
Durham E-Theses

Perturbations of Markov Chains

DESSAIN, THOMAS,JAMES

How to cite:

DESSAIN, THOMAS,JAMES (2014) Perturbations of Markov Chains, Durham theses, Durham University.
Available at Durham E-Theses Online: http://etheses.dur.ac.uk/10619/

Use policy

This work is licensed under a Creative Commons Attribution Non-commercial Share
Alike 3.0 (CC BY-NC-SA)

Academic Support O�ce, Durham University, University O�ce, Old Elvet, Durham DH1 3HP
e-mail: e-theses.admin@dur.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/10619/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://etheses.dur.ac.uk


Perturbations of Markov Chains

with applications to models of DNA
damage and repair

Thomas Dessain

A thesis presented for the degree of

Doctor of Philosophy

Probability and Statistics

Department of Mathematical Sciences

Durham University

May 2014



Perturbations of Markov Chains

with applications to models of DNA damage and repair

Thomas Dessain

Submitted for the degree of Doctor of Philosophy

May 2014

Abstract

This thesis is concerned with studying the hitting time of an absorbing state

on Markov chain models that have a countable state space. For many models it

is challenging to study the hitting time directly; I present a perturbative approach

that allows one to uniformly bound the difference between the hitting time moment

generating functions of two Markov chains in a neighbourhood of the origin. I

demonstrate how this result can be applied to both discrete and continuous time

Markov chains.

The motivation for this work came from the field of biology, namely DNA damage

and repair. Biophysicists have highlighted that the repair process can lead to Double

Strand Breaks; due to the serious nature of such an eventuality it is important

to understand the hitting time of this event. There is a phase transition in the

model that I consider. In the regime of parameters where the process reaches quasi-

stationarity before being absorbed I am able to apply my perturbative technique in

order to further understand this hitting time.
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Chapter 1

Introduction

This thesis is a contribution to the study of Markov chains. This area of mathe-

matical research began early in the 20th century; Andrey Markov proved the first

Markov chain results in his 1906 paper and in due course these processes were named

after him1. Informally a Markov chain is a process whose future behaviour, given

the present state, is independent of the past (this is the Markov property). Markov

chains are a popular choice in modelling because many physical systems come close

to satisfying the Markov property, in that how they evolve has very little dependence

on the past history of the system. Of special interest in applications are Markov

chains which exhibit the separation of scales property. These are processes whose

state space is separated into regions where transitions between different regions take

a long time but when the transition does occur it happens quickly. The transition

time (hitting time of one region starting from a neighbouring one) usually has a dis-

tribution which is approximately exponential on the appropriate scale, this is due

to the fact that there are typically many failed attempts to move from one region to

another until the process finally succeeds. Such transition times play a crucial role

in understanding many models in physics, chemistry, biology and computer science

to name just a few.

My contribution to the field is to have developed a perturbative approach that

one can use to compare the hitting time distributions of two Markov chain models,

1The interested reader can find a full account of his work in [1].

1



1.1. Motivating example 2

that are in some sense close to one another. The method I use is based upon the

comparison of moment generating functions of the rescaled hitting times, and as a

result provides a good control over the closeness of hitting time distributions. In

this chapter I will introduce the motivating example that sparked my interest in

this area, I will then state the model that I decided to study and finally I state the

results that I will prove in this thesis.

1.1 Motivating example

DNA is a long molecule consisting of repeating blocks called bases; bases frequently

become damaged2 but evolution has developed a number of repair mechanisms to

restore the DNA code. Based on biological evidence, the authors in [16] suggested

that due to the very nature of many repair mechanisms, two such processes running

in close vicinity can result in a double strand break which is often fatal to cells.

Taking this into account, they introduced a stochastic model to study the occurence

of double strand breaks, but then replaced it with a deterministic system of linear

differential equations which were obtained in the limit of a continuous space/positive

defect density approximation; they then studied the stationary behaviour of this

deterministic system. In addition they run a Markov chain Monte Carlo simulation

of the original stochastic model.

The analysis in [16] appears to be only applicable to high intensities of dam-

ages, which results in a positive fraction of bases being damaged at any given time.

Under normal everyday conditions this fraction is much smaller, hence the need for

careful investigation of the phenomenon. In this thesis I develop a perurtubative ap-

proach for studying moment generating functions of hitting times of Markov chains;

I illustrate its power by conducting a rigorous probabilistic analysis of a version

of the original stochastic model from [16] for the values of parameters where their

assumption does not hold.

2A couple of sources of DNA damage are described in [4]; the frequency of DNA damage is

startling, the authors of [6] state that every cell in our body experiences 2 · 104 − 105 lesions per

day! However this is actually very small when compared to the length of the human genome.
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1.2 Ring Model

In this section I will formally introduce the DNA damage and repair model that I

will study, I will refer to this model as the Ring Model. I think of a DNA string

as a sequence of labels from the set {0, 1, 2}, where 0, 1 and 2 correspond to a

undamaged, damaged and critically damaged bases respectively. Let DN be a DNA

string with N ∈ N bases that form a closed loop3. Also let λ > 0 and µ > 0 be

parameters that control the damage rate and repair rate respectively; furthermore

I require that λ and µ are chosen such that λ/µ ∈ N .

Convention 1.2.1. Throughout this thesis, in any model that involves parameters

λ, µ and N, I always require that λ > 0, µ > 0, λ/µ ∈ N and N ∈ N .

Define a Markov chain (Xt)t≥0 on the configuration space S = {0, 1, 2}DN such

that individual bases in DN evolve independently with rates4

0→ 1 rate λ/N

1→ 0 rate µ

1→ 2 rate λ/N

and the initial state, X0, is the empty configuration, i.e. where all bases are undam-

aged. Fix a constant l ∈ N and call a configuration critically damaged if there is a

critically damaged base or there are two damaged bases within distance 2l of each

other (this is clarified in Example 1.2.2). Define the stopping time T to be the first

moment, starting from a non-critically damaged configuration with λ/µ damaged

bases5, that the chain hits a critically damaged configuration. My aim is to study

the distribution of T as a function of N, λ, µ and l.

Example 1.2.2. Consider Figure 1.1 where we zoom in to a piece of DNA and

consider the state of 11 base pairs. For this example I let l = 2. The label 0,

3My approach can be applied to both closed or open DNA strings; it is known that for some

strains of E.coli the DNA forms a closed loop.
4Rate λ/N means that the time taken for the transition is exponentially distributed with pa-

rameter λ/N.
5My results hold for any non-critically damaged starting position with λ/µ damaged bases.
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1 or 2 indicates a particular base is undamaged, damaged or critically damaged

respectively. The first configuration is a critically damaged configuration because

1

1 1

1000 00 0 00

0 000 000 000 0000

0

0

2 0 000 000 000 0000 00

Figure 1.1

there is a critically damaged base present in the system. The second configuration is

a critically damaged configuration because there are two damaged base pairs within

distance 2l of each other. The third configuration is ‘alive’ (i.e. not a critically

damaged configuration) because there are no critically damaged bases and there is a

gap of length at least 2l between damaged bases.

1.3 Phase transition

The distribution of T is dependent on whether or not the process reaches quasi-

stationarity before hitting a critically damaged configuration. In the case where the

process does reach quasi-stationarity, the typical number6 of damaged bases (before

absorption) is λ/µ.

If n points are placed uniformly at random on a unit circle, then the minimal

gap size between any two points is of order 1/n2 (see page 327 in [7]). Consequently,

if one places λ/µ points uniformly at random on a circle of length N then the

minimal gap size between any two points will be of order N
(λ/µ)2

. The smallest gap

6There are N bases and each gets damaged with rate λ/N so roughly speaking the number

of damaged bases increases by 1 with rate λ. Also, each damaged base is repaired with rate µ,

therefore if there are k damaged bases then the number of damaged bases decreases by 1 with rate

µk. This well known birth death chain has a very concentrated stationary measure about the state

λ/µ (see equation (3.8)).
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is important because it is this quantity that determines whether the process is in a

critically damaged configuration or not.

The critical number of bases is 2l (see section 1.2) and so depending whether

N

(λ/µ)2
> 2l or

N

(λ/µ)2
< 2l

will significantly impact the survival time distribution. In the former case, the pro-

cess will typically reach stationarity and survive for a long time being reaching a

critically damaged configuration; it is this regime of parameters that I consider in

my thesis. Moreover, in this region of the parameter space, a deterministic ap-

proximation is not valid and it is therefore important that I carry out a rigorous

stochastic analysis of the model.

1.4 Main results

The first result I am able to prove is that one can stochastically sandwich the hitting

time T between the survival time of two much simpler Markov chains as follows.

Fix a small postitive p and let Np = d1/pe ∈ N. Also, as in the Ring Model, choose

λ > 0 and µ > 0 such that λ/µ ∈ N . Define the state space S ′ = {∗, 0, 1, 2, . . . ,Np},

where a number corresponds to the number of damaged bases and the starred state

represents a “critically damaged configuration”. Consider a Markov chain (Yt)t≥0

on S ′ that evolves with jump rates:

k → k − 1 rate µk

k → k + 1 rate λ(1− dk)

k → ∗ rate λdk

(1.1)

where

dk =

pk if k < Np

1 if k = Np

.

I will refer to this model as the Projected Model and solely for the purposes of

Figure 1.2 I define λk = λ(1− dk). In picture form this process looks like:
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'&%$ !"#∗
λd1

??~~~~~~~~~

'&%$ !"#∗
λdk

>>~~~~~~~~~

'&%$ !"#∗
λ

??~~~~~~~~~/.-,()*+0
λ
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hh . . .
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hh
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λk ))

kµ

ii . . .
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hh

λNp−1
** ?>=<89:;Np

Np·µ
ii

Figure 1.2: Markov Chain Yt - Projected Model

Definition 1.4.1. I define two copies of Yt namely Y
′
t and Y

′′
t , with rates as de-

scribed in equation (1.1), where p = 2l+1
N

and p = 4l+1
N

respectively. Also let

Y
′

0 = Y
′′

0 = λ/µ. Finally, define T ′ and T ′′ to be the hitting times of a starred

state for models Y
′
t and Y

′′
t respectively.

Theorem 1.4.2. Let T , T ′ and T ′′ be as defined in Section 1.2 and Defintion 1.4.1.

We have the following stochastic ordering

T
′′ � T � T

′
.

The proof can be found in Appendix A. In particular this result allows me to

estimate the tails of T from above and below, by the appropriate hitting times of

processes which are significantly simpler to simulate from. Moreover, in conjunc-

tion with Theorem 1.4.4, I deduce that T is bounded above and below by random

variables that have exponentially decaying tails.

The result that I will spend most of my thesis proving concerns the limiting

behaviour of T ′ and T ′′, in fact more interesting than the result itself is the technique

I have employed to prove the result which makes use of the intrinsic renewal structure

of Yt.

Convention 1.4.3. Throughout this thesis, I use O(·) notation to indicate that an

expression is uniformly bounded by a constant that does not depend on any of the

variables in the argument.
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Theorem 1.4.4. Fix constants 0 < ρ0 < 2/7 and κ∗2 > 0. For any 0 < v̄ < 0.5

there exists κ∗1 = κ∗1(v̄) > 0 and κ∗3 = κ∗3(v̄) > 0 such that for any v that satisfies

|v| < v̄, if (
λ

µ

)2+ρ0 1

N
< κ∗1 , N exp

[
−
(
λ

µ

)0.2ρ0
]
< κ∗2 and

µ

λ
< κ∗3 ,

then∣∣∣∣MT ′

(
2λ2v

µ
· 2l + 1

N

)
− 1

1− 2v

∣∣∣∣ = O

(
1

N

(
λ

µ

)2+0.5ρ0
)

+O
((µ

λ

)0.25(1−0.25ρ0)
)

and∣∣∣∣MT ′′

(
2λ2v

µ
· 4l + 1

N

)
− 1

1− 2v

∣∣∣∣ = O

(
1

N

(
λ

µ

)2+0.5ρ0
)

+O
((µ

λ

)0.25(1−0.25ρ0)
)
.

where the implicit constant in the big O in both of the statements is dependent on

κ∗1, κ
∗
2, κ
∗
3, v̄ and l. MT ′(·) and MT ′′(·) are the moment generating functions of T ′

and T ′′ respectively.

Remark 1.4.5. Notice that the error term in Theorem 1.4.4 is negligible when λ/µ

is large compared to 1, but small when compared to N
1

2+0.5ρ0 . Moreover, if ρ0 → 0

then the error terms in Theorem 1.4.4 are optimised, however this does come at a

cost; for small ρ0 one needs to take λ/µ larger in order to satisfy the condition:

N exp

[
−
(
λ

µ

)0.2ρ0
]
< κ∗2

Recall that (1 − 2v)−1 is the moment generating function of an exponentially

distributed random variable with parameter 1/2. The control we have over the

moment generating function in Theorem 1.4.4 when the conditions in Remark 1.4.5

are satisfied is very useful. Not only does it prove that the probability distribution of

both T ′ and T ′′ (properly scaled) are concentrated near that of a Exp(1/2) random

variable, one can also use the theorem to deduce other useful results, for example

large deviation estimates.

Rather than working on the microscopic scale (on the level of individual jumps),

I have worked on a mesoscopic scale (on the level of excursions from the typical state

λ/µ to the state λ/µ). This has led to a set of criteria on the level of excursions

that are required to hold in order to prove the result, this is very general and can

be applied to other models where there is a state that is visited frequently.
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1.5 Overview of chapters

In Chapter 2 I state and prove a number of key results that I will rely on in later

chapters. This includes making use of martingale technology to prove results for the

simple symmetric random walk and also taking the well known relation between the

expected return time of a state in a Markov chain and its stationary distribution

and deriving new relationships that are similar in spirit.

In Chapter 3 I prove results about the discrete time Markov chain (Zi)i≥0 on the

state space {0, 1, 2, . . . } that evolves with jump probabilities:

P(Zi+1 = zi+1|Zi = zi) =


λ

λ+µzi
, if zi+1 = zi + 1

µzi
λ+µzi

, if zi+1 = zi − 1

0 , otherwise

This Markov chain underlies many of my models.

In Chapters 4 and 5 I introduce and study Markov chains with an absorbing state

which play a crucial role in later chapters by serving as an approximation to more

advanced models. The most important model from these chapters is the Discrete

Time Constant Killing model, which is introduced at the start of Chapter 5. The

key result for this model is Theorem 5.4.4 which can be found on page 54.

In Chapter 6 I introduce the perturbative technique I have developed (see The-

orem 6.3.1 on page 59), which is very useful in studying Markov chains which exibit

metastable behaviour. I apply this technique to specific discrete and continuous

time Markov chains in Chapters 7, 8 and 9, via a series of pairwise comparisons; the

main result in each of these chapters is stated in the final section of the chapter. A

summary of the models I consider can be found below in Figure 1.3.

In Chapter 10 I link my research back to the motivating example in this chapter

by proving Theorem 1.4.4; I also discuss possible directions for future research in

this area. Finally in Appendix A I provide a proof of Theorem 1.4.2.

7This is the primary notation associated to these models; there is other notation and this is

introduced in the relevant chapters.
8For models where the holding time is described as Exp(·), this means that the holding time is

exponentially distributed with the respective parameter.
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Chapter 2

Preliminary material: part 1

This chapter contains a variety of results that are required in later chapters. I

will reuse the constants C and α throughout the chapter, please do not assume

any dependence between the constants that pop up in the different results unless I

explicitly make reference to this being the case.

2.1 Simple symmetric random walk results

Let X be a Bernoulli random variable with probability mass function

P(X = x) =


0.5 if x = 1

0.5 if x = −1

0 otherwise

and let X1, X2, . . . be independent copies of X. Also define Sn = S0 +
∑n

i=1Xi

for some constant S0 ∈ Z. The simple symmetric random walk (SSRW), which is

defined by (Sn)n≥0, is undoubtedly one of the simplest random processes and yet

plays an important role in my thesis. Throughout this section, (Sn)n≥0, will retain

the above meaning and as such I will not redefine it in the results that follow. I will

start by introducting a number of martingales for the SSRW.

Lemma 2.1.1. Let T = inf
{
m > 0 : Sm ∈ {0, n}

}
with 0 < S0 < n. We have the

following martingales with respect to the natural filtration (generated by Sm):

i. If Mm = S2
m −m then Mm∧T is a martingale.
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ii. If Mm = S4
m − 6mS2

m + 3m2 + 2m then Mm∧T is a martingale.

Proof of Lemma 2.1.1(i). Firstly, using the fact that Xm+1 is independent of Sm, it

follows that

E(Mm+1 −Mm|Sm) = E(S2
m+1 − S2

m +m− (m+ 1)|Sm)

= E((Sm +Xm+1)2 − S2
m − 1|Sm)

= E(2SmXm+1 +X2
m+1 − 1|Sm)

1 = 0

Secondly

E(Mm∧T ) ≤ E(|Mm∧T |) ≤ n2 + E(T ) <∞

because the Markov chain is irreducible and has a finite state space. Consequently

Mm∧T is a martingale.

Proof of Lemma 2.1.1(ii). Firstly, using the fact that Xm+1 is independent of Sm,

it follows that

E(Mm+1 −Mm|Sm) = E((Sm +Xm+1)4 − S4
m + 6mS2

m − 6(m+ 1)(Sm +Xm+1)2

+ 3(m+ 1)2 − 3m2 + 2(m+ 1)− 2m|Sm)

2 = E(6S2
mX

2
m+1 +X4

m+1 − 6S2
m − 6X2

m+1 − 6mX2
m+1

+ 6m+ 3 + 2|Sm)

3 = E(6S2
m + 1− 6S2

m − 6− 6m+ 6m+ 5|Sm) = 0

Secondly

E(Mm∧T ) ≤ E(|Mm∧T |) ≤ E(n4 + 6Tn2 + 3T 2 + 2T ) ≤ 12n4 · E(T 2) <∞

because the Markov chain is irreducible and has a finite state space. Consequently

Mm∧T is a martingale.

1Uses E(Xm+1) = 0 and E(X2
m+1) = 1

2Uses E(Xm+1) = E(X3
m+1) = 0

3Uses E(X2
m+1) = E(X4

m+1) = 1
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The above martingales can be used to prove the following boundary hitting time

estimates

Lemma 2.1.2. Let T = inf
{
m > 0 : Sm ∈ {0, n}

}
. We have the following results

i. If 0 ≤ S0 ≤ n then P(ST = n) = S0/n.

ii. If 0 ≤ S0 ≤ n then E(T ) = S0(n− S0).

iii. If S0 = 1 then E(T 2) = O(n3).

iv. P(T > n2) ≤ 0.25 uniformly in 0 ≤ S0 ≤ n.

Proof of Lemma 2.1.2(i). Applying the Optional Stopping Theorem and Dominated

Convergence Theorem to the maringale Sm∧T we have

S0 = lim
m→∞

E(Sm∧T ) = E( lim
m→∞

Sm∧T ) = E(ST ) = 0 · P(ST = 0) + n · P(ST = n)

Consequently P(ST = n) = S0/n and P(ST = 0) = 1− S0/n.

Proof of Lemma 2.1.2(ii). Applying the Optional Stopping Theorem and Domi-

nated Convergence Theorem to the maringale Mm∧T = S2
m∧T −m ∧ T we have

S2
0 = M0 = lim

m→∞
E(Mm∧T ) = E( lim

m→∞
Mm∧T ) = E(MT )

But since

E(MT ) = E(S2
T )− E(T ) = n2P(ST = n)− E(T ) = nS0 − E(T )

where the last equality uses Lemma 2.1.2(i), it follows that E(T ) = S0(n− S0).

Proof of Lemma 2.1.2(iii). Applying the Optional Stopping Theorem and Domi-

nated Convergence Theorem to the maringale

Mm∧T = S4
m∧T − 6(m ∧ T )S2

m∧T + 3(m ∧ T )2 + 2(m ∧ T )

we have

1 = S4
0 = M0 = lim

m→∞
E(Mm∧T ) = E( lim

m→∞
Mm∧T ) = E(MT )
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Combining this with the fact that

E(MT ) = E(S4
T − 6TS2

T + 3T 2 + 2T )

gives

3E(T 2) ≤ 1 + E(6TS2
T ) ≤ 1 + 6n2E(T ) = O(n3)

where the last equality applies Lemma 2.1.2(ii) with S0 = 1.

Proof of Lemma 2.1.2(iv). I start by applying Markov’s inequality to P(T > n2)

and then making use of Lemma 2.1.2(ii):

P(T > n2) ≤ E(T )

n2
=
S0(n− S0)

n2

This function of S0 is largest when S0 = 0.5n

≤ 0.5n(n− 0.5n)

n2
= 0.25

A slightly more unusual question is one which asks about the hitting time of

a particular boundary. Start a SSRW inbetween two absorbing boundary points,

what can be said about the moment generating function of the hitting time of a

particular boundary on the event that this boundary is the first to be reached (i.e.

ignore trajectories that hit the opposite boundary first)? I can prove the following

result:

Lemma 2.1.3. Let T = inf{m ≥ 0 : Sm ∈ {0, n}}. For any 0 < α ≤ 0.5 we have

the following results

En−1

[
exp

( α
n2
· T
)
1{ST=0}

]
≤ 1

n
· exp

(
1

4

)
and

E1

[
exp

( α
n2
· T
)
1{ST=0}

]
≤ exp

(
− 1

2n

)

Convention 2.1.4. The subscript next to E defines the starting position of the

process.
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Proof. It suffices to prove the lemma for α = 0.5. Define

gm = Em
[
exp (β · T )1{ST=0}

]
0 ≤ m < n β > 0

The gm quantities satisfy the following system of equations:

g0 = 1 gn = 0 gm = γ · (gm−1 + gm+1) 0 < m < n

where γ = 1
2

exp (β). A simple backward induction shows that

gn−m = ϕm(0) · gn−m−1 0 < m < n

where ϕm(0) denotes the mth iteration of the function ϕ(x) = γ
1−γx :

ϕ1(x) = ϕ(x) =
γ

1− γx
ϕm(x) = ϕ(ϕm−1(x)) 0 < m < n

I claim that if 0 < β ≤ 1
2n2 , then ϕk(0) ≤ k

k+1
·exp (kβ) for all k satisfying 0 < k < n

(see Lemma 2.1.5 below). Using this result and Lemma 2.3.3 it follows that if

β = 1
2n2 then:

g1 = ϕn−1(0) ≤ n− 1

(n− 1) + 1
exp

(
n− 1

2n2

)
≤ exp

(
− 1

n

)
· exp

(
1

2n

)
= exp

(
− 1

2n

)
and

gn−1 =
n−1∏
k=1

ϕk(0) ≤ 1

n
exp

(
1

2n2
· 1

2
n(n− 1)

)
≤ 1

n
· exp

(
1

4

)
This completes the proof.

Lemma 2.1.5. If 0 < β ≤ 1
2n2 , then ϕk(0) ≤ k

k+1
· ekβ for all k satisfying 0 < k < n

Proof. I will prove this result using induction. Noting that the case k = 1 is trivial,

we assume that ϕk(0) ≤ k
k+1
· ekβ. Then

ϕk+1(0) =
eβ

2− eβϕk(0)
≤ eβ

2− k
k+1

eβ(k+1)
=

(k + 1)eβ

(k + 2)− k(eβ(k+1) − 1)

=
(k + 1)eβ

k + 2
· 1

1− k
k+2

(eβ(k+1) − 1)

and so to complete the inductive step it remains to show(
1− k

k + 2
(eβ(k+1) − 1)

)−1

≤ ekβ
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It is straightforward:(
1− k

k + 2
(eβ(k+1) − 1)

)−1

≤
(

1− k

k + 2
· (k + 1)β

1− (k + 1)β

)−1

= 1 +
k(k + 1)β

k + 2− 2(k + 1)2β

= 1 + kβ · k + 1

(k + 1) + (1− 2(k + 1)2β)
≤ 1 + kβ < ekβ

where the first inequality follows from the Lemma 2.3.3 and the second inequality

follows from the assumptions1 of the lemma.

Corollary 2.1.6. By symmetry, the statement in Lemma 2.1.3 is equivalent to the

following

E1

[
exp

( α
n2
· T
)
1{ST=n}

]
≤ 1

n
· exp

(
1

4

)
and

En−1

[
exp

( α
n2
· T
)
1{ST=n}

]
≤ exp

(
− 1

2n

)

I will now state a moderate deviations estimate for the binomial distribution

that can be found in [20]:

Lemma 2.1.7. Let Rm ∼ Bin(m, p) be a binomially distributed random variable

with parameters m and p and assume cm is a positive sequence satisfying

cm →∞ and
cm√
m
→ 0 as m→∞

Then for any x > 0, we have

lim
m→∞

1

c2
m

· log

[
P

(∣∣∣∣∣ Rm −mp
cm
√
mp(1− p)

∣∣∣∣∣ ≥ x

)]
= −x

2

2

Finally I am in a position to prove a SSRW moderate deviations result:

1the conditions on β and k for which the lemma is valid imply that 1− 2(k + 1)2β ≥ 0.
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Lemma 2.1.8. If S0 = 0 then there exists constants C > 0 and γ > 0 such that

P

(
max

i=1,...,m
|Si| > m0.75

)
≤ C exp (−γ

√
m)

Proof. I start by noting the Etemadi Lemma (Lemma 16.8 from [15]) which gives

us the following result

P

(
max

i=1,...,m
|Si| > m0.75

)
≤ C1 · P(|Sm| > 0.5 ·m0.75) for all m ∈ N (2.1)

where C1 is a constant. This simplifies matters considerably because I now only

need to consider the end point of the random walk.

In order that |Sm| > 0.5 · m0.75 I require the number of jumps to the right to

be bigger than 0.5(m+ 0.5 ·m0.75) or less than 0.5(m− 0.5 ·m0.75). The number of

jumps to the right is binomially distributed with parameters m and 0.5 and so for

convenience I define Rm ∼ Bin(m, 0.5), it follows that

P(|Sm| > 0.5 ·m0.75) = P(Rm > 0.5(m+ 0.5 ·m0.75)) + P(Rm < 0.5(m− 0.5 ·m0.75))

= P

(∣∣∣∣Rm − 0.5m

0.25m0.75

∣∣∣∣ ≥ 1

)
(2.2)

I now apply Lemma 2.1.7 with cm = 0.5m0.25 and x = 1 to deduce that

lim
m→∞

4√
m
· log

[
P

(∣∣∣∣Rm − 0.5m

0.25m0.75

∣∣∣∣ ≥ 1

)]
= −1

2

I now choose an α satisfying 0 < α < 1
8

and there exists m0 ∈ N such that

1√
m
· log

[
P

(∣∣∣∣Rm − 0.5m

0.25m0.75

∣∣∣∣ ≥ 1

)]
+

1

8
≤ α for all m > m0 .

Equivalently

P

(∣∣∣∣Rm − 0.5m

0.25m0.75

∣∣∣∣ ≥ 1

)
≤ exp

[(
α− 1

8

)√
m

]
for all m > m0 ,

and there exists a constant C2 > 0 such that

P

(∣∣∣∣Rm − 0.5m

0.25m0.75

∣∣∣∣ ≥ 1

)
≤ C2 · exp

[(
α− 1

8

)√
m

]
for all m ∈ N . (2.3)

Finally by pulling together equations (2.1), (2.2) and (2.3) we reach the result

P

(
max

i=1,...,m
|Si| > m0.75

)
≤ C1 · C2 · exp

[
−
(

1

8
− α

)√
m

]
.

This is the statement of the lemma with C = C1 · C2 and γ = 1
8
− α.
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2.2 General Markov chain results

Consider an irreducible and positive recurrent Markov chain, for such a chain there

is a well known link between the stationary measure and the expected return time

of a state. If one defines Bx to be the first return time for state x and πx to be the

stationary measure of the same state then it holds that

E(Bx) =
1

πx

Using this result I have derived another compact forumla for the expected return

time. This alternative expression proves very useful in Chapter 5.

Define (Ui)i≥0 to be a positive recurrent Markov chain on the state space

{0, 1, 2, . . . } evolving according to jump probabilities (pk + qk = 1 for all k ∈ N):

P(Ui+1 = ui+1|Ui = ui) =



1 if ui+1 = 1 and ui = 0

pui if ui+1 = ui − 1 and ui > 0

qui if ui+1 = ui + 1 and ui > 0

0 otherwise

In picture form it looks like

/.-,()*+0
1

((/.-,()*+1
q1

))

p1

hh . . .
p2

hh

qk−1
((/.-,()*+k

qk
))

pk

ii . . .
pk+1

hh

Lemma 2.2.1. Consider (Ui)i≥0 and define r→k to be the total weight of all finite step

trajectories starting at the origin and terminating at state k without any intermediate

returns to the origin. Also define E(
→
B) to be the expected return time of the origin

for this Markov chain. Then

E(
→
B)

2
= 1 +

∞∑
k=1

qkr
→
k

Proof. The following recurrence relation exists between the r→k terms:

r→0 = p1r
→
1 , r→1 = 1 + p2r

→
2 , r→k = qk−1r

→
k−1 + pk+1r

→
k+1 for k ≥ 2
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Moreover, the chain is positive recurrent and therefore will return to the origin with

probability 1 and so r→0 = 1. From these equations we can deduce that

r→k =

1 if k = 0

1
pk

∏k−1
i=1

qi
pi

if k ≥ 1

Moreover by solving the detailed balance equations we find that the stationary

distribution is

πk =

π0 if k = 0

π0 · 1
pk

∏k−1
i=1

qi
pi

if k ≥ 1

By straightforward comparison of these displays we see that r→k is proportional to

πk and consequently the r→k terms satisfy the detailed balance equations. Therefore

r→0 = 1 , r→1 = 1 + q1r
→
1 , r→k = qk−1r

→
k−1 + qkr

→
k for k ≥ 2

Therefore

∞∑
k=0

r→k = r→0 + r→1 +
∞∑
k=2

r→k = r→0 + r→1 + q1r
→
1 + 2

∞∑
k=2

qkr
→
k = 2 + 2

∞∑
k=1

qkr
→
k (2.4)

Finally from the relationship between r→k and πk we also see that

∞∑
k=0

r→k =
∞∑
k=0

πk
π0

=
1

π0

= E(
→
B) (2.5)

Pulling together equations (2.4) and (2.5) gives the desired result.

The following result considers exactly the same Markov chain as above, but on

the negative state space. Define (Vi)i≥0 to be a positive recurrent Markov chain on

the state space {0,−1,−2, . . . } evolving according to jump probabilities

(p−k + q−k = 1 for all k ∈ N):

P(Vi+1 = vi+1|Vi = vi) =



1 if vi+1 = −1 and vi = 0

pvi if vi+1 = vi − 1 and vi < 0

qvi if vi+1 = vi + 1 and vi < 0

0 otherwise

In picture form it looks like
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qm−1
)) /.-,()*+m

qm
))

pm

ff . . .
pm+1

ii

q−2
** ?>=<89:;−1

q−1
((

p−1

jj /.-,()*+0
1

jj

where m is a negative integer.

Lemma 2.2.2. Consider (Vi)i≥0 and define r←k to be the total weight of all finite step

trajectories starting at the origin and terminating at state k without any intermediate

returns to the origin. Also define E(
←
B) to be the expected return time of the origin

for this Markov chain. Then

E(
←
B)

2
=
−∞∑
k=−1

qkr
←
k

Remark 2.2.3. This result is not just the symmetrical image of the previous result,

the expression I derive for the expected return time is different.

Proof. The following recurrence relation exists between the r←k terms:

r←0 = q−1r
←
−1 , r←−1 = 1 + q−2r

←
−2 , r←k = qk−1r

←
k−1 + pk+1r

←
k+1 for k ≤ −2

and again the chain is positive recurrent, therefore r←0 = 1. From these equations

we can deduce that

r←k =

1 if k = 0

1
qk

∏k+1
i=−1

pi
qi

if k ≤ −1

Again one can show that r←k = πk
π0

and consequently the r←k terms satisfy the detailed

balance equations. Therefore

r←0 = 1 = q−1r
←
−1 , r←k = qk−1r

←
k−1 + qkr

←
k for k ≤ −1

Therefore

−∞∑
k=0

r←k = r←0 +
−∞∑
k=−1

r←k = r←0 + q−1r
←
−1 + 2

−∞∑
k=−2

qkr
←
k = 2q−1r

←
−1 + 2

−∞∑
k=−2

qkr
←
k

= 2
−∞∑
k=−1

qkr
←
k (2.6)
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Finally from the relationship between r←k and πk we also see that

−∞∑
k=0

r←k =
−∞∑
k=0

πk
π0

=
1

π0

= E(
←
B) (2.7)

Pulling together equations (2.6) and (2.7) gives the desired result.

I now consider the Markov chain that is formed by joining the above two chains

together. The only adjustment I make is to the jump probabilities at the ori-

gin. Define (Wi)i≥0 to be a positive recurrent Markov chain on the state space

{. . . ,−1, 0, 1, . . . } evolving according to jump probabilities (pk + qk = 1 for all

k ∈ Z):

P(Wi+1 = wi+1|Wi = wi) =


pwi if wi+1 = wi − 1

qwi if wi+1 = wi + 1

0 otherwise

In picture form it looks like

qm−1
)) /.-,()*+m

qm
))

pm

ff . . .
q−1

((

pm+1

ii /.-,()*+0
p0

ii

q0
)). . .

qk−1
((

p1

hh /.-,()*+k
qk

&&

pk

ii
pk+1

hh

Corollary 2.2.4. Consider (Wi)i≥0 and define rk to be the total weight of all finite

step trajectories starting at the origin and terminating at state k without any inter-

mediate returns to the origin. Also define E(B) to be the expected return time of the

origin for this Markov chain. It follows that

E(B)

2
= q0 +

∞∑
k=1

(qkrk + q−kr−k)

Proof of Corollary 2.2.4. First of all I apply the Theorem of Total Probability and

then I use Lemma 2.2.1 and Lemma 2.2.2:

E(B)

2
= q0 ·

E(
→
B)

2
+ p0 ·

E(
←
B)

2

= q0 + q0

∞∑
k=1

qkr
→
k + p0

−∞∑
k=−1

qkr
←
k
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By definition of r←k , r
→
k and rk it follows that p0 · r←k = rk for negative k and

q0 · r→k = rk for positive k, therefore

= q0 +
∞∑
k=1

qkrk +
−∞∑
k=−1

qkrk

which completes the proof.

Finally I present two further identities that relate to moments of B:

Lemma 2.2.5. Consider the Markov chain (Wi)i≥0 and define am to be the proba-

bility that a length m trajectory does not return to the origin. It follows that
∞∑
m=1

am = E(B)− 1 (2.8)

and
∞∑
m=1

m · am =
1

2
[E(B2)− E(B)] . (2.9)

Remark 2.2.6. The lemma still makes sense if E(B2) =∞ because the summation

on the left hand side of equation (2.9) would be infinite too.

Proof of Lemma 2.2.5. For any fixed k it follows that

∞∑
m=1

mk · am =
∞∑
m=1

mk ·P(B > m) =
∞∑
m=1

∑
n>m

mk ·P(B = n) =
∞∑
n=1

n−1∑
m=1

mk ·P(B = n)

By substituting k = 0 and k = 1 into the above equation we reach the desired

results:
∞∑
m=1

am =
∞∑
n=1

n−1∑
m=1

P(B = n) =
∞∑
n=1

(n− 1) · P(B = n) = E(B)− 1

∞∑
m=1

m · am =
∞∑
n=1

n−1∑
m=1

m · P(B = n) =
∞∑
n=1

1

2
n(n− 1) · P(B = n) =

1

2
[E(B2)− E(B)]

Convention 2.2.7. When I use these results in later chapters, the hitting time B

will have exponential moments, consequently the moment generating function of B

is analytic at the origin. As such I will write E(B) and E(B2) as the appropriate

derivative of the moment generating function evaluated at 0:

E(B) = M
′

B(0) and E(B2) = M
′′

B(0) .
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2.3 Other results

In this section I will present a selection of standard inequalities that I will refer to

throughout this thesis.

Lemma 2.3.1. If x ∈ R then 1 + x ≤ ex .

Proof. Define f(x) = ex − 1− x and note that f(0) = 0. By differentiating, we see

that f(x) is an increasing function for all x > 0 and a decreasing function for all

x < 0. Consequently f(x) ≥ 0 for all x ∈ R.

Lemma 2.3.2. If x ≥ 0 then ex − 1 ≤ xex .

Proof. Define f(x) = ex − 1 − xex and note that f(0) = 0. By differentiating, we

see that f(x) is a decreasing function for all x > 0. Consequently f(x) ≤ 0 for all

x ≥ 0.

Lemma 2.3.3. If x ≥ 0 then 1− x ≤ e−x. If additionally x < 1 then ex ≤ 1
1−x .

Proof. I will start by proving the first statement. Define f(x) = 1 − e−x − x and

note that f(0) = 0. By differentiating, we see that f(x) is a decreasing function for

all x > 0. Consequently f(x) ≤ 0 for all x ≥ 0 which is precisely the first part of the

lemma. Adding the condition x < 1 ensures that I can divide through both sides of

the inequality by 1− x without needing to change the sign.

Lemma 2.3.4. If x > 0 then

1

1− e−x
< 1 +

1

x
.

Proof. Start with the known inequality ex > 1+x which is equivalent to the following

e−x <
1

1 + x
⇐⇒ 1− e−x > x

1 + x
⇐⇒ 1

1− e−x
<

1 + x

x

Lemma 2.3.5. If 0 ≤ x ≤ 0.5 then 1− x ≥ e−x−x
2
.
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Proof. Take logs of both sides and define f(x) = log (1− x) + x + x2. Note that

f(0) = 0. After differentiating, we find that f ′(x) = x · 1−2x
1−x which is non-negative

for all 0 ≤ x ≤ 0.5. Consequently f(x) ≥ 0 for all 0 ≤ x ≤ 0.5 as required.

Lemma 2.3.6. If |x| ≤ 1/2 then∣∣∣∣ 1

1 + x
− 1

∣∣∣∣ ≤ 2|x| .

Proof. ∣∣∣∣ 1

1 + x
− 1

∣∣∣∣ =
|x|

1− x
≤ 2|x|

where the inequality holds if |x| ≤ 1/2.

Lemma 2.3.7. If 0 ≤ x ≤ 1/2 then | log (1− x) + x| ≤ x2 .

Proof.

|log (1− x) + x| =

∣∣∣∣∣−
∞∑
k=2

xk

k

∣∣∣∣∣ ≤ 1

2

∞∑
k=2

xk =
1

2
· x2

1− x
≤ x2

where the last inequality holds if 0 ≤ x ≤ 1/2

Lemma 2.3.8. If 0 ≤ x ≤ 1/2 then 0 ≤ − log (1− x) ≤ 2x.

Proof.

0 ≤ − log (1− x) =
∞∑
k=1

xk

k
≤

∞∑
k=1

xk =
x

1− x
≤ 2x

where the last inequality holds if 0 ≤ x ≤ 1/2.

Lemma 2.3.9. For any fixed choice of ε > 1 we have |ex − 1| ≤ ε|x| for all

x < log (ε).

Proof. The result is trivial for x = 0 and I will proceed by considering positive and

negative x seperately. If x > 0 then I want to show ex − 1 < εx. To do this define

f(x) = ex − 1− εx, since f(0) = 0 and f(x) is a decreasing function for x < log (ε)

I can conclude that f(x) < 0 holds for 0 < x < log (ε). Conversely if x < 0 then

I want to show 1 − ex < −εx. To do this define g(x) = 1 − ex + εx. Note that

g(0) = 0 and g(x) is an increasing function for all x < 0 (this uses the condition

ε > 1). Therefore I can conclude that g(x) < 0 holds for all x < 0.
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Lemma 2.3.10. If 0 ≤ x < 1 then log (1− x) ≤ −x.

Proof. Define f(x) = log (1− x) + x and note that f(0) = 0. By differentiating, we

see that f(x) is a decreasing function for all 0 < x < 1. Consequently f(x) ≤ 0 for

all 0 ≤ x < 1.

Lemma 2.3.11. If α ≥ 0 and 0 ≤ x ≤ log (1+α)
1+α

then

(1− x)−1 ≤ e(1+α)x .

Proof. Since 0 ≤ x < 1 I can multiply through by 1− x without changing the sign

of the inequality. As such, in order to prove the lemma, I will prove the following

equivalent result

(1− x) ≥ e−(1+α)x .

Define f(x) = e−(1+α)x + x − 1 and note that f(0) = 0. By differentiating, we see

that f(x) is a decreasing function for all x ≤ log (1+α)
1+α

. Consequently f(x) ≤ 0 for

all x satisfying 0 ≤ x ≤ log (1+α)
1+α

.

Lemma 2.3.12. If −1 < α < 1 and x > 1 then

∞∑
m=1

mα ·
(

1− 1

x

)m
= O(x1+α)

where the implicit constant is dependent on the choice of α.

Proof. Firstly I apply Lemma 2.3.3 and then I decompose the sum as follows

∞∑
m=1

mα ·
(

1− 1

x

)m
≤

x∑
m=1

mα · e−m/x +
∞∑
m=x

mα · e−m/x (2.10)

Now I will show that each of the above terms can be bounded by a constant multi-

plied by x1+α. For the first summation in equation (2.10) I can bound the sum as

follows
x∑

m=1

mα · e−m/x ≤
x∑

m=1

mα .

One can think of the summation,
∑x

m=1m
α, as summing up the area of a sequence

of rectangles; it is then straightforward to see that this can be approximated by∫ x
1
yαdy. The approximation can be formally written as an inequality by choosing
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the limits as shown in the formula below (this caters for mα being either increasing

or decreasing):

x∑
m=1

mα ≤
∫ x+1

0

yαdy =
1

1 + α
· (1 + x)1+α ≤ 21+α

1 + α
· x1+α

For the second summation in equation (2.10) I decompose the sum as follows

∞∑
m=x

mα · e−m/x = xα · e−1 +
∞∑

m=x+1

mα · e−m/x (2.11)

= xα · e−1 +
∞∑

m=x+1

1

m1−α ·m · e
−m/x (2.12)

≤ xα · e−1 +
1

x1−α ·
∞∑

m=x+1

m · e−m/x (2.13)

Again, one can take the same approach that I used when bounding
∑x

m=1 m
α in order

to bound
∑∞

m=x+1m · e−m/x because y · e−y/x is a decreasing function for y ≥ x:

∞∑
m=x+1

m · e−m/x ≤
∫ ∞
x

y · e−y/xdy = 2x2e−1 (2.14)

From equations (2.13) and (2.14) it follows that

∞∑
m=x

mα · e−m/x ≤ 3x1+αe−1 .

Lemma 2.3.13. If x ≤ 0.5 log(2) and m ∈ N then

0 ≤
(

1

1− x

)m
− exm ≤ 2x2m ·

(
1 + e2x(m−1)

)
.

Proof. Firstly, it is straightforward to show that if a > b > 0 then the following

holds

am − bm = (a− b) · (am−1 + am−2b+ · · ·+ abm−2 + bm−1) ≤ (a− b) ·mam−1 .

I apply this to a = (1− x)−1 and b = ex and note the following result

0 ≤ 1

1− x
− ex =

∞∑
k=2

xk
(

1− 1

k!

)
≤ x2

1− x
≤ 2x2 for x ≤ 0.5 .
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Therefore

0 ≤
(

1

1− x

)m
− exm ≤ 2x2m ·

(
1

1− x

)m−1

It remains to observe that by applying Lemma 2.3.11 then

(
1

1− x

)m−1

≤

 e2x(m−1) if 0 ≤ x ≤ 0.5 log 2

1 if x ≤ 0

Therefore the stated result holds.



Chapter 3

Preliminary material: part 2

3.1 Introduction

In this chapter I will study the Markov chain (Xi)i≥0 on the state space {0, 1, 2, . . . }

evolving with jump probabilities:

P(Xi+1 = xi+1|Xi = xi) =


λ

λ+ µxi
if xi+1 = xi + 1

µxi
λ+ µxi

if xi+1 = xi − 1

I will refer to this process as the birth death Markov chain. In picture form it looks

like

/.-,()*+0
λ0

((/.-,()*+1
λ1 ))

µ1

hh . . .
µ2

hh

λk−1
((/.-,()*+k

λk ))

µk

ii . . .
µk+1

hh

λk =
λ

λ+ µk
µk =

µk

λ+ µk

Figure 3.1: Birth death Markov chain

The process can be described as having a single valley, the bottom of which is

at state λ
µ
, and as we move further away from this state the gradient increases. In

later chapters I will study processes that are very similar to the birth death chain

and I will require estimates on the birth death chain first return time to state λ
µ
. To

27
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this end I make the following definition

B = min

{
i > 0 : Xi =

λ

µ

}
In this chapter I will prove a number of results concerning the moments of B and

the tail probability of B (the results can be found in section 3.3).

Remark 3.1.1. In addition to my standard assumption that λ/µ ∈ N, my models

in this chapter also rely on λ/µ being a square number.

3.2 Additional models

I will now introduce two further models, which along with the birth death chain

(Figure 3.1), are stochastically ordered (I will define the type of stochastic ordering

shortly). I will then state a general Markov chain result which will enable me to

state and prove results about B.

3.2.1 Model 1

Let the Markov chain (Yt)t≥0 be defined on the state space {. . . ,−2,−1, 0, 1, 2, . . . }

and evolve with jump probabilities:

P(Yi+1 = yi+1|Yi = yi) =



q2 if yi+1 = yi + 1 and yi ≤ λ
µ
−
√

λ
µ

p2 if yi+1 = yi − 1 and yi ≤ λ
µ
−
√

λ
µ

1
2

if yi+1 = yi + 1 and λ
µ
−
√

λ
µ
< yi <

λ
µ

+
√

λ
µ

1
2

if yi+1 = yi − 1 and λ
µ
−
√

λ
µ
< yi <

λ
µ

+
√

λ
µ

p1 if yi+1 = yi + 1 and yi ≥ λ
µ

+
√

λ
µ

q1 if yi+1 = yi − 1 and yi ≥ λ
µ

+
√

λ
µ

where

p1 =
λ

λ+ µ(λ
µ

+
√

λ
µ
)

= 1−q1 < 0.5 and p2 =
µ(λ

µ
−
√

λ
µ
)

λ+ µ(λ
µ
−
√

λ
µ
)

= 1−q2 < 0.5

I require notation for the first return time to state λ/µ so I define

B
′
= min

{
i > 0 : Yi =

λ

µ

}
.
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In picture form this process looks like
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ii
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ii
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Figure 3.2: k1 = λ
µ
−
√

λ
µ

k2 = λ
µ

k3 = λ
µ

+
√

λ
µ

3.2.2 Model 2

Let the Markov chain (Zt)t≥0 be defined on the state space {0, 1, 2, . . . } and evolve

with jump probabilities:

P(Zi+1 = zi+1|Zi = zi) =



1 if zi+1 = 1 and zi = 0

1
2

if zi+1 = zi + 1 and 0 < zi <
√

λ
µ

1
2

if zi+1 = zi − 1 and 0 < zi <
√

λ
µ

p3 if zi+1 = zi + 1 and zi ≥
√

λ
µ

q3 if zi+1 = zi − 1 and zi ≥
√

λ
µ

where p3 = max{p1, p2} < 0.5 and q3 = min{q1, q2} > 0.5. Again I require notation

for the first return time to state 0 so I define

B
′′

= min {i > 0 : Zi = 0} .

In picture form this process looks like

/.-,()*+0
1

((/.-,()*+1
1/2

))

1/2

hh . . .
1/2

((

1/2

hh /.-,()*+0
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ii
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((/.-,()*+k
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q3

hh /.-,()*+0
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&&

q3

hh
q3

hh

Figure 3.3: k =
√

λ
µ

3.2.3 Results

I will use the following definition of stochastic ordering
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Definition 3.2.1. Let M and N be real valued random variables. I say that N

dominates M , and write M 4 N , if P(M > x) ≤ P(N > x) for all x ∈ R.

Lemma 3.2.2. Let X0 = λ/µ, Y0 = λ/µ and Z0 = 0. We have the following

stochastic ordering

B 4 B
′
4 B

′′

Proof. I will prove B 4 B
′

using the maximal coupling. Start one copy of both Xt

and Yt at state λ/µ and run the following one step coupling: if both processes are at

different states then run the processes independently for one jump, however if they

are both at the same state, say state x, then they move as follows

P (Xi+1 = Yi+1 = x+ 1|Xi = Yi = x)

= min {P (Xi+1 = x+ 1|Xi = x) ,P (Yi+1 = x+ 1|Yi = x)}

and

P (Xi+1 = Yi+1 = x− 1|Xi = Yi = x)

= min {P (Xi+1 = x− 1|Xi = x) ,P (Yi+1 = x− 1|Yi = x)} .

To ensure that the marginal probabilities match up, if x ≥ λ/µ then let

P (Xi+1 = x− 1, Yi+1 = x+ 1|Xi = Yi = x)

= P (Yi+1 = x+ 1|Yi = x)− P (Xi+1 = x+ 1|Xi = x)

and

P (Xi+1 = x+ 1, Yi+1 = x− 1|Xi = Yi = x) = 0 .

Alternatively if x ≤ λ/µ then let

P (Xi+1 = x+ 1, Yi+1 = x− 1|Xi = Yi = x)

= P (Yi+1 = x− 1|Yi = x)− P (Xi+1 = x− 1|Xi = x)

and

P (Xi+1 = x− 1, Yi+1 = x+ 1|Xi = Yi = x) = 0 .
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I then repeatedly apply this coupling until one of the processes returns to state

λ/µ. A special feature of this coupling is that |Xt − λ/µ| ≤ |Yt − λ/µ| for all

t ≤ min{B,B′}. Therefore Xt returns to state λ/µ before or at the same time

as Yt with probability one, thus proving that B 4 B
′
. A similar coupling can be

constructed to prove that B
′
4 B

′′
.

Finally let me state a general result for a specific class of Markov chains.

Theorem 3.2.3. Fix n ∈ N and let the Markov chain (Wt)t≥0 be defined on the

state space {0, 1, 2, . . . } and evolve with jump probabilities:

P(Wi+1 = wi+1|Wi = wi) =



1 if wi+1 = 1 and wi = 0

1
2

if wi+1 = wi + 1 and 0 < wi < n

1
2

if wi+1 = wi − 1 and 0 < wi < n

pwi if wi+1 = wi + 1 and wi ≥ n

qwi if wi+1 = wi − 1 and wi ≥ n

0 otherwise

where the p and q terms are chosen such that infi{qi − pi} > ε > 0. In picture form

this process looks like

/.-,()*+0
1

((/.-,()*+1
1/2

))

1/2

hh . . .
1/2

hh

1/2
((/.-,()*+0

1/2
((

1/2

ii /.-,()*+n
qn

hh

pn
)). . .

qn+1

ii

Also define

U = min{i > 0 : Wi = n− 1} and T = min{i > 0 : Wi = 0} (3.1)

Then we have the following results

i. If En(U) = O(n) and En(U2) = O(n3) then E1(T 2) = O(n3) and

En−1(T 2) = O(n4) .
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ii. If there exists α > 0 and n0 ∈ N such that En
[
exp ( α

n2 · U)
]
≤ exp

(
1

4n

)
for all

n > n0 then

En−1

[
exp

(
β

n2
· T
)]
≤ 5 exp

(
1

4

)
for 0 < β ≤ min

{
α,

1

2

}
and n > n0 .

Proof of Theorem 3.2.3(i). Denote a trajectory by X = (x0, x1, x2, . . . ) where xt is

the state visited at time t. I say trajectory X is in Di,j if it starts at state i, finishes

at state j and makes no intermediate visits to state 0 or state n,

Di,j =
{
X : x0 = i, x1 /∈ {0, n}, . . . x|X |−1 /∈ {0, n}, x|X | = j

}
where 0 ≤ i, j ≤ n .

(3.2)

Similarly I say trajectory X is in D if it starts at state n, finishes at state n− 1 and

makes no intermediate visits to state n− 1,

D =
{
X : x0 = n, x1 6= n− 1, . . . x|X |−1 6= n− 1, x|X | = n− 1

}
. (3.3)

The following classes of trajectory are particularly important in this theorem:

• Trajectories that start at state 1 and hit state 0 before state n.

• Trajectories that start at state 1 and hit state n before state 0.

• Trajectories from state n to state n− 1.

• Trajectories that start at state n− 1 and hit state 0 before state n.

• Trajectories that start at state n− 1 and hit state n before state 0.

I will make use of Di,j and D (as defined in equations (3.2) and (3.3)) in the following

moment generating functions:

M1,0(u) = E(eu|X |1{X∈D1,0}) , testtM1,n(u) = E(eu|X |1{X∈D1,n}) ,

Mn−1,0(u) = E(eu|X |1{X∈Dn−1,0}) , Mn−1,n(u) = E(eu|X |1{X∈Dn−1,n}) ,

Mn,n−1(u) = E(eu|X |1{X∈D}) .

Observe that Mn,n−1(u) is analytic in a neighbourhood of the origin, this is due to

the fact that infi{qi−pi} is uniformly seperated from zero. All of the other moment
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generating functions are also analytic in a neighbourhood of the origin and this can

be deduced by applying Lemma 2.1.3 and Corollary 2.1.6. This is an important

observation because it allows me to take the derivative of all the moment generating

functions and evaluate them at the origin.

The conditions of the theorem, En(U) = O(n) and En(U2) = O(n3), imply

M
′

n,n−1(u)
∣∣
u=0

= O(n) and M
′′

n,n−1(u)
∣∣
u=0

= O(n3) . (3.4)

Lemma 2.1.2(ii) implies

M
′

1,0(u) + M
′

1,n(u)
∣∣
u=0

= O(n) and M
′

n−1,0(u) + M
′

n−1,n(u)
∣∣
u=0

= O(n) .

Since the quantities on the left hand side of both equations are positive it follows

that

M
′

1,0(u)
∣∣
u=0

= O(n) , tltM
′

1,n(u)
∣∣
u=0

= O(n) ,

M
′

n−1,0(u)
∣∣
u=0

= O(n) , M
′

n−1,n(u)
∣∣
u=0

= O(n) .
(3.5)

Similarly by applying Lemma 2.1.2(iii), which deals with the second moments, it

follows that

M
′′

1,0(u)
∣∣
u=0

= O(n3) , tltM
′′

1,n(u)
∣∣
u=0

= O(n3) ,

M
′′

n−1,0(u)
∣∣
u=0

= O(n3) , M
′′

n−1,n(u)
∣∣
u=0

= O(n3) .
(3.6)

Finally Lemma 2.1.2(i) implies

M1,0(u)
∣∣
u=0

=
n− 1

n
, M1,n(u)

∣∣
u=0

=
1

n
,

Mn−1,0(u)
∣∣
u=0

=
1

n
, tlMn−1,n(u)

∣∣
u=0

=
n− 1

n
.

(3.7)

All the above work comes to fruition when we express the moment generating func-

tion of the hitting time of state 0 in terms of the moment generating functions

defined at the start of the proof

E1[eTu] = M1,0(u) + M1,n(u)Mn,n−1(u)Mn−1,0(u)
∞∑
k=0

[Mn−1,n(u)Mn,n−1(u)]k

and

En−1[eTu] = Mn−1,0(u) + Mn−1,n(u)Mn,n−1(u)Mn−1,0(u)
∞∑
k=0

[Mn−1,n(u)Mn,n−1(u)]k
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Differentiating twice and evaluating the expression at u = 0 gives us an expression

for E1(T 2) and En−1(T 2) which, when evaluated using equations (3.4), (3.5), (3.6)

and (3.7), demonstrates that

E1(T 2) = O(n3) and En−1(T 2) = O(n4)

as required.

Proof of Theorem 3.2.3(ii). We use the following notation (recall equation (3.1))

T = min
{
i > 0 : Wi = 0

}
, U = min

{
i > 0 : Wi = n− 1

}
and V = min

{
i > 0 : Wi ∈ {0, n}

}
.

The hitting time T exhibits a clear renewal structure (see Figure 3.4) which is

0

n-1

n

V

V

U

V

V

U

V

V

U

V

Figure 3.4: Examples of different trajectories

summed up well in the following expression

En−1

[
exp

(
β

n2
· T
)]

=
En−1

[
exp

(
β
n2 · V

)
1{WV =0}

]
1− En−1

[
exp

(
β
n2 · V

)
1{WV =n}

]
· En

[
exp ( β

n2 · U)
] .

Recalling the bounds derivived in Lemma 2.1.3 and Corollary 2.1.6 (pages 13 and

15 respectively) regarding the random variable V and the conditions in the theorem

regarding random variable U enables us to upper bound the previous equation

En−1

[
exp

(
β

n2
· T
)]
≤

1
n
· exp

(
1
4

)
1− exp

(
− 1

2n

)
· exp

(
1

4n

)
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Finally Lemma 2.3.4 (page 22) implies that[
1− exp

(
− 1

2n

)
· exp

(
1

4n

)]−1

≤ (1 + 4n) .

Consequently

En−1

[
exp

(
β

n2
· T
)]
≤

1
n
· exp

(
1
4

)
1− exp

(
− 1

2n

)
· exp

(
1

4n

)
≤ 1

n
· exp

(
1

4

)
· (1 + 4n) ≤ 5 exp

(
1

4

)
.

3.3 Birth death Markov chain results

Lemma 3.3.1 (Moments of B). For some constants C1 > 0, C2 > 0, C3 > 0 and

C4 > 0

i. C1

√
λ/µ < Eλ/µ(B) < C2

√
λ/µ

ii. Eλ/µ(B1.5) < C3(λ/µ)

iii. Eλ/µ(B2) < C4(λ/µ)1.5

Proof of Lemma 3.3.1(i). The expected return time for the birth death chain is the

reciprocal of its stationary measure, π, and I claim that

πk =


exp (−λ/µ)

2
if k = 0

exp (−λ/µ)
2

·
[(

λ
µ

)k
1
k!

+
(
λ
µ

)k−1
1

(k−1)!

]
if k > 0

(3.8)

We can verify this claim by checking the detailed balance equations are satisifed and

that π is indeed a probability measure. Firstly

π0
λ

λ+ 0
= π1

µ

λ+ µ
⇐⇒ π0 = π0

(
λ

µ
+ 1

)
µ

λ+ µ
⇐⇒ π0 = π0 X

Secondly for k > 0

πk
λ

λ+ µk
= πk+1

µ(k + 1)

λ+ µ(k + 1)

π0

(
λ

µ

)k−1
1

(k − 1)!

(
λ

µk
+ 1

)
λ

λ+ µk
= π0

(
λ

µ

)k
1

k!

(
λ

µ(k + 1)
+ 1

)
µ(k + 1)

λ+ µ(k + 1)

π0

(
λ

µ

)k−1
1

(k − 1)!
· λ
µk

= π0

(
λ

µ

)k
1

k!
X
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Thirdly

∞∑
k=0

πk =
exp (−λ/µ)

2

[
1 +

∞∑
k=1

(
λ

µ

)k
1

k!
+
∞∑
k=1

(
λ

µ

)k−1
1

(k − 1)!

]

=
exp (−λ/µ)

2
[1 + (exp (λ/µ)− 1) + exp (λ/µ)] = 1 X

Next, Stirling’s approximation [3] tells us that

lim
k→∞

k!

kk+1/2 · exp (−k)
=
√

2π

Therefore there exist constants C1 and C2 such that we have the following bound

for all k ∈ N

C1

√
k <

k!

kk · exp (−k)
< C2

√
k

Since 1/πk is of this form, that is to say

1

πk
=

k!

kk · exp (−k)

it follows that

C1

√
λ/µ < Eλ/µ(B) =

1

πλ/µ
< C2

√
λ/µ

This completes the proof.

Proof of Lemma 3.3.1(iii). Consider Model 2 on page 29. This is a specific case of

the Markov chain described in Theorem 3.2.3 with n =
√
λ/µ. If I wish to apply

Theorem 3.2.3(i) I need to show that the condition regarding U is satisfied. Note

that

p3 · q3 = max {p1, p2} ·min {q1, q2} <
1

4

(
1− 1

9λ/µ

)
Any trajectory that reaches state n − 1 after 2m + 1 steps makes m + 1 left steps

and m right steps, therefore the probability of such a trajectory can be bounded

above by (p3 · q3)m. By using the Ballot Theorem[10] to count the number of such

trajectories it follows that

En(U) ≤
∞∑
m=1

(2m+ 1)

[
1

4

(
1− 1

9λ/µ

)]m
·
(

2m+ 1

m

)
· 1

2m+ 1

≤ C

∞∑
m=1

1√
m

(
1− 1

9λ/µ

)m
= O

(√
λ/µ

)
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where the last equality uses Lemma 2.3.12 with α = −0.5 (page 24). Similarly

En(U2) ≤
∞∑
m=1

(2m+ 1)2

[
1

4

(
1− 1

9λ/µ

)]m
·
(

2m+ 1

m

)
· 1

2m+ 1

≤ C
∞∑
m=1

√
m

(
1− 1

9λ/µ

)m
= O

(
(λ/µ)1.5)

where the last equality uses Lemma 2.3.12 with α = 0.5 (page 24). Consequently

letting n =
√
λ/µ and applying Theorem 3.2.3(i) to Model 2 gives

E1((B
′′
)2) = O((λ/µ)1.5) ,

which implies

E0((B
′′
)2) = O((λ/µ)1.5) .

But since B is stochastically dominated by B
′′

(Lemma 3.2.2) we have the desired

result:

Eλ/µ((B)2) = O((λ/µ)1.5) .

Proof of Lemma 3.3.1(ii). The Cauchy-Schwarz inequality [17],[2] states that for

random variables, X and Y , we have

E(|XY |) ≤
√
E(|X|2) · E(|Y |2) .

Applying this result with X = B and Y = B0.5 gives

Eλ/µ(B1.5) ≤
√
Eλ/µ(B2) · Eλ/µ(B) ≤ C3

λ

µ

where the last inequality uses Lemma 3.3.1(i) and Lemma 3.3.1(iii).

Lemma 3.3.2. There exist constants α > 0 and C > 0 such that for any A ∈ N we

have that

Pλ/µ

(
B > A · λ

µ

)
≤ C · exp (−αA)

Remark 3.3.3. Simulations suggest that a more precise version of the above esti-

mate holds:

Pλ/µ

(
B > A · λ

µ

)
≤
√
µ

λ
· C√

A
· exp (−αA)
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However Lemma 3.3.2 is sufficent for my purposes and simpler to prove so I will

stick with it!

Proof of Lemma 3.3.2. Consider Model 2 on page 29. This is a specific case of the

Markov chain described in Theorem 3.2.3 with n =
√
λ/µ. If I wish to apply

Theorem 3.2.3(ii) I need to show that the condition regarding U is satisfied. The

moment generating function for the time it takes a simple asymmetric random walk

to move one step with the drift is a standard result and can be found in [10].

Applying it to Model 2 (page 29) we obtain

En
[
exp

( α
n2
· U
)]

=
2q3 exp

(
α
n2

)
1 +

√
1− 4p3q3 exp

(
2α
n2

) =
1−

√
1− 4p3q3 exp

(
2α
n2

)
2p3 exp

(
α
n2

)
where

q3 = min{q1, q2} =
n2 + n

2n2 + n
=

n+ 1

2n+ 1
= 1− p3 and n =

√
λ/µ

I need to verify that I can find α > 0 and n0 ∈ N such that for all n > n0 we have

En
[
exp

( α
n2
· U
)]

< exp

(
1

4n

)
This expression is equivalent to[

1− 4p3q3 exp

(
2α

n2

)]1/2

>
1− p3

q3
exp

(
1

2n

)
1 + p3

q3
exp

(
1

2n

) (3.9)

which I claim holds if α ≤ 1/16. In Lemma 3.3.4 and Lemma 3.3.5 below I prove

that the following inequalities hold for α ≤ 1/16, 0 ≤ ε ≤ 1, 0 ≤ δ ≤ 1 and n large

enough [
1− 4p3q3 exp

(
2α

n2

)]1/2

≥ 1− ε
2
√

2n
and

1− p3
q3

exp
(

1
2n

)
1 + p3

q3
exp

(
1

2n

) ≤ 1 + δ

3n
.

Thus choosing ε and δ such that

1− ε
2
√

2
>

1 + δ

3

we deduce that equation (3.9) holds. Therefore going ahead and applying Theorem

3.2.3(ii) to Model 2, we find that for 0 < β ≤ 1/16 and λ/µ sufficiently large

E√
λ/µ−1

[
exp

(
β · µ

λ
·B′′

)]
≤ 5 exp

(
1

4

)
.
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But since the hitting time of state 0 starting from state
√
λ/µ − 1 stochastically

dominates the return time of state 0, it follows that

E0

[
exp

(
β · µ

λ
·B′′

)]
≤ 5 exp

(
1

4

)
.

By using the exponential Markov inequality and then recalling that B is stochasti-

cally dominated by B
′′

(Lemma 3.2.2) we obtain

Pλ/µ

(
B > A · λ

µ

)
≤ Eλ/µ

[
exp

(
β · µ

λ
·B
)]
· exp (−βA)

≤ E0

[
exp

(
β · µ

λ
·B′′

)]
· exp (−βA)

≤ 5 exp

(
1

4

)
· exp (−βA)

for 0 < β ≤ 1/16 and λ/µ sufficently large.

Lemma 3.3.4. If α < 1/16 and n is large enough then[
1− 4pq exp

(
2α

n2

)]1/2

≥ 1− ε
2
√

2n
where 0 < ε < 1 and q =

n+ 1

2n+ 1
= 1− p

Proof.

4pq exp

(
2α

n2

)
=

[
1− 1

(2n+ 1)2

]
· exp

(
2α

n2

)
≤ exp

{
− 1

(2n+ 1)2
+

2α

n2

}
= exp

{
− 1

n2

(
n2

(2n+ 1)2
− 2α

)}
≤ exp

{
− 1

8n2

}
Therefore[

1− 4pq exp

(
2α

n2

)]1/2

>

[
1− exp

{
− 1

8n2

}]1/2

=
1

2
√

2n
·
[
8n2

(
1− exp

{
− 1

8n2

})]1/2

>
1− ε
2
√

2n

The last inequality relies on the fact the square bracketed term tends to 1 as n tends

to infinity.

Lemma 3.3.5. If n is large enough then

1− p
q

exp
(

1
2n

)
1 + p

q
exp

(
1

2n

) ≤ 1 + δ

3n
where 0 < δ < 1 and q =

n+ 1

2n+ 1
= 1− p
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Proof. Observe the following (the first inequality uses Lemma 2.3.5)

p

q
exp

(
1

2n

)
=

(
1− 1

n+ 1

)
· exp

(
1

2n

)
≥ exp

{
1

2n
− 1

n+ 1
− 1

(n+ 1)2

}
= exp

{
(n+ 1)2 − 2n(n+ 1)− 2n

2n(n+ 1)2

}
= exp

{
− 1

2n
· n

2 + 2n− 1

(n+ 1)2

}
≥ exp

{
−1 + δ

2n

}
Therefore if n is large enough

1− p
q

exp
(

1
2n

)
1 + p

q
exp

(
1

2n

) ≤ 1− exp
{
−1+δ

2n

}
1 + exp

{
−1+δ

2n

} ≤ 2

3
·
(

1− exp

{
−1 + δ

2n

})
≤ 1 + δ

3n

where the last inequality uses Lemma 2.3.3.

Corollary 3.3.6. Let X0 = λ/µ. There exists constants α > 0 and C > 0 such that

for any t ∈ C satisfying <(t) < (0.75α)/(λ/µ) we have

|MB(t)| = |Eλ/µ(exp (tB))| ≤ C · λ
µ
· exp (0.75α)

1− exp (−0.25α)

Proof of Corollary 3.3.6. Let t = u+ iv where u, v ∈ R

|MB(t)| ≤
∞∑
k=0

| exp {(u+ iv)k}| · Pλ/µ(B = k)

≤
∞∑
k=0

exp {uk} · Pλ/µ(B ≥ k)

Now split up the sum by grouping the first λ
µ

terms together, then group the next λ
µ

terms together and so on. By taking a uniform estimate for each grouping and then

applying Lemma 3.3.2 (page 37) it follows that

≤
∞∑
j=0

exp

{
u(j + 1) · λ

µ

}
· Pλ/µ

(
B ≥ j · λ

µ

)
· λ
µ

≤ C · λ
µ
· exp

{
u · λ

µ

} ∞∑
j=0

exp

{
uj · λ

µ
− αj

}

=
C · λ

µ
· exp {u · λ

µ
}

1− exp (uλ
µ
− α)

Because the last expression is an increasing function of u

|MB(t)| ≤ λ

µ
· C · exp {0.75α}

1− exp {−0.25α}
for t : <(t) = u <

0.75α

λ/µ



Chapter 4

Limit theorems

4.1 Introduction

In this chapter I will introduce several Markov chains where all of the states, bar one,

constitute an irreducible closed class; the remaining state is absorbing. I will refer

to such processes as Markov chains with killing. The random variable of interest

is the hitting time of the absorbing state and I will state limiting results for this

hitting time.

Remark 4.1.1. I use the concept of death, in the context of Markov chain models

with killing, to mean that the process has reached the absorbing state.

4.2 Notation

Let (Xi)i≥0 be a Markov chain with an absorbing state which I will call ∗. We say

that the process Xi has died once it reaches this absorbing state. Also, let X0 = x0

be the starting state of the Markov chain. I shall adopt the following notation:

• Td - number of jumps until death starting from state x0.

• Ad - number of jumps until death starting from state x0 without any returns

to state x0 (trajectories that return to state x0 before death contribute to Bd,

which is defined below).

41
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• Bd - number of jumps until the first return to state x0 (trajectories that die

before returning to state x0 contribute to Ad).

• adm,k - weight of all m step trajectories that end at state k, don’t return to the

state x0 and don’t die (ad0,k = 0 for all k and adm,x0 = 0 for all m).

• adm =
∑

k≥1 a
d
m,k - weight of all m step trajectories that don’t return to the

state x0 and don’t die (ad0 = 0).

• rdk =
∑

m≥1 a
d
m,k - weight of all trajectories that end at state k, don’t return

to the state x0 and don’t die (rdx0 = 0).

• bdm - weight of all m step trajectories that return to the state x0 for the first

time on the m-th step (bd0 = 0).

Furthermore I define the following moment generating functions:

MTd(v) = E
(

exp (v · Td)
)
, MBd(v) = E

(
exp (v ·Bd)

)
, MAd(v) = E

(
exp (v · Ad)

)
Example 4.2.1.

{
Ad = 10

}
means death occurs on the eleventh jump without any

returns to state x0,
{
Bd = 4

}
means the first return to state x0 occurs on the fourth

jump.

4.3 Results

Lemma 4.3.1. Let the Markov chain (Xi)i≥0 be defined on the state space

{∗, 0, 1, 2, . . . } and evolve with jump probabilities:

P(Xi+1 = xi+1|Xi = xi) =



1− d if xi+1 = 1 and xi = 0

d if xi+1 = ∗ and xi = 0

pxi(1− d) if xi+1 = xi − 1 and xi > 0

qxi(1− d) if xi+1 = xi + 1 and xi > 0

d if xi+1 = ∗ and xi > 0

1 if xi+1 = ∗ and xi = ∗

0 otherwise
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where 0 ≤ d ≤ 1 and the p and q terms are chosen such that infi{pi − qi} > ε > 0.

In picture form this process looks like

'&%$ !"#∗
d

@@��������

'&%$ !"#∗
d

@@��������

'&%$ !"#∗
d

@@���������/.-,()*+0
1−d

66/.-,()*+1
q1(1−d)

66

p1(1−d)
vv /.-,()*+2 . . . /.-,()*+j /.-,()*+k

qk(1−d)

66

pk(1−d)
vv /.-,()*+j . . .

Figure 4.1: Markov chain

Let x0 = 0 and we have the following result

lim
d→0

P(Td · d > y) = e−y

Remark 4.3.2. In the proofs that follow I will use the notation b0
m, a0

m,k, a0
m, B0

and A0. These functions/random variables relate to the chain Xi when d = 0 (i.e.

no killing).

Proof. We can write the moment generating function of the survival time as follows

MTd(vd) = E
[
evdTd

]
=

MAd(vd)

1−MBd(vd)
(4.1)

First I consider the numerator

MAd(vd) = devd +
∞∑
m=1

adm · d · evd(m+1) = devd +
∞∑
m=1

a0
m(1− d)m · d · evd(m+1)

and use the Monotone Convergence Theorem to switch the order of limits and sum-

mation in

lim
d→0

MAd(vd)

d
= lim

d→0
evd +

∞∑
m=1

lim
d→0

[
a0
m(1− d)m · evd(m+1)

]
= 1 +

∞∑
m=1

a0
m = E(B0)

(4.2)

where the last equality uses Lemma 2.2.5 (page 21). Now take the denominator and

again by applying the Monotone Convergence Theorem we find

lim
d→0

MBd(vd) = lim
d→0

[
∞∑
m=1

bdm · evdm
]

=
∞∑
m=1

b0
m · lim

d→0

[
(1− d)m · evdm

]
= 1
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This presents a problem because

lim
d→0

[
1−MBd(vd)

d

]
=

0

0

To resolve this we find the derivative and apply L’Hôpital’s rule

∂

∂d
MBd(vd) =

∞∑
m=1

b0
m ·
[
−m(1− d)m−1evdm +mv(1− d)mevdm

]
−→
d→0

(v − 1)E(B0)

Therefore

lim
d→0

[
1−MBd(vd)

d

]
= lim

d→0

[
− ∂

∂d
MBd(vd)

]
= (1− v)E(B0) (4.3)

The condition in the lemma, infi{pi − qi} > ε > 0, ensures that E(B0) is finite.

Combining equations (4.1), (4.2) and (4.3) gives

lim
d→0

MTd(vd) =
E(B0)

(1− v)E(B0)
=

1

1− v

This implies that Td · d → Exp(1) as d → 0 in distribution therefore the lemma

follows.

Remark 4.3.3. This turns out to be a trivial result since it is clear that Td is

nothing other than a geometric random variable1 with parameter d for any choice of

pk and qk. However taking into account the extra conditions specified in the lemma

allows me to develop a more general method to prove the result that is useful when

I consider other less trivial Markov chains models with killing.

Lemma 4.3.4. Let the Markov chain (Yi)i≥0 be defined on the state space

{∗, 0, 1, 2, . . . } and evolve with jump probabilities:

P(Yi+1 = yi+1|Yi = yi) =



1− d if yi+1 = 1 and yi = 0

d if yi+1 = ∗ and yi = 0

pxi if yi+1 = yi − 1 and yi > 0

qxi(1− d) if yi+1 = yi + 1 and yi > 0

d · qxi if yi+1 = ∗ and yi > 0

1 if yi+1 = ∗ and yi = ∗

0 otherwise

1This follows from the fact that on every jump the probability of dying is d.
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where 0 ≤ d ≤ 1 and the p and q terms are chosen such that infi{pi − qi} > ε > 0.

In picture form this process looks like

'&%$ !"#∗
d

@@��������

'&%$ !"#∗
q1d

@@��������

'&%$ !"#∗
qkd

@@���������/.-,()*+0
1−d

66/.-,()*+1
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66

p1
vv /.-,()*+2 . . . /.-,()*+j /.-,()*+k

qk(1−d)

66

pk
vv /.-,()*+j . . .

Figure 4.2: Markov chain

Let y0 = 0 and we have the following result

lim
d→0

P(Td · d > y) = e−y/2

Proof. We can write the moment generating function of the survival time as follows

MTd(vd) = E[exp (vdTd)] =
MAd(vd)

1−MBd(vd)

Following a similar line of reasoning as in the previous theorem we see

lim
d→0

MAd(vd)

d
= 1 +

∞∑
m=1

∞∑
k=1

a0
m,k · qk = 1 +

∞∑
k=1

r0
k · qk =

E(B0)

2︸ ︷︷ ︸
Uses Lemma 2.2.1 (page 17)

and

lim
d→0

[
1−MBd(vd)

d

]
=

∞∑
m=1

b0
m

[m
2
− vm

]
=

(
1

2
− v
)
E(B0)

Consequently

lim
d→0

MTd(vd) =
E(B0)

(1− 2v)E(B0)
=

1

1− 2v

This implies that Td · d → Exp(0.5) as d → 0 in distribution therefore the lemma

follows.



Chapter 5

Reference model

5.1 Introduction

We now move to a model where there is a deeper relationship between the left and

right jump probabilities and the killing probability. As a result it does not make

sense to prove a limit theorem because the limiting object does not exist in the same

way that it did in previous models. Instead I determine the order of magnitude of

the difference between the moment generating function of the survival time of the

model and the limiting distribution.

5.2 Model

In this chapter I will consider the following model.

46
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5.2.1 Discrete Time Constant Killing model

Define (Xi)i≥0 to be a Markov chain on the state space {∗, 0, 1, 2, . . . } evolving

according to jump probabilities:

P(Xi+1 = xi+1|Xi = xi) =



1− d if xi+1 = 1 and xi = 0

d if xi+1 = ∗ and xi = 0

pxi if xi+1 = xi − 1 and xi > 0

qxi(1− d) if xi+1 = xi + 1 and xi > 0

d · qxi if xi+1 = ∗ and xi > 0

1 if xi+1 = ∗ and xi = ∗

0 otherwise

where

qxi =
λ

λ+ µxi
pxi =

µxi
λ+ µxi

d =
λ

µN

In picture form it looks like

'&%$ !"#∗
d

@@��������

'&%$ !"#∗
q1d

@@��������

'&%$ !"#∗
qkd

@@���������/.-,()*+0
1−d
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66
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vv /.-,()*+2 . . . /.-,()*+j /.-,()*+k

qk(1−d)

66

pk
vv /.-,()*+j . . .

Figure 5.1: Markov chain Xi - Discrete Time Constant Killing model

From this point onwards, I will use the following notation exclusively for this Markov

chain1.

• Td - number of jumps until death starting from state λ/µ.

1The same notation was used for my Markov chains in Chapter 4, however from this point

onwards in my thesis, the notation will solely be used to refer to the Markov chain introduced at

the beginning of Section 5.2.1.
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• Ad - number of jumps until death starting from state λ/µ but without any

returns (trajectories that return to state λ/µ before death contribute to Bd,

which is defined below).

• Bd - number of jumps until the first return to state λ/µ (trajectories that die

before returning to state λ/µ contribute to Ad).

• adm,k - weight of all m step trajectories that end at state k, do not return to

the state λ/µ and do not die (ad0,k = 0 for all k and adm,λ/µ = 0 for all m).

• adm =
∑

k≥1 a
d
m,k - weight of all m step trajectories that do not return to the

state λ/µ and do not die (ad0 = 0).

• rdk =
∑

m≥1 a
d
m,k - weight of all trajectories that end at state k, do not return

to the state λ/µ and do not die (rdλ/µ = 0).

• bdm - weight of all m step trajectories that return to the state λ/µ for the first

time on the m-th step (bd0 = 0).

• Let Pd be a matrix consisting of the one step transition probabilities for this

Markov chain.

Furthermore I define the following moment generating functions:

MTd(v) = E
(

exp (v · Td)
)
, MBd(v) = E

(
exp (v ·Bd)

)
, MAd(v) = E

(
exp (v · Ad)

)
Convention 5.2.1. In the results that follow in this and later chapters I will use

the notation b0
m, a0

m,k, a0
m, B0 and A0. These functions/random variables relate to

the chain Xi when d = 0 (i.e. no killing), which is shown below
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This chain is the process that I studied in Chapter 3, as such I can make use of

the estimates I derived in that chapter. For example

∞∑
m=1

m · b0
m = E(B0) = Eλ/µ(B) < C2

√
λ/µ

where Eλ/µ(B) is notation that I used in Chapter 3 for the expected return time to

the state λ/µ, before I introduced killing into my Markov chains. And the inequality

in the equation follows from Lemma 3.3.1 (page 35).

Convention 5.2.2. The moment generating function of B0 is analytic at the origin.

As such I will write E(B0) and E(B2
0) as the appropriate derivative of the moment

generating function evaluated at 0:

E(B0) = M
′

B0
(0) and E(B2

0) = M
′′

B0
(0) .

5.3 Intermediate results

Lemma 5.3.1. The following results hold

bdm = b0
m · (1− d)0.5m and adm,k = a0

m,k · (1− d)0.5(m+k−λ
µ

)

Proof. I observe that each jump to the right picks up a factor of (1 − d) and so if

one knows the length of a trajectory and its end point (as is the case for bdm and

adm,k) then one can factor out the effect that the killing has. In the case of bdm,

we are considering an m step trajectory that finishes up where it starts, therefore

half the jumps were to the left and half to the right. This means that it picks up

a factor of (1 − d)0.5m and so we can write bdm = b0
m · (1 − d)0.5m. In the case of

adm,k, we are considering an m step trajectory that finishes up at state k; as such

it makes 0.5(m + k − λ/µ) jumps to the right and in so doing, picks up a factor of

(1− d)0.5(m+k−λ
µ

).

Corollary 5.3.2. The following results hold

bdm ≤ b0
m , adm,k ≤ a0

m,k and adm ≤ a0
m
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Proof. The first two statements follow immediately from Lemma 5.3.1. The last

statement follows from the middle statement by summing over k on both sides of

the inequality and using the following definition

adm =
∑
k≥1

adm,k .

5.4 Main results

All the proofs in this section rely on a condition of the form(
λ

µ

)2

· 1

N
< κ .

One consequence of this is(
λ

µ

)θ
· 1

N
< κ for any θ < 2 .

For example

d =
λ

µN
< κ .

I will readily use this fact below without additional comment.

Lemma 5.4.1. For any v such that |v| < 0.5, if (λ/µ)2 < 0.5N then∣∣∣∣MAd(vd)

M
′
B0

(0)d
− 1

2

∣∣∣∣ = O

((
λ

µ

)2
1

N

)

where the implicit constant in the big O is a pure constant.

Proof of Lemma 5.4.1. I will start by noting a simple consequence of Corollary 2.2.4

(page 20) which follows by decomposing rk, in the notation of Corollary 2.2.4, as

rk =
∑∞

m=1 a
0
m,k:

1

2
M
′

B0
(0) =

1

2
+
∞∑
m=1

∞∑
k=0

a0
m,k · qk (5.1)
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Also we can express MAd(vd) by using the law of total probability and Lemma 5.3.1:

MAd(vd) =
d

2
· evd +

∞∑
m=1

∞∑
k=0

adm,k · d · qk · evd(m+1)

=
d

2
· evd +

∞∑
m=1

∞∑
k=0

a0
m,k(1− d)(m+k−λ

µ
)/2 · d · qk · evd(m+1) (5.2)

=
d

2
· evd +

∞∑
m=1

∞∑
k=0

a0
m,k · d · qk · exp

(
vd(m+ 1) +

m+ k − λ
µ

2
log (1− d)

)
Also note that

|evd − 1| ≤ |vd|e|vd| ≤ 0.5d · e0.5·0.5 ≤ d (5.3)

Pulling together equations (5.1) and (5.2) and then applying (5.3) gives∣∣∣MAd(vd)−d
2
M
′

B0
(0)
∣∣∣ ≤ d2

2

+
∞∑
m=1

∞∑
k=0

a0
m,k · d · qk

∣∣∣∣∣exp

(
vd(m+ 1) +

m+ k − λ
µ

2
log (1− d)

)
− 1

∣∣∣∣∣
I need to bound the term in absolute value bars in the above equation. In order to

make use of the inequality | exp (x)− 1| < ε|x|, which holds if x < log (ε) and ε > 1

(see Lemma 2.3.9 on page 23), I need to check that

vd(m+ 1) + 0.5 ·
(
m+ k − λ

µ

)
log (1− d)

can be bounded above by a pure constant for all |v| < 0.5. By applying Lemma 2.3.10

(page 24) to bound log (1− d) we obtain:

vd(m+ 1) +
m+ k − λ

µ

2
· log (1− d) ≤ vd(m+ 1)− m+ k

2
· d+

λ/µ

2
· d

≤ md

(
v − 1

2

)
+ vd+

1

2

(
λ

µ

)2
1

N

≤ 0 + 0.5 · 0.5 + 0.5 · 0.5 = 0.5

where the last inequality applies the conditions in the lemma. Therefore∣∣∣MAd(vd)− 1

2
M
′

B0
(0)d

∣∣∣
≤ d2

2
+ d

∞∑
m=1

∞∑
k=0

a0
m,kqk · e0.5

∣∣∣∣∣vd(m+ 1) +
m+ k − λ

µ

2
log (1− d)

∣∣∣∣∣
≤ d2

2
+ d

∞∑
m=1

∞∑
k=0

a0
m,kqk · e0.5

(
|2vdm|+

∣∣∣m
2

log (1− d)
∣∣∣+

∣∣∣∣∣k −
λ
µ

2
log (1− d)

∣∣∣∣∣
)
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Next I apply Lemma 2.3.8 (page 23) to bound | log (1− d)| and I use the fact that

a length m trajectory can not venture more than m steps away from the starting

position to bound |k − λ/µ|

≤ d2

2
+ d · e0.5

∞∑
m=1

∞∑
k=0

a0
m,k · (2vdm+md+md)

=
d2

2
+ 2d2(1 + v) · e0.5

∞∑
m=1

m · a0
m

≤ d2

2
+ 2d2(1 + 0.5) · e0.5 ·M′′B0

(0) = O(d2(λ/µ)3/2)

where the last inequality applies Lemma 2.2.5 (page 21) and the last equality applies

the bound in Lemma 3.3.1(iii) (page 35). In summary, we can conclude that for any

|v| < 0.5: ∣∣∣∣MAd(vd)− 1

2
M
′

B0
(0)d

∣∣∣∣ = O(d2(λ/µ)3/2)

Finally dividing through by M
′
B0

(0)d and making use of the lower bound in

Lemma 3.3.1(i) (page 3.3.1) the result follows.

Lemma 5.4.2. For any v such that |v| < 0.5, if (λ/µ) < 0.5N then∣∣∣∣1−MBd(vd)

M
′
B0

(0)d
−
(

1

2
− v
)∣∣∣∣ = O

((
λ

µ

)2
1

N

)

where the implicit constant in the big O is a pure constant.

Remark 5.4.3. One can rewrite the statement from Lemma 5.4.2 without the big O

by introducing a constant C > 0 as follows∣∣∣∣1−MBd(vd)

M
′
B0

(0)d
−
(

1

2
− v
)∣∣∣∣ ≤ C ·

(
λ

µ

)2
1

N

Therefore

1−MBd(vd)

M
′
B0

(0)d
≥
(

1

2
− v
)
− C

(
λ

µ

)2

· 1

N

Also recall Lemma 3.3.1 (page 35), which states that for some constants C1 > 0 and

C2 > 0 we have

C1

√
λ/µ < Eλ/µ(B) = M

′

B0
(0) < C2

√
λ/µ .
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Finally choose v̄ such that 0 < v̄ < 0.5. It follows that for any λ, µ, N and v chosen

such that

|v| < v̄ and

(
λ

µ

)2
1

N
<

1

C
· 0.5− v̄

2

then

1−MBd(vd)

C1 · d
√
λ/µ

>
1−MBd(vd)

M
′
B0

(0)d

≥
(

1

2
− v
)
− C

(
λ

µ

)2

· 1

N

≥
(

1

2
− v̄
)
− 1

2
·
(

1

2
− v̄
)

=
1

2
·
(

1

2
− v̄
)
> 0

This means as long as |v| is uniformly seperated from 0.5 and
(
λ
µ

)2
1
N

is sufficiently

small (where the smallness depends on v̄) then

1−MBd(vd)

d
√
λ/µ

is uniformly seperated from 0 for all v that satisfy |v| < v̄. This will be a particularly

useful result in Chapters 7, 8 and 9.

Proof of Lemma 5.4.2. Firstly observe that by using the law of total probability and

Lemma 5.3.1

MBd(vd) =
∞∑
m=1

bdm exp (mvd) =
∞∑
m=1

b0
m(1− d)m/2 exp (mvd) = MB0(wd)

where wd = vd+ 0.5 log (1− d). Secondly Taylor’s theorem tells us

MB0(wd) = MB0(0) + M
′

B0
(0)wd +

∫ wd

0

(wd − u)M
′′

B0
(u)du

Rearranging the above equation and applying the triangle inequality gives∣∣∣∣1−MBd(vd)

M
′
B0

(0)d
−
(

1

2
− v
)∣∣∣∣ ≤ ∣∣∣∣ 1

M
′
B0

(0)d

∫ wd

0

(wd − u)M
′′

B0
(u)du

∣∣∣∣+

∣∣∣∣12 +
log
√

1− d
d

∣∣∣∣
Now I will estimate both of the terms in the right hand side of the above equation.

Since wd < (v − 0.5)d < 0 for all v < 0.5 and M
′′
B0

(u) is an increasing function of u

it follows that∣∣∣∣ 1

M
′
B0

(0)d

∫ wd

0

(wd − u)M
′′

B0
(u)du

∣∣∣
≤

M
′′
B0

(0)

M
′
B0

(0)d
· w

2
d

2
≤

M
′′
B0

(0)

M
′
B0

(0)
· d(|v|+ 1)2

2
= O

((
λ

µ

)2
1

N

)
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where the second inequality holds for d < 0.5 and the last equality holds using the

bounds in Lemma 3.3.1 (page 35). Finally we use Lemma 2.3.7 to deduce that∣∣∣∣12 +
log
√

1− d
d

∣∣∣∣ < d

2
= O

((
λ

µ

)2
1

N

)
for d < 0.5 which completes the proof.

Finally we pull together the previous two lemmas in order to prove the following

result:

Theorem 5.4.4. Consider (Xi)i≥0 and let X0 = λ/µ. Fix 0 < v̄ < 0.5 . For any v

such that |v| < v̄, if (λ/µ)2 < κ1N and κ1 = κ1(v̄) is sufficiently small then∣∣∣∣MTd(vd)− 1

1− 2v

∣∣∣∣ = O

((
λ

µ

)2
1

N

)
where the implicit constant in the big O is dependent on v̄ .

Proof of Theorem 5.4.4.

MTd(vd) =
MAd(vd)

1−MBd(vd)
=

0.5 + ε1
0.5− v + ε2

=
1

1− 2v
· 1 + 2ε1

1 + (0.5− v)−1ε2
(5.4)

where

ε1 =
MAd(vd)

M
′
B0

(0)d
− 1

2
= O

((
λ

µ

)2
1

N

)
and

ε2 =
1−MBd(vd)

M
′
B0

(0)d
−
(

1

2
− v
)

= O

((
λ

µ

)2
1

N

)
By choosing κ1 small enough so that |ε2| < 0.5(0.5− v̄) implies |(0.5−v)−1ε2| < 0.5.

Consequently by applying Lemma 2.3.6 (page 23) we deduce∣∣∣∣1 + 2ε1
1− 2v

(
1

1 + (0.5− v)−1ε2
− 1

)∣∣∣∣ ≤ 4

(1− 2v̄)2
|(1+2ε1)ε2| = O

((
λ

µ

)2
1

N

)
(5.5)

Also ∣∣∣∣1 + 2ε1
1− 2v

− 1

1− 2v

∣∣∣∣ ≤ 2|ε1|
1− 2v̄

= O

((
λ

µ

)2
1

N

)
(5.6)

By using equation (5.4) and the triangle equality:∣∣∣∣MTd(vd)− 1

1− 2v

∣∣∣∣ =

∣∣∣∣ 1

1− 2v
· 1 + 2ε1

1 + (0.5− v)−1ε2
− 1

1− 2v

∣∣∣∣
=

∣∣∣∣1 + 2ε1
1− 2v

(
1

1 + (0.5− v)−1ε2
− 1

)
+

1 + 2ε1
1− 2v

− 1

1− 2v

∣∣∣∣
≤
∣∣∣∣1 + 2ε1

1− 2v

(
1

1 + (0.5− v)−1ε2
− 1

)∣∣∣∣+

∣∣∣∣1 + 2ε1
1− 2v

− 1

1− 2v

∣∣∣∣
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The result follows by applying equations (5.5) and (5.6).



Chapter 6

Perturbation technique

6.1 Overview

In Chapters 4 and 5 I introduced a number of Markov chain models with an absorbing

state; the random variable of interest being the time until absorption. For these

models I was able to prove results directly, however, in other cases this is not possible;

in Chapters 7, 8 and 9 we will see examples of such models. I will use perturbation

techniques in a similar manner to [8], in order to compare processes that are not

‘solvable’ directly to processes that are.

The perturbative technique for moment generating functions of additive function-

als of finite state Markov chains, developed in [8], was based upon 1) the positivity

of the spectral gap for the transition matrix of the Markov chain in question (or

exponential decay to equilibrium) and 2) smallness of the perturbation compared to

the gap.

For the models here in the context of DNA damage and repair, once the pa-

rameters N, l, λ, µ are fixed, the perturbation is uniquely determined and cannot be

made uniformly small in the whole state space. Additional complications arise from

the fact that the hitting time in question is not uniformly bounded and thus the

moment generating functions involves summation over trajectories of all possible

lengths which requires a careful control of the error terms.

This is best explained with an example. Let P be the one step transtion matrix

for a Markov chain and let (P)i,j be the probability of moving from state i to state j
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in one step. Let us define a perturbed version of this Markov chain to have transtion

matrix Q which is defined by (Q)i,j = (P)i,j(1 + εi,j). A naive application of the

approach in [8] to this example would require a uniform smallness of
∣∣εi,j∣∣ compared

to the spectral gap of the transition matrix P.

6.2 A simple example

Consider the following two Markov chains with killing where the starred states

are absorbing and I am interested in how long it takes until absorption. In the

first process d > 0 is constant but in the second process it is replaced by a state

dependent function dk > 0. I now make two crucial assumptions: Firstly, I assume

that pk and qk are chosen such that the processes spend most of their time near some

state m, prior to being absorbed. Secondly, I assume that the differences |dk − d|

are all very small quantities for k that is close to m. It is then natural to expect

that if d > 0 is small enough so that the typical absorption time at a starred state

is large, then a similar property should hold for the process with state dependent

killing (dk).

'&%$ !"#∗
d

@@��������

'&%$ !"#∗
qkd

@@���������/.-,()*+0
1−d

66/.-,()*+1 · · · /.-,()*+j /.-,()*+k
qk(1−d)

66

pk
vv /.-,()*+j · · ·

0

'&%$ !"#∗
d0

@@��������

'&%$ !"#∗
qkdk

@@���������/.-,()*+0
1−d0

66/.-,()*+1 · · · /.-,()*+j /.-,()*+k
qk(1−dk)

66

pk
vv /.-,()*+j · · ·

Figure 6.1

My aim is to prove that the killing time probability distribution in both models

are close to one another; to do this I will show that the difference between the
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moment generating functions of the killing times in the respective models is small.

In the models arising in analysis of DNA damage and repair that we are interested

in here, the differences |dk − d| are small for k near m, but are large otherwise. It is

therefore necessary to employ a different strategy to that which is employed in [8].

6.3 My strategy

Rather than working on the microscopic scale (on the level of individual jumps), I

will work on a mesoscopic scale (on the level of excursions from a typical state to a

typical state). I will demonstrate that this leads to a set of criteria on the level of

excursions that are required to hold in order to prove the closeness of the respec-

tive moment generating functions. In many cases this will overcome the problem I

explained above due to the fact that the largeness of |dk − d| for atypical states k

is compensated for by the likelihood (or should I say unlikelihood) of ever reaching

such states in a single excursion. For now assume that state m is a typical state and

for the first of the two processes in Figure 6.1 I define:

• Td - number of jumps until death starting from state m.

• Ad - number of jumps until death starting from state m but without any

returns to m (trajectories that return to state m before death contribute to

Bd).

• Bd - number of jumps until the first return to state m (trajectories that die

before returning to state m contribute to Ad).

And for the second process in Figure 6.1 I define:

• T ∗d - number of jumps until death starting from state m.

• A∗d - number of jumps until death starting from state m but without any

returns to m (trajectories that return to state m before death contribute to

B∗d).

• B∗d - number of jumps until the first return to state m (trajectories that die

before returning to state m contribute to A∗d).



6.3. My strategy 59

Theorem 6.3.1. Assume the existence of a constant v0 > 0 such that MBd(v0) = 1

and fix v̄ so that 0 < v̄ < v0. For any ε > 0 and K > 0 there exists δ > 0 such that

for v that satisfies |v| < v̄, if∣∣∣∣MB∗d
(v)−MBd(v)

1−MBd(v)

∣∣∣∣ < δ ,

∣∣∣∣MA∗d
(v)−MAd(v)

1−MBd(v)

∣∣∣∣ < δ and

∣∣∣∣ MAd(v)

1−MBd(v)

∣∣∣∣ < K

then

|MT ∗d
(v)−MTd(v)| < ε

Remark 6.3.2. In Theorem 6.3.1 I assume the existence of a constant v0 > 0

such that MBd(v0) = 1; for any models with killing there does exist such a constant

however this is not guarenteed in models that do not contain any killing.

Proof. I will start by deriving an expression for

MT ∗d
(v)−MTd(v)

The natural way to express MTd(v) and MT ∗d
(v) is via

MTd(v) =
MAd(v)

1−MBd(v)
MT ∗d

(v) =
MA∗d

(v)

1−MB∗d
(v)

This follows from the fact that a trajectory in either model can be decomposed into

excursions from a typical state m to itself and the final open trajectory. However,

in order to compare MT ∗d
(v) and MTd(v) on the level of excursions I found it useful

to further decompose MB∗d
(v) as follows

MB∗d
(v) = MBd(v)︸ ︷︷ ︸

unperturbed
excursion

+MB∗d
(v)−MBd(v)︸ ︷︷ ︸
perturbed
excursion

I now introduce a shading scheme whereby excursions are black lines if they are

unperturbed, dotted lines if they are perturbed and dashed lines if the process dies.
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Time

Position

0
0

m

Figure 6.2

In order that I take into account all shadings I make use of the intrinsic renewal

structure and introduce the cutting rule whereby I cut after every unperturbed

excursion (the dashed vertical lines in Figure 6.2 indicate renewal moments in this

example). In so doing I group together any perturbed excursions that occur prior

to the next unperturbed excursion, the length of such a trajectory has moment

generating function: [
1 +

MB∗d
(v)−MBd(v)

1− (MB∗d
(v)−MBd(v))

]
·MBd(v)

I also need to take into account the death event, to be consistent with the above

definition I group together the death excursion with all the perturbed excursions

that occured since the last renewal, the length of such a trajectory has moment

generating function: [
1 +

MB∗d
(v)−MBd(v)

1− (MB∗d
(v)−MBd(v))

]
·MA∗d

(v)

Consequently

MT ∗d
(v) =

(1 +G)H

1− (1 +G)F
and MTd(v) =

H

1− F

where

F = MBd(v) G =
MB∗d

(v)−MBd(v)

1− (MB∗d
(v)−MBd(v))

H = MAd(v) H = MA∗d
(v)
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Therefore

MT ∗d
(v)−MTd(v) =

MA∗d
(v)

1−MB∗d
(v)
− MAd(v)

1−MBd(v)
(6.1)

=
(1 +G)H

1− (1 +G)F
− H

1− F
(6.2)

=
(1 +G)H

1− (1 +G)F
− H

1− F
+
H −H
1− F

(6.3)

=
GH

(1− (1 +G)F )(1− F )
+
H −H
1− F

(6.4)

=
G

(1− (1 +G)F )
·
(
H −H
(1− F )

+
H

(1− F )

)
+
H −H
1− F

(6.5)

I will now explain how we can deduce the result |MT ∗d
(v) −MTd(v)| < ε, using the

conditions of the theorem. The last two conditions of the theorem,∣∣∣∣MA∗d
(v)−MAd(v)

1−MBd(v)

∣∣∣∣ < δ and

∣∣∣∣ MAd(v)

1−MBd(v)

∣∣∣∣ < K ,

are equivalent to ∣∣∣∣H −H(1− F )

∣∣∣∣ < δ and

∣∣∣∣ H

(1− F )

∣∣∣∣ < K . (6.6)

In order to deduce the smallness of the final term

G

1− (1 +G)F

the reasoning is a little more convoluted. Firstly∣∣∣∣MB∗d
(v)−MBd(v)

1−MBd(v)

∣∣∣∣ < δ =⇒
∣∣MB∗d

(v)−MBd(v)
∣∣ < δ

and we can apply this to bound G as follows

|G| =
∣∣∣∣ MB∗d

(v)−MBd(v)

1− (MB∗d
(v)−MBd(v))

∣∣∣∣ < δ

1− δ
.

Secondly, we have F = MBd(v) < MBd(v̄). Taking into account these two facts and

choosing δ small enough such that(
1 +

δ

1− δ

)
·MBd(v̄) < δ̄ < 1

it follows that (1 +G)F < δ̄ < 1. Therefore∣∣∣∣ G

(1− (1 +G)F )

∣∣∣∣ ≤ δ

(1− δ)(1− δ̄)
. (6.7)
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Finally, pulling together equations (6.6) and (6.7) gives

|MT ∗d
(v)−MTd(v)| ≤

∣∣∣∣ G

(1− (1 +G)F )

∣∣∣∣ · (∣∣∣∣H −H(1− F )

∣∣∣∣+

∣∣∣∣ H

(1− F )

∣∣∣∣)+

∣∣∣∣H −H1− F

∣∣∣∣
≤ δ · (δ +K)

(1− δ)(1− δ̄)
+ δ

and this can be bounded by ε as long as δ is small enough.

This technique is very general and can be applied to many models where there

is a state that is visited frequently. Moreover this method is equally applicable to

discrete and continuous time models as I will demonstrate shortly.



Chapter 7

Discrete time perturbation

7.1 Introduction

I have studied a number of different Markov chain models (with killing) up to this

point and they have all had one thing in common; results concerning the survival

time have been proved directly. The complexity of many models does now allow

results to be proved directly and as I explained in Chapter 6 my aim has been

to develop a technique to allow results to be proved for more complicated models

that are small pertubations of simpler models. I will demostrate how one can use

pertubation techniques to compare two discrete time Markov chain models and show

that the survival times in both models are close to one another.

7.2 Models

In this chapter I will compare the following two models. The Discrete Time Constant

Killing model is the same model that I introduced and studied in Chapter 5, all

the notation remains the same and I repeat it here purely for ease of reading. The

Discrete Time Linear Killing model is similar in spirit to the Discrete Time Constant

Killing model, the main difference being that the killing is linear in the state (d is

replaced by dk = k/N), consequently the Discrete Time Linear Killing model has a

finite state space. The survival time is close in both models because the processes

spend most of their time near state k = λ/µ where dk = d.
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7.2.1 Discrete Time Constant Killing model

Define (Xi)i≥0 to be a Markov chain on the state space {∗, 0, 1, 2, . . . } evolving

according to jump probabilities:

P(Xi+1 = xi+1|Xi = xi) =



1− d if xi+1 = 1 and xi = 0

d if xi+1 = ∗ and xi = 0

pxi if xi+1 = xi − 1 and xi > 0

qxi(1− d) if xi+1 = xi + 1 and xi > 0

d · qxi if xi+1 = ∗ and xi > 0

1 if xi+1 = ∗ and xi = ∗

0 otherwise

where

qxi =
λ

λ+ µxi
pxi =

µxi
λ+ µxi

d =
λ

µN

In picture form it looks like
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d
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q1d
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66
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vv /.-,()*+j . . .

Figure 7.1: Markov chain Xi - Discrete Time Constant Killing model

For this specific Markov chain I recall the following notation:

• Td - number of jumps until death starting from state λ/µ.

• Ad - number of jumps until death starting from state λ/µ but without any

returns (trajectories that return to state λ/µ before death contribute to Bd,

which is defined below).

• Bd - number of jumps until the first return to state λ/µ (trajectories that die

before returning to state λ/µ contribute to Ad).
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• adm,k - weight of all m step trajectories that end at state k, do not return to

the state λ/µ and do not die (ad0,k = 0 for all k and adm,λ/µ = 0 for all m).

• adm =
∑

k≥1 a
d
m,k - weight of all m step trajectories that do not return to the

state λ/µ and do not die (ad0 = 0).

• rdk =
∑

m≥1 a
d
m,k - weight of all trajectories that end at state k, do not return

to the state λ/µ and do not die (rdλ/µ = 0).

• bdm - weight of all m step trajectories that return to the state λ/µ for the first

time on the m-th step (bd0 = 0).

• Let Pd be a matrix consisting of the one step transition probabilities for this

Markov chain.

Furthermore I recall the following moment generating functions:

MTd(v) = E
(

exp (v · Td)
)
, MBd(v) = E

(
exp (v ·Bd)

)
, MAd(v) = E

(
exp (v · Ad)

)
7.2.2 Discrete Time Linear Killing model

Define (Yi)i≥0 to be a Markov chain on the state space {∗, 0, 1, 2, . . . N} evolving

according to jump probabilities:

P(Yi+1 = yi+1|Yi = yi) =



pyi if yi+1 = yi − 1 and yi > 0

qyi(1− dyi) if yi+1 = yi + 1 and yi > 0

dyi · qyi if yi+1 = ∗ and yi > 0

1 if yi+1 = ∗ and yi = ∗

0 otherwise

where

qyi =
λ

λ+ µyi
pyi =

µyi
λ+ µyi

dyi =
yi
N

In picture form it looks like
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'&%$ !"#∗
q1d1

@@��������

'&%$ !"#∗
qkdk

@@���������

'&%$ !"#∗
qNdN

??��������/.-,()*+0
1

66/.-,()*+1
q1(1−d1)

66

p1
vv /.-,()*+2 . . . /.-,()*+j /.-,()*+k

qk(1−dk)

66

pk
vv /.-,()*+j . . . /.-,()*+j 76540123N

pN
vv

Figure 7.2: Markov chain Yi - Discrete Time Linear Killing model

For this specific Markov chain I introduce the following notation:

• Tε - number of jumps until death starting from state λ/µ.

• Aε - number of jumps until death starting from state λ/µ but without any

returns (trajectories that return to state λ/µ before death contribute to Bε,

which is defined below).

• Bε - number of jumps until the first return to state λ/µ (trajectories that die

before returning to state λ/µ contribute to Aε).

• aεm,k - weight of all m step trajectories that end at state k, do not return to

the state λ/µ and do not die (aε0,k = 0 for all k and aεm,λ/µ = 0 for all m).

• aεm =
∑

k≥1 a
ε
m,k - weight of all m step trajectories that do not return to the

state λ/µ and do not die (aε0 = 0).

• rεk =
∑

m≥1 a
ε
m,k - weight of all trajectories that end at state k, do not return

to the state λ/µ and do not die (rελ/µ = 0).

• bεm - weight of all m step trajectories that return to the state λ/µ for the first

time on the m-th step (bε0 = 0).

• Let Pε be a matrix consisting of the one step transition probabilities for this

Markov chain.

Furthermore I define the following moment generating functions:

MTε(v) = E
(

exp (v · Tε)
)
, MBε(v) = E

(
exp (v ·Bε)

)
, MAε(v) = E

(
exp (v · Aε)

)
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7.2.3 Additional notation

Finally I need to define trajectory probabilities and a few important classes of tra-

jectory.

Definition 7.2.1. Given a trajectory X = (x0, x1, . . . , xm) I define Pd(X ) to be the

probability of the trajectory X with respect to the Discrete Time Constant Killing

model, that is

Pd(X ) =
m−1∏
j=0

(Pd)xj ,xj+1

Similarly I define Pε(X ) to be the probability of the trajectory X with respect to the

Discrete Time Linear Killing model

Pε(X ) =
m−1∏
j=0

(Pε)xj ,xj+1

Definition 7.2.2. Given a trajectory X = (x0, x1, . . . , xm) I define P0(X ) to be the

probability of the trajectory X with respect to the Discrete Time Constant Killing

model with d = 0, that is

P0(X ) = Pd(X )
∣∣∣
d=0

.

Remark 7.2.3. I will also take this opportunity to recall the notation that I intro-

duced in Chapter 5. In a similar manner to Definition 7.2.2, the following functions

and random variables: b0
m, a0

m,k, a
0
m, B0 and A0 relate to the Discrete Time Constant

Killing when d = 0 (i.e. no killing).

I am interested in two types of trajectory, i) trajectories that start at state λ/µ,

have a particular length and have no intermediate visits to the state λ/µ and ii)

trajectories that start at state λ/µ, have a particular length, have no intermediate

visits to the state λ/µ and do not deviate by more than a given distance away from

the initial state.

Definition 7.2.4. I say trajectory X has length m (and write |X | = m) if and only

if X is of the form X = (x0 = λ
µ
, x1 /∈ {λµ , ∗}, . . . , xm−1 /∈ {λµ , ∗}, xm /∈ {∗})
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Definition 7.2.5. Take a trajectory X such that |X | = m. I say trajectory X

deviates less than n from the starting position (and write ||X || < n) if and only if

the following conditions are satisfied

|x1 − x0| < n , |x2 − x0| < n , . . . , |xm − x0| < n

Let me link this new notation to the notation that was introduced at the begin-

ning of the chapter:

bdm =
∑
|X |=m:

xm=λ
µ

Pd(X ) , adm =
∑
|X |=m
xm 6=λ

µ

Pd(X ) , adm,k =
∑
|X |=m:
xm=k

Pd(X ) , (7.1)

bεm =
∑
|X |=m:

xm=λ
µ

Pε(X ) , aεm =
∑
|X |=m
xm 6=λ

µ

Pε(X ) , aεm,k =
∑
|X |=m:
xm=k

Pε(X ) . (7.2)

7.3 Intermediate results

In order to compare the difference between the moment generating functions of

the survival time for the Discrete Time Constant Killing and Discrete Time Linear

Killing models I need to be able to bound quantites like

bdm − bεm =
∑
|X |=m:

xm=λ
µ

Pd(X )−
∑
|X |=m:

xm=λ
µ

Pε(X ) (7.3)

Due to the fact that any trajectory that doesn’t move to the right of state N exists

in both models, I will bound quantites like that in equation (7.3) by comparing

trajectories on a one to one basis (I will deal with trajectories that move to the

right of state N seperately). A natural requirement for such an approach is to find

a relatively uniform bound for Pd(X ) − Pε(X ) that only depends on a few simple

characteristics of X . I will start with a lemma that relates one step transition

probabilities.

Lemma 7.3.1. Recall that Pd and Pε are the transition matrices for the Discrete

Time Constant Killing and Discrete Time Linear Killing models respectively. The
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following relation holds

(Pε)i,j = (Pd)i,j(Q)i,j 0 ≤ i, j ≤ N or j = ∗

where

(Q)i,j =


1 + λ/µ−i

N−λ/µ if j = i+ 1

i
λ/µ

if j = ∗

1 otherwise

Proof. Looking at the respective Markov chain diagrams, we see that the only jump

probabilities that differ are ‘up one’ jumps and the jump to a starred state. So in

order to prove the lemma I just need to verify the following two statements

(Pε)i,i+1 = (Pd)i,i+1

(
1 +

λ/µ− i
N− λ/µ

)
⇔ λ

λ+ µi

(
1− i

N

)
=

λ

λ+ µi
(1− d)

(
1 +

λ/µ− i
N− λ/µ

)
⇔ N− i

N− λ/µ
= 1 +

λ/µ− i
N− λ/µ

⇔ N− i− N + λ/µ

N− λ/µ
=

λ/µ− i
N− λ/µ

X

(Pε)i,∗ = (Pd)i,∗ ·
i

λ/µ
⇔ λ

λ+ µi
· i
N

=
λ

λ+ µi
· λ
µN
· i

λ/µ
X

Lemma 7.3.1 enables me to prove a number of useful results, but let me first

express (Q)i,j in a different format. Define εi,j as follows

εi,j =


λ/µ−i
N−λ/µ if j = i+ 1

i
λ/µ
− 1 if j = ∗

0 otherwise

where 0 ≤ i, j ≤ N or j = ∗ . Using this new notation, it follows that

(Q)i,j = (1 + εi,j) . (7.4)
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Lemma 7.3.2. If λ
µ
< N then for any trajectory X such that |X | = m ∈ N and

||X || < mα (α > 0) it follows that

|Pε(X )− Pd(X )| ≤ Pd(X ) · m
1+α

N− λ
µ

exp

(
m1+α

N− λ
µ

)

Proof. I start by considering a trajectory, X , that moves beyond state N and I make

two observations. Firstly |X | = m ≥ N− λ
µ

and secondly Pε(X ) = 0. As a result

m1+α

N− λ
µ

exp

(
m1+α

N− λ
µ

)
≥ 1

and the statement in the lemma follows immediately. Next I consider trajectories

that do not travel beyond state N. I let A ⊆ Z and so when I write A ⊆ [0,m− 1] it

means that A is a subset of {0, 1, . . . ,m−1}. I now use Definition 7.2.1, Lemma 7.3.1

and equation (7.4) to express Pε(X ) as follows:

Pε(X ) = Pd(X )
m−1∏
j=0

(1 + εxj ,xj+1
) =

∑
A⊆[0,m−1]

Pd(X )
∏
a∈A

εxa,xa+1 (7.5)

Remark 7.3.3. Summing over A ⊆ [0,m− 1] includes A = ∅, the convention being

that an empty product is equal to 1.

By using the expression for Pε(X ) in equation (7.5) and then applying the con-

dition in the lemma, ||X || < mα, it follows that

|Pε(X )− Pd(X )| ≤
∑

A⊆[0,m−1]:
A 6=∅

Pd(X )
∏
a∈A

|εxj ,xj+1
|

≤ Pd(X )
∑

A⊆[0,m−1]:
A 6=∅

(
mα

N− λ
µ

)|A|

= Pd(X )

[(
1 +

mα

N− λ
µ

)m

− 1

]
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Finally I apply Lemma 2.3.1 and Lemma 2.3.2 (page 22)

≤ Pd(X )

[
exp

(
m1+α

N− λ
µ

)
− 1

]

≤ Pd(X )
m1+α

N− λ
µ

exp

(
m1+α

N− λ
µ

)

Additionally we have the following result which doesn’t have any dependence on

||X ||:

Lemma 7.3.4. If λ
µ
< N then for any trajectory X such that |X | = m ∈ N it follows

|Pε(X )− Pd(X )| ≤ Pd(X ) ·

(
1 +

λ
µ

N− λ
µ

)m

Proof. For any trajectory whose first jump is to the right we have

Pd(X ) ≥ Pε(X ) ≥ 0 .

This implies |Pε(X ) − Pd(X )| ≤ Pd(X ), which is trivially less than the right hand

side of the equation in the lemma. For any trajectory whose first jump is to the left,

we have Pε(X ) ≥ Pd(X ) ≥ 0 . Moreover, I use Definition 7.2.1, Lemma 7.3.1 and

equation (7.4) to derive an expression for Pε(X ) that I can bound from above:

Pε(X ) = Pd(X )
m−1∏
j=0

(1 + εxj ,xj+1
) ≤ Pd(X ) ·

(
1 +

λ
µ

N− λ
µ

)m

(7.6)

where the inequality uses the fact that λ/µ− xj ≤ λ/µ for all j ∈ {0, 1, . . . ,m− 1}.

Consequently

|Pε(X )− Pd(X )| ≤ Pε(X ) ≤ Pd(X ) ·

(
1 +

λ
µ

N− λ
µ

)m

This completes the proof.

Lemma 7.3.5. For any trajectory X it follows1: Pd(X ) ≤ P0(X ).

1This result is along the same vein as Lemma 5.3.1 and Corollary 5.3.2.
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Proof. Let X be an m step trajectory, k steps of which are jumps to the right. Each

of these jumps to the right picks up a factor of (1− d), therefore

Pd(X ) = P0(X ) · (1− d)k ≤ P0(X ) .

Lemma 7.3.6. If λ
µN

< κ < 1 then for any trajectory X such that |X | = m it

follows

Pε(X ) ≤ Pd(X ) · e(1−κ)−1·dm (7.7)

Proof. For any trajectory whose first jump is to the right we have Pε(X ) ≤ Pd(X )

which implies the desired result. For any trajectory whose first jump is to the left,

Pε(X ) ≤ Pd(X ) ·

(
1 +

λ
µ

N− λ
µ

)m

,

as demonstrated in equation (7.6). This can be further bounded by pulling out a

factor of N from the denominator of the main fraction and applying the condition

in the lemma, λ/(µN) < κ < 1,

≤ Pd(X ) ·
(

1 +
λ

µN
· 1

1− κ

)m
.

Finally by applying Lemma 2.3.1 (page 22) and recalling the definition d = λ/(µN)

≤ Pd(X ) · e(1−κ)−1·dm .

Corollary 7.3.7. If λ
µN

< κ < 1 then

bεm ≤ bdm · e(1−κ)−1·dm , aεm ≤ adm · e(1−κ)−1·dm and aεm,k ≤ adm,k · e(1−κ)−1·dm

Proof. All three bounds are a straightforward application of Lemma 7.3.6 and the

relationships in equations (7.1) and (7.2). For example

bεm =
∑
|X |=m:

xm=λ
µ

Pε(X ) ≤
∑
|X |=m:

xm=λ
µ

Pd(X ) · e(1−κ)−1·dm = bdm · e(1−κ)−1·dm .

The other estimates are similar.
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7.4 Main results

All the proofs in this section rely on a condition of the form(
λ

µ

)2+ρ0

· 1

N
< κ < 1

for some ρ0 > 0. One consequence of this is(
λ

µ

)θ
· 1

N
< κ < 1 for any θ < 2 + ρ0 . (7.8)

In particular, when θ = 1, we have d = λ/(µN) < κ < 1. This implies

1

N− λ/µ
≤ 1

N(1− κ)
. (7.9)

I will readily use these facts in the argument below without additional comment.

Lemma 7.4.1. Fix constants ρ0 > 0 and κ2 > 0. For any v̄ < 0.5 there exists

κ1 = κ1(v̄) > 0 such that for any v that satisfies v < v̄, if(
λ

µ

)2+ρ0 1

N
< κ1 , N exp

[
−
(
λ

µ

)ρ1]
< κ2 ,

0 < ρ < min

{
ρ0 ,

1

7

}
and 0 < ρ1 < min

{
1

4
, ρ

}
then

|MBε(vd)−MBd(vd)|
d
√
λ/µ

≤
(µ
λ

)0.5

· (1− κ1)−1 · e(v̄+(1−κ1)−1)κ1

+
(µ
λ

)0.25(1−ρ)

· C · (1− κ1)−1 · e(v̄+(1−κ1)−1)κ1

+
(µ
λ

)0.5−ρ
· C · κ2 · e(v̄+(1−κ1)−1)κ1 +

(µ
λ

)0.5

· C · κ2

Therefore

|MBε(vd)−MBd(vd)|
d
√
λ/µ

= O
((µ

λ

)0.25(1−ρ)
)

where the implicit constant in the big O is dependent on κ1, κ2 and v̄.

Proof. It is necessary to express MBd(vd) and MBε(vd) in such a way that I am

able to bound the difference between the two. To this end I apply the law of total

probability

MBd(vd) =
∞∑
m=1

∑
|X |=m:
xm=λ/µ

Pd(X )evdm
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and

MBε(vd) =
∞∑
m=1

∑
|X |=m:
xm=λ/µ

Pε(X )evdm .

I start by decomposing |MBε(vd)−MBd(vd)| into four terms as follows

|MBε(vd)−MBd(vd)| ≤ Σ1 + Σ2 + Σ3 + Σ4

where

Σ1 =
D∑

m=1

∑
|X |=m:
xm=λ/µ

evdm |Pε(X )− Pd(X )| (7.10)

Σ2 =
E∑

m=D+1

∑
|X |=m:
xm=λ/µ
||X ||≤m0.75

evdm |Pε(X )− Pd(X )| (7.11)

Σ3 =
E∑

m=D+1

∑
|X |=m:
xm=λ/µ
||X ||>m0.75

evdm |Pε(X )− Pd(X )| (7.12)

Σ4 =
∑
m>E

∑
|X |=m:
xm=λ/µ

evdm |Pε(X )− Pd(X )| (7.13)

where

D =

(
λ

µ

)0.5

and E =

(
λ

µ

)1+ρ

.

In order to prove Lemma 7.4.1 I will individually bound each of the above expres-

sions.

I start with Σ1, here the pertubation is small because a short trajectory does

not have the time required to reach a far away state where the pertubation is large.

I bound the inner sum by applying Lemma 7.3.2 (page 70) with α = 1 and then I

apply equation (7.9):

∑
|X |=m:
xm=λ/µ

evdm |Pε(X )− Pd(X )| ≤
∑
|X |=m:
xm=λ/µ

evdm · Pd(X ) · m2

N− λ
µ

· e
m2

N−λµ

≤ bdm ·
m2

N
· (1− κ1)−1 · exp

(
vdm+

m2

N
· (1− κ1)−1

)



7.4. Main results 75

Now I return to the full sum and after taking into account the above expression I

take uniform upper bounds for all terms next to bdm:

Σ1 ≤
λ

µN
· (1− κ1)−1 · exp

(
vd

(
λ

µ

)0.5

+
λ

µN
· (1− κ1)−1

)
D∑

m=1

bdm

The remaining summation is clearly bounded by one and after applying the condi-

tions in the lemma, (
λ

µ

)2+ρ0 1

N
< κ1 and v < v̄ ,

it follows
Σ1

d
√
λ/µ

≤
(µ
λ

)0.5

· (1− κ1)−1 · e(v̄+(1−κ1)−1)κ1

Secondly I consider m-step trajectories that do not deviate from the starting

position by more than m0.75, they contribute to Σ2. I bound the inner sum by

applying Lemma 7.3.2 (page 70) with α = 0.75 and then I apply equation (7.9):∑
|X |=m:
xm=λ/µ
||X ||≤m0.75

evdm |Pε(X )− Pd(X )| ≤
∑
|X |=m:
xm=λ/µ
||X ||≤m0.75

evdm · Pd(X ) · m
1.75

N− λ
µ

· e
m1.75

N−λµ

≤
∑
|X |=m:
xm=λ/µ

Pd(X ) · m1.75

N(1− κ1)
· evdm+m1.75

N
·(1−κ1)−1

= [bdm ·m1.5] · m
0.25

N
· (1− κ1)−1 · evdm+m1.75

N
·(1−κ1)−1

Now I return to the full sum and after taking into account the above expression I

take uniform upper bounds for all terms next to [bdm ·m1.5]:

Σ2 ≤
1
N

(
λ
µ

)0.25(1+ρ)

1− κ1

·exp

(
vd

(
λ

µ

)1+ρ

+
(1− κ1)−1

N
·
(
λ

µ

)1.75(1+ρ)
)
·

E∑
m=D+1

bdm ·m1.5

Next by using the fact bdm < b0
m (see Corollary 5.3.2) and then bounding the sum-

mation by applying Lemma 3.3.1(ii) (page 35) we obtain

≤ C ·
1
N

(
λ
µ

)0.25(1+ρ)+1

1− κ1

· exp

(
vd

(
λ

µ

)1+ρ

+
(1− κ1)−1

N
·
(
λ

µ

)1.75(1+ρ)
)

After applying the conditions in the lemma,(
λ

µ

)2+ρ0 1

N
< κ1 , v < v̄ , ρ < ρ0 and ρ <

1

7
,
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it follows
Σ2

d
√
λ/µ

≤
(µ
λ

)0.25(1−ρ)

· C · (1− κ1)−1 · e(v̄+(1−κ1)−1)κ1

Thirdly I consider longer trajectories that explore a wide section of the state

space and which contribute to Σ3. I bound the inner sun by applying Lemma 7.3.4

(page 71), equation (7.9) (page 73), Lemma 2.3.1 (page 22) and Lemma 7.3.5 (page

71) in that order:∑
|X |=m:
xm=λ/µ
||X ||>m0.75

evdm |Pε(X )− Pd(X )| ≤
∑
|X |=m:
||X ||>m0.75

evmd · Pd(X ) ·

(
1 +

λ
µ

N− λ
µ

)m

≤
∑
|X |=m:
||X ||>m0.75

evmd · Pd(X ) ·
(

1 +
λ

µN
· 1

1− κ1

)m

≤ edm(v+(1−κ1)−1) ·
∑
|X |=m:
||X ||>m0.75

P0(X )

The remaining summation is the probability that an m-step trajectory on the birth

death chain (Figure 3.1), reaches a state that is a distance of m0.75 away from the

starting position, at some point during the trajectory. This can be bounded above

by the probability of the same event, but this time on a simple symmetric random

walk. This is because a simple symmetric random walk is likely to explore more

of the state space due to the fact that, unlike the birth death chain, there is no

drift pulling it back to state λ/µ. I then apply the simple symmetric random walk

moderate deviation estimate (Lemma 2.1.8, page 16):

≤ C · e−γ·m0.5 · edm(v+(1−κ1)−1)

By taking uniform estimates for all terms, multiplying and dividing by N and rear-

ranging terms we obtain:

Σ3 ≤
E∑

m=D+1

[
C · e−γ·m0.5 · edm(v+(1−κ1)−1)

]
≤ C · 1

N

(
λ

µ

)1+ρ

· N exp

[
−γ
(
λ

µ

)0.25
]
· exp

[
d

(
λ

µ

)1+ρ

· (v + (1− κ1)−1)

]
After applying the conditions in the lemma,(

λ

µ

)2+ρ0 1

N
< κ1 , N exp

[
−
(
λ

µ

)ρ1]
< κ2 , v < v̄ , ρ < ρ0 and ρ1 <

1

4
,
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it follows
Σ3

d
√
λ/µ

≤ C ·
(µ
λ

)0.5−ρ
· κ2 · e(v̄+(1−κ1)−1)κ1

Fourthly I consider long excursions which contribute to Σ4. I apply Lemma 7.3.4

(page 71), Lemma 2.3.1 and equation (7.9), in that order, to bound the terms in the

summation:

|Pε(X )− Pd(X )| ≤ Pd(X ) ·

(
1 +

λ
µ

N− λ
µ

)m

≤ Pd(X ) · edm(1−κ1)−1

By applying this bound, then multiplying and dividing by eδm and using e−δm ≤ e−δE

(due to the fact that I am summing over m > E) we obtain∑
m>E

∑
|X |=m:
xm=λ/µ

evdm |Pε(X )− Pd(X )| ≤
∑
m>E

edm(v+(1−κ1)−1) · bdm

≤ e−δE
∞∑
m=1

edm(v+(1−κ1)−1)+δm · b0
m

= e−δE ·MB0(d(v + (1− κ1)−1) + δ)

If we choose2 δ = 0.375α
λ/µ

and κ1 small enough so that

κ1(v̄ + (1− κ1)−1) + 0.375α < 0.75α

holds, then due to the fact that
(
λ
µ

)2
1
N
< κ1 and v < v̄ (from the conditions of the

lemma), it follows that(
λ

µ

)2
1

N
·
(
v + (1− κ1)−1

)
+ 0.375α < 0.75α ⇔ d(v + (1− κ1)−1) + δ <

0.75α

λ/µ

Consequently one can apply Corollary 3.3.6 (page 40) which implies

MB0(d(v + (1− κ1)−1) + δ) ≤ C · λ/µ .

Applying this bound gives

Σ4 ≤ exp

[
−0.375α

(
λ

µ

)ρ]
· C · λ/µ = N exp

[
−0.375α

(
λ

µ

)ρ]
· C · λ/µ · 1

N

2The constant α is taken directly from Lemma 3.3.2, during the proof of which I derive that

0 < α < 1/16 is sufficient for the lemma to hold.
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Therefore by applying the conditions in the lemma, N exp [−(λ/µ)ρ1 ] < κ2 and

ρ1 < ρ, it follows
Σ4

d
√
λ/µ

≤ C ·
(µ
λ

)0.5

· κ2

This completes the proof.

Lemma 7.4.2. Fix constants ρ0 > 0 and κ2 > 0. For any v̄ < 0.5 there exists

κ1 = κ1(v̄) > 0 such that for any v that satisfies v < v̄, if(
λ

µ

)2+ρ0 1

N
< κ1 , N exp

[
−
(
λ

µ

)ρ1]
< κ2 ,

0 < ρ < min

{
ρ0

2
,
1

3

}
and 0 < ρ1 < min

{
1

4
, ρ

}
then

|MAε(vd)−MAd(vd)|
d
√
λ/µ

≤ C · (1− κ1)−1 · 1

N

(
λ

µ

)2+2ρ

· e(2v̄+(1−κ1)−1)κ1

+ ev̄κ1 · C · κ2 ·
(µ
λ

)0.5

+ e2v̄κ1
(µ
λ

)0.5

+ e2v̄κ1
(µ
λ

)0.25(1−ρ)

+ e2v̄κ1 · C · κ2 ·
(
λ

µ

)0.5+2ρ

· 1

N
+ ev̄κ1 · C · (κ2)2 ·

(µ
λ

)2.5

This implies

|MAε(vd)−MAd(vd)|
d
√
λ/µ

= O

(
1

N

(
λ

µ

)2+2ρ
)

+O
((µ

λ

)0.25(1−ρ)
)

where the implicit constant in the big O is dependent on κ1, κ2 and v̄.

Proof. Note the following

|MAε(vd)−MAd(vd)| =

∣∣∣∣∣
∞∑
m=1

evd(m+1)

∞∑
k=1

(aεm,kqkdk − adm,kqkd)

∣∣∣∣∣ (7.14)

≤
∞∑
m=1

evd(m+1)

∞∑
k=1

|aεm,kqkdk − adm,kqkdk| (7.15)

+
∞∑
m=1

evd(m+1)

∞∑
k=1

|adm,kqkdk − adm,kqkd| (7.16)

≤
∞∑
m=1

evd(m+1)

∞∑
k=1

|aεm,k − adm,k|d (7.17)

+
∞∑
m=1

evd(m+1)

∞∑
k=1

adm,k|dk − d| (7.18)
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where the second inequality uses the following facts

qkdk =
λ/µ

λ/µ+ k
· k
N

=
k

λ/µ+ k
· λ/µ

N
≤ λ/µ

N
= d and qk =

λ/µ

λ/µ+ k
≤ 1

Let

D =

(
λ

µ

)0.5

and E =

(
λ

µ

)1+ρ

.

I will now deal with expression (7.17). Recalling the definitions of Pε(X ) and Pd(X )

(page 67), I can rewrite the expression as follows

∞∑
m=1

evd(m+1)

∞∑
k=1

|aεm,k − adm,k|d ≤ d

∞∑
m=1

evd(m+1)

∞∑
k=1

∑
|X |=m:
xm=k

∣∣∣Pε(X )− Pd(X )
∣∣∣ = Σ1 +Σ2

where

Σ1 = d
E∑

m=1

evd(m+1)

∞∑
k=1

∑
|X |=m:
xm=k

∣∣∣Pε(X )− Pd(X )
∣∣∣ (7.19)

Σ2 = d
∑
m>E

evd(m+1)

∞∑
k=1

∑
|X |=m:
xm=k

∣∣∣Pε(X )− Pd(X )
∣∣∣ (7.20)

I will now bound equations (7.19) and (7.20). Starting with shorter trajectories

which contribute to Σ1, I bound the inner sum by applying Lemma 7.3.2 (page 70)

with α = 1 and then I make use of equation (7.9):∑
|X |=m:
xm=k

∣∣∣Pε(X )− Pd(X )
∣∣∣ ≤ adm,k ·

m2

N(1− κ1)
· e(1−κ1)−1·m

2

N

I now return to the full sum and take uniform upper bounds of all the terms in the

summation with the exception of adm,k:

Σ1 ≤
d

N(1− κ1)

(
λ

µ

)2+2ρ

exp

[
vd

(
λ

µ

)1+ρ

+ vd+
1

N(1− κ1)

(
λ

µ

)2+2ρ
]

E∑
m=1

∞∑
k=1

adm,k

By making use of Lemma 2.2.5 (page 21) and Lemma 3.3.1 (page 35) one can deduce

∞∑
m=1

∞∑
k=1

a0
m,k ≤ Eλ/µ(B0) ≤ C

√
λ/µ

Therefore by applying this result together with the conditions in the lemma,(
λ

µ

)2+ρ0 1

N
< κ1 , v < v̄ and ρ <

ρ0

2
,
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it follows
Σ1

d
√
λ/µ

≤ C · (1− κ1)−1 · 1

N

(
λ

µ

)2+2ρ

· e(2v̄+(1−κ1)−1)κ1

Moving onto longer trajectories, I bound the terms in Σ2 by applying Lemma 7.3.4

(page 71), equation (7.9) (page 73), Lemma 2.3.1 (page 22) and Corollary 5.3.2

(page 49) in that order:

∣∣∣Pε(X )− Pd(X )
∣∣∣ ≤ Pd(X ) ·

(
1 +

λ
µ

N− λ
µ

)m

≤ Pd(X ) ·
(

1 +
λ

µN
· 1

1− κ1

)m
≤ P0(X ) · edm(1−κ1)−1

By applying this result it follows:

Σ2 ≤ d
∑
m>E

evd(m+1)

∞∑
k=0

∑
|X |=m:
xm=k

P0(X ) · edm(1−κ1)−1

= devd
∑
m>E

e(v+(1−κ1)−1)dm · a0
m

Next I multiply and divide the terms of the sum by eδm and apply e−δm ≤ e−δE (due

to the fact that I am summing over m > E), I also use the fact that a0
m =

∑∞
j=m+1 b

0
j

≤ devd · e−δE ·
∞∑
m=0

e(v+(1−κ1)−1)dm+δm ·
∞∑

j=m+1

b0
j

I now change the order of summation

= devd · e−δE ·
∞∑
j=1

j−1∑
m=0

e(v+(1−κ1)−1)dm+δm · b0
j

Finally I take uniform bounds over the terms involving m and apply the inequality

jd < ejd

≤ devd · e−δE ·
∞∑
j=1

j · e(v+(1−κ1)−1)dj+δj · b0
j

≤ evd · e−δE ·
∞∑
j=1

e(v+1+(1−κ1)−1)dj+δj · b0
j

= evd · N · e−δE · 1

N
·MB0((v + 1 + (1− κ1)−1)d+ δ)
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If we choose3 δ = 0.375α
λ/µ

and κ1 small enough so that

[κ1(v̄ + 1 + (1− κ1)−1) + 0.375α] < 0.75α

holds then one can apply Corollary 3.3.6 which implies

MB0((v + 1 + (1− κ1)−1)d+ δ) ≤ C · λ/µ .

Therefore by applying this result together with the conditions in the lemma,(
λ

µ

)2+ρ0 1

N
< κ1 , N exp

[
−
(
λ

µ

)ρ1]
< κ2 , v < v̄ and ρ1 < ρ ,

it follows
Σ2

d
√
λ/µ

≤ C · ev̄κ1 · κ2 ·
(µ
λ

)0.5

I will now deal with expression (7.18).

∞∑
m=1

evd(m+1)

∞∑
k=1

adm,k|dk − d| = Σ3 + Σ4 + Σ5 + Σ6

where

Σ3 =
D∑

m=1

evd(m+1)

∞∑
k=1

∑
|X |=m:
xm=k

Pd(X ) · |dk − d| (7.21)

Σ4 =
E∑

m=D+1

evd(m+1)

∞∑
k=1

∑
|X |=m:
xm=k

||X ||<m0.75

Pd(X ) · |dk − d| (7.22)

Σ5 =
E∑

m=D+1

evd(m+1)

∞∑
k=1

∑
|X |=m:
xm=k

||X ||>m0.75

Pd(X ) · |dk − d| (7.23)

Σ6 =
∑
m>E

evd(m+1)

∞∑
k=1

∑
|X |=m:
xm=k

Pd(X ) · |dk − d| (7.24)

Recall that

D =

(
λ

µ

)0.5

and E =

(
λ

µ

)1+ρ

.

3The constant α is taken directly from Lemma 3.3.2, during the proof of which I derive that

0 < α < 1/16 is sufficient for the lemma to hold.



7.4. Main results 82

I will now bound these four expressions. I start by considering Σ3 and use the fact

that the distance between the start and end position of a trajectory can not be

greater than the length of the trajectory, consequently |λ/µ−k| ≤ m which in turn

implies |dk − d| ≤ m
N

, therefore

Σ3 ≤
D∑

m=1

evd(m+1)

∞∑
k=0

∑
|X |=m:
xm=k

Pd(X ) · m
N

=
D∑

m=1

evd(m+1)·adm ·
m

N

Now I use Corollary 5.3.2 to bound adm < a0
m and then I take uniform upper bounds

for all terms next to a0
m, it follows

< exp

(
vd

(
λ

µ

)0.5

+ vd

)
·
(
λ

µ

)0.5
1

N
·
∞∑
m=1

a0
m

Therefore by applying Lemma 2.2.5 and Lemma 3.3.1 to bound the remaining sum-

mation and using the conditions in the lemma,(
λ

µ

)2+ρ0 1

N
< κ1 and v < v̄ ,

it follows
Σ3

d
√
λ/µ

≤ e2v̄κ1
(µ
λ

)0.5

Secondly I consider equation Σ4, here I am summing over trajectories that satisfy

|X | = m and ||X || < m0.75, this implies that I can use the bound |dk − d| ≤ m0.75

N

therefore

Σ4 ≤
E∑

m=D+1

evd(m+1)

∞∑
k=0

∑
|X |=m:
xm=k

||X ||<m0.75

Pd(X ) · m
0.75

N

≤
E∑

m=D+1

evd(m+1)

∞∑
k=0

∑
|X |=m:
xm=k

Pd(X ) · m
0.75

N

=
E∑

m=D+1

evd(m+1) · adm ·
m0.75

N

Now I use Corollary 5.3.2 to bound adm < a0
m and then I take uniform upper bounds

for all terms next to a0
m, it follows

< exp

(
vd

(
λ

µ

)1+ρ

+ vd

)
·
(
λ

µ

)0.75(1+ρ)
1

N
·
∞∑
m=1

a0
m
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Therefore by applying Lemma 2.2.5 and Lemma 3.3.1 to bound the remaining sum-

mation and using the conditions in the lemma,(
λ

µ

)2+ρ0 1

N
< κ1 , v < v̄ and ρ < ρ0 ,

it follows
Σ4

d
√
λ/µ

≤ e2v̄κ1
(µ
λ

)0.25(1−3ρ)

Thirdly I consider equation Σ5. Once again I use the fact that |dk − d| ≤ m
N

Σ5 =
E∑

m=D+1

evd(m+1)

∞∑
k=1

∑
|X |=m:
xm=k

||X ||>m0.75

Pd(X ) · |dk − d|

≤
E∑

m=D+1

evd(m+1) · m
N
·

∑
|X |=m:
||X ||>m0.75

P0(X )

Next I apply Lemma 2.1.8 (page 16) and then I uniformly upper bound all the

remaining terms

≤
E∑

m=D+1

evd(m+1) · m
N
· C · e−γm0.5

≤ C · exp

[
v · 1

N
·
(
λ

µ

)2+ρ

+ vd− γ ·
(
λ

µ

)0.25
]
·
(
λ

µ

)2+2ρ

· 1

N

= C · exp

[
v · 1

N
·
(
λ

µ

)2+ρ

+ vd

]
· N exp

[
−γ ·

(
λ

µ

)0.25
]
·
(
λ

µ

)2+2ρ

· 1

N2

After applying the conditions in the lemma,(
λ

µ

)2+ρ0 1

N
< κ1 , N exp

[
−
(
λ

µ

)ρ1]
< κ2 , v < v̄ , ρ < ρ0 and ρ1 <

1

4
,

it follows
Σ5

d
√
λ/µ

≤ C · e2v̄κ1 · κ2 ·
(
λ

µ

)0.5+2ρ

· 1

N

Fourthly and finally I come to equation Σ6. The method of bounding this equa-
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tion is very similar to that which I employed to bound equation Σ2:

Σ6 =
∑
m>E

evd(m+1)

∞∑
k=1

∑
|X |=m:
xm=k

Pd(X ) · |dk − d|

≤ evd
∑
m>E

evdm
∞∑
k=1

∑
|X |=m:
xm=k

Pd(X ) · m
N

≤ evd−δE ·
∞∑
m=0

evdm+δm · m
N
· a0

m

I now use the fact that a0
m =

∑∞
j=m+1 b

0
j and then change the order of summation

= evd−δE ·
∞∑
m=0

evdm+δm · m
N
·
∞∑

j=m+1

b0
j

= evd−δE ·
∞∑
j=1

j−1∑
m=0

evdm+δm · m
N
· b0
j

≤ evd−δE ·
∞∑
j=1

evdj+δj · j
2

N
· b0
j

I now multiple and divide by d2 and then use the inequality (dj)2 < e2dj

= N ·
(µ
λ

)2

· evd−δE ·
∞∑
j=1

(dj)2 · evdj+δj · b0
j

≤ N ·
(µ
λ

)2

· evd−δE ·
∞∑
j=1

e(v+2)dj+δj · b0
j

= N ·
(µ
λ

)2

· evd−δEMB0(d(v + 2) + δ)

If we choose4 δ = 0.375α
λ/µ

and κ1 small enough so that

[κ1(v̄ + 2) + 0.375α] < 0.75α

4The constant α is taken directly from Lemma 3.3.2, during the proof of which I derive that

0 < α < 1/16 is sufficient for the lemma to hold.
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holds, then due to the fact that
(
λ
µ

)2
1
N
< κ1 and v < v̄ (from the conditions of the

lemma), it follows that(
λ

µ

)2
1

N
· (v + 2) + 0.375α < 0.75α ⇔ d(v + 2) + δ <

0.75α

λ/µ

Consequently one can apply Corollary 3.3.6 (page 40) which implies

MB0(d(v + 2) + δ) ≤ C · λ/µ .

Therefore
Σ6

d
√
λ/µ

≤ C · evd ·
[
N exp (−0.5δE)

]2

·
(µ
λ

)2.5

Finally by applying the conditions in the lemma,(
λ

µ

)2+ρ0 1

N
< κ1 , N exp

[
−
(
λ

µ

)ρ1]
< κ2 , v < v̄ and ρ1 < ρ ,

it follows
Σ6

d
√
λ/µ

≤ C · ev̄κ1 · (κ2)2 ·
(µ
λ

)2.5

By adding up all the components we reach the result stated in the lemma.

7.5 Application

Theorem 7.5.1. Fix contants ρ0 > 0 and κ∗2 > 0. For any choice of 0 < v̄ < 0.5

there exists κ∗1 = κ∗1(v̄) > 0 and κ∗3 = κ∗3(v̄) > 0 such that for any v that satisfies

|v| < v̄, if (
λ

µ

)2+ρ0 1

N
< κ∗1 , N exp

[
−
(
λ

µ

)ρ1]
< κ∗2 ,

µ

λ
< κ∗3 ,

0 < ρ < min

{
ρ0

2
,
1

7

}
and 0 < ρ1 < min

{
1

4
, ρ

}
then

|MTε(vd)−MTd(vd)| = O

(
1

N

(
λ

µ

)2+2ρ
)

+O
((µ

λ

)0.25(1−ρ)
)

where the implicit constant in the big O is dependent on κ∗1, κ
∗
2, κ
∗
3 and v̄.
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Proof of Theorem 7.5.1. I begin by fixing constants: ρ0 > 0, κ∗2 > 0 and 0 < v̄ < 0.5.

Next I choose κ̄1 such that κ1 = κ̄1 and κ2 = κ∗2 satisfy the conditions of Lem-

mas 7.4.1 and 7.4.2. Consequently, when I require

|MBε(vd)−MBd(vd)|
d
√
λ/µ

and
|MAε(vd)−MAd(vd)|

d
√
λ/µ

to be sufficiently small, I need only concern myself with the smallness of(µ
λ

)0.25(1−ρ)

and

(
λ

µ

)2+2ρ
1

N
. (7.25)

This is due to the fact that all other terms that appear in the main statement of

Lemmas 7.4.1 and 7.4.2 are dependent on quantities that have already been fixed.

I also observe that both expressions in equation (7.25) can be made as small as one

wishes by choosing κ∗1 and κ∗3 appropriately.

Let us now return to the statement of this theorem. In order to compare MTε(vd)

and MTd(vd) I start by re-writing MTε(vd) − MTd(vd) in terms of excursions and

Chapter 6 provides the machinery to be able to do this. Equation (6.5) (page 61) is

a key result and enables one to deduce the following

MTε(vd)−MTd(vd) =
F

1−MBd(vd)F
·
(
MAε(vd)−MAd(vd)

1−MBd(vd)
+ MTd(vd)

)
+

MAε(vd)−MAd(vd)

1−MBd(vd)
(7.26)

where

F =
MBε(vd)−MBd(vd)

1−MBd(vd)
· 1

1− (MBε(vd)−MBd(vd))
.

Next, in order to use Lemma 7.4.1 and Lemma 5.4.2 (and Remark 5.4.3) to bound

equation (7.26), whenever either of the expressions

MBε(vd)−MBd(vd)

1−MBd(vd)
or

MAε(vd)−MAd(vd)

1−MBd(vd)

appear in (7.26) I divide the numerator and denominator of such fractions by d
√
λ/µ

and then apply the aforementioned results. Now by choosing κ∗1 and κ∗3 small enough,

one can uniformly seperate the denominators in equation (7.26) away from zero for
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all |v| < v̄. This allows us to bound equation (7.26) as follows

|MTε(vd)−MTd(vd)| ≤ C

(
|MBε(vd)−MBd(vd)|

d
√
λ/µ

· |MAε(vd)−MAd(vd)|
d
√
λ/µ

+
|MBε(vd)−MBd(vd)|

d
√
λ/µ

· |MTd(vd)|+ |MAε(vd)−MAd(vd)|
d
√
λ/µ

)

where C is a constant dependent on κ∗1, κ
∗
2, κ
∗
3, κ̄1 and v̄. Finally by applying Lemma

7.4.1, Lemma 7.4.2 and Theorem 5.4.4 we reach the stated result.



Chapter 8

Discrete to continuous time

perturbation

8.1 Introduction

In this chapter I compare a discrete model and continuous model and to make sure

they are comparable I scale the random variables appropriately.

8.2 Models

I will compare the following two models; the Discrete Time Linear Killing model is

the same model that I introduced and studied in Chapter 7.

88



8.2. Models 89

8.2.1 Discrete Time Linear Killing model

Define (Yi)i≥0 to be a Markov chain on the state space {∗, 0, 1, 2, . . . N} evolving

according to jump probabilities:

P(Yi+1 = yi+1|Yi = yi) =



pyi if yi+1 = yi − 1 and yi > 0

qyi(1− dyi) if yi+1 = yi + 1 and yi > 0

dyi · qyi if yi+1 = ∗ and yi > 0

1 if yi+1 = ∗ and yi = ∗

0 otherwise

where

qyi =
λ

λ+ µyi
pyi =

µyi
λ+ µyi

dyi =
yi
N

In picture form it looks like

'&%$ !"#∗
q1d1

@@��������

'&%$ !"#∗
qkdk

@@���������

'&%$ !"#∗
qNdN

??��������/.-,()*+0
1

66/.-,()*+1
q1(1−d1)

66

p1
vv /.-,()*+2 . . . /.-,()*+j /.-,()*+k

qk(1−dk)

66

pk
vv /.-,()*+j . . . /.-,()*+j 76540123N

pN
vv

Figure 8.1: Markov chain Yi - Discrete Time Linear Killing model

For this specific Markov chain I recall the following notation:

• Tε - number of jumps until death starting from state λ/µ.

• Aε - number of jumps until death starting from state λ/µ but without any

returns (trajectories that return to state λ/µ before death contribute to Bε,

which is defined below).

• Bε - number of jumps until the first return to state λ/µ (trajectories that die

before returning to state λ/µ contribute to Aε).

• aεm,k - weight of all m step trajectories that end at state k, do not return to

the state λ/µ and do not die (aε0,k = 0 for all k and aεm,λ/µ = 0 for all m).
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• aεm =
∑

k≥1 a
ε
m,k - weight of all m step trajectories that do not return to the

state λ/µ and do not die (aε0 = 0).

• rεk =
∑

m≥1 a
ε
m,k - weight of all trajectories that end at state k, do not return

to the state λ/µ and do not die (rελ/µ = 0).

• bεm - weight of all m step trajectories that return to the state λ/µ for the first

time on the m-th step (bε0 = 0).

• Let Pε be a matrix consisting of the one step transition probabilities for this

Markov chain.

Furthermore I recall the following moment generating functions:

MTε(v) = E
(

exp (v · Tε)
)
, MBε(v) = E

(
exp (v ·Bε)

)
, MAε(v) = E

(
exp (v · Aε)

)
8.2.2 Continuous Time Linear Killing model

Define (Zt)t≥0 to be a Markov chain on the state space {∗, 0, 1, 2, . . . ,N} evolving

with jump rates:

k → k − 1 rate 2λ · pk
k → k + 1 rate 2λ · qk(1− dk)

k → ∗ rate 2λ · qkdk

where

qk =
λ

λ+ µk
pk =

µk

λ+ µk
dk =

k

N

In picture form it looks like
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2λq1d1

@@��������
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2λqkdk

@@���������
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Figure 8.2: Markov chain Zt - Continuous Time Linear Killing model

For this specific Markov chain we have the following notation:
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• T+
d - time until death starting from state λ/µ.

• A+
d - time until death starting from state λ/µ but without any returns (tra-

jectories that return to state λ/µ before death contribute to B+
d ).

• B+
d - time until the first return to state λ/µ (trajectories that die before

returning to state λ/µ contribute to A+
d ).

Furthermore I define the following moment generating functions:

MT+
d

(v) = E
(

exp (v · T+
d )
)
, MB+

d
(v) = E

(
exp (v ·B+

d )
)
, MA+

d
(v) = E

(
exp (v · A+

d )
)

Remark 8.2.1. An alternative but equivalent way to describe the process Zt is that

it jumps with probabilities as shown in Figure 9.2 (which incidentially is the same

as the Discrete Time Linear Killing model) however there is a holding time at each

state which is exponentially distributed with parameter 2λ.
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vv /.-,()*+j . . . /.-,()*+j 76540123N
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vv

Figure 8.3: Jump chain of Zt

8.3 Main results

Lemma 8.3.1. Fix constants ρ0 > 0 and κ2 > 0. For any 0 < v̄ < 0.5 there exists

κ1 = κ1(v̄) > 0 such that for any v that satisfies |v| < v̄, if(
λ

µ

)2+ρ0 1

N
< κ1 , N exp

[
−
(
λ

µ

)ρ1]
< κ2 and 0 < ρ1 < ρ < ρ0

then∣∣∣MB+
d

(2λvd)−MBε(vd)
∣∣∣

d
√
λ/µ

≤ 2

(
λ

µ

)1.5+ρ
1

N
· v̄2 · (1 + e2v̄κ1) + 4v̄2C · κ2 ·

(
λ

µ

)0.5

· 1

N
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This implies ∣∣∣MB+
d

(2λvd)−MBε(vd)
∣∣∣

d
√
λ/µ

= O

((
λ

µ

)1.5+ρ
1

N

)

where the implicit constant in the big O is dependent on κ1, κ2 and v̄.

Proof. It is necessary to express MB+
d

(2λvd) and MBε(vd) in such a way that I am

able to bound the difference between the two. To this end I apply the law of total

probability and condition on the trajectory, it follows

MBε(vd) =
∞∑
m=1

∑
|X |=m:
xm=λ/µ

Pε(X )evdm =
∞∑
m=1

bεme
vdm

For B+
d , a continuous time process, once we have this conditioned on the trajectory

the time that said trajectory takes will be the sum of independent exponentially

distributed random variables. The moment generating function of X ∼ Exp(σ) is

E
(
eX·u

)
=

σ

σ − u
,

therefore

MB+
d

(2λvd) =
∞∑
m=1

∑
|X |=m:
xm=λ/µ

Pε(X )

(
2λ

2λ− 2λvd

)m
=

∞∑
m=1

bεm

(
1

1− vd

)m
.

The first condition in the lemma implies d ≤ κ1, therefore by choosing κ1 such that

v̄ · κ1 < 0.5 log 2

it follows that

vd < 0.5 log 2 for v < v̄

Consequently one can apply Lemma 2.3.13 to bound the difference between the

two moment generating functions as follows

0 ≤ MB+
d

(2λvd)−MBε(vd) ≤
∞∑
m=1

bεm · 2(vd)2m · (1 + e2vd(m−1))

I define

E =

(
λ

µ

)1+ρ
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and will decompose the previous expression as follows

|MB+
d

(2λvd)−MBε(vd)| ≤ Σ1 + Σ2

where

Σ1 =
E∑

m=1

bεm · 2(vd)2m · (1 + e2vd(m−1)) (8.1)

Σ2 =
∑
m>E

bεm · 2(vd)2m · (1 + e2vd(m−1)) (8.2)

I will now bound from above each of the above sums. I start with Σ1 and by

uniformly bounding all the terms next to bεm it follows:

Σ1 ≤ 2(vd)2E · (1 + e2vd(E−1)) ·
E∑

m=1

bεm

The remaining summation is clearly bounded from above by one. Additionally by

using the conditions in the lemma,(
λ

µ

)2+ρ0 1

N
< κ1 , |v| < v̄ and ρ < ρ0 ,

it follows
Σ1

d
√
λ/µ

≤
(
λ

µ

)1.5+ρ
1

N
· 2v̄2 · (1 + e2v̄κ1)

Next consider Σ2, I use the inequalities

md ≤ emd and bεm < b0
m · e(1−κ1)−1dm

to bound the terms in the sum (the second inequality can be proved by applying

Lemma 7.3.7 and Lemma 5.3.2):

bεm · 2(vd)2m · (1 + e2vd(m−1)) ≤ b0
m · e(1−κ1)−1dm · 2v2dedm · (1 + e2vd(m−1))

Therefore

Σ2 ≤
∑
m>E

[
b0
m · e(1−κ1)−1dm · 2v2dedm · (1 + e2vd(m−1))

]
By multiplying and dividing the terms of the summation by eδm and using

e−δm < e−δE (due to the fact I am summing over m > E) we obtain

≤ 2v2d·e−δE·
[
MB0

(
d(1− κ1)−1 + d+ δ

)
+ MB0

(
d(1− κ1)−1 + d+ 2vd+ δ

)]
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I choose1 δ = 0.375α
λ/µ

and κ1 small enough so that

κ1((1− κ1)−1 + 1 + 2v̄) + 0.375α < 0.75α

holds. This allows me to apply Corollary 3.3.6 (page 40) which implies

MB0(d(1−κ1)−1 +d+δ) ≤ C ·λ/µ and MB0(d(1−κ1)−1 +d+2vd+δ) ≤ C ·λ/µ .

Applying this bound gives

Σ2 ≤ 2v2d · e−δE · 2C · λ
µ

= 4v2C · d2 · Ne−δE

Therefore by using the conditions in the lemma,

N exp

[
−
(
λ

µ

)ρ1]
< κ2 , |v| < v̄ and ρ1 < ρ ,

it follows
Σ2

d
√
λ/µ

≤ 4v̄2C · κ2 ·
(
λ

µ

)0.5

· 1

N

This completes the proof.

Lemma 8.3.2. Fix constants ρ0 > 0 and κ2 > 0. For any 0 < v̄ < 0.5 there exists

κ1 = κ1(v̄) > 0 such that for any v that satisfies |v| < v̄, if(
λ

µ

)2+ρ0 1

N
< κ1 , N exp

[
−
(
λ

µ

)ρ1]
< κ2 and 0 < ρ1 < ρ < ρ0

then ∣∣∣MA+
d

(2λvd)−MAε(vd)
∣∣∣

d
√
λ/µ

≤ 8C · v̄2 · e2v̄κ1+(1−κ1)−1κ1 · κ1 ·
(
λ

µ

)1+ρ

· 1

N

+ 8v̄2 · C · κ2 ·
(
λ

µ

)0.5

· 1

N

This implies ∣∣∣MA+
d

(2λvd)−MAε(vd)
∣∣∣

d
√
λ/µ

= O

((
λ

µ

)1+ρ

· 1

N

)
where the implicit constant in the big O is dependent on κ1, κ2 and v̄.

1The constant α is taken directly from Lemma 3.3.2, during the proof of which I derive that

0 < α < 1/16 is sufficient for the lemma to hold.
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Proof. By applying the law of total probability and condition on the trajectory, it

follows

MAε(vd) =
∞∑
m=0

∞∑
k=1

aεm,k · qkdk · evd(m+1)

and

MA+
d

(2λvd) =
∞∑
m=0

∞∑
k=1

aεm,k · qkdk ·
(

1

1− vd

)m+1

.

By choosing κ1 such that v̄ · κ1 < 0.5 log 2 I can bound the two momeng generating

functions by applying Lemma 2.3.13 in exactly the same way as I did in Lemma 8.3.1

(the previous result). Additionally I make use of the fact that 0 ≤ qkdk ≤ d :

0 ≤ MA+
d

(2λvd)−MAε(vd) ≤
∞∑
m=0

∞∑
k=1

aεm,k · d · 2(vd)2(m+ 1) · (1 + e2vdm)

≤ 4v2d3

∞∑
m=0

∞∑
k=1

aεm,k · (m+ 1) · e2v̄dm

I define

E =

(
λ

µ

)1+ρ

and will decompose the previous expression as follows∣∣∣MA+
d

(2λvd)−MAε(vd)
∣∣∣ ≤ Σ1 + Σ2

where

Σ1 = 4v2d3

E∑
m=0

∞∑
k=1

aεm,k · (m+ 1) · e2v̄dm (8.3)

Σ2 = 4v2d3
∑
m>E

∞∑
k=1

aεm,k · (m+ 1) · e2v̄dm (8.4)

I will now bound from above each of the above sums. Firstly I consider Σ1 and start

by using Lemma 7.3.7 (page 72) and Corollary 5.3.2 (page 49) to bound aεm,k:

aεm,k ≤ a0
m,k · e(1−κ1)−1dm ,

then I uniformly upper bound all the terms next to a0
m,k :

Σ1 ≤ 4v2d3 · (E + 1) · e2v̄dE+(1−κ1)−1dE ·
E∑

m=0

∞∑
k=1

a0
m,k
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The remaining summation can be bounded by applying Lemma 2.2.5 (page 21) and

Lemma 3.3.1 (page 35) as follows:

E∑
m=0

∞∑
k=1

a0
m,k ≤

∞∑
m=0

a0
m = Eλ/µ(B0) ≤ C ·

√
λ/µ

Finally by applying the bounds in the condition of the lemma,(
λ

µ

)2+ρ0 1

N
< κ1 , |v| < v̄ and ρ < ρ0 ,

it follows that

Σ1

d
√
λ/µ

≤ 8C · v̄2 · e2v̄κ1+(1−κ1)−1κ1 ·
(
λ

µ

)3+ρ

· 1

N2

≤ 8C · v̄2 · e2v̄κ1+(1−κ1)−1κ1 · κ1 ·
(
λ

µ

)1+ρ

· 1

N

Next consider Σ2, firstly I will upper bound the terms in the summation

4v2d3 · aεm,k · (m+ 1) · e2v̄dm ≤ 8v2d3m · aεm,k · e2v̄dm

≤ 8v2d2 · aεm,k · e(1+2v̄)dm

≤ 8v2d2 · a0
m,k · e((1−κ1)−1+1+2v̄)dm

where the last inequality applies Lemma 7.3.7 (page 72) and Corollary 5.3.2 (page 49).

Therefore

Σ2 ≤ 8v2d2 ·
∑
m>E

∞∑
k=1

a0
m,k · e((1−κ1)−1+1+2v̄)dm

≤ 8v2d2 ·
∑
m>E

a0
m · e((1−κ1)−1+1+2v̄)dm

I multiple and divide by eδm and due to the fact that I am summing over m > E I

can bound e−δm ≤ e−δE

≤ 8v2d2 · e−δE ·
∞∑
m=0

a0
m · e((1−κ1)−1+1+2v̄)dm+δm

Now I use the fact that a0
m =

∑∞
j=m+1 b

0
j and then change the order of summation

≤ 8v2d2 · e−δE ·
∞∑
m=0

e((1−κ1)−1+1+2v̄)dm+δm ·
∞∑

j=m+1

b0
j

= 8v2d2 · e−δE ·
∞∑
j=1

j−1∑
m=0

e((1−κ1)−1+1+2v̄)dm+δm · b0
j
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Finally I can use m ≤ j to bound the terms within the summation, and then apply

the inequality jd < ejd

≤ 8v2d2 · e−δE ·
∞∑
j=1

j · e((1−κ1)−1+1+2v̄)dj+δj · b0
j

≤ 8v2d · e−δE ·
∞∑
j=1

e((1−κ1)−1+2+2v̄)dj+δj · b0
j

=
8v2d

N
· Ne−δE ·MB0

[
((1− κ1)−1 + 2 + 2v̄)d+ δ

]
If we choose2 δ = 0.375α

λ/µ
and κ1 small enough so that

κ1((1− κ1)−1 + 2 + 2v̄) + 0.375α < 0.75α

holds then one can apply Corollary 3.3.6 which implies

MB0 [((1− κ1)−1 + 2 + 2v̄)d+ δ] ≤ C · λ/µ .

Therefore by applying the conditions in the lemma,

N exp

[
−
(
λ

µ

)ρ1]
< κ2 , |v| < v̄ and ρ1 < ρ ,

it follows
Σ2

d
√
λ/µ

≤ 8v̄2 · C · κ2 ·
(
λ

µ

)0.5

· 1

N

This completes the proof.

8.4 Application

Theorem 8.4.1. Fix contants ρ0 > 0 and κ∗2 > 0. For any choice of 0 < v̄ < 0.5

there exists κ∗1 = κ∗1(v̄) > 0 and κ∗3 = κ∗3(v̄) > 0 such that for any v that satisfies

|v| < v̄, if (
λ

µ

)2+ρ0 1

N
< κ∗1 , N exp

[
−
(
λ

µ

)ρ1]
< κ∗2 ,

µ

λ
< κ∗3 ,

0 < ρ < min

{
ρ0

2
,
1

7

}
and 0 < ρ1 < min

{
1

4
, ρ

}
2The constant α is taken directly from Lemma 3.3.2, during the proof of which I derive that

0 < α < 1/16 is sufficient for the lemma to hold.
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then ∣∣∣MT+
d

(2λvd)−MTε(vd)
∣∣∣ = O

((
λ

µ

)1.5+ρ
1

N

)
where the implicit constant in the big O is dependent on κ∗1, κ

∗
2, κ
∗
3 and v̄.

Proof. I begin by fixing constants: ρ0 > 0, κ∗2 > 0 and 0 < v̄ < 0.5. Next I choose

κ̄1 such that κ1 = κ̄1 and κ2 = κ∗2 satisfy the conditions of Lemmas 7.4.1, 8.3.1 and

8.3.2. Consequently, when I require∣∣∣MB+
d

(2λvd)−MBε(vd)
∣∣∣

d
√
λ/µ

,

∣∣∣MA+
d

(2λvd)−MAε(vd)
∣∣∣

d
√
λ/µ

and
|MBε(vd)−MBd(vd)|

d
√
λ/µ

to be sufficiently small, I need only concern myself with the smallness of(
λ

µ

)1.5+ρ
1

N
and

(µ
λ

)0.25(1−ρ)

. (8.5)

This is due to the fact that all other terms that appear in the main statement of

Lemmas 7.4.1, 8.3.1 and 8.3.2 are dependent on quantities that have already been

fixed. I also observe that both expressions in equation (8.5) can be made as small

as one wishes by choosing κ∗1 and κ∗3 appropriately.

Let us now return to the statement of this theorem. In order to compare

MT+
d

(2λvd) and MTε(vd) I start by re-writing MT+
d

(2λvd) − MTε(vd) in terms of

excursions and Chapter 6 provides the machinery to be able to do this. Equation

(6.5) (page 61) is a key result and enables one to deduce the following

MT+
d

(2λvd)−MTε(vd) =
F

1−MBε(vd)F
·

(
MA+

d
(2λvd)−MAε(vd)

1−MBε(vd)
+ MTε(vd)

)

+
MA+

d
(2λvd)−MAε(vd)

1−MBε(vd)
(8.6)

where

F =
MB+

d
(2λvd)−MBε(vd)

1−MBε(vd)
· 1

1− (MB+
d

(2λvd)−MBε(vd))

=
MB+

d
(2λvd)−MBε(vd)

(1−MBd(vd)) + (MBd(vd)−MBε(vd))
· 1

1− (MB+
d

(2λvd)−MBε(vd))

Next, in order to use Lemma 8.3.1, Lemma 7.4.1 and Lemma 5.4.2 to bound equation

(8.6), I divide the appropriate numerators and denominators of fractions by d
√
λ/µ
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and then apply the aforementioned results. Now by choosing κ∗1 and κ∗3 small enough,

one can uniformly seperate all the denominators in equation (8.6) away from zero

for all |v| < v̄. This allows us to write equation (8.6) as

|MT+
d

(2λvd)−MTε(vd)| ≤ C

(
|MB+

d
(2λvd)−MBε(vd)|

d
√
λ/µ

·
|MA+

d
(2λvd)−MAε(vd)|

d
√
λ/µ

+
|MB+

d
(2λvd)−MBε(vd)|

d
√
λ/µ

· |MTε(vd)|+
|MA+

d
(2λvd)−MAε(vd)|

d
√
λ/µ

)

where C is a constant dependent on κ∗1, κ
∗
2, κ
∗
3, κ̄1 and v̄. Finally by applying Lemma

8.3.2, Lemma 8.3.1, Theorem 7.5.1 and Theorem 5.4.4 we reach the stated result.



Chapter 9

Continuous time perturbation

9.1 Introduction

In this chapter I will compare the survival time of two continuous time Markov chain

models with killing. Please recall the notation introduced in sections 7.2.1, 7.2.2 and

7.2.3 which can be found in chapter 7. In particular recall that d is defined as

d =
λ

µN
.

9.2 Models

I will compare the following two models; the Continuous Time Linear Killing model

is the same model that I introduced and studied in Chapter 8.

9.2.1 Continuous Time Linear Killing model

Define (Zt)t≥0 to be a Markov chain on the state space {∗, 0, 1, 2, . . . ,N} evolving

with jump rates:

k → k − 1 rate 2λ · pk
k → k + 1 rate 2λ · qk(1− dk)

k → ∗ rate 2λ · qkdk

where

qk =
λ

λ+ µk
pk =

µk

λ+ µk
dk =

k

N

100
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In picture form it looks like
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Figure 9.1: Markov chain Zt - Continuous Time Linear Killing model

For this specific Markov chain I recall the following notation:

• T+
d - time until death starting from state λ/µ.

• A+
d - time until death starting from state λ/µ but without any returns (tra-

jectories that return to state λ/µ before death contribute to B+
d ).

• B+
d - time until the first return to state λ/µ (trajectories that die before

returning to state λ/µ contribute to A+
d ).

Furthermore I recall the following moment generating functions:

MT+
d

(v) = E
(

exp (v · T+
d )
)
, MB+

d
(v) = E

(
exp (v ·B+

d )
)
, MA+

d
(v) = E

(
exp (v · A+

d )
)

Remark 9.2.1. An alternative but equivalent way to describe the process Zt is that

it jumps with probabilities as shown in Figure 9.2 (which incidentially is the same

as the Discrete Time Linear Killing model) however there is a holding time at each

state which is exponentially distributed with parameter 2λ.
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Figure 9.2: Jump chain of Zt
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Remark 9.2.2. qkdk can be bounded, uniformly in k, as follows

qkdk =
λ/µ

λ/µ+ k
· k
N

=
k

λ/µ+ k
· λ/µ

N
≤ λ/µ

N
= d .

9.2.2 Continuous Time Linear Holding model

Define (Wt)t≥0 to be a Markov chain on the state space {∗, 0, 1, 2, . . . ,N} evolving

with jump rates:

k → k − 1 rate µk

k → k + 1 rate λ(1− dk)

k → ∗ rate λ · dk

where dk = k
N

. In picture form it looks like
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λd1
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λdk
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Figure 9.3: Markov chain Wt - Continuous Time Linear Holding model

For this specific Markov chain I will introduce the following notation:

• T+
ε - time until death starting from state λ/µ.

• A+
ε - time until death starting from state λ/µ but without any returns (tra-

jectories that return to state λ/µ before death contribute to B+
ε ).

• B+
ε - time until the first return to state λ/µ (trajectories that die before

returning to state λ/µ contribute to A+
ε ).

Furthermore I define the following moment generating functions:

MT+
ε

(v) = E
(

exp (v · T+
ε )
)
, MB+

ε
(v) = E

(
exp (v ·B+

ε )
)
, MA+

ε
(v) = E

(
exp (v · A+

ε )
)
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Remark 9.2.3. Again an equivalent way to describe the process Wt is that it jumps

with probabilities as shown in Figure 9.2 (same as the Discrete Time Linear Killing

model) however there is a holding time, which at state k, is exponentially distributed

with parameter λ+ µk.

9.3 Intermediate results

I will now introduce some key results which crop up repeatedly in the argument

below.

Definition 9.3.1. Define εx as follows

εx =
vd ·

(
λ
µ
− x
)

λ
µ

+ x− 2vd · λ
µ

(9.1)

where x ∈ {0, 1, 2, . . . ,N}.

Lemma 9.3.2. If |2vd| < κ < 1 then

|εx| ≤
|v|

1− κ
· |λ/µ− x|

N
(9.2)

Proof. Note that the denominator of |εx| can be bounded as follows∣∣∣∣λµ + x− 2vd · λ
µ

∣∣∣∣ > ∣∣∣∣λµ + x

∣∣∣∣− ∣∣∣∣2vd · λµ
∣∣∣∣

≥
∣∣∣∣λµ
∣∣∣∣− ∣∣∣∣2vd · λµ

∣∣∣∣
=
λ

µ
· (1− |2vd|)

>
λ

µ
(1− κ)

where the last inequality applies the condition of the lemma. Therefore

|εx| ≤
|vd| ·

∣∣λ
µ
− x
∣∣∣∣λ

µ
+ x− 2vd · λ

µ

∣∣ ≤ |vd| ·
∣∣λ
µ
− x
∣∣

λ
µ
(1− κ)

=
|v|

1− κ
·

∣∣λ
µ
− x
∣∣

N



9.3. Intermediate results 104

Remark 9.3.3. Recall definition 7.2.4; a trajectory X has length m (which is written

|X | = m) if and only if X is of the form

X =
(
x0 =

λ

µ
, x1 /∈

{λ
µ
, ∗
}
, . . . , xm−1 /∈

{λ
µ
, ∗
}
, xm /∈ {∗}

)
.

Lemma 9.3.4. Consider a trajectory X such that |X | = m. Let X = (x0, x1, . . . , xm).

If |2vd| < κ < 1 then ∣∣∣∣∣
m∏
i=0

(1 + εxi)− 1

∣∣∣∣∣ ≤ e|v|(1−κ)−1d(m+1) (9.3)

Proof. I will start by recalling Definition 9.3.1:

εx =
vd ·

(
λ
µ
− x
)

λ
µ

+ x− 2vd · λ
µ

.

In order to prove the lemma, it is necessary to consider the cases v positive and v

negative seperately, I will start by assuming v > 0. For any trajectory whose first

jump is to the right, and taking into account 2vd < 1 (from the conditions of the

lemma), we have −1 ≤ εxi ≤ 0 for 0 ≤ i ≤ m. Therefore

0 ≤
m∏
i=0

(1 + εxi) ≤ 1

which implies the desired result. For any trajectory whose first jump is to the left,

and taking into account 2vd < 1 (from the conditions of the lemma), we see εxi ≥ 0

for 0 ≤ i ≤ m. Moreover εxi is maximised when xi = 0. Consequently

1 ≤
m∏
i=0

(1 + εxi) ≤
(

1 +
v

1− κ
· λ
µN

)m+1

Finally by applying Lemma 2.3.1:

≤ ev(1−κ)−1d(m+1)

This completes the case for v > 0. Now I assume that v < 0 and for a trajectory

whose first jump is to the left we have −1 ≤ εxi ≤ 0 for 0 ≤ i ≤ m. Therefore

0 ≤
m∏
i=0

(1 + εxi) ≤ 1
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which implies the desired result. For any trajectory whose first jump is to the right

0 ≤ εxi ≤
vd
(
λ
µ
− xi

)
λ
µ
(1− κ) + xi

=
−vd

(
xi − λ

µ

)
λ
µ
(1− κ) + xi

≤
−vd

(
xi − 0

)
0 + xi

= −vd for 0 ≤ i ≤ m

Therefore

1 ≤
m∏
i=0

(1 + εxi) ≤
m∏
i=0

(1− vd) = (1− vd)m+1 ≤ e−vd(m+1)

the final inequality applies Lemma 2.3.1. This completes the case for v < 0, and by

using absolute value bars, as shown in the right hand side of equation (9.3), ensures

the result holds for v positive and negative.

9.4 Main results

Lemma 9.4.1. Fix constants ρ0 > 0 and κ2 > 0. For any 0 < v̄ < 0.5 there exists

κ1 = κ1(v̄) > 0 such that for any v that satisfies |v| < v̄, if(
λ

µ

)2+ρ0 1

N
< κ1 , N exp

[
−
(
λ

µ

)ρ1]
< κ2 ,

0 < ρ < min

{
1

7
, ρ0

}
and 0 < ρ1 < min

{
1

4
, ρ

}
then∣∣∣MB+

ε
(2λvd)−MB+

d
(2λvd)

∣∣∣
d
√
λ/µ

≤ v̄

1− κ1

·
(µ
λ

)0.5

· exp
(
1.5v̄κ1 + v̄(1− κ1)−1κ1

)
+

v̄ · C
1− κ1

· e((1−κ1)−1+1.5v̄)κ1+v̄(1−κ1)−1κ1 ·
(µ
λ

)0.25(1−ρ)

+ C · κ2 · e1.5v̄κ1+(1+v̄)(1−κ1)−1κ1 ·
(µ
λ

)0.5−ρ

+ C · κ2 ·
(µ
λ

)0.5

This implies ∣∣∣MB+
ε

(2λvd)−MB+
d

(2λvd)
∣∣∣

d
√
λ/µ

= O
((µ

λ

)0.25(1−ρ)
)

where the implicit constant in the big O is dependent on κ1, κ2 and v̄.
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Proof. It is necessary to express MB+
d

(2λvd) and MB+
ε

(2λvd) in such a way that I

am able to bound the difference between the two. To this end I apply the law of

total probability and condition on the trajectory because then the time the trajectory

takes will just be the sum of independent exponentially distributed random variables.

Recalling that the moment generating function of X ∼ Exp(σ) is

E(eX·u) =
σ

σ − u
,

it follows

MB+
ε

(u) =
∞∑
m=1

∑
|X |=m:
xm=λ/µ

Pε(X )
m−1∏
i=0

λ+ µxi
λ+ µxi − u

and

MB+
d

(u) =
∞∑
m=1

∑
|X |=m:
xm=λ/µ

Pε(X )
m−1∏
i=0

2λ

2λ− u
.

Therefore

MB+
ε

(2λvd)−MB+
d

(2λvd)

=
∞∑
m=1

∑
|X |=m:
xm=λ/µ

Pε(X )

[(
m−1∏
i=0

λ+ µxi
λ+ µxi − 2λvd

)
−

(
m−1∏
i=0

2λ

2λ− 2λvd

)]

=
∞∑
m=1

∑
|X |=m:
xm=λ/µ

Pε(X ) ·
(

1

1− vd

)m
·

[
m−1∏
i=0

(1 + εxi)− 1

]

=
∞∑
m=1

∑
|X |=m:
xm=λ/µ

Pε(X ) ·
(

1

1− vd

)m
·

 ∑
A⊆[0,m−1]:

A 6=∅

∏
a∈A

εxa


where εx is as defined earlier in the chapter (Definition 9.3.1). I now define

D =

(
λ

µ

)0.5

and E =

(
λ

µ

)1+ρ

and using Lemma 2.3.11 to bound (1 − vd)−1 I decompose the previous expression

as follows

|MB+
ε

(2λvd)−MB+
d

(2λvd)| ≤ Σ1 + Σ2 + Σ3 + Σ4
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where

Σ1 =
D∑

m=1

∑
|X |=m:
xm=λ/µ

∑
A⊆[0,m−1]:

A 6=∅

Pε(X ) · e1.5vdm ·
∏
a∈A

|εxa| (9.4)

Σ2 =
E∑

m=D+1

∑
|X |=m:
xm=λ/µ
||X ||≤m0.75

∑
A⊆[0,m−1]:

A 6=∅

Pε(X ) · e1.5vdm ·
∏
a∈A

|εxa| (9.5)

Σ3 =
E∑

m=D+1

∑
|X |=m:
xm=λ/µ
||X ||>m0.75

Pε(X ) · e1.5vdm ·

∣∣∣∣∣
m−1∏
i=0

(1 + εxi)− 1

∣∣∣∣∣ (9.6)

Σ4 =
∑
m>E

∑
|X |=m:
xm=λ/µ

Pε(X ) · e1.5vdm ·

∣∣∣∣∣
m−1∏
i=0

(1 + εxi)− 1

∣∣∣∣∣ (9.7)

Remark 9.4.2. Recall definition 7.2.5; a trajectory X with length m, deviates less

than n from the starting position (which is written ||X || < n) if and only if the

following conditions are satisfied

|x1 − x0| < n , |x2 − x0| < n , . . . , |xm − x0| < n .

I will now bound each of the above sums. I start with Σ1 and proceed to bound

the inner summation. Firstly I apply Lemma 9.3.2 and then I use the fact that a

length m trajectory can not venture further away from state λ/µ by distance m

∏
a∈A

|εxa | ≤
∏
a∈A

|v| · |λ/µ− xa|
(1− κ1)N

≤
(
|v| ·m

(1− κ1)N

)|A|
Now I return to the full sum, the first inequality applies the above bound and the

last inequality applies Lemma 2.3.1

Σ1 ≤
D∑

m=1

∑
|X |=m:
xm=λ/µ

∑
A⊆[0,m−1]:

A 6=∅

Pε(X ) · e1.5vdm ·
(
|v| ·m

(1− κ1)N

)|A|

=
D∑

m=1

bεm · e1.5vdm ·
[(

1 +
|v| ·m

(1− κ1)N

)m
− 1

]

≤
D∑

m=1

bεm · e1.5vdm ·
[
exp

(
|v|(1− κ1)−1 · m

2

N

)
− 1

]
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Finally by using Lemma 2.3.2 (page 22) to bound the term in square brackets and

then taking uniform upper bounds to bound all the terms next to bεm we obtain

≤
D∑

m=1

bεm · e1.5vdm · |v| ·m
2

(1− κ1)N
· exp

(
|v| ·m2

(1− κ1)N

)

≤ e1.5vdD · |v| ·D
2

(1− κ1)N
· exp

(
|v| ·D2

(1− κ1)N

)
·

D∑
m=1

bεm

The remaining summation is clearly bounded from above by one. Additionally by

applying the bounds in the condition of the lemma(
λ

µ

)2+ρ0 1

N
< κ1 and |v| < v̄ ,

it follows that

Σ1

d
√
λ/µ

≤ v̄

1− κ1

·
(µ
λ

)0.5

· exp
(
1.5v̄κ1 + v̄(1− κ1)−1κ1

)
Moving onto expression Σ2, I apply Lemma 9.3.2 and then I use the fact that I

am summing over trajectories that do not venture further away from state λ/µ by

distance m0.75 ∏
a∈A

|εxa | ≤
∏
a∈A

|v| · |λ/µ− xa|
(1− κ1)N

≤
(
|v| ·m0.75

(1− κ1)N

)|A|
Now putting everything together gives

Σ2 ≤
E∑

m=D+1

∑
|X |=m:
xm=λ/µ
||X ||≤m0.75

∑
A⊆[0,m−1]:

A 6=∅

Pε(X )e1.5vdm ·
(
|v| ·m0.75

(1− κ1)N

)|A|

=
E∑

m=D+1

∑
|X |=m:
xm=λ/µ
||X ||≤m0.75

Pε(X ) · e1.5vdm ·
[(

1 +
|v| ·m0.75

(1− κ1)N

)m
− 1

]

≤
E∑

m=D+1

bεm · e1.5vdm ·
[
exp

(
|v|(1− κ1)−1 · m

1.75

N

)
− 1

]
Next I use Lemma 7.3.7 (page 72) to bound bεm and Lemma 2.3.2 (page 22) to bound

the term in square brackets

≤
E∑

m=D+1

bdm · e(1−κ1)−1dm+1.5vdm · |v| ·m
1.75

(1− κ1)N
· exp

(
|v| ·m1.75

(1− κ1)N

)

=
E∑

m=D+1

[
bdm ·m1.5

]
· |v| ·m

0.25 · e(1−κ1)−1dm+1.5vdm

(1− κ1)N
· exp

(
|v| ·m1.75

(1− κ1)N

)
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Then taking uniform upper bounds for all the terms next to bdm ·m1.5 we obtain

≤ e(1−κ1)−1dE+1.5vdE · |v| · E
0.25

(1− κ1)N
· exp

(
|v| · E1.75

(1− κ1)N

) E∑
m=D+1

bdm ·m1.5

Now I use Lemma 5.3.2 which gives us bdm < b0
m and then we apply Lemma 3.3.1

(page 35) in order to bound the remaining summation

E∑
m=D+1

bdm ·m1.5 ≤ C · λ
µ

Additionally by applying the bounds in the condition of the lemma(
λ

µ

)2+ρ0 1

N
< κ1 , |v| < v̄ , ρ < ρ0 and ρ <

1

7
,

it follows that

Σ2

d
√
λ/µ

≤ v̄ · C · (1− κ1)−1 · e((1−κ1)−1+1.5v̄)κ1+v̄(1−κ1)−1κ1 ·
(µ
λ

)0.25(1−ρ)

Moving onto expression Σ3, one can bound the contents of the summation by

applying Lemma 9.3.4 ∣∣∣∣∣
m−1∏
i=0

(1 + εxi)− 1

∣∣∣∣∣ ≤ e|v|(1−κ1)−1dm

Now taking into account the above bound

Σ3 ≤
E∑

m=D+1

e1.5vdm+|v|(1−κ1)−1dm ·
∑
|X |=m:
xm=λ/µ
||X ||>m0.75

Pε(X )

then by using Lemma 7.3.6 and Lemma 7.3.5 (page 71) to bound Pε(X ) it follows

≤
E∑

m=D+1

e1.5vdm+(1+|v|)(1−κ1)−1dm ·
∑
|X |=m:
||X ||>m0.75

P0(X )

Next I use Lemma 2.1.8 (page 16) to bound the inner summation, then I take a

uniform upper bound for all the terms that remain

≤
E∑

m=D+1

e1.5vdm+(1+|v|)(1−κ1)−1dm · C · e−γ·m0.5

≤ E · e1.5vdE+(1+|v|)(1−κ1)−1dE · C · e−γ·D0.5
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Finally I multiple and divide by N

=

(
λ

µ

)1+ρ

· 1
N
·exp

(
1.5vd

(
λ

µ

)1+ρ

+
(1 + |v|)d

1− κ1

(
λ

µ

)1+ρ
)
·C·N exp

(
−γ ·

(
λ

µ

)0.25
)

By applying the bounds in the condition of the lemma(
λ

µ

)2+ρ0 1

N
< κ1 , N exp

[
−
(
λ

µ

)ρ1]
< κ2 , |v| < v̄ , ρ < ρ0 and ρ1 <

1

4
,

it follows that

Σ3

d
√
λ/µ

≤
(µ
λ

)0.5−ρ
· e1.5v̄κ1+(1+v̄)(1−κ1)−1κ1 · C · κ2

Moving onto expression Σ4, one can bound the contents of the summation by

applying Lemma 9.3.4 ∣∣∣∣∣
m−1∏
i=0

(1 + εxi)− 1

∣∣∣∣∣ ≤ e|v|(1−κ1)−1dm

Now I return to the full sum and after taking into account the above inequality I

use Lemma 7.3.6 and Lemma 7.3.5 (page 71) to bound Pε(X )

Σ4 ≤
∑
m>E

∑
|X |=m:
xm=λ/µ

Pε(X ) · e1.5vdm+|v|(1−κ1)−1dm

≤
∑
m>E

∑
|X |=m:
xm=λ/µ

P0(X ) · e1.5vdm+(1+|v|)(1−κ1)−1dm

=
∑
m>E

b0
m · e1.5vdm+(1+|v|)(1−κ1)−1dm

Next I multiple and divide by eδm and due to the fact that I am summing over

m > E I can bound e−δm < e−δE

≤ e−δE ·
∞∑
m=1

b0
m · e1.5vdm+(1+|v|)(1−κ1)−1dm+δm

= N exp

[
−δ
(
λ

µ

)1+ρ
]
· 1

N
·MB0(1.5vd+ (1 + |v|)(1− κ1)−1d+ δ)

Finally I choose1 δ = 0.375α
λ/µ

and κ1 small enough so that

κ1(1.5v̄ + (1 + v̄)(1− κ1)−1) + 0.375α < 0.75α

1The constant α is taken directly from Lemma 3.3.2, during the proof of which I derive that

0 < α < 1/16 is sufficient for the lemma to hold.



9.4. Main results 111

holds. This allows me to apply Corollary 3.3.6 (page 40) which implies

MB0(1.5vd+ (1 + |v|)(1− κ1)−1d+ δ) ≤ C · λ/µ .

By applying this result and using a condition of the lemma

N exp

[
−
(
λ

µ

)ρ1]
< κ2 and ρ1 < ρ ,

it follows that
Σ4

d
√
λ/µ

≤ C · κ2 ·
(µ
λ

)0.5

This completes the proof.

Lemma 9.4.3. Fix constants ρ0 > 0 and κ2 > 0. For any 0 < v̄ < 0.5 there exists

κ1 = κ1(v̄) > 0 such that for any v that satisfies |v| < v̄, if(
λ

µ

)2+ρ0 1

N
< κ1 , N exp

[
−
(
λ

µ

)ρ1]
< κ2 and 0 < ρ1 < ρ <

ρ0

2

then∣∣∣MA+
ε

(2λvd)−MA+
d

(2λvd)
∣∣∣

d
√
λ/µ

≤ 2v̄(1− κ1)−1 ·
(
λ

µ

)2+2ρ

· 1

N
· e3v̄κ1+(1+2v̄)(1−κ1)−1·κ1

+ Cκ2 ·
(µ
λ

)0.5

This implies∣∣∣MA+
ε

(2λvd)−MA+
d

(2λvd)
∣∣∣

d
√
λ/µ

= O

((
λ

µ

)2+2ρ

· 1

N

)
+O

((µ
λ

)0.5
)

where the implicit constant in the big O is dependent on κ1, κ2 and v̄.

Proof. It is necessary to express MA+
d

(2λvd) and MA+
ε

(2λvd) in such a way that I am

able to bound the difference between the two. To this end I apply the law of total

probability and condition on the trajectory because then the time the trajectory

takes will just be the sum of independent exponentially distributed random variables.

Recalling that the moment generating function of X ∼ Exp(σ) is

E(eX·u) =
σ

σ − u
,
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it follows

MA+
ε

(u) =
∞∑
m=0

∞∑
k=1

∑
|X |=m:
xm=k

Pε(X ) · qkdk ·
m∏
i=0

λ+ µxi
λ+ µxi − u

and

MA+
d

(u) =
∞∑
m=0

∞∑
k=1

∑
|X |=m:
xm=k

Pε(X ) · qkdk ·
m∏
i=0

2λ

2λ− u
.

Therefore

MA+
ε

(2λvd)−MA+
d

(2λvd)

=
∞∑
m=1

∞∑
k=1

∑
|X |=m:
xm=k

Pε(X ) · qkdk ·

[
m∏
i=0

λ+ µxi
λ+ µxi − 2λvd

−
m∏
i=0

2λ

2λ− 2λvd

]

=
∞∑
m=1

∞∑
k=1

∑
|X |=m:
xm=k

Pε(X ) · qkdk ·
(

1

1− vd

)m+1

·

[
m∏
i=0

(1 + εxi)− 1

]

=
∞∑
m=1

∞∑
k=1

∑
|X |=m:
xm=k

∑
A⊆[0,m]:
A 6=∅

Pε(X ) · qkdk ·
(

1

1− vd

)m+1

·
∏
a∈A

εxa

where εx is as defined at the beginning of the chapter (Definition 9.3.1). I now define

E =

(
λ

µ

)1+ρ

and using Lemma 2.3.11 to bound (1 − vd)−1 I decompose the previous expression

as follows

|MA+
ε

(2λvd)−MA+
d

(2λvd)| ≤ Σ1 + Σ2

where

Σ1 =
E∑

m=1

∞∑
k=1

∑
|X |=m:
xm=k

∑
A⊆[0,m]:
A 6=∅

Pε(X ) · qkdk · e1.5vd(m+1) ·
∏
a∈A

|εxa| (9.8)

Σ2 =
∑
m>E

∞∑
k=1

∑
|X |=m:
xm=k

Pε(X ) · qkdk · e1.5vd(m+1) ·

∣∣∣∣∣
m∏
i=0

(1 + εxi)− 1

∣∣∣∣∣ (9.9)

I will now bound each of the above sums. I start with Σ1 and one can bound the

contents of the summation as follows. Firstly I apply Lemma 9.3.2 and then I use

the fact that a lengh m trajectory can not venture further away from state λ/µ by
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distance m , (i.e. |λ/µ− xa| ≤ m) :

∏
a∈A

|εxa | ≤
∏
a∈A

|v| · |λ/µ− xa|
(1− κ1)N

≤
(
|v| ·m

(1− κ1)N

)|A|
Now putting everything together and bounding qkdk < d (remark 9.2.2), we obtain

Σ1 ≤
E∑

m=1

∞∑
k=1

∑
|X |=m:
xm=k

∑
A⊆[0,m]:
A 6=∅

Pε(X ) · qkdk · e1.5vd(m+1) ·
(
|v| ·m

(1− κ1)N

)|A|

=
E∑

m=1

∞∑
k=1

∑
|X |=m:
xm=k

Pε(X )e1.5vd(m+1) · qkdk ·

[(
1 +

|v| ·m
(1− κ1)N

)m+1

− 1

]

≤
E∑

m=1

∞∑
k=1

∑
|X |=m:
xm=k

Pε(X )e1.5vd(m+1) · d
[
exp

(
|v|(1− κ1)−1 · 2m2

N

)
− 1

]

I use Lemma 2.3.2 (page 22) to bound the term in square brackets. Additionally I

use Lemma 7.3.6 and Lemma 7.3.5 (page 71) to bound Pε(X )

≤ d
E∑

m=1

∞∑
k=1

∑
|X |=m:
xm=k

Pε(X ) · e1.5vd(m+1) · 2|v| ·m2

(1− κ1)N
· exp

(
2|v| ·m2

(1− κ1)N

)

≤ d
E∑

m=1

∞∑
k=1

∑
|X |=m:
xm=k

P0(X ) · e1.5vd(m+1)+(1−κ1)−1·dm · 2|v| ·m2

(1− κ1)N
· exp

(
2|v| ·m2

(1− κ1)N

)

= d
E∑

m=1

a0
m · e1.5vd(m+1)+(1−κ1)−1·dm · 2|v| ·m2

(1− κ1)N
· exp

(
2|v| ·m2

(1− κ1)N

)
Then by uniformly bounding all the terms next to a0

m we obtain

≤ d · e1.5vd(E+1)+(1−κ1)−1·dE · 2|v| · E2

(1− κ1)N
· exp

(
2|v| · E2

(1− κ1)N

)
·

E∑
m=1

a0
m

The remaining summation can be bounded using Lemma 2.2.5 and Lemma 3.3.1

E∑
m=1

a0
m ≤

∞∑
m=0

a0
m = Eλ/µ(B0) ≤ C ·

√
λ/µ

Additionally by applying the bounds in the condition of the lemma(
λ

µ

)2+ρ0 1

N
< κ1 , |v| < v̄ and ρ <

ρ0

2
,
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it follows that

Σ1

d
√
λ/µ

≤ 2v̄(1− κ1)−1 ·
(
λ

µ

)2+2ρ

· 1

N
· e3v̄κ1+(1+2v̄)(1−κ1)−1·κ1

Moving onto expression Σ2, one can bound the contents of the summation by

applying Lemma 9.3.4 ∣∣∣∣∣
m∏
i=0

(1 + εxi)− 1

∣∣∣∣∣ ≤ e|v|(1−κ1)−1d(m+1)

Now putting everything together and bounding qkdk < d (remark 9.2.2), we obtain

Σ2 ≤
∑
m>E

∞∑
k=1

∑
|X |=m:
xm=k

Pε(X ) · qkdk · e1.5vdm+|v|(1−κ1)−1dm

≤
∑
m>E

aεm · d · e1.5vdm+|v|(1−κ1)−1dm

≤
∑
m>E

a0
m · d · e1.5vdm+(1+|v|)(1−κ1)−1dm

where the last inequality applies Lemma 7.3.7 (page 72) and Corollary 5.3.2 (page

49). Then multiplying and dividing by eδm and using e−δm ≤ e−δE (due to the fact

that I am summing over m > E) we obtain

≤ e−δE ·
∑
m>E

a0
m · d · e1.5vdm+(1+|v|)(1−κ1)−1dm+δm

Next I use the fact that a0
m =

∑∞
j=m+1 b

0
j , and then change the order of summation

≤ d · e−δE ·
∞∑
m=0

e(1.5v+(1+|v|)(1−κ1)−1)dm+δm ·
∞∑

j=m+1

b0
j

= d · e−δE ·
∞∑
j=1

j−1∑
m=0

e(1.5v+(1+|v|)(1−κ1)−1)dm+δm · b0
j

Finally take uniform bounds over the terms involving m and apply the inequality

jd < ejd

≤ d · e−δE ·
∞∑
j=1

j · e(1.5v+(1+|v|)(1−κ1)−1)dj+δj · b0
j

≤ e−δE ·
∞∑
j=1

e(1.5v+1+(1+|v|)(1−κ1)−1)dj+δj · b0
j

= N · e−δE · 1

N
·MB0((1.5v + 1 + (1 + |v|)(1− κ1)−1)d+ δ)
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If we choose2 δ = 0.375α
λ/µ

and κ1 small enough so that

κ1(1.5v̄ + 1 + (1 + v̄)(1− κ1)−1) + 0.375α < 0.75α

holds then one can apply Corollary 3.3.6 which implies

MB0((1.5v + 1 + (1 + |v|)(1− κ1)−1)d+ δ) ≤ C · λ/µ .

Therefore by applying this result together with the conditions in the lemma,

N exp

[
−
(
λ

µ

)ρ1]
< κ2 , |v| < v̄ and ρ1 < ρ ,

it follows
Σ2

d
√
λ/µ

≤ C · κ2 ·
(µ
λ

)0.5

This completes the proof.

9.5 Application

Theorem 9.5.1. Fix contants ρ0 > 0 and κ∗2 > 0. For any choice of 0 < v̄ < 0.5

there exists κ∗1 = κ∗1(v̄) > 0 and κ∗3 = κ∗3(v̄) > 0 such that for any v that satisfies

|v| < v̄, if (
λ

µ

)2+ρ0 1

N
< κ∗1 , N exp

[
−
(
λ

µ

)ρ1]
< κ∗2 ,

µ

λ
< κ∗3 ,

0 < ρ < min

{
ρ0

2
,
1

7

}
and 0 < ρ1 < min

{
1

4
, ρ

}
then ∣∣∣MT+

ε
(2λvd)−MT+

d
(2λvd)

∣∣∣ = O

((
λ

µ

)2+2ρ

· 1

N

)
+O

((µ
λ

)0.25(1−ρ)
)

where the implicit constant in the big O is dependent on κ∗1, κ
∗
2, κ
∗
3 and v̄.

2The constant α is taken directly from Lemma 3.3.2, during the proof of which I derive that

0 < α < 1/16 is sufficient for the lemma to hold.
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Proof. I begin by fixing constants: ρ0 > 0, κ∗2 > 0 and 0 < v̄ < 0.5. Next I choose

κ̄1 such that κ1 = κ̄1 and κ2 = κ∗2 satisfy the conditions of Lemmas 7.4.1, 8.3.1,

9.4.1 and 9.4.3. Consequently, when I require∣∣∣MB+
ε

(2λvd)−MB+
d

(2λvd)
∣∣∣

d
√
λ/µ

,

∣∣∣MA+
ε

(2λvd)−MA+
d

(2λvd)
∣∣∣

d
√
λ/µ

,

∣∣∣MB+
d

(2λvd)−MBε(vd)
∣∣∣

d
√
λ/µ

and
|MBε(vd)−MBd(vd)|

d
√
λ/µ

to be sufficiently small, I need only concern myself with the smallness of(µ
λ

)0.25(1−ρ)

and

(
λ

µ

)2+2ρ

· 1

N
(9.10)

This is due to the fact that all other terms that appear in the main statement of

Lemmas 7.4.1, 8.3.1, 9.4.1 and 9.4.3 are dependent on quantities that have already

been fixed. I also observe that both expressions in equation (9.10) can be made as

small as one wishes by choosing κ∗1 and κ∗3 appropriately.

Let us now return to the statement of this theorem. In order to compare

MT+
ε

(2λvd) and MT+
d

(2λvd) I start by re-writing MT+
ε

(2λvd)−MT+
d

(2λvd) in terms

of excursions and Chapter 6 provides the machinery to be able to do this. Equation

(6.5) (page 61) is a key result and enables one to deduce the following

MT+
ε

(2λvd)−MT+
d

(2λvd) =
F

1−MB+
d

(2λvd)F

·

(
MA+

ε
(2λvd)−MA+

d
(2λvd)

1−MB+
d

(2λvd)
+ MT+

d
(2λvd)

)
(9.11)

+
MA+

ε
(2λvd)−MA+

d
(2λvd)

1−MB+
d

(2λvd)

where

F =
MB+

ε
(2λvd)−MB+

d
(2λvd)

1−MB+
d

(2λvd)
· 1

1− (MB+
ε

(2λvd)−MB+
d

(2λvd))

=
MB+

ε
(2λvd)−MB+

d
(2λvd)

(1−MBd(vd)) + (MBd(vd)−MBε(vd)) + (MBε(vd)−MB+
d

(2λvd))

· 1

1− (MB+
ε

(2λvd)−MB+
d

(2λvd))
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Next, in order to use Lemma 9.4.1, Lemma 8.3.1, Lemma 7.4.1 and Lemma 5.4.2

to bound equation (9.11), I divide the appropriate numerators and denominators of

fractions by d
√
λ/µ and then apply the aforementioned results. Now by choosing κ∗1

and κ∗3 small enough, one can uniformly seperate all the denominators in equation

(9.11) away from zero for all |v| < v̄. This allows us to write equation (9.11) as∣∣∣MT+
ε

(2λvd)−MT+
d

(2λvd)
∣∣∣

≤ C

(
|MB+

ε
(2λvd)−MB+

d
(2λvd)|

d
√
λ/µ

·
|MA+

ε
(2λvd)−MA+

d
(2λvd)|

d
√
λ/µ

+
|MB+

ε
(2λvd)−MB+

d
(2λvd)|

d
√
λ/µ

· |MT+
d

(2λvd)|+
|MA+

ε
(2λvd)−MA+

d
(2λvd)|

d
√
λ/µ

)

where C is a constant dependent on κ∗1, κ
∗
2, κ
∗
3, κ̄1 and v̄. Finally by applying Lemma

9.4.3, Lemma 9.4.1, Theorem 8.4.1, Theorem 7.5.1 and Theorem 5.4.4 we reach the

stated result.

9.6 Summary of perturbation chapters

We can now summarise the outcome of Chapters 5, 7, 8 and 9 with the following

result:

Theorem 9.6.1. Fix contants ρ0 > 0 and κ̄∗2 > 0. For any choice of 0 < v̄ < 0.5

there exists κ̄∗1 = κ̄∗1(v̄) > 0 and κ̄∗3 = κ̄∗3(v̄) > 0 such that for any v that satisfies

|v| < v̄, if (
λ

µ

)2+ρ0 1

N
< κ̄∗1 , N exp

[
−
(
λ

µ

)ρ1]
< κ̄∗2 ,

µ

λ
< κ̄∗3 ,

0 < ρ < min

{
ρ0

2
,
1

7

}
and 0 < ρ1 < min

{
1

4
, ρ

}
then ∣∣∣∣MT+

ε
(2λvd)− 1

1− 2v

∣∣∣∣ = O

((
λ

µ

)2+2ρ

· 1

N

)
+O

((µ
λ

)0.25(1−ρ)
)

where the implicit constant in the big O is dependent on κ̄∗1, κ̄
∗
2, κ̄
∗
3 and v̄.
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Remark 9.6.2. One can formulate Theorem 9.6.1 without introducing the variables

ρ and ρ1 as follows: If 0 < ρ0 ≤ 2
7

then min
{
ρ0
2
, 1

7

}
= ρ0

2
. Consequently choosing

ρ = ρ0
4

and ρ1 = ρ0
5

meets the criteria as set out in Theorem 9.6.1.

Proof of Theorem 9.6.1. I begin by fixing constants: ρ0 > 0, κ̄∗2 > 0 and 0 < v̄ < 0.5.

Next I choose κ̄1 such that κ1 = κ̄1 and κ2 = κ̄∗2 satisfy the conditions of Lemmas

7.4.1, 7.4.2, 8.3.1, 8.3.2, 9.4.1 and 9.4.3. Finally I choose κ̄∗1 and κ̄∗3 such that κ∗1 = κ̄∗1,

κ∗2 = κ̄∗2 and κ∗3 = κ̄∗3 satisfy the conditions of Theorems 7.5.1, 8.4.1 and 9.5.1.

Let us now return to the statement of this theorem. The following decomposition

follows from the triangle inequality∣∣∣∣MT+
ε

(2λvd)− 1

1− 2v

∣∣∣∣ ≤ ∣∣∣MT+
ε

(2λvd)−MT+
d

(2λvd)
∣∣∣+
∣∣∣MT+

d
(2λvd)−MTε(vd)

∣∣∣
+
∣∣∣MTε(vd)−MTd(vd)

∣∣∣+

∣∣∣∣MTd(vd)− 1

1− 2v

∣∣∣∣
Recall that each of the components on the right hand side of the above equation

have been bounded - see Theorems 5.4.4, 7.5.1, 8.4.1 and 9.5.1. The stated result

follows directly from these theorems.



Chapter 10

Conclusion

I will start by proving Theorem 1.4.4 which was presented in the introduction of my

thesis. I will then summarise the work I have done in my thesis and finally I will

comment on further research that can be done to extend my work.

10.1 Final proof

Recall the Continuous Time Linear Holding model, (Wt)t≥0 (defined in Chapter 9),

this is a Markov chain on the state space {∗, 0, 1, 2, . . . ,N} which evolves with jump

rates:

k → k − 1 rate µk

k → k + 1 rate λ(1− dk)

k → ∗ rate λ · dk

where dk = k
N

. The main result I have proved for (Wt)t≥0 can be found in The-

orem 9.6.1 (page 117). I will now introduce a simple variation of this model by

rescaling the constant N, in what follows I will replace N by N/c. I will use the

ceiling function to ensure that there are no problems when N/c is not an integer.

Define (Vt)t≥0 to be a Markov chain on the state space {∗, 0, 1, 2, . . . , dN/ce} that

evolves with the following jump rates:

k → k − 1 rate µk

k → k + 1 rate λ(1− dk)

k → ∗ rate λ · dk

119
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where

dk =


c · k
N

if k < dN/ce

1 if k = dN/ce
.

Let the process start from the state λ/µ and define T×ε to be the hitting time of a

starred state. By making the same rescaling of N in the statement of Theorem 9.6.1

we can conclude the following result under the same conditions of the theorem:∣∣∣∣MT×ε
(2λvd · c)− 1

1− 2v

∣∣∣∣ = O

((
λ

µ

)2+2ρ

· c
N

)
+O

((µ
λ

)0.25(1−ρ)
)

By choosing c appropriately1, the Markov chain (Vt)t≥0 (above) is identical to the

Projected Model, (Yt)t≥0 , when p is replaced by either 2l+1
N

or 4l+1
N

(the Projected

Model was defined in section 1.4 of Chapter 1). As such Theorem 1.4.4 follows

immediately.

10.2 Summary of thesis

In this thesis I have studied a particular class of Markov chain models with killing;

the primary focus of which was to address the fact that for many such models it is not

possible to analyse quantities of interest (e.g. hitting times) directly. My approach

was to write the model which was not analytically tractable as a perturbation of a

model which is ‘solvable’; I hoped to be able to bound the difference between the

models in some useful sense. This brought its own share of problems, firstly any

technique known to me required one to be able to make the perturbation uniformly

small which was not possible in my case. Secondly, due to the fact that the killing

time is an unbounded random variable, a study of the difference between the models

would require me to take into account the vast number of trajectorys of varying

lengths and it was unclear how I would do this.

By running simulations I noticed that in a Markov chain of interest, the process

typically returned to the state λ/µ many times before being killed; consequently

I used the strong Markov property to decompose the trajectory into excursions. I

1If p = 2l+1
N then choose c = 2l + 1, and if p = 4l+1

N then choose c = 4l + 1.
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was able to derive a set of conditions on excursions, under which I could compare

the difference between the moment generating functions of the hitting times for two

different models. This technique provided one way around both of the problems

I described in the previous paragraph. By comparing a number of discrete and

continuous time models using this technique I have proved results for two models

which stochastically sandwich the survival time of a biologically motivated model of

DNA damage and repair.

10.3 Further work

A natural extension to this work would be to develop the perturbation theory further

in order to prove a result for the model that I introduced in Section 1.2. Beyond

this, one might wish to investigate the model that was introduced in [16]; the main

difference between this model and the model in Section 1.2 is that rather than the

repair process starting instantaneously after the base becomes damaged, the repair

only commences if there is an available repair enzyme (the number of repair enzymes

is finite). If the number of repair enzymes is sufficently large then one would expect

that the survival time in both models to be close and there are strong indications

to suggest that perturbation techniques can once again come to the rescue!



Appendix A

Appendix

Recall the Ring Model, (Xt)t≥0 , that was introduced in Chapter 1. A base has a

label from the set {0, 1, 2}, where 0, 1 and 2 correspond to a undamaged, damaged

and critically damaged base respectively. Let DN be a DNA string with N bases

that form a closed loop. The Markov chain (Xt)t≥0 lives on the configuration space

S = {0, 1, 2}DN and individual bases in DN evolve independently with rates

0→ 1 rate λ/N

1→ 0 rate µ

1→ 2 rate λ/N

and the initial state, X0, is a non-critically damaged configuration where there are

λ/µ damaged bases. I say that a configuration is critically damaged if there is

a critically damaged base or there are two damaged bases within distance 2l of

each other. T is the first moment that the Ring Model hits a critically damaged

configuration.

Remark A.0.1. An alternative but equivalent way to describe the Ring Model is

that if it is at a configuration with k damaged bases and there are m bases where

an arrival would result in a critically damaged configuration then the number of

damaged bases changes with the following rates

k → k + 1 rate λ

k → k − 1 rate µk

If there was a repair then uniformly at random we decrease the label of one of the

damaged states by one. If there was an arrival then uniformly at random we increase

122
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the label of one of the states by one, in which case the process is still alive with

probability 1− m
N

and critically damaged with probability m
N

.

Remark A.0.2. If a configuration has k damaged bases and there are m bases where

an arrival would result in a critically damaged configuration then m and k satisfy

the following relationship:

(2l + 1)k ≤ m ≤ (4l + 1)k .

The upper bound is obtained on a class of configurations that have particular prop-

erty, namely all the defects are spaced out so that there is at least a 4l gap in-between

damaged bases. On the other hand, in any configuration for which all the defects

are packed together as closely as possible without being critically damaged, m (in the

relation above) will be close to the lower bound.

Also recall the Projected Model, (Yt)t≥0 , which was introduced in Chapter 1.

This process lives on the state apce S ′ = {∗, 0, 1, 2, . . . ,Np = d1/pe} and evolves

with jump rates:

k → k − 1 rate µk

k → k + 1 rate λ(1− dk)

k → ∗ rate λdk

where

dk =

pk if k < Np

1 if k = Np

.

I consider two copies of Yt namely Y
′
t and Y

′′
t , with p = 2l+1

N
and p = 4l+1

N
respectively.

Also let Y
′

0 = Y
′′

0 = λ/µ. I define T ′ and T ′′ to be the respective hitting times of

a starred state and I will now prove Theorem 1.4.2 which states that we have the

following stochastic ordering

T
′′ � T � T

′
.

Proof of Theorem 1.4.2. I will start by proving T
′′ � T . Let Xt = σ where σ is

a configuration that is not critically damaged, has k damaged bases and m bases

where an arrival would result in a critically damaged configuration. Also let Yt = k.

The fact I am considering the situation where the number of defects in the main
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model is equal to the state of the Projected Model is on purpose. I will demonstrate

that the following one step coupling can be applied repeatedly as is necessary:

1

If k < d N
4l+1
e then

• With rate µk there is a repair in both models.

• With rate λ there is an arrival in both models, after which:

- Both processes become critically damaged with probability
m

N
.

- With probability
(4l + 1)k

N
− m

N
only the Projected Model becomes crit-

ically damaged.

- Both processes survive with probability 1− (4l + 1)k

N
.

1

If k = d N
4l+1
e then

• With rate µk there is a repair in both models.

• With rate λ there is an arrival in both models, after which:

- Both processes become critically damaged with probability
m

N
.

- With probability 1 − m

N
only the Projected Model becomes critically

damaged.

It is straighforward to check that the above jump rates and probabilities respect

the marginal jump rates of both models. Initially the coupling can be applied with

k = λ/µ. After one event (arrival or repair) using the above coupling either both

models are critically damaged, just the Projected Model is critically damaged or

both models survive. In the latter case the state of the Projected Model equals the

number of defects in the main model - this means the same one step coupling can

be applied again. Under this coupling the Projected Model will become critically

damaged before or at the same time that the full model becomes critically damaged.

Therefore T
′′ � T .
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To prove T � T
′

the argument follows in exactly the same way, however we use

the following one step coupling: 1

If k < d N
2l+1
e then

• With rate µk there is a repair in both models.

• With rate λ there is an arrival in both models, after which:

- Both processes become critically damaged with probability
(2l + 1)k

N
.

- With probability
m

N
− (2l + 1)k

N
only the main model becomes critically

damaged.

- Both processes survive with probability 1− m

N
.

1

If k = d N
2l+1
e then

• With rate µk there is a repair in both models.

• With rate λ there is an arrival in both models which results in both processes

becoming critically damaged.

These jump rates and probabilities respect the marginal jump rates of both models.

Initially k = λ/µ and after one event (arrival or repair) using the above coupling

either both models are critically damaged, just the main model is critically damaged

or both models survive. In the latter case the state of the Projected Model equals

the number of defects in the main model - this means the same one step coupling

can be applied again. Under this coupling the main model will become critically

damaged before or at the same time that the full model becomes critically damaged.

Therefore T � T ′. This completes the proof.
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