
Durham E-Theses

Contact interactions for point particles and strings

EDWARDS, JAMES,PAUL

How to cite:

EDWARDS, JAMES,PAUL (2015) Contact interactions for point particles and strings, Durham theses,
Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/11139/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, Durham University, University O�ce, Old Elvet, Durham DH1 3HP
e-mail: e-theses.admin@dur.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/11139/
 http://etheses.dur.ac.uk/11139/ 
htt://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk


Contact interactions for point
particles and strings

James P. Edwards

A Thesis presented for the degree of

Doctor of Philosophy

Centre for Particle Theory

Department of Mathematical Sciences

University of Durham

England

March 2015



Dedicated to
my Grandfather, Harry Edwards, and Grandmother, Jean Fishwick. Although you

will not see this thesis you are at its heart.

Also to

Teresa Edwards, whose strength is inspiring, and John Fishwick, my own mad

scientist.



Contact interactions for point particles and

strings

James P. Edwards

Submitted for the degree of Doctor of Philosophy

March 2015

Abstract

We investigate δ-function contact interactions for theories of point particles and of

strings. These interactions are introduced to reformulate the conventional theory of

classical electrodynamics in terms of particles and strings which interact when they

intersect. Upon quantisation we find that the tensionless limit of the spinning string

theory generates well-known gauge invariant quantities in the worldline formulation

of quantum field theory. Despite the off-shell nature of the interaction we find

that the string theory does not encounter the expected break-down of conformal

invariance. We further develop worldline techniques for non-Abelian theories and

consider first quantised versions of some grand unified theories. This work can be

seen as initiating the construction of a first-quantised version of the quantum field

theory describing the standard model.
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Chapter 1

Introduction

String theory has provided much insight into modern physics, in particular to the

dynamics of quantum fields. There are a great many examples of close relationships

between the physics of field theory and some form of string theory [1–3]. Despite

string theory being a first quantised theory its one-dimensional extended nature

provides sufficiently large degrees of freedom to be applicable to problems in second

quantised field theory [4–6]. One of the most prominent and popular examples of

this has to be gauge / gravity duality and the AdS/CFT correspondence [7–9], where

certain string theories on a curved space-time are related to conformal field theories

on its spatial boundary. It is interesting, however, to return to the foundations

of string theory and consider modifying it for application to the real world. One

context where this is especially relevant is the consideration of interactions.

It is of course true that interactions of a sort are accommodated into string the-

ory by summing over the topologies of worldsheets [10]. Furthermore the scattering

of strings can be represented by introducing vertex operators to excite the required

asymptotic states (via the state-operator correspondence) so that a typical picture

of string theory interactions is a sum over an infinite set of physically distinct world-

sheets with a puncture for each state taking part in the scattering. Physically this

can be viewed as a smooth splitting and joining of strings which, for reasons we

shall discuss, are on mass shell. The spectra of quantised string theories also con-

tain states such as the photon, graviton, Kalb-Ramond tensor and dilaton and it

is possible to consider propagation of a string coupled to background fields which

1
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take any of these forms [11, 12]. If this is done then by demanding the conformal

invariance we shall discuss later it is possible to derive field theories which describe

the long-wavelength limit of the interactions of these modes of the string.

It is not these types of interaction which we shall consider in this thesis. Instead

we shall introduce interactions between fundamental strings by modifying the string

action to include a contact term. We shall motivate the introduction of such an

unconventional interaction by appealing to a recent demonstration that the electro-

magnetic field at a given space-time point of a pair of equal and opposite charges

can be determined by carrying out a statistical average over string configurations in

Polyakov’s approach to string theory [13]. Only those string configurations whose

end-points are fixed to the worldlines of the charges and which intersect that space-

time point contribute to this average. We will determine the effect of this contact

interaction by calculating the tree-level partition function for the new string theory

to all orders of a perturbative expansion in the strength of the inter-string interac-

tion. As a warm up we shall first consider an analogous contact interaction for point

particles.

As we shall review below, requiring that the classical conformal invariance of

the string is preserved upon quantisation places constraints on the spectrum of the

theory and on the dimension of the target space in which the string propagates.

Modification of the action faces the danger of altering these constraints, the intro-

duction of further conditions or may even lead to an inconsistent theory. Remarkably

the interacting string theory will be seen to evade the usual mass-shell constraints

on the string spectra and will not encounter any change to the well-known Weyl

anomaly, which in any case will decouple from the physical content the theory de-

scribes. For this reason the consistency of the inter-string interaction represents an

important development in fundamental string theory.

This thesis aims to further advance this novel string theory by relating it to

the physical observables which appear in quantum electrodynamics (QED). Sec-

ond quantised field theory is an extremely powerful framework in which to consider

processes which involve multi-particle states but having an equivalent quantum me-

chanical theory offers new conceptual understanding and calculational tools to ad-
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dress long standing problems. Experiment has verified the predictions of QED to

extraordinary accuracy so it may seem unnecessary to consider a new approach.

However, it is a low energy effective field theory which arises out of the standard

model so eventually we shall seek to apply the proposed string theory to reformulate

the non-Abelian field theories believed to describe fundamental interactions. The

Abelian theory is somewhat simpler and supplies an ideal setting to develop new

approaches to the full standard model.

The crucial stepping stone between field theory and first quantised theory will

be the so-called worldline formalism of quantum field theory. This approach has its

roots in the work of Feynman [14] but was revived and developed by Strassler [15,16]

and is steadily growing in popularity. Briefly, a typical field theory is described by an

action which consists of matter coupled to gauge fields. Integrating over the matter

content leads to an effective action for the gauge field which involves the functional

determinant and propagators of the kinetic term describing the dynamics of the free

theory. The worldline formalism re-expresses the determinant and the propagators in

terms of an ensemble of first quantised theories defined on closed and open worldlines

respectively. These worldline theories take the form of point particles coupled to

the gauge field via the Wilson line – the path ordered exponential of the gauge

connection transported along the worldline. The connection to string theory will

then be found by identifying these worldlines as the boundaries of fundamental

interacting strings which serve to produce the interaction of the worldline theory

with the gauge field.

Within this framework the quantum field theory describing the low energy inter-

action of spinor matter with the electromagnetic field will be reformulated in terms

of a quantum theory of strings which interact on contact; their boundaries will be

fixed to the Wilson lines which emerge in the worldline formalism of the field theory.

The standard model, however, contains far more information than this. In order to

go on to describe the known matter content of the universe it is therefore imper-

ative to develop worldline techniques for non-Abelian interactions and to describe

the intrinsic chirality of spin 1/2 particles. Furthermore, whilst the standard model

is hugely successful, there have been many attempts to unify the electro-weak and
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strong forces into a single theory to address problems such as the unification of

their coupling strengths. It is consequently of significant interest that such unified

theories are considered in the first quantised framework that we propose.

With these aims in sight this thesis is laid out as follows. We form the context

for the proposed reformulation of QED in the remainder of this chapter by briefly

reviewing the worldline formalism of quantum field theory and the quantisation of

conventional string theory. Throughout the thesis we shall make use of functional

methods so we will present this material using Polyakov’s approach to quantisation.

We will also demonstrate the passage from quantum field theory to quantum me-

chanics on the worldline and describe the application of this formalism to simple

one-loop scattering amplitudes. We also revise the functional integration over string

worldsheet geometries and how the recovery of conformal invariance leads to the

critical dimension of space-time and the mass-shell conditions.

In Chapter 2 the contact interaction will be considered in the context of point

particle theories. We shall first re-derive a previous result showing how the functional

averaging over worldlines passing through a spatial point provides the electric field

at that point. That calculation was for bosonic particles but this will be generalised

to a supersymmetric model applicable to fermionic particles. We shall then turn to

developing a quantum theory of a set of point particles which interact when their

worldlines intersect. The limitations of this model will provide sufficient motivation

to turn instead to a theory of interacting strings.

Chapter 3 forms the backbone of the thesis and contains the reformulation of

spinor QED in terms of spinning strings which interact upon contact. Specifically

we shall propose that the partition function of the string theory coincides with

the expectation value of the product of Wilson lines defined by the boundaries

of the strings. First the case of scalar QED is considered which is postulated to

be equivalent to an interacting bosonic string theory. Calculation will show that

potential divergences spoil this claim which will motivate us to consider spinor QED.

Here we will see that the extra structure of supersymmetry that the spinning string

enjoys is sufficient to ensure that these problems are no longer encountered. By

regulating the ultra violet divergences on the string worldsheet we will demonstrate
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that super-conformal invariance can be restored and that the familiar expression for

exponentiated line integrals in QED arises naturally out of the model.

The application of the worldline approach to non-Abelian theories and chiral

fermions is considered in Chapter 4. We build upon a worldline approach to the

standard model to consider unified theories in the same context. There we will

show that the familiar SU (5) unified theory arises quite naturally in this formalism;

the chiral projection operators, path ordering and group representations of non-

Abelian field theories can be represented by introducing further worldline degrees of

freedom and we show that the well-known Georgi-Glashow model can be extracted

by considering a functional determinant associated to these new fields. We also

discuss some of the other well-known unified theories such as that with gauge group

SO(10). We shall then discuss the consequences of the work in this thesis and

state our conclusions. Further detailed calculations and subsidiary arguments will

be provided in the appendices.

1.0.1 The worldline approach to quantum field theory

The world-line formulation of Strassler (which has been elaborated by a number of

authors [17–19]) will play a crucial role in this thesis. Strassler was motivated by the

well-known fact that the infinite tension limit of various string theories reduces to

familiar field theories describing the massless states of the string. Bern and Kosower

analysed the scattering of strings in this limit [20, 21] and derived a series of rules

which enabled the systematic calculation of one-loop scattering amplitudes in cor-

responding field theories [22]. Although derived from string theory, calculations do

not depend in any way on the underlying string model. They also represent a non-

trivial reorganisation of the physical content of the theory and do not resemble the

usual perturbative expansion which Feynman diagrams provide. Strassler’s achieve-

ment was to uncover the same rules directly from field theory, without any reference

to strings. More recently this approach has been studied in the context of pair

production [23], on curved backgrounds [24] and in a non-commutative setting [25].



Chapter 1. Introduction 6

Scalar matter

We begin with scalar electrodynamics with a single complex scalar field φ coupled

to the electromagnetic field which has Euclidean action

S
[
φ̄, φ

]
=

∫
d4x φ̄

(
−D2 +m2

)
φ, (1.0.1)

where D = ∂+ iA is the usual covariant derivative (we absorb the coupling constant

into A). The generating functional for Green functions is written by introducing

sources J̄ and J as follows

Z[J̄ , J ] =

∫
D(A, φ̄, φ) e−S[φ̄,φ]−S[A]+

∫
d4x J̄φ+φ̄J . (1.0.2)

where S [A] describes the dynamics of the gauge field. We integrate over the matter

content for

Z[J̄ , J ] =

∫
DA

1

det (−D2 +m2)
e−S[A]−

∫
d4x J̄(−D2+m2)

−1
J (1.0.3)

Strassler noted that the logarithm of the functional determinant can be represented

by using the Schwinger proper time trick [26]:

− log
[
det
(
−D2 +m2

)]
=

∫ ∞
0

dT

T
Tr e−

1
2
eT(−D2+m2). (1.0.4)

In this equation e is an arbitrary constant. Strassler interpreted this exponent as

specifying a Hamiltonian for quantum mechanical evolution and therefore gave a

path integral representation for the trace by introducing a fictitious particle ωµ.

The trace requires the one dimensional worldline of this particle to be closed (so

identifying the initial and final positions) and we must functionally integrate over

all such closed loops. Strassler originally gave the worldline action

S =

∫ T

0

ω̇2

2e
+
e

2
m2 + iω̇ · A [ω (τ)] dτ (1.0.5)
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but we prefer to give reparameterisation invariant expressions by recognising that

the constant e plays the role of the square root of the one dimensional metric (or

einbein): (1.0.4) can be expressed as

−
∮

D(h, ω)

Z
e−S[ω, h] (1.0.6)

where we integrate over closed curves and ascribe the following action to each world-

line [27]

S[ω, h]=S0[ω, h]+i

∫
dω·A; S0[ω, h]=

1

2

∫ 1

0

(
h−1(ξ)

(
dω(ξ)

dξ

)2

+m2

) √
h(ξ) dξ

(1.0.7)

This form of the action was first given by Brink, di Vecchia and Howe and contains

ω(ξ), 0 ≤ ξ ≤ 1, a parametrisation of a world-line depending on the arbitrary

parameter ξ, and h(ξ) > 0, an intrinsic metric on the worldline. The dimensions

of h will be taken as [length]4 so that the action is dimensionless. This action is

invariant under diffeomorphisms ξ → ξ̃ that preserve the parameter interval if under

such reparameterisations h(ξ) transforms as a metric and ω (ξ) as a scalar:

h̃(ξ̃) dξ̃2 = h(ξ) dξ2; ω̃(ξ̃) = ω(ξ) (1.0.8)

In our discussion of functional quantisation below we shall show that upon gauge

fixing the reparameterisation invariance by choosing h = T 2 the integral over metrics

becomes Dh ∝ dT
T

. In this gauge (1.0.6) becomes equivalent to Strassler’s expression.

In a similar fashion the Green function can also be represented as

〈
b
∣∣ (−D2 +m2

)−1 ∣∣a〉 = −
∫ ω(1)=b

ω(0)=a

D(h, ω)

Z
e−S[ω,h] (1.0.9)

where now we integrate over open worldlines whose endpoints are fixed to the space-

time points a and b. This time the gauge fixing leads to Dh ∝ dT so we find

1

Z ′

∫ ∞
0

dT

∫ ω(1)=b

ω(0)=a

Dω e−
∫ 1
0
ω̇2

2T
+T

2
m2+iω̇·A[ω(τ)] dτ . (1.0.10)
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This is the version given by Strassler; integrating over ω gives exp
(
−T

2
(−D2 +m2)

)
which is the heat-kernel of the kinetic operator in the exponent. Hence integrating

with respect to T yields the Green function. Note that both expressions take on a

very similar form, differing only by the boundary conditions on the worldlines, and

that the expressions are recognisable as expectation values of Wilson lines of the

gauge field (and are hence manifestly gauge invariant with respect to this field).

Spinor matter

This procedure can be generalised to spin 1/2 fields. Given the structure of the

worldline theories encountered above we might anticipate that we again find an

ensemble of worldlines, this time corresponding to quantum theories consisting of

spin 1/2 particles which are coupled to the gauge field through super-Wilson lines to

represent the spinor nature of the matter. Indeed this is the case and is made explicit

as follows. For a Dirac spinor coupled to the electromagnetic field the generating

functional is

ZD[K̄,K] =

∫
D(A, Ψ̄,Ψ) e−S[Ψ̄,Ψ]−S[A]+

∫
d4x K̄Ψ+Ψ̄K (1.0.11)

where

S
[
Ψ̄,Ψ

]
=

∫
d4x Ψ̄ (γ · D + im) Ψ . (1.0.12)

is the usual action and we have introduced anti-commuting (Grassman) sources K̄

and K. We again integrate over the matter field to produce

ZD[K̄,K] =

∫
DA det

(
−(γ · D)2 +m2

)
e−S[A]+

∫
d4x K̄(γ·D+im)−1K (1.0.13)

As in the scalar case Strassler represented the logarithm of the functional deter-

minant in terms of a series of closed worldline theories and gave the inverse of the

kinetic operator as open worldlines, but the quantum theories on these worldlines

must be modified to represent the extra content of spinor matter.

We again use reparametrisation invariant expressions by following Brink, di Vec-

chia and Howe and for simplicity will restrict the discussion to massless particles.
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We introduce Grassmann numbers ψµ that will play the role of Dirac γ-matrices

and the gravitino χ that is the super-partner to
√
h. The action on the worldlines

consists of the bosonic part S0 [ω, h] of (1.0.7), to which we add a piece representing

the spin degrees of freedom

SF = −1

2

∫ 1

0

(
ψ · dψ

dξ
+

χ√
h

dw

dξ
· ψ
)
dξ (1.0.14)

and the super-Wilson line coupling to the gauge field

SA = i

∫ (
dw

dξ
· A+

1

2
Fµνψ

µψν
√
h

)
dξ (1.0.15)

This is reparametrisation invariant provided ψµ transforms as a world-line scalar

(like wµ) and χ transform like
√
h and the complete action is also invariant under

the local supersymmetry transformations:

δαw = δαψ , δαψ =
δα√
h

(
dw

dξ
− 1

2
χψ

)
, δα

√
h = δαχ , δαχ = 2

d δα

dξ
.

(1.0.16)

In Appendix C of [28] we showed that for closed world-lines and anti-periodic

boundary conditions on ψ

∫
D(h,w, χ, ψ) e−S0−SF−SA = −ln Det

(
(γ · D)2 ) (1.0.17)

which is in agreement with our goal. For open world-lines running from wi to wf we

must attach spinor indices which correspond to boundary conditions of the ψ fields.

We found

∫
D(h,w, χ, ψ) e−S0−SF−SA

∣∣∣
ab

= 〈wf , a| (γ · D)−1 |wi, b〉 (1.0.18)

Furthermore, upon gauge fixing the reparameterisation invariance by setting h = T 2

and the local supersymmetry by choosing χ = χ0, a constant Grassman number, we

find that our equations reduce precisely to those given by Strassler.

We finish this brief review of the worldline formalism by highlighting its compu-

tational efficiency. For simplicity we state the results for the one-loop two photon
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scattering amplitudes in scalar QED (the techniques are very similar for spinor QED

but involve rather more algebra). We have chosen to avoid introducing a source for

the gauge field because rather than determining the generating functional by in-

tegrating over the gauge field we take a shortcut by noting [29] that the N-point

functions can be calculated from the effective action by specialising the background

gauge field to a sum of N plane waves

Aµ =
N∑
i=1

εiµe
iki·ω (1.0.19)

and extracting the part which contains every polarisation εi exactly once. So using

Strassler’s version of the worldline theory we expand to order N :

ΓN [ε1, k1, . . . , εN , kN ] =

∫ ∞
0

dT

T

∮
Dω e−

∫ 1
0 dτ

ω̇2

2T
+m2T iN

N !

(∫ 1

0

dτ
N∑
i=1

ω̇ · εi eiki·ω
)N

(1.0.20)

We take those terms which involve all N different polarisations and momenta which

provides

∫ ∞
0

dT

T
(4πT )−2

∮
Dω e−

∫ 1
0 dτ

ω̇2

2T
+m2T iN

×
∫
dτ1 ε1 · ω̇ (τ1) eik1·ω(τ1) . . .

∫
dτN εN · ω̇ (τN) eikN ·ω(τN ) (1.0.21)

The integral over ω can be carried out by exponentiating the εi · ω̇ (τi) with the

understanding that the result should be expanded to multi-linear order in each

polarisation vector1 and for N = 2 yields

Γ2 [ε1, k1, ε2, k2] = i2 (2π)4 δ4 (k1 + k2)

∫ ∞
0

dT

T
(4πT )−2 e−m

2T

∫ 1

0

dτ1

∫ 1

0

dτ2[
Ġ (τ1, τ2)2 ε1 · k2 ε2 · k1 − ε1 · ε2G̈ (τ1, τ2))

]
ek1·k2G(τ1,τ2).

(1.0.22)

In the above equation G (τ1, τ2) is the one dimensional Green function for the kinetic

1This trick is borrowed from similar calculations in string theory [30].
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operator −1
T

d2

dτ2 defined on [0, 1]. The zero mode of this operator leads to the mo-

mentum conserving δ−function and in the reduced space orthogonal to this mode

the Green function takes the form

G (τ1, τ2) = T
(
|τ1 − τ2| − (τ1 − τ2)2) . (1.0.23)

The calculation is completed by integrating the second term in square brackets by

parts and applying momentum conservation k1 = k = −k2. This turns the integrand

into

εµ1
[
kµkν − δµνk2

]
εν2Ġ (τ1, τ2)2 e−k

2G(τ1,τ2) (1.0.24)

so the transverse projector already appears at this stage. The integrand has trans-

lational invariance which makes one of the integrals trivial and it is straightforward

to arrive at

Γ2 [ε1, k1, ε2, k2]=
1

(4π)2 ε
µ
1

[
kµkν − δµνk2

]
εν1

∫ ∞
0

dT

T
e−m

2T

∫ 1

0

du (1− 2u)2 e−Tu(1−u)k2

.

(1.0.25)

Integrating over T we arrive at the Feynman parameterised expression for the one-

loop two photon scattering amplitude in scalar QED

1

(4π)
D
2

Γ

(
2− D

2

)[
kµkν − δµνk2

] ∫ 1

0

du
(1− 2u)2

[m2 + u (1− u) k2]
D
2
−2
. (1.0.26)

where we have given the result for arbitrary space-time dimension D because the

expression requires renormalisation. We shall not address such issues in this intro-

duction.

The purpose of this brief demonstration of the worldline approach to quantum

field theory is to highlight the reorganisation of the various contributions to the

amplitude. Firstly we note that we arrived directly at the Feynman parameterised

expression for the scattering. In conventional perturbation theory of scalar QED

this arises out of the sum of two Feynman diagrams (see figure 1.1) and several

algebraic manipulations. Secondly we found the transverse projector appearing at

the level of the integrand when we carried out an integration by parts. In fact this
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is motivated by the calculations of Bern and Kosower, where a systematic removal

of second derivatives of the Green function removes problems associated with the

pinching of vertices about the worldline. This concludes our review of the worldline

kµ1 kν2

(a) The single diagram in the
worldline formalism

kµ1 kν1
p

k1 + p

kµ1 kµ1

p

(b) The two contributions to the amplitude in second quan-
tised perturbation theory

Figure 1.1: A comparison of the worldline formalism with perturbative field theory. One diagram in
the worldline formalism can represent two or more in second quantised theory. This simplification
becomes increasingly apparent at higher loop order.

formalism of quantum field theory. We shall build upon this in Chapter 3 where it

will form the basis of a reformulation of QED in terms of interacting strings. We

now turn as promised to the issue of functional quantisation where we will justify

some of the claims we have made in this section.

1.0.2 Functional quantisation

Feynman developed the path integral approach to quantum mechanics as an alter-

native to canonical quantisation. In this formalism transition amplitudes from one

state to another are formally given by summing over all possible evolutions from

the initial to the final state, with each such evolution weighted by the exponential

of minus the action corresponding to that transition. We shall consider theories

of point particles and strings but, as we have seen already for the former case, we

can express these in an equivalent manner by introducing an intrinsic metric on

the domain. The question then becomes one of how to carry out the sum over the

configurations of the particles or strings and integrate over the possible geometries

of the domain.

Before we proceed to address this question we pause to consider why such an

approach is desired at all. Indeed, canonical quantisation is a sufficient tool to

investigate the quantisation of both point particles and strings. The point is that by
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applying functional methods to string theory we learn something about the geometry

of the theory and gain insight into the physical reason for mass-shell conditions and

the critical dimension of target space. It is also rather difficult to compute string

scattering processes beyond one loop using operator methods alone; the functional

approach provides an easier way of determining these amplitudes because it is more

closely aligned with the underlying geometry of the strings.

Point particles

The natural invariant action for a point particle in space-time is simply the length

of the worldline ω

S = m

∫
dξ
√
ηµν ω̇µ (ξ) ω̇ν (ξ) (1.0.27)

where ξ is an arbitrary parameter and m is the mass of the particle. This action

suffers from the obvious pitfall of being unsuitable for massless particles and were

we to exponentiate this and integrate over configurations, ω, we would find great

difficulty in dealing with the square root. Finally we need to take into account the

vast gauge symmetry under reparameterisations ω (ξ)→ ω
(
ξ̃ (ξ)

)
(which does not

change the path) and ensure that we count only those paths that are not related

by such a gauge transformation – in other words to integrate only over physically

distinct paths. Although it may sound counter productive the answer is to introduce

a further degree of freedom, h (ξ), which transforms as a (0, 2) tensor and use the

action [27] S0 [ω, h] defined above. h is interpreted as an intrinsic metric on the

particle worldline. This has the advantage of removing the square root and also

gives a sensible m → 0 limit. At a classical level, the equation of motion for h can

be used to eliminate it from the action, in which case we find (1.0.27) above.

The reparameterisation invariance can be used to fix the metric to our advantage.

For example, setting h = m−2 in S0 leads to a canonical momentum pµ = mω̇µ and

the equation of motion ω̈ = 0. The equation of motion for h, however, imposes the

mass-shell constraint p2 = m2 which will have to hold as an operator equation in

the quantum theory. The quantum commutation relations are given by

[p̂µ, ω̂ν ] = iηµν (1.0.28)
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and the physical states are those that satisfy the constraint (p̂2 −m2) |ωphys〉 = 0.

Let us consider the functional quantisation of this theory by calculating the

elementary objects introduced in the previous section (as we wish only to illustrate

the techniques we shall discard a coupling to the gauge field)

∫
DhDω

Vol (Diff)
e
−
∫ 1
0 dξ

ω̇2

2
√
h

+ 1
2
m2
√
h

(1.0.29)

with appropriate boundary conditions on the integration over ω depending on whether

the worldline is open or closed. We have divided through by the volume of the dif-

feomorphism group which takes care of the over-counting of equivalent states. The

functional integration over metrics can be defined in analogy to finite dimensional

integration [31]: supposing that the space of metrics is parameterised by local coor-

dinates ζi we define

Dh =

√
det

(
∂h

∂ζi
,
∂h

∂ζj

)∏
k

dζk (1.0.30)

where (·, ·) denotes an inner product on variations in the metric that must be chosen.

Following Appendix C of [28] we take the reparameterisation invariant inner product

(δ1h, δ2h)h =

∫ 1

0

h−2δ1h δ2h
√
h dξ (1.0.31)

Variations in the metric can be divided into those corresponding to a reparameteri-

sation and orthogonal, physical changes. For one dimensional metrics these physical

changes correspond to global scalings. Under an infinitsesimal diffeomorphism pa-

rameterised by a “vector,” V (ξ), we have ξ → ξ + V (ξ) and

δV h(ξ) = −
[
V (ξ)

d

dξ
+ 2

dV (ξ)

dξ

]
h(ξ) ≡ −2DV . (1.0.32)

Under an infinitesimal global scaling parameterised by a constant, c, the metric

changes as h (ξ) → h (ξ) (1 + c) and (δc, δc)h = (δc)2 ∫ 1

0

√
h dξ so the integration

measure factorises into

Dh = dcDV

√(∫ 1

0

√
h dξ

)(
Det(D†D)

)
(1.0.33)
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We use the reparameterisation invariance of the action to expand the metric about

a constant value h (ξ) = T 2, whereby dc = 2dT
T

and
∫ 1

0

√
hdξ = T . In this gauge the

eigenvalues of D†D can be ζ−function regularised (see the appendix of Chapter 2)

and we find √
det (D†D) ∝

√
T (1.0.34)

for open worldlines and √
det (D†D) ∝ T (1.0.35)

for closed worldlines. Due to the diffeomorphism invariance the integration with

respect to V is trivial and provides the volume of the reparameterisation group2,

cancelling the denominator of the functional integration and allowing us to correctly

account for the overcounting caused by the gauge symmetry. In total we can replace

the functional integration over the metric degree of freedom by Dh ∝ dT for open

worldlines and by Dh ∝ dT
T

for closed worldlines.

The measure for the integration over the matter field, Dω, can be defined by

expanding about the classical solution in Fourier modes of the kinetic operator.

Integration over the Fourier modes produces the functional determinant of this op-

erator which can be calculated by ζ−function techniques. It is straightforward to

verify that this produces the same expressions for both the partition function and

the propagator as are found in the canonical operator approach to quantisation. For

brevity we do not pursue that here since no substantial problems are encountered,

unlike when it comes to the quantisation of the string (see however a brief calcu-

lation of the functional determinant in the appendix of Chapter 2). For spin 1/2

matter a similar construction works for χ and ψ introduced in the previous section.

We postpone a discussion of this until chapter 2.

2Actually care must be taken with closed worldlines because the constant zero mode of D†D
does not change the metric. Excluding this zero mode leaves behind a further factor of T

3
2 which

must be taken into consideration – see [28] for further details



Chapter 1. Introduction 16

String theory

String theory is just the generalisation of the above considerations to a one di-

mensionally extended object. Rather than a point particle tracing out a path in

space-time we consider an extended string (which may be open or a closed loop)

which traces out a worldsheet in D dimensional space-time. We will limit our dis-

cussion to the bosonic string in this introduction, waiting until Chapter 3 to discuss

the construction of the spinning string. The natural invariant action is the area of

the string worldsheet which leads us to consider the Nambu-Goto action [32]

SNG =
1

2πα′

∫
d2σ

√
εab∂aXµ (σ) ∂bXν (σ) ηµν . (1.0.36)

Here Xµ (σ) is the embedding of the worldsheet into space-time which is param-

eterised by σa = (τ, σ) and we have introduced the string tension T = (2πα′)−1.

This form of the action has the same unfortunate square root as we initially wrote

down for the point particle and has an analogous two dimensional reparameterisa-

tion symmetry. We solve these problems in the same way by introducing a metric

hab (σ) on the worldsheet. Then the Polyakov action [33] is

SP =
1

4πα′

∫
d2σ
√
hhab (σ) ∂aX

µ (σ) ∂bX
ν (σ) ηµν (1.0.37)

where we take h ≡ | dethab|. Classically hab is an auxiliary field and its equation

of motion can be solved in terms of the coordinates Xµ – substituting this solution

back into the action provides the Nambu-Goto action.

Polyakov’s action enjoys reparameterisation invariance and also has conformal

invariance under a scaling of the metric hab → eφ(σ)hab [34]. If we restrict our

attention to genus zero worldsheets we can fix these gauge symmetries by choosing

co-ordinates in which
√
hhab = ηab. (1.0.38)

Such a choice breaks the manifest reparameterisation symmetry but has the ad-

vantage of maintaining explicit Weyl invariance, so long as quantisation does not

reintroduce some dependence on the worldsheet scale. In this conformal gauge the
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action is independent of the metric and leads to a free conformal theory for the

worldsheet coordinates

S =
1

4πα′

∫
d2σ ∂aX

µ (σ) ∂bXµ (σ) . (1.0.39)

However, as for the point particle we must impose the constraint which arises out

of the equation of motion for hab. This is just the vanishing of the two dimensional

energy momentum tensor Tab = 0 evaluated in the conformal gauge. Upon quanti-

sation this must be imposed as an operator statement and determines the physical

states of the system. If Tab is Fourier expanded then we find the familiar Virasoro

constraints Lm = 0 where

Lm =
1

2

∞∑
n=−∞

αm−n · αn (1.0.40)

which is defined in terms of the Fourier modes of the string coordinates αn. Sim-

ilarly to Gupta-Bleuler quantisation of electrodynamics these constraints become

the weaker conditions that L̂m |phys〉 = 0 for m > 0 when the αn are promoted

to creation and annihilation operators. This quantisation procedure is well known

and we only state the consequences. The physical spectrum of the string is easily

determined by acting on the vacuum with creation operators subject to the Virasoro

constraints (the mass of the states is determined by L0). The negative norm modes

associated to a†µ0 can be decoupled by the Virasoro constraints only in D = 26

space-time dimensions. Scattering is described from the point of view of the world-

sheet conformal theory by introducing vertex operators that correspond to a given

string state. The requirement that these operators transform correctly under the

conformal symmetry (and so map physical states into physical states) likewise con-

strains their form and ensures that only the physical states of the string can take

part in scattering. This is really just another manifestation of the state-operator

correspondence.

We turn now to the functional quantisation of the string. The discussion in

this section follows that of Polyakov [35] and [36] (see also [37]). In the canonical

approach the reparamaterisation invariance is broken at the outset. Polyakov’s
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suggestion was to keep the reparameterisation invariance intact during quantisation.

So all functional measures and any regularisation required during quantisation must

be defined to respect this symmetry. The simplest calculation we can consider is

the tree level partition function

Z =

∫
DhDX

Vol (Diff x Weyl)
e−SP[h,X] (1.0.41)

into which we could place various insertions to represent scattering amplitudes if

desired. For open strings the worldsheet has the topology of a disk and for closed

strings has the topology of a sphere. An arbitrary variation of the metric takes the

form

δhab = δφhab +∇(a δV b) (1.0.42)

which is just a Weyl scaling and a reparameterisation parameterised by V . Although

not Weyl invariant, there is a unique ultra-local diffeomorphism invariant inner

product on such variations given by

(δ1h, δ2h) =

∫
d2σ
√
h δ1hab

(
Aharhbs +Bhabhrs

)
δ2hrs (1.0.43)

for constants A and B. Unfortunately
(
δφhab,∇(aVb)

)
6= 0 so the determinant in

the definition of Dh will not be block diagonal. Physically the reason for this is the

existence of the conformal Killing vectors which generate reparameterisations that

act as Weyl scalings [38]. However, the determinant is not changed by elementary

row operations so we may shift this part of the variation into a redefinition of φ. Then

defining P (V )ab = ∇(a δV b) − gab∇cV
c, which takes vectors into traceless covariant

tensors, we have

δhab = δφhab + P (V )ab . (1.0.44)

Now we find that the two changes are orthogonal to one another and

Dh ∝ DφDV
√

det′(P †P ). (1.0.45)

We have written det′ to denote that the zero modes of P †P – which are the confor-
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mal Killing vectors – should not be included in the determinant. We will preserve

the reparameterisation invariance of the action and nothing in P †P makes any ref-

erence to a specific coordinate system. Therefore the integral over V provides the

volume of the diffeomorphism group, except for the volume corresponding to the

conformal Killing vectors which are excluded. In this way we almost take care of

the overcounting caused by the diffeomorphism symmetry, only needing to worry

about the remaining symmetry generated by the conformal Killing vectors when we

consider scattering amplitudes.

Were the determinant independent of φ and the classical conformal invariance of

the action preserved when we integrate over X we would be able to carry out the φ

integral and cancel the result off against the volume of the Weyl group. However,

the inner product (1.0.43) is not classically Weyl invariant so we can not expect

the determinant to be independent of φ (in fact it also requires regularisation).

Furthermore, we must also define the functional integral with respect to Xµ which

will be found to depend on the conformal scale. To see this, write the Polyakov

action (up to possible classical contributions) as

SP =
1

4πα′

∫
d2σ
√
hXµ∆Xµ (1.0.46)

where we’ve introduced the worldsheet Laplacian ∆Xµ ≡ − 1√
h
∂a

(√
hhab∂bX

µ
)

.

We can define a reparameterisation invariant inner product on variations in X as

(δ1X, δ2X) =

∫
d2σ
√
h δ1X · δ2X (1.0.47)

with respect to which the Laplacian is Hermitian. Decomposing X into a linear

combination of orthogonal eigenfunctions of ∆ the volume element simply becomes

an infinite product of ordinary integrals over the coefficients appearing in this ex-

pansion. The action becomes quadratic in these coefficients so the integrals are

Gaussian. The integral over the coefficients not associated to zero eigenvalues pro-

vides det′ (∆) but the worldsheet and boundary conditions may allow a constant

zero mode u0 =
(∫

d2σ
√
h
)− 1

2
. The integral over this mode diverges but it can be

written in terms of the mean position of the string, which we denote by Xµ
0 . The
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result is ∫
DXe−SP[h,X] =

(
det′ (∆)∫
d2σ
√
h

)−D
2 ∫

dDX0. (1.0.48)

The integral over X0 then gives the infinite volume of target space which factors out

of the physical content of the theory. The determinant of the Laplacian depends

on φ and also requires regularisation. Until we have determined the φ-dependence

of the two determinants which have entered the calculation we cannot attempt to

complete the functional dependence over this conformal scale.

The fact that the determinants require regularisation is important because it

must be done in a reparameterisation invariant way. This requires the introduction of

a short distance regulator which therefore introduces further dependence on the scale

of the worldsheet metric. This quantum break-down of the classical scale invariance

is called the Weyl anomaly. We have seen that it arises out of the requirement to

define the integration over all geometries and string configurations (Dh and DX)

and the necessity to regulate the divergences that are then encountered.

The explicit calculations which derive the dependence of the determinants on

the conformal scale are well-known and we do not repeat them here. Instead we

argue that since the regulator’s role is to cut off short-distance divergences and

the integration measures have both been defined to be ultra-local the anomalous

dependence of the determinants on φ must depend locally on the worldsheet metric.

Now the contributions that diverge as the regulator is removed can be compensated

for by a renormalisation of the string action (or absorbed by the introduction of

a cosmological term) so we need only construct the finite part. On dimensional

grounds the anomaly must be made up out of the worldsheet scalar curvature, (2)R,

and φ itself. Indeed, explicit calculation [31] shows that under an infinitesimal

variation of the conformal scale δhab = δφhab,

δ ln

√det′ (P †P )

Vol (CKV )

(
det′ (∆)∫
d2σ
√
h

)−D
2

 =
D − 26

48π

∫
d2σ
√
h (2)Rδφ (σ) . (1.0.49)

This variation cannot be written as the infinitesimal change of some local and repa-
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rameterisation invariant object. It can be integrated to give the Liouville action

SL =

∫ ∫
d2σ
√
h (2)R (σ)G (σ, σ′) (2)R (σ′)

√
h d2σ′, (1.0.50)

where G (σ, σ′) = ∆−1 (σ, σ′) is the worldsheet Green function, for which we must

now try to carry out the functional integral over φ. The measure on variations in φ

is induced from (1.0.43) and takes the form

(δφ, δφ) =

∫
d2σ
√
h (δφ)2 (1.0.51)

This is rather unusual, since if we consider it in a gauge conformally related to some

reference metric, ĥ, we do not find a familiar linear measure but

|δφ|2 ≡ (δφ, δφ) =

∫
d2σ
√
ĥ eφ(σ) (δφ)2 . (1.0.52)

and we would like to define functional integration by

∫
Dφ e−|δφ|

2

= 1. (1.0.53)

It is not yet known how to carry out this integral, nor how this measure should be

interpreted. So we are faced with an inability to complete the string quantisation

unless we arrange for the Liouville theory to vanish. Obviously this can be done

by setting D = 26, in which case the Weyl anomaly disappears and the integral

over φ directly cancels the volume of the Weyl group. This can be compared to the

canonical approach in which the negative norm (ghost) states can only be decoupled

by the Virasoro constraints when D = 26. We learn that the scale of the worldsheet

metric is the degree of freedom which prohibits the quantisation of strings outside of

the critical dimension. In canonical quantisation we restrict the physical state space

but in the functional approach we integrate over all string coordinates (including

X0) and the integration over worldsheet metrics cancels – in the critical dimension

– the effect of having included the negative norm states.

The story is essentially the same for the spinning string, where we introduce
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Grassman worldsheet fields Ψ (σ) and χ (σ) which are the super-partners to the

bosonic fields [39]. Then the classical theory enjoys super-conformal invariance and

the requirement that this is preserved upon quantisation translates to a critical

dimension of D = 10 [40]. To determine the spectrum of the bosonic or spinning

string we must go beyond the partition function and consider string amplitudes.

Accordingly vertex operators are inserted into the functional integral to represent

the states taking part in the scattering process. We shall delay our discussion of

exactly how this works until Chapter 3 and will simply state that the requirement

of not reintroducing unwanted dependence on the conformal scale (as occurs during

the regularisation of UV divergences in the worldsheet Green function) leads to

precisely the mass-shell and transversality conditions that are found in the canonical

approach. In Chapter 3 we shall have cause to consider the effects of such insertions

in great detail, since in order to quantise the interacting string theory we will need to

ensure that the conformal invariance of the string is not broken by our modifications.

There are many further facets of this approach to quantisation which we have

not considered here. The topology of the worldsheet is of particular importance

since for higher genus surfaces the geometry is also described by some number of

modular parameters. These too must be integrated over to cover the space of distinct

geometries. Even at tree level the amplitude calculations must confront the residual

gauge symmetry which is left over when expanding about the conformal gauge. We

may consider coupling the string to background fields where the functional approach

can readily be generalised and we gain an important tool to complement canonical

quantisation. For this thesis we will restrict ourselves to relatively simple tree level

calculations without such complications.

In the following two chapters we apply these techniques to theories of interacting

point particles and strings respectively. A few further details are developed on the

way but the aim of both models is to provide a complementary approach to the

determination of well-known quantities in theoretical physics with new machinery

and an alternative perspective.



Chapter 2

Contact interactions for point

particle theories

2.1 Introduction

Classical electromagnetism is conventionally described by Maxwell’s field theory

and their seems to be little room for debate about its formulation. In [41], however,

building upon [13] it was shown that an alternative approach to determining the

field strength tensor for a pair of charged particles led directly to a novel interacting

string theory. This theory contained contact interactions on the worldsheet which

served to produce well-known quantities in Abelian gauge theory and will be the

subject of the next chapter. In the case of electrostatics, the description given in [13]

was of point particles whose paths have endpoints fixed to the charged particles.

The physical picture which motivated this approach is of Faraday’s lines of force as

fundamental objects.

Before we consider contact interactions in string theory it seems appropriate

to return to this idea and explore the consequences of allowing point particles to

interact upon contact. This chapter revisits and extends the results of [13] and also

generalises that work to the case of fermionic particles. It then goes beyond leading

order to demonstrate that in fact the full quantum theory of a set of interacting point

particles is consistent and free of unwanted divergences. We develop the functional

approach to one dimensional field theory for consistency with [28, 41] and for the

23
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generalisation to fermionic particles we will find it most natural to form the theory

in superspace. This chapter proceeds by first reviewing the bosonic theory presented

at lowest order in [13] before generalising it to the fermionic case. Following this a

full interacting theory is described in section 2.5 and quantised.

2.2 Bosonic particles – the classical electric field

We work in D spatial dimensions and consider a static charged particle at position

a and an oppositely charged particle at the point b. An expression satisfying Gauss’

law1 was given in [13]:

E ′i (x) = q

∫
C

dτ
dωi

dτ
δ3 (ω (τ)− x) (2.2.1)

where the integral is taken over any curve C with endpoints at a and b. The form

of this field is reminiscent of the form of the Dirac string which was introduced to

describe the field of a magnetic monopole [42, 43] but we shall use it here in the

context of electrostatics. The expression for E′ does not satisfy ∇ × E′ = 0 but

we shall see that its statistical average does. The average is over all curves with

endpoints fixed at a and b and is defined in reparameterisation invariant form as

〈Ω (ω)〉= 1

Z

∫ ω(1)=b

ω(0)=a

DeDωΩ (ω) δ

(∫ 1

0

e dτ − T
)
e−S[ω,e] ; S [ω, e] =

∫ 1

0

ω̇2

2e
dτ

(2.2.2)

where Ω is any reparameterisation invariant functional of the path (we work in

Euclidean space). The action is that of Brink, diVecchia and Howe we met in the

introduction (we take the particle to have zero mass2) and here we use their notation

for the einbein, e, which is related to h by e2 = h. The δ-function in (2.2.2) picks

out paths of fixed intrinsic length T and the Coulomb field for the pair of particles

1We put ε0 = 1 and denote the electric charge by q so ∇ ·E′ = qδ3 (x− a)− qδ3 (x− b)
2A mass term could have been included in the action defined in (2.2.2) via the inclusion of a

cosmological term 1
2m

2
0

∫ 1

0
e dτ . Usually it is necessary to do so in order to remove a divergence in

the functional determinant from the integral over ω by a renormalisation of this bare mass m0 to
a physical mass m. In this case the divergence is cancelled by Z and since E′ does not involve the
einbein the effect of including m would be also be cancelled by the normalisation.
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is arrived at by taking the average of E′ in the limit as T →∞. The normalisation

constant is defined by 〈1〉 = 1.

In [13] this was shown using techniques derived from canonical quantisation. We

demonstrate the result using the functional methods we will use for the fermionic

generalisation of this claim. To do so we must address the overcounting caused by

the reparameterisation symmetry. Following the introduction we recall that for open

curves the measure on the space of metrics can be written

De = dcDV

√(∫
dτ e

)
Det (D†D) ; DV =

d

dτ
(V e) (2.2.3)

where c represents a scaling of the einbein and V an infinitesimal reparameterisa-

tion. This volume element follows because any metric can be written as a combined

scaling, generated by c, plus reparameterisation, generated by V , about some ref-

erence metric. We expand about e = >, a constant, whereby the volume element

becomes

De = d>DV (2.2.4)

and the constraint becomes δ (>− T ). Since the components of the functional

average are taken to be invariant under reparameterisations the functional integral

with respect to V just gives the volume of the reparameterisation group, which

cancels with the corresponding contribution from the normalisation constant. So

for the average of E′ (x) we must determine

〈I (x)〉 ≡ q

Z ′

∫
Dω

∫
dDk

(2π)D

∫ 1

0

dτ1
dω (τ1)

dτ1

eik·(ω(τ1)−x)e−
∫ 1
0

ω̇2

2T
dτ (2.2.5)

where Z ′ is what remains after the volume of the reparameterisation group has been

cancelled from Z and we have used the Fourier decomposition of the δ-function.

The insertion that arises has a familiar form – it is the one dimensional version

of the vertex operator used in bosonic string theory and it frequently appears in

calculations in the worldline formalism:

V µ
k (τ) = ω̇µ (τ) eik·ω(τ). (2.2.6)
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Unlike in string theory we integrate this operator over all momenta. From the point

of view of the one dimensional quantum theory (2.2.5) is the amplitude for the path

from a to b to pass through the point x. Before calculating this expectation value we

note that the structure of the insertion allows us to constrain its dependence on mo-

mentum – if we contract (2.2.6) with kµ and integrate over τ we find a contribution

only from the endpoints of the domain

∫
dτ kµV

µ
k (τ) = −i

(
eik·ω(1) − eik·ω(0)

)
(2.2.7)

which we shall refer to as the generalised Gauss’ Law.

The insertion can be generated by introducing a source, j (τ), and defining

J (τ) = −q dj
dτ
− ikδ (τ − τ1). Then the above equation becomes

1

Z ′

∫
Dω

∫
dDk

(2π)D

∫ 1

0

dτ1 e
−ik·x δ

δj (τ1)
e−

∫ 1
0

ω̇2

2T
+ω·Jdτ

∣∣∣∣
j=0

. (2.2.8)

We split ω into its classical part in the absence of a source and a piece which absorbs

the source and accounts for the quantum fluctuations ω (τ) = ωc (τ) + ω̃ (τ). Here

ω satisfies the source-free classical equation of motion −1
T
d2ω
dτ2 = 0 with endpoints at

a and b:

ω (τ) = a + (b− a) τ. (2.2.9)

ω̃ (τ) is required to vanish at the endpoints and can be split into a classical piece,

ω̃c, satisfying −1
T
d2ω̃c
dτ2 = J (τ) and a quantum fluctuation, ω̄ (τ). Integrating over ω̄

leads to a functional determinant (which we evaluate with ζ-function regularisation

in Appendix A) and because the path is open there are also boundary contributions.
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We find

(2πT )−
D
2 e−

(b−a)2

2T

Z ′

∫
dDk

(2π)D

∫ 1

0

dτ1 e
−ik·x δ

δj (τ1)

exp

(
−1

2
k2G (τ1, τ1)− iq

∫ 1

0

dτ k · j (τ)
d

dτ
G (τ1, τ)

+
q2

2

∫ 1

0

∫ 1

0

dτdτ ′ j (τ) · j (τ ′)
d

dτ

d

dτ ′
G (τ, τ ′)

)
exp

(
−q
∫ 1

0

dτ j (τ) · d
dτ
ωc (τ) + ik · ωc (τ1)

)∣∣∣∣
j=0

. (2.2.10)

In the above equation G (τ1, τ2) is the Green function on the interval [0, 1] with

Dirichlet boundary conditions G (0, τ2) = 0 = G (1, τ2). Its explicit form is

G (τ1, τ2) = −T
2

(|τ1 − τ2| − (τ1 + τ2) + 2τ1τ2) ; − 1

T

d2G

dτ 2
1

= δ (τ1 − τ2) .

(2.2.11)

and G (τ1, τ1) is the coincident limit, which in one dimension is finite. The numerator

of (2.2.10) contains the heat-kernel for the free particle and this cancels exactly

with Z ′. Carrying out the functional differentiation and setting j = 0 yields for the

average in momentum representation

〈I (k)〉 = −q
∫ 1

0

dτ1

[
ω̇c (τ1)− 1

2
ik

d

dτ1

G (τ1, τ1)

]
e−

1
2
k2G(τ1,τ1)eik·ωc(τ1). (2.2.12)

Since we will eventually take the limit T → ∞ it is useful at this point to extract

the T dependence in order to make an expansion in powers of 1
T

. Define then

G̃ (τ1, τ2) ≡ 1
T
G (τ1, τ2) and note that

G̃ (τ1, τ1) = −τ1 (τ1 − 1) . (2.2.13)

This function vanishes on the boundary and is increasing (decreasing) for τ < 1/2

(τ > 1/2). In this parameterisation (2.2.12) becomes

〈I (k)〉 = −q
∫ 1

0

dτ1

[
ω̇c (τ1)− T

2
ik

d

dτ1

G̃ (τ1, τ1)

]
e−

1
2
k2TG̃(τ1,τ1)eik·ωc(τ1). (2.2.14)
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In the large T limit the suppression caused by the exponent exp
(
−1

2
k2TG̃ (τ1, τ1)

)
causes the contributions to the integrand to arise primarily when τ1 → 0 and τ1 → 1

(where the coincident Green function vanishes). We therefore expand the field ω

about these points and integrate a small distance, h, along the worldline. At lowest

order in 1
T

we have:

− q
∫ h

0

dτ1

[
ω̇c (0)− T

2
ik

d

dτ1

G̃ (τ1, τ1)

]
e−

1
2
k2TG̃(τ1,τ1)eik·ωc(0)

− q
∫ 1

1−h
dτ1

[
ω̇c (1)− T

2
ik

d

dτ1

G̃ (τ1, τ1)

]
e−

1
2
k2TG̃(τ1,τ1)eik·ωc(1) (2.2.15)

and damping caused by the form of the coincident Green function in the exponent

allows the integration regions to be extended by setting h = 1
2
. Each integral has

two terms, the second of which provides the leading order contribution:

−Tik
2

∫ 1
2

0

dτ1
d

dτ1

G̃ (τ1, τ1) e−
1
2
k2TG̃(τ1,τ1) =

ik

k2

[
e−

1
2
k2TG̃( 1

2
, 1
2) − 1

]
→ − ik

k2
(2.2.16)

where the last line holds as k2T → ∞. Noting that for 0 ≤ τ ≤ 1/2 we have

G (τ, τ) ≥ τ
2

the first term can be bounded

∫ 1
2

0

dτ1 e
− 1

2
k2TG̃(τ1,τ1) ≤

∫ 1
2

0

dτ1 e
− 1

4
k2Tτ1

=
4

k2T

[
e−

1
4
k2T − 1

]
(2.2.17)

which is O
(

1
k2T

)
. Putting this together with the contribution from the other end of

the path we arrive at the momentum space expression

〈I (k)〉 =
qik

k2

(
eik·a − eik·b

)
+O

(
1

k2T

)
(2.2.18)

We check our answer by compatibility with the generalised Gauss’ law: dotting with

k produces the expected contribution (2.2.7). Taking the limit T →∞ and setting
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D = 3 this can be written in position space as

〈I (x)〉 =
q

4π
∇
(
− 1

|x− a|
+

1

|x− b|

)
(2.2.19)

which is indeed the classical dipole electric field. This average therefore determines

F0i for static oppositely charged particles. In [13] the case of magnetostatics was also

considered for a fixed closed current carrying wire, and the time varying situation

was also examined. These cases require treating the curve C as dynamical so that

the natural weight becomes not the action of a point particle but that of extended

objects, naturally leading to the use of string theory. This picture was explored

further in [28,41] and forms the basis of Chapter 3 of this thesis.

The calculation presented above provides an interesting method of determining

the classical static dipole electric field, albeit somewhat unconventional. The utility

of the functional approach is the ease with which it can be extended. Before gen-

eralising to fermionic particles we show that a simple change can instead generate

the classical electric field due to a static point particle. This is desirable since it

is presumably more useful to deal with a single particle rather than be constrained

to dealing with oppositely charged pairs (except when considering the worldlines of

virtual particle / anti-particle pairs). For a single particle at the point a we proceed

as above with the exception that we constrain only one end of the worldlines. This

is a simple change of the boundary condition at the upper end of the interval; the

variation of the action shows that the only other consistent choice we can make is

the Neumann condition ω̇ (1) = 0.

There are two effects of this change. Firstly the determinant of the kinetic

operator −1
T

d2

dτ2 becomes independent of T (see Appendix A). This has no relevance

because it is cancelled by the same change in Z ′. Of more importance is the change

in the Green function. With the new boundary conditions we find

G′ (τ1, τ2) = −T
2

(|τ1 − τ2| − (τ1 + τ2)) ; G′ (τ1, τ1) = Tτ1. (2.2.20)

Note that the coincident Green function now only vanishes at τ1 = 0, the end of

the curve tied to the particle at a. Finally the classical solution must clearly differ;
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now ωc = a satisfies the equation of motion and boundary conditions. In particular

ω̇ = 0 and there are no boundary contributions from the classical action so that

(2.2.14) becomes

〈I (k)〉 = q

∫ 1

0

dτ1
1

2
ik

d

dτ1

G′ (τ1, τ1) e−
1
2
k2G′(τ1,τ1)eik·a. (2.2.21)

Defining G′ (τ1, τ2) ≡ TG̃′ (τ1, τ1) we could again consider the above equation for

large T whereby the integrand is suppressed by the exponent exp
(
−1

2
k2TG̃′ (τ1, τ1)

)
except for τ1 ≈ 0. The integrand is a total derivative however so we can determine

the exact answer. We obtain

〈I (k)〉 =
iqk

k2

(
1− e−

1
2
k2T
)
eik·a (2.2.22)

which in the limit T →∞ has inverse Fourier transform equal to the electric field

〈I (x)〉 =
q

4π

x− a

|x− a|3
. (2.2.23)

It is interesting to note that (2.2.22) gives the exact average at finite T . We will

explore corrections to the classical fields for both of the above configurations of par-

ticles below. We have already commented on the calculation of the static magnetic

field of a closed loop of current carrying wire given in [13]. This required a functional

average over surfaces with boundary fixed to the wire and already invoked the use of

string theory. There the two dimensional worldsheet Green function was required to

vanish at both ends of the string since the endpoints were constrained to lie on the

boundary. The analogous method of applying Dirichlet boundary conditions to only

one end corresponds to opening up the wire into a small segment and ensures that

the only contribution to the average comes from a strip close to the end of the string

fixed to the wire. The average then yields the Biot-Savart law for that segment of

wire. Mixed boundary conditions are discussed further in the full interacting string

theory in Appendix A of [28] where it is shown to provide propagators written in

the worldline formalism.

For the most part we took D to be arbitrary, only specialising to D = 3 spatial
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dimensions for the sake of compatibility with [13] and an illustration of some of the

physical content of the average. In a four dimensional space-time we will have to

deal with 4 bosonic coordinates so we append ω0 to the three fields ω considered

above. The Euclidean average is then constructed over all paths which intersect the

spatial point xµ = (x0,x) whose endpoints are fixed to the particles at aµ = (a0, a)

and bµ = (b0,b) . The average takes the form

〈Iµ (x)〉 =

〈
q

∫
dτ
dωµ

dτ
δ4 (ω (τ)− x)

〉
. (2.2.24)

If we restrict to the latter case of a single point particle at position aµ discussed

above the generalisation of (2.2.22) provides the Euclidean space average

〈Iµ (k)〉 =
iqk

k2

(
1− e−

1
2
k2T
)
eik·a. (2.2.25)

We can interpret this in Minkowski space by treating the boundary data aµ as some

fixed point on the worldline of the particle and Wick rotating the above result. In

the T →∞ limit then

〈Iµ (x)〉 =
q

4π2
∂µ

1

|x− a|2 + iε
(2.2.26)

where we use the iε procedure to specify the positions of the poles. The physical

interpretation of this result is less obvious because it relies on the choice of aµ (also

bµ had we included a second particle). If we return to a static picture then consider

an observer at xµ in the rest frame of the charged particle. The calculation in

D = 3 spatial dimensions was an average over all possible particle paths starting at

a and passing through x but in four dimensional space-time they are also required

to pass though x at the time x0 = t, say. We are restricting our attention to a static

configuration and suppose that we ought to integrate over all possible starting points

on the worldline aµ at which the path ωµ could begin whilst still passing through

xµ. In section 4 of [13] an argument was given based on the construction of thermal

Green functions that the retarded solutions to Maxwell’s equations are inherited

from the Feynman propagator if the calculation is seen as a finite temperature

quantum expectation value. Application of this procedure to the current problem
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provides

〈Iµ (x)〉 =
q

4π
∂µ
δ (x0 − a0 − |x− a|)

|x− a|
(2.2.27)

so that the only contribution comes from paths whose endpoints are joined along

the causal light-cone. In the rest frame of the particle its worldline has constant a

and integrating (2.2.27) with respect to a0 yields the static electric field expected at

x0 = t:

F00 = 〈I0 (x)〉 = 0; F0i = 〈Ii (x)〉 =
q

4π

x− a

|x− a|3
(2.2.28)

The same result could be arrived at by integrating (2.2.26) over a0 immediately if

the contour for the k0 integral is chosen to fall above the poles at ± |k| on the real

axis; the discussion of the thermal average in [13] can thus be seen as justification

for this choice of contour.

It should be stressed that this procedure yields the correct static field but is

not applicable for the general time dependent problem. This has been dealt with

in [13] and [41] and will be considered in the next chapter. It requires string theory

to correctly describe the dynamics of extended curves whose boundaries are fixed

to the worldlines of the charged particles. The static problem considered above is

an unusual way to arrive at the electric field but is nonetheless of interest because

of its straightforward generalisation. In the following sections we first include spin

degrees of freedom before returning to an analysis of the result when the parameter

T is taken to be finite. We then generalise the work to form a full quantum theory

of point particles with contact interactions.

Following on from the bosonic theory we wish to provide an extension to the

theory in [13]. The following sections comprise the new contribution in this thesis.

We have three aims in sight. The first is to extend the work to fermionic fields and

the second is to determine the corrections to both results which are present at finite

T . We finally ask whether the interaction exponentiates as in [28, 41] – we shall

address this issue in section 2.5.



2.3. Fermionic particles 33

2.3 Fermionic particles

In this section we consider a theory of spin 1/2 particles and generalise the theory

above for application to this case. We continue to work with massless particles

for simplicity and it will also prove most convenient to work in four dimensional

Euclidean space (this is more natural for fermionic theories – we discuss how we

may relate this to the three dimensional case below). To deal with fermions it

is most useful to construct the theory in superspace. We therefore introduce the

Grassmann variable θ to extend the parameter domain τ → (τ, θ). We further

introduce the scalar superfield3

X (τ, θ) = ω (τ) + θe
1
2 (τ)ψ (τ) (2.3.29)

and the supereinbein

E (τ, θ) = e (τ) + θe
1
2 (τ)χ (τ) , (2.3.30)

where ψ is the superpartner to ω and χ is the gravitino. We also define the su-

perderivative

D = ∂θ + θ∂τ . (2.3.31)

Under the local supersymmetry transformations parameterised by V (τ), the gen-

erator of reparameterisations, and η (τ), a Grassmann function generating pure su-

persymmetry transformations,

τ → τ + V (τ) + θη (τ) ; θ → θ + η (τ) +
1

2
θV̇ (τ) (2.3.32)

the superderivative transforms homogeneously

DX→ Λ (τ, θ)DX (2.3.33)

3The strange looking factors of e
1
2 are necessary for the action given in the text to reduce to the

familiar action of Brink, Di-Veccia and Howe. Another convention for the superfields exist where
we scale ψ → e−

1
2ψ and χ→ e

1
2χ.
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and the supereinbein transforms as

E→ Λ2 (τ, θ) E (2.3.34)

where Λ (τ, θ) = 1+ 1
2
V̇ (τ)+θη̇ (τ). Requiring the integration measure to transform

as dτdθ → Λ−1 (τ, θ) dτdθ the following action is invariant:

S [E,X] =
1

2

∫
dτdθE−1D2X ·DX. (2.3.35)

Integrating over θ allows this to be cast in the more familiar component form4

1

2

∫
dτ e−1ω̇2 + ψ̇ · ψ − χ

e
ω̇ · ψ. (2.3.36)

Under canonical quantisation the equations of motion for the auxiliary fields χ and

e lead to the first class constraints p · ψ = 0 and then p2 = 0 respectively. Here

pµ = ω̇µ/e is the momentum corresponding to the field ω. On the state space

the former constraint enforces the Dirac equation on physical states and the latter

informs us the particle has zero mass. Below we shall pursue again the functional

quantisation of this action.

We also require the supersymmetric generalisation of the interaction and the

constraints on the intrinsic length of the path. The natural invariant interaction

term is

I (x) = q

∫
dτdθ DX δ4 (X− x) (2.3.37)

Fourier decomposing the δ−function and integrating over θ puts this into the form

q

∫
d4k

(2π)4

∫
dτ (ω̇ − eψik · ψ) eik·(ω−x) (2.3.38)

which is analogous to the supersymmetric vertex operator familiar in the context of

4The supersymmetry transformations of the component fields follow from those of the superfields
and (in the absence of reparameterisations) are: δηω = ηψ; δηψ = η

e

(
ω̇ − 1

2χψ
)

; δηe = ηχ; δηχ =
2η̇. Under reparameterisations, ψ is also a worldline scalar whilst χ transforms as e.
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the spinning string:

V µ
k (τ) = (ω̇µ (τ)− e (τ)ψµ (τ) ik · ψ (τ)) eik·ω(τ) (2.3.39)

Such an expression was examined in a string setting in [28, 41] but for now we

continue to explore the point particle theory. We contend that the generalisation of

the electric field part of the field strength tensor should be generated by a functional

average of (2.3.38) with an appropriate weight. This weight will be of course that

corresponding to the action in (2.3.36). Note also that the anti-commuting nature

of ψ ensures that the generalised Gauss’ law (2.2.7) still holds for this interaction.

The final element we need is the supersymmetric version of the constraint on

path lengths. Previously we inserted δ
(∫

e dτ − T
)

into the functional average but

this changes under supersymmetry transformations. Introducing an arbitrary Grass-

mann number Ξ, the natural invariant quantity is

δ

(∫
dτdθE

1
2 − 1

2
Ξ

)
(2.3.40)

which imposes a Grassmannian constraint on χ rather than on the metric. In the

massless case considered here it is not possible to construct a local function of e and

χ which is supersymmetric. Instead we follow Polyakov [44] and give a superspace

version of the non-local and invariant quantity he termed the superlength:

δ

(
−1

2

∫ ∫
dτ1dθ1 E

1
2 (τ1, θ1)D1D2G (τ1, θ1; τ2, θ2) E

1
2 (τ2, θ2) dτ2dθ2 − T

)
,

(2.3.41)

where G (τ1, θ1; τ2, θ2) = |τ1 − τ2 − θ1θ2| is a superinvariant Green function and Di

is the super-derivative acting on the parameters (τi, θi). In components the first of

these constraints takes the form

δ

(
1

2

∫
dτ χ (τ)− 1

2
Ξ

)
(2.3.42)
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whilst the latter can be written

δ

(∫
dτ e (τ)− 1

8

∫ ∫
dτ1χ (τ1) sg (τ1 − τ2)χ (τ2) dτ2 − T

)
(2.3.43)

with sg (τ) = τ
|τ | equal to the sign of its argument. We shall require the superlength

constraint in the functional average because it will be seen to provide the appropriate

fixing of the einbein and will also impose the complementary constraint (2.3.42)

which will similarly fix χ.

To continue the calculation it is necessary to determine the measure on the space

of the gravitino and ψ and also to specify the boundary conditions we will use. It

is well known that the purpose of the fields ψ is to represent the γ matrices, which

is why it is desirable to work in a four dimensional space-time. Integrating over ψ

yields an object with spinor indices and certain boundary conditions on the integral

allow us to extract each component of the answer. Specifically in Appendix C of [28]

we have shown that, for example,

∫
Dψ e−

∫
dτ( 1

2
ψ̇·ψ+ζ·ψ)

∣∣∣∣ψ2=−iψ1;ψ4=iψ3

ψ2=iψ1;ψ4=−iψ3

= T
(
e
− 1√

2

∫
dτ ζ·γ

)
11
. (2.3.44)

We also showed that the volume element for χ can be written

Dχ = dχ0Dη

(∫
e−1dτ

)− 1
2

Det−
1
2

(
−
(

1

e

d

dτ

)2
)

(2.3.45)

where χ0 is the constant piece of χ required for consistency with the boundary

conditions. This volume elements follows because χ can be expressed as a super-

symmetry transformation, generated by η, plus a change proportional to e about

some reference. We gauge fix by expanding about e = > – a constant – and χ = χ0.

These are consistent choices which cover the physically distinct configurations

and on this gauge slice the action becomes

1

2

∫
dτ

ω̇2

>
+ ψ̇ · ψ − χ0

>
ω̇ · ψ (2.3.46)
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whilst the interaction vertex is given by

(ω̇µ (τ)−>ψµ (τ) ik · ψ (τ)) eik·ω(τ). (2.3.47)

Similarly the volume elements become

DeDχ = d>dχ0DVDη. (2.3.48)

The super-length constraint reduces to

δ (>− T ) (2.3.49)

and the analogous version for χ becomes

δ (χ0 − Ξ) . (2.3.50)

which can be used to carry out the integrals over > and χ0. We shall again even-

tually take T to infinity so we can expand in powers of 1
T

and we shall take the

dimensionful Grassman parameter Ξ to vanish. The action and insertions are lo-

cally supersymmetric so that integrals with respect to V and η evaluate the the

volumes of the reparameterisation group and supersymmetry group respectively.

These constants are cancelled by their counterparts if we normalise against the bare

partition function.

We pause here to derive an important result using (2.3.44). We consider the

expectation value over the fermionic fields 〈ψµ (τ)ψν (τ)〉
∣∣
αβ

where we have attached

the spinor indices α and β to the beginning and end of the worldline respectively5.

The insertions can be generated by introducing a fermionic source η and carrying

out functional differentiation, after which we set η = χ0

2
√

2T
ω̇ to produce the linear

5We have written the fields at equal times but there is of course a time-ordering issue. We take
the convention that the field to the left is understood to be evaluated at an infinitesimally greater
time, ε, than that on the right, after which we take the limit ε→ 0+.
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term in the action. Then (2.3.44) gives

〈ψµ (τ)ψν (τ)〉αβ =
1

2Z

∫
dχ0δ (χ0 − Ξ)

δ

δηµ (t)

δ

δην (t)
T
(
e
∫
dτ η·γ

)
αβ

∣∣∣∣
η=

χ0ω̇

2
√

2T

(2.3.51)

where the constant Z is determined in the appendix. If we impose Ξ = 0 the result

of the functional differentiation and the integral over χ0 is

〈ψµ (τ)ψν (τ)〉 =
1

2
(δµν − γµγν) (2.3.52)

which crucially is independent of the field ω, since by setting Ξ = 0 we have decou-

pled the fields ω and ψ in the action. This result is consistent with the symmetry

properties of the Grassman fields and will play a key role in the forthcoming calcu-

lations.

To return to (2.3.38) we carry out the integral over > and are left with the gauge

fixed Fourier space expectation value

〈Iµ (k)〉= q

Z

∫
DωDψdχ0δ (χ0 − Ξ)

∫ 1

0

dτ1 (ω̇µ−Tψµik · ψ) eik·ωe−
∫ 1
0 dτ

ω̇2

2T
+ 1

2
ψ̇·ψ−χ0

2T
ω̇·ψ

=
q

Z ′

∫
Dω

∫ 1

0

dτ1

(
ω̇µ − Ti

2
(kµ − γµk · γ)

)
eik·ωe−

∫ 1
0 dτ

ω̇2

2T

(2.3.53)

where for the last line we have integrated over ψ to produce the gamma matrices and

integrated over χ0 before putting Ξ = 0. It remains to determine the expectation

values of these integrands and carry out the integral over τ1. The integral over ω

can be found to give

q

∫ 1

0

dτ1

(
ω̇µc (τ1)− Ti

2
(kµ − γµk · γ)− 1

2
ikµ

∂

∂τ1

G (τ1, τ1)

)
e−

1
2
k2G(τ1,τ1)eik·ωc(τ1)

(2.3.54)

Making further use of the redefinition G (τ1, τ2) = TG̃ (τ1, τ2) this can be cast in the
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form

q

∫ 1

0

dτ1

(
ω̇µc (τ1)− Ti

2
(kµ − γµk · γ)− T

2
ikµ

∂

∂τ1

G̃ (τ1, τ1)

)
e−

1
2
k2TG̃(τ1,τ1)eik·ωc(τ1)

(2.3.55)

From the exponent exp
(
−1

2
k2TG̃ (τ1, τ1)

)
it is easy to understand that the latter

two terms in brackets will contribute at leading order in 1
T

and that the first term

will once again be sub-leading. In the limit of large T we can follow the calculation

in the bosonic theory and approximate the integral by evaluating the classical path

ωc on each boundary and then integrating a short distance, h, along the worldline.

We calculate

q

∫ h

0

dτ1

(
ω̇µc (0)− Ti

2
(kµ − γµk · γ)− T

2
ikµ

∂

∂τ1

G̃ (τ1, τ1)

)
e−

1
2
k2TG̃(τ1,τ1)eik·ωc(0)

+q

∫ 1

1−h
dτ1

(
ω̇µc (1)− Ti

2
(kµ − γµk · γ)− T

2
ikµ

∂

∂τ1

G̃ (τ1, τ1)

)
e−

1
2
k2TG̃(τ1,τ1)eik·ωc(1)

(2.3.56)

and as before the suppression caused by the exponent at large T allows us to extend

the integrands by setting h = 1/2. Carrying out the integrals leads to

〈Iµ (k)〉 = q

[
i

k2
γµk · γ

(
eik·a − eik·b

)
+O

(
1

k4T

)]
. (2.3.57)

In the limit T →∞ only the first term contributes and so we have determined

〈I (k)〉 =
iq

k2
γ k · γ

(
eik·a − eik·b

)
. (2.3.58)

We may double check our work by contracting with kµ to verify against (2.2.7) that

the index structure is correct. In position space the expression above becomes

〈I (k)〉 =
q

4π2
γ γ · ∇

(
1

|x− a|2
− 1

|x− b|2

)
(2.3.59)

We conclude this section by commenting on how this approach could be applied

to a three dimensional space. The main obstacle to this case is the structure of

(2.3.44) which imposes boundary conditions relating pairs of the ψ. Furthermore
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the proof of this equation presented in [28] does not hold for the three dimensional

version of the Clifford algebra because the chirality operator does not anti-commute

with the other matrices so the trace of a product of an odd number of gamma

matrices does not in general vanish. We present two alternatives to address this

issue. The first is to use the symmetry of the problem to choose a coordinate

system such that the two charges are placed on the z = 0 plane and to restrict

our attention to determine the field only on this plane. Then we need consider a

super-field, ω, which consists of only two components and the fields ψ essentially

become the σ-matrices σ1 and σ2:

〈
I i (k)

〉
=

q

Z

∫
DωDψdχ0

∫ 1

0

dτ1

(
ω̇i − Tψiik ·ψ

)
eik·ωe−

∫ 1
0 dτ

ω̇2

2T
+ψ̇·ψ+

χ0
T
ω̇·ψ

=
q

Z ′

∫
Dω

∫ 1

0

dτ1

(
ω̇i − Ti

2

(
ki − σik · σ

))
eik·ωe−

∫ 1
0 dτ

ω̇2

2T

(2.3.60)

where i ∈ {1, 2}. Carrying out the integral over the two-dimensional field ω and

following the same steps as the four dimensional case leads to

〈I (k)〉 =
iq

k2
σ k · σ

(
eik·a − eik·b

)
. (2.3.61)

It is more satisfactory to instead modify the four dimensional theory in such a

way that statements can be made for the three dimensional case. This can be done

in two equivalent ways. The three dimensional version of the vertex operator is

Vk = (ω̇ − eψik ·ψ) eik·ω. (2.3.62)

We could use this as an insertion in the four dimensional theory by defining in

some inertial frame Iµ = (0, I) where the 3-vector I is constructed out of the three

dimensional vertex operator above. Then (2.3.44) continues to hold except that the

part of the expectation value which does not cancel with Z contains only a three
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dimensional source so the right hand side of that equation becomes

T
(
e
− 1√

2

∫
dτζ·γ

)
. (2.3.63)

This is equivalent to beginning with an entirely three dimensional theory but intro-

ducing a further pair of fields ω0, ψ0. Into the integral of some functional of the three

dimensional fields we introduce a supersymmetric invariant factor in the numerator

and denominator as follows:

1

Z3

∫
DωDψdχ0Ω (ω,ψ) e−

∫ 1
0 dτ

ω̇
2T

+ 1
2
ψ̇·ψ−χ0

2T
ω̇·ψ
∫

Dω0Dψ0e
−
∫ 1
0 dτ

ω̇0
2T

+ 1
2
ψ̇0·ψ0−χ0

2T
ω̇0·ψ0∫

Dω0Dψ0e
−
∫ 1
0 dτ

ω̇0
2T

+ 1
2
ψ̇0·ψ0−χ0

2T
ω̇0·ψ0

.

(2.3.64)

We then combine the denominator of the fraction with the three dimensional nor-

malisation Z3 to form

∫
D ωDψdχ̃0 e

−
∫ 1
0 dτ

ω̇
2T

+ 1
2
ψ̇·ψ− χ̃0

2T
ω̇·ψ−χ0

2T
ω̇0·ψ0 (2.3.65)

where the integration is now over four bosonic and four fermionic fields. We apply

the boundary conditions for open paths to both the numerator and denominator of

(2.3.64). The integration in (2.3.65) produces an expression dependent on χ0 which

feeds back into (2.3.64). Carrying out the integral over χ0 and the four integrations

with respect to ψ produces two terms which conspire to yield

1

Z ′

∫
Dω Ω (ω,γ) e−

∫ 1
0 dτ

ω̇2

2T (2.3.66)

where the normalisation Z ′ is precisely the correct factor to ensure that 〈1〉 = 1.

This is what we would calculate if we were to take the expectation of Iµ = (0, I) as

defined above in a theory with four pairs of fields. It is easy to modify (2.3.58) to

respect this change:

〈I (k)〉 =
iq

k2
γ k · γ

(
eik·a − eik·b

)
(2.3.67)

which is to be integrated with respect to the three-vector k. We may choose the
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representation

γi =

 0 −iσi

iσi 0

 , (2.3.68)

to show that this approach involves the Pauli matrices in a similar way to (2.3.61),

but now we need four-index spinors. With this representation γ k·γ is block diagonal

with the two blocks taking the same form as (2.3.61), differing from one another by

a sign.

2.4 Analysis at finite T

The classical fields were found in the limit that the dimensionful parameter T was

taken to be large compared to momenta. An interesting question is to ask about

the form of the statistical average for finite T . In this section we give the subleading

correction to the fields at large T and also consider the opposing limit T → 0. We

shall do so for the lowest order interaction which generates the classical fields.

2.4.1 Corrections in the bosonic case

We first analyse the bosonic particle with mixed boundary conditions whose high T

limit produced the classical electric field of a point particle (2.2.22). That equation

was exact in T and its position space form is found by carrying out the inverse

Fourier transform. We shall specialise here to the three physical spatial dimensions.

Aligning the z-axis parallel to the spatial separation x− a the angular integrals of

(2.2.22) can be carried out to produce

〈I (x)〉T = −q∇
∫ ∞

0

dk

(2π)2 2
sin (k |x− a|)
k |x− a|

(
1− e−

1
2
k2T
)

= −q∇ 1

4π |x− a|

1− Erf

√ |x− a|2

2T

 . (2.4.69)
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At large T this can be expanded in powers of 1
T

and we find

〈I (x)〉T = −∇ q

4π

(
1

|x− a|
− 2

√
1

2πT
+

1

3

√
1

2πT

|x− a|2

T
+O

(
T−

5
2

))
(2.4.70)

valid for |x− a|2 /T << 1. The leading order correction arises from the third term

in brackets:

〈I (x)〉T =
q

4π

x− a

|x− a|3
− q

6π

√
1

2π

x− a

T
3
2

+O
(
T−

5
2

)
(2.4.71)

giving the finite T deviation from the inverse square law.

The other limit of interest is at small T so we consider an expansion of (2.4.69)

about T = 0. The change in functional form is more dramatic because we find

〈I (x)〉T = −q
2
∇ 1√

2π

( √
T

|x− a|2
− T

3
2

|x− a|4
+O

(
T

5
2

))
(2.4.72)

which carries a different power of the spatial separation. Carrying out the differen-

tiation we acquire

〈I (x)〉T =
q

4π

√
2π

(
2
√
T (x− a)

|x− a|4
− 4T

3
2 (x− a)

|x− a|6
+O

(
T

5
2

))
(2.4.73)

in the limit that |x− a|2 /T >> 1.

The corrections to the dipole field are less trivial to determine because of the

time dependence in ωc. For large T the integrand is still dominated by contributions

at either end of the curve. We first expand about τ = 0:

eik·ωc(τ1) = eik·a
(

1 + ik · (b− a) τ1 −
k2

2
(k · (b− a))2 τ 2

1 + . . .

)
. (2.4.74)

When integrated against exp
(
−1

2
k2TG (τ1, τ1)

)
each extra power of τ1 results in a

further power of 1
k2T

. The first term in the square brackets of (2.2.14) is already

subleading in 1
T

so its contribution to the leading order correction comes form the
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first term in (2.4.74). Integrating this from the boundary to τ1 = 1
2

gives

−2q (b− a)

k2T
eik·a +O

(
T−2

)
(2.4.75)

plus corrections exponentially suppressed at large k2T . At first order the second

term of (2.2.14) provided the classical dipole field and its leading order correction

arises from the O (τ1) term in (2.4.74). Straightforward integration of this evaluates

to
2qk k · (b− a)

k4T
eik·a +O

(
T−2

)
(2.4.76)

up to further terms which are again exponentially suppressed. It is instructive to

combine these two terms as follows: the ith component is given by

−2q

T

[
δij

k2
− kikj

k4

]
(b− a)j eik·a (2.4.77)

which highlights the transverse nature of the correction. The index structure of

(2.4.76) means the integral with respect to k has the form

∫
d3k

(2π)3

kikj

k4
eik·(a−x) = Aδij +B

(a− x)i (a− x)j

|a− x|2
(2.4.78)

for some constants A and B of dimension [length]−1. They can be determined by con-

tracting each side of the above equation first with δij and also with (a− x)i (a− x)j.

The first of these gives

3A+B =

∫
d3k

(2π)3

eik·(a−x)

k2
=

−1

4π |x− a|
(2.4.79)

and the second yields

|a− x|2 (A+B) =

∫
d3k

(2π)3

(k · (a− x))2

k4
eik·(a−x). (2.4.80)

Choosing the z-axis to align with x− a again allows the angular integrals to be

done and we find that the remaining integral with respect to the magnitude of k is
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proportional to

1

(2π)2

∫ ∞
0

dk

[
sin (k |x− a|)
k |x− a|

+
2 cos (k |x− a|)

(k |x− a|)2 − 2 sin (k |x− a|)
(k |x− a|)3

]
(2.4.81)

Integrating the second term in square brackets by parts once and the final term by

parts twice serves to cancel the first term. It is then easy to check that the integral

evaluates to zero so A+B = 0 and (2.4.78) evaluates to

−1

8π |x− a|

[
δij − (a− x)i (a− x)j

|a− x|2

]
. (2.4.82)

So (2.4.76) evaluates to

q

4πT |x− a|

[
(b− a) + (x− a)

(x− a) · (b− a)

|x− a|2

]
+O

(
T−2

)
, (2.4.83)

to which it remains to add the contribution with the analogous calculation for the

other end of the curve fixed to the point b. The final correction at order 1
T

is

determined to be

q

4πT |x− a|

[
(b− a) + (x− a)

(x− a) · (b− a)

|x− a|2

]
− q

4πT |x− b|

[
(b− a) + (x− b)

(x− b) · (b− a)

|x− b|2

]
(2.4.84)

and is easy to check that this is divergence free. This is the variation from the

classical dipole field for large values of T which is present in this model. It is

interesting to note that with the relaxation of the limit to large but finite T comes

dependence on the direction (b− a) which is independent of the spatial point in

question. In Fig 2.1 we provide an example of the deviation from the well-known

dipole field for finite T by plotting the streamlines of the electric field.

We finally turn to the low T limit of the dipole field for which it is more convenient

to carry out the integral with respect to k of (2.2.14), before looking at an expansion

in powers of T . Here we shall see more striking dependence on the direction of

separation between the two charges. The result of carrying out the inverse Fourier
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Figure 2.1: The field lines for large but finite T highlighting the small deviation from the classical
dipole field. In this plot we set T = 10 |b− a|2.

transform is

〈I (x)〉T =
−q

(2π)
3
2

∫ 1

0

dτ1(
TG̃ (τ1, τ1)

) 3
2

[
˙̃G (τ1, τ1)

2G̃ (τ1, τ1)
(x− ωc)− ω̇c

]
exp

(
− (x− ωc)2

2TG̃ (τ1, τ1)

)
(2.4.85)

Examining the T -dependence of this expression we see that the limit T → 0 provides

a representation of the δ function so that the field is supported only on the classical

straight line path joining a to b:

δ3

(∫ 1

0

dτ1 (x− ωc (τ1))

)
= δ3

(∫ 1

0

dτ1 (x− (a + (b− a) τ1))

)
. (2.4.86)

To determine the form of the field at finite T we shall employ a Laplace approxima-

tion. For small T the contribution to the integrand of (2.4.85) is concentrated about

the positions of the maxima of the exponent exp
(

(x−ω(τ1))2

2TG̃(τ1,τ1)

)
. The precise version

of Laplace’s method we shall invoke is that for small T and arbitrary well-behaved

functions f (τ) and g (τ)

∫ 1

0

dτf (τ) e−
1
T
g(τ) =

∑
τ0

√
2πT

g̈ (τ0)
f (τ0) e−

1
T
g(τ0) (1 +O (T )) (2.4.87)

where the τ0 ∈ [0, 1] are determined by the condition that g (τ0) be a maximum. In
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this case a straightforward calculation shows that the exponent of(2.4.85) attains a

single maximum within the integration range at6

τ0 =
|x− a|

|x− a|+ |x− b|
. (2.4.88)

If the spatial point x lies on the line joining a to b then the exponent vanishes at

this value of τ1, in agreement with the T → 0 limit which provides δ-function support

on this line. Furthermore the first term in square brackets of (2.4.85) vanishes

because x− ωc (τ0) = 0. In this case the field is approximated at lowest order in T

by

q

2πTG̃ (τ0, τ0)

(b− a)

|b− a|

=
q

2πT

|b− a|
|x− a| |x− b|

(b− a) (2.4.89)

which has its minimum half way between the charges, where its magnitude is

2q

πT
(2.4.90)

Away from this line the exponent in (2.4.87) enforces an exponential decay in

the magnitude of the field. Indeed we find

(x− ωc (τ0))2

2G̃ (τ0, τ0)
=

1

2

[
|x− a| |x− b| (|x− a|+ |x− b|)2

−2 (x− a) · (x− b)
|x− a|+ |x− b|

|x− b|
+ |x− a| |x− b|

]
(2.4.91)

and the direction of the field depends on the spatial point through the first term in

(2.4.85). It is possible to use (2.4.87) to determine the contribution at an arbitrary

spatial point but the result is less illuminating than a visual representation of the

field lines and the field magnitude. It is most useful to plot the streamlines, tangent

6This expression is consistent with the behaviour of the system under exchange of a and b
because this is equivalent to sending τ → 1− τ .
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(a) The magnitude of the electric field (b) The stream lines of the electric field

Figure 2.2: Field magnitude and field streamlines in the low T limit – in this plot T = 1
60 |b− a|2.

(a) The magnitude of the electric field (b) The stream lines of the electric field

Figure 2.3: Field magnitude and field streamlines in the low T limit – in this plot T = 1
1000 |b− a|2.

The field decays exponentially according to (2.5.140) which gives rise to the white-space in which
the field is negligibly small.

to the field at each spatial point. Fig. 2.2 and Fig 2.3 show the field strength

and direction on the z = 0 plane of a pair of oppositely charged particles placed

at positions a = (3, 0, 0) and b = (−3, 0, 0) for two values of the parameter T .

We have imposed a sharp cut-off about the positions of the charges to avoid the

divergence encountered there. The form of these field configurations suggests that

the low T limit of this theory gives some sort of confining field, albeit not one with a

potential linear in the separation of the charges. In this way T interpolates between

the classical field associated to a pair of charges and a regime in which field lines
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Figure 2.4: Confining field lines in the low T limit – here T = 1
500 |b− a|2.

are concentrated about the line joining the charges. The three dimensional plot in

Fig. 2.4 highlights how the low T lines of flux are compressed into a thin tube. This

completes our discussion of the correction to the bosonic theory at finite T .

2.4.2 Corrections in the fermionic case

In this case we shall consider four dimensional space-time and will briefly state the

result of analysing the order 1
T

corrections to (2.3.58). The general approach is

identical to that of the bosonic theory. We have already determined the momentum

space correction to the first and last terms in (2.3.55) in the previous section. For

the contribution corresponding to the end of the curve at aµ the µth component is

given by
2q

T

[
δµν

k2
− kµkν

k4

]
(b− a)ν eik·a. (2.4.92)

We also find a subleading contribution from the middle term in (2.3.55) which takes

the form
2q

T
[δµα − γµγα]

kαkν

k4
(b− a)ν eik·a (2.4.93)

so now we must determine the four dimensional integral

∫
d4k

(2π)4

kµkν

k4
eik·a−x. (2.4.94)
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Symmetry dictates it must be equal to Aδµν + B (a− x)µ (a− x)ν |a− x|−2 where

the constants A and B have dimension [length]−2. Proceeding as before we contract

with δµν and (a− x)µ (a− x)ν to produce two equations. The first gives

4A+B =

∫
d4k

(2π)4

eik·(a−x)

k2
=

−1

4π2 |x− a|2
(2.4.95)

and the second leads to

|a− x|2 (A+B) =

∫
d4k

(2π)4

(k · (a− x))2

k4
eik·(a−x). (2.4.96)

This integral can be carried out by first doing the integral with respect to k0, where

double poles are encountered at k0 = ±i |k|. The remaining integral over the three

dimensional vector k can be done by choosing the z-axis to align with x− a as

above. Then we are left to determine

π

2

∫ ∞
0

dk

(2π)3

∫ 1

−1

d (cos θ) ke−k|x0|+ik|x| cos θ

[
|x0|2 (k |x0| − 1)− 2ik |x| |x0|2 cos θ

− |x|2 (k |x0|+ 1) cos2 θ

]
(2.4.97)

Integrating over θ leaves only

π

2

∫ ∞
0

dk

(2π)3 e
−k|x0|

[
|x0|2 (k |x0| − 1)

sin k |x|
k |x|

+ 2 |x0|2
(

sin k |x|
k |x|

− cos k |x|
)

− |x|2 (k |x0|+ 1)

(
sin k |x|
k |x|

+ 2
cos k |x|
k2 |x|2

− 2
sin k |x|
k3 |x|3

)]
.

(2.4.98)

Carrying out the k-integral several times by parts yields |x− a|2 (A+B) = 1
8π2 so

(2.4.94) evaluates to

−1

8π2 |x− a|2

[
δµν − 2

(a− x)µ (a− x) ν

|x− a|2

]
. (2.4.99)
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So in position space (2.4.92) becomes

−q
4π2T |x− a|2

[
(b− a)µ + 2 (x− a)µ

(x− a) · (b− a)

|x− a|2

]
, (2.4.100)

for which it can be verified that the divergence vanishes, and (2.4.93) becomes

−q
4π2T |x− a|2

(δµν − γµγν)
[
(b− a)ν − 2 (x− a)ν

(x− a) · (x− a)

|x− a|2

]
(2.4.101)

which is also divergence free. The first order correction is found by subtracting these

and including the contribution from the other end of the curve. We find at order 1
T

the expectation value of the insertion evaluates to

〈Iµ (x)〉T =
q

4π2T |x− a|2
γµ γ ·

[
(b− a)− 2 (x− a)

(x− a) · (x− a)

|x− a|2

]
− q

4π2T |x− b|2
γµ γ ·

[
(b− a)− 2 (x− b)ν (x− b) · (x− b)

|x− b|2

]
(2.4.102)

The form of this correction has a similar functional form to that of the bosonic

particle discussed above.

We may also ask about the low T expansion to determine the behaviour of the

system in this regime. It is again useful to carry out the integral over k first to

arrive at

〈Iµ (x)〉T =
−q

(2π)2

∫ 1

0

dτ1(
TG̃ (τ1, τ1)

)2

[
˙̃G (τ1, τ1)

2G̃ (τ1, τ1)
(x− ωc)µ − ω̇µc

− (x− ωc)ν

2G̃ (τ1, τ1)
(δµν − γµγν)

]
exp

(
− (x− ωc)2

2TG̃ (τ1, τ1)

)
. (2.4.103)

In the limit that T vanishes we have a representation of the four dimensional

δ−function supported on the straight line joining the charges. Applying Laplace’s

approximation allows us to determine the leading order behaviour which we illus-

trate for a point x on the line from a to b. In this case we clearly find the maximum

at the point where ωc (τ0) = x (τ0 remains unchanged from (2.4.88)) so the first and
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last terms vanish. Explicit application of (2.4.87) results in

q(
2πTG̃ (τ0, τ0)

) 3
2

b− a
|b− a|

=
q

(2πT )
3
2

|b− a|2

|x− a|
3
2 |x− b|

3
2

(b− a) (2.4.104)

which achieves a maximum at the midpoint of the line of magnitude

q

(πT )
3
2

(2.4.105)

This section contained some analytic results for bosonic and fermionic point

particles beyond the leading order behaviour. It is especially interesting to note

the small T limit of the system which demonstrates a localisation of the field about

the classical path between the charges. In the following section we return to the

definition of the interaction between particles and use it to construct a full quantum

theory.

2.5 Contact interactions between particles

In this section we extend our work to describe a set of particles which interact when

their worldlines intersect. Accordingly we work in a D = 4 dimensional space-

time. This section carries out the analogous analysis to that in [28] where instead

a collection of strings interacting upon contact was considered – we turn to this in

the next chapter. In this section we limit our discussion to bosonic particles. To

describe the dynamics of a collection of interacting particles we augment the free
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action, S0, of each point particle with a non-local contact interaction as follows7:

Stot =
∑
i

S0 [ei, ωi] +
g

2

∑
ij

∫
ωi

∫
ωj

dωi (τ1) · dωj (τ2) δ4 (ωi (τ1)− ωj (τ2)) (2.5.107)

The form of this action may appear unusual but it is straightforward to verify that

it satisfies the consistency criteria described by Kalb and Ramond for interactions

of this type [45, 46]. We must specify fixed boundary conditions for each particle,

which we denote by ωi (0) = aµi and ωi (1) = bµi . We shall consider the partition

function of the theory described by Stot and determine its physical content as well as

investigating whether there are divergences which need regularising. In this theory

we do not anticipate divergences corresponding to the coincidence of operators due

to the well behaved nature of Green functions on one dimensional domains but we

do stand to encounter unwanted divergences in taking the T → ∞ limit. We will

also find that the definition of the contact interaction will require slight refinement

corresponding to the rather trivial vanishing of the argument of the δ-function when

τ = τ ′ and the worldlines ωi and ωj are the same.

Before proceeding we comment briefly on the relationship to the worldline formu-

lation of quantum field theory as a further justification for considering this action. In

the introduction we restricted our consideration to theories without self-interaction

coupled only to some gauge field. However, if we were to drop the gauge field and

rather consider a scalar field, φ, with an interaction potential U (φ) then the world-

line theory would be modified by an additional term U ′′ (φ (ω (τ))) in the action. A

calculation of the full effective action must now proceed perturbatively (for example,

by expanding φ about the centre of mass of the worldline which is the zero mode of

the kinetic operator). However, if for the sake of illustration we wish to calculate the

2N -point one-loop scattering amplitude we may functionally differentiate N -times

7In analogy to the introduction of [28] the form of the action can be motivated by substituting
E′, the insertion used in Section 2.2, into the standard action of Maxwell electromagnetism for the
energy of a static electric field:

SE =
1

4

∫
d3xE ·E =

e2

4

∫
ω

dω (τ1) · dω (τ2) δ3 (ω (τ1)− ω (τ2)) (2.5.106)
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with respect to φ and then expand the field as a sum of N plane waves. Now, the

physical picture of the interaction term in (2.5.107) is of a pair of worldlines meeting

at a point, where they interact before independently separating. This reminds us of

the Feynmann diagram in φ4 theory so let us consider U (φ) = λ
4!
φ4, which leads to

an additional worldline interaction λ
2
φ (ω (τ))2. The one-loop 2N -point amplitude

〈φ (x1) . . . φ (x2N)〉 can be written in position space as a sum over permutations of

the form

λN
∫ ∞

0

dT TN−1e−m
2T

∫
Dω

N∏
i=1

∫ 1

0

dτi δ
4 (ω (τi)− x2i) δ

4 (ω (τi)− x2i−1) e−
∫ 1
0 dτ

ω̇2

2T .

(2.5.108)

The interpretation of this is clear in that it forces the joining of pairs of points x2i

and x2i−1 to a point on the virtual worldline x (τi), reproducing a quartic interaction

vertex. The interaction that we propose is slightly different since we couple pairs

of worldlines to one another directly without the need for a virtual loop to mediate

the process but the contact interaction takes the same form. Indeed for a theory

involving only one particle the picture of the self-intersection interaction coincides

directly with this one-loop example.

Our integrand, however, does not consist only of the minimal scalar measures∫
dτi but carries with it directional information through the factors of ωi. So we

imagine a four point contact interaction between pairs of worldlines which depends

also on the tangent vectors to the worldlines at the point of contact. We get an idea

of what this would mean for the corresponding field theory by dimensional analysis

of the coupling strength. In D-dimensions, [g] = lengthD−2, whilst a scalar field

has [φ] = length1−D
2 . If we introduce a coupling constant λ then the field-theory

interaction Lint = λ
∫
∂µφ ∂

µφφ2 dDx is dimensionless if the dimensions of λ are the

same as g. This suggests that the worldline theory proposed here is related to a field

theory with quartic coupling containing two derivatives. With this heuristic picture

of how the contact interaction can be interpreted we now return to determine the

partition function of the theory.

We shall carry out the calculation as a perturbative expansion in g. Expressing
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the δ-function in its Fourier representation introduces vertex operators

ω̇ (τi) · ω̇ (τj) δ
4 (ω (τi)− ω (τj)) =

∫
d4k

(2π)4Vk (τi) · V−k (τj) (2.5.109)

At first order in g the correction to the partition function of the non-interacting

theory takes the form

g

2

∑
jk

∫ (∏
i

D (ωi, ei)

Z
δ

(∫
eidτi − T

)
e−S0[ei,ωi]

)∫ ∫
dωj · dωk δ4 (ωj − ωk)

(2.5.110)

There are two contributions to this sum. When the worldlines are distinct

(2.5.110) can be factorised to make use of the result in section 2.2:

g

2

∑
j 6=k

∫ (∏
i 6=j,k

D (ωi, ei)

Z
δ

(∫
eidτi − T

)
e−S0[ei,ωi]

)
×∫

D (ωj, ej)

Z
δ

(∫
ejdτj − T

)
e−S0[ej ,ωj ]

∫
dωµj

〈∫
dωµk δ

4 (ωj − ωk)
〉
T

=

(2.5.111)

g

8π2

∑
j 6=k

∫
D (ωj, ej)

Z
δ

(∫
ejdτj−T

)
e−S0[ej ,ωj ]

∫
dωµj

∂

∂ωµj

(
1

|ωj − ak|2
− 1

|ωj−bk|2

)
(2.5.112)

where we have taken the large T limit and discarded contributions of order 1
T

arising

from the expectation value in the first line. The integral over ωj at the far right of

the bottom line produces a boundary contribution and we recall that the boundary

conditions ensure this is a constant throughout the functional integral over ωj. So

that functional integral is rendered trivial and the result is

g

4π2

∑
j 6=k

[(
1

|aj − ak|2
− 1

|aj − bk|2

)
−

(
1

|bj − ak|2
− 1

|bj − bk|2

)]
(2.5.113)

We must address the case j = k separately as then the worldlines being integrated

over are the same. In the string theory case we shall see that two contributions

make up this interaction – a renormalisation of the string action and a contribution

corresponding to self-intersection of the string. For point particles, however, no such
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self-intersection ought to be present since the vanishing of

g

2

∫ ∫
dτ1dτ2 ω̇ (τ1) · ω̇ (τ2) δ4 (ω (τ1)− ω (τ2)) (2.5.114)

is only at τ1 = τ2. Naively this would provide g
2
δ (0) × Length (ω) suggestive of a

renormalisation of the non-interacting part of the action. A second major difference

between the theory of point particles we consider here and the string theory equiv-

alent is that the current case does not require us to worry about encountering a

conformal anomaly. In particular there are no short distance divergences associated

to the Green function which require regularisation. To make this more precise we

must consider

〈Iµν〉T =

∫
d4k

(2π)4

∫ ∫
dτ1dτ2

g

2

〈
dωµ

dτ1

eik·ω(τ1)e−ik·ω(τ2)dω
ν

dτ2

〉
T

(2.5.115)

where we have again used the Fourier representation of the four-dimensional δ-

function. The insertions are again easily generated via the introduction of sources

and the integral over ω provides the following generalisation of (2.2.10)

g

2

∫
d4k

(2π)4

∫ ∫
dτ1dτ2

δ

δjµ (τ1)

δ

δjν (τ2)

exp

(
−1

2

2∑
i,j=1

kikj G (τi, τj)− i
∫
dτ

2∑
i=1

ki · j (τ)
d

dτ
G (τi, τ)

+
1

2

∫ ∫
dτdτ ′ j (τ) · j (τ ′)

d

dτ

d

dτ ′
G (τ, τ ′)

)
exp

(
−
∫
dτ j (τ) · d

dτ
ωc (τ) +

2∑
i=1

iki · ωc (τi)

)∣∣∣∣∣
j=0

(2.5.116)

where k1 = k = −k2. It is trivial to carry out the functional differentiation and it

proves useful to define

Ψ (τ1, τ2) ≡ G (τ1, τ1) +G (τ2, τ2)− 2G (τ1, τ2) (2.5.117)
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in order to express the answer as

g

2

∫ 1

0

dτ1

∫ 1

0

dτ2 exp

(
−1

2
k2Ψ (τ1, τ2)

)[
ω̇µc ω̇

ν
c −

i

2
kµω̇νc d

2
tΨ (τ1, τ2)

+
i

2
kνω̇µd1

tΨ (τ1, τ2)− 1

2

(
ηµν − kµkν

k2

)
d1
td

2
tΨ (τ1, τ2)

]
eik·(ωc(τ1)−ωc(τ2))

(2.5.118)

which must then be integrated over k. In the above equation we have integrated by

parts to produce the transverse projector for the final term in square brackets. In

the worldline formalism it is more conventional to follow the procedure advocated

by Bern and Kosower to remove all second derivatives of Green functions. The

interpretation of this convention has its roots in the pinching of Feynman diagrams

present in the underlying field theory, but as we do not have such a model behind

our work it is unnecessary for us to adhere to it. Now

Ψ (τ1, τ2) = T
(
|τ1 − τ2| − (τ1 − τ2)2) (2.5.119)

actually coincides with twice the Green function with periodic boundary conditions.

As such it satisfies −1
2T

d2

dτ2
1
Ψ (τ1, τ2) = δ (τ1 − τ2) − 1 and is a function of τ1 − τ2

only. Noting also that ωc (τ1) − ωc (τ2) = (b− a) (τ1 − τ2) we learn that the entire

expression is in fact a function of the separation τ1−τ2. We use this to fix the zero by

setting τ2 = 0 and multiplying by
∫ 1

0
dτ2 = 1. Furthermore Ψ (τ1, 0) = Tτ1 (1− τ1)

is just the coincident Green function we met in section 2.2 so we must determine

g

∫ 1

0

dτ1 exp

(
−1

2
k2G (τ1, τ1)

)[
ω̇µc ω̇

ν
c +

i

2
kµω̇νc d

1
tG (τ1, τ1) +

i

2
kνω̇µd1

tG (τ1, τ1)

+
1

2

(
ηµν − kµkν

k2

)
d1
td

1
tΨ (τ1, 0)

]
eik·(b−a)τ1

(2.5.120)

Anticipating that we will eventually take the limit T → ∞ we need only consider

an expansion in powers of 1
T

. The leading order contributions again come only from

the ends of the interval where the coincident Green function vanishes so it suffices

to expand about τ1 = 0 and τ1 = 1. We shall consider each term in (2.5.120)
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separately; at lowest order in 1
T

the first takes the form

gω̇µc ω̇
ν
c

∫
dτ1 e

− 1
2
k2G(τ1,τ1)eik·(b−a)τ1

=
2g

k2

[
eik·(b−a) − 1

] ω̇µc ω̇νc
T

+O
(

1

k4T 2

)
(2.5.121)

Upon integrating over k the latter term in in square brackets vanishes whilst the

former provides (2π |b− a|)−2. The contribution we seek is the trace of this – we

note that since the derivative of the classical solution to the equations of motion is

a constant we may express this as

g

π2 |b− a|2
∫ 1

0

dτ
ω̇2
c

2T
+O

(
1

k4T 2

)
(2.5.122)

We interpret this as providing a renormalisation of the free action and note that it

is suppressed in the large T limit.

The second and third term in (2.5.120) involve a derivative of the Green function

and as such provide contributions that are independent of T . Taking the trace we

require

gik · ω̇c
∫
dτ1 Ġ (τ1τ1) e−

1
2
k2G(τ1,τ1)eik·(b−a)τ1

= g
ik · ω̇c

2k2

[
eik·(b−a) − 1

]
+O

(
1

k2T

)
(2.5.123)

Carrying out the integral over k provides

−g ω̇c · (b− a)

4π2 |b− a|4
+O

(
1

k2T

)
(2.5.124)

Recognising that ω̇ = b− a we may also cast this into the form

− g

4π2 |b− a|2
∫ 1

0

ω̇2
c

|b− a|2
+O

(
1

k2T

)
(2.5.125)

providing a finite renormalisation of the free action.

Finally we take the last term of (2.5.120) and consider its trace. We use the
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defining equation of the Green function to write its contribution as

−g
∫ 1

0

dτ1 T (δ (τ1)− 1) e−
1
2
k2G(τ1,τ1)eik·(b−a)τ1 (2.5.126)

Both terms are independent of the field ωc which suggests that we should interpret

them as renormalisations of the cosmological constant term in the action
∫ 1

0
dτ T .

The δ-function gives us

−g
∫ 1

0

dτ T (2.5.127)

exactly as required, albeit formally divergent when we take T to infinity8, whereas

the second evaluates to

−2g

k2

[
eik·(b−a) − 1

]
+O

(
1

k2T

)
(2.5.130)

which upon integrating over k becomes

− g

2π2

1

|b− a|2
+O

(
1

k2T

)
(2.5.131)

This surprisingly takes the same form as (2.5.113) and suggests that there is after

all a self-interaction present in the theory, sensitive only to the boundary of the

worldline.

To lend this more weight we could approach the calculation in a complementary

fashion. We note that Ψ (τ1, τ2) vanishes only at τ2 = τ1 so we could arrange our

calculation by instead expanding about this point. When τ1 is not close to the

boundary (measured with respect to 1
k2T

) integrating τ2 about τ1 corresponds to

8The integral over k also provides an infinite volume factor multiplying this result. We may
tidy this up by carrying out the k−integral before integrating over τ1. Doing so turns (2.5.126)
into

−g
∫
dτ1

(
π

2G (τ1, τ1)

)D
2

e
− (b−a)2τ2

1
2G(τ1,τ1) (δ (τ1)− 1) . (2.5.128)

We are concerned only with the contribution arising from the δ-function so we need the value of
the exponent as τ1 → 0+. An easy calculation shows that the exponent vanishes leaving only

−g
(π

2

)D
2

lim
τ1→0

(G (τ1, τ1))
−D2 (2.5.129)

which diverges.
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integrating over their relative separation and the leading order contribution arises

by setting the T -independent exponent exp (ik · (b− a) (τ1 − τ2)) equal to unity.

This gives the terms above which are absent of an exponent. When τ1 is close

to the boundary we must take care because τ2 is restricted to lie in [0, 1]. So for

example when τ1 ≈ 0 we must integrate τ2 a small distance from this boundary

along the line but must also consider the contribution when τ2 is integrated from the

opposite boundary along the line. Indeed for the latter case we consider, following

the notation of section 2.2,

g

2

∫ h

0

dτ1

∫ 1

1−h
dτ2 T (δ (τ1 − τ2)− 1) e−

1
2
k2Ψ(τ1,τ2)eik·(b−a)(τ1−τ2). (2.5.132)

The δ-function is not supported for this configuration of variables, besides it is the

second term with which we are concerned. At leading order in 1
T

we evaluate the

trailing exponent at the point τ1 = 0, τ2 = 1. A change of variables τ = 1− τ2 yields

Ψ (τ1, 1− τ) = T
(
(τ1 + τ)− (τ1 + τ)2) and the integral becomes

−g
2

∫ h

0

dτ1

∫ 2h

0

du e−
1
2
k2G(u,u)e−ik·(b−a) (2.5.133)

where we have set u = τ1 + τ . At leading order this provides

− g

k2
e−ik·(b−a) (2.5.134)

which is to be compared with (2.5.130). The sign of the exponent is not important

and the factor of two is found by including the configuration where the positions of

τ1 and τ2 in the above calculation are swapped. So the physical information arises

when the two points are close to opposite boundaries, whereas the renormalisations

appear from the region where the two points coincide. This is in fitting with the

naive analysis of the form of the contact interaction when the worldlines are the

same.

The self-interaction (2.5.131) also has the appropriate factor of two difference for

it to be subsumed into the sum (2.5.113) so that at first order in the expansion of
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the interaction we find

g

4π2

∑
j,k

′

[(
1

|aj − ak|2
− 1

|aj − bk|2

)
−

(
1

|bj − ak|2
− 1

|bj − bk|2

)]
. (2.5.135)

We write
∑′ to denote that when j = k we discard the first and last terms in the

summand where the separation vanishes. This concludes the analysis of the first

order effect of the contact interaction present in this theory. In the following section

we turn to consider higher order interactions and show that the result above is not

spoilt.

2.5.1 Expansion to arbitrary order

We may consider expanding the part of the action corresponding to the inter-particle

interaction to arbitrary order. When the interaction is between distinct worldsheets

we may repeat the analysis at first order to simplify the calculation to a form familiar

from section 2.2. Here we address the problem of having a fixed even number, N , of

points to be integrated over the same worldsheet which could potentially spoil the

result at order g
N
2 or higher. So we consider

〈
V µ
k1

(τ1)V ν
k2

(τ2) . . . V α
kN

(τN)
〉
T

(2.5.136)

where we understand that each point must be integrated from τi = 0 to 1.

Wick’s theorem produces a common factor to all of the contractions that could

be formed out of the above product of fields which takes the form

exp

(
−1

2

N∑
i,j=1

ki · kjG (τi, τj)

)
ei
∑
i ki·ω(τi) (2.5.137)

We are interested in taking the high T limit, whereby the leading contribution will

be from the regions of integration where the exponent vanishes. There are no short

distance divergences which require regularisation so we may consider the points to be

arbitrarily close to one another. This leads us to consider two cases. The exponent

can be made to vanish by ensuring that each individual Green function G (τi, τj)
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vanishes, which requires us to localise each of the points close to either end of the

domain. Alternatively we might consider bringing a collection of points coincident,

which is instructive in order to compare with the results of the previous subsection.

As no regularisation is required we keep the discussion of this case brief. It is useful

to split (2.5.137) as

exp

(
−1

2

N∑
i=1

k2
iG (τi, τi)−

∑
j 6=i

ki · kjG (τi, τj)

)
ei
∑
i ki·ω(τi) (2.5.138)

which makes it clear that for an arbitrary configuration of the points away from the

boundary this factor damps the integrand. Now suppose that some number, n, of

these points are brought to the same point τ1. Then these points contribute

exp

−1

2
G (τ1, τ1)

(
n∑
i=1

ki

)2

+ . . .

ei∑i ki·ω(τi) (2.5.139)

where the . . . represents terms which depend on the relative separation between each

point and τ1. Recall that G (τ1, τ1) = TG̃ (τ1, τ1) vanishes only at the boundary of

the domain. Consider how this exponent behaves under the integral with respect to

k1, say. In the large T limit a Laplace approximation implies its effect is to provide9

δ (
∑

i ki)(
2TG̃ (τ1, τ1)

)2 . (2.5.140)

Since in one dimension the coincident Green function is finite we see that all contri-

butions from such a configuration are suppressed by a factor of T−2. The size of the

integrals over the relative separation τi − τ1 can be examined by power counting in

1
T

. The largest contribution arises when all fields take part in a contraction and can

be arranged into a series of n
2

second order derivatives. A simple calculation shows

that this contribution is of order T
n
2 . But after integrating the other n − 1 points

about τ1 the resulting expression is of order T . In combination with (2.5.140) this

9This should be considered in light of the results at first order where we had k1 = k = −k2

where the exponent vanished throughout the domain when τ1 = τ2. We exclude such cases here
because we understand that they lead to a simple renormalisation of the action.
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contribution can be seen to be subleading in 1
T

.

Returning to the case that all of the points are on the boundary, each of the

Green functions in (2.5.137) vanishes. So we expect a contribution to the expecta-

tion value from the region of integration where each point is close to the boundary.

We have learnt in the previous subsection that the O (1) term arises when we con-

tract the fields inside each vertex operator amongst themselves. The exponents

exp (ik · ωc (τi)) can be approximated at leading order by replacing them with their

values at the appropriate boundary – we denote this by exp (ik · ωBi). So we consider

a term with r such contractions:

r∏
j=1

(∫ h

0

+

∫ h

1−h

)
dτj ik

µj
j Ġjje

− 1
2
k2Gjjeikj ·ωBj

N∏
i=r+1

(∫ h

0

+

∫ h

1−h

)
dτi ω̇cie

− 1
2
k2Giieiki·ωBi

=
r∏
j=1

ik
µj
j

k2
j

(
eikj ·a − eikj ·b

) N∏
i=r+1

[
ω̇ci
k2
i T

+O
(

1

(k2T )2

)]
(2.5.141)

The leading order contribution clearly requires r = N so that all fields are con-

tracted, whereby the above expression reduces to

N∏
j=1

ik
µj
j

k2
j

(
eikj ·a − eikj ·b

)
. (2.5.142)

We now impose pairwise ki+1 = −ki and contract µi and µi+1 to produce the expec-

tation value of the contact interaction at order g
N
2 :

−2
N
2 g

N
2

N
2∏
i=1

eik·(b−a)

k2
i

. (2.5.143)

As our analysis has been for an arbitrary number of points the result at this order

is not spoilt by considering a higher order term in the expansion of the contact

interaction. The above equation is simply the Fourier space version of the order g
N
2

contribution to the exponential of the sum of boundary interactions (2.5.135).



2.6. Discussion 64

2.6 Discussion

In this chapter we have considered contact interactions in the context of theories of

point particles. We have considered a novel way of generating the static electric field

for a pair of point particles by considering fluctuating worldlines whose endpoints

are fixed to the positions of the charges. The functional approach we used for

calculation allowed us to generalise this construction to include spin 1/2 particles

and we then used the formalism to construct a quantum theory describing a set

of point particles interacting upon contact. The result for fermionic particles is

interesting because it suggests an unusual electric force acting on Dirac spinors due

to the charged particles. Both results depend somewhat on the choice of boundary

conditions imposed on the worldline fields at either end of the paths and we also

found it necessary to introduce constraints on the worldline metric and its super-

partner.

The worldline formalism of quantum field theory highlights an intimate connec-

tion between field theory and the first quantised theories we have considered here.

Our approach differed in that rather than coupling the theory living on the world-

line to a background gauge field (as occurs when integrating out matter fields in

with the worldline approach) we coupled the worldlines to one another directly us-

ing the δ−function interaction. The functional methods that we used are however

not limited to the calculation we have undertaken and can be directly applied to

situations that arise using the latter approach. We shall see in the next chapter that

the worldline formalism can be used to form a direct link between field theory and

an interacting first quantised theory, though we shall need to make changes to the

point particle theories we have considered thus far.

Indeed this theory is clearly not complete, since our discussion is limited to

situations where the boundaries of the worldlines are static. We consider it as a

proof of concept and a motivation for how we might treat the time varying case.

For a charged particle described by a more general worldline the end-points of the

curves, ωi, must be allowed to vary tangentially to the path of the particle and

we must consider how to describe the dynamics of the curve. This was addressed

in [13] for the case of electromagnetism, where it was shown that the natural way
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to describe these one dimensional extended objects is string theory. In the next

chapter we shall extend the work to consider the worldlines of equal and oppositely

charged particles as the boundaries of a string which traces out a worldsheet. We

shall see that the contact interaction generalises to provide interactions between the

worldsheets corresponding to different charges and will relate the quantum theory

to spinor quantum electrodynamics.



Chapter 3

String theory, contact interactions

and quantum electrodynamics

In this chapter we move away from theories of interacting point particles and consider

the equivalent idea for fundamental strings. We are informed by the result of [13]

which demonstrated that the time varying electromagnetic field at a space-time point

x for equal and oppositely charged particles can be determined from a statistical

averaging over the fluctuations of lines of force stretched between the worldlines

of the charges and which pass through x. However when we come to consider

the construction of a theory of interacting strings we will find that the worldline

formalism provides a natural way to relate our calculations to the conventional

quantum field theory of matter coupled to the electromagnetic field. This chapter

follows [41] and [28].

3.1 Introduction

In the previous chapter we limited our discussion to static configurations of charged

particles or fixed boundary data. We decided to treat Faraday’s lines of flux as

physical quantities and showed that averaging over the spatial fluctuations of a flux

line produces the electric field. If we now consider the case that the charged particles

move along worldlines then a single flux line joining the charges traces out a two-

dimensional surface, Σ, whose boundary, B, is given by the particles’ worldlines.

66
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So we are moved to consider now the fluctuations of this worldsheet, for which the

natural framework is that of string theory.

This was pursued by Mansfield in [13]. The generalisation of (2.2.1) to this

dynamical case is an expression for the electromagnetic field strength in terms of an

integral over any surface bounded by the particle worldlines

Fµν(x) = −q
∫

Σ

δ4(x−X) dΣµν(X) . (3.1.1)

where dΣµν is an element of area on Σ, itself parameterised by coordinates Xµ(ξ).

The world-sheet co-ordinates (we previously called σa) are ξ1 and ξ2 and we denote

the parameter domain by D. On the boundary of the domain the worldsheet is fixed

to the worldline so Xµ|∂D = wµ. Finally the area element can be expressed in terms

of the worldsheet coordinates as

dΣµν = εab∂aXµ∂bXνd
2ξ (3.1.2)

By integrating against a test function it is easy to verify that F µν defined above

satisfies Gauss’ law

∂µ Fµν = Jν , (3.1.3)

where the current density due to the charges is

Jµ(x) = q

∫
B

δ4(x− w) dwµ. (3.1.4)

Nielsen and Olesen [47] have used such an expression for the field strength tensor to

form a field theory describing the dual string from a basis of non-linear electrodynam-

ics. It is also present in theories of electromagnetism with magnetic monopoles [48]

and can be used to derive an effective string theory describing the evolution of the

Dirac string linking two such poles [49,50]. Using this field strength in the standard

form of the action for electromagnetism gives the generalisation of the interaction

between point particles which appeared in the previous chapter:

SEM = −1

4

∫
d4xFµνF

µν =
q2

4ε20

∫
Σ

dΣµν(ξ)δ4 (X(ξ)−X(ξ′)) dΣµν(ξ
′) .
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The argument of the delta-function vanishes when ξ′a = ξa, and also at points where

the world-sheet intersects itself. This gives two contributions,

SEM =
q2

4ε20
δ2(0) Area(Σ)+

q2

4ε20

∫
Σ

dΣµν(ξ) δ4 (X(ξ)−X(ξ′)) dΣµν(ξ
′)
∣∣
ξ 6=ξ′ . (3.1.5)

The first is just an area term which we interpret as being proportional to the Nambu-

Goto action of string theory, albeit with a divergent coefficient, and consequently

specifying the dynamics of the curve C. The second is the self-intersection interac-

tion that we will study in detail below. As in the case of the point particle we find

that direct interactions have previously been discussed by Kalb and Ramond [45]

and the one we propose here satisfies the consistency constraints they derive. This

action has also been applied before classically to the problem of confinement [51,52]

but without the effects of self-intersection or quantisation that we shall consider

here.

In [13] the connection to string theory was taken further by showing that, al-

though (3.1.1) does not satisfy the other Maxwell equations, its functional average

over worldsheets with fixed boundary provides the classical field strength tensor

associated with the charged particles:

4π2

〈∫
Σ

δ4(x−X) dΣµν(X)

〉
Σ

= ∂µ

∫
B

dwν
||x− w||2

− ∂ν
∫
B

dwµ
||x− w||2

(3.1.6)

where the average over surfaces of any functional Ω [Σ] is given by the functional in-

tegration we discussed in the introduction (we shall use gab to denote the worldsheet

metric in this chapter since we will later use h as the intrinsic metric on particle

worldlines):

〈Ω〉Σ =
1

Z

∫
DgDgX Ω e−SP[g,X] . (3.1.7)

This was computed in Euclidean space where the integrals are better behaved, so

that ||x − y|| is the Euclidean distance between x and y. Minkowski space results

were obtained by Wick rotation and the retarded solutions to Maxwell’s equations

were picked out naturally by interpreting this as a finite temperature average in

the quantum theory. This work provided the mathematics behind the idea that
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Faraday’s flux tubes can be thought of as the physical degrees of freedom of elec-

tromagnetism with the caveat that their configurations must be averaged over in a

string theory setting. This is also rather similar to a proposal due to Dirac [53, 54]

in which he advanced the idea of operators which create both charged particles and

part of the electromagnetic field itself.

Actually for (3.1.6) to hold requires either that we normalise the expectation

values against the partition function of the non-interacting string theory or that we

consider the limit of tensionless strings (α′ →∞ in units of the size of the worldline

B). The normalisation or tensionless limit prove sufficient to remove any dependence

on the action associated to the classical solution to the string equations of motion.

Note that the right hand side of (3.1.6) is independent of the string tension and so

insensitive to variations in α′. In our work we shall not have the former avenue open

to us since to relate the theory to QED we will find it necessary to integrate over

the worldlines specifying the boundaries of the strings.

After the discussion of the functional quantisation of string theory in the in-

troduction the average in (3.1.6) may well appear unusual. Firstly we work in the

physical number of space-time dimensions D = 4. This means that the functional

integration over the string configurations and worldsheet metrics will produce a

Weyl anomaly. Furthermore the presence of the delta-function in (3.1.6) means that

the average is off-shell and involves non-physical states. It is now time to return to

Polyakov’s formulation of string theory to revise how mass-shell conditions appear

in this approach. To calculate the scattering of a set of strings we insert a product

of re-parametrisation invariant vertices such as that of the tachyon

κ

∫
d2ξ
√
geik·X(ξ)

into the functional average:

∫
DgDgX e−SP[g,X] . . . κ

∫
d2ξ
√
geik·X(ξ) . . . ≡ 〈. . . κ

∫
d2ξ
√
geik·X(ξ) . . .〉X (3.1.8)

where the dots stand for the other vertices (whose effect when ξ is close to their

positions we shall ignore). The X-dependence of the exponent remains quadratic,
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being simply

− 1

4πα′

∫
d2ξ
√
ggab∂aX

µ∂bXµ +
∑
i

iki ·X (ξi) (3.1.9)

We can shiftX by completing the square to reduce the integral over these variables to

the one we have seen before (except that the zero mode of ∆ now imposes momentum

conservation), the result of which is multiplied by a factor involving the Green

function for the two-dimensional Laplacian at coincident points, G(ξ, ξ),

κ

∫
d2ξ
√
ge−πα

′k2G(ξ, ξ), (3.1.10)

amongst terms involving the other vertices which are not of immediate importance

for this discussion. We work in complex coordinates in conformally flat gauge,

ds2 = 2eφdzdz̄. Then for an open string with the conventional Neumann boundary

conditions we have

G (z, z′) = − 1

4π

(
ln |z − z′|2 + ln |z − z̄′|2

)
; −2e−φ∂∂̄G (z, z′) = e−φδ2 (z − z′) .

(3.1.11)

The point is that G(z, z) needs to be regulated and this introduces a dependence on

the scale of the metric, invalidating our result that the dependence on φ is contained

only in the Liouville theory. We do not provide the details of this procedure but

state the result. With heat-kernel regularisation the leading behaviour at points

away from the boundary separated by physical distance ε is G(z, z) ∼ (φ(z) −

2 log(ε))/(4π), so (3.1.10) becomes

κεα
′k2/2

∫
d2z eφ e−α

′k2φ/4.

We can avoid the dependence on φ, and so integrate over this degree of freedom, if

we impose the tachyon mass-shell condition k2 = 4/α′ and we can make the result

finite by renormalising κ (this is similar to wave function renormalisation in field

theory). So we learn that the mass-shell conditions can be seen as arising out of

the requirement that no undesired dependence on the conformal scale appears when

we insert vertex operators inside the functional integral. The same is true for the
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transversality conditions which can be seen, for example, by studying photon or

graviton states.

Surprisingly the expectation value of the delta-function also decouples from φ,

but in this case it evades a mass-shell condition. If we Fourier decompose the delta-

function then

δ4(x−X) dΣµν(X) =

∫
d4k

(2π)4
eik·x

1

2
V µν
k ; V µν

k (ξ) = εab∂aX
µ∂bX

ν e−ik·X(ξ).

(3.1.12)

We recognise the V µν
k as string vertex operators but there are important differences

to the conventional string insertions. Firstly the momentum integral means that the

insertions are off-shell and secondly the form of the contact interaction means that we

integrate the positions of these insertions throughout the entire string worldsheet so

they are more akin to closed string vertex operators. Whilst naively we would expect

the lack of mass-shell conditions and our choice of four target space dimensions

would lead to anomalous dependence on the conformal scale we repeat Mansfield’s

demonstration that this is not the case. To establish (3.1.6) we impose Dirichlet

boundary conditions on the string because the endpoints are fixed to the worldlines

of the particles and consider the functional integral

eik·x 〈V µν
k (ξ)〉X =

∫
DgX e−S[g,X] εab∂aX

µ∂bX
ν eik·(x−X(ξ))

∝ εab (kµ∂bX
ν
c 2πα′∂aG(ξ, ξ) + ∂aX

µ
c ∂bX

ν
c ) eik·(x−Xc(ξ))e−πα

′k2G(ξ,ξ),

(3.1.13)

where Xc is the value of X that evolves from the boundary value according to the

classical equations of motion. We shall give an explicit expression for this in the

next section. Note that we do not have the freedom to renormalise by introducing

a k-dependent factor like κ without ruining the Fourier decomposition of the delta

function so we may not make use of multiplicative renormalisation to make sense of

divergences. On the boundary of the worldsheet G(ξ, ξ) = 0 because of the boundary

conditions, so precisely on the boundary

e−k
2πα′G(ξ, ξ) = 1. (3.1.14)
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For points away from the boundary

e−πα
′k2G(ξ, ξ) ∼ εα

′k2

e−α
′k2φ/4 (3.1.15)

is suppressed as ε → 0+, since in Euclidean signature k2 > 0. This means that

(3.1.13) is negligible except when ξ is in a small (in terms of the regulator) strip

close to the boundary, and the value precisely on the boundary is independent of φ.

When (3.1.13) is integrated over the parameter domain D we only have to consider

contributions within this strip and so we can separate the various factors into those

like G(ξ, ξ) and its derivative that vary rapidly as ξ moves from the boundary into

the interior of the world-sheet, and terms like Xc and its derivatives that vary slowly

and can be approximated by their boundary values. Arranging the parameters ξa

so that ξ2 is constant on the boundary and ξ1 varies along it the integral over ξ of

the first term of (3.1.13) contains

∫
d2ξ k[µ∂1X

ν]
c e

ik·(x−Xc(ξ))2πα′∂2G(ξ, ξ) e−πα
′k2G(ξ,ξ)

=

∫
dξ1

(
k[µ∂1X

ν]
c e

ik·(x−Xc(ξ))
∫
dξ2 2πα′∂2G(ξ, ξ) e−πα

′k2G(ξ,ξ)

)
=

∫
B

dw[µkν]eik·(x−w)/k2 (3.1.16)

which is the Fourier transform of (3.1.6). Note that this is independent of the cut-off

scale, ε, the length-scale, α′, and, crucially, the scale of the metric, φ, even though

all of these entered the intermediate expressions.

The remaining terms in (3.1.13) were shown to vanish as the cut-off is removed.

They also vanish in the tensionless limit for finite cut-off as we will see later. So

the only dependence on φ is contained within the Liouville action we met in the

introduction. The solution to working outside of the critical dimension of string

theory was to notice that the physical content of the theory, i.e. the expression

for the electromagnetic field strength tensor, decouples from the Liouville theory.

If all functional averages are then normalised against its partition function then

its contribution is always cancelled. Later on in this chapter we will also need

to consider functional integrals with mixed boundary conditions, i.e. where the
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boundary is divided into sections where Dirichlet conditions are imposed and sections

where Neumann conditions are imposed. The result generalises so that the right

hand side of (3.1.16) receives contributions from just the Dirichlet sections of the

boundary (see Appendix B).

3.1.1 Interacting strings

As we have seen, the expectation of δ-function decouples from the conformal scale

of the worldsheet metric. From the point of view of the string theory we used the

δ-function as a local probe of the worldsheet [55]. In the previous chapter our next

step was to use the δ-function to form a theory in which point particles interact upon

contact. The decoupling of the off-shell δ-function from the conformal scale gives us

hope that we may now be able to use (3.1.5) to construct a string theory in which the

strings interact when their worldsheets intersect. We consider the system consisting

of a number, N , of surfaces {Σi}. These have boundary components including curves

wµi . The curves can be either closed or open, in which case we impose Neumann

boundary conditions on Xµ on the remaining boundary components of Σ. The

action is Sf =
∑

i Si +
∑

ij Sij with Si = S[gi, Xi] and

Sij =
q2

4ε20

∫
Σi,Σj

dΣµν
i (ξ) δ4 (Xi(ξ)−Xj(ξ

′)) dΣµν
j (ξ′). (3.1.17)

We wish to relate this now to quantum field theory. In the introduction we saw

that scalar QED can be re-stated in the worldline formalism, which caused us to

introduce a series of first quantised theories living on one dimensional curves. These

curves are seen as Wilson lines which couple the worldline theories to the electro-

magnetic field. To compute the generating functional for the field theory Green

functions it remains to functionally integrate over the gauge field configurations

which we stopped short of doing in the introduction. The reason for this is that our

aim will be to show that the interacting string theory reproduces this functional in-

tegral. We identify a set of N worldlines as the boundaries for N interacting strings
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and wish to show that ∫ N∏
i=1

D(Xi, gi)

Z0

e−Sf (3.1.18)

is the same as

∫
DA

N
e−Sgf [A]

∏
i

e−i
∫
dwi·A =

∏
i,j

e
− q2

4ε20

∫
dwµi ∆µν dwνj

(3.1.19)

where the Maxwell theory is gauge-fixed in the gauge ∂·A = 0 so that the propagator,

∆µν , has Fourier transform δµν/k
2 − kµkν/(k2)2. In this way we would reformulate

QED in terms of a series of strings which interact upon contact. It will turn out that

we are unable to completely establish this result for the case of the bosonic string

due to the possible appearance of unwelcome divergences. However the world-sheet

supersymmetry of the spinning string provides sufficient structure to eliminate these,

which will allow us to prove the supersymmetric generalisation. It is precisely this

generalisation, in which the super-Wilson loop appears, that is needed for electric

charges with spin. So it appears that this string model has a preference for the

realistic case of spinor QED over that of scalar QED.

Recall from the introduction that the generating functional for Green functions1

can be computed by first integrating over the scalar field leaving

Z[J̄ , J ] =

∫
DAe−Sgf−log Det(−D2+m2)+

∫
d4xJ̄(−D2+m2)

−1
J (3.1.20)

which we expand as

∞∑
r,s=1

1

r!s!

∫
DAe−Sgf

(
−log Det

(
−D2 +m2

))r (∫
d4xJ̄

(
−D2 +m2

)−1
J

)s
(3.1.21)

Using the representations for the functional determinant, (1.0.6), and propagator,

1Later we will include a source for the gauge field, but for the time being we suppress this to
simplify our expressions
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(1.0.9), we re-write (3.1.21) as

∞∑
r,s=1

1

r!s!

∫
DAe−Sgf

r+s∏
j=1

D(hj, wj)

Z
e−S0[wj , hj ]

×
r+s∏

k=r+1

e−i
∮
dwk·A

s∏
l=1

∫
d4bl d

4alJ̄(bl)e
−i
∫ bl
al
dwl·AJ(al) (3.1.22)

Were (3.1.18) equivalent to (3.1.19) it could be used to represent the integral over

the gauge-field as a set of integrals over surfaces

∞∑
r,s=1

1

r!s!

∫ s∏
l=1

d4bl d
4al J̄(bl)J(al)

r+s∏
i=1

D(Xi, gi)

Z0

e−Si
r+s∏
j=1

D(hj, wj)

Z
e−S0[wj , hj ]

r+s∏
i,j=1

e−Sij

(3.1.23)

Re-arranging this slightly we would have arrived at

Z[J̄ , J ] =
∞∑

r,s=1

1

r!s!

∫ s∏
l=1

d4bl d
4al J̄(bl)J(al)

r+s∏
i=1

D(Xi, gi, hi, wi)

ZZ0

e−Si−S0

r+s∏
i,j=1

e−Sij

(3.1.24)

Although we will be unable to demonstrate the equivalence of (3.1.18) and (3.1.19)

in scalar QED we will demonstrate an exact relation for spinor QED.

The physical interpretation of (3.1.24) would be that the field theory is equivalent

to an ensemble of strings described by the usual free Polyakov action, Si = S[gi, Xi],

augmented with a boundary term S0[w, h] interacting with each other via the contact

term Sij. There is some freedom in how we associate the curves wi to the world-

sheet surfaces. For want of an obvious alternative we choose the simplest assign-

ment by associating a zero genus surface to each ωi. Thus the log Det (−D2 +m2)

factors correspond to closed curves bordering world-sheets which together describe

particle anti-particle pairs connected by lines of force. The Green function factors

(−D2 +m2)
−1

correspond to world-sheets that have mixed boundary conditions:

Dirichlet conditions for the curves wi which run from ai to bi and Neumann every-

where else, so these describe strings with the usual string theory Neumann conditions

at one end and a charged particle (or anti-particle) at the other. Mixed boundary

conditions for the string are discussed in Appendix B.



3.1. Introduction 76

So far we have not included a source for the gauge field. Rather than using a general

source we limit attention to one that generates scattering amplitudes via the LSZ

procedure by shifting the gauge-fixed Maxwell action, Sgf , in (3.1.22)

Sgf → Sgf −
1

q2

∫
d4xA · ∂2A (3.1.25)

where the source is on-shell, i.e. ∂2A = ∂ ·A = 0 (we revert to Lorentzian signature

briefly to be able to invoke LSZ).

We show in Appendix C that

∫
DA

N
e
−Sgf+ 1

q2

∫
d4xA·∂2A−i

∑
j

∫
dwj ·A =

∏
i,j

e−
q2

2

∫
dwµi ∆µν dwνj

∏
i

e−i
∫
dwi·A (3.1.26)

so that the effect of including the source A is simply to add a term to the boundary

part of the action:

S0[w, h]→ S0[w, h] + i

∫
dw · A (3.1.27)

We note in passing that if we were to consider the generating functional for scattering

amplitudes of charged particles and anti-particles then we would replace the source

terms J̄φ and φ̄J by J̄{−∂2 + m2}φ and ({−∂2 + m2}φ̄)J leading to insertions of

{−∂2+m2} in (3.1.24). These insertions could be generated by functional derivatives

with respect to
√
h at the ends of the curves w since

2δ

δ
√
h (0)

e−S0[h, ω] = − ω̇2

h
+m2

∣∣∣∣
ξ=0

. (3.1.28)

The expression on the right hand side is just −p2 + m2 because the canonical mo-

mentum on the worldline is pµ = ω̇µ√
h
.

As we have said, we will not be able to fully achieve our aim of showing the

equivalence of (3.1.18) and (3.1.19) until we include world-sheet supersymmetry. In

any case QED with spin-one-half matter is more interesting as a realistic theory,

and we will see that it emerges naturally from the spinning string. The generating
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functional for the Dirac field was given in the introduction

ZD[K̄,K] =

∫
DAe−Sgf−log Det(−(γ·D)2+m2)+

∫
d4xK̄(γ·D+im)−1K , (3.1.29)

which we expand as

∞∑
r,s=1

1

r!s!

∫
DAe−Sgf

(
−log Det

(
−(γ · D)2 +m2

))r (∫
d4xK̄ (γ · D + im)−1K

)s
(3.1.30)

As in the scalar case we can represent the two components of this expression, the

functional determinant and the Green function, as functional integrals of the same

form but for closed and open worldlines respectively. This means we can express

the generating functional for the Dirac field, ZD, as

∞∑
r,s=1

1

r!s!

∫
DAe−Sgf

r+s∏
j=1

D(hj, wj, χj, ψj)

Z
e−S0[wj , hj ]−SF [ψj , χj ]

×
r+s∏

k=s+1

e−i(
∮
dwk·A+ 1

2

∫
Fµνψµψν

√
hdξ)

×
s∏
l=1

∫
d4bl d

4al K̄(bl) e
−i
(∫ bl
al
dwl·A+ 1

2

∫
Fµνψµψν

√
hdξ
)
K(al) (3.1.31)

which contains the expectation value of supersymmetric exponentiated line integrals

generalising the bosonic case. We will show that these expectation values can be

calculated by introducing fermionic degrees of freedom onto the worldsheets spanned

by the open and closed curves representing the Green functions and determinants

in the field theory. That is,

n∏
i=1

D (Xi, ψi, gi)

Z0

e−Ss =

∫
DA

N
e−S

′
gf [A]

∏
i

e−SA (3.1.32)

where S ′gf is the equivalent gauged fixed action for the fermionic quantum theory

and Ss is the action for the spinning string augmented by a supersymmetric general-

isation of the contact interaction discussed above. We shall give explicit expressions

for these objects in section 3.5. This equivalence can then be used to rewrite the in-

tegral over the gauge field in equation (3.1.31) in terms of open and closed spinning
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strings with contact interactions.

The purpose of this chapter is to investigate the relationship between (3.1.18)

and (3.1.19) for the bosonic theory and then establish the supersymmetric version

(3.1.32), showing that spinor QED is equivalent to tensionless spinning strings2 with

a contact interaction. We use the perturbative expansion in powers of q2, building

on the result (3.1.6). We begin with the purely bosonic theory. In section 3.2 we

describe some basic tools including the regulator, and apply these to the derivation

of (3.1.16). In section 3.3 we consider the first order in perturbation theory, studying

potential divergences in some detail as a warm-up for higher order calculations, and

also discuss how the split in the action (3.1.5) between the free string action and the

contact term is affected by the regulator. Higher orders in perturbation theory for

the bosonic case are discussed in section 3.4 which includes a discussion of potential

problems associated with divergences that might be generated when the interaction

terms approach each other close to the world-sheet boundary. Concluding that our

bosonic string model is incomplete we turn to the more realistic case of spinor matter

and show that this is naturally described by the spinning string in section 3.5. We

discuss the gauge-fixed action and regulator and the residual supersymmetry, and

then use this to restrict the divergences that can occur in the perturbative expansion

enabling us to establish the connection between the spinning string model and spinor

QED.

3.2 General expectation values

Before proceeding to the evaluation of the partition function we describe our general

approach to the computation of such functional integrals which will be essentially

standard. These functional integrals are computed conventionally by first integrat-

ing over the Xi with source terms to generate the insertions of ∂aX
µ (ξ) and the

2The tensionless limit of bosonic string theory has a degenerate worldsheet metric [56] and as
such can be reformulated on the level of the action by introducing a vector density to replace the
metric in Polyakov’s formulation [57,58]. The equation of motion of this auxiliary field imposes the
null-metric condition and the formulation extends to the spinning string [59]. In the spinning case
however the metric is no longer degenerate. Here we prefer to keep the tension arbitrary throughout
the calculation to demonstrate how the tensionless limit suppresses unwanted quantities.
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exponents resulting from the Fourier decomposition of the δ-functions. So we con-

sider

Z (j, k) =

∫
DgX exp

(
−S[X, g] +

∫
d2ξ JµXµ

)
(3.2.33)

where

Jµ (ξ) = −∂ajµa (ξ) + i
∑
j

kµj (δ (ξ − ξj)) (3.2.34)

We write the field itself as the sum of three terms Xµ = Xµ
c + X̃µ + X̄µ where

X̄µ is the quantum fluctuation to be functionally integrated over and Xµ
c and X̃µ

satisfy Euler-Lagrange equations. Xµ
c absorbs the boundary values of the original

X. Denoting the two-dimensional Laplacian as ∆:

− 1
√
g
∂a
(√

ggab∂bX
µ
c (ξ)

)
≡ ∆Xµ

c (ξ) = 0; Xµ
c |∂D = wµ, (3.2.35)

and X̃ absorbs the sources we have just introduced

−∆X̃µ(ξ) = 2πα′

(
i
∑
j

kµj (δ (ξ − ξj)) + ∂aj
µa(ξ)

)
(3.2.36)

and is required to vanish on ∂D. Xc and X̃ can both be found in terms of the

Green function for the Laplacian with Dirichlet boundary conditions (which satisfies

∆G(ξ, ξ′) = δ2 (ξ − ξ′) /√g, G(ξ, ξ′) = 0 for ξ or ξ′ ∈ ∂D):

Xµ
c (ξ) =

∮
∂D

dξ̃c εac
√
g̃g̃ab∂̃bG

(
ξ, ξ̃
)
wµ(ξ̃), X̃ (ξ) = −2πα′

∫
d2ξ̃ G(ξ, ξ̃) Jµ(ξ̃)

(3.2.37)

Integrating out the quantum fluctuation generates a determinant so

Z (j, k) = exp

(
−πα′

∑
rs

kr · ksG(ξr, ξs) + S[Xc, g]− 2 log(Det∆)

+ 2πα′i

∫
d2ξ jµa

∑
r

kµr ∂aG (ξ, ξr) + 2πα′
∫ ∫

d2ξd2ξ′ jµajµb∂a∂bG (ξ, ξ′)

+

∫
d2ξ jµa∂aX

µ
c (ξ) + i

∑
r

kr ·Xc (ξr)

)
(3.2.38)
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log(Det∆) depends only on the scale of the metric, and not on the sources, so

will factor out of our computations because of the decoupling of the expectation

value of the delta function discussed in the introduction. An alternative approach

would be to assume the existence of further internal degrees of freedom to cancel the

dependence on the Liouville mode, a route we consider in Chapter 4 of this thesis.

The Green function is divergent at coincident points and so we replace it with a

regulated version constructed from the heat-kernel

Gε (ξ, ξ′) =

∫ ∞
ε

dτ G (ξ, ξ; τ) ,
∂

∂τ
G = −∆G , G

(
ξ, ξ′; 0+

)
= δ2 (ξ − ξ′) /√g

(3.2.39)

This cut-off procedure is reparameterisation invariant since the definition of the

kernel and Green function do not require a choice of coordinates. It is not, however,

Weyl invariant since it introduces a distance cut off. The effect of ε is to modify

for high modes the spectral decomposition of the Green function in terms of the

eigenfunctions of ∆, un, belonging to eigenvalues λn to [35]

Gε (ξ, ξ′) =
∑
n

un (ξ)un (ξ′)
e−ελn

λn
. (3.2.40)

The short-distance divergence of the Green function is associated with the short-

time behaviour of the heat kernel. Information can be extracted by expansion about

a flat metric because in a short time the heat from the delta-function source cannot

diffuse too far meaning that the heat kernel is sensitive to variations in the metric

only over a distance of size of the order of
√
ε.

The general form of the heat kernel for small times can be determined using

the Seeley-DeWitt expansion [60] which can be modified to take into account the

presence of the boundary [61, 62]. If σn (ξ, ξ′) denotes the square of the length of a

geodesic between the points ξ and ξ′ with n reflections at the boundary then we can

write [61,62]

G (ξ, ξ′; τ) =
1

4πτ

∑
{σr}

exp

(
−σr (ξ, ξ′)

4τ

)
Ω (ξ, ξ′; τ) (3.2.41)

with the sum running over all geodesics including any number of reflections at the
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boundary. By virtue of the Hamilton-Jacobi equation for the action of a given

geodesic, σr obeys an important constraint

σ = gab∂aσ∂bσ (3.2.42)

at the point ξ with a similar expression holding at the other end of the path ξ′.

The Ωr can be expanded as a power series in τ with DeWitt coefficients an (ξ, ξ′).

Substitution of the expansion into the heat-kernel equation leads to a recurrence

relation for these coefficients

Ωr (ξ, ξ′; τ) =
∞∑
n=0

arn (ξ, ξ′) τn (3.2.43)

a0
0 (ξ, ξ) = 1 (3.2.44)

ar0 (ξ, ξ) + ar+1
0 (ξ, ξ) = 0 (3.2.45)(

n+
1

2
∇2σ − gab∂aσ∂b

)
arn = −∇2arn−1 (3.2.46)

Considering then the low τ limit and bringing ξ′ → ξ repeated differentiation of

(3.2.42) allows the determination of the coincident limits of the an. There are two

regions of interest. In the bulk the path of zero length dominates, whereas close

to the boundary the shortest reflected path joining ξ to itself also contributes. At

lowest order the coefficients are determined as

a0
0 (ξ, ξ) = 1 (3.2.47)

a0
1 (ξ, ξ) =

1

6
R (ξ) (3.2.48)

a1
0 (ξ, ξ) = −1 (3.2.49)

a1
1 (ξ, ξ) = −1

6
R (ξ) . (3.2.50)

The dominant small ε behaviour of the coincident Green’s function can then be
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expressed as

Gε(ξ, ξ) ≡ ψ (ξ) ∼
∫ ∞
ε

dτ

4πτ

(
1− exp

(
− σ

4τ

))(
1 +

1

6
R (ξ) τ

)
(3.2.51)

=


σ

16πε
− σ ln εR

96π
σ � ε

1
4π

ln σ
4ε
− εR

24π
σ � ε

(3.2.52)

This reveals that as ξ varies from being on the boundary to moving into the bulk,

ψ varies from 0 to order log ε over a distance ε
1
2 .

We will need the form of the above functions in conformally flat gauge. We

may choose complex coordinates z = x + iy with ds2 = eφdzdz̄. With this choice

R (z) = e−φ∂∂̄φ = 0. For much of our work it will be sufficient to take φ to be

constant and work on the half-plane y ≥ 0 whereby

σ (z, z′) = eφ |z − z′|2 (3.2.53)

and for the coincident Green function the distance of the shortest path from z

reflected from the boundary is σ = 4eφy2. So

G (z, z′; τ) =
1

4πτ

(
exp

(
−e

φ |z − z′|2

4τ

)
− exp

(
−e

φ |z − z̄′|2

τ

))
(3.2.54)

ψ (ξ) ∼


eφy2

4πε
σ � ε

1
4π

ln eφy2

ε
σ � ε

(3.2.55)

This provides a useful method to track the appearance of φ through the calculation.

However in the more general case σ picks up non-trivial φ-dependent corrections and

the heat-kernel picks up curvature corrections according to (3.2.51). These do not

contribute to our calculation at leading order in ε so it will be sufficient to specialise

to φ = 0 and introduce a function f by:
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Gε (z, z′) =

∫ ∞
ε

dτ

4πτ

(
exp

(
−|z − z

′|2

4τ

)
− exp

(
−|z − z̄

′|2

4τ

))

=

∫ ∞
ε

dτ

4πτ

[(
exp

(
−|z − z

′|2

4τ

)
− 1

)
−

(
exp

(
−|z − z̄

′|2

4τ

)
− 1

)]

≡ −f
(
|z − z′|

2
√
ε

)
+ f

(
|z − z̄′|

2
√
ε

)
(3.2.56)

where

f (s) =

∫ ∞
1

dτ

4πτ

(
1− exp

(
−s

2

τ

))
, (3.2.57)

so that ψ(ξ) = f(y/
√
ε). This function is monotonically increasing and can written

in closed form as
1

4π

(
γ + Γ

(
0, s2

)
+ ln

(
s2
))

(3.2.58)

where γ is Euler’s constant and Γ (0, s2) =
∫∞
s2
t−1e−tdt is the incomplete Gamma

function. We shall not use this explicit form but rather note that f can be approxi-

mated for small (s < a) and large (s > b) values of s by

f(s) ≈


s2

4π
s < a� 1

1
4π

ln s2 s > b� 1

(3.2.59)

Before finishing this section we illustrate the regularisation of the Green function

by revisiting (3.1.13) in order to demonstrate that the second term on the right hand

side vanishes as the cut-off is removed and is also (independently) suppressed in the

tensionless limit. In terms of the function f the right hand side of (3.1.13) becomes

εab (kµ∂bX
ν
c 2πα′∂aG(ξ, ξ) + ∂aX

µ
c ∂bX

ν
c ) eik·(x−Xc(ξ))e−πα

′k2G(ξ,ξ)

=
(
−kµ∂xXν

c 2πα′∂yf(y/
√
ε) + εab∂aX

µ
c ∂bX

ν
c

)
eik·(x−Xc(ξ))e−πα

′k2f(y/
√
ε) (3.2.60)

which is to be integrated over y > 0 and over k. The first term leads to the required
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result (3.1.16). Integrating the second over k gives

1

(α′f(y/
√
ε))2

εab∂aX
µ
c ∂bX

ν
c e
−(x−Xc(ξ))2/(4πα′f(y/

√
ε)) (3.2.61)

As described in section 1 the integral over y is suppressed outside a thin strip of

width Λ, say, bordering the boundary. Taking Λ > b
√
ε shows that outside this

strip f(y/
√
ε) > 1

2π
log(Λ/

√
ε) which becomes large as ε ↓ 0 and so damps (3.2.61)

provided Λ/
√
ε also becomes large (which can be arranged whilst still taking Λ to

zero). When we integrate (3.2.61) over the strip we can treat Xc as a slowly varying

quantity, independent of y to leading order, leaving just the following integral to be

computed, which we separate into three pieces in order to apply the leading order

approximation to f from (3.2.59)

∫ Λ

0

dy
e−(x−Xc(ξ))2/(4πα′f(y/

√
ε))

(α′f(y/
√
ε))2

=

√
ε

α′2

(∫ a

0

dy
(4π)2e−(x−Xc(ξ))2/(α′y2)

y4
+

∫ b

a

dy
e−(x−Xc(ξ))2/(4πα′f(y))

(f(y))2

+

∫ Λ/
√
ε

b

dy
(4π)2e−(x−Xc(ξ))2/(α′ log y2)

(log y2)4

)
(3.2.62)

The first two integrals inside the brackets are independent of ε so the overall factor of
√
ε outside the brackets damps these terms as ε ↓ 0. The last term can be bounded:∣∣∣∣∣

∫ Λ/
√
ε

b

dy
(4π)2e−(x−Xc(ξ))2/(α′ log y2)

(log y2)4

∣∣∣∣∣ < (Λ/
√
ε− b)(4π)2/(log b2)4 . (3.2.63)

Combining this with the overall factor of
√
ε causes this to go to zero with ε because

Λ does. Consequently (3.2.62) goes to zero as the cut-off is removed.

We note that these integrals also vanish independently in the tensionless limit. When

α′ is large in comparison to the length scale of the boundary the exponents in the

last two integrals can be ignored and the first integral simplifies on scaling y so that
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(3.2.62) becomes

√
ε

α′2

(
α′3/2

∫ ∞
0

dy
(4π)2e−(x−Xc(ξ))2/y2

y4
+

∫ b

a

dy

(f(y))2
+

∫ Λ/
√
ε

b

dy
(4π)2

(log y2)4

)
(3.2.64)

which is suppressed in the tensionless limit, α′ →∞, with the leading term coming

from the first integral incorporating the small-y behaviour. We shall now turn to

apply similar techniques to calculating the effect of the interaction term on the string

theory partition function.

3.3 The first order interaction of the bosonic the-

ory

In this section we will carry out the calculation to first order in the expansion of the

interaction term, which is proportional to

∑
j,k

∫ (∏
i

D(Xi, gi)

Z0

e−Si

)∫
Σj ,Σk

dΣµν
j (ξ) δ4 (Xj(ξ)−Xk(ξ

′)) dΣµν
k (ξ′).

We shall show that the form of the coincident Green function suppresses the inte-

grand for a general configuration of the points ξ and ξ′ except for two cases. The

result we seek will arise when both points are separately close to the boundary where

we have seen that the Green function is of order 1. Secondly, divergences appear

when the points become close in the bulk of the worldsheet but we shall discuss

how these can be interpreted in terms of a renormalisation of the free action and

are consistent with the original splitting of the action in (3.1.5). The question of

the two points meeting one another close to the boundary will be discussed later as

this could provide corrections to the equality we are trying to prove. In the spinning

string neither divergences nor unwanted boundary contributions will arise, as will

be demonstrated in section 3.5.

There are two kinds of term in this sum. The first is when j 6= k, in which

case we can organise the integrals to reduce the computation to our previous result
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(3.1.6):

∑
j 6=k

∫
D(Xj, gj)

Z0

e−Sj
D(Xk, gk)

Z0

e−Sk
∫

Σj ,Σk

dΣµν
j (ξ) δ4 (Xj(ξ)−Xk(ξ

′)) dΣµν
k (ξ′)

=
∑
j 6=k

∫
D(Xj, gj)

Z0

e−Sj
∫

Σj

dΣµν
j (ξ)

〈∫
Σk

δ4 (Xj(ξ)−Xk(ξ
′)) dΣµν

k (ξ′)

〉
Σk

=
∑
j 6=k

∫
D(Xj, gj)

Z0

e−Sj
∫

Σj

dΣµν
j (ξ)

1

4π2

(
∂µ

∫
Bk

dwk,ν
||xj − wk||2

− ∂ν
∫
Bk

dwk,µ
||xj − wk||2

)
(3.3.65)

Applying Stokes’ theorem and observing that the boundary Bj is held fixed during

the functional integration over Σj reduces this to

∑
j 6=k

1

2π2

∫
Bj ,Bk

dwj · dwk
||wj − wk||2

(3.3.66)

which is precisely the result we claimed.

The second type of term that occurs in the sum has j = k, in which case we

have to consider

∑
j

∫
D(Xj, gj)

Z0

e−Sj
∫

Σj

dΣµν
j (ξ) δ4 (Xj(ξ)−Xj(ξ

′)) dΣµν
j (ξ′)

where both integrals are over the same worldsheet. If, as before, we make a Fourier

decomposition of the δ-function

∫
Σ

dΣµν(ξ) δ4 (X(ξ)−X(ξ′)) dΣµν(ξ′) =

∫
d4k

64π4

∫
d2ξ d2ξ′ V−k(ξ)Vk(ξ

′) (3.3.67)

this requires the computation of 〈V−k(ξ)Vk(ξ′)〉X which involves two insertions of V

on the world-sheet in contrast to the single insertion of (3.1.13). To evaluate this we

shall use Wick’s theorem, based on (3.2.38), to write the expectation of products of

fields as an expansion in terms of all possible contractions of X. The simplest is

XµXν ∼= :XµXν : +XµXν , (3.3.68)

where by the normal ordering colons we mean that all contractions have been carried
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out between the fields contained within and the basic contraction is

X̃µ (ξ) X̃ν (ξ′) = α′δµνG (ξ, ξ′) (3.3.69)

We use the ∼= sign to denote that the equality is meant to hold inside the functional

integral 〈 〉X . Because (3.2.38) was obtained by expanding about a classical field

Xc that contains the information about the boundary value the expectation of the

normal ordered part of the product contains Xc, thus

〈:XµXν :〉 / 〈1〉 = Xµ
cX

ν
c . (3.3.70)

with similar expressions holding for greater numbers of operators in the product.

〈1〉 is included because it contains boundary data S[Xc, g] as well as functional

determinants. The exponential

eik·(X(ξ)−X(ξ′)) ∼= : eik·(X(ξ)−X(ξ′)) : e−πα
′k2Ψ (3.3.71)

with

Ψ (ξ, ξ′) = ψ (ξ) + ψ (ξ′)− 2G (ξ, ξ′) . (3.3.72)

will be crucial in what follows. Ψ (ξ, ξ′) is the two dimensional version of the object

which we met in the previous chapter and plays a similar role in determining the

behaviour of the integrands which will appear. This time, however, the Green

functions making it up diverge at coincident points and it is their regularised versions

we employ. In the parametrisation of D of the previous section this is

Ψ = −f (0) + f

(
y√
ε

)
− f (0) + f

(
y′√
ε

)
+ 2

(
f

(
|z − z′|√

ε

)
− f

(
|z − z̄′|√

ε

))
(3.3.73)

= f

(
y√
ε

)
+ f

(
y′√
ε

)
+ 2

(
f

(
|z − z′|

2
√
ε

)
− f

(
|z − z̄′|

2
√
ε

))
(3.3.74)

Applying Wick’s theorem to 〈V−k(ξ)Vk(ξ′)〉X and carrying out the functional

integration over X gives (with X(ξ) and X(ξ′) renamed as X1 and X2 for brevity)
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〈εabεcd∂1
aX

1[µ∂1
bX

1ν]eik·(X
1−X2)∂2

cX
2[µ∂2

dX
2ν] 〉X/〈 1 〉X = (3.3.75)

εabεcd eik·(X
1
c−X2

c )e−πα
′k2Ψ(ξ1,ξ2)

(
∂1
aX

1[µ
c ∂1

bX
1ν]
c ∂2

cX
2[µ
c ∂2

dX
2ν]
c (I)

+8πα′ ik[µ∂1
aΨ · ∂1

bX
1ν]
c ∂2

cX
2[µ
c ∂2

dX
2ν]
c (II)

+ (4πα′)
2
ik[µ∂1

aΨ · ik[µ∂2
cΨ · ∂1

bX
1ν]
c ∂2

dX
2ν]
c (III)

+96πα′ ∂1
a∂

2
cG · ∂1

bX
1ν
c ∂

2
dX

2ν
c (IV)

+12 (4πα′)
2
∂1
a∂

2
cG · ikν∂1

bΨ∂
2
dX

2ν
c (V)

+6 (4πα′)
3
∂1
b∂

2
dG · ikν∂1

aΨ · ikν∂2
cΨ (VI)

+48 (4πα′)
2
∂1
a∂

2
cG · ∂1

b∂
2
dG

)
(VII)

where G = G (ξ1, ξ2) and we have made use of the results of Appendix D.

The exponential factor e−πα
′k2Ψ depends on the configuration of the two points,

as depicted in Figure 1, and will be important. For generic values of ξ1 and ξ2 in

D, neither close to the boundary nor close to one another, Ψ is of order ln ε so that

the common exponential factor damps the integrand. As one of these points, say ξ1,

approaches the boundary ψ (ξ1) becomes of order unity, but with ξ2 still in the bulk

the ψ (ξ2) in Ψ keeps it of order ln ε. So the only values of ξ1 and ξ2 that lead to

non-zero contributions as the cut-off is removed are those for which both points are

close to the boundary or close to each other in the interior of D where Ψ is O(1).

We will describe these two cases separately in the next two sub-sections.

3.3.1 Boundary contribution

The first case to consider is 〈V−k(ξ)Vk(ξ′)〉X with both points ξ and ξ′ close to the

boundary. It is this case which will lead to our result. We need only integrate

across a small suitably chosen strip, say of size Λ, since the integrand is suppressed

moving into the bulk. We use the upper-half plane parametrisation of the previous

section and consider 0 < y < Λ, 0 < y′ < Λ, and we will also limit our attention

to the generic case of |x − x′| > Λ. For this configuration the rapidly varying
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Λ

ξ1

ξ2

(a) An arbitrary configuration with both
points in the bulk. Ψ is of order ln ε.

Λ

ξ1

ξ2

(b) The case that one of the points ap-
proaches the boundary. The second point
in the bulk holds Ψ at order ln ε.

Λ
ξ1ξ2

(c) The case that both points are with a
distance of Λ of the boundary. As each
point is integrated through this strip into
the bulk Ψ varies from order 1 to order
ln ε.

Λ
ξ1

ξ2

Λ

(d) The case that the two points are within
a distance Λ of one another in the bulk. As
one of the points is integrated about this
region Ψ varies from order unity to order
ln ε.

Figure 3.1: The possible configurations of the two points within the integration domain. The cases
illustrated in the top line lead to heavy suppression of the integrand and it is the bottom two cases
which will make finite contributions. The line joining the points is to represent that they are linked
by the δD

(
X
(
ξ1
)
−X

(
ξ2
))

.

functions in (3.3.75) are just ψ(ξ), ψ(ξ′) and their derivatives. In contrast, the

fields Xµ, their derivatives and the Green function between the two points all vary

smoothly and slowly. We shall consequently carry out this part of the integration by

replacing slowly varying fields with their values on the boundary and then integrating

the rapidly varying fields into the bulk. These arise from contractions between

the component pieces within each V separately and not between them. We can

anticipate the result by applying Wick’s theorem to Vk by itself as

Vk ∼= εab
(

: k[µ∂bX
ν]
c e
−ik·X : 2πα′∂aψ + : ∂aX

µ∂bX
ν e−ik·X :

)
e−πα

′k2ψ (3.3.76)

This is similar in form to (3.1.13) because that equation is obtained as the expecta-

tion value of this. As y and y′ are integrated over the strip, approximating the slowly



3.3. The first order interaction of the bosonic theory 90

varying functions in 〈V−k(ξ)Vk(ξ′)〉X as constant means that we can approximate

∫ Λ

0

dy Vk ∼= εab : k[µ∂bX
ν] e−ik·X : 2πα′

∫ Λ

0

dy ∂aψ e
−πα′k2ψ

+ εab : ∂aX
µ∂bX

ν e−ik·X :

∫ Λ

0

dy e−πα
′k2ψ

which parallels the derivation of (3.1.16). So by a similar argument we can neglect

the second integral and compute the first to obtain (as the cut-off is removed)

∫ Λ

0

dy Vk ∼= −2: k[µ∂xX
ν] e−ik·X : /k2, (3.3.77)

so that the boundary contribution from the product of two vertex operators is

〈∫
|y|<Λ

d2ξ V−k(ξ)

∫
|y′|<Λ

d2ξ′ Vk(ξ
′)

〉
X

=
4

(k2)2

∫
B

〈
: k[µdXν] e−ik·X : : k[µdXν] eik·X :

〉
X

(3.3.78)

Contractions between the two normal ordered expressions involve the Green function

that vanishes on the boundary, so in evaluating this expression we simply have to

replace X by its classical value Xc which reduces to the boundary value w on B.

This gives (up to a factor of 〈1〉X)

∫
B

dw · dw′ e
ik·(w−w′)

k2
(3.3.79)

which is the required result.

We will now give a more careful treatment of the same calculation, based on the

explicit expression (3.3.75), to show that the less rapidly varying parts of (3.3.75)

do not change the result. Beginning with term (I) we consider

∫ ∫
dxdx′

∫ Λ

0

dy

∫ Λ

0

dy′ εabεrs ∂1
aX

1[µ
c ∂1

bX
1ν]
c ∂2

rX
2[µ
c ∂2

sX
2ν]
c

×eik·(X1
c−X2

c )e−πα
′k2Ψ(x,x′;y,y′) (3.3.80)

The rapidly varying part of this integral is contained in Ψ (x, x′; y, y′) and for

|x− x′| > Λ the last two terms of (3.3.74) are slowly varying and sum to zero on
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a

b

Λ√
ε

x

y

∂D

Figure 3.2: The regions of interest for the integral into the bulk. The lower line represents the
boundary ∂D. a, b and Λ are chosen to allow the application of the approximate forms of Ψ. From
the boundary up to a the lower approximation holds and from b to Λ√

ε
the upper approximation

holds. In between there is no explicit form of Ψ but integrals in this region are independent of ε.

the boundary. Their subleading pieces are higher order in ε and, since we will find

no divergences for this boundary case, will not be important. We are consequently

left with the integral

∫ ∫
dxdx′ εabεrs ∂aX

1[µ
c ∂bX

1ν]
c eik·(w−w

′)∂′rX
2[µ
c ∂′sX

2ν]
c

∫ Λ

0

dy

∫ Λ

0

dy′ e−πα
′k2Ψ(x,x′;y,y′)

(3.3.81)

Using (3.3.74) the integrals over y and y′ factorise:

∫ Λ

0

dy e
−πα′k2f

(
y√
ε

) ∫ Λ

0

dy′ e
−πα′k2f

(
y′√
ε

)
(3.3.82)

We make a change of variables to scale out ε, y2

ε
→ y2, and then split the integral

into the three parts described in the previous section. This is illustrated in Fig. 3.2

and allows the use of (3.2.59) in the first and third regions:

∫ Λ

0

dy e
−πα′k2f

(
y√
ε

)
= ε

1
2

∫ Λ√
ε

0

dy e−πα
′k2ψ(y2)

= ε
1
2

(∫ a

0

dy e−πα
′k2· 1

4π
y2

+

∫ b

a

dy e−πα
′k2f(y2)

+

∫ Λ√
ε

b

dy e−πα
′k2· 1

4π
ln (y2)

)
. (3.3.83)

The first two terms on the bottom line have no divergences in their integrands and

so evaluate to some (k-dependent) constant multiplied into ε
1
2 . The last term is

ε
1
2

∫ Λ√
ε

b

dy e−
1
4
α′k2 ln (y2) =

Λ

1− 1
2
α′k2

(
Λ√
ε

)− 1
2
α′k2

−
√
ε
b1− 1

2
α′k2

1− 1
2
α′k2

(3.3.84)
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Both terms vanish as the cut-off is removed since Λ also goes to zero in this limit

and because k2 ≥ 0. These terms multiply a corresponding contribution from y′

with identical ε-dependence, so that overall the product goes to zero as the cut-off

is removed.3

For the remaining terms (II-VII in (3.3.75)) we shall determine their ε-dependence

by picking out the rapidly varying bits of each expression and evaluating the inte-

grals. The derivative structure of the above terms determines the ε-dependence,

since a derivative normal to the boundary cancels the factor of ε
1
2 which arises

under the scaling of y. So the terms which we may expect to contribute to the ex-

pectation value will have two derivatives of the rapidly varying Ψ; one with respect

to y and one with respect to y′. Since the Green function is slowly and smoothly

varying when the two points are not close together terms (IV) and (VII) actually

have the same rapid variation as term (I) above, though they are multiplied by

different powers of α′. The ε-dependence of terms (II) and (V) is the same, whilst

terms (III) and (VI) share the same dependence.

We consider the y-integral of term (II):

α′ikµ
∫ Λ

0

dy εab∂aΨ · e−πα
′k2Ψ (3.3.87)

Only the f
(

y√
ε

)
part of Ψ varies rapidly with y. Since this is a function of y only,

the non-zero contribution arises when a = 2 and the presence of this derivative

3We have worked with the Fourier transform, implying that we should integrate our final ex-
pressions over k so there is a question as to whether this integral converges. To explore this we
can in fact carry out the k-integral first (as at the end of section 2) which we now do for the strip
close to the boundary, bearing in mind that our expression has the usual Fourier exponential eik·l

where lµ = wµ − w′µ:

ε
1
2

∫ a

0

dy

∫
dDk e−πα

′k2· 1
4π y

2

eik·l ∼ ε 1
2

∫ a

0

dy y−De
− 2l2

α′y2 (3.3.85)

The final integral is well-defined for any value of D so this contribution vanishes as ε → 0. Fur-
thermore we can consider the same situation in the upper region of integration where we have

ε
1
2

∫ Λ√
ε

b

dy

∫
dDk e−πα

′k2· 1
4π ln y2

eik·l ∼ ε 1
2

∫ Λ√
ε

b

dy (ln y)
−D2 e

− 2
α′ ln y l

2

(3.3.86)

which is bounded by Λ multiplied by the greatest value of the integrand, which is in turn smaller
than (ln b)−D/2 and so vanishes with the cut-off as required.
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makes the integrand invariant to scaling:

α′ikµ
∫ Λ√

ε

0

∂yf (y) · e−πα′k2f(y) =
−2ikµ

πk2

∫ Λ√
ε

0

∂y

(
e−πα

′k2f(y)
)

=
2ikµ

πk2

(
1−

(
Λ√
ε

)− 1
2
α′k2
)
. (3.3.88)

The second term here vanishes as the regulator is removed because k2 ≥ 0. We

must also combine the above answer with the y′ integral which is of the same form

as that evaluated for term (I). We find that their product vanishes as ε→ 0, as will

the contribution from term (V).

Both terms (III) and (VI) have two derivatives acting on Ψ so we expect to get

two copies of the form of the y-integral evaluated above. The y and y′ dependent

part of Term (III) take the form

1

4
α′2kµkµ∂yΨ∂

′
yΨe

−πα′k2Ψ. (3.3.89)

Reinstating the remaining boundary factors and the antisymmetry on the worldsheet

indices and scaling ε out of the integrand gives with lµ = wµ − w′µ

1

4
α′2k[µk[µ

∫ ∫
∂D

dxdx′ ∂xX
1ν]
c ∂′xX

2ν]
c eik·l

∫ Λ√
ε

0

dy ∂yf (y) e−πα
′k2f(y) ×∫ Λ√

ε

0

dy′ ∂yf (y′) e−πα
′k2f(y′)

=
1

4
α′2k[µk[µ

∫ ∫
∂D

dxdx′ ∂xX
1ν]
c ∂′xX

2ν]
c eik·l

∫ ∞
0

dfe−πα
′k2f

∫ ∞
0

df ′e−πα
′k2f ′

=

∫ ∫
C

dw[ν dw′[ν k µ]k µ]

π2 (k2)2 eik·l. (3.3.90)

On the second line we removed the regulator taking ε → 0. The final step is to

integrate over all values of k and to apply the contraction of the target space indices

so that the full expression reads

∫ ∫
B

dw · dw′
∫
dDk

2 (D − 1)

π2k2
eik·(w−w

′) (3.3.91)
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We see here the Fourier representation for a massless vector propagator integrated

around the boundary which is depicted in Fig 3.3. This result is independent of the

metric on the worldsheet and thus on its scale despite our integral over k not being

on-shell. We discuss this further in the next section but first turn to the calculation

of the final term (VI) and demonstrate that it is in fact vanishing by our choice of

coordinates.

kµw1

w2

Figure 3.3: At first order the correction is given by a massless vector propagator between the
boundary points x1 and x2 to be integrated around the boundary with respect to both points.

The only contribution to term (VI) arises when the derivatives of Ψ are with respect

to y and y′. This then contains

α′3δνν∂x∂
′
xG

1

4
kµkµ∂yΨ∂

′
yΨe

−πα′k2Ψ. (3.3.92)

The smoothly varying fieldG has a Taylor expansion based at the boundary where its

value is identically zero. The partial derivatives ∂x∂
′
xG are then along the boundary

so vanish identically. All other contributions are slowly varying and are subleading in

ε so vanish as ε→ 0. We have thus demonstrated that there is only one contribution

to the correlation functions from close to the boundary – (3.3.91). We postpone

further discussion of this result until we have considered the contribution from the

two points coming close together in the bulk.

3.3.2 Bulk divergences

We now study what happens to 〈V−k(ξ)Vk(ξ′)〉 as the two points ξ and ξ′ approach

each other far from the boundary. Corresponding to the split between the free action
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and the interaction term in (3.1.5) we will show that this leads to a renormalisation

of the free action. This computation is also useful in considering the more general

case that occurs at higher order of several Vk approaching each other in the bulk.

We consider (3.3.75) for ξ close to ξ′ but far from the boundary, so that Ψ can

be separated into rapidly and slowly varying parts:

Ψ = −2f

(
|z − z′|

2
√
ε

)
+

(
2f

(
|z − z̄′|

2
√
ε

)
− f

(
y√
ε

)
− f

(
y′√
ε

))
. (3.3.93)

Using the large distance behaviour (3.2.59) for the final two terms this is

Ψ = −2f

(
|z − z′|

2
√
ε

)
+

1

2π
log

(
(x− x′)2 + (y + y′)2

4yy′

)
. (3.3.94)

We will integrate firstly over ξ′, keeping ξ fixed. Then the first term in (3.3.94)

varies rapidly over a disk with centre ξ of size Λ, from 0 at the centre to order

log (Λ/
√
ε) on the edge. Ψ acts as a damping factor for ξ′ outside this disk if Λ/

√
ε

is taken large as ε is taken to zero. The second is slowly varying and vanishes when

the two points are coincident. The first subleading term is quadratic in (x− x′) so

under the scaling we will carry out is of order ε. The exponent exp (ik · (X −X ′))

is unity at zeroth order in ε and its first correction is of order
√
ε. We shall see that

it is only for terms (V), (VI) and (VII) that these corrections are relevant due to

divergences which we will encounter for these terms. Our general strategy will be to

concentrate on the rapidly varying parts of the integrands we need and to replace

the slowly varying fields by their values at the point ξ.

First we consider (I). Instead of the two integrals with respect to y and y′ that we

had to consider for points close to the boundary in (3.3.1) we now have to integrate

over the disk. The rapidly varying parts of the integrand are

∫
dxdy

∫
|z−z′|6Λ

dx′dy′ e
−πα′k2f

(
r√
ε

)
= 2πε

∫
dxdy

∫ Λ√
ε

0

dr re−πα
′k2f(r) (3.3.95)

where we have used polars and scaled by
√
ε. We split the integration region into the

three parts demonstrated in Fig. 3.4 enabling us to use the short and large-distance
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a

b

r

θ

Λ√
ε

Figure 3.4: The regions of interest for the integral into the bulk. The centre represents the
coincidence of the two points in the bulk. a, b and Λ are chosen to allow the application of the
approximate forms of Ψ. From the centre out to a the lower approximation holds and from b to Λ

ε
the upper approximation holds. In between (the shaded part) there is no explicit form of Ψ but
integrals in this region are independent of ε.

approximations for f . This provides

2πε

∫ Λ√
ε

0

dr re−πα
′k2f(r) = 2πε

(∫ a

0

dr re−α
′k2 r2

4 +

∫ b

a

dr re−πα
′k2f(r)

+

∫ Λ√
ε

b

dr r1− 1
2
α′k2

)
(3.3.96)

The explicit factors of ε multiplying the first two integrals cause these terms to

vanish as the cut-off is removed. The final term evaluates to

π

1− α′k2/4

(
Λ

(
Λ√
ε

)−α′k2/2

− εb2−α′k2/2

)
(3.3.97)

which goes to zero as the cut-off is removed because k2 ≥ 0 and Λ goes to zero.

Turning to (II), the rapidly varying part that we have to integrate over the disk

is

α′
∫ r6Λ

dx′dy′ ∂′cf

(
r√
ε

)
e
−πα′k2f

(
r√
ε

)
(3.3.98)

which vanishes by rotational symmetry. There are corrections to this arising from

terms subleading in ε and also from the derivative acting on the slowly varying part

of Ψ but these have the same ε dependence as Term (I) because they share the same

rapidly varying content.

We now find the terms which lead to renormalisation of the string action. Using
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∂ag (r) = −∂′ag (r) for any function of r, the rapidly varying part of (III) can be

written

α′2kµkα
∫
dxdy

∫ r6Λ

dx′dy′ ∂′af

(
r√
ε

)
∂′cf

(
r√
ε

)
e
−πα′k2f

(
r√
ε

)
(3.3.99)

The integral over the primed variables must be proportional to δac by symmetry and

we can extract the constant of proportionality by contracting these indices; splitting

up the integration region once again gives

∫ r6 Λ√
ε

dx′dy′ ∂′af (r) ∂′af (r) e−πα
′k2f(r) = 8π

∫ a

0

dr r3e−α
′k2 r2

4

+ 2π

∫ b

a

dr r∂′af (r) ∂′af (r) e−πα
′k2f(r)

+ 8π

∫ Λ√
ε

b

dr r−1− 1
2
α′k2

(3.3.100)

which remains finite as the regulator is removed. There are again further contribu-

tions from the slowly varying fields but these vanish as we take ε→ 04. Putting this

together with the slowly varying parts of (III) gives a term proportional to

α′−1

∫
d2ξ1 δab∂1

aX
µ
c ∂

1
bX

µ
c (3.3.102)

which is simply a renormalisation of the free string theory action in the conformal

gauge we have chosen. Note that this is suppressed in the tensionless limit.

The remaining terms involve derivatives of the Green function and these are

rapidly varying fields. However it is possible to simplify matters by noting that

∂1
a∂

2
cG = −1

2
∂1
a∂

2
cΨ. (3.3.103)

4Again we have still to integrate over k and that leads to ultra-violet divergences which we can
regulate by dimensional regularisation. Large k corresponds to small r and causes the first integral
to diverge at the origin, but we keep the spacetime dimension D arbitrary (in a range where the
integral exists) and compute∫ a

0

dr

∫
dDk kµkαr3e−

1
4α
′r2k2

= δµα
2D+1a2−D

2−D

( π
α′

)D/2+1

(3.3.101)

which continues to the physical value of D = 4.
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Turning to term (IV), the rapidly varying piece is

α′
∫ r6Λ

dx′dy′ ∂′a∂
′
cf

(
r√
ε

)
e
−πα′k2f

(
r√
ε

)
(3.3.104)

which by symmetry must be proportional to δac, so it is sufficient to consider its

trace. However, the defining equation of the heat kernel implies that the function f

obeys ∂′a∂
′
af (r) = 1

π
e−r

2
so that we may immediately calculate this as

1

2π

∫ Λ/
√
ε

0

dr re−r
2

e−πα
′k2f(r) (3.3.105)

which is also finite as the cut-off is removed. As with the previous term the X−

dependence of the slowly varying contributions leads to a renormalisation of the free

action which is also suppressed in the tensionless limit.

The analysis of (V) is more involved. Naively the calculation of the rapidly

varying piece follows that of term (II) because it vanishes by rotational invariance:

α′2
∫
dxdy ik · ∂dX

∫ r6Λ

dx′dy′ ∂′a∂
′
cf

(
r√
ε

)
∂′bf

(
r√
ε

)
e
−πα′k2f

(
r√
ε

)
= 0.

(3.3.106)

However by scaling r by
√
ε the three derivatives imply an overall factor of 1/

√
ε

so that we must expand the slowly varying fields beyond leading order to find con-

tributions that could remain finite as the regulator is removed. This can be found

from the expansion

exp [ik · (Xc −X ′c))] = 1− i [(x− x′)α ∂αXc + . . .] · k

− 1

2

[(
(x− x′)α ∂αXc + . . .

)
· k
]2

+ . . . (3.3.107)

where after scaling the first subleading term is −i
√
ε (x− x′)α ∂αXc · k. This offers

a correction

εabεcdα′2
∫
dxdy ik ·∂dX ik ·∂αXc

∫ r6 Λ√
ε

dx′dy′ (x− x′)α ∂′a∂′cf (r) ∂′bf (r) e−πα
′k2f(r).

(3.3.108)

This can be integrated by parts to reduce it to the same form as (III). In particular
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the procedure contracts the indices d and a and the integral over k contributes only

its trace so that again we find a renormalisation of the free action which is suppressed

in the tensionless limit.

This leaves only terms (VI) and (VII) to analyse. In fact, in the bulk the rapidly

varying parts of (VI) and (VII) are related by integration by parts:

k2 α′3εabεcd
∫
dxdy

∫
dx′dy′eik·(Xc−X

′
c)∂′b∂

′
df∂

′
af∂

′
cfe
−πα′k2f ∝

α′2εabεcd
∫
dxdy

∫
dx′dy′eik·(Xc−X

′
c)∂′b∂

′
df (∂′c∂

′
af − ik · ∂′cX ′c∂′af) e−πα

′k2f

(3.3.109)

where the boundary contribution is exponentially suppressed as ε→ 0. The second

term in brackets has the same rapidly varying structure as term (V). The presence

of four derivatives of f in the first term implies that when we scale r by
√
ε there

will be an overall 1/ε multiplying the integral. This time we will use (3.3.107) and

must also expand the slowly varying part of Ψ:

1

2π
log

(
(x− x′)2 + (y + y′)2

4yy′

)
=

(x− x′)2 + (y − y′)2

8πy2
+ . . . (3.3.110)

which under the scaling we apply is of order ε but is independent of X.

To begin with consider just the first term contributing to (VII):

α′2εabεcd
∫ r6Λ

dx′dy′ ∂′b∂
′
df

(
r√
ε

)
∂′c∂

′
af

(
r√
ε

)
e
−πα′k2f

(
r√
ε

)
=

α′2

ε

∫ r6 Λ√
ε

dx′dy′
(
∂′x∂

′
xf (r) ∂′y∂

′
yf (r)−

(
∂′x∂

′
yf (r)

)2
)
e−πα

′k2f(r). (3.3.111)

For the first region of integration (0 6 r 6 a) the second term in brackets is zero

and the first is simply equal to four. For the outer region of integration – where

b 6 r 6 Λ√
ε

– both terms contribute and we find the bracketed terms evaluate to
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−4r−4 so that we must determine

4α′2

ε

∫ a

0

dr re−α
′k2 r2

4 +
α′2

ε

∫ b

a

dr r
(
∂′x∂

′
xf (r) ∂′y∂

′
yf (r)−

(
∂′x∂

′
yf (r)

)2
)
e−πα

′k2f(r)

− 4α′2

ε

∫ Λ√
ε

b

dr r−3− 1
2
α′k2

(3.3.112)

showing a 1
ε

divergence5.

The 1/ε divergence here is independent of X and corresponds to an infinite

renormalisation of the cosmological term
∫
d2ξ
√
g which is implicit when considering

the quantisation of the string. There is also a finite renormalisation of this term

arising out of the subleading term in (3.3.110). These renormalisations are not

suppressed in the tensionless limit α′ →∞.

We consider also the exponential factor that remains and use (3.3.107). It is

more economic to carry out the integral over k first as in footnote 5. Then we

expand

(Xc −X ′c)
2

=
[
(x− x′)α ∂αXc + · · ·

]2
∼ εr2∂αXc · ∂αXc (3.3.114)

where the second line follows because it is to be inserted into an integral over a

rotationally symmetric domain. After exponentiation we obtain a term independent

of ε that renormalises the string action; again this renormalisation is not suppressed

in the tensionless limit.

The renormalisations we have found in this section are just as we expected to find

given the original derivation of (3.1.5). No further non-renormalisable divergences

5This too has to be integrated over k leading to a divergent integral that we again regulate by
working in D spacetime dimensions. The first integral captures the 1

ε divergence so we consider
the inner-most region of integration and do the k-integration first:

4α′2

ε

∫ a

0

dr

∫
dDk re−α

′k2 r2

4 eik·(Xc−X
′
c) =

41+D/2α′(2−D/2)

ε

∫ a

0

dr r1−De−
(Xc−X′c)

2

α′r2 (3.3.113)

The integral with respect to r could be defined for D < 2 to avoid the logarithmic divergence there
as ξ′ → ξ and be analytically continued to physical values of D.
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appear which justifies the consistency of the contact interaction we have introduced.

An appropriate way to split the action into a free and interacting piece is to take the

latter to explicitly exclude the coincidence of the two-points ξ and ξ′, which really

requires that in the presence of the regulator which smears out the δ-function we

take |ξ − ξ′| > Λ in the interaction.

Returning to our aim of showing that the conformal scale of the worldsheet

metric decouples from the expectation value we also note this is the only time it is

necessary to consider higher order terms corresponding to variations about constant

φ. We have worked with a constant worldsheet metric and absorbed the conformal

scale into the cutoff. Had we explicitly tracked it through the calculation it would

appear in this expression as 1/εe−φ and the Green function would pick up further

dependence on φ which is subleading in ε. We can expand φ (x′) about the point

x – the linear terms vanish when averaging in a disk about the point x so that the

leading correction to our calculations is of order ε∇2φ. This combines with the 1
ε

divergence found above to produce a finite term dependent on φ. It is proportional,

however to eφR, where R is the curvature on the worldsheet so integrating this term

with respect to x provides simply

∫
√
gRd2ξ (3.3.115)

which is a topological invariant, independent of φ. The higher order terms in the

expansion vanish with the cut-off. This completes our discussion of the first order

correction of the contact interaction term we propose. Up to renormalisations of

the free string action and cosmological term we have found the result we sought and

have shown that the conformal scale φ decouples from the calculation.

3.4 Higher order corrections

We now proceed to give a general analysis of the higher order corrections present in

the theory with an aim to prove that the conformal scale decouples to all order in

the perturbative expansion of the contact interaction. We follow the same procedure

of extracting the rapidly varying parts of the integrands. We consider the order N
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expansion of the interaction term with 2N vertex operator insertions (corresponding

to 2N points ξi placed around the worldsheet) and consider

〈
V αβ
−k1

(ξ1)V γδ
k1

(ξ2) · · ·V µν
ki

(ξi) · · ·V ρσ
−kN (ξ2N−1)V τχ

kN
(ξ2N)

〉
. (3.4.116)

which must be integrated with respect to each point ξi about the worldsheet as well

as with respect to each of the momenta. Applying Wick’s theorem to this product

will produce a factor common to all terms

exp

(
−πα′

∑
ij

ki · kjG (ξi, ξj)

)
ei
∑
i ki·Xc(ξi) (3.4.117)

which will determine the damping of the integrand. The contractions which generate

terms that are rapidly varying depend upon the placement of the 2N points in the

bulk. The first exponent in (3.4.117), however, can be split into parts containing the

coincident Green function for each point ψi ≡ ψ (ξi) and those involving the Green

function between two different points Gij ≡ G (ξi, ξj):

∑
ij

ki · kjG (ξi, ξj) =
∑
i

k2
iψi +

∑
i 6=j

ki · kjGij. (3.4.118)

For a general placement of the 2N points the sum involving the ψi will ensure that

the integrand is damped by a factor of order

√
ε
α
4
′∑

i k
2
i , (3.4.119)

but we must consider what happens when the points approach the boundary or

when points approach one another in the bulk since here the effects of the Gij also

become important.

3.4.1 Points close to the boundary

The first case to consider is when we locate each of the points within a small strip

close to the boundary. We continue to work on the upper half plane with coordinates

xi and yi for each point. The 2N points will then be integrated a distance Λ
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Λ

Figure 3.5: We consider N points located within a distance Λ of the boundary of the worldsheet
but not within a distance Λ of one another.

into the bulk and in this section we continue to consider only the generic case

where |xi − xj| > Λ for all i and j – see Fig. 3.5. Consequently in this region

the Gij are slowly varying fields, whilst the ψi vary rapidly with yi. We can again

replace the slowly varying fields with their values at the boundary; in particular

Gij = 0 whenever either argument is on the boundary. To leading order in ε equation

(3.4.117) therefore factorises as

∏
i

exp

(
−πα′k2

i f

(
yi√
ε

))
eiki·wi (3.4.120)

where we have also replaced the field Xc (ξi) by its boundary value wi.

The contractions in (3.4.116) which will lead to the appearance of rapidly varying

terms are those which will produce dependence on ψi. This occurs when we consider

contractions amongst the component pieces in each Vki alone rather than those

between different vertex operators. Contractions arising out of the pieces of V µν
ki

(ξi)

provide

2πiα′εabk
[µ
i : ∂bX

ν]
i e
−iki·Xi : ∂iaψie

−πα′k2
i ψi + εab : ∂iaX

µ
i ∂

i
bX

ν
i e
−iki·Xi : e−πα

′k2
i ψi .

(3.4.121)

No further contractions are possible because of the antisymmetry of the worldsheet

indices. Since ψi is a function of the distance into the bulk only we may limit con-

sideration to derivatives with respect to yi. We thus consider the general case where

the integrand, (3.4.116), contains r contractions of the form ∂iyψi. The remaining

factors in the integrand can be replaced by their boundary values so the rapidly
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varying parts of integrals into the bulk can be expressed

r∏
j=1

α′k
µj
j

∫ Λ

0

dyj ∂
j
yf

(
yj√
ε

)
exp

(
−πα′k2

jf

(
yj√
ε

))

×
2N∏

i=r+1

∫ Λ

0

dyi exp

(
−πα′k2

i f

(
yi√
ε

))

=
√
ε

2N−r
r∏
j=1

α′k
µj
j

∫ Λ√
ε

0

dyj ∂
j
yf (yj) exp

(
−πα′k2

jf
(
y2
j

))
×

2N∏
i=r+1

∫ Λ√
ε

0

dyi exp
(
−πα′k2

i f (yi)
)

=
√
ε

2N−r
r∏
j=1

2k
µj
j

πk2
j

(
1−

(
Λ√
ε

)− 1
2
α′k2

j

)
2N∏

i=r+1

∫ Λ√
ε

0

dyi exp
(
−πα′k2

i f (yi)
)
(3.4.122)

where the second equality follows after a scaling
y2
i

ε
→ y2

i . This determines the ε-

dependence of a term with r-contractions. Since k2
j ≥ 0 in Euclidean signature and

2N − r ≥ 0 we see that the second term in rounded brackets will always vanish as

the regulator is removed. This allows us to focus on the final product of integrals

which can be bounded:

√
ε

2N−r

∣∣∣∣∣
2N∏

i=r+1

∫ Λ√
ε

0

dyi exp
(
−πα′k2

i f (yi)
)∣∣∣∣∣ ≤ √ε2N−r

2N∏
i=r+1

(
Λ√
ε

)
exp

(
−πα′k2

i f (0)
)

=
√
ε

2N−r
(

Λ√
ε

)2N−r

= Λ2N−r (3.4.123)

The maximum value of r is at r = 2N because each vertex operator can only supply

one rapidly varying contribution; then since Λ → 0 with ε this is the only case

that will provide a non-vanishing contribution when the regulator is removed. The

integral into the bulk in this case takes the form (removing the regulator)

2N∏
j=1

α′k
µj
j

∫ ∞
0

dyj ∂
j
yf
(
y2
j

)
exp

(
πα′k2

jf (yj)
)
, (3.4.124)
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kα1
w1

wi+1

kχN

w2N−1

w2N

kµi
wi

w2

Figure 3.6: Using the unit disk representation of the worldsheet domain we demonstrate the
physical meaning behind the result. There are N propagators with momenta ki joining 2N points
restricted to the boundary. This mirrors the calculation in Maxwell field theory for the expectation
value of a Wilson loop given by the worldline of a pair of quarks, if this worldline is taken to be
the fixed boundary of the string in our theory.

providing
2N∏
j=1

2kµj

πk2
j

. (3.4.125)

This must now be combined with the remainder of the slowly varying fields and

the integrals about the boundary. This involves some number of second derivatives

∂ia∂
j
bGij and the remaining field derivatives ∂iaXc (ξi). The only arrangement of

derivatives which provides a non-vanishing contribution as the regulator is removed

involves 2N derivatives ∂iyψi meaning that the only derivatives remaining are with

respect to each xi. Since at leading order the Green function is to be evaluated on

the boundary, where it is identically zero, all derivatives ∂ix∂
j
xGij vanish. We are

consequently free to consider the case of having 2N of the fields Xc (ξi) uncontracted

which gives the only non vanishing contribution close to the boundary as

N∏
j=1

4(
k2
j

)2

∫
B

k
[µ
j ∂xX

ν]
c k

[µ
j ∂
′
xX
′ν]
c eikj ·(X−X

′) (3.4.126)

= 4N
N∏
j=1

∫
B

dwj · dw′j
eikj ·(wj−w

′
j)

k2
j

(3.4.127)

where we have left the result in its Fourier representation and the points wj and

w′j have opposite momenta. For the above expression we have also reinstated the

antisymmetry on worldsheet and target space indices and have contracted the indices

of the fields corresponding to vertex operators with opposite momenta.
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We reiterate that (3.4.127) is the only contribution from this regime that does

not vanish as the regulator is removed and also point out that it is independent

of α′. The physical interpretation is of N massless propagators pairing off the 2N

points on the boundary, as depicted in Fig 3.6. The pairs of points joined together

are those from vertex operators with equal and opposite momenta ±ki. These

momenta are to be integrated over but (at least so far) a dependence on the scale

of the worldsheet metric has not arisen so there are no mass shell conditions to be

imposed. It remains to consider the other cases where the damping of (3.4.119) is

not present to investigate whether any dependence on this scale arises to ensure that

these expectation values do indeed evade mass shell conditions.

3.4.2 Points clustered in the bulk

When we consider pairs of points meeting in the bulk the Green function between

nearby points ξi and ξj becomes of the same order as ψi and ψj when their distance

is less than
√
ε. Furthermore Gij is then rapidly varying as the two points are

moved apart. In this subsection we again work at order N but consider the effect

of having n of these points clustered in the bulk about a reference point, ξn+1, as is

illustrated in Fig 3.7. We shall calculate the contribution of this configuration to the

expectation value (3.4.116) by integrating the n points about that reference point.

The reference point ξn+1 would remain to be integrated about the entire worldsheet.

We proceed by considering the form of the integrand due to Wick contractions

between the n+ 1 vertex operators Vk1 · · ·Vkn+1 because carrying out these contrac-

tions is sufficient to extract the leading order behaviour when these n + 1 points

become close. In the following we shall extract the ε and α′ dependence arising from

the integral of the n points about the reference point before discussing the effect of

the remaining points.

A string of n+ 1 vertex operators of the form V µ1ν1

k1
· · ·V µn+1νn+1

kn+1
corresponds to

a product of fields

eik1·X1∂a1X
µ1

1 ∂b1X
µ1

1 · · · ∂an+1X
µn+1

n+1 ∂bn+1X
µn+1

n+1 e
ikn+1·Xn+1 . (3.4.128)
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Λ

Λ

Figure 3.7: We imagine that n points are clustered within a distance Λ of a point ξn+1 (in red)
in the bulk of the worldsheet. The remaining points are elsewhere on the worldsheet and will be
discussed at the end of this section. We repeat that points of equal and opposite momenta ±ki
are excluded from meeting in the bulk so that the n+ 1 points have distinct momenta.

In carrying out the analysis of this section we once again consider functions which

vary rapidly within the region of integration and those which vary slowly. In this

case, slowly varying expressions will be replaced by their values at the reference

point ξn+1. In particular the Green function is given by

Gij = f

(
|ξi − ξj|

2
√
ε

)
− f

(∣∣ξi − ξ∗j ∣∣
2
√
ε

)
. (3.4.129)

Since the second term varies slowly as the n points are integrated about the reference

point ξn+1, it will be replaced at first order in ε by

f

(∣∣ξn+1 − ξ∗n+1

∣∣
2
√
ε

)
(3.4.130)

which is approximately 1
2π

ln yn+1√
ε

. A derivative with respect to the relative displace-

ment ξi− ξj acting on the first term in Gij produces a factor of 1√
ε

so is enhanced in

comparison to derivatives acting on the second, slowly varying term. As a further

consequence, the coincident Green functions ψi contain only (3.4.130) so are slowly

varying and to first order in ε the following replacement can be made:

ψi ≈
1

2π
ln
yn+1√
ε
. (3.4.131)

The derivatives of these functions are therefore also subleading in ε and independent

of X.

These properties allow us to consider a general term arising out of the expecta-

tion of (3.4.128) as follows. Wick contractions could generate q terms of the form
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∂ai∂ajGij and r of the form k
µj
j ∂aiGij and uncontracted fields will offer p terms of the

form ∂aiX (ξi). These numbers are constrained by the necessity 2q+r+p = 2 (n+ 1)

and in forming the product of r first derivatives the antisymmetry of the indices must

be considered; we return to this later. With (3.4.118) we are thus led to consider

α′q+r
∫ n∏

i=1

d2ξi

q terms︷ ︸︸ ︷
∂aj∂akf

(
|ξj − ξk|

2
√
ε

)
· · ·

r terms︷ ︸︸ ︷
kµll ∂bmf

(
|ξl − ξm|

2
√
ε

)
· · ·

p terms︷ ︸︸ ︷
∂awX

µw (ξw) · · · ×

exp

(
−πα′

∑
i

k2
iψi − πα′

∑
i 6=j

ki · kjGij

)
eiki·Xi .

(3.4.132)

The contribution from the first sum in the exponent and the corresponding fac-

tors of (3.4.130) from the second sum allows us to rewrite the exponential as

exp

(
−α′

2

∑
i,j

ki · kj ln
yn+1√
ε
− πα′

∑
i 6=j

ki · kjf
(
|ξi − ξj|√

ε

))
(3.4.133)

Since we are interested in eventually removing the regulator we may think of ε as a

small quantity. Recalling that the expectation value of the vertex operators (3.4.116)

is to be integrated with respect to each of the momenta we consider the effect of

the first term in (3.4.133) on such an integral. In the limit as ε → 0 Laplace’s

approximation shows that this term behaves effectively as

δ (
∑

i ki)(
α′

2π
ln yn+1√

ε

)D
2

(3.4.134)

which we shall use as a means of tracking the ε and α′ dependence it carries.

The integrals with respect to the ξi can be carried out by using the upper half

plane geometry zi = xi + iyi. We now consider integrating each of these points ξi
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about a circular region of size Λ, centred on ξn+1:

α′q+rδ (
∑

i ki)(
α′

2π
ln yn+1√

ε

)D
2

∫
|ξi−ξn+1|<Λ

n∏
i=1

d2ξi

q terms︷ ︸︸ ︷
∂aj∂akf

(
|ξj − ξk|

2
√
ε

)
· · ·

r terms︷ ︸︸ ︷
kµll ∂bmf

(
|ξl − ξm|

2
√
ε

)
· · · ×

p terms︷ ︸︸ ︷
∂awX

µw (ξw) · · · exp

(
−πα′

∑
i 6=j

ki · kjGij

)
eiki·Xi .

(3.4.135)

At this point we split the integration region into three sections corresponding to

the regions where we may employ the approximate forms of f for very large or

very small argument. We have seen, however, that the divergences we stand to

encounter manifest themselves when considering the short distance behaviour so we

will concentrate here on the innermost region, where 0 ≤ |ξi − ξj| ≤
√
εa. Fur-

thermore we anticipate taking the tensionless limit whereby the exponential factor

exp
(
−πα′

∑
i 6=j ki · kjf

(
|ξi−ξj |√

ε

))
damps the integrand for large α′ except when Gij

is small – precisely in the innermost region where we shall focus. This also pro-

duces the contribution that is leading order in α′. In this region the function f is

approximated by a quadratic expression

f (s) ≈ s2

4π
(3.4.136)

which implies that the exponent above takes on a Gaussian form. As previously we

shall scale each of the n displacement variables ξi−ξn+1√
ε
→ ξi − ξn+1 so as to remove

the ε-dependence from the integrand. We can finally replace any derivatives with

respect to xn+1 or yn+1 acting on a function of |ξi − ξn+1| by derivatives with respect
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to xi or yi. The expression becomes

εn−q−
r
2α′q+r−

D
2

δ (
∑

i ki)(
4 ln yn+1√

ε

)D
2

∫ 2π

0

∫
|ξi−ξn+1|<a

n∏
i=1

d2ξi

q terms︷ ︸︸ ︷
∂aj∂akf

(
|ξj − ξk|

2
√
ε

)
· · · ×

r terms︷ ︸︸ ︷
kµll ∂bmf

(
|ξl − ξm|

2
√
ε

)
· · ·

p terms︷ ︸︸ ︷
∂awX

µw (ξw) · · · exp

(
−πα′

∑
i 6=j

ki · kjGij

)
eiki·Xi .

(3.4.137)

For large α′ the exponential factor damps the integrand outside of the region where

|ξi − ξj|2 << α′ki · kj which is by construction inside the innermost region we are

concerned with here. In this limit the integral can be safely approximated by taking

the upper bound of the integration over relative displacements to infinity. Also in

this region the q second order derivatives are independent of the ξi whilst the r

first order derivatives are linear in the differences ξl − ξm so lead to moments of a

Gaussian integral. The exponent can be written ξTNξ where the vector ξ has ith

component ξi − ξn+1 and the matrix N has components Nij ≡ δijki (
∑

l kl)− ki · kj.

It is clear that the smallest power of ε arises by maximising q + r
2
. With the

constraint 2q + r + p = 2 (n+ 1) this is done by setting p = 0 which automatically

leads to a term of order 1
ε
, mirroring the worst behaviour found in the previous

section. Following the procedure used for term (VI) of the first order calculation

the r first order derivatives can be removed via an integration by parts which leads

to an integral with respect to the relative displacements of the form

α′−
D
2

+n+1

ε (ln ε)
D
2

(ln yn+1)−
D
2 δ

(∑
i

ki

)∫ n∏
i=1

d2ξi exp
(
−πα′ξTNξ + iki ·Xi

)
(3.4.138)

which is equal to

1

ε (ln ε)
D
2

(ln yn+1)−
D
2

α′
D
2
−1

δ

(
i
∑
i

ki

)
1

detN
e
∑
i ki·Xn+1 . (3.4.139)

This pole in ε can be suppressed by taking the tensionless limit of the string theory
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α′k2
i →∞ for all momenta due to the damping caused by the overall factor

1

α′
D
2
−1
. (3.4.140)

Note also that in this case there are no finite corrections arising from an expansion of

the slowly varying fields due to the suppression caused by the denominator (ln ε)D/2.

The integration by parts leads to a complicated index structure but it is con-

strained by the structure of the vertex operator. As in the previous chapter we

contract (3.4.116) with one of the momenta, say kiµ, and integrate the point ξi

throughout the domain. The effect of the contraction kiµV
µν
ki

(ξi) can be written

∫
D

d2ξi ε
abkiµ∂aX

µ
i ∂bX

ν
i e

iki·Xi =

∫
D

d2ξi ε
ab∂a

(
∂bX

ν
i e

iki·Xi
)

(3.4.141)

=

∮
∂D

dξi ∂X
ν
cie

iki·Xci (3.4.142)

providing only a boundary contribution. This is the string theory version of the

generalised Gauss’ law we have already seen for point particles. We are left with a

total of n− 1 points to be integrated about the point ξn+1 but the divergences that

arose out of contractions involving the X (ξi) can no longer appear. The structure

of the divergence which appears because of the presence of the vertex operator V µν
ki

must therefore be such that it vanishes when contracted with ki. Integrating by

parts to remove the r first order derivatives is responsible for the formation of this

index structure6.

6This can be illustrated by considering two such operators and taking the leading order 1
ε piece

of ∫
d2ξd2ξ′ εabεcd

〈
∂aX

µ∂bX
νeik·Xeij·X

′
∂′cX

′α∂′dX
′β
〉
≡ 1

ε
Hµναβ + · · · (3.4.143)

where the · · · represent terms which are regular in ε (which should be familiar from section 3.3.2
where we had jµ = −kµ at first order). Hµναβ holds the tensor structure and is a function of the
momenta. In our work we are concerned only with the piece antisymmetric in µ and ν and also in
α and β and as a consequence linear in momenta so that

Hµναβ ∝ A
[
δµαδνβ − δµβδνα

]
+B

[
kµjαδνβ − kµjβδνα − kνjαδµβ + kνjβδµα

]
+ C

[
jµkαδνβ − jµkβδνα − jνkαδµβ + jνkβδµα

]
(3.4.144)

The requirement kµH
µναβ = 0 implies that B = 0 and A = −k · jC. Taking n = 1 in (3.4.137)

the term proportional to A arises out of q = 2 second order derivatives (so r = p = 0) and the
term proportional to C comes from r = 2 first order derivatives and q = 1 second order derivatives
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Continuing with the general case of n + 1 points clustered in the bulk the next

singular behaviour which may appear comes from q = n and r = 1, which gives

a term of order ε−
1
2 . This corresponds to exchanging one second derivative of the

function f for a single derivative which leaves an uncontracted derivative of a field

X (p = 1) along with 2q second derivatives and 1 first derivative acting on Green

functions. There is no rotationally invariant tensor with odd rank so the integral of

this term vanishes when integrated about the point ξn+1. All further contributions

are of order 1 or a positive power of ε multiplied by the (ln ε)−
D
2 common to all

terms. For this reason they vanish as the regulator is removed.

We have thus argued that in the tensionless limit the contribution from n + 1

points meeting in the bulk is vanishing. For an arbitrary placement of the remaining

points on the worldsheet the coincident Green functions of individual points, ψi,

damp the integrand. A collection of points in the region of the boundary offers

a finite contribution as these points are integrated into the bulk but the problem

factorises into this and the cluster of points in the bulk. In general the integrand

would be sensitive to the scale of the metric when considering the Green function of

points which are located in the bulk. That this contribution vanishes as the regulator

is removed completes the argument that the result of the previous subsection evades

a mass shell condition on the momenta so it generalises to all orders. This is a

significant result for the interacting string theory presented here because as well as

evading a mass shell condition we also find no constraint on the dimensionality of

target space. We are free to specify D = 4 where the result of the calculation at

order N reads:

4N
N∏
j=1

∫
B

dw · dw′ e
ikj ·(w−w′)

k2
j

. (3.4.145)

Integrating the N momenta gives the position space representation of the product

of Wilson loops for the curves fixing the boundary of the string worldsheet.

(p = 0 again), with the dependence on k and j appearing after integrating by parts to remove
the first order derivatives. To compare to the first order calculation presented in section 3.3.2 it is
necessary to set the momenta equal and opposite and to contract indices µ with α and ν with β.
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3.4.3 Discussion

We have presented an argument for the evaluation of a generic product of vertices

by focussing on the configuration of points where the Green function does not damp

the integrand. Close to the boundary we also dealt only with the generic case that

the points could not come within a distance Λ of one another and this deserves

attention. Recall that there the coincident Green functions ψ (ξi) vary from 0 on

the boundary to order ln ε moving into the bulk so that close to the boundary they

do not damp the integrand.

Considering two such vertex operators we have derived the form of the integrand

for |x− x′| >> Λ in section 3.3.1. We can also consider the configuration where

both points are close enough to apply the quadratic approximation to the terms

making up the regulated Green function to derive

Ψ (z, z′) = −f
(
y√
ε

)
− f

(
y′√
ε

)
− 2

[
f

(
|z − z′|

2
√
ε

)
− f

(
|z − z̄′|

2
√
ε

)]
≈ y2

4πε
+
y′2

4πε
− 2

[
(x− x′)2 + (y − y′)2

16πε
− (x− x′)2 + (y + y′)2

16πε

]

=
(y − y′)2

4πε
(3.4.146)

which is independent of the separation x − x′. In this region it is feasible to carry

out the integrals of the various terms which arise. However we must look ahead to

the intermediate region where a
√
ε < |x− x′| < b

√
ε . As the transverse separation

between the points increases the relative separation x − x′ appears in Ψ in a non-

trivial manner and with both points close to the boundary this dependence is no

longer subleading. The form of the answer is still constrained by the generalised

Gauss’ law (3.4.142) but a finite or divergent contribution could be present and

would not be suppressed by α′.

We are therefore unable to complete our programme for the bosonic string due

to the difficulty in determining what happens when points meet in the vicinity of

the boundary. In the next section we turn to spinor QED since this is a more

realistic model. We discussed in the introduction that the one dimensional quantum

theory on the worldlines used to describe spinor matter has a local supersymmetry
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and this motivates us to consider including supersymmetry in our interacting string

theory. The next section introduces the necessary preliminaries and the equivalent

calculations for the spinning string. The extra symmetry gained will be shown to

lead to a cancelling of the 1
ε

divergences which arose in the purely bosonic case

(both in the bulk and on the boundary) and the finite contribution shall be shown

to provide precisely the expectation value of the supersymmetric Wilson loops which

appear in the worldline formalism of spinor QED.

3.5 Spinor QED

The worldline formalism of spinor QED enjoys a local supersymmetry which suggests

a generalisation of our interacting string theory to include spin degrees of freedom

on the worldsheets. The gauge field A appears in the supersymmetric Wilson loop

WA = exp

(
i

∫
dω

dξ
· A+

1

2
Fµνψ

µψν
√
h dξ

)
(3.5.147)

where our notation follows that of the introduction – ψµ is the super-partner to the

coordinate wµ. Our aim in this section is to replace the integral over A of a product

of these objects by a functional integral over spinning worldsheets supplemented by

a contact interaction which generalises the bosonic theory presented so far. This

interacting string theory will have worldsheet supersymmetry. A perturbative ex-

pansion of the contact interaction implies we must calculate the expectation value of

products of supersymmetric vertices inserted at different points in the worldsheet.

We shall demonstrate that the result we seek arises in a similar way to the

bosonic calculation in that the contribution comes from vertices located close to

the worldsheet boundary. The divergences encountered when the vertices cluster

in the bulk will not be present for the spinning string because they are forbidden

by the residual supersymmetry which we shall preserve throughout regularisation.

There can also be no correction to the result arising when the points are close to one

another and to the boundary; this time both supersymmetry and the generalisation

of Gauss’ law (3.4.142) prevent such a contribution from arising.
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3.5.1 The spinning string

To introduce fermions on the worldsheet we could follow a similar program to our

discussion of the fermionic point particle. We might worry, however, what the effects

of doing so will be on the quantisation of the theory. We can anticipate problems at

the outset by asking how we might deal with the time-like modes of the fermionic

fields – is it possible to decouple these and find a positive definite space of physical

states in the same way as for the bosonic string? The answer is of course that

the spinning string worldsheet theory enjoys a supersymmetry and this (with the

ordinary reparameterisation invariance) is enough to decouple the negative norm

states in the critical dimension D = 10.

A complete treatment of the spinning string begins with a locally supersymmet-

ric two dimensional supergravity theory which involves super-partners to both the

bosonic worldsheet coordinates (Ψ and Ψ̄) and the worldsheet metric (χ and χ̄).

This is just an extension of the work of Chapter 2 to a two dimensional theory. The

theory is again most easily formulated in superspace, but now there are two inde-

pendent super-diffeomorphism transformations. Canonically the gauge symmetry

is fixed and the decoupling of the negative-norm modes follows if the equations of

motion for g and χ are imposed on the physical states of the system [32, 33, 39]. In

the functional approach the extra structure contained in the volume elements Dχ

and DΨ and the regularisation of the worldsheet theory combine to produce the

super-symmetric generalisation of the Liouville theory [40], which contains anoma-

lous dependence on the super-conformal scale [63]. Only in the critical dimension

does the coefficient of this factor vanish.

Rather than dealing with the locally supersymmetric and reparameterisation

invariant spinning string we shall immediately use the gauge-fixed7 action [39]

Sspin =
1

4πα′

(∫
H

d2zd2θ D̄X ·DX−
∫
y=0

dx Ψ̄ ·Ψ
)
. (3.5.149)

7We might guess this form by generalising the bosonic action in complex coordinates ds2 =
eφdzd̄z which takes the form

Sgf =

∫
d2z ∂Xµ∂̄Xµ (3.5.148)

by promoting X to a superfield and derivatives to covariant (super) derivatives.
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The parameter domain is taken to be the upper-half complex plane z = x + iy ex-

tended by the anticommuting variables θ and θ̄ which together make up the deriva-

tives

D ≡ ∂

∂θ
+ θ

∂

∂z
; D̄ ≡ ∂

∂θ̄
+ θ̄

∂

∂z̄
. (3.5.150)

We have introduced the superfield

X ≡ X + θΨ + θ̄Ψ̄ + θθ̄B (3.5.151)

where X is the bosonic coordinate and Ψ and Ψ̄ make up its fermionic super-

partner; these fields have dimension of length. B is an auxiliary field required for

the supersymmetry which can be disregarded for the purposes of our calculation.

This gauge-fixed form of the action has a residual global supersymmetry generated

by Grassman η

δηX = η

(
∂

∂θ
− θ ∂

∂z
+

∂

∂θ̄
− θ̄ ∂

∂z̄

)
X, (3.5.152)

corresponding to the domain preserving transformation on the co-ordinates

z → z + θη; z̄ → z̄ + θ̄η; θ → θ + η; θ̄ → θ̄ + η . (3.5.153)

The boundary term in (3.5.149) would not be present in the conventional string

theory since it would vanish under the usual Ramond or Neveu-Schwarz boundary

conditions. We have introduced it because in order to relate the worldsheet variables

to those on the worldline we will have to enforce the Dirchlet boundary conditions

X|y=0 = w,
(
Ψ + Ψ̄

)∣∣
y=0

= h1/4 ψ . (3.5.154)

Since ψ is a world-line scalar the factor of h
1
4 is natural and will also be seen to

lead to the correct formation of the supersymmetric Wilson loop when we consider

the effect of the contact interaction to be introduced below. The relation between

the local supersymmetry on the worldlines and the global supersymmetry of the

worldsheet is understood by noting that under (3.5.152) the boundary conditions

(3.5.154) are preserved if a simultaneous transformation of the worldline variables
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is made with the local supersymmetry parameter α in (1.0.16) related to the global

parameter η by α = h1/4η.

We generalise the contact interaction of the bosonic string by writing in gauge-

fixed form

Sint [Xi,Xj] = q2

∫
d2θi

(∫
d2zi D̄iX

[µ
i DiX

ν]
i −

∫
yi=0

dxi θiθ̄iΨ̄
[µ
i Ψ

ν]
i

)
δd (Xi −Xj)×

d2θj

(∫
d2zjD̄jX

[µ
j DjX

ν]
j −

∫
yj=0

dxj θj θ̄jΨ̄
[µ
j Ψ

ν]
j

)
(3.5.155)

where we again use the shorthand Xi ≡ X (zi) . The inclusion of the boundary terms

ensure that this contact interaction is also invariant under the residual supersym-

metry and we use it to form a theory of a set of spinning strings spanning fixed

boundaries

Ss =
∑
i

Ss[Xi] +
∑
ij

Sint[Xi,Xj] (3.5.156)

which is the generalisation of the bosonic theory considered in previous sections. We

shall calculate the partition function for this interacting string theory by perturba-

tive expansion of the interaction term in order to establish the equality (3.1.32)

n∏
i=1

D (Xi, ψi, gi)

Z0

e−Sspin =

∫
DA

N
e−S

′
gf

∏
i

e−S[A] (3.5.157)

which replaces the functional integral over the gauge field of a product of supersym-

metric Wilson loops by an integration over the string worldsheets whose boundaries

are those curves. The delta-function in the interaction term can be Fourier decom-

posed to reduce the problem to the expectation value of insertions of vertices

D̄X[µDXν]δd (X− x) =

∫
ddk

(2π)d
e−ik·x

1

2
V µν (k) , V µν (k) = D̄X[µDXν] eik·X .

(3.5.158)

As in the bosonic case we shall show that the expectation value of this delta

function decouples from the super-conformal scale. This too is unusual because

upon quantisation V µν (k) acquires an anomalous dimension which would impose



3.5. Spinor QED 118

a mass shell condition (k2 = 0). But again the Dirichlet boundary conditions and

the self-contraction of the exponential which give rise to the anomalous dimension

will ensure that the insertion is suppressed for all points z that are not close to

the boundary. Points close to the boundary, as measured with respect to the short

distance cut-off we shall use to regulate the Green function, will provide the finite,

scale independent contribution which makes up (3.1.32).

To demonstrate the decoupling and establish the regularisation we shall use we

begin with the zeroth-order calculation

∫
DX e−Sspin

∫
d2θ

(∫
d2z D̄X[µDXν] −

∫
y=0

dx θθ̄Ψ̄[µΨν]

)
eik·X . (3.5.159)

The super-field can be split as X = Xc+X̃+X̄ which is a classical piece – D̄DXc = 0

– which also satisfies the boundary conditions, another solution X̃ which absorbs

the sources produced by the insertion and a quantum fluctuation X̄. Functionally

integrating over X̄ gives

e−Sspin[Xc]−SL
(∫

d2zd2θ eik·Xc−πα′k2G0
(
D̄X[µ

c DXν]
c − 2πα′

(
D̄X[µ

c (DG)0ik
ν]

+ (D̄G)0ik
[µDXν]

c

))
−
∫
y=0

dx Ψ̄[µΨν]eik·Xc
)

(3.5.160)

where SL contains the functional determinants which give rise to the super-Liouville

action [40] and G0 is the Green function evaluated at coincident points. The defining

equation of the Green function is

−D̄DG (z1, θ1; z2, θ2) = δ2 (θ1 − θ2) δ2 (z1 − z2) (3.5.161)

subject to the boundary conditions G = 0 if yi = 0 and θi = θ̄i (i = 1 or 2) which

has solution that generalises the bosonic case

G (z1, θ1; z2, θ2) = log
(
z12z̄12

)
− log

(
zR12z̄

R
12

)
(3.5.162)
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where

z12 = z1− z2− θ1θ2, z̄12 = z̄1− z̄2− θ̄1θ̄2, z
R
12 = z1− z̄2− θ1θ̄2, z̄

R
12 = z̄1− z2− θ̄1θ2 .

(3.5.163)

Evaluated at coincident points the Green function is singular and we regulate it via

heat kernel regularisation with the obvious generalisation of (3.2.56):

Gε = −f

(√
z12z̄12√
ε

)
+ f

(√
zR12z̄

R
12√

ε

)
(3.5.164)

with ε again a short distance cut-off and f defined as in (3.2.57). This function

satisfies the boundary conditions and to verify this is a regularisation of the Green

function it is easy to determine

−D̄DGε = (θ1 − θ2)(θ̄1 − θ̄2)
e−

z12z̄12
ε

4πε
− (θ1 − θ̄2)(θ̄1 − θ2)

e
−zR12z̄

R
12

ε

4πε
. (3.5.165)

Upon taking the limit ε → 0 we recover Green’s equation. Furthermore this reg-

ulated Green function is invariant under the residual supersymmetry because z12,

zR12, z̄12 and z̄R12 are all separately invariant under (3.5.153). This will be crucial

in allowing us to constrain the form of the integrals we will calculate. Using this

regulator we can determine the coincident limits as an expansion in θ and θ̄:

Gε
0 =

(
1 +

i

2
θθ̄

∂

∂y

)
f

(
2y√
ε

)
; (DGε)0 = (D̄Gε)0 =

i

2
(θ − θ̄) ∂

∂y
f

(
2y√
ε

)
(3.5.166)

and we can also expand the common exponential term in (3.5.160) as

e−πα
′k2G0 =

(
1 +

i

2
θθ̄

∂

∂y

)
e
−πα′k2f

(
2y√
ε

)
. (3.5.167)

The exponential factor on the right hand side of the above equation has been

seen in the previous sections and for fixed k2 it damps the integrand at all points

in the domain except for those close to the boundary y .
√
ε. We thus repeat our

procedure of integrating (3.5.160) a distance Λ into the bulk, where Λ→ 0 as ε→ 0

but we arrange for Λ√
ε

to diverge. This means that to leading order in ε we can
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replace the components of the classical super-field Xc by their boundary values.

The integral of the first term in (3.5.160) cancels against the boundary term

present in the interaction term. To see this consider

−2i

∫
dx d2θ eik·XcD̄X[µ

c DXν]
c

∫ Λ

0

dy

(
1 +

i

2
θθ̄

∂

∂y

)
e
−πα′k2f

(
2y√
ε

)
. (3.5.168)

Both parts of the y integral are known from previous work. The monotonicity of

f (s) allows us to bound the first term
∣∣∣∫ Λ

0
dy exp(−πα′k2f(2y/

√
ε))
∣∣∣ < Λ which

vanishes as the cut-off is removed. The second term is a total derivative and in the

limit as ε→ 0 evaluates to − i
2
θθ̄. We must still integrate over θ which means that

we must determine the θ- and θ̄-independent parts of the slowly varying terms on

the boundary. The result is ∫
dx eik·XcΨ̄[µ

c Ψν]
c (3.5.169)

which is as claimed.

The remaining term in (3.5.160) can be written as

− 2i

∫
dx d2θ eik·Xc

(
D̄X[µ

c ik
ν] +DX[ν

c ik
µ]
)

× (θ − θ̄)
πα′k2

∫ Λ

0

dy
∂f

∂y

(
1 +

i

2
θθ̄

∂

∂y

)
e
−πα′k2f

(
2y√
ε

)
. (3.5.170)

The second term in the rounded brackets of the y-integral cannot contribute due

to its θ dependence and the first term is again a total derivative which tends to

unity as the regulator is removed. We again expand the slowly varying fields on the

boundary in powers of anti-commuting variables and seek terms with a single factor

of θ or θ̄. A little algebra leads to

1

πα′k2

∫
dx eik·Xc

(
ik ·

(
Ψc + Ψ̄c

)
(Ψc + Ψ̄c)

[µ +
∂X

[µ
c

∂x

)
ikν]. (3.5.171)

We have preserved the global supersymmetry with our regularisation and it is

straightforward to verify that this result is indeed invariant under (3.5.152). We

can now use the boundary conditions (3.5.154) to relate the boundary values of the

worldsheet variables to the variables on the one dimensional worldlines to obtain
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the ε→ 0 limit of (3.5.160) as

−2e−Sspin[Xc]−SL
∫
B

dx eik·w
(
dw[µ

dx
+
√
h ik · ψψ[µ

)
ikν]

k2
. (3.5.172)

which we recognise contains the expression entering the exponent of the supersym-

metric Wilson loop. It is only in Sspin [Xc] that the string length scale
√
α′ appears

and only in SL that the conformal scale and its super-partner are present. The clas-

sical action can be removed by taking the tensionless limit α′k2 → 08. The result

does not contain any further dependence on the metric which we have treated as

constant, absorbing the conformal scale into the cut-off ε. This has occurred de-

spite there being no mass-shell restrictions on k2. Since there is no ε-dependence in

(3.5.172) we conclude that the result is independent of this constant scale. Spatial

variations in this scale contribute at higher order in ε so vanish as the cut-off is

removed. So the conformal scale and its super-partner decouple from the calcula-

tion (if we assume that the metric on the world-line is independent of that on the

world-sheet) and are present only in SL; they can be removed completely if we as-

sume further internal degrees of freedom to take us to a critical string-theory or by

normalising this zeroth order expectation value against the non-interacting partition

function.

Similarly to the bosonic case the interaction contains terms which involve points

inserted on different world-sheets and other terms with multiple insertions on the

same world-sheet. For the former we can use (3.5.172) to average over two distinct

world-sheets to determine the leading order behaviour in the tensionless limit:

∫
DXi

Z0

DXj

Z0

e−Sspin[Xi]−Sspin[Xj ] Sint[Xi,Xj] =

q2

∫
ddk

(2π)d

∫
BB′

dx dx′
eik·(w−w

′)

k2

(
dw

dx
+
√
hψ · ik ψ

)
·
(
dw′

dx′
+
√
h′ ψ′ · ik ψ′

)
(3.5.173)

This result is the order q2 contribution to the expectation value of two super-Wilson

8As was discussed at the end of section 3.2 the tensionless limit corresponds to taking α′ large
as measured with respect to the length scale, l, of the closed loop B – that is l/

√
α′ → 0.
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loops parameterised by x and x′ in spinor QED. This demonstrates our result holds

at leading order in the case that the worldsheets are distinct. Following the bosonic

theory we shall consider extending this to arbitrary order and also treat the case

that multiple vertices are on the same worldsheet.

3.5.2 Generalisation to arbitrary order

When some insertions approach one another on the same world-sheet we may find

divergences that change our result in a similar way to those we found for the bosonic

theory. In this section we demonstrate that no such divergences arise and the calcu-

lation reduces to the result we seek. It is because our interaction and regularisation

procedure preserves the residual supersymmetry that such divergences are forbidden

from arising since their dependence on the worldsheet fields will not be supersym-

metric.

We follow the same steps as in the bosonic case by considering a general term

at order N in the expansion of the interaction which has 2N vertex insertions on a

single world-sheet:

∫
DX e−Sspin

2N∏
i=1

∫
d2θi

(∫
d2zi D̄X

[µi
i DX

νi]
i −

∫
yi=0

dxi θiθ̄iΨ̄
[µi
i Ψ

νi]
i

)
eiki·Xi .

(3.5.174)

The functional integral over X will lead to the ubiquitous factor

exp
(
−πα′

∑
ij ki · kjGij

)
where we continue to denote the Green function

Gij ≡ G (zi, θi; zj, θj) . When all of the points are separated by a distance much

greater than
√
ε the exponential factors exp (−πα′k2G0) which involve (3.5.167)

suppress the integrand unless the points are close to the boundary. In the latter

case we follow section 3.4.1 by integrating each point a distance Λ into the bulk,

focussing on contractions that take place separately within each vertex. At leading

order in the cut-off the components of the super-fields and the slowly varying Green

functions between the separated points will be replaced by their boundary values.

Using (3.5.160) take the contribution involving r copies of the second term which

arises from a single contraction of the quantum fields and integrate these a distance
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Λ into the bulk:

r∏
j=1

∫ ∫ Λ

0

d2θjdyj 2πα′
(
D̄jX

[µj
cj ik

νj ]
j +DjX

[νj
cj ik

µj ]
j

)
× i

2

(
θj − θ̄j

) ∂f
∂yj

(
1 +

θj θ̄j
2

∂

∂yj

)
e
−πα′k2

j f
(

2yj√
ε

)
eikj ·Xcj

×
2N∏

i=r+1

∫ ∫ Λ

0

d2θidyi D̄iXciDiXci

(
1 +

θi θ̄i
2

∂

∂yi

)
e
−πα′k2

i f
(

2yi√
ε

)
eiki·Xci .

(3.5.175)

To extract the ε-dependence of this expression it is useful to generalise the scaling

carried out in the bosonic case by setting

y → ε
1
2y; θ → ε

1
4 θ; θ̄ → ε

1
4 θ̄ (3.5.176)

for all variables in (3.5.175). Under these changes of variables and simplifying the

anti-commuting variables a little we get

ε−
r
4

r∏
j=1

∫ ∫ Λ√
ε

0

d2θjdyj 2πα′
(
D̄jX

[µj
cj ik

νj ]
j +DjX

[νj
cj ik

µj ]
j

) i
2

(
θj − θ̄j

) ∂f
∂yj

e−πα
′k2
j f(2yj)

× eikj ·Xcj

2N∏
i=r+1

∫ ∫ Λ√
ε

0

d2θidyi D̄iXciDiXci

(
1 +

θi θ̄i
2

∂

∂yi

)
e−πα

′k2
i f(2yi)eiki·Xci .

(3.5.177)

The first r integrals with respect to yj evaluate to

1

πα′k2
j

(
1−

(
Λ√
ε

)− 1
2
α′k2

j

)
(3.5.178)

and the 2N−r remaining integrals with respect to yi contain two terms. As described

above the first can be bounded by Λ√
ε

and the second is equal to − i
2
θiθ̄i. The latter

contribution gives the result we seek as can be seen by carrying out the integrals
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over the Grassmann variables:

ε−
r
4

r∏
j=1

∫
d2θj 2πα′

(
D̄jX

[µj
cj ik

νj ]
j +DjX

[νj
cj ik

µj ]
j

) i (θj − θ̄j)
2πα′k2

j

(
1−

(
Λ√
ε

)− 1
2
α′k2

j

)

×eikj ·Xcj

2N∏
i=r+1

∫
d2θi

i

2
θiθ̄iD̄iXciDiXcie

iki·Xci .

(3.5.179)

The integrals with respect to θj require us to find the θ̄j and θj terms in the super-

fields. Under the scaling (3.5.176) such terms pick up a factor ε
1
4 . The r such terms

cancel the leading factor of ε−
r
4 so the Grassmann integration selects a single term

which is independent of the cut-off ε. The remaining integrals with respect to θi

require the θi- and θ̄i-independent parts of the super-fields which do not change under

scaling. Following the same algebra as at first order, summing over r, integrating

around the boundary and enforcing the boundary conditions the result is

2N∑
r=0

r∏
j=1

∫
dxj e

ik·wj

(
dw

[µj
j

dxj
+
√
hj ikj · ψjψ

[µj
j

)
ik
νj ]
j

k2
j

2N∏
i=r+1

∫
dxi e

iki·XciΨ̄
[µi
ci Ψ

νi]
ci

(3.5.180)

With the exception of the r = 2N case the contributions in this sum cancel

terms arising out of the boundary term in the interaction (3.5.155) which conspire

to ensure supersymmetry is maintained. This leaves the contribution occurring

from 2N contractions between fields which corresponds to 2N points inserted on

the boundary of a single Wilson loop:

q2N

2N∏
j=1

∫
dxj e

ik·wj

(
dw

[µj
j

dxj
+
√
hj ikj · ψjψ

[µj
j

)
ik
νj ]
j

k2
j

. (3.5.181)

As in the bosonic case this result is independent of the string tension α′. It remains

to enforce the contractions of the space-time indices and impose pairwise kj+1 = −kj
as defined in the interaction to produce

q2N

N∏
j=1

∫
B

dxjdx
′
j

eikj ·(wj−w
′
j)

k2

(
dwj
dxj

+
√
hj ikj · ψjψj

)
·
(
dw′j
dx′j
−
√
h′j ikj · ψ′jψ′j

)
(3.5.182)
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showing how pairs of points on the boundary interact.

Returning to the integrals over the yi in (3.5.177) we bounded the second term by

Λ√
ε

and for the θi integrals we now seek the θiθ̄i term from the boundary super-fields.

This term scales as
√
ε which leaves a contribution of order Λ2N−r. The integration

over the θj variables remains the same as above so the Grassmann integration se-

lects a single term which vanishes as ε → 0 because Λ vanishes in this limit too.

Other contributions from this configuration of points are subleading in ε. This com-

pletes our treatment of the case where all 2N points are close to the boundary (and

a distance greater than
√
ε apart from one another) and demonstrates the result

(3.5.182) we sought. We now consider what happens when these points are close to

one another in the bulk or the boundary to show that in contrast to the bosonic

case no divergences appear.

Suppose that of the 2N points a number n + 1 are within Λ of one another

(but that this set is separated by more than Λ from any other points on the same

worldsheet). Now it is the contractions between different vertices which are rapidly

varying. Following the procedure taken for the bosonic case (see section 3.4.2) Wick’s

theorem allows us to replace this by a sum of terms involving various contractions

between this set of points and normal ordered terms which have not been contracted

with other operators outside of this set. The leading order contribution comes from

expanding the normal ordered terms about the position of the final point zn+1. We

then integrate the first n points in a region of size Λ about this reference point which

remains to be integrated about the worldsheet. The ε-dependence can be extracted

by counting derivatives of rapidly varying fields. Now

Gε (zr, θr; zs, θs) = −f

(√
zrsz̄rs√
ε

)
+ f

(√
zRrsz̄

R
rs√

ε

)

= −f

(√
zrsz̄rs√
ε

)
+

1

4π
log

(
(2iyn+1 − θrθ̄s)(−2iyn+1 − θ̄rθs)

ε

)
+ O

(
Λ

yn+1

)
(3.5.183)

and it is the first term of this which varies rapidly as the points zr and zs move

apart. Wick contractions between fields evaluated at the point zr and zs produce
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various derivatives of this Green function. In parallel to the bosonic string the

leading order contribution comes from contractions which have all 2 (n+ 1) possible

derivatives acting on the first term in (3.5.183). This can be seen by scaling the

relative coordinates (but not zn+1 or z̄n+1) and the θr, θ̄r:

zr − zs → ε
1
2 (zr − zs) ; θr → ε

1
4 θr; θ̄r → ε

1
4 θ̄r, (3.5.184)

so that

f

(√
zrsz̄rs√
ε

)
)→ f

(
(
√
zrsz̄rs

)
;

1

4π
log

(
(2iyn+1 − θrθ̄s)(−2iyn+1 − θ̄rθs)

ε

)
→ 1

4π
log

(
4y2

n+1

ε

)
+O

(
ε

1
2

)
(3.5.185)

under which the super-derivatives and integration measures transform as

D → ε−
1
4D, D̄ → ε−

1
4 D̄, (3.5.186)

d2zrd
2θr → ε

1
2d2zrd

2θr, d2zn+1d
2θn+1 → ε−

1
2d2zn+1d

2θn+1 (3.5.187)

so the integral with respect to d2θn+1

∏
r d

2zrd
2θr of the term containing 2(n + 1)

derivatives, D and D̄, acting on f(
√
zrsz̄rs/ε) scales into 1/εmultiplied by an integral

independent of ε. This depends on the momenta kr in a potentially complicated

way but because of the way the contractions were carried out to form the 2 (n+ 1)

derivatives it is possible to integrate by parts to enforce the X dependence to sit

only in the exponent:

1

ε

∫
d2zn+1d

2θn+1

n∏
r=1

d2zrd
2θrF

µ1...νn+1 (z1, θ1, . . . , zn+1, θn+1) : ei
∑n+1
r=1 kr·Xn+1 :

× exp

(
− πα′

n+1∑
r,s=1

kr · ksGε (zr, θr; zsθs)

)
.

(3.5.188)

At leading order in ε after carrying out the integral over the relative coordinates
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and the θr, θ̄r we are left with

1

ε
F̃ µ1...νn+1(k1, .., kn+1)

∫
d2zn+1 : eiK·X(z1) :

(
ε

y2
n+1

)α′K2/4

(3.5.189)

where we have defined

F̃ µ1...νn+1 (k1, .., kn+1) =

∫
d2θn+1

(
n∏
r=1

d2zr d
2θr

)
F µ1...νn+1 (z1, θ1, . . . , zn+1, θn+1)

× exp

(
πα′

n+1∑
r,s=1

kr · ksf
(√

zrsz̄rs
))

(3.5.190)

and K =
∑n+1

r=1 kr. Since this is not invariant under the residual supersymmetry

(3.5.152) it must vanish so there can be no 1/ε divergence present.

Subleading terms of order ε−3/4 could in principle appear if we were to have

2n+ 1 derivatives acting on Gε or from an expansion of the super-field components.

However the required factors of ε1/4 are paired with fermionic fields Ψ and Ψ̄. They

cannot be present since the final result must be bosonic. The first non-trivial diver-

gence which could potentially occur is of order ε−1/2 and can arise in a number of

ways. The second order expansion in θ and θ̄ of the exponentiated super-field con-

tains ε1/2θθ̄k ·Ψk ·Ψ; taking two derivatives off the rapidly varying part of Gε reduces

the power of ε picked up under scaling by 1/2 and leaves two super-derivatives of the

super-field or derivatives of the slowly varying part of Gε; taking only one derivative

off Gε in combination with expanding one super-derivative of the super-field to first

order gives a similar expression and an expansion of the components of the super-

field about the point zn+1 gives ε1/2 (z − zn+1) · ∂X. The latter two of these vanish

again by rotational symmetry whilst contributions from the slowly varying part of

Gε would have the same X-dependence as (3.5.189). From two super-derivatives or

an expansion of the super-field components the contribution at this order has an

X-dependence proportional to

cρσ√
ε

∫
d2z1 : Ψ̄ρΨσeiK·X(z1) :

(
ε

y2
n+1

)α′K2/4

, (3.5.191)

Under the residual supersymmetry this too changes, although if the coefficient
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cρσ = KρKσ its variation takes the same form as the variation of the boundary

term ε−1/2
∫
dx exp(ik · w). Were this boundary term to be generated as the inser-

tions approach one another close to the boundary then it would be possible for this

divergence to be present. However a term proportional to k · Ψ̄k · Ψ can only be

generated from expanding the super-fields in the exponential for the θθ̄ contribution.

The coefficient of this term would be

∫
d2θn+1

(
n∏
r=1

d2zr d
2θr

)
F µ1...νn+1 (z1, θ1 . . . , zn+1, θn1) eπα

′∑ kr·ksf(
√
zrsz̄rs) θ̄rθs

(3.5.192)

independent of the choice of r and s. We can demonstrate that this vanishes by

virtue of its θ dependence. F µ1...νn+1 arose out of 2 (n+ 1) derivatives acting on

f (
√
zrsz̄rs) and (3.5.192) requires it to contain a total of n θs and n θ̄s to be non-

zero9. Schematically, f (
√
zrsz̄rs) has a dependence on anti-commuting variables of

the form

f
(√

zrsz̄rs
)

= f
(
|zr − zs|2

)
− θrθsg1 (zr − zs)− θ̄rθ̄sg2 (zr − zs)− θrθ̄rθsθ̄sh (zr − zs)

(3.5.193)

where the functions g1, g2 and h depend on the relative separation of the points and

involve derivatives of f (s). Now suppose that the n + 1 derivatives D and n + 1

derivatives D̄ contained in F produce p copies of Drf , q of D̄rf , r DsDrf , s D̄sD̄rf

and t lots of D̄sDrf with p + 2r + t = n + 1 = q + 2s + t. It follows that the

schematic θ and θ̄ dependence of each of these terms is respectively θ+ θθ̄θ̄, θ̄+ θθθ̄,

1 + θθ + θ̄θ̄ + θθ̄θθ̄, 1 + θθ + θ̄θ̄ + θθ̄θθ̄ and θθ̄. Counting modulo 2 we thus have

a total of p + t = n + 1 factors of various θs and q + t = n + 1 factors of θ̄s. So

F µ1...νn+1 cannot contain the correct number of θs and θ̄s for (3.5.192) to produce a

non-zero result.

The next possible divergence is of order ε−1/4 but it too vanishes because its field

content would have to be fermionic. The next order in ε consists of finite terms, but

these are suppressed by the overall factor of
(
ε/y2

n+1

)α′K2/4
which comes from the

9The requirement is of course more stringent than this in that the θs and θ̄s must have the
correct indices but the general argument does not rely on this detail.
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slowly varying part of Gε. As K2 ≥ 0 in Euclidean signature such terms vanish for

all K2 except those close to zero in terms of ε. Since K is eventually to be integrated

over we also need to consider the contribution of these small values. Following the

discussion in section 3.4.2 we recall that for α′ large and ε small this factor behaves

effectively as
δ (K2)(

1
2
α′ ln y1

ε

)D
2

(3.5.194)

and so is also suppressed in the tensionless limit. We conclude that there are no terms

associated with a set of points meeting one another in the bulk of the worldsheet

that survive in the tensionless limit as the cut-off is removed. In the bosonic case we

were unable to deduce whether our arguments extended to the case that the points

are also close to the boundary but in the current case we can use the supersymmetry

to show that there are no further contributions from this case.

Close to the boundary the second term in Gε also varies rapidly. To consider its

variation we must also scale yn+1 along with the other variables. This means that

the integration measure d2zn+1d
2θn+1 is unchanged by the scaling and the leading

order divergence is O
(
ε−1/2

)
. There is also no suppression by the second term in

Gε but the X-dependence remains the same as that when the points are far from

the boundary. A term proportional to

1√
ε

∫
dx eiK·X (3.5.195)

has been seen before; it is not supersymmetric and so this divergence is not present.

This time the presence of the boundary breaks the symmetry of the integration

domain so a term of order ε−1/4 is not forbidden – it could arise out of an expansion

of the super-field in the exponent or by taking one of the derivatives off Gε and onto

a super-field. The possible X-dependence has the form

cρ

ε
1
4

∫
dx
(
Ψ + Ψ̄

)ρ
eiK·X (3.5.196)

which changes under the residual supersymmetry unless cρ ∝ Kρ in which case the

change is a total derivative. It is fermionic, however, and by applying the same
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counting of θs and θ̄s as before (since such a term can only arise from an expansion

of the super-field in the exponent) it is straightforward to show that this term cannot

arise out of an integral over the Grassmann variables since it requires n θs or n θ̄s.

The final order in ε to consider provides finite terms. These may arise out of two

super-derivatives of the super-field or various expansions of the super-field about the

point zn+1 in tandem with super-derivatives. The possible contributions are many

but there is only one potential term which remains invariant under the residual

supersymmetry which is the electromagnetic coupling

∫
dx eiK·X

(
dXµ/dx+ iK · (Ψ + Ψ̄)(Ψ + Ψ̄)µ

)
(3.5.197)

where µ here must be equal to µq of the vertex V µqνq which was used to generate this

finite piece. However the supersymmetric generalisation of Gauss’ law, (3.4.142), can

be used to show that this cannot be formed. Indeed contracting kq with the integral

of the q-th vertex

kµqq

∫
d2θq

(∫
d2zq D̄qX

[µq
q DqX

νq ]
q −

∫
yq=0

dxq θqθ̄qΨ̄
[µq
q Ψνq ]

q

)
eikq ·Xq

=

∫
yq=0

dxq

(
dX

νq
q

dxq
+ ikq ·

(
Ψq + Ψ̄q

) (
Ψq + Ψ̄q

)νq)
eikq ·Xq (3.5.198)

which is a boundary term that does not contain the quantum variables X̄q. This

means that it cannot take place in any contractions with other terms in the set so

factors out of the normal ordered expansion of the other vertices. Therefore this

boundary integral of the q-th field would have to factor out of the contraction of

(3.5.197) with kq. This is not possible because (3.5.197) contains only one field

integrated around the boundary so the contraction could not produce an integral

involving the kq dependence and the field X (zq) multiplied into an integral involving

the remaining momenta with a field content expanded about the point zn+1.

This completes the argument that supersymmetry prevents divergent or finite

corrections from appearing when insertions approach one another on the same world-

sheet and proves our claim that (3.5.173) exponentiates. This leads directly to

(3.1.32) and allows the replacement of an integral over the gauge field by an in-
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tegral over fluctuating spinning strings interacting upon contact. Since the result

we have found is independent of the cut-off ε we have also shown that the scale of

the worldsheet metric decouples from the calculation, appearing only in SL. Spatial

variations of this scale could only contribute at higher order in ε and so vanish as

we remove the regulator by taking the limit ε → 0. The final step to return to the

world-line formulation of spinor QED is to integrate over the worldsheet metric and

boundaries weighted by the world-line action for

∫ ( n∏
j

D(g,X, w, ψ, h, χ)j
Z0

)
e−Ss−SBdVH =

∫ ( n∏
j

D(w,ψ, h, χ)j

)
DA

N
e−Sgf−SBdVH

∏
j

Ws[A]. (3.5.199)

Summing over n then re-expresses the partition function of QED in terms of the

partition function of spinning strings with contact interactions. To also express

the generating functional (3.1.31) requires the world-line Green function which in

analogous fashion to the bosonic theory requires the inclusion of open strings. The

calculation proceeds in the same way but for the differing boundary conditions on

each end of the spinning string and again it is only the Dirichlet end of the string

which contributes to the interaction. It is also possible to introduce a background

gauge field to source photon amplitudes on the world-line, as described for scalar

QED.

3.6 Conclusion

We have investigated how strings with contact interactions can be used to model

Abelian gauge fields. We were able to construct δ-functions on the world-sheet

that decoupled from the Liouville degree of freedom because their contribution was

negligible except close to the world-sheet boundary where they generated the elec-

tromagnetic coupling. Although the purely bosonic theory proved to be problematic

the world-sheet supersymmetry present in the spinning string provided the structure

needed to eliminate unwanted divergences and also generate the super-Wilson loops
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needed to couple spinor matter to electromagnetism in the worldline approach. The

string world-sheets correspond to the trajectories of lines of electric flux joined to

charged particles.

It proved necessary to take the tensionless limit to remove dependence on the

classical string action so the string length-scale is large compared to the size of the

Wilson loops. The strings themselves, therefore, can be very large and it may be

possible to distinguish this theory from conventional QED where the interactions

are mediated by point-like particles by direct observation of these extended objects.

Additionally it may be possible to detect string-like corrections to QED at large

distances, (although we have not calculated these). Since the scale of the world-

sheet metric decouples from our calculations we could argue that the super-Liouville

degrees of freedom only lead to an overall multiplicative factor that cancels out of

physical amplitudes. Alternatively we might modify the model to include sufficient

internal degrees of freedom to ensure a critical string-theory. We speculate on what

these extra degrees of freedom could be in the next chapter. This decoupling allows

us to apply our string theory in four-dimensional space-time dimensions.

QED is of course an extremely successful theory, having been tested to high

accuracy in experiments, but nonetheless it is an effective theory arising out of

the Standard Model, so our string model must also be just an effective theory.

Understanding how it relates to the more fundamental non-Abelian case will require

some development of the model.

One aspect of this development has to be the worldline formalism for non-Abelian

quantum field theories. Strassler did discuss the generalisation of his formalism to

include gauge fields which transform in a representation of a non-Abelian group

but he did not consider the extra ingredients necessary to describe chiral fermions.

To further complicate matters the standard model contains a variety of spin 1/2

matter fields which transform in different representations of the gauge group and

we would expect to have to sum over these representations – and the chiralities of

the particles – to produce quantities which we can compare with experiment. This

is a daunting task in quantum field theory and we may hope that the string theory

reformulation we have provided here could offer some insight or simplification to the
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computation of this sum. Before we can do that, however, we need to understand

how this calculation appears in the worldline formalism. That is the content of the

next chapter of this thesis.



Chapter 4

Unified field theory in the

worldline formalism

4.1 Introduction

Recently a new model of chiral fermions in the worldline approach demonstrated an

interesting way to sum over the gauge group representations and chiralities present

in the standard model [64]. This sum was constructed for a single generation of

fermions and was supplemented by a sterile neutrino. The model is substantially

different from the usual field theory approach because the assignment of particles

to their group representations and chiralities arises naturally, rather than being

pre-determined by hand. Progress in the worldline description of chiral particles

is central to a description of the standard model in first quantised language and

is an important stepping stone to an equivalent description in terms of interacting

strings. Besides, as we have seen in the introduction the worldline formalism can

offer significant computational advantages over calculations in perturbative quantum

field theory. We shall eventually speculate about how this result can be incorporated

into the string theory model discussed in the previous chapter, but following on from

the success of [64] it seems natural to consider first the generalisation of this work

to other non-Abelian groups.

The motivation for considering such gauge groups is the unification of the elec-

troweak and strong interactions. The purpose of this unification is to find a theory

134
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with only one coupling constant, from which the standard model emerges after spon-

taneous symmetry breaking as a low-energy effective theory [65]. The gauge group

with smallest rank that can accommodate the standard model is that of SU(5).

This is of course the famous Georgi-Glashow model [66]. We shall demonstrate that

the representations and chiralities of the standard model particles as described by

the standard SU(5) unified theory can also be generated in this approach. The

next section briefly reviews the argument and notation in [64] and in Section 4.3

the model is applied to the unified theories of SU(5) and flipped SU(5). We also

consider other unified theories which appear in the literature, namely SU(6) and

SO(10).

4.2 Fields and worldlines

We consider a left- or right-handed massless fermion moving in a background gauge

field A. We take A to transform in the adjoint representation of some symme-

try group which is described by anti-Hermitian Lie algebra generators {TR}. The

fermion action for a left-handed massless fermion, ξ, is

∫
d4x iξ†σ̄ ·Dξ (4.2.1)

where D = (∂ + A) and σµ = (1, σi). In the introduction we met the idea of the

effective action defined by functionally integrating over fermionic fields but for the

current case we meet the well-known problem of how to define the determinant

of the Dirac operator on the space of chiral fermions transforming in a non-real

representation of the gauge group. We can, however, define the phase-difference of

determinants which motivates us to consider the variation of the effective action

under an infinitesimal change in A [67, 68]. This is easily found to be δAΓ [A] =

Tr
(
(σ̄ ·D)−1 σ̄ · δA

)
which can be written in terms of γ matrices as

−
∫ ∞

0

dT Tr

(
(1− γ5)

2
eT (γ·D)2

γ ·Dγ · δA
)

(4.2.2)
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We recognise the heat kernel of the operator (γ ·D)2 = D21 + 1
2
γµFµνγ

ν and in [64]

a worldline representation of (4.2.2) was derived:

δA ln

∫
D
(
ξ̄, ξ
)
e−S[ξ̄,ξ]

=−
∫ ∞

0

dT

T

∫
L/R

DωDψ e−S[w,ψ]P tr

(
g (2π)

∫ 2π

0

dt ψ · ω̇ ψ · δA
)
. (4.2.3)

Here g (t) is the super-Wilson loop describing the coupling of the fermion to the

gauge field which we have seen in the previous chapter (we recall that we require a

closed loop in order to generate the functional trace)

g (t) = P exp

(
−
∫ t

0

ARTR dt
)

(4.2.4)

where

A = ω̇ · A+
T

2
ψµFµνψ

ν . (4.2.5)

The Grassmann variables ψµ are introduced to represent the γ-matrices and the

action S [w,ψ] is just that of Brink, Di Vecchia and Howe that we have used earlier.

The boundary conditions on ψ are interpreted depending on the chirality of the

fermion. For left handed fermions the path integral with periodic boundary condi-

tions on ψ is subtracted from that with anti-periodic boundary conditions whereas

for right handed fermions the two contributions are summed. These combinations

insert the appropriate projection operator 1∓ γ5 into the path integral.

Strassler dealt with the non-Abelian nature of the coupling and path ordering

directly by introducing a sum over the ordering of the integrand at each order in

a perturbative expansion of the effective action. In [64] a different approach was

taken. The path ordering can be represented with functional integrals by introducing

a set of anti-commuting operators φ̃r and φs satisfying {φ̃r, φs} = δrs with action

Sφ =
∫
φ̃ · φ̇ dt [69]. It is possible to use this approach to reproduce the path ordered

exponential1 in (4.2.3). However we follow [64] by also using these fields to generate

the super-Wilson loop coupling. It is easy to check the following definition furnishes

1The point is that the propagator of the φ, φ̃ theory is the Heaviside step function which can
be used to produce the path ordering.
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us with a representation of the Lie algebra

RS ≡ φ̃rT
S
rsφs;

[
RS, RT

]
= ifSTURU . (4.2.6)

So instead of working directly with 4.2.3 we will find it advantageous to combine

these ideas to consider as it stands the related quantity

∫ ∞
0

dT

T

∫
DωDψ e−S[w,ψ]

∫ 2π

0

dt ψ · ω̇ ψ · δA δZ [A]

δA
(4.2.7)

where

Z [A] =

∫
D(φ̃, φ) e−

1
2

∫ 2π
0 φ̃( d

dt
+A)φ. (4.2.8)

Remarkably, in [64] the evaluation of Z [A] was shown to provide the correct sum over

the chirality and representation assignments for the fermion content of the standard

model. Five pairs of φ̃ and φ were used to represent the Lie algebra generators of

SU(3)×SU(2)×U(1). The desired sum of chiralities and representations was found

by adding the result of evaluating (4.2.7) with anti-periodic boundary conditions on

all Grassmann variables to that with periodic boundary conditions imposed. The

information about the representations and chiralities of the standard model particles

is contained in the functional determinant of the kinetic operator for the new field

det
(
d
dt

+A
)
. This novel approach is of great importance for worldline theories of

chiral fermions and in the following sections we generalise the result by considering

the gauge groups of some unified theories.

4.3 Unified theory

The assignment used in [64]

(
TR
)

= i


1
2
λb ⊗ 12

1
2
σa ⊗ 13

1
2
12 ⊗ 13 − 1

3
13 ⊗ 12

 (4.3.9)
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incorporating the standard model generators inside a five dimensional algebra is

reminiscent of the Georgi-Glashow method which embeds the standard model in

SU(5). This motivates the consideration of this group as the underlying symmetry

without purposefully arranging for the standard model content to appear. We shall

show that with the general use of SU(5) as the gauge group the procedure introduced

in [64] yields the familiar 5̄⊕10⊕1 representations into which the left-handed matter

content of the standard model fits in a manner consistent with the particles’ quantum

numbers. The chirality associated with these representations is also in agreement

with the Georgi-Glashow model so that that these representations are favoured by

the new model.

We also take five pairs of φ̃ and φ to incorporate the generators of SU(5). Then

integrating over φ̄ and φ in (4.2.7) leads to a determinant which we evaluate as

in [64]:

Z [A] = det

(
i

(
d

dt
+A

))
(4.3.10)

To compute the eigenfunctions of this operator we write them as v (t) = g (t) f (t).

Then the eigenvalue equation i
(
d
dt

+A
)
v (t) = µv (t) translates to an equation for

f (t):

i
d

dt
f (t) = µf (t) =⇒ f (t) = v (0) e−iµt (4.3.11)

The eigenvalues depend on the boundary conditions on the fields φ̃ and φ; if v (2π) =

±v (0) then we require v (0) to be an eigenvector of g (2π) and must impose a

condition on µ:

g (2π) v (0) = ρv (0) ; ρe−2πiµ = ±1. (4.3.12)

For anti-periodic periodic boundary conditions the eigenvalues are µ− = n+ 1
2
+ log (ρ)

2πi

and for periodic boundary conditions are µ+ = n+ log (ρ)
2πi

. The determinant is given

by the product of eigenvalues and is proportional todet
(√

g (2π) + 1/
√
g (2π)

)
A/P

det
(√

g (2π)− 1/
√
g (2π)

)
P

(4.3.13)
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where A/P and P refer to anti-periodic and periodic boundary conditions respec-

tively.

To calculate the determinant it suffices to name a representation under which

the Wilson-loop is to transform. The Lie group valued object g (2π) can then be

rotated onto the Cartan subalgebra

g (2π) = exp (αiHi) i = 1 . . . 4 (4.3.14)

whereby its eigenvalue equation can be expressed in terms of the weights of the

representation under which it transforms2. The goal is to express the determinants

in (4.3.13) in terms of group invariant properties of g (2π) and the calculations are

essentially straightforward. In particular, a simple choice is to take the Wilson loop

to transform in the fundamental representation 5, where we have shown that the

determinants in (4.3.13) can be written as a sum over traces of g (2π) in different

representations:

det

(
i

(
d

dt
+A

))
∝

tr (g5) + tr (g10) + tr (g10) + tr (g5̄)

+ 2tr (g0) (4.3.15)

for anti-periodic boundary conditions and

det

(
i

(
d

dt
+A

))
∝

tr (g5)− tr (g10) + tr (g10)− tr (g5̄) (4.3.16)

when periodic boundary conditions are imposed. In the above equation the sub-

scripts denote the representation in which the trace is to be taken.

The final step is to include with the latter the factor of γ5 arising with periodic

2In a given representation of dimension D the generators provide a realisation of the Lie algebra
as D × D matrices acting on states |α〉 labelled by their eigenvalues of each Cartan generator:
Hi |α〉 = αi |α〉. The αi are the weight vectors of the D dimensional representation.
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boundary conditions on ψ and to take the sum of the two contributions. The result

is the representations and chirality assignments which are well known in this unified

theory:

(tr (g5̄) + tr (g10) + 1)PL

+ (tr (g5) + tr (g10) + 1)PR. (4.3.17)

The Georgi-Glashow model3 places a left-handed conjugate down quark colour triplet

and a left-handed isospin doublet into the 5̄ representation. Into the 10 represen-

tation is placed a left-handed colour triplet of conjugate up quarks, a left-handed

colour triplet and isospin doublet of up and down quarks and a left-handed conjugate

electron. It is easy to check that these assignments respect the quantum numbers

of the particles if the 10 representation is made up out of the anti-symmetric prod-

uct of two 5. The trivial representations that appear here may be relevant to the

discussion of neutrino masses.

There is another assignment of standard model particles into these same repre-

sentations of SU(5) which appears in the literature. Flipped SU(5) [71, 72] makes

use of the gauge group SU(5) × U(1)X . The extra U(1) factor is needed because

in this theory the left-handed conjugate up quark colour triplet joins a left-handed

isospin doublet in the 5̄ representation which does not have vanishing total hyper-

charge. The 10 contains a left-handed colour triplet of conjugate down quarks, a

left-handed colour triplet and isospin doublet of up and down quarks and a left

handed conjugate neutrino and the left-handed conjugate electron is now placed in

the 1 representation. The SU(5) is then decomposed into SU(3)× SU(2)× U(1)Z

which provides the SU(3)× SU(2) part of the standard model; the standard model

hypercharge generator is then formed out of a linear combination of U(1)Z and

U(1)X .

The simplest way to accommodate an extra U(1) symmetry into our formalism

3See, for example, [70]
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is to include an extra generator T25 = 15. Then the Wilson loop factorises as

g (2π) = eiθg5 (2π) ; θ = −
∫ 2π

0

A25 (t) dt. (4.3.18)

It is straightforward to repeat the previous calculation with this extra generator and

we find that the terms in (4.3.17) simply pick up an extra factor according to their

U(1) charge:

(
tr (g5̄) e−3iθ + tr (g10) eiθ + e5iθ

)
PL

+
(
tr (g5) e3iθ + tr (g10) e

−iθ + e−5iθ
)
PR. (4.3.19)

We shall discuss SO(10) unified theories in more detail below but there is an in-

teresting relation to this group contained in the extra U(1) charges of the above

equation. It is well known that SU(5) × U(1) ⊂ SO(10) [73, 74] and the SO(10)

(spinor) representation 16 decomposes as 16→ 5̄−3⊕101⊕15, where the sub-script

denotes the U(1) charge. This is precisely how the representations associated to the

left-handed projection operator have arranged themselves in (4.3.19) which is sug-

gestive that it would be natural to further unify the content of this theory into a

single 16 of SO(10).

4.3.1 Other unified theories

In this subsection we apply the same technique to some other unified theories. Those

of interest are those into which the standard model can be embedded and recovered

after spontaneous symmetry breaking at some unification scale. Both SU(6) and

SO(10) feature in the literature and have the property that the SU(5) we have con-

sidered above can be embedded into it in a natural way (and so the standard model

also fits into these Lie groups). We now determine the representations and chiralities

which appear if g (2π) is taken to transform in the fundamental representation of

these groups.

We begin with SU(6) and follow the same steps as in the previous section except

that we now need six pairs of φ̃ and φ. Taking g (2π) to transform in the 6 represen-
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tation we find the determinants as follows. For anti-periodic boundary conditions

on Grassmann fields

det

(
i

(
d

dt
+A

))
∝

tr (g6) + tr (g15) + tr (g20) + tr (g15) + tr (g6̄)

+ 2tr (g0) (4.3.20)

and for periodic boundary conditions

det

(
i

(
d

dt
+A

))
∝

− tr (g6) + tr (g15)− tr (g20) + tr (g15)− tr (g6̄)

+ 2tr (g0) (4.3.21)

which is also multiplied by the γ5 when the boundary conditions on ψ are correlated

with those on φ as described above. Summing the contributions from each set of

boundary conditions determines the chiralities selected by this model:

(tr (g6) + tr (g20) + tr (g6̄))PL

+ (tr (g15) + 2 + tr (g15))PR (4.3.22)

There have been a few attempts to form a unified theory with gauge group SU(6)

[75, 76]. The general approach places the contents of the 5̄ representation of SU(5)

into the 6̄ of SU(6) along with an exotic fermion, N . The 15 is constructed as

the anti-symmetric product 6 ⊗A 6 into which fall the remaining standard model

particles and conjugate particles to N , but in this construction the particles in the 6̄

and 15 representations have the same chirality. The result in (4.3.22) is inconsistent

with this assignment and furthermore the conjugate representations share the same

chirality. This presents a major barrier to any placement of the standard model

particles into the representations of (4.3.22).

For completeness we turn now to SO(10) where we will again take g (2π) to

transform in the fundamental representation 10 (We use ten pairs of φ̃ and φ). For



4.3. Unified theory 143

anti-periodic boundary conditions on Grassmann fields we evaluate the determinant

to be4

det

(
i

(
d

dt
+A

))
∝

2tr (g10) + 2tr (g45) + 2tr (g120) + tr (g126) + tr (g126) +

2tr (g210) + 2tr (g0) . (4.3.23)

Similarly for the case of periodic boundary conditions we find

det

(
i

(
d

dt
+A

))
∝

− 2tr (g10) + 2tr (g45)− 2tr (g120)− tr (g126)− tr (g126) +

2tr (g210) + 2tr (g0) (4.3.24)

to which we associate a factor of γ5 if we correlate the boundary conditions on ψ with

those on φ. Collecting together the addition of these terms we find the chiralities

and representations

(2tr (g10) + 2tr (g120) + tr (g126) + tr (g126))PL

+ (2tr (g45) + 2tr (g210) + 2)PR (4.3.25)

The most common SO(10) model places an entire generation of left-handed standard

model particles into the 16 representation along with an exotic sterile neutrino

[77, 78] so the assignments we have generated here do not coincide with the well

known unified theory. As we have seen above these particles fit into the 5̄ + 10 + 1

of SU(5) or SU(5)×U(1), both of which are subgroups of SO(10). It is unfortunate

that the 16 representation does not naturally appear out of the approach taken in

this work. In the following section we will consider how we might modify our work

to generate this representation.

4Note there is more than one representation of dimension 210; to avoid ambiguity the equations
refer to that with highest weight [0, 0, 0, 1, 1].
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Discussion

We have made the choice to consider the Wilson loop g (2π) as transforming in the

fundamental representation of each group but this is of course not necessary and

we briefly explore the consequences of alternative representations for this operator.

For example, for the case of SU(3), the representations and chiralities were found

to be [64]

(tr (g3̄) + 1)PL

(tr (g3) + 1)PR (4.3.26)

which gave rise to SU(3) triplets and a sterile neutrino. We highlight the sensitivity

of the result to our choice of representation for g (2π) by instead taking it to trans-

form in the representation with the next-smallest dimension, 6. Then we find for

anti-periodic boundary conditions5

Z [A]6 ∝ tr (g6) + tr (g10) + tr (g15) + tr (g15) + tr (g10) + tr (g6̄) +

2tr (g0) , (4.3.27)

and for periodic boundary conditions

Z [A]6 ∝ −tr (g6)− tr (g10) + tr (g15) + tr (g15)− tr (g10)− tr (g6̄) +

2tr (g0) , (4.3.28)

which lead to the chiralities and representations

(tr (g6) + tr (g10) + tr (g10) + tr (g6̄))PL

(tr (g15) + tr (g15) + 2)PR. (4.3.29)

5Once again, to avoid ambiguity we note that the 15 is the representation with highest weight

[2, 1] and its conjugate, 15, has highest weight [1, 2]. Their Young Tableaux are and
respectively.



4.3. Unified theory 145

The absence of the fundamental representation is rather striking here, since this is

how the quarks of the standard model transform, so this choice does not seem to

be helpful for phenomenological model building. On the other hand, taking g (2π)

to transform in the adjoint representation we find that the determinant vanishes for

periodic boundary conditions and for anti-periodic boundary conditions

Z [A]8 = 4 (tr (g8))2 (4.3.30)

which would be useful for a description of gauge bosons6.

This motivates us to return to SU(5), where this chapter has found its best

success, and consider the effect of the Wilson loop transforming in the 10 represen-

tation, which has the next-smallest dimension after the fundamental. We do so only

to demonstrate how the result depends on the choice of transformation of g (2π).

For anti-periodic boundary conditions we find

Z [A]10 ∝ tr (g10) + tr (g45) + tr (g45) + tr (g10) +

tr (g50) + tr (g70) + tr (g70) + tr (g50) +

tr (g35) + tr (g175) + tr (g175) + tr (g35) +

tr (g126) + tr (g126) + 2tr (g0) , (4.3.31)

and with periodic boundary conditions the determinant is given by

Z [A]10 ∝ −tr (g10) + tr (g45) + tr (g45)− tr (g10) +

−tr (g50)− tr (g70)− tr (g70)− tr (g50) +

tr (g35) + tr (g175) + tr (g175) + tr (g35) +

−tr (g126)− tr (g126) + 2tr (g0) , (4.3.32)

so taking the sum over correlated boundary conditions we produce the representa-

6The author is grateful to Paul Mansfield for pointing this out.
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tions and chiralities

(tr (g10) + tr (g50) + tr (g70) + tr (g126) + tr (g126) + tr (g70) + tr (g50) + tr (g10))PL+

(tr (g35) + tr (g45) + tr (g175) + tr (g175) + tr (g45) + tr (g35) + 2)PR.

(4.3.33)

Note that now the chiralities on the representations of the same dimension are

the same, in contrast to that found when g (2π) was taken to transform in the 5

representation. We see that although we no longer assign particle representations

by hand the predictions of this new approach are very sensitive to our choice of

representation for the Wilson loop.

It is worthwhile considering whether we might uncover a connection to the more

familiar SO(10) model by considering different representations for the Wilson loop.

The next smallest representations of this group are the 16 and 16 and we have

calculated the functional determinants for these choices of the representation of

g (2π). The chiralities and representations can be expressed in terms of traces which

include

(tr (g16) + tr (g16) + . . .)PL (4.3.34)

but also involve the representations 120, 560,560 and further representations whose

dimensions exceed 1000. So although the 16 representation can be generated with

this choice it brings with it a series of other representations that are not of interest

to the building of minimal unified theories.

4.4 Concluding remarks

We have demonstrated that the model presented in [64] can be used when the

symmetry group is SU(5) and that in that case it provides the low dimensional rep-

resentations which are used in the Georgi-Glashow model in order to accommodate

the standard model matter content. We chose the Wilson loop to transform in the

fundamental representation of SU(5) and discussed how different choices lead to the

appearance of different representations and chiralities. We also considered SU(6)
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and SO(10) as the gauge groups but for these cases we did not uncover the familiar

connections to the standard model. For SO(10) this can only be done by considering

the Wilson loop to transform in a higher dimensional representation (16), but this

choice brings with it a series of unwelcome representations of large dimension. Part

of the utility of the approach we have used in this chapter is the ease with which

the gauge group and representation of the Wilson loop can be changed.

In combination with the simplifications to some calculations provided by the

worldline formulation it would seem valuable to pursue this programme for the stan-

dard model and other unified theories. It is certainly simpler to sum the correlated

boundary conditions on the functional integrals than to sum over representations

and chiralities by hand and the appearance of (4.3.17) may provide a guiding prin-

ciple in how the matter content of the universe can be arranged.

Furthermore the simplifications which this approach offers would be helpful to

the reformulation of the quantum field theory in terms of the interacting string

theory we have proposed in the previous chapter. An immediate obstacle to the

inclusion of non-Abelian couplings on the worldline theories is the requirement of

path ordering the exponentiated line integrals. Although this makes perfect sense

from the point of view of the worldline theory, if we interpret these lines as the

boundaries of fundamental strings it is unclear how to extend the path ordering into

the bulk of the string worldsheet.

We have seen here that the introduction of further degrees of freedom on the

worldline offers two advantages. Firstly they can represent the path ordering, which

means that the string model now need only be modified in such a way that the

dynamics of φ and φ̃ appear at the boundary. Secondly the functional determinant

resulting from the integration over these variables provide the sum over representa-

tions and chiralities of the standard model particles rendering what would otherwise

be a complicated sum far easier to manage. We suggest that an interesting direction

for future research is to consider how these extra degrees of freedom can be intro-

duced on the worldsheet in such a way that the decoupling of the conformal scale

of the worldsheet metric is not ruined. We speculate on how this could be done in

the discussion which makes up the next chapter.



Chapter 5

Discussion, open questions and

conclusion

In this chapter we give an overview of the results presented in this thesis, discuss

their consequences and suggest some open questions and possible routes to further

progress. We have only initiated a study of contact interactions for particles and

strings and it is clear that there remains much to consider. At this early stage we

are encouraged by the results so far and hope that further success may be found in

the near future.

In chapter 2 of this work we considered contact interactions in the context of

point particles. We first related the expectation value of an operator which counts

the number of curves cutting a space-time point to the dipole field of equal and

oppositely charged particles. We also introduced a similar notion to include spin

degrees of freedom. The theory was parameterised by T which can be interpreted as

the effective temperature for the statistical average over fluctuations of the curves.

We interpreted the curves as a physical realisation of Faraday’s lines of electric

flux, so returning to an idea first postulated in the mid 1830s. The relation to

electrostatics was found in the high temperature limit of the theory but corrections

to the classical fields were investigated at finite values of T . There is a hint that

the low temperature limit of the theory may be related to confinement because the

field lines are then concentrated in a tube centered on the straight line joining the

two particles.

148
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This unusual way of arriving at the static electric field provided motivation for

us to introduce a contact interaction into a theory of point particles. We quantised

this theory and showed that the interaction can be made consistent by making a

renormalisation of the bare action. The physical content of the theory was found to

couple the end points of the curves via propagators. We did not, however, consider

anything more interesting than the partition function of the theory and it would be

interesting to consider more complicated quantities. Given the relation we exposed

between this theory and the φ4 field theory we might imagine the effect that the

interaction has on the basic physical objects as providing one-loop corrections. If

these corrections could be determined in the low T limit then we may learn some-

thing about confining theories which could feed back into more conventional field

theories such as QCD.

The success we found with the point particles was suggestive that we consider

the generalisation of the theory to the time dependent case, which we presented

in chapter 3. This required treating the curves as dynamical and led to the use

of string theory. We linked this to the worldline approach of QED by taking as

the boundaries of the strings the Wilson loops which arise in the first quantised

formulation. The contact interaction was interpreted as providing direct inter-string

interactions when the string worldsheets intersect and we showed that this serves to

produce the expectation value of the product of those Wilson loops. We found the

remarkable fact that the δ-function interaction decoupled from the conformal scale

of the worldsheet metric, despite being off-shell. Although we could not complete

the proof of our claim for the bosonic theory we were able to use the worldsheet

supersymmetry of the spinning string to show that the super-Wilson loops arise

out of tensionless spinning strings interacting on contact. One aspect that we have

not adequately addressed is the consequence of working in D = 4 target space

dimensions since here we must confront the Liouville theory. We shall speculate on

how to circumvent this in a moment.

Our reformulation of spinor field theory was only for the Abelian case of QED.

We discussed in chapter 4 how the non-Abelian ingredients of a field theory can be

encoded in the worldline formalism by introducing new Grassman degrees of free-
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dom φ̃ and φ. Then the Lie group representations, particle chirality and even the

path ordering can be accounted for by coupling these new fields to the gauge field

via the super Wilson-loop. We demonstrated how the sum over representations and

chiralities present in the standard model embedded into the SU(5) unified theory

can be generated by considering a determinant associated to φ̃ and φ. This proce-

dure provides a powerful method of producing group representations into which the

matter content of the standard model is to be assigned. We found success for SU(5)

and flipped SU(5), but despite a tantalising link between these representations and

the SO(10) theory we did not have the same luck for the latter.

We consider now how we could relate the results of chapter 4 to the spinning

string theory in chapter 3. In doing so we suggest a method that has the advantage of

also dealing with the unfortunate Liouville theory which appears for strings outside

of their critical dimension. In dealing with spinor matter we found it necessary to

introduce spin degrees of freedom onto the string worldsheet; similarly to represent

the chirality of the particles we found it useful to use new worldline degrees of

freedom, since these also generated the non-Abelian nature of the interaction. It

does not seem a large leap to suppose that we can modify the string theory to reflect

the appearance of φ̃ and φ by introducing further worldsheet degrees of freedom

which are matched to these fields on the boundary1.

Doing so addresses the issue of how to extend path ordering into the bulk be-

cause we can encode the boundary path ordering into these new worldsheet fields,

asking only that the dynamics of these fields do not affect the worldline theory.

Furthermore, by introducing new string degrees of freedom we effectively increase

the central charge associated to matter fields. Let us denote these new fields by

Ỹ and Y. We might hope then that the extra dependence on the conformal scale

which arises when we functionally integrate over these fields is sufficient to cancel

the Liouville theory present due to the fields X, Ψ, g and χ. Introducing extra

fields is not unheard of in string theory – indeed quite often these fields play the

role of curled up “extra dimensions” Xα, α = 5 . . . 10. Our suggestion, however, is

1I am greatly indebted to Paul Mansfield for useful conversations and helpful suggestions about
the following points.
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that there is nothing exotic about Y and Ỹ but rather they are required in order to

describe the non-Abelian nature of the standard model.

In order to make this more concrete we must consider the dynamics of φ̃ and

φ. These obey first order equations of motion and if we are to match these to the

worldsheet fields we must ensure that they also obey first order equations of motion.

This does not present any challenge but we must also generate the correct boundary

coupling between φ̃ and φ with the gauge field. This would require us to modify the

contact interaction between strings. On the boundary this interaction must produce

the terms present in the worldline theory for φ̃ and φ without spoiling the result we

presented in chapter 3. This also means that the interaction between the fields Ỹ

and Y must decouple from the conformal scale of the worldsheet metric (or we risk

encountering mass-shell constraints which would ruin the form of the δ−function).

We suggest that this is an urgent issue for investigation and could be an immediate

generalisation of the work in this thesis to allow the theory we have developed to

be applied in a non-Abelian setting. So too could it provide a more rigorous way

of dealing with the Liouville theory if indeed the new fields can counter the Weyl

anomaly generated by the conventional string theory.

We are some way towards producing a first quantised version of the standard

model, but there remains substantial work to be done. We briefly mention some of

the more pressing matters, but this list is by no means exhaustive. Firstly we must

think about the question of providing mass to the fermions. By gauge invariance

this must be done by spontaneous symmetry breaking and so we require a worldline

formulation of the Higgs mechanism. This in turn needs a description of Yukawa

couplings between the fermion fields and the Higgs field. This is not something that

we have addressed in this thesis and there is not a great deal of work in this area in

the current literature. A non-Abelian theory also involves self-interactions between

the gauge bosons which does not fit in with the picture we have considered in pre-

vious chapters. At this point the contact interaction can mediate communication

between matter fields but we have not addressed how to describe interactions be-

tween the gauge fields. The theory we propose would benefit greatly from progress

in either of these directions.
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On a philosophical note it is extremely interesting to return to fundamental

string theory and consider the effects of modifying its description. Much progress

has been made in conventional string theory with a wide variety of techniques but we

feel that the introduction of simple contact interactions has been overlooked. This

is understandable considering that naively such a theory would not be expected

to be consistent because of the appearance of off-shell states. It is therefore of

considerable interest that we have shown that no such problems are encountered for

tensionless spinning strings and curious that the theory has such a close relationship

to the conventional quantum field theory of spin 1/2 matter interacting with the

electromagnetic field. We hope that the progress we have made will lead to a greater

understanding of the standard model of particle physics and that it may provide yet

another tool for physicists to explore the behaviour of the universe.
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Appendix A - Evaluating the free particle determi-

nants

Here we determine the normalisation constants used in chapter 2 using ζ-function

regularisation. With our gauge choice we make a change of variables t = Tτ and

define

Z ′ =
∫ ω(T )=b

ω(0)=a

Dω e−
∫ T
0

ω̇2

2
dτ (A.0.1)

which can be interpreted as the matrix element
〈
b
∣∣∣e−T Ĥ∣∣∣ a〉 with Hamiltonian Ĥ =

p̂2

2
. In the Schödinger representation this becomes the position space representation

of the heat kernel:
〈
b
∣∣∣e−T ∇2

2

∣∣∣ a〉. This is a well know expression but we find it

using functional methods in keeping with the spirit of that chapter.

Generalising to arbitrary dimension D, the integral over ω gives a functional

determinant and a boundary term:

Z ′ = π
D
2

(
det

(
d2

dt2

))−D
2

e−
(b−a)2

2T . (A.0.2)

The determinant of an operator, Ô, can be defined using the ζ-function [79] as

det
(
Ô
)

= exp

(
− d

dz
ζÔ (z)

)
; ζÔ (z) ≡

∞∑
n=1

λ−zn (A.0.3)

where the λn are the eigenvalues of Ô. The formal product of eigenvalues is then

regularised via the analytic continuation of the ζ-function. With Dirichlet boundary
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conditions the eigenvalues of the operator in Z are λn =
(
nπ
T

)2
so

ζ d2
dt2

(z) =
(π
T

)−2z

ζ (2z) (A.0.4)

which has derivative ζ ′ (0) = 2 ln
(
T
π

)
ζ (0) + 2ζ ′ (0). So with this regularisation we

arrive at

det

(
d2

dt2

)
= 2T (A.0.5)

giving

Z ′ = (2πT )−
D
2 e−

(b−a)2

2T . (A.0.6)

If instead we consider mixed boundary conditions ω (0) = 0, ω̇ (1) = 0 then the

eigenfunctions are

sin

(√
λ̃n t

)
(A.0.7)

where the eigenvalues are now given by λ̃n =
(

(2n+1)π
2T

)2

. For the ζ-function we now

obtain

ζ̃ d2
dt2

(z) =
(π
T

)−2z

ζ

(
2z,

1

2

)
(A.0.8)

where we’ve introduced the Hurwitz zeta function ζ (s, q). The derivative with

respect to z is then ζ̃ ′ (0) = 2 ln
(
T
π

)
ζ
(
0, 1

2

)
+ 2ζ ′

(
0, 1

2

)
. Now ζ

(
0, 1

2

)
= 0 so the first

term vanishes along with the T dependence, leaving

det

(
d2

dt2

)
= 2 (A.0.9)

for the case of mixed boundary conditions. The change in boundary conditions also

alters the boundary contributions from the classical action and we find that Z ′ is a

constant independent of T and a.

For fermionic fields the kinetic term is first order in derivatives and we impose

anti-periodic boundary conditions in the case of closed paths which represent traces.

We may of course calculate

ZF =

∫
ψ(T )=−ψ(0)

Dψ e−
∫ T
0 ψ̇·ψdτ =

(
det

(
d

dt

))D
2

(A.0.10)
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using standard techniques from quantum mechanics but for completeness we con-

tinue to apply functional methods. We need the eigenvalues λn = (2n+1)πi
T

and form

the determinant via
∞∏

n=−∞

(2n+ 1) πi

T
. (A.0.11)

The ζ-function for this operator is thus

(
2πi

T

)−z
ζ

(
z,

1

2

)
, (A.0.12)

which has derivative ζ ′ (0) = ln
(
T

2πi

)
ζ
(
0, 1

2

)
+ ζ ′

(
0, 1

2

)
which evaluates to − ln

√
2

so

ZF = 2
D
2 (A.0.13)

which we note does not depend on T – indeed the change of variables to τ ∈ [0, T ]

does not change the form of the kinetic term.

The other result we need is the normalisation constant for the open path action

which includes the term
∫ 1

0
dτ χ0

T
ω̇ · ψ. We use (2.3.44) to calculate

∫
dχ0δ (χ0 − Ξ) Dψ e−

∫ T
0 dτ 1

2
ψ̇·ψ−χ0

2T
ω̇·ψ ∝

∫
dχ0δ (χ0 − Ξ) T

(
e
∫
dτ

χ0
2
√

2T
ω̇·γ
)
.

(A.0.14)

Integrating over χ0 picks out

1 + Ξ
(b− a) · γ

2
√

2T
(A.0.15)

which is to be multiplied by ZF calculated above. In the main text we impose Ξ = 0

which vastly simplifies the remaining calculations.

Appendix B – Mixed Boundary Conditions and the

Green functions

Recall that out of the worldline formalism of the field theories appear Green function

factors (−D2 +m2)
−1

(b, a) which in our work are represented as curves running

between positions aµ and bµ. We associate a string worldsheet to these curves

but impose Dirichlet boundary conditions at one end of the string – fixing it to
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follow the curve between aµ and bµ – and Neumann boundary conditions at the

other. In the main text it was shown that Dirichlet boundary conditions ensure

that the general damping to integrands caused by the coincident Green function is

not present near the boundary, since here exp (−πα′k2G (ξ, ξ)) ∼ O (1). Neumann

boundary conditions do not impose this and so contributions arising from points

close to this end of the string will be exponentially damped. So we expect to receive

contributions to our integrals only from a strip close to the Dirichlet end of the

string. There is one distinguished point which may spoil this argument which is

where these two boundaries coincide.

In order to simplify the effect of these mixed boundary conditions it is favourable

to instead work on a worldsheet domain which consists of the upper-right quadrant

of the complex plane via the simple conformal mapping from the upper half plane

z →
√
z. The positive real axis in this plane corresponds to the end of the string

with Dirichlet boundary conditions and the positive imaginary axis corresponds to

the end of the string on which Neumann boundary conditions are imposed. Again

we shall expand about φ = const and will specialise to φ = 0 to determine the

leading order behaviour. The only real change to the calculations we have presented

in previous sections is that the Green function on the worldsheet must be modified

to respect the mixed boundary conditions. The method of images in the upper-right

quadrant gives the Green function as

G (z, z′) = ln |z − z′|2 − ln |z − z̄′|2 + ln |z + z̄′|2 − ln |z + z′|2 (A.0.16)

The coincident limit of this function requires regularisation as in the previous case

so we shall apply the heat-kernel representation. It is straightforward to verify that

in terms of z = x+ iy the coincident limit can be written as

Gε (z, z) =

∫ ∞
ε

dτ

4πτ

[
1− exp

(
−y

2

τ

)
+ exp

(
−x

2

τ

)
− exp

(
−x

2 + y2

τ

)]
= f

(
y√
ε

)
− f

(
x√
ε

)
+ f

(√
x2 + y2

√
ε

)
. (A.0.17)

At a distance much greater than
√
ε from both boundaries the coincident Green
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function is of order ln y2

ε
. When approaching the positive imaginary axis it increases

to 2 ln y2

ε
. Close to the positive real axis (corresponding to the Dirichlet end of the

string) Gε (z, z) is of order y2

ε
, except at the corner where the axes meet; here it

varies from 2y
2

ε
to y2

ε
when moving along the positive real axis and from 2y

2

ε
to

2 ln y2

ε
when moving along the positive imaginary axis, both over a distance of order

√
ε. So Gε (z, z) is of order ln y2

ε
everywhere on the worldsheet, except in a small

strip close to the positive real axis where it is of order y2

ε
.

This demonstrates more concretely that indeed all integrands of relevance will be

heavily damped except for a small strip close to the Dirichlet boundary of the

string. We shall not repeat the entire calculation for an arbitrary number of vertex

operators inserted onto the worldsheet since it suffices to consider the behaviour of

a single insertion, in much the same way as the calculation that preceded the careful

treatment of Section 3.3.1. We shall therefore consider the expectation value

∫
d2z eik·x

′ 〈Vk (z)〉 (A.0.18)

integrated over <(z) > 0, =(z) > 0, which contains two terms. A non-vanishing con-

tribution arises out of a single contraction between the pieces of the vertex operator

which leads an integral

2πα′k[µ

∫ ∞
0

∫ ∞
0

dxdy εab∂aG (z, z) ∂bX
ν]
C e
−πα′k2G(z,z)eik·(x

′−Xc). (A.0.19)

The integrand is damped by the exponent involving the Green function, except close

to y = 0 so we integrate a distance Λ into the bulk and replace the slowly varying

terms involving the field Xµ and its derivatives with their values on the Dirichlet

boundary. We shall first consider the term

2πα′kµ
∫ ∞

0

dx ∂xX
ν
c e

ik·(x′−Xc)
∫ ∞

0

dy ∂yG (z, z) e−πα
′k2G

=
kµ

k2

∫ ∞
0

dx ∂xX
ν
c e

ik·(x′−Xc)
[
e−πα

′k2G(z,z)
]∞

0
, (A.0.20)

where the fields Xµ and derivatives are evaluated on the boundary y = 0. The only
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kµ1

w

x′

Figure 1: A single vertex operator corresponds to an interaction with a background field. The
only contribution comes from points on the Dirichlet boundary of the string – this boundary is the
worldline of the particle representing the Green function in the worldline approach.

contribution is from the lower bound of the integration,

∫ ∞
0

dx
k[µ

k2
∂xX

ν]
c e

ik·(x′−Xc) =

∫
B0

dw[ν k µ] e
ik·(x′−w)

k2
, (A.0.21)

which is the result we sought. It can be represented diagrammatically as the inter-

action of points on the worldline B0 with a background massless vector field (see Fig

1) and is independent of α′, ε and the scale of the worldsheet metric. The second

term which arises out of (A.0.19) does not contribute. It is equal to

2πα′kµ
∫ ∞

0

dy ∂yX
ν
c e

ik·(x′−Xc)
∫ ∞

0

dx ∂xG (z, z) e−πα
′k2G(z,z)

=
kµ

k2

∫ ∞
0

dy ∂yX
ν
c e

ik·(x′−Xc)
(
e
−πα′k2f

(
y√
ε

)
− e−2πα′k2f

(
y√
ε

))
(A.0.22)

where once again the fields take on their values at the boundary y = 0. The two

terms in rounded brackets vary rapidly over the domain of integration but we have

met their like in the previous sections and it has already been demonstrated that

they vanish as the regulator is removed.

It remains to show that the other form of expression arising out of (A.0.18) does not

contribute to the expectation value. Since the analysis follows the exact same form

as in the main text we shall focus here only on the distinguished corner x = y = 0.

To do so we consider the region of the domain 0 ≤ x ≤ a, 0 ≤ y ≤ a where a is

chosen to enforce x2 + y2 ≤ 2a2 << ε. Within this region we have

G (z, z) ≈ 2y2

ε
. (A.0.23)
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The term in question is εab∂aX
µ∂bX

νe−πα
′k2G(z,z) so that the rapidly varying part of

the integrand is

∫ a
√
ε

0

dx

∫ a
√
ε

0

dy e−2πα′k2 y
2

ε

=ε

∫ a

0

∫ a

0

dy e−πα
′k2y2

. (A.0.24)

This integral is bounded by a2ε which vanishes as ε→ 0 because a√
ε
→ 0 with ε. By

applying the exact same analysis as previous sections the remaining regions can be

shown to also offer a contribution which vanishes as the regulator is removed.

It is clear from this result how the calculation would proceed in the general case

involving multiple vertex operators. The Green function supplies a similar damping

for an arbitrary placement of the points on the worldsheet; it is only when all of

the points are within a strip of size
√
ε of the Dirichlet boundary of the string

that a finite contribution can be expected as the regulator is removed, or when the

points are arranged in clusters in the bulk. In the latter case the boundary has

no effect so the results of the main text apply. In the former we would see a copy

of the above calculation for each point and the surviving terms are those involving

contractions only amongst the constituents of each vertex operator, rather than

between operators inserted at different points. A repeat of the previous calculations

leads to the result at order N

4N
N∏
j=1

∫
B0

dw · dw′ e
ikj ·(w−w′)

k2
j

(A.0.25)

corresponding to the interaction between pairs of points on the boundary mediated

by a massless vector boson; those pairs of points which interact arise from the

two vertex operators with equal and opposite momenta. This expression can be

represented diagrammatically as in Fig. 2.
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kµ1

w1 w2 w3 w4 w5 w6

kν2 kρ3

Figure 2: With multiple vertex operators inserted on the worldsheet there is an interaction between
pairs of points on the Dirichlet boundary. These pairs share equal and opposite momentum and the
picture corresponds to exchange of massless vectors between points on the worldline representing
the Green function in the worldline theory.

Appendix C – Gauge-fixing Maxwell theory

In the text we have adopted a gauge-fixing procedure that imposes the gauge con-

dition using a delta-function. We have to compute the integral

Z[J ] =

∫
DAe

∫
d4x((Aµ∂2Aµ−(∂·A)2)/(2q2)+J ·A+A·∂2A/q2) . (A.0.26)

with J = −i
∑

j

∫
dyjδ(yj − x) and A on-shell: ∂2A = ∂ · A = 0. Gauge invariance

prevents the operator in the kinetic term from being inverted. Inserting a delta-

function that imposes the gauge condition ∂ · A = 0 (we absorb the associated

Faddeev-Popov determinant into the normalisation as it is independent of A) gives

Z[J ] =

∫
D(A, λ) e

∫
d4x((Aµ∂2Aµ−(∂·A)2)/(2q2)+J ·A+A·∂2A/q2+iλ∂·A) (A.0.27)

Shifting the integration variable λ by − i∂·A
2q2 modifies the differential operator to one

that is invertible

Z[J ] =

∫
D(A, λ) e

∫
d4x(Aµ∂2Aµ/(2q2)+J ·A+A·∂2A/q2+iλ∂·A)

=

∫
Dλ e

q2

2

∫
d4x(J∂−2J+2A·J/q2+A∂2A/q4+2iλ ∂−2∂·J+2iλ∂·A/q2−λ2)

= e
q2

2

∫
d4x(J∂−2J−∂·J (∂−2)2∂·J+2A·J/q2)

= e
q2

2

∑
jk

∫
dyj ·∆·dyk−i

∑
j

∫
dyj ·A (A.0.28)
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Appendix D – Contraction Algebra

In this appendix we calculate some of the important contractions used in the main

work. From (3.2.38) in the main text it is straightforward to calculate simple cor-

relation functions. For example, for the product of derivatives of fields we may put

k = 0 in the generating function (since the k-dependence arose there because of the

exponential factors)

〈∂1Xµ (ξ) ∂1X
′
ν (ξ′)〉 =

δ

δjµ1 (ξ)

δ

δjν1 (ξ′)
Z (j, k = 0)

∣∣∣∣
j=0

=
δ

δjµ1 (ξ)

[(∫
d2ξ̃ 4πα′ηανj

νa
(
ξ̃
)
∂a∂

′
1G
(
ξ̃, ξ′

)
+ ∂′1X

ν
0 (ξ′)

)
Z (j, k = 0)

]∣∣∣∣
j=0

(A.0.29)

= 4πα′∂1∂
′
1G (ξ, ξ′) + ∂1X

µ
0 (ξ) ∂′1X

ν
0 (ξ′) (A.0.30)

where the latter term is the contribution due to the presence of the boundary.

Furthermore, to justify the expectation value of the exponential factor we may set

j = 0 and consider

〈exp [ik · (X (ξ)−X (ξ′))]〉 = Z (j = 0, k)

= exp−πα′k2Ψ (ξ, ξ′) · exp ik · (X (ξ)−X (ξ′)).

(A.0.31)

The above results provide a further justification for the forms of (3.3.69) - (3.3.71)

and highlight the rôle played by the boundary.

We also present in this appendix the calculation of contractions between fields. This

can be determined by use of Z (j, k) but for the operator product expansion used

it is easier to see it by making use of Wick’s theorem and the previous results.

Specifically we are interested in the product of two fields of the form

Aµeik·B (A.0.32)

considered inside a correlation function. We note, however, that these fields are
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not considered normal ordered by themselves. By expanding the exponential and

applying Wick’s theorem we arrive at

Aµeik·B =
∞∑
n=0

(ik)n

n!
AµBn

=
∞∑
n=0

λ<n−1
2∑

λ=0

ikνA
µBν ·(−kνkρ)λ (BνBρ)λ

(ik)n−2λ−1

(n− 1)!
·

n−1

2λ

 (2λ)!

2λλ!
: Bn−2λ−1 :

+
∞∑
n=0

λ<n
2∑

λ=0

(−kνkρ)λ (BνBρ)λ
(ik)n−2λ

n!
· (2λ)!

2λλ!

 n

2λ

 : AµBn−2λ :

=
∞∑
n=0

λ<n−1
2∑

λ=0

ikνA
µBν · (−kνkρ)

λ

2λλ!
·(BνBρ)λ

(ik)n−2λ−1

(n−2λ−1)!
: Bn−2λ−1 :

+
∞∑
n=0

λ<n
2∑

λ=0

(−kνkρ)λ

2λλ!
(BνBρ)λ

(ik)n−2λ

(n−2λ)!
: AµBn−2λ :

= ikνA
µBν exp

(
−1

2
kνkρB

νBρ

)
: eik·B : + exp

(
−1

2
kνkρB

νBρ

)
: Aµeik·B :

(A.0.33)

In the above equations the combinatoric factors come from the number of ways

of choosing the fields to take place in contraction and from the ordering of these

contractions amongst themselves. The form of the last line shows that we may

consider the product by working out contractions of term with itself and the cross

terms with others in the product. This result is used extensively in section 3.3 to

determine the product of fields arising in the perturbative expansion; in the main

work the field B is represented by the field X and the prefactor A by a derivative

∂X. We may, for example, immediately extract the product

∂1X
µeik·X = 4πα′ikµ∂1G exp

(
−πα′k2ψ

)
: eik·X : + exp

(
−πα′k2ψ

)
: ∂1X

µeik·X :

(A.0.34)

One may use the general iterative nature of Wick’s theorem along with the results

above to calculate more complicated products, as has been done in the main text.

We note here that the lack of normal ordering of each term in the product means that
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contractions between fields at coincident points are generated. Typically this leads

to Green functions at coincident points which diverge. This behaviour, coupled with

the boundary terms remaining in the normal ordered fields leftover after contractions

conspires to provide the results discussed in the paper.
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