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Condensed matter theory is the study of systems at finite density. In

this thesis we will attempt to argue that gauge-gravity dualities can

give deep and meaningful insights into the behaviour of strongly

coupled condensed matter systems. The first three chapters will be a

review of material already available in literature. Chapter 1 will

introduce holography and the AdS-CFT correspondence.

Particularly, in this chapter, the technique for the extraction of

diffusion constants for charge and shear stress-energy-momentum

fluctuations in a field theory with a holographic dual will be

demonstrated. Chapter 2 will summarise relevant literature on the

relativistic fluid-gravity correspondence. In the first half of the

chapter it will be shown how to calculate the transport coefficients

and Navier-Stokes equations for a suitable thermal field theory. The

second half of chapter 2 will then be dedicated to extracting the

transport coefficients for a strongly coupled field theory dual to a

Reissner-Nordstrøm AdS spacetime. In chapter 3 a scaling of the

metric and gauge field found in chapter 2 will be taken such that the

boundary field theory admits Galilean, as opposed to relativistic,

symmetry. Consequently, the governing hydrodynamic equations will

be the non-relativistic, incompressible Navier-Stokes. Chapters 4 and

5 represent novel work. In chapter 4 the transport coefficients for a

particular strongly coupled thermal field theory with underlying

Schrödinger symmetry will be extracted from a charged,

asymptotically Schrödinger spacetime. The governing hydrodynamic
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equations will be compressible with non-relativistic symmetry as

opposed to those found via the scaling limit of chapter 3. In chapter

5 we show how knowledge of the transport coefficients of a thermal

field theory can be used as a test-bed for numerical methods to

explore beyond the hydrodynamic (long wavelength and low

frequency) regime. With this in mind we consider

Reissner-Nordstrøm AdS4 and determine the two point correlators at

arbitrary frequency and momentum. Finally in chapter 6 we

summarise the work discussed in this thesis and speculate about

further applications of hydrodynamic techniques to strongly coupled

condensed matter theories.
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Chapter 1

The AdS-CMT programme

Condensed matter physics is the study of large collections of interacting parti-

cles which includes solids, liquids, gases and more exotic states of matter such as

plasmas. On a theoretical level several outstanding problems continue to puzzle

condensed matter theorists among which are the mechanism of high temperature

superconductivity and the fundamental description of strange metals. It may be

that the resolution to these questions lies in developing an understanding of how

strong coupling affects the physics of materials. However systems at strong coupling

continue to be one of the least tamed areas of modern physics.

The calculational problems faced at strong coupling are due to the breakdown

of perturbation theory. Usually we posit that the current state of our physical

system, for example a collection of interacting particles, is not too different from a

system without interactions. Perturbation theory then adds small corrections to the

observables of these “zero-interaction” systems to calculate the physical observables

in the interacting system. In many cases of interest however perturbation theory

breaks down as the interactions are strong and thus corrections are expected to be

large.

Similar issues with the nature of strong coupling have been encountered in high

energy particle physics. The necessity for a method to describe strongly coupled

phenomena, such as the quark-gluon plasma (QGP), led many people in this con-

text to consider more exotic toy models in the hopes that generic behaviour could be

extracted. Historically however it had even proven difficult to write down a useful

1
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description of the simplest such models at strong coupling. For instance a “simple”

theory that will be important to us is planar N = 4 SYM with a large ’t Hooft

coupling. However, it is for this theory in particular that a fruitful approach origi-

nating in string theory, called the AdS-CFT correspondence, was discovered. In this

thesis we shall attempt to demonstrate how generalisations to this correspondence

can also be applied to condensed matter physics.

To date the most extensive use of this conjecture has been in the study of

non-abelian gauge theories since early examples of the AdS-CFT correspondence

related N = 4 SYM with many colours (large N) and large ’t Hooft coupling λ to

classical gravity on AdS5 × S5. However AdS-CFT is only one precise realisation

from string theory of what is believed to be a far larger class of correspondences:

the gauge-gravity dualities. These highly speculative dualities are all holographic

in nature meaning they relate a theory in (d + 1) dimensions (the “bulk” theory)

to one in d dimensions (the “boundary” theory). For most dualities based on the

original correspondence, the dictionary states that boundary fall-offs for solutions to

classical field equations living in a class of (d+1)-dimensional spacetimes correspond

to sources and expectation values for some operators living in dual, strongly coupled,

conformal field theories1. Thus we can translate the hard problem of calculating

expectation values in generic strongly coupled field theories into the much easier

problem of solving classical field equations in a higher dimensional spacetime. One

such example is the now classic set of results on extracting the real-time correlators

of some strongly coupled systems from gravity [5, 6].

It is natural to ask how these dualities may be of use in condensed matter

physics. By tuning the physics of the bulk theory, the boundary theory can be

made to mimic the qualitative features of many condensed matter theories and it

is what we can learn from these mimic theories that primarily interests us here.

Key examples are the superfliud phase transition [7–9] and a Fermi surface [10–12].

See [13], [14] and [15] for reviews.

1Later in this thesis we shall encounter an example where the spacetime is not AdS but instead

a Schrödinger spacetime. This is an example of this larger class of gauge-gravity dualities.
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The logical process by which we use gauge-gravity dualities to examine con-

densed matter systems is quite straightforward - we begin by isolating the essential

features of the condensed matter system. For example, a low temperature supercon-

ductor at the perturbative level consists of a collection of electrons where, at suffi-

ciently low temperatures, electron pairs form bound states under phonon exchange

called Cooper pairs [16,17]. These Cooper pairs being bosonic condense under suit-

able conditions breaking a global U(1) symmetry. This spontaneous breaking of the

U(1) symmetry has also been described in terms of an effective Ginzburg-Landau

model [18]. The essential features here are a scalar which gains a non-zero expecta-

tion value and breaks a U(1) symmetry. This is the motivation for studying phase

transitions in Einstein-Maxwell-scalar theories where, when certain parameters sat-

urate a bound in the system, the scalar becomes tachyonic and condenses [8]. Due

to the coupling between the scalar and gauge field this condensation provides the

gauge field with a mass and thus breaks the global U(1) in the boundary field theory.

Considering such systems allows us to ask questions about superconductivity when

the microscopic nature of the theory is strongly coupled.

The kinds of questions that we can answer by conducting these holographic

studies include:

• Is it possible to have a particular condensed matter phenomena, such as super-

conductivity, when the fundamental theory governing the system is strongly

coupled? As an example, the answer for a superconductor turns out to be yes

as has been shown in [7–9].

• Are there features shared by large classes of systems at strong coupling? The

answer is yes, one example being the shear viscosity to entropy ratio. The

large size of the class of theories which share this bound gives us hope that we

might be able to observe such features in real world physics.

It is the study of these questions that constitutes the current AdS-CMT programme

with a hope to constructing more and more realistic models of actual condensed

matter systems. However, it should be noted that at present we do not have sufficient

control over the AdS-CMT correspondence to construct gravitational duals to an
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arbitrary condensed matter theory and thus, for now, we are stuck with somewhat

loose models. Indeed, the complexity of the holographic dual necessary to provide

an exact description of a particular condensed matter system will almost certainly

be too complicated to be of practical use.

One useful technique yielding interesting results when applied to condensed

matter systems is hydrodynamics. Hydrodynamics is the framework describing how

perturbed, interacting, thermal systems approach global equilibrium at long times.

Notably this area has been the subject of intense study and, while there have been

significant achievements such as those of Navier, Stokes and Kolmogorov, there

remain many phenomena, like turbulence, that still lack a full theoretical description.

Importantly, an ability to completely describe the generic behaviour of fluids would

lead to a deeper understanding of a vast range of models. This is because a typical

feature of interacting field theories with a long-wavelength expansion is a sector well

described by the hydrodynamic regime.

For a fluid description whose microscopic origin is strongly coupled we cannot

apply the usual perturbative methods to calculate transport coefficients. As such,

these fluids represent an interesting theoretical challenge. Moreover, beyond purely

theoretical considerations, there are several practical applications where controllable

models of such fluids would be useful. One example concerns the dynamics of the

QGP whose transport coefficients can be determined indirectly from experimental

data [19–21]. The interest in applying gauge-gravity dualities to this system comes

from the fact that the correspondence describes a large class of ideal fluids and the

QGP seems to be approximately ideal2

This thesis is principally concerned with the fluid-gravity sector of the gauge-

gravity dualities where it was discovered that the restriction of certain large N gauge

theories to a long-wavelength regime is dual to a simplified gravitational description

[29]. This programme of studying duals to the fluid description of strongly coupled

conformal field theories began with the seminal works of [30,31] where calculations of

2A few key papers in the application of AdS-CFT to QCD include [22–27]. Using the general

lessons learned from the application of AdS-CFT has already led to a qualitative improvement in

understanding the properties of this state of matter like its low viscosity to entropy ratio [28].



Chapter 1. The AdS-CMT programme 5

the graviton retarded Green’s functions were made at the linearised level of gravity.

A significant achievement in [32] was a procedure to extend the previous calculations

to the full non-linear equations. Again we remind ourselves that the results obtained

by these methods can give only qualitative predictions about nature because, as yet,

no observed phenomenon is known to have as an underlying description a large N

gauge field. However, the fluid-gravity correspondence is a rich area still producing

new and significant results and in the conclusion to this thesis we shall put the work

presented here into the context of more recent work.

In what follows we shall begin by giving a brief introduction to the generalities

of AdS-CFT. This will comprise the next section. In particular we shall indicate

how to find expectation values for the boundary operators that will be of interest

to us - the stress-energy-momentum (SEM) tensor and charge currents. This dis-

cussion will be of necessity cursory and where necessary the interested reader will

be referred to literature. However, in the subsequent sections we shall perform in

detail two calculations to make explicit how the AdS-CFT dictionary is used in

practice. Namely we shall calculate the boundary diffusion constants corresponding

to turning on a probe gauge field and linearised shear gravitational perturbations in

a Schwarzschild-AdS bulk dual. This will additionally allow us to introduce valu-

able notation which we shall make use of throughout the thesis. Finally we end

the chapter by demonstrating how one may go about showing universality of the

quantities we may be interested in calculating. In particular we shall argue that the

shear viscosity to entropy ratio of all field theories dual to spatially isotropic, two

derivative gravity models is fixed.

In the second chapter we shall discuss charged relativistic fluids being clear

about assumptions such as spatial isotropy, parity invariance and scale invariance.

This chapter is split into two pieces. In the first and largest part we will detail the

nature and process of determining effective, relativistic hydrodynamic descriptions

- as until recently this area lacked a standardised description. We shall write down

the effective theory governing charged fluids in the absence of background electric

and magnetic fields to first order in a derivative expansion. Additionally we shall

comment upon the extension to higher orders in derivatives and theories with non-
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trivial boundary field strengths but not calculate them as they will not be relevant

to the rest of the thesis. The second part of this chapter describes in short the same

process as seen from the dual gravitational theory, in particular, how to write down

the dual description of the hydrodynamic modes of a strongly coupled field theory.

As there are many excellent papers available, which we shall reference, we shall

restrict ourselves to a single example skipping details that are explored elsewhere.

Where relevant we will attempt to provide a comparison to the linearised analysis

in this introduction.

In the next two chapters we discuss incompressible and compressible non-

relativistic fluids. These will each have different underlying symmetries; a discussion

of which can be found in appendix A. In both cases we shall calculate holographic

duals to certain boundary theories with these hydrodynamic modes. The discus-

sion of charged compressible non-relativistic fluids is based on [1] and demonstrates

not only that gauge field anomalies may be important for non-relativistic fluids but

that a conjecture about the Prandtl number given in [33] is false in the presence of

charge.

Having started by discussing a linearised analysis in the introduction we shall

come full circle and discuss the linearised perturbation analysis of shear modes

around a Reissner-Nordstrøm AdS4 black hole. This will prove slightly more inter-

esting than the linearised examples discussed in the introduction as the presence of

a background charge in the gravity theory leads to the coupling of gauge and grav-

itational modes. We shall show how the analytic hydrodynamic analysis we have

formulated in previous chapters can provide a solid basis from which we can explore

more exotic areas of the AdS-CFT correspondence outside the long wavelength, low

frequency regime.

1.1 Holography

Gravity is an inescapable feature of nature. We are often saved from having to

consider it as part of our fundamental theories because the local curvature scale in

our day to day lives is much larger than the Planck length `P. However, when we
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consider very high energies it becomes necessary to understand the quantum nature

of gravity. A fundamental feature of a quantum theory of gravity appears to be

holography - the first example of which is the Bekenstein-Hawking result that the

entropy associated with a black hole is proportional to its area in Planck units. This

is one of several results that guides us into thinking that gravity in d+ 1 dimensions

must be in a correspondence with a field theory in fewer dimensions. In this section

we shall outline the basics of the AdS-CFT dictionary as a precise realisation of

holography but to keep readability often refer the reader to extensive reviews in

literature [13,29,34–43].

The first and most natural question to ask is: if holography is a fundamental

aspect of nature, in which field theories are the gravitational degrees of freedom

most obvious? It is clear at least that gravitational degrees of freedom have not

been seen in the weak coupling regimes of quantum field theories. This leads us to

expect that if gauge-gravity duality holds fundamentally the only place where it can

be obvious must be at strong coupling.

The most precise collection of holographic correspondences come from com-

pactifying Type IIB string theory on AdS5 ×M5 where M5 is an Einstein-Sasaki

manifold. Such compactifications preserve varying amounts of supersymmetry from

the original string theory leading us to believe our gravitational setup is stable. Ad-

ditionally each compactification leads to different conserved charges in the dual field

theory. The approach of considering duals given by string compactifications is called

the “top-down” approach and suggests a relationship between partition functions of

the form 〈
exp

(
−i
∫
ddxφ(0)Ô

)〉
QFT

= Zstring[φ(0)] (1.1.1)

where Zstring[φ(0)] is the Type IIB string action with the “bulk” fields taking bound-

ary values φ(0) and
〈

exp
(
−i ∫ ddxφ(0)Ô

)〉
QFT

is the generating functional for cor-

relators of Ô in the dual quantum field theory.

The numerous examples of “top-down” holographic duals guides us into conjec-

turing that any asymptotically, locally AdS space is dual to some strongly coupled

field theory. This justifies the more conjectural “bottom-up” approach where we

look for some asymptotically, locally AdS spacetime with bulk fields that yield the
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desired matter content in the dual field theory. Thus many of the most interesting

features of the duality are contained in the nature of the asymptotic geometry of

AdS.

We shall now lay out some of the generic features of the dictionaries. Consider

an asymptotically, locally AdS spacetime M with a boundary B and a metric g.

The asymptotic form of the metric near the boundary of AdS can be written locally

as3

g = gMNdx
M ⊗ dxN

z→0∼ `2

(
dz2 + ĥµν(z, x

µ)dxµdxν

z2

)
(1.1.2)

where B is given by z = 0. As displayed above we use capital Latin letters for bulk

indices while Greek letters refer to boundary coordinate indices. This metric can

extended across the boundary to a metric ḡ on the closed manifold M̄ =M∪B via

a defining function f such that ḡ = f 2g. The defining function has a simple zero at

z = 0 and is strictly positive onM but is otherwise arbitrary. We call the pullback

of the metric

γ = lim
ε→0

f 2 g|z=ε (1.1.3)

onto the boundary the “boundary metric”. As any defining function f with the

specified properties will do we see that f actually specifies an element of a class of

boundary metrics [44]. It can be shown that bulk diffeomorphisms induce diffeomor-

phisms of the boundary and, in pure AdS space, the symmetry algebra generated

by the bulk diffeomorphisms furnishes a representation of the conformal group at

the boundary.

Similarly for any bulk matter field on M, which we shall denote as Φ, we can

define its extension to the closed manifold. If we consider the linear response of

the boundary theory to perturbations of the bulk fields we can see that, for probe

matter fields governed by second order differential equations, there are two unique

3For this section only it is convenient to work with the coordinate z. In subsequent sections we

shall make the replacement z = `2

r where ` is the AdS length scale.
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fall-offs in z as z tends to zero

z∆− , z∆+ . (1.1.4)

Our notation is such that ∆− ≤ ∆+ and the bulk field on the manifold M̄ is given

by

Φ̄ = f−∆−Φ . (1.1.5)

When the bulk conserved charges like the energy

E = −
∫

Σt

ddx
√
g|ΣtuMTmatter

MN ξN (1.1.6)

are finite, where Σt is a spacelike surface, uM is the velocity of a time-like observer

and ξN is a time-like Killing vector field, the solution Φ is called normalisable [34].

When they are not it is called non-normalisable and the leading coefficient, denoted

φ(0), is interpreted as a source in the boundary field theory

φ(0) = lim
z→0

f−∆−Φ. (1.1.7)

We see that φ(0) is a scalar density of weight ∆−. We interpret this in the dual field

theory as a deformation of the field theory Lagrangian

L → L+

∫
ddx
√−γφ(0)Ô (1.1.8)

where 〈O〉 can be read off as the leading coefficient of z∆+ in the bulk field Φ.

Ô is interpreted as an operator in the field theory. In this way we see that the

deformation is irrelevant if ∆+ > d, marginal if ∆+ = d and relevant if ∆+ < d.

Of particular importance in what follows are the boundary stress-energy-

momentum (SEM) tensor (T µν) and charge current (JµI where I labels a collection

of Abelian charges). The boundary SEM tensor can be extracted in two ways -

firstly we can transform our metric into Fefferman-Graham form and read off the

subleading piece. Here we prefer a second method where we calculate the bulk

Brown-York tensor (TBY) on some hypersurface of constant z = ε. We then take

ε→ 0 and read off the value of the Brown-York SEM tensor at the boundary. The

asymptotic Brown-York SEM tensor will be naively divergent at the boundary so we
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will need to subtract appropriate counterterms (a procedure for determining these

counterterms can be found in [45,46]). Either way we note that we can write

(TBY)MN = KMN − ΠMNK ,

FMN =
1

2
(JMnN − JNnM) + F̃MN

where nM is the unit one-form annihilating vectors lying in constant z surfaces,

ΠMN = gMN − nMnN is the radial projector and KMN = Π P
(M | ∇Pn|N) and K are

the extrinsic curvature of a constant z slice and its trace respectively. Without loss

of generality it is natural to choose our regulating function to be f = z
`

[44] which

implicitly picks a conformal frame in the boundary. In terms of the bulk metric and

bulk field strength the boundary metric and boundary field strength are then

γµν = lim
z→0

(z
`

)2

ĥµν , (1.1.9)

F̃µν = lim
z→0

F µν , (1.1.10)

while the boundary currents are

T µν = − 1

κ2
d+1

lim
z→0

(z
`

)−(d−2)

(Kµν − ΠµνK − counterterms) , (1.1.11)

Jµ = − g2
F

κ2
d+1

lim
z→0

(z
`

)−d
nMF µ

M , (1.1.12)

where gF is the gauge coupling, κd+1 =
√

8πGd+1 and we have identified the overall

constants by varying the on-shell actions with respect to the source4. Strictly the

currents on the left hand side of Eqs. (1.1.11) and (1.1.12) should be denoted〈
T̂ µν

〉
and

〈
Ĵµ
〉

where T̂ µν and Ĵµ are the SEM tensor and current operators in

the boundary field theory. This notation is cumbersome however and we instead use

the above notation. It should be noted that the number and form of the counterterms

are dimension dependent [45,46].

As we stated at the beginning of this section a black hole spacetime has par-

ticular thermodynamic properties. Importantly non-extremal black holes have a

temperature. The next obvious question to ask is - what is the effect of placing a

4For further details on the normalisation of our bulk fields see Eq. (2.2.61).
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Figure 1.1: An illustration of fixing boundary conditions in Euclidean (right) and

Lorentzian (left) AdS-CFT respectively.

black hole in an asymptotically, locally AdS spacetime according to the dual bound-

ary field theory? It is clear that, if there is a one-to-one correspondence between the

bulk gravitational theory and the boundary field theory, when the bulk theory has

periodicity in imaginary time this should be shared by the boundary field theory5.

Hence we interpret placing a black hole in the spacetime as heating up the boundary

field theory.

Finally, we come to the issue of boundary conditions at asymptotic times which

are important in Lorentzian theories for defining correlators. In the above we have

often implicitly worked in the Euclideanised version of the bulk theory. In such

Euclideanised theories it is generally possible to prove that the asymptotic value of

5Analytically continuing a field theory to imaginary time τ a thermal correlator in the canonical

ensemble is defined in terms of the corresponding density matrix, exp
(
−βĤ

)
, by

〈
Ô(τ,x)Ô(0,0)

〉
β

=
Tr
(

exp
(
−βĤ

)
Ô(τ,x)Ô(0,0)

)
Tr
(

exp
(
−βĤ

)) (1.1.13)

where the left hand side is the expectation value of the two point function in the canonical ensemble,

β the inverse temperature, Ĥ the Hamiltonian and we have assumed Euclidean time ordering.

Using the time evolution operator and applying cyclicity of trace indicates that any field operators

are to identified when their time arguments differ by multiples of β.
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the field and regularity in the interior is enough to uniquely specify the classical

solution to the bulk field equations. This ensures that there is only one correlator of

interest with Euclidean time ordering. Analytic continuation of the Euclidean corre-

lator gives a Feynman correlator. However, in Lorentzian space, there is more than

one interesting correlator. This ambiguity is tied to the fact that there exist many

normalisable solutions which are regular in Lorentzian AdS and these can always be

added arbitrarily to any solution in the bulk without affecting our boundary con-

ditions. A way to get at the other correlators is to specify boundary conditions on

initial and final time slices in the bulk (see Fig. (1.1) and [47]). The procedure of [47]

requires us to attach pieces of Euclidean AdS on these initial and final slices, which

corresponds to the Keldysh time-contour-ordering formalism in the boundary, where

the renormalisation terms are known. In [48] it was proven that the commonly used

technique for calculating retarded correlators by demanding infalling conditions on

a black hole horizon [5] is justified by this “piecewise AdS-CFT” procedure.

This introduction to AdS-CFT has been very brief. There are many excellent

reviews available [13, 35–43, 49]. We shall introduce wherever necessary in the rest

of this thesis additional pieces of information available in these reviews however,

in the next section, we shall show how the AdS-CFT correspondence can be used

to extract boundary physics from linearised fluctuations of gauge fields and gravity

with an eye to relating to later results.

1.2 Linearised perturbations

Consider the following Schwarzschild-AdS spacetime

ds2 =
r2

`2

(−f(r)dt2 + dx2
d−1

)
+
`2dr2

r2

f(r) = 1−
(r+

r

)d
(1.2.14)

F = 0

where F is the field strength of a U(1) gauge field and our boundary metric at

asymptotically large r is the Minkowski metric6. The position of the black hole

6Note the change of radial coordinate from z to r mentioned previously.
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horizon is at r = r+.

In and of themselves the linearised perturbations of space-times are interesting

as studying the spectrum of quasinormal modes can indicate whether an instability

exists for the spacetime to evolve to a different configuration. In the context of AdS-

CFT this has a dual meaning where such a change in the bulk theory corresponds

to a phase transition of the boundary field theory. In particular, the Schwarzschild-

AdS spacetimes are interesting for us because they describe a thermal boundary field

theory and we can use them to compare and contrast with the charged spacetimes

in later chapters.

In this section we shall show how to use the AdS-CFT correspondence to work

out the boundary source and expectation values for some operators corresponding

to gauge and gravitational perturbations of Eq. (1.2.14). Again, this will prove

useful later for comparison purposes as well as giving a feel for how to use the

correspondence. In chapter 5 we shall return to these calculations in the context of

Reissner-Nordstrøm AdS4 where the gauge and gravitational modes become coupled.

It is necessary to lay out some formalism with which we shall be consistent

throughout the thesis. We make the following convention choice for our Fourier

transforms

φ (r, xµ) =

∫
ddk

(2π)d
φ (r,kµ) exp (ikµx

µ)

kµ = (−ω,k) .

After performing the transformation we remind ourselves that generically a bulk

field Φ at large r looks like

Φ (r;ω,k) =
φ0 (ω,k)

r∆+
+ . . .+

〈
Ô (ω,k)

〉
r∆−

+ . . . .

A priori there is no relationship between the source and expectation value and we

need to specify some boundary condition in the bulk to relate them. For retarded

Green’s functions in linear response where the amplitude of φ0 is assumed to be

sufficiently small we solve the bulk equations of motion with infalling conditions

[48,50] on the future horizon and extract the retarded Green’s function from

GR (ω,k) =

〈
Ô [φ0 (ω,k)]

〉
φ0 (ω,k)

.
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Continuing GR to complex ω we remind the reader that it is solutions to the unforced

equations which govern how the system returns to equilibrium. This corresponds to

finding ω (k) such that φ0 (ω (k) ,k) ≡ 0. If ω ∈ R then the bulk solution is called

a normal mode. However, as is more generally the case, if ω ∈ C then the solution

is called a quasinormal mode. For ω (k) a quasinormal mode if =ω (k) > 0 in our

sign convention then there exists an exponentially growing mode in the spectrum

of perturbations and thus the bulk is linearly unstable. This is indicative of the

aforementioned phase transition.

1.2.1 Probe gauge fields in Schwarzschild-AdS

The bulk action we wish to consider is

S = − g2
F

4κ2
d+1

∫
dd+1x

√−gFMNF
MN (1.2.15)

where we have introduced a normalisation g2
F to our action to better compare with

results obtained from Eq. (2.2.61) in chapter 2. We shall perform a small amplitude

perturbation of the boundary by turning on a source for the bulk gauge field. Shift

FMN → FMN + εfMN where FMN ≡ 0 in our background (Eq. (1.2.14)). The

resultant action which is second order in ε is

ε2S(2) = −ε2 g2
F

4κ2
d+1

∫
dd+1x

√−gfMNf
MN . (1.2.16)

Note that the piece which is first order in ε is simply the variation of the background

gauge field strength FMN . Demanding that the background field equations are solved

minimizes this term and, because of our choice of background, sets FMN ≡ 0. The

variation of S(2) gives:

δS(2) = − g2
F

κ2
d+1

∫
∂M

ddx
(√−gfMNnM

)
δaN

+
g2
F

κ2
d+1

∫
M
dd+1x

√−g
[

1√−g∂M
(√−gfMN

)]
δaN .

Modulo the subtleties of real time AdS-CFT already mentioned - to make this

variation zero on-shell we shall specify that the gauge field perturbation be infalling

on the future black hole horizon and have the value aµ(t, x) at the boundary.
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We shall partially fix the gauge freedom of the field and Fourier transform giving

aµ (r;xµ) =

∫
ddk

(2π)d
aµ (r; kµ) exp (ikµx

µ) , (1.2.17)

ar (r;xµ) = 0 (1.2.18)

with kµ = (−ω,k). Maintaining this gauge choice will leave the residual gauge

transformations

aµ (r;xµ)→ aµ (r;xµ) + ∂µλ (xµ)

or in Fourier space

aµ (r;xµ)→ aµ (r; kµ) + kµλ (kµ)

where we have decomposed the gauge transformation into Fourier components too.

The resultant equations of motion are

∂2
rat (r; kµ) +

(
d− 1

r

)
∂rat (r; kµ) +

`4

r4f(r)

[
ωkiai (r; kµ) + k2at (r; kµ)

]
= 0 ,

∂2
rai (r; kµ) +

[(
d− 1

r

)
+
f ′(r)
f(r)

]
∂rai (r; kµ)− `4

r4f(r)

[
k2ai (r; kµ)− kikjaj (r; kµ)

]
+

`4

r4f(r)2

[
ω2ai (r; kµ) + ωkiat (r; kµ)

]
= 0

and

0 = ω∂rat (r; kµ) + kif(r)∂rai (r; kµ)

which comes from variation with respect to ar.

Now assume that the fields depend only on r, t and kx = k. It is clear this is a

consistent ansatz for our equations which reduce to:

0 = ∂2
rat (r;ω, k) +

(
d− 1

r

)
∂rat (r;ω, k)

+
`4

r4f(r)

[
ωkax (r;ω, k) + k2at (r;ω, k)

]
,

0 = ∂2
rax (r;ω, k) +

[(
d− 1

r

)
+
f ′(r)
f(r)

]
∂rax (r;ω, k)

+
`4

r4f(r)2

[
ω2ax (r;ω, k) + ωkat (r;ω, k)

]
.

The above equations will produce interesting long lived modes when we consider
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long wavelengths and low frequencies. Additionally we must consider

0 = ω∂rat (r;ω, k) + kf(r)∂rax (r;ω, k)

0 = ∂2
rai (r;ω, k) +

[(
d− 1

r

)
+
f ′(r)
f(r)

]
∂rai (r;ω, k)

+
`4

r4f(r)2

[
ω2 − f(r)k2

]
ai (r;ω, k)

to check overall consistency. The first of these latter two equations is actually a gauge

constraint coming from demanding that S(2) be gauge invariant under residual gauge

transformations.

Now consider the field E given by the gauge invariant object

E (r;ω, k) = ωax (r;ω, k) + kat (r;ω, k) .

Writing the equations of motion for our field components in terms of E the resultant

equations of motion are

0 = ∂2
rE (r;ω, k) +

[(
d− 1

r

)
+
f ′(r)
f(r)

+
k2f ′(r)

(ω2 − k2f(r))

]
∂rE (r;ω, k)

+
`4

r4f(r)2

(
ω2 − k2f(r)

)
E (r;ω, k) , (1.2.19)

0 = ∂2
rai (r;ω, k) +

[(
d− 1

r

)
+
f ′(r)
f(r)

]
∂rai (r;ω, k)

+
`4

r4f(r)2

[
ω2 − f(r)k2

]
ai (r;ω, k) (1.2.20)

and the gauge constraint

0 = ω∂rat (r;ω, k) + kf(r)∂rax (r;ω, k) . (1.2.21)

Eqs. (1.2.19), (1.2.20) and (1.2.21) are still difficult to solve analytically for

arbitrary k and ω. There exists a tractable regime however when ω and k are small

(long wavelengths and low frequencies) which was first examined in detail in [30,31].

This, as we shall see more explicitly in chapter 2, is exactly where we expect to see

hydrodynamic behaviour in the field theory. Notice that the only difference between

our equations of motion for E and ai is due to a modification of the damping term

in the equation of motion for E. We shall now attempt to solve the equations of

motion in this “hydrodynamic” regime.
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Small ω

In the limit of small ω we find that Eq. (1.2.20) becomes

0 = ∂2
rai (r;ω, k) +

[(
d− 1

r

)
+
f ′(r)
f(r)

]
∂rai (r;ω, k)

⇒ ai (r;ω, k) = a
(0)
i + (d− 2) 〈Ji〉

∫ ∞
r

dr

`

(
`

r

)d−1
1

f(r)
.

For the case of a purely thermal background we have

ai (r;ω, k) = a
(0)
i + (d− 2) 〈Ji〉 2F1

[
1, 1− 2

d
, 2− 2

d
,
(r0

r

)d]
. (1.2.22)

In the general case, to make this result finite, as r → r+ we require that 〈Ji〉 ≡ 0.

Similarly, for the E field, our equation of motion is

0 = ∂2
rE (r;ω, k) +

[(
d− 1

r

)
+
f ′(r)
f(r)

ω2

ω2 − k2f(r)

]
∂rE (r;ω, k) .

This is a first order equation in drE so the solution is easy to find

E = E(0) +
(d− 2) 〈JE〉(
ω
T

)2 − ( k
T

)2

∫ ∞
r

dr

`

(
`

r

)d−1
(
ω
T

)2 − ( k
T

)2
f(r)

f(r)
(1.2.23)

where we have defined

E
r→∞∼ E(0) + 〈JE〉

(
`

r

)d−2

+ . . .

The integral is logarithmically divergent in the near horizon except when ω
T
<< k

T
.

Near region

We would like to impose that the fields are infalling as we expect that freely falling

observers should see nothing special at the black hole horizon. This implies that the

gauge field must solve the differential equation

∂rAµ =
`2

r2f(r)
∂tAµ

near the horizon. This equation actually relates field strengths at the horizon and

is unsurprisingly the condition imposed when considering the membrane paradigm.
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In Fourier space we have

∂rAµ = −i ω`2

r2f(r)
Aµ

⇒ Aµ = exp

(
−iω`2

∫
dr

1

r2f(r)

)
Fµ(r)

= F̃µ(r)


(r − r0)

− iω`2

r20f
′(r0)2 , non− extremal

exp
(

+ 2iω`2

r20f
′′(r0)(r−r0)

)
, extremal

exp
(
iω`2

r

)
, vacuum

where Fµ(r) and F̃µ(r) are regular functions in r as r → r+. Here we shall only look

at the non-extremal case. Now let

Fp = (E, ai) exp

(
iω`2

∫
dr

1

r2f(r)

)
with p = 0, 1, . . . , d − 1 and note that Fp is regular as r → r+. Our equations of

motion become

0 = d2
rFp (r;ω, k) +

[
− 2iω`2

r2f(r)
+

(
d− 1

r

)
+
f ′(r)
f(r)

+
k2f ′(r)

(ω2 − k2f(r))
δ0p

]
drFp (r;ω, k)

+

[
− iω`2

r2f(r)

(
d− 3

r
+

k2f ′(r)
(ω2 − k2f(r))

δ0p

)
− k2`4

r4f(r)

]
Fp (r;ω, k) .

Solving our near horizon equation in a power series in r−r+ will supply two integra-

tion constants. These will be used to fix the unspecified coefficients in Eq. (1.2.22)

and Eq. (1.2.23). We shall search only for regular solutions to our equations of

motion which implies that Fp has a power series expansion of the form:

Fp(r) = cp + c̃p (r − r0) +O2 (r − r0) . (1.2.24)

Substituting into the equation of motion we find:

c̃p =
iω`2

(
d−3
r+

+ k2f ′(r+)
ω2 δ0p

)
+ k2`4

r+2

r+
2f ′(r+)− 2iω`2

cp . (1.2.25)

In the limit that ω << k this becomes

c̃p = i
`2

r+
2

k2

ω
δ0pcp (1.2.26)

where, to obtain this final result, we have shifted cp → ω
T
cp. This latter replacement

is in part justified by the fact that when T becomes large the near horizon conditions

become asymptotically close to the trivial solution leaving an unperturbed ground

state.
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Matching

We now match our hydrodynamic and near horizon solutions. Let’s begin with the

ai components. The small r expansion of the hydrodynamic limit of ai is

ai (r;ω, k) = a
(0)
i .

Matching to the near horizon expansion we see that a
(0)
i ≡ ci and c̃i ≡ 0. Thus

the gauge field in the transverse directions is identically zero when ω
T

is taken to be

small.

Up until this point we have not had to place a restriction on the trajectories

ω(k) in the complex ω plane other than ω(k)
k
→ 0 as k → 0. Even once we have fixed

the coefficients E(0) and 〈JE〉 using the near horizon expansion

〈JE〉 = i
(r+

`

)d−3
[

`T

(d− 2)

](
k

T

)2

cE (1.2.27)

E(0) = cE

[
ω

T
+ i

(
T`2

(d− 2)r+

)(
k

T

)2
]

all the trajectories noted above are permissable. However, if we require a quasinor-

mal mode then we must set the source term to zero. For a non-trivial solution we

cannot set cE ≡ 0 which means we are forced to pick only one of the ω(k) trajectories

which corresponds to a pole in the retarded Green’s function. The pole’s equation

of motion in the complex frequency plane is

ω

T
= −i

(
d

4(d− 2)π

)(
k

T

)2

+ . . . (1.2.28)

to the current order in k
T

where we used r+ = 4πT`2

d
. This gives the same result that

was originally found in [30] and subsequently for various other decoupling limits

in [51]. It becomes asymptotically close to the origin as T → ∞ and thus is para-

metrically close to thermal equilibrium (where E(0) = ω = k = 0). Moreover the

residue of the pole is given simply by evaluating 〈JE〉 in Eq. (1.2.27) for k
T

small.

1.2.2 Fluctuations of a boosted black brane

As another illustration of extracting boundary expectation values for operators in

the dual field theory from linearised perturbations we consider gravitational per-

turbations about a boosted black brane. This will also give us an opportunity to



1.2. Linearised perturbations 20

introduce notation that will be useful to us later. Before we look at our specific

geometry of interest however we discuss some of the generalities of solving the lin-

earised Einstein equations in asymptotically, locally AdS spaces. Now, given our

background metric g(0), a generic perturbation h looks like

g = g
(0)
MNdx

MdxN + εhMNdx
MdxN .

Intuitively it is clear that to first order in ε we should be able to write the equation

that determines h as an operator defined in terms of g(0) and its derivatives acting

linearly upon h. In the next section we shall do this for the example of perturbations

about the boosted black brane using the symmetry of the background to break up

our perturbation into tensors with respect to spatial symmetries.

There are some useful geometric expressions which we shall use below and it is

interesting to see them in a generic form. Firstly, the inverse bulk metric to first

order in ε is

g−1 =
[
gPQ(0) − εgPK(0) hKLg

LQ
(0)

]
∂P ⊗ ∂Q .

The perturbation to the Ricci tensor is

R
(1)
MP =

1

2
∇2hMP − 1

2

[∇M∇Lh
L
P +∇P∇Lh

L
M

]
+

1

2
∇M∇Ph

+
1

2

[
R R
M [g]hRP +R R

P [g]hRM
]−RMNPR[g]hNR

while the perturbation to the Ricci scalar is

R(1) = ∇2h−∇M∇Lh
LM .

For our asymptotically AdS spacetimes the Einstein equation takes the form

RMN +
d

`2
gMN = sMN (1.2.29)

where sMN = TMN − 1
d+1

TgMN is the part of the Einstein equations that vanishes

in the absence of matter. Expanding in ε we have(
R

(0)
MN ± dg(0)

MN

)
+ ε
(
R

(1)
MN ± dhMN

)
= s

(0)
MN + εs

(1)
MN .
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The order ε0 piece is satisfied by our background metric and we can use it to rear-

range the order ε piece to

1

2
∇2hMP − 1

2

[∇M∇Lh
L
P +∇P∇Lh

L
M

]
+

1

2
∇M∇Ph−RMNPR

[
g(0)

]
hNR

= s
(1)
MP −

1

2

[(
s(0)
) R

M
hRP +

(
s(0)
) R

P
hRM

]
. (1.2.30)

For later use define Ẽ
(1)
MNdx

M⊗dxN to be equal to the left hand side of this equation.

Definitions and gauge choices

Having discussed the generalities of linearised gravity in AdS let’s consider the

problem we are particularly interested in which is perturbations around a boosted

black brane geometry. These have metrics of the form

ds2 = −2u(0)
µ dxµdr + r2 (1− f(r))u(0)

µ u(0)
ν dxµdxν + r2ηµνdx

µdxν

+εhMNdx
MdxN (1.2.31)

with h being our perturbation and uµ(0) some constant time-like vector which we shall

allow to be general up to being unit normalised. We have set ` = 1 in this section

for brevity. The “background” part of this metric can be conveniently written in

two ways

ds2 = −2u(0)
µ dxµdr + r2 (1− f(r))u(0)

µ u(0)
ν dxµdxν + r2ηµνdx

µdxν

= −2u(0)
µ dxµdr − r2f(r)u(0)

µ u(0)
ν dxµdxν + r2Πµνdx

µdxν (1.2.32)

where the object Πµν is called the spatial projector. It is defined to be

Πµν = γµν + u(0)
µ u(0)

ν (1.2.33)

where γ is the boundary metric which in the current problem is the Minkowski

metric η. We make the choice that raising and lowering of Greek indices is done

with the boundary metric γ.

For posterity we state two further background quantities which will be useful

for us to know in the following. Firstly the inverse background metric g−1
(0) has the

form

g−1
(0) = r2f(r)∂r ⊗ ∂r + 2uµ(0)∂µ ⊗ ∂r +

1

r2

(
Π−1

)µν
∂µ ⊗ ∂ν
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where (Π−1)
µν

is defined so that δµν = (Π−1)
µσ

Πσν . Secondly the Riemann tensor7

of the background is

Rµναβ = r4f(r) [ΠανΠβµ − ΠαµΠβν ]

−1

2
r3f(r)∂r

(
r2f(r)

)×[
u(0)
µ Πναu

(0)
β − u(0)

ν Πµαu
(0)
β + u(0)

ν Πµβu
(0)
α − u(0)

µ Πνβu
(0)
α

]
Rrµαν =

1

2
r∂r
(
r2f(r)

) [
u(0)
α Πνµ − u(0)

ν Παµ

]
Rrµrν =

1

2
u(0)
ν u(0)

µ ∂2
r

(
r2f(r)

)
.

For now we shall consider general perturbations hMN which can potentially

change the boundary metric. In the end though we will be looking for perturbations

to our background bulk metric that are normalisable and describe a VEV deforma-

tion of the SEM tensor. However before we can progress we must deal with the

issue of gauge invariance so that when we find solutions for our perturbations we

know that they are truly different and not just gauge transformations of each other.

To make our lives easier we shall break general invariance and make the following

gauge choices:

grr = 0,

grµ = (1 + εα(r, x))u(0)
µ , (1.2.34)

Tr
(
g−1

(0)g(1)

)
= 0 .

The first choice kills hrr while the second choice relates hµr to u
(0)
µ up to a constant

of proportionality. The third condition tells us that αuµ(0)u
(0)
µ + 1

r2
hµνΠ

µν = 0. The

perturbed metric therefore takes the form:

ds2 = −2
(

1 + εTr
(
ĥΠ
))

u(0)
µ dxµdr +

(−r2f(r)u(0)
µ u(0)

ν + r2Πµν + εhµν
)
dxµdxν .

7The conventions used in this thesis for the Riemann tensor are

R β
µνα = ΓραµΓβνρ − ΓρανΓβµρ − ∂µΓβνα + ∂νΓβµα

and Rµν = R β
µβν , R = Rµνg

µν .
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Using the spatial projector we can write

ds2 = −2
(

1 +
ε

r2
h(1)
)
u(0)
µ dxµdr

+
(−r2f(r)u(0)

µ u(0)
ν + r2Πµν

)
dxµ ⊗ dxν (1.2.35)

+ε

(
h(0)u(0)

µ u(0)
ν + 2h(µu

(0)
ν) + h〈µν〉 +

h(1)

d− 1
Πµν

)
dxµ ⊗ dxν ,

where all displayed indices not on a uµ(0) are entirely transverse, h(1) = hµνΠ
µν ,

hµ = −uν(0)hνρΠ
ρ
µ and h(0) = hµνu

µ
(0)u

ν
(0) and the angular brackets of a two-tensor

tµν impose the following relation between its components

tµν = Π α
µ Π β

ν

(
t(αβ) − 1

d− 1
γαβt

λ
λ

)
. (1.2.36)

We could now carry all the computations through and compute the equations of

motion governing the perturbation (Eq. (1.2.30)). As discussed in [52,53] it is always

possible to break down the equations of motion into decoupled equations between

scalar, vector and tensor parts of the metric with respect to the background SO(d−1)

spatial symmetry of our black brane. However as an example in this section we shall

look only at the transverse, symmetric, traceless tensor piece of the metric which is

contained within h〈µν〉.

The tensor sector equation of motion

As we mentioned above perturbations which are symmetric, traceless, two-tensors

with respect to spatial rotations in the xi directions are contained within h〈µν〉. The
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linearised Einstein equation given by acting on h〈µν〉 is

Ẽ
(1)
MNdx

M ⊗ dxN =
1

2

[
r2f(r)∂2

rh〈µν〉 + 2uα(0)∂r∂αh〈µν〉 +
1

r2

(
Π−1

)αβ
∂α∂βh〈µν〉

+ r2∂rf∂rh〈µν〉 + (d− 3)rf∂rh〈µν〉 +
d− 5

r
uσ(0)∂σh〈µν〉

− h〈µν〉 (2r∂rf(r) + 2(d− 1)f) + 2h〈µν〉
]
dxµ ⊗ dxν

−
[

1

r3

(
Π−1

)µα
∂αh〈µν〉

]
dr ⊗ dxν

−
[

1

r3

(
Π−1

)αν
∂αh〈µν〉

]
dxµ ⊗ dr

−1

2

[
1

r2

(
Π−1

)σρ
∂µ∂ρh〈σν〉 +

1

r2

(
Π−1

)σρ
∂ν∂ρh〈σµ〉

]
dxµ ⊗ dxν

−1

2

[
1

r2

(
Π−1

)σρ
∂r∂ρh〈σν〉 − 4

r3

(
Π−1

)σα
∂αh〈σν〉

]
× (dr ⊗ dxν + dxν ⊗ dr) + . . .

where the ellipses indicate terms coming from other pieces of the perturbation.

We notice that h〈µν〉 in itself does not decouple from the other components of the

perturbation h(0), h(1), hµ, u
(1)
µ . However, as suggested in [52,53], we can decompose

h〈µν〉 further. Let xi be our boundary spatial coordinates and align a time coordinate

v with uµ(0). h〈µν〉 can be written in terms of vector and tensor harmonics

h〈ij〉(r, v, x) = hT (r, v)Tjk + hV (r, v) (∂iVj(x) + ∂jVi(x)) (1.2.37)

which satisfy the following conditions

δij∂i∂jTkl + k2Tkl = 0 ,

δij∂iTjk = 0 ,

δij∂i∂jVk + k2Vk = 0 ,

δij∂iVj = 0 (1.2.38)

with (Π−1)
ij

= δij in our coordinate system. It is clear our Einstein equation then

reduces to

Ẽ
(1)
MNdx

M ⊗ dxN =
1

2

[
r2f(r)∂2

rhT + 2∂r∂vhT − k2

r2
hT

+ r2∂rf∂rhT + (d− 3)rf∂rhT +
d− 5

r
∂vhT

− hT (2r∂rf(r) + 2(d− 1)f) + 2hT ] Tijdx
i ⊗ dxj + . . .
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where we have written out only the part of the Ẽ(1) proportional to Tij. We see that

hT completely decouples from the other components of the metric perturbation as

it is only enters in the term multiplying Tij.

We are now in a position to solve the resultant equation for the tensor part of

the metric perturbation. We shall make a simplifying ansatz by only turning on

momentum in the z direction and performing a Fourier decomposition with respect

to this direction

hxy(r, v, z) = r2

∫
dωdkz

(2π)2 hxy (r;ω, kz) exp (−iωv + ikzz) . (1.2.39)

We have introduced an r2 for convenience. The the equation of motion becomes

∂2
rhxy +

(
∂rf

f
+
d+ 1

r

)
∂rhxy

=
1

r4f

[
k2
zhxy + iω

(
2r2drhxy + (d− 1)rhxy

)]
(1.2.40)

which is the equation of motion for a massless scalar in our choice of coordinates.

We could now attempt to solve Eq. (1.2.40) in the low frequency and momentum

regime using exactly the same method as discussed above for the gauge field. For

brevity we shall not do this and simply quote the important results, namely, while

there is no pole in this sector there is a non-zero diffusion rate that can be calculated

from the Green’s function as done in [30] for d = 4. This diffusion rate is interpreted

as the shear viscosity of the boundary fluid and its value is

η =
1

2κ2
d+1

(r+

`

)d−1

. (1.2.41)

As we shall see later this is associated with a quadratically dispersing mode - the

shear pole.

Finally, before leaving the linearised analysis to look at universality in the

next section, we should make an important observation. All we have shown so far

is that there are quadratically dispersing modes in a linearised, long wavelength

and low frequency analysis of the gauge and shear gravitational perturbations of

Schwarzschild-AdS. Hydrodynamics however is a non-linear theory. Furthermore

there seems to be no special reason to choose our timelike vector field to satisfy the

non-linear Navier-Stokes equations. In the the next chapter we shall demonstrate



1.3. Universality 26

that it is possible to solve the Einstein equations non-linearly. Moreover we shall

see that satisfying the relativistic Navier-Stokes equations is intimately linked with

the resultant perturbed spacetime being regular.

1.3 Universality

It is a very natural question to ask how generic our results, Eqs. (1.2.28) and

(1.2.41), for transport coefficients are. One known result is that in spatially isotropic

fluids dual to two-derivative gravity models the shear viscosity to entropy ratio is

given by the universal value
η

s
=

1

4π
.

We shall outline how to prove this result as it allows us to introduce formalism that

will be useful in chapter 5. It will also allow us to link the membrane paradigm to

the strongly coupled field theory living at the boundary - an approach which was

successfully pushed in [54] and returned to in [3].

As we have already shown in a gravity theory where the background is spatially

isotropic it is possible to decompose metric perturbations into representations of the

spatial isometry algebra. In particular, we found that the hxy component always

obeyed equations of motion coming from an action of the form

S = − 1

4κ2
d+1

∫
r>r0

dd+1x
√−g (∂φ)2 (1.3.42)

where φ = hyx and we shall work in the coordinates displayed in Eq. (1.2.14) rather

than the Eddington-Finkelstein coordinates of Eq. (1.2.31) for simplicity. We shall

find it useful to employ the momentum canonically conjugate to φ with respect to

the r foliation of the spacetime which is denoted Π and has the form

Π = − 1

4κ2
d+1

√−ggrr∂rφ . (1.3.43)

The equations obeyed by the field φ can be written in Hamiltonian form with respect

to the r-foliation. The Hamiltonian equation relating Π to derivatives of the φ comes

from Eq. (1.3.43). Additionally, from the equations of motion for the field φ we
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have

1√−g∂r
(√−ggrr∂rφ) = gµνkµkνφ

⇒ ∂rΠ = −
√−g
4κ2

d+1

gµνkµkνφ . (1.3.44)

The benefit of this split becomes clear once we impose infalling conditions at the

black hole horizon on our fields. The retarded Green’s function at the boundary, up

to renormalisation, then has the form

GR (kµ) = − lim
r→∞

Π (r, kµ)

φ (r, kµ)
. (1.3.45)

This suggests we define a “Green’s function” at each value of r [54] by removing the

limit. As the low frequency and momentum limit of the Green’s functions defines a

transport coefficient by

χ = − lim
ω→0

lim
k→0

1

ω
=GR (kµ) (1.3.46)

we can then connect transport coefficients in the membrane paradigm to transport

coefficients at the boundary via the flow of GR in r.

Now consider the limit where kµ → 0 with ωφ and Π held fixed. The resultant

equations of motion from Eq. (1.3.43) and Eq. (1.3.44) are

∂rφ = 0 (1.3.47)

∂rΠ = 0 . (1.3.48)

This is just the low frequency and long wavelength limit and we see that our equa-

tions of motion have become trivial. This means that the boundary values of the

fields are fixed by their near horizon values. In particular, as the shear viscosity of

the membrane is fixed, whenever the background metric has spatial isotropy in its

r-foliation, the shear viscosity to entropy ratio in the boundary is also fixed to be

1
4π

[54]. The same cannot be said for our diffusion constant for the gauge field, Eq.

(1.2.28), which explicitly has dimension dependent parameters.

We have shown that under certain, quite general, assumptions the shear viscosity

to entropy ratio of every field theory dual to thermal, asymptotically, locally AdS

spaces is fixed. It was initially conjectured in [28] that 1
4π

may be a lower bound
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to the viscosity of all relativistic quantum field theories at finite temperature. It is

important to point out here that there are now several examples for violations of

this bound. One such example can be found in Gauss-Bonnet gravity, where it has

been shown that the reason the bound is violated is essentially due to the fact that

when the Gauss-Bonnet coupling, λGB, is greater than zero then gravity is more

strongly coupled than in AdS space [55–58]. Similarly, it has recently been shown

in theories that explicitly break spatial isotropy in the ground state, components of

the shear viscosity tensor can dip below the viscosity bound [59].



Chapter 2

Relativistic fluids

In this chapter we shall review work already available in literature. As we have

previously indicated it is possible to calculate hydrodynamic-like quantities, using

the AdS-CFT correspondence, by considering perturbations of a particular black

hole spacetime. However we have yet to show that these constitute true hydrody-

namics. In this chapter we shall demonstrate that these long-lived modes truly are

governed by the relativistic Navier-Stokes equations. Understanding these modes is

important for the applications to real world physics indicated in the introduction.

While there are many interesting phenomena that can be understood by consid-

ering uncharged fluids at progressively higher orders in a derivative expansion, for

brevity, we shall truncate to first order in derivatives and refer where necessary to

literature. The procedure for continuing to higher orders will however be outlined.

An extension that we shall make is to add a U(1) charge to the fluid as this has

previously led to new conceptual insights. One such discovery is the necessity for

parity violating terms in the relativistic fluid expansion, when the fluid is placed in

a charged background [60], even at first order.

The subsequent chapter is split into two pieces. In the first we show how it

is possible to write down an effective description of long wavelength, low frequency

modes for any suitable field theory. As mentioned above, for the purposes of explicit

computation, we shall truncate to first order in derivatives and refer the reader to

the relevant literature for higher orders [32,61–63].

Additionally, while we have seen that spatial isotropy in the holographic dual is

29
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a powerful method to simplify the resultant Einstein equations (Sec. 1.2.2), many of

the areas that are currently interesting in fluid-gravity are exactly those that break

such isotropy [64–69]. Thus we shall not assume spatial isotropy in deriving the

effective hydrodynamic theory until we come to the end of the section where we

shall wish to compare to known holographic duals.

The second part of this chapter indicates the process by which it is possible to

find a holographic dual to the field theories discussed above at strong coupling. We

shall only discuss the subsequent Einstein-Maxwell equations briefly as there are

already good discussions of the topic in literature [32,61–63]. What will be novel is

our explicit connection of this calculation to the linearised analysis in the previous

chapter.

2.1 Dynamics of charged fluids

In this section we shall discuss how to formulate an effective hydrodynamic theory

from a given field theory. We begin by considering the global thermodynamics (Sec.

2.1.1) of a charged material at a large non-zero temperature which describes the

state of the system at very late times when any initial fluctuations have completely

dissipated. We then describe the idea of local thermodynamics which applies at late

times when fluctuations of long wavelength and small frequency are not negligible

in Sec. 2.1.2. This will afford us the opportunity to fix some ambiguities in our

local concepts. In the subsequent section (Sec. 2.1.3) we shall then discuss how

to construct hydrodynamics as a description of the approach to global equilibrium

from regions of local equilibrium.

In Sec. 2.1.4 we lay out the generalities of the hydrodynamic derivative expan-

sion at first order in derivatives. We shall not assume that the system is spatially

isotropic which will make the notation a little more unwieldly however, when we

then do consider spatially isotropic systems, it will be explicit how strong the sim-

plification of our resultant effective theory is. In Sec. 2.1.5 we consider how charge

current anomalies appear in our effective theory. In particular, when such anomalies

exist, we must be careful in our assumptions about parity.
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As an illustration of the simplicity of the process of determining the transport

coefficients in spatially isotropic theories we shall then derive in Secs. 2.1.6 and 2.1.7

the number and form of the transport coefficients needed to completely describe un-

charged and charged fluids at first order in derivatives respectively. Finally we shall

discuss, although not calculate, how one may proceed to second order in derivatives,

consider non-zero electric and magnetic fields or force the fluid by summarising the

literature.

2.1.1 Global thermodynamics

Assume we are given a charged system with a non-zero temperature. Let Bd be

the d-dimensional manifold with metric γµν on which this system lives. To connect

to traditional hydrodynamics we shall choose pressure P , temperature T and charge

QI to be our typical state variables. The thermodynamic potential for such a system

will have the general form:

G = G
(
P , T ,QI

)
. (2.1.1)

From the first law of thermodynamics the differential of the internal energy of our

system is

dE = TdS − PdV + µqIdQ
I (2.1.2)

and therefore we choose the differential of G to be given by:

dG = dE − d (ST − PV ) (2.1.3)

= V dP − SdT + µqIdQ
I . (2.1.4)

The result of minimizing the potential is the elimination of one of our state variables

(typically we shall choose to eliminate P ) encoded in an equation of state which

relates them. In what follows we shall often assume an underlying conformality to

our theory which will supply us with just such an equation of state.

We assume extensivity of the thermodynamic potential and use it to extract a

V from the definition of G to give us

g = g
(
P , T , qI

)
(2.1.5)
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where qI is the charge density which is more appropriate for infinite volume systems.

For a system with scale invariance, under a Weyl transformation φ(x) of the metric

γ, our state variables transform as:

g → exp (−dφ) g , (2.1.6)

P → exp (−dφ)P , (2.1.7)

T → exp (−φ)T , (2.1.8)

qI → exp (−(d− 1)φ) qI . (2.1.9)

We can use this scale invariance to pick a conformal frame on the manifold with

some reference temperature T 0. If we start in a system where the temperature is T

consider making a scaling transformation

φ = ln

(
T 0

T

)
. (2.1.10)

The energy density in a system with temperature T is related to that in the system

with temperature T 0 by our scaling transformation in the following manner

ε
(
T , qI

)
=

(
T

T 0

)d
ε
(
T 0, q

I
0

)
=

(
T

T 0

)d
ε

(
T

(
T 0

T

)
, qI
(
T 0

T

)d−1
)
. (2.1.11)

where we have assumed we are at a minimum of the thermodynamic potential G to

eliminate P as a variable. Our reference temperature T 0 is constant so we can drop

the functional dependence on it. As such we can redefine our energy density so that

ε
(
T , qI

)
= T dh

( qI
T d−1

)
(2.1.12)

where h is some function depending on the particular system we are examining.

This process also applies to other state variables such as the entropy or pressure.

The scaling of our thermodynamic variables with respect to a conformal trans-

formation also allows us to apply a version of Euler’s homogeneous function theorem.

Scaling our reference temperature it can be shown that

g = dP − sT + qIµqI . (2.1.13)
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Using our definition for g in terms of the energy density, Eq. (2.1.3), we find:

ε
(
T , qI

)
= (d− 1)P

(
T , qI

)
(2.1.14)

which we shall henceforth take as our equation of state. In the following, unless we

explicitly state so, we shall not assume scale invariance as it is a powerful tool that

is only necessary in certain circumstances.

2.1.2 Local thermodynamics and fluid variables

Consider disturbing our system of global equilibrium discussed above. In the

case of kinetic theory in classical mechanics we expect at large temperatures ran-

dom molecular motion will quickly dissipate the disturbance locally. Hence in the

neighbourhood of a point the system satisfies the equation of state Eq. (2.1.14).

However if the disturbance has changed the system on scales greater than the mean

free path then different regions will settle into different equilibria as illustrated in

Fig. 2.1. This cannot be a stable situation as, for example, particles will flow from

regions of greater concentration to regions of lower concentration (Fick’s law).

This process of dissipating disturbances is ubiquitous and does not rely upon

kinetic theory - rather all that is required is a microscopic means to reach local

equilibrium in “good time”. We would like to describe the process of moving from

regions of local equilibrium to global equilibrium. What is clear is that because this

“hydrodynamic phenomenon” has some universal character the formalism cannot

depend on the detailed microscopic nature of the field theory although, as relaxation

rates depend on the system considered, there must be model dependent parameters

we can tune. This should indicate to us that the description can only be in terms of

objects that are shared by our theories of interest (like the SEM tensor) and obey

the same equations in these systems (conservation of the SEM tensor).

Additionally we expect then that when we have a hydrodynamic description

of the system these conserved currents must be built from the fluid velocity and

thermodynamic state variables which occur in all our models of interest and define

patches of local equilibrium. The expression for these conserved currents in terms of
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Figure 2.1: An illustration of the concept of local thermal equilibrium. Displayed is

some generic potential G. The axis X i is representative of all variables other than

T . When the system is in global equilibrium it sits at the bottom of our generic

potential. We then choose to disturb the system which, after a small time, creates

regions of local equilibrium. These regions touch each other as depicted underneath

the potential. The situation cannot be stable as, for example, Fick’s law tells us that

solute will diffuse from a place of high concentration to a region of low concentration.

This process is illustrated below the graph of the potential and is the phenomenon

we wish to describe.
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Figure 2.2: An illustration of the concept of local thermal equilibrium where we

have displayed the typical scale of fluctuations L and the thermal length scale LT .

state variables, their derivatives and fluid velocity derivatives is called a constitutive

relation. The model dependent parameters are the coefficients of the derivative

terms and are called transport coefficients.

It is natural to ask when this decomposition via local equilibria is likely to be

valid. We shall assume that, in our system in the neighbourhood of any point, we

are able to draw an open patch where it can be treated as being in equilibrium (see

Fig. 2.2). The typical size of these patches we shall denote LT while the typical

size of fluctuations in our theory we shall denote L. We can expect our concepts of

local equilibrium to be well defined whenever LT
L
� 1 - so that we do not disturb

local equilibrium. Any thermal patch is in contact with other nearby patches and,

because from the neighbourhood of one point to the neighbourhood of another point

the thermodynamic state variables are varying, there will be a flow of quantities

like heat and charge between these patches of local equilibrium. Hydrodynamics

therefore is fundamentally a derivative expansion with higher order derivatives being

suppressed compared to those occurring lower down in the expansion.
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Frame choices

We begin by assuming the existence of conserved currents

T µν

JµI

which represent stress-energy-momentum and free charge flow between regions of

local equilibrium respectively. We shall need a notion of time given that the process

of reaching equilibrium is manifestly one that breaks time symmetry due to the

production of entropy. Thus we also assume the existence of a unit normalised

time-like vector field which has the following property

T µν(x)uν(x) = −ε (T (x), qI(x)
)
uµ(x) (2.1.15)

where ε(x) is the local energy density in terms of the local temperature and charge

density fields which we assume we are given. Defining our time coordinate by the

integral curves of uµ in Eq. (2.1.15) puts us in the “Landau frame”. In this frame,

when we follow a fluid lump, it has constant energy. Note that the eigenvector

equation for the SEM tensor fixes an ambiguity in what we mean by fluid velocity

using our expression for energy density.

We have already defined the spatial projector Πµν in Eq. (1.2.33) and with this

definition it immediately follows that

T µν = εuµuν + Πα
µΠβ

νTαβ (2.1.16)

where we have made use of the eigenvalue equation of the SEM tensor. We note that

the SEM tensor has decomposed into a piece entirely parallel to the fluid velocity

(the first term) and a piece entirely transverse to it (the last term).

For the charge current we have

JµI = qIu
µ + Πµ

αJ
α
I (2.1.17)

where the charge current has split into a piece parallel to uµ (whose coefficient is

qI) and a piece orthogonal to it. As we have a charge current we could alternatively

have specified our fluid velocity uµ by aligning it with the charge current - this is

called the Eckart frame.
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As we mentioned above - we expect the process of reaching global equilibrium

to increase entropy. This will allow us to restrict the type of processes that can

sensibly occur. As such we define an entropy current which has the form:

Js
µ = s

(
T , qI

)
uµ + Πµ

νJs
ν .

An alternative approach to using the entropy current was recently developed in

literature [70–73]. At present this “generating functional” method is not as powerful

as requiring positive divergence of the entropy current as it only constrains a smaller

subset of transport coefficients.

The currents at zeroth order

We would like to finish this section by specifying the entirely transverse parts of

the SEM tensor and charge current that occur in Eqs. (2.1.16) and (2.1.17). If we

assume spatial isotropy and scale invariance we can write:

ε = ΠµνT µν

= (d− 1)P , (2.1.18)

where we have used that the trace of the stress tensor is zero (up to anomalies which

occur at a higher order in derivatives) in a field theory which is fundamentally

conformal. Additionally the transverse piece of the charge current must be zero

when we have a spatially isotropic theory as it would otherwise pick out a special

direction. Finally therefore the constitutive relations are

T µν = εuµuν + PΠµν , (2.1.19)

JµI = qIu
µ (2.1.20)

with the assumptions we have made.

2.1.3 Conservation, symmetries and ideal fluid dynamics

As we have previously indicated, hydrodynamics is a derivative expansion, with

progressively higher order derivatives being suppressed. Thus we should think of

Eqs. (2.1.19) and (2.1.20) as being only the first terms in the expansion and, in
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the next section, we would like to consider the first order corrections. As such we

shall now discuss the equations of motion obeyed by the fluid velocity, namely SEM

tensor and charge current conservation, and show in what way positive divergence

of the entropy current can be used to constrain such terms.

The parts of the currents we have so far at zeroth order in derivatives are some-

times called “ideal”. The corrections are called dissipative and the total currents

will have the form

T µν = T (ideal)
µν + τµν

JµI =
(
J

(ideal)
I

)µ
+ ξµI .

with τµν and ξµI being at least order one in derivatives. The resultant currents must

satisfy the conservation equations which for us are the following

∇µT µν = JµIF
I
νµ (2.1.21)

∇µJ
µ
I = Canomalies

I (2.1.22)

where ∇µ is the covariant derivative with respect to the metric of the manifold

on which our fluid lives and Canomalies
I is the anomalous part of the charge current

conservation1. Additionally, as mentioned above, we impose a constraint on our

derivative expansion, namely,

∇µ 〈Jsµ〉 ≥ 0 . (2.1.23)

Strictly this constraint is not necessary from the perspective of an effective field

theory but seems physically sensible. We can see that this will affect objects that

can appear in our constitutive relations in the following way. From the first law of

thermodynamics for a constant comoving volume we have

uµ∇µs =
uµ

T

[∇µε− µqI∇µq
I
]
.

For now we shall assume our microscopic theory is anomaly free such that the Landau

1Be aware that we have assumed our electric and magnetic fields are order one in derivatives

and thus do not appear in the system’s governing thermodynamic relation.
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frame condition allows us to write

uµ∇µε = −ε∇µuµ − τµν∇µuν − EI
µJ

µ
I ,

uµ∇µqI = −qI∇µu
µ −∇µξ

µ
I

where we have defined

Eν
I = uµF

µν
I . (2.1.24)

We shall return to the case of anomalous theories shortly as the consequences are

quite interesting and deserve attention on their own. Combining the above two

pieces of information implies that

0 ≤ ∇µs
µ

≤ −τµν
T
∇µuν − ξIµ

(
∇µ
(µqI
T

)
+ Eµ

I

)
+∇µ

{
ξs
µ + ξµI

µq
I

T

}
. (2.1.25)

We can define the correction to the entropy current, ξs
µ, entirely in terms of the

correction to the charge current

ξs
µ = −ξµI

µq
I

T
(2.1.26)

and we are left with

0 ≤ −τµν
T
∇µuν − ξµI

(
∇µ

(µqI
T

)
+ EI

µ

)
.

It is clear that we must pick τµν and ξµI to make each of the remaining terms a

positive square. We shall see shortly that this places restrictions on the transport

coefficients.

2.1.4 Viscous fluid dynamics at first order

We now construct the objects τµν and ξµI at first order in derivatives. Potentially we

could have derivative corrections in T , qI and uµ. The direction uµ will always be

special so it makes sense to decompose our covariant derivative into pieces transverse
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and parallel to the fluid velocity2:

∇µ = −uµuσ∇σ + Πσ
µ∇σ .

Additionally coefficients multiplying terms involving∇u will have projectors in them

to account for the fact that

uµuµ = −1 ,

⇒ uµ∇νuµ = 0 .

With these considerations in mind the most general linear combination of single

derivative objects we can give has the rather ugly expression

τµν =
(
c(1)
)σ1σ2

µν
∇σ3uσ4 −

(
c(1)
)σ2

µν
uσ1∇σ1uσ2

+
(
c

(2)
I

)σ1

µν
∇σ1q

I −
(
c

(2)
I

)
µν
uσ1∇σ3q

I

+
(
c(3)
)σ1

µν
∇σ1T −

(
c(3)
)
µν
uσ1∇σ1T ,

ξµI =
(
c

(4)
I

)µσ1σ2 ∇σ1uσ2 −
(
c

(4)
I

)µσ2

uσ1∇σ1uσ2

+
(
c

(5)
IJ

)µσ1∇σ1q
J −

(
c

(5)
IJ

)µ
uσ1∇σ1q

J

+
(
c

(6)
I

)µσ1∇σ1T −
(
c

(6)
I

)µ
uσ1∇σ1T

where we assume all indices not displayed on a u are transverse.

We note that the number of operators we have allowed in our SEM tensor

and charge current corrections generally over-determines our system. At first order

in derivatives there are (d + 1) (one parallel and d transverse) constraints from

ideal SEM tensor and charge current conservation. This will allow us to eliminate

d + 2 operators from the dissipative part of our constitutive relation. Without

loss of generality at first order we shall use the constraints from the zeroth order

conservation equations to remove ∇µT and uµ∇µqI in the SEM tensor and uµ∇µT

2If we were to consider only conformal field theories we could replace ∇µ with the Weyl co-

variant derivative Dµ. This requires the introduction of a Weyl connection Aµ and, by choice

of this connection, the derivative can be made transverse. This greatly simplifies the following

decomposition but requires extra formalism which we shall not introduce. See [74] for further

details.
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and uµ∇µu
ν in the charge current. Our first order constitutive relations become

τµν =
(
c(1)
)σ1σ2

µν
∇σ3uσ4 −

(
c(1)
)σ2

µν
uσ1∇σ1uσ2 , (2.1.27)

ξµI =
(
c

(4)
I

)µσ1σ2 ∇σ1uσ2

+
(
c

(5)
IJ

)µσ1∇σ1q
J −

(
c

(5)
IJ

)µ
uσ1∇σ1q

J +
(
c

(6)
I

)µσ1∇σ1T (2.1.28)

where we have redefined our constants as necessary. When we later make use of

scale invariance we shall be able to reduce the number of operators again by one -

but as this is such a powerful tool we shall hold it in reserve until we absolutely have

to use it. In a later section we shall make several simplifying assumptions that will

constrain the above expansion and allow us to extract some physics from it. Before

doing that however we should discuss how charge current anomalies can affect our

hydrodynamic description through parity violation in the next section.

2.1.5 Broken parity and inexact symmetries in fluid dynam-

ics

In the above we took the attitude that if an operator could be added to our SEM

tensor and charge current then it should be written down. However, historically, a

more restrictive approach was taken to deriving the constitutive relations leading to

missing terms compared to our expansion. In particular, in non-relativistic physics it

is often assumed that the theory we are interested in is fundamentally parity invari-

ant. This discrete symmetry relates components of cs (Eqs. (2.1.28) and (2.1.27))

in our expansion. From an effective field theory point of view, as the coefficients of

terms are arbitrary, we can simply set to zero anything that is not parity invariant.

This truncates the class of field theories our hydrodynamics describes to those which

are parity invariant.

From a non-relativistic point of view this truncated theory contains all real

world fluids that have ever been encountered. This begs the question - should we

assume our relativistic theories are parity invariant too and indeed it is consistent to

truncate? Surprisingly the answer is no (due to anomalies) and we shall demonstrate

in later chapters that broken parity invariance also has previously unpredicted con-
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sequences for certain non-relativistic fluids. For now let’s review the ideas behind

the calculation of [60].

We begin by describing the general anomaly structure relevant to our setup. For

the moment let’s consider an arbitrary gauge algebra (and not just the collection of

U(1) charges we shall often truncate to). We can extract generators of these charges

from our field strength and write the field strength in form notation as

F =
1

2
F I
µνTIdx

µ ∧ dxν , (2.1.29)

where T I are the generators of our algebra. Using the Hodge dual operator ∗ the

current conservation equation can, in absence of anomalies be written,

d∗J I = 0 .

On the grounds of gauge invariance we expect that in the presence of anomalies the

charge conservation equation in even dimensions becomes

d∗J I = c J...K
I Tr (F J ∧ . . . ∧ FK) (2.1.30)

where c J...K
I is a constant dependent on the algebra.

Let’s now examine the entropy current. Unlike in the previous case, where there

were no anomalies, the Landau frame condition allows us to write

uµ∇µqI = −qI∇µu
µ −∇µξ

µ
I − Canomalies

I (2.1.31)

where the last term is an anomaly dependent correction coming from Eq. (2.1.30).

Positive divergence of the entropy current then implies that

0 ≤ ∇µs
µ

≤ −τµν
T
∇µuν − ξIµ

(
∇µ
(µqI
T

)
+ EI

µ

)
+
µqI
T
Canomalies
I

+∇µ

{
ξµs + ξµI

µq
I

T

}
.

The correction to the entropy current is defined as before, Eq. (2.1.26), and we are

left with

0 ≤ −τµν
T
∇µuν − ξIµ

(
∇µ
(µqI
T

)
+ EI

µ

)
+
µqI
T
Canomalies
I .
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As mentioned above when there are no anomalies we can pick τµν and ξµI to make

each of the remaining terms a positive square. However, when we do have anomalies,

the last term can have either sign and for suitable choices of the electric and magnetic

fields can overwhelm the first two terms.

To see the resolution to this problem note that under a parity transformation

we have

Πα
µ∇αuν → Πα

µ∇αuν ,

EI
µ → −EI

µ

which in turn implies that

τµν → τµν ,

ξIµ → −ξIµ

to maintain positivity of the divergence of the entropy current in the absence of

anomalies. In the case where there are anomalies the fact that the last term can

overwhelm the first two, and changes sign under parity flips, indicates that something

is missing from our derivative expansion if both τµν and ξIµ have the definite parity

properties that they had in the anomaly-free case.

We shall return to this issue later when we consider charged, spatially isotropic

hydrodynamics at first order in derivatives. It is sufficient now for us to simply

remember that we not make parity assumptions when simplifying our coefficients c.

As such we should make note of the parity violating tensor structure that exists in

spatially isotropic systems. In d dimensions there exists an d-index ε symbol. We

can decompose it in terms of our spatial projector and velocities as:

εµ1...µd = −d!u[µ1 Σµ2...µd] . (2.1.32)

The object Σ is entirely transverse and totally antisymmetric and we shall later

find that it enters our derivative expansion in such a way as to deal with the above

anomaly problem.
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2.1.6 The universal sector at first order

In this subsection we shall consider uncharged fluids, without assumptions about

the manifold other than that it is weakly curved, in the absence of background fields

that may break SO(d − 1) invariance at zeroth or first order. This is clearly the

simplest truncation of our general expansion.

The equations of fluid dynamics

In the case that there is no charge we are left only with the stress tensor as the

charge current vanishes. Our general derivative correction reduces to:

τµν =
(
c(1)
)σ1σ2

µν
∇σ3uσ4 −

(
c(1)
)σ2

µν
uσ1∇σ1uσ2 . (2.1.33)

At first order c(1) is locally a constant in the derivative expansion. We note that even

if the boundary metric is curved, on the condition it is weakly curved with respect to

a formal derivative expansion parameter, ε, we can pick a local coordinate system at

each point in which Lorentz symmetry is manifest up to second order in derivatives

γµν(x) = ηµν − ε2 1

3
Rβµαν(x0)xαxβ + . . . .

As the cs are constants at this order and we have spatial isotropy the current correc-

tions can only be formed from the generalised Kronecker δs (which contain εµ1...µd)

contracted with spatial projectors. This is because these are the only non-trivial

numerical tensors to have the same value in all frames. It then makes sense to de-

compose our conserved current corrections into a symmetric traceless and a trace

part using the angular brackets defined earlier (see Eq. (1.2.36))

τµν = τ 〈µν〉 +
1

d− 1
Πµντ

λ
λ

where

τ 〈µν〉 =
(
c(1)
)σ1σ2

〈µν〉 ∇σ1uσ2 −
(
c(1)
)σ2

〈µν〉 u
σ1∇σ1uσ2 .
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For d ≥ 3 the only objects we can construct that transform correctly under rotations

and are locally constants are

(
c(1)
)σ1σ2

〈µν〉 = −2ηδσ3

〈µ δ
σ4

ν〉Π
σ1
σ3

Πσ2
σ4

= −2ηΠσ1

〈µΠσ2

ν〉 ,(
c(1)
)σ2

〈µν〉 = 0 ,

where η is a transport coefficient called the shear viscosity. As for the trace part

we simply write down the most general linear combination of completely contracted

derivative corrections

τλλ = (d− 1)
[−ζ∇λu

λ
]
, (2.1.34)

where ζ is the bulk viscosity and we have extracted a dimension dependent coefficient

coming from the trace of the spatial projector. We can write the generic derivative

of a fluid velocity as

∇µuν = −aµuν + σµν + ωµν +
1

d− 1
θΠµν (2.1.35)

where

θ = ∇µu
µ , aµ = uν∇νu

µ ,

σµν = ∇〈µuν〉 ,
ωµν = Π α

µ Π β
µ ∇[αuβ] .

This finally leaves the derivative correction to the SEM tensor as

τµν = −2ησ − ζΠµνθ . (2.1.36)

The form of this SEM tensor correction is generic to the hydrodynamics of all spa-

tially isotropic field theories where the energy density depends only on the tempera-

ture. The precise values of η and ζ are our model dependent parameters mentioned

above and depend on the specific nature of the fluid.

Now that we have the constitutive relation for the SEM tensor we plug it into

the SEM tensor conservation equations and project parallel and perpendicular to
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the fluid motion respectively. The resultant equations of motion are at most second

order in derivatives and have the form:

uµ∇µε = − (ε+ P ) θ + 2ησ2 + ζθ2

∇⊥αP = − (ε+ P ) aα + 2η∇ν
⊥σαν − 2ησ2uα + 2σ ν

α ∇⊥ν η
+ζ∇⊥α θ + ζaαθ + θ∇⊥α ζ

While it appears that the second equation is not transverse due to the presence of

uα when acting on this equation with uα we find

0 = uα∇νσαν + σ2 (2.1.37)

which can be shown to be true using Leibnitz and transverseness of σαν .

Entropy currents

To second order in derivatives, using Eq. (2.1.36), it can be readily shown that

∇µJs
µ =

2η

T
σ2 +

ζ

T
θ2

where the dissipative correction to the entropy current is zero. The constraints on

our transport coefficients are now obvious, η, ζ ≥ 0.

Propagation of disturbances

In chapter 1 we interpreted the linearised dispersion relations we found for perturba-

tions of a boosted black brane as hydrodynamic modes. We now seek to demonstrate

that linearised disturbances of the effective description we have written down in this

section do indeed contain the quadratically dispersing mode found in chapter 1. For

a background metric with a flat time direction

ds2 = −dt2 + γij(x)dxi ⊗ dxj

we can calculate the speed of sound for our system by linearising

uµdx
µ = −dt+ ε2vi(εx)dxi

(ε, P , η, ζ) =
(
ε(0), P (0), η(0), ζ(0)

)
+ ε2 (δε(εx), δP (εx), δη(εx), δζ(εx))

(θ, a, σ, ω) = ε3
(
∇iv

i(εx), ∂tv
i(εx)dxi,∇(iv j)(εx)dxi ⊗ dxj − ∇iv

i(εx)

d− 1
γ,

∇[iv j](εx)dxi ⊗ dxj) , (2.1.38)



2.1. Dynamics of charged fluids 47

where local variations of the thermodynamic quantities are second order in deriva-

tives as local thermal equilibrium holds. This additionally implies that variations in

the velocity must also be second order in ε. The resulting equations to order ε4 are:

0 = ε3
[
∂tδε(εx) +

(
ε(0) + P (0)

)
θ
]

+O5(ε) (2.1.39)

0 = ε3
[∇iδP (εx) +

(
ε(0) + P (0)

)
∂tvi(εx)

]
+ε4

[
−η(0)

(∇j∇ivj(εx) +∇2vi(εx)
)

+
2

d− 1
η(0)∇iθ − ζ(0)∇iθ

]
+O5(ε) . (2.1.40)

After some tedious manipulation the equation of motion for the pressure fluctuation

becomes

0 = ε4
[
∇2δP (εx)−

(
δε(0)

δP (0)

)
∂2
t δP (εx)

]
+ε5

[
2(d− 2)

d− 1
η(0) + ζ(0)

](
δε(0)

δP (0)

)
∂t∇2δP (εx)(
ε(0) + P (0)

)
+O6(ε)

where we have assumed a flat spatial metric. We can replace the covariant derivatives

with partials and perform a Fourier expansion

δP (εt, εx) =

∫
ddk

(2π)d
δP
(
ω,k‖

)
exp [iε (−ωt+ k · x)]

where k‖ · v = ‖v‖∥∥k‖∥∥. The fact that only wave-vectors parallel to the fluid

velocity give variations of the pressure follows from Eq. (2.1.39) where for non-zero

energy density variations (and thus non-zero pressure variations) the expansion θ

must be non-zero. For a mode whose wave-vector is entirely perpendicular to the

fluid velocity, when moving to Fourier space, the expansion is zero. The equation of

motion for our pressure wave becomes

0 = ε4
[
−k2
‖δP +

(
δε(0)

δP (0)

)
ω2δP

]
+iε5

[
2(d− 2)

d− 1
η(0) + ζ(0)

](
δε(0)

δP (0)

)
ωk2
‖δP(

ε(0) + P (0)

) .
Solving this equation in the limit of small k we find the result of [75] namely

ω =

√
δP (0)

δε(0)

∥∥k‖∥∥− iε

2
(
ε(0) + P (0)

) [2(d− 2)

d− 1
η(0) + ζ(0)

] ∥∥k‖∥∥2

+O3
(
k‖
)

(2.1.41)
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and we see that the limit of small k‖ is concomitant with the limit of small ω. This

is a linear dispersion relation which, given our intuition about hydrodynamics, we

can interpret as a sound mode. It is a simultaneous fluctuation of T tt, T ii and

the longitudinal component T ti. There is a second type of fluctuation given by

considering fluctuations of the transverse component of T ti only. As noted above we

will need to set variations of the pressure and energy density to zero. The equations

of motion for such fluctuations are

0 = ε3θ +O5(ε) .

0 = ε3
[(
ε(0) + P (0)

)
∂tvi(εx)

]
+ ε4

[−η(0)∇2vi(εx)
]

+O5(ε) .

where we have used the first equation to simplify away terms in the second. Taking

a flat spatial metric, moving to momentum space once more and solving for the

dispersion relation we find

ω = −iε
(

η(0)

ε(0) + P (0)

)
‖k⊥‖2 +O3 (k⊥) (2.1.42)

with k⊥ · v = 0 from θ = 0. On choosing d = 4 both Eqs. (2.1.41) and (2.1.42)

match the values given in [30]. Using η(0)/s(0) = 1/4π for a two derivative gravity

model (Eq. (1.2.41)) we have a prediction for the shear viscosity of chargeless fluids

dual to such models namely

η(0) =
1

4π

(
ε(0) + P (0)

)
(2.1.43)

which we shall demonstrate to be the case in the second half of this chapter.

Conformal fluids

Let our boundary manifold be a conformal manifold and consider the derivative of

the fluid velocity under a Weyl transformation. We find that

∇̃µũν = eφ [∇µuν + (∂µφ)uν − (uν∂µφ+ uµ∂νφ− γµνuα∂αφ)]

thus it does not transform as a weighted tensor under a scaling transformation.

Given that the boundary is a conformal manifold this suggests that the derivative as

written is not a natural object in this manifold. This places constraints on transport
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coefficients such that the combination of derivatives appearing in our SEM tensor

transform correctly under a scaling.

Consider first the expansion θ which transforms as

∇̃λũ
λ = e−φ [∇µu

µ + (d− 1)uµ∂µφ] .

In a conformal theory T λλ ≡ 0 so our bulk viscosity must be zero. Additionally we

have

∇̃〈µ ũν〉 = e−φ∇〈µuν〉 . (2.1.44)

So we can have a non-zero shear viscosity under the condition that, when one per-

forms a scaling, η → e−(d+1)φη. Finally therefore, for a fluid which has an underlying

conformal symmetry in its microscopics, our dissipative correction at first order in

derivatives is

τµν = −2ησµν . (2.1.45)

2.1.7 Charged fluid dynamics at first order

In this subsection we shall consider fluids in the absence of electric and magnetic

fields but with a non-zero charge. This is a natural step to take given our discussion

in the previous subsection and these fluids and their duals will be important in later

chapters.

The equations of fluid dynamics

In the case that there are no E or B fields there can be no polarisation or magneti-

sation so our general derivative correction reduces to:

τµν =
(
c(1)
)σ1σ2

µν
∇σ3uσ4 +

(
c(1)
)σ2

µν
uσ1∇σ1uσ2 +

(
c

(2)
I

)σ1

µν
∇σ1q

I

ξµI =
(
c

(4)
I

)µσ1σ2 ∇σ1uσ2 +
(
c

(5)
IJ

)µσ1 ∇σ1q
J +

(
c

(5)
IJ

)µ
uσ1∇σ1q

J +
(
c

(6)
I

)µσ1 ∇σ1T

Again, at first order all the c’s are locally constants in the derivative expansion. As

they are constants and we have spatial isotropy (SO(d − 1) invariance) they can
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only be formed from the numerical relative tensors δµν and εµ1...µd . Hence:

(
c(1)
)σ1σ2

〈µν〉 = 2ηΠσ1

〈µΠσ2

ν〉

(
c

(4)
I

)µσ1σ2

=


0, d = 3

−0IΣ
µσ1σ2 , d = 4

0, d > 4(
c

(5)
IJ

)µσ1

=

 −κqIJΠµσ1 − κ̃qIJΣµσ1 , d = 3

−κqIJΠµσ1 , d > 3(
c

(6)
I

)µσ1

=

 −γIΠµσ1 − γ̃IΣµσ1 , d = 3

−γIΠµσ1 , d > 3

with any non-displayed coefficients being identically zero.

As before to determine τλλ we simply take the most general linear combina-

tion of scalars that we can produce from objects containing a single derivative in

our permitted operators. Our conserved SEM and charge current corrections then

become

τµν = −2η∇〈µuν〉 + ζθΠµν

JµI = qIu
µ − κqIJΠµσ∇σq

J − γIΠµσ∇σT

−


κ̃qIJΣµσ1∇σ1q

J + γ̃IΣ
µσ1∇σ1T , d = 3

0IΣ
µσ1σ2ωσ1σ2 , d = 4

0, d > 4

Just as before the equations of motion obeyed by the velocity fields can be ob-

tained by plugging these constitutive relations into their respective conservation

equations.These corrections have been derived many times in the literature. For a

derivation from a slightly different perspective see [29].

Entropy and heat currents

In the absence of anomalies the divergence of the entropy current to second order

in derivatives was given by Eq. (2.1.25). As the form of the SEM tensor has not

changed from the uncharged case the only new piece we need to determine comes

from the dissipative term in the charge current. The divergence of the entropy
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current is

∇µJs
µ =

2η

T
σ2 +

ζ

T
θ2 − ξIµ∇µ

(
µqI(q, T )

T

)
. (2.1.46)

The simplest way to ensure that this divergence is positive definite is to require that

ξµI = −DIJΠµν∇ν

(
µqI(q, T )

T

)
, (2.1.47)

where DIJ is a positive definite matrix. The transport coefficients κIJ and γI are

then related to DIJ by

κIJ = DIK

(
∂µq

K

∂qJ

)
T

, (2.1.48)

γI = DIJ

((
∂µq

J

∂T

)
q

− µq
J

T

)
. (2.1.49)

For our scale invariant fluids we shall find that these relationships are indeed obeyed.

Finally therefore the divergence of the entropy current in the absence of anomalies

has the form

∇µJs
µ =

2η

T
σ2 +

ζ

T
θ2 +DIJ∇⊥

(µqI
T

)
· ∇⊥

(µqJ
T

)
(2.1.50)

which is manifestly positive definite.

Now we turn to the issue of charge anomalies. Above we included parity violating

terms in our expansion of the charge current in anticipation of the fact that they may

be needed to ensure the entropy current divergence is positive definite. Traditional

approaches to determining the corrections to Jµ such as Israel-Stewart theory [76,77]

typically assume parity invariance and thus set the coefficients of parity violating

terms to zero. As was first shown in [60], and we have argued above, consideration

of anomalies leads to their presence. For the particular case of d = 4 as shown in [60]

if we add to the parity invariant expression for the charge current correction

γIΠ
µσ∇σT + κqIJΠµσ∇σq

J (2.1.51)

a parity violating piece then this piece must have exactly the form

0IΣ
µσ1σ2∇σ1uσ2 , (2.1.52)
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where 0I is completely dictated by anomalies. It is relatively straightforward to

see this by applying to the fluid an electromagnetic field which is everywhere order

one in derivatives. Repeating the above process while allowing for electric and

magnetic fields to appear leads to corrections to the dissipative terms. The first

order corrections are

ξs
µ = −µq

I

T
ξµI +DI

BB
µ
I +DωΣµνσωνσ , (2.1.53)

ξµI = −DIJΠµν

[
∇ν

(
µq

J

T

)
+

1

T
EJ
ν

]
− 0IΣ

µνσωνσ − 0̃ J
I B

µ
J (2.1.54)

with DI
B, Dω, 0I and 0̃ J

I as yet undetermined and we have defined

Bµ
I = −Σµ

σ1σ2
F σ1σ2
I .

The new dissipative coefficients take account of an electromagnetic field at first

order in derivatives and possible parity violating corrections to the entropy and

charge currents. The charge conservation equation is now:

∂µJ
µ
I = CIJKE

J
µ

(
BK
)µ

. (2.1.55)

Hence the positive definite divergence of the entropy current implies

0 ≤ −
[
DB
I

ε+ P
qIδJK − 1

T
0̃JK + CIJK µqI

T

]
Eµ
J (BK)µ

−
[

2Dω

ε+ P
qI − 1

T
0I − 2DI

B

]
(EI)µ Σµσ1σ2ωσ1σ2

+Bµ
I

[
∇µD

I
B −

DI
B

ε+ P
∇⊥µP +∇µ

(
µq

J

T

)
0̃ I
J

]
+Σµνσωνσ

[
∇µDω − 2Dω

ε+ P
∇⊥µP +∇µ

(µqI
T

)
0I

]
.

Attempting to satisfy the strict equalities for all the terms which are not squares

completely fixes expressions for Dω, DB, 0I and 0̃I
J in terms of the thermodynamic

variables and the anomaly coefficients CIJK as demonstrated in [60].

Propagation of disturbances

We consider the additional variations(
qI , γI , κqI ,0I

)
=

(
qI(0), γ

(0)
I , κq

(0)
I ,0

(0)
I

)
+ε2

(
δqI(εx), δγI(εx), δκqI(εx), δ0I(εx)

)
(2.1.56)
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on top of those displayed in Eq. (2.1.38). As the constitutive relation for the

SEM tensor has precisely the form it had in the chargeless case the changes to the

equations of motion for a linearised disturbance are minimal and simply take into

account the dependence of the energy density upon the charge. Choosing δε = δP =

0 we get the same shear mode that we had before Eq. (2.1.42).

Obtaining the equations of motion for the sound modes is tedious but straight-

forwardly follows from the method used in the uncharged case although we must be

careful because charge and pressure fluctuations couple. As such we shall not do it

here. However, to compare to charge diffusion as considered in chapter 1 we should

look at charge variations in the absence anomalies and background charge. We need

to solve the charge conservation equation

0 = ε3 (−iωδqI) + ε4
(
+κqIJk

2
⊥δq

J
)

+O6(ε) , (2.1.57)

where we have set pressure variations to zero. For a single U(1) charge there will

be one new dispersive mode where

ω = −iεκqk2
⊥ +O3 (k⊥) . (2.1.58)

This has exactly the form for charge diffusion found from the linearised perturbation

analysis of the bulk gauge field in Sec. 1.2.1 with κq =
(

d
4(d−2)πT

)
. When there are

multiple charges even in this simplified regime there will be a different decay channel

corresponding to each charge with κqIJ allowing them to mix.

Conformality

So far we have not used conformality. Just as before scale invariance implies that

T λλ ≡ 0 and thus ζ ≡ 0. Additionally under a Weyl transformation

˜̃κqIJ = eφκ̃qIJ ,
˜̃γI = γ̃IJ , d = 3

0̃I = e2φ0I , d = 4

κ̃qIJ = e(d+1)φκqIJ , γ̃I = e3φγI , d ≥ 3

and for all dimensions considered

(d− 1)κqIJq
J + γIT = 0 (2.1.59)
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which is consistent with what we found from positivity of the entropy current diver-

gence. For d = 3 there is an additional relationship of the form

2κ̃qIJq
J + γ̃IT = 0 . (2.1.60)

2.1.8 Non-zero E and B fields, higher derivatives and forced

fluids

In this thesis we shall not have cause to investigate spacetimes dual to field theories

with non-zero electric E and magnetic B fields at zeroth order. As such we shall not

dwell on constructing their effective field theories. Nonetheless it would be remiss of

us not to remark on how one might go about writing them down. The first thing to

note is that in the above we have used SO(d− 1) symmetry extensively to simplify

the resultant expressions. As such when we have E and B fields, because they pick

out spatial directions, our expressions will contain more terms.

The case of non-zeroB fields were considered in [65,78,79]. ForB fields that scale

appropriately in the wavenumber the effect upon the hydrodynamics is mild and

the fluid velocity and dissipative coefficients receive B dependent corrections [78].

However, when B is finite in the large T limit its effect on the dispersion relations is

drastic [65, 79] with the loss of a sound mode and the introduction of sub-diffusive

modes. The case of non-zero electric fields has also been considered in literature

and the interested reader is referred to [68].

As for higher order derivative terms the process by which one can proceed

should now be clear. For example, at two derivatives, the most general combination

of objects that contain two derivatives is written down. If the theory is spatially

isotropic and conformal then these can be reduced further. For the uncharged case

see [32] and for the case of a charged fluid in absence of electric and magnetic fields

see [62].

One subtlety occurs if our background manifold is curved. At second order

terms dependent on the background curvature can appear in our expansion. Unfor-

tunately there is insufficient space to discuss the extension of the above procedure
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to these cases here. It seems reasonably clear however that we must add terms

to our expansions that are constructed from curvature invariants of the boundary.

For an uncharged fluid the procedure is discussed in detail in [63]. To the author’s

knowledge the extension to a charged fluid living on a curved background has not

been done in literature.

2.2 A fluid dual to asymptotically, local AdS spaces

We begin this section by first describing the thermodynamics of a charged black hole

in AdS. This will be the holographic dual to a strongly coupled thermal field theory

upon which we shall build our hydrodynamics. We shall then show how by a change

of coordinates it can be broken down into the same gauge choices we employed in our

discussion of linearised gravitational perturbations. Noting the similarity between

the linearised and non-linear calculations we shall then lay out the general structure

used in the hydrodynamic analysis of these spacetimes. Much of this work is based

on [32,62].

2.2.1 Background and thermodynamics

For the moment let’s consider a bottom-up approach to finding the duals to charged,

high temperature (T � µ) strongly coupled boundary field theories. As mentioned

in chapter 1 we isolate the features that are of interest to us - namely the existence

of a conserved charge and a non-zero temperature. Thus we look for a bulk gravi-

tational theory that contains a black hole and a U(1) gauge field. A simple action

which contains the gravitational and gauge field content necessary for such a bulk

setup would be

S =
1

2κ2
d+1

∫
dd+1x

√−g (R(d+1) − 2Λ− g2
FF

2
)

(2.2.61)

where gF is the gauge coupling, Λ < 0 and F = dA is a U(1) field strength. We have

restricted ourselves to a single U(1) charge as it is straightforward to add further

U(1) charges but doing so does not provide further theoretical insight. For a well-

defined variational principle we should additionally include terms that ensure the
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boundary values of the fields remain fixed such as a Gibbons-Hawking term. We note

that in consistent truncations from string theory there can be various other fields

which must take non-zero values for any uplifts to the full ten-dimensional theory

to be valid. One example that will be important for us later is a Chern-Simons term

but for now we shall assume this to be zero.

The equations of motion coming from this action are

RMN + dgMN = g2
F

(
2FMPF

P
N −

1

d− 1
gMNF

2

)
,

d∗F = 0

and one solution to this set of equations does indeed describe an electric Reissner-

Nordstrøm AdSd+1 black hole with planar horizon

ds2 =
r2

`2

(−f(r)dt2 + dx2
d−2

)
+

`2

r2f(r)
dr2 , (2.2.62)

A = µq

(
1− r+

d−2

rd−2

)
dt , (2.2.63)

where

f(r) = 1− m

rd
+

Q2

r2(d−1)
, (2.2.64)

m is the mass of our black hole and Q its charge which is related to the chemical

potential µq by

µq =

√
d− 1

2(d− 2)

Q

gF r+
d−2

. (2.2.65)

There exist three values of r where the metric (Eq. (2.2.62)) has a singularity, the

true singularity at r = 0 and the inner and outer black-hole horizons r− and r+

respectively (where r− < r+).

We should check that the charged black holes of Eq. (2.2.62) and Eq. (2.2.63)

have the correct boundary interpretation. The temperature of these black holes can

be calculated by Euclideanising the metric and ensuring the resultant manifold has

the topology of a circle as opposed to a cone in Euclideanised time. It is

T =
dr+

4π`2

(
1− (d− 2)Q2

dr+
2d−2

)
. (2.2.66)
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For the background of Eqs. (2.2.62) and (2.2.63) there is no electromagnetic field

strength in the boundary, F̃µν ≡ 0, but there is a non-zero charge current

J t =
2(d− 2)µqg

2
F r+

d−2

κ2
d+1`

d−1
(2.2.67)

which we identify with the boundary charge density q. Additionally the boundary

SEM tensor has non-zero components

T tt =
(d− 1)m

2κ2
d+1`

d+1
, (2.2.68)

T ij =
m

2κ2
d+1`

d+1
δij , (2.2.69)

from which we can identify our energy density and pressure

ε =
(d− 1)m

2κ2
d+1`

d+1
, (2.2.70)

P =
m

2κ2
d+1`

d+1
. (2.2.71)

Note that ε = (d− 1)P as expected for a theory with underlying conformal invari-

ance. The entropy density is also easy to calculate using Bekenstein and Hawking’s

result and it is given by

s =
2π

κ2
d+1

(r+

`

)d−1

. (2.2.72)

As an additional check it is straightforward to show that the first law of thermo-

dynamics, for constant spatial volume, is satisfied. Hence these gravitational duals

correspond to boundary field theories with all the ingredients necessary for studying

the charged hydrodynamics of strongly coupled field theories.

Before moving on we should justify whether these bottom-up configurations are

sensible to consider. We will have at least some evidence in the affirmative if we are

able to find an example of a charged black hole from a string theory embedding. We

shall now attempt to do this. Consider the following consistent truncation of Type

IIB string theory

S10 =
1

2κ2
10

∫ [
(∗101)e−2Φ

(
R(10) + 4(∂Φ)2

)− 1

4
F(5) ∧ ∗10F(5)

]
, (2.2.73)

where we have chosen the string frame. As usual, self-duality of the RR 5-form

must be imposed after variation to complete the specification of the equations of
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motion. From [80] consider the following ansatz for solutions to the equations of

motion coming from this action

ds2
10 = gµν(x)dxµ ⊗ dxν

+

(
dψ +A(1) − 2√

3
AQ

)2

+ dΣ2
4 , (2.2.74)

F(5) = 2(1 + ∗10)

(
dψ +A(1) − 2√

3
AQ

)
∧ J(2) ∧ J(2)

− 2√
3

(1 + ∗10)∗5FQ ∧ J(2) , (2.2.75)

FQ = dAQ , (2.2.76)

where ∗5 and ∗10 are the five- and ten-dimensional Hodge stars defined in ap-

pendix B and the unusual factors of − 2√
3

are present so that our AQ normalisation

matches that of [62]. The final two terms of the ten-dimensional metric are the

five-dimensional metric on the unit S5 given by a U(1) fibration over CP2 with a

gravi-photon turned on. The one-form A(1) and the two form J(2) are called the

Kähler potential and form respectively and are defined by the following equations:

J(2) =
1

2
dA(1) ,

Vol(CP2) =
1

2
J(2) ∧ J(2) .

Using the five-form Bianchi identify dF(5) = 0 we find our choice for the de-

composition of the RR 5-form implies that FQ satisfies the following equation of

motion

d∗5FQ − 4κCSFQ ∧ FQ = 0 ,

where κCS = − 1
2
√

3
is the Chern-Simon’s coupling of the gauge field AQ. This follows

from an action of the form∫ [
FQ ∧ ∗5FQ − 8

3
κCSAQ ∧ FQ ∧ FQ

]
which, upon compactification, we shall use to substitute for the F(5) terms of Eq.

(2.2.73). There is one caveat in this replacement and it is that the cosmological

constant in the five-dimensional theory receives contributions from the volume form
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pieces of Eq. (2.2.75). The correct cosmological constant can be determined by

examining the equations of motion.

Also, we now generalise to arbitrary κCS which will clarify the role of the Chern-

Simon’s term in generating the parity violating coefficients. Compactifying S5 we

can set the resultant scalar field associated with the metric, σ, to be equal to the

dilaton Φ. Further, we find Φ = 0 is a consistent solution to the equations of motion

and hence our action (2.2.73) reduces to:

S5 =
1

2κ2
5

∫ [
volM

(
R(5) + 12

)− 2FQ ∧ ∗5FQ +
16κCS

3
AQ ∧ FQ ∧ FQ

]
(2.2.77)

in the Einstein frame. This matches the Einstein-Maxwell action of Eq. (2.2.61)

in five dimensions when we introduce a Chern-Simons term and set gF = 1. Hence

all the results above apply to the Reissner-Nordstrøm AdS5 solutions that solve the

equations of motion from this action and we have found one example of a charged

black hole of the type we are interested in that can embedded in string theory.

Finally we note a useful coordinate transformation that can be applied to Eqs.

(2.2.62) and (2.2.63) which will be essential in what follows. We note that the form

of the metric Eq. (2.2.62) is not manifestly regular on the future horizon where we

normally impose infalling conditions on our perturbations. Moving to Eddington-

Finkelstein coordinates our five-dimensional charged black hole metric and gauge

field become

ds2 = 2dvdr +
r2

`2

(−f(r)dv2 + dx2
d−2

)
, (2.2.78)

A = µq

(
1− r+

d−2

rd−2

)
dv , (2.2.79)

where we have made a gauge transformation in the gauge field to remove a dr piece

and set ` = 1. This metric is now manifestly regular on the future horizon. Finally

we can use a boost of the boundary coordinates, which does not change the regularity

properties of the metric, to write

ds2 = −2uµdx
µdr +

r2

`2

(−f(r)uµuνdx
µdxν + dx2

d−2

)
, (2.2.80)

A = −µq
(

1− r+
d−2

rd−2

)
uµdx

µ , (2.2.81)

where we choose for uµ to be unit normalised. These boosted black brane metrics

are a (d+ 2) parameter family (d from unit normalised, timelike uµ, one from T and
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one from Q) that we shall now investigate perturbations of. The fact that this is a

(d + 2) parameter family is essential as this is exactly the number of independent

charged Navier-Stokes equations.

2.2.2 A derivative expansion of the metric

We now consider promoting our thermodynamic constants and velocity field to

functions of position in the boundary coordinates i.e. T = T (x) and uµ = uµ(x).

We should note that non-zero temperatures and velocities will break the SO(4, 2)

symmetry in the boundary theory and thus we can loosely identify these promoted

fields as Goldstone bosons. The fluid metric with promoted parameters,

ds2 = −2uµ(x)dxµdr − r2f(m(x), Q(x), r)uµ(x)uν(x)dxµdxν

+r2Πµν(x)dxµdxν , (2.2.82)

and other bulk fields generically do not satisfy the supplied bulk equations of mo-

tion. To get a better understanding of what is going on let’s look at the metric

about some point x(0) and construct Riemann normal coordinates εxµ where ε is a

formal derivative counting parameter so that in the neighbourhood of this point the

boundary metric γµν(x(0)) is locally flat

γµν = ηµν − 1

3
ε2Rβµαν(x(0))

(
xα − xα(0)

) (
xβ − xβ(0)

)
+ . . . .

We note that we still have the freedom to make local Lorentz boosts as the leading

term by which we defined this coordinate transformation is invariant under such

transformations. Our velocity and thermodynamic fields (we shall later find consis-

tency conditions on exactly which velocity fields we can choose) can be expanded

as

uµ(x) = uµ(x(0)) + ε
(
x− x(0)

)ν
∂νu

µ(x(0)) +O2(ε) , (2.2.83)

T (x) = T (x(0)) + ε
(
x− x(0)

)ν
∂νT

µ(x(0)) +O2(ε) , (2.2.84)
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and similarly for the other relevant thermodynamic quantities. Our metric expanded

to first order in derivatives about the point x(0) is

ds2 = −2
(
u(0)
µ + ε

(
x− x(0)

)ν
∂νu

(0)
µ

)
dxµ ⊗ dr

+
(
−r2f(r)u(0)

µ u(0)
ν + r2Πµν + 2εr2

(
1− f (0)

) (
x− x(0)

)α
u

(0)
(µ|∂αu

(0)
|ν)

− r2εu(0)
µ u(0)

ν

(
x− x(0)

)α( δf (0)

δm(0)
∂αm

(0) +
δf (0)

δQ(0)
∂αQ

(0)

))
dxµ ⊗ dxν

where we have defined

f (0) = f
(
m(0), Q(0), r

)
. (2.2.85)

We can see that this metric has exactly the same form as Eq. (1.2.35) where we

identify

u(1)
µ =

(
x− x(0)

)ν
∂νu

(0)
µ , (2.2.86)

h(0) = −r2
(
x− x(0)

)α( δf (0)

δm(0)
∂αm

(0) +
δf (0)

δQ(0)
∂αQ

(0)

)
, (2.2.87)

h(1) = 0 , (2.2.88)

hµ = r2
(
1− f (0)

) (
x− x(0)

)α
∂αu

(0)
µ , (2.2.89)

h〈µν〉 = 0 . (2.2.90)

We note that while the boundary metric is still flat after promotion the SEM

tensor at each point x(0) is deformed from the ground state given by setting uµdx
µ =

−dv and (m = m(0), Q = Q(0)). The Einstein equations are not satisfied and as it

stands this is not sensible because it is the falloffs to solutions of the classical

equations of motion in the bulk that correspond to sources and expectation values

in the boundary. This suggests that we must add to our metric (2.2.82) an explicit

forcing term r2h̃MNdx
M ⊗ dxN which is first order in derivatives so that the bulk
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equations of motion are solved. The quantities appearing in our metric become

u(1)
µ =

(
x− x(0)

)ν
∂νu

(0)
µ + h̃(1)u(0)

µ , (2.2.91)

h(0) = −r2
(
x− x(0)

)α( δf (0)

δm(0)
∂αm

(0) +
δf (0)

δQ(0)
∂αQ

(0)

)
+ r2h̃(0) , (2.2.92)

h(1) = r2h̃
(1)
, (2.2.93)

hµ = r2
(
1− f (0)

) (
x− x(0)

)α
∂αu

(0)
µ + r2h̃µ , (2.2.94)

h〈µν〉 = r2h̃〈µν〉 , (2.2.95)

and we can interpret this metric as a perturbation of the boundary SEM tensor by

some forcing r2h̃MNdx
M⊗dxN . We have employed the gauge choices of Eq. (1.2.34).

Demanding regularity in the interior of the spacetime (and infalling conditions

on the future horizon) will fix the deformation of the SEM tensor in terms of the

the forcing. We can then search for r2h̃MNdx
M ⊗ dxN such that the bulk equations

of motion are satisfied for a vanishing deformation of the boundary metric. An

analogous process occurs in the linearised analysis where we search for solutions to

the bulk equations in the complex ω plane attempting to find a quasi-normal mode

which is asymptotically close to the ground state when T is large. The ground

state uµ(x) = uµ(0), etc. is of course a solution but we are more interested in nearby

solutions which correspond to the system relaxing to global equilibrium.

There exists an additional set of tricks available to us to make the subsequent

analysis simpler. First, using a local Lorentz boost with velocity parameter v̄i =

ε2ut−1
(1−ε2uiui)ui and vi = εui in parallel with the scaling

exp

(
− ln

T (x(0))

T (x)

)
, (2.2.96)

we can bring the velocity and temperature fields respectively into a canonical form

about x(0)

uµ =

(
1√

1 + ε2v2
,

εvi(x)√
1 + ε2v2

)
, (2.2.97)

and T (x(0)) = 1. To write the fluid velocity in this canonical form we have had to

scale the spatial velocity drastically from its finite value ui(x) to some infinitesimal

departure from zero εvi(x). This is the origin of some singular behaviour in our
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Lorentz boost as ε→ 0. The key point to emphasize is that spatial velocity is finite

about each point on the boundary but by making a “large” Lorentz boost in regions

about any point we can bring it into the canonical (and small) form above. Locally

the bulk metric looks like

ds2 = 2dvdr + εxν∂νvidx
idr

+
(−r2f(r)dv2 + r2δijdx

i ⊗ dxj − 2εr2
(
1− f (0)

)
xα∂αvidv ⊗ dxi

− r2εxα
(
δf (0)

δm(0)
∂αm

(0) +
δf (0)

δQ(0)
∂αQ

(0)

))
dv2

+εr2

(
h̃

(0)
(r)dv2 − 2h̃i(r)dv ⊗ dxi + h̃〈ij〉(r)dxi ⊗ dxj +

h̃
(1)

(r)

d− 1
δijdx

i ⊗ dxj
)
,

(2.2.98)

where we have shifted our coordinates so that x(0) = 0.

A similar process can be applied to the gauge field whose generic, local form at

first order in ε is

AMdx
M = µq

(
1− r+

d−2

rd−2

)
dv

+ε

[√
3

2r2
w(1)dv +

(
g(1) −

√
3Q0

2r2
j(1)

)
dxi

]
, (2.2.99)

where we have maintained the gauge choice

Ar ≡ 0 (2.2.100)

and chosen our notation for the gauge field to match [62].

Before turning to actually solving these equations, which we shall do for Reissner-

Nordstrøm AdS5 in particular, we introduce an additional piece of terminology.

In addition to the scalar, vector and tensor decomposition above we can further

separate the Einstein-Maxwell equations in each of these sectors into two groups;

constraint equations3, which are obtained by contracting the Einstein and Maxwell

equations with the vector dual to the one-form (dr)M , and dynamical equations.

3To call the projected equations constraints is a slight abuse of terminology since we are not

dealing with an initial value problem here.
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The constraint equations depend on the particular nature of the fluid we are con-

sidering in that, as they correspond to covariant conservation of SEM tensor and

charge currents, we need to solve the hydrodynamic equations for temperature and

charge profiles when given a velocity distribution. However, the dynamical equations

can be completely solved by choosing the correct dependence of the undetermined

functions in Eq. (2.2.98) and Eq. (2.2.99) on m, Q and r.

2.2.3 First order metric corrections for Reissner-Nordstrøm

AdS5

We now turn to solving the resultant Einstein-Maxwell equations sector by sector

at first order in derivatives for the particular example of a fluid dual to a non-

extremal Reissner-Nordstrøm AdS5 black hole with Chern-Simon’s terms. Hence

we are attempting to solve order by order the equations of motion coming from the

action given in Eq. (2.2.77). We begin with the tensor sector so as to compare to

the linearised calculation in the introduction. The tensor sector does not include a

constraint equation so we shall also look at the scalar sector in detail to see how

these appear. Finally we shall briefly comment on the vector sector and refer the

reader to literature for details.

Tensor sector

We begin by studying the tensor sector as it connects nicely to our previous dis-

cussion of linearised gravity. Again, the tensor sector perturbation is built from two

pieces, one coming from the original metric expanded to order ε and a xµ indepen-

dent piece that we must add to fix the Einstein equations. From our discussion of

linearised gravity we have

Ẽ
(1)
MNdx

M ⊗ dxN =
1

2

[
r2f(r)∂2

r

(
r2h̃〈ij〉(r)

)
+ r2∂rf∂r

(
r2h̃〈ij〉

)
+(d− 3)rf∂r

(
r2h̃〈ij〉

)
− r2h̃〈ij〉(r) (2r∂rf(r) + 2(d− 1)f)

+2r2h̃〈ij〉(r)
]
dxi ⊗ dxj + . . .
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where ellipses indicate terms coming from other pieces of the perturbation. What

is clear is that the operator governing h̃〈ij〉 is precisely

∂2
r +

(
∂rf

f
+
d+ 1

r

)
∂r . (2.2.101)

Similarly, there will be universal vector and scalar operators details of which can

be found in [32]. However to follow through with the full decomposition of [52, 53]

on the objects displayed in Eq. (2.2.93) would fail to yield the correct results.

Essentially this is due to the fact that we wish to add a correction to the expanded

spacetime Eq. (2.2.90). Henceforth the terms tensor, vector and scalar sector refer

to the decomposition of h̃MN . Hence there will be mixing between what [52, 53]

would term the tensor, vector and scalar pieces of the metric and, as we shall see,

the equation of motion for h̃〈ij〉 becomes sourced.

Now we work specifically in Reissner-Nordstrøm AdS5. The gauge field does

not supply any tensor sector equations and there are no constraint equations. Our

Einstein equation evaluates to

∂2
r h̃ij +

(
∂rf

f
+

5

r

)
∂rh̃ij = − 6

r3f(r)
σ

(0)
ij , (2.2.102)

This is a first order equation in drh̃ij which can be simply integrated to give

h̃ij =
2

r+

F1(m,Q, r)σij , (2.2.103)

where

F1(m,Q, r) =

∫ ∞
r
r+

dx
x (x2 + x+ 1)

(x+ 1)
(
x4 + x2 − Q2

r+6

) .

Scalar sector

Next we turn to the scalar sector as it supplies a nice illustration of the various

roles of constraint and dynamical equations and how it is possible to generically

solve them. The three unknown functions we have to contend with are

h̃(0)(r), h̃(1), w(1)(r) . (2.2.104)
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Among the Einstein equations there are four independent SO(3) scalar pieces coming

from vv, vr, rr and trace over the ii components. Two linear combinations of these

supply constraint equations

grrEvr + grvEvv = 0 , (2.2.105)

grrErr + grvEvr = 0. (2.2.106)

The first of these reduces to

∂µT
µv
(0) = 0 (2.2.107)

while the second relates h̃(0), h̃(1), w(1) according to

drh̃
(0) +

4

r
h̃(0) =

2∂iv
(0)
i

r2
+

[(
1− m0

3r4

)
drh̃

(1) +
4

r
h̃(1)

]
−2q0

r6

[
drw

(1) − 2

r
w(1)

]
. (2.2.108)

We see that for the Einstein equations up to order one in derivatives to be satisfied

the fluid velocity field must satisfy the Navier-Stokes to order one in derivatives

Eq. (2.2.107). As Eq. (2.2.107) is order one in derivatives it only depends on the

zeroth order SEM tensor. This is a structure that is also seen at higher orders in the

derivative expansion, namely, for the Einstein equations to be satisfied at order k the

fluid velocities in terms of which the metric is written must satisfy the Navier-Stokes

equations coming from the order k − 1 constitutive relation.

Of the remaining two Einstein equations any one can be chosen to supply a

dynamical equation; we will later choose the Err equation and check that the solution

satisfies all the others. Similarly for the Maxwell field there is one unknown function

w(1)(r). (2.2.109)

There are two scalar sector Maxwell equations with one being related to the other

by a constraint

grrMr + grvMv = 0 (2.2.110)

which in turn reduces to

∂µJ
µ
(0) = 0 . (2.2.111)
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This leaves us one to solve for, for which we choose Mr.

As for the dynamical equations we need to solve

d2
rh̃

(1) +
5

r
drh̃

(1) = 0 , (2.2.112)

d2
rw

(1)(r)− 1

r
drw

(1)(r)− 2q0

r
h̃(1) = 0 . (2.2.113)

Solving the first equation tells us that

h̃(1) = ch̃(1) +
1

r4
c̃h̃(1) . (2.2.114)

The first term represents a non-normalisable mode and must be set to zero. The

second piece represents a VEV deformation of the boundary SEM tensor. Integrating

the second equation gives

w(1)(r) = cw(1) + c̃w(1)r2 − q0

3r4
c̃h̃(1) . (2.2.115)

Again we see the presence of a non-normalisable mode which requires us to set

c̃w(1) = 0.

Finally only h̃(0) is left to determine. We can see that the constraint equation

above relates it to h̃(1) and w(1). In particular:

h̃(0) =
1

r4

[
2

3
∂iv

(0)
i r3 + ch̃(0) − 2q0

r2
cw(1) +

1

3

(
−m0

r4
+

2q2
0

r6

)
c̃h̃(1)

]
.(2.2.116)

We see that the constants cw(1) and ch̃(0) can be absorbed into redefinitions of the

mass and charge and thus we can ignore them as they do not represent the kind of

VEV deformations we are interested in. Similarly the constant c̃h̃(1) can be absorbed

into a redefinition of r and thus redefines the “renormalisation scale” in the bulk

theory. Hence only the first term contributes to the definition of h̃(0). To summarise

the scalar sector correction to the bulk metric is given by

ds2 = . . .+ εr2

(
2

3

∂iv
i
(0)

r
dv2

)
(2.2.117)

with no scalar correction to the gauge field at this order in ε.

Vector sector

A similar process can be applied in the vector sector where there is a single constraint

equation given by

grrEri + grvEvi = 0 (2.2.118)
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which reduces to demanding that

∂µT
µi
(0) = 0 . (2.2.119)

Once again we see that calling equations such as Eq. (2.2.118) constraint equa-

tions makes sense because satisfying the above equation forces first derivatives of

the velocity fields to be related to local thermodynamic fields. Indeed if we could

generically solve the relativistic Navier-Stokes equation for some initial data then

we could investigate interesting duals to exotic fluid flows. Here however it is only

necessary to solve the equations ultralocally about a point on the boundary. As the

process of solving the constraint and dynamical equations for the vector sector is

very similar to the above we shall not go through it here. Instead we simply state

the full metric in the next section Eq. (2.2.120). For further details the reader is

referred to [32].

2.2.4 The metric, SEM tensor and charge current to first

order

A relativistic and gauge independent expression for the charged black brane with

AdS5 boundary found in [62] to first order in derivatives is:

ds2
5 = −2uµdx

µdr − r2f(m,Q, r)uµuνdx
µdxν + r2Πµνdx

µdxν

−2ruµ
(
uλ∇λuν

)
dxµdxν +

2

3
r
(∇λu

λ
)
uµuνdx

µdxν

+2
r2

r+

F1(m,Q, r)σµνdx
µdxν − 2

√
3κCSQ

3

mr4
uµlνdx

µdxν

−12Q
r2

r+
7
F2(m,Q, r)uµ

(
Πλ
ν∇λ + 3uλ∇λuν

)
Qdxµdxν , (2.2.120)

AQ =

√
3Q

2r2
uµdx

µ +
3κCSQ

2

mr2
lµdx

µ

+

√
3r5

2r+
7

[
∂

∂r
F2(m,Q, r)

] (
Πλ
µ∇λ + 3uλ∇λuµ

)
Qdxµ , (2.2.121)
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where the first line of each definition is zeroth order in fluid derivatives, the subse-

quent lines first order and:

f(m,Q, r+) = 0 ,

F1(m,Q, r) =

∫ ∞
r
r+

dx
x (x2 + x+ 1)

(x+ 1)
(
x4 + x2 − Q2

r+6

) ,
F2(m,Q, r) =

1

3

(
1− m

r4
+
Q2

r6

)∫ ∞
r
r+

dx
1(

1− m
x4 + Q2

x6

)2

(
1

x8
− 3

4x7

(
1 +

r+
4

m

))
.

These results were obtained in [32] by perturbatively solving the equations of motion

from the action of Eq. (2.2.77) with trivial dilaton field. This solution can readily

be uplifted to a 10-dimensional solution of Type IIB by adding a suitably deformed

S5 term to the metric and folding an AQ term into the standard expression for the

Ramond-Ramond five form [80].

It is not too difficult to read off the SEM tensor and charge current for the above

metric and gauge field. The form of the SEM tensor and charge currents are

T µν = P (ηµν + 4uµuν)− 2ησµν , (2.2.122)

Jµ = quµ − κq (Πµν∇νq + 3quν∇νu
µ)− 0lµ (2.2.123)

as expected from our discussion of hydrodynamics. As we have a specific model the

coefficients, in terms of G5 which can be related to the central charge of the field

theory, can be determined. They have the following expressions

ε = 3P , P = m
16πG5

, η = r+3

16πG5
,

q =
√

3Q
4πG5

, κq =
(
r+4+m
4mr+

)
, γ = −3q

4ε
κq , 0 = −κCS

2P
q2 ,

where we have applied the SEM conservation equation at zeroth order in derivatives,

uν∇νu
µ +

Πµν∇νP

ε+ P
= 0 ,

to the penultimate term of Eq. (2.2.123) to write it in terms of ε. Thus, γ displayed

above is the coefficient of the derivative of the energy density ε. To convert to a

derivative of T , which was our choice of variable at the beginning of the chapter,

one need only substitute in the expression for the energy density in terms of T

and q. Note that our parity violation coefficient 0 is indeed determined by the

Chern-Simon’s parameter κCS, the charge q and the fluid pressure P .



Chapter 3

Incompressible non-relativistic

fluids

In this chapter we shall discuss a scaling of the relativistic metrics of chapter

2 which allows our boundary fluid to realise Galilean symmetry. This process is

related to that for obtaining the Galilean conformal algebra from the conformal

algebra as discussed in appendix A. We shall find that the resultant non-relativistic

fluids satisfy an incompressibility condition. The consideration of a fluid dual to a

charged black hole, while novel, represents a minor change to [61] and their results

can readily be obtained by setting this charge to zero.

3.1 Relaxation of the field theory from local to

global equilibrium

3.1.1 Thermodynamics

The essential starting point for constructing our hydrodynamic theory in the pre-

vious chapter was the existence of a global thermodynamic ground state for a per-

turbed system to decay to. So we should understand how the scaling of appendix

A, which we shall now refer to as BMW scaling, affects the thermodynamics. The

relativistic ground state was specified by

G = G
(
P , T , qI

)
. (3.1.1)

70
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When we consider local thermodynamics each of these thermodynamic state vari-

ables became a function of coordinates. The Galilean algebra achieved by a con-

traction of the Poincaré algebra in appendix A was represented by functions which

had an anisotropic scaling in space and time

f (εx) → f
(
εBMW

rxi, εBMW
r+1t

)
, (3.1.2)

where εBMW is the non-relativistic scaling parameter. In what follows we shall choose

r = 1. We would like to argue how the thermodynamic variables should decompose

under this scaling (see appendix A for a general discussion of the scaling process).

The essential physics is contained in the example of an uncharged, free, relativistic

point particle whose energy is given by

E =
√
m2

(0) + p2 . (3.1.3)

Under the scaling p = εBMWp∗ we find

E ∼ m(0) + εBMW
2 p2

∗
2m(0)

+O4(εBMW) . (3.1.4)

If we were considering kinetic theory we would use this to argue that the total energy

of our fluid should split into a “zero-point”-like piece m(0) and a non-relativistic

energy1. More generally this suggests to us that the thermodynamic variables of

our fluid, other than charge and those related to electromagnetic effects, should

scale as

P = P (0) + εBMW
2P nr

∗ , (3.1.5)

T = T (0) + εBMW
2δT ∗ , (3.1.6)

where P (0) and T (0) are the relativistic temperature and pressure respectively and

henceforth the script ∗ will indicate that the arguments of the function scale anisotrop-

ically in space and time (Eq. (3.1.2)). This decomposition will receive further justifi-

cation in the next section where we demonstrate that it leads to the incompressible

1Note that if the relativistic dispersion relation is gapless, such as for the hydrodynamic sound

mode of a chargeless relativistic fluid, there is no zero point energy to contend with and in our

example the mode would disperse linearly.
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Navier-Stokes equations. We shall find that when we attempt to generate these

non-relativistic fluid equations from their relativistic counterparts we will have to

normalise the non-relativistic pressure, charge, etc. by a factor ρ(0) defined by

ρ(0) = ε(0) + P (0) .

This will later be interpreted as a mass density. We could of course do this im-

mediately in Eq. (3.1.6) converting the “raw” thermodynamic quantity, P nr
∗ into

its properly normalised counterpart P nr
∗ → ρ(0)P nr

∗ as was done in [61]. However

it will be enlightening to see explicitly where this normalisation turns up in the

resultant contraction and therefore we shall save doing this until later.

The fact that we need to additionally scale the charge is a little more difficult

to see from our particle motion argument. However, imagine that we had the rel-

ativistic Gibbs free energy and, using the scalings above, we wanted to construct

the corresponding non-relativistic Gibbs’ free energy. We would expand our rela-

tivistic relations in powers of εBMW. The piece which is order 0 in εBMW as above

we would interpret as something like a “zero point” free energy which should affect

our dynamics only through overall rescalings of our raw non-relativistic variables.

If the charge did not decompose in the same way as the pressure and the tempera-

ture then the resultant free energy would describe an uncharged system. So we also

decompose

qI = qI(0) + εBMW
2qnr

∗ . (3.1.7)

Finally, for scale invariant theories the relativistic equation of state in absence

of an external electromagnetic field was

ε = (d− 1)P . (3.1.8)

Given an equation of state for the fluid, just like for the free energy, we can then work

out the equation of state obeyed by its non-relativistic limit. On general grounds

these must be the same expression up to introduction of ρ(0) in suitable places. For
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a fundamentally scale invariant theory in particular, we find

(
ε(0) + εBMW

2ρ(0)εnr

)
= (d− 1)

(
P (0) + εBMW

2ρ(0)P nr
∗)

⇒ εnr
∗ = (d− 1)P nr

∗

as expected.

3.1.2 Fluid variables and fluid dynamics

The equations of motion coming from covariant conservation of the relativistic SEM

tensor to first order in derivatives are

0 = uµ∇µε+ (ε+ P ) θ − 2ησ2 − ζθ2

0 = ∇⊥αP + (ε+ P ) aα − 2η∇ν
⊥σαν + 2ησ2uα − 2σ ν

α ∇⊥ν η ,
−ζ∇⊥α θ − ζaαθ − θ∇⊥α ζ

where for simplicity we have assumed our manifold is flat. As discussed above we

need our thermodynamic variables to undergo the decomposition of Eqs. (3.1.6) and

(3.1.7). Given that the transport coefficients are functions of our chosen thermody-

namic variables they must also undergo such a decomposition so that

η → η(0) + εBMW
2ηnr , (3.1.9)

ζ → ζ(0) + εBMW
2ζnr . (3.1.10)

Finally, our relativistic velocity field decomposes as

uµ =
1√

1− εBMW
2δijvi∗v

j
∗

(
1, εBMWv

i
∗
)

=

(
1 +

1

2
εBMW

2δijv
i
∗v
j
∗, εBMWv

i
∗

)
+O3(εBMW) . (3.1.11)

These transformations are qualitatively similar to those in the linearised perturba-

tion analysis of Eq. (2.1.40). In fact we can modify those equations by replacing

ε with εBMW and adding to any time derivative an extra εBMW. Care must also

be taken over the fact that ut has an additional order εBMW
2 piece and vi∗ is only

order one in εBMW which requires us to reintroduce vj∗∂jv
i
∗ which dropped out of the
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linearised analysis. The result is that

0 = εBMW
2 [θ∗] +O4(εBMW) (3.1.12)

0 = εBMW
3
[(
ε(0) + P (0)

) (
∂tv
∗
i + vj∗∂jv

i
∗
)

+∇iP nr
∗ − η(0)

(∇j∇iv
∗
j +∇2v∗i

)]
+O4(εBMW) (3.1.13)

where the first equation comes from the parallel part of the relativistic equation and

demands incompressibility of the fluid while the second equation comes from the

transverse part and is the non-relativistic Navier-Stokes equation. We have used

Eq. (3.1.12) to simplify terms in Eq. (3.1.13). We can redefine our non-relativistic

pressure and viscosities to have overall factors of ε(0)+P (0) which brings Eq. (3.1.13)

into the more pleasant form

0 = ∂tv
∗
i + vj∗∂jv

i
∗ +∇iP nr

∗ − ν (∇j∇iv
∗
j +∇2v∗i

)
(3.1.14)

where we have interpreted ν =
η(0)

ε(0)+P (0)
to be the kinematic viscosity. Similarly for

the charge conservation equations we find

0 = εBMW
3
(
∂tqnr

I
)

+O4(εBMW) (3.1.15)

and we simply end up with conservation of charge to this order. These equations

have interesting symmetry properties and the interested reader is referred to [61]

and [81] for further details.

3.2 Dual to asymptotically, locally AdS spaces

Given the duality between the strongly coupled fluids and bulk spacetimes of chapter

2 it is clear that it is possible to take the BMW limit of the bulk metric dual to

the relativistic fluid of chapter 2. This will provide us with a bulk spacetime whose

dual is a non-relativistic fluid with underlying Galilean conformal symmetry. For

relating to the Schrödinger fluid in the next chapter it will be sufficient for us to

consider the metric and gauge field at first order for the Reissner-Nordstrøm AdS5

black hole given by Eqs. (2.2.120) and (2.2.121).
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3.2.1 First order metric corrections for Reissner-Nordstrøm

AdS5

We wish to apply the scaling transformations, Eqs. (3.1.6), (3.1.7) and (3.1.11) to

the bulk metric and gauge fields of Eqs. (2.2.120) and (2.2.121) which we state here

for convenience

ds2 = −2uµdx
µdr − r2f(m,Q, r)uµuνdx

µdxν + r2Πµνdx
µdxν

−2ruµ
(
uλ∇λuν

)
dxµdxν +

2

3
r
(∇λu

λ
)
uµuνdx

µdxν

+2
r2

r+

F1(m,Q, r)ηµνdx
µdxν − 2

√
3κCSQ

3

mr4
uµlνdx

µdxν

−12Q
r2

r+
7
F2(m,Q, r)uµ

(
Πλ
ν∇λ + 3uλ∇λuν

)
Qdxµdxν ,

AQ =

√
3Q

2r2
uµdx

µ +
3κCSQ

2

mr2
lµdx

µ

+

√
3r5

2r+
7

[
∂

∂r
F2(m,Q, r)

] (
Πλ
µ∇λ + 3uλ∇λuµ

)
Qdxµ .

Define the following quantities

m = m(0) + εBMW
2m∗nr ,

Q = Q(0) + εBMW
2Q∗nr ,
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which follow when m and Q are expressed in terms of T and q. The resultant metric

and gauge field are

ds2
(0) = 2dtdr + r2

(
1− f(m(0), Q(0), r)

)
dt2 + r2δijdx

idxj ,

ds2
(1) = −2v∗i dx

idr − 2r2
(
1− f(m(0), Q(0), r)

)
v∗i dx

idt ,

ds2
(2) = δijv

i
∗v
j
∗dtdr + r2

(
1− f(m(0), Q(0), r)

)
δijv

i
∗v
j
∗dt

2

−r2

(
δf(m(0), Q(0), r)

δm(0)
m∗nr +

δf(m(0), Q(0), r)

δQ(0)
Q∗nr

)
dt2

+r2
(
1− f(m(0), Q(0), r)

)
v∗i v
∗
jdx

idxj

+2
r2

r+

F1

(
m(0), Q(0), r

)∇(iv j)dx
idxj

−2
√

3κCSQ
3
(0)

m(0)r4
ε jki ∇jv

∗
kdtdx

i ,

AQ(0) = −
√

3

2r2
Q(0)dt ,

AQ(1) =

√
3Q

2r2
v∗i dx

i ,

AQ(2) = −
√

3

4r2
Q(0)δijv

i
∗v
j
∗ −
√

3

2r2
Q∗nrdt+

3κCSQ
2
(0)

m(0)r2
ε jki ∇jv

∗
kdx

i .

where the subscript refers to the order in εBMW and we have applied incompressibility

as a constraint on the fluid velocity. We should make a few comments on this metric

and gauge field. The part of the metric which is zeroth order in εBMW is clearly the

usual metric of AdSd+1. The order εBMW
2 piece of both the metric and the gauge

field contain terms quadratic in spatial velocities leading to the correct terms at

the boundary to form the material derivative of the incompressible Navier Stokes

equations. The presence of these quadratic terms is due to the fact that we scaled

length scale fluctuations to be large at the same rate that we took spatial velocities

to be small [61]. Had we simply scaled the spatial velocity amplitudes the resultant

metrics would be dual to the linearised relativistic Navier-Stokes equations.

We have thus isolated a metric which corresponds to the desired boundary fluid.

There is no need to extract the SEM tensor and charge currents again because all we

have done is select particular solutions to the relativistic fluid equations of motion.

Thus our previously calculated SEM tensor and charge current (Eqs. (2.2.122) and

(2.2.123)) still apply and will decompose exactly as described above. The only new
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transport coefficient is ν which is simply a ratio of relativistic transport coefficients.

In the absence of charge the kinematic viscosity has the form

ν =
1

4πT
(3.2.16)

where we have used the integrated form of the first law of thermodynamics in the

absence of charge ε+ P = sT . When charge is present it has the form

ν =
1

4π
(
T + µqq

s

) (3.2.17)

and thus, unlike the relativistic shear viscosity, lacks a universal character.

3.2.2 Beyond first order

It is clear that given any dual to a relativistic fluid we should be able to go through

the BMW process to obtain an incompressible fluid with underlying Galilean sym-

metry. In literature higher orders in εBMW have been considered as have been forced

fluids where the boundary metric on which the original relativistic fluid lives is

curved. At zeroth and first order in εBMW the curvature invariants of the boundary

are locally zero and so the form of the metric corrections is unchanged from that

displayed above. However at second order it is possible to write down Weyl covariant

curvature objects and thus the second order corrections to our metrics are different.

For a discussion of forced and higher order non-relativistic fluids with underlying

Galilean conformal invariance see [61] and subsequently [3] which corrects a small

but important error in [61]. In [3] it is also shown how the membrane paradigm,

whose gravitational fluctutations can exactly be described by a non-relativistic, in-

compressible fluid, can be embedded as an object in the boundary field theory.

The degrees of freedom associated with the membrane correspond to imposing a

Newton-Cartan structure, associated with non-relativistic gravity, on the boundary

as opposed to the usual Lorentzian structure of relativistic theories.



Chapter 4

Compressible non-relativistic

fluids

Another example of a non-relativistic limit of strongly-coupled field theories are

the duals to Schrödinger spacetimes. The interest in the hydrodynamics of these

theories in part lies in the fact that it has proven difficult to find generalisations of

the AdS-CFT correspondence to other asymptotics. The Galilean limit discussed in

the previous section only represents a restriction of the relativistic correspondence

to some subsector of solutions. Schrödinger spacetimes however represent a truly

different class of asymptotics where the dual field theory satisfies the Schrödinger

algebra [82–84] (see appendix A). In the light-cone coordinate system the bulk metric

of the zero-temperature ground-state of these spaces has the form

ds2 = r2
(

2dx+dx− − β2r2
(
dx+

)2
+ dx2

)
+
dr2

r2
,

where β is some number. For the case above β can be scaled out by a boost but it has

non-trivial effects outside of the ground state. Based on the suggestions of [85, 86]

it later proved possible to embed these spacetimes in string theory [87–89] although

there as yet remains issues of interpretation of boundary quantities [90]. For other

works on Schrödinger spacetimes and non-relativistic CFTs see [91–118].

In this chapter we seek to extend the fluid-gravity correspondence to discuss

fluids with Schrödinger symmetry and perhaps shed some light on outstanding prob-

lems in (compressible) non-relativistic fluid mechanics. The case of an uncharged

78
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fluid has already been considered in [33]. Our focus in this section will be towards un-

derstanding charged fluids with Schrödinger symmetry. In [119,120] a U(1)-charged,

asymptotically Schrödinger spacetime at finite temperature has been discussed and

some linear transport coefficients calculated. To obtain these results a truncation

of the 10-dimensional effective Type IIB string action was isolated. Specifically we

begin with a stack of D3-branes rotating in S5 [121]. The Kaluza-Klein reduction

of this solution is associated with a Reissner-Nordstrøm AdS5 black hole. By ap-

plying a Null Melvin Twist [122,123], or alternately a TsT transformation [124], to

the 10-dimensional metric we induce Schrödinger symmetry on the boundary space-

time. In this section we will extend the analysis of these charged, thermal systems

to hydrodynamics at first order calculating all the relevant transport coefficients.

A fluid with Schrödinger symmetry whose gravitational dual was (d + 1)-

dimensional would occupy d − 2 spatial dimensions. As discussed in the previous

section, an alternate approach to achieving non-relativistic symmetry is given by

the “Galilean conformal algebra” which produces fluids moving in d− 1 spatial di-

mensions. As noted in chapter 4 this approach preserves the form of the equation

of state from the relativistic theory to the non-relativistic theory but projects out

sound waves whose dispersion relations take the form ω ∝ k giving an incompressible

fluid [61].

Our aim in this chapter is to detail the first order corrections to a charged

fluid with Schrödinger symmetry. The general form of these corrections can be ob-

tained by reducing conformal, relativistic currents (Eqs. (2.2.122) and (2.2.123)) to

their non-relativistic counterparts via light-cone reduction. We then consider a five-

dimensional, asymptotically Schrödinger charged black hole spacetime and construct

its fluid dual. The corrections up to first order in boundary derivatives of velocity

to the metric, dilaton, gauge field and massive vector field are calculated. Finally,

using the holographic dictionary in Schrödinger spacetimes, we shall calculate the

boundary values of the stress tensor and gauge field, obtained from our charged

black brane, to determine the dependence on charge and temperature profiles of the

non-relativistic transport coefficients.
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This chapter is organised as follows. In the next section a map is constructed

that links the transport coefficients of the relativistic charge current to their non-

relativistic counterparts. This is an extension of previous work, notably, we seek to

preserve the mappings of [33] between relativistic stress-energy-momentum (SEM)

tensor transport coefficients and their non-relativistic counterparts. In the subse-

quent section we shall construct an action principle for the charged, asymptotically

Schrödinger black hole and determine its field content. For this calculation we

closely follow the work of [119]. Having obtained the asymptotically AdS metric

and gauge field to first order in chapter 2 we take the TsT of this solution to find

the corresponding metric and fields with Schrödinger symmetry. Finally we calcu-

late the boundary values of these fields and determine the non-relativistic transport

coefficients.

4.1 Relaxation of the field theory from local to

global equilibrium

4.1.1 Generalities

In this section we shall formulate the basics of compressible non-relativistic hydro-

dynamics with a conserved particle number. The defining thermodynamic potential

is again the Gibbs potential

G = G
(
P (x), T (x), N(x), QI(x)

)
(4.1.1)

where N(x) is a new variable compared to the relativistic case which corresponds

to a conserved particle number. As noted before the thermodynamic coefficients do

not indicate how quantities flow between different patches of local equilibrium and

as such we need to supplement our knowledge of the extensive variables with the

local fluid velocity vi(x) and mass density ρ(x). We contrast this with the case of

the BMW scaling of the relativistic solution where there is no conserved particle

number and thus no mass density. The hydrodynamic regime is now characterised
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by four conservation equations

∂+ρ+ ∂i
(
ρvi
)

= 0 , (4.1.2)

∂+

(
ρvi
)

+ ∂jΠ
ij = 0 , (4.1.3)

∂+

(
εnr +

1

2
ρv2

)
+ ∂iJε

i = 0 , (4.1.4)

∂+qnr + ∂iJnr
i = 0 , (4.1.5)

where we have used + to denote the time coordinate to match our later interpretation

of x+ under light-cone reduction. These equations are the continuity, momentum

conservation, energy conservation and charge conservation equations respectively of

the fluid.

To zeroth order in derivatives of velocity and temperature we can expand the

undetermined tensor objects, Πij, Jε
i and Jnr

i as

Πij = ρvivj + P nrδ
ij , (4.1.6)

Jε
i =

(
εnr + P nr +

1

2
ρv2

)
vi , (4.1.7)

Jnr
i = qnrv

i , (4.1.8)

where εnr and P nr are the fluid’s energy density and pressure. We shall call Eqs.

(4.1.6), (4.1.7) and (4.1.8) the stress tensor, energy density current and charge den-

sity current at zeroth order.

Following the work of previous chapters and [29] we consider adding terms

to our spatial stress tensor and currents with single derivatives of velocity. Our

undetermined tensor quantities in Eqs. (4.1.3) and (4.1.4) take the form

Πij = ρvivj + P nrδ
ij − ηnrσ

ij − ζnrθδ
ij , (4.1.9)

Jε
i =

(
εnr + P nr +

1

2
ρv2

)
vi − ηnrσ

ijvj − κT δij∂jT

−$δij∂j ln

r+

(
T , µ

T
, µq
T

) [
r+

4
(
T , µ

T
, µq
T

)− 8
3

µq2

µ
r+

2
(
T , µ

T
, µq
T

)] 1
4(

r+
2
(
T , µ

T
, µq
T

)
+ 4

3

µq2

µ

)
 ,

(4.1.10)

where we have assumed a flat background. The last term of Eq. (4.1.10) can be

decomposed into a sum of differentials of our chosen thermodynamic variables but
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as we will be extracting only the single coefficient $ from our gravity dual we have

chosen to display this more compact expression which indicates the relationship of

the new dissipative terms to objects relevant to the gravity dual. The stress tensor

Πij is unchanged from the uncharged case of [33] but the energy current Jε
i has

received an additional correction which vanishes when the charge is set to zero. In

these expressions we have used the following definitions:

θ = ∂iv
i ,

σij =

(
∂ivj + ∂jvi − 2δij

d− 2
θ

)
,

r+(x, y, z) =
π

2
√

2

(
−x
y

) 1
2

[
1 +

√
1 +

32

3

z2

π2

]
. (4.1.11)

All but the last coefficient of Eq. (4.1.10) have standard physical interpretations.

We shall call the new coefficient, $, the contribution to the energy current from

charge.

As regards determining the first order corrections to the current vector we note

that at zeroth order the conservation equations Eqs. (4.1.2)-(4.1.5) can be written

as:

∂+ρ+ vi∂iρ+ ρ∂iv
i = 0 ,

∂+v
i + vj∂jv

i +
1

ρ
∂iP nr = 0 ,

∂+εnr + ∂i
(
εnrv

i
)

+ P nr∂jv
j = 0 ,

∂+qnr + vi∂iqnr + qnr∂iv
i = 0 ,

where the equation of state for the fluid relates εnr and P nr. Hence, if we obtain a

complete solution to the above equations they allow us to replace time derivatives

of the variables εnr, ρ, qnr and vi for spatial derivatives at first order making an error

in our final results that, overall, is second order in derivatives and can therefore be

ignored. We can thus write our non-relativistic current vector as:

Jnr
i = qnrv

i − κnrδ
ij∂jqnr − γnr

ij∂jεnr −znr
ij∂jρ

−0nr

[
εijvk (∂jvk − ∂kvj) + viεjk∂jvk

]
. (4.1.12)

Here κnr is the non-relativistic diffusion constant and 0nr the parity violation coef-

ficient. We shall call the tensor objects γnr
ij and znr

ij the contributions of energy
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density and mass density to the charge current respectively.

4.1.2 Light-cone reduction of charged relativistic fluids

One way of obtaining the form of the first order corrections to Eqs. (4.1.6), (4.1.7)

and (4.1.8) is to light-cone reduce the SEM tensor and charge current of a relativistic

fluid. In particular we shall consider a conformal, relativistic fluid and then the light-

cone reduction will lead to a hydrodynamic system with Schrödinger symmetry [33].

We summarise the previous work of [33] on the uncharged fluid before determining a

map between relativistic charge coefficients and their non-relativistic counterparts.

As was demonstrated in [33] at first-order in derivatives of fluid velocity there

exists a map between the relativistic SEM tensor variables, (uµ, ε, P , η), and non-

relativistic (vi, ρ, εnr, P nr, ηnr) variables. We shall seek to maintain these relations

and augment them with our charge variable maps. In particular we can use them

in our reduction of the charge current. Summarising the results of [33] we begin by

assuming that our fluid lives on a Minkowskian background with metric

ds2 = 2dx+dx− + dx2 (4.1.13)

and that the relativistic hydrodynamic variables and velocities depend only trivially

on the x− direction. This suggests we make the following identifications

T++ = ρ ,

T+i = ρvi ,

T+− = −
(
εnr +

1

2
ρv2

)
, (4.1.14)

T−i = −Jεi ,
T ij = Πij ,

which come from comparing SEM tensor conservation equations in our choice of

coordinates and Eqs. (4.1.2)-(4.1.4). The T++ component of the SEM tensor implies

the following identification between variables

ρ = (ε+ P )
(
u+
)2

(4.1.15)
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while the T+i component indicates that

vi =
ui

u+
− η

ρ

(
∂iu

+ − u+

(ε+ P )
∂iP

)
.

The other quantities of importance we list for completeness:

Πij = ρvivj + Pδij − ηu+σij , (4.1.16)

P nr = P , (4.1.17)

ηnr = ηu+ , (4.1.18)

εnr =
1

2
(ε− P ) , (4.1.19)

Jε
i =

(
εnr + P nr +

1

2
ρv2

)
vi − ηnrσ

ijvj

−2ηnrP nr

ρ
δij
[

3

2

∂jεnr

εnr

− ∂jρ

ρ

]
. (4.1.20)

We have used conformality of the relativistic theory to set the bulk viscosity of the

parent theory to zero. For a conformal relativistic fluid in d spacetime dimensions

the equation of state is supplied by tracelessness of the SEM tensor and implies

ε = (d− 1)P and therefore, using the above maps, the non-relativistic fluid satisfies

εnr = d−2
2
P nr.

In [33] the final two terms of Eq. (4.1.20) are eliminated in favour of ∂iT and

the resultant coefficient is interpreted as the thermal conductivity κT . This can be

done because the equation of state for an uncharged fluid is given by

εnr = α

(
T 2

µ

) d
2

,

where α is a constant as detailed in [103]. However for a charged fluid there is an

additional scale in the problem, µq, and therefore our equation of state takes the

more generic form P nr = T
d
2 g
(
µ
T
, µq
T

)
which prevents us from eliminating ∂iεnr and

∂iρ completely. We shall return to the interpretation of these terms later.

Consider now the charge density current

Jµ = quµ − κqΠµσ∇σq − γΠµσ∇σε− 0IΣ
µσ1σ2ωσ1σ2 .

The variables displayed are not the standard variables of chapter 2 however we wish

to match the notation of [1]. To convert to our standard variables we need only plug
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in the expression for the energy density in terms of charge density and temperature.

What is clear is that it satisfies the conservation equation

∂+J
+ + ∂iJ

i = 0

and using the maps Eqs. (4.1.15)-(4.1.20) we find that J+ has the form

J+ = qu+ + 0(u+)2∂jvkεjk , (4.1.21)

where we have used the scaling relation (d− 1)κqq+ dγε = 0 to annihilate the term

proportional to θ and set ε+−ij = −εij. It is a satisfying occurrence that the only

correction to the identification J+ = qnr at first order is a piece which accounts for

the anomalies in the relativistic theory. Indeed, in the holographic model we shall

construct in future sections, if the Chern-Simon’s coupling in our action is set to

zero, then qnr is just a scaling by u+ of q. Reducing the spatial part of the current

leads to:

J i = J+vi − κq
u+
∂iJ+ − 0(u+)2

[
εijvk (∂jvk − ∂kvj) + viεjk∂jvk

]
−
(
d− 2

d

)[
J+

(
(d+ 2)

d− 2

ηu+

ρ
− κq
u+

)
δij + 0εij

](
∂jε

2ε

)
+

[(
κq
u+

+
ηu+

ρ

)
δij + 0εij

](
∂jρ

2ρ

)
.

Additionally, in light of the above expansion, it seems reasonable to define κnr = κq
u+

and 0nr = 0(u+)2. The remaining terms, proportional to ∂iP and ∂iρ, merit further

consideration for the same reasons as the final terms of Eq. (4.1.20) and we shall

return to them later. However, using the equation of state to find ε in terms of εnr

the spatial part of the current can be rewritten as

J i = qnrv
i − κnr∂

iqnr − 0nr

[
εijvk (∂jvk − ∂kvj) + viεjk∂jvk

]
−
(
d− 2

d

)[
qnr

(
(d+ 2)

d− 2

ηnr

ρ
− κnr

)
δij +

2d

d− 2

0nrεnr

ρ
εij
](

∂jεnr

2εnr

)
+

[
qnr

(
κnr +

ηnr

ρ

)
δij +

2 (d+ 2)

d

0nrεnr

ρ
εij
](

∂jρ

2ρ

)
which represents the maximal possible reduction into our chosen non-relativistic

operators. This matches Eq. (4.1.12) if we identify the coefficient of ∂jεnr with γnr
ij

and that of ∂jρ with −znr
ij.
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So far we have only related the non-relativistic and relativistic variables. A priori

we have no knowledge of the functional form of the relativistic charge coefficients

in terms of local charge and temperature profiles. Hence we also do not know the

functional forms of the non-relativistic coefficients in terms of the corresponding non-

relativistic charge and temperature. In the next section we specialise our discussion

to one particular fluid; a charged, Schrödinger invariant fluid which has as its dual

a charged black hole with asymptotically Schrödinger boundary. The holographic

dictionary in Schrödinger space-times will then readily allow us to calculate these

dependencies; an otherwise difficult problem for a general fluid.

4.2 A fluid dual to Schrödinger spacetimes

4.2.1 Background metric

As our focus is now on Schrödinger fluids with gravity duals we can apply the holo-

graphic dictionary in Schrödinger space-times [45, 87, 88] to our investigation. This

provides a map from an asymptotically Schrödinger space-time to a boundary field

theory with Schrödinger symmetry and hence allows us to determine expectation

values of the spatial stress tensor, energy current and charge current at zeroth order.

In particular, we begin with an uplift for Reissner-Nordstrøm AdS which we can TsT

transform to give the bulk fields boundary Schrödinger symmetry. To calculate the

temperature and charge profiles corresponding to our dual black hole we will need to

construct a suitable action yielding these bulk fields. We lean heavily on the formal-

ism of [119] and find a 10-dimensional action from an effective description of Type

IIB string theory whose Kaluza-Klein reduction leads to a five dimensional theory

with the correct field content. It turns out that this reduced action contains only

four fundamental fields; the gravitational field, the dilaton, an R-charged gauge field

and a massive vector that is now standard fare in Schrödinger spacetimes [85,87–89].

We complete this section by calculating the thermodynamics of our bulk spacetime,

in particular, the specific heat at constant pressure, particle number and charge.

We would now like to induce Schrödinger symmetry on the boundary of the

spacetime given by solving the equations of motion coming from Eq. (2.2.77) for
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a charged black hole. To do this we can apply one of a pair of solution generating

techniques at the level of the equations of motion; the Null-Melvin twist [122, 123]

or TsT [124]. They both take a Reissner-Nordstrøm AdS5 ×χ5 manifold where χ5

is Sasaki-Einstein and yield an asymptotically Schrödinger charged black hole with

a deformed χ5. The former, NMT, begins by boosting our solution along one of

the spatial isometry directions, say y by a rapidity of γ. Two T-dualisations along

y are then performed with a twist of the one-form dψ → υdψ sandwiched between

them. We then boost the resultant fields by −γ. Finally υ is scaled to zero and

γ →∞ while keeping β = 1
2
upsiloneγ constant. The latter technique, TsT, involves

a twist in the x− = 1
2β

(y − t) direction by αdψ between two T-dualisations along

the ψ direction. This second technique can be applied to any spacetime with a

U(1) × U(1) isometry. Moreover, when one of the U(1) isometries is null it can be

shown that the two techniques coincide [33].

Applying a TsT along the Hopf direction ψ as discussed in appendix B, where

we also give the heavier details of our notation, leads to the following fields

(ds2
10)′′ =

r2

k

[−β2r2f(m,Q, r)(dt+ dy)2 − f(m,Q, r)dt2 + dy2 + kdx2
]

+
dr2

r2f(m,Q, r)
+

(
dψ +A(1) − 2√

3
AQ

)2

k
+ dΣ2

4 , (4.2.22)

B′′(2) =
βr2

k
(dy + f(m,Q, r)dt) ∧

(
dψ +A(1) − 2√

3
AQ

)
, (4.2.23)

F ′′(3) = −2Qβ

r3
J(2) ∧ dr , (4.2.24)

F ′′(5) = F(5) +B′′(2) ∧ F ′′(3) , (4.2.25)

exp(2Φ′′) =
1

k
, (4.2.26)

where we have set α = 1 so that boost and twist parameters of NMT and TsT

respectively coincide. We have defined

k = 1 + β2r2(1− f(m,Q, r)) (4.2.27)

in correspondence with the notation of [87] and note that our results are in agreement

with [119]. The operation ∗′′10 is the Hodge dual in the Melvinised spacetime and its

definition is also detailed in the appendix.
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The self-duality of the 5-form F ′′(5) allows us to determine a relation between

∗5FQ in the un-Melvinised spacetime and the quantities Φ′′, f , AM and FQ in the

Melvinised spacetime1. Hence we can write

S5 =
1

16πG5

∫ [
volM ′′e

−2Φ
(
R(5) + 16− 4e2Φ

)− 4eΦF ∧ ∗′′5F −
1

2
e−3ΦFM ∧ ∗′′5FM

− 4e−ΦAM ∧ ∗′′5AM −
2

3
e−Φ (AM ∧ FQ) ∧ ∗′′5 (AM ∧ FQ)

− 4e−Φ

(
1√
3
FQ + F ∧ AM

)
∧ ∗′′5

(
1√
3
FQ + F ∧ AM

)
− 2

3
eΦFQ ∧ ∗′′5FQ +

16κCS
3

AQ ∧ FQ ∧ FQ
]
, (4.2.28)

where, as was discovered in [119], the equation of motion for the F field is completely

algebraic

F = e−2Φ ∗′′5
(
AM ∧ ∗′′5

(
1√
3
FQ + F ∧ AM

))
and it is therefore only an auxiliary field which is merely present to simplify our

action.

Considering Eq. (4.2.28) we can see that the Kaluza-Klein reduction of the

fields Eqs. (4.2.22)-(4.2.26) in the string frame is

(ds2
5)′′ =

r2

k

[−β2r2f(m,Q, r)(dt+ dy)2 − f(m,Q, r)dt2 + dy2 + kdx2
]

+
dr2

r2f(m,Q, r)
, (4.2.29)

AQ =

√
3

2

Q

r2
dt , (4.2.30)

AM =
βr2

k
(dy + f(m,Q, r)dt) , (4.2.31)

where the massless one form and non-trivial dilaton field come from the metric

while the massive vector field originates in the NS-NS two form B(2). We note

that the existence of a charged, massless one-form whose boundary value shall be

interpreted as sourcing the charge of our fluid and a massive vector field which lacks

a corresponding conserved current on the boundary.

With the full 5-dimensional zeroth order metric Eq. (4.2.29) available we can

now determine the thermodynamics of our fluid. Given m and Q, our metric has

1See appendices for further details.
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a horizon whenever f(m,Q, r) = 0 and hence will have an associated Hawking

temperature T . As before we take r+ to be the location of the outermost horizon

which turns out to be Killing as our spacetime is stationary. The temperature can

be found by determining the surface gravity, κ, from the following formula

κ2 = − 1

2
(∇µξν) (∇µξν)

∣∣∣∣
r=r+

, (4.2.32)

where ξa is the null generator associated with the horizon. We are working in the

Einstein frame attained from Eq. (4.2.29) by conformally rescaling the metric with

the dilaton

ds2
E = e−

2
3

Φ′′(ds2
5)′′ . (4.2.33)

For Eq. (4.2.33) the (Killing) vector generating the horizon is proportional to (∂t)
a.

To determine the constant of proportionality we note that in lightcone coordinates,

x+ and x−, (∂+)a is the generator of boundary time translations and hence if we set

its coefficient to be unit we find:

ξa =
1

β
(∂t)

a

= (∂+)a − 1

2β2
(∂−)a . (4.2.34)

Substituting this result into Eq. (4.2.32) the temperature, T = κ
2π

, is:

T =
r+

2πβ

(
2− Q2

r+
6

)
. (4.2.35)

In the limit that Q → 0 this coincides with the result of [33]. Of note, the tem-

perature of the relativistic precursor theory is given in terms of the non-relativistic

temperature Eq. (4.2.35) by βT .

The entropy associated with Eq. (4.2.29) can be calculated using the Bekenstein-

Hawking formula

S =
A

4G5

,

where A is the area of the event horizon at r = r+. The solution turns out to

be independent of β which is to do with the fact that our metric was generated

by a series of boosts and dualities from Eq. (2.2.74) as discussed in [123]. For our

solution, taking V 3 to be volume of the horizon, we find the entropy in the boundary
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is given by

S =
r+

3

4G5

V 3 (4.2.36)

whose form in terms of r+ is unchanged from the uncharged case discussed in [33].

In Eq. (4.2.34) we have a generator of time translation on the boundary (∂+)a

and an additional generator (∂−)a. The former corresponds to the Hamiltonian Ĥ

in the dual field theory while the latter should be interpreted as the particle number

generator N̂ . Hence the coefficient of (∂−)a in the null generator ξa is the particle

number chemical potential:

µ = − 1

2β2
.

However, this is not the only chemical potential in the thermodynamics of our

solution as the charge can also vary. This charge chemical potential can be found

from the asymptotic values of the “boundary time” component of the gauge field

and is given by:

µq = A+(r+)− A+(∞)

=

√
3Q

4βr+
2

=

√
6

4

Q (−µ)
1
2

r+
2

. (4.2.37)

Note that we have explicitly defined both the chemical potentials as non-relativistic

quantities in this chapter.

We now have sufficient information to specify our density matrix and can there-

fore obtain the thermodynamic potential of our ensemble. The existence of two

chemical potentials implies that the density matrix has the following form:

ρ̂ = exp

[
−
(
Ĥ − µ∂̂− − µqĴ+

T

)]
.

The trace of the density matrix gives us the partition function whence the thermo-

dynamic potential is determined by:

G̃(V 2, T , µ, µq) = −T ln Ξ(T , µ, µq) , (4.2.38)

where Ξ = tr (ρ̂) and V 2 is the two-dimensional spatial volume of the Schrödinger

theory. This free energy represents the work done by the system when the chemical
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potential difference between two neighbouring regions of equilibrium changes in an

isothermal and isochoric process. The Gibbs potential Eq. (4.1.1) can be obtained

from Eq. (4.2.38) by a Legendre transform. Before we do this however we need to

obtain the charge and particle number from G̃.

We can obtain the relativistic energy E by computing the ADM mass of Eq.

(4.2.22). Using the relativistic equation of state ε = 3P and Eq. (4.1.17) gives us

the non-relativistic pressure P nr. Finally, using the integrated form of the first law

of thermodynamics and the definition of the free energy2 implies

G̃ = E − TS − µN − µqJ+ (4.2.39)

= −P nr(T , µ, µq)V 2

= −V 2∆x−

16πG5

(
r+

4 − 8

3

µq
2

µ
r+

2

)
(4.2.40)

where ∆x− has been introduced to characterise the period of the compactified x−-

direction [33]. Using the thermodynamic relations supplied by

dG̃ =

(
∂G

∂V

)
T ,µ,µq︸ ︷︷ ︸

−Pnr(x)

dV +

(
∂G

∂T

)
V ,µ,µq︸ ︷︷ ︸

−S(x)

dT +

(
∂G

∂µ

)
V ,T ,µq︸ ︷︷ ︸

−N(x)

dµ+

(
∂G

∂µq

)
V ,T ,µ︸ ︷︷ ︸

−J+(x)

dµq

we find the following additional quantities

N = −2PnrV 2

µ
J+ =

√
3βQ

2πG5
∆x−V 2 S = βr+3

4G5
∆x−V 2 .

In particular the entropy, at constant t, matches that obtained from Eq. (4.2.36) as

β∆x−V2 = V3. Neither J+ nor µq attain their relativistic values on setting β = 1

however the combination µqJ
+ does. We also note that the energy density calculated

by inverting Eq. (4.2.39) and dividing by the spatial volume V 2 satisfies the equation

of state for a non-relativistic fluid

ε =
∆x−

16πG5

(
r+

4 − 8

3

µq
2

µ
r+

2

)
= P nr

2Our formula for the free energy does not appear to agree with the on-shell action of [119].

An important consistency check of the on-shell action is that one recover the correct entropy i.e.;

S = − (T ∂
∂T + 1

)
G̃
T . It is not clear to us that the expression in [119] passes this check. On the

contrary, because we are working in the grand canonical ensemble and have derived Eq. (4.2.40)

by calculating the pressure from the ADM mass of the black hole, G̃ definitely passes this test.
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which acts as a check of our thermodynamics.

The Gibbs potential is given by the Legendre transform

G(P nr, T ,N, J
+) = G̃+ P nrV 2 + µN + µqJ

+

= µN + µqJ
+

where all the quantities on the right-hand side are functions of P , T , N and J+.

Using Eq. (4.2.40) we find

G = −∆x−V 2

8πG5

[
r+

4 +
16

3

µq
2

µ
r+

2

]
. (4.2.41)

The specific heat at constant pressure, particle number and charge is then given by

cPnr,N,J+ =
π2T

r+
2
(
T , µ

T
, µq
T

) ×[
1− 4

3

µq
2

µr+
2
(
T , µ

T
, µq
T

) +
64

9

µq
4

µ2r+
4
(
T , µ

T
, µq
T

)]−1

, (4.2.42)

where r+

(
T, µ

T
, µq
T

)
is given by Eq. (4.1.11). In the limit that the charge goes to

zero this approaches the result for the heat capacity given by [33]. We note that

thermodynamic quantities like Eq. (4.2.41) and Eq. (4.2.42) will also apply to the

first-order Schrödinger fluid of the next section.

4.2.2 First order metric corrections

With the well-established relativistic fluid-gravity derivative expansion, given in

chapter 2, as a skeleton we can now consider moving beyond zeroth order for a fluid

with Schrödinger symmetry. In particular we shall find the derivative expansion

corrections to Eq. (4.2.29) at first order. We begin by noting that Eq. (4.2.29) is

not regular across the future horizon due to a coordinate singularity. One of the

nice properties of the relativistic fluid gravity metric was its regularity at all points

other than r = 0. This can be remedied by translating the x+ and x− coordinates

in the following manner:

dx+ → dx+ − β

r2f(m,Q, r)
dr ,

dx− → dx− +
1

2βr2f(m,Q, r)
dr .
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Our metric, gauge field and massive vector field correspondingly become

(ds2
5)′′ =

r2

k

[(
1− f(m,Q, r)

4β2
− r2f

)(
dx+

)2
+ β2 (1− f(m,Q, r))

(
dx−

)2

+ (1 + f(m,Q, r))dx+dx− +

(
1

βr2
+ 2β

)
dx+dr

−
(

2β

r2

)
dx−dr + kdx2

]
− β2dr

2

k
, (4.2.43)

AQ =

√
3

2

Q

r2

[
dx+

2β
− βdx−

]
, (4.2.44)

AM =
βr2

k

[
(1 + f(m,Q, r))

dx+

2β
+ (1− f(m,Q, r)) βdx− − dr

r2

]
, (4.2.45)

where we have used a gauge choice to remove a dr term from AQ. It should be

noted that because of the dominant scaling of the x+ term in Eq. (4.2.43) we lack a

well-defined boundary metric for the asymptotically Schrödinger charged black hole.

Our boundary theory has Galilean symmetry and by boosting Eq. (4.2.43) we

obtain a class of solutions with the same thermodynamics but non-zero velocity.

The boosted solutions will be classified by five constants β, vi, Q and m however

these contain no new physics. Instead, to obtain results other than the ideal fluid,

we need to promote the parameters m, Q, β and vi to functions of the boundary

coordinates and find first order fluid corrections to our fields. A local Galilean boost

has the form:

x → x + v(x)x+ ,

x− → x− + v(x) · x +
1

2
v2(x)x+ .

Consider the vicinity of a point xµ = 0 and use global Galilean invariance to set the

velocity at this point to zero. Performing our local boost on Eqs. (4.2.43)-(4.2.45),

to one derivative in velocity, we find the following additional terms:

g(1) =
2β2r2

k

[
(1− f(m,Q, r))dx−x +

1

2
(1 + f(m,Q, r))dx+x

+
1

βr2
xdr +

kx+

β2
dx

]
· dv ,

A
(1)
Q = −

√
3

2

Q

r2
βx · dv ,

A
(1)
M = +

β2r2

k
(1− f(m,Q, r))x · dv .
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Again, generically, the metric, gauge field and massive vector field with the above

terms will not satisfy the equations of motion from Eq. (4.2.28) and as such we

need to find suitable corrections. Our precursor fields Eqs. (4.2.29)-(4.2.31) have

SO(2) spatial invariance and thus we can parameterise our corrections with respect

to this symmetry much as we did with the SO(3) symmetry in the relativistic case.

However we face two additional complications for the asymptotically Schrödinger

spacetime. Firstly, we not only have new equations of motion for the massive vector

field and dilaton to satisfy but our equations of motion have become more complex.

Secondly, the SO(2) symmetry is not as helpful in the Schrödinger case as the

SO(3) was in the relativistic case. For example, in the Schrödinger case there are

two possible vector sectors in the metric coming from dx+dxi and dx−dxi compared

to one, dvdxi, for a relativistic fluid.

It is clear then that solving the equations of motion from Eq. (4.2.28) to

first order in derivatives would be a cumbersome process. Instead, as previously

mentioned, we can perform a TsT transformation of Eqs. (2.2.120) and (2.2.121) to

obtain the U(1) charged, Schrödinger fluid at first order. As we previously assumed

trivial x− dependence in our hydrodynamic variables in order to light-cone reduce,

we can drop all x− dependence in the metric coefficients. This ties in nicely with

the fact that to use the TsT solution generating technique detailed in the appendix

we require x− and ψ to be isometry directions of the metric. In particular notice

that x− is a null isometry direction in the boundary theory and so the TsT with a

twist along this direction will coincide with an NMT of our fields.

Using the identities from [33], in particular the zeroth order current conservation

equations, our results indicate that the dilaton now has the form

e−2Φ′′ = k

= 1 + β2r2 [1− f(m,Q, r)] +
2
√

3β3Q3

mr4
κCSε

ij∂ivj , (4.2.46)

where i, j run over the spatial directions {x, z} and we have taken u+ = β. The full
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metric at first order is given by:

(ds2
5)′′ = −2uµdx

µdr − r2f(m,Q, r)uµuνdx
µdxν + r2Πµνdx

µdxν

−2ruµ
(
uλ∇λuν

)
dxµdxν +

2

3
r
(∇λu

λ
)
uµuνdx

µdxν

+2
r2

r+

F1(m,Q, r)ηµνdx
µdxν − 2

√
3κCSQ

3

mr4
uµlνdx

µdxν

−12Q
r2

r+
7
F2(m,Q, r)uµ

(
Πλ
ν∇λ + 3uλ∇λuν

)
Qdxµdxν

−k (AM)µ (AM)ν dx
µdxν . (4.2.47)

The massive vector field, in the light-cone coordinate system, has the form

AM =
1

k

[(
β2r2 (1− f(m,Q, r)) +

2
√

3

mr4
κCSQ

3β3εjk∂
jvk

)
dx− +

(
r2dx+ − βdr)

+

(
βr2 (1− f(m,Q, r)) +

√
3κCSQ

3β2

mr4
εjk∂

jvk

)
uαdx

α

+

(
2
r2

r+

F1η−α −
√

3κCSQ
3β

mr4
lα − 6βQ

r2

r+
7
F2

(
∇αQ− 3

2
Q
∇αP nr

εnr + P nr

)
+
βr

2

∇αP nr

εnr + P nr

)
dxα
]
,

where α ∈ {+, x, z} and AQ is unchanged from Eq. (2.2.121) by the TsT. Note that

all but the last line of the metric Eq. (4.2.47) occurs in Eq. (2.2.120) so that all

the deformation comes from the vector field AM . This makes sense in light of the

fact that the massive vector field is the only additional dynamical field between the

Melvinised and un-Melvinised solutions.

4.2.3 Transport coefficients

Now that the bulk metric and vector fields are known we can return to the fluid

side of the fluid-gravity correspondence. To calculate the hydrodynamic and charge

coefficients we need to determine the boundary value of the conserved currents

associated with the bulk metric and the gauge field. However, we face a particular

problem in Schrödinger spacetimes due to the slow asymptotic fall-off of the modes.

We follow [88], [90] and [33] and interpret the SEM tensor of the asymptotically AdS

theory prior to the TsT transformation as a tensor complex (collection of fields) in
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the non-relativistic theory. This complex is given exactly by the identifications in

Eq. (4.1.14).

To convert our relativistic results into their non-relativistic counterparts we need

to fix the normalisation of our boundary velocity uµ. Fortunately we have already

isolated a suitable choice in Eq. (4.2.34) when we fixed the coefficient of (∂+)a in

the horizon null generator, ξa, to be unit. Hence we take:

u+ = β ,

ui = βvi − βη

ρ
δij
(
∂jβ − β

(ε+ P )
∂jP

)
. (4.2.48)

Using the maps Eqs. (4.1.16)-(4.1.20), (4.1.21) and (4.1.22) it is now possible to

determine all the non-relativistic quantities in terms of m, Q, β and vi. Modulo the

subtlety involving the thermal conductivity which we shall discuss next the zeroth

order coefficients are:

εnr = P nr , P nr = m
16πG5

∆x− , ρ = −2Pnr

µ
,

qnr =

√
3βQ

4πG5

[
1 +

√
3βQκCS
m

εjk∂
jvk

]
∆x− . (4.2.49)

The apparent disparity for qnr with the thermodynamic result is due to the previous

decomposition of the combination µqJ
+ into µq and J+ which shuffled a factor of

two between them. At first order we also have

ηnr = βr+3

16πG5
∆x− , κnr =

(
r+4+m
4mβr+

)
∆x− , 0nr = − κCS

2Pnr
qnr

2 , (4.2.50)

γnr
ij =

(
1

4εnr

)[
qnr

(
3
ηnr

ρ
− κnr

)
δij + 4

0nrεnr

ρ
εij
]

∆x− ,

znr
ij = −

(
1

2ρ

)[
qnr

(
κnr +

ηnr

ρ

)
δij + 4

0nrεnr

ρ
εij
]

∆x− .

where the ∆x− factors were introduced to ensure the above quantities are volume

densities with respect to the two-dimensional spatial volume V2. The parity violating

term 0nr already multiplies an object that is first order in fluid derivatives, see Eq.

(4.1.22). Hence when expressing it in terms of qnr we have dropped any additional

velocity derivatives. Similarly for replacing γ in γnr
ij.

We would now like to extract the thermal conductivity. Re-expressing the final

two terms of Eq. (4.1.20) as the differential of a logarithm and using Eq. (4.2.35)
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and Eq. (4.2.49) we can write:

−2ηnrP nr

ρ
δij∂j ln

(
P nr

3
2

ρ

)
= −4ηnrP nr

ρT
δij∂jT

−2ηnr

ρ
δij∂j

[
1

2
ln

(
1 +

Q2

r+
6

)
− 2 ln

(
1− Q2

2r+
6

)]
. (4.2.51)

If we interpret the thermal conductivity as the coefficient of the term with no explicit

charge dependence then κT has the same functional dependence on ηnr, P nr, ρ and

T as in the uncharged case of [33]:

κT =
4ηnrP nr

ρT
. (4.2.52)

As promised there is a new term which vanishes if the local charge density is set to

zero. On substituting for Q in terms of µq using Eq. (4.2.37) and rearranging we

obtain the final term of Eq. (4.1.10) with $ = κT .

We would now like to calculate the Prandtl number for the fluid. We first note

that the kinematic viscosity, which compares the importance of viscous to inertial

forces, is defined by

ν =
ηnr

ρ
,

where ρ is representative of inertia. The thermal diffusivity is defined by

χ =
κT

ρcPnr,N,J+

,

where κT measures heat flow from a region of local equilibrium while ρcPnr,N,J+ mea-

sures the ability of the region to adjust its temperature to match its surroundings.

Thus when χ is large the region in question quickly responds to the temperature of

neighbouring regions and equilibriates its temperature.

The Prandtl number is given by the ratio of kinematic viscosity to thermal

diffusivity

Pr =
ν

χ

and thus represents the relative importance of viscous effects and heat conduction

in reaching steady state flow. Using Eqs. (4.2.42), (4.2.49), (4.2.50) and (4.2.52) we
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Figure 4.1: A graph of the Prandtl number against µq and T . We note that the

Prandtl number clearly tends to one when the charge vanishes.

find this number to be

Pr =
π2T 2

2

[
4

3
µq

2 − µr+
2
(
T ,

µ

T
,
µq
T

)
− 64

9

µq
4

µr+
2
(
T , µ

T
, µq
T

)]−1

,

where r+

(
T , µ

T
, µq
T

)
is given by Eq. (4.1.11). Disappointingly this indicates that the

fluid does not achieve a universal value in the presence of a conserved electric charge

unlike the uncharged case of [33] where it is identically one. Of note is the fact that

Pr is independent of the particle number chemical potential and compactification

radius ∆x−. Figure (4.1) is a diagram giving an indication of the dependence of Pr

on charge chemical potential and temperature.

In the above we have found the transport coefficients of a class of non-relativistic

fluids which are compressible and thus support sound modes. Given some fluctuation

of these fluids the behaviour of the Prandtl number with charge chemical potential

implies that increases in this chemical potential lead to heat conduction becoming

more important in dissipating fluctuations than viscous effects. This number is

bounded above in our example by the value of one which indicates viscous effects

can never be more significant than heat conduction. However this should not be

conjectured to be a bound on all fluids, like the viscosity to entropy ratio was [28],

as it is simple to find counterexamples. For example, water has a Prandtl number

of approximately 7 at room temperature.



Chapter 5

Beyond hydrodynamics

So far we have focused exclusively on using the AdS-CMT correspondence in a

regime where the effective field theory governing the boundary physics is hydrody-

namics. In this chapter we shall show how to go beyond the small ω
T

and k
T

regime

to explore more exotic aspects of our condensed matter models and compute the

retarded Green’s function for arbitrary ω and k. Moreover we shall demonstrate

how to use hydrodynamics as a consistency check in these limits.

We shall choose to play with a toy-model whose dual contains gravity and a U(1)

gauge field. We shall extract the full retarded, boundary correlator corresponding to

linearised perturbations of this spacetime something that, at the time of publication

of [2], had not be done before. Indeed many previous studies of retarded correla-

tors had restricted themsleves to calculating just the locations of poles in retarded

Green’s functions or the spectral function.

The quasinormal modes are found by computing the quasinormal frequencies of

the bulk theory [5, 125]. Quasinormal modes typically are exponentially decaying

sourceless solutions to the classical equations of the bulk theory (see [126], [127]).

They have important physical consequences, for example, if a quasinormal mode has

a positive imaginary part this suggests a linear instability of the bulk theory and thus

a phase transition in the boundary theory as discussed in chapter 1. For the model

we shall consider the quasinormal frequencies for shear-type electromagnetic and

gravitational perturbations of a Reissner-Nordstrøm AdS4 black hole were computed

in [4] and no such instabilites were found.

99
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Here we review [2] and demonstrate how to compute the retarded Green’s func-

tions in full for conserved currents in the shear channel, considering arbitrary fre-

quencies and momenta. We will work exclusively at non-zero temperature by study-

ing a non-extremal black hole to explore the detailed structure of these thermal

correlators. We show that their poles have varying residues and that this informa-

tion can be used to assess the dominance of these poles beyond the hydrodynamic

regime. After analysing the properties of these correlators for large and small values

of the boundary theory parameters, we examine the curious and intricate motion of

their poles at intermediate parameter values.

5.1 Background and method

Consider the action of Eq. (2.2.61) in four spacetime dimensions with gF = `2

where we remind the reader that ` is the AdS length scale. We consider gauge and

gravitational fluctuations about a Reissner-Nordstom-AdS4 background

gµν → gµν + hµν ,

Aµ → Aµ + aµ ,

and will extract the retarded Green’s functions governing the corresponding shear

SEM tensor and charge current perturbations in the boundary field theory. Linear

response relates the one-point functions and sources in the boundary field theory by〈
T̂µν

〉
= Gµν,ρσh

ρσ
(0) +Gµν,ρA

ρ
(0) , (5.1.1)〈

Ĵµ

〉
= Gµ,ρσh

ρσ
(0) +Gµ,ρA

ρ
(0) , (5.1.2)

where hρσ(0) and Aρ(0) are source terms for gravitational and gauge fluctuations re-

spectively and in these lines only indices are raised and lowered with respect to

the boundary metric. As the gravitational and gauge perturbations are coupled we

must be careful to realise that not all of the Green’s functions are independent due

to various Ward identities relating them [128–130]. The work of [52] demonstrates

these coupled gauge and gravitational fluctuations can be consistently decoupled in

terms of appropriate variables. After using rotation invariance in the (x, y) plane to
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set the momentum in the y direction to zero, we can focus on correlators of Ĵy, T̂ xy

and T̂ yt. A little work indicates that a set of gauge invariant variables are

X =
k

µq
hyt(r) +

ω

µq
hxy(r) ,

Y = ay(r) ,

where indices are raised and lowered with respect to the bulk background metric

which shall henceforth be our convention. The pair of master fields, denoted Φ±, in

which the linearised equations decouple are defined in terms of these gauge invariant

fluctuations by

Φ± = µq

(
k
µq

)
f(r)r3r+

2(
ω
µq

)2

− f(r)
(
k
µq

)2X
′(r)

−2Q2r+

r

 2
(
k
µq

)2

f(r)(
ω
µq

)2

− f(r)
(
k
µq

)2 +
r

r+

g±

(
k

µq

)Y (r)

with

g±(x) =
3

4

(
1 +

1

Q2

)1±
√

1 +
16

9
x2

(
1 +

1

Q2

)−2
 . (5.1.3)

The resultant decoupled equations are too difficult to solve analytically so we

shall apply numerics to extract the desired correlators. Our coordinate range in

r however is infinite which is not ideal for the numerical calculations we wish to

employ. As such we choose to compactify this coordinate via the transformation

z = r+
r

such that z = 0 is the boundary and z = 1 is the horizon. In terms of this

new coordinate the master field equations are

z2f(fΦ′±)′ +
[−zff ′ +Q2z2(w2 − q2f)− 2Q2g±(q)z3f

]
Φ± = 0, (5.1.4)

where a prime denotes differentiation with respect to z. The dimensionless param-

eters w and q are the frequency and x momentum normalised with respect to the

chemical potential:

w =
ω

µq
, q =

k

µq
.
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We shall solve Eq. (5.1.4) numerically with infalling boundary conditions at the

horizon and read-off the asymptotic fall-offs of Φ±(z) at the AdS4 boundary which

have the form:

Φ±
z→0∼ Φ̂±

(
1 + Π̂±z + . . .

)
. (5.1.5)

There are certain technical issues for doing this calculation numerically which we

review in appendix C. In terms of the Π± the Green’s functions displayed in Eqs.

(5.1.1) and (5.1.2) are:

Gyt,yt =
2q2Q2(g−Π̂+ − g+Π̂−)

3(g+ − g−)
(5.1.6)

Gxy,xy =
2w2Q2(g−Π̂+ − g+Π̂−)

3(g+ − g−)
(5.1.7)

Gxy,yt = −qwQ2(g−Π̂+ − g+Π̂−)

3(g+ − g−)
(5.1.8)

Gyt,xy = −qwQ2(g−Π̂+ − g+Π̂−)

3(g+ − g−)
(5.1.9)

Gxy,y =
2qwQ2(Π̂+ − Π̂−)

3µq(g+ − g−)
(5.1.10)

Gy,xy =
2qw(Π̂+ − Π̂−)

µq(g+ − g−)
(5.1.11)

Gyt,y = −2q2Q2(Π̂+ − Π̂−)

3µq(g+ − g−)
(5.1.12)

Gy,yt = −2q2(Π̂+ − Π̂−)

µq(g+ − g−)
(5.1.13)

Gy,y = −8(g+Π̂+ − g−Π̂−)

µq2(g+ − g−)
. (5.1.14)

The normalisation of our two-point operators is arbitrary (as we can pick our op-

erator basis at whim) and hence we have chosen to normalise all correlators with

respect to the displayed definition of Gy,y. At zero temperature these expressions

reduce to those of [4]. For the rest of this chapter we shall set ` = 1 and absorb

factors of r+ into (t, x, y). One important upshot of this is that µq = Q.
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5.2 The retarded Green’s function

To ensure that the retarded Green’s functions for Φ± have been calculated correctly,

we must check that the locations of their poles match the quasinormal spectrum for

the appropriate bulk fluctuations [5, 125]. In Fig. 5.1 we demonstrate that this is

indeed the case for our results. The quasinormal frequencies were computed using

the determinant method pioneered in [131] and explained in detail in [132]. We find

precise agreement with the quasinormal frequency plots for non-zero temperature

shown in [4]. Before continuing we point out the following terminology - we shall

refer to poles which are entirely imaginary as “on-axis”. As none of our modes are

normal modes there will be no confusion over which axis the term “on-axis” refers

to. Modes with a real part shall be called “off-axis”.

As an example of the results contained in this section consider Fig. 5.2 which

displays part of the Gxy,y correlator, given in Eq. (5.1.10).

5.2.1 Matching to hydrodynamics

Let’s begin our discussion of the retarded correlator by considering how to repro-

duce the hydrodynamic results. This will give us an important cross check of our

numerics and justify using them to search deeper into the complex frequency plane.

Essentially we shall reproduce the analytical expressions for Π̂± found in [133] with

an eye to matching our notation.

As discussed above the matrix of corrrelators can be constructed from Π̂±. We

can perform a linearised perturbation analysis in small w and q as in [30]. Parity

considerations will ensure that there is no linear piece in q in our dispersion relation1

but as we shall see there will be an order w piece. To begin, let’s extract the infalling

piece of the field and define two functions F (z) and G(z)

Φ±(z) = (z − 1)−iwµq/4πTF±(z)G±(z). (5.2.15)

1To see that the dispersion relation cannot depend on q but only powers of q2 it is sufficient to

examine the equations of motion, Eq. (5.1.4), and the boundary conditions to see that q→ −q is

a symmetry.
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3 Results and discussion

To ensure that the retarded Green’s functions for Φ± have been calculated correctly, we must
check that the locations of their poles match the quasinormal spectrum for the appropriate
bulk fluctuations [12, 1]. In Figure 1 we demonstrate that this is indeed the case for our re-
sults. The quasinormal frequencies were computed using the determinant method pioneered
in [23] and explained in detail in [24].2 We find precise agreement with the quasinormal
frequency plots for non-zero temperature shown in [15].

Figure 1: A comparison between density plots of |Π̂±| on the complex w plane (left panels)
and the quasinormal frequencies for Φ±. The top row is for Φ+ and the bottom row is for
Φ−. All plots have q = 1 and T/µ = 0.09. As we discuss later, the on-axis modes are weaker
but have been tested thoroughly against the quasinormal spectrum in a finer plot.

RewRew

RewRew

ImwImw

ImwImw

First, a note on our terminology. From the gravity perspective, modes with quasinormal
frequencies on the negative Imw axis are associated with purely decaying perturbations of

2SAG would like to thank Sean Hartnoll for useful tips on generating these quasinormal spectra.

4

Figure 5.1: A comparison between density plots of |Π̂±| on the complex w plane

(left panels) and the quasinormal frequencies for Φ±. The top row is for Φ+ and

the bottom row is for Φ−. All plots have q = 1 and T/µq = 0.09. As we discuss

later, the on-axis modes are weaker but have been tested thoroughly against the

quasinormal spectrum in a finer plot.

As the equation of motion for the master fields is non-trivial in the w, q→ 0 limit,

to make our analysis simpler, we shall pick G to satisfy the resultant equation of

motion

zfG′′ + zf ′G′ − (f ′ + 2Q2g±(0)z2)G = 0 (5.2.16)

which has solutions of the form

G(z) = a(z + b), where b =

 −
3(1+Q2)

4Q2 , Φ+,

0, Φ−.
(5.2.17)

Here, a is an overall scaling constant we can specify by a choice of FG at the horizon.
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Figure 2: A comparison between a surface plot of |Gxy,y| on the complex w plane (left) and
the appropriate quasinormal frequencies. Both plots have q = 1 and T/µ = 0.09.

Rew

Imw

Rew

Imw

|Gxy,y|

Figure 3: Surface plots of Π̂+ (top row) and Π̂− (bottom row) on the complex w plane at
q = 1, T/µ = 0.09. We show (from left to right) the real part, imaginary part and absolute
value of each. All plots have the same orientation on the plane, as indicated.

are well-separated (an assumption we question in a later subsection). Then they will have
the form

Π̂±(w , q) =
�

i

Ri (q ; T/µ)

w − w i (q ; T/µ)
+ analytic pieces, (3.2)

where the locations of the poles w i in the complex w plane have real part w̃ i(q ; T/µ) and
imaginary part −Γi(q ; T/µ). By performing a Fourier transform, we show in Appendix A
that the quantity

Ri(q ; T/µ)e−µΓi(q ;T/µ)(t−t�)

determines the contribution of a given pole to Π̂±. Beyond the hydrodynamic regime, i.e.
for t− t� � 1, the residues can therefore be cruicial in determining which poles dominate the
linear response.

Behaviour at large w and q

At large w and q we can perform a WKB analysis of the equation of motion. This yields

Π̂ = ±iQ
�
w2 − q2 (3.3)

for both Π̂±, where we consider real w . So for w � q or q � w the growth of |Π̂±| is
linear in the larger parameter, which we demonstrate in Figure 4. We note the zeroes at
w = ±q for large Rew and q in confirmation of our result and also the strong presence of
the hydrodyanmic pole in Π̂−, to be discussed in a later subsection.

We have found the full retarded Green’s functions for a non-trivial density matrix in the
boundary theory. To isolate the modification from the vacuum, i.e. the effect of adding the
black hole to the bulk theory, one can subtract off this asymptotic behaviour. However,

5

Figure 5.2: A comparison between a surface plot of |Gxy,y| on the complex w plane

(left) and the appropriate quasinormal frequencies. Both plots have q = 1 and

T
µq

= 0.09.

The remaining equation for F is

F ′′ +
(

2α

z − 1
+
f ′

f
+

2G′

G

)
F ′ +

[
α

z − 1

(
α− 1

z − 1
+
f ′

f
+

2G′

G

)
+
Q2

f 2
(w2 − q2f)− 2Q2g̃±(q)

z

f

]
F = 0, (5.2.18)

where we have defined

α(w) =
−iwµq
4πT

and g̃±(q) = g±(q)− g±(0). (5.2.19)

We now attempt to find a series expansion of F in small w and q

F (z) = F(0,0) + wF(1,0)(z) + q2F(0,2)(z) +O(w2,wq2), (5.2.20)

where F(p,q) is the part of F multiplying wpqq matching the notation in chapter

1. Subsequently we will be able to expand Eq. (5.2.18) when these parameters are

small. The infalling boundary condition at z = 1 has removed the irregularity of our

equations of motion at the horizon and as a consequence F , and all its coefficients

in the w, q expansion, must be regular there.

Let us argue what pieces of the solution F (z) we will need to calculate Π̂±. This

term comes in at subleading order as z → 0 in Φ± as such we first note that we
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shall only have to determine the leading and subleading pieces of these masterfields.

Consider Φ̂+ and expand to order z

Φ± = (−1)α(1− αz)a
[
F(0,0) + w(F(1,0) + F ′(1,0)(0)z)

+ q2(F(2,0)(0) + F ′(2,0)(0)z)
]

(z + b)

+O(z2,w2,wq2)

Each lower order solution provides a source term in the equation of motion at

the next order. Beginning at lowest order in w we must solve

F ′′(1,0) +

(
f ′

f
+

2G′

G

)
F ′(1,0) +

αF(0,0)

w(z − 1)

(
− 1

z − 1
+
f ′

f
+

2G′

G

)
= 0, (5.2.21)

Extracting an integrating factor for the F(1,0) terms we can integrate the source F(0,0)

once to find

F ′(1,0) = −αF(0,0)

w

(
1

z − 1
+
c1a

2

fG2

)
. (5.2.22)

This solution diverges as O(z − 1)−1 when z tends to the horizon which requires

that we choose the integration constant c1 to judiciously to remove the divergence.

The resultant choices are

c1 =

 −
(3−Q2)3

16Q4 , Φ+

(3−Q2), Φ−
. (5.2.23)

The factor of a2 has been removed because F cannot depend on a.

The first term in q is O(q2) and F(0,2) satisfies

F ′′(0,2) +

(
f ′

f
+

2G′

G

)
F ′(0,2) −

Q2F(0,0)

f
(1 + 2g̃±(1)) = 0 . (5.2.24)

Again, extracting an integrating factor for F(0,2) and integrating the source against

this factor once yields

F ′(0,2) =
Q2F(0,0)

f(z + b)2

[
c2 + b

(
bz + z2 + 2g̃±(1)

(
bz2

2
+

2z3

3

))
+
z3

3
+
g̃±(1)z4

2

]
.

(5.2.25)

This solution is also naively divergent and we must pick c2 appropriately

c2 =

 −
27+63Q2+29Q4+9Q6

48Q4(1+Q2)
, Φ+

− 1
3(1+Q2)

, Φ−.
. (5.2.26)
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We now have sufficient information to calculate Π±. Substituting for b we obtain

Π̂+ = − 4Q2

3(1 +Q2)
+iw

(
Q

3−Q2
− iF ′(1,0)(0)

F(0,0)

)
+q2

F ′(0,2)(0)

F(0,0)

+O(w2,wq2) . (5.2.27)

Substituting for F ′(1,0)(0) and F ′(0,2)(0) we obtain the final result

Π̂+ = − 4Q2

3(1 +Q2)
+iw

Q (3−Q2)
2

9 (1 +Q2)2 −q2Q
2 (27 + 63Q2 + 29Q4 + 9Q6)

27 (1 +Q2)3 +O(w2,wq2) .

(5.2.28)

The case of Π̂− is slightly different because the z-dependence of F(1,0) and F(0,2)

is different. We find

F(1,0) = −αF0

w

(
Q2 − 3

z
+ d1

)
+O(z) , (5.2.29)

F(0,2) = Q2F0

(
1

3(1 +Q2)z
+ d2

)
+O(z) , (5.2.30)

where d1 and d2 are constants. Using b = 0 we obtain

Φ− = (−1)αaF0

[
α(3−Q2) +

q2Q2

3(1 +Q2)
+ (1− αd1 + q2Q2d2)z

]
+O(z2,w2,wq2)

(5.2.31)

and thus

Π̂− =
1− αd1 + q2Q2d2

α(3−Q2) + q2Q2

3(1+Q2)

+O(w2,wq2) . (5.2.32)

Fluctuations transverse to the direction of momentum flow, as in the shear

channel we are studying, excite diffusive modes. For our system we examine Eq.

(5.2.32) to find

D =
`2

3(1 +Q2)r+

. (5.2.33)

As we have seen previously, conformality implies that

D =
η

ε+ P
, P =

ε

2
, (5.2.34)

We can invert the relation for the diffusion constant to find η. Using the thermody-

namics of our black hole

ε =
r+

3

κ2
4`

4
(1 +Q2) ,

s =
2π

κ2
4

(r+

`

)2

, (5.2.35)
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we obtain
η

s
=

1

4π
. (5.2.36)

Which we expected on general grounds for a theory dual to a two-derivative gravity

theory [134] assuming spatial isotropy (see chapter 1).

We can calculate the diffusion constant numerically by studying the motion of

the lowest quasinormal pole of Π̂− as a function of q. As expected the analytical

result Eq. (5.2.33) agrees with the numerical one when T � µq (see Fig. 5.3). This

provides some vindication of our numerics.

where η, �, P are respectively the shear viscosity, energy density and pressure of the system.
Using the thermodynamics of our black hole (as quoted in [15]),

� =
r3
0

κ2
4L

4
(1 + Q2), s =

2π

κ2
4

�r0

L

�2

, (C.23)

we obtain
η

s
=

1

4π
. (C.24)

This result is expected on general grounds for a theory dual to a two-derivative gravity
theory [33].

Note that this D can only be interpreted as the diffusion constant in the regime where
hydrodynamics gives an effective description of the dynamics, i.e. for T � µ. Outside this
regime, we expect a different effective theory to be valid. In particular, we should not trust
(C.21) for T � µ: either the dispersion relation needs modifying, or the other poles in Π̂−
cannot be ignored, or both.

We can calculate the diffusion constant numerically by fitting the location of the lowest
quasinormal frequency of Π̂− to the form (C.20). Our numerical results agree with the
analytical result in (C.21) for T � µ, as shown in Figure 9. To reiterate: to calculate D
we only need knowledge of the lowest quasinormal frequency and not our more complete
numerical results for the correlators.

0.5 1.0 1.5 2.0 2.5 3.0

0.05

0.10

0.15

Figure 9: Plot of µD as a function of T/µ. The solid curve is the analytical result from
(C.21) and the points were extracted from the motion of the lowest quasinormal frequency.

µD

T/µ

Now we show how this agreement breaks down beyond the hydrodynamic regime, and
as such our results are essential. In Figure 10 we get the correct contact term for Π̂+ as in
(C.15) and the results are in good agreement over a small range in w , but they soon deviate.
The agreement persists over a larger range of w if we work at a larger value of T/µ.8
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Now that we have thoroughly checked the hydrodynamic regime we can go further

into the complex w plane. In Fig. 5.5 we show surface plots of Π̂± on the complex

w plane. We note the presence of a symmetry in the graph

Π̂±(w, q) = Π̂±(−w̄, q) . (5.2.37)
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Figure 5.4: A comparison between numerical (red or lower branch) and analytical

(blue or upper branch) results for |Π̂+|. The left plot is at T
µq

= 0.09, the right plot

is at T
µq

= 10, and both have q = 10−6. Note that we have subtracted off the large

w behaviour from all results, as discussed in Section 5.2.

This is to be expected as it essentially states that the phase velocity is unchanged

under a parity transformation. It can be seen at the level of the equations of motion

w↔ −w̄ and the infalling boundary conditions.

The magnitude of the pole residues in our plots is indicated by the size of the

respective peaks. We shall now show how these residues are essential in determining

the short to mid time behaviour of the system (as opposed to the hydrodynamic

pole which is the only one relevant at late times). Let’s assume that the poles of

Π̂± are simple. The Π± as objects from general considerations can be assumed to

be meromorphic. Hence they have the form

Π̂±(w, q) =
∑
i

Ri

(
q; T

µq

)
w−wi

(
q; T

µq

) + analytic pieces, (5.2.38)

where the locations of the poles wi in the complex w plane have real part w̃i(q; T
µq

)

and imaginary part −Γi(q; T
µq

). After a Fourier transform it is straightforward to

see that

Ri

(
q;
T

µq

)
e
−µqΓi(q; T

µq
)(t−t′)

determines the contribution of a given pole to Π̂±. In the ultra-short time regime

t− t′ ≈ 0 we can assume that the exponential is negligible and the residues entirely

dictate how each pole contributes to the overall Green’s function. In the short-

mid time regimes 0 . t − t′ . 1 there is a delicate interplay between the strong

suppression given by the exponential and the residue. When t− t′ > 1 the exponent
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Figure 3: Surface plots of Π̂+ (top row) and Π̂− (bottom row) on the complex w plane at
q = 1, T/µ = 0.09. We show (from left to right) the real part, imaginary part and absolute
value of each. All plots have the same orientation on the plane, as indicated.
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Behaviour at large w and q

At large w and q we can perform a WKB analysis of the equation of motion. This yields

Π̂ = ±iQ
�
w2 − q2 (3.3)

for both Π̂±, where we consider real w . So for w � q or q � w the growth of |Π̂±| is
linear in the larger parameter, which we demonstrate in Figure 4. We note the zeroes at
w = ±q for large Rew and q in confirmation of our result and also the strong presence of
the hydrodyanmic pole in Π̂−, to be discussed in a later subsection.

Figure 4: Surface plots of |Π̂+| (left) and |Π̂−| (right) on the (Rew , q) plane at T/µ = 0.09 to
demonstrate the large w and q scaling. Note that we avoid q = 0: in that case the symmetry
is enhanced and so the master fields are different, as discussed in [15].
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6

Figure 5.5: Surface plots of Π̂+ (top row) and Π̂− (bottom row) on the complex w

plane at q = 1, T
µq

= 0.09. We show (from left to right) the real part, imaginary

part and absolute value of each. All plots have the same orientation on the plane,

as indicated.

damps away all but the leading pole in the expansion and we enter the hydrodynamic

regime.

5.2.3 Behaviour at large w and q

A straightforward exercise is to perform a WKB analysis of the equation of motion

to determine the large w and q behaviour. This yields

Π̂ = ±iQ
√

w2 − q2 (5.2.39)

for both Π̂± with w real. So for w� q or q� w the growth of |Π̂±| is linear in the

larger parameter, which we demonstrate in Fig. 5.6. A feature to note in our figures

is that when w = ±q and q is large the Greens function is zero.

The WKB approximation is essentially an effect of the vacuum by which we

mean once the black hole is removed this large <w and q behaviour remains. To

isolate the effect of adding the black hole to the bulk theory we should subtract

off this asymptotic behaviour. This will introduce a branch cut into our correlators
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Figure 3: Surface plots of Π̂+ (top row) and Π̂− (bottom row) on the complex w plane at
q = 1, T/µ = 0.09. We show (from left to right) the real part, imaginary part and absolute
value of each. All plots have the same orientation on the plane, as indicated.
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At large w and q we can perform a WKB analysis of the equation of motion. This yields

Π̂ = ±iQ
�
w2 − q2 (3.3)

for both Π̂±, where we consider real w . So for w � q or q � w the growth of |Π̂±| is
linear in the larger parameter, which we demonstrate in Figure 4. We note the zeroes at
w = ±q for large Rew and q in confirmation of our result and also the strong presence of
the hydrodyanmic pole in Π̂−, to be discussed in a later subsection.

Figure 4: Surface plots of |Π̂+| (left) and |Π̂−| (right) on the (Rew , q) plane at T/µ = 0.09 to
demonstrate the large w and q scaling. Note that we avoid q = 0: in that case the symmetry
is enhanced and so the master fields are different, as discussed in [15].

q q

Rew Rew
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Figure 5.6: Surface plots of |Π̂+| (left) and |Π̂−| (right) on the (<w, q) plane at

T/µq = 0.09 to demonstrate the large w and q scaling. Note that we avoid q = 0:

in that case the symmetry is enhanced and so the master fields are different, as

discussed in [4].

that we should be a little wary of but makes no fundamental difference other than

clearing up our plots.

5.2.4 Spectral function

The spectral function of a thermal field theory gives the number density of states

in the ensemble with a particular real w and q and is typically defined, up to sign,

by

ρ (w, q) = −=GR (w, q) (5.2.40)

for real w. As it is such an important quantity we shall now seek to extract it from

our numerics.

The features on the <w axis can be explained by studying the general form Eq.

(5.2.38). Making use of the symmetry Eq. (5.2.37) we consider a straightforward

re-writing of this expression, with dependence on q and T
µq

suppressed:

Π̂±(w) =
∑
i

[
ai + ibi

w− |w̃i|+ iΓi
− ai − ibi

w + |w̃i|+ iΓi

]
+
∑
j

icj
w + iΓj

+analytic. (5.2.41)

Here, i runs over one half of the off-axis poles and j runs over the on-axis poles.
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Taking real and imaginary parts of the above form we obtain

<Π̂± =
∑
i

[
aiw− (ai|w̃i| − biΓi)

(w− |w̃i|)2 + Γ2
i

− aiw + (ai|w̃i| − biΓi)
(w + |w̃i|)2 + Γ2

i

]
+
∑
j

cjΓj
w2 + Γ2

j

+ analytic (5.2.42)

=Π̂± =
∑
i

[
biw− (aiΓi + bi|w̃i|)

(w− |w̃i|)2 + Γ2
i

+
biw + (aiΓi + bi|w̃i|)

(w + |w̃i|)2 + Γ2
i

]
+
∑
j

cjw

w2 + Γ2
j

+ analytic. (5.2.43)

In Fig. 5.7 we have taken a slice of the (<w, q) plane at q = 10−6. The expressions

above take their largest values approximately when w = 0 or ±|w̃i|, which is indeed

what we find in Fig. 5.7. In effect, the presence of poles lower down in the complex

w plane is ‘projected’ onto the retarded Green’s functions at real w.
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Figure 5: Slices through the (Rew , q) plane of Π̂+ (top row) and Π̂− (bottom row) at q = 10−6

and T/µ = 0.09. The left and right panels show the real and imaginary parts, respectively.
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Pole motion

As noted in [15], the lowest quasinormal frequency for Φ− approaches zero as q → 0. We
found the same behaviour for the lowest pole in Π̂−; as such, this can be identified as the
hydrodynamic pole. The behaviour of the poles as q and T/µ are varied is particularly rich
and, to our knowledge, has not been studied in detail before.

The trajectories of the on-axis poles of Π̂− at fixed T/µ are shown in Figure 6. As q
is increased, all these poles move down the Imw axis. The on-axis poles of Π̂+ have very
simple trajectories and so we focus on the behaviour of Π̂−.

Figure 6: Trajectories on the (Imw , q) plane of the on-axis poles of Π̂− (left) and the motion
of the associated quasinormal frequencies. We fix T/µ = 0.09 and consider 0.1 ≤ q ≤ 5.

Firstly we note the apparent continuity of the white line characterising the hydrodynamic
pole. The physical implication of this behaviour is that in the hydrodynamic limit, where
this is the only relevant pole, the dispersion relation of the quasi-particle corresponding to
this pole is a smooth function of q . This is given by

w = −iµDq2 (3.8)

with diffusion constant D.4 In the left of Figure 6 we can see there are values of q for which
a given on-axis mode disappears, as indicated by a gap in the associated trajectory (for
example at q ≈ 1.6 and w ≈ −0.6i). If (3.2) holds, then we must conclude that the residue

4See Appendix C for a discussion of the diffusion constant.
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Figure 5.7: Slices through the (<w, q) plane of Π̂+ (top row) and Π̂− (bottom row)

at q = 10−6 and T
µq

= 0.09. The left and right panels show the real and imaginary

parts, respectively.

Note that in Fig. 5.7 we have subtracted the large w and q behaviour discussed

previously in order to reveal the peaks that occur away from w = 0. Our numerics

confirm that the modified retarded Green’s functions tend to zero as <w increases.
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We have chosen to subtract off the positive branch.

By considering q� 1 we are working in the long-wavelength regime. If instead

we consider q � 1, for which the spatial perturbations are much smaller than the

scales in the boundary theory, the poles on the =w axis move much further down

the complex w plane and their effect on the spectral function diminishes.

5.2.5 Pole motion

As noted in [4], the lowest quasinormal frequency for Φ− approaches zero as q→ 0.

We found the same behaviour for the lowest pole in Π̂−; as such, this can be identified

as the hydrodynamic pole. The behaviour of the poles as q and T
µq

are varied is

particularly rich and, to our knowledge, has not been studied in detail before.

The trajectories of the on-axis poles of Π̂− at fixed T
µq

are shown in Fig. 5.8.

As q is increased, all these poles move down the =w axis. The on-axis poles of Π̂+

have very simple trajectories and so we focus on the behaviour of Π̂−.

Figure 6: Trajectories on the (Imw , q) plane of the on-axis poles of Π̂− (left) and the motion
of the associated quasinormal frequencies. We fix T/µ = 0.09 and consider 0.1 ≤ q ≤ 5.

Imw Imw

qq

are no poles at small |w | for sufficiently large q .
The ‘interactions’ between the poles of Π̂− are quite intricate as T/µ and q are varied.

These features are best displayed in animations, but we give a brief summary here.3

We observe two types of behaviour: ‘repulsion’ and and ‘clover-leaf crossing’. Suppose we
fix T/µ and increase q . All poles on the Imw axis move downwards but the hydrodynamic
pole moves down further for the same change in q , as shown in Figure 6. It slows down as it
approaches the next pole and the latter speeds up but the two never touch, just as for two
like magnetic poles being brought together. As this second pole approaches the third, the
two coalesce into a single object, split and move off-axis, coalesce a second time then split
and move on-axis in a clover-leaf pattern.

Now suppose we fix q at some larger value and increase T/µ. Again, all the poles move
downwards as T/µ is increased, except there is always one pole which moves upwards. An
example of this is shown in Figure 7 and a sample crossing is depicted in Figure 8. We also
see several repulsions, so it appears that a different pole moves upwards each time.

We have so far not been able to tag the poles in a clover-leaf crossing and track their
motion independently. The fact that the poles coalesce follows from the symmetry (3.1):
the poles must be symmetric about the Imw axis, so they cannot move round each other
but must cross. However, we do not know if this forms a sum of simple poles or a double
pole. If the latter occurs then (3.2) must be modified, so it would be interesting to map the
behaviour of Π̂−, or even just the hydrodynamic pole, over a larger region of (q , T/µ) space.

From the gravity perspective, we have shown that certain quasinormal modes switch from
purely decaying to partially oscillatory behaviour as the parameters are varied. For example,
for the central plot of Figure 8 there exist two modes degenerate in energy which move in

3Animations are available at http://www.maths.dur.ac.uk/∼rcqn58/research.html. These show the
motion of the quasinormal frequencies for Φ−. We observe the same behaviour for Π̂− and as such it is
not an artifact of using a matrix of finite size in the determinant method. These animations also show the
behaviour of the off-axis poles, which remains to be understood.
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Figure 5.8: Trajectories on the (=w, q) plane of the on-axis poles of Π̂− (left) and

the motion of the associated quasinormal frequencies. We fix T
µq

= 0.09 and consider

0.1 ≤ q ≤ 5.

Firstly we note the apparent continuity of the white line characterising the

hydrodynamic pole. The physical implication of this behaviour is that in the hy-

drodynamic limit, where this is the only relevant pole, the dispersion relation of the
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quasi-particle corresponding to this pole is a smooth function of q. This is given by

w = −iµqDq2 (5.2.44)

with diffusion constant D. In the left of Fig. 5.8 we can see there are values of q

for which a given on-axis mode disappears, as indicated by a gap in the associated

trajectory (for example at q ≈ 1.6 and w ≈ −0.6i). If Eq. (5.2.38) holds, then we

must conclude that the residue vanishes at these (w, q). With this in mind we see

that, for finely tuned q, it may be possible for a previously sub-leading pole to give

the dominant contribution to Π̂−. Note that whilst the quasinormal plots can show

this continuity, full knowledge of the correlators is required to determine which pole

dominates.

Also, we observe that the trajectories of all on-axis poles become less pronounced

as q is increased, which indicates that the residues of the poles become smaller.

Furthermore, there are no poles at small |w| for sufficiently large q.

The ‘interactions’ between the poles of Π̂− are quite intricate as T
µq

and q are

varied. We observe two types of behaviour: ‘repulsion’ and and ‘clover-leaf crossing’.

Suppose we fix T
µq

and increase q. All poles on the =w axis move downwards but

the hydrodynamic pole moves down much more rapidly for the same change in q,

as shown in Fig. 5.8. It slows down as it approaches the next pole and the latter

speeds up but the two never touch, just as for two like magnetic poles being brought

together. As this second pole then moves down the axis and approaches the third,

the two coalesce into a single object, split and move off-axis, coalesce a second time

then split and move on-axis once more in a clover-leaf pattern.

Now suppose we fix q at some larger value and increase T
µq

. Again, all the poles

move downwards as T
µq

is increased, except there is always one pole which moves

upwards. An example of this is shown in Fig. 5.9 and a sample crossing is depicted

in Fig. 5.10. We also see several repulsions, so it appears that a different pole moves

upwards each time.

We have so far not been able to tag the poles in a clover-leaf crossing and

track their motion independently. The fact that the poles coalesce follows from the

symmetry Eq. (5.2.37): the poles must be symmetric about the =w axis, so they

cannot move round each other but must cross. However, we do not know if this
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Figure 7: Trajectories on the (Imw , T/µ) plane of the on-axis quasinormal frequencies of
Φ−. We fix q = 3 and consider 0.1 ≤ T/µ ≤ 0.25.

T/µ

Imw

opposite directions. Now, those modes closest to the Rew axis dominate the late-time
response of the black hole. By studying this crossover we are exploring the intermediate
response for perturbations of various q of black holes with different T/µ. From the field
theory perspective, the dispersion relation for the excitations associated with these poles
develops a real part at this crossover.

4 Outlook

In this paper we have considered a field theory which is assumed to be dual to a non-
extremal Reissner-Nordstrøm AdS4 black hole. We have computed numerically the full
retarded Green’s functions for conserved currents in the shear channel of this theory for
non-trivial density matrix. Our results are consistent with those of [15], but we have gone
beyond that treatment to show many interesting features. In particular, the linear response
of the boundary theory exhibits rather peculiar behaviour beyond the hydrodynamic regime
which we would like to understand in more detail.

An immediate application of our methods is to study the sound channel correlators of this
non-zero temperature field theory. This case was not considered in [25]. We would also like
to compute the full retarded Green’s functions for conserved currents in the shear channel
at zero temperature. We expect qualitatively different behaviour at zero temperature. It
has been argued in many examples (see [24], for instance) that the double zero in f(r) at
the horizon of extremal Reissner-Nordstrøm AdS4 leads to a branch cut in the appropriate
retarded Green’s function(s) of the boundary theory. This was first seen explicitly at small
frequencies in [8]. Whilst numerical results were reported in [25] for the sound channel at
zero temperature, only the small-w behaviour was reported in [15] for the shear channel,
based on the analytical methods developed in [8]. We would like to go beyond this regime,
for which numerical methods are required. However, the double zero in f(r) shows up as an
irregular singular point in the master field equations, leading to difficulties in the numerical
computation of the retarded Green’s functions by our methods. It would be interesting to
adapt our methods to tackle zero temperature for the shear channel.
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Figure 5.9: Trajectories on the (=w, T
µq

) plane of the on-axis quasinormal frequencies

of Φ−. We fix q = 3 and consider 0.1 ≤ T
µq
≤ 0.25.

forms a sum of simple poles or a double pole. If the latter occurs then Eq. (5.2.38)

must be modified, so it would be interesting to map the behaviour of Π̂−, or even

just the hydrodynamic pole, over a larger region of (q, T
µq

) space.

From the gravity perspective, we have shown that certain quasinormal modes

switch from purely decaying to partially oscillatory behaviour as the parameters

are varied. For example, for the central plot of Fig. 5.10 there exist two modes

degenerate in energy which move in opposite directions. Now, those modes closest

to the <w axis dominate the late-time response of the black hole. By studying this

crossover we are exploring the intermediate response for perturbations of various q

of black holes with different T
µq

. From the field theory perspective, the dispersion

relation for the excitations associated with these poles develops a real part at this

crossover. This indicates a purely decaying mode becomes propagating.
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Figure 8: Density plots of |Π̂−| on the complex w plane at fixed q = 3 are shown in the upper
row. The values of T/µ are (from left to right) 0.185, 0.2 and 0.215. These plots have been
cropped to include only the poles which move off-axis and the leading poles. For comparison,
the quasinormal frequencies at the same values of parameters are given in the second row.
The final row contains two quasinormal frequency plots, one at T/µ = 0.185 and one at
T/µ = 0.215. These show a larger region of the complex w plane, including the origin, for
orientation.

RewRew

ImwImw
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Figure 5.10: Density plots of |Π̂−| on the complex w plane at fixed q = 3 are shown

in the upper row. The values of T
µq

are (from left to right) 0.185, 0.2 and 0.215.

These plots have been cropped to include only the poles which move off-axis and

the leading poles. For comparison, the quasinormal frequencies at the same values

of parameters are given in the second row. The final row contains two quasinormal

frequency plots, one at T
µq

= 0.185 and one at T
µq

= 0.215. These show a larger

region of the complex w plane, including the origin, for orientation.



Chapter 6

Conclusion

In this thesis we have attempted to argue that gauge-gravity duality can give us deep

and meaningful insights into the behaviour of strongly coupled condensed matter

systems. Our focus has been on the application of hydrodynamics to condensed

matter physics in a regime where the condensed matter theory is strongly coupled.

In the introduction we laid out the general nature of the AdS-CFT corre-

spondence. The results stated are well known and represent a summary of the

literature. The following provide a collection of useful reviews for the interested

reader: [13, 35–43, 49]. A calculation of particular interest that we repeated was to

demonstrate that the low frequency and momentum dispersion relations of charge

and shear stress-energy-momentum fluctuations about Schwarzschild-AdS were rem-

iniscent of hydrodynamics. These calculations gave us the opportunity to introduce

much of the notation we later used in the thesis as well as motivating chapter 2.

We finished the chapter by summarising arguments stating that for the diffusion

constant associated with the gravitational shear mode there was an element of uni-

versality. In particular in any thermal field theory dual to a two-derivative gravita-

tional model with spatial isotropy the shear viscosity to entropy ratio is conjectured

to be bounded below by 1
4π

.

Subsequently, in chapter 2, we demonstrated that the linearised modes found in

the introduction genuinely did correspond to hydrodynamic modes in the boundary.

This chapter is mostly review of the available literature and is included to provide

the necessary background to understand the later chapters. Within we calculated to

117
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first order in derivatives the charged and uncharged constitutive relations for fluid

dynamics. In the second half of this chapter we then demonstrated how to calculate

the gravitational dual to a boundary field theory with a SEM tensor and charge

current satisfying the relativistic Navier-Stokes equations. Thus we showed explicitly

the existence of a gravitational dual to the hydrodynamics of certain strongly coupled

field theories.

There continues to be much interest in the study of relativistic hydrodynamics

dual to black hole spacetimes. Extensions to [32] have included the non-relativistic

fluids discussed in this thesis, magnetohydrodynamics [65, 78, 79], forced fluids [63]

and even “anisotropic hydrodynamics” [64, 69] which may be of use in describing

the quark-gluon plasma. On a purely theoretical level there has been recent in-

terest in generating functionals for the transport coefficients given by considering

fundamental symmetries of the theory [70–73]. Moreover, the general fluid-gravity

procedure has been extended from its origins as an AdS correspondence to other

classes of spacetimes including the study of black-folds [135–139] and zero cosmo-

logical constant spaces [140–143]. All these extensions and the continuing output of

recent work indicate that this will be an area which continues to produce fascinating

fundamental results for some time to come.

While relativistic fluids have nice symmetry properties, our day-to-day experi-

ence of fluids generally consists of those whose average molecular velocity is small

enough to ignore relativistic effects. As we are attempting to argue that the gauge-

gravity correspondence can be a useful tool in condensed matter theory we should

attempt to search for gravitational duals with Galilean symmetry. Additionally flu-

ids encountered in the real world can often be assumed to be incompressible. This

led us in chapter 3 to find a scaling limit of the results in chapter 2 such that our

resultant fluid had an underlying Galilean symmetry. The process by which this was

done also had the effect of scaling away sound mode thus making the fluid incom-

pressible. We then showed in the second half of this chapter how the same limit can

be enacted on the bulk holographic dual. Again this chapter is mostly review based

on [61] which has been included so that we can contrast it with the Schrödinger fluid

in the following chapter.
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Subsequent to [61] there have been several related studies investigating the

area of gauge-gravity dualities in spacetimes whose boundary dual has Galilean

conformal symmetry. Most recently the incompressible fluid limit has reappeared

in the discussion of the membrane paradigm and holography in Rindler space [140–

142,144]. Subsequently it was shown in [3] how the gravitational Dirichlet problem

in AdS is related to the membrane paradigm. In particular it was demonstrated

that as the Dirichlet surface approaches the horizon, to retain sensible dynamics, a

BMW-like limit has to be applied to the hypersurface fluid. This connection has yet

to be completely understood with a much greater understanding of non-relativistic

holography required to fully appreciate the significance of this statement. Examples

of studies into the nature of non-relativistic holography for the Galilean conformal

symmetry group include [81,145–151].

In chapter 4 we then demonstrated how to obtain the hydrodynamic derivative

expansions of a fluid with Schrödinger invariance at first order from a parent charged,

conformal, relativistic theory. Specifically we have shown how to generalise the maps

of [33] to the case of an U(1) charged fluid at first order. The resultant fluid was

compressible which stands in contrast to the fluid of chapter 3.

We then focused upon the hydrodynamic limit of a particular three dimen-

sional, non-relativistic conformal field theory and its dual solution which is a five-

dimensional asymptotically Schrödinger, charged black hole. Using the TsT tech-

nique on an Reissner-Nordstrøm AdS5 precursor we constructed an action whose

equations of motion had the desired black hole as a solution and isolated the ther-

modynamics. Although in principle we could then have computed the first order

corrections to our asymptotically Schrödinger charged black hole using the fluid-

derivative procedure we noted that it would be particularly cumbersome to do so

and hence opted instead to use the TsT technique. Thus we arrived at expres-

sions for the metric, gauge field, massive vector field and dilaton to first order in

derivatives.

With the corrected fields to hand in principle it was possible to calculate the

asymptotic values of the metric and gauge field directly to determine their corre-

sponding conserved boundary currents. While this is simple to do for the gauge
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field ambiguities in asymptotic fall off of the metric necessitated that we interpret

the boundary SEM tensor in the precursor asymptotically AdS theory as a tensor

complex of the Schrödinger invariant theory [88]. With these identifications it was

relatively simple to apply the holographic dictionary in Schrödinger space-times to

compute the boundary coefficients and with a little work obtain the Prandtl num-

ber. An important result discovered here was that the universal value of one for

the Prandtl number of an uncharged fluid no longer holds when there is an ad-

ditional non-zero charge. This suggests that it may be interesting to understand

the consequences of a scaling where the non-relativistic charge and particle number

were related as this would naturally be interpreted as the charge being carried by the

fluid particles. We leave this for future work. Moreover, the work represented in this

chapter provides an important extension to the literature as, for example, it demon-

strates that it is possible to still find terms due to anomalies even in non-relativistic

fluids - a development that had not previously been foreseen in [60].

Although our study in chapter 4 concentrated on a fluid occupying two spa-

tial dimensions, the derivative expansions (4.1.9), (4.1.10) and (4.1.12) apply in any

dimension with the caveat that the relativistic one-derivative parity violating term

only exists in four dimensions. Similarly the generalisations to multiple U(1) charges

or indeed different internal symmetries seems clear and we can determine the hy-

drodynamic coefficients if we can find a suitable dual black hole with the required

asymptotics.

The gauge-gravity dictionary in Schrödinger spacetimes is still not well under-

stood due to the somewhat bizarre asymptotics of these geometries. Much work in

this area now focuses on better understanding the nature of the correspondence for

which [1] (chapter 4) may provide valuable intuition. A non-exhaustive list of areas

in the literature where this work may be useful include embedding Schrödinger ge-

ometries in string and M-theory [33,88,119,120,152–154], the generic nature of the

gauge-gravity correspondence in Schrödinger spacetimes [83,84,90,155] and applica-

tions to condensed matter systems [85,156,157]. Additionally the work represented

by this chapter can be used as evidence for conjectures such as those in [158].
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In the final chapter we attempted to demonstrate the limitations and usefulness

of hydrodynamic analysis in a particular field theory which is assumed to be dual

to a non-extremal Reissner-Nordstrøm AdS4 black hole. We computed numerically

the full retarded Green’s functions for conserved currents in the shear channel of

this theory for non-trivial density matrix. Our results are consistent with those

of [4], but we have gone beyond that treatment to show many interesting features.

In particular, the linear response of the boundary theory exhibits rather peculiar

behaviour beyond the hydrodynamic regime which we would like to understand in

more detail.

An immediate application of the method discussed in this chapter is to study the

sound channel correlators of this boundary field theory. This case was not considered

in the original paper [159] but, subsequent to [2] on which this chapter is based, it

was considered in [160]. A further extension which to the author’s knowledge has

not yet been done is to compute the full retarded Green’s functions for conserved

currents in the shear channel at zero temperature. We expect qualitatively different

behaviour at zero temperature. It has been argued in many examples (see [132], for

instance) that the double zero in f(r) at the horizon of extremal Reissner-Nordstrøm

AdS4 leads to a branch cut in the appropriate retarded Green’s function(s) of the

boundary theory. This was first seen explicitly at small frequencies in [12]. Whilst

numerical results were reported in [159] for the sound channel at zero temperature,

only the small frequency behaviour was reported in [4] for the shear channel, based

on the analytical methods developed in [12]. We would like to go beyond this regime,

for which numerical methods are required. However, the double zero in f(r) shows

up as an irregular singular point in the master field equations, leading to difficulties

in the numerical computation of the retarded Green’s functions by our methods. It

would be interesting to adapt our methods to tackle zero temperature for the shear

channel.

To summarise; the gauge-gravity correspondence is an important tool by which

we can learn general lessons about the physics of strongly coupled condensed matter

systems. While many basic questions have been resolved there remain many exciting

problems even within the context of the hydrodynamics to be answered. Moreover,
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we have demonstrated that for thermal field theories, because the hydrodynamic

regime of fluctuations often has tractable equations, calculation of hydrodynamic

modes can be used as a test-bed for methods to explore beyond the low frequency

and momentum regime.



Appendix A

Non-relativistic symmetry

algebras

In this chapter we shall review the properties of non-relativistic symmetry algebras.

In the first section we shall look at the symmetry transformations of Galilean relativ-

ity realised as coordinate transformations and use these to imply the corresponding

Galilei algebra. We shall then demonstrate how the Galilei algebra can be realised

as a parametric contraction of the Poincaré algebra. This process corresponds to

our usual notion of expected non-relativistic symmetry when considering small spa-

tial velocities. Then we shall show how the Galilei algebra can also be obtained by

light-cone reduction of the Poincaré algebra and compare the two approaches.

In the second section we shall briefly discuss a simple extension to the Galilei

algebra - the Milne and Coriolis algebras which allow for time dependent rotations

and translations. We shall show how the Galilei algebra occurs as a subalgebra of

the Milne and Coriolis algebras.

In the third section we shall look at the Galilean conformal algebra. In the

first section we demonstrated how parametric contraction of the Poincaré algebra

led to the Galilei algebra. Given that the conformal algebra is an extension of the

Poincaré algebra to contain scaling transformations we might ask whether there is

an analogue of the Galilei algebra which contains scaling transformations. Taking

the parametric contraction of the Poincaré algebra shall yield one such extension

called the Galilean conformal algebra. This non-relativistic algebra can be thought
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of as describing gapped modes.

As the above discussion hints there exists more than one way to extend the

Galilei algebra to contain scaling transformations. In section four we shall discuss

the Schrödinger algebra which is given by performing a light cone reduction of the

conformal algebra. We shall see it has quantatively different physics to the Galilean

conformal algebra. In particular, unlike the previous algebra, it can describe gapped

modes.

A.1 The Galilei algebra

In this section we shall derive the Galilei algebra from coordinate isometries. Much

of the material will probably be familiar to the reader however it serves as a good

starting point to discuss more complicated algebras. Of particular use later on is the

process by which the Galilei algebra can be produced from the Poincaré algebra. We

shall discuss two of these methods. The first, parametric contraction, will be useful

for considering fluids holographically dual to some spacetime with small spatial

velocities. The second, light-cone reduction, will be interesting as it will allows us

to interpret boundary field theories dual to certain Schrödinger spacetimes in terms

of those dual to certain AdS spacetimes.

The Galilei algebra consists of transformations corresponding to the following

coordinate isometries:

Coordinate Transformed coordinate Interpretation

t t+ a time reparameterisation

xi xi + ai spatial translations

xi xi + vit boosts

xi R (xi) rotations
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where R is the rotation matrix. For infinitesimal transformations we can write:

Coordinate Transformed coordinate Interpretation

t [1 + (ia) (−i∂t)] t time reparameterisation

xi [1 + (iaj) (−i∂j)]xi spatial translations

xi [1 + (ivj) (−it∂j)]xi boosts

xi [1 + (iθij) (i (xi∂j − xj∂i))]xk rotations

We shall define:

Ĥ = −i∂t , P̂ i = −i∂i ,
B̂i = −it∂i , Ĵ ij = i (xi∂j − xj∂i) ,

where Ĵ ij is the generator of rotations in the two-plane spanned by xi and xj. In

the following we shall demonstrate that these operators form a closed Lie algebra

spanned by elements of the form

X̂ = aĤ + biP̂ i + viB̂i + θijĴ ij

where a is a coordinate scalar, bi, vi coordinate vectors and θij an antisymmetric

coordinate two-tensor that parameterise infinitesimal transformations.

The commutation relations obeyed by these generators can be simply written

down: [
Ĥ, B̂i

]
= iP̂ i ,[

P̂ i, Ĵ jk

]
= i

[
δijP̂ k − δikP̂ j

]
,[

B̂i, Ĵ jk

]
= i

[
δijB̂k − δikB̂j

]
,[

Ĵ ij, Ĵkl

]
= i

(
δilĴ jk − δikĴ jl − δjlĴ ik + δjkĴ il

)
, (1.1.1)

where all non-displayed commutation relations are zero. There exists a central

extension to the above algebra which we shall discuss next.

We are familiar with the Schrödinger equation from non-relativistic quantum

mechanics (
~2

2m
∇2 − i~∂t

)
ψ = V (x)ψ

where we have reintroduced ~ this one time only and V (x) is an arbitrary potential.

It can be rephrased in terms of a Schrödinger operator which is defined to be the
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total energy minus the kinetic energy

Ŝ = Ĥ − 1

2m
P̂2

such that Ŝψ = V (x)ψ. In a system where there is no potential energy, Ŝψ = 0,

we would like the Schrödinger operator to be a Casimir of the algebra. The action

of any of the symmetry generators of the Galilei algebra then commute with Ŝ and

map solutions of the equation to each other. Unfortunately, looking at our Galilean

algebra as written, it is not. In particular, under boosts:[
Ŝ, B̂i

]
=

[
Ĥ − 1

2m
P̂2, B̂i

]
= iP̂ i

This leads us to looking at ways to “correct the algebra” such that the Schrödinger

operator is a Casimir. As we don’t want energy levels to be affected by boosts

this implies that the only thing that can change above is the commutation relations

between the translation and boost generators. Let’s modify this relationship via the

introduction of a central charge such that[
P̂ i, B̂j

]
= iαδij

then [
Ŝ, B̂i

]
= iP̂ i − i

2m

(
2αP̂ i

)
which suggests if we choose α to be the mass of the particle then the Schrödinger

operator is a Casimir of the algebra. The resultant algebra is called the Bargmann

algebra.

A.1.1 As a parametric contraction of the Poincaré algebra

As a prelude to more complicated parametric contractions we shall now demonstrate

how to obtain the Galilei algebra from the Poincaré algebra. Given some function

f(t, x) we would like to scale its space and time arguments as

t → εrt ,

xi → εr+1xi ,
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where r is some exponent. The process of finding the algebra corresponding to the

symmetry implied by the Poincaré algebra on these functions is called Wigner-İnönü

contraction. It is most simply illustrated by considering the Lorentz group in (1+1)

dimensions whose action upon coordinates is given by

Λ(v) =

 γ γ v
c

γ v
c

γ

 (1.1.2)

where γ = 1q
1− v2

c2

and we have restored c for the rest of this paragraph. Setting

v
c

= εv∗ where v∗ is our non-relativistic velocity we can attempt to take ε → 0

but, as the group stands, this results only in the trivial group. Instead we make a

transformation

U =

 ε−r 0

0 ε−(r+1)

 (1.1.3)

which is singular in the desired limit. It’s effect on the Lorentz transformations

however is to make them non-trivial in this limit and we find

Λ(εv∗) =

 γ γε2v∗

γv∗ γ


ε→0−→

 1 0

v∗ 1

 (1.1.4)

which is clearly a symmetry transformation of the Galilean group in (1 + 1) dimen-

sions. This process of Wigner-İnönü contraction is in fact more general than we

have described and applies in general to groups with a non-trivial subgroup that is

fixed under the contraction.

Given the transformations of the group we are now in a position to infer the

transformations of the generators. The generators of the Poincaré algebra are{
P̂ µ, M̂µν

}
and they satisfy the commutation relations[
P̂ µ, P̂ ν

]
= 0 ,[

P̂ µ, M̂νσ

]
= i

(
ηµνP̂ σ − ηµσP̂ ν

)
,[

M̂µν , M̂σρ

]
= i

(
ηµρM̂νσ − ηµσM̂νρ − ηνρM̂µσ + ηνσM̂µρ

)
,
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and their coordinate representations are

P̂ µ = −i∂µ ,
M̂µν = i (xµ∂ν − xν∂µ) .

The operators themselves have coordinate dependence and so they break up under

scaling. The leading pieces of their coordinate representations are

P̂ t → −i∂t = Ĥ ,

P̂ i → −i∂i = P̂ i ,

M̂ it → −it∂i = B̂i ,

M̂ ij → i (xi∂j − xj∂i) = Ĵ ij .

As expected time and space become distinct. The commutation relations are those

of the Galilei algebra (Eq. 1.1.1) without a central extension to the Bargmann

algebra.

A.1.2 As a light-cone reduction of the Poincaré algebra

Similarly, before tackling more complicated light-cone reductions, we shall demon-

strate how to obtain the Galilei algebra from the Poincaré algebra. Given some

function f(x+, x−, xi) on some spacetime with a metric of the form

ds2 = −2dx+dx− +
(
dxi
)2

(1.1.5)

where

x± =
t± x1

2

we ask that our physical objects be independent of the coordinate x−. We require

that the action of symmetry generators in our resultant algebra preserves this inde-

pendence. Thus we will need to remove from the Poincaré algebra any generators

that introduce non-trivial dependence on x−. This restricted algebra will turn out

to be the Galilean algebra in one fewer dimensions.

When we attempt to restrict the Poincaré algebra it is clear that P̂− = −i∂−
will naturally drop out from our algebra as this generates translations along the
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Figure A.1: A figure demonstrating why only certain combinations of boosts and

rotations may be retained under light-cone reduction. The sheet displayed is a

surface of constant x−. A function which is independent of x− will have the same

x+ and xi dependent profile for each sheet at a given x−. Drawn on the sheet is the

potential tangent vector of some particle. The figure attempts to illustrate that a

Mti boost or a M1i boost will take the particle off this sheet meaning it necessarily

has dependence on x−. As we do not want this to happen it must be the case that

either: neither boost is in our resultant algebra or a combination of the two is. It is

this latter case which we find in the text.
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x− direction. What is perhaps less clear is that only certain linear combinations of

boosts can remain. We attempt to illustrate this in Fig. A.1. The operators that

survive are

P̂+ = −i∂+ ,

P̂ i = −i∂i ,
M̂ i− = i

(
xi∂− + x+∂i

)
,

M̂ ij = i (xi∂j − xj∂i) .

The resultant commutation relations are:[
P̂+, M̂ i−

]
= iP̂ i ,[

P̂ i, M̂ jk

]
= i

(
δijP̂ k − δikP̂ j

)
,[

M̂ i−, M̂ jk

]
= i

(
δijB̂k − δikB̂j

)
,[

M̂ ij, M̂kl

]
= i

(
δilM̂ jk − δikM̂ jl − δjlM̂ ik + δjkM̂ il

)
,

where again un-displayed commutation relations are zero. When we identify P̂+ =

Ĥ, M̂ i− = B̂i and M̂ ij = Ĵ ij we get the Galilei algebra (Eq. 1.1.1) in one fewer

dimensions than we started with.

A.2 The Milne and Coriolis algebras

The Galilei transformations noted above are not the most general non-relativistic

isometries we could make. In particular we could consider the time dependent, but

spatially independent, translations and rotations

xi → xi + ai(t) ,

xi → Rij(t)x
i .

The corresponding infinitesimal transformations are

Coordinate Transformed coordinate Interpretation

t [1 + (ia) (−i∂t)] t time reparameterisation

xi
[
1 +

∑∞
k=−∞

(
iaj(k)

) (−itk∂j)]xi spatial translations

xi
[
1 +

∑∞
k=−∞

(
iθij(k)

) (
itk (xi∂j − xj∂i)

)]
xl rotations
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The usual translations and boosts are simply the t0 and t1 components of the time

dependent spatial translation respectively. We shall define:

Ĥ = −i∂t , M̂
(k)
i = −itk+1∂i ,

Ĵ
(k)
ij = itk (xi∂j − xj∂i) .

The commutation relations that these generators obey are:[
Ĥ, M̂

(k)
i

]
= −i(k + 1)M̂

(k−1)
i ,[

M̂
(m)
i , Ĵ

(n)
jk

]
= i

(
δijM̂

(m+n)
k − δikM̂ (m+n)

j

)
,[

Ĵ
(m)
ij , Ĵ

(n)
kl

]
= i

[
δjkĴ

(n+m)
il + δjlĴ

(n+m)
ki + δikĴ

(n)
lj + δilĴ

(n)
jk

]
,

where undisplayed commutation relations are zero. We additionally note that the

Milne algebra, where the rotation generators are truncated to Ĵ
(0)
ij is a consistent

limit of the Coriolis algebra which makes our rotations time independent.

A.3 The Galilean conformal algebra

As discussed above a way to achieve a non-relativistic analogue of the conformal

algebra is via parametric contraction [81]. The resulting symmetry algebra, called

the Galilean conformal algebra (GCA), will contain as a subalgebra the Galilei

algebra in addition to a dilatation operator and analogues of the time and space

components of special conformal transformations. The GCA can be viewed as a

subalgebra of an infinite symmetry algebra on which we will make some passing

comments.

A.3.1 As a parametric contraction of the conformal algebra

The conformal algebra is an extension of the Poincaré algebra to include scaling

transformations. Hence to the usual Poincaré algebra generators we add the follow-

ing new generators

D̂ = −ix · ∂ ,
K̂µ = −i (2xµx · ∂ − x · x∂µ) ,
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which satisfy the additional commutation relations[
D̂, P̂ µ

]
= iP̂ µ ,[

D̂, K̂µ

]
= −iK̂µ ,[

K̂µ, P̂ ν

]
= i

[
2ηµνD̂ − 2M̂µν

]
,[

K̂µ, M̂νσ

]
= i

[
ηµνK̂σ − ηµσK̂ν

]
,

where undisplayed commutation relations are zero. Just as before we perform a

parametric contraction. The coordinate representations of the new non-relativistic

operators are

D̂ = −i [t∂t + xi∂i
]
,

K̂ = −i (2txi∂i + t2∂t
)
,

K̂i = it2∂i .

Notice that the coordinate representation of the generator of dilatations has exactly

the same form as in the relativistic algebra. The commutation relations become:[
D̂, Ĥ

]
= iĤ ,[

D̂, P̂ i

]
= −iP̂ i ,[

D̂, K̂t

]
= iK̂t ,[

D̂, K̂i

]
= iK̂i ,[

K̂i, Ĥ
]

= 2iB̂i ,[
K̂t, Ĥ

]
= −2iD̂ ,[

K̂t, P̂ j

]
= −2iB̂j ,[

K̂t, B̂i

]
= iK̂i ,

where undisplayed commutation relations are zero. This is called the Galilean con-

formal algebra. In passing we note that the Galilean conformal algebra does not

admit the Galilei central extension and thus intuitively represents “gapless” theories.

A.3.2 The infinite Galilean conformal algebra

The Galilean conformal group has an extension to an infinite symmetry algebra.

We shall not dwell on this but it is nonetheless interesting to see and may yet have
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some future applications in holography [81]. First we alter our notation and redefine

the following generators:

L̂(−1) = Ĥ , L̂(0) = D̂ , L̂(+1) = K̂ ,

M̂
(−1)
i = P̂ i , M̂

(0)
i = B̂i , M̂

(+1)
i = K̂i .

Examining the resultant commutation relations suggests an obvious extension. De-

fine new generators:

L̂(n) = −i ((n+ 1)tnxi∂i + tn+1∂t
)

M̂
(n)
i = −itn+1∂i

Ĵ
(n)
ij = itn (xi∂j − xj∂i)

We can see that when n = 0,±1 the coordinate representation of the above gener-

ators matches that of the finite Galilean conformal algebra. The algebra obeyed by

these operators is [
L̂(n), L̂(m)

]
= i(n−m)L̂(n+m) ,[

L̂(n), M̂
(m)
j

]
= i(n−m)M

(n+m)
j ,[

L̂(n), Ĵ
(m)
ij

]
= −imJ (m)

ij .

We would like to interpret these new generators. First notice that if we restrict L̂(n) ∈{
L̂(−1), L̂(0), L̂(1)

}
then the subalgebra we find is the Coriolis algebra where M̂ (n)

generate time dependent translations (and thus boosts) while Ĵ (n) generate time

dependent rotations. The objects L̂(n), |n| ≥ 1 have an interesting interpretation as

reparameterisations of absolute time [81].

A.4 The Schrödinger algebra

As discussed above a way to achieve a non-relativistic analogue of the conformal

algebra is via light-cone reduction. The resulting symmetry algebra, called the

Schrödinger algebra, will contain as a subalgebra the Galilei algebra in addition to

a dilatation operator and an analogue of the time component of special conformal

transformations. It will not contain an analogue of the spatial component of the

special conformal transformations. The Schrödinger algebra will have a central

extension.
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A.4.1 As a contraction of the conformal algebra

Given that we have already shown how to find the Galilei algebra from the Poincaré

algebra the process of light cone reducing the conformal algebra is quite easy. As

before we need to drop P̂− and M̂+i but, for our algebra to be consistent, we must

also drop any of the new conformal operators that introduce these via commutation

relations too. The only commutation relation from our conformal algebra that could

potentially be a problem is:[
K̂µ, P̂ ν

]
= i

[
2ηµνD̂ − 2M̂µν

]
.

Clearly if µ = + and ν = i or µ = i and ν = + we get the “forbidden” operators

M̂+i. To prevent this we remove K̂+ and K̂i from the algebra. The remaining new

operators are the dilatation operator and K̂− which have the coordinate expressions

D̂ = −i (2x+∂+ + xi∂i
)
,

K̂− = ix+
(
x+∂+ + xi∂i

)
,

where we have dropped an overall factor of two from the definition of K̂−. The

commutation relations are not quite given by making a coordinate choice, (+,−, i),
in the relativistic commutation relations because time now scales differently in the

dilatation operator compared to the relativistic case. Thus we should take extra

care with commutation relations involving D. Working with their coordinate repre-

sentations it is possible to show that the commutation relations are[
D̂, P̂+

]
= 2iP̂+ ,[

D̂, P̂ i

]
= iPi ,[

D̂, M̂ i−
]

= iM̂ i− ,[
D̂, K̂−

]
= −2iK̂− ,[

K̂−, P̂+

]
= iD̂ ,[

K̂−, P̂ i

]
= −iM̂−i , (1.4.6)

where we must remember that we have dropped a 2 from K̂−. Again undisplayed

commutation relations are zero.
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There are some passing remarks to make about the Schrödinger algebra. Firstly,

notice that the effect of the dilatation operator on coordinates is to set

xi → λxi ,

x+ → λ2x+ .

The anisotropic scaling of space and time is common in condensed matter systems

and the exponent of λ in the time rescaling is called the “dynamical” exponent. The

Schrödinger algebra is similar to the more common Lifshitz algebra which contains

the scaling

xi → λxi ,

t → λzt ,

but no boosts. Finally we remark that the Schrödinger algebra is also compatible

with the Galilean central extension unlike the Galilean conformal algebra.



Appendix B

Mathematical conventions

B.1 Hodge duals

Following [119] we note that the ten-dimensional Hodge dual on Reissner-Nordstrøm

AdS5×S5 can be restricted to the 5-dimensional Reissner-Nordstrøm AdS5 manifold,

1 dimensional fibration coordinate and CP2 in the following manner

∗10 = (−1)(5−n5)n4+(5−n5)n1+(1−n1)n4 ∗5 ∗1∗4

where n5, n1 and n4 are the number of indices in each part. In particular:

∗10 (1) =
1

2
eΦV RNAdS ∧

(
dψ +A(1)

) ∧ J(2) ∧ J(2) ,

∗5(1) = V RNAdS ,

∗1(1) = eΦ

(
dψ +A(1) − 2√

3
AQ

)
,

∗4(1) =
1

2
J(2) ∧ J(2) ,

∗4(J(2)) = J(2) ,

where V S5 = ∗1(1) ∧ ∗4(1) when Φ = 0.

After Melvinisation the Hodge dual on the asymptotically Schrödinger charged

black brane spacetime, denoted Schr5, is not equal to that on Reissner-Nordstrøm

AdS5 and we must determine its effect upon our volume forms and gauge fields. It

can be shown that objects whose terms all contain dx− pick up a factor of eΦ when

acted on by the Melvinised Hodge dual. After Melvinisation the following important

136



B.2. TsT transformation 137

objects Hodge dualise in the manner shown:

V RNAdS = e−ΦV Schr5 ,

∗5FQ = −2e−Φ ∗′′5
(

1√
3
FQ + F ∧ AM

)
.

The transformation of ∗5FQ was determined by considering the fact that B′′(2) ∧F ′′(3)

is precisely the quantity that needs to be added to make F(5) self-dual with respect

to the Melvinised metric, see [119].

B.2 TsT transformation

First note that generically we can write the 10-dimensional metric and five-form as:

ds2
10 = g−−

(
dx−

)2
+ 2g−αdx−dxα + gαβdx

αdxβ +
(
dψ +A(1) + AQ

)2
+ dΣ2

4 ,

F(5) = dψ ∧ (dx− ∧ A(3) +B(4)

)
+ dx− ∧ C(4) +D(5) ,

where α, β belong to {r,+, x, z}. As the TsT only ever performs algebraic operations

on the ψ and x− isometry directions we only need to keep track of these terms.

We shall need to T-dualise our solution twice so it makes sense to define a

standard form for the relevant fields (as in [119]). In particular, we isolate all the

dependence on ψ in our fields and write them in the following manner:

ds2
10 = gψψ

(
dψ + g(ψ)

)2
+ . . . ,

B(2) =

(
dψ +

1

2
g(ψ)

)
∧B(ψ) + . . . ,

F(p) =
(
dψ + g(ψ)

) ∧ F(p)ψ + F(p)6ψ ,

where 6 ψ indicates the piece of the field with no ψ components. We also choose to

denote the dilaton by Φ0. The T-dualisation of these objects then yields:

(
ds2

10

)′
=

1

gψψ

(
dψ −B(ψ)

)2
+ . . . ,

B′(2) =

(
dψ − 1

2
B(ψ)

)
∧ (−g(ψ)

)
+ . . . ,

F ′(p) =
(
dψ −B(ψ)

) ∧ (F(p−1) 6ψ
)

+ F(p+1)ψ ,

eΦ′ =
eΦ0

gψψ
.



B.2. TsT transformation 138

We shall denote T-dualised quantities with a ′.

As was stated in the main body of the thesis the TsT transformation is formed

from the following sequence of operations:

1. T-dualise along the ψ direction,

2. twist along x− sending it to x− + αψ where α is a constant,

3. and finally T-dualise along the ψ direction.

Applying these operations to the fields of Eq. (2.2.1) we obtain:

(
ds2

10

)′′
= ds2

5 +

(
dψ +A(1) − 2√

3
AQ

)2

k
+ dΣ2

4 −
α2

k

(
g−−dx− + g−αdxα

)
,

B′′(2) =
α

k

(
g−−dx− + g−αdxα

) ∧ (dψ +A(1) − 2√
3
AQ

)
,

F ′′(3) = αA(3) ,

F ′′(5) = F(5) +B′′(2) ∧ F ′′(3) ,

F ′′(7) = B′′(2) ∧ F ′′(5) ,

e2Φ′′ =
e2Φ0

k
,

where k = 1+α2g−− and ds2
5 is the original five dimensional metric. From the above

formulae we can readily identify AM to be α
k
g−µdxµ.



Appendix C

Numerical method for extracting

correlators

In this appendix we give details of the method used to extract the retarded Green’s

functions for Φ± numerically. As outlined in Section 5.1, we must first solve Eq.

(5.1.4). This is a second-order, linear ODE with a regular singular point at z = 1

(the horizon). We choose the following ansatz, where Φ denotes one of the Φ±:

Φ(z) = (z − 1)−iwµq/4πTφ(z). (3.0.1)

The first factor imposes the infalling boundary condition at z = 1. A unique solution

is then specified by φ(1), which we are free to choose because the equation is linear.

We expand φ about z = 1 up to some order, N , to generate the initial condition

for a Runge-Kutta algorithm at some z = 1− ε. To extract Π̂±(w, q), we integrate

out to the boundary and match this numerical solution to the asymptotic expansion

given in Eq. (5.1.5). The matching can be performed using a root-finding method,

for example.

The main numerical issue comes from the initial condition. Naively, we would

like to choose a small ε so that the series expansion of φ is accurate with only a

few terms. However, we found that the pattern of poles was completely washed out

below a certain line in the complex w plane. This numerical instability appears if ε

is small for =w large and negative (and/or for T
µq

small). To see why, note that the

139
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ansatz Eq. (3.0.1) for Φ at z = 1− ε contains the factor

ε−iwµq/4πT .

This factor becomes very large in these regimes if ε is small, leading to round-off

errors.

Thus, a larger ε must be chosen in these regimes. As a consequence, a sufficiently

large N must be chosen to offset the error from starting the integration further from

z = 1. The values of ε,N can be constrained by ensuring that the locations of

the poles match the quasinormal spectrum for the appropriate bulk fluctuations, as

stated in Section 5.2.
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