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Abstract

In this thesis we explore aspects of correlation functions and scattering amplitudes in

supersymmetric field theories.

Firstly, we study correlation functions and scattering amplitudes in the perturbative

regime of N = 4 supersymmetric Yang-Mills theory. Here we begin by giving a new

method for computing the supercorrelation functions of the chiral part of the stress-

tensor supermultiplet by making use of twistor theory. We derive Feynman rules and

graphical rules which involve a new set of building blocks which we can identify as a new

class ofN = 4 off-shell superconformal invariants. This class of off-shell superconformal

invariant is related to the known N = 4 on-shell superconformal invariant pertinent to

planar scattering amplitudes.

We then move onto the six-point tree-level NMHV scattering amplitude. Previous

results are given in terms of a manifestly dual superconformal invariant basis called the

R-invariant. We define and analyse a generalisation of this invariant which contains

half of the dual superconformal invariance (Q+ S̄ invariant but not Q̄+ S invariant).

We apply it to the six-point tree-level NMHV scattering amplitude and find a new

representation which manifestly contains half of the dual superconformal invariance

and physical pole structure. This is in contrast to the R-invariant basis which manifests

symmetry properties but does not manifest physical pole structures.

Finally, we find the superconformal partial wave for four-point correlation functions

of scalar operators on a Grassmannian space Grm|n(2m|2n) for theories with space-time

symmetry SU(m,m|2n). This contains N = 0, 2, 4 four-dimensional superconformal

field theories in analytic superspace as well as a certain class of representations for



iii

the compact SU(2n) coset spaces. As an application we then specialise to N = 4

supersymmetric Yang-Mills theory and use these results to perform a detailed super-

conformal partial wave analysis of the four-point functions of arbitrary weight 1
2
-BPS

operators. We discuss the non-trivial separation of protected and unprotected sectors

for the 〈2222〉, 〈2233〉 and 〈3333〉 cases in an SU(N) gauge theory at finite N (where

〈ijkl〉 =
〈
tr(W i) tr(W j) tr(W k) tr(W l)

〉
). The 〈2233〉 correlator predicts a non-trivial

protected twist four sector for 〈3333〉 which we can completely determine using the

knowledge that there is one such protected twist-4 operator for each spin.
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Chapter 1

Introduction

Quantum field theory (QFT) is by now part of the standard toolkit for any modern

theoretical physicist, which has broad applications from condensed matter physics to

particle physics all the way to applications in gravity.

A major development since the discovery of QFT is superstring theory. Initially,

much of the interest around superstring theory was in the hopes of gaining a way to

unify all physical QFTs, and have a way to encapsulate all interactions. Whilst this

remains an active area of research a related direction is to construct new QFTs from

an overarching string theory set up. The most famous of these set ups actually led

to an exact duality in which string theory propagating on spacetimes of the form of

anti de-Sitter space times a sphere ∼ (AdS× S) is dual to conformally invariant gauge

theories (CFT) of one dimension less than the anti de-Sitter background spacetime [1].

This is known as the AdS/CFT duality. This is in fact a strong-weak duality, whereby

strong coupled physics on the CFT is related to weakly coupled physics on the AdS

side. This therefore leads to a method of gaining strongly coupled data of the CFT

that would otherwise be unattainable by standard QFT means.

A major concept that fell from string theory was that of planarity in SU(N) or U(N)

gauge theories with coupling g. It was shown in [7] by t’Hooft that the topological

structure of string theoretic diagrams are matched by the 1/N corrections to the N →
∞ limit of the gauge theory whilst keeping g2N fixed. The planar limit is defined to

be the N →∞ limit, and leads to a very large simplification. We will often make this

approximation in this thesis.

1
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In recent times it has become fruitful to turn the microscope back on QFT by

virtue of studying some of the ‘simplest’ possible QFTs and asking refined questions

about simplicity, underlying symmetries and potentially transferable techniques and

structures. These questions are often answered not by referring to the Lagrangian

itself, but rather the structure of the observables.

Superconformal field theories

Famously, N = 4 supersymmetric Yang-Mills theory (SYM) is a QFT which possesses

many remarkably simple structures. This theory contains a gluon, four fermions (plus

four conjugates) and six scalars, it also has the spacetime symmetry PSU(2, 2|4) where

all fields are in the adjoint representation of gauge group SU(N). A characteristic

example of this simplicity is that whilst the Lagrangian takes the somewhat complicated

form:

L = tr

(
− 1

4
FαβF

αβ +
1

4
Dαα̇φ

IJDα̇αφIJ +
1

8
g2
[
φIJ , φKL

]
[φIJ , φKL]

+ iψ̄α̇ID
α̇αψIα − i

(
Dα̇αψ̄α̇I

)
ψIα −

√
2gψαI

[
φIJ , ψ

J
α

]
+
√

2gψ̄α̇I
[
φIJ , ψ̄α̇J

]
)
,

(1.0.1)

its planar one-loop four-point amplitude can be written as only one term (see [2]).

In general QFT, we would expect three classes of Feynman diagrams the so-called

box, bubble and triangle. However, it turns out that in N = 4 SYM the bubble

and triangle contributions are absent leaving only the box contribution. A further

interesting aspect is that the theory is conjectured to be integrable in the planar limit

as suggested by the Yangian invariance of the amplitude and the relation of the two-

point correlation function of scalars to the integrable spin chain [48,49,5] (see [3] and

references therein). In fact, this conjectured integrability has gone through some precise

numerical checks [4,73] by checking anomalous dimensions and three-point function

structure constants.

It has therefore become incredibly fruitful to study the observables using new and

interesting mathematical techniques. Twistor theory has provided a great way to study

scattering amplitudes in N = 4 SYM [6,64]. The underlying integrable structure of

scattering amplitudes in most easily seen via twistors through the scope of the so-called
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Grassmannian formalism [69] (itself, also grounded in twistor space). Fascinatingly, the

Grassmannian formalism has recently led to many famous discoveries such as the posi-

tive Grassmannian, on-shell diagrams and the Amplituhedron yielding methods related

to combinatorics and projective geometry [25,65,69,71]. Some view the succession in

new methods as being a revolution in QFT itself.

Finally, the notion of duality within the observables of N = 4 SYM has played

a remarkable role. It was first discovered in [39] that the scattering amplitude and

the expectation value of Wilson loop were exactly dual at strong coupling. This was

observed in the weak coupling regime in [45,46] and was extended to supersymmetry

via the twistor formalism in [47]. It was then found in [31] that the square of the

expectation value of the Wilson loop is in fact dual to the lightlike limit of a correlator

in any bosonic conformal field theory. This was then applied to a correlator/amplitude

duality in [50,51]. Then came a supersymmetric proposal of the correlator/amplitude

duality in [36,37]. This altogether leads to a ‘triality’ relationship between the scat-

tering amplitude, the Wilson loop and the correlation function. It has thus become

of great importance to understand the mechanisms and structures involved in setting

up these relations. This is a great motivator for computing such observables as this

not only allows for a structural understanding of highly symmetric theories like N = 4

SYM, but to potentially uncover such properties of more general QFTs.

This opens the discussion to other superconformal field theories (SCFTs). These

are theories which possess superconformal symmetry. This symmetry algebra is built

from Lorentz generators, a generator for dilation weight and the special conformal

generator, together with supersymmetry operators and so-called special superconformal

generator. For four-dimensional N -extended SCFTs the group is SU(2, 2|N ). Some

of the structures that have been found for the N = 4 SYM case are similar to the

so-called ABJM SCFT, which has the form of a 3d Chern-Simons theory [8,9].

Whilst integrability structures have not been found in general SCFTs, one can in-

stead ask questions regarding the minimal required constraints for a consistent SCFT.

The argument of [74] is that we only need the general symmetry, operator product

expansion (OPE) and the four-point function. One can use the OPE to gain a basis

for the four-point function called the superconformal partial wave. Then the crossing-

symmetry of the four-point function of four-like operators leads to non-trivial con-
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straints on the four-point functions. The argument claims that these constraints can be

analysed to exclude inconsistent SCFTs whilst placing bounds on the allowed SCFTs.

These methods are referred to as superconformal bootstrap.

The most successful application of the conformal bootstrap was in the study of

the 3d Ising model in [20], where the theory was found on a remarkable point on the

boundary of the exclusion plots. There have also been applications to SCFT with

four dimensional N = 2, 4 and six dimensional (2, 0) theories [95,75,96]. In order to

get these results one has to know the required superconformal partial waves, which

are acquired through Lie algebraic and representation theoretic methods. The study

of superconformal partial waves was studied some time ago in view of the AdS/CFT

in [10,88]. However, the work in [77,79,80,87]( and [94] for higher dimensions) some-

what systematised the results, whereby important pioneering work in the extraction of

quantum data via the superconformal partial wave analysis was performed.

Themes

The grand goal for those who study the structure of observables in the ‘simplest’ QFT

is to try and understand all aspects of QFT in a general sense.

We view this thesis (and the work that it is based on) as a small contribution to

the very large and rich tapestry of ideas and methods. This thesis contains two major

themes:

TWISTOR METHODS AND SUPERCONFORMAL PARTIAL WAVES.

Having seen how useful the twistor methods have been as applied to the study of

on-shell observables (like amplitudes and Wilson loops) in planar N = 4 SYM, it is

interesting to see if one can find similarly robust structures in applying these methods

to off-shell observables. In particular we will study the supercorrelation functions of the

stress-tensor supermultiplet in N = 4 SYM. The idea is simply to find some structure

and see how these structures relate to the previously understood scattering amplitudes.

This is a rather apt question as the scattering amplitude is known to be reproduced in

the lightlike limit of correlation functions in planar N = 4 SYM.

Within the same theme, we shall also consider the so-called NMHV tree-level scat-

tering amplitude. This is a well known object and the form which manifests full dual
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superconformal symmetry is the one which does not manifest physical pole structures.

We aim to use a different basis for the result which manifests pole physicality at the

expense of manifesting half of the superconformal symmetry. We then find a result

which manifests as much physical and symmetry related properties as possible.

We then look towards the superconformal partial waves. These objects form a basis

for four-point correlation functions which are pertinent to the conformal bootstrap

programme. We derive a superconformal partial wave for four-point functions of scalar

operators in what we will call Grassmannian field theories which are a 2-parameter

family of superspaces. These Grassmannian field theories are theories with space-

time symmetry SU(m,m|2n) (where m and n are the two parameters) and exist on the

Grassmannian space defined to be Grm|n(2m|2n), namely the space of m|n-dimensional

planes in 2m|2n-dimensions. For m = n = 2, this becomes a four-dimensional N = 4

SCFT, in which we perform various superconformal partial wave analyses on various

correlators.

Structure of this thesis

This thesis is built from three parts. An introduction to superspaces, a second part

discussing twistor methods and a third part discussing the superconformal partial wave.

Each of these parts are built from chapters which each have their own reviews and

introductions which elaborate on the motivations and previous work. This means that

each chapter can in principle be read independently of each other.

The first part is chapter 2 and reviews the construction of different superspaces

and some of the consequences. This first part aims to provide a picture of how many

different superspaces may arise from a single coset construction. This chapter is to be

viewed as providing the overarching theme of superspace techniques used throughout

this thesis.

The second part is chapters 3 and 4. The main theme will be twistor applications to

N = 4 SYM. In chapter 3, we use the aforementioned works in scattering amplitudes

as motivation to study twistor theoretic methods to compute correlation functions of

the stress-tensor supermuliplet. The main result of this chapter will be a new set of

graphical rules associated to a bosonic propagator and a ‘R-vertex’ which is to be

viewed as an off-shell generalisation to familiar superconformal invariants pertinent to
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scattering amplitudes.

In chapter 4, we will derive, investigate and apply a new basis for the six-point tree-

level NMHV scattering amplitude which manifest properties which were previously

hidden in other results. In particular, we will find a remarkably compact formula

which preserves the supersymmetry and the conjugate special superconformal charge

(Q + S̄), whilst only containing manifestly physical pole structures. The main point

in comparison to the previously known fully superconformal invariant result, is that

we may gain manifestly physical pole structures at the expense of manifest (Q̄ + S)

symmetry.

The third part is chapter 5. The theme is the superconformal partial wave. We

perform a derivation of the superconformal partial wave valid for four-point functions

of scalar operators with SU(m,m|2n) space-time symmetry in so-called Grassmannian

field theories (which in four dimensions reduces to analytic superspace). In general this

will turn out to be a completely general set of results, however we apply this to N = 4

SYM, in which we find OPE coefficients for a variety of free theory correlation functions.

We will then consider the notion of operator recombination at the unitary bound for

the 〈3333〉 correlator. The main point will be that the 〈2222〉 and 〈2233〉 can be used

in conjunction with information regarding the number of operators accommodating a

representation to a fix a non-trivial twist-4 protected sector.

Chapters 3, 4 and 5 are based on the papers [29], [55] and [72] respectively.



Chapter 2

Superspace

Superspaces are a natural arena in which to study supersymmetric quantum field the-

ories. We may denote such a space as Fm|n (where F is some field of variables e.g. C or

R). As an example, Cm|n is said to be a Z2-graded vector space of complex variables.

There exists an even and odd subspace which in this case is Cm and Cn respectively,

whereby the odd subspace is built from Grassmann odd variables. Functions on such

a space are generically functions of both subspaces but whilst any complex (or real

subspace thereof) function may exist in the even subspace, only a finite expansion in

Grassmann variables exists for the odd subspace.

This leads to the concept of a superfield where supermultiplets which are innately

Lie algebraic objects may be established in a field theoretic language. Physical su-

perfields, which correspond to physical supermultiplets are found by applying some

constraint onto the superfield.

As an example, we may consider an unconstrained four dimensional N = 1 su-

perspace, namely R4|4. This is given by the coordinates (xαα̇, θα, θ̄α̇), whereby xαα̇

is a Grassmann even object whilst the θα and θ̄α̇ are are both Grassmann odd. An

unconstrained superfield takes the form:

S(x, θ, θ̄) = f(x) + θαψα(x) + · · ·+ F (x)θ2θ̄2. (2.0.1)

One can construct the derivative operators Dα and D̄α̇. Considering the N = 1

superalgebra, one finds that derivative operators commute with the supercharges and

among themselves but for
{
Dα, D̄α̇

}
= 2iPαα̇, where Pαα̇ is the momentum operator.

7



Chapter 2. Superspace 8

The chiral supermultiplet is defined to be

D̄α̇Φ(x, θ, θ̄) = 0. (2.0.2)

This is solved by:

Φ(y, θ) = f(y) + θαψα(y) + F (y)θ2, (2.0.3)

where yαα̇ = xαα̇ + iθαθ̄α̇. This is an example of a shortened superfield. This leads

to three fields, a scalar, a fermion and another scalar which vanishes on-shell in the

superspace action (since we can only have N = 1 supersymmetry), thereby producing

the physical supermultiplet.

In N -extended supersymmetry, one introduces N supercharges and hence the odd

subspace enlarges. This also enlarges the supersymmetry algebra to include a group of

automorphisms, which we will often refer to as the internal group. This enlarges the

space to R4|4N , which in practice amounts to giving the Grassmann odd variables a

second index, θIα.

Upon introducing many more supercharges, it becomes possible to produce short-

ened supermupltiplets in a non-trivial way where the corresponding superfield is an

explicit function of some mixture of θ and θ̄ variables, but not all Grassmann odd

variables. This arises from allowing the supercharges (or some combination thereof)

to directly annihilate the supermultiplet. In the context of four dimensional N = 4

theories, these are BPS and semi-short multiplets (more in chapter 5). This leads

to complicated superfield constraints which are often difficult to solve. However, one

may use the so-called harmonic superspaces to project the constraint onto a subspace in

which corresponding superfields are solved by chirality-like conditions like (2.0.2). Such

a space will be of use throughout this entire thesis and we will discuss its construction

in this chapter.

Viewing the aforementioned superspace as being useful in constraining aspects of

component operators appearing in the superfield, we may also consider superspaces

which constrain aspects of the kinematics appearing in a superfield. Suppose that

we are dealing with observables in some theory where we are only interested in its

massless sector. An example would be scattering amplitudes in some four dimensional

massless theory. Scattering amplitudes are on-shell objects and do not benefit greatly
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from an over-complete configuration space which includes off-shell kinematic variables.

Namely, one could instead pick a slice of such a configuration space which manifestly

solves the corresponding masslessness constraint. In this way, all statements regarding

external data in some calculation are manifestly physical statements of on-shellness

and therefore masslessness.

In four dimensional massless gauge theory, twistor space is precisely such a space

which has proven to yield quick and efficient results. Extending this to a superspace

amounts to introducing some appropriate Grassmann odd variables. We will be using

this space in chapter 3 and chapter 4 and we will review its construction in this chapter.

In this chapter we will review a coset construction for a large variety of super-

spaces, paying close attention to harmonic, analytic and twistor superspace, as these

will appear in later chapters. We hope that this will be a guiding review into this

subject, where we will prioritise practicality above formality. As a result, this should

not be viewed as a complete review. An elaboration on the formal aspects of the topics

discussed in this chapter can be found in [13,21].

2.1 Constructing superspaces from cosets

We begin by stating that the superconformal group in four dimensions withN -extended

supersymmetry is given by SU(2, 2|N ;R). For the discussion that follows, it is useful

to consider its complexification, which makes this group SL(4|N ;C). We will later

generalise this to SL(2m|2n;C), in preparation for chapter 5 in the study of supercon-

formal partial waves. We will also from here on out omit the C from any group (e.g.

we will simply write SL(2m|2n)) with the understanding that unless otherwise stated

we take the complex setting to be the case.

Coset superspaces that are of interest to us are given by

Fp = P\SL(2m|2n), (2.1.1)

where P is a parabolic subgroup generated by a parabolic subalgebra. In general,

we may begin by constructing an appropriately defined parabolic subalgebra (which

are lower triangular block matrices) and then exponentiate the result to obtain the

subgroup. The resulting supermanifold in (2.1.1) is known as a flag supermanifold.
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We will present a review of this topic by starting with the purely bosonic case.

We will find that the Dynkin diagram is the most succinct way to recapture not only

the superspace itself, but its local coordinates and some aspects of the corresponding

representation theory. We will give some immediate results for conformal and super-

conformal Minkowski space. Whilst leaving a more complete treatment relevant to

operator spectra for chapter 5.

2.1.1 Bosonic case

A complex semi-simple Lie algebra g, admits a decomposition into a maximally com-

muting subalgebra h (the Cartan subalgebra) and a set of subalgebras which are diag-

onalised with respect to the Cartan subalgabra with some well defined eigenvalue α in

the root space Φ. This is given by

g = h⊕
⊕

α∈Φ

gα. (2.1.2)

Since for most of this thesis we will be discussing SL(2m) and its supersymmetric

extension we may keep sl(2m) as our running example. We may recall the structure

of the explicit Lie algebra. Taking ei,j to represent an explicit matrix with zeroes

everywhere but for a one at position i, j, then the explicit matrix form of the Cartan

subalgebra is given by

Hi = ei,i − ei+1,i+1 for i ∈ [1, 2m− 1]. (2.1.3)

Given the complete set of roots Φ, one can find the simple roots ∆ from which one can

decompose the simple roots into positive and negative roots ∆+ ∪∆−. We may define

such roots as

E+
αi

= ei,i+1,

E−αi = ei+1,i. (2.1.4)

So that the subalgebra of postive (negative) roots n+(n−) are the set of lower left (upper

right) triangular matrices. This is opposite to the familiar convention and is because

we are considering the group action from the right (see (2.1.1)) as opposed to the left.
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Since the eij matrices themselves obey a gl(2m) algebra:

[ei,j, ek,l] = δkjei,l − δilek,j, (2.1.5)

one finds that

[
Hi, E

±
αi

]
= ±(−2)E±αi ,

[
E−αi , E

+
αi

]
= Hi,

[
E+
αi
, E+

αi+1

]
= −E+

αi+αi+1
,

[
E+
αi+αi+1

, E+
αi+1+αi+2

]
= −E+

αi+2αi+1+αi+2
, (2.1.6)

and so on. Here we have taken E+
αi+αi+1

= ei,i+2, E
+
αi+2αi+1+αi+2

= ei,i+5, etc. For

the algebra of raising operators there is the analogous set of relations for the lower

operators.

The parabolic subalgebra is defined to be the subalgebra which contains the Borel

subalgebra. In the context of sl(2m), the Borel subalgebra is the subalgebra spanned

by the upper triangular matrices. Formally, this is given by

b = h⊕
⊕

α∈Φ+

gα. (2.1.7)

We can choose a specific parabolic subalgebra by selecting a set of simple roots Sp. In

defining Φ(l) = span(Sp) ∩ Φ, the so-called Levi subalgebra is given by

l = h⊕
⊕

α∈Φ(l)

gα. (2.1.8)

In the context of sl(2m) this fills out a specific block diagonal part of the algebra.

Schematically, if one first defines the set Sp, we immediately get l as some block diagonal

form with an overall tracelessness condition, namely for some set {k1, k2, . . . } defined

by Sp, we have

l = s




⊕

ki

∣∣∑
i ki=2m

⊕gl(ki)


 ∼=

⊕

ki

∣∣∑
i ki=2m

⊕sl(ki)⊕ C|∆/Sp|. (2.1.9)

The first statement follows from the form of the l as we will see in many examples to

come, however the second equivalence comes from breaking the gl(ki) blocks into their

traceless sl(ki) subalgebras. However, there remain elements of the overall matrices
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which are traceless yet not part of any sl(ki), which we associate to a charge C. There

are as many of these charges are there are simple roots which we do not take to make

up Sp, namely there are |∆/Sp| of them. 1

To produce the parabolic subalgebra we simply need to fill out the lower triangular

block so that the Borel subalgebra will be contained in it. Hence, we simply add this

subspace to produce the parabolic subalgebra p:

p = l⊕
⊕

α∈Φ+\Φ(l)

gα (2.1.10)

Finally, we can exponentiate this subalgebra to give the corresponding subgroup P and

therefore produce the manifold Fp as in (2.1.1).

We can label different parabolic subalgebras by the chosen set of simple roots Sp.

This information can be represented by Dynkin diagrams. Recall that for sl(2m), the

Dynkin diagram is given by 2m− 1 many nodes connected by edges:

n1t n2 . . .t . . .t . . . n2m−2t n2m−1t t
(2.1.11)

Then one can represent the parabolic subalgebra by putting a cross on those nodes

whose corresponding roots do not appear in Sp. This is a useful way to provide in-

formation, since we require all field representations to transform under the parabolic

subgroup we also learn about the index structure of those fields. This essentially follows

from the fact that the field representations need to transform under the block diago-

nal part of the algebra defined by Sp, whilst transforming trivially under the off-block

diagonal parts of the parabolic subalgebra. This is since the off-block diagonal parts

are the raising operators which act trivially on highest weight states.

As an example at the bosonic level, we may consider complexified compactified

Minkowski space in four dimensions. It is known that this space can be identified with

the space of 2-planes in four dimensions, which is otherwise known as the complex

Grassmannian Gr2(4) [14]. The appropriate group is SL(4), whose algebra sl(4) con-

tains three simple roots {α1, α2, α3} which correspond to the three nodes in the Dynkin

1for e.g. l = s (gl(2)⊕ gl(2)) ∼= sl(2)⊕ sl(2)⊕ C where a basis for C is diag(−1,−1, 1, 1) .
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diagram. To produce Gr2(4), we require Sp = {α1, α3}. This corresponds to putting a

cross in the second node in the Dynkin diagram:

n1 n2t n3

× t
(2.1.12)

In which the subalgabra takes the form:

p =


 •2×2 02×2

•2×2 •2×2


 , (2.1.13)

where the •2 and 02 are generically non-zero and zero two by two blocks. One can then

exponentiate this to produce the corresponding group. Since these are coset manifolds,

local coordinates are found by fixing the degrees of freedom in the subgroup, revealing

the coordinate matrix: 2

XAB =


 I2×2 ixαα̇

02×2 I2×2


 where A,B = 1, . . . , 4. (2.1.14)

Here

xαα̇ = (σµ)αα̇xµ =


 x0 + x3 x1 − ix2

x1 + ix2 x0 − x3


 (2.1.15)

and we can also define x̃α̇α = (σ̃µ)α̇αxµ or put another way x̃α̇α = εαβxββ̇ε
β̇α̇ , where σ

are the four two by two Pauli matrices whilst σ̃ is its conjugate. It is in fact possible

to make the Grassmannian structure more obvious by not fixing all of the elements

of the parabolic subgroup. This can be done by allowing the top left quadrant of the

parabolic subgroup to be left unfixed. Namely,

If


 A2×2 02×2

B2×2 C2×2


 ∈ P and


 D2×2 E2×2

F2×2 G2×2


 ∈ SL(4),

we have A2×2 (D2×2, E2×2) ∈ P\SL(4) (2.1.16)

We label this local coordinate by zAa , where there exists a local GL(2) right action

which acts on the a-index of zAa , whilst there is a global left action which acts on the

A-index. Fixing the GL(2) freedom reveals the coordinate (I2, ixαα̇).

2This is found from exponentiating
 02×2 xαα̇

02×2 02×2

.



2.1. Constructing superspaces from cosets 14

Now that we have recovered the usual space-time coordinate xαα̇ from this coset, we

should be able to induce the non-linear transformation of δxαα̇ from the linear action

of the groups that make up the coset. Note that in finding the representation (2.1.14),

we had to fix the parameters of the parabolic subgroup, which we call a ‘section’. If we

consider the action of SL(4) (which includes the parabolic subgroup), this will perform

a full transformation which will take us away from the current section. In order to

restore the form in (2.1.14) we need to find the appropriate section again. Using the

notation in (2.1.16), the statement is

XACGB
C = PA

DX
′DB for GA

B ∈ SL(4) and PA
B ∈ P , (2.1.17)

where by X ′ we mean the SL(4) transformed point, i.e. infinitesimally X ′ = X + δX.

We can go to the Lie algebra, by taking GA
B = δAB +gAB and PA

B = δAB +pAB for gAB ∈ sl(4)

and pAB ∈ p. By taking the infinitesimal limit of (2.1.17), we get

δXAB = XACgBC − pACXCB. (2.1.18)

In taking

gAB =


 −A

β
α iBαβ̇

iC α̇β Dα̇
β̇


 , (2.1.19)

we find

δxαα̇ = Bαα̇ + A β
α xβα̇ + xαβ̇D

β̇
α̇ + xαβ̇C

α̇βxβα̇, (2.1.20)

which is the well known non-linear action of the conformal algebra upon a space-time

point.

Considering representation theory concepts, we define an operator inserted at x = 0

to be O(0). We recall that a conformal primary is a highest weight state and is defined

to be the specific operator O(0) such that [K,O(0)] = 0. We may thus associate K

with the parameter Cα̇β. We can build the infinite dimensional conformal multiplet by

acting the momentum generator, namely [P,O(0)], thus we may associate P with the

parameter Bαα̇. This ties in with our definition of the positive(negative) subalgebra

n+(n−) in (2.1.4). We also have the dilation weight and the Lorentz generators (D,

M = {J1, J2}) which make up the Cartan subalgbra. These generators come from the
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su(2, 2) algebra and are explicitly given by [22]

∆̂ =
1

2


 −I2 0

0 I2


 , Ĵ1 =

1

2


 σ3 0

0 0


 , Ĵ2 =

1

2


 0 0

0 σ3


 . (2.1.21)

In previously used notation, the Cartan subalgebra of sl(4) is explicitly made from

H1 = e11 − e22, H2 = e22 − e33 and H3 = e33 − e44. (2.1.22)

Each node ni of the Dynkin diagram in (2.1.12) is associated with each element of the

Cartan subalgebra Hi. Given this explicit basis, we can rewrite the ni in (2.1.12) in

terms of more familiar conformal field theory data in (2.1.21). Doing this, we find

n1 = 2J1, n2 = −∆− J1 − J2, n3 = 2J2. (2.1.23)

Demanding that all irreducible representations transform under the subalgebra defined

by (2.1.12), implies that we are interested in irreducible representations of

l = sl(2)⊕ sl(2)⊕ C, (2.1.24)

which we can take to be labelled by the Dynkin nodes [n1, n2, n3]. The reason is that

the off-block-diagonal part of the parabolic subalgebra are raising operators and since

we define irreducible representations by highest weight states they are immediately

annihilated thus transform trivially.

We can also read off the tensor structure of the corresponding field representation.

A generic field representation is

OR(α)R′(α̇) (2.1.25)

where α and α̇ are indices corresponding to the fundamental representation of each of

the sl(2)s. R(α) takes the index in some representation.

As an example, a massless scalar, fermion and vector with index structure O, Oα
and Oαα̇ in four dimensions would have Dynkin labels [0,−1, 0], [1,−1, 0] and [1,−3, 1]

respectively.

2.1.2 Supersymmetric case

We now move onto the supersymmetric case, in particular focussing on sl (2m|2n). In

principle, the only thing that will change is that the commutator used to define the



2.1. Constructing superspaces from cosets 16

Lie algebra has now generalised, namely

{g1, g2] = −(−1)deg(g1)deg(g2) {g2, g1] ∀g1, g2 ∈ g, (2.1.26)

and in the current context of sl (2m|2n), we now have supertraceless3 matrices.

Having reviewed the machinery in the previous section, we work somewhat in re-

verse. Since the essential information is given by how one puts crosses in the super

Dynkin diagram we can start from this point of view. However, in contrast to the

bosonic case, there are now multiple distinct ways to choose simple roots. This amounts

to how one distributes the odd nodes in the Dynkin diagram (see [15] for some dis-

cussion regarding N = 4 SYM). The case of interest to us, namely sl (2m|2n) has the

form:

n1t t· · · nm t · · ·d nm+nt · · · tt nm+2nt n2m+2n−1d · · ·t t
(2.1.27)

Where the black nodes are the even roots and the white nodes are the odd roots.

Generically, one considers explicit matrices in sl (2m|2n) to have the structural form

of

 2m× 2m 2n× 2m

2m× 2n 2n× 2n


 , (2.1.28)

where the 2m × 2m and 2n × 2n blocks are Grassmann even, whilst the rest are

Grassmann odd. However, it turns out to be advantageous to make a change of basis,

such that the structure of the group is sl (m|2n|m), in which case the explicit matrix

structure takes the form:



m×m 2n×m m×m
m× 2n 2n× 2n m× 2n

m×m 2n×m m×m


 , (2.1.29)

where the m×m and 2n×2n blocks are all Grassmann even, whilst the others are odd.

In the current context, the advantage of this form is that the parabolic subalgebra of

the cases of interest to us takes a lower block triangular form, making it closer in form

to the bosonic case. This restructuring was first performed in [18].

3recall that the supertrace of a matrix M ∈ Matm|n is given by str(M) =
∑m
i=1Mii−

∑n
j=m+1Mjj .
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Following the bosonic case, we can seek out a form of the Cartan subalgebra and

its corresponding roots. We can take the Cartan subalgebra as

Hi = ei,i − ei+1,i+1 ∀i ∈ [1,m− 1] ,

Hm = −em,m − em+1,m+1,

Hi = ei,i − ei+1,i+1 ∀i ∈ [m+ 1,m+ 2n− 2] ,

Hm+2n = em+2n,m+2n + em+2n+1,m+2n+1,

Hi = ei,i − ei+1,i+1 ∀i ∈ [m+ 2n+ 2, 2m+ 2n] . (2.1.30)

For the positive simple roots, we can choose the one used in the bosonic section,

namely E+
αi

= ei,i+1. However, under the change of basis as described by (2.1.29), we

have two odd roots given by E+
αm = em,m+1 and E+

αm+2n
= em+2n,m+2n+1.

A small cautionary remark is that the number of odd nodes in the Dynkin diagram is

independent of the basis chosen. In the current case, the odd nodes directly correspond

to the intersection points in the new basis in (2.1.29). However, one can indeed find

similarly two odd nodes in the basis defined in (2.1.28). See [15] for two examples in

N = 4 and [16,17] for a more general discussion.

We can check some important commutation relations that distinguish this Lie su-

peralgebra from the bosonic case. For example, whilst in similarity to the bosonic case

we still have for even Lie brackets (2.1.6), we also have

{
E+
αm , E

−
αm

}
= −Hm and

{
E+
αm+2n

, E−αm+2n

}
= Hm+2n (2.1.31)

As an example we may consider an unconstrained four dimensional N -extended

superspace. To achieve this space we need to put crosses in the fermionic nodes of the

sl(4|N ) Dynkin diagram. Namely:

n1t n2 n3

×d . . .t n1+Ntn4 tnNt n2+Nt n3+N
×d t

(2.1.32)

Then the subalgebra in the structural form given by (2.1.29), has the form

p =




•2×2 0N×2 02×2

•2×N •N×N 02×N

•2×2 •N×2 •2×2


 , (2.1.33)
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where the zero entries 0N×2 and 02×N are both Grassmann odd whilst the entry 02×2 is

Grassmann even. As a result, the coset can be parametrised by the local coordinates

XAB =




I2×2 iθIα iXαα̇

02×N IN×N iθ̄α̇I

02×2 0N×2 I2×2


 ,where Xαα̇ = xαα̇ +

i

2
θIαθ̄α̇I , (2.1.34)

in which we recapture the familiar coordinate system for this space.

As can be read off from (2.1.32), irreducible representations must transform under

l = sl(2)⊕ sl(N )⊕ sl(2)⊕ C2. (2.1.35)

In comparing to the real form of the group, namely SU(2, 2|N ) whose internal group

is U(N ) we can write the Dynkin nodes in terms of physical superconformal data.

To do this we need to review some aspects of superalgebras, in which a complete

treatment can be found in [11]. The four dimensional N -superconformal algebra is

built from the conformal generators which have already been discussed together with

the supercharges Qα
I and Q̄α̇

I , and the special superconformal charges SαI and S̄α̇I . We

also have the generators of u(N ) ∼= su(N ) ⊕ u(1), denoted
(
RI
J , R

)
. The Cartan of

the conformal subalgebra is already given by (2.1.21), these matrices are placed in

su(2, 2|N ) by putting the 0N×N block in the middle of the matrices, namely [22]

∆̂ =
1

2




−I2×2 0N×2 02×2

02×2 0N×N 02×N

02×2 02×N I2×2


 , Ĵ1 =

1

2




σ3 0N×2 02×2

02×2 0N×N 02×4

02×2 02×N 02×2


 ,

Ĵ2 =
1

2




02×2 0N×2 02×2

02×2 0N×N 02×N

02×2 02×N σ3


 . (2.1.36)

The Cartan of su(N ) are identical to the bosonic case, namely if the su(N ) Dynkin

nodes are given by [a1, . . . , aN−1] , then we have that ai = ei+2,i+2 − ei+3,i+3. Together

with this, we also have the R-charge associated to the u(1) given by

R =
1

2




I2×2 0N×2 02×2

02×2
4
N IN×N 02×N

02×2 02×N I2×2


 . (2.1.37)
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In N = 4 the R-charge is taken to vanish. This is since all of the algebra relations

associated to the R-charge commute such that the generator associated to the R-charge

becomes the center, and thus acts on the state space in a trivial way. This promotes

the superconformal group to PSU(2, 2|4). Finally, we can relate these physical Cartan

matrices directly with the generators of (2.1.30). We get

n1 = 2J1, nN+3 = 2J2, ni+2 = ai,

n2 =
1

2
(∆−R) + J1 +

1

N
N−1∑

i=1

iai −
N−1∑

i=1

ai, nN+2 =
1

2
(∆ +R) + J2 −

1

N
N−1∑

i=1

iai.

(2.1.38)

We leave the further details of unitary bounds, long and short operators to chapter 5.

Similarly to (2.1.25), irreducible representations are given by

l = sl(2)⊕ sl(N )⊕ sl(2)⊕ C2 (2.1.39)

and so the tensor structure is given by

OR(α)R′(α̇)R′′(I). (2.1.40)

This is where α and α̇ are sl(2) indices in representations R and R′, but now we

have an sl(N ) index I in representation R′′. Note that here we also an extra C in

comparison to previous cases, where the first one is related to the conformal dimension

∆ (as in the bosonic case), and second is related to the R-charge. We may label

representations as [n1, n2, n3, . . . , nN+3].

As an example we may consider N = 4, in which O[IJ ][KL] is a scalar operator with

∆=2 and su(4) representation [0, 2, 0] which makes this a 1
2
-BPS. O(I[J)KL] has the

same properties but for the su(4) representation, which is instead [1, 0, 1], making this

a 1
4
-BPS. We also give the example of Oαβα̇β̇[IJ ] which is a spin-2 operator with ∆ = 6

and su(4) representation [0, 2, 0], making it a semi-short operator. The aforementioned
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examples have Dynkin labels 4

O[IJ ][KL] = [0, 0, 0, 2, 0, 0, 0] ,

O(I[J)KL] = [0, 0, 1, 0, 1, 0, 0] ,

Oαβα̇β̇[IJ ] = [2, 3, 0, 2, 0, 3, 2] . (2.1.41)

2.2 Twistor superspace

Having reviewed sufficient superspace technology, we can look at four dimensional

twistor superspace which we shall use extensively in chapters 3 and 4. In the previous

section we gave a short discussion on the corresponding representation theory after

having selected a parabolic subgroup. Since our interest in twistor superspace will be

purely in the kinematic parts of correlation functions and scattering amplitudes, we

shall not make any statements about the representation theory. Moreoever, the repre-

sentation theory requires further mathematical concepts which we have not discussed,

see [12,13].

The commonly used form of twistor superspace is a projective twistor superspace,

in which the parabolic subgroup of SL(4|4) is given by the data (in the basis defined

by (2.1.29)):

×
n1 n2 n3d n4t n5t n6t n7d t

(2.2.42)

p =




•1×1 01×1 04×1 02×1

•1×1 •1×1 •4×1 •2×1

•1×4 •1×4 •4×4 •2×4

•1×2 •1×2 •4×2 •2×2



. (2.2.43)

We can fix the coset to find local coordinates, which can be written in the form (by

4The index structure [••] means antisymmetrisation, whilst (••) means symmetrisation.
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allowing the top left element of P to remain unfixed):

ZA =




λα

χI

µα̇


 ∈ CP3|4. (2.2.44)

We denote zA =
(
λα
µα̇

)
to be the bosonic twistor and is comprised of two dimensional

vectors, in the forthcoming context of Minkowski space-time we can take the (α, α̇)

indices to be spinor indices. The A-index in (2.2.44) is a fundamental index of sl(4|4),

whilst the index I in the bosonic subspace is in the fundamental of sl(4). We also have

χI which is a four dimensional Grassmann odd coordinate and is in the fundamental

of sl(4).

Twistor superspace contains a deep connection with superconformal Minkowski

space. This is due to the fact that these two spaces and a third space called a ‘cor-

respondence space’ fit into a structure (which we will not study here) called a double

fibration [13,12,21].

We can state some of the consequences of these structures. We focus on the bosonic

subspace. A first consequence is the incidence relation which is given by

µα̇ = ixαα̇λ
α,

χI = θIαλ
α, (2.2.45)

where (xαα̇, θ
I
α) define a chiral superspace. Now, we can define two different space-time

points as corresponding to the same twistor point, namely take µα̇ = i(x1)αα̇λ
α and

µα̇ = i(x2)αα̇λ
α. As a consequence we find that (x12)αα̇λ

α = 0. This implies that the

matrix x12 is of rank 1 and has determinant zero. Following (2.1.15), we have

det(x) =
1

2
xαα̇x̃

α̇
α = x2. (2.2.46)

It follows that a twistor point corresponds to two lightlike separated space-time

points. Put another way, we may solve (x12)αα̇λ
α = 0 by setting (x12)αα̇ = λαλ̃α̇, where

λ̃α̇ is arbitrary. Similarly for the Grassmann odd part, we end up with (θ12)Iαλ
α =

0 → (θ12)Iα = ηIλα for an arbitrary Grassmann odd parameter ηI . The constraints

are equivalent to x2
12 = 0 and (θ)αI12 (x12)αα̇ = 0, which are manifestly space-time

statements.
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On the other hand, we may have two twistor points related by the same space-time

point. For example, given µ1α̇ = ixαα̇λ
α
1 and µ2α̇ = ixαα̇λ

α
2 , together with χI1 = θIαλ

α
1

and χI2 = θIαλ
α
2 , we get

xαα̇ = −i
(
λ1αµ2α̇ − λ2αµ1α̇

εαβλα1λ
β
2

)
,

θIα =
λ1αχ

I
2 − λ2αχ

I
1

εαβλα1λ
β
2

. (2.2.47)

We can manifest some of these geometric notions with some useful notation which we

will use later. Focussing on the bosonic case, in order to reconstruct the notion of

a point in Minkowski space-time we need two twistor points, hence we may allow a

second ‘local’ index, namely zA → zAa so that subjected to the incidence relation we

have

zAa =


 λαa

ixβα̇λ
β
a


 =


 δαβ

ixβα̇


λβa . (2.2.48)

Then we get

εabzAa z
B
b = XAB,

where XAB =


 εαβ −ixβ̇α

ixα̇β −x2εα̇β̇


 . (2.2.49)

Note that in doing this we have taken λβa = δβa . This follows from the covariance of

a GL(2) action on the (a, b) indices in the left hand side of the first equation of (2.2.49).

Put another way, we may think non-projectively in which we have two lines which we

anti-symmetrise to produce a 2-plane. The local GL(2) action allows us to rotate two

lines defining the 2-plane, however the 2-plane should not depend on the basis chosen.

Indeed, we have simply recovered the Grassmannian of 2-planes in four dimensions

Gr2(4). In this way, we can think of XAB ∈ CP5 in which we can identify these with

the so-called Plücker coordinates [65].

This all implies that we can take zAa =
(
δαa
ixaα̇

)
, however we can define a conjugate

object, namely z̄Aȧ =
(
−ixαȧ, δα̇ȧ

)
. This gives

z̄j,ȧAz
A
i,a =

(
−ixj,αȧ, δα̇ȧ

)

 δαa

ixi,aα̇


 = ixij,aȧ. (2.2.50)
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From (2.2.49), we have

εABCDX
ABXCD = 0. (2.2.51)

Now, the incidence can be taken to come from (where X̄AB = 1
2
εABCDX

CD = εȧḃz̄
ȧ
Az̄

ḃ
B)

X̄ABz
B = 0. (2.2.52)

In this language, X̄AB is a point in space-time. Since X̄AB is defined by a line

parametrised by zA1 and zA2 and X̄AB is built out of zA1 and zA2 , it follows from (2.2.52):

X̄ABz
B(σ) = 0 where zB(σ) = zBa σ

a = zB1 σ
1 + zB2 σ

2, (2.2.53)

where σa = (σ1, σ2) parametrises the corresponding line in twistor space. We will use

this notion extensively in chapter 3.

Finally, space-time differences can be built from the XABs. Taking into account

the relation in (2.2.49), we find

x2
ij =

1

2
X̄iCDX

CD
j =

1

4
εabεcdεABCDz

A
i,az

B
i,bz

C
j,cZz

D
j,d = 〈zi,1zi,2zj,1zj,2〉 . (2.2.54)

We see that given two points Xi and Xj whose corresponding lines are spanned by

zAi,a and zAj,a are non-lightlike separated if all four points are distinguishable. However,

if a point is a linear combination of the other points (for example zj,1 = zi,2) then by

virtue of (2.2.54) we have x2
ij = 0. The statement is then that intersecting twistor

lines correspond to lightlike separated points, whilst non-intersecting lines correspond

to non-lightlike separated space-time points.

We can summarise our statements made diagrammatically from figure 2.1. An

important point regarding figure 2.1 is that diagrams ii) and iii) are relevant to off-

shell and on-shell physics respectively. In particular, we will see that Feynman diagrams

which include diagram ii) as sub-diagrams are of relevance to correlation functions or

partially off-shell objects. Conversely, Feynman diagrams for scattering amplitudes or

partially on-shell observables will include diagram iii) as sub-diagrams.

Let us emphasise an important point the will feature entirely in this thesis. When

considering amplitudes we will be dealing with momentum, and as we shall see in

section 3.1.1 we can and will employ the relation

xi−1,αα̇ − xi,αα̇ = pi−1,αα̇, (2.2.55)
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zi,2

⇐⇒

zi,1

Xi

i)

zi,1 zj,1

zi,2 zj,2

⇐⇒

Xi

Xj

ii)

1
4εABCDX

AB
i XCD

j 6= 0 → ‘off-shell’

zi,1 zj,1

zi,2 zj,2

⇐⇒

Xi

Xj

iii)

1
4εABCDX

AB
i XCD

j = 0 → ‘on-shell’

Figure 2.1: i) The basic statement that lines in twistor space correspond to points in

conformal Minkowski space. ii) Non-intersecting lines leads to non-lightlike separated

lines. iii) intersecting lines leads to lightlike separated lines.

where p is a momentum label. Importantly, the x variables here are to be regarded as

different to the usual space-time and are to be thought of as a dual space-time. The

same correspondence with twistor superspace follows and as a result the corresponding

superconformal transformations are referred to as dual superconformal transforma-

tions [48]. These are the natural coordinates when dealing with Wilson loops [47].

Another coordinate system that will feature in this thesis that are related to twistors

are the projective hypercone coordinates. In general the projective hypercone is useful

since whilst twistor space has been constructed for a limited number of dimensions

(see [23] for a six-dimensional application), the projective hypercone is valid for any

dimension. For us, the projective hypercone coordinates will be useful in practical

calculations. In the current context, d-dimensional Minkowski space is embedded in

the projective hypercone in d + 2-dimensions. As a result the natural coordinate is a

so(2, d) vectorial object XM . In the four dimensional case we have the real isomorphism

so(2, 4;R) ∼= su(2, 2;R) from which we can recover the XAB coordinates and hence the

relation to twistor space.

The projective hypercone is defined in Rd,2 and is given by (also known as the Klein
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quadric)

ηMNX
MXN = 0 for M,N = −1, . . . , d+ 1,

ηMN = diag(+,+,−, . . . ,−︸ ︷︷ ︸
d

),

XM ∈ RPd−1. (2.2.56)

The first condition above may be recast into light-cone coordinates, namely defining

X± = X−1 ±Xd, yields the embedding

X+X− +XµXνηµν = 0, (2.2.57)

where ηµν is the d-dimensional Minkowski metric. Which allows us to declare the

coordinate system as XM = (X+, X−, Xµ) ∈ RPd−1, where as expected XI still enjoys

scale invariance. One can fix the scale invariance by setting X+ = 1:

X+ = 1 =⇒ X−1 +Xd+1 = 1, (2.2.58)

which by virtue of the condition in (2.2.56) implies that X−1 = −x2. We could either

take the light-cone coordinates XM = (1,−x2, xµ), or we could solve the system of

equations for X−1 and Xd+1:

X−1 +Xd+1 = 1,

X−1 −Xd+1 = −x2. (2.2.59)

In the original coordinates, solving (2.2.59) results in:

XM =
(
X−1, Xµ, Xd+1

)
=

(
1− x2

2
, xµ,

1 + x2

2

)
(2.2.60)

In either case, one readily finds

ηMNX
M
i X

N
j = Xi ·Xj = −1

2
x2
ij. (2.2.61)

Much like in (2.1.17), one can recover the non-linear action of the conformal algebra

by first performing a SO(2, 4) transformation. This also includes scaling transforma-

tion, hence we require a further scale transformation (akin to P in (2.1.17)) to lie in

the solution to (2.2.59).
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Next we consider the relation that the projective hypercone coordinates have to

Twistor space coordinates. It is instructive to first consider a similar situation in

four dimensions, in which the pertinent isomorphism is so(4;C) ∼= sl(2;C) ⊕ sl(2;C)

5. The useful implication is that given a vectorial representation of the complexified

Lorentz group, we can recover the vectorial representation of sl(2;C)⊕ sl(2;C), which

corresponds to the fundamental of each algebra. In practice, this was stated in (2.1.15)

as

xµ → xαα̇ = (σµ)αα̇ xµ, (2.2.62)

where σ are the four two by two Pauli matrices. In a similar sense, we have the

isomorphism so(2, 4;R) ∼= su(2, 2;R). The object of interest is then the six four by

four matrices (ΓM)AB (whereM are six-dimensional whilst (A,B) are four-dimensional)

which live in the Clifford algebra of su(2, 2;R) defined by the metric in so(2, 4;R). This

is given by

{
(ΓM)AB ,

(
Γ̄N
)
BC

}
= 2ηMNδ

A
C , (2.2.63)

where

(
Γ̄M
)
AB

=
1

2
εABCD (ΓM)CD . (2.2.64)

Then the relation between the projective hypercone and twistor coordinates is given

by a similar relation to (2.2.62), namely

XM → XAB = (ΓM)ABXM

XM → X̄AB =
(
Γ̄M
)
AB

XM . (2.2.65)

We see that the definition of
(
Γ̄M
)
AB

is consistent with X̄AB = 1
2
εABCDX

CD. With this

knowledge we can work out the relation between the various inner products on both

sides. Let us project (2.2.63) with XM
i X

N
j δ

C
A (where i and j is some position label, for

instance particle number) in which we immediately find

{
(Xi)

AB ,
(
X̄j

)
BA

}
= −2εABCDX

AB
i XCD

j = 8Xi ·Xj,

=⇒ −εABCDXAB
i XCD

j = 4Xi ·Xj (2.2.66)

5The three real forms so(2, 2;R), so(1, 3;R) and so(4;R) can be recovered from this, (see [12]).
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which is consistent with (2.2.54) and (2.2.61). Note that these inner products were

both found independently of this relation.

From what we have learnt so far, it also follows that

{
(Xi)

CB ,
(
X̄j

)
BA

}
= −x2

ijδ
C
A . (2.2.67)

One of the main reasons for introducing projective hypercone is more to do with prac-

tical ease in various explicit computations (see section 3.4). In particular, some ob-

servables can be naturally expressed in basis where the following object appears:

εi1i2i3i4i5i6 := εM1M2M3M4M5M6X
M1
i1
XM2
i2
XM3
i3
XM4
i4
XM5
i5
XM6
i6
. (2.2.68)

Whilst this object can be constructed in twistor space, this is a very compact way of

writing this object.

Finally, let us conclude this subsection by making some statements about the full

superspace. In the full twistor superspace the coordinate is given in (2.2.44), in more

common convention written as

ZA =




λα

µα̇

χI


 ∈ CP3|4. (2.2.69)

Now, following [24], similar to our discussion we take two such supertwistors by intro-

ducing a new index, namely ZA → ZAa . We get

ZAa =


 zAa

χIa


 ∼




I2

ixαα̇

θIα


 , (2.2.70)

where zAa is the purely bosonic pair of twistors. To get the right-most hand side, we

may use the incidence relation to write χIa = θIαλ
α
a . Then much like in (2.2.49), we can

use the GL(2) covariance to take λαa = δαa .

Recalling the paragraph after (2.2.46), in which it was found that lightlike sepa-

rated lines are given by the conditions (x12)αα̇λ
α = 0 and (θ12)Iαλ

α = 0. This implies

that x2
i,i+1 = 0 and (θi,i+1)αI (xi,i+1)αα̇ = 0 which is a condition found by intersecting

supertwistor lines. We finally note that this is a manifestly chiral superspace.
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2.3 Harmonic and analytic superspace

In this subsection, we now review harmonic and analytic superspace techniques which

we will make use of in chapters 3 and 5. As opposed to twistor superspace, the space-

time structure remains fixed here whilst the structure of Grassmann odd variable is

subject to change. The main point of constructing such superspaces is so that we may

describe certain supermultiplets in an unconstrained way.

The philosophy is as follows; a full generic expansion in all possible Grassmann odd

structures in a superfield will correspondingly contain all possible fields that can occur.

However, we may indeed have a supermultiplet not containing all of the possible fields.

Instead, we would like to consider a subspace in which we may write a completely

unconstrained superfield which produces the correct supermultiplet.

Harmonic and analytic N -extended superspaces (with algebra sl(2m|2n)) do this

by simply reducing the number of Grassmann odd degrees of freedom. There are

two ways to do this. Firstly, in harmonic superspace one constructs the space Fp′ =

Fp={αm,αm+2n} ×M where Fp={αm,αm+2n} is the generalisation of full Minkowski super-

space defined by (2.1.32). M is a coset space of the internal group (in the current

context it is M = H\SU(2n) for some subgroup H), as well shall see, this can also be

constructed from an appropriate choice of simple roots p′. Analytic superspaces cannot

be written in any such form and are written directly as a coset manifold of sl(2m|2n)

as in previous examples. Here, we will see that it is essentially a Grassmannian of a

certain type which will be of use in chapter 5.

Finally, it is worth noting that in practice for certain choices of M, both of these

superspaces can be made to be related, namely one can achieve analytic superspace by

fixing a specific local coordinate system on M = H\SU(2n).

2.3.1 From harmonic superspace...

We will be making extensive use of harmonic superspace in 3.

In general, for the supergroup SL(2m|N ), a 2m dimensional (N , p, q)-harmonic

superspace is given by the data:

n1 . . .t nm nm+1

×d . . .t . . .n1+N
×

. . .np
×

nN−qt nm+Nt . . . n2m−1+N
×d t

(2.3.71)



2.3. Harmonic and analytic superspace 29

Where the crosses are on the odd nodes nm and nm+N but also on the even nodes

corresponding to the internal group , namely np and nN−q. Then the subalgebra in the

structural form given by (2.1.29), has the form

p =




•m×m 0N×m 0m×m

•m×N
•p×p 0N−p−q×p 0q×p

•p×N−p−q •N−p−q×N−p−q 0q×N−p−q

•p×q •N−p−q×q •q×q

0m×N

•m×m •N×m •m×m




. (2.3.72)

As can be read off, the irreducible representations must then be given by those of

l = sl(m)⊕ sl(p)⊕ sl(N − p− q)⊕ sl(q)⊕ sl(m)⊕ C4. (2.3.73)

From here, we can see that the space takes the form of Fp′ = Fp={αm,αm+N } ×M with

the subgroup in the real form H ⊂ SU(N ) generated by the algebra of matrices given

by the central block of (2.3.72). The particular choice of p and q that we will use in this

thesis is by taking N = 2n, then p = q = n. In chapter 3 we will specify to m = n = 2

but we will be general in chapter 5 in our application to superconformal partial waves

where we will be able to derive very general results.

Let us also remark on the tensor structure of operators in this space, given the

(N , p, q)-harmonic superspace, the fundamental N -dimensional vector is projected

into p-dimensional ,(N − p− q)-dimensional and q-dimensional fundamental indices,

labelled I → (a, a′, a′′). The result is that the operator is in general described by five

representations:

OR(α)R′(α̇)R′′(a)R′′′(a′)R′′′′(a′′) (2.3.74)

In taking N = 2n and p = q = n, we essentially get an internal structure iden-

tical to (2.1.12), namely it has the structure of Minkowski space. However, whilst in

conformal Minkowski space we considered infinite dimensional representations, here we

consider finite dimensional ones. One finds irreducible representation of the internal

coset must transform under su(n)⊕ su(n)′ ⊕ u(1), hence a coordinate system uIJ ∈M
is assigned as

uIJ =
(
u+a
J , u−a

′

J

)
. (2.3.75)
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Here, the lower J-index is the usual anti-fundamental index of su(2n), whilst the upper

index has been split in accordance with the subalgebra, and the ±-charges are associ-

ated to u(1). Along with the uIJ variable we may define a conjugate ūIJ =
(
ūI+a, ū

I
−a′
)

defined such that

uIJ ū
J
K = u+a

K ūI+a + u−a
′

K ūI−a′ = δIK . (2.3.76)

and since uIJ ∈ H\SU(2m), by unitarity we have ū = u†, so that the condition above

reads uu† = I. Consequently, we get that

ūI+au
+b
I = δba, ūI−a′u

−b′
I = δb

′

a′ ,

ūI−a′u
+b
I =ūI+au

−b′
I = 0. (2.3.77)

Now, one can use these (2n×n) matrices to project the SU(4) indices in the Grassmann

odd variables of the full Minkowski superspace into the two U(2) indices. Namely they

act as,

θIαu
J
I = θIα

(
u+a
I , u−a

′

I

)
=
(
θ+a
α , θ−a

′

α

)

θ̄α̇I ū
I
J = θ̄α̇I

(
ūI+a, ū

I
−a′
)

=
(
θ̄α̇+a, θ̄

α̇
−a′
)
. (2.3.78)

This in turn implies that we can express θIα and θ̄α̇J in terms of the projected com-

ponents, namely:

θIα = θJαu
K
J ū

I
K = θ+a

α ūI+a + θ−a
′

α ūI−a′ ,

θ̄α̇I = θ̄α̇J ū
J
Ku

K
I = θ̄α̇+au

+a
I + θ̄α̇−a′u

−a′
I (2.3.79)

Now, in general, given that this space is F = F{αm,αm+2n}×M the complete coordi-

nate system is given by the full Minkowski superspace coordinates and uIJ . However, we

can break apart the various θ and θ̄ variables, so that the complete coordinate system

is xαα̇,
(
θ+a
α , θ−a

′
α

)
,
(
θ̄α̇+a, θ̄

α̇
−a′
)

and uAB. We would like to have superfields which match

certain short supermultiplets, which can only happen if these fields are a function of

part of the θ variables, for example, functions of θ+a
α but not of θ−a

′
α . This is reminiscent

of the problem of producing a chiral superfield in full Minkowksi superspace, in which

the solution there was a differential constraint. The solution in the current context

works in a similar way.
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Constraints are built out of acting covariant derivatives on superfields, such covari-

ants derivatives satisfy

{
DαI , D̄

J
α̇

}
= iδJI ∂αα̇. (2.3.80)

We may then consider projecting these covariant derivatives along any on the har-

monics, for example, we may project (2.3.80) with ūI+au
−b′
J or ūI−a′u

+b
J , in which we

get

ūI+au
−b′
J

{
DαI , D̄

J
α̇

}
=
{
Dα+a, D̄

−b′
α̇

}
= 0

ūI−a′u
+b
J

{
DαI , D̄

J
α̇

}
=
{
Dα−a′ , D̄

+b
α̇

}
= 0 (2.3.81)

So now, if we have a superfield such that it depends on the coordinates

Φ
(
x, θIα, θ̄

α̇
I

)
= Φ

(
x, θ+a

α , θ−a
′

α , θ̄α̇+a, θ̄
α̇
−a′

)
, (2.3.82)

then by using (2.3.80) we have that if

Dα−a′Φ
(
x, θ+a

α , θ−a
′

α , θ̄α̇+a, θ̄
α̇
−a′

)
= 0 =⇒ D̄+b

α̇ Φ
(
x, θ+a

α , θ−a
′

α , θ̄α̇+a, θ̄
α̇
−a′

)
= 0

=⇒ Φ
(
x, θ+a

α , θ̄α̇−a′
)
. (2.3.83)

Under the constraint of the first equation (which is to be thought of as analogous to

half the chirality condition), it follows that we have dependence on only half of the

Grassmann odd variables (like the chirality condition). Fields that satisfy the first

constraint in (2.3.83) are referred to as G-analytic 6 [26,19]. Depending on the su(4)

representation, the resulting field is one of few potential shortened representation.

When doing explicit computations, we should regard the u variables as parametris-

ing the internal manifold. For example, in the N = 2 for p = q = 1 one has u ∈ S2

hence the u variables may be expressed directly in terms of spherical harmonics 7 [26].

As a result of this, these variables claim a local point in some correlation function

calculation. In analogy to (2.2.49), we can construct the SU(2) invariant

εabu
+a
I u+b

J = YIJ , (2.3.84)

6There also exists a notion of H-analytic (referring to the subgroup of the internal coset), which is

the same condition, but this time with respect to the internal u variables (see [26,19]).
7this is the reason for the name of this superspace.
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then due to this local invariance we can take 8

uIJ =


 δab yab′

0 δa
′

b′


 such that u+a

J = (δab , y
a
b′) , (2.3.85)

where we also have ỹa
′a = εabybb′ε

b′a′ . We find

y2
12 = det (y1 − y2) =

1

4
εIJKLY1,IJY2,KL. (2.3.86)

Indeed, since su(4) ∼= so(6), which allows us to immediately define a Euclidean so(6)

vector, Y M , such that

Y M
i YjM =

1

2
y2
ij. (2.3.87)

whereby YIJ satisfies the same Clifford algebras as in (2.2.63), but this time on a

Euclidean metric. These internal differences of points will appear in the correlation

functions that we will study.

2.3.2 ...to analytic superspace

We will be making extensive use of analytic superspace in chapter 5.

Analytic superspace is similar in structure to the harmonic superspace, but instead

the number of Grassmann odd variables are decreased. In particular, a 2m dimensional

(N , p, q)-analytic superspace is given by the data

n1 . . .t nm nm+1d . . .t . . .n1+N
×

. . .np
×

nN−qt nm+Nt . . . n2m−1+Nd t
(2.3.88)

Where as in the harmonic case, there are crosses on the nodes corresponding to the

internal group, namely np and nN−q, but this time no crosses on the odd nodes. Then

8note that we can take ūIJ =

(
δ a
b −y a

b′
0 δ a′

b′

)
such that ūI−a′ =

(
−y a

b′
δ a′
b′

)
, from which it follows

that u+ai,I ū
I
j,−a′ = (yji)

a
a′
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the subalgebra in the structural form given by (2.1.29), has the form

p =




•m×m •p×m 0N−p−q×m 0q×m 0m×m

•m×p •p×p 0N−p−q×p 0q×p 0m×p

•m×N−p−q •p×N−p−q •N−p−q×N−p−q 0q×N−p−q 0m×N−q−p

•m×q •p×q •N−p−q×q •q×q •m×q
•m×m •p×m •N−p−q×m •q×m •m×m




. (2.3.89)

As can be read off, irreducible representations must be those of

l = sl (m|p)⊕ sl (N − p− q)⊕ sl (q|m)⊕ C2, (2.3.90)

whereby we see the appearance of superalgebras as opposed to a purely bosonic algebras

as in previous cases. It follows that the tensor structure is given by

OR(A)R′(B′)R′′(a), (2.3.91)

where R,R′ and R′′ are representations of sl (m|p), sl (q|m) and sl (N − p− q). The

A and B′ indices here are really superindices and some theory has been developed and

applied in [27]. We will explain some details in chapter 5, where it will be more relevant

in view of protected and unprotected operators.

As in harmonic superspace, we will take N = 2n and p = q = n, in which the

subalgebra in (2.3.89) takes the form

p =




•m×m •n×m 0n×m 0m×m

•m×n •n×n 0n×n 0m×n

•m×n •n×n •n×n •m×n
•m×m •n×m •n×m •m×m



. (2.3.92)

Importantly, we see that this is identical in general structure to the conformal Minkowski

case studied in (2.1.13), in which some of the information can be translated across by

simply taking the 2 by 2 matrices there and enlarging them to (m|n) by (m|n) matrices.

We find that coordinates system can be given by 9

XAB =


 Im|n×m|n XAA′

0n|m×m|n In|m×n|m


 , (2.3.93)

9Note that we have take the factor of i away with respect to the conformal Minkowski case, this is

to fit conventions used previously, e.g. in [28]
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where the matrix XAA′ is an n|m×m|n. It then follows that if an elements of sl(2m|2n)

is given by

gAB =


 −A

A
B BAB′

−CA′B D B′

A′


 , (2.3.94)

We find in complete analogy to the conformal Minkowski space

δXAB′ = BAB′ + AABX
BB′ +XAC′D B′

C′ +XAC′CC′DX
DB′ . (2.3.95)

A particular matrix representation that we can choose is (where we have reversed the

Grassmann ordering)

XAB′ =


 xαα̇ ρaα

ρ̄α̇a′ y a
a′


 . (2.3.96)

This is in analogy with conformal Minkowski space where we had a Grassmannian

structure, namely for group SL(2m) and parabolic p =
(
•m×m 0m×m
•m×m •m×m

)
, the result

is the space of m-planes in 2m dimensions, Grm(2m) 10. In this case, the situation

is generalised to the space of m|n-planes in 2m|2n-dimension, namely the analytic

superspace is equivalently described by the coordinate UAA , whereby the A are m|n
indices and the A is the 2m|2n index, then under the left action of GL(m|n) on the A

index we get:

gBAUAB ∼ UAA =


 Im×m xαα̇ 0n×m ρaα

0n×n ρ̄α̇a′ In×n y a
a′


 =

(
Im|n×m|n XAA′

)
(2.3.97)

Finally, the variables of this analytic superspace can be identified with that of

harmonic superspace if we identify

θIαu
+a
I = ρaα,

θ̄α̇I ū
I
−a′ = ρα̇a′ . (2.3.98)

We see that simply by looking at the index structure that there are no further harmonic

projection onto the full Minkowski superspace that we can identify with analytic coor-

dinates. The main point here is that by definition the analytic superspace has already

10Note, that we had previously taken m = 2, but the space generalises in the obvious way.



2.3. Harmonic and analytic superspace 35

got a truncated Grassmann odd sector. As we will see in chapter 3, this identification

allows for the chiral half of the stress tensor supermultiplet to be described by either

of these superspaces.



Chapter 3

A Twistor approach to correlation

functions in N = 4 SYM

This chapter is based on the paper ‘Correlation functions of the chiral stress-tensor

multiplet in N = 4 SYM ’ by D.Chicherin, R.D, B. Eden, P. Heslop, G.P. Korchemsky,

L. Mason and E. Sokatchev [29].

It has been known for some time that observables in planar N = 4 SYM possess

highly symmetric structures. This is most notable in the study of scattering amplitudes.

The new found structures were first established in the study of scattering amplitudes by

employing manifestly on-shell variables for all external data. This simplicity was first

observed by Parke and Taylor [30], and the connection to twistor theory was developed

by Witten in [61]. This simplicity was then used to develop rules and algorithms to

compute higher point amplitudes from lower point amplitudes through new on-shell

rules and recursion relations, which are known as CSW and BCFW rules [62,63].

In the meantime, a formal development from the twistor space community, in which

a string of papers illuminated a top-down view of these simplified results ( [64] is a

review). The twistor formalism established an action S [A] (where A is a twistor

superfield) together with Feynman rules. Whilst these Feynman rules were initially

found in view of studying scattering amplitudes, it is indeed possible to use them to

compute correlation functions.

Some applications of twistor methods to correlation functions where studied in [33,34]

in view of the supercorrelator/superamplitude duality [36,37]. Particular, the construc-

36
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tion of certain operators on twistor space was given. More recently, twistor methods

have been applied to two-point functions in view of known integrable structures of

certain two-point functions [35].

In this chapter, we will review this application of the Feynman rules to correla-

tion functions of the stress-tensor multiplet studied in [29]. The main result is a new

method for computing the correlation function of the chiral part of the stress-tensor

supermultiplet derived from the twistor action. We gain correlation functions at Born

level as a sum over these Feynman diagrams which involve propagators but no integra-

tion vertices. This in turn allows us to build new off-shell gauge dependent building

blocks which in view of the supercorrelator/superamplitude duality represent an off-

shell generalisation to on-shell superconformal invariants 1 used as a basis in tree-level

scattering amplitudes (see [32]).

We will be focussing on the planar theory, in which we will begin by giving a short

progress review in the study of the correlation functions of the chiral stress-tensor

supermultiplet, which will demonstrate the motivation for this study. We then study

the main result which is the derivation of the aforementioned off-shell building block.

Since the stress-tensor supermultiplet is defined in harmonic superspace. The novel

aspect is a projection of the appropriate twistor operator along a harmonic basis. This

essentially describes a hybrid superspace.

Upon gaining our main result we can test some of its necessary consistency condi-

tions, namely that it correctly reproduces the scattering amplitude in lightlike limit.

Two other consistency checks which can be found in [29] are that a certain concatena-

tion of yet-to-be defined graphical rules produce gauge independent results and finally

that the short-distance limit correctly reproduces the required contribution from the

operator product expansion.

Finally, we end the chapter with some explicit computations which exemplify not

only the results (some of which were newly acquired at the time of writing [29]), but

the efficiency in gaining them.

1since these are gauge dependent we must transform the gauge parameter accordingly to gain

superconformal invariance.



3.1. Review 38

3.1 Review

The stress-tensor supermultiplet T plays a privileged role in planar N = 4 SYM since

it comprises of all local conserved currents as well as the Lagrangian of the theory. It

is an example of a 1
2
-BPS operator (see chapter 5 for details of the general properties

of protected operators). This means that it is protected by supersymmetry, namely

half the number of Qα
I and Q̄α̇

I annihilate the operator. A further consequence is that

contrary to the chiral superfield, the stress-tensor supermultiplet expands in half of the

θ and θ̄ variables. In terms of the representation theory built in chapter 2 this operator

is a spin-0, ∆ = 2 (twist-2) and has su(4) representation [0, 2, 0]. The Dynkin nodes

corresponding to the superalgebra are given by

T : [0, 0, 0, 2, 0, 0, 0] . (3.1.1)

The implication of the stress-tensor supermultiplet being protected is that the two-

and three-point functions are protected from quantum corrections.

In defining a superfield we follow section 2.3.1 in projecting accordingly, we take

θ+a
α = θIαu

+a
I , θ̄α̇−a′ = θ̄α̇I ū

I
−a′ , (3.1.2)

and defining the stress-tensor supermultiplet to be a function of θ+ and θ̄− only

T = T
(
x, θ+, θ̄−, u

)
. (3.1.3)

In what follows we will set θ̄− = 0, hence the superfield is really only a function of θ+

and is thus chiral. The reason for this is that we would like to demonstrate and use the

duality with scattering amplitudes which are chiral 2 in the superspace sense, namely

it’s a function of χI . T (x, θ+, 0, u) is given by the chiral harmonic projection upon the

constraint defining the full stress-tensor. In particular, the chiral half of the fermionic

part of the super-curvature is given by

W IJ(x, θ) = φIJ(x) + 2i
√

2θα[IψJ ]
α (x) + i

√
2θ[I

α θ
J ]
β f

αβ(x) + . . . , (3.1.4)

2Whilst it is true that this will allow us to exploit the duality it is worth remarking that there is

no ‘correlator’ reason to do this simplification other than focussing on the chiral half of the 1
2 -BPS

operator, which is still a valid study.
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where the ‘. . . ’ imply coupling constant dependent ‘g’ contributions which are propor-

tional to the non-abelian contributions.

This superfield is the chiral half of a twist-1 operator in the su(4) representation

[0, 1, 0]. W IJ in (3.1.4) is a solution to the following constraint equation in Minkowski

superspace

Dα
KW

IJ = −2

3
δ

[I
KD

α
LW

J ]L, (3.1.5)

where Dα
I = ∂

∂θIα
, and would otherwise be the usual Dα

I covariant derivative which in-

cludes θ̄. We may project (3.1.5) along the harmonics ūK−a′u
+a
I u+b

J , and since ūI−a′u
+a
I =

0, we get

ūK−a′D
α
KW

IJu+a
I u+b

J = Dα
−a′W

+a+b = 0, (3.1.6)

where W+a+b = W IJu+a
I u+b

J and we can make a scalar by projecting (3.1.6) with εab.

The result is then the constraint

Dα
−a′W

++ = 0. (3.1.7)

This is a G-analytic constraint as was discussed in (2.3.83). It implies that W++ is not

an explicit function of θ−a
′

α , hence we write

W++ = W++
(
x, θ+, u

)
, (3.1.8)

and then in performing an unconstrained expansion in θ+ we recapture the chiral half

of the supermultiplet.

Then the chiral half of the stress-tensor supermupltiplet is given by

T
(
x, θ+, 0, u

)
= tr

(
W++

(
x, θ+, u

)
W++

(
x, θ+, u

))
. (3.1.9)

Now, we can perform an expansion in terms of component operators

T (x, θ+, 0, u) = O++++(x) + θ+a
α O+++,α

a (x) + (θ+)2
αβO++,αβ(x)

+ (θ+)2 abO++
ab (x) + (θ+)3 a

α O+,α
a (x) + (θ+)4L(x) , (3.1.10)

Where here we use the notation (θ+)2
αβ = θ+a

α θ+b
β εab, (θ+)2 ab = θ+a

α θ+b
β εαβ, (θ+)3 a

α =

θ+b
α θ+c

β θ+a
γ εbcε

βγ and (θ+)4 = θ+a
α θ+b

β θ+c
γ θ+d

δ εbcεadε
αβεγδ. Each component is given by [36]
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(we have put the coupling g back in):

O++++ = tr(φ++φ++),

O+++,α
a = 2

√
2i tr

(
ψ+α
a φ++

)
,

O++,αβ = tr
(
ψ+c(αψ+β)

c − i
√

2Fαβφ++
)
,

O++
ab = − tr

(
ψ+γ

(a ψ
+
b)γ − g

√
2[φ+J

(a , φ̄+b,J)]φ
++
)
,

O+,α
a = −4

3
tr
(
Fα
β ψ

+β
a + ig[φ+J

a , φKL]ψLα
)
,

L =
1

3
tr

{
−1

2
FαβF

αβ +
√

2gψαI [φIJ , ψ
J
α]− 1

8
g2[φIJ , φKL][φIJ , φKL]

}
, (3.1.11)

where the various SU(4) projections are given by 3:

φ+ J
a = εabu

+b
I φ

IJ , φ̄+b,I = ūJ+bφIJ , φ++ = −1

2
u+a
I εabu

+b
J φ

IJ ,

ψ+α
a = εabu

+b
I ψ

αI , ψ+ aα = u+a
I ψαI . (3.1.12)

Now that we have defined the stress-tensor supermultiplet we would like to consider

the general form of the correlation function. The n-point supercorrelaton function is

given by (where T (i) = T
(
xi, θ

+
i , ui

)
):

Gn(1, . . . , n) = 〈T (1) . . . T (n)〉 . (3.1.13)

This supercorrelator admits an expansion in terms of polynomials in θ+ , namely if

Gn;p is a homogeneous polynomial in θ+ of degree 4p, then

Gn = Gn;0 +Gn;1 + · · ·+Gn;n−4. (3.1.14)

Notice that the expansion truncates to a degree 4(n − 4) polynomial, which follows

from (the chiral half) of the superconformal symmetry. Namely, we have Qα
IGn;p =

S̄Iα̇Gn;p = 0 (details in (3.1.2)).

Taking the theory to be an SU(N) gauge theory and the operator to exist in the

adjoint representation means that we may take (at `-loop order)

Gn;p =
∑

`≥0

ap+`Ĝ(`)
n;p,

where the t’Hooft coupling is a =
g2N

4π2
(3.1.15)

3Here φIJ = 1
2ε
IJKLφKL, and all symmetrisations are weighted.
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where now Ĝ
(`)
n;p is still homogeneous in θ+ of order 4p. Finally, another important

aspect of this operator is that it includes the on-shell Lagrangian in the supermulti-

plet and the main consequence of this is that we may obtain higher-loop integrands

from Born level supercorrelation functions. This methodology is called the Lagrangian

insertion procedure.

Let us provide some schematic details of how the Lagrangian insertion procedure

works, in which a nice guideline is provided in section 7.1 of [66]. In N = 4 SYM, the

correlator of the operator T is given by

Gn =

∫
[dΦ] ei

∫
LN=4T (1) . . . T (n)

= G(0)
n + g2G(1)

n + g4G(2)
n + . . . , (3.1.16)

where Φ represents all of the fields in N = 4 SYM. It also follows that

g2 ∂

∂g2
Gn = g2G(1)

n + 2g4G(2)
n + . . . , (3.1.17)

which implies that the first term is of order g2 and is the one-loop correlator. We can

recapture the same correlator by performing a rescaling of all of the fields. Namely,

we take Φ → Φ/g in which the Lagrangian scales as LN=4 → LN=4/g
2 and the new

Lagrangian is independent of the coupling. One can similarly rescale the stress-tensor

supermultiplet as T → T /g2, where the new stress-tensor supermultiplet is also inde-

pendent of the coupling. In which case the correlator now reads

Gn =
1

g2n

∫
[dΦ] e

i
g2

∫
LN=4T (1) . . . T (n), (3.1.18)

however the structure of the correlator in terms of its loop expansion is identical to

the second line of (3.1.16), since we also have to scale up the Feynman rules, i.e.

propagators. Applying the same derivative gives

g2 ∂

∂g2
Gn =

1

g2n

(−i
g2

)∫
d4x0 〈T (1) . . . T (n)LN=4(0)〉 − nGn. (3.1.19)

It turns out that there are contact terms from the insertion of the kinetic part of the

Lagrangian which results in a cancellation with the second term on the right hand side

of (3.1.19), in which we get [36]:

g2 ∂

∂g2
Gn =

1

g2n

(−i
g2

)∫
d4x0 〈T (1) . . . T (n)L(0)〉 . (3.1.20)
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The cancellation has resulted in the truncation of the completeN = 4 SYM Lagrangian

insertion to the on-shell action which can be found in the last line of (3.1.11) (which is

independent of g due to the stress-tensor rescaling). However, since this operator is in

the stress-tensor supermultiplet, we can uplift the on-shell Lagrangian insertion into a

Grassmann integration over the full stress-tensor supermultiplet. From (3.1.11) we see

that since

L(0) =

∫
d4θ+

0 T (0), (3.1.21)

it would follow that

g2 ∂

∂g2
Gn =

−i
(g2)n+1

∫
d4x0d

4θ+
0 〈T (1) . . . T (n)T (0)〉 = −i

∫
d4x0d

4θ+
0 Gn+1. (3.1.22)

Hence, given (3.1.17), the (θ+)
4

component of the Born level Gn+1 supercorrelator

gives the integrand of the one-loop correction to the Gn supercorrelator. In fact, we

can iterate this method to give

G(`)
n =

(−i)`
`!

∫
d4xn+1 . . . d

4xn+`d
4θ+
n+1 . . . d

4θ+
n+`Gn+`. (3.1.23)

This illustrates an important aspect of this operator and thus motivates us to study

its correlators further.

3.1.1 Triality

The mathematical and conceptual structure of observables in N = 4 SYM has not

only received attention because of their remarkable beauty and new found simplicity

but also because some of the observables are related in various limits. Whilst the

simplicity in the structure of the observables certainly imply a deeper structure (or

potential symmetry), and the fact that the observables are related strongly suggest

this.

It was first realised that the scattering amplitude and the expectation value of the

Wilson loop are exactly dual to one another in the strong coupling regime [39]. This

was initially found by making use of the AdS/CFT correspondence. Meanwhile, a

conjecture was made for the n-point all-loop MHV amplitude in [40], in an exponenti-

ated form which has been dubbed the ‘BDS ansatz’. By once again making use of the
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AdS/CFT correspondence it was found in [41] that there is a discrepancy between the

BDS ansatz and the actual answer at six-legs and onwards, this was further confirmed

in [42]. Whilst the BDS ansatz is not the full answer, it does encapsulate some of the

answer. There was thus a need for a correctional term which is called the ‘remainder

function’, which together with the BDS ansatz gives the full answer. The remainder

function was first introduced in [43,44]. Later, came [45,46], which showed that this

duality holds at weak coupling. It remains an unproven phenomenon but has provided

amazing results, in particular since the Wilson loop is a far more economical object to

compute than the scattering amplitude.

We now give the main features of the duality. We take this moment to explain some

basic notation of the scattering amplitude and when discussing the duality we focus

on the gluonic sector (such that the bosonic Wilson loop will suffice here).

The n-particle superamplitude is given by a function of on-shell momenta pi and a

fundamental SU(4) Grassmann odd parameter χI :

An = An;0 +An;1 + · · ·+An;n−4, (3.1.24)

where An;p is the NpMHV amplitude which has total helicity 4 − n + 2p and is a

homogeneous polynomial in χI of degree 4p. The momentum variables are the massless

(and therefore rank 1) Lorentz vectors pαα̇ = λi,αλ̃i,α̇. Then with P =
∑n

i piαα̇, Q =
∑n

i=1 λi,αχ
A and 〈ij〉 = εαβλi,αλj,β, we have

An;p =
δ(4)(P )δ8(Q)

〈12〉 〈23〉 . . . 〈n1〉︸ ︷︷ ︸
An;tree

Ân;p(λ, λ̃, χ, g,N), (3.1.25)

where

Ân;p(λ, λ̃, χ, g,N) =
∑

`≥0

a`Â(`)
n;p(λ, λ̃, χ), (3.1.26)

and A(0)
n;p = 1. It is worth mentioning here that whilst scattering amplitudes in N = 4

SYM do not contain UV divergences they do indeed contain IR divergences.

The expectation value of the bosonic Wilson loop (where n is parametrised by the

contour) is defined to be

〈W [Cn]〉 = trPexp

[
ig

∮

Cn
dxµAµ

]
=
∑

`≥0

λ`W (`)
n , (3.1.27)
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where W
(0)
n = 1. If we take the contour to be polygonal and defined by n many vertices

xαα̇i , whereby the edges are to be thought of as lightlike vectors and should be identified

with the momentum vectors

xαα̇i − xαα̇i+1 = pαα̇i , (3.1.28)

then we may identify

Â(`)
n;0 =

A(`)
n;0

A(0)
n;0

= W (`)
n , (3.1.29)

upto some minor details, e.g. the UV Wilson loop regulator must be identified with

the IR amplitude regulator. The full superspace duality was considered in [47], by

making use of the supersymmetric Wilson loop in twistor space. It is also important

to recognise that this is a duality between two objects which are on-shell.

Famously, this duality led to the in depth study into the symmetry structures in

which it was found that N = 4 SYM was not only invariant under the superconformal

symmetry but also an entirely different set of generators spanning the so-called dual

superconformal symmetry algebra [48]. This eventually gave rise to the notion of

Yangian structure in the amplitude [49], which has eventually led to widely believed

conjecture that planar N = 4 SYM is an integrable field theory.

Next, we review the supercorrelator/superamplitude duality. This was first studied

in [31] whereby it was argued that any generic bosonic conformal field theory reproduces

the square of the expectation value of the Wilson loop in an appropriate lightlike limit.

Importantly, this is to be contrasted with the Wilson loop/amplitude duality, where

here we are taking a limit rather than having an exact duality. 4

Thereafter came the work in [50,51], which coupled the reproduction of the expec-

tation value of the Wilson loop in the lightlike limit of the correlation function with the

fact that the Wilson loop is exactly dual to scattering amplitudes. This is non-trivial

since it is really the square of the amplitude which is dual to the correlator, and this

implies that there are non-trivial relations between the basis of integrands on either side

4 Linguistically, it would therefore be more appropriate to call this a correspondence, however we

will continue to call it a duality.
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which increase in complexity as one goes to higher-loops. However, there are indeed

non-trivial relations due to the Lagrangian insertion procedure outlined in (3.1.23).

The work of [36,37] developed a supersymmetric extension of the bosonic proposal.

Given that the Wilson loop/amplitude duality had been supersymmetrised [47], and

considering (3.1.14) and (3.1.24) together leads to the proposal that at the level of the

integrand (defining a =
(
g2N
4π2

)
)

lim
x2
i,i+1→0

(∑

`≥0

n−4∑

p=0

a`
G

(`)
n;p

G
(0)
n;0

)
=

(∑

`≥0

n−4∑

p=0

a`Â(`)
n;p

)2

. (3.1.30)

It’s important to note that in (3.1.30) we have performed the scaling Gn;p → a−pGn;p so

that the right hand side is not explicitly the correlation function. This is simply so that

we have a formula that produces the correct result. In order to compare components,

one should then compare Grassmann degree.

In [36,37], various examples of proposal was tested. In particular, there is a two

step process; one can use the Lagrangian insertion procedure to express the intergrands

of G
(`+`′)
n;p supercorrelators in terms of the integrands of G

(`)
n;p+`′ supercorrelators. How-

ever, one can use the supercorrelator/superamplitude duality to yield corresponding

integrands for (`+ `′)-loop amplitudes. This is particularly fruitful when dealing with

Born level supercorrelators (i.e. ` = 0), in which Born level supercorrelators contain

information about higher-loop scattering amplitudes. For example, from the six point

Born level supercorrelator (G
(0)
6;2) we may extract the tree level six point N2MHV am-

plitude (Â(0)
6;2), the integrand of the one-loop five point NMHV amplitude (Â(1)

5;1) and

the integrand of the two-loop four point MHV amplitude (Â(2)
4;0).

As has become clear, a single supercorrelator G
(`)
n;p for some fixed parameters `, n

and p has a profoundly large amount of information and it appears to be highly relevant

to try and understand the structure of these objects.

We summarise this subsection with the diagram in figure 3.1.

3.1.2 Hidden symmetry

Over the last few years an impressively simple but powerful symmetry was discovered,

namely for a particular component of the n-point supercorrelation function there exists
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↔pi = xi − xi+1

Dual variables

x1

xn

p1

〈Wn〉

〈Wn〉 (x1, . . . , xn)
n-gon Wilson loop

↑ limx2
i,i+1
→ 0Light-like limit

Gn

n-point correlation function
Gn(x1, . . . , xn)

n-point scattering amplitude
An(p1, . . . , pn)

An

Figure 3.1: A diagrammatic summary of the triality of observables in N = 4 SYM.

a full Sn permutation invariance [52] 5. In this thesis, we will not really need to

discuss this very much, however we will take this opportunity to build up some notation

regarding the structure of such supercorrelators (in particular so that we can see an

amplitude analogy in section 4) whilst including the hidden symmetry for completeness.

As we explained in the previous subsection, the n-supercorrelator is a function of the

spacetime and internal coordinates but also the chiral half of the harmonically projected

Grassmann odd variables, namely θ+a
α . We recall that we have Qα

AGn;p = S̄Aα̇Gn;p = 0.

In general, we have the (Q+ S̄) transformation

δθ+a
α =

(
εAα + xα̇αξ̄

A
α̇

)
u+a
A , (3.1.31)

and was used in [54,55], since
{
Qα
I , S̄

J
α̇

}
= 0 a superconformal invariant In;p can be

written as

In;p

(
x, y, θ+

)
= Q8S̄8Jn;p+4

(
x, y, θ+

)
, (3.1.32)

5This symmetry is so powerful, it has sometimes been referred to as an integrability approach

(see [53])
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and is a solution to the constraints Qα
IGn;p = S̄Jα̇Gn;p = 0. The object Jn;p+4 (x, y, θ+)

is a homogeneous polynomial in θ+ of order 4(p + 4). An integral representation may

be written as

In;p

(
x, y, θ+

)
=

∫
d8εd8ξ̄eε

A
αQ

α
A+ξ̄Aα̇ S̄

α̇
AJn;p+4

(
x, y, θ+

)
=

∫
d8εd8ξ̄Jn;p+4

(
x, y, θ̂+

)
,

(3.1.33)

where θ̂+ = eε
I
αQ

α
I +ξ̄Iα̇S̄

α̇
Aθ+ = θ+ + δθ+. It therefore follows that in general, we have

Gn;p =
∑

i

In;p,(i)

(
x, y, θ+

)
fn;p,(i)(x, y), (3.1.34)

where the sum is over all of the possible invariants multiplied by some coefficient

functions fn;p,(i)(x, y).

We will omit the most general discussion whilst focussing on the p = n−4 invariant,

namely the Gn,n−4 component. From the previous discussion, we recognise that this

component has the maximal number of Lagrangian insertions, in fact it is given by

(θ+
5 )4(θ+

6 )4 . . . (θ+
n )4

×
〈
O++++(1)O++++(2)O++++(3)O++++(4)L(5)L(6) . . .L(n)

〉
+ perms12...n.

(3.1.35)

Now, we can take (since Jn;n is required to be the maximally nilpotent homogeneous

polynomial in θ+
i of degree 4n)

Jn;n

(
x, y, θ+

)
= gn(x, y)

n∏

i=1

(
θ+
i

)4
, (3.1.36)

for some polynomial gn(x, y). However, for the full answer to the maximally nilpotent

component of the correlator we can always absorb this function into the coefficient

function, such that the dependence of Gn;n−4 on the kinematics is given by

Gn,n−4 ∼ fn(x, y)

∫
d8εd8ξ̄

n∏

i=1

(
θ̂+
i

)4

. (3.1.37)

The key point is that Gn,n−4 has full Sn permutation symmetry by virtue of crossing

symmetry in Gn since all the operators are identical. However, Jn,n also has Sn per-

mutation symmetry, thus it follows that fn(x, y) must also have Sn point symmetry.

Note that in the non-maximally nilpotent component correlators (i.e. p < n − 4) we
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have homogeneous polynomials of less than degree 4n, which means we that Jn,p is

generally some linear combination of objects and it follows that we do not have only

a single coefficient function which we can say is permutation invariant, rather we may

have some non-trivial sum of unrelated terms.

Let us now unpack the integral invariant
∫
d8εd8ξ̄

∏n
i=1

(
θ̂+
i

)4

. A useful gauge

associated to the (Q + S̄) symmetry is given by θ+
1 = θ+

2 = θ+
3 = θ+

4 = 0. Then one

finds [52]:

In,n−4 =
4∏

i<j

x2
ijR(1, 2, 3, 4)

n∏

i=5

(
θ+
i

)4
,

where R(1, 2, 3, 4) = g12g23g34g14

(
x2

13x
2
24 − x2

12x
2
34 − x2

14x
2
23

)

+ g12g24g43g31

(
x2

14x
2
23 − x2

12x
2
34 − x2

13x
2
24

)

+ g13g32g24g41

(
x2

12x
2
34 − x2

14x
2
23 − x2

13x
2
24

)

+ g2
12g

2
34x

2
12x

2
34 + g2

13g
2
24x

2
13x

2
24 + g2

14g
2
23x

2
14x

2
23 (3.1.38)

where gij =
y2
ij

x2
ij

. From this we find the conformal weight of In,n−4 is (−2) at each

point and the U(1) charge of (+4) at each point. Since Gn must have conformal

weight (+2) and U(1) charge (+4) we deduce from (3.1.37), that fn(x, y) does not

depend on the internal structure and must have conformal weight (+4) at each point.

It turns out that this is enough information to deduce the general structure of this

particular component, at the very least an ansatz can be given in which the basis

are some permutation invariant functions. A consequence of the OPE is a further

constraint that the singularity structure of fn(x, y) must only appear through factors

of propagators, see [38] for details. For example, at five points we have

f5(x, y) = f5(x) =
1∏

1≤i<≤5 x
2
ij

. (3.1.39)

This example is particularly appropriate at exemplifying the correspondences with

amplitudes in the lightlike limit, namely it is clear the the four-point cyclic lightlike

limit of R(1, 2, 3, 4) is the four point tree level correlator. Then this leaves multiplying

the pre-factor of R(1, 2, 3, 4) in (3.1.38) by f5(x), the result is

lim
{x2

12,x
2
23,x

2
34,x

2
41}→0

G5;1 = lim
{x2

12,x
2
23,x

2
34,x

2
41}→0

f5(x)
4∏

i<j

x2
ijR(1, 2, 3, 4)

(
θ+

5

)4

= G4;tree
1

x2
15x

2
25x

2
35x

2
45

(
θ+

5

)4
, (3.1.40)
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where we observe that

1

x2
15x

2
25x

2
35x

2
45

(3.1.41)

is the famous massless box function which is the four point one-loop amplitude [37].

Let us conclude this short review by bringing together the three important factors in

the computational aspects of correlation functions. We have in the first instance the La-

grangian insertion procedure described in (3.1.23), followed by the correlator/amplitude

duality described in (3.1.30) and finally hidden symmetry construction in this subsec-

tion. Suppose that we were interested in higher-loop scattering amplitudes, then a

huge amount of information can be obtained by looking at the maximally nilpotent

component (G
(0)
n,n−4) of the n-point Born level supercorrelator. Given some choice of `

(there are non-unique choices for large n), we can find the G
(`)
n−`,n−4+` component from

which we can find an amplitude via the light-limit.

3.2 Correlation functions in twistor space

In section 2.2, we spent time reviewing some technical details regarding twistor space

whilst in the previous section we have provided some details about what to expect from

these particular correlation functions. We can now put everything together and look

towards using twistor space to provide a new approach towards computing correlation

functions.

3.2.1 N = 4 SYM on twistor space

In this subsection we provide sufficient twistor technology for our purposes in the

computation of correlation functions in N = 4 SYM theory. The fields of N = 4

SYM theory are described in projective twistor space by a superfield A(z, z̄, χ). Since,

the space is itself complex, we have two unrelated coordinates zA and z̄A in which

A(z, z̄, χ) is a (0, 1)-form. As a superfield, it admits an expansion in the Grassmann

odd coordinates

A(z, z̄, χ) = a(z, z̄) + χI γ̃I(z, z̄) +
1

2
χIχJφIJ(z, z̄)

+
1

3!
εIJKLχ

IχJχKγL(z, z̄) +
1

4!
εIJKLχ

IχJχKχLg(z, z̄) , (3.2.42)
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where a(z, z̄) and g(z, z̄) are to be identified with the self-dual and anti-self-dual states

of the gluon (or positive and negative helicity states), φIJ(z, z̄) is the six scalars whilst

γ̃I(z, z̄) and γI(z, z̄) are the four fermions and their conjugates. It was shown in [56]

that the following action reproduces the known space-time N = 4 SYM theory

S[A] =

∫

CP3|4
D3|4Z ∧ tr

(
1

2
A ∂̄A+

1

3
A ∧A ∧A

)
+

∫
d4x d8θ Lint(x, θ) , (3.2.43)

where D3|4Z = 1
4!
εABCDz

AdzBdzCdzDd4χ is the integration measure on the complex

projective space and

Lint(x, θ) = g2
[
ln det(∂̄ −A)− ln det ∂̄

]
. (3.2.44)

We note that generally ZA is the full supertwistor, and we will soon double these up

by putting another lower GL(2) index as in (2.2.70), namely ZAα . Given the action

we require a superpropagator and super interaction vertices in order to gain a set of

Feynman rules that we may use. The theory defined in (3.2.43) is a gauge theory and as

a result requires gauge fixing. A useful choice is the so-called axial gauge, in which the

component of the superfield A in the direction of an arbitrary reference supertwistor

Z∗ vanishes.

Deriving these are quite involved tasks and so we only aim to provide the basic

results here whilst referring the interested reader to [57,58,59]. Following [57,58,59], to

gain the propagator one is required to solve

∂̄∆ (Z1,Z2) = δ̄3|4 (Z1,Z2) :=

∫
du

u
δ̄4|4 (Z1 + uZ2) , (3.2.45)

where δ̄p|q is a ‘distributional form’ [57] 6. The solution to the propagator equation is

∆ab (Z1,Z2) =
〈
Aa (Z1)Ab (Z2)

〉
= δ̄2|4 (Z1,Z∗,Z2) δab

=

∫
ds

s

dt

t
δ̄4|4 (sZ1 + tZ2 + Z∗) δab, (3.2.46)

where the a and b indices are fundamental gauge indices. We see the explicit emergence

of Z∗ in the propagator. All computations will involve some sum over contributing

diagrams, and whilst individual diagrams may be Z∗-dependent the corresponding

sum must not be.

6 For all intents and purposes this is essentially a delta function.
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Turning to the interactions, all interaction vertices are produced by Lint in the axial

gauge. First, one must take ln det
(
∂̄ −A

)
− ln det ∂̄ = ln det ∂̄

(
1− ∂̄−1A

)
− ln det ∂̄ =

ln det
(
1− ∂̄−1A

)
. Then using ln detm = tr lnm, we can perform an expansion in the

object ∂̄−1A.

Via [47], one finds that

Lint(x, θ) = −g2
∑

n≥2

1

n
tr
(
∂̄−1A . . . ∂̄−1A

)
(3.2.47a)

= −g2
∑

k≥2

1

k

∫
tr (A(Z(σ1)) ∧Dσ1 . . .A(Z(σk)) ∧Dσk)

〈σ1σ2〉 . . . 〈σkσ1〉
, (3.2.47b)

where Dσi = 〈σi, dσi〉 ≡ εabσ
a
i dσ

b
i is the projective measure and

〈σiσj〉 = εabσ
a
i σ

b
j . (3.2.48)

In the second relation in (3.2.47a) the superfields are integrated along the line in twistor

space Z(σi) = Z1σ
1
i + Z2σ

2
i parameterised by coordinates σai ≡ (σ1

i , σ
2
i ) with two

reference points Z1 and Z2 of the form (2.2.69) whereby under the incidence relation

we have the same xαα̇ and θAα but different λα.

Now, to make contact with our correlator story, we make the following assertion

T (x, θ+, u) =

∫
d4θ−Lint(x, θ), (3.2.49)

where θ− = θ−a
′

α = θIαu
−a′
I is the harmonic projection of the θ variable which we do not

take to be within the stress tensor supermultiplet. We now justify our assertion.

Suppose that we do indeed have such an operator T (x, θ+, u) which is implicitly

defined through the superfield A in some way. Then we can define the correlation

function, whose corresponding action is (3.2.43), namely in defining

Gn = 〈T (1) . . . T (n)〉 , (3.2.50)

we find that

g2 ∂

∂g2
Gn = i

∫
d4xn+1d

8θn+1 〈T (1) . . . T (n)Lint (xn+1, θn+1)〉 . (3.2.51)

This expression bears a resemblance with (3.1.20), in fact we can identify these if

we separate the full θ integration into its harmonic projections, namely we can do
∫
d4θ+

∫
d4θ− =

∫
d8θ det (u), where is det (u) the Jacobian when projecting the full θ
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dependence into θ+a
α = θIαu

+a
I and θ−a

′
α = θIαu

−a′
I . Since, u ∈ SU(4), we get det (u) = 1,

hence in putting all this into (3.2.51) and imposing that we should get (3.1.22), our

assertion naturally arises

g2 ∂

∂g2
Gn = i

∫
d4xn+1d

4θ+
n+1

〈
T (1) . . . T (n)

∫
d4θ−n+1Lint (xn+1, θn+1)

︸ ︷︷ ︸
:=T (n+1)

〉
,

=

∫
d4xn+1d

4θ+
n+1 〈T (1) . . . T (n+ 1)〉 = i

∫
d4xn+1d

4θ+
n+1Gn+1. (3.2.52)

Indeed we find (3.2.49), from which it follows that a twistor representation of our

correlators of interest is given by

Gn =

∫ n∏

i=1

d4θ−i 〈Lint(1) . . . Lint(n)〉 . (3.2.53)

In practice, a correlation function is a set of twistor line Xi which correspond to space-

time points where the operators lie. We plug in (3.2.47a), and at the lowest order in

g2, we may simply wick contract the fields to produce the propagators in (3.2.46).

3.2.2 Feynman rules from twistor space

In this subsection we will introduce, explain and then apply a graphical formalism for

computing correlation functions in twistor superspace. In principle, this new graphical

formalism is to be thought of as an off-shell generalisation of the rules used for the

scattering amplitude via the Wilson loop duality used in [47,60].

The fundamental operator is A(Z(σ)) whose dependence of σ is through Z(σ) =

ZAα σα. Whilst in space-time it sits on a point, in twistor space it sits on a line

parametrised by two reference points defined by ZAα σα, which identify the same space-

time point through the incidence relation. Space-time interactions occur when multiple

fields occupy the same point instantaneously. Diagrammatially, the propagation of a

field occur when propagators are emitted and absorbed by a twistor line, whilst in-

teractions are given by vertices with many propagators emitted from it. Figure 3.2

presents such diagrams whilst giving a truncated diagram which is made of bullets and

lines.

In general the correlation function in (3.2.53) is therefore a collection of non-

intersecting lines and bullets. An example of what such a contributing diagram is

given by figure 3.3.
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i j

zi,1

zi,2

zj,1

zj,2
i j

i)

i jk

. . .

j3

j2

j1

i
jk

. . .

j3

j2

j1

ii)

Figure 3.2: i) The diagram representing a superpropagator from twistor line i to j.

ii) An interaction vertex. In both cases, bold lines are twistor lines whilst faint lines

are propagators.

As a quick example we can work out how a propagator contributes to a full Feynman

graph like figure 3.3. We consider an arbitrary single propagator extended between two

twistor lines Xi and Xj. We denote integration variable σij to be associated to the

propagator emitted at point i and absorbed and point j 7, and we neglect fermionic

integration and gauge indices here:

∫
〈σijdσij〉 〈σjidσji〉 δ̄2|4 (Zi (σij) ,Z∗Zj (σji)) δ

ab, (3.2.54)

with δ̄2|4 (Zi (σij) ,Z∗Zj (σji)) =
∫

ds
s
dt
t
δ̄4|4 (sZ1(σij) + tZ2(σij) + Z∗). We can perform

the change of variables σij → sσij and σji → tσji in which the result is

∫
d2σij

∫
d2σjiδ̄

4|4 (σαijZi,α + σαijZj,α + Z∗
)
, (3.2.55)

This tell us that the projective measures can always be absorbed into the integration

measures of the propagator to give a full two dimensional integral.

7Its worth noting that this notation prescription of ‘emitting’ and ‘absorbing’ is strictly for nota-

tional ease as it helps organise integration variables, however it is physically vacuous as otherwise it

would imply some notion of orientation which the lines do not have
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1

2

3

. . .

. . .

n− 1

n

1

2

3

. . .

. . .

n− 1

n

Figure 3.3: A contributing Feynman diagram to an n-point correlation function

in (3.2.53). Each bold lines corresponds to a twistor line parametrised by a pair of

twistors, and therefore correspond to a point in space-time (x, θ), whilst faint lines are

superpropagators.

Putting together everything we have learnt so far, in particular together with (3.2.46)

and (3.2.47a), we gain the following Feynman rules :

• To each line connecting vertices i and j we associate two pairs of spinor variables

σαij and σαji (with α = 1, 2). They define the coordinates of the end points σαijZi,α
and σαjiZj,α belonging to the ith and jth lines, respectively, in projective twistor

space,

• A propagator connecting vertices i and j produces a graded delta function

δaiajδ4|4(Z∗ + σαijZi,α + σαjiZj,α)

with ai and aj being SU(N) colour indices,

• Each vertex comes with the following factor

− tr (T aj1T aj2 · · ·T ajk )∏k
`=1〈σij`σij`+1

〉

(with jk+1 ≡ j1 and 〈σij`σij`+1
〉 given by (3.2.48)). Since tr (T aj) = 0 , we must

have at least two lines coming from each vertex,

• Finally, at each vertex i = 1, . . . , n we have to perform an integration

∫
d2σij1 . . . d

2σijk
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over the σ-parameters of all lines attached to that vertex and, in addition, inte-

grate out half of the Grassmann variables by
∫
d4θ−i .

Diagrammatically, the rules are summarised as in figure 3.4.

i j
δaiaj δ̄4|4

(
σαijZi,α + σαjiZj,α + Z∗

)

i)

i
jk

. . .

j3

j2

j1

−
∫
d2σij1 . . . d

2σijk
(Taj1 ...T

ajk )
〈σij1

σij2〉〈σij2
σij3〉...〈σijk

σij1〉
tr

ii)

Figure 3.4: i) The Feynman rule for the superpropagator and ii) the Feynman rules for

interaction vertices. In addition to this we must perform the overall integral
∏n

i=1 d
4θ−.

Finally, now that we know how to compute a Feynman graph, we would like to know

what graphs to compute. To do this we simply need to look at the Grassmann degree

of a graph. Since we require at least two propagators to each vertex, we minimally

require as many propagators as there are vertices. Denoting the number of propaga-

tors as q and number of vertices as n, we take q = n + p many propagators. Each

propagator is Grassmann degree 4, but we perform 4n many fermionic integration thus

the Grassmann degree of any given diagram is 4q − 4n = 4(n + p)− 4n = 4p. So, for

example if we want to compute the maximally nilpotent component of the five-point

Born level supercorrelator, we require all graphs with five vertices but six propagators.

Since the component Gn;p has Grassmann degree 4p, it follows that Gn;p is equal to the

sum of all diagrams with n vertices and n+ p propagators.

Before proceeding to look at the correlator in more detail let us very briefly discuss

the Feynman rules for scattering amplitudes. Recalling figure 2.1, we stress the critical

difference of twistor space graphs when discussing off-shell and on-shell physics. To

understand the graphical difference we are required to go back to the twistor lines and

propagators graphical rules (as opposed to bullets and edges) that are on left hand side

of figure 3.3 and use this form in conjunction with figure 2.1. Correlation functions are

built from off-shell external data and thus contain twistor lines that do not intersect.
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Scattering amplitudes contain on-shell external data and thus have intersecting twistor

lines. When dealing with loop level amplitudes, one has a twistor line associated to

the variable in the various loops and these are off-shell and therefore cannot intersect

with any other line. An `-loop level scattering amplitude has ` off-shell points which

have `-many non-intersecting lines.

A consequence is that for any twistor line in a scattering process associated to the

loop level variable, the correlator Feynman rules that we have studied in figure 3.4 are

used. However, for on-shell external lines we require a further rule for the insertion

of a single A superfield. This is simply because in scattering processes we scatter

fundamental states which are in the A superfield as opposed to being in any composites

of A.

The new rule is simply that for a twistor line which emits a single propagator:

s

Zi

Zj

==

∫
ds

s
, (3.2.56)

for some Z(s) = Zi + sZj. We can consider propagators joined by two twistor lines,

namely given Z(u) = Zi + uZj and Z(v) = Zk + vZl, a contribution to the so-called

NMHV amplitude is given by

u

Zi

Zj

Zk

Zl

v
=

∫
du

u

dv

v
∆(Z(u),Z∗,Z(v))

=

∫
du

u

dv

v

ds

s

dt

t
δ̄4|4 (sZ(u) + tZ(v) + Z∗) , (3.2.57)

and we will return to this computation in section 4.1.1, where we will compute the full

n-point NMHV scattering amplitude at tree level.

These are in fact the rules used in the Wilson loop representation of the scattering

amplitude used in [47,60].

3.2.3 From lower components to higher components

Having described the main method of computation, we will apply the formalism as

a first test to the lowest component of the supercorrelation function, namely the n-

correlator for the 1
2
-BPS operator O++++. Upon doing so, we will find that a direct
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1 2

3

...

. . .

...

n

n− 1

Figure 3.5: A contribution to Gn;0

applications of the aforementioned Feynman rules for higher components with non-

trivial Grassmann oddness is difficult in general, hence we restructure the Feynman

rules to new building blocks. This will be the main result.

Following the previous section, the Feynman graphs required to compute Gn;0 are

all graphs with n vertices and n propagators. Since, every vertex requires at least two

propagators, there is a structurally unique graph given by figure 3.5.

In addition to this we must sum over permutation of points (since the correlator

itself has an n-point bosonic permutation symmetry) and sum over only connected

graphs (otherwise we gain those which correspond to products of lower point graphs).

Let us use the prescription defined in the previous section and apply it to figure 3.5,

in which we get 8

Gn;0 = (N2 − 1)
n∏

i=1

∫
d4θ−i

∫
d2σi i−1d

2σi i+1

〈σi i−1σi i+1〉2
δ̄4|4(σαi i−1Zi,α + σαi−1 iZi−1,α + Z∗)

+ (Sn−perm), (3.2.58)

In evaluating this result, we will need to use some of the machinery built in section 2.2.

We begin by taking ZA∗ =
(
zA∗ , χ

I
∗
)

and ZAi,α =
(
zAi,α, θ

I
i,α

)
. The required g ∈ GL(2) fix-

ing that gives the form of (2.2.70) comes from acting Zi,β → gγ
δZi,δ. This variation can

be compensated in (3.2.58) by the change of the integration variable σβik → (g−1)βδσ
δ
ik

8We will generally omit all factors associated with color from here on out.
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of which the entire object remains unchanged. Let us first perform the fermionic inte-

gration, we look at a particular piece of the calculation before generalising to the rest.

At points 1 and 2 the fermionic contribution to (3.2.58) is given by (setting χ∗ = 0):

∫
d4θ−1

∫
d4θ−2 δ

0|4(σα12θ1,α + σα21θ2,α)δ0|4(σαn1θn,α + σα1nθ1,α)δ0|4(σα23θ2,α + σα32θ3,α).

(3.2.59)

We can apply the decomposition with respect to harmonic projections namely θIα =

θ+a
α ūI+a + θ−a

′
α ūI−a′ . We now use the following useful identity:

∫
d2θ−1,ξε

∫
d2θ−2,ηφδ

0|4(σα12θ1,α + σα21θ2,α) (3.2.60a)

=

∫
d2θ−1,ξε

∫
d2θ−2,ηφ

1

4!
εABCD

× σα12θ
−a′
1α ū

A
1,−a′σ

β
12θ
−b′
1β ū

B
1,−b′σ

γ
21θ
−c′
1γ ū

C
2,−c′σ

ρ
21θ
−d′
1ρ ū

D
−d′ (3.2.60b)

∼ σ12ξσ12εσ21ησ21φ
1

4
εIJKLȲ

IJ
1 Ȳ KL

2 = σ12ξσ12εσ21ησ21φy
2
12. (3.2.60c)

This requires some explanation, (3.2.60b) is the expansion into the pieces of θ− that will

be involved in the calculation. We recall (2.3.84) to get the first equation of the third

line. The last equality follows from the definition of Ȳ in terms of ū used in (2.3.85),

we also dropped the numerical prefactor as it is not important. Now, in making use

of this identity we clearly only use half of the d4θ− integrals in (3.2.59), whilst using

the other half to execute a similar identity with different delta functions. The result

is a set of σ-variables all contracted with an εαβ. Doing this with all the fermionic

integrations gives (3.2.58) as

Gn;0 = (N2 − 1)
n∏

i=1

y2
i,i+1

∫
d2σi i−1d

2σi i+1δ̄
4(σαi i−1zi,α + σαi−1 izi−1,α + z∗)

+ (Sn−perm). (3.2.61)

We now need to localise the bosonic delta functions, namely we want to solve

σαi i−1zi,α + σαi−1 izi−1,α + z∗ = 0, (3.2.62)

in which the solutions are

σαi,i−1 = εαβ
〈zi,βz∗zi−1,1zi−1,2〉
〈zi−1,1zi−1,2zi,1zi,2〉

, σαi−1,i = εαβ
〈zi−1,βz∗zi,1zi,2〉
〈zi−1,1zi−1,2zi,1zi,2〉

,
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in making use of (2.2.54) to write 〈zj,1zj,2zi,1zi,2〉 = x2
ij, we explicitly have

δ̄4(σαijzi,α + σαjizj,α + z∗) =
1

x2
ij

δ̄

(
σ1
ij − εαβ

〈zi,2z∗zj,1zj,2〉
x2
ij

)
δ̄

(
σ2
ij − εαβ

〈zi,1z∗zj,1zj,2〉
x2
ij

)

× δ̄
(
σ1
ji − εαβ

〈zj,2z∗zi,1zi,2〉
x2
ij

)
δ̄

(
σ2
ji − εαβ

〈zj,1z∗zi,1zi,2〉
x2
ij

)
.

(3.2.63)

This means that integrating the σ-variables is (upto imposing the solution (3.2.63))

∫
d2σi i−1d

2σi−1 iδ̄
4(σαi i−1zi,α + σαi−1 izi−1,α + z∗) =

1

x2
i−1,i

, (3.2.64)

hence we have

Gn;0 =
n∏

i=1

y2
i,i+1

x2
i,i+1

+ (Sn−perm). (3.2.65)

This exercise demonstrates firstly how to perform the relevant integrations but also

the fact that this procedure will become increasingly inefficient if we want to compute

the higher components. In general we will want to integrate a function of Grassmann

degree 4(n + p) against a 4n integration. The previous example was relatively simple

because we had p = 0, but now we wish to investigate p > 0.

The main result is yet another restructuring of the aforementioned Feynman rules

in the previous subsection, whereby we make use of harmonic superspace.

The useful result is that we can perform the decomposition

δ0|4 (χ∗ + σαijθi,α + σαjiθj,α
)

= y2
ijδ

0|2 (σαijθ−i,α + Aij
)
δ0|2 (σαjiθ−j,α + Aji

)
, (3.2.66)

where

Aa
′

ij =
[
χI∗u

+b
j,I + σαjiθ

+b
j,α + σαijθ

+b
i,α

] (
y−1
ij

)a′
b

(3.2.67)

The proof can be found in appendix A. The advantage in this modified object is that

the delta function is no longer associated to both points i and j with respect to the
∫
d4θ− integrations. Instead, the object δ0|2 (σαijθ−i,α + Aij

)
is associated to point i only.

It follows that each bivalent vertex i (connected to vertex j and k, say) brings a factor

of

∫
d4θ−i δ

0|2 (σαijθ−i,α + Aij
)
δ0|2 (σαikθ−i,α + Aik

)
= 〈σijσik〉2. (3.2.68)
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i j
δaiajgij = δaiaj

y2
ij

x2
ij

i)

i
jk

. . .

j3

j2

j1 ii)

(T aj1 . . . T ajk )R (i; j1j2, . . . , jk)tr

Figure 3.6: i) The Feynman rule for the superpropagator and ii) the Feynman rules

for interaction vertices

Going back to our rules in figure 3.4, we find that a k-valent vertex brings a factor of

R(i; j1j2 . . . jk) = −
∫
d4θ−i

δ2(σαij1θ
−
i,α + Aij1)δ2(σαij2θ

−
i,α + Aij2) . . . δ2(σαijkθ

−
i,α + Aijk)

〈σij1σij2〉 〈σij2σij3〉 . . . 〈σijkσij1〉
,

(3.2.69)

and since we already gain the factor of y2
ij from the procedure in (3.2.66) together with

the 1/x2
ij from the bosonic integration in (3.2.64), it follows that we gain the following

set of new Feynman rules :

• A line connecting vertices i and j is associated with the propagator gij = y2
ij/x

2
ij,

• Bivalent vertices are associated with R(i; j1j2) tr (T aj1T aj2 ) = R(i; j1j2)δaj1aj2

(note that R(i; j1j2) = 1, but we write it here for generality),

• Higher valency vertices are associated with R(i; j1 . . . jk) tr (T aj1 . . . T ajk ) evalu-

ated for the σ-parameters given by

σαij = εαβ
〈zi,βz∗zj,1zj,2〉

x2
ij

, σαji = εαβ
〈zj,βz∗zi,1zi,2〉

x2
ij

, (3.2.70)

These are summarised in figure 3.6. In terms of computational organisation, we can eas-

ily organise all of the propagator factors away, whilst dealing with the R(i; j1j2 . . . jk).

It is this object which we can think of as superconformal invariant, in a similar way to

how we think about the R-invariant in the study of scattering amplitudes [32].
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3.2.4 Properties of the R-vertices

In this section we aim to provide some of the properties of these R-vertices. As we will

see, the most general k-valent R-vertex can be written in terms of the product of k−2

trivalent R-vertices. Thus, it is computationally relevant to know the expansion of the

trivalent R-vertex in its Grassmann components which we shall explore here.

The object R (i; j1j2 . . . jk) in (3.2.69) has a numerator which is completely permu-

tation invariant under the exchange of points, whilst its denominator is not. Instead,

it obeys the symmetries of the Parke-Taylor structure usually found in amplitudes,

namely R (i; j1j2 . . . jk) is cyclically invariant and invariant upto a sign if we take the

following shift jp ↔ jk−p+1 of all points:

R (i; j1j2 . . . jk) = R (i; j2j3 . . . j1) = · · · = R (i; jkj1 . . . jk−1)

R (i; j1j2 . . . jk) = (−1)kR (i; jkjk−1 . . . j1) . (3.2.71)

These two symmetries form the dihedral group in k-elements upto the (−1)k signature.

This is particularly interesting when we take k = 3 as the dihedral group becomes the

permutation group (although still upto a sign). The result is the object R (i; j1j2j3)

which is completely antisymmetric in the j indices. As a result when two of the indices

are equivalent, say j1 = j2, R (i; j2j2j3) = 0. There is also the so-called U(1)-decoupling

relation:

∑

τ∈cyclck−1

R (i; j1τ (j2j3 . . . jk)) = 0. (3.2.72)

Moving towards the trivalent R-vertex, which is written as

R (i; j1j2j3) = −
∫
d4θ−i

δ0|2 (σαij1θ−i,α + Aij1
)
δ0|2 (σαij2θ−i,α + Aij2

)
δ0|2 (σαij3θ−i,α + Aij3

)

〈σij1σij2〉〈σij2σij3〉〈σij3σij1〉
,

(3.2.73)

we recognise that our σ-variables are related by the two dimensional schouten relation

σαij1〈σij2σij3〉+ σαij3〈σij1σij2〉+ σαij2〈σij3σij1〉 = 0, (3.2.74)

which we may implement by rewriting the last delta function such that (3.2.73) be-
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comes,

R (i; j1j2j3) = −
∫
d4θ−i

δ0|2 (σαij1θ−i,α + Aij1
)
δ0|2 (σαij2θ−i,α + Aij2

)

〈σij1σij2〉 〈σij2σij3〉 〈σij3σij1〉

δ0|2

(
−
(
σαij1〈σij2σij3〉+ σαij2〈σij3σij1〉

)

〈σij1σij2〉
θ−i,α + Aij3

)
(3.2.75)

We can rewrite the third delta function on the support of the first two, namely the

solution of σαij1θ
−a′
i,α + Aa

′
ij1

= 0 and σαij2θ
−a′
i,α + Aa

′
ij2

= 0 is given by θ−a
′

i,α = − σαij1
Aa
′
ij2

〈σij2σij1 〉
−

σαij2
Aa
′
ij1

〈σij1σij2 〉
. We apply this solution to the third delta function, rendering it independent

of θ−i,α. We finally apply the integration to the only remaining delta functions that

depend on θ−i,α, from which we find

R(i; j1j2j3) = −
δ0|2
(
〈σij1σij2〉Aij3 + 〈σij2σij3〉Aij1 + 〈σij3σij1〉Aij2

)

〈σij1σij2〉 〈σij2σij3〉 〈σij3σij1〉
. (3.2.76)

This process works recursively for higher valency R-vertices, however it is only for the

trivalent case that we can completely integrate away θ−i,α completely. Nonetheless, in

the first instance we can write

R (i; j1j2 . . . jk) = R (i; j1j2 . . . jk−1)R (i; j1jk−1jk) , (3.2.77)

which follows from selecting three js, in this case j1, jk−1 and jk and applying the

procedure to jk. We successfully make the delta function associated to jk independent

of θ−i,α which allows for the factorisation. The remaining delta functions still have

Grassmann degree of more than 4 and the integration remains unevaluated. In iterating

the process, we arrive at

R (i; j1j2 . . . jk) =
k−1∏

s=2

R (i; j1jsjs+1) . (3.2.78)

This is the critical statement that all higher valency R-vertices can be written in terms

of the trivalent R-vertex.

Having come to this realisation, we recognise the importance of expanding the

trivalent R-vertex in terms of its Grassmann components. This will prove to be useful

for practical computations. To proceed we find that given (3.2.70), we may define the
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following index-less notation

yijk := (yijk)
b

a = (yij)ac′ (ỹjk)
c′b ,

yijklm := (yijklm) b
a = (yij)

aa′ (ỹjk)
a′c (ykl)cd′ (ỹlm)d

′b ,

(ijk) := 〈σijσik〉x2
ijx

2
ik, (3.2.79)

where the third definition naturally follows from section 2.2 in conjunction with (3.2.70).

Given the form of the trivalent R-vertex in (3.2.78), we find that

R(i; j1j2j3) =R1(i; j1j2) +
1

2
R2(i; j1j2) +

1

2
R3(i; j1j2)

+
1

2
R4(i; j1j2j3) +

1

6
R5(i; j1j2j3) + antisym123 . (3.2.80)

Here we have defined

R1(i; j1j2) = −
〈σij1|θ+

i yij1j2θ
+
j2
|σj2i〉

(ij1j2)gij1gij2
,

R2(i; j1j2) =
〈σj1i|θ+

j1
yj1ij2θ

+
j2
|σj2i〉

(ij1j2)gij1gij2
,

R3(i; j1j2) = −〈σij1|
(
θ+
i

)2 |σij2〉y2
j1j2

(ij1j2)gij1gij2
,

R4(i; j1j2j3) = 〈σj1i|
(
θ+
j1

)2 |σj1i〉
x2
ij1

(ij2j3)

(ij1j2)(ij3j1)gij1
,

R5(i; j1j2j3) = (θ+,α
i yij1j2j3iθ

+
i,α)

1

y2
ij1
y2
ij2
y2
ij3

, (3.2.81)

where we used (3.2.79) and introduced an index-less and bra-ket notation for aesthetic

purposes

θ+,α
i yi123iθ

+
i,α = θ+a

i,α(yi123i)a
bθi,α+b

〈σij1|θ+
i yi12θ

+
j2
|σj2i〉 = σαij1θ

+a
i,α(yij1j2)a

bθβj2,+bσj2i,β

gij =
y2
ij

x2
ij

, etc. (3.2.82)

We have presented a derivation of some of the components in appendix B.

3.3 Consistency check: lightlike limit

We would like to give an example of the lightlike limit in action. The easiest example

to choose is the component correlator Gn;1. At Born level the correspondence given
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in (3.1.30) reduces to

n−4∑

p=0

G
(0)
n;p

G
(0)
n;0

=

(
n−4∑

p=0

Â(0)
n;p

)2

. (3.3.83)

We can expand this in Grassmann degree and match the appropriate parts, namely

given that

lim
xi,i+1→0

[
1 +

1

G
(0)
n;0

(
G

(0)
n;1 +G

(0)
n;2 + . . . G

(0)
n;n−4

)]
=
(

1 + Â(0)
n;1 + Â(0)

n;2 + · · ·+ Â(0)
n;n−4

)2

,

(3.3.84)

we gain

lim
x2
i,i+1→0

G
(0)
n;1

G
(0)
n;0

= 2Â(0)
n;1,

lim
x2
i,i+1→0

G
(0)
n;2

G
(0)
n;0

= 2Â(0)
n;2 +

(
Â(0)
n;2

)2

, (3.3.85)

and so on. In this subsection we will show how the correspondence works at the level

of the first equivalence in (3.3.85). We recall that Â(0)
n;1 is a linear combination of the

R-invariant:

Â(0)
n;1 = RNMHV

n =
∑

i<j

∫
ds1ds2ds3ds4

s1s2s3s4

δ4|4 (Z∗ + s1Zi−1 + s2Zj−1 + s3Zj−1 + s4Zj) ,

(3.3.86)

where Z are supertwistors.

Gn;1 in terms of our graphical rules are the set of all graphs that have n+ 1 edges

(propagators) and n vertices (space-time points). All such graphs are given in figure 3.7.

This includes both planar and non-planar contributions. Since the correspondence is

a planar correspondence, we take only the planar contributions to the correlator. In

section 4 of [29], a detailed analysis of the color structure is given which we will omit

here. The main result of the analysis is that the kinematic parts of graphs B and C

survive with an overall multiplication with N(N2 − 1).

We provide some of the basic intermediate points of the full analysis found in [29].

The vanishing of graph A is easiest to see, where the Kronecker deltas follow around

the loop, namely we have δajaj+1δaj+1aj+2 . . . δ...δak−2ak−1δak−1ak = δajaktr (T ajT akT al) =

tr (T ajT ajT al). Since T ajT aj =
(
(N2 − 1)/N

)
I, we then have tr (T aj3 ) = 0. Graph
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...

j k

l

A C

...

B D E

Figure 3.7: Five contributing Feynman graph topologies to Gn;1.

1 2

3

4

5
6

n

...

= g12...n1g15R(1;n52)R(5; 416)

B C

1

2

6

7 n

= (g12...61) (g17...n1)R(1; 62n7)

Figure 3.8: Graph B and C contributions to Gn;1.

B comes with a factor of N(N2 − 1). A further non-trivial fact is that in the sum of

graph C, graph D and graph E, the 1/N dependence drops out to leave the planar

result. It turns out to be no different to using the kinematics of graph B multiplied

with N(N2 − 1). As a result we only need to work with graph B and graph C.

We would like to categorise the (sub)set of Feynman graph topologies that contain-

ing the leading singularity in the lightlike limit. Two example graphs of contribution

from type B and C are given in figure 3.8 where we use the notation

gij :=
y2
ij

x2
ij

, gij1j2...jk := gij1gj1j2 . . . gjk−1jk , (3.3.87)

from which we find that graph B possesses the leading singularity in the lightlike limit.

The lightlike limit of the tree level G
(0)
n;0 is given by limx2

i,i+1→0G
(0)
n;0 = g12...n1, in which

we therefore find that

lim
x2
i,i+1→0

G
(0)
n;1 = G

(0)
n;0

∑

i 6=j

gijR (i; i− 1 j i+ 1)R (j; j − 1 i j + 1)

→ lim
x2
i,i+1→0

G
(0)
n;1

G
(0)
n;0

= 2
∑

i<j

Rij, (3.3.88)
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where

Rij = gijR (i; i− 1 j i+ 1)R (j; j − 1 i j + 1) (3.3.89)

In order to prove that this really does equal the corresponding linear combination of

R-invariants as in (3.3.86), it is easier to go to the previous incarnation of the Feynman

rules, namely the corresponding result for the rules in figure 3.4. In applying those

rules and performing the
∏n

i=1

∫
dθ−i integration one finds the corresponding result to

the previous found Rij:

Rij =

∫
d2σijd

2σji 〈σii−1σii+1〉〈σjj−1σjj+1〉
〈σii−1σij〉〈σijσii+1〉〈σjj−1σji〉〈σjiσjj+1〉

δ4|4(Z∗ + σαijZi,α + σαjiZj,α) . (3.3.90)

We now need to take this object onto the super-light cone by making it on-shell.

First we recall the form the σ-variables given in (3.2.70). In the lightlike limit we

take x2
i,i+1 → 0, which immediately makes these variables singular. However, note

that in (3.3.90), there is a scale invariance which allows us to scale away the singular

denominator of the σ-variables, such that we have

σβi,i−1 = εβα〈z∗zi−1,1zi−1,2zi,α〉 , σβi,i+1 = εβα〈z∗zi+1,1zi+1,2zi,α〉 ,

σβj,j−1 = εβα〈z∗zj−1,1zj−1,2zj,α〉 , σβj,j+1 = εβα〈z∗zj+1,1zj+1,2zj,α〉 . (3.3.91)

In twistor superspace the lightlike limit x2
ii+1 → 0 and θA,αi,i+1(xi,i+1)αα̇ → 0 corresponds

to the intersection of the supertwistor lines Zi,α and Zi+1,α. Since there is a local GL(2)

matrix action on the α-indices, we can make the choice to take

Zi,2 = Zi+1,1 ≡ Zi , (i = 1 . . . n). (3.3.92)

This identification is taking what were once free twistor lines and forcing them to

intersect, recall figure 2.1 from section 2.2.

We can implement the incidence relation in full twistor space, namely

Zi =
(
zAi |χIi

)
=
(
λαi , ixi,αα̇λ

α|θIβi λiβ
)
. (3.3.93)

Applying (3.3.92) to the purely bosonic part of the supertwistors results in

σα=1
i i+1 = σα=2

i i−1 = 0 , σα=2
i i+1 = −σα=1

i+1 i . (3.3.94)
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Using the component form σαij = (s1, s2) and σαji = (t1, t2) we find that (3.3.90) has

now become:

Rij =

∫
ds1ds2ds3ds4

s1s2s3s4

δ4|4(Z∗ + s1Zi−1 + s2Zi + s3Zj−1 + s4Zj). (3.3.95)

So, the conclusion of this subsection is that taking the explicit lightlike limit on Gn;1

using the twistor rules as governed by the R-vertices results in the statement given

in (3.3.88). This result is equivalent to (3.3.95) which is the tree level NMHV scattering

amplitude at n-points.

3.4 Computations

In this section we will apply the R-vertices towards some components of the Gn;1 piece

of the supercorrelation function. We first note that we will have to deal with the

reference supertwistor, which is the main price we pay for manifesting superconformal

symmetry throughout our entire discussion. In certain instances it is easier to gain

gauge independent results and other times it is harder. We will perform the four-, five-

and six-point computation which makes use of a gauge invariant building block that we

will construct for the
(
θ+

0

)4
component of the supercorrelation function. On the other

hand, we will compute the four- and five-point correlator for
(
θ+

0

)2ab (
θ+

0′

)2cd
(where 0

and 0′ are two external points).

We remind the reader that we will use the previous notation used in (3.2.79),

and with gij =
y2
ij

x2
ij

and gijk...ml = gijgjk . . . gml. This section will involve technical

computations and we leave some parts for appendix C.

Finally, we state that for the entirety of the discussion that follows we will take

χ∗ = 0. This means that finding gauge invariant results amounts to seeking z∗-invariant

results.

3.4.1
(
θ+

0

)4
component

It is useful to construct a z∗-invariant quantity. Recall that the dependency is in the

three-brackets (ijk) that we have defined and used in (3.2.81). It turns out that such
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an object is (defining some points 0, 1, . . . , p):

f(i; j1j2j3) = −gj2igj1i
gj1j2

R3(i; j1j2) + gij2R4(j2; ij3j1) + cyc123

=
(xij1x̃j1j2xj2j3x̃j3i)

αβ

x2
j1i
x2
j2i
x2
j3i

(
θ+
i

)2

αβ
. (3.4.96)

This is actually a basis for a much larger additive set of z∗-invariants, namely we can

define

f(i; j1j2j3j4 . . . jp) =

p∑

k=3

f(0; j1jk−1jk) =

p∑

k=3

(xij1x̃j1jk−1
xjk−1jk x̃jki)

αβ

x2
j1i
x2
ijk−1

x2
ijk

(
θ+
i

)2

αβ
.

(3.4.97)

Some interesting results follow from this, recalling the definition of the matrix XAB

and X̄AB from (2.2.49), and defining the shorthand

tr(j1j̄2j3j̄4j5j̄6j7j̄8) := tr(Xj1X̄j2Xj3X̄j4Xj5X̄j6Xj7X̄j8)

= XAB
j1
X̄j2BCX

CD
j3

. . . X̄j8IA, (3.4.98)

we get

f(i; j1j2j3)f(i; j1j4j5) =
tr (ij̄1j2j̄3ij̄1j4j̄5)− tr (ij̄5j4j̄1ij̄1j2j̄3)

2x4
ij1
x2
ij2
x2
ij3
x2
ij4
x2
ij5

(
θ+
)4
. (3.4.99)

Recalling the Clifford algebra in (2.2.63), we find that

{
XA
i,B, X

B
j,C

}
= −x2

ijδ
A
C , (3.4.100)

which then implies that

tr (ij̄5j4j̄1ij̄1j2j̄3) = −x2
ij1

tr (ij̄5j4j̄1j2j̄3)

tr (ij̄1j2j̄3ij̄1j4j̄5) = −x2
ij1

tr (ij̄1j2j̄3j4j̄5) + x2
ij4

tr (ij̄1j2j̄1j3j̄5)− x2
ij5

tr (ij̄1j2j̄3j1j̄4) .

(3.4.101)

Finally, at the point of tracing over six matrices we need to split this into a symmetric

and an anti-symmetric part. Doing so and applying the Clifford algebra in (2.2.63)

recursively we have the general identity

tr
(
ij̄kl̄mn̄

)
=

1

2

(
− x2

inx
2
jmx

2
kl + x2

imx
2
jnx

2
kl − x2

ijx
2
klx

2
mn + x2

inx
2
jlx

2
km − x2

ilx
2
jnx

2
km

− x2
imx

2
jlx

2
kn + x2

ilx
2
jmx

2
kn − x2

inx
2
jkx

2
lm + x2

ikx
2
jnx

2
lm − x2

ijx
2
knx

2
lm

+ x2
imx

2
jkx

2
ln − x2

ikx
2
jmx

2
ln + x2

ijx
2
kmx

2
ln − x2

ilx
2
jkx

2
mn + x2

ikx
2
jlx

2
mn

)

+ tr(
[
ij̄kl̄mn̄

]
), (3.4.102)
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Figure 3.9: Contributions to G4;1

∣∣
(θ+

0 )
4 .

where tr(
[
ij̄kl̄mn̄

]
) is the anti-symmetrised part of this six-trace, and is equal to

4iεijklmn as defined by the hypercone coordinates in (2.2.68).

In any case, for the computations that follow in the (θ+)
4

component ofGn;1, making

use of (3.4.96) and (3.4.97) serve as an entry points to gaining a z∗-invariant results.

A computational strategy is to first recall that

Gn;1 =
〈
O++++(1) . . .O++++(n)L(0)

〉

= y2
12y

2
23 . . . y

2
n1F1(x0, x1, . . . , xn) + y4

12y
2
34y

2
45 . . . y

2
n3F2(x0, x1, . . . , xn)

+ · · ·+ perms12...n, (3.4.103)

where the ‘+ . . . ’ are the remaining different y-structures. The y-structures are the

internal basis for the result and can be made to form groups of terms related by Sn per-

mutations, e.g. y2
12ẏ

2
n1 and its Sn permutations are one group whilst y4

12y
2
34y

2
45 . . . y

2
n3 and

its Sn permutations are another group. Correspondingly the coefficient functions be-

long to the same group, thus we only need to work out one of these coefficients for each

representative of a group. In (3.4.103), this corresponds to finding F1(x0, x1, . . . , xn)

and F2(x0, x1, . . . , xn) first and finding the remaining terms for the other corresponding

y-structure by permutations.

Four-points

Previously in figure 3.8, we saw the graph topologies that contribute to Gn;1. We

can refine these for the four-point case. There are two contributing graphs given in

figure 3.9.

In fact due to N = 4 superconformal symmetry, we expect this component and

indeed any Grassmann odd component of the four point Born level supercorrelator to
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vanish. The result is given by

G4;1

∣∣
(θ+)4 ∼ A1230 +B1230 + perms123. (3.4.104)

We find that

A1230 = g123g10g20g30R (2; 103)R (0; 321)

= g123g10g20g30 (R4 (2; 031)) (R3 (0; 32) + cyc321)

= −g1231 [g02R4(2; 031)]

[
g01g03

g13

R3(0; 31)

]
,

B1230 = g1231g01g03R (1; 230)R (3; 012)

= g1231 [g01R4 (1; 023)] [g03R4 (3; 012)] . (3.4.105)

In A1230, going from the first equivalence to the second one, we recognise terms of the

form R4 (j; 0kl)R3 (0;mj) ∝ σα0jσ
β
0jσ

γ
0mσ

ρ
0j (θ+)

2
αβ (θ+)

2
γρ ∝ 〈σ0jσ0j〉 = 0.

Then, in order to get all contributing terms, we need to sum over permutations.

However, since all terms contribute to the y-structure in g1231, we only need to cycle

through points 1, 2 and 3, this gives the result

G4;1

∣∣
(θ+

0 )
4 ∼ − [g02R4(2; 031)]

[
g01g03

g13

R3(0; 31)

]
+ [g01R4(1; 023)] [g03R4(3; 012)]

+ cyc123. (3.4.106)

It turns out that this result is proportional to a quantity which depends on various 3-

brackets (ijk) (defined in (3.2.79)) which tuns out to be zero. This quantity is defined

and shown to be zero in appendix C.0.4, however we take a different approach from

this direct one.

An instructive approach is to make use of (3.4.96). This is useful as it directly gives

us z∗-invariant results. We begin by noting that the result (3.4.106) can be rewritten

as:

G4;1

∣∣
(θ+

0 )
4 = − [Rc123

4 (2; 031)] [Rc123
3 (0; 31)] +

1

2
[Rc123

4 (1; 023)] [Rc123
4 (3; 012)] , (3.4.107)

where

R
cijk
4 (k; 0ij) = gi0R4(k; 0ij) + cycijk

R
cijk
3 (0; ki) =

gk0g0i

gki
R3(0; ki) + cycijk. (3.4.108)
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Note, that R4(i; 0jk)R4(i; 0jk) = 0 and the factor of half is to avoid over-counting

terms. Now we recall from (3.4.96) that the f -function is given by

f(0; 123) = −Rc123
4 (2; 031) +Rc123

3 (0; 31),

=⇒ 1

2
f(0; 123)2 =

1

2
Rc123

4 (2; 031)2 +
1

2
Rc123

3 (0; 31)2

−Rc123
4 (2; 031)Rc123

3 (0; 31),

=⇒ Rc123
4 (2; 031)Rc123

3 (0; 31) =
1

2
Rc123

4 (2; 031)2 +
1

2
Rc123

3 (0; 31)2 − 1

2
f(0; 123)2.

(3.4.109)

Thus, by substituting the Rc123
3 ×Rc123

4 - terms into (3.4.107), we retrieve

G4;1

∣∣
(θ+

0 )
4 =

1

2

(
f(0; 123)2 −Rc123

3 (0; 31)2
)
. (3.4.110)

Finally, we must show that f(0; 123)2 − Rc123
3 (0; 31)2 = 0 which is indeed true and

simpler to prove than the vanishing of (3.4.106). We leave this for appendix C.0.1.

Five-points

As in the previous section, we give the contribution of graphs at five points to G5;1

∣∣
(θ+

0 )
4

in figure 3.10. This is the first such correlator that has a non-trivial result. The result

takes the form

G5;1

∣∣
(θ+

0 )
4 ∼ A12340 +B123450 + C12340 +D12340 + E12340 + perms1234

∼ g12341F1(x0, x1, . . . , x4) + g2
12g

2
34F2(x0, x1, . . . , x4) + perms1234, (3.4.111)

for some yet to be found functions h(x0, x1, . . . , xn) and m(x0, x1, . . . , xn). We fol-

low the basic strategy outlined around (3.4.103), namely we will find the functions

F1(x0, x1, . . . , xn) and F2(x0, x1, . . . , xn) first, and use the permutation invariance to

generate the remaining terms. In the following equations (3.4.112)-(3.4.116), we give

the explicit result which comes from the Feynman rules, then the second line will give

the contribution which applies to the
(
θ+

0

)4
component of the G5;1. We will also have

for the first four graphs, a third line which puts the result in a suggestive form for the
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Figure 3.10: Contributions to G5;1

∣∣
(θ+

0 )
4 .

z∗-invariant function described earlier. We find:

A12340 = g1234g10g20g20g30R(0; 124)R(2; 301)

= g1234g10g20g20g30 [R3(0; 12) + cyc124] [R4(2; 013)]

= −g12341

[
g04g01

g14

R3(0; 41)

]
[g02R4(2; 031)] , (3.4.112)

B12340 = g1234g01g03g04R(0; 134)R(3; 402)

= g1234g01g03g04 [R3(0; 13) + cyc134] [R4(3; 024)]

= −g12341

[
g01g04

g14

R3(0; 41)

]
[g03R4(3; 042)] , (3.4.113)

C12340 = g12341g01g04R(1; 240)R(4; 013)

= g12341g01g04R4(1; 024)R4(4; 013)

= g12341 [g01R4(1; 024)] [g04R4(4; 013)] , (3.4.114)

D12340 = g12341g20g40R(4; 103)R(2; 301)

= g12341g40g20R4(4; 031)R4(2; 013)

= g12341 [g04R4(4; 031)] [g02R4(2; 013)] , (3.4.115)
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E12340 = g01g02g03g04g12g34R(0; 4123)

= g01g02g03g04g12g34R(0; 412)R(0; 234)

= g01g02g03g04g12

[
[(R3(0; 41) + cyc412)(R3(0; 23) + cyc234)]

+ [R5(0; 412)] [R5(0; 234)]
]
. (3.4.116)

In a similar way to the previous section, we now try to rewrite the result in terms of

the z∗-invariant described in (3.4.96). However, graph E12340 involves R5 type terms,

which we can get rid of using the identity 9

[
[(R3(0; 41) + cyc412)(R3(0; 23) + cyc234)] + [R5(0; 412)] [R5(0; 234)]

]

= R3(0; 12)R3(0; 34) +R3(0; 41)R3(0; 23) +
y2

14y
2
23 − 2y2

13y
2
24 + y2

12y
2
34

2y2
01y

2
02y

2
03y

2
04

(3.4.117)

We can set the term R3(0; 12)R3(0; 34) to zero as it cancels with a similar contribution

which is a permutation (12) ∈ S4 of R3(0; 12)R3(0; 34). Substituting (3.4.117) back

into (3.4.116) results in

E ′12340 = g01g02g03g04g12g34

[
R3(0; 41)R3(0; 23) +

y2
14y

2
23 − 2y2

13y
2
24 + y2

12y
2
34

2y2
01y

2
02y

2
03y

2
04

]

= g12341

[ [g04g01

g14

R3(0; 41)

] [
g02g03

g23

R3(0; 23)

]
+

1

2
I14;23

]

+
1

2

[
−2g12431I13;24 + g2

12g
2
34I12;34

]
, (3.4.118)

where we have introduced a generalisation of the so-called box function:

Iij;kl =
x2
ijx

2
kl

x2
i0x

2
j0x

2
k0x

2
l0

. (3.4.119)

As can be seen in (3.4.118), the y-structures associated to the g2
12g

2
34-type terms are

already z∗-independent.

So now we can put together the coefficient of g12341 in (3.4.118), together with

(3.4.112)-(3.4.115). We want to write this in a way that allows us to use the f -functions

in (3.4.96). In order to do this and employ (3.4.96) we should sum over all cyclic

permutations, however this will add terms which do not come from any valid Feynman

9This was discovered explicitly using Mathematica, but some details have been included in ap-

pendix C.
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graph, which in turn must be explicitly taken away. We get

(3.4.112) + (3.4.113) + (3.4.114) + (3.4.115) + (3.4.118)
∣∣
g12341

+ cyc1234

= −Rc1234
3 (0; 12)Rc1234

4 (1; 024) +
1

2
Rc1234

4 (1; 024)2 +
1

2
Rc1234

3 (0; 12)2

− 1

2
R̃c1234

3 − 1

2
(I14;23 + I12;34) , (3.4.120)

where R̃c1234
3 is the over counting of terms and therefore needs to be taken away, it is

defined to be

R̃c1234
3 := 2

((
1

2

g01g02

g12

)2

R3(0; 12)2 +

(
g01g

2
02g03

g12g23

)
R3(0; 12)R3(0; 23) + cyc1234

)
.

(3.4.121)

The factors of half in (3.4.120) are there to avoid over-counting. In making use of

the f -functions from (3.4.96), we find

(3.4.112) + (3.4.113) + (3.4.114) + (3.4.115) + (3.4.118)
∣∣
g12341

+ cyc1234

=
1

2

(
f(0; 1234)2 − R̃c1234

3 − (I14;23 + I12;34)
)
, (3.4.122)

in which we leave the details of this computation for appendix C.0.3. It’s worth not-

ing that the object R̃c1234
3 is z∗-invariant although not manifestly so. Finally, putting

everything together

(3.4.112) + (3.4.113) + (3.4.114) + (3.4.115) + (3.4.118) + cyc1234

= g12341

[1

2

(
f(0; 1234)2 − R̃c1234

3

)
− 1

2
(I14;23 + I12;34)

]

+
1

2

(
g2

12g
2
34I12;34 + g2

23g
2
14I23;41

)
(3.4.123)

Using what we have learnt in (3.4.99), we find that

1

2

(
f(0; 1234)2 − R̃c1234

3

)
= −1

2
[I12;34 − 2I13;24 + I14;23] (3.4.124)

from which it follows that (3.4.123) becomes:

g12341 (I13;24 − I14;23 − I12;34) +
1

2

(
g2

12g
2
34I12;34 + g2

23g
2
14I23;41

)
. (3.4.125)

Finally, we perform two further transpositions on this result, namely (12)+(23), yields

the final result:

G5;1

∣∣
(θ+

0 )
4 ∼ g12341 (I13;24 − I14;23 − I12;34) + g13241 (I12;34 − I14;23 − I13;24)

+ g21342 (I23;14 − I24;13 − I12;34) + g2
12g

2
34I12;34 + g2

23g
2
14I23;41 + g2

13g
2
24I13;24. (3.4.126)
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Figure 3.11: Contributions to G6;1

∣∣
(θ+

0 )
4 .

Six-points

Having developed the basics in the previous section, we now present the result at six-

points. The contributing graphs are given in figure 3.11. In a similar way to previous

case, the result has the form

G6;1

∣∣
(θ+

0 )
4 ∼ A123450 +B123450 + C123450 +D123450 + perms12345

∼ g123451F1(x0, x1, . . . , x5) + g3
12g

2
34F2(x0, x1, . . . , x5) + perms12345,

(3.4.127)

The result of each graph after concentrating on the relevant part for the
(
θ+

0

)4
compo-

nent is given by

A123450 = −g123451

[
g05g01

g15

R3(0; 51)

]
[g03R4(3; 042)] ,

B123450 = g123451 [g01R4(1; 025)] [g01R4(5; 012)] ,

C123450 = g123451 [g01R4(1; 025)] [g04R4(4; 053)] ,

D123450 = g123451

[
g05g01

g15

R3(0; 51)

] [
g03g04

g34

R3(0; 34)

]
+ g123451

I15;34

2

− g123451I14;35 + g1231g
2
45

I13;45

2
. (3.4.128)
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As before, in order to group together all terms proportional to g123451, we permute

the last diagram by (45) to yield the result:

D′123450 = g123451

[
g05g01

g15

R3(0; 51)

] [
g03g04

g34

R3(0; 34)

]
− g123451

I15;34

2
+ g1231g

2
45

I13;45

2

(3.4.129)

Further diagrams can be found by performing permutations, and we can group together

terms proportional to g123451. Doing this and tranferring to the f -function as we have

done previously gives the result

G6;1

∣∣
(θ+

0 )
4 ∼1

2
g12345

[
f(0; 12345)2 − R̃c12345

3 − (I15;34 + cyc12345)
]

+
1

2
g1231g

2
45I13;45 + perms12345 (3.4.130)

In which we can use the discussion following (3.4.96) to unpack the result, which

gives:

G6;1

∣∣
(θ+

0 )
4 ∼g123451

[
I13;24 + I14;23 − I12;34 +

8iε012345

x2
01x

2
02x

2
03x

2
04x

2
05

]

+ g1231g
2
45I13;45 + perms12345, (3.4.131)

where ε012345 is defined by hypercone coordinates in (2.2.68) and is given by

4iε012345 = tr([01̄23̄45̄]). (3.4.132)

3.4.2
(
θ+

0

)2(ab) (
θ+

0′
)2(cd)

component

In this subsection we work out the
(
θ+

0

)2(ab) (
θ+

0′

)2(cd)
component for Gn;1 at four- and

five-points.

In contrast to the previous section, we do not need to work too hard to find a z∗-

invariant object. On the other, since the component has non-trivial y-structures which

are matrices (as opposed to previously being scalars), we have to work a little harder

to work them out properly.

Four-points

At four points, the contributing graph is given in figure 3.12.
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Figure 3.12: Contribution to G4;1

∣∣
(θ+

0 )
2(ab)

(θ+
0′)

2(cd) .

The correlation function is given by the sum over the non-trivial permutations of

this graph,

G4;1 ∼ A010′2 + A0120′ + A200′4 + A1020′ + A00′12 + A0′021 . (3.4.133)

where

A010′2 = g01g10′g0′2g20g00′R(0; 10′2)R(0′201), etc. (3.4.134)

To extract the contribution
(
θ+

0

)2(ab) (
θ+

0′

)2(cd)
, we have to replace the R−vertices by

the corresponding Ri component, we get

A010′2 =
[g0′2g02(y010′)ab(y010′)cd

x2
01x

2
10′x

2
00′y

2
00′

− g10′g02(y010′)ab(y0′20)cd
x2

01x
2
00′x

2
0′2y

2
00′

+
(y010′20)ac(y0′4010′)bd

2x2
01x

2
02x

2
0′2x

2
00′x

2
10′y

2
00′

+ (1↔ 2)
] (
θ+

0

)2(ac) (
θ+

0′

)2(bd)
,

A0120′ = − (012)

(010′)

g12(y010′)ab(y0′20)cd
x2

01x
2
0′2x

2
00′x

2
02

(
θ+

0

)2(ad) (
θ+

0′

)2(bc)
,

A1020′ =
(012)(0′12)

(200′)(10′0)

g12(y0′10)ab(y020′)cd
x2

02x
2
01x

2
20′x

2
0′1

(
θ+

0

)2(bc) (
θ+

0′

)2(ad)
, (3.4.135)

where we remind the reader of the index-less notation

yijk = yij ỹjk , yijklm = yij ỹjkyklỹlm , (ijk) = 〈σijσik〉x2
ijx

2
ik . (3.4.136)

The expressions for the remaining terms on the right-hand side of (3.4.133) can be

obtained from (3.4.135) through permutation of the indices, e.g. A1020′ = A0120′ [0 ↔
0′, 1↔ 2], A00′12 = A0120′ [1↔ 2] and A0′021 = A0120′ [0↔ 0′].

Note that the contribution to (3.4.133) from A010′2 is independent of the reference

twistor. Substituting (3.4.135) into (3.4.133) we use Schouten identities and perform
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Figure 3.13: Contributions to G5;1

∣∣
(θ+

0 )
2(ab)

(θ+
0′)

2(cd) .

some algebra to find the result:

G4;1 ∼
1

x2
01x

2
10′x

2
00′x

2
0′2x

2
02y

2
00′

[
y2

0′2y
2
02(y010′)ab(y0′10)cd − y2

10′y
2
01(y020′)ab(y00′2)cd

− y2
10′y

2
20(y010′)ab(y0′20)cd − y2

20′y
2
10(y020′)ab(y0′20)cd − y2

12y
2
00′(y010′)ab(y0′20)cd

+ (y010′20)ad(y0′2010′)bc

] (
θ+

0

)2(ad) (
θ+

0′

)2(bc)
. (3.4.137)

The expression inside the square brackets vanishes via a non-trivial y-identity. The

easiest way to see this is to use the SU(4) covariance of (3.4.137) in order to fix the

y-variables at the four points as:

y0 →


1 0

0 1


 , y1 →∞ , y0′ → 0 , y2 →


y 0

0 ȳ


 . (3.4.138)

Implementing this choice sets (3.4.137) to zero. Hence, the
(
θ+

0

)2(ad) (
θ+

0′

)2(bc)
compo-

nent of G4;1 vanishes. Similarly to the
(
θ+

0

)4
case, we expect G4;1 to completely vanish

for all components due to N = 4 superconformal symmetry.

Five-points

We now turn to five points, in which the set of graphs are in figure 3.13.

At five points, the correlation function G5;1

∣∣
(θ+

0 )
2(ab)

(θ+
0′)

2(cd) receives contributions

from the graphs of three different topologies:

A020′31 = g02g20′g00′g01g31g0′3R(0; 20′1)R(0′; 302) ,

B020′31 = g03g0′3g01g0′1g02g20′R(0; 312)R(0′; 213) ,

C020′31 = g02g00′g03g01g20′g31R(0; 0′31)R(0; 20′3) . (3.4.139)
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G5;1

∣∣
(θ+

0 )
2(ab)

(θ+
0′)

2(cd) is given by their total sum symmetrised with respect to the per-

mutations of the five points. Replacing the R-vertices in (3.4.139) by their expansion

in powers of the Grassmann variables, we find that this component does not receive

contributions from graphs of type C for all possible relabelings of the points. The total

set of contributing graphs is

G5;1

∣∣
(θ+

0 )
2(ab)

(θ+
0′)

2(cd) ∼A020′31 +
1

2
(A100′32 + A10′032 + A300′12 + A30′012 +B10′302)

+
1

6
B020′31 + perm123 . (3.4.140)

Here, numerical factors are introduced to account for over-counting in the sum over

permutations. The set of graphs within the parenthesis have been explicitly permuted

by (13), hence a further sum over permutations will double this, thus we include the

factor of a half. The graph B020′31 sees points 1, 2 and 3 with equal footing, hence there

exists a complete S3 symmetry and thus a factor of 1/3! = 1/6 has to be included.

Going through calculations similar to those performed in the four-point case, we

obtain the following expressions for the component
(
θ+

0

)2(ab) (
θ+

0′

)2(cd)
:

A020′31 = −y
2
31(y01230′)ab(y020′)dc
x2

02x
2
20′x

2
00′x

2
0′3x

2
31x

2
01

(
θ+

0

)2(ad) (
θ+

0′

)2(bc)
,

A100′32 =
(0′31)

(0′30)

y2
23y

2
21(y010′)ab(y0′30)cd

x2
01x

2
0′1x

2
0′3x

2
00′x

2
23x

2
21

(
θ+

0

)2(ad) (
θ+

0′

)2(bc)
,

B020′31 =
(y02130)ab(y0′3120′)cd
x2

02x
2
20′x

2
0′3x

2
30x

2
01x

2
0′1

(
θ+

0

)2(ab) (
θ+

0′

)2(cd)
,

B10′302 =
(0′31)(031)

(30′0)(100′)

y2
23y

2
21(y0′30)ab(y010′)cd

x2
01x

2
03x

2
0′1x

2
0′3x

2
23x

2
21

(
θ+

0

)2(bc) (
θ+

0′

)2(ad)
. (3.4.141)

The remaining graphs can be obtained by permuting the indices in these expressions.

Notice that the expressions for A020′31 and B020′31 do not depend on the reference

twistor and have the correct conformal and SU(4) properties. Then, we examine the

sum of graphs in the parentheses in (3.4.140)

A100′32 + A10′032 + A300′12 + A30′012 +B10′302 =

y2
21y

2
23∏

0≤i<j≤1 x
2
ij

x2
02x

2
20′x

2
31

(30′0)(100′)
(y0′30)ab(y010′)cd

(
θ+

0

)2(bc) (
θ+

0′

)2(ad) ×
[
(0′31)(031)x2

00′

+ (310)(0′10)x2
0′3 + (00′3)(10′3)x2

01 + (0′31)(10′0)x2
03 + (310)(030′)x2

0′1

]

= − y2
21y

2
23∏

0≤i<j≤1 x
2
ij

x2
02x

2
20′x

4
31(y0′30)ab(y0′10)dc

(
θ+

0

)2(bc) (
θ+

0′

)2(ad)
, (3.4.142)
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where in the second relation we made use of the six-term identity:

(10′3)(0′30)x2
01 − (10′3)(013)x2

00′ + (010′)(10′3)x2
03

+ (013)(00′3)x2
10′ − (010′)(00′3)x2

13 + (010′)(013)x2
0′3 = 0 , (3.4.143)

in which a derivation is given in C.0.4. We observe that the dependence on the reference

twistor disappears in the sum of graphs.

Finally, we substitute (3.4.141) and (3.4.142) into (3.4.140) and obtain the following

expression for the component
(
θ+

0

)2(ac) (
θ+

0′

)2(bd)
of the correlation function

G5;1 =
1∏

1≤i<j≤5 x
2
ij

[
− 1

2
x2

02x
2
20′x

4
31y

2
21y

2
23(y030′)ab(y010′)cd

− x2
03x

2
23x

2
21x

2
0′1y

2
31(y01230′)ab(y020′)cd

+
1

6
x2

00′x
2
23x

2
21x

2
31(y02130)ac(y0′3120′)bd + perm123

] (
θ+

0

)2(ac) (
θ+

0′

)2(bd)
. (3.4.144)

This completes the computational part of this chapter.

3.5 Conclusion

In this chapter we have developed a new approach to computing the correlation function

Gn of the chiral part of the stress-tensor supermultiplet at the Born level. It relies on

the reformulation of theN = 4 SYM in twistor space and gives Gn as a sum of Feynman

graph build from vertices and edges. Whilst the edges are bosonic propagators, the

vertices are some concatenation of trivalent R-vertices R(i; j1j2j3). Throughout the

calculation, superconformal invariance is always manifest however the price to pay is

the existence of the reference supertwistor Z∗, in which the complete sum of diagrams

in independent of but individual diagrams are not. In the last section, we showed some

computations and how some z∗-invariant blocks can be built.

An interesting connection to scattering amplitudes is through the lightlike limit. It

is known that the corresponding amplitudes are not only superconformally invariant

but dual superconformal invariant, which join to form Yangian invariance [49]. A

consequence of this is that the lightlike limit of these correlation function are Yangian

invariant, it is therefore an interesting question as to whether the twistor reformulation

permits some manifest notion of enlarged symmetries.
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Another interesting direction is in light of the ‘Amplituhedron’ in which the proposi-

tion is that scattering amplitudes can be viewed as volume forms of a positive subspace

of various Grassmannians [25]. A precursor to the Amplituhedron is the Grassmannian

formulation [65], which is essentially rooted in the twistor Feynman rules [32]. Now

that we have a better understanding for how the twistor reformulation of the correlation

function works, it would interesting to see if an analogous development can be made

for the correlation function. More importantly, this development would endeavour to

find some geometric notion whose lightlike limit recaptures both algebraic as well as

geometric features of the amplitude.

Lastly, one could develop the method here beyond the stress-tensor supermultiplet.

The next operator to check would be the twist-3 1
2
-BPS operator. It would interesting

to see how the graphs and the corresponding R-vertex should generalise.



Chapter 4

Scattering amplitudes: the

six-point NMHV amplitude

This chapter is based on the paper ‘Boostrapping correlation functions in N = 4 SYM ’

by D.Chicherin, R.D, B. Eden, P. Heslop, G.P. Korchemsky and E. Sokatchev [55]. In

particular, we will review section 4 from that paper.

Much effort has been made in understanding and developing computational as well

as conceptual progress in scattering amplitudes in planar N = 4 SYM. We developed

much of the basic construction in section 3.1.1, and in this chapter we will be solely

interested in the simplest possible nilpotent superamplitude, which is the NMHV am-

plitude at n-points in planar N = 4 SYM. We recall the result from section 3.3, as

Â(0)
n;1 =

∑

i<j

∫
ds1ds2ds3ds4

s1s2s3s4

δ4|4 (Z∗ + s1Zi−1 + s2Zj−1 + s3Zj−1 + s4Zj) . (4.0.1)

The main result of the present chapter is to write a different representation of Â(0)
6;1

in (4.0.1) which manifests as much information about the physical pole structure and

dual superconformal symmetry as possible.

The current representation in (4.0.1) is manifestly dual superconformal invariant

(as we shall show). The only poles that appear in this result are bosonic and come in

two types. Firstly there are the so-called physical poles which have the form

〈zi−1zizj−1zj〉 = εABCDz
A
i−1z

B
i z

C
j−1z

D
j , (4.0.2)

using the twistor notation in (2.2.54). We also have non-physical poles which are simply

poles not of the form in (4.0.2). Non-physical poles are spurious which means that over

82
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Zi−1

Zi

Zj−1

Zj

Rij =

Figure 4.1: A single graphical contribution to the n-point NHMV amplitude.

the complete sum in (4.0.1), they will vanish to reveal a result which only contains

physical poles. In this way, one may regard the required physical pole structure as

being an emergent property in this formalism. In the current chapter we would like to

find a different representation for Â(0)
6;1 that will manifest half of the dual superconformal

symmetry whilst possessing physical poles only.

An addition, we will also find that the result is remarkably compact. It contains a

single non-trivial term plus its dihedral permutations.

To get there, we will begin by familiarising ourselves with the result in (4.0.1) by

deriving it from the twistor Feynman rules in (3.2.57). We shall highlight some of the

basic properties of this class of superamplitude. We will develop the new but related

basis for the result and we will proceed to give the result at six points.

4.1 Review

In this section we will review the construction of the n-point NMHV scattering am-

plitudes from the on-shell twistor Feynman rules studied in the previous chapter and

given by (3.2.46) and (3.2.47b). We will also briefly explain some of the basic prop-

erties related to superconformal symmetry, identities between R-invariants in (4.0.1)

and the singularity structure of the result.

4.1.1 Derivation from twistors

A single graphical contribution to the n-point NMHV superamplitude is given by fig-

ure 4.1. Using (3.2.57), we find the result in terms of dual twistors (with color structure
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given by tr (T 1T 2 . . . T n), but stripped away from here on out):

Rij =

∫
du

u

dv

v
∆ (Z(u),Z∗,Z(v)) , (4.1.3)

where Z(u) = Zi−1 + uZi and Z(v) = Zj−1 + vZj, and also

∆ (Z1,Z∗,Z2) =

∫
ds

s

dt

t
δ4|4 (sZ1 + tZ2 + Z∗) . (4.1.4)

To simplify the situation we perform the change of integration, namely in defining

x = su and y = tv, thus gaining du = (dx+ uds) u
x

and dv = (dy + vdt) v
y
, in which

we find

Rij =

∫
dx

x

dy

y

ds

s

dt

t
δ4|4 (sZi−1 + xZi + tZj−1 + yZj + Z∗) . (4.1.5)

As we have previously observed, we have four bosonic delta functions against four

bosonic integrations, hence we expect to be left with a four dimensional fermionic

delta function only. Using standard delta function manipulations, we find

δ4 (szi−1 + xzi + tzj−1 + yzj + z∗) =
1

〈zi−1zizj−1zj〉

× δ
(
s− 〈zizj−1zjz∗〉
〈zi−1zizj−1zj〉

)
δ

(
x− 〈z∗zi−1zj−1zj〉
〈zi−1zizj−1zj〉

)

δ

(
t− 〈zi−1zizjz∗〉
〈zi−1zizj−1zj〉

)
δ

(
y − 〈z∗zi−1zizj−1〉
〈zi−1zizj−1zj〉

)
. (4.1.6)

Putting this back in (4.1.5), results in

Rij =
δ0|4 (〈i− 1 i j − 1 j〉χ∗ + cyclici−1ij−1j∗

)

〈i− 1 i j − 1 j〉 〈i j − 1 j ∗〉 〈j − 1 j ∗ i− 1〉 〈j ∗ i− 1 i〉 〈∗ i− 1 i j − 1〉 ,

(4.1.7)

where we are using the shorthand 〈ijkl〉 = 〈zizjzkzl〉.
The Z∗ is the reference supertwistor and is the gauge parameter as explained be-

low (3.2.46). The sum of all contributing terms in (4.0.1) is independent of Z∗. We

may therefore set it to one of the external data points. Given Rij, if we set Z∗ to one

of the other points in (4.1.7), for example setting Z∗ = Zi−1 makes (4.1.7) linear in

zero (the numerator being fourth order, whilst the denominator is third order). This

holds true when taking any of the five supertwistors making up (4.1.7) to be collinear.

The full n-point NMHV amplitude is therefore written as

An;1 =
δ(4)(P )δ8(Q)

〈12〉 〈23〉 . . . 〈n1〉
∑

i<j

Rij, (4.1.8)

where we recall the pre-factor from our discussion in (3.1.25), as well as the summation

existing for non-zero contributions.
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4.1.2 Properties

We would like to review some important properties of the n-point NMHV amplitude.

We will discuss aspects of the superconformal invariance, identities and the result

having the correct pole structure despite not manifestly being so.

Q and Q̄ invariance

Following [67], in dual twistor space we can package the supercharges and supercon-

formal charges into the objects

QA
I :=

(
Qα
I , S̄

α̇
I

)
=

n∑

i=1

zAi
∂

∂χIi

Q̄I
A :=

(
Q̄I
α̇, S

I
α

)
=

n∑

i=1

χIi
∂

∂zAi
, (4.1.9)

where the definition of zA and χI are given by (2.2.48),(2.2.49) and (2.2.69). One can

compute the algebra

{
QA
I , Q̄

J
D

}
= δADR

J
I + δJIK

A
D, (4.1.10)

where

RI
J =

n∑

i=1

χIi
∂

∂χJi
and KA

B =
n∑

i=1

zAi
∂

∂zBi
. (4.1.11)

Whilst RI
J is the twistor representation for the internal SU(4) operator, KA

B is a gen-

erator for the conformal algebra. In this subsection we would like to apply the charges

Q and Q̄ to the object Rij and see that we get zero explicitly. We will follow this with

some comments on properties of general superconformal invariance.

For convenience let us take R35 and set Z∗ = Z1. Beginning with QA
I we see that

it will act non-trivially on the numerator of R35, namely QA
I invariance follows from

QA
I

(
〈1234〉χJ5 + cyclic12345

)
=

5∑

i=1

zAi
∂

∂χIi

(
〈1234〉χJ5 + cyclic12345

)

= δJI
(
zA1 〈2345〉+ cyclic12345

)
. (4.1.12)

However, we know that

(
zA1 〈2345〉+ cyclic12345

)
= 0, (4.1.13)
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as this is the Schouten identity. Importantly, it follows that any function whose χ

dependency is through the combination in
(
〈1234〉χJ5 + cyclic12345

)
is Q invariant.

Next we look at Q̄I
A. In this case it is advantageous to go back to the form given

by (4.1.5), in which we find that

Q̄I
AR35 =

5∑

i=1

χIi

∫
dx

x

dy

y

ds

s

dt

t

∂

∂zAi
δ4|4 (sZ2 + xZ3 + tZ4 + yZ5 + Z1) . (4.1.14)

We need to split the delta function into its constituent bosonic and fermionic parts,

whereby we recall the definition of the bosonic delta function1, to get

Q̄I
AR35 ∝

(
sχI2 + xχI3 + tχI4 + yχI5 + χI1

)
δ0|4 (sχ2 + xχ3 + tχ4 + yχ5 + χ1)

= 0, (4.1.15)

since we are multiplying the same Grassmann odd combination by its maximally nilpo-

tent amount. In contrast to the Q case, here we require the χ dependency to be at its

maximal order (of four) since if it had not been then Q̄I
AR35 6= 0.

More generally, Q̄ invariance of both charges required the dimensionality of the even

and odd space to be the same. As noted in [70], the full set of generators associated

to the superconformal group in dual twistors is packaged into the charge

JAB =
∑

i

[
ZAi

∂

∂ZBi
− 1

8
(−1)deg(A)+deg(C)δABZAi

∂

∂ZAi

]
, (4.1.16)

from which the diagonal parts of the algebra annihilate R35 and correspond to gen-

erators the maximal bosonic subalgebra, whilst the off-diagonal parts are Q and Q̄.

It can be shown that there exists a bilocal operator which is a function of JAB , which

also annihilates the amplitude. This turns out to imply Yangian invariance which is a

signature of a powerful integrable structure [70].

In fact, one can essentially build any superconformal invariant of the more general

group SL(m|m) by demanding that the basis is built out of functions of δm|m (
∑n

i=1 siZi).

1δ4 (sz2 + xz3 + tz4 + yz5 + z1) ∼
∫

d4qeiqA(szA2 +xzA3 +tzA4 +yzA5 +zA1 )
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Identities

Let us for the moment define

Rijklm =

∫
dx

x

dy

y

ds

s

dt

t
δ4|4 (sZi + xZj + tZk + yZl + Zm) , (4.1.17)

so that the subscripts now label the supertwistors appearing in the argument of the

delta function. Then given six points labelled i1 . . . i6, we have

Ri1i2i3i4i5 +Ri6i1i2i3i4 +Ri5i6i1i2i3 +Ri4i5i6i1i2 +Ri3i4i5i6i1 +Ri2i3i4i5i6 = 0, (4.1.18)

which is true for any ij labels.

Singularity Structure

Consider the computation of scattering amplitudes from the traditional Feynman dia-

gram approach whereby amplitudes in a Yang-Mills theory are necessarily functions of

momenta and the polarisation vectors. More specifically, we expect poles to only come

from propagators which come in the form of ∼ 1
k2 .

Comparing this to results via the twistor formalism, it is important that the final

result is in terms of 4-brackets of the form 〈i− 1 i j − 1 j〉 ∼ x2
ij. Since these are dual

twistors, there is a correspondence with momenta, namely xµi i+1 = kµi mod n and so

(xi i+1 + xi+1 i+2 + · · ·+ xj−1 j)
µ = xµij = (ki + . . . kj−1)µ . (4.1.19)

So, for any physical scattering process to make sense in the twistor formalism the

pole structure of an amplitude should only come from structures like (4.1.19) and

singularities should only develop in certain cases where for example an external leg

is made to be soft or made to be collinear with another leg. This means that any

non-physical pole (one which is not of the form 〈i− 1 i j − 1 j〉) in An;1 must vanish.

Let us consider this. The six-point NMHV amplitude is given by Â(0)
n;1 =

∑
i<j Rij.

Now, since each Rij is Z∗-dependent, but the sum given in Â(0)
n;1 is Z∗-independent,

we can fix it to a specific external value. However, it is also pertinent to the gauge

invariance of the Â(0)
6;1 that apparent poles involving Z∗ vanish. We can look at the

five-point example:

Â(0)
5;1 = R13 +R14 +R24 +R25 +R35. (4.1.20)
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In setting Z∗ = Z5, R24 is the only surviving term and all the poles are physical.

Instead, let us suppose that we didn’t do this then we would expect the residue of the

pole, for example 〈123∗〉 to vanish. Focussing on this example, we expect

Residue〈123∗〉=0 (R13 +R24) = 0, (4.1.21)

since these are the only R’s in which this pole appears. Focussing on the χ4
1 term, we

find

(R13 +R24)
∣∣
χ4

1
=

χ4
1

〈123∗〉

(
〈23 ∗ 5〉3

〈5123〉 〈3 ∗ 51〉 〈∗512〉 −
〈234∗〉3

〈1234〉 〈34 ∗ 1〉 〈4 ∗ 12〉

)
.

(4.1.22)

Then by using the Schouten identity 〈4512〉 zA∗ + cyclic4512∗ = 0 repetitively on the

constraint 〈123∗〉 = 0, we gain the result in (4.1.21). This illustrates how the residues

of non-physical singularities vanish.

4.2 The six-point NMHV amplitude

We now reach the main purpose of this chapter. In the first subsection we will describe

the basic ingredients whilst in the second subsection we will explain the result.

4.2.1 Constructing a new kind of basis

As given in (3.1.24), the full superamplitude can be written as

An = An;0

(
1 + Ân;1 + · · ·+ Ân;n−4

)
. (4.2.23)

To construct the required invariants let us follow the construction in section 3.1.2.

There we wrote the (Q+ S̄) invariant as In;p (x, y, θ+) = Q8S̄8Jn;p+4 (x, y, θ+).

Similarly for the amplitude, one can invent an invariant In;p, such that

In;p(z, χ) = Q8S̄8Jn,p+4(z, χ), (4.2.24)

where Jn,p+4(z, χ) is a homogeneous polynomial in χ of order 4(p+ 4).

Let us study the maximally nilpotent component first before going the the next-

to-maximally nilpotent component. The maximally nilpotent component of the super-

amplitude is given by Ân;n−4, and thus has p = n − 4. This implies that Jn,n(z, χ) is
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a homogeneous polynomial in χ of order 4n, from which one can only write (where we

use χ4 = δ0|4 (χ))

Jn,n(z, χ) =
n∏

i=1

χ4
i =

n∏

i=1

δ0|4 (χi) . (4.2.25)

Following the invariance under the operators in (4.1.9), we note that the variation

of χI is given by

χI → χ̂I = χI + zAM I
A, (4.2.26)

where M I
A is a 4 by 4 matrix of parameters associated to Qα

I and S̄α̇I . It therefore

follows from (4.2.24) that

In;n−4 =

∫
d16M

n∏

i=1

δ0|4 (χ̂i) . (4.2.27)

Then for all n the result should take the form

Ân;n−4 = f(z)In;n−4, (4.2.28)

and since In;n−4 has homogeneity (+4) at each point, f(z) is required to have homo-

geneity (−4) at each point. 2

Since we have seen the five-point NMHV tree-level amplitude from the basis in (4.1.7),

let us re-observe the result from this point of view. At five-points the result is given by

Â5;1 = R35 =
δ0|4 (〈1234〉χ5 + cyclic12345)

〈1234〉 〈2345〉 〈3451〉 〈4512〉 〈5123〉 , (4.2.29)

and since this result must give R35 = f(z)I5;1, we can identify

f(z) =
1

〈1234〉 〈2345〉 〈3451〉 〈4512〉 〈5123〉 , (4.2.30)

and we require that

I5;1(z, χ) =

∫
d16M

5∏

i=1

δ0|4 (χ̂i) = δ0|4 (〈1234〉χ5 + cyclic12345) . (4.2.31)

2By homogeneity we mean that given a function of supertwistors H(Z1, . . . ,Zn), the function has

homogeneity {a1, . . . , an} at points {1, . . . , n} if H(λ1Z1, . . . , λnZn) = λa11 . . . λann H(Z1, . . . ,Zn).
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To see the equivalence in (4.2.31), we can either simply compute the result at each

component in χis on either side of (4.2.31), or more elegantly we can multiply I5;1 by

the unit insertion

1 =

∫
ds1 . . . ds4δ

4

(
z5 +

4∑

i=1

sizi

)
〈1234〉 , (4.2.32)

from it which it follows that we get (4.1.5) 3.

Let us now investigate a new basis which we can use for the next-to-nilpotent compo-

nent of the superamplitude, namely Ân,n−5. Here, Ân,n−5 is a homogeneous polynomial

in χ of order 4(n − 5). The invariant in (4.2.24) becomes In;n−5 = Q8S̄8Jn,n−1(z, χ)

and therefore Jn,n−1(z, χ) is a homogeneous polynomial in χ of order 4(n − 1). In

comparison with the previous case in (4.2.25), we cannot write a single unique term

as a basis given by the product of all χ4
i . Instead, we need to strip off four units of

Grassmann oddness. This can be accomplished in general by taking derivatives of the

maximally nilpotent case

Jijkl;IJKL(z, χ) =
∂

∂χ̂Ii

∂

∂χ̂Jj

∂

∂χ̂Kk

∂

∂χ̂Ll

∫
d16M

n∏

i=1

δ0|4 (χ̂i) , (4.2.33)

then we have

Iijkl(z, χ) = εIJKLJijkl;IJKL(z, χ) = εIJKL
∂

∂χ̂Ii

∂

∂χ̂Jj

∂

∂χ̂Kk

∂

∂χ̂Ll

∫
d16M

n∏

i=1

δ0|4 (χ̂i) ,

(4.2.34)

and so now we have a new basis relevant for the Ân,n−5 component of the superam-

plitude. We have the freedom to choose the set {i, j, k, l} as we wish and therefore

this is certainly a large but useful basis for the result. A key property is that Iijkl is

3To see this,
∫

ds1 . . . ds4δ
4
(
z5 +

∑4
i=1 sizi

)
〈1234〉 I5;1 can be put on the support of the bosonic

delta function which implies δ0|4 (χ5 + z5M) → δ0|4
(
χ5 −

∑4
i=1 siziM

)
→ δ0|4

(
χ5 +

∑4
i=1 siχi

)
,

where the second implication follows from the support of the fermionic delta functions. This renders

this final delta function as independent of M , in which the remaining M -dependent delta function

integrate to give 〈1234〉4. The result is then

∫
ds1 . . . ds4δ

4

(
z5 +

4∑

i=1

sizi

)
〈1234〉 I5;1 =

∫
ds1 . . . ds4δ

4|4
(
Z5 +

4∑

i=1

siZi
)
〈1234〉5 ,

from which (4.2.31) follows.
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Q invariant by construction but it is no longer Q̄ invariant. Schematically, one can

see this from the fact that the χ derivatives in Iijkl will lower the Grassmann degree

but the result will depend on χ through the function of form
(
〈1234〉χJ5 + cyclic12345

)
.

From the results of (4.1.12) and (4.1.15), we recall that Q invariance requires precisely

the aforementioned χ dependence but Q̄ invariance requires the maximal Grassmann

order in χ which cannot be the case since we have taken derivatives in χ. We take this

moment to recall that by generalising the basis at the expense of Q̄ symmetry we will

be able to find a result for the six-point NMHV scattering amplitude Â6;1 which has

no spurious singularities thus containing manifests physical poles structures.

An important property of Iijkl is that it satisfies the following superconformal Ward

identity

6∑

i=1

zAi Iijkl = 0 . (4.2.35)

To see this, recall that since χ̂Ii = χIi + zAi M
I
A for each i, we also therefore have

∂

∂M I
A

=
n∑

i=1

zAi
∂

∂χ̂Ii
. (4.2.36)

It follows that

n∑

i=1

zAi Iijkl =

∫
d16M

n∑

i=1

zAi
∂

∂χ̂Ii

(
εIJKL

∂

∂χ̂Jj

∂

∂χ̂Kk

∂

∂χ̂Ll

)

=

∫
d16M

∂

∂M I
A

(· · ·) = 0 , (4.2.37)

since M I
A is a fermionic matrix.

So, in this subsection we have established a basis valid for the Ân;n−5 component

of the superamplitude at n-points.

4.2.2 Results

We now turn to the main result of this chapter.

The tree-level six-point NMHV scattering amplitude Â(0)
6;1 has a well known form

which is given by the basis we defined in (4.1.7). Let us use the definition in (4.1.17),

where Rijklm labels the external supertwistors appearing in the argument of the delta

function.
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Namely if we define,

Rijklm =

∫
dx

x

dy

y

ds

s

dt

t
δ4|4 (sZi + xZj + tZk + yZl + Zm) , (4.2.38)

then

Â(0)
6;1 = R23456 +R12456 +R12345, (4.2.39)

which in terms of the new basis defined in (4.2.34) is given by

Â(0)
6;1 =

I1111

〈2345〉〈3456〉〈4562〉〈5623〉〈6234〉 +
I3333

〈4561〉〈5612〉〈6124〉〈1245〉〈2456〉

+
I5555

〈6123〉〈1234〉〈2346〉〈3461〉〈4612〉 .

(4.2.40)

We have shown in section 4.1.2 that these so-called R-invariants possess complete dual

superconformal symmetry. However, they individually come with spurious poles and

we illustrated how such poles should vanish. The new basis defined by Iijkl differs from

the R-invariant by containing half of the dual superconformal symmetry. In this section

we want to give a result for Â(0)
6;1 which is given by a combination of Iijkl from (4.2.34)

whilst always containing manifestly physical poles.

We do this by giving an ansatz for the answer given by

Â(0)
6;1 =

∑6
i,j,k,l=1 cijklIijkl

〈1234〉〈2345〉〈3456〉〈4561〉〈5612〉〈6123〉〈1245〉〈2356〉〈3461〉 , (4.2.41)

The coefficients cijkl are polynomials of the external bosonic twistors and we can find a

general form based on the homogeneity of the rest of the function. Iijkl has homogeneity

(+3) at point {i, j, k, l} and (+4) otherwise, whilst the denominator of (4.2.41) has

homogeneity (+6) at each point. This implies that cijkl must have homogeneity (+3)

at points {i, j, k, l} and (+2) elsewhere. So we would have

cijkl (λ1z1, . . . , λ6z6) = (λ1 . . . λ6)2 λiλjλkλlcijkl (z1, . . . , z6) for λ ∈ C. (4.2.42)

Due to dual conformal invariance we are required to assemble the bosonic twistors in

cijkl into some function of the 4-brackets . Consider the case where {i, j, k, l} are all

different, then four points are occupied with homogeneity (+3), which correspond to

12 twistors. The remaining points are necessarily different to {i, j, k, l}, and since we
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have six points to choose from in total, there are only two remaining points which we

may take homogeneity (+2). The result is the 12 twistors corresponding to {i, j, k, l}
and 2 × (+2) = 4 from points not equal to this set. Thus, we have 16 twistors and

arranged into 4-brackets requires the product of four 4-brackets. If we take {i, j, k, l} to

not all be different, a similar counting argument follows, but as we do this the possible

ways of distributing the points increases and the corresponding ansatz enlarges.

A further consequence of this argument is that since cijkl is built from 4-brackets

which are totally anti-symmetric, ciiii = ciiij = 0 for all possible labels. This is because

it inevitably leads to repeating bosonic twistors in the 4-brackets.

The idea is rather simple, putting these constraints in place we would like to com-

pare our ansatz in (4.2.41) with the known result in (4.2.40). To do this, we give every

possible allowed coefficient cijkl, whilst taking away terms related by the Schouten

identity in (4.1.13).

Explicitly, subject to the aforementioned constraints on cijkl, we want to equate

and solve for cijkl:

Â(0)
6;1 =

I1111

〈2345〉〈3456〉〈4562〉〈5623〉〈6234〉 +
I3333

〈4561〉〈5612〉〈6124〉〈1245〉〈2456〉

+
I5555

〈6123〉〈1234〉〈2346〉〈3461〉〈4612〉

=

∑6
i,j,k,l=1 cijklIijkl

〈1234〉〈2345〉〈3456〉〈4561〉〈5612〉〈6123〉〈1245〉〈2356〉〈3461〉 . (4.2.43)

The problem is itself rather large and as a result we would like to make use of

Mathamatica. The first task is to use the superconformal Ward identity to rewrite all

possible Iijkl in terms of a common basis, for instance in practice one could choose

{I5555, I5556, I5566, I5666, I6666} . (4.2.44)

This is so that in having a common Iijkl basis on either (4.2.43), we only need to

compare the coefficients of the choices in (4.2.44).

A simple example of this identity is found by setting j = k = l = 5 in (4.2.35), and

projecting the result with εBCDAz
B
1 z

C
2 z

D
3 , so that we get

0 = εBCDAz
B
1 z

C
2 z

D
3

6∑

i=1

zAi Ii555

= 〈1234〉 I4555 + 〈1235〉 I5555 + 〈1236〉 I6555, (4.2.45)
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which gives I4555 in terms of I5555 and I6555. An example of a more complicated result

is given by

I1122 =
I5555〈1345〉2〈2345〉2

〈1234〉4 +
2I5556 (〈2345〉〈2346〉〈1345〉2 + 〈1346〉〈2345〉2〈1345〉)

〈1234〉4

+
I5566 (〈1346〉2〈2345〉2 + 4〈1345〉〈1346〉〈2346〉〈2345〉+ 〈1345〉2〈2346〉2)

〈1234〉4

+
2I5666 (〈2345〉〈2346〉〈1346〉2 + 〈1345〉〈2346〉2〈1346〉)

〈1234〉4 +
I6666〈1346〉2〈2346〉2

〈1234〉4 .

(4.2.46)

In rewriting all of the Iijkl’s into a common basis we may regard the resulting Iijkl’s

as a symbolic basis allowing us to work completely bosonically. We simply look at the

coefficients of I5555, I5556, I5566, I5666 and I6666 in (4.2.43) which leads to a large solvable

linear system of equations.

The ansatz for the coefficients cijkl are the allowed coefficients within the criterion

stated earlier with some arbitrary coefficients. We also add up all cyclic permutations

and the parity transformation {1→ 6, 2→ 5, 3→ 4, 4→ 3, 5→ 2, 6→ 1}, which to-

gether make the dihedral group in six elements. We also impose that the all 4-brackets

are physical, namely are of the form 〈i− 1 i j − 1 j〉. Schematically, some terms in

the numerator of (4.2.41) is given by

A
(
I1244〈1346〉〈2346〉〈1245〉2 + I2355〈1345〉〈2356〉2〈1245〉+ . . .

)

+B (I1244〈1234〉〈1245〉〈1346〉〈2456〉+ I2355〈1245〉〈1356〉〈2345〉〈2356〉+ . . . )

+ . . . (4.2.47)

Then we would like to take away any over-counting due to the Schouten identity.

Doing so results in 14 free coefficients.

The main computational exercise is to solve (4.2.43) for the coefficients A,B,C . . . .

There are many solutions with varying levels of simplicity. In defining the ‘simplest’

solution as the one involving the least number of non-trivial terms, we find the remark-

ably compact form for the answer

Â(0)
6;1 =

1

2

I1366

〈1234〉〈1245〉〈1256〉〈2345〉〈3456〉 + dihedral123456 . (4.2.48)

where ‘dihedral’ denote 11 other terms with permuted indices needed to ensure the

invariance of Â(0)
6;1 under the cyclic shift of indices and point reversal. Whilst these

extra terms exists, it’s pleasing that there is only one non-trivial term.
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One of the main consequences of this result is further evidence of the tension be-

tween manifest full dual superconformal invariance and having manifestly physical pole

structure. A similar consequence was also observed in [71].

4.3 Conclusion

In this chapter we set out to generalise the natural basis used for the six-point NMHV

scattering amplitude to Iijkl. The familiar basis is given by Rijklm in (4.2.38) possesses

full dual superconformal symmetry but the Iijkl basis differs from the Rijklm by not

containing Q̄ invariance.

In using Iijkl as a generalisation of the Rijklm basis, we sought out a different

representation of the six-point NMHV amplitude which would manifest the property

of only containing physical poles. The price we pay for this is that the manifest Q̄

symmetry is lost.

From a purely aesthetic point of view it is pleasing that the new result only contains

a single term whilst having an entire set of terms related by the dihedral symmetric

group in six elements.

Looking forward, we can make computational progress by first extending the anal-

ysis to higher points. This may lead to the possibility of finding some structure which

may lead to some predictive power. If this could be established then it would be inter-

esting to look towards a higher level of nilpotence, again with a view towards structure

and predictability.

A useful direction would note that since Iijkl is Q invariant, we should collect

some linear combinations of such objects to produce Q̄ invariants. Thus some linear

combination of these invariants built from Iijkl should produce the amplitude. This

would be a large problem but would lead to a structural understanding.

More conceptually, it would be very useful to understand why there is an appar-

ent tension between the physical pole structure and manifesting all of the symmetries.

Modern approaches like that of the Amplituhedron and the Grassmannian formalism

in [69,25] usually manifest the superconformal properties whilst treating physical poles

as an emergent property. However, it remains true that the Amplituhedron has the

advantage that it has attached geometric meaning to this concept, namely non-physical
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poles are as a result of tessellating the physical space. It appears that to get a result

with manifest physical pole structure we had to give up a basis with manifest Q̄ sym-

metry, it would fruitful to understand this mechanism more precisely. This may lead

to better understanding of the modern geometric methods.



Chapter 5

The superconformal partial wave

This chapter is based on the paper ‘Superconformal partial waves in Grassmannian

field theories ’ by R.D and P. Heslop [72].

Operators in any given superconformal field theory (SCFT) enjoy the associative

relation of the operator product expansion (OPE). The OPE in the context of a SCFT

is the relation between two local operator and a finite sum of infinite dimensional local

operators. The infinite dimensions come from the infinite number of momentum oper-

ators that can be applied to some highest weight state to create descendent operators.

A well known version of an OPE is in the Littlewood-Richardson rule as applied to the

concatenation of finite dimensional representations of su(N).

Here we define a Grassmannian (or more specifically Grm|n(2m|2n)) field theory to

be an analytic superspace whose supergroup is SL(2m|2n), recall section 2.3.2. This

space has the coordinate system

XAB =


 Im|n×m|n XAA′

0n|m×m|n In|m×n|m


 , (5.0.1)

The superconformal partial wave is a basis for four-point supercorrelation functions

which manifests data that arises from the OPE of the constituent operators. The

superconformal partial wave is in general a series expansion which is an eigenfunction

of the quadratic Casimir of the superconformal algabra. Schematically, one has that

DORep
∆,s = CRep

∆,sORep
∆,s , (5.0.2)

where D is the quadratic Casimir operator, ∆ is the conformal dimension, s is the spin,

Rep is the internal representation and CRep
∆,s is the corresponding eigenvalue. One can

97
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then organise the four-point function into so-called superconformal partial waves (each

associated to an operator appearing in the OPE), and these functions are eigenfunctions

with the quadratic Casimir with eigenvalue CRep
∆,s .

For particular correlators of N = 4 SCFT, Dolan and Osborn were able to perform

superconformal partial wave expansions in [77,87]. This was done by making use of the

superconformal Ward identities solved by Nirschl and Osborn in [83] in conjunction

with unitarity and crossing symmetry constraints. Moreover, they pioneered the use

of the superconformal partial wave to extract quantum data in [77,79,80].

In the very recent past, two applications which have enjoyed the use of the super-

conformal partial wave is the computation of three-point structure constants and the

superconformal bootstrap. In the former case, Vieira and Wang used the superconfor-

mal partial wave to find corrections to the structure constants and compared against

novel integrability techniques in [73]. The latter case began famously with the work of

Rattazzi, Rychkov, Tonni and Vichi in [74], where they applied the crossing symmetry

of the correlator of scalars in the conformal partial wave basis to deduce the minimally

required conformal dimension of an operator appearing in the OPE. This leads to a

basic consistency condition of any SCFT, and has been applied to theories with N = 4

superconformal symmetry by Beem, Rastelli and Van Rees in [75] and Alday and Bissi

in [76].

In this chapter, we wish to solve the quadratic Casimir equation for the supercon-

formal partial waves in analytic superspace with superconformal group SL(2m|2n).

Along with solving the quadratic Casimir equation the superconformal partial waves

are superconformal invariant. We therefore express the superconformal partial wave

as a linear combination of superconformal invariants, which turn out to be the Schur

superpolynomial, sµ(x|y). Simply stated, a superconformal partial wave defined by

some representation in sl(2m|2n), can be expanded as

F rep(x|y) =
∑

µ≥0

Rrep
µ sµ(x|y), (5.0.3)

where by ‘solving the quadratic Casimir equation’ amounts to finding the numerical

coefficients Rrep
µ .

After providing a review of the Schur superpolynomial and various pertinent as-

pects of representation theory, we write the superconformal partial waves as a linear
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combination of such superpolynomials in which the non-trivial data are the correspond-

ing coefficients Rrep
µ . The problem of finding Rrep

µ turns out to be dependent on the

representation yet independent of the group. This means that rather than finding Rrep
µ

for sl(2m|2n) for some representation, we can instead solve the problem by consider-

ing the same representation of sl(2m|0) (or sl(0|2n)), we thus avoid dealing with the

superalgbra directly.

We then write the superconformal partial wave in a novel matrix form based on a

form of the Schur superpolynomial.

We then apply the superconformal partial wave to a variety of N = 4 supercor-

relators to find the free theory OPE coefficients (the square of three-point structure

constants). As an application we work through operator recombination of short op-

erators into long ones which yields a non-trivial twist-4 sector for the the four-point

function of tr(W 3) in the SU(N) theory.

5.1 Review

In this review we will go through some basic motivating concepts by first defining

the OPE and how to gain the superconformal partial waves from the four-point func-

tion, whilst giving the basic definition of the bosonic conformal partial wave and some

schematic details of the supersymmetric case as studied in [77,83]. We regard the work

of Dolan and Osborn in [80] and Heslop [81] to be the leading motivating study, hence

some details of that work is provided here.

5.1.1 From the OPE to the four-point function

Given two scalar operators φ1 and φ2 of conformal dimension ∆i in some four dimen-

sional CFT, the OPE is given by [79]

φ1(x1)φ2(x2) =
∑

O

CO∆1∆2

(
1

x2
12

)∆1+∆2−∆
2

C∆;αα̇(x12, ∂2)O∆
αα̇(x2), (5.1.4)

where ∆ is the conformal dimension of operators O in the OPE, there is also the index

structure αα̇ which represents some chain in α and α̇ indices. The object C∆;αα̇(x12, ∂2)

is a formal expansion in xαα̇12 and ∂2αα̇ where the derivatives act on primary operators
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to produce descendent states. Since the OPE is of two scalars the right hand side must

also be an overall scalar and since factors of xαα̇12 and ∂2αα̇ come with equal number

of dotted and undotted indices it follows that the corresponding operator should also

have equal numbers of dotted and undotted indices.

The two- and three-point functions are fixed by conformal symmetry, and thus we

may consider the four-point function. We can take the OPE of the four-point function

at points x1 and x2 and at points x3 and x4 which leads to double sum. However, since

the two-point function can be used an inner product to make operators orthogonal, the

four-point function may be written as

〈φ1(x1)φ2(x2)φ3(x3)φ4(x4)〉

=
1

(x2
12)

1
2

(∆1+∆2)
(x2

34)
1
2

(∆3+∆4)

(
x2

24

x2
14

) 1
2

(∆12)(
x2

14

x2
13

) 1
2

(∆34)∑

O

COFO(u, v), (5.1.5)

where

u =
x2

12x
2
34

x2
24x

2
13

= xz, v =
x2

14x
2
23

x2
24x

2
13

= (1− x)(1− z),

∆ij = ∆i −∆j, (5.1.6)

where u and v are conformal cross-ratios, and the functions FO(u, v) depend on the

operator data of the contributing operator and the data of the external data. We also

have CO which are the so-called OPE coefficients built from the two- and three-point

structure constants. Now, the OPE that is formed by points x1 and x2 goes on to form

the conformal partial wave built from operators which are naturally eigen-operators

of the conformal quadratic Casimir. It therefore follows that each function FO is an

eigenfunction of the conformal quadratic Casimir with a defined eigenvalue dependent

on the data of O, i.e. spin and conformal dimension. In fact, using [80], we can define

the conformal generator as L and take D = 1
2
L2 = 1

2
(L1 + L2)2 to be the quadratic

Casimir. The contribution of an operator with conformal dimension ∆ and spin s,

satisfies the equation:

(D − (∆(∆− 4) + s(s+ 2))) 〈φ1(x1)φ2(x2)φ3(x3)φ4(x4)〉 = 0. (5.1.7)

This leads to a second order differential equation on FO(u, v), which has the solution
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[80]

FO(u, v) =
u
τ
2

x− z

(
x1+s

2F1

(
1

2
(s+ ∆−∆12) ,

1

2
(s+ ∆ + ∆34) ; s+ ∆;x

)

2F1

(
1

2
(−s+ ∆−∆12 − 2) ,

1

2
(−s+ ∆ + ∆34 − 2) ;−s+ ∆− 2; z

)
− (x↔ z)

)
,

(5.1.8)

where 2F1 is a hypergeometric function and τ = ∆ − s is known as the twist. Un-

derstanding this function is critical as this allows one to find corrections to the OPE

coefficients as well as ∆(g), where g is the coupling of the theory.

A motivating feature of the work in [80,81] is that (5.1.8) is in fact a re-summed

form of an infinite linear combination of Schur polynomials. In practice, the authors

of [80] write an ansatz for the conformal partial wave

Fλ1λ2 =
∑

m≥λ1,n≥λ2

rλ1λ2
mn smn, (5.1.9)

where λ1 = 1
2

(∆ + s) and λ2 = 1
2

(∆− s). Then upon acting D upon Fλ1,λ2 , it acts

upon the Schur polynomials. In imposing the eigenvalue equation in (5.1.7) for Fλ1,λ2 ,

one finds a recursion relation on rλ1λ2
mn , in which a solution is found. Thus one has

the conformal partial wave as a series expansion in the Schur polynomial which turns

out to be the series expansion of (5.1.8). We will re-derive this result in view of more

general superpolynomials relevant towards SCFTs.

5.1.2 Towards superconformal partial waves

The content of this chapter is to find the superconformal partial wave in a polynomial

form which we then sum up into an analytic form.

In this subsection we provide some key points regarding previous successes in this

direction. There are two main result which are related, the first of which is a general

superconformal partial wave analysis found in [77]. The second result involves solving

the superconformal partial wave so that the result is dependent on two non-trivial func-

tions, one of which is completely associated to the contribution of protected operators

to the OPE [83].
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The first of the aforementioned works considers the four-point function of the six

dimensional vector of scalar operators in N = 4 SCFT

〈
ΦI1(x1)ΦI2(x2)ΦI3(x3)ΦI4(x4)

〉
=

1

x2
12x

2
34

∑

rep

Arep(u, v)P I1I2I3I4
rep , (5.1.10)

where P I1I2I3I4
rep are projection operators which form the six SU(4) channels from the

internal structure of ΦI1 × ΦI2 , whilst Arep(u, v) are associated space-time functions.

For the stress-tensor supermultiplet the constraints following superconformal symmetry

allows in conjunction with the OPE yields a form for the functions Arep(u, v).

The work of [83] aimed to solve the superconformal partial wave in a very general

way. It begins by essentially projecting the operators above to an index-less form,

namely by taking Φ = ΦI1YI1 , then writing the result in (5.1.10), one finds

〈Φ(x1)Φ(x2)Φ(x3)Φ(x4)〉 =
1

x2
12x

2
34

∑

rep

Arep(u, v)P I1I2I3I4
rep Y1,I1Y2,I2Y3,I3Y4,I4 , (5.1.11)

and by defining

αᾱ =
Y1 · Y3Y2 · Y4

Y1 · Y2Y3 · Y4

, (1− α)(1− ᾱ) =
Y1 · Y4Y2 · Y3

Y1 · Y2Y3 · Y4

q = 2α− 1, q̄ = 2ᾱ− 1

r =
2

x
− 1, r̄ =

2

z
− 1, (5.1.12)

where Yi ·Yj is the Euclidean inner product of the six dimensional vectors, the authors

of [83] found that

∑

rep

Arep(u, v)P I1I2I3I4
rep =− k +

(q − r)(q̄ − r̄) (f(r, q̄) + f(r̄, q))− (r ↔ r̄)

(r − r̄) (q − q̄)

+ (q − r)(q − r̄)(q̄ − r)(q̄ − r̄)H (q, q̄, r, r̄) . (5.1.13)

Where here, the functions f(•, •) depend on the protected operators traversing through

the OPE and the function H (q, q̄, r, r̄) contains contributions to from protected and

unprotected operators. Importantly, H (q, q̄, r, r̄) is the only relevant function when

looking for quantum corrections to correlation functions, thus this is the relevant part

of the answer when bootstrapping the correlation function. This is since all other

parts of the result are found from the free theory. This result was also encapsulated

in the partial non-renormalisation theorem studied in [78], where such a protected and

unprotected sector where found.
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In N = 4 SCFT, 1
2
-BPS are built from powers of the Φ. Calling Op = tr (Φp), the

work of [87] completed the superconformal partial wave analysis for 〈O2O2O2O2〉,
〈O3O3O3O3〉 and 〈O4O4O4O4〉 by finding the functions f(•, •) and H (q, q̄, r, r̄). We

aim to recapture some of these results.

5.2 Aspects of representation theory

In this section we will define operators as representations on the so-called Grassmannian

superspace. We will begin by giving some basic concepts and in particular showing

relevant Young tableaux for the first time. We will then move onto protected and

unprotected operator classification and potential operator recombination of protected

operators into unprotected operators and how the Young tableaux are used with these

concepts.

5.2.1 Operator Spectra in Grassmannian superspace

Grassmannian superspace is defined to be a natural extension of analytic superspace

defined in section 2.3.2, namely we define Grassmannian superspace to be a (2n, n, n)-

analytic superspace. The Dynkin diagram is given by

n1 . . .t nm nm+1d nm+nt n1+2n

•
. . .

•
. . .

×
nm+2nt . . . n2m+2n−1d t

(5.2.14)

Importantly, above the Dynkin nodes we have the Dynkin labels which determine

irreducible representations of sl(2m|2n). However, since we have a cross through the

(m+n)’th node, we really need to consider irreducible representations of sl(m|n) ⊕
sl(m|n)⊕C. Whilst it is true that for SCFTs, we are interested in infinite dimensional

representations of sl(2m|2n), we only seek finite dimensional representations of the

parabolic subalgebra. The parabolic subalgebra contains sl(m|n) ⊕ sl(m|n) ⊕ C as

well as the raising operators (which annihilate all highest weight states), thus highest

weight state representations are given by finite dimensional representations of sl(m|n)⊕
sl(m|n)⊕C. We also note that the internal groups is SU(2n), so that C-charge is related

to the conformal dimension.
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m

n
λT1

λT2

λT3 =λT4

λT5

λT6 =λT7

λT8 =..=λT11

λT12=λT13

λT14=..=λT17

λT18=..=λT20

λ1λ2λ3λ4λ5λ6λ7λ8λ9

Figure 5.1: A general Young tableau associated to gl(m|n)

In this work we will actually consider representations of gl(m|n) ⊕ gl(m|n) ⊕ C,

since these will be more natural in view of Schur polynomials. The price that we have

to pay for using gl(m|n) is that there will exist different representations of gl(m|n) that

correspond to the same sl(m|n).

Recalling from section 2.3.2, tensor representations in this space are given by

OR(A)R′(B′), (5.2.15)

where R are representations of one of the gl(m|n). In the work that follows we will

be dealing with OPEs of multiplets whose superconformal primaries are scalars, which

here means we will only be concerned with operators which in the aforementioned

tensor structure implies that we have R = R′. This means that it is sufficient to give

the representation of a single gl(m|n) and the charge C.

We will be making use of Young tableaux in this chapter. We define representations

of gl(m|n) by the vector

λ = [λ1, λ2, . . . ], (5.2.16)

where λi is the number of boxes in the i’th row. We define the transpose representation

λT = [λT1 , λ
T
2 , . . . ] to be defined by the heights of the column of the Young tableaux,

e.g. [3, 2, 1, 1] = [4, 2, 1]T .

Representations of gl(m|n) are given by all Young tableaux that fit into a thick

hook tableau with thickness m horizontally and n vertically and an example is given

in figure 5.1.

We define the charge associated to C to be γ, such that we may now refer to a
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generic representation as Oγλ. The operator Oγλ defines a representation of gl(2m|2n)

and thus of sl(2m|2n) and in turn then of the real form su(m,m|2n).

Representations of su(m,m|2n) are thus given via Dynkin labels associated to the

su(2n), sl(m)⊕ sl(m) and the charge. The Dynkin nodes are given by

su(2n) : [a1, . . . , a2n−1]

sl(m)⊕ sl(m) :
[
jL1 , . . . , j

L
m−1; jR1 , . . . , j

R
m−1

]
, (5.2.17)

and the dilatation weight ∆ (weight under x→ λx as usual). The translation between

the labels of the operator then Oγλ and the corresponding representation is given by

ai = an−1−i = λTn−i − λTn−i+1 for 1 ≤ i ≤ n−1,

an = γ − 2λT1 ,

ji = jLi = jRi = λ̂m−i − λ̂m−i+1 for 1 ≤ i ≤ m−1,

∆ =
m

2
γ +

m−1∑

i=1

ji , (5.2.18)

where we defined

λ̂i :=





λi − n if λi ≥ n

0 if λi < n
(5.2.19)

In the work that follows we will be considering operators as certain powers of a basic

field whose representation is called W and has an = 1, ∆ = m/2 with all other Dynkin

labels vanishing. In this way, γ is the number of these basic field in an operator, for

example O2λ=[0] ∼ tr(W 2).

This translation in (5.2.18) can be obtained by considering the highest weight states,

and this is explained in [28]. Let us describe schematically how this comes about, we

can look at the Young tableaux associated to sl(2) and gl(2). Representations are given

by single row Young tableaux in sl(2), which we label as M (which is the essentially

the number of boxes in that row). However, Young tableaux associated to gl(2) are

allowed two rows and we can relate this to the sl(2) representations by taking the

difference of the two rows to be M , namely if λ = [λ1, λ2] is a representation of gl(2)

then M = λ1−λ2 is a representation of sl(2). In this case, the degeneracy is manifested

by the freedom λi → λi + µ, where µ is some constant number. In [28], this was fixed

to yield so-called ‘canonical representations’.
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We can now consider the degeneracy in our description of operators Oγλ mentioned

above. The vanishing supertrace of sl(m|n) distinguishes it from gl(m|n), thus there

is a single degree of freedom more in the latter with (m + n) than the former with

(m + n − 1). This is manifested by some degeneracy in (5.2.18). Indeed we see that

the relations (5.2.18) are invariant under the following shift:

(if λm ≥ n+ 1) (if λTn ≥ m+ 1)

λi → λi − 1, for 1 ≤ i ≤ m λTi → λTi − 1, for 1 ≤ i ≤ n

λTi → λTi + 1, for 1 ≤ i ≤ n λi → λi + 1, for 1 ≤ i ≤ m

γ → γ + 2 γ → γ − 2 . (5.2.20)

The above transformations are also valid as they stand in the two bosonic cases m = 0

or n = 0. For n = 0 the condition λTn ≥ m + 1 does not make immediate sense and is

interpreted as always being satisfied for any Young tableau. Then the transformation

adds columns to the Young tableau in favour of reducing γ. One possibility is to use

this freedom to ensure that γ = 0. This then corresponds precisely to the form chosen

in [80]. Similarly in the case m = 0 we can ensure that γ = 0. However for general m

and n, we do not perform this transformation to change γ as we would like to keep the

direct connection between γ and the number of basic fields W .

Finally, let us define the notion of atypicality. This quantity is defined to be

k = min {j|λj +m− n− j < 0} , (5.2.21)

and distinguishes different Young tableaux and is pertinent towards the definition of

the associated Schur superpolynomials. If k = m + 1, then the Young tableau in

question is referred to as ‘typical’, otherwise it is referred to as ‘atypical’. We can also

define k′ = min
{
j|λTj + n−m− j < 0

}
, in which the typical representations are given

by k′ = n+ 1.

In the physical context the measure of atypicality distinguishes short from long

operators, typical representations being long and thus have a completely unconstrained

expansion in superspace whilst atypical representations are short and have a shortened

expansion in superspace.
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5.2.2 Operator protection and Unitary bounds

Let us now return to the cases of physical interest, namely four dimensional SCFTs.

Here, the Dynkin diagram takes the form

n1t n2 n3d n2+nt n2n+1

•
. . .

•
. . .

×
n2n+2t n2n+3d t

(5.2.22)

We also recall the relation to the physical SCFT data

n1 = 2J1, n2n+3 = 2J2, ni+2 = ai,

n2 =
1

2
∆ + J1 +

1

2n

2n−1∑

i=1

iai −
2n−1∑

i=1

ai, n2n+2 =
1

2
∆ + J2 −

1

2n

2n−1∑

i=1

iai, (5.2.23)

where [a1, . . . , a2n−1] are the Dynkin labels for the representation associated to the

internal algebra su(2n) and (J1, J2) is the spin. The physically known cases are n = 1

and 2 which correspond to N = 2 and 4 SCFTs.

We will be interested in operators which have the same gl(2|2n) representation. In

terms of (5.2.23), this implies that

J1 = J2 and
2n−1∑

i=1

(i− n) ai = 0. (5.2.24)

The second condition is satisfied manifestly for n = 1 without putting any condition

on a1, but for n = 2 this sets a1 = a3.

In extended supersymmetry, the supercharges enlarge in size. Shortened represen-

tation are a result of some form of operator protection. There are essentially two cases

of interest for protected operators, these are the fractional BPS operators and semi-

short operators. Operators which are not bound by any constraint are unprotected

and are thus long. A detailed analysis relevant to four dimensions can be found in [11],

we provide a qualitative description whist expressing the precise statement in terms of

Dynkin labels.

If the internal group is SU(2n), then the there are 4n total supercharges. Then

p
q
-BPS operators are those which are annihilated by p

q
× 4n of the supercharges. More

generally we can label these by
(
p1

q1
, p2

q2

)
-BPS corresponding to annihilation under Q

and Q̄ separately. However, since we are interested in operators with the same gl(2|n)

representations in the parabolic subalgebra, we take p
q

= p1

q1
= p2

q2
. In the N = 2

case this corresponds to only having 1
2
-BPS operators, whilst for N = 4 we can have
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1
2

and as well 1
4
-BPS operators. In the semi-short case one has instead annihilation

under a certain linear combination of the supercharges which correspond to the so-

called unitary bound at which unprotected operators become protected. Importantly,

unprotected operators may decompose into protected operators as they approach this

unitary bound.

The so-called unitary bounds were given in [82] and in the language of Dynkin nodes

in [28], they state that all operators in four dimensional SCFTs of our description with

internal group SU(2n) can be fit into the bounds:

Series A : n2 ≥ n1 + 1, n2n+2 ≥ n2n+3 + 1

Series B : n2 ≥ n1 + 1, n2n+2 = 0, n2n+3 = 0

Series C : n2 = 0, n1 = 0, n2n+2 = 0, n2n+3 = 0 (5.2.25)

When (5.2.24) is satisfied, which occurs when n1 = n2n+3, it’s clear that series B

operators won’t ever appear in our analyses. Thus, in terms of (5.2.25), operators in

series A are above the bound are generically unprotected and are long, operators at

the bound of series A and series C operators are semi-short and BPS operators which

are protected and are short.

The notion of protectedness is connected with the notion of atypicality in the cor-

responding Young tableaux mentioned in (5.2.21). To see this we apply the definition

in (5.2.18) and match this against the definition of atypicality, we consider N = 4

SCFTs for simplicity. Following (5.2.18), we have

jL1 = jR1 = n1 = n7 = λ̂1 − λ̂2

= λ1 − λ2 if λ1, λ2 ≥ 2 or

= λ1 − 2 if λ1 ≥ 2, λ2 < 2, (5.2.26)

and using (5.2.23), we get

n2 − n1 = λT2 , (5.2.27)

thus the protectedness of the operator in question is dictated by the length of the

second column in the Young tableau. We can now compare the definition of atypicality

given in (5.2.21), with the fact that n2 − n1 = λT2 . The unprotected case is when
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n2 > n1 + 1 =⇒ λT2 ≥ 2, which requires at least λ2 ≥ 2 which leads to k = 3. The

semi-short case is when n2 = n1 + 1 =⇒ λT2 = 1, which leads to k = 2. Finally, the

BPS cases are given by n1 = 0, n2 = 0 =⇒ λT2 = 0 and this leads to k = 1. A similar

analysis can be done for N = 2 theories.

Indeed the measure of atypicality extends beyond the physical SCFTs and is a

general representation theory concept of gl(m|n), which we will touch upon in regards

to Schur superpolynomials. We provide tables relating Young tableaux and operators

in a four dimensional N = 0 CFT (n = 0), N = 2 and N = 4 SCFTs in tables 5.1,5.2

and 5.3. In tables 5.2 and 5.3, in which we deal with SCFTs the Young tableaux

associated to typical representations are referred to as unprotected and long whilst

atypical representations protected and short.

λ dimension spin

[λ1, λ2] γ + λ1 + λ2 λ1 − λ2

Table 5.1: 4d CFT reps

λ dimension spin su(2) rep multiplet

[0] γ 0 γ 1
2
-BPS

[λ] (λ ≥ 1) γ+λ−1 λ−1 γ − 2 semi-short

[λ1, λ2, 1
µ] (λ2 ≥ 1) γ+λ1+λ2−2 λ1−λ2 γ−2µ− 4 long

Table 5.2: N = 2 SCFT reps

λ dimension spin su(4) rep multiplet

[0] γ 0 [0, γ, 0] 1
2
-BPS

[λ, 1µ] (λ ≥ 2) γ+λ−2 λ−2 [µ, γ−2µ−2, µ] semi-short

[1µ] γ 0 [µ, γ−2µ, µ] 1
4
-BPS

[λ1, λ2, 2
µ2 , 1µ1 ] γ+λ1+λ2−4 λ1−λ2 [µ1−µ2, γ−2µ1 − 4, µ1−µ2] long

(λ2 ≥ 0)

Table 5.3: N = 4 SCFT reps
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5.2.3 The Schur Superpolynomial of GL(m|n)

In the work to follow we will be extensively using Schur superpolynomials as a basis for

the superconformal partial wave. Since these are intimately connected with the Young

tableaux described previously we review these objects here.

Schur polynomials of GL(m)

Given a partition λ = [λ1, λ2, . . . , λm] with λ1 ≥ λ2 ≥ · · · ≥ λm, the corresponding

Schur polynomial is the symmetric polynomial of m variables xi, i = 1 . . .m, given by

sλ(x) =
det
(
x
λj+m−j
i

)
1≤i,j≤m

det
(
xm−ji

)
1≤i,j≤m

. (5.2.28)

The Schur polynomial is the character of the corresponding GL(m) representation

described by a Young tableau with row lengths λi. In particular, the Schur polynomial

is the trace over the representation Rλ of an element Z ∈ GL(m) written as a function

of the m eigenvalues xi of Z,

sλ(x) = tr (Rλ(Z)) . (5.2.29)

A GL(m) Schur polynomial containing a full, length m, column is equal to the

Schur polynomial with that column deleted, multiplied by the product of all x’s:

s[λ+δ](x) =

(
m∏

i=1

xi

)δ

× s[λ](x), (5.2.30)

where [λ+ δ] := [λ1 + δ, λ2 + δ, . . . ].

For example for GL(2) the fundamental representation has character tr(Z) = x1+x2

in agreement with the formula above for λ = [1]. As another example, again for GL(2),

consider λ = [1, 1] corresponding to the antisymmetric representation. The trace over

the representation gives

tr
(
R (Z)

)
= Z

[i
i Z

j]
j =

1

2

(
tr(Z)2 − tr(Z2)

)
= x1x2, (5.2.31)

and the Schur polynomial formula (5.2.28) gives the same result s[1,1](x) = x1x2.
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Schur superpolynomials of GL(m|n)

We define the Schur superpolynomial as the characters of the supergroup GL(m|n) just

as in (5.2.29) but this time using the supertrace

sλ(x|y) = str (Rλ(Z)) , (5.2.32)

where we define the eigenvalues of g ∈ GL(m|n) to be xi|yj i = 1 . . .m, j = 1 . . . n. Thus

for example for the fundamental representation the character is simply the supertrace

of g so s[1](x|y) = str(Z) =
∑

i xi−
∑

j yj with the minus sign due to the nature of the

supertrace.

In 2003 Moens and Van der Jeugt wrote down a remarkable determinantal formula

for the Schur superpolynomials [84]. This formula is the analogue of the determinantal

formula (5.2.28) for the standard Schur polynomials and takes the form of a (n+ k −
1)× (n+ k − 1) determinant 1

sλ(x|y) = (−1)(n−1)(m+(k−1)+n/2)D−1 det


 Xλ R

0 YλT


 , (5.2.33)

where

Xλ =
(
x
λj+m−n−j
i

)
1≤i≤m

1≤j≤k−1

R =

(
1

xi − yj

)

1≤i≤m, 1≤j≤n

YλT =
(

(−yj)λ
T
i +n−m−i

)
1≤i≤n−m+k−1

1≤j≤n
D =

∏
1≤i<j≤m(xi − xj)

∏
1≤i<j≤n(yi − yj)∏

1≤i≤m, 1≤j≤n(xi − yj)
,

(5.2.34)

where k is the atypicality which we restate as k = min {j|λj +m− n− j < 0}.
There exists a form of the Schur superpolynomial in which the Y -part of (5.2.33)

is instead fixed and does not depend on the representation. In [72], it was shown that

given any integer p such that

p ≥ m− n and p ≥ λT1 . (5.2.35)

1The minus signs here agree with those of [84] after sending yj → −yj (bringing a (−1)n(n−1)/2

from D) and swapping the columns so that R appears in the top left block.
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m

n

λx
λy

Figure 5.2: An example of a typical Young tableau associated to gl(m|n)

Then a different formula is given by

sλ(x|y) = (−1)
1
2

(2m+2p+n)(n−1)D−1 det


 X̃λ R

Kλ Y


 , (5.2.36)

where D,R are as defined in (5.2.34), and

X̃λ =
(

[x
λj+m−n−j
i ]

)
1≤i≤m
1≤j≤p

where [xai ] :=





xai a ≥ 0

0 a < 0 ,

Kλ =
(
− δi;−(λj+m−n−j)

)
1≤i≤p+n−m

1≤j≤p
Y =

(
yi−1
j

)
1≤i≤p+n−m

1≤j≤n
, (5.2.37)

where the square brackets define the regular part, giving zero if the power is negative.

We also see that whilst this form relieves Y of being representation dependent, we

have introduced a matrix of −1s and 0s; K, which does depend on the representation.

When we sum up the superconformal partial wave to gain an analytic form, it will be

built out of this form.

5.2.4 Schur superpolynomial relations and decompositions of

typical representations

In supergroups, representations occur as typical or atypical representations. Typical

representations of gl(m|n) are ones for which the atypicality measure k = m + 1 and

so the first m rows and first n columns are fully occupied and λm ≥ n, (λT )n ≥ m.

An example of such a representation is given by figure 5.2. In this example the m× n
block is bounded in red. If one deleted this block we would be left with two Young

tableaux, one which we call λx and the other λy. So the full Young tableau is given in
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terms of λx and λy as

λ = [λx + n, λy], (5.2.38)

where by λx + n we simply mean add n to each row. Using the form of the Schur

superpolynomial in (5.2.33), we see that the matrix becomes block diagonal with Xλ

being m×m and YλT being n× n from which we see that for λ in figure 5.2 we have

sλ(x|y) = sλx(x)sλTy (−y)×
∏

1≤i≤m, 1≤j≤n

(xi − yj), (5.2.39)

where sλx(x) and sλy(−y) are bosonic Schur polynomials. Since for these forms we have

sλx(x) = s[λx+δ](x) (
∏m

i=1 xi)
−δ

and sλy(−y) = s[λy+δ](−y) (
∏n

i=1−yi)
−δ

. It follows that

s[λx+n,λy]
=

( ∏m
i=1 xi∏n
i=1−yi

)δ
s[λx−δ+n,nδ,λy]

, (5.2.40)

Another important identity among the Schur superpolynomials is one which manifest

the decomposition of typical representations into two atypical representations. More

specifically, the sum of atypical representations with k = m can sum to a factorised

form. Let λx be an m − 1 row Young tableau and similarly let λTy be an n − 1 row

Young tableau. Then consider the three gl(m|n) Young tableaux λ, λ1, λ2 with λ the

typical representation defined in (5.2.38) and λ1, λ2 the two atypical Young tableaux

λ1 = [λx + (n−1), n−1, λy],

λ2 = [λx + n, λy],

λ = [λx + n, n, λy] . (5.2.41)

Then we have
(

m∏

i=1

xi

)
× sλ1

(x|y) +

(
n∏

j=1

−yj
)
× sλ2

(x|y) = sλ(x|y). (5.2.42)

We will use this relation extensively as an application to N = 4 so let us elaborate

on how it works by virtue of an example. The minimal example is taking (m,n) = (2, 2)

and λx = λy = 0 so that we have

s[2,2](x|y) = (x1x2)s[1,1](x|y) + (y1y2)s[2](x|y)

= (x1x2) + (y1y2) , (5.2.43)
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which can be checked and if we divide through by (x1x2), we therefore have

1

(x1x2)
s[2,2](x|y) = s[1,1](x|y) +

(
y1y2

x1x2

)
s[2](x|y),

but since 1
(x1x2)

s[2,2](x|y) = limρ→1 s[ρ,ρ](x|y), we can write

lim
ρ→1

s[ρ,ρ](x|y) = s[1,1](x|y) +

(
y1y2

x1x2

)
s[2](x|y), (5.2.44)

where s[ρ,ρ](x|y) is taken to be a typical representation i.e. k = 3. The limit is

understood for arbitrary real ρ via an analytic continuation of the results for the long

representations ρ = 2, 3, 4, . . . ,etc.

From the point of view of protected and unprotected operators, we can view

the limit as taking an unprotected operator to the unitary bound. Results of the

form (5.2.44) generalise to

lim
ρ→1

s[λ+ρ,ρ,1ν ](x|y) = s[λ+1,1ν+1](x|y) +

(
y1y2

x1x2

)
s[λ+2,1ν ](x|y), (5.2.45)

which are a 2-parameter family of identities parametrised by λ and ν.

5.3 The superconformal partial wave in Grassman-

nian field theories

In this section we consider four-point functions of scalar operators of arbitrary weight on

the Grassmannian and in particular obtain the superconformal partial wave associated

with any operator occurring in the OPE of two of them. We will obtain explicit

formulae for the partial waves, both as an expansion in Schur superpolynomials with

given coefficients, and in a summed up form.

We remind the reader that coordinates on Grassmannian field theories are given by

XAB′ =


 xαα̇ ρaα

ρ̄α̇a′ y a
a′


 , (5.3.46)

where x is an m ×m matrix, y is an n × n matrix, ρ is an m × n matrix and ρ̄ is an

n×m matrix.
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5.3.1 The OPE and its relation to an expansion in Schur poly-

nomials

Here, we examine the connection between the OPE and superconformal partial waves

of four-point functions in a general Grm|n(2m|2n) field theory. We take the OPE of two

scalar operators, Op1 ,Op2 with arbitrary integer weight p1, p2. In the N = 4 context

this corresponds to taking two 1
2
-BPS operators with dimension pi and lying in the

SU(4) representation with Dynkin labels [0, pi, 0].

The OPE takes the general form [89]

Op1(X1)Op2(X2) =
∑

O

COp1p2
g
p1+p2−γ

2
12 Cγ,λ;AA′(X12, ∂2)Oγλ

AA′
(X2),

γ = |p21|, |p21|+ 2, . . . , p1 + p2 , (5.3.47)

where we define pij = pi − pj and where

gij = sdet(Xi −Xj)
−1 (5.3.48)

which becomes the superpropagator in the physical cases where m = 2. Here the sum

is over all superconformal primary operators in the theory. The index structure A and

A′ is a string of superindices dictated by the representation of O.

The object Cγ,λ;AA′(X12, ∂2) is a formal expansion in powers of XAA′
12 and derivatives

(∂/∂X2)AA′ which act on the primary operator (thus producing descendant operators).

It takes the form

Cγ,λ;AA′(X12, ∂2)Oγλ
AA′

(X2) =
∑

µ≥λ

Cγλ
µ

(
X
|µ|
12

)BB′[
∂
|µ|−|λ|
2 Oγλ

]
BB′

, (5.3.49)

where the sum is over all Young tableaux µ which contain λ, where |µ| =
∑

i µi the

number of boxes in the Young tableau µ. There are |µ| powers of X12 and both

primed and unprimed indices are symmetrised into the representation µ according to

the Young tableau. B and B′ denote the correspondingly symmetrised string of indices.

Descendent operators are built from O and its derivatives which yield a total of |µ|
primed and unprimed downstairs indices with B, B′ index structure. Since the left

hand side is a scalar, the right hand side must have all indices contracted.

The first term in this expansion is always normalised to one

Cγλ
λ = 1, (5.3.50)
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whilst the remaining coefficients will be fixed by symmetry.

To obtain the contribution of operators to the four-point function, we insert the

OPE into the four-point function twice (once at points X1, X2 and once at points X3,

X4) and use the two-point functions which is also fixed by symmetry to be 2

〈Oγλ
AA′

(X1)Õγλ
BB′

(X2)〉 = COÕ g
γ
12(X

−|λ|
12 )A′B(X

−|λ|
12 )B′A, (5.3.51)

from which we obtain

〈Op1(X1)Op2(X2)Op3(X3)Op4(X4)〉 =
∑

O,Õ

COp1p2
CÕp3p4

COÕ g
p1+p2−γ

2
12 g

p3+p4−γ
2

34

× Cγ,AA′(X12, ∂2)Cγ,BB′(X34, ∂4)gγ24(X
−|λ|
24 )A′B(X

−|λ|
24 )B′A . (5.3.52)

Here for COÕ to be non-zero, the representations of O and Õ must be the same. In

particular γ takes on values appearing both in the range for the OPE Op1(X1)Op2(X2),

(|p12| ≤ γ ≤ p1 + p2) as well as for the OPE Op3(X3)Op4(X4), (|p34| ≤ γ ≤ p1 + p2).

If we assume (without loss of generality) that p1 + p2 ≤ p3 + p4 then there are two

inequivalent cases to consider

Case 1: |p12| ≥ |p34| ⇒ |p12| ≤ γ ≤ p1 + p2

Case 2: |p12| ≤ |p34| ⇒ |p34| ≤ γ ≤ p1 + p2 (5.3.53)

The superconformal partial wave expansion given in (5.3.52) is not manifestly su-

perconformal invariant. It is however possible to re-expand the superconformal partial

wave in a way that makes the superconformal symmetry manifest in terms of Schur

superpolynomials.

〈Op1(X1)Op2(X2)Op3(X3)Op4(X4)〉

=
∑

γ,λ

Cp1p2p3p4
γλ g

p1+p2
2

12 g
p3+p4

2
34

(
g24

g14

) 1
2
p21
(
g14

g13

) 1
2
p43
(
g13g24

g12g34

) 1
2
γ

Fαβγλ(Z),

α = 1
2
(γ − p12) β = 1

2
(γ + p34) , (5.3.54)

2Two examples of this formula are if in N = 4 and λ = [0], γ = 2 then 〈O2[0](X1)Õ2[0](X2)〉 =

COÕg
2
12, if λ = [1] and γ = 2 then 〈O2[1]

AA′(X1)Õ2[1]
BB′(X2)〉 = COÕg

2
12

(
X−112

)
A′B

(
X−112

)
B′A

, in

this second case it may be more familiar to consider Gr2(4) =⇒ 4d CFT, in which we get

〈O2[1]
αα̇ (x1)Õ2[1]

ββ̇
(x2)〉 = COÕ

1

(x2
12)

2 (x12)α̇β (x12)β̇α
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where

Cp1p2p3p4
γλ =

∑

Oγλ,Õγλ

COp1p2
CÕp3p4

COÕ (5.3.55)

is the OPE coefficient. The superconformal partial wave is given as a sum over Schur

superpolynomials sµ(Z) = Zµ(A)
µ(A) (traces over irreps as described in the next section)

Fαβγλ(Z) =
∑

µ≥0

Rαβγλ
µ Zµ(A)

µ(A) , (5.3.56)

of the GL(m|n) cross-ratio matrix Z

Z = X12X
−1
24 X43X

−1
31 , (5.3.57)

of which it is shown in appendix F that taking traces over this Z matrix manifestly

solves the superconformal ward identities. In addition, there are numerical coefficients

Rαβγλ
µ with

Rαβγλ
λ = 1 . (5.3.58)

Here we have restricted ourselves to two cases without loss of generality

Case 1:
(
p1 + p2 ≤ p3 + p4, p1 ≥ p2, p3 ≥ p4, p12 ≥ p34

)

α =
(
0, 1, . . . p2

)

β =
(

1
2
(p12 + p34

)
, 1

2
(p12 + p34) + 1, . . . , 1

2
(p1 + p2 + p34)

)

γ =
(
p12, p12 + 2, . . . , p1 + p2

)

Case 2:
(
p1 + p2 ≤ p3 + p4, p2 ≥ p1, p4 ≥ p3, p21 ≤ p43

)

α =
(

1
2
(p21 + p43), 1

2
(p21 + p43) + 1, . . . p2

)

β =
(
0, 1, . . . , 1

2
(p1 + p2 + p34)

)

γ =
(
p43, p43 + 2, . . . , p1 + p2

)
(5.3.59)

It is one of the main purposes of this chapter to derive a formula for the numerical

coefficients in (5.3.56), Rαβγλ
µ . Furthermore we would like to sum up the superconformal

partial wave expansion.

Crucially the coefficients Rαβγλ
µ only depend on α, β, γ and the Young tableaux µ, λ

but are independent of the group. This fact can be seen by considering the limit of the
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GL(2m|2n) Grassmannian field theory to either GL(2(m−1)|2n) or GL(2m|2(n−1)).

In this limit Fαβγλ(Z) simply becomes the equivalent partial wave for the reduced group

(or vanishes if the corresponding representation λ does not exist for the reduced isotropy

group GL(m−1|n) or GL(m|n−1) respectively). Similarly the Schur superpolynomials

Zµ(A)
µ(A) become the equivalent Schur superpolynomial for the reduced Z (or otherwise

vanishes). We thus conclude that the coefficients of the Schur superpolynomials in the

partial wave must reduce directly, and hence be independent of m,n.

It is instructive to see how the first term of the expansion in trace structures over

the Z-matrix arises. We begin with the form of the four-point function in (5.3.52) and

input (5.3.49) whilst taking µ = λ, we obtain (recall that Cγλ
λ = 1)

〈Op1(X1)Op2(X2)Op3(X3)Op4(X4)〉

=
∑

O,Õ

COp1p2
CÕp3p4

COÕ g
p1+p2−γ

2
12 g

p3+p4−γ
2

34 gγ24(X
|λ|
12 )AA

′
(X
|λ|
34 )BB

′
(X
−|λ|
24 )A′B(X

−|λ|
24 )B′A

+O(X12, X34). (5.3.60)

We can write (X
|λ|
12 )AA

′
(X
|λ|
34 )BB

′
(X
−|λ|
24 )A′B(X

−|λ|
24 )B′A ∼ (X12X

−1
24 X34X

−1
24 )λ(A)

λ(A), which

we can view as the double OPE limit taken on a single Z matrix given in (5.3.56). From

this we expect some correction terms dependent on X12 and X34, we thus arrive at

∑

O,Õ

COp1p2
CÕp3p4

COÕ g
p1+p2−γ

2
12 g

p3+p4−γ
2

34 gγ24Z
λ(A)

λ(A) +O(X12, X34) . (5.3.61)

The object Zλ(A)
λ(A) is the trace over the representation λ of Z and is hence equal to

the Schur superpolynomial sλ(x|y).

5.3.2 Free field theory OPE and Wick’s theorem

The discussion of the OPE in section 5.3.1 is completely general and essentially only

uses symmetry. In the free theory, we can be explicit about the operators appearing

in the OPE.

As described in [88] the easiest way to derive the OPE in a free field theory con-

text is to simply use Wick’s theorem. The time ordered product of two operators

Op1(X1)Op2(X2) is equal to the normal ordered product, together with the sum over

contractions multiplied by appropriate powers of propagators. In this context, we get
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that (for p1 ≤ p2)

Op1(X1)Op2(X2) =: Op1(X1)Op2(X2) : +

p1−1∑

p=0

gp1−p
12 Op2−p1+2p(X1, X2) , (5.3.62)

where for example Op1+p2−2 is the result of a single contraction

Op2−p1+2p(X1, X2) = tr(W p1−1W )(X1) tr(WW p2−1)(X2) : , (5.3.63)

whereas Op1−p2−4 will involve two contractions etc. Here the contractions simply give

a Kronecker delta in the corresponding adjoint gauge index.

Now we Taylor expand the right hand side and rearrange the result into primaries

and descendants to obtain (5.3.47) but with explicit expressions for the operators which

appear.

So if γ = p1 + p2, the operators are double trace operators from the product (in

general with derivatives) of Op1 and Op2 . If however γ = p1 + p2− 2, then in the U(N)

theory the single Wick contraction will glue together the two traces to form a single

trace. Similarly for the SU(N) theory in the large N limit. For finite N in the SU(N)

theory however there will be a 1
N

correction (from writing the Kronecker delta’s in

adjoint indices back in terms of fundamental gauge indices via T aijT
a
kl = δilδjk− 1

N
δijδkl)

giving back a double trace operator.

5.3.3 Deriving the superconformal partial wave for Grassman-

nian field theories

In this subsection we finally derive and give a summary of the results for the supercon-

formal partial wave in Grassmannian field theories. In the later part of section 5.3.1,

it was explained that the coefficients of the Schur superpolynomials, namely Rαβγλ
µ are

independent of the m and n. From this argument, we conclude that the coefficients

relevant for the full superconformal partial wave are no different from the coefficient

for the conformal partial wave, thus we aim to find Rαβγλ
µ for GL(m). We find the

conformal partial wave for the GL(m) case in a determinant form inherited from the

determinant form of the GL(m) Schur polynomial. We then use the same numerical

coefficients for the superconformal partial wave in which we find a novel determinant

form which is in this case inherited from (5.2.33).
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The GL(m) conformal partial wave

We now find the coefficient Rαβγλ
µ associated to GL(m) conformal partial waves, we

give the key formulae whilst leaving the details for appendix G. The proof follows a

similar procedure to that of [80] for the conformal 4d case (m = 2, n = 0).

We take the space-time coordinate xαα̇ to be an m-dimensional matrix, where

x2
ij := det(xij) =

1

m!

(
xα1
ijα̇1

. . . xαmijα̇m
)
εα̇1...α̇mεα1...αm . (5.3.64)

We may then consider some scalar operators Φ∆(x) which take a representation of

sl(m). The four-point function of these operators is given by

〈Φ∆1(x1)Φ∆2(x2)Φ∆3(x3)Φ∆4(x4)〉 =
1

(x2
12)

∆1+∆2
2 (x2

34)
∆3+∆4

2

(
x2

14

x2
24

) 1
2

∆21
(
x2

13

x2
14

) 1
2

∆43

F (x).

(5.3.65)

Where F (x) is a function of the m many eigenvalues of z = x12x
−1
24 x43x

−1
31 labeled xi.

We are considering the Grassmannian Grm(2m) which can be viewed as the space of

2m × m matrices given by uAα . This is where the small Greek indices refer to the

isotropy group whilst the big Latin indices refer to the global group. Explicitly, one

can put coordinates on this by using the section

uAα =
(
δβα, x

β̇
α

)
, ūα̇A =


 −x

α̇
α

δα̇
β̇


 , (5.3.66)

So that we have uAiαū
α̇
jA = xα̇ijα. In the m = 2 case, we may view uAα as being a pair

of twistors, as was used in a similar context in [24]. The benefit of this is that the

generators of GL(m) are given by

DA
B = uαA

∂

∂uαB
, (5.3.67)

which satisfies the algebra:

[
DA
B, D

C
D

]
= δCBD

A
D − δADDC

B . (5.3.68)

The conformal partial waves are eigenfunctions of the quadratic Casimir operator which

will act on the four-point function (5.3.65) at points x1 and x2. This is given by

1

2
D2

12 =
1

2
(DA

1B +DA
1B)(DB

1A +DB
1A). (5.3.69)
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In order to find the coefficients Rαβγλ
µ1,...,µm

, in an expansion in Schur polynomials we

will proceed by doing two things. Firstly we will re-express (5.3.69) in terms of the

eigenvalues of z; namely xi, by considering its action on GL(m) Schur polynomials

of z. We can then apply it to the correlation function (5.3.65). This will lead to an

action upon the conformal partial wave F λ(x) =
∑

µ≥λ t
λ
µ1,...,µm

sµ(x) (where F (x) =
∑

λi+1≥λi F
λ(x)) , which in turn leads to a recursion relation on tλµ1,...,µm

, which we solve

and apply to the superconformal case.

Leaving the details for section in appendix G, Defining D(m) := 1
2
D2

12, we find that

D(m) =
1

vdet(m)(x)

[
m∑

i=1

[
xi

(
−xi

(
1

2
(∆34 −∆12)− 2m+ 3

)
− 2m+ 2

)
∂

∂xi

+ (1− xi)x2
i

∂2

∂x2
i

−
(

1

2
∆21 −m+ 1

)(
1

2
∆34 −m+ 1

)
xi

]

+
m

3
(m− 1)(2m− 1)

]
vdet(m)(x), (5.3.70)

where we define the Vandermonde determinant:

vdet(m)(x) = (−1)

 m

2


detij(x

j−1
i ) = detij(x

m−j
i ) =

∏

1≤i<j≤m

(xi − xj). (5.3.71)

The action of the Casimir operator corresponding to the contribution of an operator

in the OPE yields the eigenvalue equation on the four-point function

D(m) 〈Φ(x1)Φ(x2)Φ(x3)Φ(x4)〉 =
m∑

i=1

λi(λi − (2i− 1)) 〈Φ(x1)Φ(x2)Φ(x3)Φ(x4)〉 .

(5.3.72)

This eigenvalue is simply the value of the Casimir for the corresponding representation

of SL(2m).

We define the GL(m) conformal partial wave in (5.3.65) to have the form F (x) =
∑

λi+1≥λi F
λ(x), where

F λ =
∑

µ≥λ

tλµ1,...,µm
sµ(x) . (5.3.73)

By noting the action of the Casimir upon the Schur polynomial

D(m)sµ(x) =

(
m∑

i=1

µi(µi−(2i−1))

)
sµ(x)

−
(

m∑

i=1

(µi−(i−1)−1

2
∆12)(µi−(i−1) +

1

2
∆34)s(...,µi+1,... )(x)

)
, (5.3.74)
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and following (5.3.72), it follows that the action of the quadratic Casimir operator upon

the four-point function yields the recursion relation on tλµ1,...,µm

p∑

i=1

(
(µi − λi) (λi + µi − (2i− 1)) tλµ1,...,µm

−
(
µi − i−

1

2
∆12

)(
µi − i+

1

2
∆34

)
tλµ1,...,µi−1,...,µm

)
= 0 (5.3.75)

which is solved by:

tλµ1...µm
=

m∏

i=1

(
λi + 1− i+ 1

2
∆21

)µi−λi (λi + 1− i+ 1
2
∆34

)µi−λi

(µi − λi)! (2λi − 2i+ 2)µi−λi
(5.3.76)

where (x)y is the ascending Pochhammer symbol. In taking m = 2, we find agree-

ment with [80]. However, in the supersymmetric case the conformal partial wave is

accompanied with the super-cross ratio

(
g13g24

g12g34

) 1
2
γ

Fαβγλ(Z) = sdet(Z)
1
2
γFαβγλ(Z). (5.3.77)

In view of this we instead consider a shifted conformal partial wave

F λ+m =
∑

µ≥0

tλ+m
µ1,...,µm

sµ+m(x), (5.3.78)

where λ + m = [λ1 + m,λ2 + m, . . . , λm + m]. Noting that sλ+m = (
∏m

i=1 xi)
m
sλ =

det(z)msλ, we find that

F λ+m =

(
m∏

i=1

xi

)m∑

µ≥λ

tλ+m
µ1,...,µm

sµ(x) (5.3.79)

where we may now define the resulting coefficients by rαβγλµ1,...,µm

rαβγλµ1,...,µm
:= tλ+m

µ1,...,µm
=

m∏

i=1

(λi + 1− i+ α)µi−λi (λi + 1− i+ β)µi−λi

(µi − λi)! (2λi + 2− 2i+ γ)µi−λi
(5.3.80)

Where here, α = 1
2

(2m−∆12), β = 1
2

(2m+ ∆34) and γ = 2m.

The sum in (5.3.79) sums over all Young tableaux µ that fit in λ in an unconstrained

way, i.e. µi+1 is not always greater than µi which leads to the appearance of nonsensical

representations. The appearance of such representations is circumvented by the so-

called affine Weyl reflection symmetry of the Schur polynomials (upto a sign) [13].
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This symmetry is generated by the discrete action wσ where σ ∈ Sm and acts on the

Young tableaux labels as

wσ(µ1, . . . , µm) = (µσ1 + 1− σ1, µσ2 + 2− σ2, . . . , µσm +m− σm). (5.3.81)

This essentially re-orders the Young tableaux labels to make sense whenever they do

not (i.e. µi+1 ≥ µi). We therefore find:

Fαβγλ =
∑

µ≥0

rαβγλµ1,...,µm
sµ =

∑

µ≥0
µi+1≥µi

Rαβγλ
µ sµ, (5.3.82)

where Rαβγλ
µ :=

∑
σ∈Sm(−1)|σ|rαβγλwσ(µ1,...,µm). Notice that because of the form of rαβγλµ1,...,µm

,

we do not need to impose the sum to be to µ ≥ λ since if λ ≥ µ then rαβγλµ1,...,µm
= 0

The coefficients Rαβγλ
µ are our sought after coefficients.

The summation of the GL(m) conformal partial waves

Given the result in the GL(m) case, we can re-sum the whole result in (5.3.82) to

retrieve an analytic form. In particular we use the fact that since

x
λj+m−j
i 2F1(λj+1−j+α, λj+1−j+β; 2λj+2−2j+γ;xi)

=
∞∑

µj=0

(λj+1−j+α)(µj−λj)(λj+1−j+β)(µj−λj)

(µj−λj)!(2λj+2−2j+γ)(µj−λj)
x
µj+m−j
i , (5.3.83)

where a(n) = a(a+ 1) . . . (a+ n− 1) is the ascending Pochhammer symbol. Now using

the determinate form of the Schur polynomial from (5.2.28) we get that

Fαβγλ =
∑

µ≥0
µi+1≥µi

Rαβγλ
µ sµ =

∑

µ≥0
µi+1≥µi

Rαβγλ
µ

det
(
x
µj+m−j
i

)
1≤i,j≤m

det
(
xm−ji

)
1≤i,j≤m

=
det
(
x
λj+m−j
i 2F1(λj+1−j+α, λj+1−j+β; 2λj+2−2j+γ;xi)

)
1≤i,j≤m

det
(
xm−ji

)
1≤i,j≤m

.

(5.3.84)

Indeed, in the case m = 2 we recapture the well known form in (5.1.8).

It is worth remarking there exists the relation

Fαβγλ(x) =

(
m∏

i=1

xi

)−δ
F (α−δ)(β−δ)(γ−2δ)[λ+δ](x). (5.3.85)
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To see this, one recalls that sµ+δ(x) = (
∏m

i=1 xi)
δ
sµ(x). We invert this and plug

it into (5.3.84), and noting the form of the coefficients, namely (5.3.80) we find the

necessary transformations in α, β, γ and λ.

5.3.4 The GL(m|n) superconformal partial wave

The coefficients of the Schur superpolynomials in any GL(m|n) partial wave expansion

are universal, which implies that they do not depend on the group but only on the

representations defined by Young tableau. This means that having obtained the GL(m)

partial waves for any m, we can immediately write down the GL(m|n) partial waves

as an explicit expansion over Schur superpolynomials.

We can now state the superconformal partial wave associated to GL(m|n). This

subsection encapsulates the main results of this entire chapter so let us restate the

correlator and what have found before summing the result. We have found that the

contribution of an operator Oγλ to a four-point function 〈p1p2p3p4〉 is given by

〈p1p2p3p4〉 :=

〈Op1(X1)Op2(X2)Op3(X3)Op4(X4)〉

=
∑

γ,λ

Cp1p2p3p4
γλ g

p1+p2
2

12 g
p3+p4

2
34

(
g24

g14

) 1
2
p21
(
g14

g13

) 1
2
p43
(
g13g24

g12g34

) 1
2
γ

Fαβγλ(Z),

α = 1
2
(γ − p12) β = 1

2
(γ + p34) , (5.3.86)

where, in terms of OPE coefficients,

Cp1p2p3p4
γλ =

∑

Oγλ,Õγλ

COp1p2
CÕp3p4

COÕ. (5.3.87)

Here we have that

Fαβγλ(x|y) =
∑

µ≥0

Rαβγλ
µ sµ(x|y),

Rαβγλ
µ =

∑

σ∈Sm

(−1)|σ| rαβγλwσ(µ1,...,µm),

rαβγλµ1...µm
=

m∏

j=1

(λj + 1− j + α)(µj−λj)(λj + 1− j + β)(µj−λj)

(µj − λj)!(2λj + 2− 2j + γ)(µj−λj)
, (5.3.88)

where Rαβγλ
µ are exactly the same numerical coefficients as defined and used in the

GL(m) case and sµ(x|y) are the GL(m|n) Schur superpolynomials defined in (5.2.33).
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Indeed in the practical computation of OPE coefficients – as we will do for N=4 SYM

in section 5.4 – this form of the partial wave is the most useful one.

Following the form of the summed up GL(m) conformal partial wave and its close

relation with the corresponding Schur polynomial, we give the summed up GL(m|n)

result based on the Schur superpolynomial in (5.2.36). We find

Fαβγλ(x|y) = (−1)
1
2

(2m+2p+n)(n−1)D−1 det


 FX

λ R

Kλ F Y


 , (5.3.89)

where here we define

p = min {α, β} (5.3.90)

and D,R are just as defined previously for the Schur superpolynomial, in (5.2.34), Kλ

is defined in (5.2.37) and FX
λ and F Y are matrices of hypergeometric functions

FX
λ =

(
[x
λj+m−n−j
i 2F1(λj + 1− j + α, λj + 1− j + β; 2λj + 2− 2j + γ;xi)]

)
1≤i≤m
1≤j≤p

F Y =
(

(yj)
i−1

2F1(i+m− n− α, i+m− n− β; 2i+ 2(m− n)− γ; yj)
)

1≤i≤p+n−m
1≤j≤n

.

(5.3.91)

Here we again define the square brackets to mean “the regular part at x = 0” i.e.

[x−`2F1(a, b; c;x)] := x−`2F1(a, b; c;x)−
`−1∑

k=0

a(k)b(k)

k! c(k)
xk−`

=
∞∑

k=0

a(k+`)b(k+`)

(k + `)! c(k+`)
xk . (5.3.92)

5.3.5 Superconformal partial wave relations and decomposi-

tions of typical representations

In section 5.2.4, we reviewed various relations that exist between Schur superpolyno-

mials and here we see similar relations on the full superconformal partial wave. One

first observes the factorisation into external and internal groups, namely for a typical

representation in which λ =
[
λx + n, λy

]
, one has

Fαβγλ(x|y) = F (α+n)(β+n)(γ+2n)λx(x|0)× F (α−m)(β−m)(γ−2m)λy(0| − y)
∏

1≤i≤m,
1≤j≤n

(xi − yj).

(5.3.93)
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We also have the relation

Fαβγλ(x|y) =

∏m
i=1 xi∏n

j=1(−yj)
F (α+1)(β+1)(γ+2)λ′(x|y), (5.3.94)

for when

λ = [λx+n, λy], λ
′ = [λx−1+n, n, λy] . (5.3.95)

Another relation is that if given two atypical representations λ1 and λ2 and a typical

one λ, where λx and λy are m− 1 and n− 1 row Young tabluex respectivly, namely

λ1 = [λx + (n−1), n−1, λy],

λ2 = [λx + n, λy],

λ = [λx + n, n, λy] , (5.3.96)

we have
(

m∏

i=1

xi

)
× Fαβγλ1(x|y) +

(
n∏

j=1

−yj
)
× F (α−1)(β−1)(γ−2)λ2(x|y)

=F (α+n−1)(β+n−1)(γ+2n−2)λx(x)× F (α−m)(β−m)(γ−2m)λy(0| − y)×
∏

1≤i≤m,
1≤j≤n

(xi − yj) .

(5.3.97)

Let us refine this final relation for N = 4 SCFT, where here we take (m,n) = (2, 2) and

as a representative example let us consider λx = [0] and λy = [0]. As an application

to (5.3.97), we get

(x1x2)× Fαβγ[1,1](x|y) + (y1y2)× F (α−1)(β−1)(γ−2)[2](x|y)

=F (α+1)(β+1)(γ+2)[0](x)× F (α−2)(β−2)(γ−4)[0](0| − y)×
∏

1≤i≤2,
1≤j≤2

(xi − yj) . (5.3.98)

We divide through by (x1x2), and we use the fact that from (5.3.85) we have

1

(x1x2)
F (α+1)(β+1)(γ+2)[0](x) = F (α+2)(β+2)(γ+4)[−1,−1](x), (5.3.99)

then by putting this together and using (5.3.93) we find that

Fαβγ[1,1](x|y) +

(
y1y2

x1x2

)
F (α−1)(β−1)(γ−2)[2](x|y) = lim

ρ→1
Fαβγ[ρ,ρ](x|y), (5.3.100)
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where Fαβγ[ρ,ρ](x|y) is the superconformal partial wave for a typical representation.

This relation generalises to

F
αβγ[λ+1,1ν+1]
long := lim

ρ→1
Fαβγ[λ+ρ,ρ,1ν ](x|y)

=

(
y1y2

x1x2

)
F (α−1)(β−1)(γ−2)[λ+2,1ν ](x|y) + Fαβγ[λ+1,1ν+1](x|y), (5.3.101)

where the limit is understood for arbitrary real ρ via an analytic continuation of the

results for the long representations ρ = 2, 3, 4, . . . , etc. We define a separate super-

conformal partial wave F
αβγ[λ+1,1ν+1]
long since it has Young tableaux labels that would

have previously been described by an atypical representation, but here by writing the

subscript ‘long’, we are instructed to take k = 3. We will make extensive use of the

relation (5.3.101) in our application to N = 4 SCFT.

5.4 Application to N = 4 SYM

For this section we specialise to N = 4 SYM. We thus take the partial waves of the

previous section and set (m,n) = (2, 2). We begin by giving the summed up form for

the superconformal partial wave pertinent to the study of N = 4. We then consider

the free theory OPE coefficients of various correlators.

5.4.1 The N = 4 superconformal partial wave

In section 5.3.4, we provided the superconformal partial waves corresponding to a

theory with SU(m,m|2n) symmetry. We now write the result specifically for N = 4

SCFT.

The results can be rewritten in terms of two functions, a one variable (in each of

x and y) function, f(x, y), and a two-variable function f(x1, x2, y1, y2). Recalling that

p = min {α, β}, the full superconformal partial wave is written in terms of these simply

as

Fαβγλ(x|y)

= (−1)
∑
i λi

[(
g13g24

g12g34

)−p(
δλ;0 +D−1

[(
f(x2, y2)

x1 − y1

− y1 ↔ y2

)
− x1 ↔ x2

])

+ D−1f(x1, x2, y1, y2).

]
(5.4.102)
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where here

D−1 =
(x1 − y1)(x1 − y2)(x2 − y1)(x2 − y2)

(x1 − x2)(y1 − y2)
. (5.4.103)

We define the following functions:

Fαβγ
λ (x) := xλ−1

2F1(λ+ α, λ+ β; 2λ+ γ;x),

Gαβγ
λ′ (y) := yλ

′−1
2F1(λ′ − α, λ′ − β; 2λ′ − γ; y). (5.4.104)

Then the functions given in the superconformal partial wave defined in (5.4.102), are

given by

λ2 > 1 (long) :

f(x, y) = 0

f(x1, x2, y1, y2) = (−1)λ
′
1+λ′2

(
Fαβγ
λ1

(x1)Fαβγ
λ2−1 (x2)− x1 ↔ x2

)

×
(
Gαβγ
λ′1

(y1)Gαβγ
λ′2−1 (y2)− y1 ↔ y2

)
, (5.4.105)

λ2 = 0,1

(
semi-short and

1

4
-BPS

)
:

f(x, y) =

(
x

y

)p
(−1)λ

′
1Fαβγ

λ1
(x)Gαβγ

λ′1
(y)

f(x1, x2, y1, y2) =

p∑

j=λ′1+1

(−1)λ
′
1

(
Fαβγ

1−j (x2)Fαβγ
λ1

(x1)− (x1 ↔ x2)
)

×
(
Gαβγ
j (y2)Gαβγ

λ′1
(y1)− (y1 ↔ y2)

)

+

λ′1∑

j=2

(−1)λ
′
1

(
Fαβγ

2−j (x2)Fαβγ
λ1

(x1)− (x1 ↔ x2)
)

×
(
Gαβγ
j−1 (y2)Gαβγ

λ′1
(y1)− (y1 ↔ y2)

)
, (5.4.106)

λ = 0

(
1

2
-BPS

)
:

f(x, y) = −
(
x

y

)p p∑

i=1

Fαβγ
1−i (x)Gαβγ

i (y)

f(x1, x2, y1, y2) =
∑

1≤i<j≤p

(
Fαβγ

1−i (x2)Fαβγ
1−j (x1)− (x1 ↔ x2)

)

×
(
Gαβγ
i (y1)Gαβγ

j (y2)− (y1 ↔ y2)
)
. (5.4.107)
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5.4.2 OPE coefficients in N = 4 SYM

We wish to perform a superconformal partial wave expansion on free theory correlation

functions in order to illustrate and confirm the partial waves of the previous section,

and obtain new results in this theory.

A general free theory correlation function of four arbitrary charge 1
2
-BPS operators

is given by a sum of products of propagators

gij = det (Xj −Xj)
−1 =

y2
ij

x2
ij

+O(ρρ̄) . (5.4.108)

Any free theory correlation function can be written, by observing that

sdet (1− Z) =

(
g14g23

g13g24

)−1

, (5.4.109)

in the general form:

〈p1p2p3p4〉

= g
p1+p2

2
12 g

p3+p4
2

34

(
g24

g14

) 1
2
p21
(
g14

g13

) 1
2
p43 ∑

γ

(
g13g24

g12g34

) 1
2
γ b 1

2
γc∑

i=0

aγi sdet (1− Z)−i

(5.4.110)

where pij = pi−pj and where aγ i are colour factors which can be computed using Wick

contractions. The restrictions on γ are the same as in (5.3.59).

On the other hand we wish to compare this with the conformal partial wave expan-

sion (5.3.54)

〈p1p2p3p4〉

=
∑

O,Õ

COp1p2
CÕp3p4

COÕ g
p1+p2

2
12 g

p3+p4
2

34

(
g24

g14

) 1
2
p21
(
g14

g13

) 1
2
p43
(
g13g24

g12g34

) 1
2
γ

Fαβγλ(Z).

(5.4.111)

The exercise is then to equate

b 1
2
γc∑

i=0

aγi sdet (1− Z)−i =
∑

λ≥0

CγλFαβγλ(Z) (5.4.112)

in order to find the OPE coefficients Cγλ = COp1p2
CÕp3p4

COÕ.

The simplest way to proceed is to use the so-called Cauchy identity to rewrite the

right hand side of (5.4.112) as an infinite sum over the Schur superpolynomials. This
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then allows for a direct comparison with the superconformal partial wave expansion

(which we also view as a sum over Schur superpolynomials) and thus allows us to solve

for the OPE coefficients. Remarkably, this means we never in fact need to know the

form of the Schur superpolynomials themselves, both sides are given as expansions in

Schur superpolynomials and since we know these are independent this allows us to

equate the coefficients of each Schur superpolynomial.

5.4.3 The Cauchy Identity

The Cauchy identity provides a way to write functions of sdet(1− Z)−q for some q as

an expansion in super Schur polynomials. Cauchy’s identity states that (see appendix

A of [90]):

1∏
i,j(1− xizj)

=
∑

λ

sλ(x)sλ(z), (5.4.113)

where λ is some Young tableau. If we set the zj’s to 1 we gain the following formula

relevant to the bosonic case:

det(1− Z)−p =
1∏

i(1− xi)p
=
∑

λ

sλ(x)d
GL(p)
λ , (5.4.114)

where d
GL(p)
λ is the dimension of some Young tableau λ in GL(p). In particular this

means we can never see Young tableaux with more than p rows.

In the supersymmetric case, this formula generalises naturally to

∏

i

(
1− yi
1− xi

)p
=
∑

λ

sλ(x|y)d
GL(p)
λ . (5.4.115)

The standard Hook dimension formula gives

d
GL(p)
λ =

∏p
i=1(p− i+ 1)(λi)

∏p
i=j

∏p
j=1(λj − λi + (i− j + 1))(λi−λi+1)

, (5.4.116)

where x(n) is the ascending Pochhammer symbol. Implicitly, this formula has a label

for p+ 1 which we must switch off, namely λp+1 = 0.

For example for p = 1, in N = 4 SYM, one finds that

sdet(1− Z)−1 =
(1− y1)(1− y2)

(1− x1)(1− x2)
=
∞∑

λ=0

s[λ,0,... ](x|y). (5.4.117)
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whereas for p = 2, we get

sdet(1− Z)−2 =
(1− y1)2(1− y2)2

(1− x1)2(1− x2)2
=

∞∑

λ1≥λ2≥0

(λ1 − λ2 + 1)s[λ1,λ2,0,..](x|y) .

Using the above results it is now straightforward to obtain the OPE coefficients in

the free theory. In the next section we give a number of low weight examples of this.

Note that at this stage we are not considering the fact that in the interacting theory

certain short multiplets can combine together to become long. We will consider this in

the following subsection.

Let us outline a basic example for precisely how this works. In the example of

〈1111〉 which we study in the next subsection, we will encounter the function

A(1 + sdet(1− Z)−1), (5.4.118)

which we want to compare with a linear combination of superconformal partial wave ex-

pansions of the form F 112[λ] (corresponding to twist-2 operators). So using the Cauchy

identity we equate

A(1 + sdet(1− Z)−1) = 2As[0](x|y) + A
∑

i≥1

s[λ](x|y) =
∑

λ≥0

C2[λ]F
112[λ] (5.4.119)

We can expand the rightmost-side explicitly using (5.3.88) giving

2As[0](x|y) + A
∑

i≥1

s[λ](x|y) = C2[0]

(
s[0](x|y) +

1

2
s[1](x|y) +

1

3
s[2](x|y) + . . .

)

︸ ︷︷ ︸
F 112[0]

+ C2[1]

(
s[1](x|y) +

1

2
s[2](x|y) +

9

10
s[3](x|y) + . . .

)

︸ ︷︷ ︸
F 112[1]

+ C2[2]

(
s[2](x|y) +

3

2
s[3](x|y) +

12

7
s[4](x|y) + . . .

)

︸ ︷︷ ︸
F 112[2]

+ . . . (5.4.120)

Comparing the coefficients of s[0](x|y) requires that C2[0] = 2A. A consequence of

this is that this automatically sets coefficient of s[1](x|y) to A on the right hand side,

which yields an overall equality if we set C2[1] = 0. We may continue to the next

order to find C2[2] and there onwards to find the rest of the coefficients. With enough

terms, one can spot a pattern and write a general formula. As we will see in the

next subsection, it turns out that the only non-zero OPE coefficients in this case are
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λ ∈ Zeven, corresponding to even spin operators. All results are found in this way. Note

that as mentioned previously, one never even needs to know the explicit form of the

Schur superpolynomials for this.

5.4.4 Results: Free theory OPE coefficients (before recombi-

nation)

The purpose of this section is to display the OPE coefficients before taking into account

any recombination in the interacting theory. We do this for the list of the correlation

functions 〈1111〉, 〈1122〉, 〈2222〉, 〈2233〉 and 〈3333〉 whilst leaving 〈2433〉 and 〈3544〉 for

appendix D. Clearly the first two correlators can only exist in the U(N) gauge theory

(since tr(W 1) = 0 for SU(N)) whilst the others may exist in either U(N) or SU(N).

For notational convenience we have defined

fγ

(
aγ0, aγ1, . . . , aγb 1

2
γc
)

:=

b 1
2
γc∑

i=0

aγisdet (1− Z)−i (5.4.121)

where aγi are the associated colour factors.

We consider all 1
2
-BPS operators, both single- and multi-trace at finite N . We

denote Aγ = tr(W γ) so the multi-trace operator tr(W 2)2 is denoted (A2)2 etc. Finally,

we tabulate all (or almost all) colour factors for both U(N) as well as SU(N) gauge

theories, however for some cases these tables are very large and so we relegate these

tables to appendix E.

〈1111〉

This correlator can only exist in the U(N) gauge theory and is given by

〈1111〉 = A (g14g23 + g13g24 + g12g34) = g12g34

(
f0(A) +

(
g13g24

g12g34

)
f2(A,A)

)

The colour factor is given by

A = N2 (5.4.122)
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Correlator type A B

〈A1A1A2A2〉 2N3 4N

〈A1A1(A1)2A2〉 2N2 4N2

〈A1A1(A1)2(A1)2〉 2N3 4N3

Table 5.4: U(N) colour factors associated to the 〈1122〉 correlator

In comparing with the superconformal partial wave expansion, one finds that

〈1111〉 = g12g34

(
A+

(
g13g24

g12g34

)∑

λ≥0

C2[λ]F
112[λ]

)

with C2[λ] =
2A(λ!)2

(2λ)!
for λ ∈ Zeven and zero otherwise. (5.4.123)

〈1122〉

〈1122〉 = Ag12g
2
34 +B (g14g23g34 + g13g24g34) = g12g

2
34

(
f0(A) +

(
g13g24

g12g34

)
f2(B,B)

)

(5.4.124)

The colour factors for U(N) for the various types of correlators are tabulated in table

5.4.

Since p12 = p34 = 0 (which means we use the same set of superconformal partial

waves), we see that this result is structurally identical to the (5.4.123), but for the

change

C2[λ] =
2B(λ!)2

(2λ)!
, (5.4.125)

which is simply a change in the colour factor.

〈1133〉

〈1133〉 = Ag12g
3
34 +B

(
g14g23g

2
34 + g13g24g

2
34

)
= g12g

3
34

(
f0(A) +

(
g13g24

g12g34

)
f2(B,B)

)

(5.4.126)

The U(N) colour factors for the various types of correlators is given in table 5.5.

The result of the superconformal partial wave expansion is identical to the 〈1122〉
previously shown but for the precise colour factors.
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Correlator type A B

〈A1A1A3A3〉 3N2(1 +N2) 18N2

〈A1A1(A1A2)A3〉 6N3 6N(2 +N2)

〈A1A1(A1A2)(A1A2)〉 2N2(2 +N2) 2N2(8 +N2)

〈A1A1(A1A2)(A1)3〉 6N3 18N3

〈A1A1(A1)3(A3)〉 6N2 18N2

〈A1A1(A1)3(A1)3〉 6N4 18N4

Table 5.5: U(N) colour factors associated to the 〈1133〉 correlator

〈2222〉

This is the first case where we have a correlator which may exist in either the U(N) or

SU(N) gauge theory. The correlator is given by

〈2222〉 = A(g2
12g

2
34 + g2

13g
2
24 + g2

14g
2
23) +B(g12g23g34g41 + g13g32g21g14 + g13g34g42g21)

= g2
12g

2
34

(
f0(A) +

(
g13g24

g12g34

)
f2(B,B) +

(
g13g24

g12g34

)2

f4(A,B,A)

)
(5.4.127)

For the SU(N) theory, there is only one possible colour structure where the operator

is A2 which is given in table 5.6.

Correlator type SU(N) A B

〈A2A2A2A2〉 4(N2 − 1)2 16(N2 − 1)

Table 5.6: SU(N) colour factors associated to the 〈2222〉 correlator

On the other hand there are a few variations in the U(N) theory, which are given

in table 5.7.

Comparing to a superconformal partial wave expansion yields

〈2222〉 = g2
12g

2
34

(
A+

(
g13g24

g12g34

)∑

λ≥0

C2[λ]F
112[λ] +

(
g13g24

g12g34

)2 ∑

λ1≥λ2≥0

C4[λ1,λ2]F
224[λ1,λ2]

)
,

(5.4.128)
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Correlator type U(N) A B

〈A2A2A2A2〉 4N4 16N2

〈(A1)2A2A2A2〉 4N3 16N

〈(A1)2(A1)2A2A2〉 4N4 16N2

〈(A1)2(A1)2(A1)2A2〉 4N3 16N3

〈(A1)2(A1)2(A1)2(A1)2〉 4N4 16N4

〈(A1)2A2(A1)2A2〉 4N2 16N2

Table 5.7: U(N) colour factors associated to the 〈2222〉 correlator

where the coefficients are given by

C2[λ] =
2B(λ!)2

(2λ)!
for λ ∈ Zeven zero otherwise,

C4[λ1,λ2] =
λ1! (λ1 + 1)! (λ2!) 2

(
A (λ1 − λ2 + 1) (λ1 + λ2 + 2) +B(−1)λ2

)

(2λ2)! (2λ1 + 1)!

for λ1 − λ2 ∈ Zeven ≥ 0, λ2 ∈ Z ≥ 0 and zero otherwise. (5.4.129)

〈2233〉

One may write the free theory correlator as

〈2233〉 = Ag2
12g

3
34 +B

(
g2

14g34g
2
23 + g2

13g
2
24g34

)
+ C

(
g12g14g23g

2
34 + g12g13g24g

2
34

)

+Dg13g14g23g24g34,

= g2
12g

3
34

(
f0(A) +

(
g13g24

g12g34

)
f2(C,C) +

(
g13g24

g12g34

)2

f4(B,D,B)

)
(5.4.130)

The colour factors for SU(N) can only come from one correlator and is given in table 5.8.

Correlator type SU(N) A B C D

〈A2A2A3A3〉 6(N2−1)2(N2−4)
N

0 36(N2−1)(N2−4)
N

72(N2−1)(N2−4)
N

Table 5.8: SU(N) colour factors associated to the 〈2233〉 correlator

For the U(N) theory we have 18 possible ways of partitioning the pis into local

operators, and we leave this for table in table E.3 in appendix E

We see that this result here is structurally identical to the 〈2222〉 case, the only

difference is as in previous cases the precise difference in the colour factors. Namely,
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the result is identical to (5.4.128), but instead we have

C2[λ] =
2C(λ!)2

(2λ)!
for λ ∈ Zeven zero otherwise,

C4[λ1,λ2] =
λ1! (λ1 + 1)! (λ2!) 2

(
B (λ1 − λ2 + 1) (λ1 + λ2 + 2) +D(−1)λ2

)

(2λ2)! (2λ1 + 1)!

for λ1 − λ2 ∈ Zeven ≥ 0, λ2 ∈ Z ≥ 0 and zero otherwise. (5.4.131)

〈3333〉

The free theory correlator is given by

〈3333〉 = A
(
g3

14g
3
23 + g3

13g
3
24 + g3

12g
3
34

)
+B(g13g

2
14g24g

2
23 + g12g

2
14g34g

2
23

+ g2
13g14g

2
24g23 + g2

12g14g
2
34g23 + g2

12g13g24g
2
34 + g12g

2
13g

2
24g34) + Cg12g13g14g23g24g34,

= g3
12g

3
34

(
f0(A) +

(
g13g24

g12g34

)
f2(B,B) +

(
g13g24

g12g34

)2

f4(B,C,B)

+

(
g13g24

g12g34

)3

f6(A,B,B,A)

)
(5.4.132)

There is only one SU(N) correlator which has colour factors given in table 5.9.

Correlator type A B C

〈A3A3A3A3〉 9(N2−4)2(N2−1)2

N2

81(N2−4)2(N2−1)
N2

162(N2−4)(N2−1)(N2−12)
N2

Table 5.9: SU(N) colour factors associated to the 〈3333〉 correlator

For the U(N) theory we have 17 possible ways of partitioning the pis into local

operators, and we leave this for table in table E.4 in appendix E.

Upon comparing to a superconformal partial wave expansion we get

〈3333〉 = g3
12g

3
34

(
A+

(
g13g24

g12g34

)∑

λ≥0

C2[λ]F
112[λ] +

(
g13g24

g12g34

)2 ∑

λ1≥λ2≥0

C4[λ1,λ2]F
224[λ1,λ2]

+

(
g13g24

g12g34

)3 ∑

λ1≥λ2≥λ3≥0

C6[λ1,λ2,λ3]F
336[λ1,λ2,λ3]

)
, (5.4.133)

Similarly to previous examples we see structures repeating again. Namely, the γ = 2

is identical to (5.4.129) and γ = 4 sector is structurally identical to (5.4.129) but for

the change of colour factor A→ B and B → C. We also get a γ = 6 sector where the
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OPE coefficients are

C6[λ1,λ2] = mλ1,λ2

1

2

(
A (λ1 + 2) (λ1 + 3) (λ1 − λ2 + 1) (λ2 + 1) (λ2 + 2) (λ1 + λ2 + 4)

+ 4B
((

(−1)λ2 + 1
)
λ1 (λ1 + 5) + 8(−1)λ2 +

(
(−1)λ2 − 1

)
λ2 (λ2 + 3) + 4

) )

for λ1 − λ2 ∈ Zeven ≥ 0, λ2 ≥ 0 and zero otherwise, (5.4.134)

C6[λ1,λ2,1] = mλ1,λ2

1

4

(
A (λ1 + 1) (λ1 + 4) (λ1 − λ2 + 1)λ2 (λ2 + 3) (λ1 + λ2 + 4)

+ 4B
(
(−1)λ2 − 1

)
(λ1 − λ2 + 1) (λ1 + λ2 + 4)

)

for λ1 − λ2 ∈ Zodd ≥ 1, λ2 ≥ 1 and zero otherwise, (5.4.135)

C6[λ1,λ2,2] = mλ1,λ2

1

12

(
Aλ1 (λ1 + 5) (λ1 − λ2 + 1) (λ2 − 1) (λ2 + 4) (λ1 + λ2 + 4)

+ 4B
((

(−1)λ2 + 1
)
λ1 (λ1 + 5) +

(
(−1)λ2 − 1

)
(λ2 − 1) (λ2 + 4)

) )

for λ1 − λ2 ∈ Zeven ≥ 0, λ2 ≥ 2 and zero otherwise, (5.4.136)

where

mλ1,λ2 =
(λ1 + 2)!2 (λ2 + 1)!2

(2λ2 + 2)! (2λ1 + 4)!
. (5.4.137)

We give two further cases in appendix D, namely 〈4233〉 and 〈5344〉.

5.4.5 Consistency checks for the above OPE coefficients

It is possible to perform non-trivial consistency checks for the above results if we have

some information concerning the number of operators in each representation.

To see where these consistency checks come from, consider writing the OPE coeffi-

cients as follows,

Cp1p2p3p4
γλ = 〈Cp1p2 , Cp3p4〉 :=

∑

Oγλ,Õγλ

COp1p2
CÕp3p4

COÕ , (5.4.138)

such that the rightmost-side defines an inner product of the structure constants of the

three-point function with a metric defined by the two point function. Here we sum

over all operators in the same representation defined by γ and λ and we take Cpipj

to be a vector in which the dimension is equal to the number of operators in this
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representation. If we choose a basis for the operators where we have diagonalised the

two-point functions, then we have simply COÕ ∼ δOÕ and this becomes the standard

scalar product.

The first observation that follows from this is that

cos2(θ) =
〈Cp1p2 , Cp3p4〉2

〈Cp1p2 , Cp1p2〉 〈Cp3p4 , Cp3p4〉
, (5.4.139)

where θ is the angle between the two vectors COp1p2
and COp3p4

, and so it follows that

0 ≤ (Cp1p2p3p4)2

Cp1p2p1p2Cp3p4p3p4
≤ 1 (5.4.140)

for all OPE coefficients. 3

Furthermore, if there is only one operator O in the representation in question, then

the vector space has dimension 1 and it follows that

(Cp1p2p3p4)2

Cp1p2p1p2Cp3p4p3p4
= 1. (5.4.141)

Indeed if we know how many operators there are in a particular representation, M ,

(so we know the dimension of the relevant inner product space) then we know that any

Gram determinant of dimension M + 1 must vanish 4. So

det (Cpipjpkpl)(pi,pj)∈S
(pk,pl)∈S

, (5.4.142)

where S is any set of pairs (pi, pj) such that |S| = M + 1.

So for the previously mentioned case where the number of operators is one we let

S = {(p1, p2), (p3, p4)} and then

Gram = det


 C

p1p2p1p2 Cp1p2p3p4

Cp1p2p3p4 Cp3p4p3p4


 = Cp1p2p1p2Cp3p4p3p4 − (Cp1p2p3p4)2 = 0, (5.4.143)

which is equivalent to equation (5.4.140) being equal to one. For the case where we

have two operators the Gram determinate becomes

Gram = det




Cp1p2p1p2 Cp1p2p3p4 Cp1p2p5p6

Cp1p2p3p4 Cp3p4p3p4 Cp3p4p5p6

Cp1p2p5p6 Cp3p4p5p6 Cp5p6p5p6


 = 0 . (5.4.144)

3For long operators, this need only be true after taking (5.2.20) into account.
4Recall the the Gram determinant is the determinant of some inner product, i.e. given some inner

product 〈νi, νj〉, we define Gram := det (〈νi, νj〉)
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Let us check these conditions in a few cases. Firstly, consider the case with only

one operator. This is the case for all twist two operators O2[λ] in the SU(N) theory.

Looking back at the results above one can straightforwardly check that indeed

C2222
2[λ] C3333

2[λ] − (C2233
2[λ] )2

=

(
2(λ!)2

(2λ)!

)2
[

16(N2−1)× 81(N2−4)2(N2−1)

N2
−
(

36(N2−1)(N2−4)

N

)2
]

= 0 .

(5.4.145)

Similarly in the U(N) case there are two twist 2 operators O2[λ] for each spin λ

(a single-trace and a double-trace one). Thus the following 3 × 3 Gram determinant

should vanish

det




C1111
2[λ] C1122

2[λ] C1133
2[λ]

C1122
2[λ] C2222

2[λ] C2233
2[λ]

C1133
2[λ] C2222

2[λ] C3333
2[λ]


 = 0 (5.4.146)

which can be seen to be true via previously found results.

In the next section we will show how similar considerations give information about

the disentangling of protected and unprotected operators. We will make use of such

relations in order to completely disentangle the protected and unprotected sectors in

the 〈3333〉 correlator.

5.4.6 Physical OPE coefficients: recombination of operators

in SU(N)

It is known that free theory supermultiplets in N = 4 SYM combine together to form

long supermultiplets, which are then free to develop an anomalous dimension. In order

to separate out the OPE coefficients into free and interacting pieces, it is useful to

be able to disentangle the genuine short multiplets from those which become part of

long multiplets. This is also required in the conformal bootstrap programme where

one requires the contribution of all protected operators to the free correlator [76].

It is impossible to uniquely disentangle this information from the free theory alone,

one requires some information from the interacting theory. At least in some situations

however, knowledge of mixed charge correlators, together with simply the knowledge of
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the number of long/short operators (the precise form of them is however not required)

allows us to uniquely disentangle the protected and unprotected sectors. The number of

short and long operators can be obtained by an examination of the classical interacting

theory [27,91]. We will give an example of this in the current section, and we will

obtain the precise separation of the free SU(N) correlator 〈3333〉 into protected and

unprotected sectors by making use of the 〈2233〉 and 〈2222〉 correlators.

In order to gain the correct answer, we make repetitive use of the reducibility

equation at the unitary bound (5.3.101) which we restate for convenience

F
αβγ[λ+1,1ν+1]
long (x|y) := lim

ρ→1
Fαβγ[λ+ρ,ρ,1ν ](x|y)

=

(
g13g24

g12g34

)−1

F (α−1)(β−1)(γ−2)[λ+2,1ν ](x|y) + Fαβγ[λ+1,1ν+1](x|y).

(5.4.147)

There then remains the question as to how to decide which operators become long

without doing explicit computations.

In this subsection we present the physical OPE coefficients of gauge group SU(N),

in particular for 〈2222〉, 〈2233〉 and 〈3333〉. Let us begin with the 〈2222〉 case.

〈2222〉

Stating the result again, we had

〈2222〉 = g2
12g

2
34

(
A+

(
g13g24

g12g34

)∑

λ≥0

C2[λ]F
112[λ] +

(
g13g24

g12g34

)2 ∑

λ1≥λ2≥0

C4[λ1,λ2]F
224[λ1,λ2]

)
,

(5.4.148)

where the coefficients are given by (5.4.129), but for convenience we repeat them

C2[λ] =
2B(λ!)2

(2λ)!
for λ ∈ Zeven zero otherwise,

C4[λ1,λ2] =
λ1! (λ1 + 1)! (λ2!) 2

(
A (λ1 − λ2 + 1) (λ1 + λ2 + 2) +B(−1)λ2

)

(2λ2)! (2λ1 + 1)!

for λ1 − λ2 ∈ Zeven ≥ 0, λ2 ∈ Z ≥ 0 and zero otherwise. (5.4.149)

with

Correlator type SU(N) A B

〈A2A2A2A2〉 4(N2 − 1)2 16(N2 − 1)
(5.4.150)
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We recognise the term F 112[2] as being the Konishi operator. Famously, the Konishi

operator gains an anomalous dimension in the interacting theory, hence it should be

long whilst as it stands it is short. By looking at the structure of the Wick contractions,

one also observes that the semi-short operators that follow, namely F 112[λ≥4] are all

long in the interacting theory and have the form tr(WAB(∂)λW̄AB) [27]. The operator

corresponding to F 112[0], on the other hand, corresponds to the stress-tensor multiplet,

and is the only γ = 2 protected operator. It will remain short in the interacting theory.

In order to manifest these points one may make use of the reducibility equation

F 112[λ] =

(
g13g24

g12g34

)(
F

224[λ−1,1]
long − F 224[λ−1,1]

)
. (5.4.151)

In which we get

〈2222〉 = g2
12g

2
34

(
A+

(
g13g24

g12g34

)
2BF 112[0] +

(
g13g24

g12g34

)2
(
∞∑

λ≥0

C4[λ]F
224[λ]

+
∞∑

λ≥1

C ′4[λ,1]F
224[λ,1] +

∞∑

λ1≥λ2≥2

C4[λ1,λ2]F
224[λ1,λ2] +

∞∑

λ≥1

C2[λ+1]F
224[λ,1]
long

))
,

(5.4.152)

where

C ′4[λ,1] = C4[λ,1] − C2[λ+1]. (5.4.153)

Here the second line consists of unprotected operators, whereas the first line corre-

sponds to genuine short operators.

So we have used qualitative knowledge (essentially that all twist two operators

become long) to disentangle the protected and unprotected sectors. This result is

consistent with [77].

〈2233〉

As we discussed above, the structural form of 〈2233〉 is the same as that of 〈2222〉. The

reason for this is that we are computing the overlap of the A2A2 OPE with the A3A3

OPE, which in fact contains all the sectors of the A2A2 OPE. With coefficients given
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by

C2[λ] =
2C(λ!)2

(2λ)!
for λ ∈ Zeven zero otherwise,

C4[λ1,λ2] =
λ1! (λ1 + 1)! (λ2!) 2

(
B (λ1 − λ2 + 1) (λ1 + λ2 + 2) +D(−1)λ2

)

(2λ2)! (2λ1 + 1)!

for λ1 − λ2 ∈ Zeven ≥ 0, λ2 ∈ Z ≥ 0 and zero otherwise. (5.4.154)

with table 5.8.

Correlator type SU(N) A B C D

〈A2A2A3A3〉 6(N2−1)2(N2−4)
N

0 36(N2−1)(N2−4)
N

72(N2−1)(N2−4)
N

(5.4.155)

The multiplet recombination is then identical to the 〈2222〉 case: essentially remove

all F 112[λ] (except for the 1
2
-BPS case F 112[0]) in favour of long operators.

The result of performing this is:

〈2233〉 = g2
12g

3
34

(
A+

(
g13g24

g12g34

)
2CF 112[0] +

(
g13g24

g12g34

)2
(
∞∑

λ≥0

C4[λ]F
224[λ]

+
∞∑

λ≥1

C ′4[λ,1]F
224[λ,1] +

∞∑

λ1≥λ2≥2

C4[λ1,λ2]F
224[λ1,λ2] +

∞∑

λ≥1

C2[λ+1]F
224[λ,1]
long

))
,

(5.4.156)

where

C ′4[λ,1] = C4[λ,1] − C2[λ+1], (5.4.157)

and again the first line consists of protected operators and the second line unprotected

operators.

Interestingly, the coefficient C ′4[1,1] of F 224[1,1], namely 1
6
(4B−2C−D) is subleading

in the planar limit, whereas for the 〈2222〉 case it is not. This can be understood as

follows. The coefficient C ′4[1,1] is related to the OPE coefficient of the genuine twist four

quarter BPS operator. In the large N limit this is a double trace operator (see [27,92]).

As described in section 5.3.2 the twist-4 operators arising from the A2A2 OPE are

double trace operators whereas the twist four operators arising from the A3A3 OPE

on the other hand involve a Wick contraction, which in the large N limit reduces to a

single trace operator.
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Also note that the presence of non-zero coefficients C4[λ] and C ′4[λ,1] imply that the

OPE coefficient CO
twist 4

33 where Otwist 4 are the protected twist-4 operators, can not be

zero. This in turn has some unexpected implications for the twist four part of the

protected sector of the 〈3333〉 correlator as we shall see.

〈3333〉

Now we come to a more non-trivial case, the 〈3333〉 correlator which contains operators

up to twist-6.

Firstly we restate the result before recombination from the previous section. The

OPE coefficients here are as in (5.4.129) and (5.4.134) where for the A4λ coefficient of

the former, we must do the change A→ B and B → C.

〈3333〉 = g3
12g

3
34

(
A+

(
g13g24

g12g34

)∑

λ≥0

C2[λ]F
112[λ] +

(
g13g24

g12g34

)2 ∑

λ1≥λ2≥0

C4[λ1,λ2]F
224[λ1,λ2]

+

(
g13g24

g12g34

)3 ∑

λ1≥λ2≥λ3≥0

C6[λ1,λ2,λ3]F
336[λ1,λ2,λ3]

)
, (5.4.158)

with coefficients

C2[λ] =
2B(λ!)2

(2λ)!
for λ ∈ Zeven zero otherwise,

C4[λ1,λ2] =
λ1! (λ1 + 1)! (λ2!) 2

(
B (λ1 − λ2 + 1) (λ1 + λ2 + 2) + C(−1)λ2

)

(2λ2)! (2λ1 + 1)!

for λ1 − λ2 ∈ Zeven ≥ 0, λ2 ∈ Z ≥ 0 and zero otherwise. (5.4.159)

and exactly as is given in (5.4.134), with colour factors

Correlator type A B C

〈A3A3A3A3〉 9(N2−4)2(N2−1)2

N2

81(N2−4)2(N2−1)
N2

162(N2−4)(N2−1)(N2−12)
N2

(5.4.160)

Here, the first manoeuver is to use the reducibility equation (5.4.151) to replace the

short Konishi and the succession of γ = 2 semi-short operators by long operators as in

the previous two cases.

However, now we need some additional information to help us with the twist four

(γ = 4) sector. In particular we need to know how many genuine short twist four

operators there are in the theory (we already know from the 〈2233〉 correlator that

it can not be zero). This can be answered by appealing to the classical interacting
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theory [27]. In analytic superspace the short twist four operators O4[λ] and O4[λ−1,1]

are double trace operators of the form A2∂
λA2 whereas those which combine to become

long operators are single trace operators. Just as for the twist two operators, there is

precisely one such operator for all even λ. The first few cases can also be checked with

table 6 in the appendix of [91].

Armed with this knowledge that there is only one protected twist four operator

for each case, we can then use the considerations of section 5.4.5 to predict the OPE

coefficients, C̃3333
4λ , after multiplet recombination, using the corresponding coefficients

from 〈2222〉 and 〈2233〉 via (5.4.143).

Namely we predict that

C̃4[λ] =

(
C2233

4[λ]

)2

C2222
4[λ]

=
1296 (N2 − 4)

2
(N2 − 1)λ!(λ+ 1)!

N2(2λ+ 1)! (−λ(λ+ 3) + (λ+ 1)(λ+ 2)N2 + 2)
, (5.4.161)

C̃4[λ,1] =

(
C ′2233

4[λ,1]

)2

C ′2222
4[λ,1]

=
5184 (N2 − 4)

2
(N2 − 1) ((λ+ 1)!)2

N2(2λ+ 2)! (λ(λ+ 3) (N2 − 1)− 12)
, (5.4.162)

where we have explicitly put in the colour factors.

We therefore deduce that we must use the reducibility equations to send part of the

γ = 4 superconformal partial waves to the γ = 6 sectors, leaving the above coefficients.

Moreover we find another consistency check in the fact that C̃4[1,1] = C ′4[1,1] correspond-

ing to a protected 1
4
-BPS operator which can not be combined with any higher weight

operators to become long.

Altogether, this requires the use of the three reducibility equations, and the final

equation comes from the redundancy of the Dynkin labels

F 112[λ] =

(
g13g24

g12g34

)(
F

224[λ−1,1]
long − F 224[λ−1,1]

)
,

F 224[λ] =

(
g13g24

g12g34

)(
F

336[λ−1,1]
long − F 336[λ−1,1]

)
,

F 224[λ,1] =

(
g13g24

g12g34

)(
F

336[λ−1,1,1]
long − F 336[λ−1,1,1]

)
,

F 224[λ1,λ2] =

(
g13g24

g12g34

)(
F 336[λ1−1,λ2−1,2]

)
. (5.4.163)

We thus obtain

〈3333〉
g3

12g
3
34

= protected + unprotected, (5.4.164)
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where

protected = A+

(
g13g24

g12g34

)
2BF 112[0]

+

(
g13g24

g12g34

)2
[

(2B + C)F 224[0] +
∑

λ≥2

C̃4[λ]F
224[λ] +

∑

λ≥1

C̃4[λ,1]F
224[λ,1]

]

+

(
g13g24

g12g34

)3
[∑

λ≥0

C6[λ]F
336[λ] +

1

10
(18A− 14B − C)F 336[1,1]

+
∑

λ≥3

C ′6[λ,1]F
336[λ,1] +

∑

λ≥2

C ′6[λ,1,1]F
336[λ,1,1]

]
(5.4.165)

and

unprotected =

(
g13g24

g12g34

)2
[∑

λ≥2

C2[λ,2]F
224[λ,2] +

∑

λ≥1

C2[λ+1]F
224[λ,1]
long

]

+

(
g13g24

g12g34

)3
[ ∑

λ1≥λ2≥2

C6[λ1,λ2]F
336[λ1,λ2] +

∑

λ1≥λ2≥2

C6[λ1,λ2,1]F
336[λ1,λ2,1]

+
∑

λ1≥λ2≥2

C ′6[λ1,λ2,2]F
336[λ1,λ2,2] +

∑

λ≥2

C ′′6[λ,1,1]F
336[λ,1,1]
long +

+
∑

λ≥1

C ′′′6[λ+1]F
336[λ,1]
long

]
(5.4.166)

where

C ′6[λ,1] = C6[λ,1] − C4[λ+1] + C̃4[λ+1],

C ′6[λ,1,1] = C6[λ,1,1] − C4[λ+1,1] + C2[λ+2] + C̃4[λ+1,1],

C ′6[λ1,λ2,2] = C6[λ1,λ2,2] + C4[λ1+1,λ2+1],

C ′′6[λ,1,1] = C4[λ+1,1] − C2[λ+2] − C̃4[λ+1,1],

C ′′′6[λ,1,1] = C4[λ+1] − C̃4[λ+1] (5.4.167)

The existence of a non-trivial protected twist-4 sector, C̃, differs from the assumption

made in [87] that these should be absent and absorbed further into long operators using

the third line of (5.4.163).

Note that both the results here and the results of [87] are consistent with positivity

of the OPE coefficients (we have checked and indeed all these coefficients remain non-

negative). Furthermore these results agree with [87] in the large N limit, since the

coefficients C̃ are subleading.
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5.5 Conclusion

In this chapter we have provided the superconformal partial waves relevant for four-

point functions of scalar operators in so-called Grassmannian of the form Grm|n(2m|2n).

These are interesting mathematical objects in their own right, however they gain phys-

ical relevance for some selected values of the (m,n) parameters, which yields N = 4,

N = 2 and bosonic (super)conformal partial waves in four dimensions together with

the purely internal conformal partial wave (which we omitted here but can be found

in [72]). This all comes from the very same coefficient function Rαβγλ
µ which does not

depend on any particular group, but rather the Young tableaux only. The precise

group only comes in via the Schur superpolynomials. We performed a summation on

the expansion in Schur superpolynomials to give a novel determinant form for general

(m,n).

We then considered N = 4 analytic superspace and initiated a detailed analysis

of mixed charge 1
2
-BPS four-point functions in the free theory. We analysed the free

theory OPE coefficients in both the SU(N) and the U(N) gauge theory for a number

of correlators. We finally considered the multiplet rearrangement due to the recom-

bination of short operators into long operators for the SU(N) theory. In particular,

using the 〈2233〉 correlator in the SU(N) gauge theory implied that there must be a

non-trivial twist-4 sector appearing in the 〈3333〉 correlator which remains protected.

We also remark upon a result obtained in the paper in which this chapter is based

but omitted here. It was also found section 3.4.4 of [72] that one can set m = 0 in the

summed up form of the superconformal partial wave (5.3.89) and expand in internal

Schur polynomials. The result is a completely different set of coefficients that works

such that we can compare the external with the internal coefficients. We found that

the numerical coefficient of the external representation λ is equal to the coefficient of

the internal representation λT .

Looking forward, there are a number of directions to take. Computationally, in the

N = 4 SYM case there is much data – anomalous dimensions and structure constants

– to be extracted, which can then be compared to those computed via integrability.

Moreover, by understanding what the dimensionality of the vectors COp1p2
are and using

its inner product we could go ahead and work out the precise OPE coefficients for
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further correlators, in particular those which we have not studied all the way here.

On the bootstrap side it would be interesting to revisit and continue the work

of [75,76] analysing the superconformal bootstrap in N = 4 SYM for higher charge

correlators.

Other superconformal theories not covered by the Grassmannian theories here is

the six-dimensional (2, 0) theory. A superconformal partial wave analysis of the energy-

momentum correlator in the (2, 0) theory was performed in [93] and superconformal

partial waves were also considered in [94]. On the bootstrap side there has been recent

work analysing the restrictions on anomalous dimensions for this theory in [96].

It would therefore be interesting to see if the method presented here can be mod-

ified to (2, 0) SCFTs and related theories. In the work presented here, we made use

of Schur superpolynomials. These polynomials belong to a one-parameter family of

polynomials called the Jack polynomial Jα(x), parametrised by α [85], where for the

Schur polynomials one takes α = 1. For a completely analogous study for (2, 0) SCFTs

in six dimensions one would instead use J 1
2
(x) instead of the Schur polynomials. Some

aspects of this have been studied in [93,80]

Finally, our work has been solely considering the OPE of scalar operators. An

important question would be to try and find out how much of what we have previously

learnt follows into the OPE of non-scalar OPEs. A starting point for N = 2 SCFTs

has begun in [97].



Chapter 6

Outlook

In this final chapter we would like to bring this thesis to a close and remark on the

most important points found in this thesis.

This thesis covered two major themes. The first was in the application of twistor

theoretic methods in the perturbative regime of N = 4 SYM. The second was the

derivation and application of superconformal partial waves on what we have called

Grassmannian field theories.

Beginning with the twistor methods we studied a novel approach to the supercorre-

lation functions of the stress-tensor supermultiplet in chapter 3. Here, the main result

was a complete re-writing of the Feynman rules with some new graphical methods.

The new set of rules contained essentially two rules, for every propagator we have a

factor of gij =
y2
ij

x2
ij

and for every p-vertex we have a factor of R(i; j1 . . . jp). Schemati-

cally, we found that the lightlike limit of the n-point Grassmann degree four correlator,

namely G
(0)
n;1/G

(0)
n;0 is the on-shell superconformal invariant relevant to scattering am-

plitude (namely, the R-invariant), thus we may think of R(i; j1 . . . jp) as an off-shell

generalisation.

The main lesson that we gained from this work was that much like the twistor

approach to scattering amplitudes, the application here has led to a clear simplification

that has given computational ease and efficiency. Most importantly, it was provided

some structure in its formation. Critically, the main obstruction in comparison to

amplitudes is that it is not as easy to gain gauge invariant (Z∗-independent) results.

Looking forward, we recall that the scattering amplitudes in N = 4 SYM are

148
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conjectured to be integrable as suggested by the Yangian invariance. In view of this,

the supercorrelation functions are objects whose lightlike limit reproduces this Yangian

invariance. An outstanding yet pertinent question is therefore, what is the precise

mechanism in which lightlike limit reproduces the Yangian invariance? It would even

be interesting to reverse the question and quantify the aspects of the full Yangian

invariance that is preserved in the correlator, if at all. Understanding this may lead

to a mirroring of progress for the correlator as has been done for the amplitude. The

twistor approach demonstrated in chapter 3 provides a first step towards gaining the

correlator analogy to the Grassmannian formulation studied in [69].

In chapter 4, we considered the six-points tree-level NMHV scattering amplitude.

Previous methods which have come directly from the twistor approach gave results

which manifest full dual superconformal symmetry but needs to be summed up to see

the emergent physical pole structure. The main result was by making use of a new basis.

In expressing the result in terms of this new basis we found a result which contained

manifestly physical poles and manifestly preserved half of the dual superconformal

symmetry. The new result contained only one non-trivial term whilst the others are

related by the six-point dihedral symmetry.

The main lesson is that we found further evidence that in the twistor language one

cannot write a result which contains manifestly full dual superconformal symmetry

as well as physical pole structure. A remark is that most modern methods prioritise

manifest dual superconformal symmetry whilst allowing the physical pole structure

to be an emergent property. The Amplituhedron studied in [25] is the only method

that attributes the non-physical pole structure to a geometric property, namely the

tessellations of the Amplituhedron.

The second major theme was the derivation and application of the superconformal

partial wave.

In chapter 5 we found the superconformal partial wave associated to four-point

functions of scalar operators for Grassmannian field theories with SU(m,m|2n) sym-

metry. In particular for m = 2 and n = 0, 1, 2 we get N = 0, 2, 4 four dimensional

(S)CFTs in which the four-point function in question is that of 1
2
-BPS operators. By

considering the structure of the the OPE as applied to the four-point function, we

found that the superconformal partial wave can be expressed as an infinite linear com-
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bination of GL(m|n) Schur superpolynomials, i.e. Fαβγλ(x|y) =
∑

µ≥0R
αβγλ
µ sµ(x|y).

The problem then reduces to finding the coefficients Rαβγλ
µ . By a series of arguments,

we found that Rαβγλ
µ can be obtained from the purely bosonic GL(m) problem. By

constructing a conformal quadratic Casimir operator, we found a recursion relation on

Rαβγλ
µ which we solved and thus found the superconformal partial wave.

We then went on to apply the superconformal partial wave to the N = 4 SCFT case

in which we performed superconformal partial wave analyses for various correlators in

the free theory. We then considered the possibility of the recombination of two short

operators into long operators. By making use of the 〈2222〉 and 〈2233〉 correlator,

we were then able to deduce a non-trivial twist-4 sector for the 〈3333〉 which were

previously undiscovered [87].

There were two major lessons in this work which are rather remarkable. The first

is that at the core of this problem are the coefficients Rαβγλ
µ which are attained in

the bosonic sector and can be applied to the supersymmetric case. The second major

lesson was in the re-derivation of the OPE coefficients of free theory correlator 〈3333〉
after any operator recombination had taken place. This showed that the result are

required to satisfy consistency conditions which rely on knowledge of other correlators.

This input was not included in previous works.

The problem as solved in chapter 5 was done completely as an exercise in group

theory and representation theory, particularly that of SU(m,m|2n). It is only for par-

ticular values of m and n that we gain physically relevant theories. More generally, we

have found the infinite dimensional representations that follow from the concatenation

of certain representations, all in SU(m,m|2n). In view of this more general problem,

there are two directions we can take. Firstly in the current context of SU(m,m|2n), we

can consider non-scalar operators, such as OAA′ . Secondly, and more interestingly we

can attempt to go beyond this group, namely another relevant supergroup is Osp(8|2N )

which corresponds to six-dimensional (N , 0) SCFTs. In our work, we could very easily

switch m or n = 0, to reveal superconformal partial waves for the corresponding maxi-

mal bosonic subgroups of SU(m,m|2n), namely SU(2n) and SU(m,m) respectively. In

the Osp(8|2N ) case, the two maximal bosonic subgroups are rather different, in this

case being SO(8) and Sp(2N ). It would very fruitful in view of more general groups to

see if a similar methodology can be employed to find the superconformal partial waves.



Appendix A

Proof of (3.2.66) in section 3.2.3

In section 3.2.3, we claimed that

δ0|4 (χ∗ + σαijθi,α + σαjiθj,α
)

= y2
ijδ

0|2 (σαijθ−i,α + Aij
)
δ0|2 (σαjiθ−j,α + Aji

)
, (A.0.1)

where

Aa
′

ij =
[
χI∗u

+b
j,I + σαjiθ

+b
j,α + σαijθ

+b
i,α

] (
y−1
ij

)a′
b
. (A.0.2)

In this appendix we wish to prove it. We begin by remarking that

δ4
(
χ∗ + σαijθi,α + σαjiθj,α

)
=

∫
d4ωeωI(χ

I
∗+σ

α
ijθ

I
i,α+σαjiθ

I
j,α), (A.0.3)

then we perform the change of variables

ωI = u+a
i,I v

(i)
a + u+a

j,I v
(j)
a ,

in which we get

d4ω = det
(
u+a
i,I , u

+a
j,I

)−1

︸ ︷︷ ︸
y−2
ij

d2v(i)d2v(j). (A.0.4)

This result follows from the basic fact that if we have some Grassmann odd n dimen-

sional vector pI , then we may consider the integral
∫
dnpf(p). Then the contribut-

ing term from f(p) will be maximally nilpotent and under some change of variables

pI → mI
Jp

J we have f(mp)→ det(m)f(p). For this to be a valid change of variables, we

require dn(mp) = det(m)−1dnp. One can check from (2.3.85) that det
(
u+a
i,I , u

+a
j,I

)
= y2

ij.
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Applying all of this gives back

∫
d4ωeωI(χ

I
∗+σ

α
ijθ

I
i,α+σαjiθ

I
j,α)

= y−2
ij

∫
d2v(i)d2v(j)ev

(i)
a (u+a

i,I χ
I
∗+σ

α
ijθ

+a
i,α+σαjiθ

I
j,αu

+a
i,I )ev

(j)
a (u+a

j,Iχ
I
∗+σ

α
jiθ

+a
j,α+σαijθ

I
i,αu

+a
j,I )

= y2
ijδ

0|2 (ui,IχI∗ + σαijθi,α + σαjiθ
I
j,αui,I

)
δ0|2 (uj,IχI∗ + σαjiθj,α + σαijθ

I
i,αuj,I

)
(A.0.5)

In each delta function there exists the term σαijθ
A
i,αu

+a
j,A which we can write as

σαijθ
I
i,αu

+a
j,I = σαij

(
θ+b
i,αū

I
i,+b + θ−b

′

i,α ū
I
i,−b′

)
u+a
i,I

= σαijθ
+a
i,α + σαijθ

−a′
i,α y

a
ij,a′ , (A.0.6)

where once again we make use of (2.3.85), namely we used ūIi,+au
+b
j,I = δba and ūIi,−a′u

+b
j,I =

y b
ji,a′ . Performing the analogous manoeuvres to σαjiθ

I
j,αu

+a
i,I , and putting everything back

in leads to the last line of (A.0.5) being equivalent to

y−2
ij δ

0|2
(
y a
ij,a′

[(
u+b
i,Iχ

I
∗ + σαjiθ

+b
iα + σαjiθ

+b
j,α

) (
y−1
ij

)a′
a

+ σαjiθ
−a′
j,α

])

× δ0|2
(
y a
ji,a′

[(
u+b
j,Iχ

I
∗ + σαijθ

+b
jα + σαijθ

+b
i,α

) (
y−1
ji

)a′
a

+ σαijθ
−a′
i,α

])
. (A.0.7)

Using the property of fermionic delta functions that δ0|n (Mp) = det(M)δ(p), we apply

this to the matrix yij in the argument of the delta functions to find that (A.0.7) is

equal to

y2
ijδ

0|2 (σαijθ−i,α + Aij
)
δ0|2 (σαjiθ−j,α + Aji

)
, (A.0.8)

where

Aa
′

ij =
[
χI∗u

+b
j,I + σαjiθ

+b
j,α + σijθ

+b
i

] (
y−1
ij

)a′
b

(A.0.9)
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Component expansion of R-vertex

In this appendix, we would like to show some of the derivation regarding the expan-

sion (3.4.116) of the R-vertex used in section 3.2. For convenience we repeat the

findings:

R(i; j1j2j3) = −
δ0|2
(
〈σij1σij2〉Aij3 + 〈σij2σij3〉Aij1 + 〈σij3σij1〉Aij2

)

〈σij1σij2〉 〈σij2σij3〉 〈σij3σij1〉
.

= R1(i; j1j2) +
1

2
R2(i; j1j2) +

1

2
R3(i; j1j2) +

1

2
R4(i; j1j2j3)

+
1

6
R5(i; j1j2j3) + antisym123 , (B.0.1)

where

Aa
′

ij =
[
χI∗u

+b
j,I + σαjiθ

+b
j,α + σαijθ

+b
i,α

] (
y−1
ij

)a′
b
, (B.0.2)

gives

R1(i; j1j2) = −
〈σij1|θ+

i yij1j2θ
+
j2
|σj2i〉

(ij1j2)gij1gij2
,

R2(i; j1j2) =
〈σj1i|θ+

j1
yj1ij2θ

+
j2
|σj2i〉

(ij1j2)gij1gij2
,

R3(i; j1j2) = −〈σij1|
(
θ+
i

)2 |σij2〉y2
j1j2

(ij1j2)gij1gij2
,

R4(i; j1j2j3) = 〈σj1i|
(
θ+
j1

)2 |σj1i〉
x2
ij1

(ij2j3)

(ij1j2)(ij3j1)gij1
,

R5(i; j1j2j3) = (θ+,α
i yij1j2j3iθ

+
i,α)

1

y2
ij1
y2
ij2
y2
ij3

, (B.0.3)
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where we have also used the index-less notation is used:

yijk := (yijk)ab = (yij)ac′ (ỹjk)
c′

b ,

yijklm := (yijklm)ab = (yij)aa′ (ỹjk)
a′c (ykl)cd′ (ỹlm)d

′

b ,

(ijk) := 〈σijσik〉x2
ijx

2
ik. (B.0.4)

Since χA∗ is a gauge parameter we can set it zero, thus we take

Aa
′

ij =
[
σαjiθ

+b
j,α + σαijθ

+b
i,α

] (
y−1
ij

)a′
b
. (B.0.5)

We would like to derive R5(i; j1j2j3) and R3(i; j1j2) explicitly. First we note that

R(i; j1j2j3) has Grassmann degree two which means one has

R(i; j1j2j3) = Cαβ
i

(
θ+
i

)2

αβ
+ Cαβ

j1

(
θ+
j1

)2

αβ
+ Ciab

(
θ+
i

)2ab
+ Cαβ

ij1ab
θ+a
iα θ

+b
j1β

+ Cαβ
j1j2ab

θ+a
j1,α

θ+b
j2,β

+ . . . (B.0.6)

Throughout the forthcoming exercise one must be very careful with numerical factors

as these can arise subtly and lead to precise simplifications, we recall that

1

2
yaa′ybb′ε

abεb
′a′ = y2

yaa′ybb′ε
ab = y2εb′a′

(
y−1
)a′a

= y−2ỹa
′a, (B.0.7)

where ỹa
′a = εabybb′ε

b′a′ .

Corresponding the R3 and R5 are Cαβ
i and Ciab respectively. Let us begin with Cαβ

i ,

namely we can take θ+a
k,α = 0 for k ∈ {j1, j2, j3}, and in applying

Aa
′

ij =
[
σαjiθ

+b
j,α + σαijθ

+b
i,α

] (
y−1
ij

)a′
b

(B.0.8)

to (B.0.3), we get

R(i; j1j2j3)
∣∣
θ+
i

= −
δ0|2
( [
〈σij1σij2〉σαij3

(
y−1
ij3

)a′
b

+ 〈σij2σij3〉σαij1
(
y−1
ij1

)a′
b

+ 〈σij3σij1〉σαij2
(
y−1
ij2

)a′
b

]
θ+b
i,α

)

〈σij1σij2〉 〈σij2σij3〉 〈σij3σij1〉
(B.0.9)

then from the Schouten identity

〈σij1σij2〉σαij3 + 〈σij3σij1〉σαij2 + 〈σij2σij3〉σαij1 = 0, (B.0.10)
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we can solve for 〈σij3σij1〉σαij2 and substitute this in, and noting that

y−1
ik − y−1

il = y−1
il (yli + yik)y

−1
ki = y−1

il ylky
−1
ki , (B.0.11)

where we have omitted the indices, we arrive at

R(i; j1j2j3)
∣∣
θ+
i

= −
δ0|2
( [
〈σij1σij2〉σαij3

(
y−1
ij2
yj2j3y

−1
j3i

)a′
b

+ 〈σij2σij3〉σαij1
(
y−1
ij2
yj2j1y

−1
j1i

)a′
b

]
θ+b
i,α

)

〈σij1σij2〉 〈σij2σij3〉 〈σij3σij1〉
.

(B.0.12)

We can write the delta function in the previous object as

δ0|2 (Mα
aθ

+a
i,α

)
= εa′b′Mα,a′

a Mβ,b′

b θ+a
i,αθ

+b
i,β . (B.0.13)

We may then write the Grassmann odd objects in terms of irreducible Grassmann

objects of degree two,

θ+a
α θ+b

β =
1

2
εαβ(θ+)2ab +

1

2
εab(θ+)2

αβ. (B.0.14)

In this way, we get both of the components that we want. Let us focus εαβ(θ+)2ab first

in which we directly get :

Ciab = −1

2

(yij1j2j3i − (j1 ↔ j3))ab
y2
ij1
y2
ij2
y2
ij3

. (B.0.15)

However, we note that (yij3j2j1i)ab = − (yij1j2j3i)ba which is seen easiest by using what

we have learnt in section 2.3.1 to write (yij3j2j1i)ab = εacεbdu
+c
iI Ȳ

IJ
j3
Yj2,JK Ȳ

KL
j1

u+d
i,L. It

follows that

u+c
i,I Ȳ

IJ
j3
Yj2,JK Ȳ

KL
j1

u+d
i,L = u+d

i,LȲ
IJ
j3
Yj2,JK Ȳ

KL
j1

u+c
i,I

= u+d
i,LȲ

KL
j1

Yj2,JK Ȳ
IJ
j3
u+c
i,I

= −u+d
i,LȲ

LK
j1

Yj2,KJ Ȳ
JI
j3
u+c
i,I , (B.0.16)

where we used that Ȳ IJ and YIJ are anti-symmetric in their indices. Using

(yij3j2j1i)ab = − (yij1j2j3i)ba and
(
θ+
)2ab

=
(
θ+
)2ba

, (B.0.17)

we have

Ciab = −1

6

(yij1j2j3i)ab
y2
ij1
y2
ij2
y2
ij3

, (B.0.18)
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where we have put in a 1
6

since all the external legs are anti-symmetric, this corresponds

to R5(i; j1j2j3). 1

To get Cαβ
i , we simply look at the corresponding component in (B.0.14). A direct

computation yields

Cαβ
i =

〈σij1σij2〉
〈σij2σij3〉 〈σij3σij1〉

σαij3σ
β
ij3

(
y2
j2j3

y2
ij2
y2
ij3

)
+

〈σij2σij3〉
〈σij1σij2〉 〈σij3σij1〉

σαij1σ
β
ij1

(
y2
j1j2

y2
j1i
y2
j2i

)

+
σαij1σ

β
ij3

〈σij3σij1〉
tr(yij1 ˜yj1j2yj2j3 ˜yj3i)

y2
ij1
y2
ij2
y2
j3i

. (B.0.19)

Recalling the structures investigated in section 2.3.1, we have (defining Yij := Ȳ IJ
i Yj,IJ =

1
2
εIJKLYi,IJYj,KL):

tr (yij1 ỹj1j2yj2j3 ỹj3i) = tr
(
YiȲj1Yj2Ȳj3

)
=

1

4
(Yij3Yj1j2 − Yij2Yj1j3 + Yij1Yj2j3) , (B.0.20)

which follows from the fact that YAB obeys the Clifford algebra in six dimensions,

namely

{
Y I
i,J , Y

K
j,I

}
=

1

2
Yijδ

K
J . (B.0.21)

Since, Yij = 2y2
ij it follows that

tr (yij1 ỹj1j2yj2j3 ỹj3i) = y2
ij3
y2
j1j2
− y2

ij2
y2
j1j3

+ y2
ij1
y2
j2j3

. (B.0.22)

Now that all y-structures are in the same basis, we need to use the Schouten identity

to simplify. For example, consider the coefficient of y2
j2j3

in (B.0.19). It is given by

〈σij1σij2〉
〈σij2σij3〉 〈σij3σij1〉

σαij3σ
β
ij3

(
y2
j2j3

y2
ij2
y2
ij3

)
+

σαij1σ
β
ij3

〈σij3σij1〉
y2
j2j3

y2
ij2
y2
j3i

= −
σαij2σ

β
ij3

〈σij2σij3〉
y2
j2j3

y2
ij2
y2
j3i

(B.0.23)

Where we have used 〈σij1σij2〉σαij3 + 〈σij2σij3〉σαij1 = −〈σij3σij1〉σαij2 . By implement-

ing (B.0.4), we gain R3(i; j2, j3) where the symmetry factor of 1
2

comes from the anti-

symmetry R3(i; j2, j3) = −R3(i; j3, j2).

1Note that aside from the permutation we have discussed already we also have (omitting indices)

uiȲj1Yj3 Ȳj2ui = −uiȲj1Yj2 Ȳj3ui− 1
2y

2
j2j3

uiȲj1ui which follows from the fact that Y satisfy the Clifford

algebra in six dimensions, however uiȲj1ui = 0 since Ȳj1 is antisymmetric in its indices. This is an

example of permutation invariance upto a sign under neighbouring points, in this case points j2 and

j3.
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The remaining components can be found in a similar manner. However, there exists

a package called grassmann.m which is to be used on Mathematica [98] and can easily

be used to find the expansion of R-vertex.



Appendix C

Some computational details from

section 3.4

In this appendix we gather up important results relevant to section 3.4. We put the

relevant equation as subheadings in this appendix.

C.0.1 (3.4.110)

We would like to show that

f(0; 123)2 −Rc123
3 (0; 31)2 = 0. (C.0.1)

Recalling (3.4.99), we note that

f(0; 123)2 =
1

2

(
2
x2

12x
2
23

x2
10x

4
20x

2
30

− x4
12

x4
10x

4
20

+ cyc123

)(
θ+

0

)4
. (C.0.2)

Given that

Rc123
3 (0; 31) =

g30g01

g12

R3(0; 31) + cyc123 (C.0.3)

a direct calculation using (θ+)
2
(αβ) (θ+)

2
(γρ) = 1

2
(εγαεβρ + εραεβγ) (θ+)

4
gives the z∗-

independent result

Rc123
3 (0; 31)2 =

(
x2

12x
2
23

x2
01x

4
02x

2
03

− x4
12

2x4
10x

4
20

+ cyc123

)(
θ+

0

)4
. (C.0.4)

The fact that Rc123
3 (0; 31)2 is z∗-independent works term by term, there are no non-

trivial intermediate identities required, for example one such result is
(
g30g01

g13

)2

R3(0; 31)2 = − x2
13

2x4
30x

4
10

(
θ+
)4
. (C.0.5)

Since we have (C.0.4) and (C.0.2), it follows that f(0; 123)2 −Rc123
3 (0; 31)2 = 0.

158
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C.0.2 (3.4.117)

We turn to the result in (3.4.117), which we display again as

[
[(R3(0; 41) + cyc412)(R3(0; 23) + cyc234)] + [R5(0; 412)] [R5(0; 234)]

]

= R3(0; 12)R3(0; 34) +R3(0; 41)R3(0; 23) +
y2

14y
2
23 − 2y2

13y
2
24 + y2

12y
2
34

2y2
01y

2
02y

2
03y

2
04

, (C.0.6)

We would like to show some details of how this result comes about. More generally,

this came from a five-point correlator graph which had a four-point R-vertex. One has:

R(0; j1j2j3j4) = R(0; j1j2j3)R(0; j3j4j1) =
[
R3(0; j1j2) + cycj1j2j3 +R5(0; j1j2j3)

][
R3(0; j3j4) + cycj3j4j1 +R5(0; j3j4j1)

]

= (R3(0; j1j2) + cycj1j2j3)(R3(0; j3j4) + cycj3j4j1) +R5(0; j1j2j3)R5(0; j3j4j1) (C.0.7)

Now, there exists a nice simplification if we focus our attention on the term which is

quadratic in R5’s, in which we can write

R5(0; j1j2j3)R5(0; j3j4j1) = R5(0; j1j2j3)R5(0; j1j3j4) (C.0.8)

It turns out that R5 ×R5 terms can be expanded into a sum of R3 ×R3: 1

R5(0; j1j2j3)R5(0; j3j4j1) = −R3(0; j2j3)R3(0; j3j4) +R3(0; j2j3)R3(0; j3j1)

+R3(0; j2j1)R3(0; j1j3) +R3(0; j4j3)R3(0; j3j1)−R3(0; j2j1)R3(0; j1j4)

+R3(0; j3j1)R3(0; j1j4)−R3(0; j3j1)R3(0; j1j3) +
y2
j2j1

y2
j3j4
− 2y2

j2j4
y2
j3j1

+ y2
j2j3

y2
j4j1

y2
0j2
y2

0j3
y2

0j4
y2

0j1

.

(C.0.9)

When we put all this back into (C.0.7), we arrive at the result:

R(0; j1j2j3j4) = R3(0; j2j3)R3(0; j4j1) +R3(0; j1j2)R3(0; j3j4)

+
y2
j2j1

y2
j3j4
− 2y2

j2j4
y2
j3j1

+ y2
j2j3

y2
j4j1

2y2
0j2
y2

0j3
y2

0j4
y2

0j1

, (C.0.10)

which is what we used in (3.4.117).

1This was discovered explicitly using the grassmann.m package on Mathematica [98]
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C.0.3 (3.4.122)

Here we would like to show that (3.4.122) follows from (3.4.120). Essentially, we wish

to show that

−Rc1234
3 (0; 12)Rc1234

4 (1; 024) +
1

2
Rc1234

4 (1; 024)2 +
1

2
Rc1234

3 (0; 12)2 =
1

2
f(0; 1234)2

(C.0.11)

Now recall the f -function at 4-points.

f(0; 1234) = −Rc1234
3 (0; 12) +Rc1234

4 (1; 024),

from which we find that

=⇒ 1

2
f(0; 1234)2 =

1

2
Rc1234

3 (0; 12)2 +
1

2
Rc1234

4 (1; 024)2 (C.0.12)

−Rc1234
3 (0; 12)Rc1234

4 (1; 024).

C.0.4 (3.4.143)

The non-trivial six-term identity

(234)(341)x2
12 − (234)(124)x2

13 + (123)(234)x2
14

+ (124)(134)x2
23 − (123)(134)x2

24 + (123)(124)x2
34 = 0, (C.0.13)

was of use in (3.4.143) as well as (3.4.106). We wish to provide a proof here. It is

convenient to introduce an auxiliary dual reference twistor t∗ normalised as t∗Az
A
∗ = 1.

It then allows us to define two sets of dual variables

tiA = Xi,ABz
B
∗ , hAi = XAB

i t∗B , (C.0.14)

with XBC
i = zBi,1z

C
i,2 − zCi,1zBi,2 and Xi,AB = 1

2
εABCDX

CD
i . They satisfy the relations

tjAz
A
∗ = hAi t∗A = 0 . (C.0.15)

We also notice that since the XAB takes values in the Clifford algebra of SU(4), the

following holds true:

hAi tjA + hAj tiA = −t∗AzC∗ (XAB
i XjBC +XAB

j XiBC) = −(Xi ·Xj) , (C.0.16)
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where the left-most hand side is the dot product defined on hypercone coordinates in

(2.2.61), such that Xi ·Xi = −1
2
x2
ij, but as we shall see later we can omit the prefactor.

Using the dual variables (C.0.14) we can obtain two equivalent representations for (ijk)

(ijk) =
1

2
εABCDtiAtjBtkCt∗D =

1

2
εABCDh

A
i h

B
j h

C
k z

D
∗ ≡ 〈 ijk∗ 〉 . (C.0.17)

According to (C.0.15), the twistors tjA with j = 1, . . . , 4 are all orthogonal to zA∗ ,

therefore, they are linear dependent. The same is true for hAj with j = 1, . . . , 4. This

yields two identities

t1A 〈234∗〉+ t2A 〈34∗1〉+ t3A 〈4∗12〉+ t4A 〈∗123〉 = 0 ,

hA1 〈234∗〉+ hA2 〈34∗1〉+ hA3 〈4∗12〉+ hA4 〈∗123〉 = 0 (C.0.18)

Finally we multiply the expressions on the left-hand side and contract the SU(4) indices

to get

(234)(341)(X1 ·X2)− (123)(134)(X2 ·X4)− (234)(124)(X1 ·X3)

+ (123)(234)(X1 ·X4) + (124)(134)(X2 ·X3) + (123)(124)(X3 ·X4) = 0 . (C.0.19)

where we made use of (C.0.16) and took into account that (Xi ·Xi) = 0. Since the last

relation is homogenous in X’s we can simply replace (Xi ·Xj)→ x2
ij.



Appendix D

Further free theory coefficients

In this section, we give the free theory OPE coefficients of correlation functions 〈4233〉
and 〈5344〉 relevant to section 5.4.2. These cases distinguish themselves from the cases

studied in the main text. Firstly, we now have p12 = 2 6= 0. Secondly, for the first time

there can be more than one type of 1
2
-BPS operator in the SU(N) gauge theory (e.g.

at charge four tr(W 4) as well as tr(W 2)2.)

〈4233〉

The correlator is written as

〈4233〉 = A
(
g14g

2
24g

3
13 + g3

14g
2
23g13

)
+Bg2

13g23g24g
2
14 + Cg2

12g13g
2
34g14

+D
(
g12g14g24g34g

2
13 + g12g

2
14g23g34g13

)

= g3
12g

3
34

g14

g24

((
g13g24

g12g34

)
f2(C, 0) +

(
g13g24

g12g34

)2

f4(D,D, 0)

+

(
g13g24

g12g34

)3

f6(A,B,A, 0)

)
(D.0.1)

We tabulate the SU(N) colour factors in table D.1, whilst leaving some of the U(N)

factors for table E.2 in appendix E since these tables are a lot larger.

In comparing with the appropriate SCPW expansion one finds the result

〈4233〉 = g3
12g

3
34

g14

g24

((
g13g24

g12g34

)∑

λ≥0

C2[λ]F
012[λ] +

(
g13g24

g12g34

)2 ∑

λ1≥λ2≥0

C4[λ1,λ2]F
124[λ1,λ2]

+

(
g13g24

g12g34

)3 ∑

λ1≥λ2≥λ3≥0

C6[λ1,λ2,λ3]F
236[λ1,λ2,λ3]

)
, (D.0.2)
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Correlator type B C D

〈A4A2A3A3〉 72(N2−1)(N2−4)(N2−6)
N2

72(N2−1)(N2−4)(2N2−3)
N2

144(N2−1)(N2−4)(N2−6)
N2

〈(A2)2A2A3A3〉 144(N2−1)(N2−4)
N

72(N2−1)(N2−4)(1+N2)
N

288(N2−1)(N2−4)
N

Table D.1: SU(N) colour factors associated to the 〈4233〉 correlator, note that A is

always zero.

with the following coefficients

C2[0] = C all else 0,

C4[λ1] =
Dλ1!(λ1 + 2)!

(2λ1 + 1)!
for λ1 ∈ Zeven and all else 0,

C6[λ1,λ2] =
4(−1)λ2 (λ1 + 2) (λ1 + 3) (λ2 + 2) ((λ1 + 2)!) 2 ((λ2 + 1)!) 2

(2(−1)λ2λ1 + 5(−1)λ1 − (−1)λ2) (2λ1 + 4)! (2λ2 + 2)!

×
(

1

24
A (12 (λ1 − 3)λ1 + (96λ1 − 12λ2 (λ2 + 3) + 25) + 23) +B(−1)λ2

)

for λ1 − λ2 ∈ Zeven ≥ 0, λ2 ≥ 0 . (D.0.3)

All other coefficients are vanishing.

As a non-trivial check we can compute the OPE coefficients for the correlator 〈3342〉.
We find the the explicit ingredient of the SCPW expansion change, namely one uses

F 122[λ], F 234[λ] and F 346[λ] instead of the SCPW’s used in (D.0.2). However, critically

the result for the OPE coefficients give identically the same result as in (D.0.2). Fur-

thermore we also note that the results for C6[λ1,λ2] agree perfectly in the large N limit

with those obtained from free three-point functions in [73] (see the first row of table

5).
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〈5344〉

The correlator is given by

〈5344〉 = A(g14g
3
24g

4
13 + g4

14g
3
23g13) +B(g2

14g23g
2
24g

3
13 + g3

14g
2
23g24g

2
13)

+ C(g12g14g
2
24g34g

3
13 + g12g

3
14g

2
23g34g13)

+D(g12g
2
13g

2
14g23g24g34) + E(g2

12g13g
2
14g23g

2
34 + g2

12g
2
13g14g24g

2
34) + F (g3

12g13g14g
3
34)

= g4
12g

4
34

g14

g24

((
g13g24

g12g34

)
f2(F, 0) +

(
g13g24

g12g34

)2

f4(E,E, 0)

+

(
g13g24

g12g34

)3

f6(C,D,C, 0) +

(
g13g24

g12g34

)4

f8(A,B,B,A, 0)

)

(D.0.4)

We have given some of the colour factors in table E.1 and table E.5 in appendix E.

The SCPW expansion is given by

〈5344〉 = g3
12g

3
34

g14

g24

((
g13g24

g12g34

)∑

λ≥0

C2[λ]F
012[λ] +

(
g13g24

g12g34

)2 ∑

λ1≥λ2≥0

C4[λ1,λ2]F
124[λ1,λ2]

+

(
g13g24

g12g34

)3 ∑

λ1≥λ2≥λ3≥0

C6[λ1,λ2,λ3]F
236[λ1,λ2,λ3]

+

(
g13g24

g12g34

)4 ∑

λ1≥λ2≥λ3≥λ4≥0

C8[λ1,λ2,λ3,λ4]F
348[λ1,λ2,λ3,λ4]

)
, (D.0.5)

whereby the result is structurally identical to (D.0.3) for the γ = 2, 4 and 6 but for

changes in the precise colour factors:

C2[0] = F all else 0,

C4[λ1] =
Eλ1!(λ1 + 2)!

(2λ1 + 1)!
for λ1 ∈ Zeven and all else 0,

C6[λ1,λ2] =
4(−1)λ2 (λ1 + 2) (λ1 + 3) (λ2 + 2) ((λ1 + 2)!) 2 ((λ2 + 1)!) 2

(2(−1)λ2λ1 + 5(−1)λ1 − (−1)λ2) (2λ1 + 4)! (2λ2 + 2)!

×
(

1

24
C (12 (λ1 − 3)λ1 + (96λ1 − 12λ2 (λ2 + 3) + 25) + 23) +D(−1)λ2

)

for λ1 − λ2 ∈ Zeven ≥ 0, λ2 ≥ 0 and all else zero. (D.0.6)
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For the γ = 8 sector we get:

C8[λ1,λ2] = nλ1,λ2

1

6
(λ1 + 4) (2λ2 + 5)

×
(
A (λ1 + 2) (λ1 + 5) (λ1 − λ2 + 1) (λ2 + 1) (λ2 + 4) (λ1 + λ2 + 6)

+ 12B
((

(−1)λ2 + 1
)

(λ1 + 2) (λ1 + 5) +
(
(−1)λ2 − 1

)
(λ2 + 1) (λ2 + 4)

) )

for λ1 − λ2 ∈ Zeven ≥ 0, λ2 ≥ 0 and zero otherwise,

C8[λ1,λ2,1] = nλ1,λ2

1

12
(λ1 + 4) (λ1 − λ2 + 1) (λ1 + λ2 + 6) (2λ2 + 5)

×
(
A (λ1 + 1) (λ1 + 6)λ2 (λ2 + 5) + 12B

(
(−1)λ2 − 1

) )

for λ1 − λ2 ∈ Zodd ≥ 1, λ2 ≥ 1 and zero otherwise,

C8[λ1,λ2,2] = nλ1,λ2

1

30
(λ1 + 4) (2λ2 + 5)

×
(
Aλ1 (λ1 + 7) (λ1 − λ2 + 1) (λ2 − 1) (λ2 + 6) (λ1 + λ2 + 6)

+ 12B
((

(−1)λ2 + 1
)
λ2

1 + 7
(
(−1)λ2 + 1

)
λ1 +

(
(−1)λ2 − 1

)
(λ2 − 1) (λ2 + 6)

) )

for λ1 − λ2 ∈ Zeven ≥ 0, λ2 ≥ 2 and zero otherwise, (D.0.7)

where

nλ1,λ2 =
((λ1 + 3)!) 2 ((λ2 + 3)!) 2

(2λ1 + 6)! (2λ2 + 6)!
. (D.0.8)



Appendix E

Colour factors used in free theory

correlators

In this appendix we collect the tables that are too large to fit in the main text of

section 5.4 and appendix D.

Note that in the following M = (N2 − 4)(N2 − 1)

Correlator type B C D

〈A5A3A4A4〉
240M(N2−6)(N4−6N2+36)

N4

480M(N2−6)(N4−6N2+36)
N4

480M(N6+3N4+72N2−864)
N4

〈(A2A3)A3A4A4〉
480M(N2−6)(2N2−9)

N3

960M(N2−6)(2N2−9)
N3

2880M(2N4−21N2+72)
N3

〈A5A3(A2A2)A4〉
1440M(N2−6)(N2−2)

N3

2880M(N2−6)(N2−2)
N3

5760M(N4−7N2+24)
N3

〈(A2A3)A3(A2A2)A4〉
160M(N2−6)(N2+9)

N2

320M(N2−6)(N2+9)
N2

960M(N3+16N2−6N−78)
N2

Correlator type E F

〈A5A3A4A4〉
480M(N6−6N4+99N2−378)

N4

480M(N2−2)(N4−6N2+18)
N4

〈(A2A3)A3A4A4〉
2160M(N4−10N2+42)

N3

480M(N4−6N2+18)
N3

〈A5A3(A2A2)A4〉
1440M(3N4−13N2+42)

N3

960M(N2−2)(2N2−3)
N3

〈(A2A3)A3(A2A2)A4〉
4320M(2N2−7)

N2

960M(2N2−3)
N2

Table E.1: Colour factors for 〈5344〉 in SU(N), note that A is always zero.
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Correlator type A B C D

〈A4A2A3A3〉 216N2(1 +N2) 72N2(5 +N2) 144N2(2 +N2) 144N2(5 +N2)

〈(A2A2)A2A3A3〉 432N3 144N(1 + 2N2) 72N(2 +N)(1 +N2) 288N(1 + 2N2)

〈(A1A3)A2A3A3〉 54N3(7 +N2) 216N(1 +N2) 108N(1 + 3N2) 432N(1 +N2)

〈(A2
1A2)A2A3A3〉 216N2(1 +N2) 432N2 36N2(9 + 2N +N2) 864N2

〈A4(A1)2(A1A2)(A1A2)〉 432N3 16N(12 + 13N2 + 2N4) 48N(6 +N + 2N2) 96N(4 + 5N2)

〈(A1)4(A1)2(A1)3(A1)3〉 432N6 432N6 432N6 864N6

〈(A2
1A2)(A1)2(A1A2)A3〉 72N2(5 +N) 24N2(14 +N + 3N2) 48N2(5 + 4N2) 48N2(15 +N + 2N2)

〈(A2A2)(A1)2(A1A2)A3〉 144N(2 +N) 48N(4 + 4N2 +N3) 48N(4 + 5N2) 96N(6 +N + 2N2)

Table E.2: U(N) colour factors associated to the 〈4233〉 correlator

Correlator type U(N) A B C D

〈A2A2A3A3〉 6N3(1 +N2) 36N3 36N(1 +N2) 72N(1 +N2)

〈(A1)2A2A3A3〉 6N2(1 +N2) 36N2 72N2 72N(1 +N2)

〈(A1)2(A1)2A3A3〉 6N3(1 +N2) 36N 72N3 144N

〈A2A2(A1A2)A3〉 12N4 12N2(2 +N2) 72N2 144N2

〈A2A2(A1A2)(A1A2)〉 4N3(2 +N) 4N(2 +N2)2 24N(2 +N2) 48N(2 +N2)

〈A2A2(A1)3A3〉 12N3 36N3 72N 144N

〈A2A2(A1)3(A1)3〉 12N5 36N3 72N3 144N3

〈A2A2(A1)3(A1A2)〉 12N4 12N2(2 +N2) 72N2 144N2

〈(A1)2A2(A1)3A3〉 12N2 36N2 72N2 144N2

〈(A1)2A2(A1A2)A3〉 12N3 12N(2 +N2) 24N(2 +N2) 48N(2 +N2)

〈(A1)2A2(A1)3(A1A2)〉 12N3 36N3 72N3 144N3

〈(A1)2A2(A1)3(A1)3〉 12N4 36N4 72N4 144N4

〈(A1)2A2(A1A2)(A1A2)〉 4N2(2 +N) 12N2(2 +N2) 8N2(8 +N2) 16N2(8 +N2)

〈(A1)2(A1)2(A1)3A3〉 12N4 36N4 72N4 144N4

〈(A1)2(A1)2(A1A2)A3〉 12N4 36N2 24N2(2 +N2) 144N2

〈(A1)2(A1)2(A1)3(A1A2)〉 12N4 36N4 72N4 144N4

〈(A1)2(A1)2(A1A2)(A1A2)〉 4N3(2 +N2) 36N3 8N3(8 +N2) 144N3

〈(A1)2(A1)2(A1)3(A1)3〉 12N5 36N5 72N5 144N5

Table E.3: U(N) colour factors associated to the 〈2233〉 correlator
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Correlator type A B C

〈A3A3A3A3〉 9N2(1 +N2)2 81N2(3 +N2) 162N2(7 +N2)

〈(A1)3A3A3A3〉 18N2(1 +N2) 108N2(2 +N) 1296N2

〈(A1)3(A1)3A3A3〉 18N4(1 +N2) 324N2 1296N2

〈(A1)3(A1)3(A1)3A3〉 36N4 324N4 1296N4

〈(A1)3A3(A1)3A3〉 36N2 324N2 1296N2

〈(A1A2)A3A3A3〉 18N3(1 +N2) 108N(2 +N3) 1296N

〈(A1A2)(A1A2)A3A3〉 6N2(1 +N2)(2 +N2) 36N2(8 +N2) 72N2(17 +N2)

〈(A1A2)(A1A2)(A1A2)A3〉 12N3(2 +N2) 12N(12 + 14N2 +N4) 48N(1413N2)

〈(A1A2)A3(A1A2)A3〉 36N4 36N2(8 +N2) 72N2(17 +N2)

〈(A1)3(A1A2)(A1A2)(A1A2)〉 12N3(2 +N2) 36N3(8 +N2) 48N3(26 +N2)

〈(A1)3(A1)3(A1A2)(A1A2)〉 12N4(2 +N2) 324N4 1296N4

〈(A1)3(A1)3(A1)3(A1A2)〉 36N5 324N5 1296N5

〈(A1)3(A1)3(A1)3(A1)3〉 36N6 324N6 1296N6

〈(A1)3(A1A2)(A1)3(A1A2)〉 36N4 324N4 1296N4

〈(A1)3(A1A2)A3(A1)3〉 36N3 108N3(2 +N2) 1296N3

〈(A1)3(A1A2)A3(A1A2)〉 36N4 108N2(2 +N2) 144N2(8 +N2)

〈(A1A2)(A1A2)(A1A2)(A1A2)〉 4N2(2 +N2)2 4N2(60 + 20N2 +N4) 48N2(22 + 5N2)

Table E.4: U(N) colour factors associated to the 〈3333〉 correlator

Correlator type A B C

〈A5A3A4A4〉 34560N2(1 +N2)(5 +N2) 240N2(2 +N2)(23 +N2) 480N2(47 + 24N2 +N4)

〈(A2A3)A3A4A4〉 69120N(1 +N2)(1 + 2N2) 480N(9 + 23N2 + 4N4) 480N(19 + 46N2 + 7N4)

〈A5A3(A2A2)A4〉 69120N3(5 +N2) 480N(8 +N2)(1 + 3N2) 960N(8 +N2)(1 + 3N2)

〈(A2A3)A3(A2A2)A4〉 138240N2(1 + 2N2) 160N2(63 + 38N2 +N4) 320N2(64 + 37N2 +N4)

〈A5(A1A2)A4A4〉 69120N3(5 +N2) 480N(8 +N2)(1 + 3N2) 960N(8 +N2)(1 + 3N2)

Correlator type D E F

〈A5A3A4A4〉 480N2(158 + 57N2 +N4) 480N2(74 + 33N2 +N4) 480N2(13 + 10N2 +N4)

〈(A2A3)A3A4A4〉 480N(65 + 139N2 + 12N4) 240N(55 + 146N2 + 15N4) 1440N(1 + 6N2 +N4)

〈A5A3(A2A2)A4〉 1920N(16 + 35N2 + 3N4) 1440N(10 + 23N2 + 3N4) 1920N(1 + 4N2 +N4)

〈(A2A3)A3(A2A2)A4〉 960N2(77 + 5N + 25N2 +N3) 17280N2(2 +N2) 5760N2(1 +N2)

〈A5(A1A2)A4A4〉 1920N(16 + 35N2 + 3N4) 1440N(10 + 23N2 + 3N4) 640N(3 + 13N2 + 2N4)

Table E.5: Colour factors for 〈5344〉 in U(N) gauge theory



Appendix F

Superconformal invariant on

Grassmannian space

In section 5.3, we took the Schur superpolynomial over the matrix

Z = X12X
−1
24 X43X

−1
31 , (F.0.1)

from which we claimed traces over such matrices yields a manifestly superconformal

invariant basis of variables. Here we would like to show some of the steps towards this.

This is essentially a mini-review of [28].

The superconformal transformations of a point in Grm|n(2m|2n) is given by

δXAB′ = BAB′ + AABX
BB′ +XAC′D B′

C′ +XAC′CC′DX
DB′ , (F.0.2)

where the Lie superalgebra of sl(m|n) is given by


 −A

A
B BAB′

−CA′B D B′

A′


 ∈


 gl(m|n) gl(n|m)

gl(m|n) gl(n|m)


 with − str(A) + str(D) = 0. (F.0.3)

We would like to provide some steps towards finding a function at four points, namely

F(X1, X2, X3, X4), (F.0.4)

that is invariant under the superconformal transformations given in (F.0.2). We will

use an index-less notation for simplicity where we will use (A · X) = ABB′X
BB′ to

imply a scalar quantity whilst (AX) = ABBX
BC′ implies a matrix quantity.
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In general we have δ(TT−1) = 0 for some matrix T , and from this we have

δT−1 = −(T−1 [δT ]T−1) (F.0.5)

Beginning with the B transformation, we may take the basis of superpoints to

F(X1, X12, X13, X14). In doing so we find that since δBXij = 0, we must have

δBF(X1, X12, X13, X14) = B · ∂

∂X1

F(X1, X12, X13, X14) = 0, (F.0.6)

from which we conclude that F(X1, X12, X13, X14) does not depend on X1 since B is

arbitrary.

Now since δCX = (XCX) it follows that δCX1i = (X1CX1)−(XiCXi) = (X1CX1i)+

(X1iCX1)− (X1iCX1i), from (F.0.5) we have

δCX
−1
1i = C − (X−1

1i X1C)− (CX1X
−1
1i ). (F.0.7)

Returning back to the function in question we can take it to be

F(X1, X
−1
12 , X

−1
13 , X

−1
14 )→ F(X1, X

−1
12 , Q3, Q4), (F.0.8)

where Q−1
i = X−1

1i − X−1
12 . This leads to Qi = (X12X

−1
2i Xi1) which can be checked

directly and by using (X12X
−1
2i Xi1) = (X1iX

−1
2i X21). By direct computations we get

δCQi = (QiCX1) + (X1CQi). (F.0.9)

From the point of view of δCF(X1, X
−1
12 , Q3, Q4) the infinitesimal transformation

associated to X−1
12 and Qi both have pieces dependent on X1 in (F.0.7) and (F.0.9),

however we concluded in (F.0.6) that F(X1, X
−1
12 , Q3, Q4) is independent of X1, and so

we may set X1 = 0. We conclude that

δCF(X1, X
−1
12 , Q3, Q4) = C · ∂

∂X−1
12

F(X1, X
−1
12 , Q3, Q4) = 0, (F.0.10)

we therefore find that F(X1, X
−1
12 , Q3, Q4) is independent of X−1

12 since C is arbitrary,

leading to

F(X1, X
−1
12 , Q3, Q4)→ F(Q3, Q4). (F.0.11)

Finally, we have δA+DX = (AX) + (XD) which leads to δA+DQi = (AQi) + (QiD)

and by once again using (F.0.5) we have δA+DQ
−1
i = −(Q−1

i A) − (DQ−1
i ). Now, we
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may consider R = Q4Q
−1
3 , in which δA+DR = (AR) − (RA). It can be shown that

R = (X12 [I− Z]X−1
12 ) = I − X12ZX

−1
12

1. Since I is trivially invariant under δ, we

define T = X12ZX
−1
12 and write

F(Q3, Q4)→ F(Q3, T ). (F.0.12)

where F(Q3, T ) is an invariant if

[
(AQ3 +Q3D) · ∂

∂Q3

+ (TA− AT ) · ∂
∂T

]
F(Q3, T ) = 0. (F.0.13)

Now the details of the group numbers m and n become important. Consider the

case where m 6= n, where in order to guarantee str(A) = str(D), we may take A =

str(D) I
m−n . It follows that (TA− AT ) = 0 and (AQ3 +Q3D) =

(
Q3

[
str(D) I

m−n +D
])

which is arbitrary, and therefore forces F(Q3, T ) to be independent of Q3, thus we have

F(T ).

If m=n the situation is different, as taking A ∝ I renders it supertraceless which

necessarily makes D supertraceless. We gain the action of the schematic form

M · ∂

∂Q3

F(Q3, T ), (F.0.14)

which is only valid for when M is supertraceless, hence we cannot completely get rid

of the Q3 dependence. However, the best we can do is get rid of all parts of Q3 but for

its supertrace, K = str (Q3). We now get

[
str (A+D)K

∂

∂K
+ (TA− AT ) · ∂

∂T

]
F(Q3, T ) = 0. (F.0.15)

In [28] it was shown that after a set of redefinitions one ends up with what would

be found in the m 6= n case, namely

δF(T ) = [A, T ]
∂

∂T
F(T ) = 0. (F.0.16)

The main consequence of this is that T transforms under the adjoint representation of

gl(m|n). It therefore follows that any and all trace structures of the matrix T yield

δF = 0, of which a basis of such polynomials is given by the Schur superpolynomial. It

1This is since R = (X12X
−1
24 X41X

−1
31 X23X

−1
12 ), one can take X41 = X43+X31 and X23 = X21+X13

to get I−X12ZX
−1
12
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also follows that since we are using traces and T = X12ZX
−1
12 , we can take T → Z and

so F(T )→ F(Z). For similar reasons the superdeterminant is also an invariant, namely

δsdet(Z) = 0. We therefore have that F(Z) is a combination of Schur superpolynomials

and superdeterminants of Z.



Appendix G

The eigenvalue basis of the

quadratic Casimir for the GL(m)

conformal partial wave from

section 5.3.3

In section 5.3.3, we found the form of the conformal partial wave for theories with

SL(2m) ‘conformal’ symmetry. In this appendix, we elaborate on the details of the

derivation.

Following the discussion there we begin with the statement of the generator

DA
B = uαA

∂

∂uαB
, (G.0.1)

from which we derive the quadratic Casimir in terms of the eigenvalues of the matrix

cross-ration z.

In the first instance it is useful to consider the inverse cross-ration ω = z−1 whose

eigenvalues are the inverse of z. If the eigenvalues of z are x1, . . . , xm, then the eigan-

values of ω are w1 = 1/x1, . . . , wm = 1/xm.

Now let us consider the entire correlator function in (5.3.65), in which we take the

function F (w) to a be linear combination of Schur polynomials, a direct application of

173
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the Casimir gives

1

2
D2

12 〈Φ(x1)Φ(x2)Φ(x3)Φ(x4)〉 =
1

(x2
12)

∆1+∆2
2 (x2

34)
∆3+∆4

2

(
x2

14

x2
24

) 1
2

∆21
(
x2

13

x2
14

) 1
2

∆43

×
[(

1

2
(∆34 −∆12)

∂

∂ tr(ω)
− 1

4
∆34∆12

m∑

i=1

1

wi

)
F (w) +

1

2
D2

12F (w)

]
. (G.0.2)

Since F (ω) is a linear combination of Schur polynomials it is useful to consider the

action of the Casimir upon these first. We note that since

DA
12Bu

α
iC = uαiBδ

A
C and DB

12Aū
C
iδ̇

= −δCA ūBiδ̇ (G.0.3)

for i = 1 and 2, it follows that

D2
12ω

α
β = 2(2mωαβ −mδαβ ),

DI
12Jω

α
βD

J
12Iω

γ
ρ = 2ωαρω

γ
β − ωαρ δγβ − δγβωαρ . (G.0.4)

We find

1

2
D2

12sλ(w) =
(
2mωαβ −mδαβ

) ∂sλ(w)

∂ωαβ
+ ωαρ

(
ωγβ − δγβ

) ∂2sλ(w)

∂ωγρ∂ωαβ
. (G.0.5)

In order to retrieve the usual form in terms of m variables wi, one simply diagonalises

the ω matrices.

The first two terms of (G.0.5) are linear in differential operators and are therefore

trivial to diagonalise. The corresponding eigenvalue result will also be in terms of linear

differential operators. The results are

2mωαβ
∂sλ(w)

∂ωαβ
= 2m

[
n∑

i=1

wi
∂

∂wi

]
sλ(w) = 2m

m∑

i=1

λisλ(w),

mδαβ
∂sλ(w)

∂ωαβ
= m

∂sλ(w)

∂ tr(ω)
= m

[
m∑

i=1

∂

∂wi

]
sλ(w)

= m

m∑

i=1

(λi − i+m)s(λ1,λ2,...,λi−1,...,λm)(w). (G.0.6)

A proof of the of the second expression can be found in appendix A of [86].

The last two terms of (G.0.5) are slightly more non-trivial than the previous cases,

since these are quadratic in differentials, however in the eigenvalue basis it may include

quadratic as well as linear differentials. Instead, we can apply the matrix action of

quadratic differential terms upon
∏m

i=1 tr(ωi)ai , and consider as many different values
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of m in which in it takes to find a consistent differential operator in terms of wi. It is

good enough to consider
∏m

i=1 tr(ωi)ai since this produces symmetric polynomials upon

diagonalisation.

We begin by defining the Vandermonde determinant:

vdet(m)(w) = (−1)

 m

2


detij(w

j−1
i ) = detij(w

m−j
i ) =

∏

1≤i<j≤m

(wi − wj), (G.0.7)

one then finds that

ωαρω
γ
β

∂2

∂ωγρ∂ωαβ

m∏

i=1

tr(ωi)ai

=

[
−

n∑

j=1

j2aj tr (ω2j)

tr (ωj)2 +
m∑

j=1

j−2∑

k=0

jaj tr
(
ωk+1

)
tr
(
ωj−k−1

)

tr (ωj)

+
m∑

k=1

m∑

j=1

jkajak tr
(
ωj+k

)

tr (ωj) tr (ωk)

]
m∏

i=1

tr(ωi)ai , (G.0.8)

by putting in various examples for m, we find that the following operator always gives

the correct result

ωαρω
γ
β

∂2

∂ωγρ∂ωαβ
=

1

vdet(m)(wi)

n∑

i=1

w2
i

∂

∂w2
i

vdet(m)(wi)− 2(m− 1)
m∑

i=1

wi
∂

∂wi

− m

3
(m− 1)(m− 2). (G.0.9)

Similarly we find

ωαρ δ
γ
β

∂2

∂ωγρ∂ωαβ

m∏

i=1

tr(ωi)ai

[
−

m∑

j=1

j2aj tr (ω2j−1)

tr (ωj)2 +
m∑

j=1

j−2∑

k=0

jaj tr
(
ωk
)

tr
(
ωj−k−1

)

tr (ωj)

+
m∑

k=1

m∑

j=1

jkajak tr
(
ωj+k−1

)

tr (ωj) tr (ωk)

]
m∏

i=1

tr(ωi)ai , (G.0.10)

in which with various different values of m, always agrees with the operator:

ωαρ δ
γ
β

∂2

∂ωγρ∂ωαβ
=

1

vdet(m)(w)

m∑

i=1

∂

∂wi
wi

∂

∂wi
vdet(m)(w)−m

m∑

i=1

wi
∂

∂wi
. (G.0.11)

Putting this together with (G.0.2), inverting the coordinates so that the Casimir is
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in terms of xi where xi = 1
wi

, namely with D(m) := 1
2
D2

12|wi→ 1
xi

, we find that

D(m) =
1

vdet(m)(x)

[
m∑

i=1

[
xi

(
−xi

(
1

2
(∆34 −∆12)− 2m+ 3

)
− 2m+ 2

)
∂

∂xi

+ (1− xi)x2
i

∂2

∂x2
i

−
(

1

2
∆21 −m+ 1

)(
1

2
∆34 −m+ 1

)
xi

]

+
m

3
(m− 1)(2m− 1)

]
vdet(m)(x). (G.0.12)
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