is therefore unlikely that the conjecture can be resolved only using

motivic MZV’s,

Moreover, the computation and simplification of D<N in the odd weight cases appears to require

explicitly eliminating products in the IL factor. See Example 2.6.19 b) for an example. In [Gla16],

Glanois establishes new types of relations on the IL integrals, particularly the so-called �-antipode

relations, which could potentially be useful in this regard.

Example 2.6.19. a) For example, trying to prove ζC(1, 3, 1, 3 | 0, 0, 0, 1, 2) = ζC(1, 3, 1, 2, 3, 2, 2) 1=
1

15!π
14 motivicall y leads to the following computation.

D3ζ
m
C (1, 3, 1, 2, 3, 2, 2) = −3ζL(3)⊗ ζmC (1, 2, 2, 3, 3) + 3ζL(3)⊗ ζmC (1, 2, 3, 2, 3)

= −3ζL(3)⊗ ζmC (1, 3, 3 | 0, 2, 0, 0) + 3ζL(3)⊗ ζmC (1, 3, 3 | 0, 1, 1, 0) .

To conclude D3 vanishes, we need to use (a motivic version of) Conjecture-Example 2.6.17, to say each

summand is 0.

b) Moreover, trying to prove motivically that ζC(1, 3, 3 | 0, 2, 0, 0) = ζC(1, 2, 2, 3, 3) = 0 leads to the

following computation (after replacing ζm(1, 3) = 1
3ζ

m(2, 2)).

D7ζC(1, 3, 3 | 0, 2, 0, 0) = (−5ζL(1, 3, 3)− ζL(2, 2, 3)− ζL(2, 3, 2)− 2ζL(3, 1, 3) +

− 2ζL(3, 2, 2)− 3ζL(2, 1, 1, 3))⊗ ζm(2, 2) .

To conclude D7 vanishes, we need to recognise the L factor can be written

= −ζL(2)ζL(2, 3)− 2ζL(2)ζL(3, 2) + 2ζL(3)ζL(2, 2) .

This does now vanish because in the L factor we work modulo products.

Finally, here is an example of cyclic insertion in a ‘degenerate’ case.

Conjecture-Example 2.6.20. Consider

z = (−1)dζ(3, (1, 2), {2}a, (1, 2), 1, 3, {2}a, 3, 3, (1, 2), {2}a) ,

where d = 11 + 3a is the depth. The weight t = 22 + 6a is even. Notice we have (−1)d = (−1)t/2.

If we apply C in this case we obtain

Cz = −(−1)dζ((1, 2), {2}a, (1, 2), 1, 3, {2}a, 3, 3, (1, 2), {2}a, (1, 2))

C2z = −(−1)dζ({2}a, 3, 3, (1, 2), {2}a, (1, 2), 1, 3, {2}a, 3, 3) .
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Then, surprisingly, we have C3z = z. So we have
∑8
i=0 Ciz = 3

∑2
i=0 Ci, and by dividing through we

obtain the following conjectural identity

ζ(3, (1, 2), {2}a, (1, 2), 1, 3, {2}a, 3, 3, (1, 2), {2}a) +

− ζ((1, 2), {2}a, (1, 2), 1, 3, {2}a, 3, 3, (1, 2), {2}a, (1, 2)) +

− ζ({2}a, 3, 3, (1, 2), {2}a, (1, 2), 1, 3, {2}a, 3, 3)

?= 3
9

πwt

(wt + 1)! .

One can check numerically this appears to be the case, to at least 5000 decimal places, for various

small values of a.

2.7 Other motivically provable symmetrisations

The above framework shows that all cyclic insertion identities can be sufficienly symmetrised in order

to obtain a motivically provable identity. The symmetrisation procedure above happens in a very

particular way. This means that there are plenty of motivically provable identities which do hold, but

fall outside the scope of this framework. In this section we will present some identities that can be

motivically proven, but not using Theorem 2.5.4.

2.7.1 ζC(1, 3, 3, (1, 2) | 0, 0, 0, 0, n)

Theorem 2.7.1. The following identity, a cyclic insertion identity on the nose, can be motivically

proven.

ζC(1, 3, 3, (1, 2) | 0, 0, 0, 0, n)

= ζ(1, 3, 3, (1, 2) | 0, 0, 0, 0, n) + ζ(3, (1, 2), 1, 3, | 0, 0, n, 0, 0) +

− ζ((1, 2), 1, 3, (1, 2) | 0, n, 0, 0, 0) + ζ((1, 2), 1, 3, 3 | 0, 0, 0, n, 0) +

− ζ(3, 1, 3, 3 | n, 0, 0, 0, 0) 1= πwt

(wt + 1)!

The identity would, a priori, fall into the symmetrisation given in Theorem 2.6.11, and include 6 times

as many terms. But, by good fortune, this is not necessary.

Proof. This is a cyclic insertion conjecture identity. The generating MZV has depth d = 5 + n, and

the weight t = 10 + 2n. Since (−1)d = (−1)t/2, we expect the value to be + πwt

(wt+1)! .

To really begin the proof, let’s first write down the terms generated in this identity in their full form.

We find

ζ({2}n, 1, 3, 3, 1, 2) + ζ(3, 1, 2, 1, {2}n, 3)− ζ(1, 2, 1, {2}n, 3, 1, 2) +

+ ζ(1, 2, 1, 3, 3, {2}n)− ζ(3, {2}n, 1, 3, 3) 1= π2n+10

(2n+ 11)!
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Now we compute D2`+1 on each term of this identity.

First term

The first term of this identity corresponds to the integral

Im(0(10)n1 | 10 | 010 | 01 | 101) = Im((01)n+1 ‖ 10 | 010 | 01 | 101) .

We distinguish subsequences (hence terms of Dk) by their location on the integral – either in the Left

half before ‖, in the Right half after it, or covering both halves. Since k = 2`+ 1 is necessarily odd, we

will track the operator a term contributes to by `.

L: Any subsequence lying in the left half is automatically trivial because it starts and ends with the

same symbol (remember k is odd).

R: We can systematically list the terms by labelling the positions in the string

Im((01)n+1 ‖
1
1

2
0

3
0

4
1

5
0

6
0

7
1

8
1

9
0

10
1 ) ,

and looking for labels of the same parity which contain different letters. We find

1–5: IL(10010)⊗ Im((01)n+11 | 001101) for ` = 1 (1Ra)

1–9: IL(100100110)⊗ Im((01)n+11 | 01) for ` = 3 (1Rb)

2–8: IL(0010011)⊗ Im((01)n+110 | 101) for ` = 2 (1Rc)

2–10: IL(001001101)⊗ Im((01)n+110 | 1) for ` = 3 (1Rd)

3–7: IL(01001)⊗ Im((01)n+1100 | 1101) for ` = 1 (1Re)

6–10: IL(01101)⊗ Im((01)n+1100100 | 1) for ` = 1 (1Rf)

Notice that term (1Ra) cancels with (1Re).

LR: By replicating the 01 pattern from the left hand side through into the right, we see that the only

terms which can contribute are those with odd label and letter 1, or those with even label and letter 0.

We find for k = 2`+ 1, the following possibilities

end at 1: IL(01(01)`1)⊗ Im((01)n−`0 | 1001001101) for 1 ≤ ` ≤ n (1LRa)

end at 2: IL(1(01)`10)⊗ Im((01)n−`01 | 001001101) for 1 ≤ ` ≤ n (1LRb)

end at 6: IL(1(01)`−2100100)⊗ Im((01)n−`−201 | 01101) for 2 ≤ ` ≤ n+ 2 (1LRc)

end at 7: IL(01(01)`−31001001)⊗ Im((01)n−`−30 | 1101) for 3 ≤ ` ≤ n+ 3 (1LRd)

Second Term

The integral is Im(01001101 ‖ (10)n+1 ‖ 01). This time we have terms in the Middle of the two ‖’s.

We get terms
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L: IL(01001)⊗ Im(01 | 101(10)n+101) for ` = 1 (2La)

IL(01101)⊗ Im(0100 | 1(10)n+101) for ` = 1 (2Lb)

M and R: None.

LM: IL(01001101(10)`−31)⊗ Im(0 | 10(10)n−`+301) for 3 ≤ ` ≤ n+ 3 (2LMa)

IL(1001101(10)`−310)⊗ Im(01 | 0(10)n−`+301) for 3 ≤ ` ≤ n+ 3 (2LMb)

IL(001101(10)`−21)⊗ Im(010 | 10(10)n−`+201) for 2 ≤ ` ≤ n+ 2 (2LMc)

IL(101(10)`−110)⊗ Im(010011 | 0(10)n−`+101) for 1 ≤ ` ≤ n+ 1 (2LMd)

IL(01(10)`1)⊗ Im(0100110 | 10(10)n−`01) for 1 ≤ ` ≤ n (2LMe)

IL(1(10)`10)⊗ Im(01001101 | 0(10)n−`01) for 1 ≤ ` ≤ n (2LMf)

MR: IL(10(10)`0)⊗ Im(01001101(10)n−`1 | 01) for 1 ≤ ` ≤ n (2MRa)

IL(0(10)`01)⊗ Im(01001101(10)n−`10 | 1) for 1 ≤ ` ≤ n (2MRb)

LMR: IL(01101(10)n+101)⊗ Im(0100 | 1) for ` = n+ 3 (2LMRa)

IL(1101(10)n+10)⊗ Im(01001 | 01) for ` = n+ 2 (2LMRb)

Third Term

The integral is Im(01101 ‖ (10)n+1 ‖ 01101)

L: IL(01101)⊗ Im(0 | 1(10)n+101101) for ` = 1 (3La)

M: None.

R: IL(01101)⊗ Im(01101(10)n+10 | 1) for ` = 1 (3Ra)

LM: IL(101(10)`−110)⊗ Im(011 | 0(10)n−`+101101) for 1 ≤ ` ≤ n+ 1 (3LMa)

IL(01(10)`1)⊗ Im(0110 | 10(10)n−`01101) for 1 ≤ ` ≤ n (3LMb)

IL(1(10)`10)⊗ Im(01101 | 0(10)n−`01101) for 1 ≤ ` ≤ n (3LMc)

MR: IL(10(10)`0)⊗ Im(01101(10)n−`1 | 01101) for 1 ≤ ` ≤ n (3MRa)

IL(0(10)`01)⊗ Im(01101(10)n−`10 | 1101) for 1 ≤ ` ≤ n (3MRb)

LMR: IL(01101(10)n+101)⊗ Im(0 | 1101) for ` = n+ 3 (3LMRa)

IL(1101(10)n+10)⊗ Im(01 | 01101) for ` = n+ 2 (3LMRb)

IL(101(10)n+10110)⊗ Im(011 | 01) for ` = n+ 3 (3LMRc)

IL(01(10)n+1011)⊗ Im(0110 | 101) for ` = n+ 2 (3LMRd)
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IL(01(10)n+101101)⊗ Im(0110 | 1) for ` = n+ 3 (3LMRe)

IL(1(10)n+10110)⊗ Im(01101 | 01) for ` = n+ 2 (3LMRf)

Fourth term

The integral is Im(0110110010 ‖ (01)n+1).

L: IL(01101)⊗ Im(0 | 110010(01)n+1) for ` = 1 (4La)

IL(011011001)⊗ Im(0 | 10(01)n+1) for ` = 3 (4Lb)

IL(1101100)⊗ Im(01 | 010(01)n+1) for ` = 2 (4Lc)

IL(110110010)⊗ Im(01 | 0(01)n+1) for ` = 3 (4Ld)

IL(10110)⊗ Im(011 | 0010(01)n+1) for ` = 1 (4Le)

IL(10010)⊗ Im(011011 | 0(01)n+1) for ` = 1 (4Lf)

Notice that term (4La) cancels with (4Le).

LR: IL(10110010(01)`−30)⊗ Im(011 | 01(01)n−`+3) for 3 ≤ ` ≤ n+ 3 (4LRa)

IL(0110010(01)`−301)⊗ Im(0110 | 1(01)n−`+3) for 3 ≤ ` ≤ n+ 3 (4LRb)

IL(110010(01)`−20)⊗ Im(01101 | 01(01)n−`+2) for 2 ≤ ` ≤ n+ 2 (4LRc)

IL(010(01)`−101)⊗ Im(01101100 | 1(01)n−`+1) for 1 ≤ ` ≤ n+ 1 (4LRd)

IL(10(01)`0)⊗ Im(011011001 | 01(01)n−`) for 1 ≤ ` ≤ n (4LRe)

IL(0(01)`01)⊗ Im(0110110010 | 1(01)n−`) for 1 ≤ ` ≤ n (4LRf)

Fifth term

The integral is Im(010 ‖ (01)n+1 ‖ 1001001)).

R: IL(10010)⊗ Im(010(01)n+11 | 001) for ` = 1 (5Ra)

IL(01001)⊗ Im(010(01)n+1100 | 1) for ` = 1 (5Rb)

LM: IL(010(01)`−101)⊗ Im(0 | 1(01)n+1−`1001001) for 1 ≤ ` ≤ n+ 1 (5LMa)

IL(10(01)`0)⊗ Im(01 | 01(01)n−`1001001) for 1 ≤ ` ≤ n (5LMb)

IL(0(01)`01)⊗ Im(010 | 1(01)n−`1001001) for 1 ≤ ` ≤ n (5LMc)

MR: IL(01(01)`1)⊗ Im(010(01)n−`0 | 1001001) for 1 ≤ ` ≤ n (5MRa)

IL(1(01)`10)⊗ Im(010(01)n−`01 | 001001) for 1 ≤ ` ≤ n (5MRb)

IL(1(01)`−2100100)⊗ Im(010(01)n−`+201 | 01) for 2 ≤ ` ≤ n+ 2 (5MRc)

IL(01(01)`−31001001)⊗ Im(010(01)n−`+30 | 1) for 3 ≤ ` ≤ n+ 3 (5MRd)

LMR: IL(010(01)n+11001)⊗ Im(0 | 1001) for ` = n+ 3 (5LMRa)
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IL(10(01)n+1100)⊗ Im(01 | 01001) for ` = n+ 2 (5LMRb)

IL(10(01)n+110010)⊗ Im(01 | 001) for ` = n+ 3 (5LMRc)

IL(0(01)n+11001)⊗ Im(010 | 1001) for ` = n+ 2 (5LMRd)

Now we attempt to see which terms cancel, and how they do so. The following series of lemmas identify

the cancellation between all terms in D<N .

Lemma 2.7.2. The remaining terms from (1Ra)–(1Rf) cancel with those from (4La)–(4Lf), as follows

Im((01)n+1 ‖ 10 | 010 | 01 | 101)↔ Im((01)n+1 ‖ 101 | 10 | 010 | 01)

= Im(01 | 101 | 10 | 010 ‖ (01)n+1)

Lemma 2.7.3. The terms from (1LRa)–(1LRb) cancel with the terms from (2MRa)–(2MRb), as

follows

Im((01)n+1 ‖ 10 | 010 | 01 | 101)↔ Im(01 ‖ (10)n+1 ‖ 010 | 01 | 101)

= Im(010 | 01 | 101 ‖ (10)n+1 ‖ 01) .

Lemma 2.7.4. The terms (1LRc)–(1LRd) cancels with the terms (5MRc)–(5MRd), as follows

Im((01)n+1 ‖ 10 | 010 | 01 | 101)↔ Im(01 | 101 | 10 ‖ (01)n+1 ‖ 101)

= Im(010 ‖ (01)n+1 ‖ 10 | 010 | 01)

Lemma 2.7.5. The terms (2La) cancel with (3Ra), and (2Lb) cancel with (3La) via

Im(010 | 01 | 101 ‖ (10)n+1 ‖ 01)↔ Im(01 | 101 ‖ (10)n+1 ‖ 01 | 101) ,

and

Im(010 | 01 | 101 ‖ (10)n+1 ‖ 01)↔ Im(01 | 101 ‖ (10)n+1 ‖ 01 | 101) .

Lemma 2.7.6. The terms (2LMa)–(2LMc) cancel with (4LRa)–(4LRc) via

Im( 010 | 01 | 101 ‖ (10)n+1 ‖ 01)↔ Im((01)n+1 ‖ 101 | 10 | 010 | 01)

= Im(01 | 101 | 10 | 010 ‖ (01)n+1) .

Lemma 2.7.7. The terms (2LMd)–(2LMf) cancel with (3LMa)–(3LMc) via

Im(010 | 01 | 101 ‖ (10)n+1 ‖ 01)↔ Im(010 | 01 ‖ (10)n+1 ‖ 010 | 01)

= Im(01 | 101 ‖ (10)n+1 ‖ 01 | 101) .

Lemma 2.7.8. The terms (4LRd)–(4LRf) cancel with (5LMa)–(5LMc) via

Im(01 | 101 | 10 | 010 ‖ (01)n+1 ↔ Im(01 | 101 | 10 ‖ (01)n+1 ‖ 101 )
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= Im( 010 ‖ (01)n+1 ‖ 10 | 010 | 01) .

Lemma 2.7.9. The terms (3MRa)–(3MRb) cancel with (5MRa)–(5MRb) via

Im(01 | 101 ‖ (10)n+1 ‖ 01 | 101)↔ Im(01 | 101 | 10 ‖ (01)n+1 ‖ 101)

= Im(010 ‖ (01)n+1 ‖ 10 | 010 | 01) .

Lemma 2.7.10. The terms (2LMRa)–(2LMRb) cancel with (3LMRa)–(3LMRb) via

Im(010 | 01 | 101 ‖ (10)n+1 ‖ 01)↔ Im(010 | 01 ‖ (10)n+1 ‖ 010 | 01)

= Im(01 | 101 ‖ (10)n+1 ‖ 01 | 101) .

Lemma 2.7.11. The terms (3LMRc)–(3LMRf) cancel with (5LMRa)–(5LMRb) via

Im(01 | 101 ‖ (10)n+1 ‖ 01 | 101)↔ Im(01 | 101 | 10 ‖ (01)n+1 ‖ 101)

= Im(010 ‖ (01)n+1 ‖ 10 | 010 | 01) .

These lemmas show that all the terms in D<N cancel. So using Brown’s characterisation of kerD<N

in Theorem 1.2.15, we conclude that this combination is a rational multiple of πwt, as claimed.

Remark 2.7.12. Alongside the usual reflection of blocks, this cancellation could be seen to involve a

kind of ‘splice’ operation where a substring is cut out from one place, and stitched into a different

place. This occurs in Lemma 2.7.5. It also involves a kind of ‘extended reflection’. For example in

cancelling (1Ra) with (1Re), the subsequence lies over blocks 2 and 3, but the cancellation occurs by

reflecting blocks 2, 3 and 4.

2.7.2 ∑
weak compositions ζC(1, 3, 3, 3, | a1, . . . , a5)

We can give a different symmetrisation of the ζC(1, 3, 3, 3 | a1, . . . , a5) identity from Theorem 2.6.11.

This symmetrisation is very reminiscent of the Bowman-Bradley theorem from [BB02] (Theorem 2.1.7

above), involving a sum over all weak compositions. (Recall, weak compositions are compositions∑
i ai = m, where parts ai = 0 are allowed).

Theorem 2.7.13. The following identity is motivically provable∑
a1+···+a5=m

ai≥0

ζC(1, 3, 3, 3 | a1, . . . , a5) 1= −
(

5 +m

m

)
πwt

(wt + 1)! .

Proof sketch. Firstly, it is a standard result that there are
(5+m
m

)
weak compositions of m into 5 parts.

Since the generating MZV has depth 4 +
∑
ai, and weight t = 10 + 2

∑
i ai, we have (−1)d = −(−1)t/2,

we expect each cyclic insertion identity to contribute − πwt

(wt+1)! .

Now we need to show all the terms in D<N cancel. We will only sketch the ideas for this proof, without

making all of the details precise.
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We have five types of terms with the corresponding integrals (up to ±)

ζ(1, 3, 3, 3 | a, b, c, d, e) = I((01)a+1(10)b+1(01)c+1 00 (10)d+1(01)e+1) (Type 1)

ζ(3, 3, 1, 3 | a, b, c, d, e) = I((01)a+1 00 (10)b+1(01)c+1(10)d+1(01)e+1) (Type 2)

−ζ(3, 1, 3, (1, 2) | a, b, c, d, e) = I( 0 (10)a+1(01)b+1(10)c+1(01)d+1(10)e+1 1 ) (Type 3)

ζ(1, 3, (1, 2), (1, 2) | a, b, c, d, e) = I((01)a+1(10)b+1(01)c+1(10)d+1 11 (01)e+1) (Type 4)

ζ((1, 2), (1, 2), 1, 3 | a, b, c, d, e) = I((01)a+1(10)b+1 11 (01)c+1(10)d+1(01)e+1) . (Type 5)

Any subsequence which does not intersect 00 , and does not intersect 11 , can be made to cancel by

reflecting the blocks which contain the subsequence. For (Type 1), this entails

I(

reflect︷ ︸︸ ︷
(0 1)a+1(10)b+1(01)c+1 00 (10)d+1(01)e+1)↔ I((01)b+1(1 0)a+1(01)c+1 00 (10)d+1(01)e+1) .

Notice that the cancellation happens within an integral of the same type, with some permutation of

the lengths ai. The sum over all weak compositions includes all permutations of the individual ai, so

this cancellation is okay.

In integrals of (Type 1), (Type 2), (Type 4) or (Type 5), any subsequence which crosses 00 or 11

and ends away from it can be made to cancel by reflecting the containing blocks. In this case, some

integrals of (Type 1) cancel with integrals of (Type 2), with some permutation of the ai, as follows

I(

reflect︷ ︸︸ ︷
(0 1)a+1(10)b+1(01)c+1 00 (10)d+1(01)e+1)↔ I((01)d+1 00 (10)c+1(01)b+1(1 0)a+1(01)e+1).

However, other integrals of (Type 1) cancel with further integrals of (Type 1), and some permutation

of the ai. Namely

I((01)a+1(10)b+1

reflect︷ ︸︸ ︷
(0 1)c+1 00 (10)d+1(01)e+1)↔ I((01)a+1(10)b+1(01)d+1 00 (1 0)c+1(01)e+1) .

Similarly, integrals of (Type 4) and (Type 5) cancel, by duality. The sum over all weak compositions

includes all permutations of the individual ai, so this cancellation is okay.

If a subsequence ends at the end of 00 , or starts at the start of 00 , then it can be made to cancel by

reflecting the blocks containing the subsequence. For example

I((01)a+1(10)b+1

reflect︷ ︸︸ ︷
(0 1)c+1 00 (10)d+1(01)e+1)↔ I((01)a+1(10)b+1(01)d+1 00 (1 0)c+1(01)e+1)

shows how some (Type 1) integrals cancel with other (Type 1) integrals, for some permutation of the

ai. This example

I(

reflect︷ ︸︸ ︷
(0 1)a+1(10)b+1(01)c+1 00 (10)d+1(01)e+1)↔ I((01)d+1 00 (10)c+1(01)b+1(1 0)a+1(01)e+1)

shows how some (Type 1)integrals cancel with (Type 2) integrals, for some permutation of the ai. An
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analogous cancellation holds for (Type 4) and (Type 5) integrals by duality.

So far all of the cancellation has happened by using the usual technique of reflecting the blocks containing

the subsequence. Unfortunately, this cannot be used to cancel the last remaining subsequences. The

remaining subsequences we must consider begin, or end, at the midpoint of 00 or 11 . They may

also go to the end points of the (Type 3) integral.

We can cancel these subsequences on (Type 2) and (Type 3) integrals, with some permutation of the

ai as follows

I((01)a+1 0

reflect︷ ︸︸ ︷
0 (10)b+1(01)c+1(10)d+1(01)e+1)↔ I( 0 (10)a+1(01)e+1(10)d+1(01)c+1(10)b+1 1 ) .

And by duality, these subsequences on (Type 4) and (Type 3), with some permutation of the ai will

also cancel.

Attempting to cancel by reflecting the blocks for the subsequence

I((01)a+1

reflect︷ ︸︸ ︷
(10)b+1(01)c+1 0 0 (10)d+1(01)e+1)

leads to the subsequence

I((01)a+1 1 (01)c+1(10)b+1 0 (10)d+1(01)e+1) .

But this is not an integral of (Type 1)–(Type 5), since the odd length blocks are no longer consecutive!

Instead, we may cancel the subsequences on (Type 1) integrals as follows

I((01)a+1(10)b
′

reflect︷ ︸︸ ︷
(10)b

′′
(01)c+1 0 0 (10)d+1(01)(01)e)

l

I((01)a+1(10)b
′

reflect︷ ︸︸ ︷
(10)(01)d+1 0 0 (10)c+1(01)b

′
(01)e) .

In this case an integral of (Type 1) with lengths ai given by (a, b, c, d, e), cancels with an integral

(Type 1)with lengths ai given by (a, b′, d, c, b′′ + e− 1), where b′ + b′′ = b+ 1. These are two different

compositions, which are not just related by a permutation. A similar cancellation happens with

(Type 5) integrals, by duality. By summing over all weak compositions of the parameters ai, we can

guarantee that this cancellation is okay.

Therefore, if we sum over all weak compositions of the parameters ai, we deduce that all terms in

D<N cancel. By Brown’s characerisation of kerD<N , from Theorem 1.2.15, we have that this sum is

in πwtQ.

Remark 2.7.14. More generally it appears that∑
a1+···+a2n+3=m

ai≥0

ζC({1, 3}n, 3, 3 | a1, . . . , a2n+3) ∈ πwtQ
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is motivically provable. The proof should be obtained by appropriately generalising the above proof.

It appears that one can also give other curious motivically provable symmetrisations for the ζC(1, 3, 3, 3 |

0, 0, 0, 0, n) identity, and others of a similar form. These symmerisations involve a sum taken over a

very specific lists of compositions. One example of this is the following.

ζC(1, 3, 3, 3 | 0, 0, 0, 0, n) + ζC(1, 3, 3, 3 | 0, 0, 0, n, 0) +

+
n−2∑
i=1

ζC(1, 3, 3, 3 | 0, 0, i, 0, n− i) +

+ ζC(1, 3, 3, 3 | 0, 1, 0, n− 1, 0) 1= (n+ 1) πwt

(wt + 1)!

I do not yet know how this fits into the above framework of generating motivically provable identities,

but it suggests that there may be more general ways to cancel terms in D<N .

Remark 2.7.15. By incorporating the new types of cancellation introduced in the above proof, and

any types of cancellation arising from the above remark, it may be possible to obtain a more general

framework for proving motivic identities and generalising Theorem 2.3.8.

2.8 Numerically found block relations, and ranks of relations

In this final section, we would like to mention a number of numerically found identities which can be

expressed rather neatly using the block decomposition. This is very much in the spirit of the original

cyclic insertion conjecture paper [BBBL98]. We will also indicate what fraction of the MZV relations

are obtained by these identities and the cyclic insertion identities.

2.8.1 Other block relations

Notation 2.8.1. We will use the notation Alt{ x1,...,xn } to mean the signed sum over all permutation

of the variables xi. That is

Alt{ x1,...,xn } f(x1, . . . , xn) :=
∑
σ∈Sn

sgn(σ)f(xσ(1), . . . , xσ(n))

In Section 7.2 of the paper [BBBL98], the authors mention that the following identity, distinct from

the cyclic insertion conjecture, appears to hold.

Alt{ a1,a3,a5 } ζ(1, 3, 1, 3 | a1, a2, a3, a4, a5) ?= 0 .

What is not to be remarked on, is that this identity appears to readily generalise to the following

Alt{ ai | i odd } ζ({1, 3}n | a1, . . . , a2n+1) ?= 0 . (2.8.1)

We can try to convert these to block decompositions. In this case, Equation 2.8.1 reads

Alt{ ai | i odd } Ibl(2a1 + 2, 2a2 + 2, . . . , 2a2n+1 + 2) ?= 0 .
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From here it is not too much of a leap to see if arbitrary block lengths work. Indeed we get

Conjecture 2.8.2 (Alternating odd position blocks). Let Ibl(`1, . . . , `2n+1) be a block decomposition

of an even weight integral with > 1 block. We have

Alt{ `i | i odd } Ibl(`1, . . . , `2n+1) ?= 0 .

Conjecture-Example 2.8.3. Consider applying Conjecture 2.8.2 to

z = ζ({3}2n−1, (1, 2) | a1, . . . , a2n+1)

= ±Ibl(2a1 + 3, 2a2 + 3, . . . , 2a2n−2 + 3, 2a2n + 2, 2a2n+1 + 3) .

The only even block length 2a2n + 2 occurs in position 2n. Since the sum is taken over permutations

of the odd positions, this length is unchanged. Therefore every permutation in the sum expresses the

same type of MZV as z.

We obtain

Alt{ ai | i odd } ζ({3}2n−1, (1, 2) | a1, . . . , a2n+1) ?= 0 .

This can be numerically verified in various cases.

Remark 2.8.4. Various other relations appear to hold, which can be described using the block

decomposition. For example

Alt{ a1,a2,a3 }
∑
C7

Ibl(1, 1, a1, 1, a2, n, a3) ?= 0 .

Notice the inner sum looks like a cyclic insertion sum. However, since there are two consecutive blocks

`1 = `2 = 1, Conjecture 2.5.1 does not apply.

Currently these relations are not well structured, having been found in a very ad-hoc manner. Further

investigation may identify larger patterns, and a more overarching structure.

Remark 2.8.5. Notice that in the case of 3 blocks, Conjecture 2.8.2 simply expresses the duality of

iterated integrals, as explained in Remark 2.2.16

2.8.2 Ranks of relations

Finally, it is worth considering what fraction of MZV relations we get from these identities: the cyclic

insertion identities Conjecture 2.5.1, the symmetric insertion identities Theorem 2.5.4, and even the

alternating sum identities Conjecture 2.8.2.

Symmetric and Cyclic: Consider weight t, and furthermore assume t is even. We first consider

how to obtain equations from cyclic and symmetric insertion, which are not trivially linearly dependent.

Let c = [`1, . . . , `2n+1] be a composition of t into an odd number > 1 of parts, with each part `i ≥ 1.

Since the composition with 1 part gives a tautologically true identity, we ignore it.
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If c contains no consecutive `i = `i+1, then c gives rise to a cyclic insertion identity. If c does not

contain two length one blocks `i = `j = 1, then the sum over all permutations is redundant because it

breaks up into cyclic insertion sums. Otherwise, some permutation of c contains a consecutive `i = `i+1

and cyclic insertion doesn’t apply, so we should also compute the symmetric sum for c.

Weight Number of

cyclic

Number of

symmetric

Rank of cyclic and

symmetric

Expected number of

relations 2k−2 − dk
4 3 2 3 3

6 7 5 11 14

8 22 10 31 60

10 62 20 81 249

12 181 37 217 1012

14 535 66 600 4075

16 1614 113 1726 16347

From the table it appears the rank of the cyclic and symmetric relations is simply

rank(cyclic and symmetric) = #cyclic + #symmetric− 1 .

Unless this is prevented by the total number of relations 2k−2 − dk

Alternating: We now consider how to obtain non-trivial equations from the alternating sum

identities, Conjecture 2.8.2. We will restrict ourselves to identities from > 3 blocks. The conjecture

does not apply in the case of 1 block, and in the case of 3 blocks it is simply the duality relation.

If any of the odd positions in the composition c are repeated, then the terms in the alternating sum

identity will trivially cancel to 0. This is because a transposition of these blocks changes the sign of

the summand. Therefore discount these compositions from the list.

Weight Number of

alternating

Rank of alternating Expected number of

relations 2k−2 − dk
4 0 0 3

6 1 1 14

8 7 7 60

10 25 25 249

12 68 68 1012

14 161 161 4075

16 351 351 16347

From the table it appears that the alternating relations are always linearly independent.



2.8. Numerically found block relations, and ranks of relations 94

Both and duality: Lastly, we consider how these sets of relations interact, and how many new

relations they give on top of the duality of MZV’s.

Weight Rank of alternating,

cyclic and symmetric

Rank of Duality Rank of duality,

alternating, cyclic

and symmetric

Expected number of

relations 2k−2 − dk

4 3 1 3 3

6 12 6 13 14

8 38 28 50 60

10 105 120 181 249

12 282 496 657 1012

14 755 2016 2436 4075

16 2066 8128 9247 16347

On top of duality, the relations given by the cyclic, symmetric and alternating sum do not add a

significant number of new relations. By themselves, the cyclic, symmetric and alternating sum relations

appear to be largely independent, and do produce plenty of relations. The discovery of further families

of block relations, as mentioned above, may help close the gap with the expected number of relations

on MZV’s.



Chapter 3

Multiple polylogarithms, the

coproduct and the symbol

In this chapter we review the definitions and theory surrounding polylogarithms and multiple poly-

logarithms (MPL’s). The definition (Definition 3.1.1) of the polylogarithm Lin(x) is motivated by

generalising the Taylor series of − log(1− x). By considering products of polylogarithms, we are lead

naturally to multiple polylogarithms (Definition 3.1.2), and then see how to write MPL’s as iterated

integrals (Theorem 3.1.5). Some reasons for interest in MPL’s are discussed, particularly the existence

of functional equations (Section 3.2) for Lin(x) which play an important role in K-theory and particle

physics calculations.

Next we introduce the symbol of an MPL (Section 3.3). This is an algebraic object which contains

information about the analytic and differential properties of an MPL, and is an important tool for

finding both functional equations and relations between MPL’s. We review Goncharov’s tree definition

(Section 3.3.1) of the symbol (called the ⊗m-invariant, Definition 3.3.4), and see the connection with

iterating the coproduct (Section 3.3.2) on his Hopf algebra of motivic iterated integrals. We also look

at the differential interpretation (Section 3.3.3) of the symbol, and its connection with the differential

forms appearing in iterated integrals. We also review Gangl, Goncharov and Levine’s polygon algebra

and Rhodes’s hook-arrow trees (Section 3.3.4), and their connection with the symbol. We also mention

the Mathematica implementation in Duhr’s PolylogTools package [PT].

Finally we consider the different ‘levels’ of information which can be extracted from the symbol by

looking modulo products (Section 3.4.1), or looking modulo products and depth 1 terms (“modulo δ”

Section 3.4.2). We see also that Nielsen polylogarithms provide an ‘obstruction’ to the rule of thumb

that a symbol vanishing modulo δ can be written in terms of Lin’s (Section 3.4.2.1).

95
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3.1 Definition of polylogarithms and multiple polylogarithms

The s-th polylogarithm function is a generalisation of the usual logarithm function log(z), motivated

by considering the Taylor series of − log(1− z).

The Taylor series of − log(1− z) is

− log(1− z) =
∞∑
n=1

zn

n
.

The exponent of n in the denominator is n1, so we make the following generalisation to define the

polylogarithms as first done by Leibniz [Lei55].

Definition 3.1.1 (Polylogarithm). For s ∈ Z>0, the s-th polylogarithm function Lis(z) is defined by

the following Taylor series

Lis(z) :=
∞∑
n=1

zn

ns
, |z| < 1 .

By taking s = 1, we find that

Li1(z) = − log(1− z) ,

so we recover the usual logarithm, and Lis(z) genuinely does generalise it.

By computing the derivative of Lis(z), one finds

d
dz Lis(z) = Lis−1(z) ,

so one can analytically continue Lis(z) to the cut complex plane C \ [1,∞) by the following integral

Lis(z) =
∫ z

0
Lis−1(t) dt

t
.

In the same way that multiple zeta values can be motivated by considering products of Riemann

zeta values (see Section 1.1.1), one can motivate and define a multiple polylogarithm as in [Gon95b].

Henceforth “multiple polylogarithm” may be abbreviated as MPL.

Definition 3.1.2 (Multiple polylogarithm). Let si ∈ Z>0, then the multiple polylogarithm function

Lis1,...,sk(z1, . . . , zk) is defined by the following series

Lis1,...,sk(z1, . . . , zk) :=
∑

0<n1<n2<···<nk

zn1
1 · · · z

nk
k

ns1
1 · · ·n

sk
k

.

For example, by considering the product Lis(x) Lit(y), we obtain

Lis(x) Lit(y) =
∞∑

n,m=1

xnym

nsmt
.

We can then break the sum over n,m = 1 to ∞ into n < m, n = m, and n > m, to get

=
(∑
n<m

+
∑
n=m

+
∑
n>m

)
xnym

nsmt

= Lis,t(x, y) + Lis+t(xy) + Lit,s(y, x) .
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This is an example of the stuffle product on MPL’s, which should be compared with the analogous

construction on MZV’s in Section 1.1.4.3

Moreover, by taking zi = 1 in the MPL Lis1,...,sk(z1, . . . , zk) we find that

Lis1,...,sk(1, . . . , 1) = ζ(s1, . . . , sk) .

Therefore, the multiple zeta values of Chapter 1 can be viewed as special values of MPL’s, as claimed.

The notions of depth and weight have analogues for MPL’s.

Definition 3.1.3 (MPL weight, MPL depth). Given a MPL Lis1,...,sk(z1, . . . , zk), we make the

following definitions.

• The sum of the indices s1 + · · ·+ sk is called the weight of Lis1,...,sk(z1, . . . , zk).

• The number k of its indices is called the depth of Lis1,...,sk(z1, . . . , zk).

3.1.1 Multiple polylogarithms as iterated integrals

One viewpoint that we will make continual use of in the rest of this thesis is the equivalence between

multiple polylogarithms and certain iterated integrals. Recall the definition of an iterated integral

from Definition 1.1.10 in Section 1.1.3.

The iterated integral

Iγ(x0;x1, . . . , xm;xm+1) =
∫
γ

ω(x1) ◦ · · · ◦ ω(xm) ,

γ a path from x0 to xm+1, is sometimes referred to as a multiple logarithm [Gon98]. It can also called

a hyperlogarithm [p. 8, Gon01], having been considered by under this name by Kummer [Kum40],

Lappo-Danilevsky [LD28], and Poincaré (but as an analytic functions of the upper limit xm+1 only, in

the case where x0 = 0). Here they are considered as multivalued anlaytic functions of x0, . . . , xm+1.

Goncharov [Gon98] gives the following definition of a ‘multiple polylogarithm’ in terms of the above

iterated integral.

Definition 3.1.4 (Goncharov multiple polylogarithm). Let si ∈ Z>0, then the multiple polylogarithm

Is1,...,sk(z1, . . . , zk) is defined by

Is1,...,sk(z1, . . . , zk) := I(0;x1, {0}s1−1, . . . , xk, {0}sk−1; 1) .

Goncharov’s choice to name this Is1,...,sk(z1, . . . , zk) a multiple polylogarithm is justified. The functions

Is1,...,sk and Lis1,...,sk are closely related by the following theorem.

Theorem 3.1.5 (Goncharov, Theorem 2.2 in [Gon01]). Suppose |zi| < 1, for all zi. The functions

Lis1,...,sk and Is1,...,sk are related as follows.

Lis1,...,sk(z1, . . . , zk) = (−1)kIs1,...,sk( 1
z1···zk ,

1
z2···zk , . . . ,

1
zk

) .
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Proof sketch: For simplicity, Goncharov restricts to the case k = 2. This makes the idea of the proof

clear, without getting bogged down when keeping track of all of the details for higher depth. Rhodes

gives a version of this proof with more details than Goncharov in [Rho12].

In the case k = 2, the integral is

(−1)2
∫

0≤t1≤···≤ts1+s2≤1

dt1
t1 − 1

x1x2

∧ dt2
t2
∧ · · · ∧ dts1

ts1

∧ (3.1.1)

∧ dts1+1

ts1+1 − 1
x2

∧ dts1+2

ts1+2
∧ · · · ∧ dts1+s2

ts1+s2

,

and Goncharov claims this is equal to

Lis1,s2(x1, x2) =
∑

0<n1<n2

xn1
1 xn2

2
ns1

1 n
s2
2

.

We can develop
dt1

t1 − 1
x1x2

as a geometric series. We obtain

= −(x1x2) dt1
1− t1x1x2

= −(x1x2) dt1
∞∑
i=0

(t1x1x2)i

= − dt1
t1

∞∑
i=1

(t1x1x2)i .

Plugging this, and the corresponding result for dts1+1
ts1+1− 1

x2
back into the integral gives

=
∫

0≤t1≤···≤ts1+s2≤1

dt1
t1

∞∑
i=1

(t1x1x2)i ∧ dt2
t2
∧ · · · ∧ dts1

ts1

∧

∧ dts1+1

ts1+1

∞∑
j=1

(ts1+1x2)j ∧ dts1+2

ts1+2
∧ · · · ∧ dts1+s2

ts1+s2

.

Now integrate term by term, integrating out the variable t1 first. We get that

∫
0≤t1≤t2

dt1
t1

∞∑
i=1

(t1x1x2)i =
[ ∞∑
i=1

(t1x1x2)i

i

]t2
t1=0

=
∞∑
i=1

(t2x1x2)i

i
.

We can repeat this for t2, t3, . . . , ts1 , to get that the original integral Equation 3.1.1 equals

=
∫

0≤ts1+1≤···≤ts1+s2≤1

dts1+1

ts1+1

∞∑
i=1

(ts1+1x1x2)i

is2

∞∑
j=1

(ts1+1x2)j ∧ dts1+2

ts1+2
∧ · · · ∧ dts1+s2

ts1+s2

=
∫

0≤ts1+1≤···≤ts1+s2≤1

dts1+1

ts1+1

∞∑
i,j=1

xi1
is1

(ts1+1x2)i+j ∧ dts1+2

ts1+2
∧ · · · ∧ dts1+s2

ts1+s2

.
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Then integrate out ts1+1, . . . , ts1+s2 in the same way to get

=
∞∑

i,j=1

xi1x
i+j
2

is1(i+ j)s2
.

Finally, we can make the change of variables ` = i+ j. The new summation range runs over 0 < i < `,

so the sum becomes

=
∑

0<i<`

xi1x
`
2

is1`s2
= Lis1,s2(x1, x2) ,

as claimed.

Remark 3.1.6. In the case where z1 = · · · = zk = 1, we obtain that

ζ(s1, . . . , sk) = (−1)kIs1,...,sk(1, . . . , 1) = (−1)kI(0; 1, {0}s1−1, . . . , 1, {0}sk−1; 1) ,

which finally completes the proof of Proposition 1.1.16.

3.1.2 Variants and modified polylogarithms

The polylogarithm Lin is a multivalued analytic function on C\{ 0, 1 }. However, there is an associated

single-valued version, defined as follows.

Definition 3.1.7 (Single-valued polylogarithm, [Zag91]). For n ≥ 1, define the single valued polyloga-

rithm L n as follows.

L n(z) := Ren

(
n∑
k=0

Bk2k

k! log |z|Lin−k(z)
)
, n ≥ 2

L 1(z) := log |z| ,

where Bk are the Bernoulli numbers defined in Definition 1.1.5, and

Ren :=

Re if n odd

Im if n even.

These functions will play a role when describing functional equations of polylogarithms; essentially

L n satisfies ‘clean’ functional equations, without any lower order product terms. Moreover, they enter

into an important conjecture on special values of the Dedekind zeta function [Section 8 in Zag91].

Zagier proved that L n(z) is real-analytic on C \ { 0, 1 }. More precisely

Theorem 3.1.8 (Zagier, [Zag91]). The function L n(z) is single-valued and continuous on P1(C).

3.2 Functional equations for polylogarithms

The big area of interest with regard to polylogarithms is in finding and understanding their functional

equations. There are at least two reasons for this interest. On the number theory side, polylogarithms
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have a role as ‘higher regulators’ of a number field, and sufficiently generic functional equations for Lin
should play some role in giving explicit generators and relations for the K-groups K2n+1(F ). This in

turn feeds into Zagier’s conjecture on special values of the Dedekind zeta function [Zag91]. Roughly:

up to known factors, ζF (n) can be expressed as an r2(F )× r2(F ) determinant of L n’s of elements of

F . The case ζF (2) was partially handled by Zagier [Zag86] using a connection to volumes of hyperbolic

manifolds. Generally it follows from the work of Bloch and Suslin [Blo77; Sus86]. The case ζF (3) was

proven by Goncharov [Gon91] using his Li3 functional equation.

On the physics side, calculations of amplitudes and Feynman integrals often produce large expressions

involving polylogarithms and MPL’s [RV00; Wei07; BW11]. For example, the full analytic expession

for the remainder function for the ‘two-loop Hexagon Wilson loop’ R(2)
6,WL involves weight 4 multiple

polylogarithms, and fills 17 pages of appendix H in [DDDS10]. Having a good understanding of

(multiple) polylogarithm functional equations can lead to drastically simpler formulae, both in terms of

length and in terms of the complexity of the functions involved. In [GSVV10], this remainder function

R
(2)
6,WL was re-written as a single line of classical Li4 polylogarithms after observing the vanishing of

the symbol of R(2)
6,WL modulo δ, where δ is as in Section 3.4.2 below.

3.2.1 Examples of functional equations

The baby instance of polylogarithm functional equations comes from the fundamental property of log,

namely log(xy) = log(x) + log(y). In terms of Li1(x) we have the following.

Proposition 3.2.1. The polylogarithm Li1 satisfies the following functional equation

Li1(1− xy) = Li1(1− x) + Li1(1− y) .

Proof. This is just a direct application of the definition that Li1(x) = − log(1− x), and the functional

equation log(xy) = log(x) + log(y).

This is expected to be a feature of all higher weight polylogarithms. Indeed every polylogarithm

satisfies its own version of the so-called duplication relation, or the more general so-called distribution

relations.

Proposition 3.2.2 (Distribution relation, duplication relation). Let ζp := exp(2πi/p) be a primitive

p-th root of unity, p ∈ Z>0. Then Lik satisfies the following functional equation

Lik(xp) = pk−1
p−1∑
j=0

Lik(ζjpx) .

This reduces to the so-called duplication relation

Lik(x2) = 2k−1 (Lik(x) + Lik(−x))

in the case p = 2.
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Proof. Write out the Taylor series for both sides. On the right hand side we get

pk−1
∞∑
n=1

∑p−1
j=0(ζjpx)n

nk
.

When p | n, the numerator becomes pxn since each term (ζjp)n is identically 1. Otherwise the numerator

is 0 since ζnp is another primitive p-th root, and we just get some permutation of

p−1∑
j=0

ζjp =
ζpp − 1
ζp − 1 = 0 .

Only the term p | n survive, so we can take n = pm on the right hand side, and get

= pk−1
∞∑
m=1

pxmp

(mp)k =
∞∑
m=1

(xp)m

mk
= Lik(xp) ,

as claimed.

The duplication relations, the distribution relations, and the so-called inversion relations

Lik(z) + (−1)k Lik
(

1
z

)
= elementary

are considered trivial. They can be proven easily for polylogarithms of any weight, and so are not

particularly interesting.

Beyond these trivial functional equations, it is expected that every polylogarithm satisfies some

non-trivial function equations, but so far these are only know up to Li7 [Gan03]. The prototypical

example of such a non-trivial functional equation is the 5-term relation for the dilogarithm (weight 2

polylogarithm). This functional equation has been discovered and re-discovered many times by many

different people including Abel, Spencer, Kummer, Hill and Schaeffer.

Theorem 3.2.3 (5-term relation, Schaeffer’s [Sch46] form of Abel’s equation [Abe81, p. 193]). The

polylogarithm Li2 satisfies the following functional equation. For 0 < y < x < 1, we have

Li2(x)− Li2(y) + Li2
(y
x

)
− Li2

(
1− 1/x
1− 1/y

)
+ Li2

(
1− x
1− y

)
= π2

6 − log(x) log
(

1− x
1− y

)

Written in terms of the modified polylogarithm L 2(z) above, the 5-term relation simplifies to the

following

L 2(x)−L 2(y) + L 2

(y
x

)
−L 2

(
1− 1/x
1− 1/y

)
+ L 2

(
1− x
1− y

)
= 0 .

This illustrates what was meant earlier by saying L n satisfies ‘clean’ functional equations, without

any extra product terms.

The 5-term relation for Li2 is expected to be the fundamental functional equation for Li2, in the

sense that every other functional equation follows by specialising it, but currently this remains only

a conjecture. Some evidence in this direction can be see in [Sou15] , where an infinite family of



3.2. Functional equations for polylogarithms 102

dilogarithm functional equations (arising from the combinatorics of dihedral coordinates on M0,n) is

proven to reduce to 5-term relations. Other evidence come from Wojtkowiak’s result [Woj96] that

every one variable functional equation for Li2 can be obtained by specialising the 5-term relation.

Moreover, it is known, that the 5-term relation somehow characterises the dilogarithm in the sense

that any measurable function f(z), z ∈ C that satisfies the 5-term relation is proportional to L 2(z)

[Blo00].

3.2.2 Geometry behind polylogarithm functional equations

Functional equation for Li2: The 5-term relation for Li2 can be described elegantly in terms of

the geometry of the projective line P1(C). This motivates a search for functional equations arising

from geometric constructions.

Recall the cross-ratio of 4 points z1, . . . , z4 ∈ C is defined by

cr(z1, z2; z3, z4) := z1 − z3

z1 − z4

/
z2 − z3

z2 − z3
.

By using the homogeneous coordinates of P1(C), and writing Zi = [1: zi], the cross-ratio can be defined

on all of P1(C) = C ∪ {∞ }.

The 5-term relation for Li2 now has the following form. Let z1, . . . , z5 be 5 points in P1(C). Then

5∑
i=1

(−1)i L 2(cr(z1, . . . , ẑi, . . . , z5)) = 0 .

Taking z1 =∞, z2 = 0, z3 = 1, z4 = x and z5 = y reduces this equation to the previous version of the

5-term relation (up to applying the inversion relation L 2(z) = −L 2( 1
z ) to some terms).

Functional equation for Li3: Goncharov [Gon95a] has exploited this geometric viewpoint to

produce a highly generic functional equation for Li3 using the so-called triple-ratio r3. He has also

produced precise conjectures for what to expect at higher weight, although so far an equivalent Li4
functional equation has not been found.

Let `1, . . . , `7 be 7 points in P2(C), and let Li ∈ C3 be the vector projecting to `i.

Definition 3.2.4 (Triple-ratio). The triple-ratio of 6 generic points `1, . . . , `6 in P2(C) is defined to

be the formal linear combination in Z[C \ { 0, 1 }]

r3(`1, . . . , `6) := 1
15 Alt{ 1,...,6 }

[
∆(L1, L2, L4)∆(L2, L3, L5)∆(L3, L1, L6)
∆(L1, L2, L5)∆(L2, L3, L6)∆(L3, L1, L4)

]
.

Here ∆(L1, L2, L3) = det(L1 | L2 | L3) is the determinant of the matrix with columns L1, L2, L3.

The fully symmetric 840 = 7!/6-term functional equation [Gon94] is given by

7∑
i=1

(−1)i L 3(r3(`1, . . . , ̂̀i, . . . , `7)) = 0 .
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Notation 3.2.5. We will use the notation Cyc{ x1,...,xn } to mean the sum over all cyclic shifts of the

variables xi. That is

Cyc{ x1,...,xn } f(x1, . . . , xn) :=
n∑
i=1

f(xi, . . . , xn, x1, . . . , xi−1) .

This triple-ratio can be extended to degenerate configurations of points. For the following highly

degenerate choice of points, where `i is given by the i-th column of the matrix
1 0 0 1 1 0 z

0 1 0 1 x 1 0

0 0 1 1 0 y 0

 ,

one obtains Goncharov’s 22(+1)-term Li3 functional equation below.

L 3(−xyz)+ Cyc{ x,y,z }
{

L 3(zx− x+ 1) + L 3

(
zx− x+ 1

zx

)
−L 3

(
zx− x+ 1

z

)
+

+ L 3

(
x(yz − z + 1)
−(zx− x+ 1)

)
+ L 3(z) + L 3

(
yz − z + 1

y(zx− x+ 1)

)
+

−L 3

(
yz − z + 1

yz(zx− x+ 1)

)}
= 3 L 3(1)

3.2.3 Bloch groups; towards the symbol of polylogarithms

An important collection of objects that arise when trying to study polylogarithms over C, or more

general fields F , are the so-called Bloch groups Bn(F ). They are defined in such a way as to capture,

non-explicitly, all of the functional equations of the polylogarithm L n. In some sense they can be seen

as a precursor to the symbol of MPL’s.

3.2.3.1 The subgroups of relations Rn(F )

The key to defining the Bloch groups is somehow capturing the functional equations of polylogarithms,

despite not being able to explicitly write them all down.

Define by induction subgroups Rn(F ) < Z[P1(F )]. Then set

Bn(F ) := Z[P1(F )]/Rn(F )

to be the weight n Bloch group. We will write {x}n for the image of [x] in Bn(F ).

Subgroup R1(F ): The subgroup R1(F ) is explicitly defined by

R1(F ) := { [x] + [y]− [xy] | x, y,∈ F ∗ } ∪ { [0], [∞] } .

This subgroup R1(F ) captures the functional equation log(xy) = log(x) + log(y), which we know

L 1(z) := log |z| satisfies.
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Inductive definition of Rn(F ): Define a homomorphism δn, as follows.

Z[P1(F )]→

Bn−1(F )⊗ F ∗ n ≥ 3∧2
F ∗ n = 2

[x] 7→

{x}n−1 ⊗ x n ≥ 3

(1− x) ∧ x n = 2
.

Also δ : [∞], [0], [1] 7→ 0.

Now set

An(F ) := ker

δn : Z[P1(F )]→

Bn−1(F )⊗ F ∗ n ≥ 3∧2
F ∗ n = 2

 .

Extending by linearity means the specialisation homomorphism t 7→ t0, t0 ∈ F , gives a map

Z[P1(F (t))]→ Z[P1(F )]

[fi(t)] 7→ [fi(t0)] .

This works even if t0 is a pole of fi(t). We can now give the inductive definition of Rn(F ) as follows.

Definition 3.2.6 (Subgroup of relations). The subgroup of relations Rn(F ) is defined by

Rn(F ) := { α(0)− α(1) | α(t) ∈ An(F (t)) } ∪ { [0], [∞] } .

3.2.3.2 Consequence for functional equations

By extending L (z) to Z[P1(C)] by linearity, we obtain the following motivating theorem

Theorem 3.2.7 (Theorem 1.15 in [Gon94]).

L n(Rn(C)) = 0

Which is to say the subspace Rn(C) does actually give functional equations for L n(z).

Sketch of n = 2 case: Firstly we need to establish the result of Lemma 1.16 in [Gon94]. Namely for

α(t) :=
∑

ni[fi(t)] ∈ Z[P1(C(t))] ,

if

0 = δ2α(t) :=
∑

ni(1− fi(t)) ∧ fi(t) ∈
∧2

C(t)∗ ,

then

d
(∑

ni L 2(fi(z))
)

= 0 . (3.2.1)

It then follows immediately that
∑
ni L 2(fi(z)) is constant. So L 2(α(0)− α(1)) = 0, and

L 2(R2(C)) = 0 .
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To prove Equation 3.2.1, we need to consider the following diagram.

Z[P1(C(t))]
∧2 C(t)∗

S0(P1(C)) S1(P1(C))

δ2

L 2 r2

d

Where here

r2(f ∧ g) := − log |f | d arg(g) + log |g| d arg f ,

and Si(P1(C)) is the space of smooth i-forms on P1(C).

Since L 2(z) = Im(Li2(z)) + arg(1− z) log |z|, we can compute d L 2(z) as follows.

We have

d(arg(1− z) log |z|) = log |z| d arg(1− z) + arg(1− z) d log |z| ,

using the product rule. Also we have

d Li2(z) = Li1(z) d log(z)

= − log(1− z) d log(z)

= −(log |1− z|+ i arg z)( d log |z|+ i d arg z) .

So

d Im(Li2(z)) = Im( d Li2(z)) = − log |1− z| d arg z − arg(1− z) d log |z| .

Overall this means

d L 2(z) = − log |1− z| d arg z + log |z|d arg(1− z) . (3.2.2)

Now Equation 3.2.2 shows that the above diagram in fact commutes. This means that we can make

the following computation

0 = r2 ◦ δ2(α(t))

= d ◦L 2(α(t))

=: d
(∑

ni L 2(fi(z))
)
.

This proves the Goncharov’s Lemma, and hence proves the theorem for n = 2. For the case n ≥ 3, see

[Gon94].

This begins to show how powerful the algebraic approach (rather than the analytic approach) to

polylogarithms can be. The algebraic object (1− z) ∧ z attached to Li2 above is closely linked with

the symbol of Li2, to be defined later.

More generally we have the following result of Zagier, moving towards the symbol of Lin.

Theorem 3.2.8 (Zagier, Proposition 3 in [Zag91]). Let { ni, xi(t) } be a collection of integers, and

rational functions in C(t). Suppose that∑
ni[xi(t)]m−2 ⊗ ([xi(t)] ∧ [1− xi(t)]) = 0
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in (Symm−2 C(t)∗ ⊗
∧2 C(t)∗)⊗Z Q. Then∑

i

ni Lm(xi(t)) = constant .

That is, the algebraic object [z]m−2 ⊗ [z] ∧ [1− z] attached to Lm(z) detects functional equations of

Lm.

To fit better with the symbol below I would prefer to swap the order of terms over and get −[1− z] ∧

[z]⊗ [z]m−2.

3.3 Coproduct, and symbol of MPL’s

In this section we will introduce a very important tool for studying the functional equations of MPL’s,

namely the symbol. This tool will be used continually throughout the remainder of this thesis. As

hinted at above, the symbol is some algebraic object which can be attached to an MPL, somehow

enriching the correspondence L n(x)! −[1− x] ∧ [x]⊗ [x]n−2.

The symbol was first introduced by Goncharov, under the name the ⊗m-invariant, in Section 4 of

[Gon05]. There it was defined by associating certain combinations of labelled binary trees to the

MPL iterated integral Is1,...,sk(x1, . . . , xk). Goncharov also identified it as coming from iterating the

coproduct on the Hopf algebra of (motivic) iterated integrals.

The symbol should also be seen as somehow describing the differential structure of an MPL. As

seen above, t least for m = 2, the object −[1 − x] ∧ [x] ⊗ [x]m−2 ‘corresponds’ to the derivative of

Lm(x). With this viewpoint, it is no so surprising that
∑
ni[1− xi(t)] ∧ [xi(t)]⊗ [xi(t)]m−2 = 0 leads

to ni Lm(xi(t)) = constant. So we ought to expect the symbol of MPL’s to play a similar role in

detecting and characterising functional equations.

A final viewpoint on the symbol of MPL’s is provided by Rhodes’s [DGR12; Rho12] hook-arrow tree

construction built on top of the polygon algebra of Gangl, Goncharov, and Levin [GGL09]. In Chapter

4 of [Rho12], Rhodes used this construction to give explicit formulae for the symbols of the depth 2

MPL Ia,b(x, y) and the depth 3 MPL Ia,b,c(x, y, z), for any a, b, c. Duhr is developing this approach

into the PolylogTools package [PT] for Mathematica. This package provides a convenient and robust

way of working with MPL symbols, especially at high weight and/or height depth where the symbols

become too large for calculations by hand. This package will be used for most of the calculations in

the remainder of this thesis.

3.3.1 Goncharov’s ⊗m-invariant

Goncharov’s ⊗m-invariant is defined by associating certain combinations of decorated binary trees to

the MPL Is1,...,sk(x1, . . . , xk). The following is a synthesis of Goncharov’s original description [Section

4 in Gon05], and Rhodes’s very clear exposition [Section 1.2 in Rho12].
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A binary tree is a rooted trivalent tree, embedded in the upper half-plane. View the tree as growing

downwards towards the real line; the root extends up to ∞, and the remaining external vertices extend

down to the real line. If the binary tree has k + 2 external vertices, the k + 1 vertices extending down

to the real line will split the real line into k + 2 intervals. These intervals can then be labelled in

increasing order by elements of some list of decorations R = [a1, . . . , ak+2].

Example 3.3.1. For example the following is a binary tree with 6 external vertices, decorated with

the labels R = [a1, . . . , a6].

a1 a2 a3 a4 a6a5

The decoration on a particular interval J can be pushed into the region of H which has J as part of its

boundary, to get a labelling of the regions, viz:

a1

a2

a3

a4

a6a5

Given a such a binary tree T with k + 2 external edges, there is a canonical partial ordering on the

internal vertices of T defined by the distance from the root. We set u ≺ v iff there is a path from the

root through u and v, and on this path u is closer to the root than v. A total ordering v1 < · · · < vk

on the internal vertices of T , is said to be compatible with ≺ if vi ≺ vj implies i < j.

Example 3.3.2. Consider the two total orderings below. The left hand one is compatible with ≺,

because any path down from the root to the real line encounters the vertices in the correct order. We

either go v1v2v4, or v1v2v3, both of which are good. However in the right hand one, following the path

v3v4v1 leads to v4 ≺ v1, yet 4 6< 1. So the right hand total order is not compatible with ≺.

v1

v2

v4 v3

v3

v4

v1 v2

Since the binary tree T is trivalent, every internal vertex v is on the boundary of three distinct regions

Dv
1 , D

v
2 , D

v
3 of H. The positive (anticlockwise) orientation of the upper half-plane fixes a cyclic ordering
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D1 → D2 → D3 → D1 on these regions. From the vertex v only one edge leads to the root of T , so

this allows us to canonically fix the ordering by imposing that the first region lies directly anticlockwise

of the edge leading to the root.

v
Dv

3

Dv
2

Dv
1

To the root

Let aDv
i
be the label attached to region Dv

i in the tree T . We then attach to the vertex v the following

rational function gTv of the labels aDv
i
.

gTv :=



aDv3
−aDv2

aDv1
−aDv2

if all aDv
i
are distinct

1
aDv1
−aDv2

if aDv3 = aDv2 , but aDv1 = aDv2
aDv3
−aDv2
1 if aDv1 = aDv2 , but aDv3 6= aDv2

1 if all aDv
i
are equal

(3.3.1)

Remark 3.3.3. The expression for gTv that Rhodes gives in equation 1.2 of [Rho12] is only partially

complete. If all the aDv
i
are distinct, or all are equal, then we have the same expression. But if only two

of the labels are equal, then there are still two distinct labels around this vertex, and it is important

to remember these in the calculation.

The definition of gTv is modelling the ε-regularisation of the integral

lim
ε→0

∫ c+ε

a+ε

dt
t− b

=



log c−b
a−b if a, b, c all distinct

log 1
a−b if b = c, but a 6= b

log c−b
1 if a = b, but b 6= c

log 1 if all a, b, c are equal,

as given in equation 5 of [Gon05].

Finally we are in a position to define the ⊗m-invariant of an MPL. Consider an MPL

I := Is1,...,sk(x1, . . . , xk) = I(0;x1, {0}s1−1, . . . , xk, {0}sk−1; 1) .

Then I has weight w = s1 + · · · + sk. Including the limits of the integral, it has w + 2 arguments,

forming the following list.

[0, x1, 0, . . . , 0︸ ︷︷ ︸
s1−1

, x2, 0, . . . , 0︸ ︷︷ ︸
s2−1

, . . . , xk, 0, . . . , 0︸ ︷︷ ︸
sk−1

, 1] .

Definition 3.3.4 (⊗m-invariant). The ⊗m-invariant (also called the symbol) attached to the MPL

Is1,...,sk(x1, . . . , xk) = I(0;x1, {0}s1−1, . . . , xk, {0}sk−1; 1)
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of weight w = s1 + · · ·+ sk is denoted

S(Is1,...,sk(x1, . . . , xk)) ∈
⊗
w

Q(x1, . . . , xk)∗ .

It is given by

S(Is1,...,sk(x1, . . . , xk)) :=
∑
T

∑
{ v1,...,vw }

gTv1
⊗ · · · ⊗ gTvw ,

where the sum over T runs over all binary trees with w + 2 external, and decorated with the ordered

labels

[0, x1, 0, . . . , 0︸ ︷︷ ︸
s1−1

, x2, 0, . . . , 0︸ ︷︷ ︸
s2−1

, . . . , xk, 0, . . . , 0︸ ︷︷ ︸
sk−1

, 1] .

The sum over { v1, . . . , vk } runs over all total orders of the internal vertices of T which are compatible

with the partial ordering ≺.

Example 3.3.5. We can apply the above definition to find the symbol of I1,2(x, y). We list the binary

trees with 3 + 2 = 5 external edges, labelled with [0, x, y, 0, 1], as follows. There are 5 = C3 such trees,

where Cn = 1
2n+1

(2n
n

)
is the n-th Catalan number.

0 x 0 y 1 0 x 0 y 1 0 x 0 y 1

0 x 0 y 1 0 x 0 y 1

On each of the first 4 trees above, there is exactly one compatible total order, because there exists a

path from the root which contains all 3 vertices of the tree. The fifth tree has two compatible total

orders - the lower two vertices can be labelled v2 and v3 in either order.

Consider in detail the first tree, with the (unique) compatible total order of vertices, and how the

decorations label the regions. We obtain

0
x

0 y

1

v1

v2

v3
T1 =

We compute that

gT1
v1

= 1− x
−x

gT1
v2

= 1
x

gT1
v3

= 1− y
−y

,



3.3. Coproduct, and symbol of MPL’s 110

to obtain the following as one term in S(I2,1(x, y))

{ T1, { v1, v2, v3 } } 
(

1− x
−x

)
⊗
(

1
x

)
⊗
(

1− y
−y

)
.

It turns out that the fourth and fifth trees contribute 0 to S(I2,1(x, y)) for the following reason. With

the following total order

0

x
0

y

1

v1
v2

v3
T4 =

we have that

gT4
v3

= 0− x
0− x = 1 .

But 1 ∈ Q(x, y)∗ is the identity element, so a term like 1⊗ α⊗ β, where one tensor is 1, vanishes for

the ‘standard reason’. Namely

1⊗ α⊗ β + 1⊗ α⊗ β = (12)⊗ α⊗ β = 1⊗ α⊗ β ,

then we subtract 1⊗α⊗ β from both sides. So the fourth tree contributes 0. The fifth tree contributes

0 for the same reason.

Altogether we obtain the following result for S(I2,1(x, y)); the order of the terms matches the orders of

the (non-zero) trees.

S(I2,1(x, y)) =
(

1− x
−x

)
⊗
(

1
x

)
⊗
(

1− y
−y

)
+

+
(

1− x
−x

)
⊗
(

1− y
x− y

)
⊗
(y
x

)
+ (3.3.2)

+
(

1− y
−y

)
⊗
(
y − x
−x

)
⊗
(y
x

)
Remark 3.3.6. In any computations involving the symbol, we should always bear in mind that the

following equality holds

α⊗ β ⊗ γ = α⊗ (−β)⊗ γ . (3.3.3)

This equality comes from the following calculation

2 · (α⊗ β ⊗ γ) = α⊗ β2 ⊗ γ

= α⊗ (−β)2 ⊗ γ (3.3.4)

= 2 · (α⊗ (−β)⊗ γ) .

Since symbols are elements of some Q-algebra
⊗

w Q(x1, . . . , xk)∗, we can divide both sides of Equa-

tion 3.3.4 by 2, and obtain Equation 3.3.3.
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Consequently, the symbol of I2,1(x, y) can be simplified to the following

S(I2,1(x, y)) =
(

1− x
x

)
⊗
(

1
x

)
⊗
(

1− y
y

)
+

+
(

1− x
x

)
⊗
(

1− y
x− y

)
⊗
(y
x

)
+

+
(

1− y
y

)
⊗
(
y − x
x

)
⊗
(y
x

)
.

3.3.2 The iterated coproduct definition

In [Gon05], Goncharov also identifies the ⊗m-invariant as a maximally iterated version of his coproduct

on the motivic iterated integrals from Section 1.2.1. Given a positvely graded Hopf algebra A•, there

is a canonical map

∆[m] : Am →
⊗
m

A1 ,

which can be defined as the following composition

Am
∆−→ Am−1 ⊗A1

∆⊗id−−−→ Am−2 ⊗A1 ⊗A1
∆⊗id⊗ id−−−−−−→ · · · ∆⊗id⊗(m−1)

−−−−−−−−→
⊗
m

A1 .

Then proposition 4.5 in [Gon05] claims the following equality is provable by induction on n.

Proposition 3.3.7 (Goncharov, proposition 4.5 in [Gon05]). The symbol S arises from maximally

iterating the coproduct ∆ of iterated integrals

S(I(x0;x1, . . . , xn;xn+1)) ≡ ∆[n]IM(x0;x1, . . . , xn;xn+1) ,

after making the identification

IM(a; b; c) = logM
(
b− c
b− a

)
!

b− c
b− a

, (3.3.5)

and performing any required regularisation.

Example 3.3.8. We can apply this iterated coproduct construction to I2,1(x, y), to give an alternative

calculation of the symbol.

The first step is to compute the coproduct of I2,1(x, y) = I(0;x, 0, y; 1), and to take the (2, 1)-degree

component. For notational ease, we drop theM from the notation. Using Theorem 1.2.1, we compute

the coproduct to be the following. Some simplifications using I(0; a; 0) = 0 and I(0; 1) = 1 are possible.

∆I(0;x, 0, y; 1) = 1⊗ I(0;x, 0, y; 1) +

+ I(0;x; 1)⊗ I(0;x)I(x; 0, y; 1) + I(0; 0; 1)⊗ I(0;x; 0)I(0; y; 1) +

+ I(0; y; 1)⊗ I(0;x, 0; y)I(y; 1) +

+ I(0;x, 0; 1)⊗ I(0;x)I(x; 0)I(0; y; 1) + I(0;x, y; 1)⊗ I(0;x)I(x; 0; y)I(y; 1) +

+ I(0; 0, y, 1)⊗ I(0;x; 0)I(x; y)I(y; 1) +

I(0;x, 0, y; 1)⊗ 1
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= 1⊗ I(0;x, 0, y; 1) + I(0;x, 0, y; 1)⊗ 1 +

+ I(0;x; 1)⊗ I(x; 0, y; 1) + I(0; y; 1)⊗ I(0;x, 0; y) +

+ I(0;x, 0; 1)⊗ I(0; y; 1) + I(0;x, y; 1)⊗ I(x; 0; y) .

So the (2, 1)-degree component of ∆ is given by

∆2,1I(0;x, 0, y; 1) = I(0;x, 0; 1)⊗ I(0; y; 1) + I(0;x, y; 1)⊗ I(x; 0; y) .

Now iterate this: compute the (1, 1)-degree component of ∆I(0;x, 0; 1) and of ∆I(0;x, y; 1). We obtain

∆1,1I(0;x, 0; 1) = I(0;x; 1)⊗ I(x; 0, 1)

∆1,1I(0;x, y; 1) = I(0;x; 1)⊗ I(x; y; 1) + I(0; y; 1)⊗ I(0;x; y) .

Putting these together gives

∆[3]I(0;x, 0, y; 1) = I(0;x; 1)⊗ I(x; 0; 1)⊗ I(0; y; 1) +

+ I(0;x; 1)⊗ I(x; y; 1)⊗ I(x; 0; y) + I(0; y; 1)⊗ I(0;x; y)⊗ I(x; 0; y) .

Upon using the identification from Equation 3.3.5, we obtain the symbol for I2,1(x, y) that we computed

in Equation 3.3.2.

It has already been mentioned that the symbol is a powerful tool for finding identities and functional

equations on MPL’s. It does this by translating analytic problems into algebraic questions that are

easier to handle. However, the symbol only captures the ‘top-slice’ of identities, and cannot detect

anything about constant× lower weight. Since the symbol can be made to arise from the coproduct

on iterated integrals, the coproduct is a good place to remedy this shortcoming. We will see this in

action in Chapter 6.

3.3.3 Total differential of iterated integrals

Seeing how the differential structure of multiple polylogarithms and iterated integrals is reflected in

the symbol helps us understand how we should think about and interpret the symbol. This leads to a

way of directly reading the symbol from a (very particular) way of writing an iterated integral.

From Theorem 2.1 in [Gon01], we have the following computation of the total derivative of an iterated

integral.

Theorem 3.3.9 (Goncharov, Theorem 2.1 in [Gon01]).

dI(x0;x1, . . . , xm;xm+1) =
m∑
i=1

I(x0;x1, . . . , x̂i, . . . , xm;xm+1) d log
(
xi+1 − xi
xi−1 − x0

)
.

By repeatedly computing the total derivative, we ‘peel off’ a layer of differential forms from an iterated

integral. These differential forms, written as total derivatives, give a factor of the symbol.
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Starting with I2,1(x, y) we compute

dI2,1(x, y) = dI(0;x, 0, y; 1)

= I(0; 0, y; 1) d log
(

0− x
0− x

)
+ I(0;x, y; 1) d log

(
0− y
1− x

)
+ I(0;x, 0; 1) d log

(
y − 1
y − 0

)
= I(0;x, y; 1) d log

(
−y

1− x

)
+ I(0;x, 0; 1) d log

(
y − 1
y

)
.

So, in some sense, we have

I2,1(x, y) =
∫
I(0;x, y; 1) d log

(
0− y
1− x

)
+ I(0;x, 0; 1) d log

(
y − 1
y − 0

)
.

Now iterate this; find dI(0; 0, y; 1) and ‘peel off’ a second layer of differential forms. Do this for each

iterated integral appearing above.

dI(0;x, y; 1) = I(0; y; 1) d log
(
x− y
x

)
+ I(0;x; 1) d log

(
y − 1
y − x

)
dI(0;x, 0; 1) = I(0;x; 1) d log

(
1
x

)
.

And of course

dI(a; b; c) = d log
(
b− c
b− a

)
.

So we can write

I2,1(x, y) =
∫

d log
(
y − 1
y

)
◦ d log

(
x− y
x

)
◦ d log

(y
x

)
+

+ d log
(
x− 1
x

)
◦ d log

(
y − 1
y − x

)
◦ d log

(y
x

)
+ (3.3.6)

+ d log
(
x− 1
x

)
◦ d log

(
1
x

)
◦ d log

(
y − 1
y

)
.

For an iterated integral written in the form

F =
∫

d log(f1) ◦ · · · ◦ d log(fn) ,

we read off its symbol as

S(F ) = f1 ⊗ · · · ⊗ fn .

From Equation 3.3.6, this means we get

S(I2,1(x, y)) =
(
y − 1
y

)
⊗
(
x− y
x

)
⊗
(y
x

)
+

+
(
x− 1
x

)
⊗
(
y − 1
y − x

)
⊗
(y
x

)
+

+
(
x− 1
x

)
⊗
(

1
x

)
⊗
(
y − 1
y

)
,

in complete agreement with the original calculation in Equation 3.3.2, up to ±1 in each tensor factor

(Remark 3.3.6) and some rearrangement.
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We see here how closely related the symbol is to the derivative of an iterated integral. Knowing

this correspondence, it is not surprising that the symbol will capture functional equations and

relations between MPL’s. Requiring the symbol of a combination to be 0 will amount to forcing the

derivative of this combination to be 0, so that it evaluates to a constant and gives a relation, modulo

constant× lower weight terms.

3.3.4 Polygon dissections and Rhodes’s hook-arrow trees

Gangl, Goncharov and Levine [GGL09] define an algebra of R-decorated polygons (R-deco for short).

They then associate one of these polygons to an MPL, in such a way so that the symbol can be

calculated from the combinatorics of these polygons (see as well [DGR12]). Rhodes provides a more

detailed overview of this construction in Section 1.3 of [Rho12].

Polygons: An R-deco polygon P (a1, . . . , an) is a polygon, with a specified first vertex (marked with

a circle), and a final side (drawn double) giving a choice of orientation. The sides of the polygon are

labelled, from first to last, by elements of the list R = [a1, . . . , an], as follows.

a1

a2

a3

an−2

an−1

an

Although not made explicit, the vertices gain an ordering v1, . . . , vn due to the polygon’s orientation,

and choice of first vertex.

The polygon algebra P•• (R) is generated as a vector space by wedge products of R-deco polygons. The

lower grading counts the number of non-root edges in all factors of this wedge product. The upper

grading counts the number of factors in the wedge product.

Arrows: The algebraic and combinatorial structure comes from arrows dissecting the polygon. By

an arrow, we mean an arrow from a vertex, to a non-adjacent side. Here is an arrow α joining v2 (the

second vertex) to the side a5.

a1

a2

a3 a4

a5

a6

a7

α

An arrow from vertex vi to side aj is said to be backwards if j < i. Otherwise the arrow is forwards.
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Dissections: These arrows let us dissect polygons. Given a polygon P = P (a1, . . . , an), and an

arrow from vertex vi to side aj , the polygon is dissected into two polygons

P1 = (a1, . . . , ai−1, aj , . . . , an) and P2 = P (ai, . . . , aj)

if α is a forwards arrow. Otherwise the polygon is dissected into

P1 = (a1, . . . , ah, ai, . . . , an) and P2 = P (ai−1, . . . , ah)

if α is a backwards arrow. One should think of collapsing the arrow α to pinch the polygon into two

pieces – α points to the new last side, and first vertex. With this dissection, the sign of the arrow α is

defined by

sgn(α) :=

(−1)#non-root edges in P2 if α backwards

1 otherwise

Example 3.3.10. This arrow dissects the R-deco polygon P into P1 and P2 as follows.

a1

a2

a3 a4

a5

a6

a7

α

P

 a1

a2

a6

a7

P1 and a5

a4

a3

a2

P2 .

Since P2 has three non-root edges, and the arrow α is backwards, we get that sgn(α) = (−1)3 = −1.

Maximal dissections and the dual tree: A maximal dissection ρ of a polygon P is a set of

n− 2 distinct, non-crossing, dissecting arrows. The overall sign sgn(ρ) of the maximal dissection is

sgn(ρ) = (−1)#backwards arrows. This dissects the polygon into n− 1 regions, which can be viewed as

2-gons.

We can also consider the dual tree of this dissection. Make a point at the centre of each of the n− 1

regions. Join two of these points with an edge if and only if the regions are share a boundary. This

produces a tree graph. The first vertex and last side of the polygon P canonically defines a root vertex

for the tree: the root vertex lies in the the region which contains the first vertex and (part of the) last

side of P .

Example 3.3.11. The following shows a maximal dissection of the polygon P = P (a1, a2, . . . , a8),

along with the dual tree. The root vertex of the dual tree is marked as a hollow circle.
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a1

a2

a3

a4

a5

a6

a7

a8

Now that rooted trees have appeared in the picture, we can define a partial ordering ≺ on the vertices

of the tree according to their distance from the root. This gives a partial ordering on the regions,

and hence on the 2-gons in the maximal dissection. The definition is exactly as in Section 3.3.1 for

Goncharov’s trivalent rooted binary trees. A total ordering on the vertices of the dual tree is said to

be compatible with the partial ordering if vi ≺ vj implies i < j.

Symbol from polygons: Define the map µ on 2-gons as follows

µ


x

y
 :=



1− y
x if x, y, 0 are distinct

y if y 6= 0, but x = 0

1
y if x = y, and y 6= 0

1 otherwise.

This map is very similar to the map gTv1
from Equation 3.3.1.

We are finally in a position to define the symbol using this framework.

Definition 3.3.12 (Symbol). Given an MPL Is1,...,sk(x1, . . . , xk) = I(0;x1, {0}s1−1, . . . , xk, {0}sk−1; 1)

of weight n = s1 + · · ·+ sk, we attach to this the (n+ 1)-sided polygon

P = P (x1, {0}s1−1, . . . , xk, {0}sk−1, 1)) .

Then

S(Is1,...,sk(x1, . . . , xk)) :=
∑
ρ

sgn(ρ)
∑

{ P1,...,Pn }

µ(P1)⊗ · · · ⊗ µ(Pn) ,

where the first summation runs over all maximal dissections ρ of P . And the second summation runs

over all compatible total orders P1, . . . , Pn of the 2-gons.

The work in [GGL09] establishes a correspondence between the algebra of R-deco polygons and Hopf

algebra of iterated integrals, meaning the construction in Definition 3.3.12 is well-defined. Specifically

Proposition 8.1 in [GGL09] establishes an isomorphism from the graded Lie coalgebra I>0(R)/I>0(R)2

of indecomposable iterated integrals over R to (V pg
• (R), ∂), the graded Lie coalgebra of R-deco polygons.

Theorem 8.2 establishes a map of coalgebras 〈B(π)|π ∈ P•• (R)〉 → I>0(R)2, comparing in detail the
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coproducts in each case. (Here B(π) is some element in the bar construction B(P•• ) that is associated

to the polygon π, as in Definition 6.9 of [GGL09].) Moreover, in Chapter 3 of [Rho12], Rhodes proves

explicitly that the symbol given by the polygon framework, and the ⊗m invariant given by the binary

tree framework are indeed bijective.

Duhr has implemented this polygon dissection method of computing the symbol as the PolylogTools

[PT] package for Mathematica. This package provides a robust and convenient way of working with

MPL symbols at high weight, or high depth, which would otherwise be too cumbersome for hand

calculations. The majority of calculations in this thesis have been completed using this package.

Hook-arrow trees: In Chapter 2 of [Rho12], Rhodes introduces the notation of Hook-arrow trees to

solve the problem of how to represent and work with the ‘visual’ requirements of polygon dissections

on a computer. Rhodes defines a hook-arrow tree as follows.

Definition 3.3.13 (Rhodes, Definition 2.4 in [Rho12]). A hook-arrow tree is a rooted spanning tree

on a set of vertices in a linear order [v1, . . . , vn], which is not interlaced and has root vn. The edges

are directed towards vn.

Here the vertices are meant to correspond to edges of an R-deco polygon. The term ‘interlaced’ means

there is no choice of four vertices v1 < v2 < v3 < v4 such that the edges (v1, v3) and (v2, v4) are both

contained in the graph. This captures the notion that edges of the spanning tree do not cross.

In Section 2.3 of [Rho12], Rhodes shows how to obtain terms in the symbol directly from these

hook-arrow trees. In Chapter 4 of [Rho12], Rhode argues that the hook-arrow tree construction

provides a more efficient method of computing the symbol of an MPL of given depth since one can

isolate which terms will have non-zero coefficients from the start, rather than having to compute with

every possible binary tree or every possible maximal dissection and see which terms happen to vanish.

Rhodes uses this to compute the symbol of Ia,b(x, y) and Ia,b,c(x, y, z) for arbitrary a, b, c. We will

make use of the depth 2 calculation in Chapter 6 to explicitly prove an identity about Ia,b(x, y) +

(−1)a+bIa,b( 1
x ,

1
y ) on the level of the symbol.

3.4 The symbol modulo �, and modulo δ

From Section 3.2.3.2, we know that the object −(1− x) ∧ x⊗ x⊗n−2 attached to the polylogarithm

L n(x) captures the pure functional equations of L n(x). Another way to view this is as the functional

equations of Lin(x), modulo product terms. If we compute the symbol of Lin(x), we find

S(Lin(x)) = −(1− x)⊗ x⊗ x⊗n−2 .

So how do we go from −(1− x)⊗ x⊗ x⊗n−2 to −(1− x) ∧ x⊗ x⊗n−2 and find identities which hold

modulo products? And more coarsely, can we isolate things like the pure polylogarithm components of

a symbol? Or only the depth 2 contribution?
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3.4.1 The symbol modulo �

If we have two MPL’s I1 and I2, with corresponding symbols a1 ⊗ · · · ⊗ an and b1 ⊗ · · · ⊗ bm, then the

symbol of the product I1I2 is given by the shuffle product of the respective symbols

S(I1I2) = S(I1)� S(I2) = a1 ⊗ · · · ⊗ an � b1 ⊗ · · · ⊗ bm .

We want to introduce some operator which kills all shuffle products, leaving only the symbol modulo

products. This is done in Section 5.4 of [DGR12], via the following projection operator.

Definition 3.4.1. Define a linear operator Πw acting on elementary tensors of lengths w ≥ 1 by

Π1 = id, and for w ≥ 2

Πw(a1 ⊗ · · · ⊗ aw) := w − 1
w

(Πw−1(a1 ⊗ · · · aw−1)⊗ aw −Πw−1(a2 ⊗ · · · aw)⊗ a1) .

Remark 3.4.2. The reason for the normalisation in defining Πw is to ensure Πw is idempotent. One

might instead prefer to take the following normalisation

ρw := wΠw ,

and lose the idempotency. As remarked in [DGR12], this family of operators ρw is already established

in the shuffle algebra literature.

Proposition 1 in [DGR12] establishes the following property of Πw, following from the same property

already known for ρw.

Proposition 3.4.3 (Proposition 1 in [DGR12]). The kernel of Πw is the ideal generated by all shuffle

products. That is, for any tensor ξ, we have

Πw(ξ) = 0

if and only if ξ can be written as a linear combination of shuffle products.

Example 3.4.4. By applying ρw, we can recover the −(1− x) ∧ x⊗ x⊗n−2 object corresponding to

Lin(x) from the symbol of Lin(x).

We know that S(Lin(x)) = −(1− x)⊗ x⊗ xn−2. Computing ρn(S(Lin(x))) gives

ρn(S(Lin(x))) = ρn(−(1− x)⊗ x⊗ xn−2)

= −ρn−1((1− x)⊗ x⊗ xn−3)⊗ x+ ρn−1(x⊗ xn−2)⊗ (1− x) .

Since clearly x⊗ · · · ⊗ x = x⊗n = 1
n!x
�n is a shuffle product, it vanishes under ρn, leaving

= ρn−1(−(1− x)⊗ x⊗ x⊗n−3)⊗ x .

Checking the base case

ρ(−(1− x)⊗ x) = ρ(−(1− x))⊗ x− ρ(−(x))⊗ (1− x)



3.4. The symbol modulo �, and modulo δ 119

= −(1− x)⊗ x+ x⊗ (1− x)

= −(1− x) ∧ x ,

establishes by induction that

S(Lin(x)) = −(1− x)⊗ x⊗ x⊗n−2 ρn7−→ −(1− x) ∧ x⊗ x⊗n−2

In the PolylogTools package [PT], this family Πw of operators is implemented using the command sh.

For this reason, and since the the result of Πw is to kill shuffle products �, we will refer to this as

working modulo �, or working modulo products.

Notation 3.4.5. In calculations involving the symbol, we write S1
�= S2 to denote two symbols which

are equal modulo products. That is ρ(S1) = ρ(S2). (See Appendix A.)

By abuse of notation, we may also write I �= S1 to mean that the iterated integral I has symbol S1

modulo products.

It will be convenient to write {x}n := −(1− x) ∧ x⊗ x⊗n−2, to reaffirm the connection of the symbol

with the the Bloch groups from earlier. So S(Lin(x)) �= {x}n.

In this notation, we have the following

Proposition 3.4.6 (Lin inversion). On the level of the symbol, modulo products, the inversion relation

says

S(Lin( 1
x )) = −(−1)nS(Lin(x)) .

So { 1
x

}
n

= −(−1)n {x}n .

3.4.2 The symbol modulo δ

Now we consider how to isolate and remove the depth 1 term, Lin(x), from the symbol. A readable

account of this, with many explicit calculations, is given in [Ver].

The origin of this process to isolate Lin(x) terms lies in considering a group Ln describing all multiple

polylogarithms of weight n, much like the Bloch group Bn describes the polylogarithms of weight n.

(Compare with the groups Hn(E) that Dan defines in [Dan11], discussed in Section 5.1.2.)

Recall that A• is the Hopf algebra of iterated integrals from Section 1.2.1. Then we want to consider

the Lie coalgebra of indecomposables

L• := A>0

A>0 · A>0
.

This is the space of iterated integrals, modulo products. It inherits a Lie cobracket δ from the coproduct

∆ on the Hopf algebra. This cobracket δ is defined as follows

δ := (π ⊗ π) ◦ (∆−∆op) ,
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where

π : A• → L•

is the canonical projection map and ∆op is the opposite coproduct. That is, if ∆(x) =
∑
ai ⊗ bi, then

∆op(x) =
∑
bi ⊗ ai. So δ defines a map

δ : L• →
∧2
L•

that gives L• the structure of a Lie coalgebra, whence δ2 = 0. Notice that for computations we can

replace ∆ and ∆op by their respective reduced versions ∆′ = ∆− 1⊗ id− id⊗1. This is because the

terms 1⊗ x+ 1⊗ x will always cancel in (∆−∆op)(x).

Conjecturally, we expect exact sequences connecting Ln, and Bn to arise. We can view Bn (weight

n polylogarithms) as a subset of Ln (weight n multiple polylogarithms) in a natural way. The maps

out from Ln are obtained from the graded components δa,b of the cobracket δ, but only the degree

(≥ 2,≥ 2) parts are used.

These exact sequences should give important information about weight n polylogs. At weight 4 and 5,

we expect the following short exact sequences.

0→ B4 → L4 →
∧2
B2 → 0

0→ B5 → L5 → B2⊕B3 → 0 .

At weight 6, the sequence is no longer short

0→ B6 → L6 → B3 ∧B3⊕B2⊗L4 →
∧3
B2 → 0 .

Roughly one can think that the function I2,2,2(x, y, z), for example, genuinely has depth 3, and has a

component in
∧3 B2.

These exact sequences mean that ker
⊕

a,b≥2 δa,b in Ln should equal (the image of) Bn. So we can

isolate and remove pure polylog terms using δ. From the conjectural existence of these exact sequences,

we get the following which is a version of Zagier’s polylogarithm conjecture.

Conjecture 3.4.7 (Zagier). Any expressions which vanish under
⊕

a,b≥2 δa,b can already be written

in terms of polylogarithms only.

Indeed, we have the following easy calculation confirming that the image of Bn in Ln lands in kernel

of
⊕

a,b≥2 δa,b.

Lemma 3.4.8. Under
⊕

a,b≥2 δa,b, Lin(x) maps to 0.

Proof. Lin(x) is the iterated integral I(0;x, {0}n−1; 1), up to sign and inversion of x which we can

ignore.

We will talk about the coproduct ∆ of I(0;x, {0}n−1; 1) using the semicircular polygon interpretation

Remark 1.2.2. In order to get a degree (≥ 2,≥ 2) component in ∆, we can assume n ≥ 4.
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If there is no first vertex (not including the two end points, of course), we obtain one of the trivial

terms in the coproduct

1⊗ I(0;x, {0}n−1; 1) .

The first vertex of the semicircular polygon must occur at x, otherwise it would be at one of the 0’s as

follows

I(0;x, 0, . . . , 0
trivially 0

, . . . , 0; 1)

We would then obtain an integral I(0, . . . , 0) = 0 in the right hand factor of the coproduct.

Now if the second vertex occurs after the second 0, it looks like follows.

I(0;x, 0, 0, . . . , 0
a product

, . . . ; 1) .

So we would obtain an integral I(x, 0, . . . , 0︸ ︷︷ ︸
k≥2

, 0) = 1
k!I(x, 0, 0)k, which vanishes modulo products.

If the second vertex occurs at the second 0, we cannot skip any more arguments, other we would obtain

I(0; 0; 0) = 0 or I(0; 0; 1) reg= 0, as indicated

I(0;x, 0, 0, 0, . . . , 0
trivially 0

; 1) or I(0;x, 0, 0, 0, . . . , 0; 1
regularises to 0

) .

Therefore our choice of vertices is as follows,

I(0; ↓
x, 0,

↓
0,

↓
0, . . . ,

↓
0; 1) ,

and we obtain the term

I(0;x, {0}n−2; 1)⊗ I(0, x)︸ ︷︷ ︸
=1

I(x; 0; 0) I(0, 0)I(0, 0) · · · I(0, 1)︸ ︷︷ ︸
=1

in the coproduct. Since the right hand factor is weight 1, it does not contribute to
⊕

a,b≥2 δa,b.

Now it can only be the case that the second vertex occurs at the first 0. But by the same logic, we

cannot skip any more arguments. Our choice of vertices is as follows,

I(0; ↓
x,

↓
0,

↓
0,

↓
0, . . . ,

↓
0; 1) ,

and we obtain

I(0;x, {0}n−1; 1)⊗ I(0, x)I(x, 0)I(0, 0) · · · I(0, 1) ,

which is nothing other than the other trivial term in the coproduct

I(0;x, {0}n−1; 1)⊗ 1 .

We see that there is no contribution to
⊕

a,b≥2 δa,b, so the claim holds.

The first example in which we get a result which does not vanish under δ is for the iterated integral

I3,1(x, y), which has a non-trivial δ2,2 component.
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Example 3.4.9 (I3,1(x, y) under δ2,2). We compute the reduced coproduct ∆′ of I3,1(x, y) =

I(0, x, 0, 0, y, 1) to consist of the following 8 terms.

I(0, x, 1)⊗ I(x, 0, 0, y, 1) + I(0, y, 1)⊗ I(0, x, 0, 0, y) + I(0, x, 0, 1)⊗ I(0, y, 1)I(x, 0, 0) +

+ I(0, x, 0, 1)⊗ I(0, 0, y, 1) + I(0, x, y, 1)⊗ I(x, 0, 0, y) + I(0, x, 0, 0, 1)⊗ I(0, y, 1) +

+ I(0, x, 0, y, 1)⊗ I(0, 0, y) + I(0, x, 0, y, 1)⊗ I(x, 0, 0)

Of the 14 terms which should appear in the reduced coproduct, the other 6 are trivially 0 because one

of the integrals involved has equal bounds I(0, . . . , 0) = 0.

We only want to consider the δ2,2 component, so we throw away all but the following 3 terms.

I(0, x, 0, 1)⊗ I(0, y, 1)I(x, 0, 0) + I(0, x, 0, 1)⊗ I(0, 0, y, 1) + I(0, x, y, 1)⊗ I(x, 0, 0, y) .

Computing ∆ −∆op has the effect of replacing ⊗ by ∧, when going to the Lie coalgebra. We also

disregard products in the Lie coalgebra, so we obtain only

I(0, x, 0, 1) ∧ I(0, 0, y, 1) .

The first of the 3 terms above is clearly a product in the second factor. But what happened to the

third term? It also involves a product in the second factor since I(x, 0, 0, y) = 1
2I(x, 0, y)2, using the

shuffle product multiplication of iterated integrals.

We now try to convert this single remaining term back to more recognisable functions. We have

I(0, x, 0, 1) = −Li2( 1
x ), and modulo products this is equivalent to Li2(x) by the inversion relation. On

the other hand we need to shuffle regularise I(0, 0, y, 1). We have that

0 = I(0, 0, 1)︸ ︷︷ ︸
=0

I(0, y, 1) = I(0, y, 0, 1) + I(0, 0, y, 1) ,

so that

I(0, 0, y, 1) = −I(0, y, 0, 1) = Li2( 1
y ) .

We can therefore replace I(0, 0, y, 1) by −Li2(y) modulo products. This gives the final result that

δ2,2(I3,1(x, y)) = −Li2(x) ∧ Li2(y) .

Remark 3.4.10. The result that δ2,2(I3,1(x, y)) 6= 0 shows that it is not possible to express I3,1(x, y)

in terms of the classical polylogarithm Li4. So at weight 4 a genuinely new function appears. However,

certain combinations of I3,1’s can be made to vanish under δ2,2, which suggests that they should be

expressible in terms of Li4’s. For example,

δ2,2(I3,1(x, y)− I3,1( 1
x ,

1
y )) = 0 ,

after using that Li2( 1
x ) �= −Li2(x). Gangl [Gan16] provides the following Li4 terms for this combination

I3,1(x, y)− I3,1( 1
x ,

1
y ) �= Li4([x]− [y] + 3[xy ]) ,
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by working on the level of the symbol modulo products. Gangl [Gan16] also finds many other similar

identities and functional equations between weight 4 polylogarithms, using such an approach.

How to work with δ on the symbol? For the rest of this thesis we will be working almost

exclusively with the symbol of MPL’s. We would therefore like a way to work with some version of δ

directly on the level of symbols, rather than having to go through the coproduct, and the Lie coalgebra.

Vergu [Ver] outlines how to work with the symbol modulo δ. To compute δ of a weight n symbol, we

want to project the symbol to the various different weight (k, n− k) pieces and assemble these into a

final result. For clarity, write Sn to mean the space of weight n symbols. To obtain a weight (k, n− k)

contribution from the symbol, we can gather the first k, and last n− k tensor factors, and regard each

of them as a symbol in their own right. In the Lie coalgebra Ln, we work modulo products, so this

will translate over to working with the symbol modulo products.

On symbols, we can therefore build δ up as the following composition

δ = Sn
ρ−→ Sn

π2,n−2⊕···⊕πn−2,2−−−−−−−−−−−−→ S2 ⊗ Sn−2 ⊕ · · · ⊕ Sn−2 ⊗ S2

ρ⊗ρ⊕···⊕ρ⊗ρ−−−−−−−−−→ Sn−2 ⊗ S2 ⊕ · · · ⊕ Sn−2 ⊗ S2 ,

Here ρ is the operator which kills products from Definition 3.4.1 and Remark 3.4.2, and πk,n−k is the

map which gathers the first k factors of the tensor product together, and gathers the last n− k factors

of the tensor product together. Informally, perhaps, we should think about identifying Ln with ρ(Sn)

to aid the intuition.

The following example of the calculation of δ in the weight 4 case is found in Vergu [Ver].

Example 3.4.11. Let’s see how δ acts on the symbol a⊗ b⊗ c⊗d. As a first step we need to compute

a⊗ b⊗ c⊗ d, modulo products. We get

a⊗ b⊗ c⊗ d ρ7−→ a⊗ b⊗ c⊗ d− b⊗ a⊗ c⊗ d− b⊗ c⊗ a⊗ d− b⊗ c⊗ d⊗ a+

+ c⊗ b⊗ a⊗ d+ c⊗ b⊗ d⊗ a+ c⊗ d⊗ b⊗ a− d⊗ c⊗ b⊗ a .

Now gather the terms under π2,2, to get

π2,27−−→(a⊗ b)⊗ (c⊗ d)− (b⊗ a)⊗ (c⊗ d)− (b⊗ c)⊗ (a⊗ d)− (b⊗ c)⊗ (d⊗ a) +

+ (c⊗ b)⊗ (a⊗ d) + (c⊗ b)⊗ (d⊗ a) + (c⊗ d)⊗ (b⊗ a)− (d⊗ c)⊗ (b⊗ a) .

We can quickly check that ρ(a⊗b) = a∧b, so applying ρ⊗ρ, gives after some cancelling and regrouping

ρ⊗ρ7−−→ 2(a ∧ b)⊗ (c ∧ d)− 2(c ∧ d)⊗ (a ∧ b)

= 2(a ∧ b) ∧ (c ∧ d) .
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Therefore, on weight 4 symbols, we can compute δ as a kind of 8-fold antisymmetrisation

δ(a⊗ b⊗ c⊗ d) = 2(a ∧ b) ∧ (c ∧ d) ,

as was discussed in [GSVV10].

Example 3.4.12 (I3,1(x, y) modulo δ). We can apply the above to the symbol of I3,1(x, y), which is

S(I3,1(x, y)) = (1−x
x )⊗ ( 1

x )⊗ ( 1
x )⊗ ( 1−y

y ) + ( 1−x
x )⊗ ( 1

x )⊗ ( 1−y
y )⊗ ( 1

x ) +

+ ( 1−x
x )⊗ ( 1

x )⊗ ( 1−y
y )⊗ y + ( 1−x

x )⊗ ( 1−y
x−y )⊗ ( yx )⊗ ( 1

x ) +

+ ( 1−x
x )⊗ ( 1−y

x−y )⊗ ( yx )⊗ y + ( 1−y
y )⊗ (y−xx )⊗ ( yx )⊗ ( 1

x ) +

+ ( 1−y
y )⊗ (y−xx )⊗ ( yx )⊗ y .

There are a number of simplifications to make initially. For example, we have

( 1−x
x ∧

1
x ) = −(1− x) ∧ x+ x ∧ x = −(1− x) ∧ x ,

which we may write as {x}2 using the established shorthand. Similarly, we have

( yx ) ∧ ( 1
x ) = −(y ∧ x) + x ∧ x = −(y ∧ x) .

Applying this to the first two terms of S(I3,1(x, y)) gives (up to a factor of 2)

{x}2 ∧ ( 1
x ) ∧ ( 1−y

y ) + {x}2 ∧ ( 1−y
y ) ∧ ( 1

x ) = 0 .

Applying it to the fourth and fifth terms gives

(( 1−x
x ) ∧ ( 1−y

x−y )) ∧ (x ∧ y)− ( 1−x
x ) ∧ ( 1−y

x−y ) ∧ (x ∧ y) = 0 .

And applying it to the sixth and seventh terms gives

(( 1−y
y ) ∧ (y−xx )) ∧ (x ∧ y)− (( 1−y

y ) ∧ (y−xx )) ∧ (x ∧ y) = 0 .

The only term which survives is the third term, and on applying δ to the third term, we obtain

−2 {x}2 ∧ {y}2 .

So under δ, we have

S(I3,1(x, y)) δ7−→ −2 {x}2 ∧ {y}2 .

Notice that this agrees (upto an overall scaling) with the computation of δ2,2(I3,1(x, y)) from Exam-

ple 3.4.9, once we make the usual identification {x}2 with the symbol of Li2(x), modulo products.

Remark 3.4.13. We can see quickly that the symbol of any pure polylogarithm Lin(x) vanishes under

δ. The reason is simple: when n ≥ 4, the last n− 1 factors of S(Lin(x)) are all x. So applying ρ to the

second component of πk,n−k always yields 0, since n− k ranges from 2 to n− 2. For smaller n, there
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is not even enough room to split off the first and last two factors. This agrees with the result from

Lemma 3.4.8.

The routine to compute the symbol modulo δ is built into Duhr’s PolylogTools [PT] package as

del. As already observed there, there appears to be some choice of scaling to be made since

del[CreateTensor[I3,1(x, y)]] returns ‘essentially’ −{x}2 ∧ {y}2, agreeing with Example 3.4.9. For

the remainder of this thesis, any calculations involving δ will be done with Duhr’s PolylogTools package

to ensure consistency of results.

Notation 3.4.14. When computing with symbols S1 and S2, we shall say the symbols agree modulo

δ and write S1
δ= S2 to mean δ(S1) = δ(S2). (See Appendix A.)

By abuse of notation, we may also write I δ= S1 to mean the iterated integral I has symbol S1 modulo

δ.

According to Zagier’s conjecture, Conjecture 3.4.7, when working with the symbol modulo δ we should

think that this is the symbol modulo the depth 1 terms Lin. Given the conjectural status of this result,

we will typically say that some result which vanishes modulo δ is ‘morally’ expressible in terms of Lin
to avoid treating this conjecture as an inviolable truth. A similar construction appears to exists to

work modulo depth 2 terms, or even higher by iterating and considering some ‘version’ of δ, δ2, et

cetera. I will touch on this slightly in Remark 7.8.2, although since δ2 = 0 on L•, it is perhaps not

entirely clear how this construction should be interpreted.

3.4.2.1 Nielsen polylogarithms and the kernel of δ

Zagier’s conjecture that the kernel of δ consists exactly of classical polylogarithms Lin, Conjecture 3.4.7,

usually works very well in explicit computations. That is to say, given some combination with symbol

S1 that vanishes modulo δ, it is usually possible to generate a large enough set of ‘good arguments’

(through intuition, analogy with lower weight cases, or semi-exhaustive computation using packages

like Danylo Radchenko’s MESA [MESA]) to find Lin terms which agree with the symbol S1 modulo

products.

However, there is a special class of iterated integrals which appears to be something of an obstruction

to this. As Brown notes [Bro], the a priori slightly larger class of Nielsen polylogarithms [Nie09], also

vanishes modulo δ.

Definition 3.4.15 (Nielsen polylogarithm). The Nielsen polylogarithm Sn,p(x) is defined by the

iterated integral

Sn,p(x) := (−1)pI(0; {1}p, {0}n;x) .

We readily compute the symbol of Sn,p(x) to be

S(Sn,p(x)) = (−1)p(1− x)⊗p ⊗ x⊗n ,

and observe that Sn−1,1(x) = Lin(x) is the usual polylogarithm.
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Proposition 3.4.16. Under δ, the symbol of the Nielsen polylogarithm Sm,p(x) of weight n = m+ p

goes to 0.

Proof. For weight ≤ 3, δ always vanishes because there is not enough room to compute a non-trivial

result. When weight ≥ 4, we find that the first p positions agree and last m positions agree.

S(Sm,p(x)) = ± (1− x)⊗ · · · ⊗ (1− x)︸ ︷︷ ︸
p positions

⊗x⊗ · · · ⊗ x︸ ︷︷ ︸
m positions

The contribution for (ρ⊗ ρ) ◦πk,n−k is 0 whenever k ≤ p because the first ρ vanishes. Otherwise, when

k > p, we have n− k < n− p = m, to the contribution for (ρ⊗ ρ) ◦ πk,n−k still vanishes because the

second ρ vanishes. Overall, all terms in δS(Sm,p(x)), vanish as claimed.

Remark 3.4.17. The truth of Conjecture 3.4.7 would imply that the Nielsen polylogarithms Sm,p(x)

can be expressed in terms of Lin. Indeed, we can give the following symbol level expression for S2,2(x)

S2,2(x) S= Li4
(

[x]− [1− x] +
[

x

x− 1

])
+

− Li3(x) log(1− x)− 1
6 log(x) log(1− x)3 + 1

24 log(1− x)4 .

Unfortunately, despite many extensive attempts, I have not been able to find a reduction of S3,2(x) to

classical polylogarithms.

However, we can relate all of the different Nielsen polylogarithms in weight 5, 6 and 7 back to Sn−2,2(x)

and Lin(x), as follows. Generally it appears that Sa,b(x) �= −Sb,a(1−x). Then the remaining cases are

S3,3(x) �= 2 Li6 (1− x) + 1
2S4,2

(
[x]− 3[1− x]−

[
x

x− 1

])
S4,3(x) �= Li7

(
−3[x] + 2[1− x]− 3

[
x

x− 1

])
+ S5,2

(
[x]− [1− x] +

[
x

x− 1

])
.

Somehow Sn−2,2(x) and Lin(x) seem to be the ‘basic’ functions which vanish modulo δ, in weight

≤ 7. Therefore the question of characterising ker δ here is reduced to determining whether or not

Sn−2,2(x) can be expressed in terms of the classicl polylogarithm Lin(x). Starting at weight 8 further

obstructions appear, for example S5,3(x) does not seem to be expressible in terms of Sn−2,2(x) and

Lin, without searching again for yet more ‘good arguments’.

When studying weight ≥ 5 multiple polylogarithm functional equations in Chapter 4, and Chapter 7,

we will explicitly allow Nielsen Sn−2,2(x) terms when attempting to find the terms missing ‘depth 1’

terms in symbol level identities. That is to say, we shall leave resolving the question of whether Lin is

exactly the kernel of δ as a problem for future investigation. Indeed, without yet having a reduction of

S3,2(x) to Li5’s, there are definitely times when Nielsen terms appear to be necessary, starting already

in Section 4.2.1.3.

Remark 3.4.18. Finally, it is curious to note that modulo �, we have

Sn−2,2(x) �= In−1,1(1, x) + nLin(x) .
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So that the Nielsen polylogarithm Sn−2,2(x) can be expressed via some kind of ‘single-variable’ depth

2 integral.





Chapter 4

Relating weight 5 MPL’s

In this chapter we shall investigate the symmetries and relations between various weight 5 MPL’s,

following previous investigations by Gangl [Gan16] in the weight 4 case. We try to motivate this

investigation by claiming that in order to understand the weight 5 polylogarithm, one really needs to

understand how it fits into the broader context of weight 5 multiple polylogarithms (Section 4.1.1).

From the start, we restrict to a relatively small but potentially interesting set of arguments of the

form [cr(a, b, c, d1), . . . , cr(a, b, c, dk)] (“coupled cross-ratios”, Notation 4.1.1). We discuss the potential

computational difficulties (memory and CPU time, Section 4.1.3.1) in finding all relations between

iterated integrals with these arguments, and some of the strategies to minimise these such as the

“numerical valuations” idea from Danylo Radchenko.

We start by looking for symmetries, and short functional equations, for the weight 5 depth 2 iterated

integrals. We do this first for I4,1 using ‘coupled cross-ratio’ arguments, modulo δ (Section 4.2.1).

Then we try to lift them to identities for I4,1 holding modulo products (Section 4.2.1.3), and even on

the level of the symbol (Section 4.2.1.1, Section 4.2.1.2). We encounter an ‘obstruction’ in the form of

Nielsen polylogarithms when trying to lift some of these identities (Section 4.2.1.3). We then repeat

this process for the multiple polylogarithm I3,2 (Section 4.2.2), and we determine how I4,1 and I3,2
relate (Section 4.2.2.3)

Next we will investigate identities holding between depth 3 MPL’s using ‘coupled cross-ratio’ arguments

(Section 4.3). We look for identities on I3,1,1 modulo δ (Section 4.3.1). However, it turns out that

allowing a small selection of I3,2 terms (but not so many as to make everything trivial) drastically

simplifies the structure of the relations amongst depth 3 MPL’s (Section 4.3.2 onwards). We can even

explicitly lift the identities for I3,1,1 mod I3,2 to identities modulo products (Section 4.3.2.2) Moreover,

we find the curious result (Theorem 4.3.18) that any depth 3 MPL is equivalent modulo these I3,2
terms to a sum over any other depth 3 MPL.

Finally, we indicate some results which occur at higher depths, such as a reduction of I2,1,1,1 to

I3,1,1’s, and some short functional equations for I1,1,1,1,1 (Section 4.4). We also suggest a larger set of

arguments which might lead to ‘better’ identities between weight 5 MPL’s Section 4.4.3).
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4.1 Introduction

4.1.1 Motivation

In order to understand better the behaviour of the weight 5 polylogarithm Li5, it becomes important

to understand how it fits into the more general picture of multiple polylogarithms. For example, in

Section 7.4 an idea of Goncharov’s will let us find functional equations for Li5 by studying the iterated

integral I4,1. The pure polylogarithms Lin cannot be treated in isolation without losing far too much

of the important structure which comes from the multiple polylogarithms. Indeed, Gangl has made a

similar study of the weight 4 case [Gan16], and by understanding how certain combinations of depth 2

iterated integrals relate has been able to find a highly generic Li4 functional equation using Goncharov’s

idea for weight 4. This will again be discussed in Chapter 7.

4.1.2 Notation and goal

We will initially look at symmetries of iterated integrals Ia1,...,an(x1, . . . , xn), where the arguments are

cross-ratios. There are two main reasons for restricting to this choice of arguments. The first reason is

that Gangl [Gan16] has had a great deal of success analysing such arguments in the weight 4 case. A

second, deeper, reason for this choice of arguments has to do with the connection to the geometry

of the moduli space M0,n, of n marked points on P1, with cross-ratios providing a natural choice of

coordinates on M0,n. For further details of the connection between multiple polylogarithms and M0,n,

see Section 6 of [Bro09]. In particular, Corollary 6.17 of [Bro09], shows that every iterated integral on

M0,n can be expressed as a sum of products of multiple polylogarithms of the form

Lin1,...,nr

(
xj1 · · ·x`
xj2 · · ·x`

, . . . ,
xjr−1 · · ·x`
xjr · · ·x`

, . . . , xjr · · ·x`
)

,

and logarithms log(x1), . . . , log(x`), where x1, . . . , x` are cubical coordinates on M0,n, and 1 ≤

j1, . . . , jr ≤ ` are any indices.

Given 4 points a, b, c, d, we will abbreviate the cross-ratio as follows

abcd := cr(a, b, c, d) = a− c
a− d

/
b− c
b− d

.

Then if we have an iterated integral with cross-ratio arguments In1,...,nk(abcd1, abcd2, . . . , abcdk), we

will abbreviate this to

In1,...,nk(abcd1d2 . . . dk) := In1,...,nk(abcd1, abcd2, . . . , abcdk) .

For example

I3,2(abcde) = I3,2(cr(a, b, c, d), cr(a, b, c, e)) .

This does have the effect of strongly coupling the variables together, and so restricts the scope for

finding identities and relations. But at the same time, this gives us a tractable set of arguments to

work with initially, so that the task of finding relations is not hopelessly open-ended.
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Notation 4.1.1 (Coupled cross-ratio arguments). We will call arguments of the form [abcd, abce] =

[cr(a, b, c, d), cr(a, b, c, e)], or more generally [abcd1, . . . , abcdk] = [cr(a, b, c, d1), . . . , cr(a, b, c, dk)], cou-

pled cross-ratio arguments.

From here we can expand to relations between different iterated integrals, using a similar set up with

cross-ratio arguments.

We will look for symmetries and relations with varying levels of accuracy. On the coarsest level, we will

look modulo δ, meaning (roughly) the identities hold modulo depth 1 terms, i.e. modulo Lin. With

persistence maybe these identities can be upgraded to identities holding modulo �, that is modulo

products. In some cases it may even be possible to find identities which hold on the level of the symbol

exactly.

It does not (quite) make sense to look for identities holding ‘modulo δ2’ since one expects that every

iterated integral at weight 5 can already be written in terms of I5, I3,2 and I2,3 by eliminating the

indices 1. This would mean that every weight 5 iterated integral vanishes ‘modulo δ2’. This is

investigated in more depth in Section 5.3. However, it could be worth asking for relations which hold

true modulo depth 2 integrals with our (relatively) simple choice of cross-ratio arguments.

4.1.3 Strategy for finding relations

The basic strategy for finding relations between these types of iterated integrals is to apply brute-force

linear algebra. For example, to find relations for I4,1 modulo δ, form the linear combination

T =
∑

σ∈S{ a,b,c,d,e }

cσI4,1(σ · abcde) .

Then compute the symbol S(T ), and reduce modulo δ. Setting this combination to 0 produces a linear

system of equations for the coefficients cσ, which can then be solved to find relations for I4,1 modulo δ.

4.1.3.1 Dealing with ‘potentially’ large systems of equations

This method of brute-force computing the symbol and setting up a large system of equations works

insofar as low depth, low weight integrals can be analysed like this. The main bottle-neck initially is

computing the symbol of each term. Already the symbol of I4,1(abcde) modulo δ involves 4536 terms

when fully expanded out to elementary tensors. Summing over 5! = 120 different permutations of abcde

involves over half a million terms, taking up nearly 700 MB of memory. The intermediate calculations

in Mathematica require 4.6 GB of memory. For a higher depth integral like I3,1,1, the symbol for a

single term of I3,1,1(abcdef) modulo δ has 23256 terms. Then we would sum over 6! = 720 different

terms, so the result would be approximately 30 times bigger already.

This large number of terms feeds into the next bottle-neck. The resulting system of equations is

hideously over-determined. In the case of I4,1 modulo δ, by setting the sum S(T ) = 0 modulo δ, we
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obtain 45360 equations for the 5! = 120 variables cσ. Even removing exact duplicates still leads to

4200 equations. But the rank of the resulting matrix is only 20, meaning 4180 of these equations are

completely redundant!

Numerical valuations: From discussions with Danylo Radchenko, I learned of a better way to

generate the system of equations for the cσ. Given a symbol (modulo �, modulo δ, or otherwise)

s ∈
⊗

nQ(x1, . . . , x`)∗ one specialises each x1, . . . , x` to some sufficiently generic tuple of rationals

(or even integers), giving a map
⊗

nQ(x1, . . . , x`)∗ →
⊗

nQ∗. In this context generic means no pairs

xi = xj are allowed, and all xi are away from poles of factors of s.

Now choose a set of n primes p1, . . . , pn, and compute the valuation νpi of tensor factor i with respect

to prime pi, and take the product of the results. This gives a map
⊗

nQ∗ → Q∗. (Remember that

we treat tensors as multiplicative rather than additive in each slot (ab)⊗ c = a⊗ c+ b⊗ c.) On an

elementary tensor q1 ⊗ · · · ⊗ qn ∈ Q⊗n, we obtain

q1 ⊗ · · · ⊗ qn 7→ νp1(q1) · · · νpn(qn) .

Overall we obtain a map N = Nx1,...,x`,p1,...,pn :
⊗

nQ(x1, . . . , x`)∗ → Q∗, by extending formally to

symbols which are linear combinations of elementary tensors.

Applying this construction to S(T ) = 0, above, leads to∑
σ∈S{ a,b,c,d,e }

cσ N(S(I4,1(σ · abcde)))︸ ︷︷ ︸
∈Q

= 0 .

So for each choice of specialisations, and primes, we produce one equation for the cσ. By choosing

different specialisations and/or different primes, we obtain further equations for the cσ. The linear

system can therefore be built up one equation at a time until the rank stabilises, and no new equations

for the cσ arise.

Generating the system of equations this way had further advantages over the brute-force ‘compute and

expand out the symbol’ approach.

Firstly, the symbol of I4,1(σ · abcde) arises by plugging suitable arguments (namely, σ · abcd, and

σ · abce) into I4,1(x, y). So we can compute N(S(I4,1(σ · abcde))) by first specialising the arguments,

then using the numerical valuation coming from I4,1(x, y). This means we only need to compute the

symbol of I4,1 once, but can use it again and again for new choices of arguments. Moreover, the map

N does not depend on the particular presentation chosen for the symbol, so we are free to use the

most compact version we can.

For example, the version of the symbol produced by Goncharov’s tree definition (Section 3.3.1) is

significantly shorter than than the version produced by Duhr’s PolylogTools package. Not least of

which this is because Duhr’s package necessarily must reduce the symbol to elementary tensors before

returning the result. Instead, I can implement my own version of Goncharov’s tree definition to



4.2. Depth 2 iterated integrals 133

compute the symbol for these calculations. I find (of course!) that it agrees with Duhr’s results in

every case, whilst making some of computations much more efficient.

Another advantage comes from noticing that the calculations of N for different specialisations, and

for different primes, are completely independent. Therefore multiple calculations of N can be run in

parallel, further reducing the computation time of the system of equations for cσ.

4.1.3.2 Finding ‘short’ relations

Besides generating the matrix, another difficulty lies in finding ‘nice’ relations. Typically one wants

relations with integer coefficients (or rationals with small very small denominators). Moreover, one

wants relations with relatively few terms, roughly meaning short null vectors in one metric or another.

Gaussian elimination to find the nullspace of the resulting matrix will not lead to particularly nice

relations. One can try to use LLL reduction to find ‘better’ integer basis for the nullspace. In

Mathematica [MA] this can be done with the command LatticeReduce. Better results can be

obtained by passing the matrix to GP/Pari [GP], for processing with the matkerint command.

These routines do not guarantee the shortest possible relations, but in practice they typically work

well enough to identity very short relations. Due to the setup of the problem, any permutation of

arguments abcde in an identity necessarily produces another identity. By finding a short null-vector,

and generating further short null-vectors in the null-space, one can LatticeReduce several times to

try to find the shortest possible relations.

4.2 Depth 2 iterated integrals

At depth 2, there are four iterated integrals to consider, namely I4,1, I3,2, I2,3 and I1,4. In some sense,

I4,1 is the simplest of these, having the shortest symbol, so it is best to start there.

4.2.1 Relations for I4,1 modulo δ

Firstly we look for relations which hold modulo products, and depth 1 terms. That is modulo δ. We

find some simple two term identities of the following form.

Identity 4.2.1. Modulo δ, we have

I4,1(abc(de)) δ= I4,1(abc(ed)) (4.2.1a)

I4,1((ab)cde) δ= −I4,1((ba)cde) . (4.2.1b)

Remark 4.2.2. In these identities, and any subsequent ones, the bracketing of cross-ratio arguments

is only for emphasis. It is there only to help identify which variables in the cross-ratios have changed.
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Converting back from cross-ratios to rational functions, by setting a = ∞, b = 0, c = 1, d = x and

e = y, we can write these identities as

I4,1(x, y) δ= I4,1(y, x) (4.2.1a′)

I4,1(x, y) δ= −I4,1( 1
x ,

1
y ) . (4.2.1b′)

We will see identities like Equation 4.2.1b′ occur for all of the depth 2 iterated integrals Ia,b. Indeed,

Chapter 6 deals with providing a general proof of this result, and lifting a certain subclass of identities,

those for In,1 to full numerically testable identities.

Potentially more interesting is the following cyclically symmetric identity

Identity 4.2.3. Modulo δ we have

Cyca,b,c I4,1((abc)de) = I4,1((abc)de) + I4,1((bca)de) + I4,1((cab)de) δ= 0 (4.2.2)

Or equivalently,

I4,1(x, y) + I4,1( 1
1−x ,

1
1−y ) + I4,1(1− 1

x , 1−
1
y ) δ= 0 . (4.2.2′)

The above identities hold modulo δ, which morally means modulo Li5 terms and products. We should

try to find the missing Li5 terms in order to get identities which hold modulo �.

4.2.1.1 Li5 and product terms for symmetry I4,1(x, y) δ= I4,1(y, x)

Identity 4.2.4. Modulo � we have

I4,1(abc(de)) �= I4,1(abc(ed))) ,

so Equation 4.2.1a holds modulo � already.

Or equivalently

I4,1(x, y) �= I4,1(y, x) .

A similar result is observed by Gangl in [Gan16] at weight 4, where it is stated that I3,1(x, y) �=

−I3,1(y, x). Both of these symmetries are instances of the following general result.

Proposition 4.2.5. The following identity holds exactly for the iterated integrals.

In,1(x, y)− (−1)nIn,1(y, x) = (−1)n
n∑
i=1

(−1)iIi(x)In+1−i(y) . (4.2.3)

So modulo �, we obtain

In,1(x, y) �= (−1)nIn,1(y, x)

Proof. We firstly convert this to a result on differential forms, then we can use that the product of

iterated integrals is just the shuffle product of the word describing the differential forms, as in the
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shuffle product property of Property 1.1.13. On the right hand side of Equation 4.2.3, ignoring the

factor (−1)n, we have

n∑
i=1

(−1)iIi(x)In+1−i(y) =
n∑
i=1

(−1)iI(0;x, {0}i−1 | 1)I(0 | y, {0}n−i; 1) .

So really we want to evaluate the following combination of differential words
n∑
i=1

(−1)i(x0i−1)� (y0n−i) .

By explicitly multiplying out and checking cases n < 3, we can assume n ≥ 3 without loss of generality.

Then we can separate the i = 1 and i = n terms of the sum to obtain

= −x� (y0n−1) + (−1)n(x0n−1)� y +
n−1∑
i=2

(−1)i(x0i−1)� (y0n−i) .

Using the recursive definition of the shuffle product, we have

(x0i−1)� (y0n−i) =
(
x0i−2

� (y0n−i)
)

0 +
(
(x0i−1)� (y0n−1−i)

)
0 .

Plugging this back into the sum, we obtain

= −x� (y0n−1) + (−1)n(x0n−1)� y +
n−1∑
i=2

(
(−1)i

(
x0i−2

� (y0n−i)
)

0 +

− (−1)i+1
(

(x0i−1)� (y0n−(i+1))
)

0
)
.

But now this sum telescopes, leaving only

= −x� (y0n−1) + (−1)n(x0n−1)� y +
(

(x� (y0n−2))0− (−1)n((x0n−2)� y)0)
)
.

Finally we can rearrange the recursive definition of the shuffle product to get

−x� (y0n−1) + (x� (y0n−2))0 = −(∅� y0n−1)x

(x0n−1)� y − ((x0n−2)� y)0 = (x0n−1
� ∅)y .

Plugging these into the previous shows that the right hand side is

= −(∅� (y0n−1))x+ ((x0n−1)� ∅)y = −(y0n−1x) + (−1)n(x0n−1y)

Taking the iterated integral of this result shows that
n∑
i=1

(−1)iI(0;x, {0}i−1; 1)I(0; y, {0}n−i; 1) =

− I(0; y{0}n−1x; 1) + (−1)nI(0;x{0}n−1y; 1) .

Multiplying by (−1)n, and using the usual shorthand notation Ia,b(x, y)↔ I(0;x{0}a−1y{0}b−1; 1),

gives the desired identity.
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So in fact we can add the missing product terms to get an identity which holds on the level of the

symbol. For psychological reasons, one might prefer to write this in terms of the usual polylogarithms,

rather than depth 1 iterated integrals. This can be done using the equivalence

Lin(x) = −In( 1
x ) .

Identity 4.2.6. The following identity holds on the level of the symbol.

I4,1(x, y)− I4,1(y, x) S= −Li1( 1
x ) Li4( 1

y ) + Li2( 1
x ) Li3( 1

y )− Li3( 1
x ) Li2( 1

y ) + Li4( 1
x ) Li1( 1

y ) .

More generally, the following holds on the level of the symbol.

In,1(x, y)− (−1)nIn,1(y, x) S=
n∑
i=1

(−1)n−i Lii( 1
x ) Lin+1−i( 1

y ) .

4.2.1.2 Li5 and product terms for symmetry I4,1(x, y) δ= −I4,1( 1
x ,

1
y )

The identity in Equation 4.2.1b does not hold modulo �, so we do need to find Li5 terms which make

it hold. Some brief searching with Mathematica uncovers the necessary Li5 terms, giving the following

result.

Identity 4.2.7. The following identity holds modulo products.

I4,1(x, y) + I4,1( 1
x ,

1
y ) �= Li5

(
−[x]− [y]− 4

[
x
y

])
This identity should be compared with the corresponding weight 4 identity in [Gan16], which states

I3,1(x, y)− I3,1( 1
x ,

1
y ) = Li4

(
[x]− [y] + 3

[
x
y

])
.

With some further searching, we can find product terms which make the identity hold exactly on the

level of the symbol.

Identity 4.2.8. The following identity holds exactly on the level of the symbol.

I4,1(x, y) + I4,1( 1
x ,

1
y ) S= Li5

(
−[x]− [y]− 4

[
x
y

])
+

+ Li4(y) log(x)− 1
2! Li3(y) log2(x) + 1

3! Li2(y) log3(x)− 1
4! Li1(y) log4(x) +

+ Li4
(
x
y

)
log
(
x
y

)
+ 1

5!

(
log5

(
x
y

)
− log5(x)

)
Again, this should be compared with the symbol level identity for I3,1(x, y)− I3,1( 1

x ,
1
y ) presented in

[Gan16]. Even if not exactly equivalent, these two identities overwhelmingly share the same structures.

The similarities between these identities at weight 4 and weight 5 will be explored further in Chapter 6.

There, a general symbol level identity which holds for any iterated integral Ia,b(x, y) will be proven.

Moreover using slices of the multiple polylogarithm coproduct, the In,1(x, y) case will be lifted to a

candidate numerically testable identity, like Duhr does using Gangl’s weight 4 identity for I3,1(x, y).
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4.2.1.3 Li5 and Nielsen terms for relation Cyc{ a,b,c } I4,1((abc)de) δ= 0

The 3-term identity in Equation 4.2.2 also needs Li5 terms to complete it to an identity which holds

modulo �. But here we encounter our first surprise! At weight ≥ 5, it is only a rule of thumb that

vanishing modulo δ means Li5 terms (hence the ’morally’ everywhere). As Brown notes [Bro], the class

of functions which vanish modulo δ is strictly larger than Lin in general – one also needs to introduce

Nielsen polylogarithms (see Section 3.4.2.1).

In this case we find the following Li5 and Nielsen terms.

Identity 4.2.9. The following identity holds modulo products.

I4,1(x, y) + I4,1(1− 1
x , 1−

1
y ) + I4,1( 1

1−x ,
1

1−y ) �= −2 Li5(xy )− 2 Li5( 1−y
1−x )− 2 Li5(y(1−x)

x(1−y) ) +

− 2 Li5(x)− Li5(1− 1
x ) + S3,2(x) +

− 2 Li5(y)− Li5(1− 1
y ) + S3,2(y) .

Notice here that the other leading terms arise from symmetrising −2 Li(xy ) under the 3-fold symmetry

(x, y) 7→ (1 − 1
x , 1 −

1
y ) which manifests on the left hand side. We can make this symmetry fully

manifest on the right hand side too, at the expense of using a large number of Nielsen terms.

Identity 4.2.10. The following, fully symmetric, identity holds modulo products.

I4,1(x, y) + I4,1(1− 1
x , 1−

1
y ) + I4,1( 1

1−x ,
1

1−y ) �= −2
(

Li5(xy ) + Li5( 1−y
1−x ) + Li5(y(1−x)

x(1−y) )
)

+

− Li5(x)− Li5(1− 1
x )− Li5( 1

1−x ) + 1
3

(
S3,2(x) + S3,2(1− 1

x ) + S3,2( 1
1−x )

)
+

− Li5(y)− Li5(1− 1
y )− Li5( 1

1−y ) + 1
3

(
S3,2(y) + S3,2(1− 1

y ) + S3,2( 1
1−y )

)
Or more compactly,

Cyc{ a,b,c } I4,1((abc)de) �= Cyc{ a,b,c }

(
− 2 Li5(bade) +

− Li5(abcd) + 1
3S3,2(abcd)− Li5(abce) + 1

3S3,2(abce)
)
.

In particular, we have the following identities for Nielsen polylogarithms from which the above

symmetrisation can be built.

Identity 4.2.11. The following identities hold modulo products, expressing combinations of weight 5

Nielsen’s in terms of Li5’s.

S3,2(x) + S3,2( 1
x ) �= 3 Li5(x)

S3,2(x) + S3,2(1− x) �= Li5(x) + Li5( 1
1−x ) + Li5(1− 1

x ) .
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4.2.1.4 Rank of relations for I4,1 modulo δ

By considering the relations arising under all permutations of the arguments abcde, we obtain the

following table which counts the number of linearly independent relations arising from each initial

relation.

I4,1 relation Number of terms Rank of relations

Equation 4.2.1a 2 60

Equation 4.2.1b 2 60

Equation 4.2.2 3 40

Overall rank 100

4.2.2 Relations for I3,2 modulo δ, and the connection to I4,1

4.2.2.1 Symmetries of I3,2 modulo δ

As hinted at above, in Equation 4.2.1b and Section 4.2.1.2, we expect a symmetry from inverting the

arguments. Indeed we have this.

Identity 4.2.12. Modulo δ, the following symmetry holds for I3,2.

I3,2((ab)cde) δ= −I3,2((ba)cde) , (4.2.4)

or equivalently

I3,2(x, y) δ= −I3,2( 1
x ,

1
y ) . (4.2.4′)

As previously, we can find the Li5 terms which make this identity hold exactly modulo products. We

find

Identity 4.2.13. Modulo �, the following identity holds for I3,2

I3,2(x, y) + I3,2( 1
x ,

1
y ) �= Li5

(
−[x] + 4[y] + 6

[
x
y

])
This is the only simple symmetry of I3,2, but other relations do hold modulo δ.

4.2.2.2 Other relations for I3,2 modulo δ

A certain ‘symmetrisation’ of 2-term identities swapping x↔ y (equivalently d↔ e) does hold.

Identity 4.2.14. Modulo δ, the following 4-term relation holds

I3,2(ab(d)c(e))− I3,2(ab(e)c(d)) δ= −(I3,2(abc(de))− I3,2(abc(ed))) . (4.2.5)

So that I3,2(abc(de))− I3,2(abc(ed)) is antisymmetric under swapping c↔ d.
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Or equivalently

I3,2(ab(cd)e) + I3,2(ab(dc)e) δ= I3,2((ab(ce)d) + I3,2(ab(ec)d) ,

so that I3,2(ab(cd)e) + I3,2(ab(dc)e) is symmetric under swapping d↔ e.

Similarly a ‘symmetrisation’ of the 3-term ‘cyclic’ identity for I4,1 holds.

Identity 4.2.15. Modulo δ, the following 6-term relation hold

Cyc{ a,b,c } I3,2((abc)de) δ= −Cyc{ a,b,c } I3,2((abc)ed) , (4.2.6)

so that Cyc{ a,b,c } I3,2((abc)de) is anti-symmetric under d↔ e.

Knowing some ways to relate I3,2, and I4,1, these relations are not at all surprising. And moreover, it

becomes easy to add the missing Li5 terms to get identities holding modulo �.

4.2.2.3 Relating I4,1 and I3,2, and consequences for I3,2 identities

We can express certain combinations of I3,2 in terms of I4,1, as indicated.

Identity 4.2.16. Modulo �, we have

Cyc{ c,d } I3,2(ab(cd)e) �= −
(

Cyc{ c,d,e } I4,1(ab(cde))
)

+ 2 Li5(bade)− 4 Li5(abcd) + 2 Li5(abce)

(4.2.7a)

Cyc{ d,e } I3,2(abc(de)) �= −3I4,1(abcde) . (4.2.7b)

Most interesting is the second equation above Equation 4.2.7b, which expressed a single I4,1 term in

terms of I3,2. This gives us a way to eliminate the index 1 from a depth 2 iterated integral; we will

make use of this later Section 5.3 to reduce I1,1,1,1,1 to I3,2 terms. It is worth asking whether a similar

conversion expressing one I3,2 term as a sum of I4,1’s is possible.

I3,2 in terms of I4,1: Perhaps surprisingly, it is not possible to express I3,2(abcde) = I3,2(x, y)

using terms of the form I4,1(abcde) with our ‘coupled’ cross-ratio arguments. However, a much more

brute-force route does lead to such an expression. Modulo δ, we compute I4,1(x, y) and I3,2(x, y) to be

as follows

I4,1(x, y) δ= −{x}2 ∧ {y}3 + {x}3 ∧ {y}2 (4.2.8)

I3,2(x, y) δ= {x}2 ∧
{
x
y

}
3
− {y}2 ∧

{
x
y

}
3

+ 2 {x}2 ∧ {y}3 + {y}2 ∧ {x}3 (4.2.9)

Since Li3(x) �= Li3( 1
x ), we have {x}3 =

{ 1
x

}
3. Therefore, using this we get

I4,1(x, y) + I4,1(x, 1
y ) δ= 2 {x}2 ∧ {y}3 .

This combination of integrals will occur again in Chapter 7, when we look at Goncharov’s approach to

finding highly generic functional equations for Li5. We can now write every term appearing I3,2(x, y)

mod δ directly in terms of I4,1 to obtain the following.
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Identity 4.2.17. Modulo δ, we can express the single term I3,2(x, y) using I4,1 as follows.

I3,2(x, y) δ= −1
2

(
3I4,1(x, y) + I4,1(x, 1

y ) + I4,1(x, xy ) +

+ I4,1(x, yx )− I4,1(y, xy )− I4,1(y, yx )
)

It would be desirable to find the Li5 terms which make this identity hold modulo �. Using Danylo

Radchenko’s sage package MESA [MESA] to search for ‘good’ Li5 arguments, I find that it is possible

to do this. However, the resulting terms Li5 arguments are significantly more complicated than one

might initially expect. Moreover, the identity itself is very long. The resulting identity is presented in

Section B.1.

Returning to the original conversions between I3,2 and I4,1 from Identity 4.2.16, it becomes clear that

Identity 4.2.14 and Identity 4.2.15 follow from their counterparts for I4,1. We have

Explanation of Identity 4.2.14. Consider the left hand side of Equation 4.2.14. We have

I3,2(ab(cd)e) + I3,2(ab(dc)e) δ= Cyc{ c,d } I3,2(ab(cd)e)
δ= −Cyc{ c,d,e } I4,1(ab(cde)) .

Using the cyclic invariance now, we can write this as

δ= −Cyc{ e,c,d } I4,1(ab(ecd))
δ= Cyc{ e,c } I3,2(ab(ec)d)
δ= I3,2(ab(ec)d) + I3,2(ab(ce)d) .

But this is just the right hand side of Equation 4.2.14.

Explanation of Identity 4.2.15. The difference between the left hand side and the right hand side of

Equation 4.2.6 can be written as

Cyc{ a,b,c } Cyc{ d,e } I3,2((abc)(de)) ,

but using Equation 4.2.7b, this is just

δ= −3 Cyc{ a,b,c } I4,1((abc)de) .

And this vanishes modulo δ using Identity 4.2.3.

Keeping track of the Li5 terms throughout and using the corresponding I4,1 identities from Iden-

tity 4.2.10 and Identity 4.2.7 means we can complete Identity 4.2.14 and Identity 4.2.15 to the following

identities holding modulo �.

Identity 4.2.18. Modulo � the following identities hold on I3,2.

I3,2(ab(cd)e) + I3,2(ab(dc)e)− I3,2((ab(ce)d)− I3,2(ab(ec)d) �= −6 Li5(abcd) + 6 Li5(abce)
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Cyc{ a,b,c } I3,2(abc(de))− I3,2(abc(ed)) �= 6 Li5(bade) + 6 Li5(cbde) + 6 Li5(acde) +

+ 6 Li5(abcd) + 3 Li5(bcad)− 3S3,2(abcd) +

+ 6 Li5(abce) + 3 Li5(bcae)− 3S3,2(abce)

An amusing way to phrase the two identities in Identity 4.2.16, along with Identity 4.2.13, is the

following.

Proposition 4.2.19. Modulo δ and I4,1 terms, the iterated integral I3,2(abcde) is

• antisymmetric in cde, and

• symmetric in ab.

4.2.2.4 An ‘exceptional’ I3,2 identity

The identities from Identity 4.2.13, Equation 4.2.14, and Identity 4.2.15 describe nearly all of the

identities that hold between the terms I3,2(abcde). Altogether they describe 90 out of the 91 identities

which hold. However one final identity is missing from this list.

To describe this identity it is convenient to briefly introduce some new notation as follows. Let

S(abcde) := Cyc{ a,b,c } I3,2(abcde) = I3,2(abcde) + I3,2(bcade) + I3,2(cabde) .

Then we have the following identity.

Identity 4.2.20. Modulo δ, we have the following 3× 10-term identity.

Cyc{ a,b,c,d,e } S(abcde) δ= Cyc{ a,c,e,b,d } S(acebd) . (4.2.10)

On the right hand side the parameters in the argument step by 2 each time, whereas on the the left

hand side the parameters step by 1. So one can view this identity as equating Cyc• S((abcde)p) for

various choices of p (p = 1 and p = 2 above) where (abcde) is interpreted as a 5-cycle.

We can lift this to an identity holding modulo �, using Li5 and Nielsen terms.

Identity 4.2.21. Modulo �, the following 30 term identity on I3,2 holds

Cyc{ a,b,c,d,e } S(abcde)− Cyc{ a,c,e,b,d } S(acebd) �=

3 Li5(−7[abcd]− 3[abce] + 5[abde] + [acbd] + [acbe] +

− 3[acde]− 3[adbc]− 5[adbe] + [adce] + 11[aebc] +

− 9[aebd] + 11[aecd] + 5[bcde]− 5[bdce]− 9[becd]) +

+ 18S3,2([abcd]− [aebc] + [aebd]− [aecd] + [becd])
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4.2.2.5 Rank of I3,2 relations modulo δ

By considering the relations arising under all permutations of the arguments abcde, we obtain the

following table, which counts the number of linearly independent relations arising from each initial

relation.

I3,2 relation Number of terms Rank of relations

Equation 4.2.4 2 60

Equation 4.2.5 4 40

Equation 4.2.6 6 20

Equation 4.2.10 30 18

Overall rank 91

4.2.3 The remaining depth 2 iterated integrals I2,3 and I1,4 modulo δ

Having fully analysed the symmetries and relations of I4,1 and I3,2 modulo δ, including relations

between the two different integrals, the remaining cases are not so interesting. Using the stuffle product

of multiple polylogarithims, we have the following identities relating Ia,b and Ib,a.

Proposition 4.2.22. The following identity holds exactly for any depth 2 iterated integral.

Ia,b(x, y) + Ib,a(x, xy ) = Ia,b(x) + Ib(y)Ia(xy ) .

Proof. This is a direct consequence of the stuffle product ∗ of the corresponding multiple polylogarithms.

Converting back via Theorem 3.1.5, we have

Ia(x) = −Lia( 1
x ) ,

so that

Ib(y)Ia(xy ) = Lia( 1
y ) ∗ Lib( yx )

= Lib,a( 1
y ,

y
x ) + Lia,b( yx ,

1
y ) + Lia+b( 1

y
y
x )

= Lib,a( 1
y ,

y
x ) + Lia,b( yx ,

1
y ) + Lia+b( 1

x ) .

Now convert to iterated integrals using Theorem 3.1.5 to say

Lia,b(x, y) = Ia,b( 1
xy ,

1
y ) .

So we obtain

= Ib,a(x, xy ) + Ia,b(x, y)− Ia+b(x) .

Rearranging this gives the desired equality.

In terms of the cross-ratio arguments, this means we have

In,m(abcde) �= −Im,n(badce)− Lin+m(bacd) ,
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so that identities for I3,2 modulo δ can be translated to directly to identities for I2,3, and vice-versa.

Similarly for I4,1 identities and I1,4 identities. So there is no need to analyse the cases I2,3 and I1,4 in

detail.

4.3 Depth 3 iterated integrals

At depth 3, there are many more integrals to consider: I3,1,1, I1,3,1, I1,1,3, I2,2,1, I2,1,2 and I1,2,2.

Therefore, there are many more potential relations between different integrals to be investigated. The

simplest integral here appears to be I3,1,1, so this is a good place to start.

4.3.1 Relations for I3,1,1 modulo δ

The integral I3,1,1(abcdef) has no straight-forward symmetries, but perhaps the simplest relation for

I3,1,1 is the following, which has the form not dissimilar to the 2-term inversion relations that hold for

Ia,b( 1
x ,

1
y ). Specifically we have

Identity 4.3.1. Modulo δ the following 4-term relation holds

Cyc{ a,b } I3,1,1((ab)(cdef)) δ= Cyc{ a,b } I3,1,1((ab)(fedc)) .

From the left hand side to the right hand side there is a reversal of cdef .

Of course, we can find the Li5 terms, to obtain a more precise identity.

Identity 4.3.2. Modulo �, the following relation holds

Cyc{ a,b } (I3,1,1((ab)(cdef))− I3,1,1((ab)(fedc))) �= Li5 (−4[badf ] + [baef ] + 4[abce]− [abcd]) .

The next simplest identity, linearly independent from the previous, appears to be an 8-term relation of

the following form, which already holds modulo products.

Identity 4.3.3. Modulo δ, and in fact already modulo �, the following 8-term relation holds.

Alt{ c,e }Alt{ d,f } (I3,1,1((ab)(cdef))− I3,1,1((ba)(fedc)) �= 0 .

By successively taking new identities, linearly independent from any of the previous, we obtain a

sequence of increasingly complicated identities, with an increasing number of terms.

For example, we find a 16 term identity.

Identity 4.3.4. Modulo δ the following 16-term relation holds.

Alt{ c,d } I3,1,1(−[abdefc]− [abdfce]− [abdfec] + [abedfc] +

+ [abfdec] + [badecf ] + [badfce]− [baedfc]) δ= 0
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Then we find a 24 term, a 36 term, a 48 term identity, and so on. It turns out that each of these has a

non-trivial Li5 component.

The most generic (and most complicated) of all identities for I3,1,1 modulo δ appears to be a 152-term

identity, which involves only coefficients ±1, ±2. This 152-term identity generates a 522 dimensional

space, but already this exhausts all relations on I3,1,1 modulo δ. Necessarily, since Identity 4.3.2 has a

non-trivial Li5 component and this 152-term identity implies it, the 152-term identity has a non-trivial

Li5 component.

The description of the I3,1,1 relations modulo δ is rather more complicated than the corresponding

description for the depth 2 integrals. This suggests that maybe we have been too restrictive in the

choice of arguments, or the depth we work modulo.

4.3.2 Relations for I3,1,1 modulo I3,2

Allowing only identities which hold between I3,1,1 terms with cross-ratio arguments, modulo δ is

perhaps too restrictive. We should consider identities which involve lower depth terms beyond Li5.

However, it does not make sense to ask for identities holding modulo depth 2, since every iterated

integral of weight 5 is expected to be expressible in terms of depth ≤ 2 iterated integrals. But

perhaps we can still find some interesting results by asking for combinations of I3,1,1 which can be

expressed in terms of depth 2 integrals with the ‘simple’ cross-ratio arguments. From Identity 4.2.16

and Section 4.2.3 we know how to express every depth 2 iterated integral in terms of I3,2, so it suffices

to consider only I3,2.

Henceforth, we introduce the following notation.

Notation 4.3.5. We will write
I3,2= to indicate results which hold modulo δ and explicit I3,2(abcde)

terms, with these simple cross-ratio arguments.

Modulo I3,2, the integral I3,1,1 satisfies a number of genuine symmetries, namely we have the following.

Identity 4.3.6. The following symmetries hold modulo I3,2.

I3,1,1((ab)cdef)
I3,2= I3,1,1((ba)cdef) (4.3.1)

I3,1,1(ab(cdef))
I3,2= I3,1,1(ab(fedc)) (4.3.2)

Indeed, these are the only symmetries of I3,1,1 modulo I3,2.

The next simplest identities which appear are 4-term identities.

Identity 4.3.7. The following 4-term identities for I3,1,1 hold modulo I3,2.

Cyc(bc)(ef) I3,1,1(a(bc)d(ef))
I3,2= Cyc(bc)(ef) I3,1,1(d(ef)a(bc)) (4.3.3)

Cyc{ d,e } I3,1,1(abc(de)f
I3,2= Cyc{ d,e } I3,1,1(fcb(de)a) (4.3.4)
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Moreover, we now obtain two different types of 5-term identities for I3,1,1 modulo I3,2. Unfortunately

the identities appear to lack a nice structure, nevertheless we have the following.

Identity 4.3.8. Modulo I3,2, the following identities hold.

I3,1,1([abcdef ] + [acefdb] + [adfcbe] + [aecfbd] + [afdceb])
I3,2= 0 (4.3.5)

I3,1,1([abcdef ] + [aecfbd] + [caefdb] + [cbeadf ] + [cebafd])
I3,2= 0 (4.3.6)

Maybe one would prefer a longer relation that is more structured. In which case, we have also an

8-term relation for I3,1,1 modulo I3,2.

Identity 4.3.9. Modulo I3,2, the following 8-term relation holds for I3,1,1.

Alt{ c,d }Cyc(ae)(bf) Cyc(bc)(ef) I3,1,1(abcdef)
I3,2= 0 (4.3.7)

It turns out that these identities, Equations 4.3.1 to 4.3.7, are already more than enough to generate all

687 relations on I3,1,1 modulo I3,2. The description of all I3,1,1 relations modulo I3,2 is much simpler

than the corresponding description modulo δ, but not trivially so. This confirms that looking modulo

I3,2 is a good idea.

4.3.2.1 Rank and bases of I3,1,1 relations modulo I3,2

By considering the relations arising under all permutations of the arguments abcdef , we obtain the

following table which counts the number of linearly independent relations arising from each initial

relation.

I3,1,1 relation Number of terms Rank of relations

Equation 4.3.1 2 360

Equation 4.3.2 2 360

Equation 4.3.3 4 180

Equation 4.3.4 4 180

Equation 4.3.5 5 432

Equation 4.3.6 5 672

Equation 4.3.7 8 180

Overall rank 687

We can take any of the following choices to obtain a ‘minimal’ basis for the I3,1,1 relations, modulo I3,2
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I3,1,1 relation Number of terms Bases

Equation 4.3.1 2

Equation 4.3.2 2 X X

Equation 4.3.3 4 X X X

Equation 4.3.4 4 X X

Equation 4.3.5 5 X X X

Equation 4.3.6 5 X X X X

Equation 4.3.7 8 X X X

4.3.2.2 I3,2, Li5 and Nielsen terms for I3,1,1 relations holding modulo I3,2

We can lift the identities in Equations 4.3.1 to 4.3.6, to identities holding modulo δ (and potentially

even modulo �), by finding explicit I3,2 and Li5 terms.

Identity 4.3.10. We can find I3,2 and Li5 terms for Equation 4.3.2 and Equation 4.3.1 to give the

following identities which holds modulo �.

I3,1,1(ab(cdef))− I3,1,1(ab(cdef)) �= I3,2(abcde)− I3,2(abfed)

I3,1,1((ab)cdef)− I3,1,1((ba)cdef ]) �= 1
3I3,2(3[abcde]− [abcdf ]− 2[abcef ]− [abcfd] +

+ [abcfe]− 2[abecf ] + [abefc]− 3[abfed]) +

+ Li5([abcd]− 4[abce] + 3[abcf ] + 4[badf ] + 2[baef ]) .

The first 5-term identity, Equation 4.3.5 is very easy to lift to an identity modulo products, for we

have the following.

Identity 4.3.11. We can find I3,2 and Li5 terms for Equation 4.3.5 to give the following identity

which holds modulo �.

I3,1,1([abcdef ] + [acefdb] + [adfcbe] + [aecfbd] + [afdceb]) �=

− I3,2([facbd] + [fbdac] + [fcabe] + [fdbae] + [feadc]) +

+ 6 Li5([acbf ] + [aedf ] + [afbd] + [becf ] + [cdef ])

However, lifting the 4-term identities is already more difficult. They require a large number of I3,2
terms. Moreover, Li5(abcd) terms are not sufficient; we need to invoke weight 5 Nielsen polygarithms.

We have

Identity 4.3.12. We can find I3,2 and Li5 and Nielsen terms for Equation 4.3.3 to give the following

identities which hold modulo �.

I3,1,1([abcdef ] + [acbdfe]− [defabc]− [dfeacb]) �=
1
3I3,2(−[abdfe] + [abefd]− [acdef ]− [acefd] + [acfed]− [aecbf ]− [aecfb] +
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− [afbce]− [afbec] + [bafed]− [bdfce]− [bdfec] + [bface]− [bfcae] +

+ [bfcde] + [bfdec] + [bfeac]− [bfedc]− [cdebf ]− [cdefb] + [ceabf ] +

− [cebaf ] + [cebdf ] + [cedfb] + [cefab]− [cefdb] + [deacb]− [debca] +

+ [dfabc] + [dfbca]− [dfcba]− [edcba]) +

+ Li5(4[abef ]− 4[acbe]− 4[acef ] + 8[aecf ]− 4[afbc] + 4[afbe] + 4[afce] +

− 4[bcde] + 4[bcef ] + 4[bdce]− 4[bdcf ] + 4[bdef ] + 4[bfcd]− 4[bfce] +

− 4[cfde] + [abcf ]− 4
3 [abdf ]− 5

3 [abef ] + 3[acbe]− [acbf ] + 4
3 [acde] +

+ 2[acef ] + [adbc]− [adef ]− [aebc] + 3[aebf ]− 3[aecf ] + 2[afbc] +

− [afbe] + [afce] + 2
3 [bcde]− [bcdf ]− 2[bcef ] + 3[bdcf ]− [bdef ] +

− [becf ]− [bedf ]− [bfcd]− [bfce]− [bfde] + 2[cdef ]− 2[cedf ] + 2[cfde]) +

+ S3,2(−[abef ] + [acbe] + [acef ]− 2[aecf ] + [afbc]− [afbe]− [afce] + [bcde] +

− [bcef ]− [bdce] + [bdcf ]− [bdef ]− [bfcd] + [bfce] + [cfde])

Identity 4.3.13. We can find I3,2 and Li5 and Nielsen terms for Equation 4.3.4 to give the following

identities which hold modulo �.

I3,1,1([abcdef ] + [abcedf ]− [fcbdea]− [fcbeda]) �=
1
3I3,2([abcde] + [abced]− [abfde]− [abfed] + [acbde]− [acbdf ] + [acbed] +

− [acbef ]− [acbfd]− [acbfe] + [acfed]− [afbcd]− [afbce]− [afbdc] +

− [afbec]− [afcbd]− [afcbe]− [afcdb]− [afceb] + [bfade] + [bfaed] +

− [bfcad]− [bfcae]− [bfcda] + [bfcde]− [bfcea] + [bfced]− [cafde] +

− [cfade]− [cfaed] + [cfbde] + [cfbed]) +

+ Li5([abcf ]− 5[abde] + [abdf ] + [abef ]− 4[acbf ] + 2[acde]− 2
3 [acdf ] +

− 10
3 [acef ]− [adbe]− 2[adbf ]− 2[adcf ]− [aebd]− 2[aebf ]− 3[aecf ] +

− 4[afbc]− 4[afbd]− 4[afbe]− 4[afcd]− 5[afce] + [bdcf ]− 2[bdef ] +

+ [becf ] + [bedf ] + 5[bfde]− 2[cdef ] + [cedf ] + 5[cfde]) +

+ S3,2(−[abde]− [acbf ]− [acef ]− [adbe]− [aecf ]− [afbc]− [afbd] +

− [afbe]− [afcd]− [afce]− [bdef ] + [bfde]− [cdef ] + [cfde])

Similarly, lifting the second 5-term identity, Equation 4.3.6, to an identity modulo δ is difficult. The

shortest expression I find for it, modulo δ, already involves a sum of 41 I3,2 terms.

Identity 4.3.14. We can find I3,2, Li5 and Nielsen terms for Equation 4.3.6, to give the following

identity which holds modulo �.

I3,1,1([abcdef ] + [aecfbd] + [caefdb] + [cbeadf ] + [cebafd]) �=
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1
3I3,2([acbde] + [acbed]− [acdef ] + [acebf ] + [acefb]− [acefd] + [acfed] +

− [aecfd] + [badfe]− [baefd] + [bafed] + [bcafd]− [bcdfa] + [bcfda] +

+ [bfced] + [daebc] + [daecb] + [dcebf ] + [dcefb]− [deafb]− [debaf ] +

+ [debcf ] + [defab]− [defcb]− [eabdf ] + [eacdf ] + [eadbf ] + [eafdb] +

− [ecafd] + [ecdfa]− [ecfda] + [edcbf ] + [fabce] + [fabec]− [fbade] +

+ [fbdae]− [fbdce]− [fbead] + [fbecd] + [fcbde] + [fcbed])+

+ Li5(3[daec]− [dbea] + [dcbe]− 1
3 [dcea] + 2[deac] + [deba]− 10

3 [debc]] +

+ 3[fabc] + 2[fadb] + 5[fbac] + 19
3 [fbdc] + [fbea]− 10

3 [fbec] + [fcba]] +

+ [fcbe] + [fcdb] + 19
3 [fcde] + 1

3 [fcea]− 3[fdac]− 2[fdec]− 2[feac]] +

− [feba] + 2[feda] + [fedc]) +

+ S3,2([daec]− [dbea] + [deba]− [debc] + [fabc] + [fadb] + [fbac] +

+ 2[fbdc] + [fbea]− [fbec] + 2[fcde]− [feac]− [feba] + [feda]) .

4.3.3 A simple way to relate depth 3 integrals, modulo �

We observed in the case I2,3 that some of the depth 2 integrals can be directly related. A similar

phenomenon happens for depth 3 iterated integral. Namely we have the following proposition, which

is a variant of Proposition 4.2.5, in depth 3.

Proposition 4.3.15. The following identity on iterated integrals holds exactly.

Ia,b,1(x, y, z)− (−1)a+bIb,a,1(z, y, x) =

−
b∑
i=1

(−1)iIi(z)Ia,b+1−i(x, y)− (−1)a+b
a∑
i=1

(−1)iIi(x)Ib,a+1−i(z, y)

Proof. As in Proposition 4.2.5, we translate the identity to an identity on words describing differential

forms. I claim the following sum of words evaluates as indicated

b∑
i=1

(−1)i(x0i−1)� (z0a−1y0b−i) = −(x0b−1
� z0a−1)y + (−1)b(z0a−1y0b−1x)

The cases b = 1, and b = 2 are just an easy check by expanding out all the shuffle products. So take

b > 2. Then

b∑
i=1

(−1)i(x0i−1)� (z0a−1y0b−i)

=
b−1∑
i=2

(−1)i(x0i−1)� (z0a−1y0b−i)− x� (z0a−1y0b−1) + (−1)bx0b−1
� (z0a−1y)

=
b−1∑
i=2

(−1)i((x0i−2)� (z0a−1y0b−i))0 + (−1)i((x0i−1)� (z0a−1y0b−(i+1)))0 +
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− x� (z0a−1y0b−1) + (−1)b(x0b−1)� (z0a−1y) ,

by expanding out the shuffle product using the iterative definition which removes the last letters.

Now this is

=
b−1∑
i=2

(−1)i((x0i−2)� (z0a−1y0b−i))0−
b−1∑
i=2

(−1)i+1((x0(i+1)−2)� (z0a−1y0b−(i+1)))0

− x� (z0a−1y0b−1) + (−1)b(x0b−1)� (z0a−1y) .

But only the i = 2 term of the first sum, and the i = b− 1 term of the second sum survive, giving

= (x� (z0a−1y0b−2))0− (−1)b((x0b−2)� (z0a−1y))0

− x� (z0a−1y0b−1) + (−1)b(x0b−1)� (z0a−1y) .

Using the definition of the shuffle product the vertical pairs can be combined to give

= −(∅� (z0a−1y0b−1)))x+ (−1)b((x0b−1)� (z0a−1))y

= −(z0a−1y0b−1x) + (−1)b((x0b−1)� (z0a−1))y .

So finally, if we consider the following sum of two versions of the previous result, we get

−
b∑
i=1

(−1)i(z0i−1)� (x0a−1y0b−i) + (−1)a+b
a∑
i=1

(−1)i(x0i−1)� (z0b−1y0a−i)

= −(−(x0a−1y0b−1z) + (−1)b((z0b−1)� (x0a−1))y) +

+ (−1)a+b(−(z0b−1y0a−1x) + (−1)a((x0a−1)� (z0b−1))y)

= (x0a−1y0b−1z) + (−1)a+b(z0b−1y0a−1x) .

So taking integrals of this equality, we obtain the identity we want

Ia,b,1(x, y, z) + (−1)a+bIb,a,1(z, y, x) =

−
b∑
i=1

(−1)iIi(z)Ia,b+1−i(x, y)− (−1)a+b
a∑
i=1

(−1)iIi(x)Ib,a+1−i(z, y) .

This proves the proposition.

In particular, this proposition allows us to claim the following identities, modulo �.

Identity 4.3.16. Taking a = 1, and b = 3 in Proposition 4.3.15 gives

I1,3,1(x, y, z) �= I3,1,1(z, y, x) .

Or equivalently, in terms of cross-ratios

I1,3,1(abcdef) �= I3,1,1(abcfed) .
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The upshot of this identity is that we can convert directly any identity for I3,1,1 modulo �, δ, or I3,2,

into a corresponding identity for I1,3,1. Therefore, we do not need to analyse this case separately.

Identity 4.3.17. Taking a = b = 2 in Proposition 4.3.15 gives

I2,2,1(x, y, z) �= I2,2,1(z, y, x) .

Or equivalently, in terms of cross-ratios

I2,2,1(abc(d)e(f)) �= I2,2,1(abc(f)e(d)) . (4.3.8)

So we already know that I2,2,1 satisfies a genuine symmetry modulo �.

4.3.4 More complicated ways to relate depth 3 integrals, modulo I3,2

We know how to directly relate the integrals I1,3,1 and I3,1,1, using Identity 4.3.16. We can therefore

immediately skip the analysis of I3,1,1. But after analysing the relations between I1,1,3 modulo I3,2, et

cetera, one finds that these integrals all have exactly the same number of relations. This is perhaps

unexpected. Moreover, many of the relations have a very similar structure. This very much suggests

that all the depth 3 integrals are somehow ‘equivalent’ modulo I3,2.

Indeed, this is the case.

Theorem 4.3.18. Modulo I3,2, all of the weight 5, depth 3 iterated integrals span the same space.

More precisely, if

Bf :=
{
f(σ · abcdef) | σ ∈ S{ a,b,c,d,e,f }

}
,

then spanBf , modulo I3,2, is invariant for f ∈ { I3,1,1, I1,3,1, I1,1,3, I2,2,1, I2,1,2, I1,2,2 }.

Proof. We shall prove this by showing that each spanBf equals (for example) spanBI3,1,1 , regardless

of which integral f is. We shall relate the integral to each other in the following way.

I1,3,1 I3,1,1 I1,1,3

I2,2,1 I2,1,2

I1,2,2

I3,2
=

I3,1,1
I3,2
=
∑

I2,1,2

I3,2
=

I2,2,1
I3,2
=
∑

I3,1,1

I2,1,2
I3,2
=
∑

I1,2,2I1,2,2
I3,2
=
∑

I2,2,1

The arrows here express the source integral as a sum of the target integrals, modulo I3,2. By following

the arrows around, one sees that any integral can be expressed as a sum of any of the other integrals,

modulo I3,2. Therefore spanBf equals spanBI3,1,1 , regardless of whcih integral f is.
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The proof is nothing more than giving the relevant expressions for I2,2,1 as sum of I3,1,1’s and I3,2’s,

and likewise for the remaining cases.

From Identity 4.3.16, we already have

Identity 4.3.16. Taking a = 1, and b = 3 in Proposition 4.3.15 gives

I1,3,1(x, y, z) �= I3,1,1(z, y, x) .

Or equivalently, in terms of cross-ratios

I1,3,1(abcdef) �= I3,1,1(abcfed) .

This deals with expressing I1,3,1 in terms of I3,1,1, and vice-versa..

For I1,1,3 in terms of I3,1,1, and vice-versa, we have

Identity 4.3.19.

I3,1,1(abcdef)− I1,1,3(abdcfe) δ= 1
3I3,2(−[abdfe]− [abfce]− [abfde]− [abfed] +

− [baefd] + [bafec] + [bafed]) .

The expressions relating I3,1,1, I2,2,1, I2,1,2 and I1,2,2 are more complicated; with the simple cross-ratio

arguments one must relate I3,1,1 to a sum of I2,2,1’s and vice-versa.

For I2,2,1 in terms of I3,1,1, we have

Identity 4.3.20.

I2,2,1(abcdef) �= −I3,1,1([abcdef ] + [abcdfe] + [abcfde] + [abcfed])

The remaining identities, expressing I3,1,1(abcdef) as a sum of I2,1,2’s, expressing I2,1,2(abcdef) as

a sum of I1,2,2’s, and expressing I1,2,2(abcdef) as a sum of I2,2,1’s are significantly longer. They are

presented in Section B.2.

Remark 4.3.21. This theorem shows immediately that the number of identities that each of these

depth 3 integrals satisfies is the same, explaining the unexpected observation above. Specifically, the

number of relations must equal #S{ a,b,c,d,e,f } − dim spanBI3,1,1 = 687 in each case, since spanBf is

independent of f .

Moreover, we see that I3,1,1, I1,3,1 and I1,1,3 must satisfy exactly the same identities structurally, since

we can exchange these term-for-term modulo I3,2. However this is not the case for the remaining

integrals because we need to replace each I3,1,1 term with a sum of I2,2,1’s, for example. And in fact,

the structural differences between the I2,2,1, I2,1,2, I1,2,2 and the I3,1,1 identities will prove that single

terms of these cannot be related, modulo I3,2, with coupled cross-ratio arguments.
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4.3.5 Identities for I2,2,1 modulo I3,2

Since we do not have a way to express I2,2,1(abcdef) as a single I3,1,1 term, modulo I3,2, this integral

may satisfy different identities. We should therefore analyse them. It turns out that I2,2,1 satisfies

a number of relatively short identities, but in order to describe the relations completely it appears

that one must invoke longer and longer identities, when compared to the I3,1,1 cases. Of the depth 3

integrals, I2,2,1 appears to be the most ‘complicated’ in terms of relations.

I2,2,1 satisfies two symmetries modulo I3,2. One of them we already know from Identity 4.3.17.

Identity 4.3.17. Taking a = b = 2 in Proposition 4.3.15 gives

I2,2,1(x, y, z) �= I2,2,1(z, y, x) .

Or equivalently, in terms of cross-ratios

I2,2,1(abc(d)e(f)) �= I2,2,1(abc(f)e(d)) . (4.3.8)

The second symmetry is another example of the inverting arguments identity, which can be expressed

as a sum of 34 I3,2 terms.

Identity 4.3.22. Modulo I3,2, I2,2,1 satisfies the following symmetry.

I2,2,1((ab)cdef)
I3,2= I2,2,1((ba)cdef) . (4.3.9)

Remark 4.3.23. Notice that the first symmetry, Identity 4.3.17, permutes arguments 4 and 6, in

the form I2,2,1(abc(d)e(f)). This is different from the symmetry I3,1,1(ab(cdef))
I3,2= I3,1,1(ab(fedc)),

which permutes arguments 3 ↔ 6 and 4 ↔ 5. If I2,2,1(abcdef) could be expressed as a single I3,1,1
term, modulo I3,2, then any symmetry of one integral would translate directly to exactly the same

symmetry of the other integral. However, this since the integrals have different symmetries, this is not

the case. Therefore we cannot express I2,2,1(abcdef) as a single I3,1,1 term, modulo I3,2.

The next simplest type of identity that I2,2,1 satisfies appears to be a 4-term relation.

Identity 4.3.24. The following 4-term relation holds for I2,2,1 modulo I3,2.

Cyc(af)(bd) Alt{ c,e } I2,2,1(ab(c)d(e)f)
I3,2= 0 (4.3.10)

Then I2,2,1 satisfies two different 6-term identities, one of which shows a good amount of structure.

Identity 4.3.25. I2,2,1 satisfies the following 6-term relation, modulo I3,2.

Alt{ c,e }Cyc{ c,d,f } I2,2,1(ab(cd)e(f))
I3,2= 0 (4.3.11)

The second 6-term identity does not show much structure, but in place of this it generates a larger

number of linearly independent relations.
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Identity 4.3.26. The following 6-term relation for I2,2,1 holds modulo I3,2

I2,2,1([abcdef ] + [aebdfc]− [cdfeba] + [ebafdc]− [fcdeab]− [fdebca])
I3,2= 0 (4.3.12)

Then we have two highly structured 8-term identities.

Identity 4.3.27. I2,2,1 satisfies the following 8-term identities, modulo I3,2.

Alt{ b,c }Alt{ d,e } I2,2,1(a(bc)(de)f)− I2,2,1(f(de)(cb)a)
I3,2= 0 (4.3.13)

Cyc(ae)(bf) Alt{ c,d } Cyc{ e,f } I2,2,1(ab(cd)(ef))
I3,2= 0 (4.3.14)

A rather unstructured 10-term identity holds. Unfortunately, it appears that we do need to use it

when describing the I2,2,1 relations modulo I3,2.

Identity 4.3.28. I2,2,1 satisfies the following 10-term identity, modulo I3,2.

I2,2,1(+[abcdef ]− [abecfd] + [abedcf ]− [aebcdf ] + [aebdcf ]+ (4.3.15)

−[fcdbea] + [fcdeba]− [fdcbea] + [fdceab]− [fdebca])
I3,2= 0

The last identity we need to completely describe the null-space is a 15-term identity, which symmetrises

the building block of the 6-term relation Identity 4.3.25 in a different way. On top of all of the previous

relations, only one instance of the 15-term relation is required.

Identity 4.3.29. The following 15 term relation holds on I2,2,1, modulo I3,2

Cyc{ b,c,d,e,f } Cyc{ c,d,f } I2,2,1(ab(cd)e(f))
I3,2= 0 (4.3.16)

4.3.5.1 Rank and bases of relations for I2,2,1 modulo I3,2

By considering the relations arising under all permutations of the arguments abcdef , we obtain the

following table, which counts the number of linearly independent relations arising from each initial

relation.

I2,2,1 relation Number of terms Rank of relations

Equation 4.3.8 2 360

Equation 4.3.9 2 360

Equation 4.3.10 4 180

Equation 4.3.11 6 210

Equation 4.3.12 6 426

Equation 4.3.13 8 90

Equation 4.3.14 8 135

Equation 4.3.15 10 360

Equation 4.3.16 15 144

Overall rank 687
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We can take any of the following choices to obtain a ‘minimal’ basis for the I2,2,1 relations modulo I3,2.

I2,2,1 relation Number of terms Bases

Equation 4.3.8 2 X

Equation 4.3.9 2 X

Equation 4.3.10 4 X

Equation 4.3.11 6

Equation 4.3.12 6 X X

Equation 4.3.13 8

Equation 4.3.14 8 X

Equation 4.3.15 10 X X X X

Equation 4.3.16 15 X X X X

4.3.6 Identities for I2,1,2 modulo I3,2

Next we focus on the integral I2,1,2. The relations for I2,1,2 seem to be slightly simpler than for I2,2,1,

intermediate in complexity between I2,2,1 and I3,1,1.

Differing from any of the previous integrals, the integral I2,1,2 satisfies three distinct symmetries,

modulo I3,2.

Identity 4.3.30. The integral I2,1,2 satisfies the following three basic symmetries modulo I3,2.

I2,1,2(ab(cdef))
I3,2= I2,1,2(ab(fedc)) (4.3.17)

I2,1,2(ab(cd)(ef))
I3,2= I2,1,2(ab(dc)(fe)) (4.3.18)

I2,1,2((ab)cdef)
I3,2= I2,1,2((ba)cdef) (4.3.19)

Remark 4.3.31. Since even the number of symmetries differs from the integrals I3,1,1 and I2,2,1, we

certainly cannot write I2,1,2 as a single I3,1,1 term, or as a single I2,2,1 term.

Then I2,1,2 satisfies its own type of 4-term identity.

Identity 4.3.32. I2,1,2 satisfies the following 4-term identity modulo I3,2.

Alt{ d,f } Cyc{ e,f } I2,1,2(abcdef)
I3,2= 0 . (4.3.20)

Repeated applications of LatticeReduce find no 6-term identities. The next identity is then an 8-term

identity.

Identity 4.3.33. I2,1,2 satisfies the following 8-term identity modulo I3,2

Alt{ b,d }Cyc(ae)(cf) Cyc(ac)(ef) I2,1,2(abcdef)
I3,2= 0 . (4.3.21)

The final relation that we need to fully describe the relations of I2,1,2 is a 10-term relation. On top of

all the previous relations, only one instance of the 10-term relation is required.
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Identity 4.3.34. I2,1,2 satisfies the following 10-term identity modulo I3,2

Cyc{ a,c,d,e,f }Cyc{ e,f } I2,1,2(abcd(ef))
I3,2= 0 (4.3.22)

4.3.6.1 Rank and bases of I2,1,2 relations modulo I3,2

By considering the relations arising under all permutations of the arguments abcdef , we obtain the

following table, which counts the number of linearly independent relations arising from each initial

relation.

I2,1,2 relation Number of terms Rank of relations

Equation 4.3.17 2 360

Equation 4.3.18 2 360

Equation 4.3.19 2 360

Equation 4.3.20 4 240

Equation 4.3.21 8 90

Equation 4.3.22 10 138

Overall rank 687

We can take any of the following choices to obtain a ‘minimal’ basis for the I2,1,2 relations, modulo

I3,2.

I2,1,2 relation Number of terms Bases

Equation 4.3.17 2 X X

Equation 4.3.18 2 X

Equation 4.3.19 2 X X

Equation 4.3.20 4 X

Equation 4.3.21 8 X X

Equation 4.3.22 10 X X

4.3.7 Identities for I1,2,2 modulo I3,2

At depth 3, the final integral we need to consider is I1,2,2. At first glance, this integral appear to be

even more complicated than I2,2,1, requiring a longer final relation to describe the null-space. On the

other hand, there are several striking similarities between the relations which do hold, which suggest

some other connection between I2,2,1 and I1,2,2.

The integral I1,2,2 satisfies two symmetries.

Identity 4.3.35. Modulo I3,2, the integral I1,2,2 satisfies the following symmetries.

I1,2,2(ab(c)d(e)f)
I3,2= I1,2,2(ab(e)d(c)f) (4.3.23)

I1,2,2((ab)cdef)
I3,2= I1,2,2((ba)cdef) (4.3.24)
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Remark 4.3.36. The first symmetry Equation 4.3.23, which permutes positions 3↔ 5, shows that

I1,2,2 cannot be expressed as a single I2,2,1 term, or a single I3,1,1 term since the symmetry is structurally

different from any symmetry I2,2,1 satisfies, or I3,1,1 satisfies.

Next, we have a 4-term relation, and a 6 term relation.

Identity 4.3.37. Modulo I3,2, the integral I1,2,2 satisfies the following 4-term, and 6-term relations.

Alt(ac)(be) Alt{ d,f } I1,2,2(abc(d)e(f))
I3,2= 0 (4.3.25)

Alt{ e,f } Cyc{ c,d,e } I1,2,2(ab(cde)f)
I3,2= 0 . (4.3.26)

Despite searching, no identity analogous to the unstructured 6-term relation for I2,2,1 has turned up.

The next identities are therefore 8-term relations.

Identity 4.3.38. Modulo I3,2, the integral I1,2,2 satisfies the following 8-term relations.

Cyc(bc)(de) Cyc(bd)(ce) Alt{ a,f } I1,2,2((a)bcde(f))
I3,2= 0 (4.3.27)

Alt{ a,d } Cyc(bf)(ce) Cyc(bc)(df) I1,2,2(a(bc)(d)e(f))
I3,2= . (4.3.28)

No version of the unstructured 10-term relation for I2,2,1 has turned up yet. However, we do have

a 15-term relation, which also occurs by symmetrising the building block of the 6-term relation

Equation 4.3.26 differently.

Identity 4.3.39. Moduo I3,2, the integral I1,2,2 satisfies the following 15-term relation.

Cyc{ b,c,d,e,f }Cyc{ c,d,e } I1,2,2(ab(cde)f)
I3,2= 0 . (4.3.29)

Currently, in order to fully describe the I1,2,2 relations, we can invoke an unstructured 12-term relation,

as follows. Since the relation is unstructured, it is almost too powerful – it generates 630 linearly

independent relations. Moreover, since it is necessary to describe the relations, it almost forces there

to be only one choice of basis for the I1,2,2 relations.

Identity 4.3.40. Modulo I3,2, the integral I1,2,2 satisfies the follownig 12 term relation.

I1,2,2([abedfc]− [abfdce]− [adcbef ] + [adecfb] + [adfbec]− [fceabd] + (4.3.30)

+ [fceadb]− [fcebad] + [fcedab]− [fedbac]− [fedcab] + [fedcba])
I3,2= 0

Remark 4.3.41. I do not yet have a clear explanation why there is such a similarity between the

I1,2,2 relations, and the I2,2,1 relations. Certainly, we know that there is no way to write I1,2,2 as a

single I2,2,1 because these integrals exhibit different symmetries.

Even if some short combination of I2,2,1’s can be written as a short combination of I1,1,2, it would seem

some level of good fortune is still necessary to re-write the I1,1,2 relations directly to the corresponding

I2,2,1 relations.
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4.3.7.1 Rank and bases of I1,2,2 relations modulo I3,2

By considering the relations arising under all permutations of the arguments abcdef , we obtain the

following table, which counts the number of linearly independent relations arising from each initial

relation.

I1,2,2 relation Number of terms Rank of relations

Equation 4.3.23 2 360

Equation 4.3.24 2 360

Equation 4.3.25 4 180

Equation 4.3.26 6 210

Equation 4.3.27 8 90

Equation 4.3.28 8 90

Equation 4.3.29 15 144

Equation 4.3.30 12 630

Overall rank 687

We can take any of the following choices to obtain a ‘minimal’ basis for the I1,2,2 relations, modulo

I3,2.

I1,2,2 relation Number of terms Bases

Equation 4.3.23 2

Equation 4.3.24 2

Equation 4.3.25 4

Equation 4.3.26 6

Equation 4.3.27 8

Equation 4.3.28 8

Equation 4.3.29 15 X

Equation 4.3.30 12 X

4.4 Higher depth, more arguments, more structure

As we will see in the following chapter, Chapter 5, every integral of weight 5 can be reduced to integrals

of depth ≤ 3. So, in principle, we do not have to analyse separately the depth 4 integrals I2,1,1,1,

I1,2,1,1, I1,1,2,1 or I1,1,1,2. Nor do we have to separately analyse the depth 5 integral I1,1,1,1,1. Of course,

since the reduction to depth ≤ 3 is complicated, trying to read off any relations for these integrals is

not an easy task.

On the other hand, fully analysing the symmetries and relations between each of these integrals is

computationally much more intensive than the depth 3 cases. For this reason, I have not undertaken a

full analysis. I will however indicate a few avenues of investigation.
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4.4.1 Reduction of I2,1,1,1

At weight 5 we have a kind of analogue of Gangl’s result [Gan16] that I2,1,1 can be expressed as a sum

of 36 terms of the form ± 1
2I3,1(abcde).

Identity 4.4.1. At weight 5, the integral I2,1,1,1 can be expressed, modulo δ, as a sum of 436 terms of

the form ±I3,1,1(abcdef).

4.4.2 Symmetries and relations for I1,1,1,1,1

Modulo δ, the integral I1,1,1,1,1 already satisfies a large number of functional equations. Curiously all

of the identities which hold modulo δ appear to hold already modulo �, perhaps because the difference

in depth between Li5 and I1,1,1,1,1 is too great. Therefore one really should look modulo I3,2 to try

to find more interesting relations. Unfortunately, the search for relations mod I3,2 has, so far, been

too computationally intensive to produce any results. Below we will give a selection of identities that

I1,1,1,1,1 does satisfy.

Identity 4.4.2. Modulo �, I1,1,1,1,1 satisfies the following two symmetries

I1,1,1,1,1(a(bc)defgh) �= −I1,1,1,1,1(a(cb)defgh)

I1,1,1,1,1(abc(defgh)) �= I1,1,1,1,1(abc(hgfed)) .

In terms of the arguments v, w, x, y, z, these symmetries say the following

I1,1,1,1,1(v, w, x, y, z) �= I1,1,1,1,1(1− v, 1− w, 1− x, 1− y, 1− z) (4.4.1)

I1,1,1,1,1(v, w, x, y, z) �= I1,1,1,1,1(z, y, x, w, v) . (4.4.2)

Combining Equation 4.4.1 and Equation 4.4.2, we obtain

I1,1,1,1,1(v, w, x, y, z) �= −I1,1,1,1,1(1− z, 1− y, 1− x, 1− w, 1− v) . (4.4.3)

This is an example of the limiting case p→∞ of the Hölder convolution of multiple polylogarithms.

See Equation 7.1 in [BBBL01], or Section 1.5.1 in [Rho12]. In fact, Equation 4.4.3 holds on the level

of the symbol, and indeed exactly. Equation 4.4.2 fits in the narrative as a higher depth instance of

Proposition 4.2.5 and Proposition 4.3.15.

We also have, for example, a 5-term relation where one variable is shuffled through the argument string

Identity 4.4.3. Modulo �, I1,1,1,1,1 satisfies the following identity

I1,1,1,1,1(v� { w, x, y, z }) �= 0 .

Or in full
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I1,1,1,1,1(v, w, x, y, z) + I1,1,1,1,1(w, v, x, y, z) + I1,1,1,1,1(w, x, v, y, z) +

+ I1,1,1,1,1(w, x, y, v, z) + I1,1,1,1,1(w, x, y, z, v) �= 0 . (4.4.4)

Of course, Equation 4.4.4 is nothing but the simple fact that using the shuffle product of iterated

integrals

I1(v)I1,1,1,1(w, x, y, z) = I1,1,1,1,1(v, w, x, y, z) + I1,1,1,1,1(w, v, x, y, z) +

+ I1,1,1,1,1(w, x, v, y, z) + I1,1,1,1,1(w, x, y, v, z) + I1,1,1,1,1(w, x, y, z, v) .

There are still plenty of other identities for I1,1,1,1,1 modulo δ left to investigate. But all of them are

in some sense too ‘simple’: they do not involve Li5 terms. More interesting would be to find identities

holding modulo I3,2 in the hope that some identities genuinely involve Li5 and/or I3,2 terms. One

would also hope that some extra symmetries, or short functional equations, for I1,1,1,1,1 hold modulo

I3,2.

4.4.3 More arguments

As explained at the start of Section 4.1.2, the idea to use coupled cross-ratio arguments comes from

Gangl’s success with these type of arguments at weight 4, and from their position as natural coordinates

on the moduli space M0,n. One factor for this success is due to the fact that, modulo δ, the integrals

look like sums of the form
∑
i {αi}2 ∧ {βi}2. Cross-ratio arguments describe the 5-term relation for

Li2, so fit well with finding relations for weight 4 iterated integrals.

At weight 5, modulo δ, the integrals look like sums of the form
∑
i {αi}2 ∧ {βi}3. For example

I4,1(x, y) δ= −{x}2 ∧ {y}3 + {x}3 ∧ {y}2 .

This can be calculated directly using the PolylogTools package [PT] in Mathematica. A calculation by

hand, in the manner of Section 3.4.2 is possible (see Proposition 7.5.1), but takes more work than that

case I3,1 handled there in Example 3.4.12.

The form of weight 5 iterated integrals, modulo δ, suggests that Li2 and Li3 arguments would be a

sensible choice. Goncharov’s triple ratio for Li3 (see Section 3.2.2) is potentially a good analogue for

the Li2 cross-ratio. Some kind of coupled cross-ratio/triple-ratio arguments could provide an even

better source of arguments for identities and relations between weight 5 MPL’s.

4.4.4 More structure using representation theory

The identities presented above have a very ad-hoc appearance. They were found entirely using

computer linear algebra to determine all possible relations between integrals In1,n2(σ · abcde) (modulo

�, modulo δ, modulo I3,2), with no real possibility to direct the computer towards structured or

aesthetically pleasing identities. In those cases where the identities do not have much structure (e.g.
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Identity 4.3.8, and the identities I3,1,1 modulo I3,2), additional work should be done to find a more

structured description of these identities.

In the case where the identities are already highly structured, it should be possible to identify a

deeper, theoretical basis for the structure. Specifically, these identities should have a representation

theoretic basis since we have an Sk+3 action on In1,...,nk(abcd1, . . . , dk). For example, identities like

Equation 4.3.20, Equation 4.3.21 and Equation 4.3.22 have a form already reminiscent of, and closely

connected to, the representation theory of the symmetric group Sn (every representation of Sn is

built up as
∧k

S`V , from wedge powers of symmetric powers of some vector space). Furthermore, it

has been suggested that the I3,2 and Li5 terms in such identities (e.g. Identity 4.3.14) could have an

interpretation as some kind of projection operators on the initial representation.



Chapter 5

Dan’s reduction procedure, and a

reduction of I1,1,1,1,1

In this chapter we will give an account of Dan’s reduction method [Dan11] for reducing I1,1,...,1 to a

sum of integrals of lower depth. We will provide a detailed explanation of the method Dan describes

(Section 5.1), including providing the missing proofs for all of Dan’s claims. We start off first by giving

an overview (Section 5.1.1) of the method itself, then explain Dan’s algebraic setup for a space Hn(E)

of multiple polylogarithms (Section 5.1.2), before working through the steps of the method in detail

(Section 5.1.3 onwards).

Ultimately this will allow us to provide a corrected version of the Dan’s reduction of I1,1,1,1 to I3,1’s

and I4’s (Theorem 5.2.1). Given this, we can use the symbol to compare with Dan’s earlier reduction

of I1,1,1,1 (Theorem 5.2.5, with small a correction by Gangl), and determine the nature of the resulting

functional equation of I3,1 (Section 5.2.2).

Next, we will apply the method to I1,1,1,1,1 at weight 5 (Section 5.3) to produce a reduction to depth

≤ 3 integrals first (Identity 5.3.1) and then to I3,1,1, I3,2 and I5, modulo products (Section 5.3.2).

Finally we will see how to reduce I3,1,1 to I3,2, modulo δ (Identity 5.3.5), and indicate how this allows

us to reduce I1,1,1,1,1 to I3,2’s only, modulo δ, (Theorem 5.3.8).

5.1 Dan’s reduction method

In [Dan11], Dan gives a systematic method for reducing iterated integrals in n variables to a combination

of iterated integrals in n− 2 variables. This then has the effect of reducing a depth n iterated integral

to a sum of depth n− 2 iterated integrals, so the number of ‘slots’ for arguments decreases by 2.

The original papers are written in French, are currently unpublished, and provide limited explanation

of the steps. Moreover, they contain mistakes in the final calculations. The mistakes, at least in

the second paper, do not appear to be the result of simple typos in the final answer. This situation

161
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warrants a detailed investigation to determine the correctness of the method. Fortunately the reduction

method itself is correct, so by implementing it in Mathematica [MA] I can produce a corrected version

of Dan’s result. The result I produce is close enough to Dan’s (in number of terms, sizes of coefficients,

agreement of argument cross-ratios) to make me believe that this was the version he intended to write

down. However, it is still not clear exactly where Dan could have made a mistake, and it does not

warrant the effort needed to find it.

The goal of this section is to provide an account of the reduction method in these papers, and furnish

explanations and proofs for all the steps of the method.

5.1.1 Overview of the reduction method

Firstly, we will give an overview of how the reduction method works. This will allow the reader to

have a broad overview of the steps in the method, and not get hung up on the details initially.

Set-up: Introduce (Definition 5.1.4), a slight generalisation

H(a0 | a1, . . . , an // x | an+1) [a0 | a1, . . . , an // x | an+1] ,

of the hyperlogarithm/multiple logarithm/iterated integral I(x0;x1, . . . , xm;xm+1), to be defined using

the differential form

ω(ai, x) := (ai − x)
(t− ai)(t− x) dt .

This reduces to the usual hyperlogarithm when x =∞.

Swap out x: Show that the hyperlogarithms obtained by swapping out one of the ai’s with the new

parameter x, namely

[a0 | a1, . . . , an // x | an+1] + [a0 | a1, . . . , ai−1, x, ai+1, . . . , an // ai | an+1] ,

can be reduced to a sum in ≤ n− 2 variables (Proposition 5.1.18). This is done with the A and B

operators (Definition 5.1.9, Definition 5.1.11), and packaged into the D operator (Definition 5.1.19).

Build a transposition of ai: Do this three times, to swap ai out, then aj out, then x out. This

gives a transposition

[a0 | a1, . . . , ai, . . . , aj , . . . , an // x | an+1] + [a0 | a1, . . . , aj , . . . , ai, . . . , an // ai | an+1] ,

of the ai’s as a sum in ≤ n− 2 variables (Proposition 5.1.20).

Apply to a1a2 � a3 . . . an: Each term in this product can be converted back to a1 . . . an, by some

suitable permutation. The previous step allows us to write this as a sum in ≤ n − 2 variables.

(Theorem 5.1.23)
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Do this in a structured way: Write down the terms in the following manner

a1a2 � a3 . . . an = A1,2 +

+A1,3 +A2,3 +

+A1,4 +A2,4 +A3,4 +

+A1,5 +A2,5 +A3,5 +A4,5 + · · · ,

where Ai,j has a1 in position i, and a2 in position j. Each Ai,j +Ai+1,j is a transposition, so can be

written as a sum in ≤ n− 2 variables. This leaves A1,2 +A1,4 +A1,6 + · · ·. (Lemma 5.1.28)

Finish: Use that A1,2m = (A1,2m − A1,2m−1) + (A1,2m−1 − A1,2m−2) + A1,2m−2, to replace A1,2m

with A1,2m−2 and some transpositions that are a sum in ≤ n− 2 variables. Push this all the way down

to A1,2 (Lemma 5.1.29), and so write bn/2cA1,2 as a sum in ≤ n− 2 variables (Theorem 5.1.36).

5.1.2 The space of multiple polylogarithms Hn(E)

Dan explains a generalisation for the construction of the Bloch groups Bn(E) described in Section 3.2.3

to provide an algebraic description Hn(E) of the multiple polylogarithms over a field E. Here we

briefly outline this construction, so the symbol Hn(E) is meaningful below.

Write En+2
∗ for the following subset of (n+ 2)-tules

En+2
∗ := { (a0, . . . , an+1) | a0 6= a1 and an 6= an+1 } ,

which are meant to represent (convergent) iterated integrals.

The iterated integrals I(x0;x1, . . . , xn;xn+1) from Section 1.1.3 are invariant under affine transforma-

tions xi 7→ axi + b. So consider the quotient

En+2
∗ /(E∗ × E)

where (α, β) ∈ E∗ × E acts as the affine transformations ai 7→ αai + β. Write An(E) for the Q-vector

space generated by the symbols [a0 | a1, . . . , an | an+1] for (a0, . . . , an+1) ∈ En+2
∗ /(E∗ × E).

The graded vector space

A(E) :=
⊕
n≥0
An(E)

admits a bialgebra structure. The multiplication is given by the shuffle product (compare with the

shuffle product property of Property 1.1.13), as follows

[a0 | a1, . . . , ak | ak+`+1] · [a0 | ak+1, . . . , ak+1 | ak+`+1] = [a0 | a1 · · · ak � ak+1 · · · ak+` | ak+`+1]

=
∑
σ∈Sk,`

[a0 | aσ(1), . . . , aσ(k+k) | ak+`+1] .

Here Sk,` is the set of (k, `)-shuffles, see Definition 1.1.15. The coproduct is given by Theorem 1.2.1.
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The Lie coalgebra BH(E) = A(E)/(A>0 · A>0) of irreducibles admits a co-derivation

δ =
⊕
n

(
δn : BH(E)→ BH(E)⊗ BH(e)

)
.

This will be used to inductively define the vector space of multiple polylogarithm relations RHn (E) ⊂

BHn (E). We will then set H(E) := BHn (E)/Rn(E) to be the space of multiple polylogarithms, and

write [a0 | a1, . . . , an | an+1] for the image of the same element in BH(E) modulo the relations RHn (E).

The vector space of 1-dimensional relations is generated by the following elements

RH1 (E) := 〈[a | z | b] + [b | z | c] = [a | z | c] | z, a, b, c ∈ E with z 6= a, b, c〉 .

Write Kn(E) for the kernel of the map

(pr⊗pr) ◦ δn : BHn (E)→ (H(E)⊗H(E))n ,

where pr: BHk (E)→ Hk(E) is already defined for k < n.

Definition 5.1.1 (Space of relations RHn (E)). The space of multiple polylogarithm relations is

generated by the following elements

RHn (E) := { α(1)− α(0) | α ∈ Kn(E(t)) }

The map (pr⊗pr) ◦ δn factors through RHn (E), to give a map

δn : Hn(E)→ (H(E)⊗H(E))n .

This gives H(E) the structure of a graded Lie coalgebra.

Remark 5.1.2. One can think of Hn(E) as the space of weight n multiple polylogarithms (or iterated

integrals), taken modulo products.

5.1.3 Definition of the generalised hyperlogarithm

Definition 5.1.3. The unique differential form ω(ai, x) of degree 1, holomorphic on P1(C) \ { ai, x }

which is 0 if ai = x, and otherwise has a pole of order 1 and residue +1 at ai and a pole of order 1 and

residue −1 at x is

ω(ai, x) := (ai − x)
(t− ai)(t− x) dt .

The correct differential form to take when x =∞ is

ω(ai,∞) := dt
t− ai

,

since this agrees with ω(1/ai, 0)(s) under the change of variables s = 1/t, sending ∞ 7→ 0 and

ai 7→ 1/ai.
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Definition 5.1.4 (Generalised hyperlogarithm). Let ai, x ∈ P1(C), such that a0 6= a1, a0 6= x,

an 6= an+1 and x 6= an+1. Then the generalised hyperlogarithm H(a0 | a1, . . . , an // x | an+1) is defined

by the following iterated integral

H(a0 | a1, . . . , an // x | an+1) :=
∫ an+1

a0

ω(a1, x) ◦ ω(a2, x) ◦ · · · ◦ ω(an, x) .

This should be compared with the definition of Chen’s iterated integrals in Definition 1.1.10. Recall from

Section 3.1.1 Goncharov’s remarks [Gon98; Gon01] that I(x0;x1, . . . , xm;xm+1) are sometimes called

hyperlogarithms or multiple logarithms. The relationship between this generalised hyperlogarithm,

and the ordinary hyperlogarithm is straightforward.

Proposition 5.1.5. If x =∞ then

H(a0 | a1, . . . , an //∞ | an+1) = I(a0; a1, . . . , an; an+1) .

Otherwise

H(a0 | a1, . . . , an // x | an+1) = I((a0 − x)−1; (a1 − x)−1, . . . , (an − x)−1; (an+1 − x)−1) .

Proof. If x =∞, then the differential form ω(ai, x) reduces to the usual form dt
t−ai appearing in the

definition of the hyperlogarithm.

Otherwise, change variables via t′ = 1/(t − x), which sends x 7→ ∞, and ai 7→ 1/(ai − x). We have

that t = 1
t′ + x, so that

ω(ai, x)(t) = (ai − x)
(t− ai)(t− x) dt

= ai − x
( 1
t′ + x− ai)( 1

t′ + x− x)
−1
t′2

dt′

= 1
t′ − 1

ai−x
dt′

= ω((ai − x)−1,∞)(t′) .

The bounds a0 and an+1 change to (a0 − x)−1 and (an+1 − x)−1 respectively.

We can use the above relation to the usual hyperlogarithm, to give meaning to the symbol [a0 |

a1, . . . , an // x | an+1] in the space Hn(E) of multiple polylogarithms on ‘E’ , as follows.

Definition 5.1.6. We set

[a0 | a1, . . . , an //∞ | an+1] := [a0 | a1, . . . , an | an+1] ,

and for x 6=∞,

[a0 | a1, . . . , an // x | an+1] := [(a0 − x)−1 | (a1 − x)−1, . . . , (an − x)−1 | (an+1 − x)−1] .
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Observation 5.1.7. We can write

ω(ai, x) = ω(ai, y)− ω(x, y) .

Proposition 5.1.8. The hyperlogarithm H(a0 | a1, . . . , an // x | an+1) can be expressed as an

alternating sum of hyperlogarithms of the form H(a0 |— // y | an+1). More precisely, we have

H(a0 | a1, . . . , an // x | an+1) =
∑
I

(−1)#I H(a0 | a1, . . . , an // y | an+1)|aI=x ,

where the sum is taken over all I ⊂ { 1, 2, . . . , n }, and

H(a0 | a1, . . . , an // y | an+1)|aI=x

means replace ai by x, for positions i ∈ I.

Proof. We can prove this by induction on the depth n. In the case n = 1, we explicitly write out both

sides. On the left hand side we have H(a0 | a1 // x | a2), and on the right hand side we have∑
I

(−1)#I H(a0 | a1 // y | a2)|aI=x ,

taken over all I ⊂ { 1 }. That is, over I = ∅, { 1 }. This gives

H(a0 | a1 // y | a2)−H(a0 | x // y | a2) ,

which is equal to ∫ a2

a0

ω(a1, y)− ω(x, y) =
∫ a2

a0

ω(a1, x)

= H(a0 | a1 // x | a2) ,

using Observation 5.1.7.

So suppose the result holds for depth n− 1. Then for depth n we have the following. We can sum over

I ⊂ { 1, . . . , n } by first taking I with 1 ∈ I, and then taking I with 1 /∈ I. So∑
I

(−1)#I H(a0 | a1, . . . , an // y | an+1)|aI=x =

∑
I such that

1∈I

(−1)#I H(a0 | a1, . . . , an // y | an+1)|aI=x +

+
∑

I such that
1/∈I

(−1)#I H(a0 | a1, . . . , an // y | an+1)|aI=x .

In the first sum we know 1 ∈ I, so we can remove 1 from I, replace a1 with x and insert one minus

sign already. Then the sum is over I ′ ⊂ { 2, . . . , n }. In the second sum, 1 /∈ I, so the sum is over

I ′ ⊂ { 2, . . . , n } already, giving

= −
∑
I′

(−1)#I′ H(a0 | x, a2, . . . , an // y | an+1)|a′
I
=x +
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+
∑
I′

(−1)#I′ H(a0 | a1, a2, . . . , an // y | an+1)|a′
I
=x .

Now recall from Remark 1.1.12 that the iterated integral H(a0 | a1, . . . , an // x | an+1) can be expanded

as follows

H(a0 | a1, . . . , an // x | an+1) =
∫ an+1

a0

H(a0 | a1, . . . , an−1 // x | t)ω(an, x) .

If we do this with the integrals in the sum above, we obtain

=
∫ an+1

a0

∑
I′

(−1)#I′ H(a0 | a1, . . . , an−1 // y | t)|a′
I
=x ◦ ω(x, y) +

∑
I′

(−1)#I′ H(a0 | a1, . . . , an−1 // y | t)|a′
I
=x ◦ ω(an, y)

Using the induction assumption, this can be written as

=
∫ an+1

a0

H(a0 | a1, . . . , an−1 // x | t) ◦ −ω(x, y) +

+H(a0 | a1, . . . , an−1 // x | t) ◦ ω(an, y)

=
∫ an+1

a0

H(a0 | a1, . . . , an−1 // x | t) ◦ (ω(an, y)− ω(x, y))

=
∫ an+1

a0

H(a0 | a1, . . . , an−1 // x | t) ◦ ω(an, x)

using Observation 5.1.7,

= H(a0 | a1, a2, . . . , an, // x | an+1) .

This completes the proof.

5.1.4 Operators A and B

Here we will introduce the operators A and B which will give us tools to systematically reduce the

hyperlogarithms.

Definition 5.1.9 (A operator). Let 1 ≤ i ≤ n and let I be a subset of { 1, 2, . . . , n } containing i.

Define

A([a0 | a1, . . . , an // x | An+1], i, I)

to be the symbol

[a0 | a1, . . . , an // x | an+1]

where the positions j ∈ I are replaced by the variable ai from position i.

Example 5.1.10. We have

A([a0 | a1, a2, a3, a4, a5, a6 // x | a7], 3, { 2, 3, 5 }) = [a0 | a1, a3, a3, a4, a3, a6 // x | a7]

A([a, | b, c, d, e, f, g // x | h], 4, { 2, 3, 4, 6 }) = [a | b, e, e, e, f, e // x | h] .
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Definition 5.1.11 (B operator). Now define

B([a0 | a1, . . . , an // x | an+1], i) :=
∑
I

(−1)#IA([a0, | a1, . . . , an // x | an+1], i, I) ,

where the sum is taken over all subsets I of the set { 1, 2, . . . , n } containing i and having cardinality

#I ≥ 2.

Example 5.1.12. With i = 2 and n = 3, we would have to sum over the sets { 1, 2 } , { 2, 3 } , { 1, 2, 3 }.

So we get

B([a0 | a1, a2, a3 // x | a4], 2) = (−1)#{ 1,2 }A([a0 | a1, a2, a3 // x | a4], 2, { 1, 2 })

+ (−1)#{ 2,3 }A([a0 | a1, a2, a3 // x | a4], 2, { 2, 3 })

+ (−1)#{ 1,2,3 }A([a0 | a1, a2, a3 // x | a4], 2, { 1, 2, 3 })

= [a0 | a2, a2, a3 // x | a4]

+ [a0 | a1, a2, a2 // x | a4]

− [a0 | a2, a2, a2 // x | a4]

Dan now says that the considerations from Proposition 5.1.8, applied when y = ai, suggest a relation

in Hn(E). Indeed, setting y = ai in Proposition 5.1.8 gives

H(a0 | a1, . . . , an // x | an+1) =
∑
I

(−1)#I H(a0 | a1, . . . , an // ai | an+1)|aI=x .

Notice that whenever i /∈ I, so that ai is not replaced by x, we obtain an integral like H(a0 | . . . , ai, . . . //

ai | an+1) which contains the differential form ω(ai, ai) = 0. The resulting integral is therefore 0, and

does not contribute to the total. It makes sense, then, to reduce the sum to I ⊂ { 1, 2, . . . , n }, such

that i ∈ I. Moreover, there is only one possible I ′ with #I ′ = 1, so we can deal with term separately.

We obtain

= −H(a0 | a1, . . . , ai−1, x, ai, . . . , an // ai | an+1)+

+
∑
I′

(−1)#I′ H(a0 | a1, . . . , an // ai | an+1)|aI′=x ,

where the sum is taken over all I ′ ⊂ { 1, 2, . . . , n } such that i ∈ I and #I ≥ 2.

Rearranging this gives

H(a0 | a1, . . . , an // x | an+1) +H(a0 | a1, . . . , ai−1, x, ai, . . . , an // ai | an+1)

=
∑
I′

(−1)#I′ H(a0 | a1, . . . , an // ai | an+1)|aI=x

=
∑
I′

(−1)#I′ H(a0 | a1, . . . , an // x | an+1)|aI=ai .

The last equality comes from the symmetry under ai ↔ x in the first line. From this we obtain the

following result.
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Lemma 5.1.13. In Hn(E) the following the following relation holds

[a0 | a1, . . . , an // x | an+1] + [a0 | a1, . . . , ai−1, x, ai+1, . . . , an // ai | an+1]

= B([a0 | a1, . . . , an // x | an+1], i)) .

Proof. We have the result

H(a0 | a1, . . . , an // x | an+1) +H(a0 | a1, . . . , ai−1, x, ai+1, . . . , an // ai | an+1) +

−B(H(a0 | a1, . . . , an // x | an+1), i) = 0

on the level of integrals. Taking an+1  a0 + t(an+1 − a0), we get

α(t) = H(a0 | a1, . . . , an // x | a0 + t(an+1 − a0)) +

+H(a0 | a1, . . . , ai−1, x, ai+1, . . . , an // ai | a0 + t(an+1 − a0)) +

−B(H(a0 | a1, . . . , an // x | a0 + t(an+1 − a0)), i) .

Now α(t) = 0 on the level of integrals means α(t) ∈ Kn(E(t)). So we find the following relation

α(1)− α(0) ∈ RHn (E). But this evaluates to

α(1)− α(0) = H(a0 | a1, . . . , an // x | an+1) +H(a0 | a1, . . . , ai−1, x, ai+1, . . . , an // ai | an+1) +

−B(H(a0 | a1, . . . , an // x | an+1), i) .

So we get the result claimed.

Lemma 5.1.14. In Hn(E) we have for 0 ≤ s ≤ n, that

[a0 | {y}s, bs+1, bs+2, . . . , bn // x | an+1] = (−1)s[a0 | bs+1, ({y}s � bs+2 · · · bn) // x | an+1]

= (−1)s
∑
J

CJ ,

where Cj denotes the symbol [a0 | bs+1,— // x | an+1] with the positions J occupied by y, and the

remaining positions by bs+1, . . . , bn in that order. In the sum, J runs through subsets of size s of the

set { 2, 3, . . . , n }.

Proof. First we see this is trivially true for s = 0, since we have

[a0 | {y}0, b0+1, b0+2, . . . , bn // x | an+1] = [a0 | b1, b2, . . . , bn // x | an+1] ,

and

(−1)0[a0 | b0+1, ({y}0 � b0+2 · · · bn) // x | an+1] = [a0 | b0+1, (∅� b0+2 · · · bn) // x | an+1]

= [a0 | b1, b2, . . . , bn // x | an+1] .
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Now comes the inductive step. Recall the inductive definition of � from Definition 1.1.15. It says that

ax� by = a(x� by) + b(ax� y) .

So we have that

{y}s+1
� bs+2 · · · bn = y({y}s � bs+2 · · · bn) + bs+2({y}s+1

� bs+3 · · · bn) . (5.1.1)

We therefore compute that

[a0 | {y}s+1, bs+2, bs+3, · · · , bn // x | an+1]

= [a0 | {y}s, y, bs+2, bs+3, · · · , bn // x | an+1]

= (−1)s[a0 | y({y}s � bs+2 · · · bn) // x | an+1] ,

using the induction assumption for s with bs+1 = y. Now use the relation in Equation 5.1.1, to say

= (−1)s[a0 | {y}s+1
� (bs+2 · · · bn)− bs+2({y}s+1

� bs+3 · · · bn) // x | an+1]

= (−1)s+1[a0 | bs+1({y}s+1
� (bs+3 · · · bn) //| an+1] ,

since we work modulo products in Hn(E).

The equality with
∑
J CJ just comes from writing out the terms of the shuffle product. Each term

in the shuffle product bs+1({y}s � bs+3 · · · bn) is uniquely determined by which positions contain y.

Since we prepend the result with bs+1, these positions are in the range { 2, 3, . . . , n }, and any subset

of these occurs.

Observation 5.1.15. We can apply this to each term A(S, i, I) in B(S, i) from Lemma 5.1.13, with

y = ai and s as large as possible. Firstly, each term in B(S, i) has at least one variable aj replaced

with ai, so we have reduced the number of variables per term to n− 1, at most. Then by shuffling

out ai, we can guarantee that it does not appear in the first position. This means B(s, i) is a sum of

hyperlogs [a0 |— // x | an+1], where each contains ≤ n− 1 variables, and such that ai never appears

in the first position.

Lemma 5.1.16. In Hn(E), the following relation holds for any generic c, specifically c such that

a1 6= c, and c 6= x,

[a0 | a1, . . . , an // x | an+1] = [c | a1, . . . , an // x | an+1]− [c | a1, . . . , an // x | a0] .

Proof. This follows from the composition of paths property from Property 1.1.13. Given two paths

α, β, it states that ∫
αβ

ω1 ◦ · · · ◦ ωn =
n∑
i=0

∫
α

ω1 ◦ · · · ◦ ωi
∫
β

ωi+1 ◦ · · · ◦ ωn .

Recall that the empty integral
∫
α

= 1. If we work modulo products, only the integrals coming from
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i = 0, and i = n survive. Therefore we have∫
αβ

ω1 ◦ · · · ◦ ωn =
∫
α

ω1 ◦ · · · ◦ ωn +
∫
β

ω1 ◦ · · · ◦ ωn ,

modulo products.

By choosing such a generic c, all the integrals involved will converge. Then take α to be a path c→ a0

and β a path a0 → an+1. Choosing ωi = ω(ai, x) to be our special differential form, we obtain from

the above that

H(c | a1, . . . , an // x | a0) +H(a0 | a1, . . . , an // x | an+1) = H(c | a1, . . . , an // x | an+1) ,

modulo products. Now view this in Hn(E), and rearrange to obtain the above identity.

Since ai does not appear in the first slot, we may use the above to rewrite the terms of the above sum

as

[a0 | · · · // x | an+1] = [ai | · · · // x | an+1]− [ai | · · · // x | a0]

This breaks the single term with ≤ n− 1 variables into two terms each with ≤ n− 2 variables, since a0

is avoided in favour of the variable ai in the first summand, and the variable an+1 is avoided in the

second summand.

Example 5.1.17. We have

A([a0 | a1, a2, a3, a4, a5 // x | a6], 2, { 1, 2 })

= [a0 | a2, a2, a3, a4, a5 // x | a6]

= (−1)2[a0 | a3, (a2
2 � a4a5) // x | a6]

= [a0 | a3, a2, a2, a4, a5 // x | a6] + [a0 | a3, a2, a4, a2, a5 // x | a6] +

+ [a0 | a3, a4, a2, a2, a5 // x | a6] + [a0 | a3, a2, a4, a5, a2 // x | a6] +

+ [a0 | a3, a4, a2, a5, a2 // x | a6] + [a0 | a3, a4, a5, a2, a2 // x | a6]

And then each term can be split as indicated above. So the first term would become

[a2 | a3, a2, a2, a4, a5 // x | a6]− [a2 | a3, a2, a2, a4, a5 // x | a0] ,

and similarly for the rest.

This proves the following proposition

Proposition 5.1.18. We may express

[a0 | a1, . . . , an // x | an+1] + [a0 | a1, . . . , ai−1, x, ai+1, . . . , an // ai | an+1]

= B([a0 | a1, . . . , an // x | an+1], i) ,

as an explicit sum of hyperlogs in ≤ n− 2 variables.
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5.1.5 Operator D

Definition 5.1.19. The sum in the above Proposition 5.1.18 will be denoted

D([a0 | a1, . . . , an // x | an+1], i) .

Proposition 5.1.20. A transposition of two variables can be expressed in terms of three D operations

as follows

[a0 | ai, aj // x | an+1] + [a0 | aj , ai // x | an+1]

= D([a0 | ai, aj // x | an+1], i)−D([a0 | x, aj // ai | an+1], j) +

+D([a0 | x, ai // aj | an+1], i) .

Proof. This is just a case of writing out the result of the three applications of D. Namely

D([a0 | ai, aj // x | an+1], i)−D([a0 | x, aj // ai | an+1], j) +

+D([a0 | x, ai // aj | an+1], i)

= ([a0 | ai, aj // x | an+1] + [a0 | x, aj // ai | an+1]) +

− ([a0 | x, aj // ai | an+1] + [a0 | x, ai // aj | an+1]) +

+ ([a0 | x, ai // aj | an+1] + [a0 | aj , ai // x | an+1])

= [a0 | ai, aj // x | an+1] + [a0 | aj , ai // x | an+1] .

Corollary 5.1.21. The combination

[a0 | ai, aj // x | an+1] + [a0 | aj , ai // x | an+1]

is an explicit sum of hyperlogs in ≤ n− 2 variables. More generally, for any permutation σ ∈ Sn,

[a0 | σ · (a1, . . . , an) // x | an+1]− sgn(σ)[a0 | a1, . . . , an // x | an+1]

is an explicit sum of hyperlogs in ≤ n− 2 variables.

Proof. The first claim comes because we know/defined D to be such an explicit sum of hyperlogs in

≤ n − 2 variables. Then by decomposing a permutation as a product of transpositions, we get by

induction the result for any permutation σ, as follows. Suppose the claim holds for σ. Let τ ∈ Sn be a

transposition. Then sgn(τ) = −1, and for τσ we have

[a0 | τσ · (a1, . . . , an) // x | an+1]− sgn(τσ)[a0 | a1, . . . , an // x | an+1]

= [a0 | τσ · (a1, . . . , an) // x | an+1]− sgn(τ)[a0 | σ · (a1, . . . , an) // x | an+1]) +

− ([a0 | σ · (a1, . . . , an) // x | an+1]− sgn(σ)[a0 | a1, . . . , an // x | an+1]) .

Both of these summands is a sum in ≤ n− 2 variables, so the claim holds.
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5.1.6 Reducing a single hyperlog

The above considerations all apply to writing a combination of two hyperlogarithms as a sum of

hyperlogs in ≤ n− 2 variables. By carefully considering these combinations, it is possible to write a

single hyperlogarithm [a0 | a1, . . . , an // x | an+1] in such a manner.

Proposition 5.1.22. Let S be the set of (2, n− 2) shuffles, which can be considered the as the words

from { 1, 2 }� { 3, . . . , n }. Then ∑
σ∈S

sgn(σ) =
⌊n

2

⌋
Proof. Observe that every permutation in the set of (2, n− 2)-shuffles, is uniquely determined by the

position of 1 and the position of 2. Moreover, 2 must appear after 1 since this is the ordering in the

original multiplicand. So each term is described by

Sni,j := { 3, 4, . . . , 1︸︷︷︸
position i

, . . . , 2︸︷︷︸
position j

, . . . } ,

where 1 ≤ i < j ≤ n.

What is sgn(Sni,j)? To put 2 into position j from its original position 2 requires j − 2 swaps. Then to

put 1 into position i from its original position 1 requires a further i− 1 swaps. So the total number of

swaps is i+ j − 3. We find

sgn(Sni,j) =

−1 if i+ j is even

1 if i+ j is odd.

If we sum all the signs, we obtain

∑
σ∈S

sgn(σ) =
n∑
i=1

n∑
j=i+1

sgn(Sni,j)

Observe that in the inner sum, consecutive terms have opposite signs. At term j, the value i+ j has

one parity, which means at term j + 1, the parity of i+ (j + 1) is different. If there are an even number

of terms in the inner sum, then they all cancel in pairs to 0. Otherwise the terms after the first cancel,

and we are left with sgn(Sni,i+1) = 1 since i+ (i+ 1) is odd. The number of terms in the inner sum is

n− (i+ 1) + 1 = n− i, so this is odd if and only if n and i have different parities.

If n = 2m is even, we obtain:

n∑
i=1

n∑
j=i+1

sgn(Sni,j) =
2m∑
i=1
i odd

1 = m = bn/2c .

And if n = 2m+ 1 is odd, we obtain:

n∑
i=1

n∑
j=i+1

sgn(Sni,j) =
2m+1∑
i=1
i even

1 = m = bn/2c .

This proves the result.
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There is enough here now to prove that a depth n hyperlog in n ≥ 3 variables can be reduced to a sum

of hyperlogs in ≤ n− 2 variables. We obtain the following.

Theorem 5.1.23. For n ≥ 3, the hyperlog

[a0 | a1, . . . , an // x | an+1]

can be expressed as a sum of hyperlogs in ≤ n− 2 variables.

Proof. For each σ ∈ S, we have that

[a0 | σ · (a1, . . . , an) // x | an+1]− sgn(σ)[a0 | a1, . . . , an // x | an+1]

can be expressed as a sum in ≤ n − 2 variables. Now sum over all such σ ∈ S. The left hand

terms sum over { 1, 2 }� { 3, . . . , n }. The right hand terms are all the same, so sum to the multiple∑
σ∈S sgn(σ) = bn/2c. Therefore we get that

[a0 | { a1, a2 }� { a3, . . . , an } // x | an+1]− bn/2c [a0 | a1, . . . , an // x | an+1]

is a sum of hyperlogarithms in ≤ n− 2 variables.

As we work modulo products the first term here is actually 0 if n ≥ 3, so this shows that

[a0 | a1, . . . , an // x | an+1]

is 1
bn/2c times a sum of hyperlogs in ≤ n− 2 variables.

It should be noted, however, that the reduction in this theorem is really only intended as a proof-of-

concept. The number of terms generated by relating every permutation in { a1, a2 }�{ a3, . . . , an } back

to the permutation { a1, a2, a3, . . . , an } is excessive. Dan provided a more structured approach, working

only with transpositions. Some of these ideas are already hinted at in the proof of Proposition 5.1.22.

5.1.7 More structured approach

5.1.7.1 Sructured approach for any n

While the previous section does indeed illustrate a general reduction procedure which can be applied

to give correct results, the number of terms generated by decomposing all such shuffles as a sum in

≤ n− 2 variables is large. Dan provides a more structured approach, which we will now explain.

Definition 5.1.24. Define the symbol Ani,j to be the following

Ani,j := [a0 | a3, a4, . . . , a1︸︷︷︸
position i

, . . . , a2︸︷︷︸
position j

, . . . // x | an+1] ,

where position i is filled with a1, and position j is filled with a2. The remaining positions are filled with

a3, . . . , an in this order. (Notice the similarity to Sni,j from the proof of Proposition 5.1.22, essentially

Ani,j = [a0 | Sni,j // x | an+1].)
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In the original article, Dan uses the notation Ai,j , leaving the dependence on n implicit only. For clarity

here, and later, I write Ani,j in order to make the dependence on n as explicit as possible. Similarly we

will write Rn where Dan later write R, and cn where Dan writes c.

Example 5.1.25. With n = 7, and i = 2, j = 5, we have

A7
2,5 = [a0 | a3, a1︸︷︷︸

position 2

, a4, a5, a2︸︷︷︸
position 5

, a6, a7 // x | a8]

Lemma 5.1.26. Consider now the expression Ani−1,j + Ani,j. This can be expressed as an explicit

sum of hyperlogs in ≤ n− 2 variables. Similarly Ani,j +Ani,j+1 can be expressed as an explicit sum of

hyperlogs in ≤ n− 2 variables.

Proof. Going from Ani−1,j to Ani,j requires a single transposition swapping positions i − 1 and i.

Similarly, going from Ani,j to Ani,j+1 requires a single transposition swapping positions j and j + 1. So

by Corollary 5.1.21 the result follows.

Definition 5.1.27. Write Rn(i− 1, j | i, j) for the relation above expressing Ani−1,j +Ani,j as a sum

in ≤ n− 2 variables. And write Rn(i, j | i, j + 1) for the relation expressing Ani,j +Ani,j+1 as a sum in

≤ n− 2 variables.

At this point Dan considers some remarkable sum of Rn’s with certain coefficients cn(—), and claims

(without proof) that from this one deduces a reduction formula. I want to motivate this sum in a

step-by-step manner, and fill in the missing proofs.

Consider the shuffle product { 1, 2 }� { 3, 4, . . . , n }. Each term of this is a word of length n where

1 and 2 occupy certain positions, and the string 3, 4, . . . , n covers the remaining positions in order.

Therefore each term of the shuffle product is Ani,j for some i, j. Moreover, since 1 always occurs at a

position before 2, we have i < j. Otherwise there is complete freedom to choose i and j between 1 and

n. Therefore

[a0 | { 1, 2 }� { 3, 4, . . . , n } // x | an+1] =
∑

1≤i<j≤n
Ani,j .

Now sum in the following order to get

∑
1≤i<j≤n

Ani,j =
n∑
j=2

j−1∑
i=1

Ani,j .

When j is odd, the inner sum
∑j−1
i=1 A

n
i,j can be written

j−1∑
i=1
i even

(Ani−1,j +Ani,j) =
j−1∑
i=1
i even

Rn(i− 1, j | i, j) .

When j is even, the inner sum
∑j−1
i=1 A

n
i,j can be written

A1,j +
j−1∑
i=3
i odd

(Ani−1,j +Ani,j) = An1,j +
j−1∑
i=3
i odd

R(i− 1, j | i, j)n
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For convenience we want to sum over the full range i = 2, . . . , j − 1, including all even and odd

indices, but this will introduce spurious extra terms. To fix this, introduce coefficients cn(i− 1, j, | i, j)

corresponding to the relation Rn(i − 1, j | i, j). When j is odd we need the even terms to live, so

impose cn(i− 1, j | i, j) = 1 when i even and j odd, and cn(i− 1, j | i, j) = 0 when i odd and j odd.

When j is even, we need the odd terms to live, so impose cn(i− 1, j | i, j) = 1 when i odd and j even,

and cn(i− 1, j | i, j) = 0 when i even and j even. This can be summarised by saying

cn(i− 1, j | i, j) =

1 if i− j odd

0 otherwise,

in accordance with Dan’s definition. (We write cn rather than just c because a later extension of c will

explicitly depend on n.)

Plugging these into the sum above, we find that

[a0 | { a1, a2 }� { a3, a4, . . . , an } // x | an+1] =∑
2≤i<j≤n

c(i− 1, j | i, j)Rn(i− 1, j | i, j) +
n∑
j=2
j even

An1,j

Now consider the leftover terms
∑n

j=2
j even

An1,j . Observe that we can write the following equality

An1,j = (An1,j +A1,j−1n)− (An1,j−1 +An1,j−2) +An1,j−2

= Rn(1, j − 1 | 1, j)−Rn(1, j − 2 | 1, j − 1) +An1,j−2

and by iterating,

= Rn(1, j − 1 | 1, j)−Rn(1, j − 2 | 1, j − 1) +

+Rn(1, j − 3 | 1, j − 2)−Rn(1, j − 4 | 1, j − 3) +An1,j−4 .

This means we can eliminate An1,j in favour of An1,j−2 and some relations Rn. By iterating this, we can

push this as far as we want, as follows.

Lemma 5.1.28. For any even 2 ≤ m ≤ j − 2, we have

An1,j =
j−2∑
k=m
k even

(Rn(1, k + 1 | 1, k + 2)−Rn(1, k | 1, k + 1)) +An1,m .

Proof. Certainly the result is true for m = j − 2, by the observation preceding this lemma.

Now suppose the result holds for m. Then for m− 2 we have

j−2∑
k=m−2
m even

(Rn(1, k + 1 | 1, k + 2)−Rn(1, k | 1, k + 1))

=
j−2∑
k=m
m even

(Rn(1, k + 1 | 1, k + 2)−Rn(1, k | 1, k + 1)) +
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+ (Rn(1,m− 1 | 1,m)−Rn(1,m− 2 | 1,m− 1)) ,

which by the induction assumption equals

= An1,j −An1,m + (Rn(1,m− 1 | 1,m)−Rn(1,m− 2 | 1,m− 1))

= An1,j −An1,m + ((An1,m−1 +An1,m)− (An1,m−2 +An1,m−1))

= An1,j −An1,m−2 .

So the result holds for m− 2 also.

In particular, for m = 2, we obtain

An1,j =
j−2∑
k=2
k even

(Rn(1, k + 1 | 1, k + 2)−Rn(1, k | 1, k + 1)) +An1,2 ,

and we can use this to establish the following result.

Lemma 5.1.29. The sum of the leftover terms is given by
n∑
j=2
j even

An1,j = bn/2cAn1,2 +

+
n−2∑
j=2

j even

(bn/2c − j/2)(Rn(1, j + 1 | 1, j + 2)−Rn(1, j | 1, j + 1))

Proof. We may use the above result to give an expression for An1,j , and sum as follows

n∑
j=2

j even

Ai,j =
n∑
j=2
j even

An1,2 +
j−2∑
k=2
k even

(Rn(1, k + 1 | 1, k + 2)−Rn(1, k | 1, k − 1))


= bn/2cAn1,2 +

n∑
j=2
j even

j−2∑
k=2
k even

(Rn(1, k + 1 | 1, k + 2)−Rn(1, k | 1, k + 1)) .

Now swap the order of summation, to obtain

= bn/2cAn1,2 +
n−2∑
k=2
k even

n∑
j=k+2
j even

(Rn(1, k + 1 | 1, k + 2)−Rn(1, k | 1, k + 1)) .

Since the summand does not depend on the index of the inner sum, we just obtain a multiple of it

based on the number of terms summed. In this case we have bn/2c − k/2 terms, so we get

= bn/2cAn1,2 +
n−2∑
k=2
k even

(bn/2c − k/2)(Rn(1, k + 1 | 1, k + 2)−Rn(1, k | 1, k + 1))

Finally, change the summation index from k to j to obtain the result.

Here Dan also wishes to sum over the full range j = 2, . . . , n− 2. This is more straightforward to do,
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since we can break the sum up and reindex it as follows.

n−2∑
j=2
j even

(bn/2c − j/2)(Rn(1, j + 1 | 1, j + 2)−Rn(1, j | 1, j + 1))

=
n−2∑
j=2
j even

(bn/2c − j/2)Rn(1, j + 1 | 1, j + 2)−
n−2∑
j=2
j even

(bn/2c − j/2)Rn(1, j | 1, j + 1) .

Now put j 7→ j − 1 in the first sum. The range chances to j = 3 to n− 1, j odd, giving

=
n−1∑
j=3
j odd

(bn/2c − (j − 1)/2)Rn(1, j | 1, j + 1)−
n−2∑
j=2
j even

(bn/2c − j/2)Rn(1, j | 1, j + 1) .

Observe that when j is odd, (j − 1)/2 = bj/2c. And when j is even, j/2 = bj/2c. Both sums can be

combined to give

= −
n−1∑
j=2

(−1)j(bn/2c − bj/2c)Rn(1, j | 1, j + 1) .

We can then set

cn(1, j | 1, j + 1) = (−1)j(bn/2c − bj/2c) ,

in accordance with Dan. (Writing cn rather than just c to emphasis the dependence on n.)

Overall, we have

[a0 | { a1, a2 }� { a3, a4, . . . , an } // x | an+1]

=
∑

2≤i<j≤n
cn(i− 1, j | i, j)R(i− 1, j | i, j) + bn/2cAn1,2 +

−
n−1∑
j=2

cn(1, j | 1, j + 1)Rn(1, j | 1, j + 1) .

By rearranging this, we therefore obtain the following theorem

Theorem 5.1.30. The following equality holds

bn/2c [a0 | a1, . . . , an // x | an+1] =

−
∑

2≤i<j≤n
cn(i− 1, j | i, j)R(i− 1, j | i, j) +

+
∑

2≤j≤n−1
cn(1, j | 1, j + 1)Rn(1, j | 1, j + 1) +

+ [a0 | { a1, a2 }� { a3, . . . , an } // x | an+1] .

And in particular for n ≥ 3,

[a0 | a1, . . . , an // x | an+1] ,

is explicitly given as a sum of hyperlogs in ≤ n− 2 variables, modulo products.

Corollary 5.1.31. By setting x = ∞, we get an expression for [a0 | a1, . . . , an | an+1] as a sum of
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hyperlogs in ≤ n− 2 variables.

5.1.7.2 Structured approach for n odd

Dan remarks that when n is odd, one can obtain an even simpler expression for this reduction. This is

done as follows.

Lemma 5.1.32. Let S be the set of (1, n− 1) shuffles, which can be identified with the terms in the

shuffle product a1 � (a2 . . . an). Then ∑
σ∈S

sgn(σ) = 1 .

Proof. Each term in S is completely determined by the position of a1. If a1 is in position j, then it

takes j − 1 swaps to put the permutation into the original order. Hence

∑
σ∈S

sgn(σ) =
n∑
j=1

(−1)j−1 .

Since n = 2k + 1 is odd, we can break this up into

=
∑
j=1
j even

(−1) +
∑
j=1
j odd

1

= j · (−1) + (j + 1) · 1

= 1 .

This completes the proof.

Definition 5.1.33. Write

Ani := [a0 | a2, . . . , ai, a1︸︷︷︸
position i

, ai+1, . . . , an // x | an+1] ,

where position i is filled with a1, and the remaining positions are filled with a2, . . . , an in this order.

Lemma 5.1.34. Consider the expression Ani + Ani+1. This can be expressed as an explicit sum of

hyperlogs in ≤ n− 2 variables.

Proof. Observe that Ani +Ani+1 is a transposition, obtained by swapping positions i and i+ 1. Since it

is a transposition, it can be expressed as a sum in ≤ n− 2 variables using the Corollary 5.1.21 and the

D operator. So the result holds.

Definition 5.1.35. Denote by Rni the relation expressing Ani +Ani+1 as a sum in ≤ n− 2 variables.

Since each term in [a0 | { a1 }� { a2, . . . , an } // x | an+1] is determined by the position of a1, we

obtain

[a0 | { a1 }� { a2, . . . , an } // x | an+1] =
n∑
i=1

Ani .
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Since n is odd, we may write this as

= An1 +
n∑
i=2
i even

Ani +Ani+1 = An1 +
n∑
i=2
i even

Rni

= An1 +
bn/2c∑
j=1

Rn2j .

By rearranging this, we obtain the following theorem.

Theorem 5.1.36. For odd n, the following equality holds

[a0 | a1, . . . , an // x | an+1] =

[a0 | { a1 }� { a2, . . . , an } // x | an+1]−
bn/2c∑
j=1

Rn2j .

And in particular for odd n ≥ 3,

[a0 | a1, . . . , an // x | an+1] ,

is explicitly given as a sum of hyperlogs in ≤ n− 2 variables, modulo products.

5.1.8 Reduction of generalised hyperlog to I

When we apply this procedure, we will obtain a number of terms of the form

[a0 | a1, . . . , an // x | an+1] .

Ultimately we want to convert these back to the usual iterated integrals In1,...,nk . Doing this will give

arguments involving cross-ratios as follows.

Firstly, convert this to an ordinary hyperlogarithm, with x ∞, by writing

[a0 | a1, . . . , an // x | an+1] = [(a0 − x)−1 | (a1 − x)−1, . . . , (an − x)−1 //∞ | (an+1 − x)−1] .

This ordinary hyperlogarithm is invariant under affine transformation, so apply the translation

t 7→ t− (a0 − x)−1. This sets the lower bound of integral to 0. The other arguments change as follows

1
ai − x

7→ 1
ai − x

− 1
a0 − x

= a0 − ai
(ai − x)(a0 − x) .

Now apply the scaling t 7→ t (an+1−x)(a0−x)
a0−an+1

, which sets the upper bound of the integral to 1. The other

arguments change to

a0 − ai
(ai − x)(a0 − x) 7→

a0 − ai
(ai − x)(a0 − x)

(an+1 − x)(a0 − x)
a0 − an+1

= (a0 − ai)(an+1 − x)
(ai − x)(a0 − an+1)

= cr(an+1, ai, x, a0) .
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Overall, we find that

[a0 | a1, . . . , an // x | an+1]

= [0 | cr(an+1, a1, x, a0), . . . , cr(an+1, an, x, a0) | 1] .

In the Dan reduction procedure, the number of variables is reduced from n to n− 2 in each integral.

This means that at least 2 ai’s will equal a0 in the terms we apply this to. In this situation the

cross-ratio reduces to 0 (or indeed the argument will be identically 0 after the translation step), which

has the effect of reducing the depth of the iterated integral by 2 to n− 2.

5.2 Reduction of I1,1,1,1

5.2.1 Procedure when n = 4, correcting Dan’s reduction of I1,1,1,1

In this section we will run this method for n = 4, in order to correct the expression Dan gives for

I1,1,1,1(w, x, y, z), or more precisely for I(a; b, c, d, e; f). We can obtain the reduction for I1,1,1,1(w, y, x, z)

by setting a = 0 and f = 1.

Firstly, apply Theorem 5.1.30, with n = 4 to obtain

2[a0 | a1, a2, a3, a4 // x | a5]

= (R4(1, 2 | 1, 3)−R4(1, 3, | 1, 4))− (R4(1, 3, | 2, 3)−R4(2, 4 | 3, 4)) .

Let us focus on the term R4(1, 2 | 1, 3) now. This is supposed to be the expression for

A4
1,2 +A4

1,3 = [a0 | a1, a2, a3, a4 // x | a5] + [a0 | a1, a3, a2, a4 // x | a5] ,

as a sum in ≤ n− 2 variables, using the D operator and Proposition 5.1.20. By this, we have

A4
1,2 +A4

1,3 = D([a0 | a1, a2, a3, a4 // x | a5], 2) + (5.2.1)

−D([a0 | a1, x, a3, a4 // a2 | a5], 3) +

+D([a0 | a1, x, a2, a4 // a3 | a5], 2) .

Now each D is an explicit sum in ≤ n − 2 variables, using Proposition 5.1.18 and the operator B.

Doing this for the first term gives

D([a0 | a1, a2, a3, a4 // x | a5], 2) = B([a0 | a1, a2, a3, a4 // x | a5], 2)

=
∑
I

(−1)#IA([a0 | a1, a2, a3, a4 // x | a5], 2, I) ,

where the sum runs over all I ⊂ { 1, 2, . . . , n } containing 2 and having #I ≥ 2. In this case the I

ranges over the subsets { 1, 2 }, { 2, 3 }, { 2, 4 }, { 1, 2, 3 }, { 1, 2, 4 } , { 2, 3, 4 } and { 1, 2, 3, 4 }. We
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obtain

= [a0 | a2, a2, a3, a4 // x | a5] + [a0 | a1, a2, a2, a4 // x | a5] + [a0 | a1, a2, a3, a2 // x | a5] +

− [a0 | a2, a2, a2, a4 // x | a5]− [a0 | a2, a2, a3, a2 // x | a5]− [a0 | a1, a2, a2, a2 // x | a5] +

+ [a0 | a2, a2, a2, a2 // x | a5] .

From here a2 must be shuffled out of the first position of each term using Lemma 5.1.14. This will let us

express each term as the difference of an integral from a2 to a0 and from a2 to a5, as in Lemma 5.1.16.

Doing so gives

= φ(a0)− φ(a5) ,

where

φ(c) = [a2 | a1, a2, a2, a2 // x | c]− [a2 | a1, a2, a2, a4 // x | c]− [a2 | a1, a2, a3, a2 // x | c] +

+ 3[a2 | a3, a2, a2, a2 // x | c]− [a2 | a3, a2, a2, a4 // x | c]− [a2 | a3, a2, a4, a2 // x | c] +

− [a2 | a3, a4, a2, a2 // x | c]− [a2 | a4, a2, a2, a2 // x | c] .

Now this must be repeated for the other two occurrences of D in Equation 5.2.1, in order to get an

expression for R4(1, 2 | 1, 3). Then the whole procedure must be repeated for the remaining 3 relations

R4.

After doing this, we may use the following identities to convert between I1,3, and I2,2 and I3,1

I2,2(x, y) �= −I1,3(x, y)− I1,3(y, x)− I3,1(x, y)

I1,3(x, y �= I4(x)− I3,1(x, xy ) .

By converting all terms of the result to I3,1 and I4 we obtain the following theorem.

Theorem 5.2.1 (Correction to Théorème 2 in [Dan11]). As shorthand, write abcd := cr(a, b, c, d),

and abc := cr(a, b, c,∞). Moreover, write [x, y] := [x, y]3,1 = [0 | x, 0, 0, y | 1] and [x] := [x]4 = [0 |

x, 0, 0, 0, | 1]. Then modulo products

[a | b, c, d, e | f ] = φ(a; b, c, d, e)− φ(f ; b, c, d, e) ,

where

2φ(a; b, c, d, e) :=

[abcd, aecd]− [abcd, dcb] + [abce, bdec] + [abce, cea]− [abce, ecb] +

+ 2[abd, acd]− 2[abd, aed]− [abd, ebd] + [abe, ace]− [acbd, dbc] +

+ [acbe, ebc]− 2[acd, bcd] + [ace, bce]− [ace, dce]− [adbe, acbe] +

+ [adbe, ebd]− [adce, cea]− [adce, ecd]− [ade, abe] + [ade, bde] +

− [ade, cde]− [aebd, bdce]− [aecd, dce]− [aed, bed]− 2[bac, bdc] + (5.2.2)

+ [bac, dac] + [bda, acbd]− [bda, aebd]− [bda, bdc] + [bea, acbe] +
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+ [bea, bec]− [cab, cdb] + [cab, ceb]− [cda, aecd]− [cda, cde] +

− [cea, ceb] + [cea, ced] + 2[dab, cab] + [dab, dcb]− 2[dab, eab] +

− [dac, dbc]− [dac, dec]− [dac, eac] + [eab, ecb]− 2[eac, edc] +

+ γ(a; b, c, d, e) .

And

γ(a; b, c, d, e) := [abce] + 5[abd]− 4[abe] + 4[acbd]− 2[acbe] + 2[acd] + 2[ace] +

− 2[adce] + 2[ade] + 2[aecd] + [aed] + 2[bac] + 2[bda]− 4[bea] +

− 2[cab] + 4[cda] + 3[cea] + [dab] + 8[dac]− 3[eab] + 2[eac]

is an explicit sum of I4’s of rational functions.

Remark 5.2.2. In the original paper, Dan does not give the I4 terms explicitly, but says only that

such an explicit linear combination exists. Here it is given explicitly for completeness.

This expression has been obtained by implementing Dan’s reduction method in Mathematica [MA], and

converting to I3,1 via the above identities. The final result has been checked using Duhr’s PolylogTools

package [PT] to confirm the symbol vanishes modulo products. Lastly the TeXutilities package [TU]

for Mathematica was used to automatically LATEX the resulting expression to ensure no typos occured.

Remark 5.2.3. All of the terms in Equation 5.2.2 can in fact be written in the ‘coupled cross-ratio’

form from Section 4.1.2. For example, in the first term [abcd, aecd] = [abcd, aecd]3,1, of Equation 5.2.2,

the cross-ratios can be re-written to show that [abcd, aecd]3,1 = [cdab, cdae]3,1. But now this term can

be written using the ‘couple cross-ratio’ shorthand to give

[abcd, aecd]3,1 = I3,1(cdabe) .

By reintroducing ∞’s if necessary, the same thing works for all the remaining terms. For example, the

second term gives

[abcd, dcb]3,1 = I3,1(dcba∞) .

On the level of symbols, this result holds modulo products. Working modulo δ, the terms in γ(a; b, c, d, e)

go to 0, giving the remaining terms of φ(a; b, c, d, e) as the leading terms in the expression.

Potentially more interesting is the reduction to I4 and I2,2 in light of the folklore conjecture that

indices 1 can always be eliminated from MPL’s. For that, we can make use of the following identity

I3,1(x, y) �= 1
2(I2,2(y, x)− I2,2(x, y)) ,

to obtain

Corollary 5.2.4 (Dan with I2,2). As shorthand, write abcd := cr(a, b, c, d), and abc := cr(a, b, c,∞).

Also write [x, y]2,2 = [0 | x, 0, y, 0 | 1] and [x] := [x]4 = [0 | x, 0, 0, 0, | 1]. Then modulo products

[a | b, c, d, e | f ] = φ(a; b, c, d, e)− φ(f ; b, c, d, e) ,
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where φ(a; b, c, d, e) is exactly as given in Equation 5.2.2, and we understand that the shorthand [x, y]

is now as follows

[x, y] = 1
2([y, x]2,2 − [x, y]2,2) .

5.2.2 Relation to Dan’s previous reduction, and I3,1 functional equations

Recall that in Théorème 3 of [Dan08], Dan gives a different reduction for I1,1,1,1 to I3,1 and I4 terms.

This version is specific to the weight 4 case I1,1,1,1, and produces a more symmetrical and structured

identity. Nevertheless, there is a typo in the expression Dan gives, but fortunately one can take

advantage of the extra structure to easily correct the result. The correction below was provided by

Gangl.

Theorem 5.2.5 (Théorème 3 in [Dan08], corrected by Gangl). As shorthand, write abcd := cr(a, b, c, d),

and abc := cr(a, b, c,∞). Moreover, write [x, y] := [x, y]3,1 = [0 | x, 0, 0, y | 1] and [x] := [x]4 = [0 |

x, 0, 0, 0, | 1]. Then modulo products

[a | b, c, d, e | f ] = f(a; b, c, d, e)− f(f ; b, c, d, e) ,

where

20f(a; b, c, d, e) := g(a, b, c, d, e) +

− g(∞, b, c, d, e)− g(a,∞, c, d, e)− g(a, b,∞, d, e) +

− g(a, b, c,∞, e)− g(a, b, c, d,∞) +

+ 10h(a, b, c, d, e) .

And g and h are defined by

g(a, b, c, d, e) := Cyc{ a,b,c,d,e } ([abcd, abce]3,1 − [edcb, edca]3,1 − 3[abdc, abde]3,1 + 3[edbc, edba]3,1)

h(a, b, c, d, e) := Cyc{ a,b,c,d,e } ([cab]4 + [bda]4 + [adb]4 + [bad]4) .

Remark 5.2.6. The mistakes in Dan’s expression occur in the first summand of g, where he write

[abcd, bcde]3,1 rather than [abcd, abce]3,1. This is easily corrected upon noticing that for the remaining

summands, the first 3 cross-ratio slots agree in each pair – that is, each is a ‘coupled cross-ratio’. There

is also a mistake in (his equivalent of) h, where the sign of the third term [adb]4 is flipped. Moreover

there appears to be a global sign error, so −20 in the definition of f is replaced with 20 above.

Once Dan has these two reductions, he wonders how the combinations φ and f relate. By setting the

two expressions equal, one obtains a functional equation reducing a certain combination of I3,1’s to I4’s.

Specifically there is the question of whether φ and f are exactly equal, and whether this functional

equation, a prior of 4 variables, splits into two functional equations of 3 variables.

Using the symbol, we can answer this question as follows.
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Claim 5.2.7. The combinations f(a; b, c, d, e) and φ(a; b, c, d, e) are not equal.

Proof. If f and φ were equal, then their symbols modulo δ would also have to be equal. One can

explicitly check using Mathematica [MA] that these symbols are different. Moreover, checking the

symbol shows that φ(a; b, c, d, e) is not even cyclically symmetric, so there is no hope that f and φ

agree.

Nevertheless, by comparing the two expansions φ(a; b, c, d, e) − φ(f ; b, c, d, e) �= [a | b, c, d, e | f ] �=

f(a; b, c, d, e)− f(f ; b, c, d, e), we obtain a functional equation relating a certain combination of I3,1’s

to I4’s, modulo products �. Unfortunately, the functional equation which results is not as interesting

as one might hope. It reduces to a (complicated) combination of the following four basic functional

equations, already given by Gangl in [Gan16]. (It is the sum of approximately 630 instances of these

basic functional equations. The leftover I4 terms cancel pairwise using I4(x) = −I4( 1
x ).)

Identity 5.2.8 (Gangl). Using the notation of Chapter 4, the following identities hold modulo �.

I3,1((ab)cde)− I3,1((ba)cde) +

− I4(abcd) + I4(abce) + 3I4(abde) �= 0 (I3,1 ab)

I3,1(a(bc)de)− I3,1(a(cb)de) +

+ I4(cbad)− I4(cbae) + 2I4(abde) + 2I4(cade) + I4(cbde) �= 0 (I3,1 bc)

I3,1(abc(de)) + I3,1(abc(ed)) �= 0 (I3,1 de)

I3,1((abcd)e) + I3,1((bcda)e) + I3,1((cdab)e) + I3,1((dabc)e) + (I3,1 cyc)

+ I4(acbe) + I4(bdce) + I4(cade) + I4(dbae) +

+ 2I4(abde) + 2I4(bcae) + 2I4(cdbe) + 2I4(dace) �= 0

In fact, this was to be expected. Gangl has found that these functional equations provide a basis for

the space of all relations between I3,1(abcde) terms. Moreover, we know from Remark 5.2.3 that every

term of the weight 4 reduction can be written in this form.

5.3 Reduction of I1,1,1,1,1

We shall now apply Dan’s reduction procedure to the quintuple-log I1,1,1,1,1(v, w, x, y, z) to obtain

expressions for it in terms of lower depth multiple polylogarithms. Or rather we shall apply it to

H(a | b, c, d, e, f | g), like above. Firstly we will examine the ‘raw’ output of the reduction procedure

which reduces I1,1,1,1,1 to the 11 depth ≤ 3 integral I5, I4,1, I3,2, I3,1,1, I2,2,1, . . .. Then using some

identities from Chapter 4, we will be able to reduce this expression to explicit I5, I3,2, I3,1,1 terms only,

modulo �.
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In order to explicitly confirm the folklore conjecture that indices 1 can always be eliminated from

MPL’s, we need to reduce I3,1,1 to I3,2 terms and I5 terms. Like the reduction of I3,2 to I4,1 modulo

δ given in Identity 4.2.17, we can give a brute force reduction of I3,1,1 in terms of I3,2, modulo δ.

Currently I am unable to find the missing Li5 terms to give an reduction of I3,1,1 to I3,2 and I5,

modulo �. Nevertheless, this allows us to reduce I1,1,1,1,1 to only I3,2 terms, modulo δ, and reduces

the problem of a full reduction to dealing only with the case I3,1,1 in terms of I3,2 and I5. Moreover, an

expression for I3,2 in terms of I4,1 and very complicated Li5 terms does exist, as given in Section B.1.

We therefore have cause for optimism in trying to find a similar expression for I3,1,1 in terms of I3,2
terms and Li5 terms.

5.3.1 ‘Raw’ output of I1,1,1,1,1 reduction

When attempting to reduce I1,1,1,1,1 with Dan’s reduction method, there are two choices. We can

either use the structured approach from Section 5.1.7.1 which works for all n. Or we can use the

structured approach from Section 5.1.7.2 which works only for n odd. The n odd approach has the

advantage of producing significantly shorter reductions. We will compare the two initial results to see

how much better the n odd approach works.

All n approach: Apply the all n approach to [a | b, c, d, e, f | g]. The result can be written as

φ′(a; b, c, d, e, f)− φ′(g; b, c, d, e, f), where φ′ consists of this terms which contain the variable a. We

obtain the following distribution of terms in φ′.

Integral Number of such terms in φ′

I5 37

I1,4 29

I2,3 39

I3,2 41

I4,1 34

I1,1,3 14

I1,2,2 22

I1,3,1 21

I2,1,2 22

I2,2,1 26

I3,1,1 22

Total number 307

Odd n approach: Apply the odd n approach to [a | b, c, d, e, f | g]. The result can be written as

ψ(a; b, c, d, e, f)− ψ(g; b, c, d, e, f), where ψ consists of those terms which contain the variable a. We

obtain the following distribution of terms in ψ.
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Integral Number of such terms in ψ

I5 20

I1,4 11

I2,3 17

I3,2 17

I4,1 11

I1,1,3 6

I1,2,2 5

I1,3,1 6

I2,1,2 7

I2,2,1 7

I3,1,1 6

Total number 113

Already one can see that the n odd approach is significantly better as it involves only about one-third

the number of terms, compared to the all n approach. This reduction of I1,1,1,1,1 to depth ≤ 3 integrals

is (just) short enough to give explicitly.

Identity 5.3.1. As shorthand recall the ‘coupled cross-ratio’ notation from Section 4.1.2, which

has In1,...,nk(abcd1 . . . dk) := In1,...,nk(cr(a, b, c, d1), . . . , cr(a, b, c, dk)). Then modulo products, Dan’s

reduction procedure the following reduction

[a | b, c, d, e, f | g] = ψ(a; b, c, d, e, f)− ψ(g; b, c, d, e, f) ,

where

ψ(a; b, c, d, e, f) :=

I5(−[bdac] + 4[bdae]− [bdaf ] + 4[bda∞]− [bfac] + 4[bfad]− 6[bfae] + 4[bfa∞] +

+ 6[d∞ab] + [d∞ac]− 4[d∞ae] + [d∞af ] + [f∞ab] + [f∞ac]− 4[f∞ad] +

+ 6[f∞ae] + 2[∞bac] + 2[∞bad] + 2[∞bae] + 2[∞baf ]) +

+ I1,4([bdac∞]− [bdaef ] + [bfacd]− 3[bfade] + 3[bfae∞]− 3[d∞abe] +

+ [d∞aef ]− [f∞acd] + 3[f∞ade]− [∞bacd] + [∞baef ]) +

+ I2,3(−[bdaef ]− 2[bda∞e] + [bface]− [bfade]− 2[bfad∞] + 2[bfae∞] +

− 2[d∞abe]− [d∞abf ]− [d∞acb] + [d∞aef ]− [f∞ace] + [f∞ade] +

− [f∞aeb]− [∞bacd]− [∞bace]− [∞bade]− [∞badf ]) +

+ I3,2([bdace]− [bdaef ]− 2[bda∞e]− [bda∞f ] + [bfac∞]− 2[bfad∞] +

+ [bfae∞]− [d∞abe]− 2[d∞abf ]− [d∞ace] + [d∞aef ] + [f∞adb] +

− 2[f∞aeb]− [∞bace]− [∞bade]− [∞badf ]− [∞baef ]) +

+ I4,1([bdacf ]− [bdaef ]− 3[bda∞f ]− 3[d∞abf ]− [d∞acf ] + [d∞aef ] +
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− [f∞acb] + 3[f∞adb]− 3[f∞aeb]− 2[∞bacf ]− 2[∞baef ]) +

+ I1,1,3(−[bfacde] + 2[bfade∞] + [d∞abef ] + [f∞acde] + [∞bacde] + [∞badef ]) +

+ I1,2,2(−[bdac∞e]− [bfacd∞] + [bfade∞] + [d∞abef ]− [f∞adeb])+

+ I1,3,1(−[bdac∞f ] + [d∞abef ] + [f∞acdb]− 2[f∞adeb] + [∞bacdf ]− [∞badef ]) +

+ I2,1,2([bda∞ef ]− [bface∞] + [bfade∞] + [d∞abef ] + [d∞acbe] + [∞bacde] + [∞badef ]) +

+ I2,2,1([bda∞ef ] + [d∞abef ] + [d∞acbf ] + [f∞aceb]− [f∞adeb] + [∞bacdf ] + [∞bacef ]) +

+ I3,1,1(−[bdacef ] + 2[bda∞ef ] + [d∞abef ] + [d∞acef ] + [∞bacef ] + [∞badef ]) .

5.3.2 Reduction of I1,1,1,1,1 to I3,1,1, I3,2 and I5 modulo products

From Chapter 4, we have a number of identities which relate depth 2 and depth 3 iterated integrals. In

particular, Proposition 4.2.22 allows us to write I1,4 as I4,1, and write I2,3 as I3,2. Then Equation 4.2.7b

in Identity 4.2.16 allows us to write I4,1 as a sum of I3,2 terms.

Moreover, Theorem 4.3.18 tells us that all depth 3 interated integrals are somehow ‘equivalent’ modulo

I3,2. In particular, every such integral can be written as I3,1,1. We can use Identity 4.3.16, and

Identity 4.3.20 to explicitly reduce I1,3,1 and I2,2,1 to I3,1,1, modulo products. We can also use

Identity 4.3.19, but we first need to add in the missing Li5, or rather I5, terms. We have

Identity 5.3.2. We can find I5 terms for Identity 4.3.19, to give the following identity relating I1,1,3
to I3,1,1, modulo products, with explicit I3,2 and I5 terms.

I3,1,1(abcdef)− I1,1,3(abdcfe) �= 1
3I3,2(−[abdfe]− [abfce]− [abfde]− [abfed] +

− [baefd] + [bafec] + [bafed]) +

+ 1
3I5(−16[abed] + 4[abfd]− 7[abfe]− 6[abce] + 4[abcf ])

To complete the reduction to I3,1,1, I3,2 and I5, we need to give a reduction for I2,1,2 and I1,2,2 to I3,1,1,

I3,2 and I5. Theorem 4.3.18 shows that this can certainly be done, modulo I3,2, then we could attempt

to find the missing I5 terms. Alternatively, one can more directly find the the following identities.

Identity 5.3.3. The following identity expresses I2,1,2 in terms of I3,1,1 terms, I3,2 terms, and I5
terms, modulo products.

I2,1,2(abcdef) �=

I3,1,1([abcdfe] + [abcfde] + [abcfed] + [abdcef ] + [abdecf ] + [abedcf ]) +

+ I3,2([abcdf ] + 2[abcef ]− [abcfd]− [abcfe] + [abdcf ] + [abdef ] +

+ 2[abecf ] + [abedf ]− [abefc]) + I5(12[abcf ] + 6[abdf ] + 12[abef ])

Identity 5.3.4. The following identity expresses I1,2,2 in terms of I3,1,1 terms, I3,2 terms, and I5
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terms, modulo products.

I1,2,2(abcdef) �=

I3,1,1(−[abcfed]− [abdcef ]− [abdcfe]− [abdecf ]) +

+ I3,2(−2[abcef ] + [abcfe]− 2[abecf ]− [abefd]− [abfed]) +

+ I5(−12[abcf ]− 6[abde]− 6[abdf ]− 6[abef ])

Applying the above identities to ψ from Identity 5.3.1 produces ψ′(a; b, c, d, e, f) with the following

distribution of terms. The explicit expression for ψ′ is given in the appendix, in Section B.3.

Integral Number of such terms in ψ′

I5 50

I3,2 125

I3,1,1 69

Total number 244

5.3.3 Reduction of I1,1,1,1,1 to I3,2 modulo δ

Ideally, the final step would be to give some way to write I3,1,1 in terms of I3,2 and I5 modulo products.

That way we can completely reduce I1,1,1,1,1 to I3,2 and I5, and explicitly confirm that the index 1 can

always be eliminated. Unfortunately the I5 terms in this step have remained elusive. Nevertheless, we

have the following identity which expresses I3,1,1 in terms of I3,2 modulo δ.

Identity 5.3.5. The following identity expresses I3,1,1(abcdef)↔ I3,1,1(x, y, z) in terms of I3,2 terms,

modulo δ.

3I3,1,1(abcdef) δ=

+ I3,2([abcde] + [abcdf ] + [abced] + [abcfd]− [acbdf ]− [acbfd]− [adbef ] +

− [adbfe] + [bafce] + [bafec]− [bface]− [bfaec]) +

+ I3,2([abce, acbd] + [abce, adbc] + [abcf, adcb]− [abdf, aebf ]− [abef, adeb] +

− [abef, aedb] + [acbd, abce] + [adbc, abce]− [adbc, abfc] + [adbe, abfe] +

− [adbf, aebd] + [aebd, abfe]− [aebd, adbf ]− [aebf, abdf ]) +

+ I3,2([abcd, abfe]− [abef, abdc]− [abef, adbc] + [acbd, aecf ]− [acbd, bcef ] +

− [acbd, becf ]− [acdf, adbe]− [acdf, aebd] + [acdf, aebf ]− [acef, adbc] +

+ [acef, adbe] + [acef, aebd]− [adbc, abef ]− [adbc, acef ]− [adbe, acdf ] +

+ [adbe, acef ]− [aebd, acdf ] + [aebd, acef ] + [aebf, acdf ] + [aecf, acbd] +

+ [afbe, bcdf ] + [bcdf, afbe]− [bcef, acbd]− [becf, acbd])

Remark 5.3.6. In this identity, the I3,2 terms are grouped (roughly) according to their complexity.

Initially we have 12 terms of the form I3,2(abcde), which constitute ‘coupled cross-ratios’. One should



5.3. Reduction of I1,1,1,1,1 190

think of these as the simplest kind of term. Then we have 14 terms of the form I3,2(abce, acbd); these do

not exactly fit the form of a ‘coupled cross-ratio’, but they do involve only 5 of the 6 variables abcdef .

This makes them of intermediate complexity. Lastly, we have 24 terms of the form I3,2(abcd, abef),

which contain all 6 of the variables in each term. These are the most complex type of term.

Remark 5.3.7. The above identity expresses I3,1,1 in terms of 50 I3,2 terms. Slightly shorter

expressions are possible, but they involve coefficients ±1 and ± 1
2 , rather than just ±1, as above. In

terms of generating (or rather not generating) a ‘useful’ final expression for I1,1,1,1,1 in terms of I3,2,

choosing the longer expression over the shorter one makes little difference.

The expression for I3,1,1 in terms of I3,2 holds modulo δ. One would hope to be able to find Li5 terms

which make the identity hold modulo products only. So far this has been unsuccessful. But given

the existence of the Li5 terms in Identity B.1.1, which make the brute-force expression for I3,2 in

terms of I4,1’s from Identity 4.2.17 hold, modulo products, one is optimistic that Li5 terms to make

Identity 5.3.5 hold, modulo products, do exist.

If we apply Identity 5.3.5 to the ψ′ found in Section 5.3.2 (and given explicitly in Theorem B.3.1), we

obtain the following.

Theorem 5.3.8. Modulo δ, we can write

[a | b, c, d, e, f | g] = ψ′′(a; b, c, d, e, f)− ψ′′(g; b, c, d, e, f) ,

where ψ′′ is an explicit combination of the following type of I3,2 terms:

• ‘Coupled cross-ratio terms’ I3,2(abcde),

• 5-variable cross-ratio terms I3,2(abcd, abde), and

• 6-variable cross-ratio terms I3,2(abcd, abef).

Remark 5.3.9. In each case of Theorem 5.3.8 above, (viewing [abcde] = [abcd, abce]), the number of

cross-ratios which have a variable set to infinity is either 0, 1, or 2. Moreover, the expression obtained

for ψ′′ by applying Identity 5.3.5 to Theorem B.3.1, has the following distribution of terms.

Integral Number of ∞ cross-ratios Number of such terms in ψ′′

Coupled cross-ratio I3,2 0 68

Coupled cross-ratio I3,2 1 88

Coupled cross-ratio I3,2 2 276

5-variable cross-ratio I3,2 0 78

5-variable cross-ratio I3,2 1 155

5-variable cross-ratio I3,2 2 578

6-variable cross-ratio I3,2 0 48

6-variable cross-ratio I3,2 1 686

6-variable cross-ratio I3,2 2 480

Total number 2457



Chapter 6

Arbitrary weight Ia,b(x, y)± Ia,b(1
x,

1
y)

inversion identity

This chapter will focus on proving a generalisation of an identity found in [Gan16] in the weight 4 case,

and in Chapter 4 in the the weight 5 case. The identity (Theorem 6.1.2) concerns the products and

Lin terms which complete Ia,b(x, y)± Ia,b( 1
x ,

1
y ) δ= 0 to an identity holding on the level of the symbol.

The proof of the general identity will involve a long and tedious calculation using the symbol of

Ia,b(x, y). It will be convenient to use the symbol for Ia,b(x, y) as computed by Rhodes [Rho12], but

first we want to make some simplifications (Section 6.2.2). The proof then proceeds by computing the

symbol of the left hand side (Section 6.2.3), and of the right hand side (Section 6.2.5). Comparing

both sides (Section 6.2.6) after ‘gathering’ by the first tensor factor in each term completes the proof.

Finally we attempt to upgrade the subfamily In,1(x, y)± In,1( 1
x ,

1
y ) to a candidate numerically testable

family of identities holding at arbitrary weight, mimicking the approached used in the weight 4 case

by Duhr (related by Gangl [Gan16]). To do this we need to compute refinements incorporating

constant × lower weight terms which are invisible on the level of the symbol, but show up in the

coproduct. We compute slices ∆k,1,...,1 of the coproduct to explicitly find the weight 5 identity

(Section 6.3.2) and the weight 6 identity (Section 6.3.3). Enough of a pattern is apparent across the

weight 4, 5 and 6 cases to suggest an arbitrary weight numerically testable identity (Section 6.3.4),

which passes various numerical tests.

Addendum: we also point recent work by Panzer (‘Parity theorem for multiple polylogarithms’ [Pan15])

which has subsumed the identities in this chapter, giving a numerically verifiable inversion identity for

any multiple polylogarithm Lin1,...,nd of any depth, and of any indices.

191
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6.1 Buildup to the identity

From various results when investigating symmetries and relations between weight 5 MPL’s, it seems to

be the case that for any depth 2 iterated integral Ia,b(x, y), we always have the following symmetry.

Ia,b(x, y)− (−1)a+bIa,b( 1
x ,

1
y ) δ= 0 .

See for example Equation 4.2.1b′ for the case I4,1, and Equation 4.2.4′ for the case I3,2.

Moreover, the leading order Lin terms can be found in enough explicit cases to suggest the following

general expression.

Ia,b(x, y)− (−1)a+bIa,b( 1
x ,

1
y )

�= (−1)a+b Lia+b(x) + (−1)b
(
a+b−1
a

)
Lia+b(y)− (−1)a

(
a+b−1
b

)
Lia+b(xy ) .

For this, see Identity 4.2.7 and Identity 4.2.13

The next natural step is to find the missing product terms, so that we may give a symbol-level identity

on the nose. It is possible to do this in each of these cases, and enough of a pattern is present to

suggest a general identity. One such case is available in Identity 4.2.8.

Before stating the symbol-level identity, it is helpful to introduce some notation which will (slightly)

simplify the calculation of the symbol later.

Definition 6.1.1. Let α ∈ Z≥0. Then write

l̃og
α

(x) := 1
α! logα(x) .

In the case where α = 0, this is interpreted as

l̃og
0
(x) = 1

0! log0(x) = 1 .

Theorem 6.1.2. For any a, b ∈ Z>0, the following identity holds exactly on the level of the symbol.

Ia,b(x, y)− (−1)a+bIa,b( 1
x ,

1
y ) S= (6.1.1a)

(−1)b
a∑
i=0

(
b−1+i
i

)
(l̃og( 1

x ))a−i l̃og(y)b+i + (6.1.1b)

+ (−1)b
a∑
i=0

(
b−1+i
i

)
(l̃og( 1

x ))a−i Lib+i(y) + (6.1.1c)

− (−1)a
b∑
i=0

(
a−1+i
i

)
(l̃og( 1

x ))b−i Lia+i(xy ) + (6.1.1d)

+ (−1)a+b Lia(xy ) l̃og
b
(y) + (−1)a+b Lia+b(x) . (6.1.1e)

In particular, we have the leading terms

Ia,b(x, y)− (−1)a,bIa,b( 1
x ,

1
y ) �=
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(−1)b
(
a+b−1
a

)
Lia+b(y)− (−1)a

(
a+b−1
b

)
Lia+b(xy ) + (−1)a+b Lia+b(x) .

The following section is devoted to proving this identity on the level of the symbol. The reader

uninterested in working through the details may skip to Section 6.3, where the identity for In,1 will be

lifted up to a numerically testable identity.

6.2 Proof of the identity

The proof of the identity will be a direct calculation of the symbol of both sides. In order to calculate

the LHS, I need to use the symbol of Ia,b(x, y) as computed by Rhodes [Rho12]. In fact, I want to use

a ‘simplified’ version of it, and in order to make the simplification we need some auxiliary results.

Warning 6.2.1. In the calculations that follow, we are working with multiplicative tensors from the

symbol. So we cannot write 1 for the empty word (tensor of length 0) because 1 ∈ Q(x)⊗1 is a perfectly

good tensor factor. Moreover, in the symbol terms of the form · · · ⊗ 1⊗ · · · vanish. Therefore we shall

use ∅ to refer to the empty word.

6.2.1 Some lemmas

The auxiliary results needed are the following.

Lemma 6.2.2. Let Γ be a tensor of some length, and let α, β some single tensor factors. We have

α⊗t � (β ⊗ Γ) =
t∑

j=0
α⊗j ⊗ β ⊗ (α⊗t−j � Γ)

=
∑
i+j=t

α⊗i ⊗ β ⊗ (α⊗j � Γ) .

Proof. This follows by induction using the recursive definition of �. That definition says

(α⊗ Γ)� (β ⊗∆) = α⊗ (Γ� (β ⊗∆)) + β ⊗ ((α⊗ Γ)�∆) ,

where Γ,∆ are tensors of some length, and α, β are length 1 tensor factors.

The lemma is true for t = 0, in which case both sides reduce to β ⊗ Γ, since ∅�∆ = ∆. Now assume

we have the statement for t. Then for t+ 1 we find

α⊗t+1
� (β ⊗ Γ) = α⊗ (α⊗t � (β ⊗ Γ)) + β ⊗ (α⊗t+1

� Γ)

= α⊗
t∑

j=0
α⊗j ⊗ β ⊗ (α⊗t−j � Γ) + β ⊗ (α⊗t+1

� Γ)

=
t∑

j=0
α⊗j+1 ⊗ β ⊗ (α⊗t−j � Γ) + β ⊗ (α⊗t+1

� Γ)

=
t+1∑
j=1

α⊗j ⊗ β ⊗ (α⊗t+1−j
� Γ) + β ⊗ (α⊗t+1

� Γ)︸ ︷︷ ︸
j = 0 term of the sum
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=
t+1∑
j=0

α⊗j ⊗ β ⊗ (α⊗t−j � Γ) .

So by induction the result holds.

Lemma 6.2.3. We have ∑
i+j=N

α⊗i � β⊗j = (αβ)⊗N .

Proof. This certainly holds for N = 0 since both sides reduce to the empty word ∅.

Now consider the case N + 1. We have

(αβ)⊗N+1 = (αβ)⊗ (αβ)⊗N

= ([α] + [β])⊗
N∑
i=0

α⊗i � β⊗N−i

=
N∑
i=0

α⊗ (α⊗i � β⊗N−i) +
N∑
i=0

β ⊗ (α⊗i � β⊗N−i) .

Reindex the first sum to obtain

=
N+1∑
i=1

α⊗ (α⊗i−1
� β⊗N+1−i) +

N∑
i=0

β ⊗ (α⊗i � β⊗N−i)

= α⊗ (α⊗N � ∅) +
N∑
i=1

α⊗ (α⊗i−1
� β⊗N+1−i)

+
N∑
i=1

β ⊗ (α⊗i � β⊗N−i) + β ⊗ (∅� βN )

By the recursive definition of � we have

α⊗i � β⊗N+1−i = α⊗ (α⊗i−1
� β⊗N+1−i) + β ⊗ (α⊗i � β⊗N−i) .

This means we can combine the two summations above as follows, to get

α⊗ (α⊗N � ∅) +
N∑
i=1

α⊗ (α⊗i−1
� β⊗N+1−i)

+
N∑
i=1

β ⊗ (α⊗i � β⊗N−i) + β ⊗ (∅� β⊗N )

= α⊗N+1
� ∅+

N∑
i=1

α⊗i � β⊗N+1−i + ∅� β⊗N+1

=
N+1∑
i=0

α⊗i � β⊗N+1−i

=
∑

i+j=N+1
α⊗i � β⊗j .

We obtain the result for N + 1. So by induction the lemma is proved.
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6.2.2 Symbol of Ia,b(x, y)

We can use the above results to find a convenient expression for the symbol of Ia,b(x, y). We’ll use this

to assemble the symbol of the LHS.

From Theorem 4.9 in Rhodes [Rho12], we have that the symbol of the iterated integral Ia,b(x, y) is

given by the following. Here we use the convention that � has higher precedence than ⊗.

S(Ia,b(x, y)) =
∑

t1+t2=a−1
(−1)t1+b−1

[
(1− 1

y )⊗ y⊗b−1
�

(
(1− y

x )⊗ x⊗t1 � y⊗t2
)]

(6.2.1a)

+
∑

t1+t2=a−1
t3+t4=b−1

(−1)t1+b
(
t2 + t4
t2

)[
(1− 1

x )⊗ x⊗t3 ⊗ (1− x
y )⊗ y⊗t2+t4

� x⊗t1
]

(6.2.1b)

+
∑

t1+t2=a−1
(−1)t1+b+1

(
t2 + b− 1

t2

)[
(1− 1

x )⊗ x⊗t1 �
(

(1− 1
y )⊗ y⊗t2+b−1

)]
(6.2.1c)

Let’s simplify this and put it into a more useful form.

First term of S(Ia,b(x, y)): Let’s look at the first term in the symbol of Ia,b(x, y), Equation 6.2.1a

above. It is ∑
t1+t2=a−1

(−1)t1+b−1
[
(1− 1

y )⊗ y⊗b−1
�

(
(1− y

x )⊗ x⊗t1 � y⊗t2
)]

.

We can combine the (−1)t1 and x⊗t1 to get ( 1
x )⊗t1 . Similarly the (−1)b−1 and y⊗b−1 to get ( 1

y )⊗b−1.

So the term becomes ∑
t1+t2=a−1

(1− 1
y )⊗ ( 1

y )⊗b−1
�

(
(1− y

x )⊗ ( 1
x )⊗t1 � y⊗t2

)
= (1− 1

y )⊗ ( 1
y )⊗b−1

�

(
(1− y

x )⊗
∑

t1+t2=a−1
( 1
x )⊗t1 � y⊗t2

)
.

Then using Lemma 6.2.3 to evaluate the sum of shuffles gives

= (1− 1
y )⊗ ( 1

y )⊗b−1
�

(
(1− y

x )⊗ ( yx )⊗a−1) .
Finally using Lemma 6.2.2, we can write this as

=
b−1∑
i=0

(1− 1
y )⊗ ( 1

y )⊗i ⊗ (1− y
x )⊗

(
( 1
y )⊗b−1−i

� ( yx )⊗a−1
)
.

Second term of S(Ia,b(x, y)): The second term of the symbol of Ia,b(x, y), Equation 6.2.1b, is∑
t1+t2=a−1
t3+t4=b−1

(−1)t1+b
(
t2 + t4
t2

)[
(1− 1

x )⊗ x⊗t3 ⊗ (1− x
y )⊗ y⊗t2+t4

� x⊗t1
]
.

Firstly, combine (−1)t1 and x⊗t1 as before. Now use that

α⊗a � α⊗b =
(
a+ b

a

)
α⊗a+b ,
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to combine the binomial coefficient with y⊗t2+t4 and get

=
∑

t1+t2=a−1
t3+t4=b−1

(−1)b
[
(1− 1

x )⊗ x⊗t3 ⊗ (1− x
y )⊗

(
y⊗t4 � y⊗t2 � ( 1

x )⊗t1
)]

.

Since t3 + t4 = b− 1, we can combine (−1)b−1 with x⊗t3 and y⊗t4 to get

= −
∑

t1+t2=a−1
t3+t4=b−1

(1− 1
x )⊗ ( 1

x )⊗t3 ⊗ (1− x
y )⊗

(
( 1
y )⊗t4 � y⊗t2 � ( 1

x )⊗t1
)
.

Since � is associative, we can bracket off y⊗t2 � ( 1
x )⊗t1 and evaluate the sum over t1 + t2 = a − 1

using Lemma 6.2.3. We get

= −
∑

t3+t4=b−1
(1− 1

x )⊗ ( 1
x )⊗t3 ⊗ (1− x

y )⊗
(

( 1
y )⊗t4 � ( yx )⊗a−1

)

= −
b−1∑
i=0

(1− 1
x )⊗ ( 1

x )⊗i ⊗ (1− x
y )⊗

(
( 1
y )⊗b−1−i

� ( yx )⊗a−1
)

Third term of S(Ia,b(x, y)): The third term of the symbol of Ia,b(x, y), Equation 6.2.1c, is∑
t1+t2=a−1

(−1)t1+b+1
(
t2 + b− 1

t2

)[
(1− 1

x )⊗ x⊗t1 �
(

(1− 1
y )⊗ y⊗t2+b−1

)]
.

Combine the binomial coefficient with y⊗t2+b−1, take (−1)t1 into x⊗t1 , and (−1)b−1 into y⊗b−1 to get

=
∑

t1+t2=a−1
(1− 1

x )⊗ ( 1
x )⊗t1 �

(
(1− 1

y )⊗
(
y⊗t2 � ( 1

y )⊗b−1
))

Use Lemma 6.2.2 on the outer shuffle product, and we get

=
a−1∑
t1=0

t1∑
i=0

(1− 1
x )⊗ ( 1

x )⊗j ⊗ (1− 1
y )⊗

(
( 1
x )⊗t1−i � y⊗a−1−t1

� ( 1
y )⊗b−1

)
.

Now interchange the order of summation, and reindex the sum over t1 to start at t1 = 0. This gives

=
a−1∑
i=0

a−1∑
t1=i

(1− 1
x )⊗ ( 1

x )⊗i ⊗ (1− 1
y )⊗

(
( 1
x )⊗t1−i � y⊗a−1−t1

� ( 1
y )⊗b−1

)

=
a−1∑
i=0

a−1−i∑
t1=0

(1− 1
x )⊗ ( 1

x )⊗i ⊗ (1− 1
y )⊗

(
( 1
x )⊗t1 � y⊗a−1−i−t1

� ( 1
y )⊗b−1

)
.

Finally, deal with the sum over t1 using Lemma 6.2.3, and we get

=
a−1∑
i=0

(1− 1
x )⊗ ( 1

x )⊗i ⊗ (1− 1
y )⊗

(
( yx )⊗a−1−i

� ( 1
y )⊗b−1

)
=
a−1∑
i=0

(1− 1
x )⊗ ( 1

x )⊗i ⊗ (1− 1
y )⊗

(
( 1
y )⊗b−1

� ( yx )⊗a−1−i
)
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Conclusion: Combining these pieces shows that the symbol of Ia,b(x, y) may be expressed as the

following.

S(Ia,b(x, y)) =
b−1∑
i=0

(1− 1
y )⊗ ( 1

y )⊗i ⊗ (1− y
x )⊗

(
( 1
y )⊗b−1−i

� ( yx )⊗a−1
)

−
b−1∑
i=0

(1− 1
x )⊗ ( 1

x )⊗i ⊗ (1− x
y )⊗

(
( 1
y )⊗b−1−i

� ( yx )⊗a−1
)

+
a−1∑
i=0

(1− 1
x )⊗ ( 1

x )⊗i ⊗ (1− 1
y )⊗

(
( 1
y )⊗b−1

� ( yx )⊗a−1−i
)

6.2.3 Symbol of LHS

Now use the above expression for S(Ia,b(x, y)) to compute S(−(−1)a+bIa,b( 1
x ,

1
y )). When we write

down the symbol of −(−1)a+bIa,b( 1
x ,

1
y ), we can immediately re-invert the terms ( yx ), ( 1

x ), ( 1
y ) using

(−1)a−1 and (−1)b−1. This gives

S(−(−1)a+bIa,b( 1
x ,

1
y )) =−

b−1∑
i=0

(1− y)⊗ ( 1
y )⊗i ⊗ (1− x

y )⊗
(

( 1
y )⊗b−1−i

� ( yx )⊗a−1
)

+

+
b−1∑
i=0

(1− x)⊗ ( 1
x )⊗i ⊗ (1− y

x )⊗
(

( 1
y )⊗b−1−i

� ( yx )⊗a−1
)

+

−
a−1∑
i=0

(1− x)⊗ ( 1
x )⊗i ⊗ (1− y)⊗

(
( 1
y )⊗b−1

� ( yx )⊗a−1−i
)
.

The sum of these two expressions gives the symbol of the LHS

S(Equation 6.1.1 LHS) =
b−1∑
i=0

(1− 1
y )⊗ ( 1

y )⊗i ⊗ (1− y
x )⊗

(
( 1
y )⊗b−1−i

� ( yx )⊗a−1
)

+ (6.2.2a)

−
b−1∑
i=0

(1− 1
x )⊗ ( 1

x )⊗i ⊗ (1− x
y )⊗

(
( 1
y )⊗b−1−i

� ( yx )⊗a−1
)

+ (6.2.2b)

+
a−1∑
i=0

(1− 1
x )⊗ ( 1

x )⊗i ⊗ (1− 1
y )⊗

(
( 1
y )⊗b−1

� ( yx )⊗a−1−i
)

+ (6.2.2c)

−
b−1∑
i=0

(1− y)⊗ ( 1
y )⊗i ⊗ (1− x

y )⊗
(

( 1
y )⊗b−1−i

� ( yx )⊗a−1
)

+ (6.2.2d)

+
b−1∑
i=0

(1− x)⊗ ( 1
x )⊗i ⊗ (1− y

x )⊗
(

( 1
y )⊗b−1−i

� ( yx )⊗a−1
)

+ (6.2.2e)

−
a−1∑
i=0

(1− x)⊗ ( 1
x )⊗i ⊗ (1− y)⊗

(
( 1
y )⊗b−1

� ( yx )⊗a−1−i
)
. (6.2.2f)

6.2.4 Towards the symbol of RHS

For ease of reference, I will reproduce here the RHS of the purported identity. It reads

(−1)b
a∑
i=0

(
b−1+i
i

)
(l̃og( 1

x ))a−i l̃og(y)b+i + (6.2.3a)
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+ (−1)b
a∑
i=0

(
b−1+i
I

)
(l̃og( 1

x ))a−i Lib+i(y) + (6.2.3b)

− (−1)a
b∑
i=0

(
a−1+i

(
)

l̃og( 1
x ))b−i Lia+i(xy ) + (6.2.3c)

+ (−1)a+b Lia(xy ) l̃og
b
(y) + (6.2.3d)

+ (−1)a+b Lia+b(x) . (6.2.3e)

Let’s write down the symbol of each term. Firstly, notice that

S(l̃og(x)n) = 1
n!x

�n = 1
n!n!x⊗n = x⊗n .

The notation l̃og(x)n was introduced precisely for this reason.

When n = 0, we get the expected results: x⊗0 = ∅, the empty tensor.

First and second term, Equation 6.2.3a and Equation 6.2.3b: We have

S

(
(−1)b

a∑
i=0

(
b−1+i
i

)
(l̃og( 1

x ))a−i l̃og(y)b+i + (−1)b
a∑
i=0

(
b−1+i
i

)
(l̃og( 1

x ))a−i Lib+i(y)
)

= (−1)b
a∑
i=0

(
b−1+i
i

)
( 1
x )⊗a−i � y⊗b+i − (−1)b

∑a
i=0
(
b−1+i
i

)
( 1
x )⊗a−i �

(
(1− y)⊗ y⊗b−1+i)

= (−1)b
a∑
i=0

(
b−1+i
i

)
( 1
x )⊗a−i �

(
y

1−y ⊗ y
⊗b−1+i

)
.

Then we can write
(
b−1+i
i

)
y⊗b+i−1 as y⊗b−1

� y⊗i, and use the (−1)b to get

=
a∑
i=0

( 1
x )⊗a−i �

(
1−y
y ⊗

(
( 1
y )⊗b−1

� y⊗i
))

.

Sum over the reversed range to get

=
a∑
i=0

( 1
x )⊗i �

(
1−y
y ⊗

(
( 1
y )⊗b−1

� y⊗a−i
))

,

and now apply Lemma 6.2.2 which gives

=
a∑
i=0

i∑
j=0

( 1
x )⊗j ⊗ 1−y

y ⊗
(

( 1
x )⊗i−j � ( 1

y )⊗b−1
� y⊗a−i

)
.

Interchange the order of summation to get

=
a∑
j=0

a∑
i=j

( 1
x )⊗j ⊗ 1−y

y ⊗
(

( 1
x )⊗i−j � ( 1

y )⊗b−1
� y⊗a−i

)
.

Finally, use Lemma 6.2.3 to evaluate the inner sum (reindexing to start at i = 0), it is

=
a∑
j=0

( 1
x )⊗j ⊗ 1−y

y ⊗
(

( yx )⊗a−j � ( 1
y )⊗b−1

)
=

a∑
i=0

( 1
x )⊗i ⊗ 1−y

y ⊗
(

( 1
y )⊗b−1

� ( yx )⊗a−i
)
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=
a∑
i=0

( 1
x )⊗i ⊗ (1− 1

y )⊗
(

( 1
y )⊗b−1

� ( yx )⊗a−i
)
.

Third term, Equation 6.2.3c: For the third term we have

S

(
−(−1)a

b∑
i=0

(
a− 1 + i

i

)
(l̃og( 1

x ))b−i Lia+i(xy )
)

= (−1)a
b∑
i=0

(
a−1+i
i

)
( 1
x )⊗b−i �

(
(1− x

y )⊗ (xy )⊗a−1+i
)
.

Combine
(
a−1+i
i

)
with (xy )⊗a−1+i, and use the (−1)a−1 to get

= −
b∑
i=0

( 1
x )⊗b−i �

(
(1− x

y )⊗
(

( yx )⊗a−1
� (xy )⊗i

))
= −

b∑
i=0

( 1
x )⊗i �

(
(1− x

y )⊗
(

( yx )⊗a−1
� (xy )⊗b−i

))
.

Apply Lemma 6.2.2, then reverse the order of summation to get

= −
b∑
i=0

i∑
j=0

( 1
x )⊗j ⊗ (1− x

y )⊗
(

( 1
x )⊗i−j � ( yx )⊗a−1

� (xy )⊗b−i
)

= −
b∑
j=0

b∑
i=j

( 1
x )⊗j ⊗ (1− x

y )⊗
(

( 1
x )⊗i−j � ( yx )⊗a−1

� (xy )⊗b−i
)
.

Use Lemma 6.2.3 to evaluate the inner sum giving

= −
b∑
j=0

( 1
x )⊗j ⊗ (1− x

y )⊗
(

( 1
y )⊗b−j � ( yx )⊗a−1

)

= −
b∑
i=0

( 1
x )⊗i ⊗ (1− x

y )⊗
(

( 1
y )⊗b−i � ( yx )⊗a−1

)
.

Fourth term, Equation 6.2.3d: For the fourth term we get

S((−1)a+b Lia(xy ) l̃og
b
(y)) = −(−1)a+b

(
(1− x

y )⊗ (xy )⊗a−1
)
� y⊗b .

Use the −(−1)a+b = (−1)a−1+b to get

=
(

(1− x
y )⊗ ( yx )⊗a−1

)
� ( 1

y )⊗b

= ( 1
y )⊗b �

(
(1− x

y )⊗ ( yx )⊗a−1
)
,

since � is commutative. Now apply Lemma 6.2.2 to write this as

=
b∑
i=0

( 1
y )⊗i ⊗ (1− x

y )⊗
(

( 1
y )⊗b−i � ( yx )⊗a−1

)
.

Fifth term, Equation 6.2.3e: The fifth term is

S((−1)a+b Lia+b(x))



6.2. Proof of the identity 200

= −(−1)a+b(1− x)⊗ x⊗a+b−1

= (1− x)⊗ ( 1
x )⊗a+b−1 ,

after making use of −(−1)a+b = (−1)a+b−1.

6.2.5 Symbol of RHS

Summing up all the terms found above, we can write down the symbol of the right hand side as

S(Equation 6.1.1 RHS) =
a∑
i=0

( 1
x )⊗i ⊗ (1− 1

y )⊗
(

( 1
y )⊗b−1

� ( yx )⊗a−i
)

+ (6.2.4a)

−
b∑
i=0

( 1
x )⊗i ⊗ (1− x

y )⊗
(

( 1
y )⊗b−i � ( yx )⊗a−1

)
+ (6.2.4b)

+
b∑
i=0

( 1
y )⊗i ⊗ (1− x

y )⊗
(

( 1
y )⊗b−i � ( yx )⊗a−1

)
+ (6.2.4c)

+ (1− x)⊗ ( 1
x )⊗a+b−1 . (6.2.4d)

6.2.6 Comparing both sides

We will prove that both sides agree by comparing the terms which start with the same given tensor.

On the LHS we can only get terms which start with 1− y, y, 1− x or x. On the RHS we can get terms

which start with 1− y, y, 1− x, x, or x− y. Let’s deal with each in turn.

6.2.6.1 Factors beginning (1− y)⊗

On the left hand side we get a contribution from Equation 6.2.2a and Equation 6.2.2d. It equals

b−1∑
i=0

(1− y)⊗ ( 1
y )⊗i ⊗ (1− y

x )⊗
(

( 1
y )⊗b−1−i

� ( yx )⊗a−1
)

+

−
b−1∑
i=0

(1− y)⊗ ( 1
y )⊗i ⊗ (1− x

y )⊗
(

( 1
y )⊗b−1−i

� ( yx )⊗a−1
)
.

By using the following result in one component of the tensor

⊗ (1− y
x )⊗ − ⊗ (1− x

y )⊗ = ⊗ (x−yx )⊗ − ⊗ (x−yy )⊗

= ⊗ (x−yx
y

x−y )⊗

= ⊗ ( yx )⊗ ,

this simplifies to

=
b−1∑
i=0

(1− y)⊗ ( 1
y )⊗i ⊗ ( yx )⊗

(
( 1
y )⊗b−1−i

� ( yx )⊗a−1
)
.
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On the right hand side we only get a partial contribution from the i = 0 term of Equation 6.2.4a. This

is

(1− y)⊗
(

( 1
y )⊗b−1

� ( yx )⊗a
)

By writing ( yx )⊗a = ( yx )⊗ ( yx )⊗a−1, and using Lemma 6.2.2, this is

=
b−1∑
i=0

(1− y)⊗ ( 1
y )⊗i ⊗ ( yx )⊗

(
( 1
y )⊗b−1−i

� ( yx )⊗a−1
)

which agrees exactly with the left hand contribution above.

6.2.6.2 Factors beginning y⊗

The left hand contribution comes from Equation 6.2.2a, as

b−1∑
i=0

( 1
y )⊗ ( 1

y )⊗i ⊗ (1− y
x )⊗

(
( 1
y )⊗b−1−i

� ( yx )⊗a−1
)
.

On the right hand side, we get a partial contribution from the i = 0 term of Equation 6.2.4a, and the

i = 0 term of Equation 6.2.4b. We get a partial contribution from the i = 0 term of Equation 6.2.4c,

and full contributions from the i ≥ 1 terms of this. Overall this gives

( 1
y )⊗

(
( 1
y )⊗b−1

� ( yx )⊗a
)

+

− ( 1
y )⊗

(
( 1
y )⊗b � ( yx )⊗a−1

)
+

+ ( 1
y )⊗

(
( 1
y )⊗b � ( yx )⊗a−1

)
+

+
b∑
i=1

( 1
y )⊗i ⊗ (1− x

y )⊗
(

( 1
y )⊗b−i � ( yx )⊗a−1

)
.

The middle two terms cancel completely to leave

= ( 1
y )⊗

(
( 1
y )⊗b−1

� ( yx )⊗a
)

+

+
b∑
i=1

( 1
y )⊗i ⊗ (1− x

y )⊗
(

( 1
y )⊗b−i � ( yx )⊗a−1

)
.

Let’s take the left hand contribution, and reindex the sum to run from i = 1 to b, to get

=
b∑
i=1

( 1
y )⊗i ⊗ (1− y

x )⊗
(

( 1
y )⊗b−i � ( yx )⊗a−1

)
.

Now write

(1− y
x )⊗ = (x−yx )⊗ = (x−yy

y
x )⊗ = (1− x

y )⊗+( yx )⊗ ,



6.2. Proof of the identity 202

and use this to split the sum up into

=
b∑
i=1

( 1
y )⊗i ⊗ (1− x

y )⊗
(

( 1
y )⊗b−i � ( yx )⊗a−1

)
+

+
b∑
i=1

( 1
y )⊗i ⊗ ( yx )⊗

(
( 1
y )⊗b−i � ( yx )⊗a−1

)
.

Using Lemma 6.2.2, and accounting for the missing i = 0 term, we can evaluate the second summation

as

( 1
y )⊗b �

(
( yx )⊗ ( yx )⊗a−1)− ( yx )⊗

(
( 1
y )⊗b � ( yx )⊗a−1

)
.

Using the iterative definition of the shuffle product, we can see this difference is just

= ( 1
y )⊗

(
( 1
y )⊗b−1

� ( yx )⊗a
)
.

Thus the total contribution from the left hand side is equal to

=
b∑
i=1

( 1
y )⊗i ⊗ (1− x

y )⊗
(

( 1
y )⊗b−i � ( yx )⊗a−1

)
+

+ ( 1
y )⊗

(
( 1
y )⊗b−1

� ( yx )⊗a
)
.

This is exactly the right hand contribution above.

6.2.6.3 Factors beginning (x− y)⊗

On the left hand side there are no terms which begin with (x− y).

On the right hand side, we get a partial contribution from the i = 0 term of Equation 6.2.4b and the

i = 0 term of Equation 6.2.4c. This contribution is

− (x− y)⊗
(

( 1
y )⊗b � ( yx )⊗a−1

)
+

+ (x− y)⊗
(

( 1
y )⊗b � ( yx )⊗a−1

)
= 0 .

6.2.6.4 Factors beginning x⊗

On the left hand side there is a partial contribution from Equation 6.2.2b and Equation 6.2.2b. We get

−
b−1∑
i=0

( 1
x )⊗ ( 1

x )⊗i ⊗ (1− x
y )⊗

(
( 1
y )⊗b−1−i

� ( yx )⊗a−1
)

+

+
a−1∑
i=0

( 1
x )⊗ ( 1

x )⊗i ⊗ (1− 1
y )⊗

(
( 1
y )⊗b−1

� ( yx )⊗a−1−i
)

Whereas on the right hand side, there is a contribution from the i ≥ 1 terms of Equation 6.2.4a, and



6.2. Proof of the identity 203

the i ≥ 1 terms of Equation 6.2.4b. We get
a∑
i=1

( 1
x )⊗i ⊗ (1− 1

y )⊗
(

( 1
y )⊗b−1

� ( yx )⊗a−i
)

+

−
b∑
i=1

( 1
x )⊗i ⊗ (1− x

y )⊗
(

( 1
y )⊗b−i � ( yx )⊗a−1

)
.

These are equal by substituting i = j + 1 into the right hand contribution.

6.2.6.5 Factors beginning (1− x)⊗

On the right hand side, the contribution is only from Equation 6.2.4d, and is

(1− x)⊗ ( 1
x )⊗a+b−1

On the left hand side we get partial contributions from Equation 6.2.2b and Equation 6.2.2c, and full

contributions from Equation 6.2.2e and Equation 6.2.2f. Altogether we get

−
b−1∑
i=0

(1− x)⊗ ( 1
x )⊗i ⊗ (1− x

y )⊗
(

( 1
y )⊗b−1−i

� ( yx )⊗a−1
)

+

+
a−1∑
i=0

(1− x)⊗ ( 1
x )⊗i ⊗ (1− 1

y )⊗
(

( 1
y )⊗b−1

� ( yx )⊗a−1−i
)

+

+
b−1∑
i=0

(1− x)⊗ ( 1
x )⊗i ⊗ (1− y

x )⊗
(

( 1
y )⊗b−1−i

� ( yx )⊗a−1
)

+

−
a−1∑
i=0

(1− x)⊗ ( 1
x )⊗i ⊗ (1− y)⊗

(
( 1
y )⊗b−1

� ( yx )⊗a−1−i
)
.

Using

− (1− x
y )⊗+(1− y

x )⊗ = −(x−yy )⊗+(x−yx )⊗ = ( y
x−y

x−y
x )⊗ = ( yx )⊗ and

(1− 1
y )⊗−(1− y)⊗ = ( 1−y

y )⊗−(1− y)⊗ = ( 1
y )⊗ ,

we can combine the two length a sums, and the two length b sums, and pull out the tensor (1− x) to

get

= (1− x)⊗
(
b−1∑
i=0

( 1
x )⊗i ⊗ ( yx )⊗

(
( 1
y )⊗b−1−i

� ( yx )⊗a−1
)

+

+
a−1∑
i=0

( 1
x )⊗i ⊗ ( 1

y )⊗
(

( 1
y )⊗b−1

� ( yx )⊗a−1−i
))

.

We will make use of the following proposition to evaluate the left hand contribution.

Proposition 6.2.4. We have

(αβ)⊗a+b+1 =
b∑
i=0

(αβ)⊗i ⊗ β ⊗
(
α⊗b−i � β⊗a

)
+
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+
a∑
i=0

(αβ)⊗i ⊗ α⊗
(
α⊗b � β⊗a−i

)
If we put α = 1

y and β = y
x , and replace a with a− 1 and b with b− 1, we get our desired sum. So the

proposition tells us the left hand contribution evaluates to

(1− x)⊗ ( 1
y
y
x )a−1+b−1+1 = (1− x)⊗ ( 1

x )⊗a+b−1 .

This is exactly the right hand contribution.

6.2.7 End of proof

We’ve now been through all possible starting tensor factors for the left and right hand sides, and shown

the left and right hand sides agree in each case. Thus we conclude the left hand side and right hand

side are equal, unconditionally. Hence the identity in Theorem 6.1.2 holds exactly on the level of the

symbol, as claimed.

6.2.8 Proof of the proposition

Before the proof of Theorem 6.1.2 is really complete, we need to prove the proposition we introduced

above. It reads

Proposition 6.2.4. We have

(αβ)⊗a+b+1 =
b∑
i=0

(αβ)⊗i ⊗ β ⊗
(
α⊗b−i � β⊗a

)
+

+
a∑
i=0

(αβ)⊗i ⊗ α⊗
(
α⊗b � β⊗a−i

)
Proof. We will prove this by induction. For a = 0, b = 0, we get

(αβ)⊗0 ⊗ β ⊗ (α⊗0
� β⊗0) + (αβ)⊗0 ⊗ α⊗ (α⊗0

� β⊗0)

= (α)⊗+(β)⊗

= (αβ)⊗

= (αβ)⊗0+0+1 .

So the case a = 0, b = 0 holds.

Now fix a = 0, and we’ll induct along b to get the identity for a = 0 and all b. Assume the identity

holds for (a, b) = (0, b), then for (0, b+ 1), we find

b+1∑
i=0

(αβ)⊗i ⊗ β ⊗
(
α⊗b+1−i

� β⊗0)+ (αβ)⊗0 ⊗ α⊗
(
α⊗b+1

� β⊗0)
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=
b+1∑
i=0

(αβ)⊗i ⊗ β ⊗
(
α⊗b+1−i

� ∅
)

+ α⊗
(
α⊗b+1

� ∅
)

=
b+1∑
i=1

(αβ)⊗i ⊗ β ⊗
(
α⊗b+1−i

� ∅
)

+ ∅ ⊗ β ⊗
(
α⊗b+1−0

� ∅
)

+ α⊗
(
α⊗b+1

� ∅
)

=
b+1∑
i=1

(αβ)⊗i ⊗ β ⊗
(
α⊗b+1−i

� ∅
)

+ (αβ)⊗
(
α⊗b+1

� ∅
)
.

Reindex the sum to run from i = 0, and we get

=
b∑
i=0

(αβ)⊗i+1 ⊗ β ⊗
(
α⊗b−i � β⊗0)+ (αβ)⊗

(
α⊗b+1

� ∅
)

= (αβ)⊗
(

b∑
i=0

(αβ)⊗i ⊗ β ⊗
(
α⊗b−i � β⊗0)+

(
α⊗b+1

� ∅
))

= (αβ)⊗
(

b∑
i=0

(αβ)⊗i ⊗ β ⊗
(
α⊗b−i � β⊗0)+ α⊗

(
α⊗b � ∅

))
.

Now the expression in brackets is just the result for (a, b) = (0, b). Using the induction hypothesis, we

can evaluate this as

= (αβ)⊗ (αβ)⊗a+b+1

= (αβ)⊗a+(b+1)+1 .

Thus the identity holds for a = 0 and for all b.

Now fix b and assume we have the identity for (a, b). We’ll induct along a to get the identity for

(a+ 1, b). Since we have the base case (0, b) for any fixed b, we’ll get the identity for all (a, b) and the

proposition will have been proved.

We need one lemma before completing this step

Lemma 6.2.5. We have
b∑
i=0

(αβ)⊗i ⊗ β ⊗
(
α⊗b−i � β⊗a+1)+ α⊗

(
α⊗b � β⊗a+1)

= (αβ)⊗
b∑
i=0

(αβ)⊗i ⊗ β ⊗
(
α⊗b−i � β⊗a

)
.

Proof. For b = 0 we get

0∑
i=0

(αβ)⊗i ⊗ β ⊗
(
α⊗0−i

� β⊗a+1)+ α⊗
(
α⊗0

� β⊗a+1)
= β ⊗

(
∅� β⊗a+1)+ α⊗

(
∅� β⊗a+1)

= (αβ)⊗ β ⊗ β⊗a

= (αβ)⊗
0∑
i=0

(αβ)⊗i ⊗ β ⊗
(
α⊗0−i

� β⊗a
)
,

so the base case holds.
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Now assume it’s true for b. Then for b+ 1 we get

b+1∑
i=0

(αβ)⊗i ⊗ β ⊗
(
α⊗b+1−i

� β⊗a+1)+ α⊗
(
α⊗b+1

� β⊗a+1)
=

b+1∑
i=1

(αβ)⊗i ⊗ β ⊗
(
α⊗b+1−i

� β⊗a+1)+

+ β ⊗
(
α⊗b+1

� β⊗a+1)+ α⊗
(
α⊗b+1

� β⊗a+1) .
Reindex the sum to start from i = 0, and combine the other two terms in the equation, giving

= (αβ)⊗
b∑
i=0

(αβ)⊗i ⊗ β ⊗
(
α⊗b−i � β⊗a+1)+ (αβ)⊗

(
α⊗b+1

� β⊗a+1)
= (αβ)⊗

(
b∑
i=0

(αβ)⊗i ⊗ β ⊗
(
α⊗b−i � β⊗a+1)+

(
α⊗b+1

� β⊗a+1))

= (αβ)⊗
(

b∑
i=0

(αβ)⊗i ⊗ β ⊗
(
α⊗b−i � β⊗a+1)+ α⊗

(
α⊗b � β⊗a+1)+

+ β ⊗
(
α⊗b+1

� β⊗a
))

.

Now apply the induction hypothesis to the first two terms of the bracket, and get

= (αβ)⊗
(

(αβ)⊗
b∑
i=0

(αβ)⊗i ⊗ β ⊗
(
α⊗b−i � β⊗a

)
+ β ⊗

(
α⊗b+1

� β⊗a
))

.

Bring the tensor (αβ) into the sum and reindex it to start from i = 1. Then observe the remaining

term is the i = 0 term of the new sum, so we get

= (αβ)⊗
(
b+1∑
i=1

(αβ)⊗i ⊗ β ⊗
(
α⊗b+1−i

� β⊗a
)

+ β ⊗
(
α⊗b+1

� β⊗a
))

= (αβ)⊗
(
b+1∑
i=0

(αβ)⊗i ⊗ β ⊗
(
α⊗b+1−i

� β⊗a
))

.

This proves the lemma.

We’re now in a position to finish the proof of the proposition. Assume the identity holds for (a, b).

Then for (a+ 1, b) we have

b∑
i=0

(αβ)⊗i ⊗ β ⊗
(
α⊗b−i � β⊗a+1)+

a+1∑
i=0

(αβ)⊗i ⊗ α⊗
(
α⊗b � β⊗a+1−i) .

Pull out the i = 0 term of the length a sum, and reindex the rest of the that sum to start at i = 0,

giving

=
b∑
i=0

(αβ)⊗i ⊗ β ⊗
(
α⊗b−i � β⊗a+1)+ α⊗

(
α⊗b � β⊗a+1)+

+ (αβ)⊗
a∑
i=0

(αβ)⊗i ⊗ α⊗
(
α⊗b � β⊗a−i

)
.
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The previous lemma tells us how we can combine the first two terms, so we find

= (αβ)⊗
b∑
i=0

(αβ)⊗i ⊗ β ⊗
(
α⊗b−i � β⊗a

)
+ (αβ)⊗

a∑
i=0

(αβ)⊗i ⊗ α⊗
(
α⊗b � β⊗a−i

)
= (αβ)⊗

(
b∑
i=0

(αβ)⊗i ⊗ β ⊗
(
α⊗b−i � β⊗a

)
+

a∑
i=0

(αβ)⊗i ⊗ α⊗
(
α⊗b � β⊗a−i

))
.

The induction hypothesis lets us evaluate this to get

= (αβ)⊗ (αβ)⊗a+b+1

= (αβ)⊗(a+1)+b+1 .

This completes the proof of the proposition.

6.3 Numerically testable version

The result in Theorem 6.1.2 establishes a symbol-level identity relating Ia,b(x, y) and Ia,b( 1
x ,

1
y ),

including all the leading order polylog terms, and the product terms. Unfortunately for numerical

checks this is still not enough, since the symbol does not see terms of the form constant× lower weight.

Using Brown’s setup of the Ihara coaction, successive slices of the MPL coproduct can be calculated.

These slices allow one to determine corrections to the identity, adding terms with higher and higher

weight constant factors, until one arrives at a genuine numerically testable identity.

In what follows we mimic Duhr’s approach from the weight 4 case [Gan16], to arrive at such numerically

testable identities at weight 5 for I4,1(x, y), and weight 6 for I5,1(x, y). From there we will extrapolate

what a general identity for In,1(x, y) should look like.

6.3.1 Symbol-level identity for a = n, b = 1

Firstly, we want to give a slightly different formulation of the identity when a = n, and b = 1. If we

set a = n, b = 1 in Theorem 6.1.2, we obtain, after some obvious simplification

In,1(x, y) + (−1)nIn,1( 1
x ,

1
y ) S= (6.3.1a)

−
n∑
i=0

(l̃og( 1
x ))n−i l̃og(y)1+i + (6.3.1b)

−
n∑
i=0

(l̃og( 1
x ))n−i Li1+i(y) + (6.3.1c)

− (−1)n
1∑
i=0

(
n−1+i

i

)
(l̃og( 1

x ))1−i Lin+i(xy ) + (6.3.1d)

− (−1)n Lin(xy ) l̃og
1
(y)− (−1)n Lin+1(x) . (6.3.1e)
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Now consider Equation 6.3.1b. We can rewrite this as follows, to say

−
n∑
i=0

(l̃og( 1
x ))n−i l̃og(y)1+i = −

n∑
i=0

1
(n− i)!(i+ 1)! (log( 1

x ))n−i log(y)1+i

= − 1
(n+ 1)!

n∑
i=0

(n+1)!
(n−i)!(i+1)! (log( 1

x ))n−i log(y)1+i

= − 1
(n+1)!

(
− log( 1

x )n+1 +
n∑

i=−1

(n+1)!
(n−i)!(i+1)! (log( 1

x ))n−i log(y)1+i

)
.

Substitute j = i + 1 into the sum. Then we can recognise the result as a binomial expansion, and

obtain

= − 1
(n+ 1)!

− log( 1
x )n+1 +

n+1∑
j=0

(n+1)!
(n+1−j)!j! (log( 1

x ))n+1−j log(y)j


= − 1
(n+ 1)!

(
− log( 1

x )n+1 + (log( 1
x ) + log(y))n+1)

= − 1
(n+ 1)!

(
− log( 1

x )n+1 + log( yx )n+1) .
Finally a factor of −(−1)n = (−1)n+1 can be pulled out using log( 1

x ) = − log(x). So the overall result

is

= (−1)n 1
(n+ 1)! (log(xy )n+1 − log(x)n+1) .

For Equation 6.3.1c, we have

−
n∑
i=0

(l̃og( 1
x ))n−i Li1+i(y) =

n∑
i=0

1
(n−i)! (− log(x))n−i Li1+i(y)

Now set j = n− i, so the sum runs from j = 0 to j = n, but the terms appear in the reverse order.

We get

= −
n∑
j=0

1
j! (− log(x))j Lin+1−j(y) .

The sum in Equation 6.3.1d contains simply the following two terms

−(−1)n(log( 1
x ) Lin(xy ) + nLin+1(xy )) .

And Equation 6.3.1e is just

−(−1)n Lin(xy ) log(y)− (−1)n Lin+1(x) .

We can combine the first terms of the previous two lines to get overall

−(−1)n(−Lin(xy ) log(xy ) + nLin+1(xy ) + Lin+1(x)) .

If we plug these simplifications back into Equation 6.3.1, and take everything over to the left hand side

we obtain

In,1(x, y) + (−1)nIn,1( 1
x ,

1
y ) + (6.3.2a)



6.3. Numerically testable version 209

+ (−1)n(−Lin(xy ) log(xy ) + nLin+1(xy ) + Lin+1(x)) + (6.3.2b)

+
n∑
j=0

1
j! (− log(x))j Lin+1−j(y)− (−1)n 1

(n+ 1)! (log(xy )n+1 − log(x)n+1) S= 0 . (6.3.2c)

6.3.2 Weight 5 full identity for I4,1(x, y) + I4,1( 1
x
, 1

y
)

In the process of computing the coproduct corrections, we need to make simplifications to the resulting

symbols. These simplifications come in the form of lower-weight versions of this numerically testable

identity.

Firstly, from Equation 6.3.2, setting n = 4, we already have the following ‘top-level’ slice of what will

become a numerically testable identity.

I4,1(x, y) + I4,1( 1
x ,

1
y ) + (−Li4(xy ) log(xy ) + 4 Li5(xy ) + Li5(x)) +

+
4∑
j=0

1
j! (− log(x))j Li5−j(y)− 1

5! (log(xy )5 − log(x)5) S= 0

Now compute −∆11111 (so the result is the correction we need to add), expand out the logarithms,

simplify and convert to symbols. The slice ∆11111 of the coproduct can be computed in Mathematica

using the Delta11111 command from Duhr’s PolylogTools package [PT], other slices ∆k11···1 can be

computed with the command Deltak1...1.

For −∆11111, we get

−∆11111 =

iπ ⊗
(
− (x⊗ x⊗ x⊗ x) + x⊗ x⊗ x⊗ (1− y) + x⊗ x⊗ (1− y)⊗ x− x⊗ x⊗ (1− y)⊗ y +

+ x⊗ (1− y)⊗ x⊗ x− x⊗ (1− y)⊗ x⊗ y − x⊗ (1− y)⊗ y ⊗ x+ x⊗ (1− y)⊗ y ⊗ y +

+ (1− y)⊗ x⊗ x⊗ x− (1− y)⊗ x⊗ x⊗ y − (1− y)⊗ x⊗ y ⊗ x+ (1− y)⊗ x⊗ y ⊗ y +

− (1− y)⊗ y ⊗ x⊗ x+ (1− y)⊗ y ⊗ x⊗ y + (1− y)⊗ y ⊗ y ⊗ x− (1− y)⊗ y ⊗ y ⊗ y
)
.

This can then be integrated to

iπ(−( 1
4! log4(x) + 1

3! Li1(y) log3(x)− 1
2! Li2(y) log2(x) + 1

1! Li3(y) log(x)− 1
0! Li4(y)))

= iπ
(
− 1

4! log4(x) +
3∑
i=0

1
i! (− log(x))i Li4−i(y)

)
.

Now add this correction to the identity, and compute −∆2111. After simplifying −∆2111 with the

weight 2 version of the identity, and the dilogarithm inversion formula, then converting to symbols we

get

−∆2111 =π2

6 ⊗
(
− 4x⊗ x⊗ x+ 2x⊗ x⊗ (1− y) + 2x⊗ x⊗ y + 2x⊗ (1− y)⊗ x+

− 2x⊗ (1− y)⊗ y + 2x⊗ y ⊗ x− 2x⊗ y ⊗ y + 2(1− y)⊗ x⊗ x+
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− 2(1− y)⊗ x⊗ y − 2(1− y)⊗ y ⊗ x+ 2(1− y)⊗ y ⊗ y + 2y ⊗ x⊗ x+

− 2y ⊗ x⊗ y − 2y ⊗ y ⊗ x+ 2y ⊗ y ⊗ y
)
,

which integrates to

−2π2

6

(
1
3! (log3(xy ) + log3 x) +

2∑
i=0

1
i! (− log(x))i Li3−i(y))

)
.

Add in this correction, and compute −∆311. It turns out there is no contribution here. So on to −∆41,

and we find it is

−∆41 = π4

90 ⊗ (−8[x] + 2[1− y] + 6[y]) ,

which integrates to

−2π4

90 ( 1
1! (3 log(xy ) + log(x)) +

1∑
i=0

1
i! (− log(x))i Li1−i(y)) .

The last step is to compute the weight 5 pure constant term. In this case the term appears to be 0,

numerically.

Combining all of these corrections gives us the following claim.

Claim 6.3.1. The following identity is a numerically testable functional equation for I4,1, at weight 5,

in two variables.

I4,1(x, y) + I4,1( 1
x ,

1
y ) +

+ (Li5(x) + 4 Li5(xy )− log(xy ) Li4(xy )) +

1
5! (− log5(xy ) + log5(x)) +

4∑
i=0

1
i! (− log(x))i Li5−i(y) +

+ iπ

(
− 1

4! log4(x) +
3∑
i=0

1
i! (− log(x))i Li4−i(y)

)
+

+ −2π2

6

(
1
3! (log3(xy ) + log3(x)) +

2∑
i=0

1
i! (− log(x))i Li3−i(y)

)
+

+ −2π4

90

(
1
1! (3 log(xy ) + log(x)) +

0∑
i=0

1
i! (− log(x))i Li1−i(y)

)
?= 0 .

Evidence. In Mathematica, this combination evaluates to 0 to with at least 10−67, for various choices

of x, y.

6.3.3 Weight 6 full identity for I5,1(x, y)− I5,1( 1
x
, 1

y
)

We can do the same thing at weight 6, as follows. When n = 5, we obtain the following symbol level

identity

I5,1(x, y)− I5,1( 1
x ,

1
y )− (−Li5(xy ) log(xy ) + 5 Li6(xy ) + Li6(x)) +
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+
5∑
j=0

1
j! (− log(x))j Li6−j(y) + 1

6! (log(xy )6 − log(x)6) S= 0 .

Now compute −∆111111, and integrate the result to

iπ( 1
5! log5(x) +

4∑
j=0

1
j! (− log(x))j Li5−j(y)) .

Add this correction, and then compute −∆21111. This result integrates to

−2π2

6 (− 1
4! (log4(xy ) + log4(x)) +

3∑
j=0

1
j! (− log(x))j Li4−j(y)) .

There is again no −∆3111 contribution. But the result of −∆411 is non-zero. It integrates to

−2π4

90 (− 1
2! (3 log2(xy ) + log2(x)) +

1∑
j=0

1
j! (− log(x))j Li2−j(y)) .

There is no −∆51 contribution. Finally the pure constant numerically seems to be

12ζ(6) = 4π6

315 .

Combining all of these corrections leads to the following claim.

Claim 6.3.2. The following is a numerically testable functional equation for I5,1 , at weight 6, in two

variables.

I5,1(x, y)− I5,1( 1
x ,

1
y ) + (6.3.3a)

− (Li6(x) + 5 Li6(xy )− log(xy ) Li5(xy )) + (6.3.3b)

− 1
6! (− log6(xy ) + log6(x)) +

5∑
j=0

1
j! (− log(x))j Li6−j(y) + (6.3.3c)

+ iπ

 1
5! log(x)5 +

4∑
j=0

1
j! (− log(x))j Li5−j(y)

+ (6.3.3d)

+ −2π2

6

− 1
4! (log(xy )4 + log4(x)) +

3∑
j=0

1
j! (− log(x))j Li4−j(y)

+ (6.3.3e)

+ −2π4

90

− 1
2! (3 log2(xy ) + log2(x)) +

1∑
j=0

1
j! (− log(x))j Li2−j(y)

+ (6.3.3f)

+ 12ζ(6) ?= 0 . (6.3.3g)

6.3.4 Patterns, and an arbitrary weight candidate identity

Within these two instances, and the weight 2, 3, 4 cases not explicitly listed, there is enough information

to extrapolate a pattern, and give a candidate for an identity which holds at any weight.
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For example, as the weight of the constant increases, viewing iπ to have weight k = 1, π
2

6 to have

weight k = 2, et cetera, the coefficient of log(xy )n−k increases exactly according to the weight. (Ignore

signs and factorials.) For example, in the weight 6 case we have the following

Constant Weight Coefficient

1 0 −1

iπ 1 0
π2

6 2 1

No weight 3 constant
π4

90 4 3

Tantalisingly, the pure weight 6 constant 12ζ(6), in Equation 6.3.3g can be interpreted as follows.

12ζ(6) = −2ζ(6)

− 1
0! (5 log0(xy ) + log0(x)) +

−1∑
j=0

1
j! (− log(x))j Li0−j(y)

 .

Here log0(x) is interpreted as 1, and
∑−1
j=0 is 0 because the sum is empty.

Notice also that the weight 4 constant in Equation 6.3.3e has the form −2π
4

90 = −2ζ(4). Similarly, the

weight 2 constant in Equation 6.3.3f has the form −2π
2

6 = −2ζ(2).

Using the convention that ζ(0) = − 1
2 , we can write the third line of the weight 6 identity, Equation 6.3.3c,

in the following suggestive manner.

−2ζ(0)

− 1
6! (− log6(xy ) + log6(x)) +

5∑
j=0

1
j! (− log(x))j Li6−j(y)


Make the following definition, to capture the general structure of the terms in the successive slices.

Definition 6.3.3. The function `α(β;x, y), for α ≥ 0 ∈ Z, and β ∈ Z is defined as follows.

`α(β;x, y) := −(−1)α 1
α! (β logα(xy ) + logα(x)) +

α−1∑
j=0

1
j! (− log(x))j Liα−j(y) .

Then the weight 5 identity can be re-written as follows

I4,1(x, y) + I4,1( 1
x ,

1
y )+

+ (Li5(x) + 4 Li5(xy )− log(xy ) Li4(xy )) +

+ iπf4(0;x, y) +

− 2ζ(0)`5(−1;x, y)− 2ζ(2)`3(1;x, y)− 2ζ(4)`1(3;x, y) ?= 0 .

And similarly, the weight 6 identity can be re-written as

I5,1(x, y)− I5,1( 1
x ,

1
y )+

− (Li6(x) + 5 Li6(xy )− log(xy ) Li5(xy ))
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+ iπf5(0;x, y) +

− 2ζ(0)`6(−1;x, y)− 2ζ(2)`4(1;x, y) +

− 2ζ(4)`2(3;x, y)− 2ζ(6)`0(5;x, y) ?= 0 .

Expressions of the same form also give the corresponding identities at weight 2, 3, and 4. We therefore

propose the following

Conjecture 6.3.4. The following identity is a numerically testable functional equation for In,1, at

weight n+ 1, in two variables.

In,1(x, y) + (−1)nIn,1( 1
x ,

1
y ) +

+ (−1)n(Lin+1(x) + nLin+1(xy )− log(xy ) Lin(xy )) +

+ iπfn(0;x, y) +

− 2
n+1∑
j=0
j even

ζ(j)fn+1− j(j − 1;x, y) = 0

Evidence. Testing in Mathematica at weight 7 and 8 (so n = 6 and n = 7) gives results equal to 0 to

within at least 10−50 for various choices of x, y.

Testing for a selection of larger n, such as n = 12, 33, 123 also gives 0 numerically.

In generalising Duhr’s result in [Gan16], the above result should provide the first numerically testable

functional equation for genuine weight n+ 1 multiple polylogarithms, in at least two variables.

6.4 Further work

Depth 2, all Ia,b: Conjecture 6.3.4 above gives us a numerically testable functional equation for

the iterated integral In,1(x, y). It arises by taking successive slices of the coproduct, to produce

corrections of the form constant × lower weight, with the first slice coming from the symbol level

identity Theorem 6.1.2 in the case a = n, b = 1.

Since the symbol level identity Theorem 6.1.2 holds for all choices of a and b, it is conceivable that

this identity could form the first level of a general numerically testable functional equation for Ia,b.

Further work with the coproduct in various special cases might suggest such a general identity.

Indeed a recent paper [FTW16] dealing with the reduction of weight 4 MPL’s to Li4 and Li2,2 includes

an example of such a functional equation. Equation 6.4 in [FTW16] states

Li2,2(x, y) = Li2,2( 1
x ,

1
y )− Li4(xy) + 3

(
Li4( 1

x ) + Li4(y)
)

+

+ 2
(
Li3( 1

x )− Li3(y)
)

log(−xy)+

+ Li2( 1
x )
(
π2

6 + 1
2 log2(−xy)

)
+
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+ 1
2 Li2(y)

(
log2(−xy)− log2(−x)

)
.

Of course, Li2,2(x, y) can be re-interpreted as the iterated integral I2,2( 1
xy ,

1
y ). So a change of variables

to x = x′/y, would give I2,2( 1
x′ ,

1
y ), and put this result onto the same footing as the above results.

Higher depth: One is also naturally lead to ask what happens at higher depth, and whether similar

numerically testable functional equations can be found.

A small taste of results in this direction comes from the following.

Identity 6.4.1. The following result holds on the level of the symbol, modulo products, for n = 1, 2, 3, 4,

at least.

In,1,1(x, y, z) + (−1)n+1+1In,1,1( 1
x ,

1
y ,

1
z ) �=

In,2(x, y) + (−1)nIn,2(yz ,
x
z ) + In+1,1(x, z) + In+1,1( 1

z ,
y
z ) +

− (−1)n Lin+2(x)− (−1)n(n+ 1) Lin+2(xz ) + Lin+2(z)

This family might be amenable to an upgrade to a full numerically checkable identity, by computing

successive slices of the coproduct.

It appears that explicit symbol-level identities like the above can be found for all depth 3 iterated

integrals. For example

Identity 6.4.2. The following result for I1,3,2 holds on the level of the symbol, modulo products.

I1,3,2(x, y, z) + I1,3,2( 1
x ,

1
y ,

1
z ) �= −I3,3( yx ,

z
x )− I5,1( 1

x ,
y
x ) +

+ I4,2(x, z)− I4,2( 1
y ,

z
y )− I4,2(y, z) + I4,2( 1

z ,
y
z ) + I4,2(z, y) +

+ 10 Li6(xz )− 10 Li6(yz )− Li6(x)− 10 Li6(y) + 5 Li6(z) .

Remark 6.4.3. It appears that recently, a general result of this form has indeed been proven by

Panzer [Pan15] under the name of the parity theorem for multiple polylogarithms.

Theorem 6.4.4 (Parity theorem, Theorem 2.5 in [Pan15]). For all indices (n1, . . . , nd) ∈ Nd, the

combination

Lin1,...,nd(z1, . . . , zd)− (−1)n1+...+nd−d Lin1,...,nd( 1
z1
, . . . , 1

zd
)

is of depth at most d− 1.

Panzer says that the depth reduction can be determined explicitly for any indices (n1, . . . , nd). He

gives explicit examples of such analytic identities in the depth 2 and depth 3 cases.

Despite subsuming the above Ia,b(x, y)± Ia,b( 1
x ,

1
y ) result, Panzer’s proof is of a analytic/differential

nature, in contrast with the entirely algebraic proof using symbol and coproduct in Theorem 6.1.2,

Claim 6.3.1, and Claim 6.3.2. It could be interesting to compare the two proofs.



Chapter 7

Polylogarithm functional equations

from Goncharov-motivated I4,1, I5,1,

I6,1 identities

In this chapter we will apply and extend an idea proposed by Goncharov [Gon94] in the weight 4

and and weight 5 cases to find infinite families of functional equations for Li5 and Li6. We start by

recalling how Goncharov’s idea works in the weight 4 case, and mention the results that Gangl found

for I3,1(5-term Li2, z) and the resulting Li4 functional equation (“weight 4” in Section 7.1). Then we

recall how Goncharov’s idea is supposed to work in the weight 5 case (“weight 5” in Section 7.1), but

phrase the approach in terms of the symbol modulo δ.

We will focus mainly on finding Lin terms for identities arising from I±a,b (as in Definition 7.4.1,

“symmetrisation”) applied to the so-called algebraic Li2, Li3, and Li4 functional equations. To this

end, we continue by recalling these algebraic Lin functional equations (Section 7.3), and set up some

notation (Section 7.3.1) to capture the symmetries they force to manifest on the I±a,b identities.

We then proceed to find Li5 terms for I−4,1(x, algebraic Li2) (Theorem 7.4.6) and Li5 terms for

I−4,1(algebraic Li3, y) (Theorem 7.4.11). From these results we derive an family of functional equations

for Li5 (Corollary 7.4.14). We also find Li5 and Nielsen terms for I−4,1(3-term Li3, y) (Theorem 7.4.17).

We combine this with the I−4,1(x, algebraic Li2 equation) to find another family of functional equations

for Li5 (Corollary 7.4.20), and a reduction for a family of Nielsen terms to Li5’s (Proposition 7.4.19).

Next we generalise this idea to weight 6. We proceed to find Li6 terms for I+
5,1(algebraic Li3, y)

(Theorem 7.6.1), and get a family of functional equations for Li6 (Corollary 7.6.3). We also find Li6
terms for I−5,1(algebraic Li4, y) (Theorem 7.6.5), and get another family of functional equations for Li6
(Corollary 7.6.7). Next we find Nielsen and Li6 terms for I+

5,1(3-term Li3, y), and combine this with the

algebraic Li3 equation to get a yet another family of functional equations for Li6 (Corollary 7.6.13).

We end by offering suggestions for how to maybe push these ideas to weight 7 (Section 7.7), such as

215
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considering the further ‘symmetrisation’ Î+
6,1 with the Li2 functional equation {y}2 + {1− y}2. We find

Li7 terms for I+
6,1(algebraic Li4, y) (Theorem 7.7.3), and for Î−6,1(algebraic Li3, y) (Theorem 7.7.5). We

also find Li7 and Nielsen terms for Î−6,1(3-term Li3, y) (Theorem 7.7.6. Unfortunately, to obtain a family

of Li7 functional equations, we would still need to find a functional equation for Li4(x) + Li4(1− x).

These ideas can also be extended to weight 8 (Section 7.8.1). Finally, we consider how the idea might

be pushed to depth 3, to give more interesting functional equations in depth 2, starting at weight 6

(Section 7.8.2).

7.1 Introduction

Goncharov [Gon94] suggests an approach to finding highly generic functional equations for Li4 and

Li5 by understanding (essentially) the depth 2 MPL’s I3,1(x, y) and I4,1(x, y). Goncharov’s approach

is phrased in terms of elements κ and Φ5, specifically constructed in the Lie coalgebra L•(F ) and

Bloch complex B•(F ) of (multiple) polylogarithms. Goncharov’s definitions of κ and Φ5 are recalled

in Section 7.4.1 below. But the element κ is essentially the symbol of I3,1 and the element Φ5 is

essentially the symbol of (a symmetrisation of) I4,1. We will prefer to use the symbol approach so the

constructions fit better with the narrative of this thesis.

Weight 4: The integral I3,1(x, y) satisfies

I3,1(x, y) δ= −{x}2 ∧ {y}2 .

So if one sets L2 =
∑
ai[ξi] ∈ ker δ2 to be a Li2 functional equation, then one obtains

I3,1(L2, y) = I3,1(
∑

ai[ξi], y) δ= 0 .

Morally this implies that I3,1(
∑
ai[ξi], y) can already be expressed in terms of Li4’s only, modulo

products. Similarly by considering another Li2 functional equation L′2 =
∑
bi[ζi] ∈ ker δ2, one finds

that I3,1(x, L′2) = I3,1(x,
∑
bi[ζi]) vanishes modulo δ. So one expects the result can be expressed in

terms of Li4’s only, modulo products.

By expanding out

I3,1(
∑

ai[ξi],
∑

bi[ζi])

in two ways, one obtains two different combinations of Li4 terms, whose difference is 0 modulo products.

This gives a functional equation for Li4.

The most general functional equation for Li2, from which all others are expected to follow, is the

5-term relation ∑
i

(−1)i[cr(x1, . . . , x̂i, . . . , x5)] ∈ B2 .

This makes it the ‘best’ choice to plug into I3,1, to obtain a generic Li4 equation. This case has been

treated by Gangl [Gan16], who has found a 122 term expression for I3,1(Li2 5-term, y), and used this
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to derive a 931 term functional equation for Li4 in 4 variables.

Earlier work by Gangl [Gan00] found a version of this, and consequently a Li4 functional equation, by

plugging in the so-called algebraic Li2 functional equation

Li2(
∑
i[pi])

�= 0 ,

where { pi } = { pi(t) } are roots of the polynomial f(t, x) = xa(1 − x)b − t, and a, b ∈ Z>0. This

algebraic Li2 functional equation, and the related algebraic Li3 and algebraic Li4 functional equations

are explained in more detail in Section 7.3 below.

The version for I3,1(5-term, y), plugging in the 5-term relation, was only completed relatively recently,

after the advent of the symbol of the multiple polylogarithm. The arguments in the Li4 terms for

the 5-term relation are an ‘order of magnitude’ more complex than those involved in the Li4 for the

algebraic Li2 functional equation, and were only found after much computer experimentation by Gangl.

Weight 5: The integral I4,1(x, y) satisfies

I4,1(x, y) δ= −{x}2 ∧ {y}3 + {x}3 ∧ {y}2 .

So if one considers the slight symmetrisations

I±4,1(x, y) := 1
2(I4,1(x, y)± I4,1(x, 1

y )) ,

one obtains

I+
4,1(x, y) δ= −{x}2 ∧ {y}3

I−4,1(x, y) δ= {x}3 ∧ {y}2 .

This isolates the two arguments of I±4,1(x, y) to different weight Bloch groups in the sense that in

I+
4,1(x, y), modulo δ, the variable x only contributes a weight 2 part {x}2 ∈ B2(F ) to the weight 5

result in B2(F ) ∧ B3(F ), and the variable y only contributes a weight 3 part {y}3 ∈ B3(F ) to the

weight 5 result in B2(F ) ∧ B3(F ). Compare this with the original situation for I4,1(x, y), modulo δ,

where the variable x appears simultaneously as {x}2 and as {x}3, so contributes a weight 2 part, and

a weight 3 part to the final result in B2(F ) ∧ B3(F ).

Now by appropriately substituting functional equations for Li2 or for Li3 into I±4,1(x, y), one can

guarantee that the result vanishes modulo δ. So morally one expects the result to be expressible in

terms of Li5’s only.

To obtain the most generic Li5 functional equation from this, one wants use the 5-term Li2 equation,

and the 22-term Goncharov Li3 equation (or preferably the symmetrised 840-term version). So far the

5-term relation appears to remain out of reach: despite allowing thousands of potentially interesting

Li5 (and Nielsen) arguments (generating using Radchenko’s sage package MESA [MESA], insight from

the weight 4 case, et cetera), I have not yet been able to find an expression for I+
4,1(5-term, y) in terms
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of Li5’s and Nielsen polylogarithms. We can, however, make some progress by using the algebraic Li2
and Li3 equations, as Gangl did originally in the I3,1 case [Gan00].

7.2 Overview of results

The table below summarises the identities found in this chapter by plugging Lin functional equations

into iterated integrals Ia,b.

Weight Integral Lin equation Where stated Involves Nielsen?

5 I−4,1 algebraic Li2 Theorem 7.4.6

5 I−4,1 algebraic Li3 Theorem 7.4.11

5 I−4,1 3-term Li3 Theorem 7.4.17 X

6 I+
5,1 algebraic Li3 Theorem 7.6.1

6 I−5,1 algebraic Li4 Theorem 7.6.5

6 I+
5,1 3-term Li3 Theorem 7.6.8 X

7 I+
6,1 algebraic Li4 Theorem 7.7.3

7 Î−6,1 algebraic Li3 Theorem 7.7.5

7 Î−6,1 3-term Li3 Theorem 7.7.6 X

8 Ĩ+
7,1 3-term Li3 Theorem 7.8.1 X

Remark 7.2.1. It is curious to note that Nielsen terms only seem to appear when the 3-term Li3
functional equation is plugged into one of the slots. This table only provides a limited sample of

results, so trying to draw firm conclusions from it could potentially be misleading. However, the main

structural difference between the 3-term Li3 functional equation, and the other functional equations

above, is the following.

On the level of functions, the 3-term Li3 functional equation should really be called a 3(+1) term

functional equation, in the sense that there is a non-zero constant on the right hand side. We have

namely,

L 3(x) + L 3(1− x) + L 3(1− 1
x ) = ζ(3) .

In the remaining cases, the constant in each of the functional equations is exactly 0.

This table summarises the functional equations found by expanding out Ia,b in two different ways using

the identities in the above table.

Lin weight Integral Slot 1 of integral Slot 2 of integral Where stated

5 I−4,1 algebraic Li3 algebraic Li2 Corollary 7.4.14

5 I−4,1 3-term Li3 algebraic Li2 Corollary 7.4.20

6 I+
5,1 algebraic Li3 algebraic Li3 Corollary 7.6.3

6 I−5,1 algebraic Li4 algebraic Li4 Corollary 7.6.7

6 I+
5,1 algebraic Li3 3-term Li3 Corollary 7.6.13
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7.3 Algebraic Li2, Li3, and Li4 equations

Let a, b ∈ Z, and consider the polynomial

f(t, x) = xa(1− x)b − t . (7.3.1)

Let { pi } = { pi(t) } be the roots of this equation, so that f(t, pi(t)) = 0. Define c such that a+b+c = 0.

Warning 7.3.1. In the following I will assume a, b > 0. This means that we have
∏
j pj = ±t, since

t is the constant term in this polynomial, and can use this to rewrite 1 − pi in terms of pj , as in

Equation 7.3.2 below. We also have the identification #roots = a+ b = −c.

Both of these facts will be used extensively in proving Theorem 7.4.6, and in the computer calcu-

lations used to establish other identities involving the algebraic Li2, Li3 and Li4 equations, namely

Theorems 7.4.11, 7.6.1, 7.7.3, 7.7.3 and 7.7.5.

A great deal of work must be expended to identify the coefficients appearing in results for specific

values of a, b as a combination of a’s, b’s, and c’s. If the equality #roos = −c does not hold (as is the

case when a < 0, or b < 0), we have a fourth variable which can potentially appear in the coefficients,

and making the recognition process more onerous.

If we do allow a > 0, and any b with b /∈ { 0,−a }, then Lemma 4.1, Equation (4.1.1), in [Gan95]

establishes that ∏
i

pi =

±t if a+ b > 0

±1 otherwise.

Extending further to the case where a < 0 can be achieved simply replacing t 7→ 1/t in the polynomial

f . It is apparent then, that when trying to establish versions of Theorem 7.4.6 for all a, b, a much

greater level of care would be needed to deal consistently with the 3 separate cases ±1,±t,± 1
t for∏

i pi.

For the moment restricting to a, b > 0 is more than sufficient to produce interesting families of In,1
identities, and families of functional equations for Lin, and should still provide much insight into the

general case in future.

Remark 7.3.2 (Rationally parametrisable case). We should also note that in the case a = 1, b = 2,

the roots { pi(t) } can be parametrised by rational functions for a suitable choice of t, as follows. Take

t = (1− y)2y2

(1− y + y2)3 .

Then the roots of the equation f(x, t) = 0 are given by

p1(y) = 1
1− y + y2

p2(y) = y2

1− y + y2

p3(y) = (1− y)2

1− y + y2 ,
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where the set { p1, p2, p3 } is invariant under y 7→ 1− 1
y .

This means that all of the results in this chapter can be given with explicit rational arguments for

the case a = 1, b = 2, if one desires a concrete example to check. Moreover, the cases a = −1, b = 3,

and a = 2, b = −3 can also be rationally parametrised by substituting x 7→ 1− 1/x into the equation

f(x, t) = 0. This will also give one a way to check explicit cases for a < 0 or b < 0, as a starting point

to a more general analysis for all a, b, in future.

By substituting x = pj into f(t, x) = 0 we obtain

1− pi = ±
∏
i p

1/b
i

p
a/b
i

(7.3.2)

1− 1
pi

= ±
∏
i p

1/b
i

p
(a+b)/b
i

, (7.3.3)

up to some b-th root of unity.

Remark 7.3.3. In principle there is a choice of b-th roots to be made above. However, this choice is

not relevant to the symbol calculations below, for we have the following equalities on the level of the

symbol. If ζn is an n-th root of unity, we have

n(· · · ⊗ ζnx⊗ · · · ) = · · · ⊗ ζnnxn ⊗ · · ·

= · · · ⊗ xn ⊗ · · ·

= n(· · · ⊗ x⊗ · · · ) ,

Dividing by n in the Q-algebra of symbols gives the equality

· · · ⊗ ζnx⊗ · · · = · · · ⊗ x⊗ · · · .

We can therefore treat the equalities in Equation 7.3.2 and Equation 7.3.3 as holding exactly, for the

purposed of symbol computations.

The following families of algebraic Li2, Li3 and Li4 functional equations are already well known from

Gangl [Gan95]. I will, however, include proofs using symbol calculations, because they are short enough

to be enlightening without detracting from the story, and they provide something of a template for the

proofs of later more complicated identities. These proofs are basically the symbol calculus version of

Gangl’s original proofs.

Proposition 7.3.4 (Algebraic Li2 equation, Lemma 4.1, Equation (4.1.4), in [Gan95]). The following

is a functional equation for Li2.

Li2

(∑
i

[pi]
)
�= 0 .

Proof. Firstly, write {x}2 to mean −(1 − x) ∧ x = −(1 − x) ⊗ x − x ⊗ (1 − x), as usual. Then we
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compute the symbol, modulo products to be∑
i

{1− pi}2 = −
∑
i

(1− pi) ∧ pi .

Use Equation 7.3.2 to replace the 1− pi term. This gives

= −
∑
i

(∏
j p

1/b
j

p
a/b
i

)
∧ pi .

Split up the tensor factor containing the fraction, and pull out the powers, to obtain

= −
∑
i

1
b

∏
j

pj

 ∧ pi + a

b
(pi ∧ pi) .

Since pi ∧ pi = 0, this simplifies to

= −1
b

∑
i

(∏
j

pj

)
∧ pi

= −1
b

(∏
j

pj

)
∧
(∏

j

pj

)
= 0 .

This proves it is a functional equation for Li2.

Certain combinations of these arguments, and arguments from the other S3-orbits, give rise to algebraic

functional equations for Li3 and Li4 as follows.

Proposition 7.3.5 (Algebraic Li3 equation, Lemma 4.1, Equation (4.1.5), in [Gan95]). The following

is a functional equation for Li3.

Li3

(∑
i

−1
a

[1− pi] + 1
b

[pi]
)
�= 0 .

Proof. Since {x}3 = −(1− x) ∧ x⊗ x = {x}2 ⊗ x, we compute the symbol modulo products to be as

follows. ∑
i

−1
a
{1− pi}3 + 1

b
{pi}3 =

∑
i

−1
a
{1− pi}2 ⊗ (1− pi) + 1

b
{pi}2 ⊗ pi

=
∑
i

1
a
{pi}2 ⊗ (1− pi) + 1

b
{pi}2 ⊗ pi ,

using the functional equation {x}2 + {1− x}2 = 0, for Li2. Now replace 1− pi using Equation 7.3.2.

This gives

=
∑
i

1
a
{pi}2 ⊗

(∏
j p

1/b
j

p
a/b
i

)
+ 1
b
{pi}2 ⊗ pi .

Now split up the tensor factor containing the fraction, and pull the powers out, to obtain

=
∑
i

1
ab
{pi}2 ⊗

(∏
j

pj

)
− 1
b
{pi}2 ⊗ pi + 1

b
{pi}2 ⊗ pi
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=
∑
i

1
ab
{pi}2 ⊗

(∏
j

pj

)
.

We then get

= 1
ab

(∑
i

{pi}2

)
⊗
(∏

j

pj

)
= 0 ,

because Proposition 7.3.4 shows that
∑
i {pi}2 = 0. This proves the initial expression is a functional

equation for Li3.

Remark 7.3.6. Notice that this functional equation exhibits an anti-symmetry under a ↔ b and

pi ↔ 1− pi. This should manifest in the Lin terms found in later I4,1, I5,1, I6,1 identities.

Proposition 7.3.7 (Algebraic Li4 equation, Lemma 4.1, Equation (4.1.6), in [Gan95]). The following

is a functional equation for Li4.

Li4

(∑
i

1
a

[
1

1− pi

]
+ 1
b

[pi] + 1
c

[
1− 1

pi

])
�= 0 ,

where c is defined by a+ b+ c = 0.

Proof. Since {x}4 = {x}3 ⊗ x, and
{ 1
x

}
4 = −{x}4,we compute the symbol modulo products to be as

follows. ∑
i

1
a

{
1

1− pi

}
4

+ 1
b
{pi}4 + 1

c
{1− 1/pi}4

=
∑
i

−1
a
{1− pi}4 + 1

b
{pi}4 + 1

c
{1− 1/pi}4

=
∑
i

−1
a
{1− pi}3 ⊗ (1− pi) + 1

b
{pi}3 ⊗ pi + 1

c
{1− 1/pi}3 ⊗ (1− 1/pi) .

Now use Equation 7.3.2, and Equation 7.3.3 to replace 1− pi and 1− 1/pj in the final tensor factors.

We get

=
∑
i

−1
a
{1− pi}3 ⊗

(∏
j p

1/b
j

p
a/b
i

)
+ 1
b
{pi}3 ⊗ pi + 1

c
{1− 1/pi}3 ⊗

(∏
j p

1/b
j

p
(a+b)/b
i

)
.

Expand out the fractions and pull down the powers. Since a+ b = −c, we obtain

=
∑
i

(
− 1
ab
{1− pi}3 ⊗

(∏
j

pj

)
+ 1
bc
{1− 1/pi}3 ⊗

(∏
j

pj

)
+

+ 1
b
{1− pi}3 ⊗ pi + 1

b
{pi}3 ⊗ pi + 1

b
{1− 1/pi}3 ⊗ pi

)
.

Recall that

{x}3 + {1− x}3 + {1− 1/x}3 = 0 , (7.3.4)

is a functional equation for Li3. This means that the second line above vanishes, leaving

=
∑
i

− 1
ab
{1− pi}3 ⊗

∏
j

pj

+ 1
bc
{1− 1/pi}3 ⊗

(∏
j

pj

)
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=
(∑

i

− 1
ab
{1− pi}3 + 1

bc
{1− 1/pi}3

)
⊗
(∏

j

pj

)
.

Use Equation 7.3.4 to write {1− 1/pi}3 = −{pi}3 − {1− pi}3, then substitute this in above. We get

=
(∑

i

− 1
ab
{1− pi}3 −

1
bc
{pi}3 −

1
bc
{1− pi}3

)
⊗
(∏

j

pj

)
.

Since c = −a− b, we have
1
ab

+ 1
bc

= 1
b

a+ c

ac
= −1

ac
.

So finally the expression simplifies to

=
(∑

i

1
ac
{1− pi}3 −

1
bc
{pi}3

)
⊗
(∏

j

pj

)
= 0 .

This is because the expression in brackets is nothing other than 1
c times the Li3 functional equation

from Proposition 7.3.5. This proves the initial expression is a functional equation for Li4.

Remark 7.3.8. Notice that this functional equation exhibits a 3-fold symmetry under the cyclic

permutation a 7→ b 7→ c, and pi 7→ 1− 1
pi
7→ 1

1−pi . This should manifest in the Lin terms found in later

I5,1, I6,1 identities.

Remark 7.3.9. The functional equations in Propositions 7.3.4, 7.3.5 and 7.3.7 hold for any a, b ∈ Z

with a > 0 and b /∈ { 0,−a }. For further details see Lemma 4.1 in [Gan95].

7.3.1 Some notation for symmetrising Lin

In order to conveniently describe many of the identities in the following sections, it will be useful to

have polynomials whose roots are pi, 1
pi
, 1− pi, . . .. For that we have the following definition.

Definition 7.3.10 (Polynomials for S3 action on the roots). The polynomial g(α, y), where α is one

of p, 1
p , 1− p,

1
1−p , 1−

1
p ,

p
p−1 is defined by the following table.

α g(α, y) Roots of g(α, y) = t

p ya(1− y)b pi

1
p yc(y − 1)b 1

pi

1− p yb(1− y)a 1− pi
1

1−p yc(y − 1)a 1
1−pi

1− 1
p (−y)b(1− y)c 1− 1

pi

p
p−1 (−y)a(y − 1)c pi

pi−1

It will also be useful to have a consistent way of symmetrising Lin, and its coefficients, using field

automorphisms. For that we make the following definition
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Definition 7.3.11 (Lin symmetrisation). Let σ1, . . . , σk be automorphisms of some function fields

over C. These fields are fields containing the coefficients and arguments of the paticular Lin’s, and we

assume initially that each pair of fields is disjoint over C.

By taking the tensor product of these fields, we may assume the domains of the σi agree. Let χi be a

character of 〈σi〉. Then we define

Liσ1,χ1;...;σk,χk
n (α[f ]) := Lin

 ∑
g1∈〈σ1〉

· · ·
∑

gk∈〈σk〉

χ1(g1) · · ·χk(gk)αg1···gk [fg1···gk ]


If the character χi is trivial, we may leave it out of the superscript. If the character χi acts as −1 on

σi, we may write σ−i in place of σi, χi.

Remark 7.3.12. By slightly abusing the field automorphism notation, we can let σ first act on the

polynomial g(x, y) by σ(g(x, y)) = g(xσ, yσ), before evaluating the result.

Example 7.3.13. As an example, suppose we have the field automorphism r : C(y)→ C(y), defined by

r(y) = 1
y . And τ : C(a, b, c, p)→ C(a, b, c, p) defined by τ(a) = b, τ(b) = c, τ(c) = a, and τ(p) = 1− 1

p .

Then

Liτ,r
−

n

(
a

b

[
g(p, y)
p

y

])
= Lin

(
a

b

[
g(p, y)
p

y

]
+ b

c

[
g(1− 1

p , y)
1− 1

p

y

]
+ c

a

[
g( 1

1−p , y)
1

1−p
y

]
+

− a

b

[
g(p, 1

y )
p

1
y

]
− b

c

[
g(1− 1

p ,
1
y )

1− 1
p

1
y

]
− c

a

[
g( 1

1−p ,
1
y )

1
1−p

1
y

])
.

In this result, each row is generated by the order 3 automorphism σ with trivial character. The columns

correspond to applying the order 2 automorphism r with character χ2(r) = −1.

The table below summarises the automorphisms that will be used throughout the rest of this chapter.

It is included as a reference aid since the automorphisms will be introduced as they are needed.

Automorphism Action Mnemonic Where defined

ρ = ρp p 7→ 1
p , a 7→ c, c 7→ a reciprocal of p Definition 7.4.5

r y 7→ 1
y reciprocal of y Definition 7.4.8

µ = µp a 7→ b, b 7→ a, p 7→ 1− p one minus p Definition 7.4.10

ρq d 7→ f, f 7→ d, q 7→ 1
q Definition 7.4.13

t x 7→ 1− 1
x three-term in x Definition 7.4.16

µq d 7→ e, e 7→ d, q 7→ 1− q Definition 7.6.2

τ = τp a 7→ b 7→ c 7→ a, p 7→ 1− 1
p three-fold symmetry of p Definition 7.6.4

τq d 7→ e 7→ f 7→ d, q 7→ 1− 1
q Definition 7.6.6

s y 7→ 1− 1
y Definition 7.6.11

m y 7→ 1− y one minus y Definition 7.7.4
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7.4 Li5 functional equations from Goncharov-motivated I4,1

identities

As noted in Equation 4.2.8, and Section 4.4.3, the iterated integral I4,1(x, y) satisfies the following

I4,1(x, y) δ= −{x}2 ∧ {y}3 + {x}3 ∧ {y}2 . (7.4.1)

Recalling that {1/x}n = −(−1)n {x}n, one can substitute y 7→ 1
y to obtain

I4,1(x, 1
y ) δ= −{x}2 ∧ {y}3 − {x}3 ∧ {y}2 . (7.4.2)

Adding or subtracting Equation 7.4.1 and Equation 7.4.2, leads to the following

I4,1(x, y) + I4,1(x, 1
y ) δ= −2 {x}2 ∧ {y}3 (7.4.3)

I4,1(x, y)− I4,1(x, 1
y ) δ= 2 {x}3 ∧ {y}2 . (7.4.4)

We therefore make the following definitions

Definition 7.4.1 (I±4,1). The plus and the minus symmetrisations of I4,1(x, y) are defined by

I+
4,1(x, y) := 1

2(I4,1(x, y) + I4,1(x, 1
y ))

I−4,1(x, y) := 1
2(I4,1(x, y)− I4,1(x, 1

y )) .

And from Equation 7.4.3 and Equation 7.4.4, we have the following result

Proposition 7.4.2. Modulo δ, the symmetrisations satisfy

I+
4,1(x, y) δ= −{x}2 ∧ {y}3

I−4,1(x, y) δ= {x}3 ∧ {y}2 .

Notice now that the two variables are ‘isolated’ and live in different weight tensor factors. That is to

say, in the case of I+
4,1(x, y) for example, the variable y only appears in the weight 3 Bloch group B3(F )

as {y}3, whereas the variable x only appears in the weight 2 Bloch group B2(F ) as {x}2. Compare

this with the original integral I4,1(x, y) where the variable y has a weight 2 contribution {y}2 ∈ B2(F ),

and a weight 3 contribution {y}3 ∈ B3(F ).

Suppose we choose L2 =
∑
ai[ξi] ∈ ker δ2, so that L2 is a functional equation of Li2. And we choose

L3 =
∑
bi[ζi] ∈ ker δ3, so that L3 is a functional equation of Li3. Then we have

I+
4,1(L2, y) δ= 0 and I+

4,1(x, L3) δ= 0 .

So morally we expect to have

I+
4,1(L2, y) �=

∑
i

αi Li5(Ai) and I+
4,1(x, L3) �=

∑
i

βi Li5(Bi) ,
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for some arguments Ai and Bi.

Similarly, we have

I−4,1(x, L2) δ= 0 and I−4,1(L3, y) δ= 0 .

So morally we expect to have

I−4,1(x, L2) �=
∑
i

α′i Li5(A′i) and I−4,1(L3, y) �=
∑
i

β′i Li5(B′i) ,

for some other arguments A′i and B′i.

7.4.1 Relation to Goncharov’s Φ5 element

Proposition 7.4.3. Modulo products, the symbol of I4,1(x, y) be can be expressed as follows.

I4,1(x, y) �=

− 3
{
x

y

}
5
− {x}5 − {y}5 +

+
{
x

y

}
4
⊗ 1− x

1− y + {x}4 ⊗ (1− y) + {y}4 ⊗ (1− x) +

−
(
{1− x}3 + {1− y}3 −

{
1− x
1− y

}
3

+
{

1− 1/x
1− 1/y

}
3

)
⊗ x

y
⊗ x

y
+

+
(
{x}3 ⊗ (1− y)− {y}3 ⊗ (1− x) +

{
x

y

}
3
⊗ 1− x

1− y

)
⊗ x

y
,

where we write {x}n to mean −(1− x) ∧ x⊗ xn−2.

Proof. This is a direct calculation using the Duhr’s PolylogTools package [PT] in Mathematica [MA].

Alternatively one could do the tedious computation by hand using the operator ρw = wΠw from

Section 3.4.1.

This should be compared with the element φ̃5(x, y) that Goncharov defines in [Gon94]. This element

lives in the dual of the motivic Lie algebra L(F )•, and is defined by

φ̃5(x, y) := φ4

{
x

y

}
⊗ 1− x

1− y + φ4{x} ⊗ (1− y) + φ4{y} ⊗ (1− x)+

+ φ4(x, y)⊗ x

y
+

− φ3{x} ⊗ φ2{y} − φ3{y} ⊗ φ2{x} ,

According to Goncharov, φ4(x, y) is some hypothetical element in the L(F )∨−4, which satisfies

∂φ4(x, y) = κ(x, y) ,

where

κ(x, y) := φ3

[
−{1− x} − {1− y}+

{
1− x
1− y

}
−
{

1− 1/x
1− 1/y

}]
⊗ x

y
+



7.4. Li5 functional equations from Goncharov-motivated I4,1 identities 227

+ φ3{x} ⊗ (1− y)− φ3{y} ⊗ (1− x) + φ3

{
x

y

}
⊗ 1− x

1− y +

− φ2{x} ∧ φ2{y} .

After some informal identifications, there is a very strong resemblance between φ̃5(x, y), and the symbol

of I4,1(x, y) modulo products. The only significant difference comes from the additional Li5 terms

−3
{
x
y

}
5
− {x}5 − {y}5 in I4,1(x, y).

This φ̃5(x, y) is then symmetrised to define the Goncharov’s real element of interest, Φ5(x, y), as

follows.

Φ5(x, y) := 1
2

(
φ̃5(x, y)− φ̃5(x, 1

y )
)
.

This is in much the same way as I symmetrise I4,1(x, y) to obtain I−4,1(x, y).

7.4.2 Results

The following result means that restricting to one of the symmetrisations I+
4,1(x, y) or I−4,1(x, y) is

sufficient. We do not ‘lose’ any information from the other one.

Proposition 7.4.4. Modulo products, the symmetrisations I+
4,1(x, y) and I−4,1(x, y) can be related as

follows.

I+
4,1(x, y)− I−4,1(y, x) �= −2 Li5(xy)− 1

2 Li5(x)− 1
2 Li5(y)

Proof. Writing out the left hand side, we have

1
2(I4,1(x, y) + I4,1(x, 1

y ))− 1
2(I4,1(y, x)− I4,1(y, 1

x )) .

From Identity 4.2.4 we know that I4,1(x, y) �= I4,1(y, x), so apply this to the third and fourth terms, to

get

�= 1
2(I4,1(x, y) + I4,1(x, 1

y ))− 1
2(I4,1(x, y) + I4,1( 1

x
), y)

�= 1
2(I4,1(x, 1

y )− I4,1( 1
x , y)) .

Now apply Theorem 6.1.2 in the case a = 4, b = 1, setting x 7→ x and y 7→ 1
y . One obtains

�= 1
2((−1)1(4+1−1

4
)

Li5( 1
y )− (−1)4(4+1−1

1
)

Li5( x
1/y ) + (−1)5 Li5(x)) ,

which simplified to the result above.

In certain cases it may be better to use one of the symmetrisations, I+
4,1(x, y) rather than I−4,1(x, y).

This would allow the global symmetry y ↔ 1
y to manifest on the Li5 terms. But we will end up having

to fix one symmetrisation either, I−4,1 or I+
4,1, if we want to plug in and compare the results of Li2 and

Li3 functional equations. This means the symmetry y ↔ 1
y will have to break, partly, for one of the

equations.
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In order to match up better with the Goncharov Φ5(x, y) element, I will use the minus symmetrisation

I−4,1. This means that the the overall y ↔ 1
y symmetry is obscured when plugging the Li2 algebraic

equation into the second argument. But this symmetry will be manifest when plugging the Li3 algebraic

equation into the first argument.

7.4.2.1 Li5 terms for I−4,1(x,algebraic Li2)

With some insight from the I3,1(x, y) case [Gan00] in what arguments to choose, and some amount of

searching for good arguments using Radchenko’s sage package MESA [MESA], I claim the following.

Definition 7.4.5. In what follows ρ = ρp will refer to the field automorphism ρ : C(a, c, p)→ C(a, c, p)

defined by ρ(a) = c, ρ(c) = a, and ρ(p) = 1
p . And Definition 7.3.11 will be used to define Liρ

−

n . Here ρ

(rho) is a mnemonic for “reciprocal of p”.

Theorem 7.4.6. For I−4,1 applied to the Li2 algebraic equation, we can find explicit Li5 terms, and

give the following identity.

I−4,1(x,
∑
i[pi])

�=

− c

2 Li5(x) + bLi5(1− x) + bLi5(1− 1
x ) + (7.4.5a)

+ Liρ
−

5

(
1

abc(c− a))

[
t

g(p, x)

])
+

∑
p∈{ pi }

Liρ
−

5

(
− b

8(c− a)

[
(1− x)2

x

pi
(1− pi)2

]
+ (7.4.5b)

+
(
c− a

4b + 1
)

[xpi] + b

a

([
1

1− pi

]
−
[

1− x
1− pi

]
−
[

1− 1/x
1− pi

]))
(7.4.5c)

Proof. The proof of this identity is a long, intricate (although basically straightforward) calculation

using the symbol. Including the proof here would detract from the narrative, and so the proof is

relegated to Appendix C.

Remark 7.4.7. Observe that the left hand side of Theorem 7.4.6 is antisymmetric under pi ↔ 1
pi
.

We therefore expect to see this manifest on the right hand side. This is definitely visible to some

extent on the RHS, with an interchange a↔ c. Roughly this is because, if pi satisfies the equation

xa(1− x)b = t, then 1
pi

satisfies the equation xc(x− 1)b = t, or equivalently xc(1− x)b = (−1)bt. Be

aware however, that using these roots leads to an equation where ‘a’ < 0, which falls outside the scope

of our considerations, and is potentially more problematic for the reasons given in Warning 7.3.1.

Further work to understand these identities for all a, b should lead to a more explicitly symmetrical

version. In particular, it should disentangle the coefficients involving c and the coefficients involving

the number of roots.

In order to make the potential symmetries more apparent above, it is perhaps better to convert this

identity for I−4,1 to the equivalent identity for I+
4,1. This can be done as follows.
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Definition 7.4.8. In what follows r will refer to the field automorphism r : C(y)→ C(y) defined by

r(y) = 1
y . In this definition r is a mnemonic for reciprocal of y.

Corollary 7.4.9. For I+
4,1 applied to the Li2 algebraic equation, we can find explicit Li5 terms, and

give the following identity.

I+
4,1(
∑
i

[pi], y) �= Lir5
(

1
abc(c− a)

[
t

g(p, y)

])
+ Lir5(b[1− y]) +

+
∑

p∈{ pi }

Lir5

(
− b

8(c− a)

[
(1− y)2p

y(1− p)2

]
+
(
c− a

4b − 1
)

[py]− b

a

[
1− y
1− p

]
+

+ b

c

[
1− y

1− 1/p

]
− 1

4 [p] + b

2a

[
1

1− p

]
− b

2d

[
1

1− 1/p

])

Proof. Using Proposition 7.4.4, with x = pi and summing over i, we have that

I+
4,1(
∑
i[pi], y) = I−4,1(y,

∑
i[pi])−

∑
i

(
2 Li5(piy) + 1

2 Li5(x) + 1
2 Li5(pi)

)
(7.4.6)

Using the equivalence #roots = a+ b = −c, we can cancel − c
2 Li5(x) and −

∑
i

1
2 Li5(x) in the result.

Also the −
∑
i 2 Li5(piy) makes the coefficients match in in the Li5(ypi) and Li5( ypi ) terms.

Then we can match up the terms which differ by y ↔ 1
y and package them into a Lir5. Observe that

(1− 1/y)2

1/y = (1− y)2

y
,

so (1−y)2

y is invariant under t↔ 1
y . So using this as an argument in Lir5 gives back the original term

with multiplicity 2, and the coefficient only needs to be one-half the original coefficient. A similar

observation holds for the pi term. Also notice that g(p, y−1) = (1/y)a(1 − 1/y)b = yc(y − 1)b. It is

now clear that there is an overall y ↔ 1
y symmetry, and so we get the desired result.

7.4.2.2 Li5 terms for I−4,1(algebraic Li3, y)

Now let’s consider such I−4,1 identities arising from the Li3 algebraic equation. Since this Li3 equation

has an overall anti-symmetry under pi 7→ 1− pi and a 7→ b, we should expect this to manifest on the

Li5 terms. Indeed this is the case.

Definition 7.4.10. In what follows µ = µp is the field automorphism µ : C(a, b, p)→ C(a, b, p) defined

by µ(a) = b, µ(b) = a, and µ(p) = 1− p. In this µ (mu) is a mnemonic for “one minus p”.

Also recall the definition of r from Definition 7.4.8.

Theorem 7.4.11. For I−4,1 applied to the Li3 algebraic equation, we can find explicit Li5 terms, and

give the following identity.

I−4,1

(∑
i

−1
a

[1− pi] + 1
b

[pi], y
)
�= Liµ

−,r−

5

(
1

2b(abc)(b− a)

[
t

g(p, y)

])
+ (7.4.7a)

+
∑

p∈{ pi }

Liµ
−,r−

5

(
1

8(b− a)

[
(1− y)y
(1− p)p

]
+ 1

4c

[
1− 1/y
1− 1/p

]
− 1

2b

[
p

1− y

]
− a+ 4b

2b2

[
p

y

])
(7.4.7b)
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Data. Mathematica verification for (a, b) in 1 ≤ a 6= b ≤ 7.

7.4.2.3 Li5 functional equation from I−4,1(algebraic Li3,algebraic Li2)

In order to obtain the most general possible function equation from these theorems, we should use the

roots pi and qj of two different polynomials. To that end, make the following definition.

Definition 7.4.12. Let qj be the roots of xd(1−xe) = u, where d, e ∈ Z>0, and set f = −d−e. More-

over, define the polynomial h(β, y) for β = q, 1
q , 1− q,

1
1−q ,

q
q−1 ,

q−1
q by analogy with Definition 7.3.10.

The resulting functional equation will retain (for the most part) a p↔ 1− p, a↔ b antisymmetry, and

a q ↔ 1
q , d↔ f antisymmetry. So make the following definition.

Definition 7.4.13. In what follows ρq is the field automorphism ρq : C(d, f, q)→ C(d, f, q) defined

by ρq(d) = f , ρq(f) = d and ρq(q) = 1
q . This is the q-version of ρ = ρp from Definition 7.4.5. We also

write µp for emphasis that µ is the p-version.

Corollary 7.4.14. The following functional equation for Li5 is obtained by expanding out the iterated

integral I−4,1(
∑
i
−1
a [1− pi] + 1

b [pi] ,
∑
j [qj ]) in two different ways.

∑
q∈{ qj }

Liµ
−
p ,ρ
−
q

5

(
−1

2ab2c(a− b)

[
t

g(p, q)

])
+

∑
p∈{ pi }

Liµ
−
p ,ρ
−
q

5

(
1

bdef(d− f)

[
u

h(q, p)

])
+

+
∑

p∈{ pi }

∑
q∈{ qi }

Liµ
−
p ,ρ
−
q

5

(
e

8b(2d+ e)

[
p(1− q)2

(1− p)2q

]
− db− 4ae− 3be

4bcf

[
p(1− q)
(1− p)q

]
+

− 1
8(a− b)

[
(1− p)p
(1− q)q

]
+ bd+ 2ae

2abd

[
1− p
1− q

]
+ 2bd+ 2ae+ 5be

4b2e [pq]
)

+

+
∑

p∈{ pi }

Liµ
−
p

5

(
−ad+ ae− 2be

2ab [p]− (a− b)e
2ab

[
p− 1
p

])
+

∑
q∈{ qi }

Liρ
−
q

5

(
− (a− b)e

abd
[1− q]

)
�= 0

Remark 7.4.15. Unfortunately, I have not yet been able to find the corresponding Li5 terms for

I−4,1(x, 5-term relation)
?
�=
∑
i

αi Li5(Ai) .

After allowing for potential Nielsen polylogarithms S3,2(Bi), I am still unable to find a reduction

I−4,1(x, 5-term reltaion)
?
�=
∑
i

αi Li5(Ai) +
∑
j

βjS3,2(Bj) .

Even for simpler instances, such as the duplication relation, I am currently unable to find Li5 and/or

Nielsen terms.

This situation should perhaps be compared to the situation in weight 4. Gangl gave a reduction of

I3,1(algebraic Li2, y) to Li4 terms in [Gan00]. The reduction of I3,1(5-term relation, y) to Li4 terms

was finally completed in [Gan16], and the arguments involved are an order of magnitude more complex

than the those in the I3,1(algebraic Li2, y) case.
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As such, I have thus far been reluctant to try any Li3 functional equation approaching the complexity

of Goncharov’s 22-term relation. However I can give an expression for I−4,1 applied to the 3-term Li3
relation, to show further results are possible.

7.4.2.4 Li5 and Nielsen terms for I−4,1(3-term Li3, y)

I can give an expression involving Li5, and Nielsen terms for I−4,1 applied to the 3-term Li3 equation.

Definition 7.4.16. Let t be the automorphism t : C(x)→ C(x) defined by t(x) = 1− 1
x . Here t is a

mneomonic for “three-term”. Recall r from Definition 7.4.8.

Theorem 7.4.17. For I−4,1 applied to the 3-term Li3 functional equation, we can find explicit Li5 and

weight 5 Nielsen terms, and give the following identity.

I−4,1

(
[x] +

[
1− 1

x

]
+
[

1
1− x

]
, y

)
�= (7.4.8a)

Lit,r
−

5

(
1
12

[
(1− x)x
(1− y)y

]
+ [xy]− 1

4

[
1− y
x

]
− 1

4 [x(1− y)] + 1
6 [1− y]

)
+ (7.4.8b)

− 3
2 Li5(y) + S3,2(y) . (7.4.8c)

Remark 7.4.18. Notice that all terms except the final two in Equation 7.4.8c exhibit a visible y ↔ 1
y

symmetry. The desire to use as few Nielsen polylogarithms as possible breaks the visible symmetry,

but we do indeed have the y ↔ 1
y symmetry since

−3
2 Li5(y) + S3,2(y) �= 3

2 Li5( 1
y )− S3,2( 1

y ) .

Heeding this, we could replace the line from Equation 7.4.8c with

1
2

(
S3,2(y)− S3,2( 1

y )
)
,

to give an equivalent identity, which retains the visible symmetry.

7.4.2.5 Li5 functional equation from I−4,1(3-term Li3,algebraic Li2)

We can combine the 3-term Li3 and the algebraic Li2 equations to derive a functional equation for Li5.

The resulting functional equation retains a x 7→ 1− 1
x symmetry, and a (mostly complete) pi ↔ 1

pi

and a↔ c antisymmetry. We can make use of t and ρp defined earlier.

Since the 3-term Li3 functional equation generates weight 5 Nielsen terms in I−4,1, these terms will

remain when we expand out I−4,1 in the two different ways. By moving all the Nielsen terms to the

LHS and all Li5 terms to the RHS, we see that the weight 5 Nielsen terms can necessarily be expressed

in terms of Li5. But one expects a simpler combination suffices.

In this case we have the following identity.
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Proposition 7.4.19. Modulo products, the following identity holds.∑
p∈{ pi }

S3,2(p) �=
∑

p∈{ pi }

b

a
Li5(1− p)− a− b

b
Li5(p) + b

a+ b
Li5
(

1− 1
p

)
.

We can now give the following functional equation for Li5.

Corollary 7.4.20. The following functional equation for Li5 is obtained by expanding out the integral

I−4,1 in two different ways, when it is applied to the 3-term Li3 equation in the first slot, and algebraic

Li2 equation in the the second slot.

Lit,ρ
−
p

5

(
−1

abc(a− c)

[
t

g(p, x)

])
− Lit5

(
5c+ 4a

2 [x]
)

+

+
∑

p∈{ pi }

Lit,ρ
−
p

5

(
b

8(c− a)

[
(1− p)2x

p(1− x)2

]
− 1

12

[
(1− p)p
(1− x)x

]
+ 5a+ 4c

4b

[
x

1− p

]
+

+ 5a+ 4c
4a [(1− p)x]− a− c

4b [px] + a− c
12b [p]− 5a+ 4c

6a [1− p]
)
�= 0

Proof. This is obtained by expanding out

I−4,1

(
[x] +

[
1− 1

x

]
+
[

1
1− x

]
,
∑
i

[pi]
)

in two different ways. We can expand out the 3-term Li3 functional equation in the first slot using

Theorem 7.4.17. Or we can expand out the algebraic Li2 equation in the second slot using Theorem 7.4.6.

The difference of these two ways of expanding is now guaranteed to vanish modulo products.

It is possible to convert the particular combination of weight 5 Nielsen terms which appears, into Li5
terms using the identity from Proposition 7.6.12. Doing so gives the above functional equation.

7.5 General results on symmetrising In,1

Before continuing to the weight 6 case, it is perhaps useful to state a number of general results about

the plus and minus symmetrisations of In,1(x, y), and how they relate. The ideas from the weight 5

case on what I4,1(x, y) looks like, modulo δ, and on how I±4,1(x, y) relate, will occur several more times

so having a general result is beneficial.

Firstly, we give the following proposition to establish what In,1(x, y) looks like, modulo δ.

Proposition 7.5.1. Modulo δ, we have that

In,1(x, y) δ=
n−1∑
i=2
−(−1)i {x}i ∧ {y}n+1−i .

Proof. We will consider the computation of δ from the Lie coalgebra point of view, and then reinterpret

the result in terms of symbols. We need to compute the reduced coproduct ∆I(0, x, {0}n−1, y, 1), but

can disregard any product terms, or any terms of weight 1 as we are going to δ.



7.5. General results on symmetrising In,1 233

I claim that the only terms in ∆ that contribute to δ are those where the choice of vertices from

V =
{
x, {0}n−1, y

}
(as in the semicircular polygon interpretation Remark 1.2.2) is given by one of

the following sets of positions: { 1, 2, 3, . . . , i }, for 2 ≤ i ≤ n− 1.

First vertex: If the first vertex is at position > 1, then either it occurs at a 0, wherein we get

I(0; . . . ; 0) = 0, trivially.

I(0;x, 0, . . . , 0
trivially 0

, . . . , 0, y; 1)

Or it occurs at the y, and we get a weight 1 term I(0, y, 1) in the left hand factor of the coproduct

because there are no more vertex available to select. That is, we end up with the following vertices in

the coproduct:

I(0;x, 0, . . . , 0, ↓
y; 1) I(0; y; 1)⊗ I(0;x, {0}n; y)I(y; 1) .

Therefore the first vertex we select must be position 1 from V .

So we have the following selection of vertices so far (not counting the end points)

I(0; ↓
x, 0, . . . , 0, y; 1) .

Second vertex: Suppose now the second vertex is at position > 2. Where are the remaining vertices?

If there are no further vertices, we have a product already and the result vanishes.

I(
↓
0; ↓
x, 0, . . . ,

↓
0, . . . , 0, . . . , 0, y;

↓
1) I(0;x, 0; 1)⊗ I(0;x)I(x; 0, . . . ; 0)I(0; . . . , y; 1)

If there is another vertex, and there is gap between it and the second vertex, then either the integral it

describes is trivially 0. Or if this integral is non-zero, we again have a product. Either way the result

still vanishes.

I(0; ↓
x, 0, . . . ,

↓
0, . . . , 0, . . . ,

↓
0

trivially 0

, . . . , 0, y; 1) 0 or

I(0; ↓
x, 0, . . . ,

↓
0, . . . ,

↓
0, . . . , 0, ↓

y; 1) 

I(0;x, 0, . . . , 0, y; 1)⊗ I(0;x) I(x; 0; 0)I(0; 0) · · · I(0; 0)I(0; . . . , 0; y)︸ ︷︷ ︸
product, so contributes 0 to δ in L•

I(y; 1)

Repeating this argument shows that every position must be selected as vertex, and then we have a

weight 1 result, which is ignored.

I(0; ↓
x, 0,

↓
0, . . . ,

↓
0, ↓
y; 1) I(0;x, 0, . . . , 0, y; 1)⊗ I(0;x)I(x; 0; 0)I(0; 0) · · · I(0; 0)I(0; y)I(y; 1) .

Therefore the second vertex must be place 2 for a non-trivial result.

Subsequence vertices: Suppose that current vertex is labelled by 0, and there are at least two 0’s

following it. If there is a next vertex, we cannot leave any more gaps: we either select another 0 to get

I(0; . . . ; 0) = 0. Or we select y and get I(0; {0}k; y) = I(0, 0; y)k, with k ≥ 2, which is a product.

If there is only one 0 following it, then we cannot select any further vertices otherwise we have a weight

1 result.
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This means we always select a sequence of vertices which looks like the following

I(0; ↓
x,

↓
0, . . . ,

↓
0, 0, . . . , 0︸ ︷︷ ︸
≥ 1 terms

, y; 1) .

This is one of the sets { 1, 2, . . . , i }, with i ≤ n− 1, as claimed above.

Expression for δ: With vertices at positions { 1, 2, . . . , i } we make the following selection of vertices

I(0; ↓
x,

↓
0, . . . ,

↓
0︸ ︷︷ ︸

i− 1 terms

, 0, . . . , 0︸ ︷︷ ︸
n− i terms

, y; 1) .

This gives rise to the following term in ∆

I(0;x, {0}i−1; 1)⊗ I(0;x)I(x; 0)I(0; 0)i−2I(0; {0}n−i, y; 1)

= I(0;x, {0}i−1; 1)⊗ I(0; {0}n−i, y; 1) .

Thus we obtain the following expression for δ(In,1(x, y))

δ(In,1(x, y)) =
n−1∑
i=2

I(0;x, {0}i−1; 1) ∧ I(0; {0}n−i, y; 1) .

We need to make use of the following regularisation (a version of rule R2 from [Bro12b], given in

Equation 1.2.3 in Section 1.2.3.1 above)

(−1)n−iI(0; {0}n−i,
m1=1︷︸︸︷
y ; 1) =

∑
j1=n−i

I(0; y, {0}m1+j1−1; 1)

= I(0; y, {0}n−i; 1) .

Doing so means we can write

δ(In,1(x, y)) =
n−1∑
i=2

(−1)n−iI(0;x, {0}i−1; 1) ∧ I(0; y; {0}n−i; 1) .

Now recognise that I(0;x, 0m−1; 1) = Lim( 1
x ) �= −(−1)m Lim(x), since the factors in δ are taken

modulo products. This means δ simplifies to

δ(In,1(x, y)) =
n−1∑
i=2
−(−1)i Lii(x) ∧ Lin+1−i(y) .

Reinterpreting this on the level of the symbol, using the shorthand {x}i for the symbol of Lii(x),

modulo products, gives the claimed result.

Then we can define generally the plus and minus symmetrisations of In,1 as follows.

Definition 7.5.2 (Plus, and minus symmetrisations of In,1(x, y)). The plus and minus symmetrisations

of In,1(x, y) are defined by

I+
n,1(x, y) := 1

2

(
In,1(x, y) + In,1(x, 1

y )
)
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I−n,1(x, y) := 1
2

(
In,1(x, y)− In,1(x, 1

y )
)

From Proposition 7.5.1, we can derive how I±n,1(x, y) looks modulo δ.

Proposition 7.5.3. Modulo δ, the symmetrisations satisfy

I+
n,1(x, y) δ= −(−1)n

n−1∑
i=2

n+ 1 6≡ i (mod 2)

{x}i ∧ {y}n+1−i

I−n,1(x, y) δ= (−1)n
n−1∑
i=2

n+ 1 ≡ i (mod 2)

{x}i ∧ {y}n+1−i .

Proof. In forming either of the symmetrisations, we have to invert y. Doing this in the expression for

In,1(x, y), modulo δ, from Proposition 7.5.1, we obtain

In,1(x, 1
y ) δ=

n−1∑
i=2
−(−1)i {x}i ∧

{
1
y

}
n+1−i

.

Use the inversion relation to say {
1
y

}
n+1−i

= −(−1)n+1−i {y}n+1−i ,

and substitute this in to the previous equation to obtain

In,1(x, 1
y ) δ=

n−1∑
i=2

(−1)n+1 {x}i ∧ {y}n+1−i .

Notice the signs in In,1(x, y), modulo δ, alternate, but the signs in In,1(x, 1
y ) do not. Notice also

that the signs of the last term, when i = n − 1 in both equations, are opposite. In the first it is

−(−1)i = (−1)n, whereas in the second it is (−1)n+1 = −(−1)n. Adding the expressions for In,1(x, y)

and In,1(x, 1
y ) shows that

I+
n,1(x, y) =

n−1∑
i=2

(−(−1)i + (−1)n+1)
2 {x}i ∧ {y}n+1−i .

The coefficient 1
2 (−(−1)i + (−1)n+1 vanishes if i ≡ n+ 1 (mod 2), and otherwise is (−1)n+1, giving

I+
n,1(x, y) = −(−1)n

n−1∑
i=2

i 6≡n+1 (mod 2)

{x}i ∧ {y}n+1−i ,

as claimed.

Subtracting the expression for In,1(x, 1
y ) from the expression for In,1(x, y)shows that

I−n,1(x, y) =
n−1∑
i=2

(−(−1)i − (−1)n+1)
2 {x}i ∧ {y}n+1−i .

This time the coefficient 1
2 (−(−1)i−(−1)n+1) vanishes if i 6≡ n+1 (mod 2), and otherwise is −(−1)n+1,
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giving

I+
n,1(x, y) = (−1)n

n−1∑
i=2

i≡n+1 (mod 2)

{x}i ∧ {y}n+1−i ,

as also claimed.

Finally, we can relate various combinations of I+
n,1(x, y), I−n,1(x, y), I+

n,1(y, x) and I−n,1(y, x) depending

on the weight.

Proposition 7.5.4. When the weight is odd (meaning n is even), we can relate I+
n,1(x, y) and I−n,1(x, y)

as follows.

I+
n,1(x, y)− I−n,1(y, x) �= −n2 Lin+1(xy)− 1

2 Lin+1(x)− 1
2 Lin+1(y) .

On the other hand, when the weight is even (meaning n is odd), we have the following relations between

I+
n,1(x, y) and I+

n,1(y, x), and between I−n,1(x, y) and I−n,1(y, x).

I+
n,1(x, y) + I+

n,1(y, x) �= n

2 Lin+1(xy) + 1
2 Lin+1(x) + 1

2 Lin+1(y)

�= −(I−n,1(x, y) + I−n,1(y, x)) .

Proof. Odd weight: The odd weight case is a generalisation of Proposition 7.4.4, as follows. Writing

out the left hand side, we have

I+
n,1(x, y)− I−n,1(y, x) = 1

2(In,1(x, y) + In,1(x, 1
y ))− 1

2(In,1(y, x)− In,1(y, 1
x )) .

Since n is even, we know from from Proposition 4.2.5 that In,1(x, y) �= In,1(y, x), so apply this to the

third and fourth terms, to get

�= 1
2(In,1(x, y) + In,1(x, 1

y ))− 1
2(In,1(x, y) + In,1( 1

x
), y)

�= 1
2(In,1(x, 1

y )− In,1( 1
x , y)) .

Now apply Theorem 6.1.2 in the case a = n, b = 1 (notice n is even), setting x 7→ x and y 7→ 1
y . One

obtains

�= 1
2((−1)1(n+1−1

n

)
Lin+1( 1

y )− (−1)n
(
n+1−1

1
)

Lin+1( x
1/y ) + (−1)n+1 Lin(x)) ,

which simplified to the result above.

Even weight: The even weight case is only a slight modification of this. First we deal with the claim

that

I+
n,1(x, y) + I+

n,1(y, x) �= −(I−n,1(x, y) + I−n,1(y, x)) .

Indeed, we have

(I+
n,1(x, y) + I+

n,1(y, x)) + (I−n,1(x, y) + I−n,1(y, x)) = In,1(x, y) + In,1(y, x) ,
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by regrouping the terms, first with third, and second with fourth. Then by Proposition 4.2.5, this

vanishes modulo products, since n odd means −(−1)n = 1.

Now how can we write these in terms of polylogs? Writing out the left hand side of the purported

identity gives

I+
n,1(x, y) + I+

n,1(y, x) = 1
2(In,1(x, y) + In,1(x, 1

y )) + 1
2(In,1(y, x) + In,1(y, 1

x )) .

Since n is odd, we know from Proposition 4.2.5 that In,1(x, y) �= −In,1(y, x), so apply this to the third

and fourth terms, to get

�= 1
2(In,1(x, y) + In,1(x, 1

y ))− 1
2(In,1(x, y) + In,1( 1

x , y))

�= 1
2(In,1(x, 1

y
) + In,1( 1

x , y)) .

Now apply Theorem 6.1.2 in the case a = n, b = 1 (notice n is odd), setting x 7→ x and y 7→ 1
y . One

obtains

�= 1
2((−1)1(n+1−1

n

)
Lin+1( 1

y )− (−1)n
(
n+1−1

1
)

Lin+1( x
1/y ) + (−1)n+1 Lin(x)) ,

which simplified to the result above.

7.6 Li6 functional equations from Goncharov-motivated I5,1

identities

Goncharov only describes how to obtain identities for Li4 and Li5 from such considerations. However,

the idea can still be made to work, at least in weight 6.

From Proposition 7.5.1, the iterated integral I5,1(x, y) satisfies

I5,1(x, y) δ= −{x}2 ∧ {y}4 + {x}3 ∧ {y}3 − {x}4 ∧ {y}2 .

Consider the plus and minus symmetrisations from Definition 7.5.2. From Proposition 7.5.3 we find

that, modulo δ, the symmetrisations satisfy

I+
5,1(x, y) δ= {x}3 ∧ {y}3

I−5,1(x, y) δ= −{x}2 ∧ {y}4 − {x}4 ∧ {y}2 .

Therefore, if L3 =
∑
ai[ξi] ∈ ker δ3 is a Li3 functional equation, plugging L3 into either argument of

I+
5,1(x, y) gives 0 modulo δ. So we morally expect to be able to write

I+
5,1(L3, y) =

∑
i

αi Li6(Ai)

I+
5,1(x, L3) =

∑
i

βi Li6(Bi) ,
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for some arguments Ai, Bi. Notice though, that the story is no longer quite so simple for I−5,1, since x

appears as both {x}2 and {x}4. We will consider in Section 7.6.3 how one can proceed in this case.

Moreover, from Proposition 7.5.4 we have the following relations

I+
5,1(x, y) + I+

5,1(y, x) �= 5
2 Li6(xy) + 1

2 Li6(x) + 1
2 Li6(y)

I−5,1(x, y) + I−5,1(y, x) �= −5
2 Li6(xy)− 1

2 Li6(x)− 1
2 Li6(y)

This means that plugging a functional equation into one of the slots of I+
5,1 is sufficient. We can derive

the result for the other slot automatically. Similarly, plugging something into one of the slots of I−5,1 is

also sufficient because we can derive the corresponding result for the other slot automatically.

7.6.1 Li6 terms for I+
5,1(algebraic Li3, y)

We can find Li6 terms for I+
5,1 applied to the algebraic Li3 equation. Recalling µ = µp from Defini-

tion 7.4.10, and r from Definition 7.4.8, we have the following.

Theorem 7.6.1. For I+
5,1 applied to the Li3 algebraic equation, we can find explicit Li6 terms, and

give the following identity.

I+
5,1

(∑
i

−1
a

[1− pi] + 1
b

[pi], y
)
�= Liµ

−,r
6

(
−1

b(abc)(b− a)(2a+ b)

[
t

g(p, y)

])
+ (7.6.1a)

+
∑

p∈{ pi }

Liµ
−,r

6

(
1

12(b− a)

[
(1− y)y
(1− p)p

]
− 1

24(2a+ b)

[
p(1− y)2

(1− p)2y

]
− 1

2c

[
1− 1/y
1− 1/p

]
+ (7.6.1b)

+ 1
b

[
p

1− y

]
+ 2a+ 9b

4b2

[
p

y

]
− 1

4a

[
1

1− p

]
− 1

4c

[
1− 1

p

])
(7.6.1c)

Data. Mathematica verification for (a, b) in 1 ≤ a 6= b ≤ 5.

7.6.2 Li6 functional equation from I+
5,1(algebraic Li3, algebraic Li3)

We can immediately find the corresponding Li6 terms for I+
5,1 applied to the Li3 algebraic equation in

the other slot. The resulting functional equation retains an antisymemtry under p↔ 1− p, a↔ b, and

under q ↔ 1− q, d↔ e. So make the following definition

Definition 7.6.2. The automorphism µq : C(d, e, q) → C(d, e, f) is defined by µq(d) = e, µq(e) = d

and µq(q) = 1− q. This is the q-version of µ from Definition 7.4.10.

Now we have the following corollary

Corollary 7.6.3. The following functional equation for Li6 is obtained by expanding out the iterated

integral I+
5,1(
∑
i

1
a [1− pi] + 1

b [pi],
∑
j

1
d [1− qj ] + 1

e [qj ]) in two different ways.

∑
q∈{ qj }

Liµ
−
p ,µ
−
q

6

(
−1

a2bc(a− b)(b− c)d

[
t

g(p, q)

]
+ 1
ab2c(a− b)(a− c)e

[
t

g( 1
p , q)

])
+
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+
∑

p∈{ pi }

Liµ
−
p ,µ
−
q

6

(
1

bde2f(d− e)(d− f)

[
u

h(q, p)

]
+ 1
bde2f(d− e)(d− f)

[
u

h( 1
q , p)

])
+

+
∑

p∈{ pi }

∑
q∈{ qi }

Liµ
−
p ,µ
−
q

6

(
(ae− bd)(ad− be)

24ab(a− b)de(d− e)

[
(1− p)p
(1− q)q

]
+ (ae− db)(ad+ be)

4abcdef

[
p(1− q)
(1− p)q

]
+

+ ae− db
6b(a− c)e(d− f)

[
p(1− q)2

(1− p)2q

]
− 1

12b(d− e)

[
p− 1

p2(1− q)q

]
− 1

12(a− b)e

[
q − 1

(1− p)pq2

]
+

+ bd+ 2ce
2bcde

[
p− 1
p(1− q)

]
− bd+ 2af

2abdf

[
p(q − 1)

q

]
+ (ae− bd)(ad− 2be)

2ab2de2

[
p

q

]
+ bd+ ae+ 4be

2b2e2 [pq] +

− a− b
2abe [q]− a− b

4abf

[
q − 1
q

]
− d− e

2bde [p]− d− e
4cde

[
p− 1
p

])
�= 0

7.6.3 Li6 terms for I−5,1(algebraic Li4, y)

Also notice that we can do something with the other symmetrisation, using the algebraic Li4 equation.

This Li4 functional equation is a linear combination of several Li2 functional equations, so remains a

Li2 functional equation. One might want to refer to it as a Li2 + Li4 functional equation. Plugging this

algebraic Li4 functional equation into either slot of I−5,1(x, y), gives 0 modulo δ. We therefore expect

to write the result as Li6 terms.

Moreover, the algebraic Li4 equation is symmetric under b 7→ c 7→ a, and pi 7→ 1− 1
pi
7→ 1

1−pi , so we

expect this symmetry to be reflected in the Li6 terms. This does for the most part hold, but problems

again occur because (for example) 1
1−pi is a root of xc(1 − x)a = (−1)at, so that this equation has

‘a’ < 0. Again, this is outside the current considerations, and is potentially more problematic for the

reasons given in Warning 7.3.1. Nevertheless, we have the following.

Definition 7.6.4. The field automorphism τ = τp, is defined by τ : C(a, b, c, p)→ C(a, b, c, p) where

aτ = b, bτ = c, cτ = a and pτ = 1 − 1
p . In this definition τ (tau) is a mnemonic for the “three-fold

symmerisation” that occurs in the Li4 algebraic equation.

Also recall r from Definition 7.4.8.

Theorem 7.6.5. For I−5,1 applied to the Li4 algebraic equation we can find explicit Li6 terms, and give

the following identity.

I−5,1

(
1
a

[
1

1− pi

]
+ 1
b

[pi] + 1
c

[
1− 1

pi

]
, y

)
�= Liτ,r

−

6

(
1

2ab2d(a− b)(a+ 2b)

[
t

g(p, y)

])
+ (7.6.2)

+
(

1− b2

ac

)
Li6(y) +

∑
p∈{ pi }

Liτ,r
−

6

(
− 1

12(a− b)

[
(1− y)y
(1− p)p

]
+ (7.6.3)

− a+ 3b
2b2 [py] + 1

4b

[
p

1− y

]
+ 1

4b [p(1− y)]
)

(7.6.4)

Data. Mathematica verification for (a, b) in 1 ≤ a 6= b ≤ 5.
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7.6.4 Li6 functional equation from I−5,1(algebraic Li4, algebraic Li4)

We can immediately find the corresponding Li6 terms for I−5,1 applied to the Li4 algebraic equation in

the other slot, and use this to find a Li6 functional equation. This functional equation retains (mostly)

a 3-fold symmetry under p 7→ 1− 1
q , with a 7→ b 7→ c 7→ a, and a 3-fold symmetry under q 7→ 1− 1

q ,

with d 7→ e 7→ f 7→ d. To capture this, make the following definition

Definition 7.6.6. The field automorphism τq is defined by τq : C(d, e, f, q) → C(d, e, f, q), where

τq(q) = 1− 1
q , τq(d) = e, τq(e) = f and τq(f) = d. This is the q-version of Definition 7.6.4, above.

Then we have the following corollary.

Corollary 7.6.7. The following functional equation for Li6 arises by expanding out the iterated integral

I−5,1(
∑
i

1
a

[
1

1−pi

]
+ 1

b [pi] + 1
c

[
1− 1

pi

]
,
∑
j

1
d

[
1

1−qj

]
+ 1

e [qj ] + 1
f

[
1− 1

qj

]
) in two different ways.

∑
q∈{ qj }

Liτp,τq6

(
− 1

2a2bc(a− d)(a− c)d

[
t

g(p, q)

]
− 1

2ab2c(a− d)(b− c)d

[
t

g(p, 1− q)

])
+

+
∑

p∈{ pi }

Liτp,τq6

(
− 1

2cdef2(d− f)(e− f)

[
u

h(q, p)

]
+ 1

2cdef2(d− f)(e− f)

[
u

h(q, 1− p)

])
+

+
∑

p∈{ pi }

∑
q∈{ qI }

Liτp,τq6

(
(bd− ae)(ad− be)

12ab(a− b)de(d− e)

[
(1− p)p
(1− q)q

]
+
(
b3 + 2c3

4ab2ce −
e3 + 2f3

4bde2f

)[
p

q

]
+

+
(

2a3 + b3

4ab2ce + 2d3 + e3

4bde2f
− 3

2be

)
[pq]− a2 + ab+ b2

6abce [q]
)

+

+
∑

p∈{ pi }

Liτp6
(
−d

3 − e3

2bdef [p]
)

+
∑

q∈{ qj }

Liτq6
(
a2 + ab+ b2

ace
[q]
)
�= 0

7.6.5 Li6 and Nielsen terms for I+
5,1(3-term Li3, y)

Like previously, we can also find an expression for I+
5,1 applied to the 3-term Li3 relation in terms of

Li6 and Nielson polylogarithms.

Recalling t from Definition 7.4.16, and r from Definition 7.4.8, we have the following.

Theorem 7.6.8. For I+
5,1 applied to the 3-term Li3 functional equation, we can find explicit Li6 and

weight 6 Nielsen terms, and give the following identity.

I+
5,1

(
[x] +

[
1− 1

x

]
+
[

1
1− x

]
, y

)
�= Lit,r6

(
1
36

[
x(1− y)2

(1− x)2y

]
− 1

9

[
(1− x)x
(1− y)y

]
+ (7.6.5a)

+
[

x

1− y

]
− [x(1− y)]− 5

2 [(1− x)y] + 1
2 [x] + 2

3 [1− y]
)

(7.6.5b)

− 4 Li6(y) + 2S4,2(y) . (7.6.5c)

Remark 7.6.9. Notice, as before, that all terms except the final two in Equation 7.6.5c exhibit a

visible y ↔ 1
y symmetry. The desire to use as few Nielsen polylogarithms as possible breaks the visible
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symmetry, but we do indeed have the y ↔ 1
y symmetry since

−4 Li6(y) + 2S4,2(y) �= −4 Li6( 1
y ) + 2S4,2( 1

y ) .

So, we could replace the line from Equation 7.6.5c with

S4,2(y) + S4,2( 1
y ) ,

to give an equivalent identity, which retains the visible symmetry.

As it stands, the expression for I+
5,1 of the 3-term Li3 functional equation is perhaps too symmetric, in

the sense that when I+
5,1(3-term Li3, 3-term Li3) is converted to a functional equation for Li6, most

terms cancel. Specifically the remaining terms lead to the following.

Proposition 7.6.10. Modulo products, the following identity holds.

−2 Li6( 1
1−x )− 2 Li6(x)− 2 Li6(1− 1

x ) + S4,2(x) + S4,2( 1
1−x ) + S4,2(1− 1

x ) �= 0 .

This is still a potentially interesting result in that it gives us an expression for a certain combination

of weight 6 Nielsen polylogarithms in terms of ordinary Li6’s.

7.6.6 Li6 functional equation from I+
5,1(algebraic Li3,3-term Li3)

Instead, if we combine this 3-term Li3 functional equation with the algebraic Li3 functional equation,

we obtain a non-trivial Li6 functional equation from I+
5,1(algebraic Li3, 3-term Li3). This functional

equation retains the y → 1 − 1
y symmetry, and the p ↔ 1 − p, a ↔ b antisymmetry. Since the Li3

3-term is now in the second slot, we need to make t act on y instead of x, so make the following

definition.

Definition 7.6.11. The automorphism s : C(y) → C(y) is defined by s(y) = 1 − 1
y . This is like

Definition 7.4.16, but t now acts on y instead of x.

In order to get a functional equation for Li6 we need to convert the Nielsen terms to Li6 terms. The

following proposition does this.

Proposition 7.6.12. Modulo products, the following identity holds, relating.∑
p∈{ pi }

−1
a
S4,2(1− p) + 1

b
S4,2(p) �=

∑
p∈{ pi }

b− a
a2 Li6(1− p)− a− b

b2
Li6(p)− 1

a+ b
Li6
(

1− 1
p

)
.

Finally we can give the following Li6 functional equation.

Corollary 7.6.13. The following functional equation for Li6 is obtained by expanding out the integral

I+
5,1 in two different ways, when it is applied to the algebraic Li3 equation in the the first slot, and the
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3-term Li3 equation in the second slot.

Liµ
−
p ,s

6

(
−1

(a− b)(a+ b)(2a+ b)(a+ 2b)

[
t

g(p, y)

])
+

+
∑

p∈{ pi }

Liµ
−
p ,s

6

(
ab

36(a− b)

[
(1− p)p
(1− y)y

]
− ab

18(a+ 2b)

[
p2(1− y)
(1− p)y2

]
+ ab

2(a+ b)

[
py

p− 1

]
+

+ 1
2a [py] + 1

2a

[
p

y

]
+ ab

6(a+ b)

[
p− 1
p

])
�= 0

Proof. This is obtained by expanding out

I+
5,1

(∑
i

−1
a

[1− pi] + 1
b

[pi], [y] +
[
1− 1

y

]
+
[

1
1− y

])

in two different ways. We can expand out the algebraic Li3 functional equation in the first slot using

Theorem 7.6.1. Or we can expand out the 3-term Li3 equation in the second slot using Theorem 7.6.8

and the I+
5,1 version of Proposition 7.5.4. The difference of these two ways of expanding is now

guaranteed to vanish modulo products.

It is possible to convert the particular combination of weight 6 Nielsen terms which appears to Li6
terms using the identity from Proposition 7.6.12. After doing this, a common factor of

a2 + 4ab+ b2

a2b2

can be cancelled from every term. This results in the desired functional equation.

7.7 Goncharov-motivated I6,1 identities

At this point things start to break down, although I can suggest some possible approaches which might

be able to make something work. From Proposition 7.5.1, the iterated integral I6,1(x, y) satisfies

I6,1(x, y) δ= −{x}2 ∧ {y}5 + {x}3 ∧ {y}4 − {x}4 ∧ {y}3 + {x}5 ∧ {y}2 .

We can consider the plus and minus symmetrisations from Definition 7.5.2, and their behaviour modulo

δ. From Proposition 7.5.3 we obtain modulo δ, the symmetrisations satisfy

I+
6,1(x, y) := 1

2(I6,1(x, y) + I6,1(x, 1
y )) δ= −{x}2 ∧ {y}5 − {x}4 ∧ {y}3

I−6,1(x, y) := 1
2(I6,1(x, y)− I6,1(x, 1

y )) δ= {x}3 ∧ {y}4 + {x}5 ∧ {y}2 .

The following result from Proposition 7.5.4, relating I+
6,1(x, y) and I−6,1(y, x) modulo products, means

that we can restrict attention to one of the symmetrisations only. We have

I+
6,1(x, y)− I−6,1(y, x) �= −3 Li7(xy)− 1

2 Li7(x)− 1
2 Li7(y) .

Unfortunately, in neither of the symmetrisations do we find the variable x, or the variable y isolated

to a single weight Bloch group term. Consequently, we can’t guarantee vanishing modulo δ just by
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plugging in a ‘simple’ Lin functional equation. All is not lost though as I can suggest two potential

approaches.

7.7.1 Lin + Lim functional equations

As has already been observed, the algebraic Li4 functional equation is also a Li2 functional equation,

so might be called a Li4 + Li2 equation. If we substitute this into the first argument of I+
6,1(x, y), and

look modulo δ, the factors {x}2 and {x}4 both vanish. We therefore expect

I+
6,1

(
1
a

[
1

1− pi

]
+ 1
b

[pi] + 1
c

[
1− 1

pi

]
, y

)
�=
∑
i

αi Li7(Ai) .

Indeed this is the case, as will be shown below.

If there also exists a (non-trivial) Li3 + Li5 functional equation, we could play the same game with the

second argument of I+
6,1(x, y), to make the result vanish modulo δ. A Li3 + Li5 functional equation

will make the factor {y}3 and {y}5 both vanish. Then one could expand out I+
6,1(x, y) in two different

ways to obtain a functional equation for Li7 – indeed a family of functional equations, because the

Li2 + Li4 algebraic equation is itself a family of functional equations.

I am hopeful that such a (non-trivial) Li3 + Li5 functional equation exists, although it is probably rather

complicated. Certainly [y]− [ 1
y ] is an example of a Li3 + Li5 functional equation. Unfortunately it is

not useful for our purposes. It makes I+
6,1(x, y) vanish identically because we have already symmetrised

over [y] + [ 1
y ]. Nevertheless, it shows that such functional equations may in principal exist.

7.7.2 Further symmetrisation

Another approach is to further symmetrise the integral I−6,1, in an effort to isolate the variables. For

example, we can make the {y}2 term vanish using the Li2 functional equation [y] + [1 − y]. Since

[y] + [1 − y] is not Li4 functional equation, the term {y}4 does not vanish. Indeed could make the

following definition.

Definition 7.7.1 (2-term symmetrisation Î−6,1). The 2-term symmetrisation of I−6,1(x, y) is defined to

be

Î−6,1(x, y) := I−6,1(x, y) + I−6,1(x, 1− y) .

From this we obtain the following proposition

Proposition 7.7.2. Modulo δ, the 2-term symmetrisation satisfies

Î−6,1(x, y) = I−6,1(x, [y] + [1− y]) δ= {x}3 ∧ {y}4 + {x}3 ∧ {1− y}4 .

So we see that modulo δ, the x argument of Î−6,1(x, y) only occurs in the weight 3 Bloch group. By

substituting any Li3 functional equation for x, we can guarantee the result vanishes modulo δ. We
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therefore expect the result to be expressible in terms of Li7’s. Indeed this is the case for the algebraic

Li3 functional equation, as given below.

If there now also exists a functional equation for Li4(y) + Li4(1− y), we can substitute this in for the

y argument, to make the result vanish modulo δ. To clarify, I would like to find arguments Ai, and

coefficients αi such that ∑
i

αi (Li4(Ai) + Li4(1−Ai))
�= 0 .

Given this, we then can play the same game as always: by expanding out Î−6,1(x, y) in two different

ways we would again obtain a family of functional equations for Li7. I am hopeful that such a

Li4(y) + Li4(1− y) functional equations exists, although I cannot give even a trivial example.

7.7.3 Results

7.7.3.1 Li7 terms for I+
6,1(algebraic Li4, y)

Recalling τ from Definition 7.6.4, and r from Definition 7.4.8, we have the following.

Theorem 7.7.3. Then for I+
6,1 applied to the Li4 algebraic equation we can find explicit Li7 terms,

and give the following identity.

I+
6,1

(
1
a

[
1

1− pi

]
+ 1
b

[pi] + 1
d

[
1− 1

pi

]
, y

)
�= (7.7.1)

Liτ,r
−

7

(
1

ab2c(b− a)(a+ 2b)(2a+ b)

[
t

g(p, y)

])
+ c2 − ab

ac
Li7(y) + (7.7.2)

+
∑

p∈{ pi }

Liτ,r
−

7

(
1

18(b− a)

[
(1− y)y
(1− p)p

]
− 1

72(2a+ b)

[
(1− p)2y

p(1− y)2

]
+ (7.7.3)

− 2a+ 7b
4b2 [py]− 1

2b

[
p

1− y

]
+ 1

2b [p(1− y)]− 1
4b [p]

)
(7.7.4)

Data. Mathematica verification for (a, b) equal to (1, 2), (1, 3), (1, 4), (2, 1) and (2, 3)

7.7.3.2 Li7 terms for Î−6,1(algebraic Li3, y)

Notice that Î−6,1(x, y) is only symmetric under y 7→ 1− y, and not under y 7→ 1
y . This means we need to

change how Liσ,r7 is symmetrised, and so using a different automorphism. Make the following definition

Definition 7.7.4. The automorphism m : C(y)→ C(y) is defined by m(y) = 1− y. In this definition,

m is a mnemonic for “one minus y”.

Recall also µ from Definition 7.4.10.

Theorem 7.7.5. For Î−6,1 applied to the Li3 algebraic equation we can find explicit Li6 terms, and give

the following identity.

Î−6,1

(∑
i

−1
a

[1− pi] + 1
b

[pi], y
)
�= (7.7.5)
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Liµ
−,m

7

(
−1

2(ab)2(b− a)(a+ 2b)(2a+ b)

[
t

g(p, y)

]
− 1
a2bc(b− a)(a+ 2b)(2a+ b)

[
t

g( 1
1−p , y)

])
+

(7.7.6)

+
∑

pi∈{ p }

Liµ
−,m

7

(
2a+ 7b

4b2 [py]− 2a+ 9b
4b2

[
p

y

]
− 1

2a

[
1− p

1− 1/y

]
+ 1

2c

[
1− 1/p

y

]
+ (7.7.7)

− 1
36(2a+ b)

[
− (1− p)2(1− y)y

p

]
+ 1

36(b− a)

[
(1− p)p
(1− y)y

]
+ (7.7.8)

+ 1
36(2a+ b)

[
(1− p)2(1− y)

py2

]
− 1

36(b− a)

[
− (1− p)p(1− y)2

y

])
(7.7.9)

Data. Mathematica verification for (a, b) equal to (1, 2), (1, 3), (1, 4), (2, 1) and (2, 3)

7.7.3.3 Li7 and Nielsen terms for Î−6,1(3-term Li3, y)

We can also give an expression for the 3-term Li3 functional equation.

Recall t from Definition 7.4.16 and m from Definition 7.7.4. We have the following.

Theorem 7.7.6. For Î−6,1(x, y) applied to the 3-term Li3 equation, we can find explicit Li7 and weight

7 Nielsen terms, and give the following identity.

Î−6,1

(
[x] +

[
1

1− x

]
+
[
1− 1

x

]
, y

)
�= Lit,m7

(
− 1

36

[
x2(1− y)
y2(1− x)

]
+ 1

36

[
(1− x)x
(1− y)y

]
+

+ 1
2

[
x(1− y)
y(1− x)

]
+ 5

4[xy]− 7
4

[
x

y

]
− 2

3 [y]− 1
6

[
−1− y

y

])
+

+ S5,2(y) + S5,2(1− y) .

7.8 Further work

7.8.1 Approach for I7,1 and beyond

From Proposition 7.5.1, the integral I7,1(x, y) satisfies

I7,1(x, y) δ= −{x}2 ∧ {y}6 + {x}3 ∧ {y}5 − {x}4 ∧ {y}4 + {x}5 ∧ {y}3 − {x}6 ∧ {y}2 .

Using Proposition 7.5.3, we find that the symmetrisations from Definition 7.5.2 satisfy the following,

modulo δ.

I+
7,1(x, y) := 1

2 (I7,1(x, y) + I7,1(x, 1
y )) δ= {x}3 ∧ {y}5 + {x}5 ∧ {y}3

I−7,1(x, y) := 1
2 (I7,1(x, y)− I7,1(x, 1

y )) δ= −{x}2 ∧ {y}6 − {x}4 ∧ {y}4 − {x}6 ∧ {y}2 .
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7.8.1.1 Symmetrising with {x}2 + {1− x}2

Symmetristing I−7,1(x, y) to

Î−7,1(x, y) := I+
7,1([x] + [1− x], [y] + [1− y])

gives

Î−7,1(x, y) δ= −({x}4 + {1− x}4) ∧ ({y}4 + {1− y}4) .

If we can find a functional equation for Li4(x) + Li4(1− x), we can substitute it as the x argument,

or as the y argument to Î−7,1, and get a result which is 0 modulo δ. This means the result should be

expressible in terms of Li8. So with a functional equation for Li4(x) + Li4(1− x), we would also be

able apply it here to find a functional equation for Li8.

7.8.1.2 Using Li3 + Li5 functional equations

Similarly, a functional equation for Li3 + Li5, substituted into the x or y argument of I−7,1(x, y) makes

the result vanish modulo δ. The result of this should be expressible in terms of Li8, we could then use

to find a functional equation for Li8. Whichever approach above succeeds in finding a family of Li7
functional equations, could be immediately applied to find at least one Li8 functional equation.

7.8.1.3 Symmetrising with Li3 equations

Alternatively, and maybe more ambitiously, we can symmetrise I+
7,1(x, y) to, say,

Ĩ+
7,1(x, y) := I+

7,1

(
[x] +

[
1

1− x

]
+
[
1− 1

x

]
, y

)
.

This kills the {x}3 factor, leaving

Ĩ+
7,1(x, y) δ=

(
{x}5 +

{
1

1− x

}
5

+
{

1− 1
x

}
5

)
∧ {y}3 .

Substituting in a Li3 functional equation for y makes the result vanish modulo δ, giving us a Li8
combination. And a functional equation for Li5(x) + Li5

(
1

1−x

)
+ Li5

(
1− 1

x

)
, could lead to a family

of functional equations for Li8.

We can give an expression when the 3-term Li3 functional equation is used. Recall t from Defini-

tion 7.4.16. We also need the y-version s from Definition 7.6.11. Then we have the following.

Theorem 7.8.1. For Ĩ+
7,1(x, y) applied to the 3-term Li3 equation, we can find explicit Li8 and weight

8 Nielsen terms, and give the following identity.

Ĩ+
7,1

(
x, [y] +

[
1

1− y

]
+
[
1− 1

y

])
�= Lit,s8

(
− 1

36

[
(1− x)x
(1− y)y

]
+ 7

4

[
x

y

]
+ 7

4[xy]− 3
2 [x]− [y]

)
+

+ S6,2

(
[x] +

[
1

1−x

]
+
[
1− 1

x

])
+ S6,2

(
[y] +

[
1

1−y

]
+
[
1− 1

y

])
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Presumably, an expression for Ĩ+
7,1(x, y) applied to the algebraic Li3 equation can also be found, with

a similar form to Theorem 7.7.5. Since Ĩ+
7,1(x, y) is defined using a symmetrisation coming from the

3-term Li3 equation, we anticipate weight 8 Nielsen terms appearing. A different symmetrisation of

I+
7,1, say using the rationally parameterisable a = 1, b = 2 case (see Remark 7.3.2) of the algebraic Li3,

could eliminate some of the Nielsen terms.

7.8.1.4 Using Li2 + Li4 functional equations

Another potential approach comes from noticing that substituting the Li2 + Li4 functional equation in

the x argument leaves only {y}2. So the result vanishes modulo δ for any Li2 functional equation. The

same thing holds swapping x and y. One has

Im7,1

∑
i

1
a

[
1

1− pi

]
+ 1
b

[pi] + 1
d

[
1− 1

pi

]
,
∑
j

1
a′

[
1

1− qj

]
+ 1
b′

[qj ] + 1
c′

[
1− 1

qj

] δ= 0 .

But one can expand this out in two ways. Either in the second slot:

0 δ= I−7,1

∑
i

1
a

[
1

1−pi

]
+ 1

b [pi] + 1
d

[
1− 1

pi

]
,
∑
j

1
a′

[
1

1−qj

]
+ 1

b′ [qj ] + 1
c′

[
1− 1

qj

]
= I−7,1

∑
i

1
a

[
1

1−pi

]
+ 1

b [pi] + 1
d

[
1− 1

pi

]
,
∑
j

1
a′

[
1

1−qj

]+

+ I−7,1

∑
i

1
a

[
1

1−pi

]
+ 1

b [pi] + 1
d

[
1− 1

pi

]
,
∑
j

1
b′ [qj ]

+

+ I−7,1

∑
i

1
a

[
1

1−pi

]
+ 1

b [pi] + 1
d

[
1− 1

pi

]
,
∑
j

1
c′

[
1− 1

qj

] ,

where each I−7,1 vanishes modulo δ, so is morally a sum of Li8’s. Or similarly in the first slot,

= I−7,1

∑
i

1
a

[
1

1−pi

]
,
∑
j

1
a′

[
1

1−qj

]
+ 1

b′ [qj ] + 1
c′

[
1− 1

qj

]+

+ I−7,1

∑
i

1
b [pi],

∑
j

1
a′

[
1

1−qj

]
+ 1

b′ [qj ] + 1
c′

[
1− 1

qj

]+

+ I−7,1

∑
i

1
d

[
1− 1

pi

]
,
∑
j

1
a′

[
1

1−qj

]
+ 1

b′ [qj ] + 1
c′

[
1− 1

qj

] ,

where each I−7,1 vanishes modulo δ, and so is morally the sum of other Li8’s. With luck, the combinations

obtained when expanding out the second slot will differ from the combinations obtained when expanding

out the first slot. So the difference will vanish modulo products, and could give a Li8 functional

equation.

Unfortunately it is not clear that the two combinations should necessarily be different. This expansion

does not involve some independent variable y which has arguments substituted in later, so we could
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just end up with two different ways of grouping the same Li8 terms. And the difference would trivially

cancel to 0. Thus far, the computation to attempt this has been difficult to finish due to excessive

memory requirements.

7.8.2 Approach for depth 2 identities

It would also be desirable to find some generalisation of these ideas to higher depth iterated integrals.

Goncharov’s approach uses ‘simple’ low weight Lin functional equations substituted into depth 2

iterated integrals to derive more complicated higher weight Lin functional equations.

One possible generalisation to consider could come from using Lin functional equations substituted

into (carefully chosen!) depth 3 iterated integrals, in order to try to derive more ‘interesting’ identities

for depth 2 integrals. Currently, I have no specific results in this direction, but I can at least illustrate

the way.

The depth 3 iterated integral I4,1,1(x, y, z) seems to satisfy the following, ‘modulo δ2’

I4,1,1(x, y, z) δ
2

= {x}2 ∧
({

z

y

}
2
∧ {z}2

)
+
{
z

y

}
2
∧ ({x}2 ∧ {z}2) .

Therefore, the following ‘symmetrised’ version of I4,1,1

Ĩ4,1,1(x, y, z) := I4,1,1(x, z/y, z)

satisfies

Ĩ4,1,1(x, y, z) δ
2

= {x}2 ∧ ({y}2 ∧ {z}2) + ({x}2 ∧ {z}2) ∧ {y}2 .

Remark 7.8.2. There is of course a question surrounding what ‘modulo δ2’ means, and how it should

be interpreted. In the Lie coalgebra L•, we have δ2 = 0 identically, since δ is a Lie cobracket. In the

weight 6 case we have the exact sequence

0→ B6 → L6 → B3 ∧B3⊕B2⊗L4 →
∧3
B2 → 0 ,

so that δ2 is a map δ2 : L6 →
∧3 B2, whereas in the above result, we land in (

∧2 B2)∧B2⊕B2 ∧(
∧2 B2).

We then need to make the natural identification
∧3 B2 ∼= (

∧2 B2) ∧ B2⊕B2 ∧(
∧2 B2), after which the

two terms {x}2 ∧ ({y}2 ∧ {z}2) + ({x}2 ∧ {z}2) ∧ {y}2 can be made to cancel.

Therefore perhaps the correct thing to do is to consider just one of these components as a time. A

result already vanishing in each separate B2 ∧(B2 ∧B2) and (B2 ∧B2) ∧ B2 component should give

some further information about the structure of the original iterated integral. Moreover, since each

depth 2 iterated integral Ia,b(x, y) has the form
∑
i {αi}ni ∧ {βi}mi modulo δ, each component of the

result Ia,b(x, y) ‘modulo δ2’ vanishes already. Therefore the ‘modulo δ2’ process should detect when

something is a depth 2 iterated integral.

From the above expression for Ĩ4,1,1(x, y, z) ‘modulo δ2’, we see that plugging in a Li2 functional

equation to any of the arguments x, or y, or z forces the result to vanish ‘modulo δ2’. One then could
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expect the result to be expressible in terms of depth 2 iterated integrals only modulo δ. If we can

find an expression for this when a Li2 equation L2 =
∑
i ai[Ai] ∈ ker δ2 is plugged into the x slot, and

an expression when a(nother) Li2 equation L′2 =
∑
i bi[Bi] ∈ ker δ2 is plugged into the y slot, we can

expand

Ĩ4,1,1(L2, L
′
2, z)

in two different ways as a sum of depth 2 iterated integrals. The difference then necessarily vanishes

modulo δ giving a functional equation for depth 2 iterated integrals. Then one could even attempt to

find the Lin terms to get a identity which holds modulo products.
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Appendix A

Notation

A.1 ‘Equality up to’ relations

Throughout this thesis identities are proven and investigated to varying degrees of accuracy. The

following range of equalities will be used.

Relation Meaning
?= Identity holds numerically to ≥ 500 decimal places on MZVs,

or to ≥ 50 decimal places on MPLs
Q= Identity holds up to a rational constant
1= The rational expected in Q= is 1, numerically
S= Identity holds on the level of the symbol
�= Identity holds for the symbol modulo products
δ= Identity holds for the symbol modulo products and depth 1
I3,2= Identity holds for the symbol modulo Li5 and I3,2 of ‘simple’ cross-ratios
δ2

= Identity holds for the symbol modulo products and depth 2

= Identity is known exactly

A.2 Symmetrised sums

Frequently we make use of sums over cyclic shifts of variables, sums over all permutations of variables,

or alternating sums over all permutations. We introduce the following notation for these sums.

Sum over Definition

All permutations Sym{ x1,...,xn } f(x1, . . . , xn) :=
∑
σ∈Sn f(xσ(1), . . . , xσ(n))

Signed permutations Alt{ x1,...,xn } f(x1, . . . , xn) :=
∑
σ∈Sn sgn(σ)f(xσ(1), . . . , xσ(n))

Cyclic shifts Cyc{ x1,...,xn } f(x1, . . . , xn) :=
∑n
i=1 f(xi, . . . , xn, x1, . . . , xi−1)
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Appendix B

Long weight 5 identities

B.1 Reducing I3,2 to I4,1 and Li5 terms

Recall the ‘brute force’ identity in Identity 4.2.17, which expresses I3,2(x, y) in terms of I4,1’s.

Identity 4.2.17. Modulo δ, we can express the single term I3,2(x, y) using I4,1 as follows.

I3,2(x, y) δ= −1
2

(
3I4,1(x, y) + I4,1(x, 1

y ) + I4,1(x, xy ) +

+ I4,1(x, yx )− I4,1(y, xy )− I4,1(y, yx )
)

This identity expressed I3,2(x, y) in terms of I4,1’s, modulo δ. So it should then be possible to find Li5
terms, which give an identity holding modulo products, on the nose. Indeed, we have the following

identity, expressing I3,2(x, y) in terms of I4,1’s and 141 Li5 terms.

Identity B.1.1. The following identity provides the missing Li5 terms, which completes Identity 4.2.17

to an identity holding modulo �. This gives us an expression for I3,2(x, y) in terms of I4,1’s, and 141

Li5 terms, modulo �.

22
9

(
I3,2(x, y) + 1

2

(
I4,1(x, 1

y ) + I4,1(x, xy ) + I4,1(x, yx ) + 3I4,1(x, y)− I4,1(y, xy )− I4,1(y, yx )
))

�=

Li5
(
− 23

18
[ 1
x

]
+ 20

3
[
− 1−x

x

]
+ 107

54

[
x
y2

]
− 103

54

[
1
xy

]
+ 1

6

[
x
y

]
− 157

54

[
x2

y

]
+ 4

[
− 1−y

(1−x)y

])
+

+ 11
3 Li5

(
[1− y]−

[
− 1−x
x(1−y)

]
−
[
− 1−y

y

]
−
[

x
x−y

])
− 14

3 Li5
([

x(x−y)
(1−x)y

]
+
[
− x−y

(1−y)y

])
+

+ 3 Li5
([

(1−x)x
x−y

]
+
[
−x(1−y)
y(x−y)

])
− 4

3 Li5
([
− x−y

(1−x)y

]
+
[

x−y
x(1−y)

])
+ 7

18 Li5
([

1
y

]
−
[
x(1−y)2

(1−x)2y

])
+

+ 5
18 Li5

(
−
[

(x−y)2

(1−x)2y

]
−
[

(x−y)2

x(1−y)2

]
) + 5

27 Li5
([
−x

2(1−y)3

(1−x)3y

]
+
[
x(x−y)3

(1−x)3y2

]
+
[
− (x−y)3

x(1−y)3y

])
+

+ 8
3 Li5

([
1−x
1−y

]
−
[
− 1
x−y

]
−
[
− 1−x

y

]
+
[

1−x
y

]
+
[
−x(1−y)

y

]
−
[
x(1−y)
y

]
+
[
x(1−y)
y(x−y)

]
+

−
[
− x−y

(1−x)(1−y)

]
+
[
−x−yy

])
+ 2

3 Li5
([

1
x−y

]
+
[

1−y
(1−x)y

]
−
[
− (1−y)(x−y)

(1−x)y

]
+
[

1−y
x−y

]
+

−
[
− x

(1−x)y

]
+
[
x(1−y)
(1−x)y

]
+
[
− x

1−y

]
−
[

x
1−y

]
+
[
x−y
xy

])
+
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+ 5
3 Li5

(
− [1− x]−

[
1−x
x(1−y)

]
+
[
− (1−x)x

x−y

]
+
[
− 1−x
x−y

]
−
[

(1−x)(x−y)
x(1−y)2

]
−
[
− (1−x)(x−y)

x(1−y)

]
+

+
[

(1−x)(x−y)
x(1−y)

]
+
[

(1−y)(x−y)
(1−x)y

]
+
[

x
(1−x)y

]
−
[
−x(1−y)(x−y)

(1−x)2y

]
−
[
−x(x−y)

(1−x)y

]
+

+
[

x−y
(1−x)(1−y)

]
−
[

x−y
(1−y)y

]
−
[
− (x−y)2

(1−x)(1−y)y

]
−
[
−x−yxy

])
+

+ 1
9 Li5

([
(1−x)(1−y)3

y(x−y)2

]
−
[

(1−x)2(1−y)
xy2

]
−
[

(1−x)2x
(1−y)y2

]
+
[

(1−x)2(x−y)
y2

]
+
[

(1−x)2

y2(x−y)

]
+
[

(1−x)3

x2(1−y)(x−y)

]
+

+
[
− (1−x)3(x−y)

x(1−y)2

]
−
[
− (1−x)x(1−y)2

y

]
−
[
− 1−x
x2(1−y)y

]
−
[
− (1−x)x2(1−y)

y(x−y)3

]
+
[

(1−x)x3

y(x−y)

]
+

+
[

(1−x)(x−y)
(1−y)3y

]
+
[

(1−x)(x−y)2

x3y

]
−
[
− (1−x)(x−y)3

x(1−y)2y

]
−
[

(1−y)(x−y)3

(1−x)2y3

]
+
[
x(1−y)2(x−y)

y3

]
+

−
[
− x(1−y)3

(1−x)3y2

]
+
[
− x

(1−y)(x−y)2

]
−
[
− x2(1−y)3

(1−x)y3(x−y)

]
−
[
−x

2(1−y)3

y(x−y)3

]
+
[
−x2(1−y)
y3(x−y)

]
+

−
[
−x

3(1−y)2

(1−x)y3

]
+
[
x3(1−y)2

y(x−y)

]
+
[
x3(1−y)(x−y)

(1−x)3y2

]
−
[
− x(x−y)

(1−x)2y3

]
+
[
−x(x−y)2

1−y

]
+
[

(x−y)2

(1−x)3(1−y)y

]
+

−
[

(x−y)2

(1−x)x(1−y)3

]
−
[

(x−y)3

(1−x)3xy

]
−
[
− (x−y)3

(1−x)x3(1−y)

])
+

+ 5
9 Li5

(
−
[

1−x
(1−y)2

]
−
[

(1−x)2

1−y

]
−
[

(1−x)2

x(x−y)

]
+
[
− (1−y)y

(x−y)2

]
−
[
− x2

(1−x)(x−y)

]
−
[
−x

2(1−y)
(1−x)2y

]
+

+
[
− x−y

(1−x)y2

]
+
[

(x−y)2

(1−x)y2

]
+
[

(x−y)2

x2(1−y)

]
+
[

x−y
x(1−y)2

])
+

+ Li5
([

1
x(1−y)

]
+
[
− (1−x)(1−y)

y

]
−
[

1−x
(1−y)y

]
−
[

(1−x)(1−y)
y(x−y)

]
−
[
− (1−x)2

x(1−y)

]
−
[
− 1−x
x(x−y)

]
+

−
[

(1−x)(x−y)
1−y

]
+
[
− (1−x)(x−y)

(1−y)y

]
+
[
− 1−x

xy

]
−
[

(1−x)x
y

]
+
[
− (1−x)x
y(x−y)

]
−
[

(1−x)(x−y)
xy

]
+

+
[
− (1−y)(x−y)

(1−x)2y

]
+
[
x(1−y)
(1−x)y2

]
+
[

x(1−y)2

(1−x)y(x−y)

]
+
[
−x(1−y)2

y(x−y)

]
+
[
−x(1−y)(x−y)

(1−x)y2

]
−
[
−x(1−y)

y2

]
+

−
[
x2(1−y)
(1−x)y

]
+
[
x2(1−y)
y(x−y)

]
−
[
x2

x−y

]
−
[
x(x−y)
(1−x)2y

]
+
[
− x−y

(1−x)(1−y)y

]
−
[

x−y
(1−x)x(1−y)

]
+

−
[

x−y
(1−y)2

]
+
[
− (x−y)2

(1−x)x(1−y)

]
+
[
− (x−y)2

(1−x)xy

]
+
[

(x−y)2

x(1−y)

]
−
[

x
y(x−y)

]
−
[
− y

(1−y)(x−y)

])
+

+ 4
9 Li5

([
1

(1−x)(1−y)

]
+
[

(1−x)(1−y)
xy

]
+
[

(1−x)x
(1−y)y

]
+
[
− (1−x)x

(x−y)2

]
−
[
− (1−x)(x−y)

y

]
−
[
− 1−x
y(x−y)

]
+

−
[
− (1−y)2

y(x−y)

]
+
[
−x(1−y)2

(1−x)y2

]
−
[

x
(1−y)(x−y)

]
+
[
x2(1−y)
(1−x)y2

]
−
[
x(x−y)

1−y

]
−
[
− x−y

(1−x)2y

]
+

−
[

x−y
x2(1−y)

]
−
[

y2

(1−y)(x−y)

])
Remark B.1.2. The candidate Li5 arguments which eventually produced this identity were generated

using Radchenko’s sage package MESA [MESA], and the set_extra_primes_tree_search routine.

This allows a good choice of extra factors to appear in 1− α, when computing the symbol of Lin(α).

For example, even though the factor −x+ x2 − xy + y2 does not appear anywhere in the symbol of

the left hand side of Identity B.1.1, it does appear in the symbol of the following Li5 terms on the

right hand side.

− 1
9

[
(1−x)2x
(1−y)y2

]
− 1

9

[
− (1−x)x2(1−y)

y(x−y)3

]
+
[
− (1−x)(x−y)

(1−y)y

]
− 1

9

[
− (1−x)(x−y)3

x(1−y)2y

]
+
[
− (1−x)x
y(x−y)

]
+
[

(x−y)2

x(1−y)

]
.

But somehow, they conspire to cancel in just the right way as to make this factor disappear in the

end. Because of this phenomenon, and the large number of potential arguments otherwise, finding

Identity B.1.1 would potentially be very difficult if not for the MESA software [MESA].
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B.2 Relating depth 3 iterated integrals

Recall Theorem 4.3.18, which claimed that modulo I3,2 all depth 3 iterated integrals are somehow

‘equivalent’.

Theorem 4.3.18. Modulo I3,2, all of the weight 5, depth 3 iterated integrals span the same space.

More precisely, if

Bf :=
{
f(σ · abcdef) | σ ∈ S{ a,b,c,d,e,f }

}
,

then spanBf , modulo I3,2, is invariant for f ∈ { I3,1,1, I1,3,1, I1,1,3, I2,2,1, I2,1,2, I1,2,2 }.

The proof was to give the relevant identities expressing each depth 3 integral In1,n2,n3(abcdef) as a

sum of other depth 3 integrals, modulo I3,2. The short identities relating I3,1,1 and I1,3,1, relating I3,1,1
and I1,1,3, and expressing I2,2,1 as a sum of I3,1,1’s were given already in the proof. The remaining

identities are presented below.

The following three identities express I3,1,1(abcdef) as a sum of I2,1,2’s, express I2,1,2(abcdef) as a

sum of I1,2,2’s, and express I1,2,2(abcdef) as a sum of I2,2,1’s modulo I3,2. With these identities the

proof of Theorem 4.3.18 is complete.

Identity B.2.1. The following identity expresses I3,1,1(abcdef) as a sum of 197 I2,1,2 terms and 24

I3,2, modulo δ.

12I3,1,1(abcdef) δ= I2,1,2
(
2[abcdfe]− [abdcfe] + [abdfec]− [abfcde] + [abfdce] +

+ [acbdfe]− [acbefd] + [acdbef ] + [acdfeb]− [acedbf ]− [acfbde]− [acfbed]− [acfedb] +

+ [adbecf ] + [adbefc] + [adcbfe]− [adcfeb] + [adebfc] + [adefbc] + [adefcb]− [adfcbe] +

− [adfecb] + [aebcfd]− [aebdcf ] + [aebfcd]− [aecbfd] + [aecdfb] + [aedcfb] + [aedfbc] +

+ [aedfcb] + [aefbcd]− [afbcde]− [afbdec] + [afcdbe]− [afcedb] + [afdcbe]− [afdecb] +

+ [afebdc] + [afedbc]− [bacfde]− [badfec]− [baecdf ] + [baefdc] + [bafcde] + [bafdec] +

+ [bafecd] + [bcadfe]− [bcaefd] + [bcdaef ]− [bcedaf ] + [bcedfa]− [bcefad]− [bcfeda] +

+ [bdcefa] + [bdeafc] + [bdecaf ] + [bdefca]− [bdface]− [bdfaec]− [beadfc]− [becadf ] +

− [becdfa] + [bedacf ] + [bedcfa] + [befacd] + [bfadce] + [bfaecd]− [bfcaed] + [bfdcea] +

+ [bfdeca] + [bfeadc] + [cabdfe]− [cabfde]− [cadbef ]− [caefbd] + [cafdeb] + [cafebd] +

− [cbafde]− [cbdefa]− [cbdfae]− [cbeafd] + [cbfdae] + [cbfeda]− [cdabef ]− [cdabfe] +

− [cdbeaf ]− [cdbefa] + [cdbfae]− [cdbfea] + [cdeabf ] + [cdeafb]− [cdfabe]− [cdfaeb] +

− [cebdaf ]− [cebdfa]− [cebfda] + [cedabf ] + [cedbaf ] + [cedfab] + [cefbad]− [cfadeb] +

− [cfbdae]− [cfbdea]− [cfdbea]− [cfdeab]− [cfdeba] + [cfebad] + [cfebda] + [dacefb] +

− [daebfc]− [daecbf ]− [dbaefc]− [dbcefa]− [dbecfa] + [dbfaec] + [dbfcea] + [dcabfe] +

+ [dcafeb]− [dceafb]− [dcebaf ]− [dcebfa] + [dcfaeb]− [deabcf ] + [deacbf ]− [deafbc] +

+ [debfca]− [decafb]− [decbfa]− [decfab]− [decfba] + [defbca] + [dfabec] + [dfaecb] +
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+ [dfbaec]− [dfbcea] + [dfbeca]− [dfcbae]− [dfcbea]− [dfebac]− [dfebca]− [eabcfd] +

+ [eacbfd]− [eacdfb] + [eacfdb]− [eadbfc]− [eadcbf ]− [eadcfb] + [ebcadf ] + [ebcfda] +

− [ebdafc] + [ecadfb] + [ecafbd]− [ecdbaf ]− [edbcaf ] + [edcafb] + [edcbfa]− [edfabc] +

− [edfacb]− [edfbca]− [edfcab]− [efadcb] + [efbcad] + [efbdac] + [efbdca] + [efcabd] +

− [efdabc]− [efdacb]− [efdbca]− [efdcba]− [fabdce] + [fabecd]− [fadcbe] + [fadceb] +

− [faecdb]− [fbaced]− [fbaedc]− [fbeadc]− [fbecda]− [fbedac]− [fbedca] + [fcadbe] +

+ [fcbade]− [fcbeda] + [fcdbea] + [fcdeab] + [fcdeba]− [fceabd] + [fdacbe] + [fdceab] +

+ [fdebac] + [fdecab]− [feabdc]− [feacdb]− [feadbc]− [fecbda] + [fedcab] + [fedcba]
)
+

+ I3,2
(
[abcde]− [abcef ] + [abcfe]− [abfed]− [acbdf ] + [acbed]− [acfbe]− [adbcf ] +

− [adfcb] + [aebdf ]− [aecfb] + [bafce] + [bafed]− [bcade] + [bcdaf ] + [bdace] +

− [bdfac]− [beacf ]− [becfa]− [bfadc] + [bfaed]− [cabed]− [cdabf ]− [cdfab]
)
.

Identity B.2.2. The following identity expresses I2,1,2(abcdef) as a sum of 230 I1,2,2 terms, and 1

I3,2 term, modulo δ.

3I2,1,2(abcdef) δ= I1,2,2
(
[abcdef ]− [abcdfe]− [abcedf ]− [abdcef ] + [abdcfe] + [abdefc] +

+ [abecdf ]− [abecfd]− [abefcd]− [abfcde]− [abfdce] + [abfdec] + [abfecd]− [abfedc] +

− [acbdef ]− [acbedf ] + [acbefd]− [acbfed] + [acdbef ]− [acdebf ] + [acdefb]− [acebfd] +

+ [acedfb] + [acefbd] + [acefdb]− [acfbde] + [acfbed] + [acfebd]− [adbcef ]− [adbecf ] +

+ [adbefc] + [adcbef ]− 2[adcbfe] + [adcebf ] + [adcefb] + [adcfbe]− [adebfc] + [adecfb] +

− [adefbc] + [adfbce] + [adfbec]− [adfcbe] + 2[adfceb] + [adfebc]− [adfecb]− [aebcdf ] +

+ [aebcfd]− [aecbfd] + [aecdfb]− [aecfdb] + [aedbfc] + [aedfbc] + [aefbcd]− [aefcdb] +

+ [aefdbc]− [aefdcb] + [afbced]− [afbdce] + [afbdec] + [afbecd] + [afbedc] + [afcbed] +

− [afcdbe]− [afcdeb]− [afcedb]− [afdbce]− 2[afdcbe] + [afdceb] + [afdecb] + [afebdc] +

+ [afecbd]− 2[bacdef ] + [bacedf ]− [bacfed] + [badcef ]− [badcfe]− [badfce] + [baecfd] +

+ [baefcd] + [bafced] + 2[bafdce] + [bcadef ] + [bcadfe] + [bcaedf ]− [bcaefd]− [bcdaef ] +

+ [bcdafe]− [bcdeaf ] + [bcdfae]− [bcdfea]− [bcedaf ]− [bcfade] + [bcfdae]− [bdafec] +

+ [bdcaef ]− [bdceaf ] + [bdcefa] + [bdcfae] + [bdcfea]− [bdeafc]− [bdecfa] + [beacfd] +

− 2[beadfc] + [beafcd]− [beafdc] + [becadf ] + [becdfa] + [becfad]− [becfda]− [bedacf ] +

+ [bedafc]− [bedcfa] + [bedfac] + [befacd]− [befadc] + [befdac]− [befdca]− [bfacde] +

− [bfaced] + [bfadec] + [bfcade] + [bfcaed] + [bfceda]− [bfdaec] + [bfdcae] + [bfdcea] +

− [bfdeca]− [bfeadc] + [bfecda]− [bfedac] + [cabdfe]− [cabefd] + [cadfbe]− [caebdf ] +

+ [caebfd]− [caefdb]− [cafbed]− [cafdeb]− [cafebd]− [cafedb]− [cbadef ] + [cbdefa] +

− [cbdfae]− [cbeafd] + 2[cbedaf ]− [cbedfa]− 2[cbefad] + [cbefda] + [cbfaed]− [cbfdae] +
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− [cbfdea] + [cbfead]− [cbfeda]− [cdbaef ]− [cdbeaf ]− [cdeabf ] + [cdeafb]− [cdebfa] +

− [cdefba] + [cdfeab] + [ceafdb]− [cebadf ]− [cebfad] + [cedabf ]− [cedbfa]− [cedfab] +

− [cefabd] + [cefadb]− [cefbda] + [cfabde]− [cfbdea]− [cfbeda] + [cfdabe]− [cfdaeb] +

− [cfdeab]− [cfeabd]− [cfebad] + [cfedab] + [dabcef ] + [dabcfe]− [dacbef ] + [dacbfe] +

+ [daecbf ]− [dafbce]− [dafbec]− [dafceb]− 2[dafebc] + [dafecb]− [dbacef ]− [dbacfe] +

+ [dbcafe]− [dbcefa]− [dbeacf ] + [dbeafc] + [dbefac]− [dbefca]− [dbface] + 2[dbfaec] +

+ [dbfcae] + [dbfeac]− [dcafbe] + [dcafeb]− [dcbafe]− [dcebaf ]− [dcfabe] + [dcfbae] +

− [deacbf ]− [deacfb]− [deafcb] + [debacf ] + [debcaf ] + [decfab] + [defbac]− [defbca] +

+ [dfaecb]− [dfbeac] + [dfcaeb]− [dfeabc]− [dfebca] + [eabcfd] + [eabfcd]− [eafbdc] +

− [ebacdf ]− [ebadcf ] + [ebcdfa] + [ebdcfa]− [ecbadf ]− [ecdfab]− [edcabf ]− [efadbc]
)
+

− I3,2(abcde) .

Identity B.2.3. The following identity expresses I1,2,2(abcdef) as a sum of 177 I2,2,1 terms, and 1

I3,2 term, modulo δ.

I1,2,2(abcdef) δ= I2,2,1
(
[abcfde] + [abdcfe]− [abecfd]− [abefcd] + [abfcde]− [abfced] +

− [abfecd] + [acbdef ]− [acdbfe]− [acdebf ] + [acefdb]− [acfbde]− [acfdbe]− [adbcfe] +

+ [adbfec] + [adcfeb]− [adfcbe] + [adfceb] + [aebcfd] + [aebdfc] + [aebfdc]− [aedbcf ] +

− [aedfcb] + [aefdbc]− [aefdcb] + [afbcde] + [afbced] + [afcdeb]− [afdbce]− [afdcbe] +

− [afebcd]− [afecdb]− [afedbc] + [bacdfe]− [bacfde] + [bacfed] + [baecfd] + [baefcd] +

− [baefdc]− [bafedc] + [bcefda] + [bdacef ]− [bdaefc] + [bdafce]− [bdcefa] + [bdcfae] +

+ [bdecaf ]− [bdecfa] + [becfda]− [bfaced]− [bfadce] + [cabdfe] + [cabefd] + [cabfde] +

− [cadbef ] + [cadfbe]− [cadfeb]− [caebfd]− [caefdb] + [cafbde] + [cafedb]− [cbdfea] +

+ [cbfade]− [cdabef ] + [cdafbe] + [cdbeaf ] + [cdbefa] + [cdbfae]− [cdefba] + [cdfeab] +

− [cdfeba]− [ceadfb] + [ceafbd]− [cebafd] + [cebdaf ]− [cedabf ]− [cedafb]− [cedbfa] +

− [cefadb] + [cefbad]− [cefdba] + [cfabde]− [cfadbe] + [cfbade] + [dabcfe] + [dabefc] +

− [dabfec] + [dacbef ] + [dacfbe]− [daebfc]− [daecbf ]− [daecfb]− [dafceb]− [dbaecf ] +

+ [dbaefc]− [dbafec] + [dbcaef ] + [dbcafe]− [dbceaf ] + [dbcfea] + [dbeacf ]− [dbecaf ] +

− [dbefac]− [dcafbe] + [dcafeb] + [dcbaef ] + [dcbafe]− [dcbeaf ] + [dcbfea] + [dceabf ] +

− [dcebfa] + [dcefab]− [dcfabe]− [dcfbea] + [deafcb]− [debfac] + [debfca] + [decabf ] +

− [decafb] + [decbaf ]− [decbfa]− [defacb]− [defbca]− [defcba] + [dfacbe]− [dfbace] +

− [dfbaec] + [dfbeac] + [dfcabe] + [dfcbae]− [dfcbea]− [dfeacb]− [dfebca]− [eabdfc] +

− [eabfdc] + [eacfbd] + [eacfdb]− [eadbfc]− 2[eafcbd]− [eafdbc]− [ebdacf ]− [ebfacd] +

− [ebfcad]− [ecabfd] + [ecafbd]− [ecafdb] + [ecbadf ] + [ecbdfa]− [ecdfab] + [ecdfba] +
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+ [ecfabd] + [edacbf ]− [edacfb] + [edbacf ] + [edcabf ] + [edcbfa]− [edfabc]− [edfbac] +

+ [edfbca] + [efabdc]− [efacbd]− [efbdac]− [efbdca] + [fabdec]− [facedb]− [fadecb] +

− [faecdb]− [faedcb]− [fcabde]− [fcadeb] + [fcaebd]− [fdabec] + [fdacbe]− [fdaecb] +

− [feabdc] + [feacbd]− [feadcb]
)

+

− I3,2(abedf) .

B.3 Dan’s reduction for I1,1,1,1,1

In Section 5.3 we applied Dan’s reduction procedure to I1,1,1,1,1 and produced an expression for I1,1,1,1,1
in terms of the 11 depth ≤ 3 integrals I5, I4,1, . . . , I1,4, I3,1,1, . . . , I1,2,2. In Section 5.3.2 we indicated

that identities from Chapter 4 could be used to reduce I1,1,1,1,1 explicitly to I3,1,1, I3,2 and I5 terms

modulo products. The following theorem shows this reduction explicitly.

Theorem B.3.1. As shorthand recall the ‘coupled cross-ratio’ notation In1,...,nk(abcd1 . . . dk) :=

In1,...,nk(cr(a, b, c, d1), . . . , cr(a, b, c, dk)) from Section 4.1.2. Then modulo products, we can give the

following identity for I1,1,1,1,1.

[a | b, c, d, e, f | g] = ψ′(a; b, c, d, e, f)− ψ′(g; b, c, d, e, f) ,

where

ψ′(a; b, c, d, e, f) :=

I3,1,1(−[bdacef ] + [bdae∞c]− [bdaf∞c] + [bda∞ef ] + [bdcae∞] + [bdca∞e] + [bdc∞ae] +

+ [bde∞af ] + [bd∞aef ] + [bd∞eaf ]− [bfac∞e] + [bfad∞e]− [bfa∞ce] + [bfa∞dc] +

+ [bfa∞de]− [bfa∞ec] + [bfcad∞]− [bfcaed]− [bfcae∞] + [bfca∞d] + [bfcda∞] +

− [bfcea∞] + [bfda∞e]− [bfeca∞] + [bfeda∞]− [d∞acbf ] + [d∞aceb] + [d∞acef ] +

− [d∞acfb] + [d∞aebc] + [d∞aecb]− [d∞afbc]− [d∞afcb] + [d∞bcae] + [d∞cabe] +

+ [d∞cbae] + [d∞ebaf ]− [f∞abce] + [f∞abdc] + [f∞abde]− [f∞abec]− [f∞acbe] +

− [f∞aceb] + [f∞adbe] + [f∞adeb] + [f∞caed] + [f∞dabe] + [f∞daeb] + [f∞deab] +

− [∞bacdf ] + [∞baced]− [∞bacfd]− [∞bacfe] + [∞badef ] + [∞badfe] + [∞baecd] +

+ [∞baedc]− [∞bafcd]− [∞bafce] + [∞bafde]− [∞bafec] + [∞bcade] + [∞bcaed] +

+ [∞bcdae] + [∞bdaef ] + [∞bdafe] + [∞bdcae] + [∞bdeaf ] + [∞bedaf ]) +

+ I3,2([bdace]− [bdae∞] + [bda∞f ] + [bde∞c] + [bde∞f ] + 2[bd∞ae] + [bd∞af ] +

+ [bd∞ec] + [bd∞ef ] + [bfad∞] + [bfa∞c]− 2[bfa∞d] + [bfa∞e]− [bfca∞] +

− [bfce∞] + 3[bfda∞] + [bfde∞] + [bfd∞c]− [bfec∞]− [bfe∞d] + [bf∞dc] +

− [bf∞ed] + [b∞cad] + [b∞cae] + [b∞dae] + [b∞daf ] + [dbeaf ] + 2[db∞ae] +
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+ [d∞abe]− [d∞aeb]− [d∞aec] + [d∞aef ] + 3[d∞bae] + [d∞baf ] + [d∞bce] +

+ [d∞bef ] + [d∞cae] + [d∞cbe]− [d∞efa]− [d∞efb]− [d∞feb]− [fbcae] +

+ [fbdae] + 2[fbda∞]− 2[fbea∞]− [f∞abd] + [f∞aeb] + [f∞bed] + 2[f∞eab] +

+ [f∞ebd]− [∞baec]− [∞baed] + 2[∞baef ]− [∞bafd] + [∞bcae] + [∞bcde] +

+ [∞bdaf ] + [∞bdef ] + 2[∞beaf ]− [∞befa] + 2[∞dbae] + [∞dbaf ] + [∞dcab] +

− [∞deaf ] + [∞fcae]− [∞fdae] + [∞feab]) +

+ 1
3I3,2(−[bdacf ] + 4[bdaef ]− [bdafc]− 2[bdafe]− [bdca∞]− [bdc∞a] + 7[bdeaf ] +

− 2[bdefa]− [bfade]− [bfae∞]− [bfcad]− [bfcda] + 2[bfdae]− [bfdce] +

+ 2[bfdea]− 7[bfea∞] + 5[bfed∞]− [bfe∞a]− [b∞dea]− [b∞dec] + [b∞eda] +

− [b∞efa]− [b∞efd] + [b∞fea] + [d∞acf ] + [d∞afc]− [d∞afe] + 4[d∞ebf ] +

+ [fbdea] + [fbdec]− [fbeda]− 2[fbe∞a]− 2[fbe∞d] + 2[fb∞ea] + [f∞abc] +

+ [f∞acb] + [f∞ade] + [f∞cad] + [f∞cda]− 2[f∞dae] + [f∞dce]− 2[f∞dea] +

+ 2[∞bacf ] + 4[∞bade] + 2[∞bafc]− [∞bafe] + [∞bcad] + [∞bcda] + 7[∞bdae] +

+ 4[∞bdce]− 2[∞bdea] + 4[∞bedf ]− [∞defa]− [∞defb] + [∞dfea]− [∞fdea] +

− [∞fdec] + [∞feda]) +

+ I5(−[bdac] + 15[bdae] + 15[bdaf ]− 2[bda∞] + 6[bdce] + 5[bdc∞] + 13[bdef ] + 6[bd∞e] +

+ 6[bd∞f ]− 3[bfad] + 8[bfae]− 8[bfa∞]− 2[bfce]− 8[bfde] + 10[bfd∞]− 8[bfea] +

+ 3[d∞ab] + 21[d∞ae]− 3[d∞af ] + 2[d∞bf ] + 6[d∞ce] + 13[f∞ab] + [f∞ad] +

− 7[f∞ae] + 2[f∞ce] + 6[f∞db] + 6[f∞eb] + 4[∞bad] + 14[∞bae] + 10[∞baf ] +

+ 8[∞bce] + 13[∞bde] + 8[∞bdf ] + 4[∞bea]) +

+ 1
3I5(19[bfcd] + 4[bfda]− 13[bfe∞] + 32[bf∞a] + 23[d∞be]− 4[d∞ea] +

+ 22[d∞ef ] + 16[d∞fa]− [f∞cd]− 4[f∞da] + 16[f∞de] + 16[f∞ea]− [∞bcd] +

− 4[∞bda] + 40[∞bef ] + 16[∞bfa]) .





Appendix C

Proof of the I−4,1(x,
∑
i[pi]) identity

C.1 Statement of the theorem

Firstly, let us recall the identity we intend to prove using symbol.

Theorem 7.4.6. For I−4,1 applied to the Li2 algebraic equation, we can find explicit Li5 terms, and

give the following identity.

I−4,1(x,
∑
i[pi])

�=

− c

2 Li5(x) + bLi5(1− x) + bLi5(1− 1
x ) + (7.4.5a)

+ Liρ
−

5

(
1

abc(c− a))

[
t

g(p, x)

])
+

∑
p∈{ pi }

Liρ
−

5

(
− b

8(c− a)

[
(1− x)2

x

pi
(1− pi)2

]
+ (7.4.5b)

+
(
c− a

4b + 1
)

[xpi] + b

a

([
1

1− pi

]
−
[

1− x
1− pi

]
−
[

1− 1/x
1− pi

]))
(7.4.5c)

Here I−4,1 is as in Definition 7.4.1, and Liρ
−

5 is the symmetrisation we obtain using Definition 7.3.11

and the automorphism ρ from Definition 7.4.5. We assume a, b > 0, and define c by a + b + c = 0.

Moreover t is as in Equation 7.3.1, defining the pi, and g(α, x) is as in Definition 7.3.10.

The first step, before we begin the proof, is to give the full expanded out version of this identity. This

is so that all the terms are immediately visible, and we can calculate directly the symbol. Also, since

I−4,1 is defined with a factor of 1
2 , it may be marginally more convenient to multiply by 2 throughout,

rather than carry factors of 1
2 through the calculation of the symbol of I4,1. So the version of the

theorem we will prove is the following.

Theorem C.1.1. For I−4,1 applied to the Li2 algebraic equation, we can find explicit Li5 terms, and

give the following identity.

I4,1(x,
∑
i[pi])− I4,1(x,

∑
i[

1
pi

]) �=

− cLi5(x) + 2bLi5(1− x) + 2bLi5(1− 1
x ) + (C.1.1a)
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+ 2
abc(c− a)) Li5

([
t

xa(1− x)b

]
+
[

t

xc(x− 1)b

])
+ (C.1.1b)

+
∑
i

{
− b

2(c− a) Li5
(

(1− x)2

x

pi
(1− pi)2

)
+ (C.1.1c)

+
(
c− a

2b + 2
)

Li5 (xpi) +
(
c− a

2b − 2
)

Li5
(
x

pi

)
+ (C.1.1d)

+ 2b
a

Li5
([

1
1− pi

]
−
[

1− x
1− pi

]
−
[

1− 1/x
1− pi

])
+ (C.1.1e)

− 2b
c

Li5
([

1
1− 1/pi

]
−
[

1− x
1− 1/pi

]
−
[

1− 1/x
1− 1/pi

])}
. (C.1.1f)

C.2 Proof of the theorem

This theorem is proven by directly computing and comparing the symbol of both sides. I will break

this down into a number of easier to understand steps.

C.2.1 Symbol of the right hand side

Let’s compute the symbol of the RHS of Equation C.1.1, and gather by the last tensor factor initially.

We know that S(Li5(α)) �= −(1− α) ∧ α⊗ α⊗3. We shall write {α}n = −(1− α) ∧ α⊗ αn−2, so that

we may write the symbol of Li5(α) as {α}4 ⊗ α or {α}3 ⊗ α⊗ α for simplicity.

Equation C.1.1a: The symbol of this is

−c {x}4 ⊗ x+ 2b {1− x}4 ⊗ (1− x) + 2b {1− 1/x}4 ⊗ (1− 1/x)

Now expand out ⊗(1− 1/x) = ⊗(1− x)−⊗x to get

S(Equation C.1.1a) = − (c {x}4 + 2b {1− 1/x}4)⊗ x+

+ (2b {1− x}4 + 2b {1− 1/x}4)⊗ (1− x) .

Equation C.1.1b: The symbol of this is

2
abc(c− a)

{
t

xa(1− x)b

}
4
⊗ t

xa(1− x)b + 2
abc(c− a)

{
t

xc(x− 1)b

}
4
⊗ t

xc(x− 1)b

Since t = ±
∏
j pj , and ±1 is irrelevant in the symbol, we have that ⊗ t

xa(1−x)b = ⊗
∏
j pj

xa(1−x)b =

⊗
(∑

j [pj ]− a[x]− b[1− x]
)
. So we obtain

S(Equation C.1.1b) = 2
abc(c− a)

{
t

xa(1− x)b

}
4
⊗ (
∑
i[pi]− a[x]− b[1− x]) +

+ 2
abc(c− a)

{
t

xc(x− 1)b

}
4
⊗ (
∑
i[pi]− c[x]− b[1− x]) .
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Equation C.1.1d: The symbol of this is∑
i

(
c− a

2b + 2
)
{xpi}4 ⊗ (xpi) +

(
c− a

2b − 2
){

x

pi

}
4
⊗ x

pi
,

which expands out to give

S(Equation C.1.1d) =
∑
i

( c−a2b + 2) {xpi}4 ⊗ ([x] + [pi]) +

+
∑
i

( c−a2b − 2)
{
x

pi

}
4
⊗ ([x]− [pi]) .

Remark C.2.1. In the remaining terms we will need to use the result that

1− pi = ±
∏
j p

1/b
j

p
a/b
i

,

since the pi are roots of the equation xa(1− x)b = t. Doing this does assume that a, b > 0, in order to

have
∏
pj = ±t. This allows us to eliminate 1− pi factors in favour of pi factors in the symbol.

Equation C.1.1c: The symbol is∑
i

− b

2(c− a)

{
(1− x)2

x

pi
(1− pi)2

}
4
⊗ (1− x)2

x

pi
(1− pi)2 .

Using the above, we find the last factor expands out to

⊗(2[1− x]− [x] + [pi]− 2[1− pi]) ,

and that 1− pi further expands out to

⊗( 1
b

∑
j [pj ]−

a
b [pi]) ,

giving overall

⊗(2[1− x]− [x] + [pi]− 2
b

∑
j [pj ] + 2a

b [pi]) .

So

S(Equation C.1.1c) =
∑
i

− b

2(c− a)

{
(1− x)2

x

pi
(1− pi)2

}
4
⊗

⊗ (2[1− x]− [x] + [pi]− 2
b

∑
j [pj ] + 2a

b [pi]) .

Equation C.1.1e: The symbol of this is

2b
a

({
1

1− pi

}
4
⊗ 1

1− pi
−
{

1− x
1− pi

}
4
⊗ 1− x

1− pi
−
{

1− 1/x
1− pi

}
4
⊗ 1− 1/x

1− pi

)
.

The terms gather as follows, to give

S(Equation C.1.1e) =
∑
i

−2b
a

({
1

1−pi

}
4
−
{

1−x
1−pi

}
4
−
{

1−1/x
1−pi

}
4

)
⊗
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⊗
(

1
b

∑
j [pj ]−

a
b [pi]

)
+

− 2b
a

({
1−x
1−pi

}
4

+
{

1−1/x
1−pi

}
4

)
⊗ (1− x) +

+ 2b
a

{
1−1/x
1−pi

}
4
⊗ x .

Equation C.1.1f: The symbol of this is

−2b
c

({
1

1− 1/pi

}
4
⊗ 1

1− 1/pi
−
{

1− x
1− 1/pi

}
4
⊗ 1− x

1− 1/pi
−
{

1− 1/x
1− 1/pi

}
4
⊗ 1− 1/x

1− 1/pi

)
.

The terms gather as follows, to give

S(Equation C.1.1f) =
∑
i

2b
c

({
1

1−1/pi

}
4
−
{

1−x
1−1/pi

}
4
−
{

1−1/x
1−1/pi

}
4

)
⊗

⊗
(
−[pi] + 1

b

∑
j [pj ]−

a
b [pi]

)
+

+ 2b
c

({
1−x

1−1/pi

}
4

+
{

1−1/x
1−1/pi

}
4

)
⊗ (1− x) +

− 2b
c

{
1−1/x
1−1/pi

}
4
⊗ x .

Now we can gather all of the terms of the symbol of the RHS of Equation C.1.1.

S(Equation C.1.1 RHS) =(
− c {x}4 − 2b {1− 1/x}4 +

− 2
bc(c− a)

{
t

xa(1− x)b

}
4
− 2
ab(c− a)

{
t

xc(x− 1)b

}
4

+

+ ( c−a2b + 2)
∑
i

{xpi}4 + ( c−a2b − 2)
∑
i

{
x

pi

}
4

+

+ b

2(c− a)
∑
i

{
(1− x)2

x

pi
(1− pi)2

}
4

+

+ 2b
a

∑
i

{
1−1/x
1−pi

}
4
− 2b

c

∑
i

{
1−1/x
1−1/pi

}
4

)
⊗ x+

+
(

2b {1− x}4 + 2b {1− 1/x}4 +

− 2
ac(c− a)

{
t

xa(1− x)b

}
4
− 2
ac(c− a)

{
t

xc(x− 1)b

}
4

+ (C.2.1)

−
∑
j

(
b

c− a

{
(1− x)2

x

pi
(1− pi)2

}
4

+

− 2b
a

{
1−x
1−pi

}
4
− 2b

a

{
1−1/x
1−pi

}
4

+ 2b
c

{
1−x

1−1/pi

}
4

+ 2b
c

{
1−1/x
1−1/pi

}
4

))
⊗ (1− x) +

+
∑
i

(
2

abc(c− a)

{
t

xa(1− x)b

}
4

+ 2
abc(c− a)

{
t

xc(x− 1)b

}
4

+

+ ( c−a2b + 2) {xpi}4 − ( c−a2b − 2)
{
x

pi

}
4

+
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+
∑
j

(
1

c− a

{
(1− x)2

x

pj
(1− pj)2

}
4

)
+ 1

2

{
(1− x)2

x

pi
(1− pi)2

}
4

+

− 2
a

∑
j

({
1

1−pj

}
4
−
{

1−x
1−pj

}
4
−
{

1−1/x
1−pj

}
4

)
− 2

({
1

1−pi

}
4
−
{

1−x
1−pi

}
4
−
{

1−1/x
1−pi

}
4

)
+

+ 2
c

∑
j

({
1

1−1/pj

}
4
−
{

1−x
1−1/pj

}
4
−
{

1−1/x
1−1/pj

}
4

)
+

+ 2
({

1
1−1/pi

}
4
−
{

1−x
1−1/pi

}
4
−
{

1−1/x
1−1/pi

}
4

))
⊗ pi .

C.2.2 Symbol of the left hand side

For the LHS we need a good way of writing the symbol of I4,1(x, y), modulo �. Or at least a good

way of writing the symbol of I−4,1(x, y), modulo �.

Perhaps the nicest expression for the symbol of I4,1(x, y) mod � is the one given in Proposition 7.4.3,

which gives it a structure similar to that of κ, and the ‘φ5’ element Goncharov defines. Recall that

this states

Proposition 7.4.3. Modulo products, the symbol of I4,1(x, y) be can be expressed as follows.

I4,1(x, y) �=

− 3
{
x

y

}
5
− {x}5 − {y}5 +

+
{
x

y

}
4
⊗ 1− x

1− y + {x}4 ⊗ (1− y) + {y}4 ⊗ (1− x) +

−
(
{1− x}3 + {1− y}3 −

{
1− x
1− y

}
3

+
{

1− 1/x
1− 1/y

}
3

)
⊗ x

y
⊗ x

y
+

+
(
{x}3 ⊗ (1− y)− {y}3 ⊗ (1− x) +

{
x

y

}
3
⊗ 1− x

1− y

)
⊗ x

y
,

where we write {x}n to mean −(1− x) ∧ x⊗ xn−2.

We therefore obtain the following expression for the symbol of I−4,1(x, y), by summing I4,1(x, y) and

−I4,1(x, 1
y ). There are a few simplifications to make immediately using

{
1
y

}
n

= −(−1)n {y}n.

I4,1(x, y)− I4,1(x, 1
y

) �=

− 3
{
x

y

}
5

+ 3 {xy}5 + 2 {y}4 ⊗ (1− x) +

+
{
x

y

}
4
⊗ 1− x

1− y + {x}4 ⊗ (1− y)− {xy}4 ⊗
1− x

1− 1/y − {x}4 ⊗ (1− 1/y) +

−
(
{1− x}3 + {1− y}3 −

{
1− x
1− y

}
3

+
{

1− 1/x
1− 1/y

}
3

)
⊗ x

y
⊗ x

y
+

+
(
{1− x}3 + {1− 1/y}3 −

{
1− x

1− 1/y

}
3

+
{

1− 1/x
1− y

}
3

)
⊗ xy ⊗ xy +

+
(
{x}3 ⊗ (1− y)− {y}3 ⊗ (1− x) +

{
x

y

}
3
⊗ 1− x

1− y

)
⊗ x

y
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−
(
{x}3 ⊗ (1− 1/y)− {1/y}3 ⊗ (1− x) + {xy}3 ⊗

1− x
1− 1/y

)
⊗ xy ,

Now sum over y = pi, to obtain the LHS of the identity in Equation C.1.1. We obtain

I4,1(x,
∑
i

[pi])− I4,1(x,
∑
i

[ 1
pi

]) �=

∑
i

(
− 3

{
x

pi

}
4
⊗ x

pi
+ 3 {xpi}4 ⊗ (xpi) + 2 {pi}4 ⊗ (1− x) +

+
{
x

pi

}
4
⊗ 1− x

1− pi
+ {x}4 ⊗ (1− pi)− {xpi}4 ⊗

1− x
1− 1/pi

− {x}4 ⊗ (1− 1/pi) +

−
(
{1− x}3 + {1− pi}3 −

{
1− x
1− pi

}
3

+
{

1− 1/x
1− 1/pi

}
3

)
⊗ x

pi
⊗ x

pi
+

+
(
{1− x}3 + {1− 1/pi}3 −

{
1− x

1− 1/pi

}
3

+
{

1− 1/x
1− pi

}
3

)
⊗ xpi ⊗ xpi +

+
(
{x}3 ⊗ (1− pi)− {pi}3 ⊗ (1− x) +

{
x

pi

}
3
⊗ 1− x

1− pi

)
⊗ x

pi
+

−
(
{x}3 ⊗ (1− 1/pi)− {1/pi}3 ⊗ (1− x) + {xpi}3 ⊗

1− x
1− 1/pi

)
⊗ xpi

)
.

Gather by the last tensor factor to obtain

S(Equation C.1.1 LHS) �=∑
j

(
− 3

{
x

pj

}
4

+ 3 {xpj}4 +

−
(
{1− x}3 + {1− pj}3 −

{
1− x
1− pj

}
3

+
{

1− 1/x
1− 1/pj

}
3

)
⊗ x

pj
+

+
(
{1− x}3 + {1− 1/pj}3 −

{
1− x

1− 1/pj

}
3

+
{

1− 1/x
1− pj

}
3

)
⊗ xpj+

+
(
{x}3 ⊗ (1− pj)− {pj}3 ⊗ (1− x) +

{
x

pj

}
3
⊗ 1− x

1− pj

)
+

−
(
{x}3 ⊗ (1− 1/pj)− {1/pj}3 ⊗ (1− x) + {xpj}3 ⊗

1− x
1− 1/pj

))
⊗ x+

+
(∑

j

{
x

pj

}
4
−
∑
j

{xpj}4 + 2
∑
j

{pi}4

)
⊗ (1− x)+ (C.2.2)

+
∑
i

(
3
{
x

pi

}
4

+ 3 {xpi}4 − {xpi}4 + {x}4 +

+ a

b

({
x

pi

}
4
− {xpi}4

)
− 1
b

∑
j

({
x

pj

}
4
− {xpj}4

)
+

+
(
{1− x}3 + {1− pi}3 −

{
1− x
1− pi

}
3

+
{

1− 1/x
1− 1/pi

}
3

)
⊗ x

pi
+
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+
(
{1− x}3 + {1− 1/pi}3 −

{
1− x

1− 1/pi

}
3

+
{

1− 1/x
1− pi

}
3

)
⊗ xpi+

−
(
{x}3 ⊗ (1− pi)− {pi}3 ⊗ (1− x) +

{
x

pi

}
3
⊗ 1− x

1− pi

)
+

−
(
{x}3 ⊗ (1− 1/pi)− {1/pi}3 ⊗ (1− x) + {xpi}3 ⊗

1− x
1− 1/pi

))
⊗ pi .

C.2.3 Comparing both sides

Now we begin to compare both sides to show they are equal. We look at the difference between

Equation C.2.2 and Equation C.2.1. To do this, we first need the following result.

Proposition C.2.2. The following combination is a functional equation for Li4:

F :=− 2b {1− x}4 − 2b {1− 1/x}4 +

+ 2
ac(c− a)

{
t

xa(1− x)b

}
4

+ 2
ac(c− a)

{
t

xc(x− 1)b

}
4

+

+
∑
i

(
b

c− a

{
(1− x)2

x

pi
(1− pi)2

}
4

+

+ 2b
a

{
1−x
1−pi

}
4

+ 2b
a

{
1−1/x
1−pi

}
4

+

− 2b
c

{
1−x

1−1/pi

}
4
− 2b

c

{
1−1/x
1−1/pi

}
4

+

+
{
x

pi

}
4
− {xpi}4 + 2 {pi}4

)
= 0 .

Proof. This arises by expanding out the κ element (essentially I3,1) applied to the two term relation

{x}2 +
{ 1
x

}
2, and the algebraic Li2 equation

∑
i {pi}2, in two different ways. These expansions are

given in [Gan00], where the expression for κ([x] + [ 1
x ], y) comes originaly from Zagier.

The difference between the two expansions of

κ

(
[x] + [ 1

x ],
∑
i

[pi]
)

vanishes modulo �. Scaling the result by −2b
c−a , and adding 4bc

c−a times the algebraic Li4 equation

produces the combination F . Some simplifications using #roots = −c are necessary.

C.2.3.1 Factors ending ⊗(1− x)

Let us compare the ⊗(1− x) factor of both sides, to see if they are equal. We see that the difference is

the combination F , from Proposition C.2.2 so the two sides are equal.
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C.2.3.2 Factors ending ⊗pi

Now consider the ⊗pi factor of both sides. Take the difference of the LHS− RHS, then we can can

add 1
bF to obtain, after some simplification(

2 {1− x}4 + 2 {1− 1/x}4 − {x}4 +

− 1
2 {xpi}4 −

1
2

{
x

pi

}
4

+

+ 1
2

{
(1− x)2

x

pi
(1− pi)2

}
4
− 2
b

∑
j

{pj}4 +

− 2
a

∑
j

({
1

1−pj

}
4

)
+ 2

({
1

1−pi

}
4
−
{

1−x
1−pi

}
4
−
{

1−1/x
1−pi

}
4

)
+

+ 2
c

∑
j

({
1

1−1/pj

}
4

)
+ 2

({
1

1−1/pi

}
4
−
{

1−x
1−1/pi

}
4
−
{

1−1/x
1−1/pi

}
4

)
+ (C.2.3)

−
(
{1− x}3 + {1− pi}3 −

{
1− x
1− pi

}
3

+
{

1− 1/x
1− 1/pi

}
3

)
⊗ x

pi
+

−
(
{1− x}3 + {1− 1/pi}3 −

{
1− x

1− 1/pi

}
3

+
{

1− 1/x
1− pi

}
3

)
⊗ xpi+

+
(
{x}3 ⊗ (1− pi)− {pi}3 ⊗ (1− x) +

{
x

pi

}
3
⊗ 1− x

1− pi

)
+

+
(
{x}3 ⊗ (1− 1/pi)− {1/pi}3 ⊗ (1− x) + {xpi}3 ⊗

1− x
1− 1/pi

))
⊗ pi .

Now recall the algebraic Li4 functional equation from Proposition 7.3.7. It says that

Proposition 7.3.7 (Algebraic Li4 equation, Lemma 4.1, Equation (4.1.6), in [Gan95]). The following

is a functional equation for Li4.

Li4

(∑
i

1
a

[
1

1− pi

]
+ 1
b

[pi] + 1
c

[
1− 1

pi

])
�= 0 ,

where c is defined by a+ b+ c = 0.

Multiplying the functional equation in this result by 2, and inverting the last argument shows that

2
a

∑
j

({
1

1−pj

}
4

)
+ 2
b

∑
j

{pj}4 −
2
c

∑
j

({
1

1−1/pj

}
4

)
= 0 .

Use this to kill the three sums in Equation C.2.3. Now expand out and gather by the fourth tensor

factor of the remainder. Use {α}4 = {α}3 ⊗α, and don’t bother converting 1− pi into pj ’s. We obtain

the following(
2 {x}3 + 2 {1− 1/x}3 +

{
(1− x)2

x

pi
(1− pi)2

}
3

+

− 2
{

1− x
1− pi

}
3
− 2

{
1− 1/x
1− pi

}
3
− 2

{
1− x

1− 1/pi

}
3
− 2

{
1− 1/x
1− 1/pi

}
3

+

− 2 {pi}3 +
{
x

pi

}
3

+ {xpi}3

)
⊗ (1− x)⊗ pi +
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+
(
− 2 {1− 1/x}3 − {x}3 −

1
2 {xpi}3 −

1
2

{
x

pi

}
3

+

− 1
2

{
(1− x)2

x

pi
(1− pi)2

}
3

+
{

1− 1/x
1− pi

}
3

+
{

1− 1/x
1− 1/pi

}
3

+

− {1− 1/pi}3 +
{

1− x
1− pi

}
3

+
{

1− x
1− 1/pi

}
3

)
⊗ x⊗ pi +

+
(

1
2 {xpi}3 + 1

2

{
x

pi

}
3

+ 1
2

{
(1− x)2

x

pi
(1− pi

2
)
}

3
+ (C.2.4)

+ {1− 1/pi}3 −
{

1− x
1− 1/pi

}
3
−
{

1− 1/x
1− 1/pi

}
3

+

+ {1− pi}3 −
{

1− x
1− pi

}
3
−
{

1− 1/x
1− pi

}
3
− {x}3

)
⊗ pi ⊗ pi +

+
(
−
{

(1− x)2

x

pi
(1− pi)2

}
3
− 2 {1− pi}3 + 2

{
1− x
1− pi

}
3

+ 2
{

1− 1/x
1− pi

}
3

+

− 2 {1− 1/pi}3 + 2
{

1− x
1− 1/pi

}
3

+ 2
{

1− 1/x
1− 1/pi

}
3

+

+ 2 {x}3 −
{
x

pi

}
3
− {xpi}3

)
⊗ (1− pi)⊗ pi .

Recall the 3-term identity for Li3. Also recall Kummer’s functional equation for Li3.

Lemma C.2.3 (3-term). The following combination is a functional equation for Li3

T := {x}3 + {1− x}3 + {1− 1/x}3 = 0 .

Proposition C.2.4 (Kummer). The following combination is a functional equation for Li3

Kx,y := −
{

(1− x)2

x

y

(1− y)2

}
3
−
{
x

y

}
3
− {xy}3 + 2 {y}3 + 2 {x}3 +

+ 2
{

1− x
1− y

}
3

+ 2
{

1− x
1− 1/y

}
3

+ 2
{

1− 1/x
1− y

}
3

+ 2
{

1− 1/x
1− 1/y

}
3

= 0 .

We can use these functional equations to show that the expression in Equation C.2.4 vanishes.

Specifically it is equal to

(Kx,pi − 2Tx)⊗ (1− x)⊗ pi + (− 1
2Kx,pi + 2Tx + Tpi)⊗ x⊗ pi +

+ ( 1
2Kx,pi − Tpi)⊗ pi ⊗ pi + (−Kx,pi + 2Tpi)⊗ (1− pi)⊗ pi = 0 .

So the difference between the ⊗pi factors is zero, meaning the factors on both sides are equal.

C.2.3.3 Factors ending ⊗x

Now consider the ⊗x factor. Expand out, and gather by the fourth factor. This time, convert the

1− pi terms to pj ’s when gathering. We obtain(
− c {x}3 + 2b {1− 1/x}3 +



C.2. Proof of the theorem 276

+ 2a
bc(c− a)

{
t

xa(1− x)b

}
3

+ 2c
ab(c− a)

{
t

xc(x− 1)b

}
3

+

+
∑
j

((
c− a

2b − 1
)
{xpj}3 +

(
c− a

2b − 1
){

x

pj

}
3
− b

2(c− a)

{
(1− x)2

x

pj
(1− pj)2

}
3

+

− 2b
a

{
1− 1/x
1− pj

}
3

+ 2b
c

{
1− 1/x
1− 1/pj

}
3

+ {1− pj}3 − {1− 1/pj}3 +

−
{

1− x
1− pj

}
3

+
{

1− 1/x
1− 1/pj

}
3

+
{

1− x
1− 1/pj

}
3
−
{

1− 1/x
1− pj

}
3

))
⊗ x⊗ x+

+
(
− 2b {1− 1/x}3 +

+ 2
c(c− a)

{
t

xa(1− x)b

}
3

+ 2
a(c− a)

{
t

xc(x− 1)b

}
3

+

+
∑
j

(
b

c− a

{
(1− x)2

x

pj
(1− pj)2

}
3

+ 2b
a

{
1− 1/x
1− pj

}
3

+ (C.2.5)

− 2b
c

{
1− 1/x
1− 1/pj

}
3
−
{
x

pj

}
3

+ {xpj}3

))
⊗ (1− x)⊗ x+

+
∑
i

(
−2

bc(c− a)

{
t

xa(1− x)b

}
3

+ −2
ab(c− a)

{
t

xc(x− 1)b

}
3

+

+
(
c− a

2b − 1
)
{xpi}3 −

(
c− a

2b + 1
){

x

pi

}
3

+

+ b

2(c− a)

{
(1− x)2

x

pi
(1− pi)2

}
3
− 2b

c

{
1− 1/x
1− 1/pi

}
3
− 2 {1− x}3 +

− {1− pi}3 +
{

1− x
1− pi

}
3
−
{

1− 1/x
1− 1/pi

}
3
− {1− 1/pi}3 +

+
{

1− x
1− 1/pi

}
3
−
{

1− 1/x
1− pi

}
3
− {x}3 + {xpi}3 +

+ 1
b

∑
j

(
−b
c− a

{
(1− x)2

x

pj
(1− pj)2

}
3
− 2b

a

{
1− 1/x
1− pj

}
3

+

+ 2b
c

{
1− 1/x
1− 1/pj

}
3

+
{
x

pj

}
3
− {xpj}3

)
+

− a

b

(
−b
c− a

{
(1− x)2

x

pi
(1− pi)2

}
3
− 2b

a

{
1− 1/x
1− pi

}
3

+

+ 2b
c

{
1− 1/x
1− 1/pi

}
3

+
{
x

pi

}
3
− {xpi}3

))
⊗ pi ⊗ x .

Recall from Gangl [Gan00], the following Li3 functional equation, and also a related version

Proposition C.2.5. The following are functional equations for Li3

G1 := 1
abc

{
t

xa(1− x)b

}
3

+
∑
j

(
1
a

{
1− x
1− pj

}
3

+ 1
c

{
1− 1/x
1− 1/pj

}
3

+
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+ 1
b

{
x

pj

}
3
− 1
a
{1− pj}3

)
+ {1− 1/x}3 = 0

G2 := 1
abc

{
t

xc(x− 1)b

}
3

+
∑
j

(
1
c

{
1− x

1− 1/pj

}
3

+ 1
a

{
1− 1/x
1− pj

}
3

+

+ 1
b
{xpj}3 −

1
c
{1− 1/pj}3

)
+ {1− x}3 = 0 .

Proof. One equation comes directly from Gangl [Gan00]. The other can be obtained by setting x 7→ 1/x,

and using that ∑
j

1
a
{1− pj}3 =

∑
j

1
c
{1− 1/pj}3 .

This can be obtained by by writing {pj}3 = −{1− 1/pj}3 − {1− pj}3 using the 3-term relation, and

substituting this into the algebraic Li3 equation∑
j

−1
a
{1− pj}3 + 1

b
{pj}3 = 0 ,

given in Proposition 7.3.5

If we use these, and the equations in previous propositions, we see that all factors here cancel, as

follows. The expression in Equation C.2.5 is equal to

1
c− a

2a2G1 + 2c2G2 + b

2
∑
j

Kx,pj − b
∑
j

Tpj − 2c2Tx

⊗ x⊗ x+

+ 1
c− a

2abG1 + 2bcG2 − b
∑
j

Kx,pj + 2b
∑
j

Tpj − 2bcTx

⊗ (1− x)⊗ x+

+ 1
c− a

∑
i

(
− 2aG1 − 2cG2 +

∑
j

Kx,pj − 2
∑
j

Tpj +

+ c− a
2 Kx,pi + (c− a)Tpi − 2aTx

)
⊗ pi ⊗ x = 0 .

This shows that the difference of the ⊗x factors of the two sides is 0, so they are equal.

C.2.4 End of proof

The results in the above subsections show that both sides agree exactly. Section C.2.3.1 shows that

the ⊗(1− x) factors agree, Section C.2.3.2 shows that the ⊗pi factors agree, and Section C.2.3.3 shows

that the ⊗x factors agree on both sides. Combining these subsections completes the proof of the

identity in Theorem C.1.1.


