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Abstract

In this thesis we construct holographic duals of renormalisation group flows between

field theories with conformal symmetries and the Lifshitz scaling symmetries. These

take the form of spacetimes with a region asymptoting to AdS and another asymp-

toting to the Lifshitz metric of [1], with some domain wall smoothly interpolating

between these regions. We first review the AdS/CFT correspondence in the context

of Lorentz invariant boundary field theories, and then show how the holographic

dictionary is modified by replacing the boundary field theory with one having the

Lifshitz scaling symmetry.

We then consider a pair of actions capable of supporting both Lifshitz and AdS

spacetimes. The first of these is a massive vector field coupled to gravity and the

second is the 6 dimensional Romans N = 4 massive gauged supergravity which

supports 4D Lifshitz solutions. In each case we review the exact solutions that have

been found previously, and then solve the linearised equations of motion around these

solutions. These enable us to conjecture the existence of a variety of holographic

RG flows. We then use numerical integration to confirm the existence of examples

of each of these flows.

In both theories we find Lifshitz to Lifshitz, AdS to Lifshitz, and Lifshitz to AdS

flows. In the supergravity we also find AdS to AdS flows, and a Lifshitz to AdS flow

which has an intermediate AdS region with a different dilaton value. In addition

the supergravity has flows from a non-compact 6D AdS space to each of the 4D

compactifications.
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Chapter 1

Introduction

Since the introduction of the first explicit example of a holographic duality [2] in

1997, the AdS/CFT correspondence has been used to study a variety of confor-

mal field theories in the limit of strong coupling, which is inaccessible to traditional

techniques of quantum field theories such as perturbative expansions. This work has

produced an example of confinement/deconfinement phase transitions [3] and pre-

dictions of viscosity [4] in strongly coupled Yang-Mills plasmas. More recent interest

has focussed on reproducing phenomena from condensed matter, such as supercon-

ductivity [5] and the conductivity of strange metals [6]. These applications have

provoked interest in symmetry groups other than relativistic conformal symmetry,

such as the Schroedinger group [7] and the Lifshitz scaling symmetry [1].

The purpose of this thesis is to construct spacetimes that are holographically

dual to renormalisation group flows in field theories between fixed points with rel-

ativistic conformal symmetry and the non-relativistic Lifshitz symmetry. Explicit

constructions of such spacetimes could be used, for instance, as backgrounds on

which to solve classical probe field equations, from which information about corre-

lation functions in the dual field theory at strong coupling could then be extracted

using the gauge/gravity correspondence. Correlation functions calculated in such a

manner would be those appropriate to the field theory deformed from its UV limit

by some relevant operator. We will find a wide variety of such flows, with all pos-

sible combinations of AdS/Lifshitz scalings at each end of the flow. The emergence

conformal symmetry in the IR is common in condensed matter systems, for instance

1



Chapter 1. Introduction 2

in graphene [8].

In section 2 we will briefly review some of the justification for the gauge gravity

correspondence. We will describe the calculations that it allows us to perform,

and demonstrate a simple example of these using a massive bulk scalar field in an

asymptotically AdS spacetime. We will first find the near-boundary expansion of the

solution, and then show how the dimension of the dual operator is encoded in this

solution. We will show that the expectation value of the operator can be read off as

one of the coefficients in this expansion, but that this coefficient is not determined

solely by the near-boundary expansion.

The calculations of section 2 take place in an asymptotically AdS space and hence

can only be holographically dual to theories with relativistic conformal symmetries

in the UV. In section 3 we shall describe spacetimes dual to field theories with a

different scaling symmetry in the UV, the Lifshitz symmetry. This is an anisotropic

scaling symmetry, with no boost symmetry. The anisotropy is parametrised by

the dynamical exponent, z, and reduces to the relativistic case at z = 1. We will

describe how the treatment of the asymptotics of such spaces must differ from that

of an asymptotically AdS space, due to the lack of a conformal boundary, and show

how the asymptotics of such spaces can be treated using a conformal frame. We

shall repeat the calculation of section 2 to find the near-boundary solution for a bulk

scalar in these asymptotics. We will again use the holographic dictionary to extract

the scaling dimension and expectation value of the dual operator from this solution.

The solutions will differ from the AdS/CFT case, but they will match in the limit

z → 1.

In section 4 we will discuss renormalisation group flows in a phenomenological

model for Lifshitz spacetimes. Our action will consist of Einstein gravity with a neg-

ative cosmological constant coupled to a vector field with a mass term in an arbitrary

number, d, of spatial dimensions. We will review the equivalence of this model to

the 2-form / (d− 1)-form model, and discuss its relation to the more recent super-

gravity models supporting Lifshitz spacetimes. We note that for any negative value

of the cosmological constant, Λ, this action supports an AdS spacetime. A single

Lifshitz solution exists for Λ/m2
0 ≤ −d/2, and there exists a second Lifshitz solution
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with a different dynamical exponent when −d/2 < Λ/m2
0 ≤ − (3d− 4) /2 (d− 1),

where m0 is the mass of the vector field.

In section 4.4 we solve the linearised equations of motion around both the

AdS and Lifshitz spacetimes for a simple ansatz preserving homogeneity and spa-

tial isotropy on each radial slice. From the AdS/CFT results reviewed in sec-

tion 2.2, these allow us to identify when the relativistic and Lifshitz duals pos-

sess relevant and irrelevant operators. The results of the linearisations suggest

that there will exist holographic renormalisation group flows from AdS to Lifshitz

for Λ/m2
0 < −d/2, and both Lifshitz to Lifshitz and Lifshitz to AdS flows for

−d/2 < Λ/m2
0 ≤ − (3d− 4) /2 (d− 1). In section 4.5 we use numerical integra-

tion to confirm the existence of examples of such flows in d = 3, 4 and 5.

In section 5 we consider a 6D supergravity model which supports solutions that

are the product of a Lifshitz spacetime and a 2D hyperbolic metric. For the ansatz

we consider, the equations of motion depends on a single parameter, g2γ2, the

product of a gauge coupling and the flux along a compactified direction. In sections

5.2 and 5.3 we describe the AdS and Lifshitz solutions that this action supports.

For 0 ≤ g2γ2 . 0.227 we find a single Lifshitz solution and two AdS solutions. For

0.227 . g2γ2 . 1.185 there are two Lifshitz solutions and two AdS solutions, and

for 1.185 . g2γ2 there exist only the two Lifshitz solutions. For values of g2γ2 at

which two AdS solutions exist, they are distinguished by having different curvature

radii and dilaton values.

In section 5.4.1 we find analytically the linear perturbations about the AdS

spacetimes. The linearisations about the Lifshitz solutions were found numerically,

and the operator dimensions are given in section 5.4.2. These lead us to conjecture

that there exist AdS to AdS, AdS to Lifshitz, Lifshitz to AdS and Lifshitz to Lifshitz

flows. In section 5.5 we use numerical integration and a shooting technique to find

examples of all these flows. We also find flows from one of the Lifshitz solutions

in the UV to an AdS solution in the IR, which pass very close to the other AdS

solution.

In addition to the above flows, in which the size of the compactified directions

tends to a finite limit at both ends of the flows, we find a flow in which the size of
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the hyperbolic directions become large in the UV, and the metric in approaches an

AdS6 geometry.



Chapter 2

AdS/CFT background

The AdS/CFT correspondence is a large class of conjectured dualities between quan-

tum field theories on a fixed background, and field theories coupled to dynamical

gravity in a higher dimensional spacetime. The space on which the field theory

lives (here denoted ∂M) is identified as the boundary of the higher dimensional

spacetime (denoted M).

Originally the focus of research was on well-understood explicit examples of

the correspondence and on tests of the duality. We will look below at the first

example of the correspondence and briefly describe some of the tests of its validity.

A comprehensive review of this early work is [9].

We will then show how the correspondence allows the calculation of some quan-

tities in quantum field theories (at least in some limit) by solving classical equations

of motion in the higher dimensional gravity theory. We will consider the simplest

possible example illustrating this, a massive scalar in an asymptotically AdS space-

time. In section 2.1 we will derive the asymptotic expansion of such a field. In

section 2.2 we will use the scaling behaviour of the field that we derive in 2.1 to find

the dimension of the operator dual to this field. In section 2.3 we will show that the

expectation value of this operator (and in fact all higher order correlation functions)

follow from one of the coefficients in the expansion of section 2.1. We will find that

a naive calculation of this expectation value gives a divergent result, but that renor-

malisation of the boundary field theory can also be implemented holographically.

While much of the early research in the gauge/gravity correspondence was aimed

5
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at applying the correspondence to high energy phenomena (eg. the quark-gluon

plasma [4]) more recent work has investigated applications to strongly coupled con-

densed matter. This necessitates considering symmetry groups other than the con-

formal group. In chapter 3 we shall focus on a particular examples of this, the

Lifshitz scaling symmetry. We will look at a spacetime with appropriate asymp-

totics to be a holographic dual to field theories with such symmetries, and repeat

the calculations of this chapter to see how the results are changed. As there is a limit

of the Lifshitz symmetry in which it reduces to the conformal scaling symmetry, the

results of this chapter will also serve as a basic check of the calculations in chapter

3.

The first concrete example of a holographic duality was found in [2]. There the

author considered N coincident D3 branes in type IIB string theory, which can be

viewed as either end-points for open strings, or as sources in supergravity producing

the background metric

ds2 =

(
1 +

4πgsl
4
sN

r4

)− 1
2

(
−dt2 +

3∑
i=1

dxi2

)
+

(
1 +

4πgsl
4
sN

r4

) 1
2 (
dr2 + r2dΩ2

5

)
(2.1)

on which closed string propagate. The limit in which l2s → 0, r → 0, taken such

that U = r/l2s is held fixed, reduces the metric to AdS5 × S5

ds2 = l2s

(
U2

√
4πgsN

(
−dt2 +

3∑
i=1

dxi2

)
+
√

4πgsN
dU2

U2
+
√

4πgsNdΩ2
5

)
(2.2)

The same limit is known to decouple all the massive string modes, and the open

string picture of the D3 branes reduces to N = 4 U (N) super Yang-Mills. Super-

gravity can only be trusted as a description of string theory at small curvatures,

and here the curvature scalar scales like (gsN)−1. The Yang-Mills coupling constant

is related to the string coupling by gs = g2
YM , so the duality can be trusted in the

limit g2
YMN � 1, though [2] conjectures that it holds between the full type IIB

string theory on AdS5×S5 and super Yang-Mills at finite g2
YMN . It is also observed

in [2] that the radius in Planck units of both the S5 and AdS5 factors of the metric

scale like N1/4, so the N � 1 limit of the boundary field theory is the classical limit

of the bulk supergravity theory. Similar arguments involving branes on different

backgrounds have been used to argue for dualities between string theory and a large
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number of different field theories. A review of some of the other early examples can

be found in [9].

The correspondence was made more precise in [10], [11] with the identification

ZSUGRA (φ0) =

〈
exp

(
i

∫
∂M

φ0O
)〉

boundary

(2.3)

In the strong coupling, large N limit of the quantum field theory, the partition

function on the left hand side of (2.3) can computed using the saddle point approxi-

mation. That is, it should be evaluated from the action of the classical supergravity

solution on M in which the fields (denoted schematically by φ - they need not be

scalars) take the value1 φ0 on the boundary ∂M. The expectation value on the right

hand side would normally require computing the full path integral of the quantum

field theory. In practice, for a strongly coupled field theory, computing even an

approximation to such quantities is very difficult. However, in the classical limit the

quantity on the left hand side of this can be computed in many cases, though often

only numerically.

We may then take advantage of the fact that the right hand side of (2.3) is a

generating function for the correlators of the operators {O}, and that we may also

calculate the variation of the left hand side with respect to the
{
φ(0)

}
. For a field

theory with a holographic dual, we may therefore make use of

〈
O(1) . . .O(n)

〉
=

1

ZSUGRA (φ0)

δ

δφ(1)0

. . .
δ

δφ(n)0

ZSUGRA (φ0) (2.4)

at least in the field theory limit of strong coupling and largeN , so we can evaluate the

right hand side using the saddle-point approximation. We will see how to perform

such a calculation for a scalar field in section 2.3.

In the original example of the correspondence of [2] the U (1) factor of the bound-

ary field theory can be shown not to be described by the bulk physics of the gravity

theory [12], so we can use the bulk physics of IIB supergravity on AdS5 × S5 to

describe N = 4 SU (N) super-Yang-Mills. This case has been of particular interest

due to its similarity to the strong force (SU (3) Yang-Mills without supersymmetry)

1The field φ will not typically tend to a finite limit at large r. What we mean by boundary

value will be made more precise in 2.1.
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and therefore its ability to model a system similar to the strongly-coupled quark-

gluon plasma. It has been shown [3] to have a confinement-deconfinement phase

transition when the field theory is placed on S4 rather than R4, and [4] show that

the ratio of shear viscosity to entropy density can be calculated for the fluid phase

of the boundary theory.

N = 4 SU (N) super Yang-Mills is also a theory about which it is possible to

make some statements [9] even at strong coupling, which can be compared to results

from type IIB supergravity. Operators in the boundary field theory of the form

Tr
(
φ(I1 . . . φ In)

)
for n = 2, . . . , N , where φ is the scalar component of the vector

super-multiplet, are known to be primary and chiral (they are constant under half of

the covariant derivates). These should correspond to fields in type IIB supergravity

compactified on AdS5 × S5 if the correspondence is correct. It is shown in [9] that

the spectrum of fields transforming under the same representation of the symmetry

algebra matches that of the boundary field theory. A second test comes from a

non-renormalisation theorem in N = 4 SU (N) super Yang-Mills. The R-symmetry

is anomalous when gauged, but the only contribution to the anomaly comes at the

1-loop level, and so the result will still hold away from weak coupling. Since the

duality allows the calculation of 3-point functions using the supergravity theory,

this can be computed in the strong coupling limit using the supergravity dual, and

the results are found to match at leading order in N . Several other tests for this

particular duality can be found in detail in [9], mostly taking advantage of operators

in the field theory that are protected against renormalisation.

The most secure arguments for the duality have all come from considering D-

branes and taking decoupling limits, restricting the gravity side of the field theory

to a string theory compactification. The field theories have also possessed some

degree of supersymmetry, and only in the large N limit of the field theories does

the gravity side become classical. It may be the case that some of these are not

necessary features, and it would be useful to have a clearer picture of which field

theories possess a gravitational dual. Recently [13] conjectured that any conformal

field theory with a large N expansion and a gap in the spectrum of anomalous

dimensions of operators which grows with N has an AdS dual, and tested this
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to O (N−2) by looking at 4-point correlators. In much recent work, particularly

that focussing on condensed matter physics, the approach has been to consider a

relatively simple set of fields in the bulk, and to try and produce a holographic dual

to some interesting field theory behaviour (eg. superconductivity, see [5]) without

worrying exactly what the dual field is, beyond that it has some scaling symmetry

implemented as an isometry of the metric, and operators dual to the bulk fields that

are considered. One review that takes this approach, with the aim of illustrating

the behaviour found in superconductors, is [14].

A common feature of the earliest examples of the correspondences is that the field

theory side of the duality possesses a relativistic conformal symmetry, at least at

some energy scale. The spacetime may be only asymptotically AdS, corresponding

to a conformal symmetry in the UV. For example, the interior of the spacetime

could contain a black hole (corresponding to a thermal state of the dual theory [3])

or the interior could tend continuously to another AdS spacetime [15] (this case

corresponds in the dual theory to a deformation by a relevant operator that drives

a flow to another conformal fixed point in the IR.) Examples are also known where

the field theory is conformal only in the IR. Such a duality was constructed in [16]

using D2 branes.

However, not all field theories of physical interest have a conformal symmetry,

even in some limit. We shall later look at examples from condensed matter physics

that posses an anisotropic scaling symmetry, but not boost or special conformal

symmetries.

Another common feature is that the above correspondences are between field

theories in d dimensions and gravitational theories in d+ 1 dimensions. While this

will be the case in all the examples we consider in this thesis, It should be emphasised

that this property is not universal. In particular, holographic duals to theories with

non-relativistic boost and scaling symmetries, which also have a conserved particle

number, require d + 2 dimensional gravity duals. The symmetry group of such

theories is called the Galilean group, and more detail on duals to these can be found

in [7], [17].
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2.1 Asymptotic behaviour of fields in AdS space

We will first discuss the asymptotics of AdS spacetimes, and then review the sim-

plest possible case that allows us to illustrate the holographic dictionary in such

a background, namely a scalar field in the bulk coupled to Einstein gravity. We

will follow the formalism of [18]. Very similar calculations with an emphasis on

modelling condensed matter can be found in [14], which also covers the case of

Einstein-Maxwell theory in the bulk. Since this system is not a supergravity, we

cannot be confident that it has a field theory dual, let alone identify what theory

the dual would actually be. The main results of this section will be that the radial

fall-off of the field is determined by its mass, and that the near-boundary expansion

is completely determined by recurrence relations once the coefficients of two terms,

r−∆− and r−∆+ , (called respectively the slow and fast fall-off modes) are specified.

Our action is

S =

∫
dd+1x

√
−g
(
R− 2Λ− 1

2
∇µφ∇µφ− V (φ)

)
(2.5)

and we will write our metric as

ds2 = L2

(
dr2

r2

)
+ γabdx

adxb (2.6)

where γab = L2r2ηab +O (1), and L2 = −d (d− 1) /2Λ. Asymptotically AdS metrics

can always be put into such a form in some neighbourhood of the boundary by

taking r−1 to be the affine parameter distance along geodesics eminating from the

boundary [18]. We can see that, to leading order, the boundary directions are

invariant under Poincaré transformations. The conformal scaling symmetry acts as

t 7→ t′ = λt, xi 7→ xi′ = λxi, r 7→ r′ = λ−1r (2.7)

and again it can be checked that this is a symmetry of the leading order terms, so

this metric has the correct symmetries to be dual to a CFT.

In what follows we will often wish to place the boundary, ∂M at some finite r.

We will work with the induced metric on this boundary

γab =
∂xµ

∂xa
∂xν

xb
gµν (2.8)
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With the metric in the coordinates of (2.6) this can be read off immediately. When

we take the limit r → ∞ the components of γab diverge, so we will also define the

conformal boundary metric

hab = Ω2 (xa) γab (2.9)

such that hab tends to some finite, invertible metric as r → ∞. For our current

choice of surfaces Ω = r−1 will do. We will consistently work in coordinates such

that the conformal boundary is at r →∞.

The metric (2.6) is a solution of the equations of motion derived from (2.5) for

γab = L2r2ηab, φ = 0. Suppose now that the scalar field is non-zero. The equation

of motion for φ is
1√
−g

∂µ
(√
−ggµν∂νφ

)
− V ′ (φ) = 0 (2.10)

In some neighbourhood of the boundary, we rewrite φ (r, xa) as

φ (r, xa) = r∆−dφ̂ (r, xa) where φ̂ (r, xa)→ 1 as r →∞ (2.11)

A latin index denotes all coordinates except r. We will see in section 2.2 that

labelling the leading power as ∆−d results in the scaling dimension of dual operator

being ∆. Since φ satisfies a second order ODE, we expect to find two solutions for

∆. Only one of these will actually make r∆−d the leading term.

We make two further simplifications. We assume that φ has a sufficiently rapid

fall-off as we approach the boundary that we can neglect its back reaction on the

metric. We also take V (φ) = 1
2
m2φ2. With these assumptions (2.10) can be rewrit-

ten as

(
L2m2 −∆ (∆− d)

)
φ̂− r−2

(
−∂2

t + ∂2
i

)
φ̂− r2∂2

r φ̂− (2∆ + 1− d) r∂rφ̂ = 0 (2.12)

Taking the r →∞ limit all term except the first tend to zero, so ∆ must satisfy

∆2 − d∆− L2m2 = 0, with solutions ∆± =
d

2
±
√
d2

4
+ L2m2 (2.13)

Requiring that these be real imposes m2L2 ≥ −d2/4, the Breitenlohner-Freedman

stability bound [19]. Since we may neglect non-linear terms in φ at leading order,

this expression for ∆± will still hold in the case that V (φ) contains terms of higher

order than φ2.
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As we expect for a second order differential equation, we’ve found two solutions.

If r∆−d really is to be the leading term in φ, we need ∆ = ∆+. There are now two

possibilities. If
√
d2/4 + L2m2 is not an even integer, then the expansion should be

written as

φ (r, xa) = r∆−dφ̂ (r, xa) = r∆−d

(∑
n even

φ(n)r
−n +

∑
n even

φ(2∆−d+n)r
d−2∆−n

)
(2.14)

Now we can use (2.12) to derive a recurrence relation between these coefficients

φ(n) (xa) =
(−∂2

t + ∂2
i )φ(n−2) (xa)

n (2∆− d− n)
for n ≥ 2 and for n ≥ 2∆− d+ 2 (2.15)

Every term in the first series is determined in terms of φ(0), and every term in the

second by φ(2∆−d). If
√
d2/4 + L2m2 is an even integer, then (2.15) is not valid for

n = 2∆− d. It turns out in this case to be necessary to modify the expansion to

φ (r, xa) = r∆−dφ̂ (r, xa) = r∆−d (φ(0) + φ(2)r
−2 + · · ·+

(
φ(2∆−d) + ψ(2∆−d) log r

)
rd−2∆ + . . .

)
(2.16)

For 2 ≤ n < 2∆− d, plugging this expansion into (2.12) gives the same expression

recurrence relation (2.15). [18] shows that

ψ(2∆−d) = − 1

22k−1k! (k − 1)!

(
−∂2

t + ∂2
i

)k
φ(0) (2.17)

where k = ∆ − d/2. The φ(2∆−d) term is still not fixed by any of the higher order

terms, since the coefficient in front of φ(2∆−d) in−r2∂2
r φ̂−(2∆ + 1− d) r∂rφ̂ vanishes.

It turns out that we do not need to know further terms in the expansion to do

meaningful calculations.

In both cases the near-boundary analysis allows us to freely choose both φ(0)

and φ(2∆−d). However, not all of these solutions will be acceptable. The condition

that the field is regular as r → 0 (or at the event horizon if there is a black hole in

the bulk) will typically impose a relation between these two coefficients, and we will

only need a single boundary condition as r →∞.

The above is still of use if φ is not small near the boundary. If we have some

known exact solution Φ, including its backreaction on the metric, we may linearise

(2.10) to find the asymptotic behaviour of linearised perturbations δφ. (2.12) will be

modified by V ′′ (Φ) replacing m2. More generally, we would find a similar relation
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to (2.13) for any component of a tensor field obeying a second order wave equation,

though with L2m2 replaced by a term particular to that field. The property that

∆+ + ∆− = d will continue to hold. Details of the asymptotic solution of the metric

can be found in [18] and an example involving a linearised perturbation of a vector

field, with some finite background field switched on, can be found in [14].

2.2 Operator dimensions and boundary conditions

In this section we will see that the scaling dimension of the operator, O, dual to

φ can be read off from the near-boundary expansion of φ as ∆. We see that this

allows us to immediately identify whether O is relevant, irrelevant or marginal. We

will give two arguments for when we may choose the faster fall-off term to be the

boundary data, one based on the properties of a CFT, the other entirely based

on the gravity side of the correspondence. Both of these show that we may take

∆ = ∆− when m2L2 < 1− d2/4.

We solved the linearised wave equation for a scalar to find φ ∼ φ(0)r
∆−d + . . . as

r →∞. Recall that from (2.3) we expect a coupling to exist between the ‘boundary

value’ of this field, which we will take to mean φ(0), and some operator in a conformal

field theory, ∫
∂M

ddx
√
−hφ(0)O (2.18)

Recall that hab is the conformal metric on the boundary, which can be taken to be

hab = r−2gab in our coordinates, and this is invariant under (2.7). Since φ is a scalar,

under (2.7) it must transform as

φ′ (r′, x′a) = φ (r, xa) (2.19)

and this preserves the form of the expansion only if

φ′(0) (x′a) = λ∆−dφ(0) (xa) (2.20)

For the operator to have dimension [O] we mean that

O′ (x′a) = λ−[O]O (xa) (2.21)
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If the field theory is to be conformal then its action, and in particular the coupling

(2.18), should be invariant under this transformation∫
∂M

ddx′
√
−hφ′(0) (x′)O′ (x′) =

∫
∂M

ddx
√
−hφ(0) (x)O (x)

=

∫
∂M

λ−dddx′
√
−hλd−∆φ′(0) (x′)λ[O]O′ (x′) (2.22)

allowing us to read off the operator dimension in terms of the scalar field asymptotics

[O] = ∆ (2.23)

In the case that
√
d2/4 + L2m2 is an even integer, this get modified. In particular,

under (2.7) O′ now has a log λ contribution [18].

Under a conformal transformation (2.7), φ′ (r, xa) = φ (λr, λ−1xa), so such a

transformation with λ < 1 will increase the length-scale of wave modes of this scalar

field, and should be interpreted as a lowering of the energy scale. To determine

whether the dual operator is relevant we need to know whether its coupling in-

creases under such a transformation. From (2.20) we can read off that O is relevant,

irrelevant or marginal if ∆ is, respectively, less than, greater than or equal to d.

This is what we would expect in any relativistic field theory. This will only tell us

the leading order behaviour of the renormalisation group flow that this term drives

- we will have to go beyond the linear level to find where the flow actually goes to.

We can also now find when ∆ = ∆− is acceptable. Unitarity of a CFT requires

[20] that no scalar operator has scaling dimension less than 1
2

(d− 2). This translates

to ∆− >
1
2

(d− 2), which is satisfied for m2L2 < 1− d2/4.

We can also see this bound arising on the gravity side of the correspondence

by considering the norm of the states in the Lorentzian theory [21], [22]. Setting

∆ = ∆− is really saying that what we are going to take as boundary data, φ(0), is

the coefficient in front of r−∆+ . We want to demand that the modes which are not

fixed by the boundary conditions, and thus are varied when we vary the action, have

finite norm.

The Klein-Gordon inner product between a pair of solutions, φ1 and φ2, to (2.10)

can be defined as

−iΩ (φ1, φ2) = −i
∫

Σ

ddx
√
gΣ (π1φ2 − π2φ1) (2.24)
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where Σ is some spacelike hypersurface with induced metric gΣ, and the conjugate

momenta are defined by

π =
1√
−g

δS

δφ̇
= Nµ∂µφ (2.25)

where the dot denotes a derivative in a timelike direction, and Nµ is the unit lapse

vector. Here it can be taken to be N t = r−1. Some motivation for this choice of

inner product can be found in [23]. The Klein-Gordon norm of φ is then defined as

−iΩ (φ∗, φ) (2.26)

If we take Σ to be a t = const surface, then the leading order contribution from the

large r region is

−i
∫ ∞

dr r2∆−d−3

∫
dx1 . . . dxd−1

(
∂tφ
∗
(0)φ(0) − ∂tφ(0)φ

∗
(0)

)
(2.27)

The x1, . . . , xd−1 integral should give a finite results if the field has some spread of

wavenumbers. For the radial integral to give a finite result, we need

∆ < 1 +
d

2
(2.28)

This is always satisfied for ∆−, and is true for ∆+ provided that m2L2 < 1− d2/4.

This then coincides with what we found above - for m2L2 above this bound, the

norm of the r∆+−d mode is not finite, so we must take the coefficient of this to be

the fixed boundary data.

There is a second condition we must satisfy. When the equations of motion are

satisfied, δφ(0) = 0 must be a sufficient condition for δS = 0. Varying the scalar

part of (2.5) gives

δS =

∫
M
dd+1x

√
−gδφ (∇µ∇µφ− V ′ (φ))−

∫
∂M

ddx
√
−γδφnµ∇µφ (2.29)

where nµ is the unit normal to ∂M. The first term imposes the equation of motion

(2.10), but δφ(0) = 0 only sets the second term to zero if this is the coefficient of the

leading term in φ. When ∆ = ∆−, we can make δφ(0) = 0 a sufficient condition for

δS = 0 by adding to the action the boundary term [14]∫
∂M

ddx
√
−γφnµ∇µφ (2.30)



2.3. Expectation values and renormalisation 16

2.3 Expectation values and renormalisation

In this section we will see that the expectation value of the dual operator, O, in

the boundary field theory is encoded in the asymptotics of φ. It will turn out to be

proportional to the coefficient of the r∆ term. We will first attempt to calculate the

expectation value from the action (2.5) using (2.4) and find that this is divergent.

We will describe the minimal subtraction procedure of [18] for renormalising this

action, and find the counter-terms in the case that
√
d2/4 + L2m2 ≤ 1. The general

counter-terms for a scalar field can be found in [18] and those for a vector field

in [24].

In the limit that we may use the saddle-point approximation in the bulk gravity

theory, which we expect to correspond to a large N and strong coupling limit of the

boundary theory, we can vary the identity (2.3) to find

〈O〉 = −i δ

δφ(0)

〈
exp

(
i

∫
∂M

φ(0)O
)〉

boundary

=
1√
−h

δSSUGRA

(
φ(0)

)
δφ(0)

∣∣∣∣∣
φ(0)=0

(2.31)

where the gravitational action should be evaluated using the classical solution with

boundary data φ(0).

We can do this calculation by first placing the boundary at finite r, and working

in terms of fields rescaled by appropriate factors of r.

〈O〉 = lim
r→∞

r∆ 1√
−γ

δS

δφ (r)
(2.32)

The bulk piece of (2.29) vanishes on-shell, and the boundary piece gives

〈O〉 = −r∆+1∂rφ (r, xa) ∼ (d−∆)φ(0)r
2∆−d (2.33)

which is divergent for ∆ = ∆+, so we have not found a finite answer for 〈O〉. This

should not be hugely surprising. If we performed such a calculation in a field theory

with a UV regulator, we would typically expect to have to renormalise the field

theory before removing the cut-off. In our calculation the boundary acts as a UV

regulator of the dual field theory, and we have failed to add any counter-terms.

Since we’ve found that the variation of the action diverges, then the action itself

must be divergent. A minimal subtraction scheme is defined in [18] by determining
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the divergent contributions to the action, rewriting these in terms of local, bulk-

covariant fields on the finite r boundary, and subtracting them from the original

action. Integrating the scalar terms of (2.5) by parts, we get a piece that vanishes

when the equations of motion hold, plus a boundary piece

−1

2

∫
∂M

ddx
√
−γφnµ∇µφ = −1

2

∫
∂M

ddx r2∆−d
(

(∆− d) φ̂2 + φ̂r∂rφ̂
)

(2.34)

How many terms of this are actually divergent depends on the value of
√
d2/4 + L2m2.

To illustrate the procedure we will look at the case
√
d2/4 + L2m2 ≤ 1. Here the

boundary term can be rewritten as

−1

2

∫
∂M

ddx (∆− d) r2∆−dφ2
(0) +O (1) (2.35)

We need to rewrite φ(0) in terms of bulk-covariant quantities. From (2.14) we see

that φ(0) = rd−∆ (φ+O (r−1)) so our counter-term is

Sct = +
1

2

∫
∂M

ddx
√
−γ (∆− d)

(
φ2 +O

(
r−1
))

(2.36)

We see that the subleading terms will not matter when we remove the regulator. If

we had
√
d2/4 + L2m2 > 1 we would have needed to subtract more terms, and to

find φ(0) to higher order.

Repeating the calculation with this counter term, we get

〈O〉 = −r∆+1∂rφ+ (∆− d) r∆φ = −r2∆−dr∂rφ̂ = (2∆− d)φ(1) +O
(
r−1
)

(2.37)

We can see that this coefficient is the only one which could be the expectation value

by this by considering scaling dimensions, at least in the case that
√
d2/4 + L2m2

is not an even integer, and hence O transforms as (2.21). A general term in the

expansion of φ transforms as

φ′(n) (x′a) = λ∆−d+nφ(n) (2.38)

so only φ(2∆−d) has the right scaling dimension to be the expectation value of O.

This behaviour, that the boundary date is a coupling and the coefficient not fixed

by the near-boundary expansion gives an expectation value, is common to any field

in the bulk, not just only scalars. In [18] and [25] it is shown that the exact relation

is

〈O〉 = (2∆− d)φ(2∆−d) (2.39)
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In the case that
√
d2/4 + L2m2 is an even integer, there is an additional term in

〈O〉 that depends directly through the near-boundary expansion on φ(0). It can be

removed by a change of counter-term action.

We stated earlier that a regularity condition in the interior would set φ(2∆−d)

as a function of φ(0). To find the expectation value of O in this field theory in the

absence of the coupling (2.18) we need only know φ(2∆−d)

(
φ(0) = 0

)
. To find the

n-point function, we need to compute

δ

δφ(0) (xan)
. . .

δ

δφ(0) (xa2)
φ(2∆−d) (xa1)

∣∣∣∣
φ(0)=0

(2.40)

That is, we need the nth order dependence of φ(2∆−d) on φ(0). If we instead set φ(0)

to some non-zero value, we would be computing the correlator in the field theory

deformed by the addition of the coupling (2.18).

2.4 The holographic stress tensor

The presence of a stress-energy tensor is a universal property of relativistic field

theories, being sourced by the background metric. In particular, the coefficient of

the fast-fall off term in the near-boundary expansion of gab will tell us the expectation

value of the boundary stress-energy tensor, Tab. The coefficient of the slow fall-off

term will be a component of the background metric of the field theory. When we

consider asymptotically Lifshitz spaces in section 3, these notions will have to be

modified due to the lack of a conformal boundary.

This calculation is also of interest outside of AdS/CFT, due to there being no

obvious way to define a local stress-energy tensor in general relativity (or indeed any

coordinate-invariant theory of gravity). Varying the action with respect to the metric

simply produces the equation of motion for the gravitational field. Calculations on

surfaces at infinity for spacetimes with timelike Killing vectors can define an energy

(the Komar mass), and if the spacetime possesses a spacelike Killing vector with

a compact orbit the Komar angular momentum can be defined. However, these

do not obviously generalise to spacetimes without such symmetries. The ADM

formalism [26] provides a definition of energy and momentum for asymptotically

flat spacetimes, but not angular momentum (see section 3.3 of [27] for a discussion).
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In an asymptotically AdS spacetime, one option is to take the expectation value

of the stress-energy tensor of the boundary field theory to define the stress-tensor

of the classical bulk theory

T abgrav :=
〈
T abbndry

〉
=

2√
−γ

δSgrav

δγab
(2.41)

where the first equality is our definition and the second comes from (2.3). This was

first proposed in [28], where it was shown that for flat spacetimes this definition

coincided with the ADM quantities. However, it was necessary to subtract off a

contribution from a flat reference spacetime. [28] argue that this is indeed always

possible for an asymptotically flat 4 dimensional manifold, but the spacetimes of

interest in holography do not obey this condition.

In [29] the authors found boundary counter-terms which rendered (2.41) finite

without the need to subtract off a contribution from a reference spacetime. For

example, in AdS4 it was found that the expectation value of the boundary stress-

tensor could be rendered finite by adding to the action the counter-term

Sct = − 2

L

∫
∂M

√
−γ
(

1− L2

4
R

)
(2.42)

where R denotes the Ricci scalar of the induced metric on the boundary, γab. The

form of this is consistent with this implementing renormalisation of the boundary

quantum field theory holographically - if this really is dual to counter-terms in the

boundary, we’d expect it to be built out of local quantities depending only on the

intrinsic geometry of the boundary, which it is. With this new definition, (2.41)

can be computed on any small closed surface around some small volume, without

having to specify the entire interior of a reference spacetime. Hence this is sometimes

referred to as the quasi-local stress-tensor.

When we consider non-relativistic field theories in section 3 we will still want to

be able to compute quantities such as energy density holographically. However, in

these cases the boundary no longer has a non-degenerate metric, and this procedure

will have to be generalised.
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2.5 The UV-IR correspondence and renormalisa-

tion group flows

Looking at the behaviour of φ(0) in (2.20) as we move the cut-off boundary, and

comparing this to the operator dimension, we see that the usual relation between

an operator dimension and whether it is relevant, irrelevant or marginal is obeyed

if moving the boundary to smaller r corresponds to flowing from the UV to the IR.

[30] make a more general argument that large distances in the bulk correspond

to UV physics of the boundary field theory as follows. If some UV regulator mass

µ is introduced in the boundary field theory, then the fact that the field theory is

conformal implies that a correlator should in general have as its leading order term

∆
(
xa1, x

b
2

)
= µ−p |xa1 − xa2|

−p (2.43)

in the limit |xa1 − xa2| � µ−1.

In the bulk, a typical propagator for a particle of mass m would have the form

e−m|xa1−xa2| (2.44)

and [30] calculate the length of a geodesic between x1, x2 in the bulk, regulated by

placing the boundary at a radial distance of order δ−1, and find the leading order

piece log (|xa1 − xa2| /δ), giving a propagator the leading order form

∆ (x1, x2) =
δm

|x1 − x2|m
(2.45)

This only holds in the |xa1 − xa2| � δ limit.

Since (2.3) implies that correlators should match between the supergravity theory

and the boundary conformal field theory, we should also expect correlators to match

in the regulated theories, at least well away from the regulator scales. The result

in (2.43) is valid below a UV cut-off in the boundary, and (2.45) is valid above

an IR cut-off in the bulk, and these results do indeed match. We must identify

δm = µ−p, so moving the boundary inward by increasing δ requires decreasing the

mass cut-off, µ in the boundary theory. It should be noted that only the leading

order pieces have been considered, and the relation between these two cut-offs is

still not well-understood.
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For us, the important feature of this UV-IR relation will be that different (ap-

proximate) isometries at large and small r will correspond, respectively, to different

(approximate) scaling symmetries of the field theory at small and large wavelengths.

We will assume that at least this feature of the correspondence continues to hold

when we are far from the well-understood case of a conformal boundary and an

asymptotically AdS bulk.

We are now able to ask what happens to the renormalisation group flow of the

field theory when the coupling (2.18) to O is included in its action with finite φ(0),

rather than just thinking of this as an infinitesimal deformation. The sign of ∆− d

only tells us the behaviour of the flow at the linear level, and we must solve the full

equations of motion for φ, including its back-reaction on the metric and any other

fields that may be present, to investigate whether the flow reaches a new fixed point

in the IR. In the case of a new conformal fixed point, this would manifest itself in

the bulk by the metric tending to an AdS metric at small r. The scaling behaviour

of φ as r → 0 will determine the dimension of the operator dual to φ in this new

field theory.

The first explicit construction of such a flow was given in [15] numerically. By

adding a perturbation of one of the scalar fields of N = 8 gauged supergravity to

the maximally supersymmetric point, a solution smoothly flowing (as r → 0) to

another critical point of the theory, with only N = 2 supersymmetry, was found. In

this case the authors were able to identify the field theories at the UV end of the

flow as N = 4 super Yang-Mills, and the deformation driving the renormalisation

group flow as the addition of a mass to one of the adjoint chiral superfields.

The authors of [15] also prove a general theorem about a wide class of holographic

flows. For even boundary dimension d, the stress-tensor of the conformal field theory

possesses a trace anomaly. Writing the metric in the form

ds2 =
dr2

r2
+ e2A(r)ηabdx

adxb (2.46)

the trace anomaly is

〈T aa 〉 ∝
1

(r∂rA)d−1
(2.47)

Using Einstein’s equation in the convention where the cosmological constant is in-
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cluded in the stress-energy tensor

− (d− 1) r∂r (r∂rA) = 2
(
T tt − T rr

)
(2.48)

and, assuming Poincaré invariance throughout the flow, the right hand side is non-

negative if and only if the weak energy condition holds. Thus they show a renormal-

isation group flow of the dual field theory, preserving Poincaré invariance, cannot

increase the trace anomaly 〈T aa 〉. Since the trace anomaly is proportional to the

central charge of a CFT [31], which parametrises the number of degrees of freedom,

this is consistent with the intuition that an RG flow should integrate out degrees of

freedom.



Chapter 3

Introduction to Lifshitz

holography

Whilst many effective field theories in condensed matter possess relativistic confor-

mal symmetries, by no means all do. However, there are other symmetries that a

field theory may possess. The systems we shall consider in this chapter have the

more general scaling symmetry t→ λzt, xi → λxi. This is commonly referred to as

a Lifshitz symmetry 1 and an early investigation of field theories with such symme-

tries can be found in [32]. z is called the dynamical exponent. The lack of a boost

symmetry is not unnatural for an effective field theory describing condensed matter

- the preferred frame is set by the rest frame of the atomic lattice.

As with the conformal symmetry, many systems with this symmetry describe

systems near phase transitions. z = 2 and 3 occur at the onset of antiferromagnetism

[33] and ferromagnetism [32] respectively. Further details of these and several more

example can be found in [14], including non-integer z.

The purpose of chapter 3 is to describe the geometry of holographic duals to such

field theories, and to repeat the scalar field calculations of chapter 2 to illustrate

how the results differ. We will consider the geometry of the boundary and the

1This should not be confused with the Galilean symmetry group, which shares the same gen-

eralised scale invariance, but also possesses a non-relativistic boost symmetry, and a conserved

particle number. In particular, the holographic duals of such theories are very different to those of

this chapter.

23
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interior of such spacetimes in section 3.1. In section 3.2 we will solve the scalar wave

equation in the near-boundary region of the bulk, and see that the expression for

the expansion varies depending on the value of z. In section 3.3 we will use this to

show that the operator dimension is again set by the exponent of the boundary data

fall-off. We will repeat the calculation of the Klein-Gordon norm to find when we

may choose the coefficient of the fast fall-off mode as boundary data. In section 3.4

we will calculate the expectation value of the dual operator in a simple case, and

again find that we must add counter-terms to the action.

To find a holographic dual implementing the Lifshitz symmetry, we want a metric

that is invariant under

t→ λzt, xi → λxi, r → λ−1r (3.1)

A metric that possesses this isometry, along with isotropy and translation invariance

of the d− 1 boundary spatial directions, was first proposed in [1]

ds2 = L2

(
−r2zdt2 + r2

d−1∑
i=1

dxi2 +
dr2

r2

)
(3.2)

From now on we will refer to this simply as a Lifshitz spacetime. This is not a solution

to the vacuum Einstein equation - some matter content will be required to break

the boost symmetry. We will consider the matter content of [1] in chapter 4, and an

example of a matter which is a consistent truncation of supergravity in chapter 5.

These are by no means the only examples. Further examples of phenomenological

models can be found in [34], [35], [36], [37], [38] and constructions from supergravity

in [39], [40], [41], [42], [43], [44], [45], [46], [47], [48], [49]. If we wish to study the

field theory dual at finite temperature, we would consider a spacetime with Lifshitz

asymptotics and a black hole in the interior. Such spacetimes have been constructed

and studied in [50], [51], [52], [53], [54], [36], [55], [56], [57], [37], [58], [59], [60], [38],

[48], [61], [49]. We are not interested in z < 1, as this produces an unrealistic causal

structure in the boundary field theory. It is also the case that if the gravitational

part of the bulk theory is Einstein gravity, z < 1 bulks require matter violating the

null energy condition [62]. One notable feature that (3.2) shares with AdS is that a

radial null geodesic from some r0 will reach the boundary in finite coordinate time,
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so the spacetime is not globally hyperbolic and boundary conditions are needed in

addition to initial data to determine the evolution of a classical field.

If such dualities do in fact exist, we expect there to be the same limitations as in

relativistic holography. Firstly, the boundary field theory will be strongly coupled

when the gravity theory is weakly coupled. This is useful, as there exist condensed

matter systems which are strongly coupled. Secondly, if the gravity side of the

duality is to be well approximated classically, then the rank of some gauge group in

the boundary theory will have to be large.

3.1 Geometry of Lifshitz and asymptotically Lif-

shitz spacetimes

3.1.1 Boundary

Recall that in section 2.1 we used the induced metric, γab, to define a conformal

boundary metric, hab, for asymptotically AdS spacetimes. This allowed us to treat

the geometry of the boundary at infinity using a metric which did not become

degenerate in this limit. For an asymptotically Lifshitz spacetime this does not

work. Taking our cut-offs to be constant r surfaces, Σr, the induced metrics from

(3.2) are

γabdx
adxb = −r2zdt2 + r2

d−1∑
i=1

dxi2 (3.3)

Choosing Ω = r−1 results in htt diverging, and choosing Ω = r−z results in the

spatial part of the metric vanishing. In order to understand what is happening here,

it helps to look at the causal structure of the boundary. We can calculate the time it

takes two points with spatial separation ∆x in Σr to communicate with one another

via a light ray

∆t = r1−z∆x (3.4)

For z > 1 this vanishes as r → ∞, so if we’re to find any sensible meaning for a

‘boundary’, any two points in the boundary at equal t must have the same causal

futures (and causal pasts). Therefore we should not expect this theory to have many
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of the features associated with a relativistic field theory, such as a spacetime metric.

However, we still need a way to treat the geometry of the boundary if we’re to

find a stress-tensor. In the context of asymptotically AdS spacetimes, [63] treated

the boundary using frame fields, a set of orthonormal 1-forms satisfying

gµν = e(α)
µ e(β)

ν ηαβ (3.5)

This is applied to asymptotically Lifshitz spacetimes in [64], where instead of defining

a conformal boundary metric the authors define a conformal frame as

ê(0) = r−ze(0) ê(i) = r−1e(i) for i = 1, . . . d− 1 (3.6)

where e(d) is chosen to normal to the boundary, and so has nothing to do with its

intrinsic geometry. In our exactly Lifshitz space, we can take the frame fields to

be e(0) = rzdt, e(i) = rdxi and e(d) = r−1dr. The prescription above then gives

ê(0) = dt, ê(i) = dxi, which do indeed have finite components in the large r limit.

When we introduce frame fields, we would normally also introduce a new gauge

symmetry, that of local Lorentz boosts. While the Lorentz group acting as e(α) 7→

Λα
βe

(β) preserves (3.5), it does not preserve (3.6) as an appropriate choice of con-

formal frame. In the exactly Lifshitz space, a boost along the x1 direction with

rapidity ξ will map

ê(1) 7→ cosh ξdx1 + rz−1 sinh ξdt (3.7)

which clearly no longer satisfies the conditions we wanted. We really must ensure

that our e(0) points in the t direction picked out by the metric (3.2), and orthogo-

nality of e(0) to e(i) then ensures that our ê(i) are finite. We do still have SO (d− 1)

symmetry acting on the ê(i).

We can now turn this around and use it to define what we mean by asymptotically

Lifshitz. We will say that a spacetime is asymptotically Lifshitz if its induced metrics

can be written as

γabdx
adxb = −r2z

(
ê0
)2

+ r2

d−1∑
i=1

(
êi
)2

(3.8)

and

ê0 → dt, êi → dxi as r →∞ (3.9)
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The conformal frame also provides a natural way to define a volume form on the

boundary, and hence perform integrals, even in the absence of a conformal metric.

The volume form of the metric can be written as ε = e(0)∧· · ·∧e(d−1), so we take the

rescaled volume form on our boundary as ε̂ = ê(0) ∧ · · · ∧ ê(d−1). In the case of a flat

boundary this reduces to dt dx1 . . . dxd−1. By varying the action with respect to

the
{
ê(a)
}

[64] define energy density, momentum density, energy flux and stress. For

the purposes of the rest of this chapter, we are interested in the fact that ε̂ allows

us to define volume integrals on the boundary which remain finite as r →∞.

3.1.2 Behaviour as r → 0

The metric (3.2) clearly has at least a coordinate singularity as r → 0. A Poincaré

patch of AdS also has a coordinate singularity, and we are able to continue through

it and find that the spacetime is in fact geodesically complete, so we might hope

that something similar occurs here. It is shown in [65] that this is not the case. For

the purpose of searching for a curvature singularity, we want to ask if there is any

possible way in which we can contract components of the Riemann tensor to obtain

a divergent quantity, so we should look for divergences in the components of the

Riemann tensor in an orthonormal basis. In a static basis,

e(0) = −rzdt, e(d+1) = Lr−1dr, e(i) = Lrdxi (3.10)

all components of the Riemann tensor are constant, therefore we cannot build any

curvature scalar that diverges as r → 0.

However, an observer falling freely towards r = 0 with energy E making mea-

surements of the curvature components would not do so in the above basis, but

instead in a basis with one member parallel to his four-velocity,

e(0) = −Edt−Er−1−z

√
1− r2z

E2
dr, e(d+1) = −E

√
1− L2r2z

E2
dt−Er−1−zdr, e(i) = Lrdxi

(3.11)

In such a basis the R0i0i, R1i1i and R0i1i components of the Riemann tensor diverge

like r−2z. While it seems surprising that static observers sat arbitrarily close to r = 0

see such a radically different curvature to an observer falling freely past them, note
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that the falling observer is boosted with rapidity ξ = cosh−1 (E/rz) with respect to

the static observer, and this diverges as r → 0.

This is not specific to the metric being (3.2) to leading order at small r - [65]

show that this singularity can also occur when the small r limit naively looks like

a Poincaré horizon. In later chapters when we look for holographic flows, all those

found will possess this singularity in the IR, including flows between different AdS

spaces. It should also be pointed out that this singularity does not appear in the

Euclidean version of this spacetime. Here (3.11) is no longer an orthonormal basis.

The boost that allowed us to generate (3.11) from the static basis has been replaced

by a rotation. In fact all orthonormal bases are now local SO (d+ 1) rotations of

the static basis, guaranteeing that all Riemann tensor components measured in such

a basis are finite.

3.2 Asymptotic behaviour of fields in Lifshitz asymp-

totics

We wish to perform calculations analogous to those of section 2.1 and see how the

results are modified by these new asymptotics. We will again find that φ has both

a slow and a fast fall off mode, respectively r−∆− and r−∆+ , but the exponents of

these will now depend on z, as well as d and m2L2. The relation between the various

coefficients in the expansion of φ now depends on z, and we will not be able to give

a general recurrence relation. We will no longer see the relativistic boundary wave

operator, (−∂2
t + ∂2

i ), appearing in the expressions for the coefficients. This should

not be surprising since the dual field theory no longer has the Lorentz group as a

symmetry.

The example of scalar field will again be used. In this case we won’t specify

what the full action is, only that it contains a scalar minimally coupled to gravity

through the term

Sφ =

∫
M
dd+1x

√
−g
(
−1

2
∇µφ∇µφ− V (φ)

)
(3.12)

and that V (φ) = 1
2
m2φ2. We will take the metric to be (3.2) and assume that the
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back-reaction of φ on this can be neglected in the near boundary analysis. The

equation of motion is again (2.10), and this time we will define φ̂ by

φ (r, xa) = r∆−d+1−zφ̂ (r, xa) where φ̂ (r, xa)→ 1 as r →∞ (3.13)

We again expect to find two solutions for ∆. Note that the definition of ∆ depends

on z. The equation of motion can be rewritten as

(
L2m2 −∆ (∆− d+ 1− z)

)
φ̂−
(
−r−2z∂2

t + r−2∂2
i

)
φ̂−r2∂2

r φ̂−(2∆ + 2− z − d) r∂rφ̂

(3.14)

As in the AdS case, the r → ∞ limit requires that the coefficient of the first term

vanishes, giving two solutions for ∆ [1]

∆± =
d+ z − 1

2
±

√
(d+ z − 1)2

4
+ L2m2 (3.15)

Requiring that these are real imposes L2m2 ≥ − (d+ z − 1)2 /4. Again, this leading

order result carries over to the case that V (φ) contains higher order terms.

It is straight forward to carry out the expansion to higher orders term by term,

but the form of the series now depends on z. To illustrate this, suppose we name

the next two terms in our series as

φ̂ = φ(0) + φ(β1)r
−β1 + φ(β2)r

−β2 + . . . where β1 < β2 (3.16)

Substituting this into (3.14) and keeping only the leading order contribution to each

term, we find that we must have β1 = 2 and

φ(2) =
∂2
i φ(0)

2 (2∆− d− 1− z)
(3.17)

unless 2∆ = d+ 1− z, in which case we would have to introduce logarithmic terms,

as in the asymptotically AdS expansions. Since we are always interested in z > 1,

r−2z∂2
t φ is subleading at this level. At this point we might be concerned that this

does not look like it will reduce to the AdS result (2.15) as z → 1, however this will

be remedied by the next term. The leading order contribution to each term is now

−r−2z∂2
t φ(0) + r−4∂2

i φ(2) + β2 (β2 − 1 + z + d− 2∆)φ(β2)r
−β2 = 0 (3.18)
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Depending on the value of z, there are 3 possibilities. If 1 < z < 2 then we must set

β2 = 2z and

φ(2z) =
−∂2

t φ(0)

2z (2∆− d+ 1− 3z)
(3.19)

If z = 2 then we must set β2 = 4 and

φ(4) =
−∂2

t φ(0) + ∂2
i φ(2)

4 (2∆− d− 3)
(3.20)

If z > 2 then we must again set β2 = 4 and

φ(4) =
∂2
i φ(2)

4 (2∆− d− 1− z)
(3.21)

In these cases we are assuming that, respectively, 2∆− d 6= 3z− 1, 3 and z+ 1. We

can now see how we recover the correct value of φ(2) in the relativistic limit - the

φ(2) and φ(2z) terms merge to give a term with the same coefficient as that given by

(2.15).

In general then we have the power series,

φ̂ =
∑
a

φ(a)r
−a where a ∈ {2m+ 2nz|m,n ∈ N} (3.22)

The complication that there exist different values of (n,m) giving the same power,

unless z is irrational, makes writing down a general recurrence relation difficult.

We can at least show some similarity with the relativistic case. The coefficient in

front of r−∆ in the r2∂2
r φ̂ + (2∆ + 2− z − d) r∂rφ̂ term vanishes, so the coefficient

φ(2∆−d+1−z) is left undetermined by φ(0) in the near boundary expansion. We would

expect, as in the asymptotically AdS case, that it would be set by a regularity

condition in the bulk. An example of an explicit solution for such a field can be

found in [1] for z = 2 in d = 3, and regularity does restrict this to a one parameter

set of solutions.

We will also note at this stage that the relation ∆+ +∆− = d+z−1 will continue

to hold for any field obeying a second order wave equation at the linear level.
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3.3 Operator dimensions and boundary conditions

in Lifshitz asymptotics

In this section we will first clarify how several 1-forms and vectors in the bulk scale

under (3.1) and then go on to find the scaling dimension of the dual operator using

the results of section 3.2. It turns out that, with our choice of labelling for the

exponents, O has scaling dimension ∆. We then calculate the Klein-Gordon norm

of both the fast and slow fall-off modes of φ, and find that we may only choose

∆ = ∆− when L2m2 < 1
4

(
3z − (d+ z − 1)2).

To fix what we mean by dimension here, we will say that an object φ (either a

classical bulk field or a boundary operator or expectation value) has scaling dimen-

sion α if under the Lifshitz scaling transformation (3.1) it scales as φ→ λ−αφ, and

denote this by [φ] = α.

From (3.1) we get the scaling dimensions of the 1-forms and hence the vectors

[dt] = −z,
[
dxi
]

= −1, [dr] = +1, [∂t] = +z, [∂i] = +1, [∂r] = −1 (3.23)

We assume that a duality of the form (2.3) exists, but we no longer have a

conformal metric, so our coupling should take the form∫
∂M

ε̂φ(0)O (3.24)

If the space is asymptotically Lifshitz, then

ε̂ 7→ ε̂′ = λz+d−1ε̂ (3.25)

under (3.1) to leading order at large r. By demanding that φ is a scalar, ie.

φ′ (r′, x′a) = φ (r, xa), we get the transformation of its coefficients

φ′(β) (x′a) = λ∆−d+1−z−βφ(β) (xa) (3.26)

We now demand that the coupling of this operator in our dual field theory is invariant

under a Lifshitz scaling, to get∫
∂M

ε̂′φ′(0)O′ =
∫
∂M

ε̂φ(0)O =

∫
∂M

λ−d+1−z ε̂′λd−∆−1+zφ′(0)λ
[O]O′ (3.27)
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so we see that the dimension of O is still determined entirely by the asymptotic

behaviour of the scalar field

[O] = ∆ (3.28)

We can again look at what happens to the coupling under an RG flow from

the UV to the IR (ie. a scale transformation (3.1) with λ < 1) The condition on

the operator dimension is now that O is irrelevant, marginal or relevant if [O] is,

respectively, greater than, equal to, or less than d+ z − 1.

Recall that in section 2.2 we used the dimension of the operators in the dual field

theory to restrict the range of L2m2 for which ∆ = ∆− was acceptable. Here we do

not have a conformal field theory on the boundary, so we cannot employ the same

result. However, we can still look at the Klein-Gordon norm of the bulk field. The

lapse vector must now be N t = r−z so our conjugate momenta become π = r−z∂tφ

and the contribution from the large r region is

−i
∫ ∞

dr r2∆−d−3z

∫
dx1 . . . dxd−1

(
∂tφ
∗
(0)φ(0) − ∂tφ(0)φ

∗
(0)

)
(3.29)

which receives a divergent contribution at large r unless

∆ <
3z − 1

2
+
d

2
(3.30)

This is always satisfied for ∆−, and is satisfied for ∆+ if

L2m2 <
1

4

(
3z − (d+ z − 1)2) (3.31)

This is the range of L2m2 for which we can set ∆ = ∆−, and have the coefficient in

front of r∆−−d+1−z as boundary data. We would again need a boundary term such

that δφ(0) = 0 is a sufficient condition for δS = 0.

3.4 Expectation values

In this section we will calculate 〈O〉, using the same minimal subtraction procedure

as in section 2.3. As in the asymptotically AdS spacetime, we will consider only

the simplest possible case, namely that
√

(d+ z − 1)2 /4 + L2m2 ≤ 1, and find a

non-relativistic boundary counter-term that gives a finite result for 〈O〉. We expect
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to find 〈O〉 ∝ φ(2∆−d+1−z), since (3.26) shows that this is the only component of the

field with the correct scaling dimension, and this is indeed what we find below.

Since we no longer have a conformal metric we should rewrite (2.31) as

〈O〉 =
1√

det ε̂

δSSUGRA

(
φ(0)

)
δφ(0)

∣∣∣∣∣
φ(0)=0

(3.32)

Again we want to work with a boundary at a finite distance, and in terms of bulk

covariant quantities, before taking a large r limit. The limit we need to take turns

out to be the same as in AdS

〈O〉 = lim
r→∞

r∆ 1√
−γ

δS

δφ (r)
(3.33)

Since the scalar part of the action is the same as in our AdS example, our contribu-

tion can again be read off from the boundary term in 2.29

〈O〉 = −r∆+1∂rφ (r, xa) ∼ (d−∆− 1 + z)φ(0)r
2∆−d+1−z (3.34)

This is always divergent for ∆ = ∆+. We should again be able to find counter-terms

by looking for a quantity which we can subtract from the action to leave the scalar

part of it finite.

We now restrict to
√

(d+ z − 1)2 /4 + L2m2 ≤ 1, equivalently 2∆−d+1−z ≤ 1.

The only divergent term in the on-shell action is

−1

2

∫
∂M

ddxr2∆−d+1−z (∆− d+ 1− z)φ2
(0) (3.35)

Again, we need only invert the expansion of φ to first order, and get the following

large r form for the counter-term

Sct =
1

2

∫
∂M

ddx
√
−γ (∆− d+ 1− z)

(
φ2 +O

(
r−1
))

(3.36)

Our regulated expectation value is now

〈O〉 = −r∆+1∂rφ+ (∆− d+ 1− z) r∆φ = −r2∆−d−z+1r∂rφ̂

= (2∆− d+ 1− z)φ(2∆−d−z+1) +O
(
r−1
)

(3.37)

This is reassuring - we might have worried that renormalising the dual field

theory would require us to include in the gravity theory a counter-term that was

not a bulk scalar (for instance, something containing t derivatives.) These results

also reduce to those of section 2.3 if we set z = 1, as we should expect.
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The Massive Vector Model

Having discussed the geometry of asymptotically Lifshitz spacetimes and how the

holographic dictionary is modified by these asymptotics, we will now consider a

concrete example of such a spacetime as a stationary point of a particular action.

The theory that we will consider is a massive vector field of mass m0 coupled to

Einstein gravity with a cosmological constant, Λ, in an arbitrary number of bulk di-

mensions, d+1. In section 4.1 we will review the equivalence of this theory to another

phenomenological theory with a 2-form/(d− 1)-form as its matter content, which

was the subject of several early papers on Lifshitz holography(eg. [1], [50], [51]).

We will also discuss the relation between this model and some of the recent string

theory constructions of Lifshitz spacetimes. In section 4.3 we will show that this

model supports Lifshitz spacetimes with arbitrary radius of curvature and dynami-

cal exponent, for appropriate choices of m0, Λ. We show that the number of Lifshitz

spacetimes that the action supports is determined by Λ/m2
0, and that the param-

eter space as split into three regions variously possessing one, two or zero Lifshitz

solutions.

We will perform linearisations around the AdS and Lifshitz solutions that this

models supports in section 4.4, and identify which of these possess a relevant operator

capable of driving an RG flow to a new fixed point in the IR. Having conjectured

the existence of Lifshitz to AdS, Lifshitz to Lifshitz and AdS to Lifshitz flows, we

perform numerical integration in section 4.5 to confirm the existence of examples of

each of these in d = 3, 4 and 5.

34
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4.1 Equivalence to the 2-form/(d− 1)-form model

We will briefly review the on-shell equivalence between two early phenomenological

models for Lifshitz spacetimes. Since the bulk calculations we perform are entirely

classical, all of our results will be valid in both of these models.

An action that admits the metric (3.2) in d = 3 as a solution to its equations of

motion was first written down in [1], and is directly generalised to arbitrary d

S1 =

∫
dd+1x

(√
−g (R− 2Λ)− 1

2
F(2) ∧ ∗F(2) −

1

2
F(d) ∧ ∗F(d) − γB(d−1) ∧ F(2)

)
(4.1)

where F(2) = dA(1), and F(d) = dB(d−1) are respectively the field strengths of abelian

1-form and (d− 1)-form fields. It has been shown that this is equivalent on-shell to

a much simpler model [34], a massive vector field coupled to gravity

S2 =

∫
dd+1x

√
−g
(
R− 2Λ− 1

4
FabF

ab − m2
0

2
AaA

a

)
(4.2)

where F is now the field strength of the 1-form A. Note that the mass term means

that this field does not have a gauge symmetry, and hence there is no conserved

charge associated to it.

The equation of motion of B(d−1) from (4.1) is d ∗F(d) = γdA(1), so we can write

∗F(d) = γA(1) − C (4.3)

where C is some closed 1-form (the requirement that C be exact, and hence that

the space be simply connected, in [65] does not seem to be necessary.) If we now

define a vector field A by

A = A(1) −
1

γ
C (4.4)

then this has field strength F = F(2). We also have F(d) = (−1)dA. Therefore the

F(2) ∧ ∗F(2) term of (4.1) becomes the kinetic term of (4.2) and the F(d) ∧ ∗F(d)

becomes a mass term for A. Replacing F(2) by F and integrating by parts, it can

be seen that, up to a surface term, the Chern-Simons term of (4.1) also becomes a

mass term for A. The total mass is m2
0 = γ2, and the action coincides with (4.2).
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4.2 Relation to string theory

As the justification for gauge/gravity dualities is best supported within string theory,

we should really only expect a gravity theory to be dual to a Lifshitz field theory

if it is a consistent truncation of a supergravity. As such theories have been found

recently (e.g. [39], [40], [41]) including some that preserve some supersymmetry [45],

it might seem that there is no longer any reason to study the massive vector model.

Indeed, in chapter 5 we will see an even richer structure of holographic flows within

the theory of [41].

However, many such truncations contain a massive vector (or equivalent form

fields) within their matter content. A recently published example illustrating this

very clearly is [48]. There the authors use the results of [45] to obtain a 5D consistent

truncation of type IIB supergravity retaining the Ramond-Ramond scalar, C0, and

the dilaton, φ. They then compactify on an S1 to a 4D spacetime, gaining a scalar,

T , parameterizing the size of the S1, and a vector A gauging the reparametrization

invariance of the circle coordinate. A has a 2-form field strength, and dC0 can

be dualised to a 3-form field strength, giving the fields of [1], and generating the

required Chern-Simons coupling in the action.

Unfortunately this also illustrates the limitations of looking at only the massive

vector part of the model. The final action of [48] still contains the scalars φ, T ,

the presence of which significantly alters the details of the theory. For instance,

previous numerics in [51], [50] found that the massive vector model possess extremal

black holes in the limit of vanishing horizon size, whereas the numerical work of [48]

showed that this truncation of IIB supergravity does not possess extremal black

holes, and that the size of the S1 sets a minimum horizon radius. It is not simply

the case that the scalars are ‘cutting off’ some of the family of black hole solutions.

A more significant qualitative difference is that the supergravity black holes of [48]

have a range of horizon sizes for which they have a negative specific heat (similar

to small black holes in AdS spaces), whereas [51] showed that those of the massive

vector model do not.

As there seems to be no way to predict exactly which features of the massive

vector model will be left intact under interactions with scalars (or indeed any other
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fields left over from truncations and compactifications) its usefulness for making

predications about genuine field theory duals seems to be severely limited. However,

its simplicity makes it an attractive toy model, and the existence of such a wide range

of holographic flows within the theory suggests that they are a common feature,

and that we might expect to find some within a supergravity theory. We will see in

chapter 5 that this is indeed the case.

4.3 Lifshitz solutions

In this section we will introduce the equations of motion for the massive vector

model, and our ansatz for the metric and the gauge field. We will show that, for an

appropriate choice of m0 and Λ, this matter content supports Lifshitz spacetimes

with arbitrary dynamical exponent, and that the same conditions on m0, Λ are

necessary for the spacetime to be asymptotically Lifshitz at large or small r. We

show that the number of Lifshitz spacetimes supported by the model is either zero,

one or two, depending on the value of Λ/m2
0.

Working with the massive vector model makes a little clearer what our ansatz for

the vector field should be if it is to support a Lifshitz spacetime. We do not wish to

break spatial isotropy or homogeneity of the boundary, so the Ai components should

vanish, and neither Ar nor At should depend on the xi coordinates. We do not wish

to break time translation invariance either, so neither of these should depend on t.

This leaves us with Ar (r), At (r).

The equations of motion are

Rab −
1

2
Rgab + Λgab =

1

2

(
FacFb

c − 1

4
FcdF

cdgab

)
+
m2

0

4
(2AaAb − AcAcgab) (4.5)

∇bF
ba = m2

0A
a (4.6)

∇bF
br = m2

0A
r imposes Ar (r) = 0, so we may restrict our attention to At (r).

We will write down the most general ansatz that we will consider in this section

ds2 = L2

(
−e2F (r)dt2 + e2D(r)dr

2

r2
+ r2

d−1∑
i=1

dx2
i

)
(4.7)

A = α (r) eF (r)dt (4.8)
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The rr and tt components of (4.5) and the t components of (4.6) then respectively

become

rF ′ +
d− 2

2
+

L2Λ

d− 1
e2D +

1

4 (d− 1)L2

((
e−F r

(
αeF

)′)2

−m2
0L

2e2Dα2

)
= 0 (4.9)

rD′ − d

2
− L2Λ

d− 1
e2D − 1

4 (d− 1)L2

((
e−F r

(
αeF

)′)2

+m2
0L

2e2Dα2

)
= 0

(4.10)

r
(
r
(
αef
)′)′

+ (d− 2) r
(
αeF

)′
=

m2
0

2 (d− 1)
e2Dα2r

(
αeF

)′
+m2

0L
2e2DαeF

(4.11)

These are satisfied [1], [34] for a Lifshitz solution with dynamical exponent z,

F = z log r, D = 0, α =

√
2 (d− 1) (z − 1)

m0

(4.12)

provided that

Λ = −z
2 + (d− 2) z + (d− 1)2

2L2
, m2

0 =
z (d− 1)

L2
(4.13)

We might worry that to support a spacetime that is merely asymptotically Lif-

shitz, these conditions on z and Λ might not be necessary. We can show that they

are as follows [65]. Summing (4.9) and (4.10) gives

m2
0

2 (d− 1)
e2Dα2 = rF ′ + rD′ − 1 (4.14)

For (4.7) to be asymptotically Lifshitz with radius L, we need F = z log r + O (1)

and D = 0 +O (r−1). Then (4.14) implies

α2 =
2 (d− 1) (z − 1)

m2
0

+O
(
r−1
)

(4.15)

Substituting these asymptotics into (4.11) gives

m2
0 =

z (d− 1)

L2
(4.16)

and substituting this and the asymptotics of the fields into either of (4.9), (4.10)

gives

Λ = −z
2 + (d− 2) z + (d− 1)2

2l2
(4.17)
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This argument works at small r if the subleading term in D is replaced by O (r).

Note that the Lifshitz solutions with z < 1 are not acceptable as the vector field no

longer takes a real value.

The pair (m2
0,Λ) does not always specify a unique Lifshitz solution [53]. We can

eliminate L between (4.16) and (4.17) to get

z2 +

(
d− 2 + 2 (d− 1)

Λ

m2
0

)
z + (d− 1)2 = 0 (4.18)

To have at least one Lifshitz solution with z ≥ 1, we need to have Λ/m2
0 ≤

− (3d− 4) /2 (d− 1). There is a second Lifshtiz solution for −d/2 ≤ Λ/m2
0 ≤

− (3d− 4) /2 (d− 1).

In addition to the Lifshitz solutions found above, for every Λ < 0 we also have

an AdS solution with

F = log r, D = 0, α = 0, L2 = −d (d− 1)

2Λ
(4.19)

4.4 Linearisations

In a similar fashion to the examples in section 2.1, we will look for solutions of the

equations of motion, linearised about either a Lifshitz or AdS background. We wish

to identify when one of the fields of our ansatz is dual to a relevant operator, as this

allows a perturbation to the UV theory that may drive a renormalisation group flow

to another fixed point in the IR. The results of this section will not be sufficient to

justify the existence of these RG flows, and we will need to resort to numerics in

section 4.5 to do this. However, the results of this section will rule out the existence

of some flows.

4.4.1 Linearisation around AdS

Setting F = z log r + δF , D = 0 + δD and α = 0 + δα, the linearised equations of

motion (4.9)-(4.11) are quite simple

rδF ′ = dδD, rδD′ = −dδD, r (rδα′)
′
= −drδα′ +

(
m2

0L
2 + 1− d

)
δα (4.20)
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These have 4 independent solutions

δF = F0 + F1r
−d, δD = F1r

−d, α = α1r
−∆1 + α2r

−∆2 (4.21)

where

∆1,2 =
d

2
∓

√
4m2

0L
2 + (d− 2)2

2
(4.22)

The F0 solution corresponds to rescaling the t coordinate, and the F1 mode to

the expectation value of the energy of the boundary field theory. This operator has

dimension d, and is marginal at the linear level. From the fact that it corresponds

to a global rescaling of t, we in fact know that this is exactly marginal, and will not

drive an interesting RG flow.

We will regard α1 as boundary data for the vector field, so that α2 is the expecta-

tion value of some operator in the dual field theory. The operator has dimension ∆2,

and is relevant for Λ/m2
0 < −d/2. In this range we might find the AdS spacetime

at the UV end of a renormalisation group flow. For Λ/m2
0 > −d/2 we might find it

at the IR end. When we look for flows numerically in section 4.5 we will see that

this is the case. Since both the equations of motion and the AdS background are

unchanged under α 7→ −α, changing the sign of this perturbation will only change

the sign of α along the flow. There is really only a single direction to perturb along.

4.4.2 Linearisation around Lifshitz

The linearisation around a Lifshitz solution is more complicated, as the gauge field

no longer decouples from the metric components. Our fields are now

F = z log r + δF, D = δD, α =

√
2 (d− 1) (z − 1)

m0

+ δα (4.23)
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The general solutions are

δF =F0 +
d− 1− z
d− 1 + z

F1

rz+d−1
+ (z + d− 2) (z + d− 1 + β)

α1

r
1
2

(z+d−1−β)

+ (z + d− 2) (z + d− 1− β)
α2

r
1
2

(z+d−1+β)
(4.24)

δD =
F1

rz+d−1
+ (z − 1) (z − 3d+ 3 + β)

α1

r
1
2

(z+d−1−β)
+ (z − 1) (z − 3d+ 3− β)

α2

r
1
2

(z+d−1+β)

(4.25)

δα =− L (d− 2 + z)

√
2

z (z − 1)

F1

rz+d−1

+ L (z + d− 2) (3z − d+ 1− β)

√
2 (z − 1)

z

α1

r
1
2

(z+d−1−β)

+ L (z + d− 2) (3z − d+ 1 + β)

√
2 (z − 1)

z

α2

r
1
2

(z+d−1+β)
(4.26)

where β (z, d) =
√

9z2 − (2 + 6d) z + (d+ 7) (d− 1). For d = 3, these modes were

found in [64] - F0, F1, α1 and α2 correspond respectively to c1, c4, c3 and c2.

The F0 mode again corresponds to globally rescaling the t coordinate, and so we

can assume this is exactly marginal. F1 corresponds to the energy density of the

field theory. The stress-energy tensor in such asymptotics for d = 3, including more

general modes, is discussed in [64].

We assume that we are working with boundary conditions such that α1, the

coefficient of the slow fall-off mode, is fixed (though it should be noted that this

interpretation may not be valid above some value of z [64]). Then the vector field

is dual to an operator in the boundary theory with dimension 1
2

(z + d− 1 + β).

This is relevant for 1 < z < (d− 1). Since the Lifshitz background does not have

the α 7→ −α symmetry that the AdS case did, we expect the two signs of the

perturbation to drive different flows.

Based on the linearisations of sections 4.4.2 and 4.4.1 we can now restrict our

search for flows, since the spacetime at the UV end of the flow must have an irrelevant

operator, and the spacetime in the IR must have a relevant operator. To confirm

that such flows actually exist we must go beyond the linear level, and the only way

to proceed is through numerics. This will be the subject of section 4.5.
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4.5 Numerical Flows

In the preceding section we found the perturbations around the Lifshitz and AdS

solutions to linear order. We can conjecture the existence of flows from the space-

times with relevant operators to those with irrelevant operators from this, and rule

out any other such flows. We now turn to numerics to confirm the existence of these

flows, and to find their exact profiles.

We will work in terms of the radial variable ρ = log r. We will do all our

integration using RK4 with a fixed step-length of ∆ρ = 0.01. All the spacetimes we

are interested in have at least 3 negative eigenvalues in their linearisation, so trying

to integrate from large to small r will be expected to be very sensitive to initial

conditions. Generically we would expect numerical error to introduce contributions

to the expectation values F1 and α2, so we would find the IR appropriate to some

non-trivial state. Therefore in all examples we ‘shoot’ from small to large r.1 The

vacua we shoot from have a single unstable direction, so we need only choose the

sign of the perturbation.

We already know that this model is capable of supporting one example of such

a geometry. Working in the equivalent 1-form/(d− 1)-form model in d = 3, [1]

numerically found a spacetime that is asymptotically AdS at small r and asymp-

totically Lifshitz with z = 2 at large r. The UV-IR correspondence interpretation

of this is the gravitational dual of a field theory with a renormalisation group flow

from a Lifshitz fixed point at high energy to a conformal fixed point at low energy.2

However, this is a rather special case - we see from section 4.3 that this is at the

highest value of Λ/m2
0 for a Lifshitz spacetime exists.

We will show in d = 3, 4 and 5 that there exist flows from Lifshitz spactimes

with 1 < z ≤ (d− 1) to AdS spacetimes. There also exist flows from these

Lifshitz spaces with 1 < z ≤ (d− 1) to Lifshitz spacetimes with dynamical ex-

ponent (d− 1)2 /z. These two classes of flow exist within the parameter range

1Note that the ‘shot’ goes in the opposite direction to the ‘flow’.
2We will use the language ‘Lifshitz to AdS flow’ from now on to describe such a spacetime

without further comment.
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−d/2 < Λ/m2
0 ≤ − (3d− 4) /2 (d− 1). We will also find flows from AdS space-

times to Lifshitz spacetimes with dynamical exponents z ≥ (d− 1)2. These exist for

Λ/m2
0 ≤ −d/2.

4.5.1 Lifshitz → AdS flows

1

1.2

1.4

1.6

1.8

2

20 40 60 80 100 120 140

ρ

∂
ρ
F

0

1.5

3

20 40 60 80 100 120 140

ρ

α

Figure 4.1: Holographic RG flow in d = 3 from a Lifshitz spacetime with z = 1.6 in

the UV to an AdS4 spacetime in the IR.

Based on the linearisations of section 4.4, we expect there to exist flows from

any Lifshitz spacetimes with 1 < z ≤ (d− 1) in the UV to an AdS space with

L2
AdS = −d (d− 1)

2Λ
=

d (d− 1)

z2 + (d− 2) z + (d− 1)2L
2
Li (4.27)

in the IR. This is possible within the parameter range−d/2 < Λ/m2
0 ≤ − (3d− 4) /2 (d− 1).

Such a flow was found in [1] in the case z = 2, d = 3, however this is a slightly special

case since it is the value of Λ at which the two Lifshitz spaces ‘merge’.

Since the AdS vacuum has α = 0 and the irrelevant perturbation in section 4.4.1

involves only the vector field, the α 7→ −α symmetry of (4.9)-(4.11) means that the

sign of the perturbation does not matter here - there is only a single direction we

can shoot in. The value of Λ for these numerics is set such that the spacetime in the

IR has curvature length 1, and then m2
0 is chosen to support a Lifshitz spacetime

with the desired value of z.

In d = 3, numerical shots were made from AdS spacetimes with values of m2
0

chosen such that they would support Lifshitz spacetimes with z = 1.2, 1.4, 1.6,
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1.8 and 2, and we did hit such spacetimes in the UV. Plots of ∂ρF and α for the

z = 1.6 case are included here as figure 4.1. In all cases ∂ρF comes within 10−5

of the expected value, and the curvature length comes within 10−3 of the value we

would expect from (4.27). In the z = 2 case ∂ρ and α decay very slowly to their

expected values. This is to be expected, since in this case the direction we are

approaching the Lifshitz point along is marginal at the linear level, so the decay

should be logarithmic rather than a power-law.

This behaviour seems persist in higher dimensions. Flows were found in d = 4

from Lifshitz spacetimes with z = 1.5, 2, 2.5 and 3 to AdS5, and in d = 5 from

Lifshitz spacetimes with z = 1.5, 2, 3 and 4 to AdS5. The behaviour of α and each

of the metric components is qualitatively similar to the d = 3 case, so I have not

included figures for these flows.

4.5.2 Lifshitz → Lifshitz flows

1

1.5

2

2.5

3

3.5

4

5 10 15 20 25 30 35 40

ρ

∂
ρ
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5 10 15 20 25 30 35 40

ρ

α

Figure 4.2: Holographic RG flow in d = 3 from a Lifshitz spacetime with z = 1.333

in the UV to one with z = 3 in the IR.

We can conjecture, based on the linearisations of section 4.4, that these flows

will exist from any Lifshitz spacetime with dynamical exponent 1 < z < (1− d) to

one with dynamical exponent (d− 1)2 /z ∈
(
(1− d) , (1− d)2). As in the previous

section, these flows require −d/2 < Λ/m2
0 ≤ − (3d− 4) /2 (d− 1).

In d = 3 we searched for flows to the z = 2.5, 3.0 and 3.5 spacetimes. Shooting

from the IR with a perturbation such that δα < 0 we hit another Lifshitz spacetime
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in the UV. In each of these cases the ∂ρF plot showed that we hit the expected

values

zUV =
(d− 1)2

zIR
, L2

UV =
(d− 1)2

z2
IR

L2
IR (4.28)

to within 10−4. The flow from z = 1.333 in the UV to z = 3 in the IR is reproduced

here as figure 4.2. Shooting in the δα > 0 direction resulted in F and D and α

becoming numerically infinite within finite ρ.

In d = 4 flows from z = 1.125, 1.5, 1.8 and 2.25 in the UV to, respectively, z = 8,

6, 5, and 4 in the IR were found. In d = 5 such flows were found from z = 1.067, 1.6

and 3.2 to, respectively, z = 15, 10 and 5. These flows were all qualitively similar

to those found in the d = 3 case, so plots have not been reproduced here.

4.5.3 AdS → Lifshitz flows
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Figure 4.3: Holographic RG flow in d = 3 from an AdS4 spacetime in the UV to a

Lifshitz spacetime with z = 6 in the IR.

We expect these to exist from the AdS spacetime within the range Λ/m2
0 ≤ −d/2,

to a Lifshitz spacetime with z ≥ (d− 1)2.

Again, shooting in the δα > 0 direction from the Lifshitz IR resulted in diver-

gences within finite ρ. Shooting in the δα < 0 direction, we found flows in d = 3

from AdS spacetimes to Lifshitz spacetime with z = 4, 6 and 10 in the IR. The

length-scale of the AdS space we expect in the UV from (4.27) matched those found

to within 10−4. The flow to the z = 6 Lifshitz spacetime is included as figure 4.3.
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0

1
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2
− (3d−4)

2(d−1)
-1

Λ/m2
0

z

No relevant operators
With a relevant operator

Figure 4.4: The vacua of the massive vector model in d + 1 dimensions, labelled

according to whether or not they possess an irrelevant perturbation within our

ansatz. This plot was made using d = 3, but is qualitatively the same at higher d.

The arrows denote the holographic RG flows. The existence of these can be guessed

from the linearisations, but is not fully justified without the numerics. We have

checked that examples of each of these flows exist in d = 3, 4 and 5.

In d = 4 such flows were checked to exist to z = 9, 15 and 20, and in d = 5 for

z = 16, 25 and 30. The plots of these were qualitatively similar to figure 4.3, so

they are not reproduced here.

We summarise the exact Lifshitz and AdS solutions, whether they possess a

relevant operator and the holographic RG flows that we have found in figure 4.4.

We should also note that we can rule out the existence of any other flows to these

points in the IR - we have tried shooting in each irrelevant direction.



Chapter 5

6D N = 4 gauged massive

supergravity

5.1 Field content, ansatz and equations of motion

We now wish to find holographic flows involving Lifshitz spacetimes as solutions of

a supergravity theory. It has already been shown in [41] that N = 4 6D gauged

massive supergravity is capable of supporting such solutions over a range of z, with

some region of the parameter space having two Lifshitz solutions, and this theory

also possess an AdS solution. Therefore we might hope to reproduce each species of

flow found in section 4.5.

The bosonic matter content of the theory consists of a dilaton, φ, a 2-form, Bµν ,

an SU (2) vector field, A
(i)
µ and a U (1) vector field Aµ. We ignore the fermion

content. In our conventions (which differ from those of [41] in both the signature of

the metric and the sign of the curvature tensor) the bosonic part of the action is

S =

∫ √
−g

(
1

4
R− 1

2
∂µφ∂µφ−

e−
√

2φ

4

(
HµνHµν + F (i)µνF (i)

µν

)
− e2

√
2φ

12
GµνρG

µνρ − 1

8
εµνρλστBµν

(
FρλFστ +mBρλFστ +

m2

3
BρλBστ + F

(i)
ρλ F

(i)
στ

)
+

1

8

(
g2e
√

2φ + 4gme−
√

2φ −m2e−3
√

2φ
))

(5.1)

where H = F + mB, and F , F and G are respectively the field strengths for the

U (1) and SU (2) gauge fields and the 2-form.

47
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The ansatz we take for the metric is

ds2 = −e2F (r)dt2 + r2
(
dx2

1 + dx2
2

)
+ e2d(r)dr

2

r2
+ e2h(r) 1

y2
2

(
dy2

1 + dy2
2

)
(5.2)

where the hyperbolic directions y1 and y2 are compactified by modding out some

discrete subgroup, and our ansatz for the matter fields is

F = 0, F (3) =
α (r) eF (r)+d(r)

r
dt∧dr+ γ

y2
2

dy1∧dy2, B =
β̄ (r)

2
r2dx2∧dx2, φ = φ (r)

(5.3)

γ is required to be constant by dF (3) = 0 and from now on we will treat it as a

parameter of the theory. The t component of the equation of motion for F (3) can

be integrated to give

α = γβ̄e
√

2φe−2h (5.4)

and we will replace all occurrences of α with this in the equations of motion below.

Before proceeding further we will make some field redefinitions to absorb some

factors of g and m into the matter fields, and work with

ϕ =

√
m

g
e−
√

2φ, e−2H =
γ
√
gm

e−2h, β =

√
m

g
β̄, e−2D =

1√
g3m

e−2d (5.5)

and f . With these redefinitions the equations of motion will turn out to depend

only on the combination g2γ2.

We will work with the radial coordinate ρ = log r, as this further simplifies

the equations of motion, and will be a more practical variable to work in for the
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numerical integration. We get 4 independent equations of motion

∂ρ∂ρβ =− 2∂ρβ − (2β + ∂ρβ)
(
∂ρF + 2∂ρH − 2ϕ−1∂ρϕ− ∂ρD

)
+ ϕ

(
ϕ2 + 4e−4H

)
e2Dβ (5.6)

∂ρ∂ρϕ =− ∂ρϕ
(
∂ρF + 2∂ρH − ϕ−1∂ρϕ− ∂ρD + 2

)
+

1

4

((
ϕ2 − 4e−4H

)
β2 + 1− 4ϕ2 + 3ϕ4 + 4ϕ2e−4H

)
e2D − 1

2
ϕ−1 (∂ρβ + 2β)2

(5.7)

∂ρ∂ρF =− ∂ρF (2 + ∂ρF + 2∂ρH − ∂ρD)

+
1

8
e2Dϕ−1

((
ϕ2 + 12e−4H

)
β2 + 1 + 4ϕ2 − ϕ4 + 4ϕ2e−4H

)
+

1

4
ϕ−1 (∂ρβ + 2β)2

(5.8)

∂ρ∂ρH =
1

8
ϕ−1e2D

((
ϕ2 − 4e−4H

)
β2 + 1 + 4ϕ2 − ϕ4 − 12ϕ2e−4H

)
+

1

4
ϕ−2 (∂ρβ + 2β)2

− (∂ρF + 4∂ρH − ∂ρD + 2) ∂ρH −
1

gγ
e−2He2D + (∂ρH)2 (5.9)

We also have the following

e−2D =

(
− 1

gγ
e−2H +

1

4
ϕ−1

(
−
(
ϕ2 + 4e−4H

)
β2 + 1 + 4ϕ2 − ϕ4 − 4ϕ2e−4H

))/(
1 + (∂ρH)2

+ 4 (1 + ∂ρH) ∂ρF −
1

2

(
ϕ−1∂ρϕ

)2
+ 4∂ρH −

1

4
ϕ−2 (∂ρβ + 2β)2

)
(5.10)

∂ρD =

(
∂ρF + 2∂ρH + 2 +

1

4
ϕ−2 (∂ρβ + 2β)2

)
− 1

8
ϕ−1

(
−
(
3ϕ2 + 4e−4H

)
β2 + 1 + 4ϕ2 − ϕ4 + 4ϕ2e−4H

)
(5.11)

which should be regarded as algebraic equations for e−2D and ∂ρe
−2D. (5.11) is

redundant, however it simplifies matter to have to available in this form. After

substituting for (5.10) and (5.11), we have 4 coupled second order ODEs for the 4

fields (β, ϕ, F,H), or equivalently an 8 dimensional first order vector ODE. We do

not explicitly do this substitution as the equations that result would be unwieldy.
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5.2 Lifshitz solutions

Translating into our conventions1, [41] find that the equations of motion generated

by (5.1) are satisfied by

F = zρ, e−2H =

(
(z + 2) (z − 3)± 2

√
2z + 8

)1/2

2
√
z (z + 4)1/4 (6 + z ∓ 2

√
2z + 8

)1/4

ϕ =

(
6 + z ∓ 2

√
2z + 8

z2 (z + 4)

) 1
4

, β =

(
6 + z ∓ 2

√
2z + 8

z2 (z + 4)

) 1
4 √

z − 1 (5.12)

provided that

g2γ2 =
(z + 4)

(
(z + 2) (z − 3)± 2

√
2z + 8

)(
3z + 6∓ 2

√
2z + 8

)2 (5.13)

I will refer to these as the upper sign and lower sign Lifshitz solutions. We might

worry that β → −β is a symmetry of the equations of motion, and produces another

pair of Lifshitz solutions, but these are identical in every other field. It is easy to

show that {∂ρβ = β = 0} is an invariant manifold, and therefore that we cannot find

a holographic RG flow between β > 0 and β < 0, so we ignore β < 0 from now on.

For the lower sign solution, the requirement that g2γ2 > 0 restricts us to z >
√

2 +
1+
√√

32+17

2
≈ 4.294. This branch of solutions exists for all g2γ2 > 0.

For the upper sign solution, we are restricted to z > 1 by reality of β. This

solution exists for g2γ2 > 30−10
√

10
36
√

10−121
≈ 0.227. As z → 1 this branch connects to one

of the branches of AdS solutions found in the next section.

5.3 AdS solutions

This theory also possess AdS solutions, but only in a restricted range of g2γ2. It

suffices to label the AdS spacetimes by ϕ2, and then

g2γ2 = −(1− ϕ2) (1− 3ϕ2)

(1− 2ϕ2 + 2ϕ4)2 (5.14)

For 0 < g2γ2 < 9−
√

216√
1536−44

≈ 1.185 this has two solutions for ϕ2, one either side of

1 − 1/
√

6 ≈ 0.592. I refer to a solution with ϕ2 ∈
(

1
3
, 1− 1√

6

)
as a small ϕ AdS

1In particular, note that γ here is not the same as in [41]
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solution and one with ϕ2 ∈
(

1− 1√
6
, 1
)

as a large ϕ AdS solution. These have

F = ρ, β = 0, e−2H =

√
(1− ϕ2) (3ϕ2 − 1)

2ϕ
(5.15)

Note that as z → 1 the upper sign branch of Lifshitz solutions joins on to the

small ϕ branch of AdS solutions, at ϕ2 ≈ 0.3675.

It can be shown that {∂ρβ = β = 0, ∂ρF = 1, F = ρ} is also an invariant mani-

fold of this dynamical system.

5.4 Linearisations

We will now linearise the equations of motion around the AdS and Lifshitz solu-

tions. This will tell us the dimensions of the operators in the dual field theory, or

equivalently the behaviour of a small perturbation from one of these spacetimes as

we integrate the equations of motions radially.

In the case of the AdS spacetimes, many of the fields decouple from one another

and we are able to solve the linearised equations analytically. As we vary ϕ, we find

that there are AdS spaces with one, two and three irrelevant operators within this

ansatz. There is also a range of ϕ in which the dimension of one of the operators is

complex, indicating a Breitenlohner-Freedman type instability.

Due to the complexity of the Lifshitz solutions, the equations of motion were

linearised around these using a computer algebra system, and the eigenvalue problem

had to be solved numerically. We will find that the lower sign Lifshitz solution

always has two irrelevant operators. For sufficiently large z this space only has real

operator dimensions, and so does not suffer from an instability. The upper-sign

Lifshitz solution always possesses a single irrelevant operator and has only a small

range of z for which the operator dimensions are all real.

Our ansatz has only considered modes which vary with r, whereas Breitenlohner-

Freedman instabilities are really dynamical instabilities in which the magnitude

of small amplitude Fourier modes grow exponentially. However, looking at (3.14)

suggests that when ∆ is complex we might expect eigenvalues of the ∂2
t operator to

be complex, which would lead to such growing modes. When such an instability is
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present we do not necessarily expect the spacetime to have a field theory dual, and

so our use of the term ‘operator dimension’ above to refer to ∆ may be inappropriate

in these cases.

5.4.1 Linearisations around AdS
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Figure 5.1: Real part of operator dimensions of the field theory dual to AdS solu-

tions. Note that an operator is irrelevant if ∆ > 3.

This can be done analytically. The fact that {∂ρβ = β = 0} and {∂ρβ = β = 0,

∂ρF = 1, F = ρ} are invariant suggest that the β, F directions should decouple,

and they do.

At the linear level we have solutions δF ∼ F0 + F1r
−3, so we have an operator

(the energy density) of dimension ∆1 = 0.

We also have δβ ∼ β0r
∆2−3 + β1r

−∆2 where

∆2 =
3

2
+

1

2ϕ

√
(12− 7ϕ2) (7ϕ2 − 2)

(2− ϕ2)
(5.16)

This operator is irrelevant for ϕ2 > 1−
√

2
5
≈ 0.368.

The ϕ and H directions mix, and have solutions

δϕ = ϕ5r
∆3−3 + ϕ6r

−∆3 + ϕ7r
∆4−3 + ϕ8r

−∆4

δH = H5r
∆3−3 +H6r

−∆3 +H7r
∆4−3 +H8r

−∆4 (5.17)
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with operator dimensions

∆3 =
3

2
+

√
3

2ϕ

√
−7ϕ4 + 22ϕ2 − 4 + 4 (1− ϕ2)

√
25ϕ4 − 6ϕ2 + 1

(2− ϕ2)
(5.18)

∆4 =
3

2
+

√
3

2ϕ

√
−7ϕ4 + 22ϕ2 − 4− 4 (1− ϕ2)

√
25ϕ4 − 6ϕ2 + 1

(2− ϕ2)
(5.19)

with the coefficients satisfying

ϕ5

H5

= −ϕ6

H6

=
2ϕ2

(
4ϕ2 +

√
25ϕ4 − 6ϕ2 + 1

)
(3ϕ2 − 1)3/2 (1− ϕ2)1/2

,

ϕ7

H7

= −ϕ8

H8

=
2ϕ2

(
4ϕ2 −

√
25ϕ4 − 6ϕ2 + 1

)
(3ϕ2 − 1)3/2 (1− ϕ2)1/2

(5.20)

∆4 is complex for ϕ2 < 37−
√

433
39

≈ 0.4152.

The operator dimensions are summarised in figure 5.1. Note that −∆ < 0 for all

operators, making shooting from large r to small r is impractical - numerical error

will generate some perturbation along these directions, and we would miss the fixed

point we were aiming for at small r. In field theory language, the numerical error

would move us out of the vacuum state, and this non-trivial state would dominate

the IR physics (typically by being at finite temperature and hence introducing an

event horizon in the bulk.) Note than from now on we will consistently use the verb

shoot to mean to numerically integrate from small r to large r. This is opposite to

the direction of a flow.

Since ∆4 − 3 changes sign at the boundary between the small ϕ and large ϕ

branches, we can guess that shooting along this direction will give us a flow from

small ϕ AdS in the UV to large ϕ AdS in the IR. The fact that the operator

associated to ∆2 changes from being relevant to irrelevant suggests that there will

be both Lifshitz to AdS and AdS to Lifshitz flows. We could also shoot along the

∆3 direction, however I postpone discussion of this to section 5.5.1 after we have

seen the other linearisations.

5.4.2 Linearisation around Lifshitz

Nothing obviously decouples around the Lifshitz fixed points, so a computer algebra

system was used to do these linearisations and to compute the eigenvalues of the
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Figure 5.2: Real part of operator dimensions of the field theory dual to lower sign

Lifshitz solution. Note that an operator is irrelevant if ∆ > z + 2.

flow matrix numerically. The operator dimensions are plotted in figures 5.2 and 5.3.

None of the operators change from being relevant to irrelevant within the range

plotted. I have looked at up to z = 100 and found no such changes. It can be seen

that ∆1 = z + 2, and it appears that ∆2, ∆4 ∼ z + 2 as z →∞. The perturbation

associated to the ∆1 source is entirely in the field F , so this still corresponds to

globally rescaling the t coordinate.

Around the lower sign Lifshitz solution, ∆4 is complex for z . 16.8221. Around

the upper sign Lifshitz solution, ∆4 is complex for z . 5.6927, and both ∆4 and ∆2

are complex for z & 5.8329.

5.5 Numerical flows

The numerical integration was done using RK4 with a fixed step-length of ∆ρ =

0.001. The dynamical system was initialised to either an AdS or Lifshitz point at

ρ = 1, plus some small perturbation (of size 0.001 in our field variables). Since such

a perturbation does not necessarily put us on exactly the trajectory we want, or

indeed a trajectory that decays to it in the case that there is more than one positive

eigenvalue, we searched (by interval bisection) in the space of possible directions on
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Figure 5.3: Real part of operator dimensions of the field theory dual to upper sign

Lifshitz solution. Note that an operator is irrelevant if ∆ > z + 2.

a 2D plane spanned by two unstable eigenvectors. This should be sufficient to do

any necessary fine tuning, unless we are shooting from the AdS fixed point with

ϕ & 0.592. In practise it turns out that we can still make some progress within this

range anyway.

5.5.1 Flows from 6D AdS

0.5

0.577

0.7

1 2 3 4 5 6 7 8

ρ

∂
ρ
F

0

2

3

1 2 3 4 5 6 7 8

ρ

−
∂
ρ
e−

2
H
/e
−

2
H

Figure 5.4: Holographic RG flow from the 6D spacetime (5.21) to the ϕ2 = 0.45

AdS solution. F = ρ, β = 0 throughout this flow.

Before attempting to find flows between the fixed points described in sections
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Figure 5.5: Holographic RG flow from the 6D spacetime (5.21) to the z = 2 upper

sign Lifshitz solution.

5.2 and 5.3 we shall first shoot along the direction associated to the ∆3 operator

about the AdS and Lifshitz fixed points. Note that as this is the “most irrelevant”

operator, and in the later sections most of our numerical efforts will be spent tuning

out perturbations along this direction, and the results of this section will help us to

do so.

Shots along the ∆3 direction from the AdS solutions with ϕ2 = 0.35, 0.45 and 0.8,

with δϕ < 0 were all qualitatively the same. The shot from ϕ2 = 0.45 is reproduced

as figure 5.4. ϕ2 → 1
3

was a common feature of these shots. We can see that e2H

scales like r2 in the UV, and that e2D tends to some finite, non-zero value. This is

interpreted as a holographic flow from a 6 dimensional spacetime

ds2 = −r2dt2 + r2
(
dx2

1 + dx2
2

)
+
√
g3me2D dr

2

r2
+ C

r2

y2
2

(
dy2

1 + dy2
2

)
(5.21)

where C is some constant. Shooting in the opposite direction to this, δϕ > 0,

resulted in eH ∼ r−6, but also ϕ2 ∼ r4.
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Shooting from either the upper or lower sign Lifshitz solutions with δϕ > 0 also

gave a flow to (5.21). This was tried with z = 2, 4, and 10 from upper sign branch

and z = 5, 10 and 25 from the lower sign branch. The shot from z = 2 is reproduced

as figure 5.5. Shooting in the δϕ < 0 direction resulted in ϕ→∞, e2H → 0, but in

these cases there is no power law scaling of either of these variables.

5.5.2 AdS → AdS flows
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Figure 5.6: Holographic RG flow from an AdS space with ϕ2 = 0.425 to an AdS

space with ϕ2 = 0.8. The dashed lines show the exact values of ϕ and e−2H of the

small ϕ AdS space we expected to hit. F = ρ and β = 0 throughout the flow, as

expected.

The change of the operator associated to ∆4 from relevant to irrelevant as ϕ

is increased past ϕ2 = 1 − 1√
6

strongly suggests that every small ϕ AdS solution

possesses a flow to the corresponding large ϕ AdS solution. It initially looks like

shooting from ϕ2 ∈
(

1− 1√
6

)
will involve searching among 3 unstable directions.

However, one of these (∆2) only involves the δβ, δ∂rβ directions. This does not

‘mix’ with the other directions, even at the non-linear level, due to the invariance of

{∂ρβ = β = 0}, nor will numerical error produce a perturbation along this direction.

Therefore we can ignore this direction and just search in the plane spanned by the

unstable eigenvectors of the linearisation associated to the ∆3, ∆4 directions.

Looking at the unstable manifold of the small ϕ AdS point, and ignoring the

β directions, we find that we can label which half of it a flow has been attracted
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to entirely by whether ϕ is larger or smaller than the value corresponding to the

fixed point. We now have some sense of which direction we’ve missed by, and can

proceed to tune a shot to hit the fixed point. We expect the flow that hits the other

AdS point to be very close to the ∆4 direction. Indeed we found that the starting

direction asymptotes to this eigenvector (with ϕ7 < 0 in the notation of (5.20)) as

we reduce the size of the perturbation.

Shots were made from each of ϕ2 = 0.62,0.65,0.7,0.75,0.8,0.85,0.9,0.95. For ϕ2 >

0.7 we could tune the shot to come very close to the small ϕ AdS point in the UV.

For the ϕ2 = 0.62 and ϕ2 = 0.65 shots, the interval we are bisecting becomes smaller

than the precision of the variable we used before we came very close to the fixed

point. However, the fact that shots from either end of this small interval miss by

different directions suggest that such a flow exists, can could be found to arbitrary

accuracy by using higher precision variables. A typical example of such a flow, from

ϕ2 = 0.425 to ϕ2 = 0.8, is reproduced as figure 5.6.

5.5.3 AdS → Lifshitz flows

Any flow from AdS to Lifshitz (or vice versa) must involve the source corresponding

to ∆2 at the AdS end (since only this can take us off the {∂ρβ = β = 0} subspace.)

So to have the AdS solution at the UV end of the flow requires ∆2 < 3, hence

g2γ2 . 0.227. We understand what happens when we shoot from either of the

Lifshitz solutions along their ∆4 direction, so we need the Lifshitz end of the flow

to have a second irrelevant operator, which only the lower sign Lifshitz solution

possesses (∆2). The range 0 < g2γ2 . 0.227 corresponds to 4.294 . z . 7.066. We

already understand the unstable manifold around the space we are aiming at, so we

can proceed to find flows by shooting.

Trying shots from the lower sign Lifshitz point with z = 4.5,5,6 and 6.5 we were

able to tune the shot to come very close to the field values of the AdS fixed point in

the UV. The shot from z = 5 is reproduced as figure 5.7. The ‘dip’ in the ϕ plot in

figure 5.7 is also present in the shot from z = 4.5, but not in the shots for z = 6 or

6.5. This seems to be the only qualitative difference between different flows of this

type. As predicted these fine tuned flows do indeed depart the IR end along the ∆2
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Figure 5.7: Holographic RG flow from an AdS space with ϕ2 = 0.342 to a Lifshitz

space on the lower sign branch with z = 5. The dashed lines show the exact field

values of the AdS space I expected to find in the UV. Note that ∂ρF provides an

estimate of z.

direction.

5.5.4 Lifshitz → Lifshitz flows

One might raise the question of what happens to the above flows at z = 7.066,

since nothing special seems to occur in the IR, based on figure 5.2. We will see that

such shots now hit the upper sign branch of Lifshitz solutions, which branches off

from the small ϕ AdS solutions at g2γ2 = 0.227. Looking at figure 5.3 we can see

that such points have a one dimensional unstable manifold, and it turns out that

we can again identify which half of this our flow has been attracted to purely from

the magnitude of ϕ.

Shooting from the lower sign Lifshitz solutions with z = 7.5 and z = 9 it was
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Figure 5.8: Holographic RG flow from an upper sign Lifshitz space with z = 1.248

to a Lifshitz space on the lower sign branch with z = 9. The dashed lines show the

exact field values of the Lifshitz space I expected to find in the UV. Note that ∂ρF

provides an estimate of z.

possible to get very close to the field values for the appropriate upper sign Lifshitz

solution in the UV. Shooting from z = 15 was more difficult, and required increasing

the size of the initial perturbation to 0.005 to get reasonably close. As in previous

cases, the existence of flows coming close to the fixed point, and then being attracted

to different directions along the unstable manifold, suggests that such flows exist,

but it would require the use of higher precision variables to find them accurately.

The shot from z = 9 is included as figure 5.8. At some point between this and

the z = 15 shot, the value of e−2H of the IR solution becomes less than that of the

UV solution, and the ‘bump’ in this plot disappears.
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Figure 5.9: Holographic RG flow from an upper sign Lifshitz space with z = 2.258

to an AdS space on the small ϕ branch with ϕ2 = 0.45. The dashed lines show the

exact field values of the Lifshitz space I expected to find in the UV. Note that ∂ρF

provides an estimate of z.

5.5.5 Lifshitz → AdS flows

The linearisation suggests that an AdS spacetime with ϕ2 > 1−
√

2
5

could sit at the

IR end of a flow with a Lifshitz spacetime in the UV. We should be able to make

such shots easily from the small ϕ AdS branch. In fact, it will not even matter if we

set off in the ‘opposite direction’ due to the β ↔ −β symmetry. However, on the

large ϕ AdS branch there are three unstable directions - in general I would expect

small perturbations along the ∆4 direction introduced through numerical error to

make these shots impractical.

A shot from AdS with ϕ2 = 0.4 came fairly close to the upper sign Lifshitz

solution, and the shots from ϕ2 = 0.45,0.5,0.55 and 0.58 come very close. The shots

from ϕ2 = 0.65,0.7,0.75 and 0.8 also hit the upper sign Lifshitz solution, despite our
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Figure 5.10: Holographic RG flow from an upper sign Lifshitz space with z = 2.437

to an AdS space on the large ϕ branch with ϕ2 = 0.75. The dashed lines show the

exact field values of the Lifshitz space I expected to find in the UV. Note that ∂ρF

provides an estimate of z.

initial pessimism. The shots from ϕ2 = 0.45 and ϕ2 = 0.75 are included as figures

5.9 and 5.10 respectively. The differences between these two flows is typical of the

difference between flows from the same Lifshitz space to AdS spaces on different

branches.

Since AdS solutions only exist for 0 < g2γ2 < 9−
√

216√
1536−44

≈ 1.185, they can only be

at the IR end of flows from upper sign Lifshitz spaces with 1 < z . 4.367. Nothing

obviously changes about the upper sign Lifshitz branch above this value of z, leading

us to wonder what would happen if we could shoot inwards from such spaces.

Another question is what would happen if we shot from an AdS space with

0.9086 . ϕ2 < 1, since in this range ∆2 is irrelevant, but the upper sign Lifshitz

solutions do not exist. Shooting from ϕ2 = 0.95 we have not been able to hit



5.5. Numerical flows 63

anything other than 6D spaces of section 5.5.1. However, our code doesn’t allow us

to search systematically in this region, due to the presence of 3 positive eigenvalues.

5.5.6 Li → AdS → AdS flows
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Figure 5.11: Holographic RG flow from an upper sign Lifshitz space with z = 1.756

to a point close to the AdS space on the small ϕ branch with ϕ2 = 0.234, and finally

to the AdS space on the large ϕ branch with ϕ2 = 0.8. The dashed lines show the

exact field values of the Lifshitz space I expected to find in the UV. Note that ∂ρF

provides an estimate of z.

The results of subsections 5.5.2 and 5.5.5 suggest the existence of another species

of flow that we should be able to find numerically. If we were to make a shot from

a large ϕ AdS solution along the direction that we expect to take us to the small

ϕ AdS solution, plus a smaller perturbation in the direction associated to ∆2, we

would expect to pass very close to the small ϕ AdS solution, before being attracted

to a shot leaving the small ϕ AdS point in its ∆2 direction, finally hitting the upper
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sign Lifshitz solution in the UV.

Note that such a perturbation is within the unstable manifold of the large ϕ

AdS point, and therefore that point genuinely is the IR limit of the flow. Note also

that this will only work for the region of parameter space in which ∆2 is positive

for both AdS solutions and the upper sign Lifshitz solution exists, namely 0.227 .

g2γ2 . 1.185. Equivalently, we must shoot from an AdS spacetime in the IR with

0.592 . ϕ2 . 0.909.

Such a shot was made, from the ϕ2 = 0.8 AdS point. The results are plotted as

figure 5.11, and show that we do indeed have such a flow.

1
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0 0.227 1.185
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large ϕ AdS
small ϕ AdS

upper sign Li

lower sign Li

Figure 5.12: Summary of the solutions described in sections 5.2 and 5.3, and the

flows between them found in sections 5.5.2 to 5.5.6. Note that this figure is purely

schematic. It is not to scale, and the allowed values of z are not linear functions of

g2γ2.

The flows found in sections 5.5.2 to 5.5.6 between the 4 dimensional solutions are

summarised schematically in figure 5.12. We have found all the flows we expected to

based on the linearisations in section 5.4. For each of these, based on the results of

section 5.5.1, there will exist a very similar flow from (5.21) in the UV, connecting

onto one of the flows in figure 5.12.



Chapter 6

Conclusions

We have reviewed a particular example of non-relativistic holography, where the

boundary field theory possesses the Lifshitz scaling symmetry. In chapter 3 we have

considered spacetimes dual to such theories, and described how the basic holographic

dictionary get modified by the asymptotics of such spaces.

In chapter 4 we described a phenomenological model, a massive vector field

coupled to Einstein gravity, capable of producing such spacetimes in an arbitrary

number of dimensions. We noted that whether this model supported zero, one or

two different Lifshitz spacetimes was dependent on the ratio of the cosmological

constant to the square of the vector mass, Λ/m2
0, and also that there exists an AdS

solution for all Λ < 0. We then solved the linearised field equations analytically for

perturbations around these solutions. Using the results of chapters 2 and 3 we were

able to identify when the boundary field theory possesses a relevant operator dual

to one of these fields, and hence when we might be able to perturb this theory to

generate a renormalisation group flow to another of the fixed points in the IR.

We used numerical integration in section 4.5 to explicitly find examples of holo-

graphic renormalisation group flows and hence verify that our intuition based on

the linearisations was correct. In the region Λ/m2
0 ≤ −d/2 there exists an AdS

solution and a single Lifshitz solution which has z ≥ (d− 1)2. There is an RG

flow from the AdS solution to the Lifshitz solution. In the region −d/2 < Λ/m2
0 <

− (3d− 4) /2 (d− 1) there exists an AdS solution, and a pair of Lishitz solutions

with dynamical exponents in the ranges (1, (1− d)) and
(
(1− d) , (1− d)2). Within
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this range, there exist two RG flows from the Lifshitz solution with smaller z -

one to the AdS solution, and the other to the Lifshitz solution with larger z. At

Λ/m2
0 = − (3d− 4) /2 (d− 1) there is a single Lifshitz solution, which has a holo-

graphic RG flow to the AdS solution, as previously found in [1] for d = 3. We

summarised these as figure 4.4.

In chapter 5 we essentially repeated the procedures of chapter 4, but in N = 4

6D massive gauged supergravity. This theory was shown in [41] to support 4D

Lifshitz solutions with a range of dynamical exponents, and for some values of the

parameters of the theory this also has AdS solutions. We showed that the equations

of motion can be reduced to depend on the combination g2γ2, and therefore we use

this to label regions of the parameter space. We linearised and solved analytically the

equations of motion for perturbations around the AdS spacetimes. In the Lifshitz

case we were unable to solve the linearised equations of motion analytically, and

used numerics to extract the eigenvalues of the flow matrix. In both cases we were

able to identify how many relevant and irrelevant operators the field theory dual

possessed, and make educated guesses as to which RG flows should exist.

We first used numerics to show that each of the 4D spacetimes is at the IR end of

a holographic RG flow from a 6D AdS spacetime, with boundary geometry R1,2×H2.

We then used numerical integration to verify the existence of our conjectured

flows between the 4D spacetimes. In the region 0 < g2γ2 . 0.227 there exists a

pair of AdS solutions and a single Lifshitz solution with z & 4.294. Two RG flows

exist from the AdS space with the larger dilaton (smaller ϕ) value - one to the

AdS space with smaller dilaton value, and one to the Lifshitz space. In the region

0.227 . g2γ2 . 1.185 there exist a pair of Lifshitz solutions with different dynamical

exponents, z, and a pair of AdS solutions. The AdS to AdS flows still exists. There

is an RG flow from the Lifshitz solution with smaller z to the one with larger z.

The Lifshitz solution with smaller z also has RG flows to both AdS spaces. In the

case of flows from this Lifshitz space to the small dilaton (large ϕ) AdS solution,

it is possible to tune the flow to pass very close the large dilaton AdS solution.

For 1.185 . g2γ2, only the two Lifshitz solutions exist. There still exists an RG

flow from the space with smaller z to the one with larger z. These 4D flows are
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summarised as figure 5.12.

These results extend previous work on holographic RG flows, such as the AdS

to AdS flows of [15] and the Lifshitz to AdS flow found in [1]. However, the AdS

to Lifshiz flows and the Lifshitz to Lifshitz flows are new, although asymptotically

AdS spacetimes with Lifshitz scaling in the IR were found in [66] when a perfect

fluid was included in the matter content. The Lifshitz to AdS flows are applicable

to holographic condensed matter physics due to the existence of systems with emer-

gent relativistic conformal symmetries in the IR. The fact that many of the Lifshitz

solutions in the supergravity model are dynamically unstable is disappointing, par-

ticularly as we do not have a stable solution for z = 2 or 3, which are of particular

physical interest. It would be interesting to see whether any of the other known

supergravity constructions of Lifshitz spacetimes for z = 2 are dynamically stable.

We are not aware of an analogue of the c-theorem of [15] for Lifshitz field theories. If

a similar measure of the number of degrees of freedom could be found for these field

theories, it would be interesting to see whether this quantity does decrease along all

the holographic flows found here.

One use of the spacetimes constructed here would be as backgrounds on which

to solve the equations of motion of probe fields to obtain correlation functions in a

relevant deformation of the boundary field theory. Another potentially interesting

piece of further work would be to investigate black holes in these spacetimes. In a

different supergravity model [48] black hole solutions in Lifshitz asymptotics were

found which had a minimum horizon radius and a horizon radius at which the

specific heat of the black hole changed sign. In the supergravity model of chapter

5 it might be possible to numerically construct black holes that asymptote to a

Lifshitz spacetime, with a non-zero source for one of the relevant operators. It

would then be interesting to see whether such a black hole could be constructed

with a sufficiently small horizon radius that we would find an intermediate region

with AdS scaling. It might be possible to produce changes in the behaviour of probe

field correlators by increasing the horizon radius to ‘hide’ the IR conformal scaling.

Similar investigations could be performed with AdS asymptotics and intermediate

Lifshitz regions.
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