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The Topology of Spaces of Polygons

Abstract

We study the topology of spaces of polygons in Euclidean space, viewed up to

translations. The main results concern the structure of the homology groups and of

the cohomology rings of the spaces. In particular, it is shown that the spaces are

classified by their Z2-cohomology rings. A principal tool used in the proofs is a new

lacunary principle for Morse-Bott functions, which may be of independent interest.

Several applications are discussed.
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Chapter 0

Introduction

Spaces of polygons in Euclidean space Rd are particularly well-understood in the

cases of dimensions d = 2 and d = 3. Most of the known results revolve around

the configuration spaces defined by considering polygons up to the action of the full

group of orientation-preserving Euclidean isometries. In the planar case d = 2 these

spaces are often denoted by M` whereas for d = 3 the symbol N` is used. Here

` = (l1, . . . , ln) is the tuple whose entries are the lengths of the edges of the polygon.

These lengths are assumed fixed and their choice determines the topology of the

spaces M` and N`.

The investigation of the spaces M` and N` commenced as part of the study of

the topology of configuration spaces of linkages, initiated by W. Thurston and his

collaborators ([39]). This investigation was continued in the work of J.-Cl. Haus-

mann in [20] and of M. Kapovich and J. Millson in [27]. Results on the topology

of equilateral polygon spaces were obtained by Y. Kamiyama and his collaborators

(see e.g. [25],[26]).

In [40], K. Walker studied the planar polygon spaces M`, stating a description of

the homology groups and a conjecture on the structure of the cohomology rings. A

rigorous computation of the homology groups of M` was given by M. Farber and D.

Schuetz in [15]. Walker’s conjectural statement was established under an additional

1



Chapter 0. Introduction 2

assumption by M. Farber, J.-Cl. Hausmann and D. Schuetz ([12]). This assumption

was removed in later work of D. Schuetz ([36]), establishing the full statement of

the conjecture.

The homology groups of the spaces N` of spatial polygons were computed by A.

A. Klyachko in [30]. In [22], A. Knutson and J.-Cl. Hausmann used the theory of

toric varieties to determine the cohomology ring of N`. An analogue of Walker’s

conjecture for the spaces N` was proved in [12].

In this thesis, polygon spaces are studied from a different point of view: we consider

polygons up to translations. We denote these free polygon spaces by Ed(`). Our

study of these spaces is motivated by the fact that while the direct analogues of M`

and N` in dimensions d > 3 are singular, the spaces Ed(`) are generically manifolds

in all dimensions (see Proposition 1.5.3 below).

Chapter 1 is devoted to the discussion of the basic properties of the spaces Ed(`).

Analogously to the cases of the spaces M` and N`, there is a close relationship be-

tween the topology of Ed(`) and combinatorial properties of the length vector `. In

Section 1.3, we recall the combinatorial classification of length vectors in the lan-

guage of short, long and median sets.

In order to be able to test general results, it is useful to have at one’s disposal

some cases where the space Ed(`) can be determined explicitly. Results of this type

are given in Section 1.6 (see also Section 1.2). In Section 1.6, we also introduce and

study the robot arm distance map. In our setting, this map is a Morse-Bott function

with rather special properties (Lemma 1.6.1).

The main tool behind our results on the homology and the cohomology of the spaces

Ed(`) is a certain Morse-Bott analogue of the classical Morse lacunary principle. This

analogue, which may be of independent interest, is established in Chapter 2; it is

applied in Chapter 3 to study the homology groups of the spaces Ed(`). The main
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results are as follows. The Z2-Betti numbers of the spaces are computed explicitly

(Theorem 3.1.1). It is shown that the integral homology groups are torsion-free if

d is even; in the case where d is odd, an explicit combinatorial criterion for the

existence of torsion elements is found (Theorems 3.1.2, 3.1.3 and 3.1.5). These re-

sults complement the previous work of M. Farber and D. Schuetz on the planar case

([15]). Sections 3.2 and 3.3 contain applications and the discussion of several special

cases.

In Section 3.4, we pursue the probabilistic approach to the topology of the spaces

Ed(`): the length vector ` is viewed as a random variable and topological invariants

of the space Ed(`) as random functions. This study is motivated by the idea that in

applications the numbers lj may not be known precisely, but rather different edge

lengths arise with different probability. The main results of Section 3.4, Theorems

3.4.1 and 3.4.2, describe the asymptotic behaviour of the homotopy groups and of

the Betti numbers of the spaces Ed(`) as the number n of edges becomes large.

These results are inspired by the work of M. Farber and T. Kappeler in [14] and of

M. Farber in [8].

Chapter 4 is concerned with the study of polygonal linkages in the case where the

lengths of all the segments except one are fixed and the length of the remaining

segment varies in a prescribed interval. Configuration spaces of this type describe

mechanisms with a prismatic joint. The main result of Chapter 4 is the computation

of the homology groups of these spaces in the planar case. In Section 4.3, we discuss

an application motivated by the so-called Topological Hypothesis from the theory

of phase transitions.

While the results of Chapter 3 describe the dependence of the homology groups

of the spaces Ed(`) on the combinatorial properties of the length vector `, the pur-

pose of Chapter 5 is the investigation of the inverse problem. Namely, we study

the question whether knowledge of the topology of the space Ed(`) is sufficient to

determine the length vector `. One of the main results of this thesis, Theorem 5.1.1,
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states that the graded isomorphism type of the Z2-cohomology ring H∗(Ed(`); Z2)

determines ` up to a combinatorially defined notion of equivalence. This theorem

establishes an analogue of Walker’s conjecture in all dimensions d > 2 and comple-

ments the results of [12]. Its proof uses the techniques introduced in [12], with the

Morse-Bott lacunary principle of Chapter 2 as a central additional tool.

In a separate appendix we discuss the relationship of the spaces Ed(`) to configura-

tion spaces of polygonal chains that were studied in [20] and in [21]. The material of

the appendix is motivated by the results in the recent paper [13] and the questions

raised therein.



Chapter 1

Spaces of Polygons

In this chapter we discuss basic properties of the spaces of polygons in Euclidean

space. We study smoothness of the spaces and determine them explicitly in several

special cases. Much of the material of this chapter is expository and similar to

previously known results.

1.1 Spaces of Polygons in Euclidean Space

The objective of this thesis is the study of the topology of spaces of polygons in

Euclidean space. Throughout, we will denote by n ≥ 3 the number of edges of the

polygon and by d ≥ 2 the dimension of the ambient Euclidean space.

A polygon whose edges have length l1, . . . , ln > 0 is defined by specifying an n-tuple

P1, . . . , Pn of points in Rd, so that for each j = 1, . . . , n − 1 the vector Pj+1 − Pj
has length lj and the vector P1 − Pn has length ln. We will identify two polygons

whenever one is obtained from the other by a translation.

The unit vectors in the directions Pj+1 − Pj, j = 1, . . . , n − 1 and P1 − Pn de-

termine the tuple (P1, . . . , Pn) uniquely up to translations. Thus formally, the space

of polygons may be defined as follows.

Definition 1.1.1. Let ` = (l1, . . . , ln) ∈ Rn
>0 be an n-tuple of positive real numbers.

5



1.1. Spaces of Polygons in Euclidean Space 6

Denote W = (Sd−1)n. We define the space of polygons in Rd on n edges of length

l1, . . . , ln, viewed up to translations, as the subset Ed(`) ⊂ W given by

Ed(`) = {(u1, . . . , un) ∈ W :
n∑
j=1

ljuj = 0},

equipped with the subspace topology.

One also refers to Ed(`) as the free polygon space (in contrast to configuration spaces

defined by viewing polygons up to all orientation-preserving Euclidean isometries).

The homeomorphism type of the space Ed(`) depends on the choice of the edge

lengths l1, . . . , ln. We will refer to the tuple ` = (l1, . . . , ln) as a length vector.

As is made more precise below, by varying the length of one of the edges in some

interval, one obtains a cobordism between spaces Ed(`) for different length vectors

`. Formally, such cobordisms are defined as follows.

Let

`− = (l−1 , . . . , l
−
n )

and

`+ = (l+1 , . . . , l
+
n )

be two length vectors so that

l−j = l+j for j = 1, . . . , n− 1 and l−n < l+n .

Denote by A ⊂ Rn the interval connecting `− and `+:

A = {(l1, . . . , ln) ∈ Rn : l−j ≤ lj ≤ l+j , j = 1, . . . , n}.

Definition 1.1.2. For A ⊂ Rn as above, we define the space Ed(A) as the subset

Ed(A) ⊂ W given by

Ed(A) =
⋃
`∈A

Ed(`),

equipped with the subspace topology.



1.2. The Case of a small Number of Edges 7

l−5 ≤ l5 ≤ l
+
5

l3

l4

l1

l2

Figure 1.1: A planar polygonal linkage with a prismatic joint.

We can view Ed(A) as the configuration space of a polygonal linkage, where the

lengths of all the segments except one are fixed and the remaining segment is tele-

scopic: its length varies in a prescribed interval. A segment of this type is sometimes

also called a prismatic joint ([33]). We will refer to A as the metric data of the tele-

scopic linkage.

1.2 The Case of a small Number of Edges

This section is of mostly expository nature and similar to the material in the first

Chapter of [7]. We employ elementary geometric considerations to study the space

Ed(`) in some simple cases. This approach is useful for illustrating the dependence

of the topology of Ed(`) on the choice of the length vector `.

Throughout this section, we shall assume that the entries of ` are ordered according

to their size:

l1 ≤ l2 ≤ · · · ≤ ln. (1.1)

We view W = (Sd−1)n as the configuration space of a robot arm in Rd, a mechanism

consisting of n segments connected by revolving joints into a single polygonal chain

whose initial point, also referred to as the grip, is fixed at the origin. An element

(u1, . . . , un) ∈ W corresponds to the configuration where for j = 1, . . . , n, uj ∈ Sd−1

is the direction of the jth segment of the robot arm.
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l2

l4

l1

l3

Figure 1.2: A robot arm with four segments.

Denote by

α : W → Rd

the map which associates to every configuration of the robot arm the position of the

endpoint. Explicitly, if l1, . . . , ln are the lengths of the individual segments of the

robot arm, then the map α is given by

α(u1, . . . , un) =
n∑
j=1

ljuj.

The map α is called the workspace map and its image the workspace of the robot

arm. In the case n = 1, the workspace is a sphere in Rd. For n ≥ 2 the workspace is a

closed spherical shell A ⊂ Rd centred at the origin, with outer radius r+ = l1+· · ·+ln
and inner radius r− = max{ln − (l1 + · · · + ln−1), 0}. In particular, in the case of

a robot arm with two segments of length l1 < l2, the workspace is a spherical shell

with outer radius l1 + l2 and inner radius l2 − l1.

The following lemma summarises some basic properties of the workspace map.

Lemma 1.2.1. Consider a robot arm with two segments of length l1 < l2, workspace

map α : W = (Sd−1)2 → Rd and workspace A = α(W ).

1. For every interior point p of A the preimage α−1(p) is homeomorphic to the

sphere Sd−2. In particular, in the case d = 2 the preimage consists of two

points.
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2. If p is a boundary point of A, then the preimage α−1(p) consists of a single

point.

3. Let S ⊂ Rd be a sphere of radius r centred at the origin. If

l2 − l1 < r < l1 + l2,

then the preimage α−1(S) is homeomorphic to T 1Sd−1, the total space of the

unit tangent bundle of the sphere Sd−1.

For d = 2, the space T 1Sd−1 is a disjoint union of two copies of S1.

Let us consider the space Ed(`) for n = 3. We identify elements of Ed(`) with

configurations of a robot arm with two segments of length l1 and l2, so that the

endpoint of the arm lies on a circle S of radius l3 about the origin. Thus in the case

n = 3 the subset Ed(`) ⊂ (Sd−1)3 coincides with the preimage α−1(S).

If l3 > l1 + l2, then S is disjoint from the workspace of the arm and hence in

this case Ed(`) = ∅. If l3 < l1 + l2, then using the third part of Lemma 1.2.1, one

finds a homeomorphism

Ed(`) ' T 1Sd−1.

We now study the case n = 4, d = 2. Here elements of the space E2(`) are quad-

rangles in the plane, viewed up to translations. Using cyclic notation, we label for

j = 1, 2, 3, 4 by Pj the vertex of the quadrangle which is adjacent to the edges lj−1

and lj. As two polygons that are obtained from each other by a translation are iden-

tified, it may be assumed that one of the vertices Pj lies at some fixed point in Rd.

We will assume that the vertex P2 adjacent to the edges l1 and l2 is fixed at the origin.

The geometric locus of the possible positions of the vertex P4 is the intersection

of two annuli A = A(ρ1, ρ2) and A′ = A′(ρ′1, ρ
′
2) centred at the origin, with inner

and outer radii given respectively by

ρ1 = l3 − l2, ρ2 = l3 + l2
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and by

ρ′1 = l4 − l1, ρ′2 = l4 + l1.

l4

A ∩A′A A′

l1

l3

l1

l3

P4 P4 P4

P1 P1l2 l2

l4

P3 P3

Figure 1.3: The locus of possible positions of the point P4 as an intersection of

workspaces.

If l4 > l1 + l2 + l3, then A and A′ are disjoint and hence E2(`) = ∅.

Next, we assume that l4 < l1 + l2 + l3 and thus the intersection A∩A′ is non-empty.

For every interior point P of A ∩ A′, there are four pairwise distinct quadrangles

so that the vertex P4 lies at P . These four quadrangles are obtained from each

other by reflecting the positions of the vertices P1 and P3 on the line connecting the

origin to P4. There are two distinct quadrangles so that the vertex P4 lies at a given

boundary point of the intersection A ∩ A′: in this case either the vertex P1 or the

vertex P2 lies on the line connecting the origin with P4.

We see that the space E2(`) is obtained from the disjoint union of four annuli by an

identification of boundary components. Since ` is ordered,

l4 − l1 > l3 − l2

and hence on the inner boundary of A ∩ A′, the edges l1 and l4 are collinear.
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If

l2 + l3 > l1 + l4,

then on the outer boundary of A∩A′, the edges l1 and l4 are collinear as well. Thus

in this case the annuli are glued together as indicated by Figure 1.4.

4

1 1

2 2

3 3

4

Figure 1.4: The space E2(`) in the case n = 4 and l2 + l3 > l1 + l4.

In the case

l2 + l3 < l1 + l4,

the edges l2 and l3 are collinear on the outer boundary of A∩A′ and the identification

is as in Figure 1.5.

2

1 1

2

3 3

44

Figure 1.5: The space E2(`) for n = 4 and l4 − l1 < l2 + l3 < l1 + l4.

We conclude that if l2 + l3 > l1 + l4, then

E2(`) ' T 2 ∪ T 2,

whereas for l4 − l1 < l2 + l3 < l1 + l4,

E2(`) ' T 2.
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The following proposition summarises the above results:

Proposition 1.2.2. Let ` be a length vector with l1 ≤ l2 ≤ · · · ≤ ln.

1. Let n = 3. If l3 > l1 + l2, then

Ed(`) = ∅,

whereas for l3 < l1 + l2, there is a homeomorphism

Ed(`) ' T 1Sd−1.

2. Let n = 4 and d = 2. If l4 > l1 + l2 + l3, then the space Ed(`) is empty.

Assume that l4 < l1 + l2 + l3. If l2 + l3 > l1 + l4, then E2(`) is a disjoint

union of two tori:

E2(`) ' T 2 ∪ T 2,

whereas for l2 + l3 < l1 + l4, there is a homeomorphism

E2(`) ' T 2.

While similar arguments can be applied to analyze the case n = 4, d > 2, it will

be more convenient to study this case using different methods that are discussed

further below. The proof of the following result is given in Section 1.6.

Proposition 1.2.3. Let n = 4 and assume that l1 ≤ l2 ≤ l3 ≤ l4 and l4 < l1 + l2 + l3.

1. If l2 + l3 > l1 + l4, then there is a homeomorphism

Ed(`) ' Sd−1 × T 1Sd−1.

2. In the case l2 + l3 < l1 + l4 the space Ed(`) is given by

Ed(`) ' S2(d−1)−1 × Sd−1.

Since for d = 2, the space T 1Sd−1 is a disjoint union of two copies of S1, in this case

the claim of Proposition 1.2.3 follows from the second assertion of Proposition 1.2.2.
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1.3 Combinatorics of Length Vectors

As illustrated by the discussion in the previous section, there is a close relationship

between the topology of the spaces Ed(`) and the combinatorial properties of the

length vector `. The purpose of this section is to recall the classification of length

vectors in the language of short, long and median sets.

A length vector ` is called ordered if the inequalities

l1 ≤ · · · ≤ ln

hold. We call ` generic if there is no choice of εj = ±1 for j = 1, . . . , n so that

n∑
j=1

εjlj = 0.

A subset J ⊂ {1, . . . , n} is called long (respectively short or median) with respect

to ` if

`J =
∑
j∈J

lj −
∑
j /∈J

lj > 0

(respectively. `J < 0 or `J = 0). A length vector ` is generic if and only if no subset

J ⊂ {1, . . . , n} is median with respect to `. The complement

J = {1, . . . , n} − J

of a long set J is a short set.

We write L(`) (respectively S(`), M(`)) for the set of all subsets of {1, . . . , n} that

are long (respectively short, median) with respect to `. Denote by Ln(`) ⊂ L(`)

(respectively Sn(`) ⊂ S(`), Mn(`) ⊂ M(`)) those long sets (respectively. short,

median sets) which contain the index n.

Definition 1.3.1. Let `, `′ be two length vectors. We say that ` and `′ lie in the

same stratum if the sets L(`) and L(`′) coincide. If, in addition, both ` and `′ are

generic, then we say that ` and `′ lie in the same chamber.
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The geometric meaning of these notions is as follows. For every subset J ⊂ {1, . . . , n},

consider the hyperplane HJ ⊂ Rn defined by

HJ = {(x1, . . . , xn) ∈ Rn :
∑
j∈J

xj −
∑
j /∈J

xj = 0},

also referred to as the wall corresponding to J . Since every subset J ⊂ {1, . . . , n}

defines the same wall as its complement, there are 2n−1 distinct walls. For J = ∅

and J = {1, . . . , n}, the hyperplane HJ ⊂ Rn is disjoint from Rn
>0.

A length vector ` ∈ Rn
>0 is generic if and only if ` does not lie on a wall. The

walls define a stratification of Rn
>0: for every k ≥ 0 the codimension k strata are

the connected components of the subset consisting of those points of Rn
>0, which lie

on exactly k distinct walls. The codimension zero strata are the chambers. Two

generic length vectors lie in the same chamber if and only if they lie in the same

connected component of the complement Rn
>0 − ∪JHJ of the union of all the walls.

The following observation is well-known (Lemma 4 in [12], see also Proposition

2.5 in [22]):

Proposition 1.3.2. Two length vectors ` and `′ lie in the same stratum if and only

if the sets Ln(`) and Sn(`) coincide with Ln(`′) and Sn(`′) correspondingly.

If ` is generic, then a subset J ⊂ {1, . . . , n} with n ∈ J is an element of Sn(`) if and

only if J /∈ Ln(`). Thus Proposition 1.3.2 implies:

Corollary 1.3.3. Two generic length vectors ` and `′ lie in the same chamber if

and only if the sets Ln(`) and Ln(`′) coincide.

The following result is useful in understanding how the stratum of an ordered length

vector changes when one permutes the entries of the length vector.

Lemma 1.3.4. Let `, `′ be two ordered length vectors.

1. If there exists a permutation σ : {1, . . . , n} → {1, . . . , n} so that σ(n) = n and

the sets σ(Ln(`)) and Ln(`′) coincide, then the sets Ln(`) and Ln(`′) coincide
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as well. Similarly, if σ(n) = n and the sets σ(Sn(`)) and Sn(`′) coincide, then

so do the sets Sn(`) and Sn(`′).

2. For a permutation σ : {1, . . . , n} → {1, . . . , n}, denote by σ(`) the length vector

obtained by interchanging the entries of ` by σ. If the length vectors σ(`) and

`′ lie in the same stratum, then so do ` and `′.

Proof. The first assertion can be found as Lemma 3 in [12]. The proof given in [12]

also shows that if ` and `′ are ordered and σ : {1, . . . , n} → {1, . . . , n} is an arbitrary

permutation so that the sets σ(L(`)) and L(`′) coincide, then the sets L(`) and L(`′)

coincide as well. Since σ(L(`)) = L(σ(`)), this proves the second assertion.

If we vary an entry of a generic length vector in a sufficiently small interval, we

obtain length vectors that lie in the same chamber. To make this statement precise,

it is useful to consider for a given length vector ` the quantity

[`] = min

(
n∑
j=1

εjlj

)
,

where the minimum is taken over all choices of εj ∈ {±1}, j = 1, . . . , n, so that

n∑
j=1

εjlj > 0.

Proposition 1.3.5. Let ` be a length vector and let 0 < ε < min(ln, [`]). Then

`− = (l1, . . . , ln−1, ln − ε)

and

`+ = (l1, . . . , ln−1, ln + ε)

are both generic. Moreover, if ` is generic, then the length vectors `, `− and `+ all

lie in the same chamber.

Proof. The first assertion readily follows from the definition of the quantity [`]. If

` is generic, then a subset J ⊂ {1, . . . , n} with n ∈ J is long with respect to `+ if

and only if it is long with respect to `. Thus the sets Ln(`) and Ln(`+) coincide;

analogously so do the sets Ln(`) and Ln(`−). It follows from Corollary 1.3.3 that in

this case `, `− and `+ lie in the same chamber.
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One concludes from the definition of the quantity [`] that if 0 < ε < [`], then every

length vector obtained from ` by inserting ε as a new entry is generic. The following

Lemma, first proved in [23], will be important for the results of Chapter 5:

Lemma 1.3.6 ([23], Lemma 5.1). Let `, `′ be two length vectors and suppose that

0 < ε < [`] and 0 < ε′ < [`′]. Denote by (ε, `) the length vector obtained from ` by

inserting ε as the new first entry. If (ε, `) and (ε′, `′) lie in the same chamber, then

` and `′ lie in the same stratum.

Proof. For every subset J ⊂ {1, . . . , n}, denote by J̃ ⊂ {2, . . . , n + 1} the set

J̃ = {j + 1 : j ∈ J}. Using the definition of the quantity [`], one concludes that the

map J 7→ J̃ defines a bijection between L(`) and

{J ∈ L(ε, `) : 1 /∈ J}.

Thus if the two sets L(ε, `) and L(ε′, `′) coincide, then so do the two sets L(`) and

L(`′).

1.4 Counting short and median Sets

In this section we define several numerical quantities based on counts of subsets of

the index set {1, . . . , n} that are short or median with respect to a given length

vector. These numerical quantities will be used in the subsequent study of the Betti

numbers of the spaces introduced in Section 1.1.

Definition 1.4.1. Let ` be a length vector and let m ∈ {1, . . . , n} be the index of

any maximal entry of the length vector `. For k = 0, . . . , n − 1, we define numbers

ak(`), bk(`) and αk(`) as follows:

1. We define ak(`) (respectively bk(`)) as the number of subsets J ⊂ {1, . . . , n}

so that m ∈ J , |J | = k + 1 and J is short (respectively median) with respect

to `.

2. We denote by αk(`) the number of subsets J ⊂ {1, . . . , n} of cardinality |J | =

k + 1 which contain the index n and are short with respect to `.



1.4. Counting short and median Sets 17

It will be convenient to extend this Definition to the case k = −1 by defining

a−1(`) = b−1(l) = α−1(`) = 0 for every length vector `.

The difference between the numbers ak(`) and αk(`) is that while the first is the

number of short sets which contain the index of a maximal entry of `, the second

is the number of short sets containing the index n. If n is the index of a maximal

entry of `, then ak(`) and αk(`) coincide for all k.

The proposition below summarises some properties of the numbers ak(`), bk(`) and

αk(`) that are readily concluded from their Definition:

Proposition 1.4.2. 1. A length vector ` is generic if and only if all the numbers

bk(`) vanish.

2. If the length vector `′ is obtained from ` by a permutation of the entries, then

the numbers ak(`) and ak(`
′) coincide for all k. If `′ is obtained from ` by a

permutation which fixes the last entry, then αk(`) = αk(`
′) for all k.

The following numbers play an important role in the study of the homology of spaces

of polygons with a telescopic edge.

Definition 1.4.3. Let `− = (l1, . . . , ln−1, l
−
n ) and `+ = (l1, . . . , ln−1, l

+
n ) be two length

vectors with

l1 ≤ · · · ≤ ln−1.

For k = 0, . . . , n−1, we define βk(`
+, `−) to be the number of subsets J ⊂ {1, . . . , n}

which satisfy the following conditions:

1. |J | = k + 1.

2. n ∈ J and n− 1 /∈ J .

3. J is short with respect to `−.

4. The subset J ′ = J − {n} ∪ {n− 1} is long with respect to `+.
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It will also be useful to extend this definition to the case k = −1 by setting

β−1(`+, `−) = 0 for all `+, `−.

The next proposition describes the basic properties of the numbers βk.

Proposition 1.4.4. 1. For k = 0, . . . , n− 2,

βk(`
−, `+) = βn−k−2(`+, `−).

2. If

l−n + l+n ≥ 2ln−1,

then βk(`
+, `−) = 0 for all k.

3. Let ` be generic and let

`− = (l1, . . . , ln−1, ln − ε)

and

`+ = (l1, . . . , ln−1, ln + ε),

where 0 < ε < min(ln, [`]). Then

βk(`
+, `−) = αk(`)− ak(`).

Proof. If a subset J ⊂ {1, . . . , n} satisfies the four conditions of Definition 1.4.3,

then the set

I = J ∪ {n} − {n− 1}

satisfies conditions 2,3 and 4 of this Definition, with the roles of `− and `+ inter-

changed. Here J denotes the complement of J in {1, . . . , n}. If |J | = k + 1, then

the cardinality of the set I is

|I| = n− k − 1 = (n− k − 2) + 1.

We conclude that βk(`
−, `+) = βn−k−2(`+, `−).

To prove the second claim, let J ⊂ {1, . . . , n} be a subset satisfying the first three
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conditions of Definition 1.4.3. Consider the set J ′ = J−{n}∪{n−1}. The quantity

`+
J ′ can be expressed as

`+
J ′ = `+

J − 2l+n + 2ln−1 = `−J − (l−n + l+n ) + 2ln−1.

Thus if l−n + l+n ≥ 2ln−1, then the inequality

`+
J ′ ≤ `−J ≤ 0

holds and the fourth condition of Definition 1.4.3 is violated. We see that if

l−n + l+n ≥ 2ln−1, then no subset J ⊂ {1, . . . , n} satisfies the four conditions of

Definition 1.4.3 simultaneously. Thus in this case βk(`
+, `−) = 0 for all k.

We now assume that `− and `+ are length vectors as in the third claim of the

proposition. Since `, `− and `+ lie in the same chamber,

αk(`
−) = αk(`

+) = αk(`) and βk(`
−, `+) = βk(`, `)

for all k. It follows from Definition 1.4.1 that if ln−1 ≤ ln, then the numbers αk(`)

and ak(`) coincide for all k. On the other hand, by the second part of the proposi-

tion, in this case all the numbers βk(`, `) vanish. This proves the third claim of the

proposition in the case ln−1 ≤ ln.

Assume now the inequality ln−1 > ln. We write the set Sn(`) as a disjoint union

Sn(`) = A ∪B ∪ C

of subsets of the following form:

• A is the family of all subsets J ⊂ {1, . . . , n} so that n−1, n ∈ J and J is short

with respect to `.

• B is the family of all subsets J ⊂ {1, . . . , n} so that n ∈ J , n− 1 /∈ J and the

sets J and J − {n} ∪ {n− 1} are both short with respect to `.

• C is the family of all subsets J ⊂ {1, . . . , n} so that n− 1 /∈ J , J is short with

respect to ` and the set J − {n} ∪ {n− 1} is long with respect to `.
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Since ln−1 > ln, for every subset J ⊂ {1, . . . , n} which is short with respect to

` and satisfies n − 1 ∈ J and n /∈ J , the set J − {n − 1} ∪ {n} is again short

with respect to `. Thus the set B is in bijection with the set of all J ⊂ {1, . . . , n}

so that n − 1 ∈ J , n /∈ J and J is short with respect to `. It follows that the

number of elements J ∈ A ∪ B with |J | = k + 1 is ak(`). On the other hand, one

concludes from Definitions 1.4.1 and 1.4.3 that the number of elements J ∈ Sn(`)

(respectively J ∈ C) with |J | = k+ 1 is αk(`) (respectively βk(`, `)). It follows that

αk(`) = ak(`) + βk(`, `).

1.5 Basic Properties of the Spaces

In this section we relate basic properties of the spaces Ed(`) and Ed(A) such as

non-emptiness and smoothness to combinatorial properties of length vectors.

Proposition 1.5.1. 1. Let ` be a length vector and let m ∈ {1, . . . , n} be the

index of any maximal entry of `. The space Ed(`) is non-empty if and only if

the one-element set {m} is short or median with respect to `.

2. Consider a polygonal telescopic linkage with metric data A given by length

vectors `− = (l1, . . . , ln−1, l
−
n ) and `+ = (l1, . . . , ln−1, l

+
n ). Let k ∈ {1, . . . , n−1}

be the index of any maximal entry of (l1, . . . , ln−1). The space Ed(A) is non-

empty if and only if the one-element set {n} is short or median with respect

to `− and the one-element set {k} is short or median with respect to `+.

Proof. It follows from the definition of the space Ed(`) and the triangle inequality

that a necessary condition for Ed(`) to be non-empty is that the one-element set

{m} be short or median with respect to `. By the first part of Proposition 1.2.2,

this condition is also sufficient if n = 3. Let us show that the condition is sufficient

for every n ≥ 3.

Assume that the set {m} is short or median with respect to `. Let J ⊂ {1, . . . , n}

be a maximal subset satisfying the conditions

m /∈ J and J is short with respect to `.
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Then J 6= ∅ since otherwise every one-element set {k} ⊂ {1, . . . , n} would be long or

median with respect to `, contradicting the assumption n ≥ 3. Moreover, J 6= {m}

since the complement of a short subset is long. It follows that the set I = J − {m}

is non-empty.

We note that I is either short or median with respect to `. Indeed, if I were

long, then using the fact that m is the index of a maximal entry of `, one would

obtain that for every i ∈ I the set J ∪ {i} is short with respect to `, contradicting

the choice of J . We have found a partition

{1, . . . , n} − {m} = I ∪ J

so that I, J 6= ∅ and the sets I, J are both short or median with respect to `.

The length vector L with entries

L1 =
∑
j∈J

lj, L2 =
∑
j∈I

lj and L3 = lm

satisfies the condition of the first part of the proposition with n = 3, as every one-

element subset {j} ⊂ {1, 2, 3} is either short or median with respect to L. We

conclude that Ed(L) 6= ∅. On the other hand, every element of the space Ed(L) may

be viewed as a polygon in Ed(`) so that all the edges with indices in I are collinear

and so are all the edges with indices in J . Thus Ed(`) 6= ∅.

We now demonstrate the second assertion of the proposition. If Ed(A) 6= ∅, then

there exists a length vector ` = (l1, . . . , ln) ∈ A with Ed(`) 6= ∅. Using the first

part of the proposition, it follows that each of the sets {k} and {n} is either short

or median with respect to `. Since l−n ≤ ln ≤ l+n , one concludes that the set {n} is

short or median with respect to `− and the set {k} is short or median with respect

to `+.

We now show that if Ed(A) = ∅, then one of the two sets {k}, {n} must be long

with respect to both `− and `+. This will complete the proof.
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If the space Ed(A) is empty, then so is the space Ed(`
−). Using the first part

of the proposition, it follows that in this case one of the sets {k}, {n} is long with

respect to `−. If the set {n} is long with respect to `−, then it is also long with

respect to `+. If {k} were long with respect to `− but short or median with respect

to `+, there would exist ` ∈ A so that {k} is median with respect to `. But then

by the first part of the proposition Ed(`) 6= ∅ contradicting the assumption that the

space Ed(A) is empty.

It follows from Definition 1.1.1 that the subset Ed(`) ⊂ W is invariant under the

diagonal action of the orthogonal groups SO(d) and O(d) on W = (Sd−1)n.

Proposition 1.5.2. 1. The SO(2)-action on the space E2(`) is free. If M` de-

notes the quotient space

M` = E2(`)/SO(2),

then there is a homeomorphism

E2(`) ' S1 ×M`.

2. The action of SO(3) on E3(`) is free if and only if the length vector ` is generic.

3. If d > 3 and Ed(`) 6= ∅, then the SO(d)-action on Ed(`) is not free.

Proof. For d = 2, the group SO(2) acts freely on W = (S1)n and hence also on

E2(`) ⊂ W . The space M` can be identified with the subset of E2(`) consisting of

those tuples u = (u1, . . . , un) ∈ E2(`) ⊂ W , where u1 = e is a given fixed element of

S1. A homeomorphism φ : S1×M` → E2(`) is defined by φ(θ, u) = (θe, θu2, . . . , θun)

for θ ∈ S1 and u = (e, u2, . . . , un) ∈M`.

For d = 3, the isotropy subgroup of an element (u1, . . . , un) ∈ (Sd−1)n = W is

non-trivial if and only if uj = ±uk for all j, k ∈ {1, . . . , n}. The subset Ed(`) ⊂ W

contains elements (u1, . . . , un) of this form if and only if the length vector ` is non-

generic.
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If d > 3, then every planar configuration in Ed(`) (that is a configuration where

the edges of the polygon lie in a two-dimensional subspace E ⊂ Rd) has a non-

trivial isotropy subgroup, since such a configuration is fixed by every element of

SO(d) which fixes E. It follows from the proof of Proposition 1.5.1 that if the space

Ed(`) is non-empty, then it contains a planar configuration.

Proposition 1.5.3. 1. Let ` and `′ be two length vectors, so that `′ can be ob-

tained from ` by a permutation of the entries. Then the spaces Ed(`) and

Ed(`
′) may be naturally identified.

2. If the length vector ` is generic, then the space Ed(`) is a closed oriented

manifold of dimension

dim Ed(`) = (d− 1)(n− 1)− 1.

3. If two generic length vectors ` and `′ lie in the same chamber, then the spaces

Ed(`) and Ed(`
′) are O(d)-equivariantly diffeomorphic.

To prove Proposition 1.5.3, consider F : (Rd)n−1 → Rn,

F (v1, . . . , vn−1) = (|v1|, |v2 − v1|, . . . , |vn−1 − vn−2|, |vn−1|).

The map F is continuous and its restriction to the open subset X ⊂ (Rd)n−1 given

by the inequalities

v1 6= 0, vn−1 6= 0 and vj+1 6= vj for j = 1, . . . , n− 2

is smooth. Moreover, F (X) = Rn
>0.

Lemma 1.5.4. Every generic length vector is a regular value of F : X → Rn
>0.

Proof. We will show that the critical points of F |X are exactly those tuples

v = (v1, . . . , vn−1) ∈ X,

so that all the vectors vj ∈ Rd, j = 1, . . . , n − 1 are collinear. Since for a length

vector ` ∈ Rn
>0 the preimage F−1(`) contains points v of this form if and only if ` is
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non-generic, this will imply the claim.

Let V = (V1, . . . , Vn−1) ∈ Tv(Rd)n−1. Denote

u1 =
1

l1
v1, un = − 1

ln
vn−1

uj =
1

lj
(vj − vj−1), 2 ≤ j ≤ n− 1

and write 〈·, ·〉 for the standard scalar product on Rd. The derivative DV F of F in

direction V is the vector in Rn with entries

(DV F )1 = 〈V1, u1〉,

(DV F )j = 〈Vj − Vj−1, uj〉, j = 2, . . . , n− 1

and

(DV F )n = −〈Vn−1, un〉.

Let v be a critical point of F . Then there exists

ε = (ε1, . . . , εn) ∈ Rn, ε 6= 0,

so that the image of the derivative of F at v is contained in the hyperplane orthogonal

to ε. Thus in this case
n−1∑
j=1

〈Vj, εjuj − εj+1uj+1〉 = 0

for all V1, . . . , Vn−1. This implies that u1, . . . , un satisfy

εjuj = εj+1uj+1

for j = 1, . . . , n − 1. Thus the vectors u1, . . . , un, and hence also v1, . . . , vn−1 are

collinear.

Proof of Proposition 1.5.3. The first assertion follows from the fact that a permu-

tation σ of the indices 1, . . . , n defines a diffeomorphism W → W which maps Ed(`)

onto Ed(σ(`)).

Identifying

Ed(`) ' F−1(`),
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the second claim follows from Lemma 1.5.4.

To prove the third assertion, let ` and `′ be two generic length vectors which lie

in the same chamber. Denote by [`, `′] ⊂ Rn the closed interval connecting ` and

`′. Since every length vector `′′ ∈ [`, `′] is generic, F−1([`, `′]) is a smooth cobordism

between Ed(`) and Ed(`
′). As

F : F−1([`, `′])→ [`, `′]

is a smooth function without critical points, this cobordism is trivial and therefore

there is a diffeomorphism Ed(`) ' Ed(`
′).

Since F is invariant under the diagonal action of the orthogonal group O(d) on

(Rd)n−1, so is the projection π : F−1([`, `′]) → I. Consider the flow of the gradient

of π with respect to the metric on F−1([`, `′]) ⊂ (Rd)n−1 induced by the Euclidean

metric. The flow defines a diffeomorphism Ed(`)→ Ed(`
′) and since both π and the

metric are O(d)-invariant, this is an equivariant diffeomorphism.

We now state the analogue of Proposition 1.5.3 for polygons with a telescopic edge.

We shall call the metric data A of the telescopic linkage generic if both length

vectors `− and `+ are generic.

Proposition 1.5.5. Suppose that A is generic.

1. The space Ed(A) is a compact oriented manifold of dimension

dim Ed(A) = (d− 1)(n− 1).

The boundary of Ed(A) is given by the disjoint union of the spaces Ed(`
−) and

Ed(`
+).

2. Let σ : {1, . . . , n} → {1, . . . , n} be a permutation which fixes the index n.

Let σ(A) be the metric data of the polygonal telescopic linkage described by

the length vectors σ(`−) and σ(`+). Then the spaces Ed(A) and Ed(σ(A)) are

O(d)-equivariantly diffeomorphic.
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Proposition 1.5.6. Let ` = (l1, . . . , ln) be generic, let 0 < ε < min(ln, [`]) and let

`− = (l1, . . . , ln−1, ln − ε),

`+ = (l1, . . . , ln−1, ln + ε)

be length vectors as in Proposition 1.3.5. Let A be the metric data of the polygonal

telescopic linkage corresponding to `− and `+. Then there is an O(d)-equivariant

diffeomorophism

Ed(A) ' Ed(`)× [−ε, ε].

The proofs of Propositions 1.5.5 and 1.5.6 are given in the next section.

1.6 The Robot Arm Distance Map

In this section we introduce the robot arm distance map and study its properties.

We determine the space Ed(`) explicitly in some important special cases.

The proofs of many subsequent results concerning the topology of the spaces Ed(`)

rely on the special properties of a certain function on W = (Sd−1)n that we now

introduce.

Lemma 1.6.1. Let ` be a length vector. Consider the function

f` : W → R, f`(u1, . . . , un) = −
∣∣∣ n∑
j=1

ljuj

∣∣∣2.
1. The critical points of f` are given by the union of f−1

` (0) = Ed(`) and all the

submanifolds

PJ = {(u1, . . . , un) : uj = uk = −um for j, k ∈ J,m /∈ J},

so that the subset J ⊂ {1, . . . , n} is long with respect to `.

2. For every subset J ⊂ {1, . . . , n} which is long with respect to `, the critical

submanifold PJ is nondegenerate in the sense of Bott. Its Morse-Bott index is

given by

indf`
(PJ) = (d− 1)(n− |J |).
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Remark 1.6.2. The function f` is called the robot arm distance map. Recall from

Section 1.2 that W = (Sd−1)n may be viewed as the configuration space of a robot

arm in Euclidean space of dimension d. If the segments of the robot arm have

length l1, . . . , ln, then the function f` measures the distance between the grip and

the endpoint of the arm. The space Ed(`) is the subset of W consisting of those

configurations of the robot arm, so that the endpoint of the arm lies at the grip.

The first part of Lemma 1.6.1 states that the critical points of f` consist of the

zero level set f−1
` (0) = Ed(`) as well as of all those configurations of the robot arm,

so that all the segments are collinear.

The second part of Lemma 1.6.1 implies that the restriction of f` to the complement

W−Ed(`) is a Morse-Bott function with the property that every critical submanifold

is diffeomorphic to the sphere Sd−1 and has a Morse-Bott index which is a multiple

of d−1. In the next chapter, we develop an analogue of the classical Morse lacunary

principle that applies to Morse-Bott functions of this type.

Proof. For u ∈ Sd−1, identify

TuS
d−1 ' {v ∈ Rd : 〈u, v〉 = 0}.

Let (v1, . . . , vn) ∈ T(u1,...,un)W . For j = 1, . . . , n, the derivative of f` in direction vj

is

Dvj
f` = −2〈ljvj,

∑
i=1,...,n

liui〉.

At a critical point (u1, . . . , un) of f`, the equation Dvj
f` = 0 holds for j = 1, . . . , n.

It follows that if f`(u1, . . . , un) 6= 0, then for each j = 1, . . . , n the vector uj is

collinear to the sum
∑

i=1,...,n−1 liui. Thus the critical points of f` are those tuples

(u1, . . . , un), where either f`(u1, . . . , un) = 0 or uj = ±uk for all j, k. This proves

the first assertion.

To establish the second assertion, fix an element p ∈ Sd−1 and consider for ev-

ery subset J ⊂ {1, . . . , n} which is long with respect to ` the point pJ ∈ PJ given
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by

uj =

p if j ∈ J,

−p if j /∈ J.

We want to compute explicitly the Hessian of f` at the critical point pJ . By sym-

metry, it suffices to consider the case p = e1 = (1, 0, . . . , 0). Parametrize Sd−1 in a

neighbourhood of e1 by the map

Rd−1 → Sd−1 ⊂ Rd,

(r2, . . . , rd) 7→
1

(1 +
∑

2≤j≤d r
2
j )

1/2

(
e1 +

∑
2≤j≤d

rjej

)
and in a neighbourhood of −e1 by

Rd−1 → Sd−1 ⊂ Rd,

(r2, . . . , rd) 7→ −
1

(1 +
∑

2≤j≤d r
2
j )

1/2

(
e1 +

∑
2≤j≤d

rjej

)
.

We can express the second derivatives of f` at the point pJ as follows:

∂2

∂r
(j1)
k1
∂r

(j2)
k2

f` =


−2l2j + 2εJ(j)lj`J if (k1, j1) = (k2, j2) = (k, j),

−2lj1lj2 if k1 = k2, j1 6= j2,

0 if k1 6= k2.

Here k1, k2 ∈ {2, . . . , d}, j1, j2 ∈ {1, . . . , n} and

εJ(j) =

+1 if j ∈ J,

−1 if j /∈ J.
.

We also recall the notation

`J =
∑
j∈J

lj −
∑
j /∈J

lj.

It follows that the Hessian of f` at pJ is congruent to a (d− 1)n× (d− 1)n-matrix

A of the following form. Let D ∈ Rn×n be the diagonal matrix whose jth diagonal

entry for j = 1, . . . , n is

(D)jj =
εJ(j)

lj
`J
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and E ∈ Rn×n be the matrix with all entries equal to 1. Then A is obtained from

the difference D − E by interchanging every entry λ with the matrix λId−1 where

Id−1 ∈ R(d−1)×(d−1) is the identity matrix. Thus the Hessian of f` has the same

eigenvalues as the matrix D−E and the multiplicity of every eigenvalue is multiplied

by (d − 1). Using the computation in [7], Lemma 1.4, the index of the Hessian is

(n − |J |)(d − 1) and the multiplicity of the zero eigenvalue is d − 1. Since d − 1 is

also the dimension of the critical submanifold PJ , it follows that it is nondegenerate

in the sense of Bott.

We can now give the proofs of Propositions 1.5.5 and 1.5.6.

Proof of Propositions 1.5.5 and 1.5.6. Let A be the metric data of a telescopic link-

age defined by `− = (l1, . . . , ln−1, l
−
n ) and `+ = (l1, . . . , ln−1, l

+
n ). Denoting by `′

the length vector `′ = (l1, . . . , ln−1), the space Ed(A) may be identified with the

preimage f−1
`′ ([a, b]), where

a = −(l+n )2 and b = −(l−n )2.

Moreover, f−1
`′ (a) = Ed(`

+) and f−1
`′ (b) = Ed(`

−).

By Proposition 1.6.1, the critical values of f`′ consist of 0 and all the numbers of the

form −|
∑n−1

j=1 εjlj|2, where εj = ±1. Thus a and b are regular values of f`′ if and only

if the length vectors `− and `+ are both generic. In this case Ed(A) = f−1
`′ ([a, b]) is

a manifold whose boundary is given by the disjoint union of f−1
`′ (a) = Ed(`

+) and

f−1
`′ (b) = Ed(`

−). This proves the first claim of Proposition 1.5.5. The proof of the

second claim is analogous to that of the first part of Proposition 1.5.3.

If ` is generic and `− = (l1, . . . , ln−1, ln − ε), `+ = (l1, . . . , ln−1, ln + ε), 0 < ε <

min(ln, [`]) are length vectors as in Proposition 1.3.5, then every element of A is a

generic length vector. Thus in this case the function f`′ has no critical values in the

interval [a, b] and hence there are diffeomorphisms

Ed(A) ' f−1
`′ ([a, b]) ' f−1

`′ (−l2n)× [a, b] ' Ed(`)× [a, b].
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Since the function f`′ is O(d)-invariant, the same argument as used in the proof of the

first part of Proposition 1.5.3 shows that the diffeomorphism Ed(A) ' Ed(`)× [a, b]

may be chosen to be O(d)-equivariant.

Let ` be a generic length vector. We say that J ⊂ {1, . . . , n} is a maximal short

subset if J is short with respect to ` and if for every proper inclusion J ( K ⊂

{1, . . . , n} the subset K is long with respect to `. We say that there is a massive

edge if there exists a maximal short one-element subset {m} ⊂ {1, . . . , n}. Using the

numerical quantities ak(`) introduced in Section 1.4, this condition can equivalently

be expressed by the two equations

a0(`) = 1, a1(`) = 0.

Proposition 1.6.3 (The case of a massive edge). Suppose that a generic length

vector ` admits a maximal short one-element subset {m} ⊂ {1, . . . , n}. If n = 3,

then there is a diffeomorphism

Ed(`) ' T 1Sd−1.

If n > 3, then the space Ed(`) is diffeomorphic to a product of two spheres:

Ed(`) ' S(d−1)(n−2)−1 × Sd−1.

Remark 1.6.4. The assumption of Proposition 1.6.3 determines the chamber of the

length vector ` uniquely up to permutation of the entries of `. Indeed, in this case

a subset J ⊂ {1, . . . , n} is short with respect to ` if either J = {m} or m /∈ J and

|J | < n− 1, and long otherwise.

Proof of Proposition 1.6.3. Using the first part of Proposition 1.5.3, we can assume

without loss of generality that m = n is the index of the last entry of `. Denote by

`′ = (l1, . . . , ln−1) the length vector obtained from ` by erasing the last entry and

consider the function f`′ : (Sd−1)n−1 → R. We identify

Ed(`) = f−1
`′ (−l2n).

The minimal value if f`′ is −L2, where L = l1 + · · ·+ ln−1. The preimage f−1
`′ (−L2)

is the diagonal ∆ ⊂ (Sd−1)n−1. By Lemma 1.6.1, f−1
`′ (−L2) is a critical submanifold
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which is nondegenerate in the sense of Bott. Moreover, critical values of f`′ which

lie in the interval [−L2,−l2n] correspond to subsets of {1, . . . , n} which are long with

respect to ` and do not containing the index n. Since under the assumptions of the

proposition the only subset of this form is {1, . . . , n − 1}, we find that −L2 is the

only critical value contained in this interval. It follows that Ed(`) is diffeomorphic

to the space of unit vectors in the normal bundle ν to the diagonal ∆ ⊂ (Sd−1)n−1.

To identify this latter space, we note that the bundle ν is isomorphic to the Whitney

sum of n− 2 copies of the tangent bundle of the sphere Sd−1:

ν ' ⊕
n−2

TSd−1.

It follows that if n = 3, then there is a diffeomorphism

Ed(`) ' T 1Sd−1.

Assume now that n > 3. We claim that in this case the vector bundle ν is trivial.

To prove this, the criterion of Theorem 1.5 in Chapter 9 of [24] will be used. Let

τ denote the tangent bundle of Sd−1 and θk the trivial bundle of rank k over Sd−1.

Since the Whitney sum τ ⊕ θ1 is trivial, so is

ν ⊕ θn−2 = ⊕n−2(τ ⊕ θ).

Since for n > 3 the rank (d−1)(n−2) of the bundle ν is greater than the dimension

d−1 of its base, the aforementioned theorem in [24] shows that triviality of ν⊕θn−2

implies the triviality of ν. It follows that in the case n > 3 there is a diffeomorphism

Ed(`) ' S(d−1)(n−2)−1 × Sd−1.

This completes the proof.

Let us now study how the space Ed(`) changes when a small edge is inserted into

the polygon.

Proposition 1.6.5 (Inserting a small edge). Let ` be a generic length vector and let

0 < ε < [`] (see Section 1.3 for the definition of the quantity [`]). Denote by (ε, `)

the length vector obtained from ` by inserting ε as the first entry. Then there is a

diffeomorphism

Ed(ε, `) ' Sd−1 × Ed(`).
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Proof. Consider the map

F̂ : (Rd)n → Rd × Rn,

(v1, . . . , vn) 7→ (v1, |v2 − v1|, . . . , |vn − vn−1|, |vn|).

We note that F̂ is smooth on the open subset Y ⊂ (Rd)n defined by the inequalities

vn 6= 0 and vj+1 6= vj for j = 1, . . . , n− 1.

It follows from the proof of Lemma 1.5.4 that every critical point of F̂ |Y is a tuple

(v1, . . . , vn) so that all the vectors vj, j = 1, . . . , n are collinear. Thus every vector

of the form (v1, `) ∈ Rd × Rn, 0 < |v1| < [`], is a regular value of F̂ |Y . Moreover,

since ` is generic, the vector (0, `) is a regular value of F̂ |Y .

Denote by Bε(0) ⊂ Rd the closed ball of radius ε centred at the origin. We identify

Ed(ε, `) = F̂−1(∂Bε(0)× {`}).

Since the map F̂ has no critical values in Bε(0)× {`}, there are diffeomorphisms

Ed(ε, `) ' F̂−1(∂Bε(0)× {`}) ' Sd−1 × F̂−1(0, `) ' Sd−1 × Ed(`).

Let ` be a length vector. We say that there is a massive triangle if there are pair-

wise distinct indices i, j, k ∈ {1, . . . , n} so that the two-element sets {i, j}, {i, k}

and {j, k} are long with respect to `. In this case one of the indices i, j, k must be

the index of a maximal entry of `. Moreover, a subset J ⊂ {1, . . . , n} is long with

respect to ` if J contains at least two of the indices i, j, k, and short otherwise.

Thus existence of a massive triangle implies that the length vector ` is generic and

determines its chamber uniquely up to permutation of the entries of `.

Existence of indices i, j, k as above is equivalent to the number an−3(`) being non-

zero. Indeed, it follows from Definition 1.4.1 that an−3(`) is the number of long two-

element subsets of {1, . . . , n} not containing the index of a maximal entry. Thus

an−3(`) 6= 0 if there is a massive triangle. Conversely, if an−3(`) 6= 0, then there
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exists a long subset J = {j1, j2} ⊂ {1, . . . , n} not containing the index m of the

maximal entry, but then the three indices j1, j2,m satisfy the above condition.

Proposition 1.6.6 (The case of a massive triangle). If an−3(`) 6= 0, then ` is generic

and there is a diffeomorphism

Ed(`) ' (Sd−1)n−3 × T 1Sd−1.

Remark 1.6.7. The number an−3(`) is either zero or one. Indeed, suppose that

there existed two distinct long two-element sets J = {j1, j2} and K = {k1, k2}

not containing the index m of a maximal entry of `. Since the complement of a

long subset is short, the intersection of J and K must be non-empty and we can

assume that j1 = k1 = j. Since J 6= K, the indices j2 and k2 must be distinct. As

ln ≥ lj, we find that the two disjoint sets {j, j2} and {k2,m} are both long. This is

a contradiction.

Proof of Proposition 1.6.6. Using the first part of Proposition 1.5.3, we can assume

without loss of generality that the length vector ` is ordered. If n = 3, then the

diffeomorophism Ed(`) ' T 1Sd−1 follows from Proposition 1.6.3. Assume now that

n > 3.

Since ` is generic, by slightly changing one of the entries of ` if necessary, we may

assume that the length vector `′ = (l2, . . . , ln) obtained by erasing the first entry of

` is generic. Let 0 < ε < [`′]. We claim that the length vectors ` and (ε, `′) lie in the

same chamber. Indeed, a subset J ⊂ {1, . . . , n} is long with respect to ` if and only

if J contains at least two of the three indices n−2, n−1, n and this last condition is

equivalent to J being long with respect to (ε, `). Using Propositions 1.5.3 and 1.6.5,

it follows that

Ed(`) ' Sd−1 × Ed(`′).

We note that the set {n − 3, n − 2} is long with respect to `′. Thus, arguing

inductively, one finds Ed(`) ' (Sd−1)n−3 × T 1Sd−1. This completes the proof.

We can now conclude Proposition 1.2.3 as a corollary of Propositions 1.6.3 and 1.6.6.

Indeed, in the case of the first part of Proposition 1.2.3 we have a1(`) 6= 0 and the
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homeomorphism Ed(`) ' Sd−1 × T 1Sd−1 follows from Proposition 1.6.6. In the sit-

uation of the second part of Proposition 1.2.3, the assumptions of Proposition 1.6.3

are satisfied and thus Ed(`) ' S2(d−1)−1 × Sd−1.

We finish this chapter by using the robot arm distance map to study connected-

ness of the spaces Ed(`).

Proposition 1.6.8. Assume that for some k ≥ 1 the length vector ` does not admit

long subsets J ⊂ {1, . . . , n} with |J | = k. Then the homomorphism

πp(Ed(`))→ πp((S
d−1)n)

induced by inclusion is an isomorphism for 0 ≤ p < (d−1)k−1 and an epimorphism

for p = (d− 1)k − 1.

Proof. Using Proposition 1.5.3, we can assume without loss of generality that the

length vector ` is ordered. Consider the robot arm distance map f` : (Sd−1)n → R

defined in Proposition 1.6.1. Recall that the space Ed(`) is the zero level set f−1
` (0).

Denote t0 = 0 and let t1 < t0 be a regular value of f` so that the interval (t1, t0)

contains no critical values. Moreover, let t1 > t2 > · · · > ts be regular values of f`

so that for each i > 0 the interval (ti+1, ti) contains a single critical value of f` and

so that the image of f` is contained in the interval [t0, ts). Consider the preimage

Wi = f−1
` [ti, t0] for i > 0. Since t0 = 0 is the maximum of f` and since every ti

with i > 0 is a regular value of f`, it follows that each subset Wi ⊂ W is a manifold

with boundary. The gradient flow of f` defines a deformation retraction of W1 onto

Ed(`) = f−1
` (0). The choice of ts implies that Ws = (Sd−1)n.

By Lemma 1.6.1, the critical points of f` contained in Wi+1 −Wi lie on the sub-

manifolds PJ ⊂ (Sd−1)n, where J ⊂ {1, . . . , n} is long with respect to ` and

f`(PJ) ∈ (ti+1, ti). Every critical submanifold PJ is nondegenerate in the sense

of Bott, homeomorphic to the sphere Sd−1 and has the Morse-Bott index

indf`
(PJ) = (d− 1)(n− |J |).
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Denote by E−J the unstable bundle of PJ with respect to a gradient flow of f` and

let D−J ⊂ E−J be the corresponding closed disk bundle. Thus the fibre of D−J is a

disk of dimension (d− 1)(|J | − 1).

Applying Theorem 2.43 from [34], one concludes that the inclusion into Wi+1 of

the space

Wi

⋃
f`(PJ )∈(ti+1,ti)

(∪∂D−J D
−
J ) (1.2)

obtained by attaching to Wi the unstable disk bundles of all the critical submanifolds

PJ with f`(PJ) ∈ (ti+1, ti) is a homotopy equivalence. Using the cell decomposition

of PJ ' Sd−1 into one zero-cell and one cell of dimension (d − 1), it follows that

Wi+1 is homotopy equivalent to a space obtained from Wi by attaching for every

subset J ⊂ {1, . . . , n− 1} with f`(PJ) ∈ (ti+1, ti) a cell of dimension (d− 1)(|J | − 1)

and then attaching to the resulting space a cell of dimension (d− 1)|J |.

The above arguments show that if every subset J ⊂ {1, . . . , n} which is long with

respect to ` has cardinality |J | > k, then each manifold Wi+1 is homotopy equiva-

lent to a space obtained from Wi by attaching cells of dimension at least (d − 1)k.

Thus in this case the homomorphism πp(Wi)→ πp(Wi+1) induced by inclusion is an

isomorphism for p < (d − 1)k − 1 and an epimorphism for p = (d − 1)k − 1 (see

e.g. Corollary 4.12 in [19]). Arguing inductively, one concludes that the inclusion

homomorphism πp(W1) → πp(Ws) is an isomorphism for p < (d − 1)k − 1 and an

epimorphism for p = (d − 1)k − 1. Since Ws = (Sd−1)n and since Ed(`) ⊂ W1 is a

deformation retract, this completes the proof.

It follows from Proposition 1.5.1 that if the space Ed(`) is non-empty, then every

subset J ⊂ {1, . . . , n} which is long with respect to ` has at least two elements.

Together with Proposition 1.6.8, we conclude:

Corollary 1.6.9. If d > 2, then the space Ed(`) is (d− 3)-connected. In particular,

in this case the space Ed(`) is connected.

The second part of Proposition 1.2.2 shows that the space Ed(`) is not (d − 2)-

connected in general. However, one can show:
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Proposition 1.6.10. Let d ≥ 2. If an−3(`) = 0 (compare with Proposition 1.6.6),

then the space Ed(`) is (d− 2)-connected. In particular, in this case the space E2(`)

is connected.

Proof. For every length vector `, there is a fibration Ed(`)→ Sd−1 whose fibre Cd(`)

is the configuration space of polygonal chains with segment lengths l1, . . . , ln (see

Appendix A). It was shown in Proposition 2.7 of [21] that if an−3(`) = 0, then the

space Cd(`) is (d − 2)-connected. The claim of the Proposition follows using the

homotopy exact sequence of the fibration Ed(`)→ Sd−1.



Chapter 2

Homology and Morse-Bott Theory

The main result of this chapter is a certain generalisation to the Morse-Bott case

of the classical Morse lacunary principle. This result will be used in subsequent

chapters to study the homology and the cohomology of the spaces Ed(`).

2.1 A brief Exposition of the Morse Complex

The purpose of this section is to give a brief account of the construction of the Morse

complex. We refer to [34] and to [37] for detailed expositions.

Let M be a closed manifold. For a Morse function f on M , define C∗(f ; Z) as the

free abelian group generated by the critical points of f , graded by their Morse index.

Let Crit(f) denote the set of critical points of f . Recall that a vector field X

is gradient-like with respect to f if

X(f) > 0 on M − Crit(f)

and if, moreover, for every critical point p of f there exist local coordinates (x1, . . . , xn)

near p, so that xj(p) = 0 for j = 1, . . . , n and

f(x1, . . . , xn) = f(p)−
k∑
j=1

x2
j +

n∑
j=k+1

x2
j

37
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as well as

X(x1, . . . , xn) = −2
k∑
j=1

xj
∂

∂xj
+ 2

n∑
j=k+1

xj
∂

∂xj
.

Here n denotes the dimension of M and k the Morse index of the critical point p.

For p, q ∈ Crit(f), denote by Up(f) (respectively by Sq(f)) the unstable manifold

at p (respectively the stable manifold at q) of the flow of −X. We say that a vector

field X on M is a Morse-Smale vector field adapted to f if X is gradient-like with

respect to f and if, moreover, all the intersections

Up(f) ∩ Sq(f), p, q ∈ Crit(f)

are transverse. It is well-known that such a vector field exists for every Morse func-

tion (see e.g. [34], Theorem 2.27).

For each pair p, q of critical points of f , elements of the space

M̃(p, q) = Up(f) ∩ Sq(f)

may be viewed as trajectories γ : R→M of the flow of −X satisfying

lim
t→−∞

γ(t) = p and lim
t→∞

γ(t) = q.

For every element γ ∈ M̃(p, q) and each s ∈ R the map

γs : R→M, γs(t) = γ(s+ t)

is also an element of M̃(p, q). Thus M̃(p, q) is equipped with a free R-action and one

defines the space M(p, q) of unparametrised flow lines originating in p and ending

in q as the quotient

M(p, q) = M̃(p, q)/R.

If X is a Morse-Smale vector field adapted to f , then the spaceM(p, q) is empty if

|p| − |q| − 1 < 0 and a manifold of dimension

dim M(p, q) = |p| − |q| − 1
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if |p| − |q| − 1 ≥ 0.

Choosing orientations of the unstable manifolds of all the critical points defines ori-

entations of all the manifoldsM(p, q). If X is a Morse-Smale vector field adapted to

f , then for every pair p, q ∈ Crit(f) with |p|− |q| = 1, the spaceM(p, q) is compact.

One defines

∂ : C∗(f ; Z)→ C∗−1(f ; Z) (2.1)

by

∂p =
∑

|p|−|q|=1

|M(p, q)|q.

Here |M(p, q)| denotes the number of elements ofM(p, q), counted with orientation.

To demonstrate that ∂2 = 0 and thus ∂ defines the structure of a chain complex

on C∗(f ; Z), one studies a natural compactification of the componentsM(p, q) with

|p| − |q| = 2.

If H∗(f ; Z) denotes the homology of the complex C∗(f ; Z), then there is an iso-

morphism

H∗(f ; Z) ' H∗(M ; Z). (2.2)

We mention some known extensions of the construction of the Morse complex

C∗(f ; Z). If one uses the flow of X rather than the flow of −X, then, repeating

the above steps in the construction of the complex (C∗(f), δ), one obtains a cochain

complex (C∗(f), d) whose cohomology is isomorphic to the cohomology H∗(M ; Z) of

M . If M is compact but ∂M 6= ∅, then the complex C∗(f ; Z) is well-defined if df 6= 0

on the boundary of M and if ∂M coincides with the set of points of M where f

attains its maximum. Moreover, in this case the isomorphism (2.2) continues to hold.

One finds in the literature several approaches which generalise the construction

of the complex C∗(f ; Z) to the case of Morse-Bott functions (see [2], [3], as well as

Appendix A in [17]).
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2.2 A lacunary Principle for Morse-Bott Func-

tions

In this section we recall the classical Morse lacunary principle and study a general-

isation to the case of Morse-Bott functions.

Let f be a Morse function on a compact manifold M . If M has non-empty bound-

ary, assume that df 6= 0 on ∂M and that ∂M coincides with the set of points of M ,

where f attains its maximum.

We say that f is a lacunary Morse function if the indices of all the critical points of

f are multiples of some integer k ≥ 2. A Morse function f is called perfect if there

are isomorphisms

C∗(f ; Z) ' H∗(M ; Z)

of abelian groups.

The Morse lacunary principle states that every lacunary Morse function is perfect.

This claim is readily confirmed using the picture of the Morse complex given in

the previous section: in the case where f is lacunary, the differential (2.1) vanishes

identically for dimensional reasons and perfectness of f follows from (2.2).

We now propose a generalisation of the lacunary principle to the Morse-Bott case.

This generalisation is motivated by the special properties of the robot arm distance

map that were demonstrated in Lemma 1.6.1.

We recall that a smooth function f : M → R is called Morse-Bott if the set Crit(f)

of critical points of f is a disjoint union of submanifolds of M and the restriction

of the Hessian of f to each connected component C of Crit(f) is nondegenerate in

normal directions. For every connected component C ⊂ Crit(f), denote by indf (C)

the Morse-Bott index of C. A Morse-Bott function f is called perfect if there are
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isomorphisms

H∗(M ; Z) '
⊕

C⊂Crit(f)

H∗−indf (C)(M ; Z) (2.3)

of abelian groups. The direct sum on the right-hand side of (2.3) is over the con-

nected components C of the set of critical points of f .

Definition 2.2.1. Let f be a Morse-Bott function. We say that f is lacunary if

there exists an integer k ≥ 2 so that the following conditions are satisfied:

1. The Morse-Bott index indf (C) of every connected component C ⊂ Crit(f) is

a multiple of k.

2. The homology groups H∗(C; Z) of every component are free abelian and the

non-trivial groups are concentrated in dimensions which are multiples of k.

Theorem 2.2.2 (A lacunary principle for Morse-Bott functions). Let f be a smooth

function on a compact manifold M . If ∂M 6= ∅, then assume that df 6= 0 on ∂M

and that the boundary ∂M coincides with the set of points of M where f attains its

maximum.

If f is lacunary in the sense of Definition 2.2.1, then f is perfect. Thus in this

case there are isomorphisms of abelian groups

H∗(M ; Z) '
⊕
C

H∗−indf (C)(C; Z),

where the direct sum is over the connected components C of the set of critical points

of f .

Proof. Denote for a ∈ R by Ma the preimage Ma = f−1(−∞, a). We want to show

that for every a ∈ R, there is an isomorphism

H∗(M
a; Z) '

⊕
f(C)<a

H∗−indf (C)(C; Z).

If the interval (−∞, a) contains exactly one critical value of f , then existence of this

isomorphism follows from the fact that the union of all the critical submanifolds C,

for which f(C) < a, is a deformation retract of Ma. Assume now that the desired
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isomorphism has been established for some a ∈ R and that for some b > a there is

exactly one critical value of f in the interval (a, b).

The unstable bundle of every critical submanifold C is orientable since the coho-

mology group H1(C; Z2) vanishes due to the second condition of Definition 2.2.1.

Using excision and the Thom isomorphism theorem, it follows that

H∗(M
b,Ma; Z) '

⊕
f(C)∈(a,b)

H∗−indf (C)(C; Z). (2.4)

In particular, the non-trivial homology groups H∗(M
b,Ma; Z) are concentrated in

dimensions which are multiples of k.

Arguing inductively, we can assume that the non-trivial groups H∗(M
a;R) lie in

dimensions that are multiples of k. Then the homological exact sequence of the pair

(M b,Ma) reduces to short exact sequences

0 7→ H∗(M
a; Z)→ H∗(M

b;R)→ H∗(M
b,Ma; Z)→ 0. (2.5)

Using (2.4) and the second assumption of Definition 2.2.1, the relative groups

H∗(M
b,Ma; Z) are free abelian. Thus the short exact sequence (2.5) splits, yielding

an isomorphism

H∗(M
b;R) ' H∗(M

a; Z)⊕H∗(M b,Ma; Z)

' H∗(M
a; Z)⊕

⊕
f(C)∈(a,b)

H∗−indf (C)(C; Z).

This completes the proof.

2.3 Identifying a Homology Basis

In this section we consider the case of a lacunary Morse-Bott function (see Def-

inition 2.2.1) with the additional property that every component C ⊂ Crit(f) is

homeomorphic to the sphere Sk. One concludes from Theorem 2.2.2 that under this

additional assumption each critical submanifold C contributes two generators to the
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homology of M , in dimensions indf (C) and indf (C)+k. The following criterion can

be used to identify these generators.

Theorem 2.3.1. Let M be a compact manifold and f : M → R a Morse-Bott func-

tion. If ∂M 6= ∅, then assume that df 6= 0 on ∂M and that ∂M coincides with the

set of points where f attains its maximum.

Assume that f is lacunary (see Definition 2.2.1) and that every component C ⊂

Crit(f) is homeomorphic to the k-dimensional sphere. Moreover, suppose that for

each component C there are closed submanifolds

VC ,WC ⊂M

with the following properties:

1. dim WC = indf (C) + k, C ⊂ WC and f(p) > f(q) for p ∈ C, q ∈ WC − C.

2. C ⊂ WC is a nondegenerate critical submanifold of the restriction of f to WC.

3. dim VC = indf (C) and VC ⊂ WC. Furthermore C and VC intersect transver-

sally as submanifolds of WC in one point.

Then the collection of the homology classes {[VC ], [WC ]}, where C is a connected

component of Crit(f), forms a basis of H∗(M ; Z2).

Proof. We use notation from the proof of Theorem 2.2.2. We want to show that for

every a ∈ R, there is a basis of H∗(M
a; Z2) consisting of the classes [VC ], [WC ] for

f(C) < a.

We assume first that the interval (−∞, a) contains a single critical value of f . Then

there is a deformation retraction of Ma onto the union of those components C of the

set of critical points of f , where f attains its minimum. For every such component

C,

WC = C and VC = {pt} ∈ C.

Since C is homeomorphic to the sphere, the homology classes of WC and VC form

a basis of H∗(C; Z2). It follows that the classes [VC ], [WC ] with f(C) < a form a
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homology basis of H∗(M
a; Z2).

Suppose now that the statement has been proved for some a ∈ R and that the

interval (a, b) contains a single critical value of f . We want to show that there is a

basis of H∗(M
b; Z2) consisting of the classes [VC ], [WC ] for f(C) < b. By the proof

of Theorem 2.2.2, there is an isomorphism

H∗(M
b; Z2) ' H∗(M

a; Z2)⊕H∗(M b,Ma; Z2). (2.6)

Thus it suffices to show that the relative homology classes [WC ,WC ∩ Ma] and

[VC , VC ∩Ma], where f(C) ∈ (a, b), form a basis of H∗(M
b,Ma; Z2). Using excision,

the deformation retraction given by the negative gradient flow of f and the Thom

isomorphism,

H∗(M
b,Ma; Z2) '

⊕
f(C)∈(a,b)

H∗(WC ,WC ∩Ma; Z2) (2.7)

'
⊕

f(C)∈(a,b)

H∗−indf (C)(C; Z2). (2.8)

The images under the composition of the two isomorphisms (2.7) and (2.8) of the

classes [WC ,WC ∩Ma] and [VC , VC ∩Ma] are respectively [WC ∩C] = [C] and [VC ∩

C] = [pt]. Since every critical submanifold C is homeomorphic to the sphere, these

images form a basis of H∗(C; Z2). Thus the classes [WC ,WC∩Ma] and [VC , VC∩Ma],

where f(C) ∈ (a, b), form a basis of H∗(M
b,Ma; Z2). This completes the proof.

If in the situation of Theorem 2.3.1 the submanifolds VC ,WC ⊂ M are all ori-

ented, then the claim of the proposition continues to hold when homology with

Z2-coefficients is replaced by integral homology:

Corollary 2.3.2. Suppose that in addition to the assumptions of Proposition 2.3.1,

for every component C ⊂ Crit(f) the submanifolds VC ,WC ⊂M are oriented. Then

the collection of the homology classes {[VC ], [WC ]}, where C ⊂ Crit(f) is a connected

component, forms a free basis of H∗(M ; Z).

Proof. It suffices to show that under these additional assumptions the claim of the

inductive step of the proof of Theorem 2.3.1 also holds in the case of integral ho-

mology.
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Since the unstable bundle of each critical submanifold is orientable, we may re-

place in (2.7) and (2.8) the coefficient group Z2 by Z. We fix an orientation of the

normal bundle to C in WC . Together with the given orientations of the manifolds

WC and VC , this defines orientations of the intersections WC ∩C = C and VC ∩C =

{pt}, so that the images under the composition of (2.7) and (2.8) of the classes

[WC ,WC ∩Ma] ∈ Hindf (C)+k(M
b,Ma; Z) and [VC , VC ∩Ma] ∈ Hindf (C)(M

b,Ma; Z)

generate Hk(C; Z) respectively H0(C; Z). This completes the proof.



Chapter 3

Homology of Spaces of Polygons

In this chapter we study the homology groups of the spaces Ed(`). We explicitly

compute the Z2-Betti numbers, show that the integral homology groups are torsion-

free when d is even and find a combinatorial criterion for the existence of torsion

elements in the integral homology groups in the case where d is odd. These results

cover both generic and non-generic length vectors. We also compute the asymptotic

behaviour of the homotopy groups and of the average Betti numbers of the spaces

Ed(`) as the number n of edges becomes large.

3.1 The Homology Groups

By the first part of Proposition 1.5.2, there is a homeomorphism E2(`) ' S1 ×M`,

where M` = E2(`)/SO(2) is the space of planar polygons, viewed up to translations

as well as rotations. The integral homology groups of the spaces M` were computed

in [15]. In this section we present results concerning the homology of the spaces

Ed(`) in the case d > 2.

In Section 1.4, we defined the combinatorial quantities ak(`) and bk(`) as the num-

bers of subsets J ⊂ {1, . . . , n} of cardinality |J | = k + 1 which contain the index

of a maximal entry of the length vector ` and are short respectively median with

respect to `.

46
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Theorem 3.1.1. Let d > 2. The non-vanishing Z2-Betti numbers of the spaces

Ed(`) are

dimZ2H(d−1)k(Ed(`); Z2) = ak(`) + bk(`) + ak−1(`) + bk−1(`)

for k = 0, . . . , n− 2 as well as

dimZ2H(d−1)k−1(Ed(`); Z2) = an−1−k(`) + an−2−k(`)

for k = 1, . . . , n− 1.

The proof, given in Section 3.5, relies on the Morse-Bott lacunary principle estab-

lished in Chapter 2.

It follows from the computation in [15] of the integral homology groups of the spaces

M`, the homeomorphism E2(`) ' S1 ×M` and the Künneth theorem that the inte-

gral homology groups of the spaces E2(`) are free abelian. Concerning the integral

homology of the spaces Ed(`) for d > 2, we will show:

Theorem 3.1.2. Let d > 2.

1. The non-vanishing homology groups Hp(Ed(`); Z) are concentrated in dimen-

sions

p = (d− 1)k, 0 ≤ k ≤ n− 2

and

p = (d− 1)k − 1, 1 ≤ k ≤ n− 1.

2. The groups H(d−1)k(Ed(`); Z), 0 ≤ k ≤ n− 2 are free abelian.

Next, we study the question of the existence of torsion elements in the groups

H(d−1)k−1(Ed(`); Z), 1 ≤ k ≤ n− 1.

Theorem 3.1.3. If d is even, then the groups

H(d−1)k−1(Ed(`); Z), 1 ≤ k ≤ n− 1

are free abelian.
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Together with Theorem 3.1.2, it follows that all the integral homology groups of the

space Ed(`) are torsion-free if d is even. Using the universal coefficient theorem, we

obtain:

Corollary 3.1.4. If d > 2 is even, then the Betti numbers

bp(Ed(`)) = rk Hp(Ed(`); Z)

coincide with the Z2-Betti numbers given in Theorem 3.1.1.

The results of Chapter 1 show that if d is odd, then the homology groups of the form

H(d−1)k−1(Ed(`); Z) in general contain torsion elements. For example, for d = 3 and

` = (1, 1, 1) one concludes from the first part of Proposition 1.2.2 that

H1(E3(`); Z) ' H1(T 1S2; Z) ' H1(SO(3); Z) ' Z2.

We will show that in the case of odd d, the existence of torsion elements can be

detected by an explicit combinatorial criterion:

Theorem 3.1.5. Assume that d is odd. Let m ∈ {1, . . . , n} be the index of any

maximal entry of the length vector `.

The following conditions are equivalent:

1. There are torsion elements in the homology group H(d−1)k−1(Ed(`); Z), where

k ∈ {1, . . . , n− 2};

2. There exists a subset J ⊂ {1, . . . , n} with the following properties:

(a) m /∈ J , |J | = k + 1 and J is long respect to `.

(b) There exist indices i, j ∈ J , i 6= j, so that the set I = J − {i, j} ∪ {m} is

either short or median with respect to `.

In many cases Theorem 3.1.5 can be used to rule out the existence of torsion ele-

ments in the integral homology groups of the space Ed(`). For example, suppose

that lm ≥ li+ lj for all of indices i, j 6= m, in other words that there is an edge which

is no shorter than any two other edges combined.
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Using the formula

`I = `J + 2(lm − li − lj),

we see that for every long subset J ⊂ {1, . . . , n} with m /∈ J and every pair i, j ∈ J

the set I = J − {i, j} ∪ {m} is again long with respect to `. Thus in this case

there are no subsets J ⊂ {1, . . . , n} that satisfy the conditions of the second part of

Theorem 3.1.5. One concludes:

Corollary 3.1.6. Suppose that there is an edge which is no shorter than any two

other edges combined: there exists an index m ∈ {1, . . . , n} so that

lm ≥ li + lj for all i, j 6= m.

Then for every d ≥ 2 the integral homology groups of the space Ed(`) are free abelian.

Thus if d > 2, then the Betti numbers bp(Ed(`)) = rk Hp(Ed(`); Z) coincide with the

Z2-Betti numbers computed in Theorem 3.1.1.

The proofs of Theorems 3.1.2, 3.1.3 and 3.1.5 are given in Section 3.6.

3.2 Examples and Applications

We now discuss some applications of the results given in the preceding section.

By Theorem 3.1.1, the space Ed(`) is connected if d > 2 and the homology groups

Hp(Ed(`); Z2) with 1 ≤ p < d − 2 vanish. This is consistent with Corollary 1.6.9

which states that for d > 2 the space Ed(`) is (d− 3)-connected.

The first possible non-vanishing Z2-Betti number of positive dimension is

dimZ2Hd−2(Ed(`); Z2) = an−3(`) + an−2(`).

By Definition 1.4.1, an−2(`) is the number of subsets J ⊂ {1, . . . , n} which contain

the index m of a maximal entry of `, are short with respect to ` and have cardinality

|J | = n−1. Since n ≥ 3, the number an−2(`) vanishes. As was remarked in 1.6.7, the
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number an−3(`) can only assume the values 0 and 1 and the condition an−3(`) = 1

implies that ` is generic and determines the chamber of ` uniquely up to permutation

of the entries. Using Proposition 1.6.6, one concludes:

Proposition 3.2.1. If d > 2, then the following conditions are equivalent:

1. The homology group Hd−2(Ed(`); Z2) is non-trivial;

2. The number an−3(`) is equal to one;

3. The length vector ` is generic and there is a diffeomorphism

Ed(`) ' (Sd−1)n−3 × T 1Sd−1.

Assume now that an−3(`) = 0. It follows from Proposition 1.6.10 that in this case the

integral homology group Hd−2(Ed(`); Z) is trivial. Using Theorem 3.1.1, the second

part of Theorem 3.1.2 and the universal coefficient theorem, we conclude that for

d > 2 the homology group Hd−1(Ed(`); Z) is free abelian of rank a1(`) + b1(`) +

a0(`) + b0(`). By the first part of Proposition 1.5.1, a0(`) + b0(`) = 1 if the space

Ed(`) is non-empty. Combining Proposition 1.6.10 with the Hurewicz theorem, we

find:

Proposition 3.2.2. Let d > 2. If an−3(`) = 0 and Ed(`) 6= ∅, then the homotopy

group πd−1(Ed(`)) is free abelian of rank

a1(`) + b1(`) + 1.

Proposition 3.2.2 becomes false for d = 2. For example, consider the case n = 5,

` = (1, 1, 1, 1, 1). The condition a2(`) = 0 is satisfied. On the other hand, it follows

from the second part of Proposition 1.5.2 and Theorem 2 in [27] that there are

homeomorphisms

E2(`) ' S1 ×M` ' S1 × Σ4,

where Σ4 is the closed oriented surface of genus four. Thus in this case the funda-

mental group π1(E2(`)) is not free abelian.
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It is known that for non-generic length vectors ` the planar polygon spaces M`

are manifolds with finitely many singular points corresponding to median subsets

J ⊂ {1, . . . , n} ([7], Theorem 1.6). Let us use Theorem 3.1.1 to study the question

whether the space Ed(`) can be a manifold if ` is non-generic.

By Theorem 3.1.1, the greatest possible non-vanishing Z2-Betti number of the space

Ed(`) is

dimZ2H(d−1)(n−1)−1(Ed(`); Z2) = a0(`).

The number a0(`) is either zero (if the one-element set {m} consisting of the index

of a maximal entry of ` is long or median with respect to `) or one (if {m} is short

with respect to `). If a0(`) = 0, then either Ed(`) = ∅ or there is a homeomorphism

Ed(`) ' Sd−1. On the other hand, Theorem 3.1.1 shows that in the case d > 2 the

space Ed(`) fails to satisfy Poincaré duality for every non-generic length vector `

with a0(`) = 1. Indeed, from the formulae for the Z2-Betti numbers we see that the

condition

dimZ2H(d−1)k(Ed(`); Z2) = dimZ2H(d−1)(n−k−1)−1(Ed(`); Z2)

is satisfied for all k = 1, . . . , n − 2 if and only if all the numbers bk(`) vanish. We

conclude:

Proposition 3.2.3. For every non-generic length vector ` with a0(`) = 1 the space

Ed(`) is not a topological manifold.

Let us now apply Theorem 3.1.1 to compute the Euler characteristic of the space

Ed(`). Recall from Section 1.3 that M(`) denotes the set of all subsets J ⊂

{1, . . . , n} that are median with respect to the length vector `.

Proposition 3.2.4. The Euler characteristic of the space Ed(`) is given by

χ(Ed(`)) =

|M(`)| if d is odd,

0 if d is even.

In particular, for every generic length vector ` the Euler characteristic of the space

Ed(`) is zero.
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Proof. The Euler characteristic of E2(`) vanishes since this space is homeomorphic

to the product S1 ×M` by the first part of Proposition 1.5.2.

Suppose that d > 2 is even. Applying Theorem 3.1.1,

χ(Ed(`)) =
n−2∑
k=0

(−1)k(ak(`) + bk(`) + ak−1(`) + bk−1(`))

+
n−1∑
k=1

(−1)k−1(an−1−k(`) + an−2−k(`)).

Since a−1(`) = b−1(`) = 0 and an−2(`) = bn−2(`) = 0, both sums vanish and thus

χ(Ed(`)) = 0.

In the case where d is odd, one computes

χ(Ed(`)) =
n−2∑
k=0

(ak(`) + bk(`) + ak−1(`) + bk−1(`))

−
n−1∑
k=1

(an−1−k(`) + an−2−k(`))

= 2
n−3∑
k=0

bk(`) = |M(`)|.

Here we used the fact that the number bn−2(`) is zero as every subset J ⊂ {1, . . . , n}

which contains the index of a maximal entry and has cardinality |J | = n − 1 must

be long with respect to `. The sum
∑n−3

k=0 bk(`) is the number of all median sets

containing the index of a maximal entry and is thus equal to 1
2
|M(`)|.

Let us give a second, more direct proof of Proposition 3.2.4. The proof relies on the

well-known fact that the Euler characteristic of a space equipped with a continuous

S1-action coincides with the Euler characteristic of the set of fixed points of the

action (this is a consequence of the Lefschetz fixed point theorem; a proof can be

found in [31], Theorem 5.5).

Fix a two-dimensional subspace E ⊂ Rd and an orientation of E. Consider the

S1-action on Rd where every element of S1 acts by a linear map that rotates each

vector in E in the positive direction and fixes every vector which is orthogonal to



3.2. Examples and Applications 53

E. We study the induced S1-action on Ed(`). If d = 2, then this action is free and

thus

χ(E2(`)) = 0. (3.1)

The set of fixed points of the S1-action on E3(`) consists exactly of those polygons

(viewed up to translations), where all the edges are perpendicular to E. Since every

polygon of this type corresponds to a unique median subset of {1, . . . , n}, the number

of fixed points is |M(`)|. Thus

χ(E3(`)) = |M(`)|. (3.2)

For d > 3, the set of fixed points of the action may be identified with Ed−2(`) and

thus

χ(Ed(`)) = χ(Ed−2(`)) for d > 3. (3.3)

Equations (3.1)-(3.3) imply that χ(Ed(`)) = χ(E2(`)) = 0 if d is even and χ(Ed(`)) =

χ(E3(`)) = |M(`)| for d odd.

We now evaluate the Z2-Betti numbers in the cases of Propositions 1.6.3, 1.6.5

and 1.6.6.

Example 3.2.5. Consider the case of a massive edge (see Proposition 1.6.3): assume

that the length vector ` is generic and that there is a maximal short one-element

subset {m} ⊂ {1, . . . , n}. In this case a0(`) = 1 and ak(`) = 0 for k > 0. The

numbers bk(`) vanish. Thus by Theorem 3.1.1 the non-zero Z2-Betti numbers are

dimZ2H0(Ed(`); Z2) = dimZ2H(d−1)(n−1)−1(Ed(`); Z2) = 1

and

dimZ2Hd−1(Ed(`); Z2) = dimZ2H(d−1)(n−2)−1(Ed(`); Z2) = 1.

This can be checked using Proposition 1.6.3. Namely, for n > 3 there is a diffeo-

morphism

Ed(`) ' S(d−1)(n−2)−1 × Sd−1

and the Betti numbers are as indicated above.
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If n = 3, then by Proposition 1.6.3,

Ed(`) ' T 1Sd−1.

The homology groups of the latter space are easily computed from the Gysin exact

sequence (see e.g. Section 4.D in [19])

· · · → Hp+(d−1)(T
1Sd−1; Z)→ Hp+(d−1)(S

d−1; Z)→ Hp(S
d−1; Z)→ . . .

Here the map Hp+(d−1)(S
d−1; Z) → Hp(S

d−1; Z) is the cap product with the Euler

class of the tangent bundle of Sd−1; this class is zero if d is even and is given by

twice the generator of Hd−1(Sd−1; Z) if d is odd. Thus

Hd−1(T 1Sd−1; Z) '

0 if d is odd,

Z if d is even.

(3.4)

and

Hd−2(T 1Sd−1; Z) '

Z2 if d is odd,

Z if d is even.

(3.5)

Applying the universal coefficient theorem,

Hd−2(T 1Sd−1; Z2) ' Hd−1(T 1Sd−1; Z2) ' Z2. (3.6)

We see that for n = 3 the Z2-Betti numbers of the space Ed(`) agree with the

formulae of Theorem 3.1.1.

Example 3.2.6. Let us investigate how the Z2-Betti numbers of the spaces Ed(`)

change under the operation of inserting a small edge (see Proposition 1.6.5). Let `

be a generic length vector, 0 < ε < [`] and `′ = (ε, `). For a subset J ⊂ {1, . . . , n},

denote by Ĵ the set Ĵ = {j + 1 : j ∈ J}. Then

J ∈ L(`) ⇐⇒ Ĵ ∈ L(`′) ⇐⇒ Ĵ ∪ {1} ∈ L(`′).

We conclude that

ak(`
′) = ak−1(`) + ak(`)

for k = 1, . . . , n−1. The numbers bk(`) and bk(`
′) are all zero as ` and `′ are generic.



3.2. Examples and Applications 55

Using the Künneth theorem, we see that the formulae of Theorem 3.1.1 are con-

sistent with the diffeomorphism

Ed(`
′) ' Sd−1 × Ed(`)

established in Proposition 1.6.5.

Example 3.2.7. We now consider the case of a massive triangle (see Proposition

1.6.6). Using Proposition 1.5.3, we can assume without loss of generality that ` is

ordered. In this case existence of a massive triangle means that the two-element

subset {n− 2, n− 1} ⊂ {1, . . . , n} is long with respect to `.

Under the above assumptions, ak(`) is the number of subsets J ⊂ {1, . . . , n} so

that n ∈ J , n− 2 /∈ J , n− 1 /∈ J and |J | = k + 1. We conclude that

ak(`) =

(
n− 3

k

)
.

The numbers bk(`) vanish. Using Theorem 3.1.1, we find that

dimZ2H(d−1)k(Ed(`); Z2) =

(
n− 2

k

)
(3.7)

and

dimZ2H(d−1)k−1(Ed(`); Z2) =

(
n− 2

k − 1

)
(3.8)

for k = 1, . . . , n− 2. On the other hand, by Proposition 1.6.6,

Ed(`) ' (Sd−1)n−3 × T 1Sd−1.

Computing the Z2-homology groups of this latter space with the help of the Künneth

theorem and (3.6), one confirms formulae (3.7) and (3.8).

We now verify the criterion of Theorem 3.1.5 in the cases of Examples 3.2.5, 3.2.6

and 3.2.7.

Assume that there is a massive edge (see Proposition 1.6.3 and Example 3.2.5).

We distinguish between the two cases n = 3 and n > 3. In the latter case there

are no sets J as indicated in the second part of Theorem 3.1.5: the only short sub-

set J ⊂ {1, . . . , n} with m ∈ J is J = {m} and every two-element set {i, j} with
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i, j 6= m is short. Thus by Theorem 3.1.5 the homology groups H∗(Ed(`); Z) are

torsion-free. This agrees with the diffeomorphism

Ed(`) ' S(d−1)(n−2)−1 × Sd−1

established in Proposition 1.6.3. If n = 3, then the two-element set J = {1, 2, 3} −

{m} obtained from the index set {1, 2, 3} by removing the index m of any maximal

entry of ` satisfies both conditions of the second part of Theorem 3.1.5. Thus if

n = 3 and d is odd, then the homology group Hd−2(Ed(`); Z) must contain torsion

elements. This can be checked as follows: by Proposition 1.6.6,

Ed(`) ' T 1Sd−1.

If d is odd, then Hd−2(T 1Sd−1; Z) ' Z2 by (3.5).

Consider now the operation of inserting a small edge (see Proposition 1.6.5 and

Example 3.2.6). Let ` be generic and let 0 < ε < [`]. The diffeomorphism

Ed(ε, `) ' Sd−1 × Ed(`)

established in Proposition 1.6.5 implies that the integral homology groups of the

space Ed(ε, `) contain torsion elements if and only if so do the integral homology

groups of the space Ed(`). This is consistent with Theorem 3.1.5, since the existence

of subsets J as described in part two of this Theorem is simultaneous for ` and for

`′ = (ε, `).

Finally, we verify the statement of Theorem 3.1.5 in the case of a massive trian-

gle. Assume that ` is ordered and an−3(`) = 1 (see Proposition 1.6.6). Then the

two-element set {n− 2, n− 1} is long with respect to `. It follows that every subset

J ⊂ {1, . . . n} with |J | = k + 1, n − 2 ∈ J, n − 1 ∈ J and n /∈ J satisfies both

assumptions of the second part of Theorem 3.1.5: J is long and the set

I = J − {n− 2, n− 1} ∪ {n}

is short. Applying Theorem 3.1.5, we conclude that if d is odd, then every homology

group H(d−1)k−1(Ed(`); Z), 1 ≤ k ≤ n − 2 contains torsion elements. This can be
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confirmed using the diffeomorphism

Ed(`) ' (Sd−1)n−3 × T 1Sd−1,

the Künneth Theorem and (3.5).

3.3 The equilateral Case

In this section we consider the important special case of equilateral polygons. Ho-

mology groups of spaces of equilateral planar polygons were studied in [25] and in

[26], see also [15]. For d > 2 we obtain the following result:

Proposition 3.3.1. Let d > 2 and assume that li = lj for all i, j = 1, . . . , n. Denote

by r = bn
2
c the largest integer with 2r ≤ n.

1. The non-vanishing homology groups Hp(Ed(`); Z) with p 6= (d−1)r−1, (d−1)r

are free abelian and concentrated in dimensions

p = (d− 1)k, 0 ≤ 2k ≤ n− 2

and

p = (d− 1)k − 1, n < 2k ≤ 2n− 2.

Their ranks are

rk H(d−1)k(Ed(`); Z) =

(
n

k

)
, 0 ≤ 2k ≤ n− 2

and

rk H(d−1)k−1(Ed(`); Z) =

(
n

k + 1

)
, n < 2k ≤ 2n− 2.

2. If d is even, then the groups H(d−1)r−1(Ed(`); Z) and H(d−1)r(Ed(`); Z) are free

abelian and their ranks are as follows. If n = 2r + 1 is odd, then

rk H(d−1)r−1(Ed(`); Z) = rk H(d−1)r(Ed(`); Z) =

(
2r

r + 1

)
.

If n = 2r is even, then

rk H(d−1)r−1(Ed(`); Z) =

(
2r − 1

r + 1

)
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and

rk H(d−1)r(Ed(`); Z) =

(
2r − 1

r

)
.

Proof. In the equilateral case a subset J ⊂ {1, . . . , n} is short (respectively long or

median) with respect to ` if and only if its cardinality satisfies 2|J | < n (respectively

2|J | > n or 2|J | = n). This allows to express the numbers ak(`) and bk(`) as binomial

coefficients:

ak(`) =


(
n−1
k

)
if 2(k + 1) < n,

0 if 2(k + 1) ≥ n

and

bk(`) =


(
n−1
k

)
if 2(k + 1) = n,

0 if 2(k + 1) 6= n.

Every subset J ⊂ {1, . . . , n} satisfying the conditions of the second part of Theorem

3.1.5 must have cardinality |J | = r. Thus by Theorems 3.1.2 and 3.1.5 all groups

Hp(Ed(`); Z) except for possibly H(d−1)r−1(Ed(`); Z) are torsion-free. Applying the

universal coefficient theorem for homology, one finds that for all d > 2 the Betti

numbers bp(Ed(`)) with p 6= (d − 1)r, (d − 1)r − 1 coincide with the Z2-Betti num-

bers computed in Theorem 3.1.1. Substituting the above expressions for ak(`) and

bk(`) into the formulae of Theorem 3.1.1, we obtain the first assertion.

If d is even, then by Theorem 3.1.3 the remaining group H(d−1)r−1(Ed(`); Z) is free

abelian as well. Thus in this case

b(d−1)r(Ed(`)) = dimZ2H(d−1)r(Ed(`); Z2)

and

b(d−1)r−1(Ed(`)) = dimZ2H(d−1)r−1(Ed(`); Z2)

by the universal coefficient theorem. The second assertion now follows from the

formulae of Theorem 3.1.1.

Proposition 3.3.1 computes the integral homology groups of the spaces Ed(`) in the

equilateral case with the exception of the groups

H(d−1)r(Ed(`); Z) and H(d−1)r−1(Ed(`); Z),
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where r = bn
2
c and d is odd.

3.4 The Topology of random Polygons

Due to the possible existence of torsion elements in the groups H∗(Ed(`); Z) when

d is odd, the Betti numbers bp(Ed(`)) = rk Hp(Ed(`); Z) are in general different

from the Z2-Betti numbers computed in Theorem 3.1.1. As we demonstrate in this

section, the problem of computing the integral homology groups of the spaces Ed(`)

simplifies considerably in the setting of random linkages. Remarkably, the asymp-

totic values of the expectations of the Betti numbers can be computed explicitly.

Before stating this result, we recall the main idea of the study of random linkages.

We refer to [8] for a more detailed exposition.

It follows from Definition 1.1.1 that for every τ > 0, the space Ed(τ`) obtained

by rescaling the entries of the length vector ` ∈ Rn
>0 by the parameter τ can be

identified with Ed(`). Thus we can also parametrize the space of polygons by ele-

ments of the open unit simplex

∆n−1 = {(l1, . . . , ln) ∈ Rn
>0 :

n∑
j=1

lj = 1}.

The heuristic idea that in applications polygons with different edge lengths may be

encountered with different probability can now be made precise as follows.

We view ` as a random variable characterized by a probability measure νn on the

unit simplex ∆n−1. Topological invariants of the spaces Ed(`) are now random func-

tions and we are interested in their asymptotic behaviour as the number n of edges

becomes large. In this section, the asymptotic behaviour for large n of the homotopy

groups and of the expected Betti numbers of the spaces Ed(`) is determined in the

simplest case where νn is the normalized Lebesgue measure on ∆n−1, that is when

νn(A) =
vol(A)

vol(∆n−1)

for every measurable subset A ⊂ ∆n−1. Here vol denotes the Lebesgue measure on

∆n−1.
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We first investigate the asymptotic behaviour of the homotopy groups.

Theorem 3.4.1. Let νn be the normalized Lebesgue measure on ∆n−1 and let d ≥ 2.

For every p ≥ 0, there are constants C > 0 and a ∈ (0, 1), so that for all n ≥ 3 the

homomorphism

πp(Ed(`))→ πp((S
d−1)n) ' ⊕

n
πp(S

d−1)

induced by inclusion is an isomorphism with probability at least 1− Can.

Next, we study the expectations of the Betti numbers. For every p ≥ 0, denote by

E(bp(Ed(`))) the mathematical expectation

E(bp(Ed(`))) =

∫
∆n−1

bp(Ed(`))dνn

of the Betti number

bp(Ed(`)) = rk Hp(Ed(`); Z)

of dimension p. It follows from the first part of Theorem 3.1.2 that

E(bp(Ed(`))) = 0 for p 6= 0,−1 mod (d− 1).

Theorem 3.4.2. Let νn be the normalized Lebesgue measure on the unit simplex

∆n−1. Let d > 2.

1. For every k ≥ 0 there exist constants C > 0 and a ∈ (0, 1), so that for all

n ≥ 3, ∣∣∣∣∫
∆n−1

b(d−1)k(Ed(`))dνn −
(
n

k

)∣∣∣∣ < Can

2. For every k ≥ 1 there exist C > 0 and a ∈ (0, 1), so that for all n ≥ 3,∣∣∣∣∫
∆n−1

b(d−1)k−1(Ed(`))dνn

∣∣∣∣ < Can.

Theorem 3.4.2 complements similar results for the expected Betti numbers of the

spaces M` and N` obtained in [8]. Its proof is somewhat different: since we do not

have explicit formulae for the Betti numbers of the spaces Ed(`) in the case where

d is odd, our argument is based on the result of Proposition 1.6.8.
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The claims of Theorems 3.4.1 and 3.4.2 in fact hold for a large class of proba-

bility measures on the unit simplex, as described in Definition 1 of [8]. However, for

simplicity the exposition here is restricted to the case of the normalized Lebesgue

measure.

Before giving the proofs of Theorems 3.4.1 and 3.4.2, we introduce some notation.

Recall that a subset J ⊂ {1, . . . , n} is called short with respect to the length vector

` if

`J =
∑
j∈J

lj −
∑
j /∈J

lj < 0.

For every k ≥ 0, we consider the subset Γk ⊂ ∆n−1 consisting of those length vectors

`, which have the property that every subset J ⊂ {1, . . . , n} of cardinality |J | = k

is short with respect to `. The proofs of Theorems 3.4.1 and 3.4.2 use the following

estimate of the volume of the subset Γk.

Lemma 3.4.3 ([8]). For 1 ≤ k ≤ n, denote by Γk ⊂ ∆n−1 the subset

Γk = {` ∈ ∆n−1 : `J < 0 for all J ⊂ {1, . . . , n} with |J | = k}.

Then

1− n2k2−n ≤ vol(Γk)

vol(∆n−1)
≤ 1.

The proof can be found in [8], Proposition 3 and we only recall the main idea. For

every J ⊂ {1, . . . , n}, consider the subset VJ ⊂ ∆n−1 given by VJ = {` ∈ ∆n−1 :

`J ≥ 0}. We can express Γk ⊂ ∆n−1 as the union

Γk = ∆n−1 − ∪|J |=kVJ .

One observes that VJ ⊂ ∆n−1 is the frustum obtained by intersecting ∆n−1 ⊂ Rn

with the half-space {`J ≥ 0} ⊂ Rn and proceeds by applying known explicit formu-

lae for the volume of a frustum of a simplex.

We are ready to give the proof of Theorem 3.4.1.



3.4. The Topology of random Polygons 62

Proof of Theorem 3.4.1. If ` ∈ Γk, k ≥ 1, then every subset J ⊂ {1, . . . , n} which

is long with respect to ` has cardinality |J | > k. It follows from Proposition 1.6.8

that in this case the inclusion homomorphism

ip : πp(Ed(`))→ πp((S
d−1)n)

is an isomorphism if p < (d − 1)k − 1. Since d ≥ 2, the probability for ip to be an

isomorphism can be estimated from below by

νn(Γp+2) =
vol(Γp+2)

vol(∆n−1)
≥ 1− n2(p+2)2−n > 1− Can,

where a ∈ (1/2, 1) and where the constant C > 0 is chosen so that C > n2(p+2)(2a)−n

for all n ≥ 3.

Proof of Theorem 3.4.2. Let k ≥ 0 and let ` ∈ Γk+1. By the proof of Theorem 3.4.1,

the inclusion homomorphism ip : πp(Ed(`))→ πp((S
d−1)n) is an isomorphism if

p < (d− 1)(k + 1)− 1.

It follows that for ` ∈ Γk+1 the non-vanishing Betti numbers bp(Ed(`)) with p <

(d− 1)(k + 1)− 1 are

b(d−1)k′(Ed(`)) =

(
n

k′

)
, 0 ≤ k′ ≤ k.

Next, we combine Theorem 3.1.1 and the universal coefficient Theorem to estimate

the Betti numbers in the case where ` ∈ ∆n−1 − Γk+1. Consider the short exact

sequence

0→ Hp(Ed(`); Z)⊗ Z2 → Hp(Ed(`); Z2)→ Tor(Hp−1(Ed(`); Z),Z2)→ 0

of the universal coefficient theorem for homology. Using Theorem 3.1.1, the esti-

mates

ak(`) ≤
(
n− 1

k

)
and bk(`) ≤

(
n− 1

k

)
and the above the exact sequence, one obtains

b(d−1)k(Ed(`)) ≤ dim H(d−1)k(Ed(`); Z2)

≤ 2

(
n− 1

k

)
+ 2

(
n− 1

k − 1

)
= 2

(
n

k

)
≤ 2nk.
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and similarly

b(d−1)k−1(Ed(`)) ≤ dim H(d−1)k−1(Ed(`); Z2)

≤
(

n− 1

n− 1− k

)
+

(
n− 1

n− 2− k

)
≤ nk+1.

We can now compute ∣∣∣∣∫
∆n−1

b(d−1)k(Ed(`))dνn −
(
n

k

)∣∣∣∣
=

∣∣∣∣∣
∫

∆n−1−Γk+1

b(d−1)k(Ed(`))dνn −
(

1− vol(Γk+1)

vol(∆n−1)

)(
n

k

)∣∣∣∣∣
≤ 2

(
1− vol(Γk+1)

vol(∆n−1)

)
nk ≤ n3k+22−n+1 < Can,

where a ∈ (1/2, 1) and the constant C is chosen so that C > 2n3k+2(2a)−n for all

n ≥ 3. We have established the first claim the theorem. To prove the second claim,

we compute, for k ≥ 1,∣∣∣∣∫
∆n−1

b(d−1)k−1(Ed(`))dνn

∣∣∣∣ =

∣∣∣∣∣
∫

∆n−1−Γk+1

b(d−1)k−1(Ed(`))dνn

∣∣∣∣∣
≤
(

1− vol(Γk+1)

vol(∆n−1)

)
nk+1 ≤ n3k+32−n < Can,

where a ∈ (1/2, 1) and C is chosen so that C > n3k+3(2a)−n for all n ≥ 3. This

completes the proof.

3.5 Proof of Theorem 3.1.1

It will be convenient to assume for the proof that the length vector ` is ordered

(see section 1.3). Since every length vector can be obtained from an ordered length

vector by a permutation of the entries and since by Proposition 1.5.3, the homeo-

morphism type of the space Ed(`) does not change when we permute the entries of

`, this assumption is not restrictive.

Recall from Section 1.1 that the space Ed(`) is a subset of W = (Sd−1)n. Our goal is

to compute the dimensions of the kernel and of the cokernel of the homomorphism

jk : H(d−1)k(W − Ed(`); Z2)→ H(d−1)k(W ; Z2) (3.9)
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induced by the inclusion W − Ed(`) ↪→ W .

Consider the robot arm distance map f` : W → R,

(u1, . . . , un) 7→ −
∣∣∣ n∑
j=1

ljuj

∣∣∣2.
By Lemma 1.6.1, the critical points of f` consist of the zero level set f−1

l (0) = Ed(`)

and all the submanifolds

PJ = {(u1, . . . , un) : ui = uj = −uk for i, j ∈ J, k /∈ J},

where J ⊂ {1, . . . , n} is long with respect to `. The Morse-Bott index of PJ is

indfl
(PJ) = (d− 1)(n− |J |).

Fix ε ∈ (0, [`]) and consider the subset

W ε = f−1
` ((−∞,−ε2)) ⊂ W.

Since −ε2 is a regular value of f`, W
ε is a manifold with boundary ∂W ε = f−1

` (−ε2).

The flow of f` defines a retraction of f−1
` (−∞, 0) = W − Ed(`) onto W ε.

Due to the choice of ε, for every subset J ⊂ {1, . . . , n} which is long with re-

spect to ` there is an inclusion PJ ⊂ W ε. Every submanifold PJ is diffeomorphic to

the sphere Sd−1 and its Morse-Bott index is a multiple of (d − 1). Thus if d > 2,

then the pair (W ε, f`) satisfies the assumptions of Theorem 2.2.2. It follows that in

this case the restriction of f` to the complement W − Ed(`) is perfect and hence

H∗(W − Ed(`); Z2) ' H∗(W
ε; Z2) '

⊕
J long w.r.t. `

H∗−indfl
(PJ )(PJ ; Z2).

Next, we use the criterion of Theorem 2.3.1 to identify a homology basis for W −

Ed(`).

Fix e ∈ Sd−1 and define for every subset J ⊂ {1, . . . , n} submanifolds VJ ,WJ ⊂ W

by

VJ = {(u1, . . . , un) ∈ W : uj = e for j ∈ J} (3.10)
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and

WJ = {(u1, . . . , un) ∈ W : ui = uj for i, j ∈ J}. (3.11)

Thus VJ is obtained by fixing the direction of all the segments of the robot arm

whose indices lie in J to be e ∈ Sd−1 while WJ consists of all those configurations

of the robot arm, where all the segments whose indices lie in J are parallel.

The dimensions of VJ and of WJ are

dim VJ = (d− 1)(n− |J |)

and

dim WJ = (d− 1)(n− |J |+ 1).

For every J ⊂ {1, . . . , n}, VJ ⊂ WJ . If the set J is long with respect to `, then

WJ ⊂ W ε. Moreover in this case the class [VJ ] ∈ H(d−1)(n−|J |)(Wε; Z2) is indepen-

dent of the choice of the point e ∈ Sd−1.

We claim that the assumptions of Theorem 2.3.1 are satisfied. To this end, note that

the submanifolds PJ and VJ of WJ intersect transversally in a single point eJ ∈ W

given by

uj =

e if j ∈ J,

−e if j /∈ J.

Moreover, the inequality f`(q) > f`(q
′) holds for all q ∈ PJ , q′ ∈ WJ − PJ . Indeed,

WJ ⊂ W is the subset of those configurations of the robot arm, where all segments

with indices in J point in the same direction. Since the function f` measures the

negative distance between the initial point and the endpoint of the robot arm, the

maximum of f` on WJ is attained exactly at those configurations of the arm, where

all the segments with indices not in J point in the opposite direction.

Applying Theorem 2.3.1, we obtain:

Proposition 3.5.1. The classes [WJ ], [VK ] where J,K ⊂ {1, . . . , n} are long with

respect to ` and |J | = n − k + 1, |K| = n − k, form a basis of the Z2-vector space

H(d−1)k(W − Ed(`); Z2).
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For 1 ≤ k ≤ n, a basis of H(d−1)k(W ; Z2) is given by the classes [VK ], where K ⊂

{1, . . . , n} is a subset of cardinality |K| = n − k. For |K| + |K ′| = n, the mod 2

intersection number of the classes [VK ] and [VK′ ] is

[VK ] · [VK′ ] =

1 if K ∩K ′ = ∅,

0 if K ∩K ′ 6= ∅.

The intersection numbers involving the classes [WJ ] are as follows:

Lemma 3.5.2. 1. For J,K ⊂ {1, . . . , n}, |J | + |K| = n + 1 the intersection

number [WJ ] · [VK ] ∈ Z2 of the classes [WJ ] and [VK ] is given by

[WJ ] · [VK ] =

1 if |J ∩K| = 1,

0 if |J ∩K| > 1.

2. For every pair of subsets I, J ⊂ {1, . . . , n} with |I|+|J | = n+2 the intersection

number [WI ] · [WJ ] ∈ Z2 vanishes.

Proof. Let |J ∩ K| > 1. Fix k ∈ K ∩ J and e′ ∈ Sd−1 with e′ 6= e. Consider the

submanifold V ′K ⊂ W given by

V ′K = {(u1, . . . , un) ∈ W : uj = e for j ∈ K − {k} and uk = e′}.

Then [VK ] = [V ′K ] and WJ ∩ V ′K = ∅. We conclude that in this case [WJ ] · [VK ] = 0.

If |J ∩ K| = 1 then the submanifolds WJ and VK have a unique point of inter-

section given by uj = e for j = 1, . . . , n. This intersection is transverse.

To demonstrate the second part of the claim, let j ∈ I ∩ J . Fix a diffeomorphism

ϕ : Sd−1 → Sd−1 which is homotopic to the identity and has no fixed points (if d is

even) or two nondegenerate fixed points (if d is odd). Define Φ : (Sd−1)n → (Sd−1)n

as the map which applies ϕ to the jth factor and fixes all other factors. Then

[Φ(WI)] = [WI ] and the submanifolds Φ(WI) and WJ are either disjoint or intersect

transversally in exactly two points. Thus the mod 2 intersection number is zero.
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Let us use Lemma 3.5.2 to choose a basis of H∗(W ; Z2) which will be more convenient

for the proof of Theorem 3.1.1.

Lemma 3.5.3. For 0 ≤ k ≤ n, there is a basis of H(d−1)k(W ; Z2) consisting of the

classes [WJ ] and [VK ] where J ⊂ {1, . . . , n} is a subset with |J | = n − k + 1 and

n ∈ J and K ⊂ {1, . . . , n} a subset with |K| = n− k and n ∈ K.

Proof. Denote Hk = H(d−1)k(W ; Z2) and let H ′k ⊂ Hk be the subspace generated

by the classes [WJ ] and [VK ] as in the claim of the Lemma. Since the number(
n−1
k−1

)
+
(
n−1
k

)
of the specified generators of H ′k coincides with the rank

(
n
k

)
of Hk, it

suffices to check that the intersection form of W restricts to a nondegenerate bilinear

form

H ′k ×Hn−k → Z2.

There is a basis of Hn−k consisting of the classes [VI ] so that I ⊂ {1, . . . , n} and

|I| = k. We denote by En−k ⊂ Hn−k (respectively by Fn−k ⊂ Hn−k) the subspace

generated by all the classes [VI ] so that |I| = k and n ∈ I (respectively by all the

classes [VI ] so that |I| = k and n /∈ I). Further, we write E ′k ⊂ H ′k (respectively

F ′k ⊂ H ′k) for the subspace generated by all the classes [WJ ] with |J | = n − k + 1

and n ∈ J (respectively by all the classes [VK ] with |K| = n− k and n ∈ J). Then

H ′k = E ′k ⊕ F ′k

and

Hn−k = En−k ⊕ Fn−k.

Since the intersection number [VK ] · [VI ] is zero if both sets K and I contain the

index n, the intersection form vanishes identically on F ′k × En−k. It follows from

Lemma 3.5.2 that for [WJ ] ∈ E ′k and [VI ] ∈ En−k the intersection number [WJ ] · [VI ]

is non-zero if and only if I = J∪{n}. Thus the intersection form is nondegenerate on

E ′k × En−k. One concludes analogously that the intersection form is nondegenerate

on F ′k × Fn−k. This completes the proof.

Remark 3.5.4. It follows from Lemma 3.5.2 that the duals with respect to the inter-

section form on H∗(W ; Z2) of the basis elements of Lemma 3.5.3 are given by

[WJ ]∗ = [VĴ ] and [VK ]∗ = [WK̂ ].
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Here for a subset J ⊂ {1, . . . , n} with n ∈ J the symbol Ĵ denotes the set Ĵ =

J ∪ {n}.

We are ready to determine the dimensions of the kernel and of the cokernel of

homomorphism (3.9). We write H(d−1)k(W − Ed(`); Z2) as a direct sum

H(d−1)k(W − Ed(`); Z2) = Ak ⊕ A′k ⊕Bk ⊕B′k,

where:

• Ak (respectively A′k) is generated by classes [WJ ] with |J | = n− k+ 1, J long

with respect to ` and n ∈ J (respectively n /∈ J).

• Bk (respectively B′k) is generated by classes [VK ] with |K| = n − k, K long

with respect to ` and n ∈ K (respectively n /∈ K).

We write

H(d−1)k(W ; Z2) = Ak ⊕Bk ⊕ Ck ⊕Dk,

where Ak and Bk are as above and

• Ck is generated by the classes [WJ ] with |J | = n− k + 1, n ∈ J and J either

short or median with respect to `.

• Dk is generated by the classes [VK ] with |K| = n − k, n ∈ K and K either

short or median with respect to `.

The homomorphism jk restricts to the identity map on Ak ⊕Bk.

Lemma 3.5.5. There are inclusions

jk(A
′
k) ⊂ Ak (3.12)

and

jk(B
′
k) ⊂ Ak ⊕Bk. (3.13)

Proof. Assume [WI ] ∈ A′k and thus |I| = n− k + 1, I is long with respect to ` and

n /∈ I. Using Remark 3.5.4, one obtains the following Fourier decomposition:

jk([WI ]) =
∑
[WJ ]

([WI ] · [VĴ ])[WJ ] +
∑
[VK ]

([WI ] · [WK̂ ])[VK ]. (3.14)
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Here the first sum is over subsets J ⊂ {1, . . . , n} with |J | = n − k + 1 and n ∈ J

and the second sum is over subsets K ⊂ {1, . . . , n} with |K| = n− k and n ∈ K.

By Lemma 3.5.2, every coefficient [WI ] · [WK̂ ] in the second sum on the right-hand

side of (3.14) vanishes. Thus

jk([WI ]) ∈ Ak ⊕ Ck.

To show that the class jk([WI ]) lies in Ak, we must check that for every subset

J ⊂ {1, . . . , n} which is either short or median with respect to ` and so that

|J | = n − k + 1 and n ∈ J , we have [WI ] · [VĴ ] = 0. Recall that the intersec-

tion number [WI ] · [VĴ ] is non-zero if and only if the subsets I and Ĵ have exactly

one element in common. The latter condition is equivalent to the set J being of the

form J = I − {i} ∪ {n} for some i ∈ I. Since ln is a maximal entry of `, this is a

contradiction to the assumption that I is long and J is short or median with respect

to `. We have established (3.12).

We now demonstrate (3.13). Let [VL] ∈ B′k. This means that |L| = n − k, L is

long with respect to ` and n /∈ L. As above, there is a decomposition

jk([VL]) =
∑
[WJ ]

([VL] · [VĴ ])[WJ ] +
∑
[VK ]

([WL] · [WK̂ ])[VK ], (3.15)

where the sums are over subsets J and K of {1, . . . , n} containing the index n with

|J | = n − k + 1 and |K| = n − k. We must show that in the two sums on the

right-hand side of (3.15) all the coefficients corresponding to basis elements [WJ ],

[VK ] which lie in Ck respectively in Dk vanish.

If [WJ ] ∈ Ck, then n ∈ J and J is either short or median with respect to `. The in-

tersection number [VL] · [VĴ ] is non-zero if and only if J = L∪{n}, contradicting the

assumption that L is long and J is short or median with respect to `. Let [VK ] ∈ Dk.

This means that |K| = n − k, n ∈ K and that K is short or median with respect

to `. The intersection number [VJ ] · [WK̂ ] is non-zero only if K = J − {j} ∪ {n}

for some j ∈ J . This contradicts the assumption that J is long and K is short or

median with respect to `. This completes the proof of (3.13).
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Corollary 3.5.6. The image of the homomorphism jk is generated by all the classes

[WJ ] and [VK ] so that the subsets J,K ⊂ {1, . . . , n} are long with respect to `, contain

the index n and have the cardinalities |J | = n− k + 1 and |K| = n− k.

Thus

dimZ2coker(jk) = dimZ2Ck + dimZ2Dk

= an−k(`) + bn−k(`) + an−k−1(`) + bn−k−1(`).

On the other hand, from Proposition 3.5.5

dimZ2ker(jk) = dimZ2A
′
k + dimZ2B

′
k = ak−2(`) + ak−1(`).

Consider the exact sequence of the pair (W,W − Ed(`)) for homology with Z2-

coefficients. Using the fact that the non-vanishing homology groups H∗(W ; Z2) and

H∗(W −Ed(`); Z2) are concentrated in dimensions which are multiples of d− 1, we

see that non-vanishing homology groups Hp(W,W − Ed(`); Z2) are concentrated in

dimensions of the form p = (d−1)k and p = (d−1)k+ 1, k ≥ 0. Moreover, if d > 2,

then there is an exact sequence

0→ H(d−1)k+1(W,W − Ed(`); Z2)→ H(d−1)k(W − Ed(`); Z2)

jk−→ H(d−1)k(W ; Z2)→ H(d−1)k(W,W − Ed(`); Z2)→ 0.

Using Poincaré-Lefschetz duality and excision,

H∗(W,W − Ed(`); Z2) ' H(d−1)n−∗(Ed(`); Z2).

Thus

dimZ2H(d−1)k(Ed(`); Z2) = dimZ2H
(d−1)k(Ed(`); Z2)

= dimZ2H(d−1)(n−k)(W,W − Ed(`); Z2)

= dimZ2coker(jn−k)

= ak(`) + bk(`) + ak−1(`) + bk−1(`)
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and

dimZ2H(d−1)k−1(Ed(`); Z2) = dimZ2H
(d−1)k−1(Ed(`); Z2)

= dimZ2H(d−1)(n−k)+1(W,W − Ed(`); Z2)

= dimZ2ker(jn−k)

= an−k−2(`) + an−k−1(`).

The proof of Theorem 3.1.1 is complete.

3.6 Proof of Theorems 3.1.2, 3.1.3 and 3.1.5

Proof of Theorem 3.1.2. In course of the proof of Theorem 3.1.1 in the previous

section, homology classes in H∗(W ; Z2) defined by submanifolds VK ,WJ ⊂ W were

used. In order to obtain integral homology classes, we now orient the submanifolds

VK , WJ .

We orient each submanifold VK ⊂ W as the product VK = (Sd−1)n−|K| ⊂ (Sd−1)n =

W . In more detail, let {i1 < · · · < ik} be the complement of K in {1, . . . , n}. For

every element u = (u1, . . . , un) ∈ VK , let Bi1 , . . . , Bik be bases of the tangent spaces

Tui1
Sd−1, . . . , Tuik

Sd−1 which are positive with respect to the standard orientation

of the sphere. We fix an orientation of the tangent space TuVK by defining the basis

(Bi1 , . . . , Bik) to be positive.

Every submanifold WJ ⊂ W is oriented as the product of the corresponding mani-

fold VJ and the diagonal in (Sd−1)n−|J |. More precisely, let u = (u1, . . . , un) ∈ WJ .

By definition of WJ , this means that uj = e for all j ∈ J . We identify TuWJ '

TuVJ⊕TeSd−1 and orient TuWJ by declaring a basis of TuWJ consisting of a positive

basis of TuVJ , followed by a positive basis of TeS
d−1, to be positive.

We now apply Corollary 2.3.2 to conclude:

Proposition 3.6.1. The homology classes [WJ ], [VK ] with |J | = n − k + 1, |K| =
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n − k and so that the sets J and K are long with respect to `, form a free basis of

H(d−1)k(W − Ed(`); Z).

Consider the exact sequence of the pair (W,W −Ed(`)) for homology with integral

coefficients. The non-vanishing homology groups H∗(W−Ed(`); Z) are concentrated

in dimensions which are multiples of d−1. Using excision and Poincaré duality, there

is an isomorphism

H∗(W,W − Ed(`); Z) ' H(d−1)n−∗(Ed(`); Z).

We see from the exact sequence that the non-vanishing groups Hp(Ed(`); Z) lie in

dimensions

p = (d− 1)k, 0 ≤ k ≤ n− 2 and p = (d− 1)k − 1, 1 ≤ k ≤ n− 1.

Moreover, cohomology groups of the form H(d−1)k−1(Ed(`); Z) are torsion-free. The

two assertions of the theorem now follow from the universal coefficient theorem for

cohomology.

We will conclude Theorems 3.1.3 and 3.1.5 from the following result:

Lemma 3.6.2. Let

jk : H(d−1)k(W − Ed(`); Z)→ H(d−1)k(W ; Z)

be the homomorphism induced by the inclusion W − Ed`
↪→ W .

1. If d is even, then the cokernel of the homomorphism jk is torsion-free.

2. Let d be odd. The following conditions are equivalent:

(a) The cokernel of jk contains torsion elements;

(b) There exists a subset J ⊂ {1, . . . , n − 1} of cardinality |J | = n − k + 1

which is long with respect to ` and indices i, j ∈ J , so that the set I =

J − {i, j} ∪ {n} is short or median with respect to `.

We now show that Theorems 3.1.3 and 3.1.5 follow from Lemma 3.6.2.
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Proof of Theorems 3.1.3 and 3.1.5. As in the proof of Theorem 3.1.1, it follows from

the exact homology sequence of the pair (W,W−Ed(`)) that there is an isomorphism

H(d−1)k(Ed(`); Z) ' coker(jn−k)

If T(d−1)k−1 ⊂ H(d−1)k−1(Ed(`); Z) denotes the subgroup consisting of torsion ele-

ments, then by the universal coefficient theorem for cohomology,

H(d−1)k(Ed(`); Z) ' H(d−1)k(Ed(`); Z)⊕ T(d−1)k−1.

Here we used the fact that the homology group H(d−1)k(Ed(`); Z) is free abelian by

Theorem 3.1.2.

We see that the homology group H(d−1)k−1(Ed(`); Z) contains torsion elements if

and only if the cokernel of the homomorphism jn−k contains torsion elements. The

claims of Theorems 3.1.3 and 3.1.5 now follow from the first respectively the second

part of Lemma 3.6.2.

Recall that by Proposition 3.6.1, the group H(d−1)k(W − Ed(`); Z) has a free basis

consisting of all the classes [VK ], [WJ ] so that K and J are long subsets with |K| =

n− k and |J | = n− k + 1. We write H(d−1)k(W − Ed(`); Z) as a direct sum

H(d−1)k(W − Ed(`); Z) = Ek ⊕ E ′k ⊕Bk ⊕B′k (3.16)

of free abelian groups. Here Bk and B′k are defined as in the proof of Propo-

sition 3.1.1 in the previous section: Bk ⊂ H(d−1)k(W − Ed(`); Z) (respectively

B′k ⊂ H(d−1)k(W − Ed(`); Z)) is the subgroup generated by all the classes [VK ]

so that |K| = n − k, K is long with respect to ` and n ∈ K (respectively all the

classes [VK ] so that |K| = n− k, K is long with respect to ` and n /∈ K).

Moreover, Ek and E ′k are defined as follows:

• Ek is the subgroup generated by all the classes [WJ ] so that |J | = n − k + 1,

n ∈ J , J is long with respect to ` and so that the set J − {n} is either short

or median with respect to `.
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• E ′k is the subgroup generated by all the remaining basis elements [WJ ]: the

generators of E ′k are all the classes [WJ ] ∈ E ′k so that |J | = n− k + 1 and one

of the following two conditions is satisfied:

1. J does not contain the index n and is long with respect to `;

2. J contains n and the set J − {n} is long with respect to `.

There is a free basis of H(d−1)k(W ; Z) consisting of the classes [VK ], where K ⊂

{1, . . . , n} is a subset of cardinality |K| = n−k. We write H(d−1)k(W ; Z) as a direct

sum

H(d−1)k(W ; Z) = Fk ⊕ F ′k ⊕Bk ⊕B′k (3.17)

of free abelian groups, where the groups Bk and B′k are defined as above and the

groups Fk and F ′k are defined as follows:

• Fk is generated by all the classes [VK ] with |K| = n − k, n /∈ K and so that

the set K is short or median with respect to ` and the set K ∪ {n} is long.

• F ′k is generated by all the remaining basis elements [VK ]. Namely, generators

of F ′k are all the classes [VK ] so that |K| = n − k and so that one of the

following two conditions is satisfied:

1. K contains the index n and is short or median with respect to `;

2. K does not contain n and the set K∪{n} is short or median with respect

to `.

The homomorphism jk : H(d−1)k(W − Ed(`); Z) → H(d−1)k(W ; Z) is the identity on

Bk ⊕ B′k. It follows that the cokernel of jk is isomorphic to the cokernel of the

composition of jk with the projection

π : Fk ⊕ F ′k ⊕Bk ⊕B′k → (Fk ⊕ F ′k ⊕Bk ⊕B′k)/(Bk ⊕B′k)

= Fk ⊕ F ′k.

Denote by

j′k : H(d−1)k(W − Ed(`); Z)→ Fk ⊕ F ′k
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the composition π ◦ jk. Next, we describe the homomorphism j′k.

By construction, j′k vanishes identically on the subgroup

Bk ⊕B′k ⊂ H(d−1)k(W − Ed(`); Z).

Consider an element [WJ ] of the specified basis of Ek ⊂ H(d−1)k(W −Ed(`); Z). We

compute

j′k([WJ ]) =
∑

[VK ]∈Fk

[WJ ] · [VK ]

[VK ] · [VK ]
[VK ] +

∑
[VI ]∈F ′k

[WJ ] · [VI ]
[VI ] · [VI ]

[VI ], (3.18)

where the first sum is over all basis elements [VK ] of Fk and the second sum over

all basis elements [VI ] of F ′k. By definition of the subgroup Ek, J is a long subset

with n ∈ J so that the set J − {n} is either short or median with respect to `. On

the other hand, the set K does not contain the index n. Moreover, K is short or

median with respect to ` and the set K ∪ {n} is long with respect to `.

It follows from the proof of Proposition 3.5.2 that the intersection number [WJ ]· [VK ]

is non-zero if and only if the sets J and K have exactly one element in common;

moreover in this case we have [WJ ] · [VK ] = ±1 (the exact sign can be determined

from the above choice of orientations of the submanifolds WJ , VK , but this will not

be used). Since n ∈ J and n ∈ K, the coefficient of [VK ] in the first sum on the

right-hand side of (3.18) is non-zero if and only if K = J − {n}; moreover in this

case the coefficient equals ±1.

We define for every basis element [VK ] of Fk

YK =
[WK′ ] · [VK ]

[VK ] · [VK ]
[VK ] +

∑
[VI ]∈F ′k

[WK′ ] · [VI ]
[VI ] · [VI ]

[VI ], (3.19)

where K ′ denotes the set K ′ = K ∪ {n}.

Let F̃k ⊂ Fk ⊕ F ′k be the free abelian group generated by the classes YK . We

have Fk ⊕ F ′k = F̃k ⊕ F ′k. From the definition of YK and the above discussion of

equation (3.18) we see that j′k([WK ]) = YK for [WK ] ∈ Ek. Thus

j′k(Ek) = F̃k
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and moreover j′k restricts to an isomorphism of Ek onto F̃k. It follows that if

j′′k : H(d−1)k(W − Ed(`); Z)→ F ′k

denotes the composition π′ ◦ j′k of j′k and the projection

π′ : F̃k ⊕ F ′k → (F̃k ⊕ F ′k)/F̃k = F ′k,

then the cokernel of j′k is isomorphic to the cokernel of j′′k .

We now describe the homomorphism j′′k . By construction, j′′k vanishes identically on

the subgroup

Ek ⊕Bk ⊕B′k ⊂ H(d−1)k(W − Ed(`); Z).

Next, let [WJ ] be an element of the specified basis of E ′k. Consider the right-hand

side of (3.18). The intersection number [WJ ] · [VI ] is non-zero if and only if the sets

J and I have exactly one element in common or, equivalently, if J is obtained from

I by adding a single element of the complement I. Examining the definitions of the

subgroups E ′k and F ′k, we find that this is impossible. Indeed, assume that n ∈ I

and J = I ∪ {j} for some j ∈ I. Since n ∈ J , it follows from the definition of E ′k

that the set J −{n} = I ∪{j}−{n} is long with respect to `. However, since ln is a

maximal entry of `, in this case the set I must be long as well in contradiction to the

definition of F ′k. For n /∈ I we argue similarly: since in this case by the definition of

the subgroup F ′k the set I ∪ {n} is short or median with respect to `, so is any set

of the form I ∪ {j}, j ∈ I.

It follows that for every basis element [WJ ] ∈ E ′k, the second sum on the right-

hand side of (3.18) vanishes. Thus

j′k([WJ ]) =
∑

[VK ]∈Fk

[WJ ] · [VK ]

[VK ] · [VK ]
[VK ]

=
∑

[VK ]∈Fk

[WJ ] · [VK ]

[WK′ ] · [VK ]
(YK −

∑
[VI ]∈F ′k

[WK′ ] · [VI ]
[VI ] · [VI ]

[VI ]).

Here YK is the homology class defined in (3.19).
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One concludes that

j′′k([WJ ]) = −
∑

[VK ],[VI ]

[WJ ] · [VK ]

[WK′ ] · [VK ]

[WK′ ] · [VI ]
[VI ] · [VI ]

[VI ], (3.20)

where the sum is over all the elements [VK ] ∈ Fk and [VI ] ∈ F ′k of the specified bases

of Fk and F ′k.

We will use (3.20) to analyze the cokernel of the homomorphism j′′k . The result

of our analysis is summarised by the following Lemma:

Lemma 3.6.3. Let d > 2.

1. Every element of the image of the homomorphism j′′k is divisible by two.

2. If d is even, then the homomorphism j′′k vanishes identically.

3. If d is odd, then the following conditions are equivalent:

(a) j′′k is not the zero homomorphism;

(b) There exists a subset J ⊂ {1, . . . , n− 1} as in condition (b) in the second

part of Lemma 3.6.2.

Let us show that Lemma 3.6.2 follows from Lemma 3.6.3.

Proof of Lemma 3.6.2. By construction of the homomorphism j′′k , the cokernels of

jk and of j′′k are isomorphic. Thus the first claim of Lemma 3.6.2 follows from the

second assertion of Lemma 3.6.3.

We now demonstrate that if the homomorphism j′′k does not vanish identically,

then its cokernel contains torsion elements. Using the criterion of the third part

of Lemma 3.6.3, this will imply the second assertion of Lemma 3.6.2.

Assume that j′′k([WJ ]) 6= 0 for some basis element [WJ ] ∈ E ′k. By the first part

of Lemma 3.6.3, the element j′′k([WJ ]) ∈ F ′k is divisible by two. Let s > 0 be the

maximal exponent so that 2s divides j′′k([WJ ]) and let

j′′k([WJ ]) = 2sX, X ∈ F ′k.
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Then 2sX ∈ Im j′′k but X /∈ Im j′′k . Thus the equivalence class of X in the cokernel

of j′′k has finite order. This completes the proof.

It remains to prove Lemma 3.6.3.

Proof of Lemma 3.6.3. Consider the coefficient of [VI ] ∈ F ′k on the right-hand side

of (3.20). The intersection number [WJ ] · [VK ] is non-zero if and only if the set K is

obtained from J by removing a single element j ∈ J . Moreover, in this case we have

n /∈ J : otherwise we would conclude from the definition of E ′k that the set J − {n}

is long with respect to ` and then so would be the set K = J − {j}, contradicting

the condition [VI ] ∈ Fk. Similarly, the intersection number [WK′ ] · [VI ] is non-zero

if and only if I is obtained from K ′ by removing an element i ∈ K ′. We note that

i 6= n, since otherwise we would have K = I contradicting the fact that Fk and F ′k

are disjoint.

We see that a necessary condition for the coefficient of [VI ] on the right-hand side of

(3.20) to be non-zero is that the set the set I may be written as I = J −{i, j}∪{n}

for some pair of indices i, j ∈ J , i 6= j. In this case the coefficient is given by

−µi − µj,

where

µi =
[WJ ] · [VIi

]

[WI′i
] · [VIi

]

[WI′i
] · [VI ]

[VI ] · [VI ]
and Ii = I − {n} ∪ {i}; the number µj is defined analogously, but with the index i

replaced by j. Since µi, µj ∈ {±1}, every coefficient in the sum on the right-hand

side of (3.20) is even. This establishes the first claim of Lemma 3.6.3.

We will show that

µi = −µj if d is even (3.21)

and

µi = µj if d is odd. (3.22)

This will complete the proof of Lemma 3.6.3. Indeed, from (3.21) we see that in the

case where d is even, j′′k vanishes identically. This establishes the second assertion
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of Lemma 3.6.3.

Equation (3.22) together with the definition of the coefficients µi and µj shows that

if d is odd, then the homomorphism j′′k is not identically zero if and only if there

exist basis elements [WJ ] ∈ E ′k and [VI ] ∈ F ′k so that n /∈ J and I = J −{i, j}∪ {n}

for some pair of indices i, j ∈ J , i 6= j. Examining the definition of the subgroups

E ′k and F ′k, one finds that this last condition is equivalent to condition (b) in the

second part of Lemma 3.6.2.

Our proof of (3.21) and (3.22) relies on a symmetry argument. Consider the homeo-

morphism φ : W → W which interchanges the ith and the jth factor of the product

W = (Sd−1)n. Since the set J contains both indices i and j and neither of these two

indices lies in I,

φ(WJ) = WJ , φ(VI) = VI and φ(VI) = VI . (3.23)

Similarly,

φ(VI′i) = VI′j , φ(VI′j ) = VI′i (3.24)

and

φ(VIi
) = VIj

, φ(VIj
) = VIi

. (3.25)

We also note that

φ∗([WJ ]) = [WJ ]. (3.26)

Assume that d is even. In this case φ reverses the orientation of W and thus for any

two classes x ∈ H(d−1)k(W ; Z) and y ∈ H(d−1)(n−k)(W ; Z),

φ∗(x) · φ∗(y) = −x · y. (3.27)

Moreover, using our choice of the orientations of the submanifolds VI ,

φ∗([VI ]) = −[VI ]. (3.28)

We compute

µi =
φ∗([WJ ]) · φ∗([VIi

])

φ∗([WI′i
]) · φ∗([VIi

])

φ∗([WI′i
]) · φ∗([VI ])

φ∗([VI ]) · φ∗([VI ])
(3.29)
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= −
[WJ ] · [VIj

]

[WI′j
] · [VIj

]

[WI′j
] · [VI ]

[VI ] · [VI ]
= −µj. (3.30)

Here (3.29) follows from (3.27) and (3.30) from (3.23)-(3.26) and (3.28). Note that

equations (3.23)-(3.25) imply that

φ∗([VI ]) = ±[VI ], φ∗([VIi
]) = ±[VIj

] and φ∗([VI′i ]) = ±[VI′j ]. (3.31)

Each of the classes φ∗([VI ]), φ∗([VIi]
) and φ∗([VI′i]) enters the expression on the right-

hand side of (3.29) twice. Thus the signs carried over from the right-hand sides in

(3.31) cancel.

Suppose now that d is odd. In this case φ preserves the orientation of W and

thus for x ∈ H(d−1)k(W ; Z) and y ∈ H(d−1)(n−k)(W ; Z),

φ∗(x) · φ∗(y) = x · y. (3.32)

Moreover,

φ∗([VI ]) = [VI ]. (3.33)

Arguing as in the above proof of (3.21), one obtains

µi =
φ∗([WJ ]) · φ∗([VIi

])

φ∗(([WI′i
]) · φ∗([VIi

])

φ∗([WI′i
]) · φ∗([VI ])

φ∗([VI ]) · φ∗([VI ])

=
[WJ ] · [VIj

]

[WI′j
] · [VIj

]

[WI′j
] · [VI ]

[VI ] · [VI ]
= µj.

This completes the proof.



Chapter 4

Homology of planar telescopic

Polygons

In this chapter we compute the homology groups of spaces of polygons with a tele-

scopic edge in the planar case d = 2. We discuss an application motivated by the

Topological Hypothesis studied in the theory of phase transitions.

4.1 The Homology Groups

The purpose of this section is to present a computation of the homology groups of

spaces of planar polygonal linkages with a segment of variable length. Let us recall

the construction of these spaces from Section 1.1. We fix length vectors `− and `+

of the form

`− = (l1, . . . , ln−1, l
−
n )

and

`+ = (l1, . . . , ln−1, l
+
n ),

where l−n < l+n , and consider the closed interval A ⊂ Rn connecting `− and `+. The

space Ed(A) of polygons in Euclidean space Rd with n − 1 edges of fixed lengths

l1, . . . , ln−1 and an edge whose length varies in the interval [l−n , l
+
n ] is defined as the

union

Ed(A) = ∪`∈AEd(`) ⊂ (Sd−1)n.

81
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Using the second part of Proposition 1.5.5, we can assume without loss of generality

that the metric data A satisfies the condition l1 ≤ l2 ≤ · · · ≤ ln−1.

Our study of the spaces Ed(A) is motivated by the fact that they may be viewed as

configuration spaces of linkages equipped with a telescopic segment. Telescopic legs

are used quite commonly in mechanical linkages for example for shock absorption.

As we show in Section 4.3, the spaces Ed(A) are also of interest for certain topolog-

ical questions studied in the thermodynamics literature.

Let us consider the space Ed(A) in the case d = 2. There is a free SO(2)-action on

E2(A) and the same argument as used in the proof of the first part of Proposition

1.5.2 shows:

Proposition 4.1.1. If MA denotes the quotient space MA = E2(A)/SO(2), then

there is a homeomorphism

E2(A) ' S1 ×MA.

It will be more convenient for us to study the spaces MA rather than the products

E2(A) ' S1 ×MA.

The main result of this chapter is the computation of the homology groups of the

spaces MA.

Theorem 4.1.2. Let A be the metric data of a polygon telescopic linkage with n−1

segments of fixed lengths l1 ≤ l2 ≤ · · · ≤ ln−1 and one telescopic segment whose

length varies in the interval [l−n , l
+
n ], 0 < l−n < l+n . Assume that A is generic (see

Section 1.5). Then for every k = 0, . . . , n− 2 the homology group Hk(MA; Z) is free

abelian with rank

αk(`
−)− βk(`+, `−) + αn−3−k(`

+)− βn−3−k(`
−, `+).

We refer to Section 1.4 for the definition of the numbers αk and βk.

In the next two sections, applications of Theorem 4.1.2 are discussed.
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4.2 Examples and Applications

In this section we evaluate Theorem 4.1.2 to study the topology of the spaces MA.

We assume throughout this section that the metric data A is generic and satisfies

the condition

l1 ≤ l2 ≤ · · · ≤ ln−1.

Example 4.2.1. Consider the case where the interval of variation of the length of the

telescopic segment is small. Namely, let ` = (l1, . . . , ln) be a generic length vector

and assume that

`− = (l1, . . . , ln−1, ln − ε)

and

`+ = (l1, . . . , ln−1, ln + ε),

where 0 < ε < min(ln, [`]). Theorem 4.1.2 and the third part of Proposition 1.4.4

imply that for 0 ≤ k ≤ n− 2 the homology group Hk(MA; Z) is free abelian of rank

rk Hk(MA; Z) = ak(`) + an−3−k(`).

On the other hand, it follows from Proposition 1.5.6 that in this case there is home-

omorphism

MA 'M` × [−ε, ε].

We see that for generic length vectors Theorem 4.1.2 recovers the computation of

the integral homology groups of the spaces M` of planar polygons with fixed edge

lengths obtained in [15].

Example 4.2.2. Let us assume the inequalities (a) ln−1 > l1 + · · ·+ ln−2, (b) 0 < l−n <

ln−1 − (l1 + · · ·+ ln−2) and (c) l+n > l1 + · · ·+ ln−1.

Recall from the proof of Proposition 1.5.5 in Section 1.6 that the space E2(A) may

be identified as

E2(A) = f−1
`′ ([a, b]),

where `′ denotes the length vector `′ = (l1, . . . , ln−1), f`′ : (S1)n−1 → R is the cor-

responding robot arm distance map and a = −(l+n )2, b = −(l−n )2. The minimum of
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the function f`′ is given by −(l1 + · · ·+ ln−1)2; moreover, assuming inequality (a) its

maximum is −(ln−1 − (l1 + · · · + ln−2))2. Using inequalities (b) and (c), it follows

that in this case there are homeomorphisms E2(A) ' (S1)n−1 and MA ' (S1)n−2.

Inequality (b) implies that a subset J ⊂ {1, . . . , n} is short with respect to `−

if and only if J does not contain the index n− 1. Thus

αk(`
−) =

(
n− 2

k

)
for k = 0, . . . , n− 2.

By inequality (c) every subset J ⊂ {1, . . . , n} with n ∈ J is long with respect to `+.

Thus αk(`
+) = 0 for all k. Similarly, the numbers βk(`

+, `−) and βk(`
−, `+) all van-

ish. We see that the result of Theorem 4.1.2 is consistent with the homeomorphism

MA ' (S1)n−2.

Example 4.2.3. We now study connectedness of the spaces MA. By Theorem 4.1.2,

the zero Betti number of MA is

rk H0(MA; Z) = α0(`−)− β0(`+, `−) + αn−3(`+)− βn−3(`−, `+).

From the definition of the numbers αk and βk we see that the difference α0(`−) −

β0(`+, `−) can assume the values zero or one. Moreover, if α0(`−)− β0(`+, `−) = 0,

then either the set {n} is long with respect to `− or the set {n− 1} is long with re-

spect to `+. Thus using the second part of Proposition 1.5.1, α0(`−)−β0(`+, `−) = 1

if the space MA is non-empty.

The difference αn−3(`+) − βn−3(`−, `+) is the number of two-element subsets J ⊂

{1, . . . , n− 1} which are long with respect to `+ and satisfy one of the following two

conditions: either (a) n − 1 /∈ J or (b) n − 1 ∈ J and the set J ∪ {n} − {n − 1}

is long with respect to `−. We claim that there is at most one two-element subset

J ⊂ {1, . . . n− 1} which is long with respect to `+ and satisfies (a) or (b). Thus the

number αn−3(`+)− βn−3(`−, `+) can assume the values zero or one.

Due to the assumption l1 ≤ l2 ≤ · · · ≤ ln−1, either ln−1 or l+n is a maximal en-

try of `+. Since a length vector admits at most one long two-element set not con-

taining the index of a maximal entry, there can be at most one two-element subset



4.2. Examples and Applications 85

J ⊂ {1, . . . n−1} which is long with respect to `+ and satisfies condition (a), namely

J = {n−3, n−2}. If the set {n−3, n−2} is long with respect to `+, then it is also long

with respect to `−. It follows that the set {n− 1, n} is short with respect to `−, but

then so is the set {n−2, n}. We conclude that in this case there are no two-element

subsets J ⊂ {1, . . . , n−1} that are long with respect to `+ and satisfy condition (b).

Assume now that there is a two-element subset J ⊂ {1, . . . , n−1} which is long with

respect to `+ and satisfies condition (b). Then the set {n−2, n} is long with respect

to `− and therefore also long with respect to `+. Thus in this case no two-element

subset J ⊂ {1, . . . , n− 1} which is long with respect to `+ satisfies condition (a).

It follows that the space MA has at most two connected components and is dis-

connected if and only if either the condition

{n− 3, n− 2} is long w.r.t. `+ (4.1)

or the two conditions

{n− 2, n− 1} is long w.r.t. `+ and {n− 2, n} is long w.r.t. `− (4.2)

are satisfied. One concludes:

Proposition 4.2.4. If the space MA is disconnected, then there exist three indices

1 ≤ i < j < k ≤ n so that for every length vector ` ∈ A the two-elements sets {i, j},

{i, k} and {j, k} are long with respect to `.

Proof. If condition (4.1) is satisfied, then indices i, j, k with the properties as indi-

cated in the claim of the Proposition are given by i = n−3, j = n−2 and k = n−1.

In the case when the conditions of (4.2) are met, we may set i = n − 2, j = n − 1

and k = n.

Proposition 4.2.4 means that if the space MA is disconnected, then for each ` ∈ A

there is a massive triangle (see Proposition 1.6.6). Using Proposition 1.6.6 with

d = 2, it follows that in this case for every ` ∈ A the space E2(`), and thus also the

space M` is disconnected. We have shown:
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Corollary 4.2.5. If the space MA is disconnected, then so are all the spaces M`

where ` ∈ A.

Example 4.2.6. The following example shows that the space MA may be connected

although both ends M`± are disconnected. Let n = 4, l1 = 4, l2 = 8, l3 = 10,

l−4 = 1 and l+4 = 12. In this case the spaces M`− and M`+ are disconnected because

a massive triangle exists both for `− as well as for `+. However, the space MA is

connected as neither (4.1) nor (4.2) is satisfied.

4.3 Telescopic Linkages and the Topological Hy-

pothesis

In this section we discuss an application of the study of the topology of telescopic

polygons motivated by the so-called Topological Hypothesis in the theory of phase

transitions.

The Topological Hypothesis consists of the statement that phase transitions in ther-

modynamical systems are caused by changes in the topology of certain submanifolds

in the configuration space (see e.g. [5], [35] and references therein).

We consider a system with a Hamiltonian

H =
1

2

N∑
j=1

p2
j + V (q1, . . . , qN).

It is known that at any given value of the inverse temperature β, the effective support

of the canonical measure is close to an equipotential surface

σv = {q ∈ ΓN : V (q) = vN}.

Here ΓN is the configuration space and V the potential of the system.

The Topological Hypothesis states that the reason for the singular behaviour of
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thermodynamic observables in phase transitions of the system are changes of the

topology of the level sets Σv or of the sublevels

Mv = {q ∈ ΓN : V (q) ≤ vN}. (4.3)

In [16] a version of the Topological Hypothesis was proved for a class of short-range

models. Other known results concern the asymptotic growth rate

σ(v) = lim
N→∞

1

N
ln |χ(Mv)| (4.4)

of the Euler characteristic of the sublevels. In many cases non-smoothness of the

function σ(v) detects the presence of a phase transition (see e.g. the exposition in

[28]). In the literature there are also results of negative character concerning the

Topological Hypothesis ([29],[38]).

We now show that the spaces MA of planar polygons with a telescopic segment

studied in the previous section can be identified with the sublevels Mv of a known

thermodynamical model.

We consider the anti-ferromagnetic mean-field XY-model ([6], [32]), which is char-

acterized by the potential

V =
1

2N

N∑
j,k=1

cos(θj − θk)− h
N∑
j=1

θj, (4.5)

where θi ∈ [0, 2π] are angular parameters and h > 0 is also referred to as an external

magnetic field. The configuration space ΓN of the model is an N -torus TN and we

write points q ∈ ΓN as q = {eiθ1 , . . . , eiθN}.

Denoting

m =
1

N

N∑
j=1

exp iθj

and

m0 = −ih,

one obtains

|m + m0|2 =
2

N
V + h2.
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Thus the sublevel Mv defined by (4.3) can be identified as

Mv = {q : |m + m0|2 ≤ 2v + h2}. (4.6)

The interval (ah, bh) of variation of the parameter v is given by

bh = h+ 1/2

and

ah =

−
h2

2
if h ∈ (0, 1],

−h+ 1
2

if h ∈ [1,∞).

Comparing (4.6) with the definition of the space MA of planar telescopic polygons,

one obtains:

Proposition 4.3.1. The space Mv defined by (4.3) is homeomorphic to the space

MA of planar polygons with N + 1 segments of fixed lengths l1 = · · · = lN = 1/N ,

lN+1 = h, and a telescopic segment whose length varies in the interval [0, (2v+h2)1/2].

Our goal is to study the total Betti numbers

b(Mv) =
N+2∑
k=0

bk(Mv), (4.7)

where bk(Mv) = rk Hk(Mv; Z), and their exponential growth rate

τ(v) = lim
N→∞

1

N
ln b(Mv). (4.8)

We want to apply the identification given in Proposition 4.3.1 of the sublevels (4.3)

with the configuration spaces of a planar telescopic linkage. The formulae of Propo-

sition 4.1.2 cannot be used to compute the homology groups in the case of the

telescopic linkage defined in Proposition 4.3.1: Proposition 4.1.2 only applies in

the case of a telescopic segment whose length varies between two positive numbers.

However, the method of proof of Proposition 4.1.2 can be adapted to compute the

Betti numbers of the sublevels Mv. We will show:

Proposition 4.3.2. Let h > 0 and v ∈ (ah, bh). The exponential growth rate of the

total Betti number (4.7) is

τ(v) =

−pv ln pv − (1− pv) ln(1− pv) if v ≤ 0

ln 2 if v ≥ 0.

(4.9)
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Here pv = 1
2
((2v + h2)1/2 − h+ 1).

Proposition 4.3.2 shows that the function τ(v) and its first derivative are continuous

at v = 0, however the second derivative is discontinuous at that point. In light of

the Topological Hypothesis, it is an interesting question how this result, obtained

purely by topological methods, is reflected by the physics of the model.

4.4 Proof of Theorem 4.1.2

The space MA is a subset of

W = {(u1, . . . , un−1) ∈ S1 × · · · × S1}/SO(2) ' T n−2.

We can view W as the space of all shapes of a planar robot arm, i.e. configurations

viewed up to rotations (compare with Section 1.2).

Similarly to the proof of Theorem 3.1.1, consider the function f` : W → R given by

f`(u1, . . . , un−1) = −|
n−1∑
j=1

ljuj|2.

The space MA is the preimage f−1
` [a, b], where

a = −(l+n )2 and b = −(l−n )2.

Denote

W a = f−1
` (−∞, a], W b = f−1

` (−∞, b] and W [a,b] = f−1
` [a, b].

Our goal is to compute the homology groups of W [a,b] = MA. The computation will

use an explicit description of the homology groups of the manifolds W a and W b

which follows from the results of [15] (see also Corollary 1.19 in [7]).

For every subset J ⊂ {1, . . . , n}, denote by WJ ⊂ W the submanifold consisting

of those tuples (u1, . . . , un) ∈ W , so that ui = uj for all i, j ∈ J . Each manifold WJ

is diffeomorphic to a torus of dimension n− 1− |J |. Moreover, WJ is contained in

W a if and only if the set J is long with respect to `+. Similarly, WJ ⊂ W b if and
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only if J is long with respect to `−.

We choose orientations of W and of the submanifolds WJ as follows. For j =

1, . . . , n − 1, denote by ej the vector field on the torus T n−1 which is tangent

to the jth circle and rotates in the positive direction. If e′1, . . . , e
′
n−1 denote the

images of e1, . . . , en−1 under the projection T n−1 → T n−1/SO(2) = W , then the

vector fields e′1, . . . , e
′
n−1 generate at every point the tangent space to W and sat-

isfy e′1 +· · ·+e′n−1 = 0. We orient W by defining the basis e′2, . . . , e
′
n−1 to be positive.

Given a subset J ⊂ {1, . . . , n}, let J = {k1, . . . , kr}, k1 < · · · < kr be the com-

plement of J , where r = n − 1 − |J |. The vector fields e′k1 , . . . , e
′
kr

form a basis of

the tangent space of WJ at every point. We orient WJ so that this basis is positive.

Proposition 4.4.1 ([15]). Let 0 ≤ k ≤ n − 2. The homology classes of all the

submanifolds WJ , where J ⊂ {1, . . . , n− 1} is a subset of cardinality |J | = n− 1−k

which is long with respect to `+, form a free basis of Hk(W
a; Z). Similarly, the

classes of the submanifolds WJ so that J ⊂ {1, . . . , n− 1}, |J | = n− 1− k and J is

long with respect to `−, form a free basis of Hk(W
b; Z).

It follows from Proposition 4.4.1 that

rk Hk(W
a; Z) = αk(`

+) and rk Hk(W
b; Z) = αk(`

−),

where αk(`
+) is the number of all subsets J ⊂ {1, . . . , n − 1} of cardinality |J | =

n− 1− k which are long with respect to `+ (see Section 1.4).

Consider the homological exact sequence of the pair (W b,W [a,b]):

· · · → Hk+1(W b,W [a,b]; Z)→ Hk(W
[a,b]; Z)

→ Hk(W
b; Z)

jk−→ Hk(W
b,W [a,b]; Z)→ . . .

By Proposition 4.4.1, the integral homology groups of the spaces W a and of W b

are free abelian. Thus using excision, Poincaré-Lefschetz duality and the universal

coefficient theorem,

Hk(W
b,W [a,b]; Z) ' Hn−2−k(W a; Z) ' (Hn−2−k(W

a; Z))∗, (4.10)
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where

(Hn−2−k(W
a; Z))∗ = Hom(Hn−2−k((W

a; Z)),Z).

Consider the intersection form

Hk(W
b; Z)⊗Hn−2−k(W

a; Z)→ Z. (4.11)

Under the identifications of (4.10), the homomorphism

Hk(W
b; Z)→ (Hn−2−k(W

a; Z))∗

associated to the bilinear form (4.11) coincides with

jk : Hk(W
b; Z)→ Hk(W

b,W [a,b]; Z).

There is a short exact sequence

0→ coker(jk+1)→ Hk(W
[a,b]; Z)→ ker(jk)→ 0. (4.12)

It rk denotes the rank of the intersection form (4.11), then

rk + rk ker(jk) = rk Hk(W
b; Z)

and

rk + rk coker(jk) = rk Hk(W
b,W [a,b]; Z) = rk Hn−2−k(W

a; Z).

Together with (4.12), it follows that

rk Hk(MA; Z) = rk Hk(W
[a,b]; Z)

= rk Hk(W
b; Z) + rk Hn−3−k(W

a; Z)− rk − rk+1

= αk(`
−) + αn−3−k(`

+)− rk − rk+1.

Evidently, ker(jk) is free abelian. Thus the short exact sequence (4.12) splits and

the homology group Hk(MA; Z) is torsion-free if and only if so is the cokernel of the

homomorphism jk+1.

In order to compute the numbers rk, we describe the intersection form (4.11). For

this purpose, write Hk(W
b; Z) as a direct sum

Hk(W
b; Z) = Abk ⊕Bb

k ⊕ Cb
k (4.13)

of free abelian groups as follows:
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• The subgroup Abk is generated by the homology classes of all the submanifolds

WJ where J ⊂ {1, . . . , n − 1}, |J | = n − 1 − k, J is long with respect to `−

and the set Ĵ obtained from J by removing the maximal index lying in J and

adding the index n is long with respect to `+.

• We define Bb
k as the subgroup generated by the classes of the submanifolds WJ

so that J ⊂ {1, . . . , n−1}, |J | = n−1−k, J is long with respect to `−, n−1 ∈ J

and Ĵ is short with respect to `+ (note that in this case Ĵ = J−{n−1}∪{n}).

• The subgroup Cb
k is generated by the homology classes of all the submanifolds

WJ where J ⊂ {1, . . . , n − 2}, |J | = n − 1 − k, J is long with respect to `−

and Ĵ is short with respect to `+.

We write the homology group Hk(W
a; Z) as a direct sum

Hk(W
a; Z) = Aak ⊕Ba

k ⊕ Ca
k , (4.14)

of free abelian groups defined as above, but with the roles of `− and `+ interchanged.

Thus

• Aak is generated by the classes [WJ ] so that J ⊂ {1, . . . , n−1}, |J | = n−1−k,

J is long with respect to `+ and Ĵ is long with respect to `−.

• Ba
k is subgroup generated by the classes [WJ ] so that J ⊂ {1, . . . , n − 1},

|J | = n − 1 − k, J is long with respect to `+, n − 1 ∈ J and Ĵ is short with

respect to `−.

• Ca
k is generated by the classes [WJ ] so that J ⊂ {1, . . . , n−2}, |J | = n−1−k,

J is long with respect to `+ and Ĵ is short with respect to `+.

Counting the numbers of the basis elements of the groups Bb
k and Ba

k and comparing

with the combinatorial quantities introduced in Section 1.4, one obtains

rk Bb
k = βk(`

+, `−) and rk Ba
k = βk(`

−, `+).

Thus to establish the claim of Theorem 4.1.2, it suffices to show that the cokernel

of the homomorphism jk is torsion-free and the rank of its image coincides with the
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rank of Bb
k.

We now evaluate the intersection form (4.11) on the direct summands of the split-

tings (4.13) and (4.14). If J,K ⊂ {1, . . . , n − 1} are subsets with |J | + |K| = n,

then the submanifolds WJ and WK of W have complimentary dimensions and the

intersection number of the homology classes [WJ ] and [WK ] is

[WJ ] · [WK ] =

±1 if |J ∩K| = 1,

0 if |J ∩K| > 1.

Let [WJ ] ∈ Abk and [WK ] ∈ Hn−2−k(W
a; Z). Suppose that the intersection number

[WJ ] · [WK ] is non-zero. Then the set K is obtained from the complement of J in

{1, . . . , n− 1} by adding an element j ∈ J . Since the set K is long with respect to

`+, its complement

K = {1, . . . , n} −K

is short with respect to `+. As K = J−{j}∪{n}, it follows that the set Ĵ obtained

from J by removing its largest element is also short with respect to `+. This is

a contradiction to the definition of the subgroup Abk. We see that the intersection

number [WJ ] · [WK ] of any two classes [WJ ] ∈ Abk and [WK ] ∈ Hn−2−k(W
a; Z) van-

ishes. An analogous argument shows that [WJ ] · [WK ] = 0 for all [WJ ] ∈ Hk(W
b; Z)

and [WK ] ∈ Aan−2−k.

Consider now the case [WJ ] ∈ Bb
k and [WK ] ∈ Ba

n−2−k. As both sets J and K

contain the index n− 1, the intersection number [WJ ] · [WK ] is non-zero if and only

if the set J is obtained from the complement K by removing the index n and adding

the index n−1. Examining the definitions of the subgroups Bb
k and Ba

n−2−k, one con-

cludes that for every class [WJ ] ∈ Bb
k, there is a unique basis element [WK ] ∈ Ba

n−2−k

with [WJ ] · [WK ] 6= 0 (given by K = J −{n}∪{n− 1}) and the intersection number

with that basis element is [WJ ] · [WK ] = ±1. It follows that the restriction of the

intersection form (4.11) to Bb
k ⊗Ba

n−2−k is nondegenerate.

The intersection number [WJ ] · [WK ] vanishes if [WJ ] ∈ Cb
k and [WK ] ∈ Ca

n−2−k.



4.4. Proof of Theorem 4.1.2 94

Indeed, since in this case neither the set J nor the set K contains the index n− 1,

the two sets have at least two elements in common.

We define for each basis element [WJ ] ∈ Cb
k an element YJ ∈ Hk(W

b; Z) by

YJ = [WJ ]−
∑
I

[WJ ] · [WI′ ]

[WI ] · [WI′ ]
[WI ], (4.15)

where the sum is over all the basis elements of the subgroup Bb
k and I ′ denotes the

set

I ′ = I − {n} ∪ {n− 1}.

Here I is the complement of I in {1, . . . , n}.

It follows from (4.15) that the intersection number YJ · [WK ] is zero for all [WK ] ∈

Aan−2−k ⊕ Ba
n−2−k. Let us show that the intersection number also vanishes in the

case [WK ] ∈ Ca
n−2−k.

The non-zero summands on the right-hand side of (4.15) correspond to sets I of

the form

I = J − {j} ∪ {n− 1}, (4.16)

where j ∈ J . We denote the right-hand side of (4.16) by Ij = J − {j} ∪ {n− 1}.

If J ⊂ {1, . . . , n − 2} is long with respect to `− and Ĵ is short with respect to

`+, then for every j ∈ J the set Ij is long with respect to `− and the set Îj is short

with respect to `+. Thus

YJ = [WJ ]−
∑
j∈J

[WJ ] · [WI′j
]

[WIj ] · [WI′j
]
[WIj ]. (4.17)

For [WK ] ∈ Ca
n−2−k, the intersection number YJ · [WK ] can be expressed as

YJ · [WK ] = [WJ ] · [WK ]−
∑
j∈J

[WJ ] · [WI′j
]

[WIj ] · [WI′j
]
([WIj ] · [WK ])

=
∑
j∈J

[WJ ] · [WI′j
]

[WIj ] · [WI′j
]
([WIj ] · [WK ]). (4.18)
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If |K ∩ Ij| = 1 for some j ∈ J , then |J ∩ K| = 2. Thus in the case |J ∩ K| > 2

every term in the sum on the right-hand side of (4.18) is zero and hence YJ ·[WK ] = 0.

Assume now that |J ∩K| = 2. Let J ∩K = {i, j}. Then one obtains

YJ · [WK ] = −νi − νj,

where

νi =
[WJ ] · [WI′i

]

[WIi ] · [WI′i
]
([WIi ] · [WK ])

and where νj is defined analogously, but with the index i replaced by j. To prove

that the intersection number YJ ·[WK ] vanishes, we must demonstrate that νi = −νj.

This will be shown by a similar symmetry argument as was used in the proof of The-

orems 3.1.3 and 3.1.5 in the preceding chapter.

Consider the homeomorphism T n−1 → T n−1 which interchanges the ith and the

jth coordinate and the induced homeomorphism φ : W → W . The fact that the

sets J and K contain the indices i and j implies that

φ(WJ) = WJ and φ(WK) = WK . (4.19)

Moreover,

φ(WIi) = WIj , φ(WIj ) = WIi (4.20)

and

φ(WI′i
) = WI′j

, φ(WI′j
) = WI′i

. (4.21)

Since φ reverses the orientation of W , for any two homology classes x ∈ Hk(W ; Z),

y ∈ Hn−2−k(W ; Z),

φ∗(x) · φ∗(y) = −x · y. (4.22)

As φ preserves the orientations of the submanifolds WJ and WK ,

φ∗([WJ ]) = [WJ ] and φ∗([WK ]) = [WK ]. (4.23)

We compute

νi = −
φ∗([WJ ]) · φ∗([WI′i

])

φ∗([WIi ]) · φ∗([WI′i
])

(φ∗([WIi ]) · φ∗([WK ])) (4.24)
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= −
[WJ ] · [WI′j

]

[WIj ] · [WI′j
]
([WIj ] · [WK ]) = −νj. (4.25)

Here (4.24) follows from (4.22) and (4.25) is obtained with the help of (4.19), (4.21)

and (4.23). We note that by (4.19) and (4.21),

φ∗([WIi ]) = ±[WIj ] and φ∗([WI′i
]) = ±[WI′j

]. (4.26)

One observes that since each of the classes φ∗([WIi ]) and φ∗([WI′i
]) appears twice on

the right-hand side of (4.24), the signs from the right-hand sides of (4.26) cancel.

We can now complete the proof of Theorem 4.1.2. If C̃b
k ⊂ Hk(W

b; Z) denotes the

subgroup generated by all the homology classes YJ corresponding to basis elements

[WJ ] ∈ Cb
k, then there is a direct sum decomposition

Hk(W
b; Z) = Abk ⊕Bb

k ⊕ C̃b
k.

We have shown that the homomorphism

jk : Hk(W
b; Z)→ Hk(W

b,W [a,b]) ' (Hn−2−k(W
a; Z))∗

vanishes on Abk⊕ C̃b
k and the restriction of jk to Bb

k is a monomorphism onto a direct

summand. It follows that the cokernel of the homomorphism jk is torsion-free and

the rank of the image of jk coincides with the rank of Bb
k. This completes the proof.

4.5 Proof of Proposition 4.3.2

The claim of Proposition 4.3.2 will be concluded from the following result:

Proposition 4.5.1. Let A be the metric data of the polygonal telescopic linkage

defined in Proposition 4.3.1. Denote

ck =


(
N
k

)
if 0 ≤ k ≤ pvN,

0 if pvN < k ≤ N.

(4.27)

Moreover, define

dk =


(
N
k−1

)
if 1 ≤ k < (1− h− pv)N + 1,

0 if (1− h− pv)N + 1 ≤ k ≤ N − 1.

(4.28)
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and d0 = d−1 = 0.

Let N > h. Then for 0 ≤ k ≤ N , the homology group Hk(MA; Z) is free abelian

with rank

rk Hk(MA; Z) = ck + dN−1−k.

Proof of Proposition 4.3.2. Denote

SNk =
∑

0≤j≤k

(
N

j

)
and RN

k =
∑

0≤j<k

(
N

j

)
.

Combining Propositions 4.3.1 and 4.5.1, one obtains the following formula for the

total Betti number of the sublevels Mv for N > h:

b(Mv) = SNpvN +RN
(1−h−pv)N .

Assume first that v ≤ 0. In this case 1− pv − h ≤ pv ≤ 1/2 and hence(
N

bpvNc

)
< b(Mv) < 2SNpvN ≤ n

(
N

bpvNc

)
. (4.29)

To further analyze the total Betti number, the following asymptotic formula for the

binomial coefficients will be used (see [4], page 4):(
n

m

)
∼ (2π)−1

( n
m

)m( n

n−m

)n−m(
m(n−m)

n

)−1/2

. (4.30)

This last asymptotic formula holds if n,m → ∞ and n − m → ∞. The notation

f(n) ∼ g(n) means that f(n)/g(n)→ 1.

Using (4.30), one obtains:

lim
N→∞

1

N
ln

(
N

bpvNc

)
= −pv ln pv − (1− pv) ln(1− pv). (4.31)

The first part of (4.9) follows by combining (4.29) and (4.31).

Consider now the case v ≥ 0. Here pv ≥ 1/2 and thus SNpvN
≥ 2N−1. We obtain the

estimate

2N−1 ≤ b(Mv) ≤ 2N+1. (4.32)

The second part of (4.9) follows from (4.32).
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Proof of Proposition 4.5.1. Denote by ` the length vector with entries

l1 = · · · = lN =
1

N
, lN+1 = h and lN+2 = (2v + h2)1/2. (4.33)

Due to the assumption N > h, we have lj ≤ lN+1 for j = 1, . . . , N + 1.

Consider

W = {(u1 . . . uN+1) ∈ (S1)N+1}/SO(2) ' TN

and the function f` : W → R defined in the previous section.

Let A be the metric data of the telescopic linkage defined in Proposition 4.3.1.

Using similar notation as in the proof of Proposition 4.1.2, define

W a = f−1
` (−∞, a], a = (2v + h2)1/2.

Consider the homology exact sequence of the pair (W,W a):

· · · → Hk+1(W,W a; Z)→ Hk(W
a; Z)

ik−→ Hk(W ; Z)→ Hk(W,W
a; Z)→ . . .

Using excision and Poincaré-Lefschetz duality,

Hk+1(W,W a; Z) ' Hk+1(MA, ∂MA; Z)

' HN−1−k(MA; Z) ' HN−1−k(Mv; Z).

Thus there is a short exact sequence

0→ coker(ik+1)→ HN−1−k(Mv; Z)→ ker(ik)→ 0. (4.34)

By Proposition 4.4.1, there is a free basis of Hk(W
a; Z) consisting of the homology

classes [WJ ], where J ⊂ {1, . . . , N + 1} is a subset of cardinality |J | = N + 1 − k

which is long with respect to `. Consider the direct sum decomposition

Hk(W
a; Z) = Dk ⊕ Ek, (4.35)

where Dk is the subgroup generated by the homology classes [WJ ] so that J ⊂

{1, . . . , N + 1}, |J | = N + 1− k, J is long with respect to ` and contains the index

N+1. The subgroup Ek is generated by the classes [WJ ] so that J ⊂ {1, . . . , N+1},
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|J | = N + 1− k, J is long with respect to ` and N + 1 /∈ J .

The homology group Hk(W ; Z) has a free basis consisting of all the classes [WJ ]

where J ⊂ {1, . . . , N + 1}, |J | = N + 1− k and N + 1 ∈ J (we refer to the previous

section for the definition of the submanifolds WJ). We write Hk(W ; Z) as a direct

sum

Hk(W ; Z) = Dk ⊕ Fk, (4.36)

of free abelian groups, where Dk is defined as above and Fk is the subgroup gener-

ated by the classes [WJ ] so that J ⊂ {1, . . . , N + 1}, |J | = N + 1 − k, N + 1 ∈ J

and so that J is either short or median with respect to `.

The homomorphism

ik : Hk(W
a; Z)→ Hk(W ; Z)

induced by inclusion restricts to the identity on Dk. Let us show that ik(Ek) ⊂ Dk.

Consider an element [WJ ] of the specified basis of Ek. We compute

ik([WJ ]) =
∑

[WI ]∈Dk

[WJ ] · [WI′ ]

[WI ] · [WI′ ]
[WI ] +

∑
[WK ]∈Fk

[WJ ] · [WK′ ]

[WK ] · [WK′ ]
[WK ]. (4.37)

Here I ′ denotes the set {1, . . . , N + 1} − I ∪ {N + 1}.

Suppose that for some class [WK ] ∈ Fk coefficient of [WK ] in the second sum on the

right-hand side of (4.37) is non-zero. Then the sets J and K ′ must have a unique

common element j ∈ {1, . . . , N + 1}. Thus the set K is obtained from J by remov-

ing the index j and adding the index N + 1. Since lj ≤ lN+1 and J is long with

respect to `, it follows that K must also be long with respect to `. This contradicts

the definition of the subgroup Fk. We conclude that the second sum on the right-

hand side of (4.37) vanishes identically for every class [WJ ] ∈ Ek. Thus ik(Ek) ⊂ Dk.

It follows from the above discussion that the ranks of the kernel and of the cok-

ernel of ik coincide with the ranks of Ek and of Fk respectively. Moreover, the
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cokernel of ik is torsion-free. Using the short exact sequence (4.34), we conclude

that HN−1−k(Mv; Z) is the free abelian group of rank

rk HN−1−k(Mv; Z) = rk Ek + rk Fk+1. (4.38)

It remains to calculate the ranks of the subgroups Ek and Fk+1. By definition, the

rank of Ek coincides with the number of subsets J ⊂ {1, . . . , N + 1} of cardinality

|J | = N + 1 − k so that N + 1 /∈ J and J is long with respect to `. Examining

(4.28) and (4.33), one finds rk Ek = dk. The rank of Fk+1 is given by the number

of subsets J ⊂ {1, . . . , N + 1} so that |J | = N − k, N + 1 ∈ J and J is either

short or median with respect to `. Combining (4.27) and (4.33), one concludes that

rk Fk+1 = cN−1−k. This completes the proof.



Chapter 5

Cohomology of Spaces of Polygons

In this chapter we show that the isomorphism type of the graded cohomology ring

H∗(Ed(`); Z2) determines the chamber of the length vector ` up to a permutation

of the entries of `. This result means that the spaces Ed(`) are classified by their

Z2-cohomology rings.

5.1 The inverse Problem

It follows from Proposition 1.5.3 that the homeomorphism type of the space Ed(`)

depends only on the orbit of the chamber of ` under the action of the symmetric

group Σn. It is an interesting question whether topological invariants of the space

Ed(`) can be used to distinguish between different orbits.

In [40], K. Walker studied the planar polygon spaces M` = E2(`)/SO(2). He con-

jectured that these spaces are classified by their cohomology rings, more precisely

that if for two generic length vectors ` and `′ the spaces M` and M`′ have isomorphic

cohomology rings, then ` and `′ lie in the same chamber after a permutation of the

entries. Walker’s Conjecture was proved for a large class of length vectors in [12]

and the remaining cases were resolved in [36]. A proof of an analogous result for

the spaces N` = E3(`)/SO(3) can also be found in [12].

101
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We will show that for each d ≥ 2 the spaces Ed(`) satisfy an analogue of Walker’s

Conjecture. We first demonstrate that the Conjecture for the spaces E2(`) and co-

homology with integral coefficients follows from the results mentioned above.

By Proposition 1.5.2, for every length vector ` there is a homeomorphism

E2(`) ' S1 ×M`. (5.1)

On the other hand, if ` is generic, 0 < ε < [`] and (ε, `) denotes the length vec-

tor obtained by inserting ε as the first entry of `, then the product S1 × M` is

homeomorphic to the space M(ε,`):

S1 ×M` 'M(ε,`) (5.2)

(see Proposition 4.1 in [36], compare also with Proposition 1.6.5). Combining the

two homeomorphisms (5.1) and (5.2), we find that if ` is generic, then the space

E2(`) can be identified as

E2(`) 'M(ε,`). (5.3)

Suppose now that for two generic length vectors `, `′ the spaces E2(`) and E2(`′)

have isomorphic graded integral cohomology rings. Using the first part of Proposi-

tion 1.5.3, we can assume without loss of generality that ` and `′ are ordered. Fix

0 < ε < [`] and 0 < ε′ < [`′] sufficiently small, so that (ε, `) and (ε′, `′) are ordered

as well. Using the homeomorphism (5.3) and Theorem 1.2 from [36], it follows that

(ε, `) and (ε′, `′) lie in the same chamber after a permutation of the entries. Since

the length vectors (ε, `) and (ε′, `′) are ordered, the second part of Lemma 1.3.4

shows that they lie in the same chamber, but then using Lemma 1.3.6 so do the

two length vectors ` and `′. These arguments establish Walker’s Conjecture for the

spaces E2(`) as a consequence of the main result of [36].

We can now state the main result of this chapter.

Theorem 5.1.1. Let `, `′ be two generic length vectors and let d > 2. The following

conditions are equivalent:

1. The spaces Ed(`) and Ed(`
′) are O(d)-equivariantly diffeomorphic;
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2. There is an isomorphism

H∗(Ed(`); Z2) ' H∗(Ed(`
′); Z2)

of graded rings;

3. There is a ring isomorphism

H(d−1)∗(Ed(`); Z2) ' H(d−1)∗(Ed(`
′); Z2);

4. There is a permutation σ : {1, . . . , n} → {1, . . . , n}, so that the length vectors

σ(`) and `′ lie in the same chamber.

The proof of Theorem 5.1.1 uses a similar approach as the results in [12], with the

Morse-Bott lacunary principle of Chapter 2 as a central new tool.

Using the results of Chapter 3, it is not difficult to show that the homology groups of

the space Ed(`) in general do not determine the orbit of the chamber of ` under the

action of the permutation group Σn. For example, consider the two length vectors

` = (1, 2, 2, 2, 4, 4) (5.4)

and

`′ = (1, 1, 3, 4, 8, 8). (5.5)

Evidently, ` and `′ are generic. Moreover, the numbers ak(`) and ak(`
′) coincide for

all k. Thus by Theorem 3.1.1, the Z2-Betti numbers of spaces Ed(`) and Ed(`
′) are

equal. Using Theorem 3.1.2, it follows that the integral homology groups of Ed(`)

and Ed(`
′) are isomorphic if d is even. However, ` and `′ do not lie in the same

chamber since the set J = {1, 4, 6} is short with respect to `, but long with respect

to `′.

Since the length vectors ` and `′ given by (5.4) and (5.5) are both ordered, it follows

from the second part of Lemma 1.3.4 that there is no permutation σ : {1, . . . , n} →

{1, . . . , n} so that σ(`) and `′ lie in the same chamber. This example shows that

to distinguish between different orbits of the Σn-action on the set if chambers, it
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is necessary to use the multiplicative structure of the cohomology ring H∗(Ed(`); Z2).

The main step in the proof of Theorem 5.1.1 is the computation of the subring

H(d−1)∗(Ed(`); Z2) ⊂ H∗(Ed(`); Z2), whose result we now state. We again assume

for convenience that ` is ordered. The general case follows by permuting the entries

of ` and applying the first part of Proposition 1.5.3.

Proposition 5.1.2. Let ` be an ordered length vector and let d > 2. There is an

isomorphism of graded rings

H(d−1)∗(Ed(`); Z2) ' Λd(Z1, . . . , Zn)/I, (5.6)

where Λd(Z1, . . . , Zn) is the exterior algebra over Z2 on generators Z1, . . . , Zn of

degree d− 1 and I ⊂ Λd(Z1, . . . , Zn) is the ideal generated by all the monomials

ZJ = Zj1 · · ·Zjk ,

so that J = {j1, . . . , jk} ⊂ {1, . . . , n− 1} and the set J ∪ {n} is long with respect to

`.

5.2 Proof of Theorem 5.1.1

We now prove Theorem 5.1.1 assuming Proposition 5.1.2. The proof uses the fol-

lowing algebraic result of J. Gubeladze ([18]).

Given a commutative ring R, an ideal I ⊂ R[Z1, . . . , Zn] is called monomial if it

is generated by elements of the form Xa1
1 · · ·Xam

m , ai ≥ 0.

Theorem 5.2.1 ([18]). Let R be a commutative ring and I ⊂ R[X1, . . . , Xm],

I ′ ⊂ R[Y1, . . . , Ym′ ] two monomial ideals. Assume that I ∩ {X1, . . . , Xm} = ∅,

I ′ ∩ {Y1, . . . , Ym′} = ∅ and that there is an isomorphism

R[X1, . . . , Xm]/I ' R[Y1, . . . , Ym′ ]/I
′

of R-algebras.



5.2. Proof of Theorem 5.1.1 105

Then m = m′ and there is a bijection

{X1, . . . , Xm} → {Y1, . . . , Ym′}

which maps I to I ′.

Proof of Theorem 5.1.1. The implications (1) =⇒ (2) =⇒ (3) are evident and

the implication (4) =⇒ (1) follows from the third part of Proposition 1.5.3. It

remains to establish the implication (3) =⇒ (4).

Let `, `′ be two generic length vectors so that the rings H(d−1)∗(Ed(`); Z2) and

H(d−1)∗(Ed(`
′); Z2) are isomorphic and so that, in addition, ` and `′ are both or-

dered. We will show that in this case ` and `′ lie in the same chamber. Since every

length vector may be obtained from an ordered length vector by a permutation of

the entries, this will establish Theorem 5.1.1.

It follows from Proposition 5.1.2 that H(d−1)∗(Ed(`); Z2) ' Z2[Z1, . . . , Zn]/K and

H(d−1)∗(Ed(`
′); Z2) ' Z2[Z1, . . . , Zn]/K ′, where K is the ideal generated by the

squares Z2
j , j = 1, . . . , n and the monomials ZJ = Zj1 · · ·Zjk so that n /∈ J =

{j1, . . . , jk} and the set J ∪ {n} is long with respect to `. The monomial ideal K ′ is

defined analogously, but with ` replaced by `′.

For j = 1, . . . , n − 1, we have Zj ∈ K if and only if the set {j, n} is long with

respect to `. Denote

i = max{1 ≤ j ≤ n− 1 : {j, n} is short or median w.r.t. `}

and

i′ = max{1 ≤ j ≤ n− 1 : {j, n} is short or median w.r.t. `′}.

There is a ring isomorphism

H(d−1)∗(Ed(`); Z2) ' Z2[Z1, . . . , Zi, Zn]/I, (5.7)

where I ⊂ Z2[Z1, . . . , Zi, Zn] is the ideal generated by the squares Z2
j , j ∈ {1, . . . , i, n}

as well as the monomials ZJ = Zj1 · · ·Zjk so that J = {j1, . . . , jk} ⊂ {1, . . . , i} and
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J∪{n} is long with respect to `. We note that Zj /∈ I for j = 1, . . . , i. The condition

Zn ∈ I is equivalent to the one-element set {n} being long with respect to ` and

thus determines the chamber of the length vector ` uniquely up to permutation of its

entries. Using the first part of Proposition 1.5.1, this case is uniquely characterized

by the space Ed(`) being empty. Thus we may assume that Zn /∈ I.

Similarly,

H(d−1)∗(Ed(`
′); Z2) ' Z2[Z1, . . . , Zi′ , Zn]/I ′ (5.8)

with the monomial ideal I ′ defined as above, but with ` replaced by `′.

By (5.7) and (5.8), condition (3) of the theorem implies the existence of a ring

isomorphism

Z2[Z1, . . . , Zi, Zn]/I ' Z2[Z1, . . . , Zi′ , Zn]/I ′. (5.9)

Applying Theorem 5.2.1, one concludes from (5.9) that i = i′ and that there exists

a permutation σ of {1, . . . , i, n} so that a subset J ⊂ {1, . . . , i, n} with n ∈ J is long

with respect to ` if and only if the set σ(J) is long with respect to `′.

We extend σ to a permutation of {1, . . . , n} by defining

σ(j) = j for j = i+ 1, . . . , n− 1.

Denote by k the image k = σ(n) and by α the transposition of the two indices k

and n. Let α(`) be the length vector obtained from ` by interchanging the entries

with these indices.

Since for every j ∈ {i + 1, . . . , n − 1} the set {j, n} is long with respect to both

` and `′, the composition α ◦ σ maps the two sets

Ln(`) = {J ⊂ {1, . . . , n} : n ∈ J and J is long with respect to `}

and

Ln(α(`)) = {J ⊂ {1, . . . , n} : n ∈ J and J is long with respect to α(`)}
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bijectively to each other. Since (α ◦ σ)(n) = n, applying the criterion of Corollary

1.3.3, we conclude that the length vectors ` and α(`′) lie in the same chamber after

a permutation of their entries. It follows that ` and `′ also lie in the same chamber

after a permutation of the entries. This completes the proof of Theorem 5.1.1.

5.3 Proof of Proposition 5.1.2

Proof of Proposition 5.1.2. We use notation from the proof of Theorem 3.1.1. Con-

sider the cohomological exact sequence of the pair (W,Ed(`)) :

· · · → H(d−1)k(W ; Z2)
ik−→ H(d−1)k(Ed(`); Z2)→ H(d−1)k+1(W,Ed(`); Z2)→ . . .

By the proof of Theorem 3.1.1, the non-vanishing homology groups of W − Ed(`)

are concentrated in dimensions which are multiples of d− 1. Using Poincaré duality

and excision,

H(d−1)k+1(W,Ed(`); Z2) ' H(d−1)(n−k)−1(W − Ed(`); Z2) = 0.

Thus the homomorphism

ik : H(d−1)k(W ; Z2)→ H(d−1)k(Ed(`); Z2)

induced by inclusion is surjective. On the other hand, from the exact sequence

H(d−1)k(W,Ed(`); Z2)
hk

−→ H(d−1)k(W ; Z2)
ik−→ H(d−1)k(Ed(`); Z2)

and the commutative square

H(d−1)(n−k)(W − Ed(`); Z2)

PD
��

jn−k // H(d−1)(n−k)(W ; Z2)

PD
��

H(d−1)k(W,Ed(`); Z2)
hk

// H(d−1)k(W ; Z2),

where the columns are Poincaré duality maps, we see that the kernel of ik con-

sists exactly of the Poincaré duals of the elements of the image of jn−k.

For j = 1, . . . , n, denote by

πj : (Sd−1)n → Sd−1
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the projection to the jth factor. We identify H∗(W ; Z2) as the exterior algebra

generated by the classes

Xj = π∗j [S
d−1] ∈ Hd−1(Ed(`); Z2),

where [Sd−1] ∈ Hd−1(Sd−1; Z2) is the generator. Then

H(d−1)∗(Ed(`); Z2) ' Λ(X1, . . . , Xn)/I

for I = ker(ik).

Using Corollary 3.5.6, the kernel of ik consists of the Poincaré duals of all the

classes [VJ ], [WJ ] ∈ H(d−1)∗(W ; Z2) so that J ⊂ {1, . . . , n} is a long subset contain-

ing the index n. The Poincaré dual of the class [VJ ] is the product XJ = Xj1 · · ·Xjk ,

J = {j1, . . . , jk}. Next, we note that

[WJ ] =
∑
j∈J

[VJ−{j}]. (5.10)

Indeed, denoting for j = 1, . . . , n by Sd−1
j ⊂ W the jth factor of the product

W = (Sd−1)n, we see that WJ may be identified with the product of the diagonal

∆ ⊂ Πj∈JS
d−1
j and Πj /∈JS

d−1
j . Equation (5.10) now follows from the fact that the

homology class of the diagonal in a product Sd−1 × · · · × Sd−1 is the sum of the

homology classes of the factors.

It follows that the Poincaré dual of the class [WJ ] is

PD([WJ ]) =
∑
j∈J

XJ−{j}.

We conclude that the kernel of ik is generated additively by all the monomials

XJ = Xj1 · · ·Xjk

as well as the polynomials ∑
j∈J

XJ−{j},

so that the subset J = {j1, . . . , jk} ⊂ {1, . . . , n} is long with respect to ` and con-

tains the index n.
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Let us consider the following change of variables: we define a basis Z1, . . . , Zn of

H∗(W ; Z2) by

Zj = Xj +Xn, j = 1, . . . , n− 1

and

Zn = Xn.

Then for J = {j1, . . . , jk} ⊂ {1, . . . , n} the monomial ZJ = Zj1 · · ·Zjk can be

expressed as

ZJ =

X
J if n ∈ J,

XJ +
∑

j∈J X
J−{j}Xn if n /∈ J.

Thus if we denote for a subset J ⊂ {1, . . . , n} by J ′ the set J − {n}, then

ZJ ′ =
∑
j∈J

XJ−{j}.

We see that in this new basis I ⊂ Λd(Z1, . . . , Zn) is additively generated by all the

monomials ZJ so that either n ∈ J and J is long with respect to `, or n /∈ J and

the set J ∪ {n} is long with respect to `. Thus a multiplicative basis for I is given

by all the monomials ZJ so that n /∈ J and the set J ∪ {n} is long with respect to

`. This completes the proof of Proposition 5.1.2.



Chapter 6

Conclusions

The study of polygon spaces is an exciting field where algebraic topology, Morse

theory and combinatorics intertwine. In this thesis, we showed that the special

properties of the robot arm distance map in higher dimensions lead to new insights

in Morse-Bott theory as well as to results on the structure of the homology groups

and of the cohomology rings of spaces Ed(`) of polygons up to translations.

The results of Chapter 3 together with the previous work of M. Farber and D.

Schuetz ([15]) give explicit expressions for the homology groups H∗(Ed(`); Z) in the

case where d is even. The Morse-Bott lacunary principle of Chapter 2 also provides

a method for computing the integral homology groups when d is odd, however in

this case it seems a much more difficult task to find explicit general expressions.

As an example, let us list the integral homology groups in the case where ` is

generic and n = 5. There are seven chambers (up to permutation of the entries of `)

and the homology groups H∗(Ed(`); Z) for d odd are given below. (Only the groups

Hp(Ed(`); Z) for p = d − 2, p = d − 1 and p = 2d − 3 are listed. The remaining

groups Hp(Ed(`); Z) can be recovered from the table using Theorem 3.1.2, Poincaré

duality and the universal coefficient Theorem.)
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` Hd−2(Ed(`); Z) Hd−1(Ed(`); Z) H2d−3(Ed(`); Z)

(1, 1, 1, 1, 5) 0 0 0

(1, 1, 3, 3, 3) Z2 Z⊕ Z Z2 ⊕ Z2 ⊕ Z

(1, 1, 1, 1, 3) 0 Z 0

(1, 2, 2, 2, 4) 0 Z⊕ Z Z

(1, 1, 2, 2, 3) 0 ⊕
3

Z Z2 ⊕ Z2

(1, 1, 1, 2, 2) 0 ⊕
4

Z Z2 ⊕ Z2 ⊕ Z4

(1, 1, 1, 1, 1) 0 ⊕
5

Z (⊕
4

Z2)⊕ Z3

It is an interesting problem for further research to study in detail the structure of

the homology groups in the case where d is odd. A first step in this direction is the

torsion criterion of Theorem 3.1.5.

In Chapter 4, we considered configuration spaces of planar polygons in the case

where one of the edges has variable length. We computed their homology groups

and related our results to topological questions studied in thermodynamics. Inter-

preting spaces of telescopic polygons as energy sublevels of the anti-ferromagnetic

mean-field XY model allows to obtain an explicit formulae for the Betti numbers of

the sublevels. As an indicator of the presence of phase transitions, we studied the

exponential growth rate of the total Betti number as opposed to the exponential

growth rate of the Euler characteristic, which was considered in previous results.

One may hope that using the total Betti number instead of the Euler characteristic

provides a more sensitive tool for the study of different versions of the Topological

Hypothesis.

In Chapter 5, we studied the inverse problem for the spaces Ed(`) of polygons up to

translations. We proved that the spaces are classified by their Z2-cohomology rings.

This motivates further study of the spaces Ed(`) as analogues in higher dimensions

of M` and N`.
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Appendix A

Spaces of polygonal Chains

In the main body of this thesis, the spaces Ed(`) of polygons in Euclidean space Rd

were studied. Denote by p : Ed(`) → Sd−1 the restriction to Ed(`) ⊂ W = (Sd−1)n

of the projection (u1, . . . , un) 7→ un. For e ∈ Sd−1, the preimage Cd(`) = p−1(e) may

be viewed as the space of polygons up to translations, where the direction of the

edge ln is fixed. The spaces Cd(`) were studied in [20], [21] and in [13].

In the current appendix, we gather basic relationships between the spaces Ed(`)

and Cd(`). We also show that for d 6= 3, the graded isomorphism type of the Z2-

cohomology ring of the space Cd(`) is invariant under arbitrary permutations of the

entries of `.

A.1 Spaces of polygonal Chains

We recall from Section 1 the notation W = (Sd−1)n. Fix e ∈ Sd−1 and consider the

subspace

W ′ = {(u1, . . . , un) ∈ W : un = −e} ⊂ W.

One defines Cd(`) ⊂ W ′ as the intersection Cd(`) = Ed(`) ∩W ′. There is an action

on Cd(`) of the subgroup O(d − 1) ⊂ O(d) consisting of those elements of the or-

thogonal group O(d), which fix the vector e.
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The following properties of the spaces Cd(`) were established in [20] and [21].

Proposition A.1.1. ([20],[21])

1. For every generic length vector `, the space Cd(`) is a closed oriented manifold

of dimension

dim Cd(`) = (d− 1)(n− 2)− 1.

2. If ` and `′ are generic and σ : {1, . . . , n} → {1, . . . , n} is a permutation which

fixes the index n, then the spaces Cd(`) and Cd(σ(`)) are O(d−1)-equivariantly

diffeomorphic.

3. Let ` be a generic length vector and let 0 < ε < [`] (see Section 1.3 for the

definition of the quantity [`]). Then there is a diffeomorphism

Cd(ε, `) ' Sd−1 × Cd(`).

Here (ε, `) is the length vector obtained from ` by inserting ε as the first entry.

The following proposition states basic relationships between the spaces Ed(`) and

Cd(`).

Proposition A.1.2. 1. For every length vector ` there is a fibration

Cd(`) // Ed(`)

p

��
Sd−1.

2. Let ` be a generic length vector and let 0 < ε < [`]. There is a diffeomorphism

Ed(`) ' Cd(`, ε).

Here (`, ε) denotes the length vector obtained from ` by inserting ε as the last

entry.

Proof. To prove the first part of the proposition, let e ∈ Sd−1 and consider an

open neighbourhood e ∈ U ⊂ Sd−1 and a section ψ : U → SO(d) of the bundle
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SO(d) → Sd−1. We define a local trivialization of p : Ed(`) → Sd−1 by mapping

(e′, u) ∈ U × Cd(`) to

(ψ(e′)u1, . . . , ψ(e′)un−1,−ψ(e′)e) ∈ Ed(`) ⊂ W,

where u = (u1, . . . , un−1,−e) ∈ Cd(`) ⊂ W ′. This defines the structure of a locally

trivial fibre bundle.

To prove the second assertion, consider the map G : (Rd)n → Rn × Rd,

G(v1, . . . , vn) = (|v1|, |v2 − v1|, . . . , |vn − vn−1|, vn).

The restriction of G to the subset

Z = {(v1, . . . , vn) ∈ (Rd)n−1 : v1 6= 0 and vj+1 6= vj for j = 1, . . . , n− 1}

is smooth. One concludes analogously as in the Proof of Lemma 1.5.4 that every

element (l1, . . . , ln, vn) ∈ Rn−1
>0 × Rd, so that the length vector (l1, . . . , ln, |vn−1|) is

generic, is a regular value of G|Z . Moreover, there are diffeomorphisms

G−1(`, εe) ' Cd(`, ε)

and

G−1(`, 0) ' Ed(`).

If 0 < ε < [`], then G has no critical values on the interval in Rn × Rd connecting

the two points (`, 0) and (`, εe). Thus in this case there are diffeomorphisms

Cd(`, ε) ' G−1(`, εe) ' G−1(`, 0) ' Ed(`).

A.2 Cohomology of Spaces of polygonal Chains

In light of the second part of Proposition A.1.1, a possible analogue of Walker’s

Conjecture for the spaces Cd(`) is the question whether for generic ` the graded

isomorphism type of the cohomology ring H∗(Cd(`); Z2) determines the chamber of
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` up to a permutation σ : {1, . . . , n} → {1, . . . , n} with σ(n) = n. In [13], it was

shown that the answer to this question is positive if one only considers length vectors

that are dominated, i.e. so that ln is a maximal entry of `. We now show that if

d > 3, then the answer is negative in general, both for cohomology with coefficients

in Z2 as well as for integral cohomology.

Let n > 3. Suppose that ` is an ordered length vector with an−3(`) = 1 (see

Proposition 1.6.6) and that `′ is obtained from ` by interchanging the entries ln−3

and ln. Explicitly, ` and `′ can be chosen as follows. Let 0 < ε < 1/(n − 3). One

defines ` and `′ to be the length vectors with entries

lj = ε for j /∈ {n− 2, n− 1, n}, ln−2 = ln−1 = ln = 1 (A.1)

and

l′j = ε for j /∈ {n− 3, n− 2, n− 1}, l′n−3 = l′n−2 = l′n−1 = 1. (A.2)

Note that ` is dominated while `′ is not.

Proposition A.2.1. Let n > 3 and let ` and `′ be the length vectors given by (A.1)

and (A.2). There are diffeomorphisms

Cd(`) ' (Sd−1)n−3 × Sd−2

and

Cd(`
′) ' (Sd−1)n−4 × T 1Sd−1.

Proof. The first diffeomorphism follows from Cd(1, 1, 1) ' Sd−2 by successive appli-

cation of the third part of Proposition A.1.1. The second diffeomorphism follows by

combining the second part of Proposition A.1.2 with Proposition 1.6.6.

Corollary A.2.2. Let d > 3. If ` and `′ are as in (A.1) and (A.2), then the graded

cohomology rings H∗(Cd(`); Z2) and H∗(Cd(`
′); Z2) are isomorphic. If, in addition,

d is even, then the graded cohomology rings H∗(Cd(`); Z) and H∗(Cd(`
′); Z) are

isomorphic as well. However, there is no permutation σ : {1, . . . , n} → {1, . . . , n}

so that σ(n) = n and the length vectors σ(`) and `′ lie in the same chamber.
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Proof. In the case d > 3 the ring H∗(T 1Sd−1; Z2) is uniquely determined by Poincaré

duality and the fact that the non-vanishing groups Hp(T 1Sd−1; Z2) lie in dimensions

p = 0, p = d − 2, p = d − 1 and p = 2(d − 1) − 1 and are all isomorphic to Z2

(see Example 3.2.5). The first assertion follows using Proposition A.2.1 and the

Künneth theorem for cohomology. The second assertion follows analogously. The

last claim of the Corollary follows from the fact that ` admits a long two-element

subset J ⊂ {1, . . . , n} with n ∈ J while `′ does not.

In [13], the subring H(d−1)∗(Cd(`); Z2) ⊂ H∗(Cd(`); Z2) was computed in the case

where the length vector ` is dominated. One can use similar arguments as were

employed in the proof of Theorem 5.1.1 to extend the computation to the general

case:

Proposition A.2.3. Let ` be a (not necessarily dominated) length vector and let

d > 2. Let m ∈ {1, . . . , n} be the index of any maximal entry of `. There is an

isomorphism of graded rings

H(d−1)∗(Cd(`); Z2) ' Λd(Z1, . . . , Zm̂, . . . Zn)/I,

where Λd(Z1, . . . , Zm̂, . . . Zn) is the exterior algebra on generators Z1, . . . , Zn of de-

gree d− 1 and I is the ideal generated by all the monomials ZJ = Zj1 · · ·Zjk so that

J = {j1, . . . , jk} ⊂ {1, . . . , m̂, . . . , n} and the set J ∪ {m} is long with respect to `.

In the case where ` is dominated, m = n and Proposition A.2.3 recovers the result

of the computation in Section 3 of [13].

If d > 3 and ` is generic, then the cohomology ring H∗(Cd(`); Z2) can be recov-

ered from the result of Proposition A.2.3 and Poincaré duality:

Proposition A.2.4. Let ` be a generic length vector and let m ∈ {1, . . . , n} be the

index of any maximal entry of `. Assume that d > 3. The cohomology H∗(Cd(`); Z2)

is additively generated by classes

ZJ ∈ H(d−1)|J |(Cd(`); Z2), Y K ∈ H(d−1)(n−2−|K|)−1(Cd(`); Z2),
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so that J,K ⊂ {1, . . . , m̂, . . . , n} and the sets J ∪ {m} and K ∪ {m} are short with

respect to `. The product structure is given by

ZJZK =

Z
J∪K if J ∩K = ∅ and J ∪K ∪ {m} is short w.r.t. `,

0 if J ∩K 6= ∅ or J ∪K ∪ {m} is long w.r.t. `,

ZJY K =

Y
K−J if J ⊂ K,

0 if J * K

and

Y JY K = 0 for all J,K.

Proof of Proposition A.2.4. The non-vanishing groups Hp(Cd(`); Z2) lie in dimen-

sions

p = (d− 1)k, 0 ≤ k ≤ n− 3 and p = (d− 1)k − 1, 1 ≤ k ≤ n− 2.

By Proposition A.2.3, an additive basis of the group H(d−1)k(Cd(`); Z2) is given by

classes ZJ so that J ⊂ {1, . . . , m̂, . . . , n}, |J | = k and the set J ∪ {m} is short with

respect to `. There are isomorphisms

H(d−1)(n−2−|J |)−1(Cd(`); Z2) ' H(d−1)|J |(Cd(`); Z2) (A.3)

' Hom(H(d−1)|J |(Cd(`); Z2),Z2), (A.4)

where the first isomorphism is given by Poincaré duality and the second isomorphism

follows from the universal coefficient theorem. We define

Y J ∈ H(d−1)(n−2−|J |)−1(Cd(`); Z2)

to be the elements of a dual basis under the identifications of (A.3) and (A.4)

to the basis of H(d−1)|J |(Cd(`); Z2) given by the classes ZJ . Thus the classes Y J ,

where |J | = k, m /∈ J and J ∪ {m} is short with respect to `, form a ba-

sis of H(d−1)(n−2−k)−1(Cd(`); Z2). In particular, Y ∅ is the generator of the group

H(d−1)(n−2)−1(Cd(`); Z2).

It remains to show that products of classes ZJ , Y K can be expressed as in the
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claim of the proposition. In the case of products of the form ZJZK , this follows

from Proposition A.2.3. Since for all I, J,K with |I|+ |J | = |K|,

ZI(ZJY K) = ZI∪JY K =

[Cd(l)] if I ∪ J = K,

0 if I ∪ J 6= K,

(A.5)

we find that the product ZJY K vanishes if J * K. In the case where J ⊂ K, it

follows from (A.5) and the definition of the classes Y J that ZJY K = Y K−J . Finally,

if d > 3, then products of the form Y JY K vanish for dimensional reasons.

Using the diffeomorphism Ed(`) ' Cd(`, ε) established in Proposition A.1.2, one

obtains as a special case of Proposition A.2.4 a computation of the cohomology ring

H∗(Ed(`); Z2) for d > 3 and generic `.

In the case d = 2, Cd(`) coincides with the space M` of planar polygons, viewed

up to all orientation-preserving Euclidean isometries. In particular, the homeo-

morphism type of the space C2(`) is invariant under arbitrary permutations of the

entries of `. Together with the explicit description given in Proposition A.2.4 of the

cohomology ring H∗(Cd(`); Z2) for d > 3, one concludes:

Corollary A.2.5. Let ` be a generic length vector. If d 6= 3, then for every permu-

tation σ : {1, . . . , n} → {1, . . . , n} the graded cohomology rings H∗(Cd(`); Z2) and

H∗(Cd(σ(`)); Z2) are isomorphic. Here σ(`) denotes the length vector obtained from

` by permuting the entries by σ.

Note that the permutation σ in Corollary A.2.5 may not fix the index n. Recall

that Cd(`) is the space of polygons up to translations, so that the direction of one

of the edges in d-space is fixed. The Corollary means that in the case of d 6= 3, the

isomorphism type of the ring H∗(Cd(`); Z2) is independent of the choice of the edge

whose direction is fixed.
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A.3 Proof of Proposition A.2.3

As noted above, it suffices to consider the case where the length vector ` is non-

dominated, i.e. when a maximal entry of ` has index m ∈ {1, . . . , n− 1}.

We recall that the space Cd(`) is the intersection of Ed(`) ⊂ W = (Sd−1)n with

the subspace W ′ = (Sd−1)n−1 × {−e} ⊂ W . Denote as in Section 3.5 for a subset

J ⊂ {1, . . . , n} by WJ ⊂ W the submanifold

WJ = {(u1, . . . , un) ∈ W : ui = uj for i, j ∈ J}.

Let W ′
J be the intersection W ′

J = WJ ∩ W ′. We note that if n ∈ J , then the

submanifold W ′
J is given by

{(u1, . . . , un−1) ∈ (Sd−1)n−1 : uj = −e for j ∈ J}. (A.6)

On the other hand, if n /∈ J , then W ′
J is given by

{(u1, . . . , un−1) ∈ (Sd−1)n−1 : ui = uj for i, j ∈ J}. (A.7)

Comparing (A.6) and (A.7) with equations (3.10) and (3.11) in Section 3.5 and

applying Lemma 3.5.3, we find that a basis of H∗(W
′; Z2) is given by the classes

[W ′
J ], so that J ⊂ {1, . . . , n} is a subset with m ∈ J (we recall that m ∈ {1, . . . , n−1}

is the index of a maximal entry of `).

Lemma A.3.1. Let ` be a (not necessarily dominated) length vector. The image of

the homomorphism

jk : H(d−1)k(W
′ − Cd(`); Z2)→ H(d−1)k(W

′; Z2)

induced by inclusion is generated by all the classes [W ′
J ], so that J ⊂ {1, . . . , n} is

a subset of cardinality |J | = n − k which is long with respect to ` and contains the

index m.

We now prove Proposition A.2.4 assuming Lemma A.3.1. For j = 1, . . . , n−1, denote

by πj : W ′ → Sd−1 the projection to the jth factor. Let Xj ∈ Hd−1(W ′; Z2) be the

pull-back Xj = π∗j ([S
d−1]) of the generator [Sd−1] ∈ Hd−1(Sd−1; Z2). It follows from
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(A.6) and (A.7) that the Poincaré dual of the class [WJ ] ∈ H(d−1)(n−|J |)(W
′; Z2) may

be expressed as follows:

PD([WJ ]) =


XJ−{n} if n ∈ J,∑
j∈J

XJ−j if n /∈ J.
(A.8)

Here for as subset J = {j1, . . . , jk} ⊂ {1, . . . , n}, XJ denotes the monomial XJ =

Xj1 · · ·Xjk .

Arguing as in the proof of Proposition 5.1.2 in Section 5.3, the homomorphism

H(d−1)∗(Cd(`); Z2)→ H(d−1)∗(W ′; Z2) induced by inclusion is surjective and its ker-

nel I ⊂ H(d−1)∗(Cd(`); Z2) is the ideal generated by the Poincaré duals of the ele-

ments of the image of j∗ : H(d−1)∗(W
′ − Cd(`); Z2)→ H(d−1)∗(W

′; Z2). Using (A.8),

it follows that

H(d−1)∗(Cd(`); Z2) ' Λd(X1, . . . , Xn−1)/I,

where I ⊂ Λd(X1, . . . , Xn−1) is the ideal generated by all the monomials XK , so

that K ⊂ {1, . . . , n − 1}, m ∈ K and the set K ∪ {n} is long with respect to ` as

well as all the sums
∑

j∈J X
J−j, so that J ⊂ {1, . . . , n − 1}, m ∈ J and J is long

with respect to `.

Consider the following change of variables: we denote

Zj = Xj +Xm for j 6= m,n and Zn = Xm.

Then for every subset J ⊂ {1, . . . , n− 1} with m ∈ J ,

XJ = ZJ−{m}∪{n} and
∑
j∈J

XJ−{j} = ZJ−{m}.

It follows that I corresponds to the ideal in Λd(Z1, . . . , Zm̂, . . . , Zn) generated by all

the monomials ZJ , so that J ⊂ {1, . . . , m̂, . . . n} and the set J ∪ {m} is long with

respect to `. This completes the proof of Proposition A.2.4.

The proof of Lemma A.3.1 uses the explicit description of the homology H∗(W
′ −

Cd(`); Z2) which was obtained in [13]. Namely, it was shown in Lemma 1.3 of [13]
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that the homology H∗(W
′−Cd(`); Z2) of the complement of Cd(`) in W ′ has a basis

consisting of all the classes [W ′
J ], so that the subset J ⊂ {1, . . . , n} is long with

respect to `. Similarly as in the proof of Lemma 3.5.5 in Section 3.5, we consider

direct sum decompositions

H(d−1)k(W
′ − Cd(`); Z2) = Ak ⊕ A′k ⊕Bk ⊕B′k

and

H(d−1)k(W
′; Z2) = Ak ⊕Bk ⊕ Ck ⊕Dk,

where

• Ak (respectively A′k) is generated by the classes [W ′
J ] so that |J | = n − k,

n /∈ J , J is long with respect to ` and m ∈ J (respectively m /∈ J).

• Bk (respectively B′k) is generated by the classes [W ′
J ] so that |J | = n − k,

n ∈ J , J is long with respect to ` and m ∈ J (respectively m /∈ J).

Moreover,

• Ck is generated by the classes [W ′
J ] so that |J | = n− k, m ∈ J , J is short or

median with respect to ` and n /∈ J .

• Dk is generated by the classes [W ′
J ] so that |J | = n− k, m ∈ J , J is short or

median with respect to ` and n ∈ J .

Using the formula

[W ′
J ] · [W ′

K ] =

1 if |J ∩K| = 1,

0 if |J ∩K| > 1

for the intersection number of any two classes [W ′
J ], [W ′

K ] with |J |+ |K| = n+1 and

repeating the arguments in the proof of Lemma 3.5.5, one concludes that the image

of the inclusion homomorphism jk is given by Ak ⊕Bk. This completes the proof of

Lemma A.3.1.
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