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Abstract

This thesis is on the representations of connected reductive groups over finite quotients of a
complete discrete valuation ring. Several aspects of higher Deligne–Lusztig representations
are studied.

First we discuss some properties analogous to the finite field case; for example, we show that
the higher Deligne–Lusztig inductions are compatible with the Harish-Chandra inductions.

We then introduce certain subvarieties of higher Deligne–Lusztig varieties, by taking pre-
images of lower level groups along reduction maps; their constructions are motivated by
efforts on computing the representation dimensions. In special cases we show that their
cohomologies are closely related to the higher Deligne–Lusztig representations.

Then we turn to our main results. We show that, at even levels the higher Deligne–Lusztig
representations of general linear groups coincide with certain explicitly induced representa-
tions; thus in this case we solved a problem raised by Lusztig. The generalisation of this
result for a general reductive group is completed jointly with Stasinski; we also present
this generalisation. Some discussions on the relations between this result and the invariant
characters of finite Lie algebras are also presented.

In the even level case, we give a construction of generic character sheaves on reductive groups
over rings, which are certain complexes whose associated functions are higher Deligne–Lusztig
characters; they are accompanied with induction and restriction functors. By assuming some
properties concerning perverse sheaves, we show that the induction and restriction functors
are transitive and admit a Frobenius reciprocity.
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Chapter 1

Introduction

1.1 Background

In 1976 Deligne and Lusztig published a seminal work [DL76] on the representation theory of
reductive groups over a finite field. Their methods are geometric and are based on the `-adic
cohomology theory. Subsequently, Lusztig [Lus84a] established the Jordan decomposition
of representations for these groups, which leads to the classification of representations of
connected reductive groups over a finite field.

In his Corvallis paper [Lus79] in 1979, Lusztig proposed two generalisations of [DL76]
for reductive groups over a local field and over a local ring (or more precisely, the ring of
integers in the local field), respectively.

In the local field case, Boyarchenko stated in [Boy12] three problems related to the con-
structions in [Lus79]: The first one is to formulate Lusztig’s proposed construction in an
explicit manner; the second one is to compute the representations of Lusztig explicitly in
certain sense; the third problem is to generalise Lusztig’s idea beyond the unramified exten-
sion case. Boyarchenko gave a solution to the first problem in the division algebra case, and
then studied the second problem in a general setting called Deligne–Lusztig patterns, which
comes from his joint work with Weinstein [BW16] on the local Langlands correspondence.

In the local ring case, Lusztig proved in [Lus04] several fundamental results for his con-
structions in the case that the reductive groups are over a finite local ring of the form
Fq[[π]]/(πr), and Stasinski [Sta09] extended this work to reductive groups over an arbitrary
finite local ring, based on the techniques introduced by Greenberg in [Gre61] and [Gre63].
While the irreducibility and the orthogonality of these representations have been obtained
since then, several basic properties of these representations themselves, such as their dimen-
sions and signs, were unknown until now (for even levels); besides, the case of the smallest
group SL2(Fq[[π]]/π2) was figured out by Lusztig himself in [Lus04] by analysing the fibres
of the reduction map.

Meanwhile, in the case of GLn and SLn, Hill found an analogue of Lusztig’s Jordan
decomposition for these groups over local rings, and in Hill’s Jordan decomposition one
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series is called nilpotent representations; see e.g. [Hil94] and [Hil95]. In order to recover
the nilpotent representations, Stasinski [Sta11] constructed the extended Deligne–Lusztig
varieties for tamely ramified maximal tori of GLn and SLn and thereby found all nilpotent
representations for SL2(Fq[[π]]/π2) (it is still an open question whether the extended Deligne–
Lusztig varieties give all nilpotent representations in general).

Nowadays, both the classical and the generalised Deligne–Lusztig theories have deep
connections with the Langlands program (see [Lus09], [Yos10], [BW16], [Cha16], and [Iva16]),
and in particular, the representations of reductive groups over local rings, besides the interest
in their own right, are related to the inertial Langlands correspondence (see [BM02] and
[CEG+16]). Though, in this thesis we do not enter into these aspects.

In this thesis, we call the generalised Deligne–Lusztig constructions for reductive groups
G over a complete discrete valuation ring O, developed in [Lus79], [Lus04], and [Sta09],
the higher Deligne–Lusztig theory. Due to the smoothness of G and the topology of O,
constructing the smooth representations of G(O) is equivalent to constructing the represen-
tations of G(O/πr), where π is a uniformiser and r runs over all positive integers. The higher
Deligne–Lusztig theory can then be viewed as a geometric approach to the representation
theory of G(O/πr), unified for all r ≥ 1.

Meanwhile, in the case r ≥ 2, under some restrictions on the group G, Gérardin [Gér75]
found an algebraic approach (i.e. to use extensions of representations, ordinary induction,
and Weil representations) to construct irreducible representations of G(O/πr), following
Shintani’s earlier work [Shi68].

Both the higher Deligne–Lusztig representations and Gérardin’s representations rely on
the same set of parameters (at least in the generic case). With this observation, Lusztig
[Lus04] raised the problem of whether the higher Deligne–Lusztig representations coincide
with the purely algebraically constructed representations given by Gérardin (for r ≥ 2).
This suggests a beautiful bridge between the algebraic methods and the geometric methods
in representation theory. Besides, an affirmative answer to this problem will give several
important consequences. Indeed, as already happened in the case of classical Deligne–Lusztig
theory, the quantitative properties (like dimensions, or more generally, characters) of the
geometrically constructed representations are hard; usually problems concerning computing
the Frobenius trace of étale cohomologies are involved. On the other hand, if one can
show that these geometrically constructed representations are isomorphic to certain explicitly
induced representations, then their characters (which are regarded as very difficult objects)
can be computed explicitly via characters of much simpler subgroups, and thereby many
quantitative properties can be obtained. One of the main aims of this thesis is to answer
Lusztig’s question.

In 1985, based on the works around Weil conjectures and cohomology theory for singular
spaces (see e.g. [Del80] and [BBD82]), Lusztig established a geometric theory of characters
for reductive groups over an algebraically closed field, called character sheaves; see [Lus86].
Besides their inherent interests, this abstract machinery admits very concrete applications.
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For example, many works on determining the rationality properties and the character tables
of a reductive group over a finite field heavily rely on the theory of character sheaves; see
e.g. [Lus92], [Sho95], [Gec03], and [Bon06].

In 2006, Lusztig [Lus06] proposed a generalisation of principal series character sheaves
for reductive groups over a local ring of the form Fq[[π]] (or equivalently, Fq[[π]]/πr for r runs
over positive integers), and conjectured that the complexes involved are simple perverse (e.g.
this implies the induction functors are transitive). Some special cases of this conjecture were
established by Lusztig himself in [Lus15].

Beyond the principal series case and the function field case, motivated by our algebraisa-
tion theorems, we find there is a natural way to geometrise the characters of higher Deligne–
Lusztig representations, at even levels (i.e. r is even). We regard this geometric theory as a
possible (unramified) character sheaf theory for reductive groups over finite local rings, as
there are several similarities between our constructions and Lusztig’s character sheaf theory
for reductive groups over a finite field, like the transitivity and Frobenius reciprocity of the
induction and restriction functors. Moreover, as can be seen in Lusztig’s work [Lus15], in
the principal series case with O = Fq[[π]], under the assumptions that char(Fq) is big enough
and r ≤ 4, the complexes we constructed coincide (up to shifts) with Lusztig’s generalised
principal series character sheaves in [Lus06] (the assumption concerning r is removed later in
[Kim16]). One advantage of our construction is that it works for any series, rather than just
the principal series, or its twisted forms (which are needed in the case r = 1; see [Lus86]).
As in the principal series case in [Lus06], we expect our complexes are also simple perverse.
We remark that in the function field case, Fan [Fan12] also considered a construction of
character sheaves (at level 2), based on a method very different from ours.

1.2 Structure and results

Here we present an overview of the contents of each chapter.

In Chapter 2 we give a quick review of classical Deligne–Lusztig theory for reductive
groups over a finite field. As nowadays, besides the original articles, the material can be
found in several other places (e.g. [Sri79], [Car93], [DM91], and [Gec13]), our exposition
will omit most proofs, and instead, we focus on explaining ideas and explicit examples. We
start with background material on linear algebraic groups, and then turn to Deligne–Lusztig
theory. Some basics on `-adic cohomology theory will be introduced first, then the bimodule
induction approach to the Deligne–Lusztig (virtual) representations, as presented in [DM91],
will be given. On the other hand, following [Car93], we give a down to earth discussion of
Deligne–Lusztig varieties; some simple computations in the special case of SL2, which seems
not easily to be found in the literature, are presented. The modular aspect is not touched
in this thesis; there is an introduction [Bon11] with a focus on the case of SL2.

In the beginning of Chapter 3, we first give a brief overview of the works [Lus79], [Lus04],
and [Sta09], which provided the framework of higher Deligne–Lusztig theory. Then we

8



investigate some basic properties of these generalised constructions, in a manner similar
to the ones in the classical case over a finite field, like the compatibility with the Harish-
Chandra induction. In the second half of this chapter we discuss some considerations around
the dimensions of higher Deligne–Lusztig representations. These considerations motivate the
notion of essential parts (see Definition 3.4.1), which are certain varieties whose cohomologies
seems closely related to the higher Deligne–Lusztig representations.

In Chapter 4, among other things, we present our main results, which gives an affirmative
answer to a question raised by Lusztig at even levels (see Question 4.3.1): First, let G = GLn
and r even, then

Rθ
T,U
∼= IndG

F

(TU±)F θ̃

for θ ∈ T̂ F regular and in general position. Here Rθ
T,U denotes a higher Deligne–Lusztig

representation (see Definition 3.1.6) and IndG
F

(TU±)F θ̃ is an induced representation first con-
sidered by Gérardin (see Proposition 4.1.6); they are both parametrised by pairs (T, θ), where
T is a commutative algebraic group associated to a maximal torus and θ is a character of
its subgroup of rational points. For more details, see Theorem 4.3.2 and Corollary 4.3.6.
The generalisation of this result for an arbitrary reductive group G is achieved in the joint
work [CS16], and will be our second main result (the statement is the same as the above
isomorphism). We present this generalisation as Theorem 4.3.9 and Corollary 4.3.10. In
this chapter we start with a review of Clifford theory as well as some preliminary algebraic
constructions, which are required in the proofs of the main results. Then we first consider
the principal series case; in this case one can get the above isomorphism via a very simple
algebraic argument; however, in this case we also give a geometric argument, which shares
a similar philosophy with the general case (but it is much simpler than the general case).
Then we present the complete proofs of the main results, first for GLn and then for an arbi-
trary (connected) reductive group. Finally, we turn to invariant characters of finite reductive
Lie algebras; we discuss their relations with generic Deligne–Lusztig representations via an
argument analogous to standard arguments in Deligne–Lusztig theory.

In Chapter 5 we discuss a geometrisation of generic characters of reductive groups over lo-
cal rings (at even levels); they are certain complexes living in the bounded derived category of
constructible Q`-sheaves, and their constructions are motivated by the main results in Chap-
ter 4. The characteristic functions of the these complexes are the characters of the generic
Deligne–Lusztig representations (see Proposition 5.3.4). Under certain assumptions we show
that the associated induction and restriction functors are transitive (see Proposition 5.3.10
and Proposition 5.3.13) and they admit a Frobenius reciprocity (Proposition 5.3.14). Partial
results in this chapter are presented in [Che16].

1.3 Conventions and prerequisites

Throughout this thesis, when there is no confusion, we use the conjugation notation ab :=
b−1ab =: b

−1
a for a, b in a group. For a map f from a set S, and s ∈ S, we may write fs for
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f(s). By a reductive group we always mean a connected reductive group.

For a scheme X over another scheme S, we may write X/S; when S is the spectrum of
a ring R, we also write X/R. In this thesis by a variety we mean a reduced scheme of finite
type over a field. All varieties in this thesis are quasi-projective (hence separated). When the
variety is over an algebraically closed field, we may ignore its non-closed points. For a quasi-
projective variety X over k = Fq, there is the bounded derived category of constructible
Q`-sheaves, constructed by Deligne [Del80]; we denote it by D(X). Let D(X)≤0 ⊆ D(X)
be the full subcategory consisting of the objects K ∈ D(X) satisfying: The support of
Hi(K) has dimension ≤ −i for any i ∈ Z (so, in particular, Hi(K) = 0 for i > 0, and
the support of H0(K) is a finite set). Meanwhile, let D≥0(X) be the full subcategory (of
D(X)) whose objects are the K such that DX(K) ∈ D≤0(X), where DX denotes the Verdier
dual functor on D(X). The category of perverse sheaves on X is the full subcategory
M(X) := D≤0(X) ∩ D≥0(X). Note that DX preserves M(X). Some basic properties of
derived categories and perverse sheaves are nicely summarised in [Lus86] and [BD10].

In this thesis we are only concerned with representations over Q`, where ` is some fixed
rational prime.

We assume basic knowledges of algebraic geometry and algebraic groups, which can be
found in e.g. [Har77], [Liu06], and [Spr09], [MT11], respectively. Some knowledge of reductive
group schemes over rings (e.g. in [DG70]) is helpful for understanding certain arguments.
Basics of étale cohomology can be found in e.g. [Del77], [FK88], and [Mil13]; collections
of some properties of étale cohomology used in Deligne–Lusztig theory, originally proved in
[DL76], can be found in [Car93] and [DM91]. For derived category of constructible Q`-sheaves
presented in [Del80] and [BBD82], one standard book in English is [KW01]; nice summaries
can be found in [Lus86] and [BD10]. Concerning representation theory and number theory,
the material in [Ser77] and [Neu99] is more than enough.
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Chapter 2

Classical Deligne–Lusztig theory

This chapter aims to give a quick introduction to the Deligne–Lusztig representations of
connected reductive groups over a finite field. It originates from the first year PhD report
of progression of the author. We start with basics on algebraic groups, then turn to the
fundamental constructions and results.

2.1 Algebraic groups

2.1.1 Linear groups and rational structures

Let k be an algebraically closed field. Affine algebraic groups over k are exactly the linear
algebraic groups over k; see e.g. [Spr09, Theorem 2.3.7]. In the following we review some
basic notions concerning closed subgroups of a connected affine algebraic group over k.

Definition 2.1.1. Given a connected algebraic group over k, the maximal closed connected
solvable subgroups are called Borel subgroups, and a closed subgroup containing some Borel
subgroup is called a parabolic subgroup.

It is known that any two Borel subgroups in a connected algebraic group are conjugate
to each other; see e.g. [Spr09, Theorem 6.2.7].

Example 2.1.2. In GLn over k, the parabolic subgroups have geometric natures in term of
flags: An ascending chain of vector spaces

0 = W0 ( · · · ( Wm = kn

is called a flag. It is known that the stabilisers (in GLn) of flags are exactly the parabolic
subgroups, and, when m = n, the stabiliser is a Borel subgroup. When Wi = ki (for
i ∈ (0,m)∩Z) and the inclusions are the natural ones, the corresponding parabolic subgroup
is called standard; they consist of block upper triangular matrices. See e.g. [AB95] for details.

This example leads to the Lie–Kolchin theorem:
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Theorem 2.1.3. Suppose H is a connected solvable closed subgroup of GLn over k, then H
is conjugate to a subgroup of the group of upper triangular matrices.

This theorem follows from the above example and the fact that Borel subgroups are
conjugate to each other.

Definition 2.1.4. A torus of a connected algebraic group over k is a closed subgroup iso-
morphic to a product of multiplicative groups Gm × · · · ×Gm.

Every torus is contained in a maximal torus, and any maximal torus is contained in a
Borel subgroup. Moreover, any two maximal tori are conjugate; for the proofs of these facts
see e.g. [Spr09, Chapter 6].

Now we turn to rational structures.

Definition 2.1.5. An Fq-rational structure on a variety V over Fq is an Fq-isomorphism
V ' Spec Fq ×Spec Fq V0 for some variety V0 over Fq. When this is the case, we say V is
Fq-rational, or defined over Fq.

Definition 2.1.6. In the above definition, by tensoring the morphism induced from the
Frobenius morphism on the structural sheaf of V0 with the identity automorphism of Fq,
we get an Fq-endomorphism on V ; we call it a geometric Frobenius of V . Meanwhile, the
Frobenius in Gal(Fq/Fq) induces an Fq-automorphism of V by tensoring with the identity
automorphism of V0; we call the resulting automorphism an arithmetic Frobenius.

The notions geometric Frobenius, arithmetic Frobenius, and rational structures are equiv-
alent for affine or projective varieties; see [DM91, Page 35] for details.

Remark 2.1.7. When there is no confusion, we use the following convention: We drop the
“geometric” in the term “geometric Frobenius”; a morphism between (Fq-) rational varieties
is said to be rational if it commutes with the (geometric) Frobenius; when a (geometric)
Frobenius F is given, we may use the terms “F -rational” or “F -stable” to indicate “rational”.

For an algebraic group with geometric Frobenius F , we are interested in the finite group
consisting of the F -stable points. An algebraic group over Fq may admit different rational
structures over Fq.

Example 2.1.8. Consider the group GLn/Fq; it admits a natural rational structure

GLn/Fq ' Spec Fq ×Spec Fq GLn/Fq.

Meanwhile, GLn admits another important rational structure, i.e. unitary group structure:
If we denote by Fr the geometric Frobenius associated to the natural rational structure on
GLn over Fq, then the group

Un(Fq) := GLn(Fq)F
′
= {x ∈ GLn(Fq2) | Fr(x)t = x−1},

where t means taking transpose, is also the set of rational points of an Fq-rational structure;
here F ′ : x 7→ Fr(x−1)t is the geometric Frobenius endomorphism. This follows from the fact
that F ′2 = Fr2; see [DM91, Proposition 3.3(i)].
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From now on, whenever we talk about rational structures on an algebraic group over Fq,
we assume the group operations are rational. In particular, this is the case if the group is
the base change of a group scheme over the finite field involved.

Definition 2.1.9. Let F be an endomorphism of a connected algebraic group G/k. We call

L : G −→ G, g 7→ g−1 · Fg

the Lang map associated to F .

Theorem 2.1.10. Along with the above notation, if F is surjective with finitely many fixed
points, then the Lang map is surjective.

This is the so-called Lang–Steinberg theorem; it is fundamental for algebraic groups over
a finite field. For example, it implies that, if F is a geometric Frobenius on G/Fq, then for
any F -rational closed connected subgroup H, one has (G/H)F = GF/HF . See e.g. [DM91,
Chapter 3] for more details.

The proof of this theorem can be found in [Ste68, 10]; one can also find an outline in
[DM91, 3.10]. We refer to [DM91, P38-44] for applications of the Lang–Steinberg theorem.

2.1.2 Reductive groups

The fundamental objects in our concerns are connected reductive groups, e.g. GLn, PGLn,
and SOn. These are affine algebraic groups with nice combinatorial properties. When they
are defined over an algebraic closure of a finite field, the subgroups consisting of points over
the finite field are called finite reductive groups, and are also referred to as finite groups of
Lie type.

Definition 2.1.11. Given a connected algebraic group G/k, its unipotent radical, denoted
by Ru(G), is defined to be the maximal connected normal unipotent closed subgroup. If
Ru(G) = 1, then we say G is reductive.

For the existence and uniqueness of Ru(G), see [DM91, Proposition 0.16].

One has the following decomposition (see e.g. [DM91, Chapter 1]).

Proposition 2.1.12. Let P be a parabolic subgroup of a connected reductive group G/k,
then there exists a closed subgroup M of P such that P = M n Ru(P ). Such a semi-direct
product decomposition is called a Levi decomposition, and M is called a Levi subgroup (of
P ). In particular, if P is a Borel subgroup, then M is a maximal torus.

Example 2.1.13. In GL3, if we take P =

[
GL2 ∗

0 GL1

]
to be a standard parabolic subgroup,

then the standard Levi decomposition is P = Ln U =

[
GL2 0

0 GL1

]
n
[
I2 ∗
0 1

]
.
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Natural examples of reductive groups include the general linear groups; one direct way
to see they are reductive is to use the Lie–Kolchin theorem (note that an upper triangular
matrix will be conjugated to a lower triangular matrix by some element in the Weyl group),
or to use the fact that every normal subgroup of a general linear group (except for some
very small ones) is either a subgroup of the scalar matrices or contains the special linear
subgroup. Here we present a completely elementary proof without referring to these facts;
maybe it was known but we couldn’t find it in literature.

Proposition 2.1.14. The general linear group GLn/k is reductive.

Proof. The idea of the proof is: For any non-identity unipotent element A, by taking conjuga-
tion of A we get certain “nice” form J , then we take a conjugation of J by some permutation
matrix P to get another matrix J ′; we show one can choose the permutation matrix P to
make JJ ′ has an eigenvalue not equal to 1, so there is no non-trivial unipotent normal
subgroup of GLn.

For simplifying computations we follow Stasinski’s suggestion to require J to be a Jordan
normal form. And for simplifying notation we omit the easier cases n = 2, 3 where one can
check by hands the same method works; so in the below we assume n ≥ 4.

As A is not the identity, its (upper) Jordan normal form J = diag(J1, · · · , Jm) has a
non-trivial s × s Jordan block Ji. Let Pi be the s × s permutation matrix that switch the

first row/column and the last row/column, i.e. Pi =

0 0 1
0 Is−2 0
1 0 0

, and put J ′i := P−1
i JiPi.

The entries of JiJ
′
i are as follows: The first row is (1, 1, 1, 0, · · · , 0), the last three rows are

(1, 0, · · · , 0, 1, 2, 0), (1, 1, 0, · · · , 0, 1, 1), (0, 1, 0, · · · , 0, 1), and for j ∈ [2, s− 3] the j-th row is
(· · · , 0, 1, 2, 1, 0, · · · ) where the number of the beginning zeros is j − 1.

Now, for w 6= i let Pw be the identity matrix with same size as Jw , and consider
P = diag(P1, · · · , Pm). We want to show the matrix

JP−1JP = diag(J2
1 , · · · , J2

i−1, JiJ
′
i , J

2
i+1, · · · , J2

m)

has an eigenvalue not equals 1. It is sufficient to show JiJ
′
i has no eigenvalue equals 1.

Indeed, suppose JiJ
′
i(x1, · · · , xs)t = (x1, · · · , xs)t, then the last row gives x2+xs = xs, the

(s−1)-th row gives x1+x2+xs−1+xs = xs−1, the (s−2)-th row gives x1+xs−2+2xs−1 = xs−2,
the first row gives x1 + x2 + x3 = x1, and all other rows gives xj + 2xj+1 + xj+2 = xj. Hence
(x1, · · · , xs) = 0, done.

The above proof also implies:

Proposition 2.1.15. Let k be an algebraically closed field, and let n ≥ 2. Suppose A ∈
GLn(k) is unipotent, then we can find in GLn(k) two conjugates of A, denoted by B and C,
such that there are at least two eigenvalues of BC not equal to 1.

14



The connected reductive groups are with BN -pairs (see [DM91, 1.1]), and hence admit
the following Bruhat decomposition.

Theorem 2.1.16. Let G/k be a connected reductive group, T a maximal torus of G with
Weyl group W = NG(T )/T , and B a Borel subgroup containing T . Then there is a finite
partition

G =
∐
w∈W

BwB.

into locally closed subvarieties. Here we abuse notation by writing w for a lift in NG(T ).

Here the Borel subgroup B and the normaliser NG(T ) form a BN -pair; see [DM91,
Theorem 1.2 and Proposition 1.4] for more details.

2.2 Deligne–Lusztig theory

In this section we denote by X a quasi-projective variety over an algebraic closure Fq of the
finite field Fq, and we take ` to be a rational prime not equal to p = char(Fq) .

2.2.1 Étale cohomology and induction

We start with some preparations on Lefschetz numbers.

Let H i
c(X,Q`) be the i-th compactly supported `-adic cohomology of X. The formal

alternating sum H∗c (X) :=
∑

i(−1)iH i
c(X,Q`) is a virtual Q`-vector space of finite dimension.

If g is a finite endomorphism of X, then it induces a (linear) endomorphism on each `-adic
cohomology group, and we call

L(g,X) := Tr(g | H∗c (X)) =
∑
i

(−1)iTr(g | H i
c(X,Q`))

the Lefschetz number of g.

Example 2.2.1. When g is the Frobenius endomorphism on X with respect to some rational
structure, we have

|Xg| = L(g,X);

this is the Grothendieck fixed point formula.

One consequence of the above formula is that the value of Lefschetz number is indepen-
dent of the choice of `; see e.g. [DM91, 10.6].

Most basic properties of `-adic cohomology and Lefschetz number that we needed can
be found in [Del77] and [DL76], and we will use them as standard facts; in the following we
discuss one of them, which is fundamental in Deligne–Lusztig theory:
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Theorem 2.2.2. Let σ be a finite order automorphism on X with σ = su, where s is a power
of σ of order prime to p and u is a power of σ of p-power order (i.e. Jordan decomposition
of the automorphism). Then one has

L(σ,X) = L(u,Xs),

which is usually referred to as the Deligne–Lusztig fixed point formula.

Sketch of proof. Here we give a sketch of the arguments, and refer to [DL76] for the detailed
proof (see also the very helpful treatment in [Sri79]).

Firstly, put X1 = X, and then define the varieties Xi+1 = {x ∈ Xi | σix 6= x} inductively.
So we get a partition into locally closed subvarieties X =

∐
iX

σi

i , with σ acts on each Xσi

i

freely as a cyclic group. Then by basic properties of Lefschetz number we have

L(σ,X) =
∑
i

L(σ,Xσi

i ) and L(u,Xs) =
∑
i

L(u, (Xσi

i )s).

Thus it suffices to show
L(σ,Xσi

i ) = L(u, (Xσi

i )s)

for each i. And more generally, as the finite cyclic group 〈σ〉 acts on Xσi

i freely, it would
suffice to show

L(σ, Y ) = L(u, Y s)

for any quasi-projective variety Y/Fq on which 〈σ〉 acts freely.

If s = 1, then this equality is trivial.

Now assume s 6= 1, then Y s = ∅ since the action is free, so L(u, Y s) = 0, and it remains
to show L(σ, Y ) = 0 in this case. As s 6= 1, there is a prime `′ 6= p dividing the order of σ.
We can take ` = `′ since the Lefschetz number is independent of the choice of `.

In the case H∗c (Y ) is a virtual projective Z`-module, its character value at σ is zero since
the order of σ is divisible by `; see [Ser77, P143 (i)] for a proof of this assertion. In the general
case, by techniques of derived categories, when one is calculating the Lefschetz number, the
module H∗c (Y ) can always be replaced by a virtual projective Z`-module; we refer to [DL76,
Proposition 3.5] for this last fact.

We turn to inductions. Let A1 and A2 be two finite groups. For any A1-module-A2 M,
i.e. a bimodule with a left Q`[A1]-action and a right Q`[A2]-action, there is an associated
functor from the virtual Q`-representations of A2 to that of A1 given by

N 7→M⊗Q`[A2] N,

where the tensor product means the tensor product of Q`-vector spaces modulo the relations
generated by 〈m ⊗ a2n − ma2 ⊗ n〉, with a2 ∈ A2, n ∈ N, and m ∈ M. This bimodule
approach follows the treatment in [DM91].
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Throughout the remaining part of this chapter, we let G be a connected reductive group
over Fq with a geometric Frobenius F over Fq, let L be the associated Lang map, and let
T be a rational maximal torus. Given a (not necessarily rational) parabolic subgroup P
of G, and a rational Levi subgroup M of P , the variety L−1(FU) admits a left GF -action
and a right MF -action, where U denotes the unipotent radical of P ; these two actions make
H∗c (L−1(FU)) into a virtual bimodule. The variety L−1(FU) is one of the Deligne–Lusztig
varieties ; we will take a closer look at them in the next subsection.

Definition 2.2.3. The Lusztig induction from the virtual Q`-representations of MF to that
of GF is the induction functor given by the GF -module-MF H∗c (L−1(FU)). In the case that
P = B is a Borel subgroup and M = T is a maximal torus, we also call it a Deligne–Lusztig

induction; in this case, for an irreducible representation θ ∈ T̂ F := Hom(T F ,Q×` ), the GF -
representation H∗c (L−1(FU))⊗Q`[TF ] θ is denoted by Rθ

T . The representations Rθ
T are called

Deligne–Lusztig representations.

In the above, if P is rational, then this induction is actually an induction functor with
bimodule Q`[G

F/UF ] ∼= H0
c (L−1(FU)), which is usually referred to as a Harish-Chandra

induction or parabolic induction. The Harish-Chandra inductions provide a classification of
Irr(GF ) based on the notion of cuspidal representations (a class function is called cuspidal if
its translation by any rational point of any proper rational parabolic subgroup became zero
after integrating over the rational points in the unipotent radical); see [DM91, Chapter 6],
as well as the original text of Harish-Chandra [HC70], for more details. The Deligne–Lusztig
construction generalises this idea and “induce” representations from any rational maximal
torus, quasi-split (i.e. contained in a rational Borel subgroup) or not.

Remark 2.2.4. The GF -conjugacy classes of rational maximal tori are parametrised by
F -conjugacy classes of the Weyl group W of some fixed quasi-split rational maximal torus.
In particular, the class of quasi-split maximal tori corresponds to the class containing the
trivial element 1 ∈ W . This was proved in [DL76, 1.14]; see also [DM91, Chapter 3].

Remark 2.2.5. One sees that the notation Rθ
T does not involve B. Indeed, as a GF -

representation it is independent of the choice of B; see [DL76, Corollary 4.3].

Remark 2.2.6. Note that Rθ
T = H∗c (L−1(FU))⊗Q`[TF ]θ

∼= H∗c (L−1(FU))θ is the θ-isotypical

part of H∗c (L−1(FU)), so for any g ∈ GF the character value can be written as

Rθ
T (g) =

∑
i∈Z

(−1)i · Tr
(
g | H i

c(L
−1(FU))θ

)
.

2.2.2 Deligne–Lusztig varieties

Now we discuss the variety L−1(FU) itself, as well as some closely related quotients.

In this subsection we assume T0 to be a quasi-split rational maximal torus of G and B0 a
rational Borel subgroup containing T0, and we denote by W = W (T0) the Weyl group. We
want to discuss Deligne–Lusztig varieties; they are defined via the notion of relative positions
concerning pairs of Borel subgroups.
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Definition 2.2.7. Consider the set of pairs (B1, B2) of Borel subgroups of G. Note that G
acts on this set by conjugation g ∈ G : (B1, B2) 7→ (gB1,

gB2). We say (B1, B2) is in relative
position w ∈ W if it lies in the same G-orbit as (B0,

ŵB0), for some lift ŵ ∈ NG(T0) of w.

Definition 2.2.8. Let X(w) be the GF -set of all Borel subgroups B such that B and FB
are in relative position w. Besides L−1(FU), we also call X(w) a Deligne–Lusztig variety
(see the below remark).

Remark 2.2.9. Actually, X(w) is a locally closed subset of the flag variety G/B0 of Borel
subgroups (indeed, it can be viewed as a transversal intersection between an orbit and a
graph), hence it admits a natural reduced variety structure; it is smooth and purely of
dimension `(w), where `(w) denotes the length of the Weyl element w; see [DL76, 1.4] for
more details.

Deligne–Lusztig varieties can be described more explicitly; let us do it step by step (the
details can be found in [Car93, Chapter 7]):

(i) The group B0 ∩ ŵB0 acts on L−1(ŵB0) by right multiplication, and g 7→ gB0 is a
surjective morphism from L−1(ŵB0) to X(w), with fibres being the orbits of B0∩ ŵB0;
see [Car93, 7.7.6].

(ii) Let B0 = U0T0 be the Levi decomposition of B0, and let T0(w) be the twisted rational
maximal torus of T0 of type w ∈ W . We have T0(w)F = {t ∈ T0 | wF (t)w−1 = t}; see
[DM91, 3.23 and 3.24].

(iii) By (i) one can see (U0 ∩ ŵU0)T0(w)F acts on L−1(ŵU0) by right multiplication, and
g 7→ gB0 is a surjective morphism from L−1(ŵU0) to X(w) with fibres being orbits of
(U0 ∩ ŵU0)T0(w)F ; see [Car93, 7.7.7].

(iv) Assume ŵ = x−1F (x) ∈ NG(T0) for x ∈ G. Take T = xT0; note that T is F -stable.
Let B = xB0, and let B = UT be the Levi decomposition.

(v) The varieties L−1(FU) and L−1(ŵU0) are isomorphic by g 7→ gx; together with (iii)
one can deduce L−1(FU)/(U ∩ FU)T F ∼= X(w); see [DL76, 1.11].

(vi) From the above we see X̃(w) := L−1(FU)/U ∩FU is a GF -equivariant T F -torsor over
X(w) (see also [DL76, 1.8]). By abuse of notation, we call X(w), X̃(w), and L−1(FU)
Deligne–Lusztig varieties at w.

Indeed, since U ∩ FU is an affine space (see e.g. [DM91, 0.33]), by homotopy considerations
(see e.g. [DM91, 10.12]) we have the isomorphisms of Q`[G

F ]-modules (recall that Rθ
T is

independent of B)
Rθ
T = H∗c (L−1(FU))θ ∼= H∗c (X̃(w))θ.

Remark 2.2.10. The Deligne–Lusztig varieties X̃(1) and X(1) are exactly the ones used
to give the Harish-Chandra induction, because the involved rational maximal tori are quasi-
split. These varieties are of dimension zero, with cardinalities |X̃(1)| = |GF/BF

0 | · |T F0 | and
|X(1)| = |GF/BF

0 | respectively.
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For SL2(Fq), prior to the story of Deligne–Lusztig theory, Drinfeld found that the com-
pactly supported `-adic cohomology of the affine curve xyq−yxq = 1 can be used to produce
the discrete series representations (i.e. cuspidal representations) of SL2(Fq). This curve is
called the Drinfeld curve, and is actually a Deligne–Lusztig variety associated to SL2. Let
us illustrate this point below:

Firstly, as W (T0) ∼= S2, where T0 is the group of all diagonal matrices, we need to consider
two Weyl elements. For the trivial Weyl element, by the above remark we see X(1) is a set
of |GF/BF

0 | = q + 1 points, and X̃(1) is a set of |GF/BF
0 | · |T F0 | = q2 − 1 points.

Now denote by w the non-trivial Weyl element; we fix a lift ŵ =

[
0 −1
1 0

]
in G. In order

to compute X̃(w), first note that U0 ∩ ŵU0 = 1 (here U0 is the group of upper triangular
matrices with diagonal entries = 1), so X̃(w) ∼= L−1(ŵU0). Suppose

L :

[
x y
z w

]
7→ ŵ ·

[
1 a
0 1

]
=

[
0 −1
1 a

]
,

where L is the Lang map. Then we see the points in X̃(w) are the points (∈ A4) satisfying

xw − yz = 1, wxq = yzq, wyq − ywq = −1, xzq − zxq = 1,

which is equivalent to (first times wyq − ywq = −1 with xq)

y = xq, w = zq, xw − yz = 1.

Thus these points form the curve xzq − zxq = 1 (on A2), i.e. the Drinfeld curve. The
group SL2(Fq) acts on the curve via left matrix multiplication by writing the points as

X̃(w) =

{[
x xq

z zq

]}
x,z∈Fq ; xzq−zxq=1

.

Meanwhile, T0(w)F acts on this curve by right matrix multiplication, and

T0(w)F =

{[
a 0
0 a−1

]∣∣∣∣[a 0
0 a−1

]
=

[
a−q 0
0 aq

]}
∼= Z/(q + 1).

So X(w) is a quotient of X̃(w) by the group of (q + 1)-th roots of unity. A detailed di-
rect topological computation of the cohomology groups of these varieties can be found in
[Che13]; on the other hand, the cohomology groups can also be evaluated by looking at the
representations of SL2(Fq) (see [Lus78]).

2.2.3 Main properties and applications

First, like the case of ordinary induction, there is a Mackey intertwining formula for the
Lusztig inductions, at least when one of the involved Levi subgroups is a torus; see [DM91,
Chapter 11]. An immediate consequence is the following orthogonality relation.
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Theorem 2.2.11. Let T and T ′ be two rational maximal tori of G, and take θ ∈ Irr(T F )
and θ′ ∈ Irr(T ′F ), then one has

〈Rθ
T , R

θ′

T ′〉GF =
1

|T F |
#{g ∈ GF | gT = T ′, gθ = θ′}.

Proof. See [DM91, 11.15].

The original proof of the above orthogonality relation in [DL76, 6.9] uses Green functions,
which are defined to be the restrictions of the characters R1

T to unipotent elements, for
various rational T . These functions (denote them by QT,G) are very helpful for studying
Deligne–Lusztig characters, because they reduce the problem on evaluating Deligne–Lusztig
characters to unipotent elements of smaller reductive groups in the following sense:

Theorem 2.2.12. Let g = su ∈ GF with s semisimple and u unipotent (Jordan decomposi-
tion), then

Rθ
T (g) =

1

C◦G(s)F

∑
x∈GF
sx∈TF

θ(sx)QxT ,C◦G(s)(u),

where CG(s) is the centraliser of s in G.

Proof. See e.g. [Car93, Theorem 7.2.8].

The orthogonality also implies the following irreducibility, which confirms Macdonald’s
conjecture that one can associate an irreducible representation of GF for each pair (T, θ).

Theorem 2.2.13. Take θ ∈ Irr(T F ). If θ is in general position, i.e. no non-trivial element
in W (T )F fixes θ, then one of the GF -representations ±Rθ

T is irreducible.

Besides the above irreducibility in general positions, actually all irreducible representa-
tions of GF can be realised in Deligne–Lusztig theory:

Theorem 2.2.14. Given any ρ ∈ Irr(GF ), one can find a pair (T, θ) such that 〈ρ,Rθ
T 〉GF 6= 0.

One way to prove this theorem is to prove that the regular character RegG can be written
as a linear combination of Deligne–Lusztig characters.

Definition 2.2.15. A uniform function on GF is a class function on GF such that it is a
(Q`-) linear combination of Deligne–Lusztig characters.

Theorem 2.2.16. The regular character RegG, the trivial character 1G, and the Steinberg
character StG (see e.g. [DM91, 9.1]) are uniform functions.

Proof. This can be proved by using duality functors; see e.g. [DM91, 12.13 and 12.14].
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By the orthogonality relation, if T and T ′ are not GF -conjugate, then 〈Rθ
T , R

θ′

T ′〉GF = 0.
However, this does not mean they have no irreducible constituents in common, since they
are virtual modules. The way to fix this problem is to introduce the notion of geometric
conjugacy classes, which provides a classification of irreducible representations of GF in the
context of Deligne–Lusztig theory.

Definition 2.2.17. For a rational maximal torus T and a positive integer n, the norm map
is defined to be the morphism:

NFn/F : T −→ T ; τ 7→ τ · F τ · F 2

τ · · · Fn−1

τ .

Note that the norm maps are transitive.

Definition 2.2.18. Let T and T ′ be two rational maximal tori, and θ (resp. θ′) an irreducible
character of T F (resp. T ′F ). We say (T, θ) and (T ′, θ′) are geometrically conjugate if (T, θ ◦
NFn/F ) and (T ′, θ′ ◦NFn/F ) are GFn-conjugate for some positive integer n.

Theorem 2.2.19. If (T, θ) and (T ′, θ′) are not geometrically conjugate, then Rθ
T and Rθ′

T ′

have no common irreducible constituent.

Proof. See [DL76, 6.2 and 6.3].

Let G∗ be the dual reductive group of G with dual Frobenius F ∗ (the two pairs (G,F ) and
(G∗, F ∗) satisfy some compatibility conditions; see [DM91, 13.10]), then there is a canonical
one-to-one correspondence between the geometric conjugacy classes of G and the F ∗-rational
conjugacy classes of semisimple elements in G∗ (see e.g. [DM91, 13.12]), and in this bijection
{1} ⊆ G∗ corresponds to the pairs of the form (T, 1). Under this bijection, we denote by
E(G, (s)) the subset of elements in Irr(GF ) corresponding to the conjugacy class (s) ⊆ G∗

containing s ∈ G∗. Thus the above theorem can be rewritten as

Irr(GF ) =
∐
(s)

E(G, (s)),

A main result in Lusztig’s book [Lus84a], with the assumption that the centre of G is
connected (this condition is to ensure the connectedness of the centraliser of every s, and
was removed in a later work of Lusztig), is a bijection E(G, (s)) = E(CG∗(s), {1}) with certain
nice properties (see e.g. [DM91, 13.23]); this gives a bijection

Irr(GF ) =
∐
(s)

E(CG∗(s), {1}), (2.1)

where (s) runs over F ∗-rational conjugacy classes of semisimple elements in G∗. As the
elements in E(CG∗(s), {1}) are the unipotent representations of (CG∗(s))

F ∗ , one usually refers
(2.1) as Lusztig’s Jordan decomposition of representations. For more details, see [DM91,
Chapter 13] and Lusztig’s original book [Lus84a].
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Chapter 3

Generalised Deligne–Lusztig
constructions

In the previous chapter we have given an introduction to Deligne and Lusztig’s work [DL76],
and in this chapter we will discuss a generalisation for reductive groups over a finite quotient
of a complete discrete valuation ring. This generalisation was introduced in [Lus79], and then
developed in [Lus04] for function fields which was generalised for general case in [Sta09].

3.1 Higher Deligne–Lusztig theory

In this chapter, we denote by O the ring of integers in a non-archimedean local field, π a
uniformiser, and Fq the residue field with characteristic p. Moreover, we denote by Our the
ring of integers of the maximal unramified extension of the local field, and denote its residue
field by k = Fq. We want to study the smooth representations of connected reductive groups
over O, by geometric methods via passing to Our.

By properties of the profinite topology, every smooth representation of a connected re-
ductive group over O factors through a representation of this group over a finite quotient
Or := O/πr, where r is a positive integer. So we focus on the study of representations of
reductive groups over Or, with r runs over all positive integers.

3.1.1 Group schemes and the Greenberg functor

From now on, let G be a reductive group scheme over Or (i.e. G is a smooth affine group
scheme over Or with geometric fibres being connected reductive groups in the usual sense;
this is the definition used in [DG70, XIX 2.7]), where r is a fixed arbitrary positive integer.
We denote by G the base change of G to Our

r := Our/πr.

Remark 3.1.1. One can view G as a closed subgroup scheme of some GLn/Our
r . Indeed,

when r = 1 this is well-known; see e.g. [Wat79, 3.4 Theorem] for a short Hopf algebra
argument. For a general r, note that Our

r is an artinian local ring with algebraically closed
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residue field, hence it is a strictly henselian local ring, so by [Sta09, Lemma 2.1] the group
G is split in the sense of [DG70, XXII 1.13]. Now it follows from [Tho87, Theorem 3.1 and
Corollary 3.2] that G is a closed subgroup scheme of some GLn/Our

r .

Remark 3.1.2. For a smooth affine group scheme H over Or, it is known that

|H(Or)| = |H(Fq)| · q(r−1)·dimHk ,

where Hk denotes the geometric fibre over k. This follows from the fact that the kernels of
reduction maps admit an affine space structure; see [Gre63, 3. Remark].

We describe in the below some properties of Greenberg functors; they were used in [Sta09]
to generalise the higher Deligne–Lusztig theory from the case of O = Fq[[π]] (which is in
[Lus04]) to the case of a general O, and we will work in this generalised situation. Here the
proofs are omitted; see the original texts [Gre61] and [Gre63], as well as the more modern
treatments [Sta12] and [BDA16], for the details and further properties.

Let A be an artinian local ring with perfect residue field res(A). The Greenberg functor is
a functor from the category of schemes of finite type over A to the category of schemes of finite
type over res(A), denoted by F : X 7→ FX, with the property that (FX)(res(A)) = X(A) in
a canonical way. This allows us to translate certain questions concerning schemes over A to
questions concerning schemes over res(A). (Actually F can be defined on larger categories,
but for our purpose we can focus on finite type schemes.) The functor F has many nice
properties. For example, it preserves affineness, separatedness, and smoothness, of objects;
it preserves both closed immersions and open immersions, and it preserves fibre products.
Moreover, F takes a finite type group scheme over A to a finite type group scheme over
res(A); in this case the set-theoretical identification (FX)(res(A)) = X(A) is an isomorphism
of abstract groups.

Example 3.1.3. Recall that Wr(Fq) ∼= OF/pr and Wr(Fq) ∼= OFur/pr, where F (resp. F ur)
is the unramified extension of Qp of degree logp q (resp. the maximal unramified extension of

Qp). In particular we can view GLn(Zur
p /p

r) = GLn(Wr(Fp)) as the Fp-points of an algebraic

group over Fp; this is how the Greenberg functor works in this special case.

The Frobenius element in Gal(k/Fq) extends to an automorphism of Our
r , and then (by

taking tensor product with IdG) to G. By the Greenberg functor this “arithmetic Frobenius”
on G gives an Fq-rational structure to the algebraic group G = Gr := FG; we denote the
associated geometric Frobenius by F . One has

G(Or) ∼= GF
r and G(Our

r ) ∼= Gr(k)

as abstract groups. We denote by L : g 7→ g−1F (g) the Lang map associated to F . For each
i ∈ Z ∩ [1, r], we have the reduction map ρr,i : G → Gi modulo πi, which is a surjective
morphism between algebraic groups; we denote the kernel subgroup by Gi = Gi

r. For conve-
nience we put G0 := G; do not confuse it with the identity component notation G◦. Similar
notation applies to closed subgroups of G.
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From now on, let T be a maximal torus of G such that the Greenberg functor image
T = FT is F -stable. Take B a Borel subgroup of G containing T, then one has a Levi
decomposition B = UT, and F gives a semi-direct product B = UT of algebraic groups
over k, where B = FB and U = FU. We denote by Φ = Φ(G,T) the root system of T; note
that B determines the positive roots Φ+ and the negative roots Φ−. The opposite unipotent
group to U is denoted by U−, and its Greenberg functor image is denoted by U−. For every
root α ∈ Φ, we write Tα for the image group scheme of the coroot α̌ : Gm/Our

r
→ T (this is a

closed subgroup of T; see [DG70, VIB 1.2]), and write Uα for the unipotent root subgroup;
their Greenberg functor images are denoted in the natural way. For convenience, we write
T α for (Tα)r−1.

Remark 3.1.4. Concerning the notion of Weyl group, one has W (T1) := NG1(T1)/T1
∼=

NG(T )/T : This follows from the fact that G is split with respect to every maximal torus;
see [DG70, XXII 3.4]. So we put W (T ) := W (T1).

Remark 3.1.5. Note that one can always find a T with T being F -stable: Firstly, T is
always a Cartan subgroup, i.e. the centraliser of a maximal torus of G, and every Cartan
subgroup of G comes in this way (see [Sta12]). Meanwhile, it is clear that if a maximal
torus is rational, then so is its centraliser. Now the existence of such a T follows from the
Lang–Steinberg theorem; see e.g. [DM91, 3.15].

3.1.2 Higher Deligne–Lusztig representations

Along with the above notation, we are interested in the following Fq-variety:

ST,U = L−1(FU) = {g ∈ G | g−1F (g) ∈ FU}.

Note that GF × T F acts on ST,U naturally by (g, t) : x 7→ gxt, so GF × T F also acts on the
compactly supported `-adic cohomology groups H i

c(ST,U ,Q`) (here ` 6= p).

For any θ ∈ T̂ F = Hom(T F ,Q×` ), we denote by H i
c(ST,U ,Q`)θ the θ-isotypical part of

H i
c(ST,U ,Q`). This Q`-linear subspace is a GF -submodule of H i

c(ST,U ,Q`). We write H i
c(−)

(resp. H∗c (−)) as shorthand for H i
c(−,Q`) (resp. the formal sum

∑
(−1)iH i

c(−,Q`)).

Definition 3.1.6. The virtual GF -representation

Rθ
T,U :=

∑
i∈Z

(−1)iH i(ST,U ,Q`)θ.

is called a (higher) Deligne–Lusztig representation with respect to (T, θ); we also denote its
character by the same notation.

By introducing the notion of regularity of characters, one obtains a generalisation of the
orthogonality relation and the Macdonald conjecture (theorem). These are the main results
proved in [Lus04] and [Sta09].
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Definition 3.1.7. A character θ ∈ T̂ F is called regular if it is non-trivial on NFa

F ((T α)F
a
)

for every root α ∈ Φ of T, where NFa

F (t) := t · F (t) · · ·F a−1(t) is the norm map and a is
some positive integer such that F a(T α) = T α for ∀α.

This definition is independent of the choice of a (see [Lus04, 1.5] and [Sta09, 2.8]). We
collect the main results of [Lus04] and [Sta09] below.

Theorem 3.1.8. Let θ ∈ T̂ F be a regular character, then as a GF -representation, Rθ
T,U is

independent of the choice of U. And if θ is moreover in general position (i.e. no non-trivial
element in W F (T ) fixes θ), then Rθ

T,U is irreducible (up to a sign). If (T, θ) and (T ′, θ′) are

not GF -conjugate, then the inner product between Rθ
T,U and Rθ′

T ′,U ′ is zero.

Proof. See [Lus04] for the function field case and see [Sta09] for the general case.

The classical Deligne–Lusztig theory developed in [DL76] is a geometric approach to the
representation theory of reductive groups over O1. Lusztig suggested a generalisation of this
construction to Or in [Lus79]. In [Lus04] Lusztig proved several fundamental results in the
case Or = Fq[[π]]/πr. By applying the Greenberg functor technique, Stasinski generalised
Lusztig’s results to a general Or in [Sta09]. In the above we have recalled this generalised
construction, and in the following we will work in this general framework.

3.2 Some basic properties

In this section we consider some properties of Rθ
T,U along the classical Deligne–Lusztig theory;

a nice reference is [Car93].

3.2.1 Character formula and unipotent elements

Proposition 3.2.1. There is a character formula: For any g ∈ GF , one has

Rθ
T,U(g) =

1

|T F |
·
∑
t∈TF

θ(t−1) · L((g, t), ST,U).

Proof. Since T F is a finite abelian group, the proof is the same as in the classical case; see
e.g. [Car93, 7.2.2 and 7.2.3].

Let u ∈ GF be a unipotent element, then since T F ∼= (T1)F × (T 1)F (note that T F is
abelian), the above implies

Rθ
T,U(u) =

1

|T F |
∑
t∈TF

θ(t−1)L((u, t), ST,U) =
1

|T F |
∑

t′∈(T1)F ,t′′∈(T 1)F

θ(t−1)L((u, t′′t′), ST,U)

=
1

|T F |
∑

t′∈(T1)F ,t′′∈(T 1)F

θ(t−1)L((u, t′′), (ST,U)t
′
) =

1

|T F |
∑

t′′∈(T 1)F

θ(t′′)−1L((u, t′′), ST,U),
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where the third equality follows from Deligne and Lusztig’s fixed point formula (see 2.2.2).
So the value Rθ

T,U(u) only depends on θ|(T 1)F , a character of a commutative unipotent group;

this is the generalised version of [Car93, 7.2.9]. In particular, for θ ∈ T̂ F such that θ|(T 1)F = 1,
one has Rθ

T,U(u) = R1
T,U(u).

3.2.2 Compatibility with parabolic induction

During a summer school lunch in 2015, Eitan Sayag asked the author whether the higher
Deligne–Lusztig representations are compatible with parabolic inductions. One way to for-
mulate this question in a more precise form is as follows.

Let P be a parabolic subgroup of G containing B, such that its Greenberg functor image
P is F -rational; let M be a Levi subgroup of P containing T, such that its Greenberg functor
image M is F -rational. Then one can consider the GF -representation IndG

F

PF R̃
θ
T,U∩M for each

θ ∈ T̂ F , where R̃θ
T,U∩M is the trivial extension of Rθ

T,U∩M to P F . A natural question is
whether it coincides with Rθ

T,U .

Note that if this question is positive, then in some sense, the study of higher Deligne–
Lusztig representations can be reduced to the studies of the cuspidal case and decompositions
of parabolic induced representations. In the r = 1 case this was proved as [DL76, 8.2]; an
expanded version of the argument can be found in [Car93, 7.4.4]. Actually the argument for
the r = 1 case also works for a general r; we illustrate this point below.

Proposition 3.2.2. Along with the above notation, one has

Rθ
T,U = IndG

F

PF R̃
θ
T,U∩M

for every θ ∈ T̂ F .

Proof. Let Pi, i = 1, · · · (with P1 = P ) be the distinct conjugates of P by elements of GF .
Consider Si := {g ∈ ST,U | gP = Pi} (these are closed subvarieties as they are defined by
closed conditions). Note that for any g ∈ ST,U , one has L(g) ∈ FU ⊆ FB ⊆ P , so the
Lang–Steinberg theorem implies the existence of p ∈ P with L(g) = L(p); in particular
gp−1 ∈ GF , and hence gP is one of Pi. Therefore we have a finite partition

ST,U =
∐
i

Si.

Clearly, the left GF -action permutes {Si}i, and the right T F -action preserves each Si.

As NG(P ) = P (by [DG70, XXII 5.8.5] we get the equality on scheme level, then use
[Sta12, 4.15]), the stabiliser of S1 in GF is P F . Then by Proposition 3.2.1 and [Car93, 7.1.7]
we see Rθ

T,U is the character induced by

p 7→ 1

|T F |
∑
t∈TF

θ(t−1)L((p, t), S1),
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a character of P F .

Now consider SP := M ∩L−1(FU); the quotient morphism P →M induces a morphism
S1 → SP given by g 7→ gUP , where UP is the Greenberg functor image of the unipotent
radical of P. Note that this is a surjective morphism with fibres being isomorphic to the
affine space UP , and it induces a P F × T F -action from S1 to SP , so

1

|T F |
∑
t∈TF

θ(t−1)L((p, t), S1) =
1

|T F |
∑
t∈TF

θ(t−1)L((p, t), SP )

for every p ∈ P F . The right hand side is the trivial extension of the character

m 7→ 1

|T F |
∑
t∈TF

θ(t−1)L((m, t), SP ) = Rθ
T,M∩U(m)

(of MF ) to P F , since the left (UP )F -action on SP is trivial (note that the P F -action on SP
comes from the quotient morphism). Therefore Rθ

T,U = IndG
F

PF R̃
θ
T,U∩M , as desired.

Remark 3.2.3. From the above argument we see that the involved ST,U is usually discon-
nected, as each Si is a closed subvariety and usually GF does not normalise P ; however, this
argument does not apply to the case that T is not contained in any rational P .

3.3 Towards a dimension formula

At even levels (i.e. r is even), the dimension formula of generic higher Deligne–Lusztig repre-
sentations follows from the algebraisation theorems in the next chapter; see Corollary 4.3.6
and Corollary 4.3.10. However, if r 6= 1 is odd, the dimension formula is in general unknown.
While the algebraisation for r odd is not yet available, there is another (very different) ap-
proach towards a dimension formula the author took in his early stages in the PhD studies;
in this section we present some ideas in this different approach, and in the next section we
present some constructions motivated by these efforts. Indeed, by studying the fibres of
the reduction maps, Lusztig obtained the dimension formula for SL2(Fq[[π]]/π2); the works
in these two sections can be viewed as attempts to generalise Lusztig’s method for general
groups, thus also admit their own interests as independent research topics.

3.3.1 A review of the classical case

Let us start with introducing the dimension formula in classical Deligne–Lusztig theory. In
this subsection, we make the temporary assumption that r = 1; in particular, G = G is a
connected reductive group over k. Let T0 be a rational maximal torus contained in a rational
Borel B0. We refer to [DM91] for the details.

The duality functor for the Q` (∼= C as a field) -valued class functions on GF , associated
to T0, is defined to be

DG =
∑

(−1)r(N)RN ◦ ∗RN ,
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where the sum runs over the rational parabolic subgroups containing B0, N denotes an
arbitrary rational Levi subgroup of the parabolic, r(N) denotes the semisimple Fq-rank (i.e.
the dimension of a maximal split subtorus of a maximal quasi-split torus of the quotient of
the algebraic group by its radical) of N , and RN (resp. ∗RN) denotes the associated Lusztig
induction (resp. restriction, i.e. right adjoint) functor; this definition does not depend on the
choice of the Borel and the N ’s. The Steinberg character of GF is defined to be

StG = DG(IdGF ).

It is known that StG is irreducible. The Steinberg character is “orthogonal” to Deligne–
Lusztig characters in the sense that it is always trivial on non-trivial unipotent elements
while Deligne–Lusztig characters admit a Green function formula (see Theorem 2.2.12).
There are three properties of StG used for establishing the dimension formula:

1. For a non-trivial unipotent element u ∈ GF , one has StG(u) = 0.

2. Given a rational maximal torus T , one has

∗RTStG = εGεTStT = εGεT IdT ,

where εH := (−1)Fq-rank(H) for any rational closed subgroup H of G.

3. The dimension of StG is |GF |p, the p-part of the cardinality.

Theorem 3.3.1. One has dimRθ
T = Rθ

T (1) = εGεT |GF |p′/|T F |.

Proof. (This is essentially from [DM91, 12.9].) By the second property listed above we see

〈Rθ
T , StG〉GF = εGεT δ1,θ.

Taking summation we get

〈
∑
θ∈T̂F

Rθ
T , StG〉GF = εGεT ;

note that
∑

θ∈T̂F R
θ
T is afforded by the virtual GF -module H∗c (L−1(FU)). Thus the Deligne–

Lusztig fixed point formula for Jordan decomposition (see Theorem 2.2.2) implies

εGεT =
1

|GF |
·

∑
u unipotent in GF

∑
θ∈T̂F

Rθ
T (u) · StG(u)

 ,

since L−1(FU) cannot be fixed by any non-trivial semisimple element. Note that dimRθ
T

does not depend on θ ∈ Irr(T F ) by the Green function formula (see Theorem 2.2.12), so the
first and the third properties of StG listed above imply

εGεT =
|T F |
|GF |

dimRθ
T · StG(1) =

|T F |
|GF |p′

dimRθ
T .

This completes the proof.
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Remark 3.3.2. A first idea on establishing an analogue of the above dimension formula
for general r is to develop the needed properties to get an analogous proof. The main step
is to construct a Steinberg character for higher r such that the three properties involved
in the r = 1 case have useful analogues. Actually, Lees has considered a generalisation of
the Steinberg character for general linear groups for higher r in [Lee78], and Campbell gave
another generalisation for general linear groups in [Cam04]. Later, Campbell also considered
the general Chevalley group case in [Cam07]. These constructions emphasised different
analogous properties of the classical Steinberg character. However, after some computations
we found their constructions, as well as some variations, do not work for our purpose, and
the reason is roughly that the “unipotent radical” of reductive groups over a finite ring can
be very large, which results that the first property listed above is hopeless for these analogues
for higher r.

3.3.2 Reduction maps and fibres

One way to study Deligne–Lusztig theory for higher r is to study the reduction maps between
higher Deligne–Lusztig varieties, in an inductive manner, and this naturally leads to the
study of their fibres.

In this subsection we assume r > 1, and let 1 ≤ h < r be an integer. When different
levels are involved, we may denote the (higher) Deligne–Lusztig varieties at level 1 ≤ i ≤ r
by SiT,U := STi,Ui ; note that the reduction map ρr,i naturally restricts to these varieties

ρr,i : S
r
T,U −→ SiT,U .

Note that ρ−1
h+1,h(1) ∩ Sh+1

T,U is a commutative closed subgroup of Gh+1.

Lemma 3.3.3. The reduction map ρh+1,h : Sh+1
T,U −→ ShT,U is surjective.

Proof. There is a commutative diagram

Sh+1
T,U F (Uh+1)

ShT,U F (Uh).

ρh+1,h

L

ρh+1,h

L

Note that all the arrows are known to be surjective except for the left ρh+1,h (the surjectivity
of the right ρh+1,h follows from the smoothness of U and Grothendieck’s infinitesimal lifting
of formal smoothness; see e.g. [Liu06, Proposition 6.2.15]). Suppose a ∈ ShT,U , L(a) = a′,
ρh+1,h(b

′) = a′, and L(b) = b′, then L(ρh+1,h(b)) = ρh+1,h(L(b)) = a′ = L(a) implies a =
g · ρh+1,h(b) for some g ∈ GF

h . Suppose ρh+1,h(g1) = g for g1 ∈ GF
h+1 (the existence of such a

g1 follows from the smoothness of G), then g1b ∈ Sh+1
T,U and ρh+1,h(g1b) = g ·ρh+1,h(b) = a.

From now on, we let B0 ⊆ G be a Borel subgroup and T0 ⊆ B0 a maximal torus, such
that their Greenberg functor images B0 and T0 are F -stable; we denote the unipotent radical
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of B0 by U0, and denote its Greenberg functor image by U0; furthermore, we let λ̂ ∈ G be
such that B = λ̂B0λ̂

−1 and T = λ̂T0λ̂
−1, and we write λ := ρr,1(λ̂). The existence of such

a quasi-split pair follows from the Lang–Steinberg theorem; see [DG70, XXII 5.8.5] and
[DM91, 3.12]. Note that λ̂−1F (λ̂) = ŵ ∈ NG(T0) is a lift of some Weyl element w ∈ W (T0)
(see also Remark 3.1.4), and ST,U is isomorphic to L−1(ŵU0), via right multiplication by λ̂.

In case G is a general or special linear group, we take B0 and T0 to be the standard
Borel subgroup and the standard maximal torus, respectively, and in this case ŵ is taken to
be a monomial matrix (for special linear groups, we allow signs) and the lift of the trivial
Weyl element is taken to be the identity matrix.

Following Remark 3.1.1, we view G as a closed subgroup scheme of some GLn, and denote
by Mn the ring of n×n matrices over Our/πr. When we write GLn or SLn we automatically
assume n > 1; the case n = 1 is on the one hand trivial and on the other hand special in the
sense that there are no roots involved.

We start with a description of fibres.

Lemma 3.3.4. Regard G(k) as G(Our
r ). Pick ĝ ∈ L−1(ŵU0), and write ḡ := ρr,r−1(ĝ) and

ĝ−1F (ĝ) = ŵu ∈ ŵU0. Then on closed points one can identify ρ−1
r,r−1(ḡ) ∩ L−1(ŵU0) with

{ĝ(I + gr−1) ∈ G | gr−1 ∈ πr−1 ·Mn(Our
r ), I + (uF (gr−1)− gŵr−1) ∈ U0}.

Proof. Note that for s ∈ Mn(Our/πr) one has (ĝ+ πr−1s)−1 = ĝ−1− πr−1ĝ−1sĝ−1. Therefore

(ĝ + πr−1s)−1 · F (ĝ + πr−1s) =ĝ−1F (ĝ) + πr−1ĝ−1F (s)− πr−1ĝ−1sĝ−1F (ĝ)

=ŵu+ πr−1ŵuF (ĝ−1s)− πr−1ĝ−1sŵu.

The above is an element of ŵU0 if and only if

I + πr−1uF (ĝ−1s)u−1 − πr−1ŵ−1ĝ−1sŵ ∈ U0.

Denote ĝ−1s by g′; note that when s runs over Mn(Our/πr), so is g′. Thus

ρ−1
r,r−1(ḡ) ∩ L−1(ŵU0) ={ĝ + πr−1s ∈ G(k) | s ∈ Mn(Our

r ), L(ĝ + πr−1s) ∈ ŵU0}
={ĝ + πr−1ĝg′ ∈ G(k) | g′ ∈ Mn(Our

r ), I + πr−1(uF (g′)− g′ŵ) ∈ U0}.

Denote πr−1g′ by gr−1, then we see

ρ−1
r,r−1(ḡ)∩L−1(ŵU0) = {ĝ+ ĝgr−1 ∈ Gr | gr−1 ∈ πr−1 ·Mn(Our

r ), I+(uF (gr−1)−gr−1
ŵ) ∈ U0};

the lemma follows.

Remark 3.3.5. When trying to link cohomology of fibres and cohomology of the base space,
one may be interested in the rational points (see e.g. the argument of [DM91, 10.12]). Note
that for O = Fq[[π]], the fibre of ρr,1 between Deligne–Lusztig varieties at any rational point
contains a rational point, since Gr = Gr−1 oG1 in this case.
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It seems ρ−1
r,1(1) ∩ L−1(ŵU0) can be decomposed into clopen subvarieties on which (T 1

r )F

acts simply and transitively. We first check the following toy example.

Example 3.3.6. Let G be GL2 over Fq[[π]]/π2. Suppose T0 = T (i.e. the Harish-Chandra
case). By Lemma 3.3.4 we see

ρ−1
2,1(1) ∩ L−1(ŵU0) =

{[
1 + xπ yπ
zπ 1 + wπ

] ∣∣∣∣ x, z, w ∈ Fq, y ∈ Fq
}
.

Note that t ∈ (T 1
2 )F has form t =

[
1 + aπ 0

0 1 + bπ

]
, where a, b ∈ Fq. So (T 1

2 )F acts (right

matrix multiplication) on ρ−1
2,1(1) ∩ L−1(ŵU0) by

t :

[
1 + xπ yπ
zπ 1 + wπ

]
7→
[
1 + (x+ a)π yπ

zπ 1 + (w + b)π

]
.

In particular, ρ−1
2,1(1)∩L−1(ŵU0) decomposes into q2 copies of disjoint unions of q affine lines;

these copies are parametrised by x,w ∈ Fq. So we can write ρ−1
2,1(1) ∩ L−1(ŵU0) =

∐
Yx,w,

where Yz,w is a disjoint union of q affine lines, such that (T 1
2 )F acts on the set {Yx,w}x,w

simply and transitively. Therefore (see e.g. [DM91, 10.7, 10.8, and 10.12])

L((1, t), ρ−1
2,1(1) ∩ L−1(ŵU0)) = q · Reg(T 1

2 )F (t).

By general property of the regular representation of a finite group, this is zero unless t = 1.

The decomposition in the above example gives some helpful ideas for the general case.
Firstly, by Iwahori decomposition (see the version in [Sta09, Lemma 2.2]) we have

ρ−1
r,1(1) ∩ ST,U =

{
g ∈ G1

r | L(g) ∈ FU1
r

}
= {u−tu ∈ (U−)1

r · T 1
r · U1

r | L(u−tu) ∈ FU1
r }

= {u−ut ∈ (U−)1
r · U1

r · T 1
r | L(u−ut) ∈ FU1

r }.

Denote by Yt the closed subvariety ρ−1
r,1(1)∩ ST,U ∩ (U−)1

r ·U1
r · t for any t ∈ T 1

r ; the varieties
Yt and Yt′ are disjoint for t 6= t′, and Yt′ ∼= Yt if t/t′ ∈ (T 1

r )F . Fix a set R of representatives of
T 1
r /(T

1
r )F (a group, because Tr is commutative). Consider Y R :=

⋃
t̃∈R Yt̃ and its translations

Y R · t, where t ∈ (T 1
r )F . Then we get a set-theoretic finite decomposition of closed points:

ρ−1
r,1(1) ∩ ST,U =

∐
t∈(T 1

r )F

Y R · t;

note that (T 1
r )F acts simply and transitively on {Y R · t}t∈(T 1

r )F . It would be interesting to
know whether these are decompositions into closed subvarieties rather than just subsets (or
more precisely, in R, there are only finitely many t such that Yt non-empty).

There is a similar decomposition for ρ−1
r,r−1(1) ∩ ST,U , which is much easier: Consider

u−tu ∈ ρ−1
r,r−1(1) ∩ ST,U , then L(u−tu) ∈ FU implies t ∈ (T r−1)F by the uniqueness of

Iwahori decomposition and by the fact that Gr−1 is abelian. In particular, ρ−1
r,r−1(1)∩ST,U is

a disjoint union of (T r−1)F -copies of an affine space; this is a variant version of the “crucial
lemma” in [Lus79].
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3.3.3 Two by two special linear groups

Throughout this subsection we assume O = Fq[[π]], G = SL2, and T non-split. We study
the fibres (of Deligne–Lusztig varieties) along ρr,r−1 in this special case.

Put ŵ =

[
0 −1
1 0

]
; take ĝ ∈ L−1(ŵU0) and let ḡ := ρr,r−1(ĝ); suppose ρr−1,1(ḡ−1F (ḡ)) =

ŵu′ = ŵ

[
1 u0

0 1

]
(so u0 ∈ Fq). Then Lemma 3.3.4 implies

ρ−1
r,r−1(ḡ) ∩ L−1(ŵU0) =

{
ĝ(I + gr−1π

r−1)

∣∣∣∣ gr−1 =

[
a −cq
c −a

]
∈M2(Fq), a = −aq − u0c

q

}
.

So there are two cases:

(i) When u0 = 0, i.e. when ḡ ∈ ρ−1
r−1,1(GF

1 · λ), the fibre is A1 × {a ∈ Fq | a+ aq = 0};

(ii) Otherwise, the fibre is A1 (consider the variable change c 7→ (c− a)/ q
√
u0).

In case (i), we want to understand how (T r−1)F acts (from the right hand side) on

the components of the fibre. Pick

[
t0 0
0 t−1

0

]
= I + πr−1t′ ∈ λ̂−1(T r−1)F λ̂; note that t′ =[

t′0 0
0 −t′0

]
∈ M2(Fq) satisfies t′0 + t′0

q = 0. Writing the elements in ρ−1
r,1(GF

1 λ) ∩ L−1(ŵU0) as

triples (ĝ, a, c), a direct computation shows the (T r−1)F -action on ρ−1
r,1(GF

1 λ) ∩ L−1(ŵU0) is[
t0 0
0 t−1

0

]
: (ĝ, a, c) 7→ (ĝ, a+ t′0, c). (3.1)

In particular, (T r−1)F acts on a simply transitively.

Suppose θ ∈ T̂ F is regular, then since (T r−1)F acts trivially on H∗c (ST,U \ ρ−1
r,1(GF

1 ))θ ∼=
H∗−2
c (Sr−1

T,U \ ρ
−1
r−1,1(GF

1 ))θ, we see H∗c (ST,U)θ = H∗c (ρ−1
r,1(GF

1 λ) ∩ L−1(ŵU0))θ.

Example 3.3.7. For r = 2, Lusztig sketched in [Lus04] a wedge-product argument to show
dimRθ

T,U = q2 − q for θ regular. We give an explicit computation here. Firstly, from above

the variety ρ−1
r,1(GF

1 λ) ∩ L−1(ŵU0) = ρ−1
2,1(GF

1 λ) ∩ L−1(ŵU0) can be viewed as a line bundle

over GF
1 λ× {a ∈ Fq | a+ aq = 0}, thus by basic properties of `-adic cohomology we see

H∗c (ρ−1
2,1(GF

1 λ) ∩ L−1(ŵU0)) = Q`[G
F
1 λ× {a ∈ Fq | a+ aq = 0}].

A basis of this vector space is (gλ, a), where g ∈ GF
1 and a ∈ Fq satisfying aq + a = 0.

Suppose
∑
cg,a(gλ, a) is a θ-eigenvector, i.e.∑

(g,a)

θ(t)cg,a(gλ, a) =
∑
(g,a)

cg,a(gρ2,1(t)λ, a+ t′0), ∀t ∈ T F , (3.2)
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where t′0 is from the (T 1)F -component of t (conjugated by λ). Clearly, (3.2) is equivalent to

cgρ2,1(t),a+t′0
= θ(t)−1cg,a, ∀t ∈ T F ,∀(g, a).

Therefore

H∗c (ρ−1
2,1(GF

1 λ) ∩ L−1(ŵU0))θ = Span

{∑
t∈TF

cg′,0θ(t)
−1(g′ρ2,1(t)λ, t′0)

}
g′

,

where g′ ∈ GF
1 runs over a set of representatives of the coset GF

1 /T
F
1 . In particular, for θ

regular one has

dimRθ
T,U = dimH∗c (ρ−1

2,1(GF
1 λ) ∩ L−1(ŵU0))θ =

|GF
1 λ× {a | a+ aq = 0}|

|T F |
= q2 − q.

3.4 Some subvarieties

In this section we introduce a family of subvarieties, called essential parts, of higher Deligne–
Lusztig varieties. This construction is motivated by the studies in Subsection 3.3.3.

3.4.1 Essential parts and primitivity

Definition 3.4.1. The variety ET,U,h := ρ−1
r,h(G

F
h · ρr,h(λ̂))∩L−1(ŵU0) is called the essential

part of L−1(ŵU0) at level h. For each θ ∈ T̂ F , we denote by Rθ
T,U,h the representation

H∗(ET,U,h)θ of GF , and call it an essential part representation.

Remark 3.4.2. Note that ET,U,h ∼= ρ−1
r,h(G

F
h ) ∩ ST,U by the conjugation by λ̂.

From the computations in Subsection 3.3.3, we see that:

Proposition 3.4.3. For G = SL2 and O = Fq[[π]]. If T is non-split and θ ∈ T̂ F is regular.
Then Rθ

T,U = Rθ
T,U,1.

A representation space V of GF
r−1 can also be acted on by GF

r via the reduction map;
following the terminology in [Sha04], we call a representation of GF NOT of this type a
primitive representation of GF .

Proposition 3.4.4. For each i ∈ Z, if the right (T r−1)F -action on H i
c(ET,U,h) is not trivial,

then H i
c(ET,U,h) is primitive.

Proof. It suffices to show that the left action of some non-trivial subgroup of (Gr−1)F is
non-trivial on H i

c(ET,U,h). Write GF
h = {gj}j. Let Ej be the pre-image of gj ∈ Gh in ET,U,h.

Then ET,U,h is the disjoint union of the varieties Ej. So H i
c(ET,U,h) is the direct sum of

H i
c(Ej) for all j (see e.g. [DM91, 10.7]). Without loss of generality, suppose g1 = 1.
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For any e ∈ E1 and any t ∈ (T r−1)F we have t · e = e · t, so the left (T r−1)F -action and
the right (T r−1)F -action coincide on E1. Therefore

(T r−1)F\E1
∼= E1/(T

r−1)F

as varieties, and hence
(T r−1)FH i

c(E1) ∼= H i
c(E1)(T r−1)F

as vector spaces (see e.g. [DM91, 10.10]); here both the left and the right superscripts
mean that we are taking the subspace of the vectors fixed by (T r−1)F . By our assumption
H i
c(ET,U,h)

(T r−1)F is a strictly smaller subspace of H i
c(ET,U,h), so (T r−1)FH i

c(E1) is a strictly
smaller subspace of H i

c(ET,U,h), which implies the primitivity.

We expect that Rθ
T,U,h (for each h) “contains” Rθ

T,U for any regular θ, and that in the case
r is even and the torus is anisotropic, they coincide. In the next subsection we present some
computations; together with the results in Chapter 4 (see Proposition 4.1.8, Remark 4.1.9,
and Corollary 4.3.6) they give support for this expectation.

3.4.2 Small special linear groups

In this subsection we assume G = SLn and O = Fq[[π]].

Proposition 3.4.5. Let n = 2, T non-split, and ŵ =

[
0 −1
1 0

]
. Write l := [ r+1

2
]. Then for

θ ∈ T̂ F non-trivial on (T r−1)F , the representation Rθ
T,U,l is of dimension (q − 1)q2l−1.

Proof. This is similar to what we did in Lemma 3.3.4. For any g ∈ GF
l ρr,l(λ̂) fix a lift

ĝ ∈ GF λ̂. Then we have

ρ−1
r,l (g) ∩ L−1(ŵU0) = {ĝm ∈ G | (ĝm)−1F (ĝm) ∈ ŵU0},

where m = I + glπ
l + gl+1π

l+1 + · · · + gr−1π
r−1 with each gi ∈ M2(Fq). Note that m−1 =

I − glπl − gl+1π
l+1 − · · · − gr−1π

r−1. A direct computation shows

(ĝm)−1F (ĝm) = ŵ + (ŵF (gl)− glŵ)πl + · · ·+ (ŵF (gr−1)− gr−1ŵ)πr−1,

and the condition “(ĝm)−1F (ĝm) ∈ ŵU0” is thus equivalent to

I + (F (gl)− gŵl )πl + · · ·+ (F (gr−1)− gŵr−1)πr−1 ∈ U0. (3.3)

Write gi =

[
ai bi
ci −ai

]
, Then (3.3) is equivalent to

ai ∈ Fq2 , aqi + ai = 0, cqi + bi = 0, ∀i.
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Therefore

ρ−1
r,l (g) ∩ L−1(ŵU0) ∼=

r−1∏
i=l

{(ai, ci) | ai, ci ∈ Fq, ai + aqi = 0}

∼= Ar−l ×
r−1∏
i=l

{ai | ai ∈ Fq, ai + aqi = 0}

as varieties. Now the same arguments in Subsection 3.3.3 imply that

dimRθ
T,U,l =

|GF
l ρr,l(λ̂)×

∏r−1
i=l {ai | ai + aqi = 0}|
|T F |

= (q − 1)q2l−1.

This completes the proof.

Recall that for SLn(Fq), the conjugacy classes of the Weyl group W ∼= Sn are determined
by the possible partitions of n. In particular, in the case n = 3 there are three classes,
and hence three different classes of rational maximal tori; the one corresponding to F×q ×
F×q × F×q (provides the principal series), the one corresponding to F×q2 × F×q (provides the

neither-principal nor-cuspidal series), and the one corresponding to F×q3 (provides the cuspidal
series). While the higher (and classical) Deligne–Lusztig representations only depend on the
conjugacy classes of Weyl elements, the essential part representations may depend on the
Weyl elements themselves.

By the same method in Proposition 3.4.5, one can compute the dimensions of essential
part representations explicitly for small groups. For n = 3 and r = 2, we list the results
below (done with the help of software Wolfram Mathematica):

(1) If w = 1, then
|T F | = q2(q − 1)2,

and the fibres at SL3(Fq) are isomorphic to

ρ−1
2,1(1) ∩ ST,U ∼= (Fq)6 × A3.

Thus

| dimH∗c (ET,U,1)| = dimH6
c (ET,U,1) = q9 · (q − 1)2 · (q + 1) · (q2 + q + 1),

and
| dimRθ

T,U,1| = q7 · (q + 1) · (q2 + q + 1).

(2) If w 6= 1, not a Coxeter element nor the longest Weyl element, then

|T F | = q2(q2 − 1),
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and the fibres at SL3(Fq) are isomorphic to

ρ−1
2,1(1) ∩ ST,U ∼= Fq2 × {(a, e) ∈ Fq2 × Fq | aq + a+ e = 0} × A2.

Thus

| dimH∗c (ET,U,1)| = dimH4
c (ET,U,1) = q7 · (q − 1)2 · (q + 1) · (q2 + q + 1),

and
| dimRθ

T,U,1| = q5 · (q − 1) · (q2 + q + 1).

(3) If w is the longest Weyl element, then

|T F | = q2(q2 − 1),

and the fibres at SL3(Fq) are isomorphic to

ρ−1
2,1(1) ∩ ST,U ∼= {(a, e) ∈ Fq2 × Fq | aq + a+ e = 0} × A3.

Thus

| dimH∗c (ET,U,1)| = dimH6
c (ET,U,1) = q7 · (q − 1)2 · (q + 1) · (q2 + q + 1),

and
| dimRθ

T,U,1| = q3 · (q − 1) · (q2 + q + 1).

(4) If w is a Coxeter element, then

|T F | = q2(q2 + q + 1),

and the fibres at SL3(Fq) are isomorphic to

ρ−1
2,1(1) ∩ ST,U ∼= {a ∈ Fq3 | aq

2

+ aq + a = 0} × A3.

Thus

| dimH∗c (ET,U,1)| = dimH6
c (ET,U,1) = q5 · (q − 1)2 · (q + 1) · (q2 + q + 1),

and
| dimRθ

T,U,1| = q3 · (q − 1)2 · (q + 1).

Remark 3.4.6. We note that all the computations concerning the essential parts in this
subsection also work for a general GLn and SLn for the Coxeter tori and even r. For example,
consider the Coxeter Weyl element

w =

[
0 In−1

1(or− 1) 0

]
∈ Sn.

The condition “In + π(F (g)− gw) ∈ U0” implies every non-(i, i) entry is finally determined
by a free variable in the upper triangular part, hence contributes an affine line, and thus in
the alternating sum of cohomologies only the diagonal part matters, and (T r/2)F acts on this
diagonal part simply and transitively. Similar things are true for the symplectic group Sp4

with r = 2. However, at the current moment we don’t know the precise relation between
essential parts and Deligne–Lusztig representations for a general reductive group.
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Chapter 4

Main results - algebraisation

In this chapter we give an affirmative answer to Lusztig’s question (see Question 4.3.1) for
G = GLn with r even. The generalisation of this result for an arbitrary reductive group is
obtained later in the joint work [CS16]; we also present this work. After then, we discuss some
applications to the character theory of reductive Lie algebras over a finite field. Throughout
this chapter we assume r is even, and write r = 2l (do not confuse l with the prime `).

4.1 Some algebraic constructions

The main results in this chapter are on links between algebraic methods and geometric
methods in representation theory, so we present some algebraic constructions in this section.

4.1.1 Clifford theory

Clifford theory is an efficient algebraic method to construct smooth representations of re-
ductive groups over O. The general idea of using Clifford theory to construct irreducible
representations of GLn(O) can be traced back to Shintani [Shi68], and was recovered by Hill,
who introduced the notion of regular representations (see [Hil95]); very recently Stasinski
and Stevens constructed all regular representations of GLn(O) (see [SS16]). Let us start with
a collection of the fundamentals in Clifford theory (the proofs can be found e.g. in [Isa06]):

Lemma 4.1.1 (Clifford theory). Let N be a normal subgroup of a finite group G. For any
σ ∈ Irr(N), denote the stabiliser under conjugation by StabG(σ) := {g ∈ G | σg ∼= σ}. Note
that N ⊆ StabG(σ) because characters are class functions. Then

(i) For any ρ ∈ Irr(G), one has ρ|N = c ·
⊕

g∈G/StabG(σ) σ
g for some σ ∈ Irr(N) and some

positive integer c.

(ii) For σ ∈ Irr(N), consider A := {σ′ ∈ Irr(StabG(σ)) | 〈σ′|N , σ〉 6= 0} and B := {ρ ∈
Irr(G) | 〈ρ|N , σ〉 6= 0}. Then σ′ 7→ IndGStabG(σ)σ

′ is bijective from A to B.
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(iii) Let H be a subgroup of G containing N , and suppose σ ∈ Irr(N) admits an extension
σ′′ to H (i.e. ∃σ′′ ∈ Rep(H) with σ′′|N = σ). Then

IndHNσ =
⊕

χ∈Irr(H/N)

χσ′′,

and each χσ′′ is irreducible, where Irr(H/N) denotes the irreducible representations of
H that are trivial on N .

(iv) If StabG(σ)/N is cyclic, there is an extension of σ ∈ Irr(N) to StabG(σ).

We give a brief description of how Clifford theory works in the case of G = GLn
with the standard Frobenius; interested reader should refer to the detailed nice survey
[Sta16]. As additive groups we have Our/πl ∼= πlOur/πr, which induces an isomorphism
Mn(Our/πl) ∼= Mn(πlOur/πr) of additive groups. As x 7→ x−I gives an isomorphism from Gl

to Mn(πlOur/πr), we see (Gl)F ∼= Mn(O/πl). Explicitly, the isomorphism (Gl)F ∼= Mn(O/πl)
can be viewed as the composite morphism

x 7→ x− I 7→ axπ
l + bxπ

r 7→ ax + bxπ
l 7→ x′ ∈ Mn(O/πl),

where axπ
l + bxπ

r is an arbitrary lift of x− I ∈ Mn(πlO/πr) to Mn(O), and x′ is the residue
class of ax ∈ Mn(O) modulo πl. (In literature it is also common to write π−l(x− I) for x′.)

Now fix a Q`-valued additive character ψ of O with conductor (πl), i.e. ψ is trivial on
the ideal (πl) but not trivial on (πl−1). Then we have an exact pairing

Mn(O/πl)× (Gl)F −→ Q×` ; (β, x) 7→ ψ(Tr(βx′)),

which induces an isomorphism (depending on ψ) from an “additive” group to a “multiplica-
tive” group.

Mn(O/πl) ∼= Hom((Gl)F ,Q×` ).

For β ∈ Mn(O/πl) we denote by ψβ the corresponding image in Hom((Gl)F ,Q×` ). If ψβ can

be extended to an irreducible character ψ̃β on StabGF (ψβ), i.e. ψ̃β|(Gl)F = ψβ, then Clifford

theory (Lemma 4.1.1) implies IndG
F

Stab
GF

(ψβ)ψ̃β is an irreducible character of GF .

Remark 4.1.2. A similar description works for an arbitrary reductive group, provided the
characteristic of the residue field is big enough and the trace form is replaced by a non-
degenerate symmetric bilinear form on (Gl)F .

4.1.2 Arithmetic radicals

In this subsection we introduce a variety which can be used to realising an algebraically
constructed representation given by Gérardin (see Remark 4.1.7).

Definition 4.1.3. Consider the commutative unipotent group U± := (U−)lU l; it is called
the arithmetic radical with respect to T.
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Lemma 4.1.4. U± is normalised by NG(T ), and it is F -rational.

Proof. Note that U± =
∏

α∈Φ U
l
α, where Φ = Φ(G,T) is the root system for T and Uα =

F(Uα) is the Greenberg functor image of the root subgroup of U for α ∈ Φ. For any
v ∈ W (T ) we have v̂Uαv̂

−1 = Uv(α), so v̂
∏

α∈Φ U
l
αv̂
−1 =

∏
α∈Φ U

l
v(α) =

∏
α∈Φ U

l
α, i.e. U± is

normalised by NG(T ). On the other hand, note that FU± = FGl/FT l, so the rationality of
U± follows from that of Gl and of T l.

We want to study the variety L−1(U±), which is an analogue of the Deligne–Lusztig
variety L−1(FU).

Remark 4.1.5. Indeed, there is a more general family of analogues, i.e. the varieties
L−1(F (U i(U−)r−i)), where i ∈ [0, r] ∩ Z (in this family r can also be odd). The higher
Deligne–Lusztig variety is then the case with i = 0 or r, and the variety L−1(U±) is the case
with r even and i = r/2. However, our arguments for the main results in Section 4.3 do not
work directly for this general family.

Note that there is a natural GF × T F -action on L−1(U±), so H∗c (L−1(U±)) is a (virtual)
GF -module-T F . Indeed, it is an actual module:

Proposition 4.1.6. The GF -representation H∗c (L−1(U±))θ = H∗c (L−1(FU±))θ is isomorphic

to IndG
F

(TU±)F θ̃ for ∀θ ∈ T̂ F , where θ̃ is the trivial lift of θ from T F to (TU±)F (TU± is a
semi-direct product); this is a primitive representation if θ|(T r−1)F 6= 1 (e.g. this is the case
if θ is regular)

Proof. The argument for the first part is similar to rewriting Deligne–Lusztig representa-
tions as parabolically induced representations in the Harish-Chandra case (see e.g. [DM91,
Page 81]). Consider the quotient morphism L−1(U±) → G/U±. Note that F (gU±) =
gL(g)U± = gU±, so its image is (G/U±)F ∼= GF/(U±)F . As its fibres are isomorphic to an
affine space, we see H∗c (L−1(U±)) ∼= Q`[G

F/(U±)F ] by basics of `-adic cohomology. Now,

Q`[G
F/(U±)F ] ⊗Q`[TF ] θ

∼= Q`[G
F ] ⊗Q`[(TU±)F ] θ̃ as Q`[G

F ]-modules, so H∗c (L−1(U±))θ ∼=
IndG

F

(TU±)F θ̃.

Now the primitivity follows immediately from the Mackey intertwining formula.

For the below remark, first note that any split reductive group over a non-archimedean
local field is the base change of a reductive group over the ring of integers; this is in Tits’s
Corvallis article; see e.g. https://mathoverflow.net/questions/184540 for a proof.

Remark 4.1.7. Suppose G(Or) is theOr-points of a split reductive group over Frac(O), with
derived subgroup being simply connected, and suppose T F is the Or-points of a “special”
maximal torus over Frac(O) in the sense of [Gér75, 3.3.9]. (In the case G = GLn or SLn,
these conditions are always satisfied; see [Gér75, 3.4.2].) Under these conditions (see [Gér75,

4.1.1]), the representations IndG
F

(TU±)F θ̃ were first considered by Gérardin in [Gér75], in which
he proved they are irreducible if θ is regular and in general position; see [Gér75, 4.4.1].
We note that in Gérardin’s work the notion of regularity of characters is formulated by the
concept of conductor along Galois orbits; see [Gér75, 4.2.2 and 4.2.3].
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In the case of general and special linear groups, we show that H∗c (L−1(U±))θ is always a
sub-representation of the essential part representation Rθ

T,U,l:

Proposition 4.1.8. Suppose G = GLn or SLn. Then H∗c (L−1(U±))θ and Rθ
T,U,l are actual

representations, and H∗c (L−1(U±))θ is a sub-representation of Rθ
T,U,l.

Proof. The map g 7→ gλ̂ gives a GF × T F -isomorphism L−1(U±) ∼= L−1(ŵU±0 ), where
the right T F -action on L−1(ŵU±0 ) is twisted by conjugation by λ̂. We need to compare
H∗c (L−1(ŵU±0 ))θ and H∗c (ET,U,l)θ. The reduction map ρ′ : L−1(ŵU±0 ) → GF

l ρr,l(λ̂) (the re-
striction of ρr,l on L−1(ŵU±0 )) is surjective and with isomorphic fibres. A similar argument
of Lemma 3.3.4 shows

ρ′
−1

(ḡλ) = {ĝλ̂(I + gl) ∈ Gr | gl ∈ πlMn(Our
r ), I + (F (gl)− gŵl ) ∈ U±0 }

for every ḡ ∈ GF
l , where ĝ ∈ GF is a fixed lift of ḡ. Denote the permutation on {1, · · · , n}

corresponding to w by σ, and write gl = (gi,j), then the condition “I+ (F (gl)−gŵl ) ∈ U±0 ” is
equivalent to “F (gi,i) = ±gσ(i),σ(i) for all i”, where the sign ± is determined by the monomial

matrix ŵ. So the fibre of ḡρr,l(λ̂) ∈ GF
l ρr,l(λ̂) along ρ′ is isomorphic to an affine bundle over

the finite set consisting of diagonal matrices D ∈ Mn(Our/πr) subject to I+D ∈ λ̂−1(T l)F λ̂.
Thus

H∗c (L−1(ŵU±0 )) ∼= Q`[G
F
l ρr,l(λ̂)× (λ̂−1(T l)F λ̂− I)] ∼= Q`[G

F
l × π−l(λ̂−1(T l)F λ̂− I)].

A basis of this vector space is X := {(ḡ, tl) ∈ GF
l × π−l(λ̂−1(T l)F λ̂ − I)}. For each ḡ ∈ GF

l

let ĝ be a fixed lift in GF , then by tracing back the GF × T F -action on the variety one can
see how (g, t) ∈ GF × T F acts on this basis: Write t = t′(I + t′′) and g = g′(I + g′′), where
g′′, t′′ ∈ πl ·Mn(Our/πr), such that g′ĝt′ is a fixed lift of ρr,l(g)ḡρr,l(t), then on X we have

(g, t) : (ḡ, tl) 7→ (ρr,l(g)ḡρr,l(t), d(π−lg′′
ḡt′λ̂

+ π−lt′′λ̂ + tl)),

where d(x) is defined to be the diagonal matrix given by the diagonal of a matrix x. In

particular, the right T F -action on the basis set X is free. Thus for each θ ∈ T̂ F , since
|X| = |GF

l · (T l)F |, we see dimH∗c (L−1(ŵU±0 ))θ = |GF
l |/|T Fl |.

Similarly, the fibres of the essential parts along reduction maps are isomorphic to (note
that ET,U,l = L−1(ŵU l

0))

ρ−1
r,l (ḡλ̂) ∩ ET,U,l = {ĝλ̂(I + gl) ∈ Gr | gl ∈ πl ·Mn(Our

r ), I + (F (gl)− gŵl ) ∈ U l
0},

which, in the same way as above, can be viewed as an affine bundle over a finite set S
containing λ̂−1(T l)F λ̂− I, thus H∗c (ET,U,l) ∼= Q`[G

F
l λ̂× S], and then a similar description of

the GF × T F -action on this space implies H∗c (L−1ŵU±0 )θ ⊆ H∗c (ET,U,l)θ for each θ.

Remark 4.1.9. Note that, in the above proof, if S = λ̂−1(T l)F λ̂− I, then H∗c (L−1(U±))θ ∼=
Rθ
T,U,l. For example, this happens if w is the Coxeter element (1, 2, · · · , n).
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4.1.3 Generic characters

In a connected reductive algebraic group, one can talk about regular semisimple elements,
which form an open subvariety (see e.g. [Hum95, 2.5]). Here we define a similar notion
for characters of rational maximal tori. One motivation for this notion is to get a better
understanding of the regularity (of characters; see Definition 3.1.7); on the other hand,
Gérardin’s results are for split reductive groups with simply connected derived subgroups
and certain maximal tori, and we hope to find a condition of characters such that the same
result is true for a general reductive group with these characters.

Definition 4.1.10. A character θ ∈ T̂ F is called generic, if it is regular, in general position,
and satisfies the stabiliser condition StabGF (θ̃|(Gl)F ) = (TU±)F · StabNG(T )F (θ̃|(Gl)F ).

This notion was introduced in [CS16], and, though it looks complicated, it is natural:

Note that StabNG(T )F (θ̃|(Gl)F ) is a subgroup of StabGF (θ̃|(Gl)F ), and StabNG(T )F (θ̃|(Gl)F )/T F ⊆
W (T )F . We remark that the genericity is closely related to regularity and being in general
position; see [CS16] for a comparison result in the case of Coxeter tori of general linear groups.

We also remark that, if θ is regular and in general position, then StabNG(T )F (θ̃|(Gl)F )/T F

seems is always trivial, unless char(Fq) is too small.

Proposition 4.1.11. If θ is generic, then IndG
F

(TU±)F θ̃ is irreducible.

Proof. (See also [CS16, 4.7].) We have

IndG
F

(TU±)F θ̃ = IndG
F

(TU±)F ·Stab
NG(T )F

(θ̃|
(Gl)F

)
Ind

(TU±)F ·Stab
NG(T )F

(θ̃|
(Gl)F

)

(TU±)F
θ̃,

so by Clifford theory (see Lemma 4.1.1) it suffices to show Ind
(TU±)F ·Stab

NG(T )F
(θ̃|

(Gl)F
)

(TU±)F
θ̃ is

irreducible. This latter irreducibility follows immediately from the Mackey intertwining
formula and the assumption that θ is in general position.

4.2 The Harish-Chandra case

In this section we assume B = FB.

We investigate the Harish-Chandra case in this section. The algebraisation problem in
this case is rather easy and can be established in a few lines in an algebraic way. But we
also consider a geometric argument in a special case, which may serve as a toy example.

4.2.1 Algebraic approach

We want to compare IndG
F

BF θ̃ and IndG
F

TF (U±)F θ̃, where θ ∈ T̂ F is extended trivially in both
sides in an obvious way. By Mackey intertwining formula and Frobenius reciprocity we see

〈IndG
F

BF θ̃, IndG
F

TF (U±)F θ̃〉GF =
∑

x∈BF \GF /TF (U±)F

〈θ̃|BF∩x((TU±)F ), θ̃
x|BF∩x((TU±)F )〉BF∩x((TU±)F ),
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which is not zero (by looking at x = 1). Now for θ regular and in general position, we

know from Deligne–Lusztig theory that IndG
F

BF θ is irreducible. Since the two representations

IndG
F

BF θ̃ and IndG
F

TF (U±)F θ̃ have the same dimensions (note that |(U l)F | = |UF
l |; see e.g. [DM91,

10.11]), we get

IndG
F

BF θ̃
∼= IndG

F

TF (U±)F θ̃. (4.1)

4.2.2 Geometric approach

The above argument on inner product is algebraic. Now let us do it in a geometric way. In
this subsection we assume O = Fq[[π]], r = 2, and G = SL2; in the following we show (4.1)
by a geometric method in this special case.

Recall that IndG
F

BF θ̃ = H∗c (L−1(U))θ and IndG
F

TF (U±)F θ̃ = H∗c (L−1(U±))θ. Similar to classi-
cal Deligne–Lusztig theory, by Künneth formula and adjunction we have

〈H∗c (L−1(U))θ, H
∗
c (L−1(U±))θ〉GF = dimH∗c (Σ)θ−1,θ,

where
Σ := {(x, x′, y) ∈ U± × U ×G | xF (y) = yx′}.

By Bruhat decomposition we see G = (U−)1TU t UwTU (where w ∈ W (T ) is non-trivial;
we do not distinguish it with its lift to G), hence we get a decomposition into locally closed
subvarieties Σ = Σ1 t Σ2, where Σ1 is the subvariety with y ∈ (U−)1TU . Therefore by
[DM91, 10.7] we only need to calculate each dimH∗c (Σi)θ−1,θ.

Consider the locally trivial fibration

Σ̂1 = {(x, x′, z, τ, u) ∈ U± × U × (U−)1 × T × U | xF (zτu) = zτux′}.

By the variable changes xF (z) 7→ x and x′F (u−1) 7→ x′ we can rewrite Σ̂1 as {(x, x′, z, τ, u) ∈
U± × U × (U−)1 × T × U | xF (τ) = zτux′}. Now the T F × T F -action on Σ̂1 is compatible
with a T1-action given by t : (x, x′, z, τ, u) 7→ (txt−1, tx′t−1, tzt−1, τ, tut−1), thus

dimH∗c (Σ1)θ−1,θ = dimH∗c (Σ̂1)θ−1,θ = dimH∗c (Σ̂T1
1 )θ−1,θ.

Since Σ̂T1
1 = {(1, 1, 1, τ, 1) | τ ∈ T, F (τ) = τ}, we see H∗c (Σ̂T1

1 ) ∼= Q`[T
F ], on which the

T F × T F -action is (t, t′) : τ 7→ tτ t′−1. Therefore

dimH∗c (Σ1)θ−1,θ = dimQ`[T
F ]θ−1,θ = 1.

We now turn to Σ2. Similarly, consider the locally trivial fibration Σ̂2 = {(x, x′, u, τ, u′) ∈
U± × U × U × T × U | xF (uwτu′) = uwτu′x′}. By variable change u′x′F (u−1) 7→ x′ we can
rewrite Σ̂2 as {(x, x′, u, τ, u′) ∈ U±×U×U×T ×U | xF (uwτ) = uwτx′}, on which T F ×T F
acts by

(t, t′) : (x, x′, u, τ, u′) 7→ (txt′−1, tx′t′−1, tut′−1, w−1twτt′−1, tu′t′−1).
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By Bruhat decomposition and the defining equation, in Σ̂2 we see x′ ∈ U1, so Σ̂2 =
{(x, x′, u, τ, u′) ∈ U± × U1 × U × T × U | xF (uwτ) = uwτx′}. Now write x = vv′, where
v ∈ (U−)1 and v′ ∈ U1, then

xF (uwτ) = vv′F (u)wF (τ) = v′F (u) · v[v−1, F (u−1)]w · F (τ),

where [v−1, F (u)−1] := v−1F (u−1)vF (u) denotes the commutator. By writing

v =

[
1 0
v 1

]
and u =

[
1 u
0 1

]
,

where v ∈ πOur/π2, we see

v[v−1, F (u)−1]w =

[
1 −F (u2)v
0 1

]
· w · w−1vw · w−1

[
1− F (u)v 0

0 1 + F (u)v

]
w,

and therefore

xF (uwτ) =

(
v′F (u)

[
1 −F (u2)v
0 1

])
· w · vw ·

([
1− F (u)v 0

0 1 + F (u)v

]w
· F (τ)

)
,

which gives “xF (uwt)” a decomposition into the form “UwUT”. In our situation such a
decomposition is unique, so by comparing it with uwτx′ = uw(τx′τ−1)τ we conclude that

Σ̂2 = {(v, v′, x′, u, τ, u′) ∈ (U−)1 × U1 × U1 × U × T × U | S},

where S is the system of equations

u = v′F (u)

[
1 −F (u2)v
0 1

]
, τx′τ−1 = w−1vw, τ =

[
1 + F (u)v 0

0 1− F (u)v

]
F (τ).

These equations imply the alternating sum of cohomology of Σ̂2 is T F × T F -equivariant
isomorphic (see e.g. [DM91, 10.12]) to that of

Σ̃2 := {(v, u, τ) ∈ U1 × U × T | S ′},

where S ′ is the system of equations

F (u) = u mod π and τ =

[
1 + F (u)v 0

0 1− F (u)v

]
F (τ).

In order to proceed we write u = u0 + u1π, v = v1π, τ
′ = τ ′0 + τ ′1π, τ

′′ = τ ′′0 + τ ′′1 π,

where u0, u1, v1, τ
′
0, τ
′
1, τ
′′
0 , τ

′′
1 ∈ Fq, and τ =

[
τ ′ 0
0 τ ′′

]
. Then the above equations imply the

alternating sum of the cohomology of Σ̃2 is T F × T F -equivariant isomorphic to that of

Σ̄2 = {(u0, τ
′
0, τ
′′
0 , v1, τ

′
1, τ
′′
1 ) ∈ Fq × Fq × Fq × Fq × Fq × Fq | S ′′},
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where S ′′ is the system of conditions

τ ′1 = (τ ′1)q + u0v1τ
′
0, τ ′′1 = (τ ′′1 )q − u0v1τ

′′
0 , diag(τ ′, τ ′′) ∈ T.

For G = SL2, we have τ ′ = τ ′′−1, so the above equations imply that v1 and τ ′′ are determined
by the other variables, hence Σ̄2 is a T F×T F -equivariant line bundle over {(u0, τ

′
0) ∈ Fq×F∗q},

on which (T 1)F × (T 1)F acts trivially. So for θ regular, we see that dimH∗c (Σ2)θ−1,θ =
dimH∗c (Σ̄2)θ−1,θ = 0.

Therefore, for θ regular, H∗c (Σ)θ−1,θ = H∗c (Σ1)θ−1,θ is of dimension 1, i.e.

〈H∗c (L−1(U))θ, H
∗
c (L−1(U±))θ〉GF = 1.

Moreover, if θ is in general position, then by the irreducibility of IndG
F

BF θ̃ and the comparison

between the representation dimensions we obtain IndG
F

BF θ̃
∼= IndG

F

TF (U±)F θ̃.

4.3 Algebraisation

4.3.1 General linear groups

The main problem considered in this chapter, raised by Lusztig in [Lus04], is that whether

the representations of the form Rθ
T,U and that of the form IndG

F

(TU±)F θ̃ coincide. Let us state
a precise version of this problem:

Question 4.3.1. If θ ∈ T̂ F is regular and in general position, then does one have

Rθ
T,U
∼= IndG

F

(TU±)F θ̃,

under either Gérardin’s conditions on groups (see Remark 4.1.7) or the genericity condition
on characters (see Definition 4.1.10)?

The difficult step in answering Question 4.3.1 is to show that the inner product between
Rθ
T,U and IndG

F

(TU±)F θ̃ is one. In this subsection we present the proof for general linear groups,
which is the first main result of this chapter. The generalisation of this result to any reductive
group is achieved later in the joint work [CS16], and in the next subsection we will present
this generalisation as our second main result.

In the remaining of this subsection we assume G = GLn. Note that though W (T ) is
rational, one may not have W (T ) = W (T )F unless n = 2 or T = T0. For any v ∈ W (T ), we

fix a lift v̂ ∈ NG(T ) in such a way that v̂′ := v̂λ̂ coincide with the monomial matrix lift we
had chosen for an element in W (T0).

Theorem 4.3.2. Suppose G = GLn. If θ ∈ T̂ F is regular and in general position, then

〈IndG
F

(TU±)F θ̃, R
θ
T,U〉GF = 1.
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Proof. We need to compute the inner product between the alternating sum of the cohomology
of L−1(FU) and that of the Lang pre-image L−1(FU±) of the arithmetic radical. One has

〈H∗c (L−1(FU±))θ, R
θ
T,U〉GF = dimH∗c (Σ)θ−1,θ,

where Σ := {(x, x′, y) ∈ U± × FU × G | xF (y) = yx′}; this follows from the T F × T F -
equivariant isomorphism

GF\L−1(U±)× L−1(FU) ∼= Σ; (g, g′) 7→ (g−1F (g), g′
−1
F (g′), g−1g′),

the Künneth formula (see e.g. [DM91, 10.9]), and the Hom–tensor adjunction. (To see a
morphism as above is an isomorphism rather than just a bijective morphism, it is enough to
show the morphism is separable (see [Spr09, 5.5.4]), which results from the étaleness of the
Lang morphism; for details see the argument in [Car93, P221 to P222].)

The Bruhat decomposition G1 =
∐

v∈W (T )B1v̂B1 of G1 = G(Fq) gives the finite stratifi-

cation G =
∐

v∈W (T ) Gv, where

Gv := (U ∩ v̂U−v̂−1)(v̂(U−)1v̂−1)v̂TU

(a variant of this was used in [Lus04, 1.9] and proved in details in [Sta09, 2.3]), and hence a
finite stratification of locally closed subvarieties

Σ =
∐

v∈W (T )

Σv,

where Σv := {(x, x′, y) ∈ U± × FU ×Gv | xF (y) = yx′}. Write

Zv := (U ∩ v̂U−v̂−1)× v̂(U−)1v̂−1,

then Σv admits the following locally trivial fibration by an affine space (∼= U ∩ v̂(U−)1v̂−1)

Σ̂v = {(x, x′, u′, u−, τ, u) ∈ U± × FU ×Zv × T × U | xF (u′u−v̂τu) = u′u−v̂τux′},

on which T F × T F acts as

(t, t′) : (x, x′, u′, u−, τ, u) 7→ (t−1xt, t′
−1
x′t′, t−1u′t, t−1u−t, (tv̂)−1τt′, t′

−1
ut′).

By the change of variable x′F (u)−1 7→ x′ we rewrite Σ̂v as

Σ̂v = {(x, x′, u′, u−, τ, u) ∈ U± × FU ×Zv × T × U | xF (u′u−v̂τ) = u′u−v̂τux′},

on which the T F × T F -action does not change.

For i ∈ [0, r − 1] ∩ Z, let Zv(i) be the pre-image of (v̂U−v̂−1)i = v̂(U−)iv̂−1 under the
product morphism

Zv = (U ∩ v̂U−v̂−1)× v̂(U−)1v̂−1 −→ v̂U−v̂−1.
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Recall that for i = 0 we let G0 = G for an algebraic group G when a reduction map is
involved; don’t confuse it with the identity component G◦. We also write Z∗v (i) := Zv(i) \
Zv(i+ 1). For each v consider the partition Σ̂v = Σ′v t Σ′′v into locally closed subvarieties:

Σ′v := {(x, x′, u′, u−, τ, u) ∈ Σ̂v | (u′, u−) ∈ Zv \ Zv(l)}

and
Σ′′v := {(x, x′, u′, u−, τ, u) ∈ Σ̂v | (u′, u−) ∈ Zv(l)}.

Our target is to show:

(a) dimH∗c (Σ′′v)θ−1,θ = 1 if v = 1, and = 0 if v 6= 1;

(b) dimH∗c (Σ′v)θ−1,θ = 0 for all v.

We start with the much easier (a):

Lemma 4.3.3. (a) is true.

Proof. Consider the defining equation xF (u′u−v̂τ) = u′u−v̂τux′ of Σ′′v; note that

u′u− ∈ v̂(U−)lv̂−1 ⊆ U± = FU±,

so we can apply the changes of variables (u′u−)−1x 7→ x, and then xF (u′u−) 7→ x. This allows
us to rewrite Σ′′v as Σ̄′′v = {(x, x′, u′, u−, τ, u) ∈ U±×FU ×Zv(l)×T ×U | xF (v̂τ) = v̂τux′},
on which T F × T F acts in the same way on each component as before.

Take H = {(t, t′) ∈ T × T | tF (t−1) = F (v̂)t′F (t′)−1F (v̂−1)}; this is an algebraic group,
and note that H acts on Σ̄′′v in the same way as T F × T F . Write T∗ for the reductive
part of T (it is a torus isomorphic to T1 since T is abelian), then the identity component
H∗ := (H ∩ (T∗×T∗))◦ is a torus acting on Σ̄′′v, thus by basic properties of `-adic cohomology
we see

dimH∗c (Σ̄′′v)θ−1,θ = dimH∗c ((Σ̄′′v)
H∗)θ−1,θ.

Note that the Lang–Steinberg theorem implies both the first projection and the second
projection of H∗ to T∗ are surjective, therefore (x, x′, u′, u−, τ, u) ∈ (Σ̄′′v)

H∗ only if x = x′ =
u′ = u− = u = 1. Thus (Σ̄′′v)

H∗ = {(1, 1, 1, 1, τ, 1) | F (v̂τ) = v̂τ}H∗ . The set (v̂T )F is empty
unless v̂−1F (v̂) ∈ T (in particular, v is F -stable), in which case {(1, 1, 1, 1, τ, 1) | F (v̂τ) = v̂τ}
is indeed stable under the action of H, so it is also stable under the action of the connected
group H∗. We only need to concern the non-empty case. As a finite set, (v̂T )F admits
only the trivial action of H∗ (note that a continuous map takes a connected component
into a connected component), thus (Σ̄′′v)

H∗ = {(1, 1, 1, 1, τ, 1) | F (v̂τ) = v̂τ}H∗ = (v̂T )F .
Therefore H∗c (Σ̄′′v) = Q`[(v̂T )F ], on which T F × T F acts via (t, t′) : v̂τ 7→ v̂(tv̂)−1τt′ (i.e.
a permutation representation for both the first and the second T F ). In particular, the

irreducible constituents of H∗c (Σ̄′′v) are the H∗c (Σ̄′′v)(φv̂)−1,φ’s, where φ runs over T̂ F . Hence
H∗c (Σ̄′′v)θ−1,θ is non-zero if and only if θv̂ = θ, but since θ is assumed to be in general position,
this can happen only if v = 1. For v = 1, we have dimH∗c (Σ̄′′1)θ−1,θ = 1 for any θ since

|T̂ F | = |T F |. This proves (a).
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The argument of (b) requires the following homotopy property proved in [DL76].

Lemma 4.3.4. Let H be a variety over an algebraically closed field k, and Y a separated
variety over k. Let f : H × Y → Y be a morphism such that (p, f) : H × Y → H × Y is an
automorphism, where p is the left projection of H × Y . Then for h varies in H, the induced
endomorphism of f(h,−) on H i

c(Y,Q`) only depends on the first homotopy group of H (i.e.
on the connected component containing h).

Proof. Indeed, the proof is same with the one presented in [DL76, 6.4, 6.5]; we restate it for
convenience, as the assertion stated here is in a more general form. Consider the following
cartesian square

H × Y Y

H Spec (k).

p=p◦(p,f)

The proper base change theorem implies the sheaf Rip!Z/n on H is the constant sheaf
H i
c(Y,Z/n); the isomorphism (p, f) induces a sheaf endomorphism on it, and on the stalk

H i
c(Y,Z/n)h = H i

c(Y,Z/n) the endomorphism is the induced map of f(h,−). However, the
stalk endomorphisms of a constant sheaf on a connected variety are constant with respect to
the change of stalks, so the induced map of f(h,−) on H i

c(Y,Z/n) is constant when h varies
in a connected component of H. Now the proof is completed by taking the projective limit
with respect to Z/n, where n runs over the powers of `.

Lemma 4.3.5. (b) is true.

Proof. By applying the changes of variables v̂τ v̂−1 7→ τ , τ−1u−τ 7→ u−, and τ−1u′τ 7→ u′ we
rewrite Σ′v as

Σ̄′v = {(x, x′, u′, u−, τ, u) ∈ U± × FU ×Zv \ Zv(l)× T × U | xF (τu′u−v̂) = τu′u−v̂ux′},

on which (t, t′) ∈ T F × T F acts by taking (x, x′, u′, u−, τ, u) to

(t−1xt, t′
−1
x′t′, (t′

v̂
)−1u′(t′)v̂, (t′

v̂
)−1u−(t′)v̂, t−1τ(t′)v̂, t′

−1
ut′).

To show dimH∗c (Σ̄′v)θ−1,θ = 0, it suffices to show

dimH∗c (Σ̄′v)θ−1|
(Tr−1)F

= 0,

where the subscript group is (T r−1)F = (T r−1)F×1 ⊆ T F×T F . Note that the (T r−1)F -action
on Σ̄′v is given by

t : (x, x′, u′, u−, τ, u) 7→ (x, x′, u′, u−, t−1τ, u).

By the changes of variables λ̂−1xλ̂ 7→ x, F (λ̂−1)x′F (λ̂) 7→ x′, λ̂−1u′λ̂ 7→ u′, λ̂−1u−λ̂ 7→ u−,
λ̂−1τ λ̂ 7→ τ , and λ̂−1uλ̂ 7→ u, we can rewrite Σ̄′v as

Σ̃′v = {(x, x′, u′, u−, τ, u) ∈ U±0 × U0 ×Z0 × T0 × U0 | xŵF (τu′u−)v̂′ = τu′u−v̂′uŵx′},
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where Z0 := (Zv \ Zv(l))λ̂ (for (u′, u−) ∈ Zv, we put (u′, u−)λ̂ := ((u′)λ̂, (u−)λ̂)). Note that

u′u− ∈ (v̂U−v̂−1)λ̂ = (U−0 )v̂
′−1

,

and the (T r−1)F -action on Σ̃′v becomes

t : (x, x′, u′, u−, τ, u) 7→ (x, x′, u′, u−, (tλ̂)−1τ, u).

We have a finite disjoint partition Z0 =
∐l−1

i=0Z0(i) of locally closed subvarieties, where

Z0(i) := (Z∗v (i))λ̂. Consider the finite set

I := {(α, β) ∈ Z× Z | 1 ≤ α ≤ n− 1, 1 ≤ β ≤ n− α}.

Let us define a total order on I: If α′ < α, then (α′, β′) < (α, β); if β′ < β, then (α, β′) <
(α, β). Note that the map

(α, β) 7→ (α + β, β)

is a bijection from I to the set of positions in strictly lower triangular areas of n×n matrices.
Let Z(α,β)

0 (i) ⊆ Z0(i) be the locally closed subvariety consisting of elements (u′, u−) such that:
The (α+β, β)-entry of v̂′−1F (u′u−)v̂′ is non-zero, and for all (α′, β′) < (α, β) the (α′+β′, β′)-

entries of v̂′−1F (u′u−)v̂′ is zero. Then we obtain a finite partition Z0(i) =
∐

(α,β)∈I Z
(α,β)
0 (i)

into locally closed subvarieties, and hence a partition

Σ̃′v =
∐
i,I

Σi,(α,β)
v ,

where
Σi,(α,β)
v := {(x, x′, u′, u−, τ, u) ∈ Σ̃′v | (u′, u−) ∈ Z(α,β)

0 (i)}.

Note that each subvariety Σ
i,(α,β)
v inherits the (T r−1)F -action

t : (x, x′, u′, u−, τ, u) 7→ (x, x′, u′, u−, (tλ̂)−1τ, u),

thus by basic properties of `-adic cohomology, to prove the lemma it suffices to show:

H∗c (Σi,(α,β)
v )θ−1|

(Tr−1)F
= 0,

for every i ∈ {0, · · · , l − 1} and every (α, β) ∈ I.

Let U0,(α,β) (resp. U−0,(α,β)) be the closed subvariety (of U0 (resp. U−0 )) consisting of ele-

ments such that all entries are zero, except for the diagonal entries and possibly the (β, β+α)-
entry (resp. (α + β, β)-entry). Denote by

η : U0,(α,β) −→ FGa

and
η− : U−0,(α,β) −→ FGa
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the natural isomorphisms of algebraic groups; these two morphisms can be extended to the
whole U0 (resp. U−0 ) by compositing the natural projections. Let T

(α,β)
0 be the root subgroup

of T0 of the form

T
(α,β)
0 := {diag(1, · · · , 1, τ̃ , 1, · · · , 1, τ̃−1, 1, · · · , 1)},

where τ̃ is the (β, β)-entry and τ̃−1 is the (α + β, α + β)-entry; denote by

η∗ : FT
(α,β)
0 −→ FGm

the inverse automorphism of the coroot. We always view an element in FGm as an element
in FGa, by the natural open immersion. For any i ∈ {0, 1, · · · , l−1}, the Greenberg functor
lifts the isomorphism of additive groups (πi) ∼= Our/(πr−i) : πia + (πr) 7→ a + (πr−i) to an
isomorphism of affine spaces

µi : (FGa)
i −→ (FGa)r−i.

On the other hand, take a section morphism

µi : (FGa)r−i ∼= FGa/(FGa)
r−i −→ FGa

to the quotient morphism such that µi(0) = 0 (the existence of µi follows from the fact

that FGa is an affine space). Write T (α,β)
0 = (FT

(α,β)
0 )r−1. Then for any (α, β) ∈ I, any

i ∈ {0, 1, · · · , l − 1}, and any t ∈ T r−1 such that v̂′−1F (tλ̂)ŵ−1(tλ̂)−1ŵv̂′ ∈ T (α,β)
0 , consider

the morphism gt : U0 → U0 given by

gt : x
′ 7→ x′ ·

(
η−1 ◦ µi

(
µi

(
η∗

(
v̂′−1F (tλ̂)ŵ−1(tλ̂)−1ŵv̂′

)
− 1
)
· (µi ◦ η−)

(
v̂′−1F (z)v̂′

)−1
))

,

with the parameter (u′, u−) ∈ Z(α,β)
0 (i), where z := u′u−. The multiplication operation

“·” is by viewing Ga as a ring scheme. Note that since the (α + β, β)-entry of z is not in
((U−0 )v

′−1
)i+1, the inverse of µi ◦ η− (v̂′−1F (z)v̂′) exists, hence this morphism is well-defined.

Also note that, for F (t) = t one has v̂′−1F (tλ̂)ŵ−1(tλ̂)−1ŵv̂′ = 1, so gt(x
′) = x′ in this case.

Meanwhile, for any (α, β) ∈ I, any i ∈ {0, 1, · · · , l − 1}, and any t ∈ T r−1 such that

v̂′−1F (tλ̂)ŵ−1(tλ̂)−1ŵv̂′ ∈ T (α,β)
0 ,

consider the morphism ft : U
±
0 → U±0 given by

ft : x 7→ x(tλ̂)−1ŵF (τz)v̂′(x′)−1gt(x
′)v̂′−1F (τz)−1F (tλ̂)ŵ−1,

with the parameters x′ ∈ U0, τ ∈ T0, and (u′, u−) ∈ Z(α,β)
0 (i), where z := u′u−. To see this

is well-defined one needs to check the right hand side is in U±0 : The condition

x(tλ̂)−1ŵF (τz)v̂′(x′)−1gt(x
′)v̂′−1F (τz)−1F (tλ̂)ŵ−1 ∈ U±0
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is equivalent to

F (z)v̂′(x′)−1gt(x
′)v̂′−1F (z)−1F (tλ̂)ŵ−1(tλ̂)−1ŵ ∈ U±0 ,

which is equivalent to

(v̂′−1F (z)v̂′) · (x′)−1gt(x
′) · (v̂′−1F (z)−1v̂′) · (v̂′−1F (tλ̂)ŵ−1(tλ̂)−1ŵv̂′) ∈ U±0 .

Since (x′)−1gt(x
′) is in Gr−i−1 ⊆ Gl, by considering to modulo πl we see the element

(v̂′−1F (z)v̂′)·(x′)−1gt(x
′)·(v̂′−1F (z)−1v̂′)·(v̂′−1F (tλ̂)ŵ−1(tλ̂)−1ŵv̂′) is in Gl, so we only need to

show the diagonal entries of this element (view it as a matrix) are 1. As (u′, u−) ∈ Z(α,β)
0 (i),

we can write the (α + β, β)-entry of v̂′−1F (z)v̂′ to be πiz̄, where z̄ ∈ (Our
r )∗, then the

(α+ β, β)-entry of v̂′−1F (z)−1v̂′ is −πiz̄, and for all (α′, β′) < (α, β) the (α′ + β′, β′)-entries
of v̂′−1F (z)−1v̂′ are zero. Meanwhile, we write

v̂′−1F (tλ̂)ŵ−1(tλ̂)−1ŵv̂′ = diag(1, · · · , 1, 1 + πr−1t̄, 1, · · · , 1, 1− πr−1t̄, 1, · · · , 1),

where t̄ ∈ Our
r , and 1 + πr−1t̄ is the (β, β)-entry and 1 − πr−1t̄ is the (α + β, α + β)-entry.

Thus x′−1gt(x
′) ∈ U0,(α,β) and its (β, β + α)-entry is µi(µi(π

iz̄)−1 · µi(πr−1t̄)). With these
notations, by direct computations one can write out the diagonal entries of

(v̂′−1F (z)v̂′) · (x′)−1gt(x
′) · (v̂′−1F (z)−1v̂′) · (v̂′−1F (tλ̂)ŵ−1(tλ̂)−1ŵv̂′)

to be

(i) The (β, β)-entry is 1− πiz̄µi(µi(πiz̄)−1 · µi(πr−1t̄)) + πr−1t̄;

(ii) The (β + α, β + α)-entry is 1 + πiz̄µi(µi(π
iz̄)−1 · µi(πr−1t̄))− πr−1t̄;

(iii) Other diagonal entries are 1.

Now it remains to show πr−1t̄ = πiz̄µi(µi(π
iz̄)−1 · µi(πr−1t̄)). As elements in cosets we can

write z̄ = z̃ + (πr) and t̄ = t̃+ (πr), where z̃ ∈ (Our)∗ and t̃ ∈ Our. Then

πiz̄µi(µi(π
iz̄)−1 · µi(πr−1t̄)) = πi(z̃ + (πr))µi((z̃−1 + (πr−i)) · (πr−i−1t̃+ (πr−i))) + (πr)

= πi(z̃ + (πr))µi(πr−i−1z̃−1t̃+ (πr−i)) + (πr)

= πi(z̃ + (πr))(πr−i−1z̃−1t̃+ πr−is+ (πr)) + (πr)

= πi(πr−i−1t̃+ πr−isz̃ + (πr)) + (πr) = πr−1t̃+ (πr) = πr−1t̄,

for some s ∈ Our (s depends on µi). Therefore ft is well-defined. Note that, similar to gt, if
F (t) = t, then ft(x) = x.

Now consider the closed subgroup

H := {t ∈ T r−1 | v̂′−1F (tλ̂)ŵ−1(tλ̂)−1ŵv̂′ ∈ T (α,β)
0 }
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of T r−1. For any t ∈ H, the above preparations on ft and gt allow us to define the following
automorphism on Σ

i,(α,β)
v :

ht : (x, x′, u′, u−, τ, u) 7→ (ft(x), gt(x
′), u′, u−, (tλ̂)−1τ, u),

where the involved parameters are as presented. To see this is well-defined, one needs to
show the right hand side satisfies the defining equation of Σ

i,(α,β)
v , and this can be seen by

direct computations by expanding the definition of ft. Note that, in the case F (t) = t, the
automorphism ht coincides with the (T r−1)F -action. Thus by Lemma 4.3.4, since h1 is the

identity map, the induced endomorphism of ht on H∗c (Σ
i,(α,β)
v ) is the identity map for any t

in the identity component H◦ of H.

The condition v̂′−1F (tλ̂)ŵ−1(tλ̂)−1ŵv̂′ ∈ T (α,β)
0 is equivalent to

F (t)t−1 ∈ F (v̂λ̂T (α,β)
0 λ̂−1v̂−1),

therefore H = {t ∈ T r−1 | F (t)t−1 ∈ T (α,β)}, where T (α,β) := F (v̂λ̂T (α,β)
0 λ̂−1v̂−1) ⊆ T ; this

is the kernel of ρr,r−1 restricting to the image of some coroot of T. Let a ≥ 1 be such that
F a(T (α,β)) = T (α,β), then the image of the norm map NFa

F (t) = t · F (t) · · ·F a−1(t) on T (α,β)

is a connected subgroup of H, hence contained in H◦. Now, since

NFa

F ((T (α,β))F
a

) ⊆ (T r−1)F ∩H◦,

we see
H∗c (Σi,(α,β)

v )θ−1◦NFa
F |(T (α,β))F

a
= H∗c (Σi,(α,β)

v )θ−1|
NF

a
F

((T (α,β))F
a
)

= 0,

by the regularity of θ. Therefore H∗c (Σ
i,(α,β)
v )θ−1|

(Tr−1)F
= 0. The lemma is proved.

By above, dimH∗c (Σ)θ−1,θ = dimH∗c (Σ′′1)θ−1,θ = 1, so the theorem is proved.

Now we are able to answer Question 4.3.1 for the general linear groups.

Corollary 4.3.6. Let G = GLn. If θ ∈ T̂ F is regular and in general position, then

Rθ
T,U
∼= IndG

F

(TU±)F θ̃,

and they are primitive irreducible representations of dimension |GF
l |/|T Fl |. In particular, in

this case Rθ
T,U is a true representation rather than a virtual representation.

Proof. This follows immediately from Theorem 4.3.2, Remark 4.1.7, and Theorem 3.1.8.
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4.3.2 Arbitrary reductive groups

In this subsection we discuss how to generalise the arguments in the above subsection for a
general reductive group G. This generalisation is the main result of the joint work [CS16].

Such a generalisation requires some combinatorial information on roots, which is recorded
as a variant of [Lus04, Lemma 1.7] in the below (for groups like GLn and SLn this can be
done in an ad hoc way as in the above subsection). We start with fixing some notation:

Definition 4.3.7. Recall that Φ− is the set of negative roots of T with respect to B.

(1) Suppose Φ− is equipped with a fixed arbitrary total order. For z ∈ U− and β ∈ Φ−,
define xzβ ∈ FUβ by the decomposition z =

∏
β∈Φ− x

z
β, where the product is given

according to the following order: If ht(β) < ht(β′), then xzβ is left to xzβ′ ; and if
ht(β) = ht(β′) and β < β′, then xzβ is left to xzβ′ ; here, for β ∈ Φ−, we denote by ht(β)
the largest integer n such that β =

∑n
i=1 βi for some βi ∈ Φ−.

(2) For a fixed α ∈ Φ+ and i ∈ {0, · · · , l − 1}, denote by Zα(i) ⊆ U− the subvariety
consisted of all z such that:

i. xz−α 6= 1;

ii. z ∈ (U−)i \ (U−)i+1;

iii. xzβ = 1 for ∀β ∈ Φ− such that ht(β) < ht(−α);

iv. xzβ = 1 for ∀β ∈ Φ− such that ht(β) = ht(−α) and β < −α.

(3) T α := (FTα)r−1; this is a 1-dimensional affine space by the Greenberg functor.

Lemma 4.3.8. Suppose α ∈ Φ+ and i ∈ {0, · · · , l−1}. Then for z ∈ Zα(i) and ξ ∈ U r−i−1
α ,

one has
[ξ, z] := ξzξ−1z−1 = τξ,zωξ,z,

where τξ,z ∈ T α and ωξ,z ∈ (U−)r−1 are uniquely determined. Moreover,

U r−i−1
α → T α; ξ 7→ τξ,z

is a surjective morphism admitting a section Ψα
z such that: (i) Ψα

z (1) = 1; (ii) the map
Zα(i)× T α → U r−i−1

α : (z, τ) 7→ Ψα
z (τ) admits a structure of morphism of varieties.

Proof. Write z = xz−αz
′, then

[ξ, z] = ξxz−αz
′ξ−1z′−1(xz−α)−1 = [ξ, xz−α] · xz−α [ξ, z′].

We need to determine [ξ, xz−α] and xz−α [ξ, z′] separately.

Following the notation in [DG70, XX] we write pβ : Ga/Our
r
∼= Uβ for every β ∈ Φ (and we

use the same notation for the isomorphism induced by pβ via the Greenberg functor), then
for some a ∈ Gm(Our

r ) we have

pα(x)p−α(y) = p−α(
y

1 + axy
)α̌(1 + axy)pα(

x

1 + axy
),
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for ∀x, y ∈ Ga(Our
r ); see [DG70, XX 2.2]. Let x, y be such that pα(x) = ξ and p−α(y) = xz−α

(note that x2 = 0), then by applying the above formula to the commutator [pα(x), p−α(y)] =
pα(x)p−α(y)pα(−x)p−α(−y) repeatedly we see that

[ξ, xz−α] = α̌(1 + axy)p−α(axy2).

Note that p−α(axy2) ∈ U r−1
−α . In the below we will see α̌(1 + axy) is the required τξ,z.

Now turn to [ξ, z′]; we want to show [ξ, z′] ∈ (U−)r−1. Let us do this by induction
on the cardinal #{β ∈ Φ− | xz′β 6= 1}. If the cardinal is zero then this is clear. When

#{β ∈ Φ− | xz′β 6= 1} = 1, we can put z′ = xz
′

β , then by the Chevalley commutator formula
(see [Lus04, 1.6 (b)] or [Sta09, Lemma 2.9 (b)]) we have

[ξ, z′] ∈
∏

j,j′≥1, jβ+j′α∈Φ

U r−1
jβ+j′α.

By basic properties of root system, if jβ + j′α ∈ Φ+ for some j, j′, then β + α ∈ Φ+

(see the arguments in [Lus04, 1.7]), which implies ht(−α) > ht(β), a contradiction to our
assumption on z, so [ξ, z′] ∈ (U−)r−1 in this case. Suppose [ξ, z′] ∈ (U−)r−1 for #{β ∈ Φ− |
xz
′

β 6= 1} ≤ N , then in the case #{β ∈ Φ− | xz′β 6= 1} = N + 1, we decompose the product

z′ =
∏

β∈Φ− x
z′

β = z′1z
′
2 in such a way that both [ξ, z′1] and [ξ, z′2] are in (U−)r−1. Note that

[ξ, z′] = [ξ, z′1] · z′1 [ξ, z′2].

Since z′1 ∈ U−, we see z′1 [ξ, z′2] ∈ (U−)r−1, and therefore [ξ, z′] ∈ (U−)r−1 for #{β ∈ Φ− |
xz
′

β 6= 1} = N + 1.

As [ξ, z′] ∈ (U−)r−1 implies xz−α [ξ, z′] ∈ (U−)r−1, in

[ξ, z] = [ξ, xz−α] · xz−α [ξ, z′] = α̌(1 + axy) · p−α(axy2) · xz−α [ξ, z′]

we can take τξ,z = α̌(1 + axy) ∈ T α and ωξ,z = p−α(axy2) · xz−α [ξ, z′] ∈ (U−)r−1. They are
uniquely determined by Iwahori decomposition.

Now, as τξ,z is defined to be α̌(1 + ap−1
α (ξ)p−1

−α(xz−α)), the map ξ 7→ τξ,z is a surjective
algebraic group morphism (note that z 7→ xz−α is a projection, hence a morphism). The
section morphism Ψα

z can be defined in the following way: Consider the isomorphism of
additive groups (πi) ∼= Our

r−i : π
ia + (πr) 7→ a + (πr−i); by the Greenberg functor it can be

viewed as an isomorphism of affine spaces

µi : (FGa/Our
r

)i −→ (FGa/Our
r

)r−i.

Note that such an isomorphism depends on the choice of π. Meanwhile, let

µi : (FGa/Our
r

)r−i ∼= FGa/Our
r
/(FGa/Our

r
)r−i −→ FGa/Our

r
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be a section morphism to the quotient morphism such that µi(0) = 0 (µi exists because
FGa/Our

r
is an affine space). We put

Ψα
z (τ) := pα

(
a−1 · µi

(
µi
(
α̌−1(τ)− 1

)
· µi
(
p−1
−α(xz−α)

)−1
))

.

Here α̌−1 is defined on T α = (FTα)r−1 ∼= (FGm/Our
r

)r−1 as the inverse to α̌, and we view
α̌−1(τ) as an element in FGa/Our

r
by the natural open immersion Gm/Our

r
→ Ga/Our

r
, so the

minus operation α̌−1(τ) − 1 is well-defined. On the other hand, by our assumption on z,
µi
(
p−1
−α(xz−α)

)
is an element in FGm/Our

r
, so its inverse exits. Moreover, the multiplication

operation “·” is by viewing Ga/Our
r

(resp. FGa/Our
r

) as a ring scheme (resp. k-ring variety).
Thus Ψα

z is well-defined as a morphism.

Finally, by direct computations one sees the morphism τ 7→ Ψα
z (τ) 7→ τΨαz (τ),z is the

identity map on the k-points T α(k) of the 1-dimensional affine space T α ∼= A1
k, so it is the

identity morphism, hence Ψα
z is a section to ξ 7→ τξ,z. The other assertions in the lemma

follow from the definition of Ψα
z .

Now we turn to the generalised result itself (see [CS16, Theorem 4.1]):

Theorem 4.3.9. If θ ∈ T̂ regular and in general position, then

〈H∗c (L−1(FU±))θ, R
θ
T,U〉GF = 1

Proof. Similar to the previous subsection, one has

〈H∗c (L−1(FU±))θ, R
θ
T,U〉 = dimH∗c (Σ)θ−1,θ,

where Σ := {(x, x′, y) ∈ U±×FU ×G | xF (y) = yx′}. And similarly, we only need to show:

(a) dimH∗c (Σ′′v)θ−1,θ = 1 if v = 1, and = 0 if v 6= 1;

(b) dimH∗c (Σ′v)θ−1,θ = 0 for all v,

where
Σ′v := {(x, x′, u′, u−, τ, u) ∈ Σ̂v | (u′, u−) ∈ Zv \ Zv(l)}

and
Σ′′v := {(x, x′, u′, u−, τ, u) ∈ Σ̂v | (u′, u−) ∈ Zv(l)};

here Zv := (U∩v̂U−v̂−1)×v̂(U−)1v̂−1, Zv(i) the pre-image of v̂(U−)iv̂−1 under (U∩v̂U−v̂−1)×
v̂(U−)1v̂−1 → v̂U−v̂−1, and Z∗v (i) := Zv(i) \ Zv(i + 1). This (a) can be proved in the same
way as Lemma 4.3.3, so we focus on (b).

The similar argument in Lemma 4.3.5 implies it suffices to show

dimH∗c (Σ̄′v)θ−1|
(Tr−1)F

= 0
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for the subgroup (T r−1)F = (T r−1)F × 1 ⊆ T F × T F , where

Σ̄′v := {(x, x′, u′, u−, τ, u) ∈ U± × FU ×Zv \ Zv(l)× T × U | xF (τu′u−v̂) = τu′u−v̂ux′},

on which the (T r−1)F -action is given by

t : (x, x′, u′, u−, τ, u) 7→ (x, x′, u′, u−, t−1τ, u).

We fix a total order on the finite set Φ−. For β ∈ Φ−, let F (β) ∈ Φ be the root defined
by F (U)F (β) = F (Uβ), then the order on Φ− produces an order on F (Φ−); similarly we can
define F from Φ+, and hence get a bijection on Φ = Φ− tΦ+ = F (Φ−)tF (Φ+), and then a
bijection on {Uβ}β∈Φ; it is clear F (−α) = −F (α) for any α ∈ Φ. Let Zβv (i) ⊆ Z∗v (i) be the
subvariety consisting of the (u′, u−) such that, in the decomposition F (z) := F (v̂−1u′u−v̂) =∏

β′∈F (Φ−) x
F (z)
β′ one has: x

F (z)
β′ = 1 whenever ht(β′) < ht(F (β)), x

F (z)
β′ = 1 whenever ht(β′) =

ht(F (β)) and β′ < F (β), and x
F (z)
F (β) 6= 1. We then obtain a finite disjoint partition

Zv \ Zv(l) =
l−1∐
i=0

∐
β∈Φ−

Zβv (i).

And hence a partition of Σ̄′v into locally closed subvarieties

Σ̄′v =
l−1∐
i=0

∐
β∈Φ−

Σi,β
v ,

where

Σi,β
v := {(x, x′, u′, u−, τ, u) ∈ U± × FU ×Zβv (i)× T × U | xF (τu′u−v̂) = τu′u−v̂ux′}.

Each subvariety Σi,β
v inherits the (T r−1)F -action

t : (x, x′, u′, u−, τ, u) 7→ (x, x′, u′, u−, t−1τ, u),

so it suffices to show:
H∗c (Σi,β

v )θ−1|
(Tr−1)F

= 0,

for every i ∈ {0, · · · , l − 1} and every β ∈ Φ−.

From now on we fix an α ∈ Φ+. For any t ∈ T r−1 such that F (v̂)−1F (t)t−1F (v̂) ∈ T F (α),
define gt : FU → FU by

gt : x
′ 7→ x′ ·ΨF (α)

F (z) (F (v̂)−1F (t−1)tF (v̂))−1

with the parameter (u′, u−) ∈ Z−αv (i), where z := v̂−1u′u−v̂. This is well-defined because
F (z) satisfies the conditions in Lemma 4.3.8, with respect to F (U−) and F (Φ−). Note that,
if F (t) = t, then gt(x

′) = x′.
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Moreover, for any t ∈ T r−1 such that F (v̂)−1F (t)t−1F (v̂) ∈ T F (α), define the morphism
ft : U

± → U± by

ft : x 7→ x · F (τ)t−1F (v̂)F (z)x′−1gt(x
′)F (z−1)F (v̂)−1F (t)F (τ)−1,

with the parameters x′ ∈ FU , τ ∈ T , and (u′, u−) ∈ Z−αv (i), where z := v̂−1u′u−v̂. To see

this is well-defined one need to check the right hand side is in U±: By the definition of Ψ
F (α)
F (z)

we have

F (z)x′−1gt(x
′)F (z−1) = Ψ

F (α)
F (z) (F (v̂)−1F (t−1)tF (v̂))−1 · F (v̂)−1F (t−1)tF (v̂) · ω,

for some ω ∈ (U−)r−1. Hence

(x−1ft(x))F (τ) = (F (v̂)Ψ)t · (F (v̂)ω)F (t) ∈
∏
β∈Φ

U r−i−1
β ⊆ U±,

where Ψ := Ψ
F (α)
F (z) (F (v̂)−1F (t−1)tF (v̂))−1. Thus x−1ft(x) ∈

∏
β∈Φ U

r−i−1
β ⊆ U±, and ft is

therefore well-defined. Moreover, if F (t) = t, then ft(x) = x.

Consider the closed subgroup

H := {t ∈ T r−1 | F (v̂)−1F (t)t−1F (v̂) ∈ T F (α)}

of T r−1. For any t ∈ H, the above preparations on ft and gt allow us to define the following
automorphism on Σi,−α

v :

ht : (x, x′, u′, u−, τ, u) 7→ (ft(x), gt(x
′), u′, u−, t−1τ, u),

where the involved parameters are as presented. To see this is well-defined, one needs to show
the right hand side satisfy the defining equation of Σi,−α

v ; this can be seen by expanding the
definition of ft. Meanwhile, note that in the case F (t) = t, the automorphism ht coincides
with the (T r−1)F -action. Thus by Lemma 4.3.4, for any t in the identity component H◦ of
H, the induced map of ht on H∗c (Σi,−α

v ) is the identity map.

Let a ≥ 1 be such that F a(F (v̂)T F (α)F (v̂)−1) = F (v̂)T F (α)F (v̂)−1, then the image of the
norm map NFa

F (t) = t · F (t) · · ·F a−1(t) on F (v̂)T F (α)F (v̂)−1 is a connected subgroup of H,
hence contained in H◦. Moreover NFa

F ((F (v̂)T F (α)F (v̂)−1)F
a
) ⊆ (T r−1)F ∩H◦, thus

H∗c (Σi,−α
v )θ−1◦NFa

F |(F (v̂)T F (α)F (v̂)−1)F
a

= H∗c (Σi,−α
v )θ−1|

NF
a

F
((F (v̂)T F (α)F (v̂)−1)F

a
)

= 0,

as θ is regular. Therefore H∗c (Σi,−α
v )θ−1|

(Tr−1)F
= 0. This completes the proof.

Now a solution to Question 4.3.1 for a general reductive group is obtained:

Corollary 4.3.10. Suppose θ ∈ T̂ F is regular and in general position, then

Rθ
T,U
∼= IndG

F

(TU±)F θ̃,

if either Gérardin’s conditions (see Remark 4.1.7) on groups are satisfied or the genericity
condition (see Definition 4.1.10) on θ is satisfied.

Proof. This follows immediately from Theorem 4.3.9, Remark 4.1.7, Proposition 4.1.11, and
Theorem 3.1.8.
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4.4 Some remarks on finite Lie algebras

In this section we take O = Fq[[π]]. The group Gr−1 can be regarded as the additive group
of the Lie algebra g of G1, and the adjoint action of GF

1 on gF is the conjugation of GF
1 on

(Gr−1)F . We do not distinguish the groups Gr−1 and g. Given a fixed representation of a
group, we do not distinguish it from its character or its representation space (so we do not
distinguish the terminologies group characters, group modules, and group representations).
In the remaining part of this section we assume r = 2.

A character (of some virtual representation) of the finite abelian group gF = (G1)F is
called invariant if it is invariant under the adjoint action of GF

1 , and an invariant character
is called an irreducible invariant character if it can not be decomposed into the sum of two
invariant characters. Note that, if χ is an irreducible character of (G1)F , then

χO :=
⊕

s∈GF /Stab
GF

(χ)

χs

is an invariant character of (G1)F , and any invariant character containing χ contains χO. In
particular, this means χO is the unique irreducible invariant character containing χ. Invariant
characters are related to character sheaves; see [Lus87] and [Let05].

Let θ1 be a character of tF = (T 1)F , and write its trivial extension to T F by θ. Since

Rθ
T,U is also a gF ∼= (G1)F -module, we can regard Rθ1

t,u := ResG
F

gF R
θ
T,U as a Deligne–Lusztig

theory of invariant characters of gF (for various θ).

Letellier [Let09] compared the above analogue of Deligne–Lusztig representations with a
different analogue he considered earlier (in [Let05]), and conjectured that every irreducible
invariant character of gF appeared in some Rθ1

t,u (in the sense that the inner product is non-
zero). On the other hand, any character of GF is an invariant character of (G1)F , thus in
order to prove Letellier’s conjecture, it suffices to show that, every irreducible character of
(G1)F is contained in some Rθ1

t,u (in the sense that their inner product is non-zero).

4.4.1 The Harish-Chandra case

In this subsection we focus on the Harish-Chandra case, i.e. we assume T = T0 and B = B0

(see the notation setting below Lemma 3.3.3). In particular the Deligne–Lusztig representa-

tion Rθ1

t,u is the parabolically induced representation ResG
F

gF IndG
F

BF0
θ̃. Let χ be an irreducible

character of gF such that the restriction of χ to tF is θ1 = θ|(T 1)F . Then we have〈
ResG

F

gF IndG
F

BF0
θ̃, χ
〉
gF

=
⊕

s∈BF0 \GF /gF

〈
IndgF

(sB1
0)F

(
θ̃s
−1 |(sB1

0)F

)
, χ
〉
gF

by the Mackey intertwining formula. Note that〈
IndgF

(sB1
0)F

(
θ̃s
−1|(sB1

0)F

)
, χ
〉
gF

=
〈(
θ̃s
−1|(sB1

0)F

)
, χ|(sB1

0)F

〉
(sB1

0)F
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by Frobenius reciprocity. Therefore χ appears in a Harish-Chandra type Deligne–Lusztig
representation if and only if χ is trivial on the rational points of the Lie algebra of the
unipotent radical of some conjugate of B0.

Example 4.4.1. Let us consider the more specific case that G = SL2 and Fq = Fp is a prime
finite field. Let χ be an irreducible character of gF ; we want to see explicitly when χ can
be recovered by some Harish-Chandra theoretic representation ResG

F

gF IndG
F

BF0
θ̃. First consider

this condition: For some x, y, z, w ∈ Fp with xw − zy = 1, one has that

χ

([
x y
z w

] [
1 uπ
0 1

] [
x y
z w

]−1
)

= χ

([
1− xzuπ x2uπ
−z2uπ 1 + zxuπ

])
= 1 (4.2)

for any u ∈ Fp. We want to rewrite this condition. By viewing gF as a product of cyclic
groups, we can write

χ

([
1− xzuπ x2uπ
−z2uπ 1 + zxuπ

])
= χ1(−xzu)χ2(x2u)χ3(−z2u),

where χj are some degree 1 (multiplicative) characters of the cyclic group Z/p. Then, by
considering lifts of u from Fp = Z/p to Z, we see that the condition (4.2) is equivalent to:

(χ1(−xz)χ2(x2)χ3(−z2))u = 1

for any u ∈ Z for some x, z ∈ Fp not both zero. (So we can take u = 1.) Write χj(1) = e2πi
kj
p .

Then the condition (4.2) is equivalent to:

− k1xz + k2x
2 − k3z

2 ≡ 0 mod p (4.3)

for some x, z ∈ Z with p not divides x and z simultaneously. If p | k2, then by taking z = 0
we see χ can be realised by Harish-Chandra theory by definition. If k2 is prime to p, then z
is prime to p as well; denote x/z by t. So, with the additional assumption that k2 is prime
to p, condition (4.3) can be reinterpreted as:

t2 − k1

k2

t− k3

k2

≡ 0 mod p

for some t ∈ Z. Therefore, the irreducible invariant character containing χ can be recovered
from the Harish-Chandra theory if and only if

1. p | k2, or

2. p - k2 and the Legendre symbol
(
k21+4k2k3

p

)
≥ 0,

in other word, if and only if the Legendre symbol
(
k21+4k2k3

p

)
≥ 0.
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4.4.2 Invariant characters and arithmetic radicals

In this subsection we use a geometric method to investigate the invariant characters of gF .
This is not the easiest approach and it is unnecessarily complicated, but it has the advantage
of being an analogue of the standard arguments in Deligne–Lusztig theory.

Note that (G1)F acts on L−1(U±) by both right and left action, so if we denote by
H∗c (L−1(U±))χ the subspace of H∗c (L−1(U±)) on which the right action of (G1)F is given by
an irreducible character χ, then we can consider the left (G1)F -module H∗c (L−1(U±))χ. Let
θ1 := χ|(T 1)F , then H∗c (L−1(U±))χ is a (G1)F -submodule of H∗c (L−1(U±))θ1 , which admits a
decomposition

H∗c (L−1(U±))θ1 =
⊕

θ∈T̂F , θ|
(T1)F

=θ1

H∗c (L−1(U±))θ =
⊕

θ∈T̂F , θ|
(T1)F

=θ1

IndG
F

(TU±)F θ̃.

So, if χ appears in H∗c (L−1(U±))χ, then it must appear in some IndG
F

(TU±)F θ̃. Meanwhile,

χ ∼= H∗c ((G1)F )χ where the subscript “χ” is from the right action of (G1)F on the commutative
algebra H∗c ((G1)F ) ∼= Q`[(G

1)F ].

By (g, g′) 7→ (g′−1F (g′), g−1g′) we get an isomorphism

(G1)F\((G1)F × L−1(U±) ∼= Π := {(x, y) ∈ U± ×G | x = y−1F (y)}

(the graph of Lang map on L−1(U±)), which is (G1)F × (G1)F -equivariant (acts from the
right hand side) with the action of (G1)F × (G1)F on Π given by

(G1)F × (G1)F 3 (s, s′) : (x, y) 7→ (xs
′
, s−1ys′) = (x, s−1ys′).

Therefore

〈χ,H∗c (L−1(U±))χ〉(G1)F = 〈H∗c ((G1)F )χ, H
∗
c (L−1(U±))χ〉(G1)F = dimH∗c (Π)χ−1,χ,

by Künneth formula and (Hom–tensor) adjunction. Note that the reduction map ρ2,1 : G2 →
G1 takes Π surjectively to {1}×GF

1 , so each (x, y) ∈ Π is of the form (x, gy′) for some g ∈ GF
1

and y′ ∈ G1, hence there is a decomposition into closed subvarieties

Π =
∐
g∈GF1

Πg,

where Πg := {(x, gy) ∈ U± ×G1 | x = y−1F (y)}. So

Πg
∼= {(x, y) ∈ U± ×G1 | x = y−1F (y)},

on which (G1)F × (G1)F acts by

(G1)F × (G1)F 3 (s, s′) : (x, y) 7→ (x, g−1gss−1ys′).
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Thus
H∗c (Π)χ−1,χ =

⊕
g∈GF1

H∗c (Πg)χ−1,χ.

By the Iwahori decomposition G1 = T 1U± and the Lang–Steinberg theorem we see that
Πg
∼= (T 1)F × U±, so (see e.g. [DM91, 10.12])

H∗c (Πg) ∼= Q`[(T
1)F ],

on which (s, s′) ∈ (G1)F × (G1)F acts by t 7→ g−1gss−1s′t composed with the projection
G1 = T 1U± → T 1. In particular, H∗c (Π)χ−1,χ is non-zero only if χ((U±)F ) = 1; in other

words, χ appears in IndG
F

(TU±)F θ̃ for some θ ∈ T F with θ|(T 1)F = χ|(T 1)F only if χ is trivial on

(U±)F .

On the other hand, for g = 1, we see that, if χ is trivial on (U±)F , then χ appears in
H∗c (Π1)χ−1,χ = Q`[(T

1)F ], on which (s, s′) ∈ (G1)F × (G1)F acts by t 7→ s−1s′t composed
with the projection G1 = T 1U± → T 1 (this can be viewed as the regular representation of

(T 1)F ). Therefore, χ appears in IndG
F

(TU±)F θ̃ for some θ ∈ T F with θ|(T 1)F = χ|(T 1)F if and
only if χ is trivial on the rational points of the arithmetic radical U±.

Remark 4.4.2. This result can be obtained in a much easier way by directly applying the
Mackey intertwining formula; see the arguments in [CS16, 5.1].

One has a special case of Letellier’s conjecture:

Proposition 4.4.3. For G = GL2 or GL3, every irreducible invariant character of gF

appears in a Deligne–Lusztig character Rθ1

t,u in the sense that their inner product is non-zero.

Proof. This is proved in [CS16, 5.1].
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Chapter 5

Towards character sheaves over rings

In this chapter we turn to another aspect of the representation theory of G(Or). We first
recall the notion of character sheaves introduced in [Lus86] and [Lus06], and then propose
a construction of generic character sheaves on reductive groups over quotients of complete
discrete valuation rings. We will define the associated induction and restriction functors, and
discuss their transitive properties and the adjunction relation. Recall that D(−) denotes the
bounded derived category of constructible Q`-sheaves and M(−) denotes the subcategory
of perverse sheaves; these notation settings can be found in Section 1.3.

5.1 Sheaves on abelian groups

In this section we recall the setting of character sheaves on abelian groups in [Lus06, 5].

Throughout this section let H be a connected commutative (affine) algebraic group over
k = Fq. A prototype of H in our mind is the Greenberg functor image T of a torus group
scheme T ∼= Gm/Our

r
× · · · ×Gm/Our

r
over Our

r .

Consider the set of all pairs (F, ψ) for various geometric Frobenius F on H, and ψ ∈
ĤF = Hom(HF ,Q×` ); by identifying (F, ψ) with (F n, ψ ◦NFn/F ) for every positive integer n
we get an equivalence relation on this set. We denote the equivalence classes by H∗.

Lemma 5.1.1. H∗ is an abelian group with multiplication (F, ψ) · (F, ψ′) := (F, ψ · ψ′).

Proof. By the fact that every two Frobenius endomorphisms become the same one after
being raised to some powers (see e.g. [DM91, 3.6]), and by the definition of the equivalence
relation, we see the multiplication is well-defined. The lemma follows.

For any (F, ψ) ∈ H∗, we want to associate a local system of rank 1, i.e. a locally constant
Q`-sheaf of rank 1.

Let L : H → H be the Lang map associated to F , and consider the Q`-local system L∗Q`
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on H. We have a direct sum decomposition

L∗Q` =
⊕
ψ∈ĤF

Eψ, (5.1)

where Eψ is a locally constant Q`-sheaf of rank 1, whose stalk at t ∈ H is the 1-dimensional
representation of HF given by ψ:

Eψ
t = {f : L−1(t)→ Q` | f(t1t2) = ψ(t1)f(t2),∀t1 ∈ HF , t2 ∈ L−1(t)}.

Up to isomorphisms, Eψ only depends on the equivalence class of (F, ψ); see [Lus06, 5].

Definition 5.1.2. We denote the set of isomorphism classes of local systems on H of the
form Eψ, where (F, ψ) ∈ H∗, by S(H).

The multiplication of functions on L−1(t) gives an isomorphism Eψ
t ⊗E

ψ′

t
∼= Eψ·ψ′

t , which
induces an isomorphism Eψ ⊗ Eψ′ ∼= Eψ·ψ′ . So S(H) admits a natural group structure.
Indeed, this group is isomorphic to H∗; to see it, we first recall the notion of characteristic
function: The characteristic function χEψ ,ϕ : HF → Q` of Eψ, with respect to an isomor-

phism of locally constant sheaves ϕ : F ∗Eψ → Eψ, is defined by taking t ∈ HF to Tr(ϕt, E
ψ
t ).

Proposition 5.1.3. The map (F, ψ) 7→ Eψ is an isomorphism of abelian groups H∗ ∼= S(H).

Proof. This is in [Lus06, 5]. This map is by definition a surjective group morphism. To
see the surjectivity it suffices to show that, for a fixed F , there is a unique ψ such that the
image of (F, ψ) is Eψ. This can be done by looking at the characteristic functions. Firstly,
there is a unique isomorphism of locally constant Q`-sheaves ϕ : F ∗Eψ → Eψ, such that at
stalks Eψ

F (t) → Eψ
t it is ϕt : f 7→ f ◦F ; see [Lus06, 5]. If t ∈ HF , then for y ∈ L−1(t) one has

F (y) = ty, so f ◦ F (y) = ψ(t)f(y). Thus ψ appeared as the trace of ϕ at each stalk, i.e. the
characteristic function of Eψ with respect to ϕ.

5.2 The finite field case

In this section we recall the notion of character sheaves on G1 given by Lusztig in [Lus86].
Throughout this section we assume r = 1. In particular, G = G1 is a connected reductive
group and T = T1 is a maximal torus in a Borel subgroup B = B1.

Fix a local system L of rank 1 in S(T ). We can consider its stabiliser W ′
L := {w ∈

W | (w−1)∗L = L} in W = W (T ); we will define an object KLw ∈ D(G) for w ∈ W ′
L.

The character sheaves are defined via the perverse cohomology of KLw . To define KLw , first
consider a diagram

G Yw Ẏw T
πw (5.2)

for w ∈ W : Here
Yw := {(g,B′) ∈ G×G/B | (B′, gB′) ∈ O(w)},
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where O(w) denotes the G-conjugation orbit of (B, wB) ∈ G/B ×G/B, and

Ẏw := {(g, hU) ∈ G×G/U | gh ∈ BwB}.

The morphism Ẏw → Yw is the principal fibration (with T ) defined by (g, hU) 7→ (g, hB);
here T acts on Ẏw by t0 : (g, hU) 7→ (g, ht−1

0 U). The morphism πw : Yw → G is the natural
left projection, which can be viewed as a twist of the Grothendieck–Springer resolution (the
case w = 1 is exactly the Grothendieck–Springer resolution, which is proper because Y1

is closed in G × G/B; see e.g. [Sho88, II.4]). And finally, Ẏw → T is the projection of
gh ∈ BwB = UwTU to the T -component; this morphism is T -equivariant with respect to
the action t0 : t 7→ tw0 · t−1

0 t of T on T . For more details see [Lus86, 2].

Remark 5.2.1. Note that Yw is an analogue of the Deligne–Lusztig variety X(w) := {B′ ∈
G/B | (B′, FB′) ∈ O(w)} studied in [DL76], in the sense of viewing the Frobenius action as
a “conjugation”.

For the local system L ∈ S(T ), if w ∈ W ′
L, then the shift L̇[dimT ] of the inverse image

L̇ on Ẏw is T -equivariant in the sense of [Lus86, 1.9]. This implies the existence of a unique

Q`-local system L̃ of rank 1 on Yw such that its inverse image on the T -fibration Ẏw is L̇;
see [Lus10, 8.1.7(c)] or [Lus86, 1.9.3].

Now we can define character sheaves.

Definition 5.2.2. Along with the above notation, for L ∈ S(T ) and w ∈ W ′
L, put KLw :=

R(πw)!L̃ ∈ D(G).

Definition 5.2.3. A character sheaf on G is a simple perverse sheaf on G appearing as a
constituent of pH i(KLw) for some L ∈ S(T ), some w ∈ W ′

L, and some i ∈ Z (here pH i(−) de-
notes perverse cohomology; see e.g. [Lus86, 1.4]). The set of isomorphism classes of character
sheaves is denoted by CS(G).

Example 5.2.4. When G = T is a torus, the elements in CS(T ) are all of the form L[dimT ],
where L ∈ S(T ) (see the last sentence in [Lus86, 2.10]).

Example 5.2.5. Take w = 1, then the fact that NG(B) = B implies

Yw = {(g,B′) ∈ G×G/B | g ∈ B′} = {(g, hB) ∈ G×G/B | gh ∈ B},

which gives a diagram G← Yw → T , with Yw → T being defined by projecting gh ∈ B to T .
The construction of character sheaves based on the longer diagram (5.2) can be recovered
by this shorter diagram. Indeed, this gives the theory of character sheaves in the principal
series case. Actually, since w is 1, we have Ẏw = {(g, hU) ∈ G × G/U | gh ∈ B}, so the

morphism Ẏw → T naturally factors through Yw, and thus L̃ can be defined as the inverse
image of L (according to [Lus86, 2.4], such L̃ is unique).
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5.3 The local ring case

5.3.1 Character sheaves and its functions

In the remaining part of this thesis we assume r = 2l is even.

The algebraisation of the generic Deligne–Lusztig representations H∗c (L−1(FU))θ at even
levels suggests that one can develop a generic character sheaf theory for reductive groups
over Our

r with r even, in analogy with Gérardin’s constructions. Consider the diagram

T ZT G,b a (5.3)

where
ZT := {(g, xTU±) ∈ G×G/TU± | gx ∈ TU±};

here a is the left projection (g, xTU±) 7→ g, and b is (g, xTU±) 7→ πT (gx), where πT is the
projection from TU± to T .

Lemma 5.3.1. The variety ZT , as well as the morphisms a and b, are F -rational.

Proof. This follows from the rationality of U±.

Lemma 5.3.2. The variety ZT is smooth and connected.

Proof. This can be proved in a similar way to [Lus86, 2.5.2]. Let Z̃T be the base change of
ZT ⊆ G×G/TU± along the surjective flat morphism (the flatness follows from, e.g. [Liu06,
1.2.14] and [Spr09, Page 93])

G×G −→ G×G/TU±.
Then by [GD67, 17.7.7] it suffices to show Z̃T = {(g, x) ∈ G × G | gx ∈ TU±} ⊆ G × G is
smooth and connected. Applying the change of variables b = gx we get

Z̃T ∼= {(b, x) ∈ G×G | b ∈ TU±} = TU± ×G,

which is smooth and connected.

Back to the diagram (5.3). Let Eθ ∈ S(T ) for some θ ∈ T̂ F ; then as in the proof of
Proposition 5.1.3, there is a natural isomorphism ϕ : F ∗Eθ ∼= Eθ, which induces an isomor-
phism F ∗Ra!(b

∗Eθ) ∼= Ra!(b
∗Eθ) (by proper base change; see also [Lus06, 8]). We denote

the latter isomorphism again by ϕ. Let Kθ := Ra!(b
∗Eθ) ∈ D(G).

Definition 5.3.3. If either θ is generic, or G satisfies the conditions in Remark 4.1.7 and θ
is regular and in general position, then we call Kθ a generic character sheaf on G.

The characteristic function of the complex Kθ with respect to the isomorphism ϕ is the
Q`-valued function

χKθ,ϕ : GF −→ Q`, g 7→ χKθ,ϕ(g) :=
∑
i∈Z

(−1)i · Tr(ϕg,Hi(Kθ)g).

In the generic case this is the character of the higher Deligne–Lusztig representation Rθ
T,U

(thanks to our main results):
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Proposition 5.3.4. Along with the above notation, we have

χKθ,ϕ(g) = Tr(g,Rθ
T,U)

for any g ∈ GF .

Proof. The argument is standard (see also [Lus86, Proposition 13.4]). First of all, by the
proper base change theorem in derived category, the function χRa!(b∗Eθ),ϕ(g) can be linked to
the ϕ-trace on `-adic cohomology

χRa!b∗Eθ,ϕ(g) =
∑
i∈Z

(−1)i · Tr
(
ϕg,Hi(Ra!(b

∗Eθ))g
)

=
∑
i∈Z

(−1)i · Tr
(
ϕ,H i

c(a
−1(g), b∗Eθ)

)
.

(5.4)

By applying the Grothendieck–Lefschetz trace formula (see [Del77, Rapport-3.2]) we get:

(5.4) =
∑

xTU±∈(G/TU±)F , (g,xTU±)∈ZT

Tr
(
ϕ, b∗Eθ

(g,xTU±)

)
=

∑
xTU±∈(G/TU±)F , gx∈TU±

Tr
(
ϕ,Eθ

πT (gx)

)
.

(5.5)

By passing from G/TU± to G we see:

(5.5) =
1

|(TU±)F |
·

∑
x∈GF , gx∈TU±

Tr
(
ϕ,Eθ

πT (gx)

)
=

1

|(TU±)F |
·

∑
x∈GF , gx∈TU±

θ (πT (gx)) .

By the definition of induced characters, this is the character value of IndG
F

(TU±)F θ̃ at g. Now
the assertion follows from Corollary 4.3.10.

5.3.2 Induction and restriction

In this subsection we define induction functors (from equivariant perverse sheaves on Levi
subgroups to the derived category D(G)) and restriction functors (from the derived category
D(G) to that of the Levi subgroups), and show that they are transitive (for the induction
functor, we require an assumption concerning perverse sheaves). Our definitions of induc-
tion and restriction functors are motivated by 5.3.7 and 5.3.8, the transitivity properties
(Proposition 5.3.10 and Proposition 5.3.13), a Frobenius reciprocity (Proposition 5.3.14),
and Lusztig’s definitions of induction and restriction functors in the finite field case [Lus86].

Fix a parabolic subgroup P of G, and let M be a Levi subgroup of P (when there is no
confusion we will say M is a Levi subgroup of G); denote by P and M the corresponding
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Greenberg functor images, respectively. Write UP for the unipotent radical of P, and write
U−P for the unipotent radical of its opposite parabolic subgroup; their Greenberg functor
images are denoted by UP and U−P , respectively. We put U±G−M := (UP )l(U−P )l and U±M :=
M ∩U±. For detailed properties of parabolic subgroups and Levi subgroups (over a general
base) we refer to [DG70, XXVI].

For a smooth morphism f : X → Y with connected fibres of dimension d, we use the
notation f̃ := f ∗[d]; it is known that f̃ is a fully faithful functor from M(Y ) to M(X) (see
[Lus86, 1.8.3]). For perverse sheaves, we will use the notion of equivariance in [Lus86, 1.9]
(roughly, for a variety with a group action, the equivariance of sheaves is the compatibility
between two pull-backs, one along group action and one along projection, and for perverse
sheaves the definition is simpler; see also the discussion in [Lus84b, 0]).

We start with the induction functor, which requires some technical preparations:

Consider the varieties

ZG
M := {(g, xMU±) ∈ G×G/MU± | gx ∈MU±}

and
Z̃G
M := {(g, x) ∈ G×G | gx ∈MU±} ∼= MU± ×G;

they admit the G-action y ∈ G : (g, x) 7→ (yg, yx). Consider the natural G-equivariant
smooth morphism with connected fibres

π′M,G : Z̃G
M −→ ZG

M , (g, x) 7→ (g, xMU±).

This is a principal MU±-fibration of ZG
M , where the action of MU± on Z̃G

M is given by
y′ ∈ MU± : (g, x) 7→ (g, xy′−1). Moreover, note that the quotient G → G/MU± is locally
trivial: As Gl is a connected unipotent group, it is special (in the sense of Remark 5.3.6),
so it suffices to show Gl → Gl/Ml is locally trivial, which follows from the fact that the
multiplication morphism U−P×UP×M→ G is an open immersion; see [DG70, XXVI 4.3.2]
(by looking at the Lie algebras, one can also deduce the open immersion property by using
the fact that it is an étale monomorphism; see the argument of [CGP15, 2.1.2]). Therefore
π′M,G is a locally trivial principal fibration by MU±. With respect to the trivial G-action on
M , there is another G-equivariant smooth morphism with connected fibres

πM,G : Z̃G
M −→M, (g, x) 7−→ πM(gx),

where πM denotes the projection from MU± to M . Note that the action of MU± on Z̃G
M

induces an action of MU± on M through πM,G, which is compatible with the conjugation
action of M on M , so πM,G is also an MU±-equivariant morphism. Now we get a diagram

M Z̃G
M ZG

M G,
πM,G π′M,G π′′M,G

(5.6)

where π′′M,G is the left projection (which is G-equivariant with respect to the conjugation
action of G on G itself).
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Consider (5.6), if K ∈ M(M) is M -equivariant with respect to the conjugation action,
then π̃M,GK is MU±-equivariant and G-equivariant by the definition of equivariance ([Lus86,
1.9]; note that πM,G is MU±-equivariant). Moreover, since π′M,G is a locally trivial principal
fibration by MU±, by [Lus86, 1.8.3] and [Lus86, 1.9.3] there is a unique (up to isomorphisms)
perverse sheaf KM,G ∈ M(ZG

M) such that π̃M,GK ∼= π̃′M,GKM,G; this KM,G is G-equivariant,
by [Lus86, 1.8.3] and the G-equivariance of π̃M,GK. Now we get a complex R(π′′M,G)!KM,G ∈
D(G); if this complex is perverse, then it is G-equivariant by [Lus86, 1.9.2].

Definition 5.3.5. Given K ∈M(M) equivariant with respect to the conjugation action of
M , then along with the above notation, we put indGMK := R(π′′M,G)!KM,G ∈ D(G).

Remark 5.3.6. An algebraic group is called special if any principal fibration by such a
group is locally trivial, and it is known that connected unipotent groups are among them;
see [Ser58, 4.1, 4.4] and [Gro60, 6].

Example 5.3.7. If M = G, then indGGK = K by the equivariance property.

Example 5.3.8. If M = T is a maximal torus such that FT = T for the Frobenius F of some
rational structure on G, then ZG

T = ZT , and πM,G naturally factors through b : ZG
T → T (b is

the morphism in (5.3)) by π′M,G, which implies KM,G
∼= b̃K. Thus in this simpler situation,

we see that indGTE
θ[dimT ] ∼= Kθ[dimG] for any θ ∈ T̂ F .

Remark 5.3.9. In the situation of the above example, we expect that indGTE
θ[dimT ] (∼=

Kθ[dimG]) is a simple perverse sheaf, provided Kθ is a generic character sheaf: In the special
case that O = Fq[[π]], r = 2 or 4, char(Fq) big enough, and T is contained in an F -stable B
for some Borel B, this is obtained in Lusztig’s work [Lus15].

Proposition 5.3.10. Let N be a Levi subgroup of M; denote by N its Greenberg functor
image. If K ∈ M(N) is an N-equivariant perverse sheaf such that indMNK is a perverse
sheaf (e.g. in the special case mentioned in the above remark, K can be Eθ[dimT ]), then

indGNK
∼= indGM ◦ indMNK.

Proof. The argument is an analogue of the finite field case in [Lus86, 4.2]. Consider the
commutative diagram

N

Z̃M
N X Z̃G

N

ZM
N Y ZG

N

M Z̃G
M ZG

M G,

πN,M

π′N,M

h1

d

h2

f

πN,G

π′N,G

π′′N,M

e1 e2

g1 g2
π′′N,G

πM,G π′M,G π′′M,G
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where X := {(g, x, z) ∈ G×G×MU± | gx ∈ NU±}, and Y is the quotient of X by the NU±-
action given by q ∈ NU± : (g, x, z) 7→ (g, xq−1, zq−1); f denotes the quotient morphism. The
other morphisms are as below:

d : (g, x, z) 7→ πN(gx), where πN is the projection from NU± to N ;

h1 is (g, x, z) 7→ (πM(gxz
−1

), πM(z));

h2 : (g, x, z) 7→ (g, x);

e1 : (g, x, z) 7→ (πM(gxz
−1

), πM(z)NU±M) ∈ ZM
N ⊆M ×M/NU±M ;

e2 : (g, x, z) 7→ (g, xNU±) ∈ ZG
N = {(g, x) ∈ G×G/NU± | gx ∈ NU±};

g1 : (g, x, z) 7→ (g, xz−1);

g2 : (g, xNU±) 7→ (g, xMU±).

Note that in the above diagram, the two bottom squares are cartesian, and ei and f are
smooth morphisms with connected fibres.

To show indGNK
∼= indGM indMNK, in other words, to show

R(π′′M,G)!R(g2)!KN,G
∼= R(π′′M,G)!(indMN )M,G,

it suffices to show
R(g2)!KN,G

∼= (indMN )M,G.

Since π̃′M,G is fully faithful on perverse sheaves (see [Lus86, 1.8.3]), this assertion can be
deduced by showing

π̃′M,GR(g2)!KN,G
∼= π̃′M,G(indMNK)M,G. (5.7)

Note that
π̃′M,G(indMNK)M,G

∼= π̃M,GindMNK
∼= π̃M,GR(π′′N,M)!KN,M

by the definition of (indMNK)M,G, so (5.7) is equivalent to

R(g1)!ẽ2KN,G
∼= R(g1)!ẽ1KN,M

by applying the proper base change theorem (on both sides). Thus we only need to show
ẽ2KN,G

∼= ẽ1KN,M , which is equivalent to

f̃ ẽ2KN,G
∼= f̃ ẽ1KN,M (5.8)

by the full faithfulness of f̃ on perverse sheaves ([Lus86, 1.8.3]). By the definitions of KN,M

and KN,G, (5.8) follows from

h̃1π̃N,MK = d̃K = h̃2π̃N,GK.

This completes the proof.
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We turn to the restriction functor.

Definition 5.3.11. Consider the diagram

M MU± G,
πM i (5.9)

where i is the natural closed immersion and πM denotes the projection from MU± ∼= M ×
U±G−M to M . For any K ∈ D(G), we put resGMK := R(πM)!i

∗K ∈ D(M).

Example 5.3.12. In the above definition, consider the case that K = Kθ is a generic

character sheaf for θ ∈ T̂ F . Suppose M is F -rational and contains T . Then since both πM
and i are F -rational, the isomorphism ϕ : F ∗Kθ ∼= Kθ induces an isomorphism F ∗resGMK

θ ∼=
resGMK

θ, denote which again by ϕ. For any s ∈MF we have

χresGMK
θ,ϕ(s) =

∑
u∈(U±G−M )F

χKθ,ϕ(su) =
∑

u∈(U±G−M )F

Tr(su,Rθ
T,U),

where the first equality follows from standard properties of characteristic functions with
respect to proper push-forward and pull-back (see e.g. [KW01, III.12.1]).

Proposition 5.3.13. Suppose N is a Levi subgroup of M, and denote by N its Greenberg
functor image, then

resGN
∼= resMN ◦ resGM .

Proof. Consider the following commutative diagram

N NU± G

NU±M MU±

M ,

πN i

π′ i′2

π′N

i2
πM

i1

Where π′ and π′N are the natural projections, and i1, i2, and i′2 are the natural inclusions.
Note that the middle diamond is cartesian, so by proper base change we have

resGN = R(πN)!i
∗

= R(π′N)!R(π′)!(i
′
2)∗i∗1

= R(π′N)!(i2)∗R(πM)!i
∗
1

= resMN ◦ resGM .

Thus the transitivity holds.
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5.3.3 Frobenius reciprocity

In this subsection we will be concerned with the adjunction between induction and restric-
tion functors. First note that, if K is an equivariant perverse sheaf on M , then by the
commutativity between the Verdier duality functor and (proper) pull-backs (see e.g. [BD10,
E.4]), its Verdier dual DMK is also an equivariant perverse sheaf (with respect to conjugation
actions). Throughout this subsection, we ignore Tate twists.

As in the r = 1 case, one desires the property resGMA ∈ D≤0(M); in the r = 1 case this
property was proved by Lusztig for his character sheaves in [Lus86, 4.4(c)], and we expect
it is also true for our Kθ[dimG] with Kθ a generic character sheaf.

Proposition 5.3.14. Let A ∈ M(G) (resp. A1 ∈ M(M)) be G-equivariant (resp. M-
equivariant). If resGMA ∈ D≤0(M), then

HomD(M)(resGMA,A1) ∼= HomD(G)(A,DG ◦ indGM ◦ DMA1).

Proof. We combine the method in [Lus86, 4.4] with properties of Verdier duality. We will
use extensively the notation appearing in the technical preparations of induction functors in
Subsection 5.3.2. Consider the commutative diagram

ZG
M G

MU±\M ×G MU± ×G G

M ×G MU±

M ,

f

π′′M,G

ρ

φ θ′

ζ′

ζ

θ

β

γ πM

i

where i and πM are as in (5.9), π′′M,G is as in (5.6), and β is the quotient morphism of the
MU±-action on M ×G given by

y ∈MU± : (g, x) 7→ (πM(y)gπM(y)−1, xy−1);

and the other morphisms are as below:

ζ ′, θ′, and γ are left projections;

θ : (g, x) 7→ πM(g);

φ := πM × id;

ζ : (g, x) 7→ xgx−1;
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concerning the definitions of f and ρ, first recall that ZG
M = {(g, x) ∈ G × G/MU± | gx ∈

MU±}, we then put

f : (g, xMU±) 7→ (πM(gx), x) mod MU±;

ρ : (g, x) 7→ (xgx−1, xMU±).

Note that in this diagram, by identifying MU±×G with Z̃G
M we see ρ becomes π′M,G, so (φ,

γ, πM , θ′) and (f , β, φ, ρ) form two cartesian diagrams. Also note that, β is a locally trivial
fibration (since the Zariski topologies on MU±\M ×G and M ×G are quotient topologies,
and φ and ρ are locally trivial fibrations by Remark 5.3.6), and f is smooth (by e.g. [GD67,
17.7.7]) with connected fibres isomorphic to U±G−M .

Firstly, by [Lus86, 1.8.2] we have

HomD(M)

(
resGMA,A1

) ∼= HomD(M×G)

(
γ̃resGMA, γ̃A1

)
. (5.10)

Consider the right hand side; by the proper base change theorem

γ̃resGMA =γ∗R(πM)!i
∗A[dimG]

=Rφ!(θ
′)∗i∗A[dimG]

=Rφ!(ζ
′)∗A[dimG],

which is actually Rφ!(ζ)∗A[dimG] by the equivariance of A, and then again by proper base
change we get

Rφ!(ζ)∗A[dimG] =Rφ!ρ
∗(π′′M,G)∗A[dimG]

=β∗Rf!(π
′′
M,G)∗A[dimG]

=β̃Rf!(π
′′
M,G)∗A[dimU±G−M ].

On the other hand, since γ is MU±-equivariant with respect to the conjugation action of
MU± composed by πM , we see γ̃A1 is MU±-equivariant, thus by [Lus86, 1.9.3] we have

γ̃A1 = β̃A′1 for some A′1 ∈M(MU±\M ×G), so (5.10) becomes

HomD(M)

(
resGMA,A1

) ∼= HomD(M×G)

(
β̃Rf!(π

′′
M,G)∗A[dimU±G−M ], β̃A′1

)
. (5.11)

Now, by [Lus86, 1.8.1] and the above computations, the condition resGMA ∈ D≤0(M) is
equivalent to

β̃Rf!(π
′′
M,G)∗A[dimU±G−M ] ∈ D≤0(M ×G),

thus [Lus86, 1.8.1], [Lus86, 1.8.2], and adjunctions imply

(5.11) =HomD(MU±\M×G)

(
Rf!(π

′′
M,G)∗A[dimU±G−M ], A′1

)
=HomD(G)

(
A,R(π′′M,G)∗f

!A′1[− dimU±G−M ]
)
.

71



Note that

R(π′′M,G)∗f
!A′1[− dimU±G−M ] = R(π′′M,G)∗f

!(DMU±\M×G ◦ DMU±\M×G)A′1[− dimU±G−M ]

=
(
DG ◦R(π′′M,G)!f

∗DMU±\M×GA
′
1

)
[− dimU±G−M ]

= DG

(
R(π′′M,G)!f

∗(DMU±\M×GA
′
1)[dimU±G−M ]

)
= DGR(π′′M,G)!f̃DMU±\M×GA

′
1

(5.12)

by the Verdier duality (see e.g. [BD10, E.4]).

Meanwhile, since γ̃A1 = β̃A′1, we see

γ̃DMA1 = γ∗(DMA1)[dimG] = DM×G(γ!A1[− dimG]) = DM×Gγ̃A1

= DM×Gβ̃A
′
1 = β!(DMU±\M×GA

′
1)[− dimMU±] = β̃DMU±\M×GA

′
1,

so
ρ̃(DMA1)M,G

∼= φ̃γ̃DMA1
∼= φ̃β̃DMU±\M×GA

′
1
∼= ρ̃f̃DMU±\M×GA

′
1.

Thus by the uniqueness of (DMA1)M,G (see the paragraph below (5.6) for the definition of

(−)M,G and the uniqueness) we get f̃DMU±\L×GA
′
1
∼= (DMA1)M,G. Therefore

(5.12) = DGR(π′′M,G)!(DMA1)M,G = DG ◦ indGM ◦ DMA1.

This completes the proof.

5.3.4 Some remarks on Springer theory

In this subsection we assume O = Fq[[π]] and r = 2. In particular G = G1 nG1.

Recall that the representations of the symmetric group Sn are classified by the partitions
of n; meanwhile, the partitions of n can be interpreted as the unipotent conjugacy classes
of GLn(Fq), so the representations of Sn are classified by the unipotent conjugacy classes.
Springer theory generalises this classification for a general reductive group and its Weyl
group; see [Spr78] and [Lus81].

In the following we first state the Springer correspondence (in the form due to Borho and
MacPherson [BM81]), a main result of Springer theory, and then explain the involved basic
terms by linking them with (5.3), a fundamental diagram for generic character sheaves. In
this subsection we mainly refer to [Sho88] for details.

Theorem 5.3.15. The complex IC(G1, E)[#Φ]|(G1)uni, where (G1)uni denotes the variety of
unipotent elements and #Φ is the number of roots, is a semisimple object in M((G1)uni),
and is decomposed as

IC(G1, E)[#Φ]|(G1)uni =
⊕
(C,L)

VC,L ⊗ IC(C,L)[dimC],
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where (C,L) runs over the unipotent conjugacy classes C (C denotes the closure of C in G1)
and the irreducible local systems L on C with the property that L[dimC] is G-equivariant;
here VC,L is a Q`-vector space (multiplicity space). Moreover, the action of W (T1) on
IC(G1, E)[#Φ]|(G1)uni induces an action of W (T1) on each VC,L, and

(C,L) 7→ VC,L

is a bijection from the pairs (C,L) such that VC,L 6= 0 to the irreducible representations of
W (T1) over Q`; this bijection is called the Springer correspondence.

In the above theorem, IC(−,−) denotes an intersection cohomology complex on a variety;
it is defined with respect to a local system (locally constant Q`-sheaf) on a locally closed
smooth irreducible subvariety (and every simple perverse sheaf is of this form after shifting);
see e.g. [Sho88, 3].

In the above theorem, E is a local system which can be defined in the following way:
First note that

ZT = {(g, x) ∈ G×G/TU± | gx ∈ TU±} ∼= G1 × {(g, x) ∈ G1 ×G1/T1 | gx ∈ T1} (5.13)

as varieties, hence by combining (5.3) we get a commutative diagram

ZT G

{(g, x) ∈ G1 ×G1/T1 | gx ∈ T1} G1,

á

a

ρ2,1

à

where ρ2,1 is the reduction map, á is the right projection (from the product variety in (5.13))
and à is the natural left projection. In particular, the morphism a in (5.3) appeared as the
base change of à along a trivial vector bundle.

By definition, the image of à is the constructible set (G1)ss consisting of semisimple
elements (the constructibility follows from Chevalley’s theorem [GD67, 1.8.4]); let (G1)rs be
the subset consisting of regular semisimple elements. Indeed, (G1)rs is an open subvariety of
G1 (see e.g. [Hum95, 2.5]). The restriction of à on the pre-image of (G1)rs is an unramified
covering of (G1)rs with Galois groupW (T1) (note that w ∈ W (T1) acts on ZT by (g, xTU±) 7→
(g, xw−1TU±)), and the local system E is defined to be E := (à|à−1((G1)rs))∗Q`, which admits
a natural W (T1)-action; see [Sho88, 4.1].

Since (G1)rs is open and dense in G1, one can consider the intersection cohomology
complex IC(G1, E), and then the perverse sheaf IC(G1, E)[dimG1] ∈ M(G1). By viewing
IC(G1,−)[dimG1] as a functor from local systems on (G1)rs to perverse sheaves on G1, we
see the group W (T1) acts on IC(G1, E)[dimG1]. The above theorem is now a restatement
of the combination of [Sho88, 4.2] (proved in [Lus81]) and [Sho88, 6.2] (proved in [BM81]).
More details can be found in [Sho88].

73



Bibliography

[AB95] Jonathan L. Alperin and Rowen B. Bell. Groups and representations, volume 162
of Graduate Texts in Mathematics. Springer-Verlag, New York, 1995.

[BBD82] Alexander Beilinson, Joseph Bernstein, and Pierre Deligne. Faisceaux pervers.
In Analysis and topology on singular spaces, I (Luminy, 1981), volume 100 of
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