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Abstract

The recent success in exploiting low permeability shale reservoirs has heavily relied on hy-

draulic fracturing to produce hydrocarbons economically in disadvantaged reservoir con-

ditions. Although horizontal drilling significantly increases the contact area between the

wellbore and the reservoir, the objective of hydraulic fracturing is set on creating further

expanded conductive flow paths into the reservoir.

This research uses cohesive zone method to numerically simulate hydraulic fracture prop-

agation in the presence of natural fractures in two- and three-dimensional model. The Co-

hesive element approach limits fracture propagation to some predefined paths. However,

in highly fractured formations since hydraulic fractures are growing through a network of

natural fracture by placing cohesive elements through natural fractures it is possible to track

the development of a network of induced hydraulic fractures. Moreover, cohesive elements

remove stress singularity at the tips of fractures, which improves numerical stability of the

model. Additionally, fracture models based on Griffith’s criterion cannot predict fracture

initiation. A numerical model was developed coupling both fluid flow in fracture network

and rock deformations to study the interaction between hydraulic and natural fractures at

different scales. The cohesive zone method assumes the existence of a fracture process zone

characterized by a traction-separation law rather than an elastic crack tip region. The cohe-

sive finite element method provides an alternate, effective approach for quantitative analysis

of fracture behavior through explicit simulation of the fracture process.

xii



Activation of natural fractures during fracturing treatment improves the effectiveness of

the stimulation tremendously. Here, integrated methodology initiated with laboratory-scale

fracturing properties using a semicircular bending test is presented to determine cohesive

properties of rock and natural fractures. A cohesive finite element model is used to reproduce

laboratory results to verify the numerical model for interaction between the hydraulic fracture

and cemented natural fractures. The results suggest that the distribution of pre-existing

natural fractures can play a significant role in the final geometry of the induced fracture

network. Moreover, understanding of natural fracture distribution in the reservoir will have

an economical impact in projects where fracture geometry is better designed according to

underground conditions.
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Chapter 1
Overview

1.1 Introduction

Large quantities of hydrocarbons have been discovered in very low permeability formations

around the world. Hydraulic fracturing is recognized as the only technique to make pro-

duction economic in these formations (Holditch, 2006). However, hydraulic fracturing has

not been a successful treatment everywhere due to different geological or petrophysical sit-

uations. The main objective in hydraulic fracturing is to create a crack with high fluid flow

conductivity to maximize well productivity by increasing the wellbore formation contact

area.

Some parameters can be controlled in designing a typical fracturing. The controllable

parameters include jobs such as injection rate, fracturing fluid rheology, volume of injected

fluid, proppant size and pumping schedule. On the other hand, major parameters such as

permeability, closure pressure, tectonic stress anisotropy, and geological effects like faults

and fractures are out of our control. Although a few parameters could be measured directly

in the laboratory or estimated using logs, other parameters cannot be measured directly.

Additionally, limited access to the subsurface makes fracture geometry and other properties

of the formations like distribution of natural fractures unknown to us. These restrictions limit

fracturing assessments limited to production data. However, modeling fracturing treatment

and honoring measured treatment data may provide a tool to estimate fracture parameters

and improving fracture design by virtual numerical experiments.
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Fractures are present in every formation (Narr et al., 2006). The size and abundance of

natural fractures determine the potential influence of natural fractures on hydraulic fractur-

ing treatments. Acquired microseismic data in the fields (Waters et al., 2006) has shown

that presence of natural fractures in some cases has led to the formation of a network of in-

duced fractures rather than a single symmetric bi-wing hydraulic fracture. Dahi (2009) built

a two-dimensional model using eXtended Fracture Elastic Mechanics (XFEM) and demon-

strated how complex fracture pattern could affect the fracture geometry. He also determined

whether the geometry of the hydraulic fracture will be affected or not due the presence of

natural fracture network, depending on how they are oriented towards and/or intersecting

the hydraulic fracture. Different techniques have been used to describe the characteristic

behavior of induced fracture networks based on treatment data like bottomhole pressure and

injection rate. Some of these methods, such as the volume of stimulate rock (Cipolla et al.,

2008), mainly provide overall properties. Other methods, like wiremesh (Xu et al., 2010), are

more well transient analysis conditioned to microseismic events locations, rather considering

the fracturing process.

Modeling of fractures is generally classified to analytical and numerical categories. An-

alytical solutions are limited to simple fracture geometries placed in homogeneous isotropic

formations. For most situations, there is no closed form solution for the propagation of fluid

driven fractures. On the other hand, the numerical simulation can be used to obtain solu-

tions for more complex problems. Many numerical techniques have been used to simulate

the propagation of hydraulic fractures such Distinct Element Methods, Boundary Element

Methods, and Finite Element Methods. In this research, I plan to use the cohesive element

approach to simulate fracture propagation in three-dimensional geometries. Cohesive ele-

ment approach limits fracture propagation to some predefined paths. However, in highly

fractured formations, since hydraulic fractures are growing through a network of natural

fracture by placing cohesive elements through natural fractures, it is possible to track the

development of a network of induced hydraulic fractures. Moreover, cohesive elements re-

2



move stress singularity at the tips of fractures, which improves the numerical stability of the

model. Additionally, fracture models based on Griffith’s criterion cannot predict fracture

initiation, which can be investigated using the cohesive element approach.

To study the interaction between hydraulic fracture and natural fractures at different

scales, a three-dimensional model with the capability of coupling fluid flow in fracture net-

work and rock deformations should be considered. The cohesive zone model assumes the

existence of a fracture process zone characterized by a traction-separation law rather than an

elastic crack tip region. The cohesive finite element method provides an alternate, effective

approach for quantitative analysis of fracture behavior through explicit simulation of the

fracture process. The presence of the fissures will be modeled using cohesive elements.

This document presents an integrated cohesive model to analyze hydraulic fracturing jobs

in the presence of a natural fracture network. A propagating hydraulic fracture may arrest,

cross, or divert into a pre-existing natural fracture depending on the fracture properties of

the rock, magnitude and direction of principal rock stresses, and the angle between fractures.

Activation of natural fractures during fracturing treatment improves the effectiveness of the

stimulation tremendously. Here, integrated methodology initiated with lab-scale fracturing

properties using a semicircular bending test (SCBT) is presented to determine cohesive

properties of rock and natural fractures. A cohesive finite element model is used to reproduce

laboratory results to verify the numerical model for interaction between the hydraulic fracture

and cemented natural fractures. The hydraulic fractures’ growth in the reservoir scale is

then simulated, in which the effect of fluid viscosity, natural fracture characteristics, and

differential stresses on induced fracture network is studied. The results suggest that the

distribution of pre-existing natural fractures could play a significant role in the final geometry

of the induced fracture network.
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1.2 Research Objectives

The proposed research has the following objectives:

� Build a two-dimensional hydraulic fracture model using the cohesive interface technique

for modeling radial and KGD fracture propagation. This model will act a benchmark

for three-dimensional models, which will be developed in the next stages of this re-

search.

� Develop the two-dimensional model to a three-dimensional hydraulic fracture model;

the new model gives me the opportunity to investigate the growth of hydraulic frac-

tures in heterogeneous reservoirs. Asymmetric fracture growth and non-uniform height

growth are the main characteristics that will be incorporated into the model at this

stage.

� Model interaction of the propagating hydraulic fracture with short-height pre-existing

natural fractures and investigate how the distribution of natural fractures may impact

the geometry of induced fracture networks. The model will consider the interaction

between natural fractures of different sizes and orientations, and the hydraulic fracture

during well stimulation treatments.

1.3 Outline

This dissertation is concerned with two main topics: validation of cohesive input parameters

to represent the rock properties of the shale for a sample found in the literature, and perform

a numerical simulation to validate those cohesive elements representing hydraulic fracture in

two- and three-dimensional models.

In Chapter 2, hydraulic fracture process is explained. A literature review of how natural

fractures interact with hydraulic fracture jobs is presented. Review of governing equations
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in hydraulic fractures modeling and summary of principal techniques of hydraulic fracturing

will be discussed.

In Chapter 3, the theory of cohesive zone model (CZM) is reviewed and how it will

be implemented in hydraulic fracturing. Validation of CZM for single hydraulic fracture is

provided. Semicircular bending test is used to obtain cohesive parameters that will be used

in two- and three-dimensional models in the following chapters.

In Chapter 4, a review of modeling of the hydraulic fracture in the presence of natural

fractures in a two-dimensional model is presented. Validation of whether the hydraulic

fracture propagation is crossed, diverted or arrested by the presence of natural fractures is

shown. Different cases for interaction between hydraulic fracture and natural fractures are

discussed.

In Chapter 5, a three-dimensional model is used and validated. Several cases were ana-

lyzed based on changes of rock properties of the fracture paths.

Finally, Chapter 6 summarizes the main results in this dissertation and gives recommen-

dations for future works.
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Chapter 2
Fracture Networks

2.1 Introduction

In the past few years, improvements in hydraulic fracturing technology contributed signifi-

cantly to the spikes in gas production in the United States by creating conductive flow paths

from the reservoir to the wellbore (USEIA report, 2009). Production from unconventional

shale gas reservoirs has relied heavily on this technology. As such, research efforts now

center on how to achieve the optimal fracture design with known reservoir characteristics,

or at least improve fracturing treatment design. The preliminary step in assessing any hy-

draulic fracturing job is identifying the geometry of induced fractures. Accurate prediction

of the fracture network geometry is a desirable objective, however, rarely accomplished with

modern fracturing technology. A model that is able to predict the geometry and evolution

pattern of every individual fracture in the fracture network barely exists because it is prac-

tically impossible to collect every detail regarding individual fractures. It is also notable

that although natural fractures may exist in a wide range of length and widths (Ortega et

al., 2006), here, natural fractures comparable in size with hydraulic fractures are of interest.

Small natural fractures may also open due to thermal stresses (Dahi-Taleghani et al., 2013a)

or residual plastic deformations (Dahi-Taleghani et al., 2013b). Because small fractures will

not affect the direction of fracture propagation, here, small natural fractures will be ignored

although they can affect the initial hydrocarbon production rate. Therefore, objective is set

to develop an optimal approach to describe the seemingly unmanageable spatio-temporal
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evolution of fracture patterns. While traditional models assume simple symmetric wing or

bi-wing type fracture networks as commonly appropriate for ideal homogeneous reservoirs,

they are inadequate in representing the complex nature of the fracture network in reservoirs

with pre-existing natural fractures.

Historically, pressure diagnostics (Nolte and Smith,1979, Nolte, 1991) and tiltmeter mea-

surements (Warpinski et al., 1997) were the main tools for estimating fractures’ geometry.

Initial steps in pressure analysis include pressure data collection and processing; important

information about the formation, fracture and treatment may be obtained by identifying

general pressure variation patterns, which are similar to methods used in pressure transient

analysis. Economides and Nolte (2004) have provided a complete review of classic pres-

sure diagnostic techniques to infer critical parameters of the fracturing treatment, including

fracture geometry, closure pressure, fracture height growth, formation pressure capacity,

treatment efficiency, and fluid flow patterns. This approach has gained its popularity in

the early 1990’s because pressure data is the least costly piece of information to collect in

the field, and this method was providing acceptable predictions for massive fracturing jobs

in a vertical well. Utilization of hydraulic fracturing to stimulate new developments in low

permeability, naturally fractured formations like Barnett shale, which was frequently done

in multiple stages through horizontal wells, posed new challenges in interpreting treatment

pressure data. With the introduction of hydraulic fracturing into shale plays, which were

usually naturally fractured, interactions between natural fractures and hydraulic fractures

lead to the formation of a complicated network of induced fractures.

Interactions between hydraulic and natural fractures have been investigated through

laboratory experiments. Results have shown that different parameters, especially differen-

tial stress, govern the interactions between natural and hydraulic fractures (Warpinski and

Teufel, 1987). Further laboratory investigations confirmed the formation of complicated

fracture networks in the presence of natural fractures. Jeffrey (2009) conducted mineback

field experiments to examine the growth of hydraulic fractures through a system of natural
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fractures. In such situations, the induced fracture tends to develop in a much-complicated

way due to the diversion of progressing hydraulic fracture into natural fractures, or simply

the opening of these fractures (Warpinski and Teufel, 1987, Olson and Dahi-Taleghani, 2004,

Dahi-Taleghani and Olson, 2013). This complexity can either be suppressed or utilized to

some extent to benefit the reservoir productivity (Cipolla et al., 2008). Considering the

fact that all pressure diagnostic techniques were built by considering induced hydraulic frac-

tures as a single-strand fracture, it is not reliable to interpret pressure data of a network of

fractures.

Cipolla et al. (2008) discussed how fracture network complexity may change bottomhole

pressure during the treatment as well as future production in comparison to the cases with

single induced fracture. Through reservoir simulation, they claimed that fracture conduc-

tivity required to maximize production was proportional to the square root of the fracture

spacing. Thus, fracture complexity is inversely proportional to the fracture conductivity

requirement. Moreover, they argued that in complicated fracture networks, the average

proppant concentration will become insignificant and therefore proppant placement is less

likely to impact the wellbore performance. Fluid pressure and injection rate have been used

for a long time to estimate fracture geometries. However, due to the complex geometry of

induced fracture networks, these methods are not applicable in reservoirs with pre-existing

natural fractures.

2.2 Hydraulic Fracture Process

Hydraulic fracturing has been identified as an essential technique to achieve economic pro-

duction in low-permeability reservoirs (Holditch, 2006). Large quantities of unconventional

hydrocarbon resources have been discovered in very low permeability formations around the

world (Rogner, 1997). Understanding how hydraulic fracture geometry will be developed in

the presence of natural fractures might help to design more efficient stimulations in these

formations. The main objective in hydraulic fracturing treatments is to create a fracture
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with high flow conductivity inside the tight rock to enhance production by increasing the

wellbore-formation contact area. However, the injected volume during a fracturing treat-

ment may not completely contribute to creating new hydraulic fractures because a part of

the injected volume may be diverted into the pre-existing natural fractures. Fractures are

present in every formation (Narr and Thompson, 2006). The size and abundance of natural

fractures determine the potential influence of natural fractures on hydraulic fracturing treat-

ments. Extensive field studies have revealed the presence of natural fractures in different

length scales. Hence, interactions between hydraulic and natural fractures may occur in dif-

ferent scales. Small scale natural fractures or microfractures may not change the direction of

hydraulic fracture propagation at all; however, they can still increase well formation contact

area (Dahi-Taleghani et al., 2013).

Injection rate, fracturing fluid rheology, the volume of injected fluid, proppant size, and

pumping schedule are parameters that can be controlled during a hydraulic fracturing job.

On the other hand, major parameters, such as closure pressure, tectonic stress anisotropy,

rock toughness and geological effects like faults and fractures, are dictated by formation

properties. However, only some of such parameters can be measured directly in the lab-

oratory or estimated using logs. Additionally, limited access to the subsurface makes an

estimation of natural fracture geometry impossible. Hence, a robust modeling tool can be

extremely helpful to examine numerous realizations of natural fractures to find the most

probable configuration that honors measured treatment data in the field (Dahi-Taleghani

et al., 2013). Current industry practices in assessing and modeling hydraulic fracturing

treatments relied on simplified fracture and fluid flow models, which would only provide

approximated estimations regarding the actual fracture geometry. For instance, common

assumptions in fracturing modeling include homogeneous formation properties and fracture

growth in a symmetric double-wing fashion. These common assumptions are likely to be er-

roneous in unconventional gas reservoirs where material properties and fracture development

can be quite complicated (Valencia et al., 2005).
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2.3 Evidences of Natural Fractures

Outcrops (Seeburger and Zoback, 1982, Hennings et al., 2000, Ortega et al., 2006) as well as

core studies (Gale et al., 2007) have revealed the presence of considerable natural fractures

in some low permeability unconventional formations like Mesa Verde formation (Lorenz and

Sharon, 1989) and Barnett Shale (Gale et al., 2007, Jarvie et al., 2007). Figure 2.1 shows

outcrops of Mexican oil field with very tight permeability. While production analyses have

confirmed the potential role of natural fractures, there is no systematic tool for simulating

fracture propagation in these reservoirs. For the case of Barnett Shale, natural fractures are

mostly sealed with calcite and quartz coming from mineralized water from the underlying

Ellenburger limestone formation. The lack of open natural fractures actually leads to the

formation of the reservoir by preventing gas migration to upper formations and precluded

overpressurized reservoir conditions observed today (Bowker, 2007). Cemented fracture zones

are believed to enhance hydraulic fracturing by acting as preferential weak paths for the de-

flection of induced fractures, and can result in a more complex fracture network. Initially,

operators targeted highly fractured zones and thought that faulted zones would have higher

permeability and fracture porosity. However, better production outcomes are reported for

wells outside of fault zones because within the fault zones, induced hydraulic fractures de-

velop along fault planes and lead into the underlying water-bearing Ellenburger. Hence, the

presence of pre-existing natural fractures is not always advantageous if the treatment design

is not considering this fact (Hopkins et al., 1998). Unfortunately, due to the limited access

to the subsurface, monitoring the interaction between hydraulic and natural fractures can-

not be done by direct observation. Even widely used techniques, such as microseismic, may

only show the effect of natural fractures on hydraulic fracture growth qualitatively but not

quantitatively because of their inherent uncertainties (Le Calvez et al., 2006, Dahi-Taleghani

and Lorenzo, 2011).
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Figure 2.1: Outcrops show a parallel set of natural fractures. Picture was taken close to
Chicontepec field in the state of Veracruz, Mexico

2.4 Natural Fractures’ Interactions with Hydraulic Fractures

In general, tight sandstones, coal bed methane, and shale formation may contain natural

fractures. Because of the low permeability of these formations and the low conductivity

of the natural fracture networks, stimulation treatments are crucial to achieving economic

production. The low hydraulic conductivity of the natural fractures could be caused by

cements that precipitated during the diagenesis process (Laubach, 2003). The fact that

natural fractures might be occluded by cement materials does not mean that they can be

ignored while designing well stimulation. Cemented natural fractures may act as weak paths

for fracture growth (Gale et al., 2007, Dahi-Taleghani and Olson, 2011).

Efforts to understand this problem are not limited to field observations and mathemat-

ical modeling. Lab experiments were also performed to reproduce field data and examine

mathematical models. Lamont and Jessen (1963) performed 70 hydraulic fracturing experi-

ments in six different rock types using triaxial compression with different approaching angles

to understand the fracture crossing phenomenon. The size of their samples was less than

a meter. Hydraulic fractures appeared to crossover closed pre-existing fractures at all in-

12



tersection angles. However, Lamont and Jessen noted that the fracture propagation speeds

in their experiments were considerably greater than those of field tests due to the lack of

correct scaling, making their results less reliable. Daneshy (1974), based on his experiments,

was one of the first to argue that the hydraulic fractures appeared to be arrested when the

natural fractures were open at the intersection and appeared to cross the natural fractures

when they were closed. Later, Hanson et al. (2000) showed the importance of friction on

hydraulic fracture growth near unbonded interfaces in rock. These tests were performed in

Nugget sandstone and Indiana Limestone under uniaxial loading. The results lead to the

formulation of a threshold of normal stress below which fracture is arrested by a natural

fracture. They found that this normal stress is inversely proportional to friction between

surfaces of the natural fracture. Cleary et al. (1991) argued that fracture energy, due to its

internal pressure, is high enough to open any fracture in any orientation, but they did not

give any clear scheme or analysis for their claim. Later, field observations in Marcellus shale

proved that only a subset of natural fractures, depending on their orientation, main fracture

geometry, and other parameters, can be opened and contribute to hydrocarbon production.

Warpinski and Teufel (1987), Jeffrey et al. (2009), and Cipolla et al. (2008) indicated that

the pressure behaviors during fracture treatment will be affected by the presence of fracture

networks. The sudden change of fracture propagation direction due to its deflection into

natural fractures may also show its effect as high frequency events in microseismic data.

However, this data may not be used for quantitative analysis due to the inherent uncertainty

in locating the events, because of the large wavelength of microseismic waves (Dahi-Taleghani

and Lorenzo, 2011).

Zhang and Jeffrey (2008) used two-dimensional boundary element simulation and found

that large modulus or toughness contrast among the cracks can lead to containment of the

hydraulic fracture on the interface. They also argued that offsetting could happen when one

of the layers has lower critical tensile stress similar to far interaction mechanism between

hydraulic fracture and natural fractures (Dahi-Taleghani and Olson, 2013).
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2.5 Possible Propagation paths of Hydraulic Fracture

Three possibilities might occur during the hydraulic fracturing of naturally fractured reser-

voirs (Figure 2.2). First, the natural fractures may have no influence at all, and the hydraulic

fracture will propagate in a direction parallel to the maximum horizontal stress as expected

in the classic sense. This may be a result of high cement strength in the natural fractures

(comparable to matrix strength), unfavorable natural fractures orientation, or a fracturing

pressure that is not high enough to overcome the normal stress perpendicular to the natural

fracture. In the second scenario, once the hydraulic fracture intersects the natural fracture,

the hydraulic fracture is arrested, and the fluid is completely diverted into the natural frac-

ture system. The natural fractures will open if the energy of the growing hydraulic fracture

is large enough to debond (re-open) fracture cements or if the shear stresses are large enough

to overcome the friction between fracture surfaces. In the third scenario, both the newly

formed hydraulic fracture and the natural fractures will interact and intersect in a complex

manner. The mode of opening will depend on the angle between hydraulic fracture and

natural fracture, stresses, infilling material, and fluid properties.

Figure 2.2: Possible scenarios at the normal intersection of a hydraulic fracture and a natural
fracture.

14



Jeffrey et al. (1987) used two-dimensional displacement discontinuity methods for inves-

tigating the interaction between natural fractures and hydraulic fractures. They were able to

model slippage along the hydraulic fracture due to the presence of natural fractures. Akulich

and Zvyagin (2008) investigated the interaction between a growing hydraulic fracture and a

fault in an infinite impermeable elastic medium under plane strain conditions. They consid-

ered incompressible Newtonian fluid for the fracturing fluid and the Mohr-Coulomb criterion

for fault failure. For fluid flow inside the hydraulic fracture, they assumed zero net pressure

at the front as the boundary condition. Their modeling did not indicate fracture intersec-

tions; however, it gave an idea about the slippage along the fault and how it affected the

stress intensity factors at the tip of the growing hydraulic fractures. Later, Olson and Dahi-

Taleghani (2009) argued that hydraulic fractures will grow in the direction with maximum

energy release rate, which was a suitable case for cemented natural fractures as toughness

could be easily defined and measured along these fractures. However, in most geological

settings, numerous fractures with various sizes exist, and their interactions in different scales

dictate fracture growth pattern at the intersection with natural fractures.

The size of natural fractures ranges from a few millimeters (tiny fissures) to several

thousand meters (faults). As opposed to natural fractures, hydraulic fractures are created

artificially with the force of injected pressurized fluid. By generating a hydrostatic pressure

that exceeds the minimum in-situ stress of the formation, fractures are opened up in a

direction perpendicular to that of smallest resistance, i.e., minimum principal stress.

Improved hydrocarbon production does not necessarily rely on hydraulic fracturing. In

some cases, natural fractures may also contribute to the recovery of oil and gas. Natural frac-

tures in formations with moderate permeability can serve as the flow path for hydrocarbons

as well, and the presence of natural fractures may facilitate the formation of a network of in-

duced fractures. On the other hand, natural fractures may also negatively impact hydraulic

fracturing treatment by causing extensive leak-off and reduced flow back (Warpinski, 1990);

a large population of natural fractures in the subsurface is cemented by digenetic materials.
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Although they will not increase overall permeability initially, the opening of these natural

fractures will increase drainage area tremendously. Fortunately, in most cases, these natural

fractures act as weak paths for fracture growth. Therefore, if they are aligned in a favorable

direction with in-situ tectonic stresses, there is a good likelihood that these natural frac-

tures can be opened during treatment (Gale et al., 2007, Dahi-Taleghani and Olson, 2013).

The intersections of natural fractures with hydraulic fractures result in irregular fracture

patterns, including non-planar fractures or fracture branching. On one hand, the opening

of these natural fractures improves the productivity of the formation; on the other hand,

coalescence of these fractures into hydraulic fractures makes pressure analysis and prediction

of fracture growth quite complicated. Overall, interactions between natural fractures and

hydraulic fractures make the fracturing design and execution more challenging. Investigation

and understanding of their interaction are crucial in achieving successful fracture treatment

in formations with natural fracture network.

2.6 Governing Equations

Hydraulic fracturing consists of pumping viscous fluid at high rates, increasing the pressure

at the formation until the rock breaks and the fluid continues flowing through the crack and

further expanding the crack. Considering the fact that the largest principal stress is in the

vertical direction, the hydraulic fracture will be vertical and will propagate perpendicular to

the minimum horizontal stress field. Hence, we limited our analysis to two-dimensional plane

strain analysis to avoid excessive computational costs while the expansion of the proposed

methodology to three dimensions is straightforward. The physical process mentioned above

involves coupling equations for fluid flow, rock deformation, and fracture propagation. We

consider rock as a porous medium. Porous media deformation that relates total stresses,

bulk strains, and pore pressure is given as (Rice and Cleary, 1976)

σij − σ0
ij =

E

1 + ν
(εij +

ν

1− 2ν
εkkδij)− α(p− p0)δij, (2.1)
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where repeated indices imply summation. σij, σ
0
ij, E, ν, εij, p, p0, and α are stress components,

initial stress components, Young’s Modulus, Poisson’s ratio, strain tensor, pore fluid pressure,

initial pore pressure, and Biot’s constant, respectively. Here, K and G are the bulk and shear

modulus respectively.

The fluid flow inside the fracture can be presented by the lubrication equation (Batchelor,

1967)

q = − w3

12µ
∇pf , (2.2)

where q, w, µ,∇pf represent the pumping rate, fracture width, viscosity of the pumping

fluid, and pressure gradient, respectively. This equation assumes that fluid rate inside the

fracture is directly proportional to both the injection pressure gradient and fractures width

(w) and inversely proportional to the injected fluid viscosity. Injected fluid is considered to

be incompressible. The fluid mass balance states that a part of the pumping fluid volume

at a specific time, fills the fracture and the other part will be lost to the formation as shown

in the following equation

∂w

∂t
+∇ · q + (qt + qb) = Q(t)δ(x, y) (2.3)

where qt and qb are the normal fluid loss rate in the top and bottom face of the formations

respectively, q is the mass flow rate along the fracture, and Q is the total volume pump at

the specific time.

The equations presented in this section describe displacement and stress distributions, but

these equations do not predict fracture initiation and subsequent propagation. Fractures may

form whenever stress in any part of the material exceeds its strength, which could be shear

stress, normal stress, or both. The most common method of modeling fracture propagation

is the Griffith’s criterion; however, this criterion can only predict the propagation of pre-
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existing fractures, not their initiation. In the next chapter, a cohesive interface approach is

used to fill this gap. Description of this approach is provided in the next section.

Fracture propagation in fracture mechanics is a function of opening and shearing mode

stress intensity factors, which measure stress concentration at the tip of the crack (Lawn,

2004). The two stress intensity factors are combined in the energy release rate based fracture

propagation criterion used in this research. The energy release rate, G, is related to the stress

intensity factors through Irwin’s relation (Lawn, 2004). In the case that enough energy is

available for fracture propagation and the crack has more than one path to follow (Figure 2.2),

its most likely path is one with the maximum energy release rate, or the greater relative

energy release rate (Dahi-Taleghani and Olson, 2013). The details of energy criterion and

its implementation can be found in Dahi-Taleghani and Olson (2013).

2.7 Hydraulic Fracture Modelling

Modeling of fractures is generally classified into analytical and numerical categories. An-

alytical solutions (for instance Detourany, 2004) are limited to simple fracture geometries

in homogeneous, isotropic formations. In most situations, there is no closed form solution

for the propagation of fluid driven fractures. On the other hand, the numerical simulation

could obtain solutions for more complex problems. Many numerical techniques have been

used to simulate the propagation of hydraulic fractures such as Distinct Element Methods,

Boundary Element Methods, and Finite Element Methods. In all of these models, force

equilibrium and elasticity relations to govern deformations of the rock, and the fluid flow

inside the fracture is idealized as flow down a slot using lubrication theory (Batchelor, 1967).

Dahi-Taleghani (2009) used an Extended Finite Element Method (XFEM) to address

two-dimensional static and quasi-static problems. Crack propagation in strong and weak

quasi-static form was described by deriving the governing equations from XFEM. By de-

composing the displacement field into continuous and discontinuous parts, XFEM can ap-

proximate the behavior of hydraulic fractures and their interactions with natural fractures
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in a naturally fractured reservoir, without any need for remeshing the problem for each in-

crement of fracture propagation. Dahi-Taleghani and Olson (2013) extended the numerical

analysis of hydraulic fracture/natural fracture interaction to the case of cemented natural

fractures. These fractures can influence the geometric development of hydraulic fractures,

which consequently affects the resulting gas production. They examined different scenarios of

fracture interactions using an eXtended Finite Element Method (XFEM) numerical scheme

that considers the fluid flow in hydraulic fracture networks as well as the rock deformation.

Different numerical techniques have been proposed to simulate the propagation of hy-

draulic fractures in the last three decades. For instance, Wilson and Witherspoon (1974)

used Boundary Element Method (BEM) to simulate the steady state flow in rigid networks

of planar fractures. Shapiro and Andersson (1983) and Cleary and Wong (1985) used dis-

placement discontinuity BEM for modeling penny-shaped hydraulic fractures. Iwashita and

Oda (2000) used a modified version of DEM (MDEM) to investigate micro-deformation of

granular media to deal with rolling resistance of the blocks at contact points. Finite Ele-

ment Methods (FEM) was used by Martha et al. (1993), Carter et al. (2000), and Bouchard

et al. (2000) to model fractures’ growth utilizing various remeshing strategies. Advani et

al. (1990) modeled three-dimensional planar hydraulic fractures in a multi-layered medium.

Considering the need for remeshing at each step of fracture propagation in finite element

models, Extend Finite Element Method (XFEM) was used to address this deficiency by

letting fractures pass through the elements without any requirement for mesh refinement

(Dahi-Taleghani and Olson, 2011). They set a criterion for fracture diversion based on the

fracture energy of both natural and hydraulic fracture and the orientation with respect to

each other. In parallel to this revision in FEM, Cohesive Zone Method (CZM) was used

by Chen et al. (2009) to simulate hydraulic fracture propagation in the penny-shape model.

Later, Sarris and Papanastasiou (2011a) simulated hydraulic fracture simulation in a plane

strain reservoir in elastic and poroelastic materials.
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Here, the cohesive interface approach is used to simulate fracture propagation in three-

dimensional geometries. Cohesive element approach limits the fracture propagation to pre-

defined paths. In highly fractured formations, since hydraulic fractures are growing through

a network of natural fractures by placing cohesive elements through natural fractures, it

is possible to track potential paths in the development of a network of induced hydraulic

fractures. Inserting cohesive properties at the tip of the fracture removes stress singularity

at the said tips, which improves the numerical stability of the model.

To study the interaction between hydraulic fracture and natural fractures with different

heights, a three-dimensional model is required to incorporate interactions and coalescence of

fractures with different sizes. The cohesive zone model assumes the existence of a fracture

process zone characterized by a traction-separation law rather than an elastic crack tip

region. The cohesive finite element method provides an effective alternative approach for

quantitative analysis of fracture behavior through explicit simulation of the fracture process.

The presence of fissures will be modeled using cohesive elements.

Numerical models discussed above assume that the geometry of natural fractures is given.

Due to limited access to the subsurface to monitor fractures, simulation of natural fractures

has always been considered as an option to predict fracture growth in the subsurface (Ol-

son, 2004). Any hydraulic fracturing simulation is generally built upon existing formation

and fracture properties, including formation geomechanical properties, treatment, and petro-

physical data, as well as the exact location of natural fractures. However, the location and

dimension of natural fractures cannot be determined accurately using seismic or logging

tools. This limitation has restricted the application of commercial and academic fracturing

simulators. Several approaches have been taken in the industry to address this deficiency. In

the first approach, a fully random set of fractures is considered as consisting of natural frac-

tures, and hydraulic fracture is assumed only to propagate through these fractures (Meyer

and Bazan, 2011), which does not completely represent the actual fracture distribution in the

formation of interest. Extensive outcrop studies in the last couple of decades demonstrate
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that joints distribution is not a fully random distribution; depending on the rock properties

and tectonic history, it may range from a single set of parallel joints to multiple sets of

intersecting joints (Ortega and Marret, 2000, Ortega et al., 2006). Additionally, depend-

ing on formation properties, each joint set can be equally spaced or clustered (Olson and

Dahi-Taleghani, 2004). In summary, the pattern of induced fracture networks is dictated by

natural fractures and their orientation with respect to principal in-situ stresses. Therefore,

we need to set our goal to speculate the characteristic geometry of natural fractures in the

subsurface, rather than take a deterministic approach to determining the exact location of

each fracture as this problem is ill-conditioned and does not have a unique solution.

Any non-deterministic approach requires acquiring a forward model to simulate hydraulic

fracture propagation for different realizations of natural fractures. Therefore, it is expected

that the forward model to be quick enough to include numerous natural fracture realizations,

capable of modeling the true mechanics of hydraulic fracture and natural fractures intersec-

tions, and model different natural fracture geometries with least costly meshing techniques.

It is found cohesive element approach a suitable tool for this technique.
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Chapter 3
Cohesive Zone Method (CZM)*

3.1 Introduction

Linear Elastic Fracture Mechanics (LEFM) (Atkinson and Meredith, 1987) has been very

successful in describing fracture behaviors in brittle rocks. However, the success story did

not repeat in the soft rock. Considering the fact that an extensive number of hydraulic

fracturing treatments are nowadays conducted in soft shale rocks and many brittle rocks may

show ductile behavior under high temperature, high pressure conditions in the subsurface,

LEFM may not be the best tool to deal with these problems. Additionally, problems like

nucleation of cracks cannot be treated directly in LEFM. LEFM neglects the details in the

fracture process zone as it lumps all effects into the fracture tip stress singularity; however,

a detailed description of the fracture process zone may be essential, especially to understand

fracture mechanisms along the intersections or heterogeneous interfaces. In these situations,

the size of the fracture process zone is larger than the fracture grain size, which violates

the fundamental assumption of LEFM. From this point of view, an efficient tool for fracture

studies that allows us to overcome these limitations can be found in the Cohesive Zone Model

(CZM). By means of CZM, fracture initiation and growth are obtained as a natural part of

the solution. So far, CZM has also been successfully applied to fractures in metals, concrete,

*Part of this chapter 3 previously appeared as ”Gonzalez-Chavez, M. A., Dahi-Taleghani, A., and Ol-
son, J. E., 2015, A Cohesive Model for Modeling Hydraulic Fractures in Naturally Fractured Formations.
Society of Petroleum Engineers.” and ”Gonzalez-Chavez, M. A., Puyang, P., and Dahi-Taleghani, A., 2015,
From Semi-Circular Bending Test to Microseismic Maps: An Integrated Modeling Approach to Incorporate
Natural Fracture Effects on Hydraulic Fracturing. Society of Petroleum Engineers.”. There are reprinted by
permission of Society of Petroleum Engineers (Appendix A).
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polymers and functionally graded materials. Cohesive element theory assumes that the

fracture process zone is characterized by a traction-separation law. The presence of cohesive

tractions close to the fracture tips removes singularity at the fracture tip while this singularity

greatly affects the mathematical solution of the partial differential equations derived from

LEFM. As a tradeoff, cohesive tractions make the constitutive equations nonlinear. The

standard model used to describe the fracture tip process zone assumes bonds stretching

orthogonal to the fracture surfaces until they break at a characteristic stress level. Thus,

the singular region introduced from LEFM can be replaced by a zone over which non-

linear phenomena occur. This model is evolved from the Dugdale-Barenblatt process zone

(Barenblatt, 1962, Dugdale, 1960). According to CZM, the fracture process is lumped into

the fracture line and is characterized by a cohesive law that relates tractions and displacement

jump across cohesive surfaces (T−δ). Therefore, the rock is characterized by two constitutive

laws a linear stress-strain relationship for the bulk matrix and a cohesive surface relationship

(cohesive law) that allows spontaneous fracture initiation and growth in the matrix or along

the natural fracture. It is important to properly select the shape of the softening curve; Elices

et al. (2002) pointed out the advantages, limitations and challenges of CZM; among the more

important advantages, CZM is able to predict the fracture behavior in unfractured structures

even in ductile metals or for cementitious materials, whereas LEFM cannot predict fracture

behavior in those kinds of materials. The CZM possesses several limitations, one of which

is the direction of fracture propagation must be known. Additionally, cohesive parameters

are obtained for a specific material in laboratory experiments such as a Brazilian test or a

semicircular bending test. Literature usually reports experiments with concrete and cement

samples. Experiments with shale samples are not common.

3.2 Cohesive Zone Method Theory

The simplest traction-separation model is the bilinear model shown in Figure 3.1. Due to

the simplicity of this model and the fact that it is honoring experimental data satisfactorily,
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the cohesive model is built based on the bilinear relationships. As traction increases, the

separation of the cohesive layers will increase linearly till the traction reaches the maximum

tensile strength (Tmax) at critical separation (δ0), better known as damage initiation. Beyond

this point, the traction will decrease with further separation of fracture surfaces till it reaches

complete damage corresponding to the failure opening (δf ), which is the point the fracture

starts propagating. The area below the traction-separation curve is known as cohesive energy

(Gc) and the slope of the initial loading curve is known as initial cohesive stiffness (Kn).

Figure 3.1: Cohesive bilinear law is demonstrated in the above plot for tensile loading.
Traction will increase until it reaches Tmax with an opening of δ0, and then traction will
decrease until it reaches zero traction at δf where the cohesive layer is completely damaged.

Damage initiation is defined by maximum nominal stress (Equation 3.1) and damage

propagation is defined by fracture energy (Equation 3.2).

Tmax = Kn · δ0 (3.1)

Gc =
Tmax · δf

2
(3.2)

Conceptually, fracture initiation can be defined by δ0 or Tmax and the fracture propagation

by δf or Gc. The cohesive interface is introduced as a layer of elements with zero thickness to
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predict initiation and growth of a possible fracture. It is notable that due to the importance

of fluid pressure in the development of the failure zone, a coupled fluid flow and deformation

model has been incorporated in the cohesive elements. Moreover, the model is considered

large enough to avoid any potential interference with boundaries. The fracture process

zone (unbroken cohesive zone) is defined within the separating surfaces where the surface

tractions are nonzero (Figure 3.1). There are three failure mechanisms present during the

opening of fractures in the cohesive zone, i) fracture initiation criterion, which is referred to

as the beginning of degradation due to the stresses and/or strains satisfies damage initiation

criteria; ii) fracture evolution - fracture will propagate when the stress intensity factor at

the tip is higher than the rock toughness, and iii) when the cohesive element is completely

damaged - beyond this point, the cohesive element no longer exists. The cohesive element

approach removes stress singularity at the fracture tips that improves the numerical stability

of the model. Additionally, fracture models based on Griffith’s criterion cannot really predict

fracture initiation, which is possible in the cohesive element approach.

3.3 Implementation in Hydraulic Fracturing

Cohesive zone model assumes the existence of a fracture zone characterized by a traction-

separation law. The pre-defined surface is made up of elements that support the cohesive

zone traction-opening calculation embedded in the rock, and the hydraulic fracture will grow

along this surface. The fracture process zone (unbroken cohesive zone) is defined within the

separating surfaces where the surface tractions are nonzero (see Figure 3.2).

There are three failure mechanisms taken into account in fracture modeling: i) fracture

initiation criterion, ii) fracture evolution law, and iii) choice of element removal upon reaching

a completely damaged state. Fracture Initiation Criterion is referred to as the beginning of

degradation due to stresses, and/or strains that satisfy certain damage initiation criteria

that were specified. There are many fracture initiation criteria in ABAQUS. It is assumed

that initiation begins when maximum nominal, quadratic stress ratio, maximum nominal
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Figure 3.2: Embedded cohesive zone at the tip of a hydraulic fracture. Two zones can be
identified: i) broken cohesive zone where traction-separation law is no longer effective, and
ii) unbroken cohesive zone where traction-separation law is working.

.

strain, or quadratic strains reaches its critical value. Fracture Evolution Law Criterion

states that the fracture propagates when the stress intensity factor at the tip exceeds the

rock toughness. When the interface thickness is negligibly small, it may be straightforward

to define the constitutive response of the cohesive layer directly in terms of traction versus

separation.

The relationship among Gc, Kn, Tmax, δ0, and δf can be described as

Gc =
1

2
Tmax ∗ δf =

1

2α
Tmax ∗ δ0 =

T 2
max

2αK
(3.3)

where Gc is the cohesive energy, Tmax is the cohesive strength, Kn is the initial cohesive

stiffness, δ0 and δf are the critical separation at damage initiation and complete failure

respectively, and α is the ratio of critical separation at damage initiation and complete

failure.
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Since bilinear traction-separation laws are defined for pure normal and shear loading

modes, general loading conditions that can be any arbitrary combinations of normal and

shear failure (mixed mode problem) require considering the combined effect of normal and

shear modes. The quadratic nominal stress law is used to combine different failure modes.

Damage is said to commence when a quadratic interaction function involving nominal stress

ratios (as defined below) reaches the value of one (Camacho and Ortiz, 1996)

{
〈tn〉
tn0

}2

+

{
ts
ts0

}2

+

{
tt
tt0

}2

= 1 (3.4)

where tn, ts, and tt represents the real values of normal and tangential (first and second

shear) traction across the interface, respectively. 〈〉 is the Macaulay bracket and

〈tn〉 =

{
tn, tn ≥ 0 (tension),

0, tn < 0 (compression)
(3.5)

The metrics for damage is a scalar stiffness degradation index, D, which represents the

overall damage of the interface caused by all stress components. The stiffness degradation

index is a function of the so-called effective relative displacement, δm by combining the effects

of δt, δs, and δn,

δm =
√
〈δn〉2 + δ2

s + δ2
t (3.6)

For linear softening, the damage evolves with the index (Mei et al., 2010)

D =
δmf (δm,max − δm,0)

δm,max(δmf − δm,0)
(3.7)
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where δm,max is the maximum effective relative displacement attained during loading

history. δm0 and δmf are effective relative displacements corresponding to δn0 and δs0, δnf

and δsf are shown in Figure 3.3.

Figure 3.3: Traction-separation for pure tension and pure shear is demonstrated here. Trac-
tion increases until it reaches δ0, where it is considered that the cohesive layers start to
separate. Traction decreases as separation increase to δf , where it is considered complete
failure. Beyond this, traction-separation law is no longer valid.

For nonlinear mechanics, the most robust criterion is described by the constitutive model

of the cohesive zone proposed by Barenblatt (1962) and Hillerborg (1976). This law assumes

that the cohesive surfaces are intact without any relative displacement, and exhibit reversible

linear elastic behavior until the traction reaches the cohesive strength or equivalently the

separation exceeds δ0. Beyond this value, the traction reduces linearly to zero up to δf .

Figure 3.4 shows how crack openings provide paths for tangential and normal flow inside the

fracture. The fluid leakoff is the normal flow. The tangential flow within the gap is governed

by the lubrication equation (Batchelor, 1967), which is a combination of Poiseuille’s flow

q = − w3

12µ
∇pf (3.8)
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and the continuity equation

∂w

∂t
+∇ · q + (qt + qb) = Q(t)δ(x, y) (3.9)

Figure 3.4: Two type of flows inside the fracture: i) tangential flow, which contributes to
fracture opening, and ii) normal flow, which is the fluid that will be lost in the formation
(better known as leak-off).

In the above equation, q(x, y, t) is the fluid flux in tangential direction, ∇pf (x, y, t) is

the fluid pressure gradient along the cohesive zone, w(x, y, t) is the crack opening, µ is the

viscosity, and Q(t) are fluid viscosity and injection rate, respectively. The qt(x, y, t) and

qb(x, y, t) terms are the normal flow rates into the top and bottom surfaces of the cohesive

elements, respectively. The normal flow rate is defined as

qt = ct(pf − pt)

qb = cb(pf − pb)
(3.10)

where pt and pb are the pore pressures in the adjacent pore-fluid (poroelastic) material

on the top and bottom surfaces of the fracture, respectively, and ct and cb define the cor-

responding fluid leak-off coefficients. This problem can be approximated numerically using
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standard Galerkin formulation for Finite element methods (Lewis and Schreffler, 2000). The

equation in matrix notation can be written as the following:

[K]{u}+ [L]{u} = {F}

[S]{ṗ}+ [L]T{u̇}+ [H]{p} = {q}
(3.11)

where u are nodal displacements, p are nodal pressures, F are nodal forces, q are nodal

fluxes, [K] is the stiffness matrix, [L] is the coupling matrix, [H] is the flow matrix and [S]

is the compressibility matrix. The first equation of equations (10) is the stiffness equation

and the second equation is the flow equation. Unknown variables u and p are substituted

by their nodal values and the interpolation functions (shape functions). The definition of

matrices used in equation (10) are given below (Lewis and Schreffler, 2000).

[K] =
∫

Ω
BTDB dΩ,

[L] =
∫

Ω
Nu

{
d/dx

d/dy

}
Np dΩ,

[S] = a
∫

Ω
(NP )T 1

Q̃
NP dΩ

[H] = κ
∫

Ω
Nu

{
d/dx

d/dy
NP

}
T

{
d/dx

d/dy
NP

}
dΩ,

(3.12)

where D is the elasticity matrix, NP and Nu are the shape functions for pressure and

displacements, respectively. The parameter Q̃ is defined as Q̃ = BK
α(1−αB)

.

3.4 Validation CZM: Single Hydraulic Fracture

A two-dimensional finite element model is built in ABAQUS for a single fracture to validate

the numerical model. The reservoir size is assumed to be much larger than the dimension

of hydraulic fracture and is modeled with quadratic plane strain elements. Injection well is
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considered to be at the center of the model, and a layer of cohesive elements passes through

the injection well, which represents the possible path for the hydraulic fracture and consists

of 6-node cohesive elements. The initial length of the hydraulic fracture, 22 m (Figure 3.5),

is set to be much smaller than the model size to avoid any boundary effect.

Figure 3.5: Left picture, a two-dimensional model for single hydraulic fracture. The red
line represents the cohesive elements representing the predefined path of the opening of
the hydraulic fracture and green elements represent the plane strain for the reservoir. The
injection wellbore is at the center of the cohesive layer. Right picture, zoom in view of the
cohesive elements.

The right and left faces are constrained in the x-direction, and the upper and lower faces

were constrained in the y-direction as boundary conditions. The in-situ stresses are defined

as initial stresses to avoid any excessive deformation in the initial equilibrium process. The

mechanical properties utilized to build this model are listed in Table 3.1. The crack opening

displacement profile and fluid pressure profile are demonstrated in Figure 3.6, which are

similar to the results reported previously by Sarris and Papanastasiou (2012).

Table 3.1: Rock Properties.

E(GPa) ν µ(cp) q(m3/sec ∗m) Tmax(MPa) Kn(GPa) Gc(Pa ∗m)
15 0.2 1 200e-6 2.46 80 100
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Figure 3.6: Left plot, pressure profile along a propagating fracture through the cohesive
path at different times. Right plot, fracture opening at the corresponding times is also
demonstrated in the bottom graph.

3.5 Semicircular Bending Test (SCBT)

Extensive laboratory studies have shown that the inherently nonlinear nature of interfacial

fractures in granular materials can be better described by cohesive zone models. The main

challenge in using cohesive models is choosing, or being more precise, is measuring cohesive

model parameters in the lab. Semicircular Bending Test (SCBT) is a laboratory experiment

that determines when the rock will fail when under a certain applied force. The load versus

displacement plot obtained is useful to obtain cohesive parameters. It uses finite element

numerical results inversely to determine cohesive stiffness, strength and energy properties.

Cohesive properties are calibrated such that the simulated test results match the measured

response of the specimens.

Sierra et al. (2010) performed SCBT test for several shale rock samples (Figure 3.7,a).

Cohesive parameters (Table 3.1) were obtained matching the load versus displacement plot

(Figure 3.8) from numerical simulation (Gonzalez et al., 2015) (Figure 3.7,b).

Cohesive parameters seem to match reasonably as the equivalent fracture toughness for

mode I is approximately 1.25 MPa, according to equation 3.13.

KIC =
√
E ′ ·Gc (3.13)
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Figure 3.7: Semicircular Bending Test. a) Laboratory sketch, b) numerical mesh where the
red line represents the cohesive elements

Figure 3.8: Match results of numerical simulation and lab experiments

where E’= is the plane-strain modulus of elasticity (E ′ = E/(1− ν2))

The finite element simulation was used for the analysis using ABAQUS software. The

reservoir was modeled with 4-node plane strain elements with a dimension of 50 x 50 meters.

Both hydraulic fracture and natural fracture were modeled with 6-node cohesive elements,

4-nodes for displacement and two middle-pressure nodes. Both fractures were extended all

along the length of the sketch. The reservoir and fractures were defined using sections. The

assembly of the parts was made with tie constraint and contact interaction. The hydraulic

fracture was represented by red horizontal elements in the sketch. Natural fracture intersects

the hydraulic fracture perpendicularly at the middle of its length. The injection point was

located five meters away from the intersection along the hydraulic fracture.
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Chapter 4
Two-dimensional Hydraulic Fracturing
Model*

4.1 Introduction

CZM has been explained in the previous chapter. Conceptually, fracture initiation can be

defined by δ0 or Tmax and the fracture propagation by δf or Gc. The cohesive interface is

introduced as a layer of elements with zero thickness to predict initiation and growth of a

possible fracture. It is notable that due to the importance of fluid pressure in the development

of the failure zone, a coupled fluid flow and deformation model have been incorporated in the

cohesive elements. Moreover, the model is considered large enough to avoid any potential

interference with boundaries. The fracture process zone (unbroken cohesive zone) is defined

within the separating surfaces where the surface tractions are nonzero (Figure 4.1).

There are three failure mechanisms present during the opening of crack in the cohesive

zone, i) fracture initiation criterion, which is referred to as the beginning of degradation due

to the stresses and/or strains that satisfy damage initiation criteria, ii) fracture evolution,

fracture propagation when the stress intensity factor at the tip exceeds the rock toughness,

and iii) when the cohesive elements are completely damaged and beyond this point the

cohesive element no longer exists. The cohesive element approach removes stress singularity

*Part of this chapter 4 previously appeared as ”Gonzalez-Chavez, M. A., Dahi-Taleghani, A., and Ol-
son, J. E., 2015, A Cohesive Model for Modeling Hydraulic Fractures in Naturally Fractured Formations.
Society of Petroleum Engineers.” and ”Gonzalez-Chavez, M. A., Puyang, P., and Dahi-Taleghani, A., 2015,
From Semi-Circular Bending Test to Microseismic Maps: An Integrated Modeling Approach to Incorporate
Natural Fracture Effects on Hydraulic Fracturing. Society of Petroleum Engineers.”. There are reprinted by
permission of Society of Petroleum Engineers (Appendix A).
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Figure 4.1: Cohesive elements at the tip of a hydraulic fracture are shown above. Two zones
can be identified in a fracture: i) broken cohesive zone where traction-separation law is no
longer valid, and ii) unbroken cohesive zone.

at the fracture tips, thereby improving the numerical stability of the model. Additionally,

fracture models based on Griffith’s criterion cannot really predict fracture initiation, which

is made possible in the cohesive element approach.

Sarris and Papanastasiou (2011b) used cohesive elements to model the propagation of

a plane strain single hydraulic fracture. By taking advantage of the problem symmetry,

they reduced the problem to one-fourth. They considered poroelasticity for the cohesive ele-

ments and both poroelastic and elastic models for the matrix. Later, Chen (2012) extended

this method for modeling penny-shaped hydraulic fractures using cohesive elements. They

examined the influence of the opening fracture and injection pressure variation at critical

separation at damage initiation (δ0), cohesive strength (Tmax), and the ratio of critical sep-

aration and failure damage (α). Chen’s simulation considered the surrounding rock as an

elastic medium and modeled the problem with axisymmetric geometry.

In this chapter, it is shown that fracture intersection can be modeled using CZM using the

propose Semicircular Bending Test (SCBT) described in the previous chapter to determine

cohesive properties of rock and cemented natural fractures. Parameter sensitivity studies

provided in this chapter will help understand the role of different parameters to determine

whether fracture crosses over the natural fracture or not.
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4.2 Numerical Definition at the Intersection

Natural fractures and possible paths for the growth of the hydraulic fracture are defined with

cohesive elements. Cohesive elements used here are linear quadrilateral coupled poroelastic

elements. Each element consists of two pressure nodes (yellow dots for approach hydraulic

fracture and green dots for intersected natural fracture) and four displacement nodes (red

dots). Swept orientation for these cohesive elements is defined in the fracture opening di-

rection. Pressure nodes are located at the middle of the element side in the direction of

fracture propagation. At all the intersection points, path orientation is assumed to be the

same as the approach hydraulic fracture (Figure 4.2,a). To assure the fluid flow continuity

at the intersection, left pressure node of the element associated with approaching fracture

and bottom pressure node of the intersected fracture is linked, and right pressure node of

the cohesive element of the approaching crack is linked with the upper pressure node of the

element corresponding to the intersected fracture (Figure 4.2,b).

Figure 4.2: Sketch of cohesive elements arrangement at the intersection of a growing hydraulic
fracture and a pre-existing natural fracture: a) before propagation reaching the intersection
point, b) zoom-in of coupling of pressure nodes at the intersection, c) case when fracture
crosses over the natural fracture, and d) diversion of the hydraulic fracture into natural
fracture
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Then, the direction of fracture propagation at the intersection is determined as it provides

a larger relative energy release rate, which is determined not only by local differential stresses

but also by the cohesive properties of rock and natural fractures. Figure 4.2,c and 4.2,d show

different scenarios that may occur at the intersection like fracture crossover or diversion into

the natural fracture, respectively.

Continuation of fracture propagation inside the natural fracture after diversion also de-

pends on the relative energy rate ratio between propagation through the intact rock or

through the natural fracture (Dahi-Taleghani, 2010).

Keeping δ0 and δf for both rock and natural fracture constant, then the ratio of the

fracture energy of rock and natural fracture will remain equal to the ratio of the maximum

tensile strength of rock and cemented natural fracture as shown in Equation 4.1.

Factor =
[Gc]NF
[Gc]HF

=
[Tmax]NF
[Tmax]HF

=
[Kn]NF
[Kn]HF

(4.1)

Values of Factor 0.2 and 3, based on values of Table 3.1, were considered in the simulations

(Figure 4.3).

Figure 4.3: Cohesive properties of the formation rock and cemented natural fractures. a)
rock with weaker cohesive properties, b) rock with stronger cohesive properties in comparison
to the cemented natural fractures
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4.3 Validation of CZM: Hydraulic Fracturing Opening in Presence of Natural
Fracture

Blanton (1982) provided an equation that shows if the opening of the hydraulic fracture will

be crossed, diverted or arrested once it reaches a natural fracture (Equation 4.2). If angle

vs. differential horizontal stress field are plotted for a constant fracture energy, a line curve

as shown in figure 4.4 is obtained. The hydraulic fracture opening will be diverted through

natural fracture for any point below this curve. On the other side, the hydraulic fracture

will cross the natural fracture at any point above this curve. Blanton also pointed out that

a point close to this line will result in arresting of the opening of the hydraulic fracture.

Figure 4.4: Plot to define whether the opening of the hydraulic fracture will be diverted,
crossing or arrested once it reaches a natural fracture based on differential horizontal stress
and angle (Blanton, 1982).

σH − σh =

√
πEGn

4(1− ν2)L

sin(θ)2
(4.2)

where L is the distance from the injection point to the intersection, and θ is the angle

between the fractures.
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Eight different cases were considered to verify the solution: four cases for constant angle

and different horizontal stress field (1, 2, 3, and 4 MPa cross points in figure 4.4), and

four cases for constant horizontal stress field and four different angles (30, 45, 60, and 90

degrees’ blue squares points in figure 4.4). Figure 4.5 shows the opening of hydraulic fracture

and natural fracture (left and right plot in figure 4.5 respectively). It can be seen that the

hydraulic fracture opening is diverted through the natural fracture for case 1 and 2 MPa

and that the opening crosses the natural fracture for case 3, and 4 MPa which is expected

based on results of figure 4.4 (blue square points).

Figure 4.5: Opening when natural fracture path intersects hydraulic fracture with differential
horizontal stress field of 1, 2, 3, and 4 MPa. The left picture shows the opening of the
hydraulic fracture and the right picture shows the opening of the natural fracture. X-axis at
zero mts shows the intersection between the fractures.

In the simulations carried out, the natural fracture path intersects the hydraulic fracture

path at 30, 45, 60, and 90 degrees. Results in figure 4.6 show that opening of the natural

fracture reduces as the angle of intersection increases. It can be seen that all cases show

the opening of the hydraulic fracture diverts through natural fracture path except for a

90-degrees case, which crosses the natural fracture. These observations explain the sharp

changes in the fracture path that create bottlenecks in fractures, which can cause challenges

in proppant transport regardless of rock or fracturing fluid properties. The industry is very

familiar with the concept of near wellbore and tip screenout. Based on these simulations, it

is possible to conclude that screenouts may occur due to the intersection of natural fractures

unless fine proppants like mesh 100 or mesh 120 are used for propping fractures.
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Figure 4.6: Opening when natural fracture path intersects hydraulic fracture at 30, 45, 60,
and 90 degrees. The left picture shows opening of hydraulic fracture, and the right picture
shows opening of natural fracture. X-axis at zero meters shows the intersection between the
fractures.

4.4 Results

Figure 4.7 shows finite element meshes built for modeling interaction between hydraulic

fracture and natural fractures. In Figure 4.7,a, both fractures are perpendicular to each

other (like Barnett Shale) while in Figure 4.7,b, they are at a 45 degrees angle with each

other. Table 3.1 summarizes the properties of the bulk rock and cohesive parameters used in

case A and B. The injection point is located at the hydraulic fracture path and 1.00 meter

away the intersection with the natural fracture.

Figure 4.7: Sketch of the model in Abaqus software to simulate the intersection of a hydraulic
fracture (horizontal red line) and a natural fracture (vertical red line) for 90 degrees (Left
figure) and 45 degrees (Right figure).
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Figure 4.8: Cohesive properties of hydraulic fracture and natural fracture for case A and B.

Two parameter sensitivity studies are implemented here to show the effect of different

cohesive parameters on the interaction between a growing hydraulic fracture and intersected

natural fracture: The first parameter to be tested is the tensile strength of cement inside

natural fracture Tmax (Case A) while keeping ductility of the rock constant i.e. (δf , and δ0),

obviously a change of the cement strength will change the fracture toughness proportionally

(see Figure 4.8,a). In the previous works of Dahi Taleghani and Olson (2011), only fracture

toughness of the rock is considered to determine whether hydraulic fracture diverts into the

natural fracture or crosses over. As an example, quartz can be represented as a natural

cement with high strength and calcite as a one with low strength. In the second case

(Case B), the toughness of the rock is kept constant while ductility of the rock is changed

by changing the critical final opening δf Figure 4.8,b shows how cohesive parameters are

changing in this case.

The cases analyzed in this chapter are summarized in Table 4.1

4.4.1 Case A. Effect of the Natural Cement Strength

In the first case, a hydraulic fracture intersects the natural fracture at a right angle with

a tensile strength that is 20 percent of the value of the tensile strength of the intact rock

(Figure 4.8,a). It can be seen that the fracture propagates until it reaches the intersection

with the natural crack; then, the hydraulic fracture increases in width without further growth
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Table 4.1: Cases analyzed for two-dimensional model

A Natural Strength
B Cement Ductility
C Non-Perpendicular Fracture Intersection
D Natural fracture with weak bonding (Factor=0.2)
E Natural fracture with strong cement bonds (Factor=1)
F Weak cement bonds in the natural fracture (Factor=0.2)
G Natural fractures with strong cement bonds (Factor=1)
H MultiNatural fractures with weak bonding (Factor=0.2)

in the matrix. Therefore, pumping more fluid leads to a wider rather than a longer fracture

(Figure 4.9,a). In the case of limited proppant entry into the natural fracture system,

this situation can be interpreted like a screenout as the liquid phase of the fracturing fluid

drains into the natural fracture system and the fracturing fluid starts dehydrating inside

the hydraulic fracture. However, the hydraulic fracture continues its propagation along the

natural fracture; a choke is observed along the fracture inside natural crack (See the deflection

point in Figure 4.9,b) which is in agreement without other numerical results for intersections

(Dahi-Taleghani and Olson, 2011). The pressure of the hydraulic fracture propagates until

reaching the intersection and beyond this point the hydraulic fracture is only ballooning

without further growth (Figure 4.9,c). Even in the case of very high fracture toughness

(tensile strength) in the natural fracture, CZM always predicts some limited reactivation

along natural fractures. The pressure drop along the natural fracture was not considerable

(Figure 4.9,d).

In the second case, the behavior of hydraulic fracture is tested when the natural fracture

has tensile strength 10 times bigger than tensile strength of the hydraulic fracture (Figure

4.8,a). Figure 4.10,a shows that the opening of the hydraulic fracture is normal until reaching

the intersection with the natural fracture. After this point, the hydraulic fracture is arrested

at the intersection but continues its propagation in the other wing side, i.e., asymmetric

fracture propagation similar to scenarios earlier discussed by Zhang and Jeffrey (2008). Fig-

ure 4.10,b shows how the pressure regularly develops until reaching the intersection with the
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Figure 4.9: Perpendicular model, case A with factor 0.2, (a) hydraulic fracture opening, (b)
natural fracture opening, (c) pressure propagation along hydraulic fracture path, and (d)
pressure propagation along natural fracture path

natural fracture. Beyond this point, the fracture propagates only in the left-hand side till

ths fracture builds-up enough pressure to divert back into the matrix on the right side.

Figure 4.10: Perpendicular model, case A with factor 10, (a) hydraulic fracture opening. (b)
Pressure profile along hydraulic fracture path
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4.4.2 Case B. Natural Cement Ductility

In case B, behavior of hydraulic fracture, which is perpendicular to intersecting natural

fracture with 20 percent lower failure opening (δf ) while tensile strength is increased to keep

the fracture toughness constant (Figure 4.8,b). Hydraulic fracture and natural fracture show

similar opening and pressure behavior that were observed in case A (Figure 4.11). On the

other side, different behavior is observed for the hydraulic fracture when the tensile strength

is 5 times bigger than the value of the tensile strength of the hydraulic fracture with lower

failure opening (δf ), compared to the corresponding failure opening of the hydraulic fracture

(Figure 4.8,b). It can be seen in Figure 4.12,a that the hydraulic fracture crosses the natural

fracture, but the fracture opening is slower in the right-hand side than in the left-hand side of

the hydraulic fracture. The opening of the natural fracture is not observed, but the geometry

of the hydraulic fracture is affected by the presence of the natural fracture.

Figure 4.11: Perpendicular model, case B with factor 0.2, (a) hydraulic fracture opening.
(b) natural fracture opening, (c) pressure propagation along hydraulic fracture path, (d)
pressure propagation along natural fracture path.
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Figure 4.12: Perpendicular model, case A with factor 0.2, (a) Hydraulic fracture opening,
(b) pressure propagation along natural fracture path

4.4.3 Case C. Non-Perpendicular Fracture Intersection

Natural fractures usually are not perpendicular to the direction of current maximum hori-

zontal stress. Therefore, it is considered a non-perpendicular (45 degrees) intersection for

previous cases A and B (Figure 4.8,a) and factors of 0.2, 1, and 2 for cement tensile strength.

It can be seen for all cases that opening of hydraulic fracturing is deflected by the presence

of a natural fracture, and the fracture only propagates along the preferred side of the natural

fracture, while the main fracture gets wider (ballooning). Considering the height constraint

in three-dimensional geometries, ballooning is not a stable process and leads to resumption

of fracture growth in the main branch (Figure 4.13,b).

Figure 4.13: Opening (left) and pressure (right) propagates only in the left side of the
hydraulic fracture.
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The investigation in this chapter was limited to two-dimensional methods here. The key

simplification is that the plane strain model assumes that the fracture is infinite in extent

in one direction. This is not necessarily a good assumption, but the presented model is a

preliminary model testing an entirely new method, and for computational simplicity, it was

chosen to sacrifice the three-dimensional aspects of the problem. A more reliable model must

ultimately add those three-dimensional aspects back in the calculation. Hence, the three-

dimensional analysis is required to solve this problem in the general case for multilayered

geological systems. The main obstacle to extending this tool to three-dimensional analysis

is the computational time. The finite element mesh at the intersection of the fractures

should be defined in such a way that fracture behavior at the intersection point would be

dependent on local stresses and cohesive parameters rather than the mesh configuration. The

models presented here assumed no hydraulic communication with natural fractures before

being opened by the hydraulic fracture. In other words, natural fractures are assumed to be

occluded with diagenetic materials. Cases for interaction with single and multiple natural

fractures are presented to show the robustness of this approach.

4.4.4 Case D: Natural fracture with weak bonding (Factor=0.2)

Figure 4.14,a and ,b show opening of the hydraulic fracture along its original path and along

the natural fracture, respectively. It can be seen how the opening of the hydraulic fracture is

expanding normally until the fracture tip reaches the intersection with the natural fracture.

Beyond this point, hydraulic fracture opening is reduced in width due the fact that the

natural fracture takes most of the pumped fluid, hereafter. The right-side opening of the

hydraulic fracture seems to become wider than the opening at the injection point due to this

change in fluid movement. The opening in the left-side of the hydraulic fracture continues

propagating but at a lower speed than before the hydraulic fracture reached the intersection

with a natural fracture.
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Figure 4.14: The opening profile for Factor=0.2. a) Opening of the hydraulic fracture with
intersection point at 40 m. away from the wellbore. b) Opening along the natural fracture

Figure 4.15,a shows pressure front propagation along the original path of the hydraulic

fracture. It can be seen how the pressure profile has the same pressure all along the open

fracture at that time. With time, the following profiles have lower pressures for larger

fracture lengths. Right-side pressure propagation is arrested once the hydraulic fracture

profile reaches the intersection with the natural fracture. Figure 4.15,b shows pressure front

propagation in the natural fracture in the wing with a larger angle with the original direction

of the hydraulic fracture. Pressure declination in the natural fracture with time is lower than

pressure declination of hydraulic fracture due to propagation along natural fracture requiring

higher energy to keep propagating in the new direction.

Figure 4.15: Pressure profile for Factor=0.2. a) hydraulic fracture and b) natural fracture
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4.4.5 Case E: Natural fractures with strong cement bonds (Factor=1)

Figure 4.16,a shows total opening of hydraulic fracture at different times. It can be seen

that the opening is normal in both wings of the hydraulic fracture. The presence of natural

fracture does not affect the propagation of hydraulic fracture essentially because the opening

of natural fractures did not occur.

Figure 4.16: a) The opening profile of hydraulic fracture for Factor=1.0. Presence of natural
fracture did not affect the opening in the hydraulic fracture. b) Pressure profile of hydraulic
fracture

Figure 4.17: Bottomhole net pressure is compared when the hydraulic fracture crosses the
fracture and when the path is diverted through natural fracture path

Figure 4.16,b shows the pressure profiles of hydraulic fracture at different times. It can

be seen that pressure front propagation is also normal and symmetric on both wings. Figure

4.17 shows the net pressure profile for the case of weak natural fracture i.e. Factor=0.2 (red
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line) and strong natural fracture i.e. Factor=1 (blue line). For Factor 0.2, it can be seen

that pressure is increasing until the breakdown point is reached. Subsequently, the pressure

declines slowly until hydraulic fracture tip reaches the intersection with the natural fracture.

Net pressure after that time shows a larger pressure drop than when the hydraulic fracture

was propagating. In addition, it can be seen that after that pressure drop, net pressure

seems to remain almost constant due to the pressure necessary to let the natural fracture

propagates. For Factor=1, a similar net pressure behavior can be seen at the beginning.

Beyond this point, net pressure remains almost constant as the hydraulic fracture propagates,

as hydraulic fracture needs less energy to continue propagating once it crosses the natural

fractures. The last segment of net pressure starts to increase due boundary effects. According

to Nolte and Smith (1981), positive slope corresponds to propagation in length, mode III. It

can be seen how for Factor=1 that the slope is slightly higher than zero, which agrees with

the Nolte-Smith pressure analysis theory. Nevertheless, for Factor=0.2, the negative slope,

mode IV, rather corresponds to an increase in fracture length, corresponding to the opening

that has diverted through the natural fracture. It can be seen as a slightly negative slope

during hydraulic fracture propagation along the natural fracture.

Figure 4.18,a shows the bottomhole net pressure response for three different differential

stresses (when maximum horizontal stress is equal, 5 and 10 percent higher than the mini-

mum horizontal stress, respectively) for Factor 0.2 and 1. It can be seen for factor 0.2 that

the lower net pressure drop corresponds to isotropic stress conditions, which look similar

to Factor 1 case until natural fracture creates the net pressure drop in the last part. For

anisotropic tectonic stress conditions, it can be seen that net pressure drop occurs at earlier

times because propagation is faster and the negative slope corresponds to mode IV. There-

fore, it means that propagation is not along the original hydraulic fracture path but in a

different direction.
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Figure 4.18: Net pressure comparison for different stress fields for sketch: a) 45 degrees and
b) 90 degrees for different stress fields

In cases 3 and 4, a situation is considered where natural fractures are aligned in the

direction parallel to current minimum horizontal stress. Hence, hydraulic fractures are ap-

proaching natural fractures at 90 degrees. Barnet shale is a good example of this situation.

4.4.6 Case F: Weak cement bonds in the natural fracture (Factor=0.2)

Figure 4.19,a and ,b show the opening hydraulic fracture and a portion of the hydraulic

fracture that is diverted into the natural fracture at different times, respectively. It can be

seen how hydraulic fracture propagation on the other end is slowed down as most of the

pumped fluid is moving to open the natural fracture toward one of its wings; although, after

a while, the other wing of natural fracture may open up. This phenomenon can be explained

by the high lower energy that is required to open natural fracture in comparison to the intact

rock. The magnitude of the opening in the hydraulic fracture and its comparison with the

opening of the natural fracture confirms this situation. Additionally, the net pressure was

obtained from the same three stress fields (Figure 4.18b). Net pressure drop occurs almost

at the same time for Factor 0.2 case, and declination looks linear in the log-log plot.

4.4.7 Case G: Natural fractures with strong cement bonds (Factor=1)

Similar behavior is observed like results shown in Figure 4.16,a and ,b. Hydraulic fracture

propagation is propagated as the natural fracture does not exist. This is expected when

hydraulic fracture propagates regardless of the angle of the natural fracture when the prop-
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Figure 4.19: Opening profile for the case with Factor=0.2. a) Opening along the original
path of the hydraulic fracture. b) The opening of the part of hydraulic fracture expanded
along the natural fracture

erties of the natural fracture are greater than the properties of the hydraulic fracture. The

difference in stress field (Figure 4.18,b) also did not affect net pressure, which is always

higher than what it is in the Factor 0.2 case.

4.4.8 Interaction with multiple natural fractures

Similar to the case with a single natural fracture, simulations are carried out for a hydraulic

fracture executed in a formation with more than one set of natural fractures or a grid of

natural fractures at a 90 degrees angle with respect to each other as shown in Figure 4.20.

Natural fracture distribution in Marcellus shale is very similar to this configuration. The

initial hydraulic fracture path is represented by one east-west fracture at the center of the

sketch. Natural fractures are represented by four east-west and four north-south fractures,

which are equally spaced. It is considered two different geometries: 1) fractures have equal

spacing of 5 meters for a model with dimensions of 100 x 100 meters, and 2) fractures with

24m spacing (Figure 4.20). The wellbore in these models is located in the middle of the

middle east-west fracture in the center.

The injection is assumed to lead to laminar flow, the possible tortuosity because of

the complex nonplanar geometry and turbulence due to high injection rates is neglected.

Lubrication equation is assumed to be sufficient to describe fluid flow inside the fracture
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Figure 4.20: Computational models built to simulate the propagation of a hydraulic fracture
in a network of natural fractures are shown above. a) sketch with a spacing of 5 meters
between fractures, and b) spacing of 24 meters in the horizontal direction and 16 meters in
the vertical direction. The wellbore in both sketches is shown by a black dot in the center

network. The reservoir rock is modeled with 4-node plane strain elastic elements. Fractures

are modeled with 6-node cohesive elements. Due to large stress concentration around fracture

tips, a fine mesh is used close to the fractures to assure the accuracy of the solution and

coarse mesh was used in the borders to reduce the computational cost. The mesh grid in

both sketches is not included in the below figure to avoid losing the visualization of fracture

paths.

Case H: Natural fracture with weak bonding (Factor=0.2)

Due to the weak bonding of natural fractures, the hydraulic fracture is diverted into the

intersected fractures. Now, hydraulic fracture no longer propagates perpendicular to the

direction of the minimum horizontal stress. Beyond this point, fracture propagation mainly

occurs along natural fracture paths. In contrast to the case for single natural fracture

(Figure 4.18,b) in which the net pressure was declining, for this case, net pressure increases

as propagating fracture strands squeeze each other.

Figure 4.21,a shows for Factor=0.2 case that net pressure increases until it reaches break-

down. Subsequently, the pressure declines slowly as the hydraulic fracture propagates. Then
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a second pressure drop occurs when hydraulic fracture tip reaches the intersection with the

natural fracture. The difference in stress field would not affect the net pressure drop when

the natural fracture is felt. Lower net pressure drop is observed as anisotropy stress field

increases.

Figure 4.21: Net pressure behavior for a) sketch with 5 meters spacing among fractures, and
b) higher spacing among the fractures
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Chapter 5
Three-dimensional Hydraulic Fractur-
ing Model

5.1 Introduction

Hydraulic fracturing is recognized as a solution for wellbores that cannot produce by itself

after perforations due to the very low permeability of the reservoir rock. The treatment

consists of pumping viscous fluid at high rates increasing the pressure at the formation

until the rock breaks, and the fluid continues flowing through the expanding fracture. In a

homogeneous isotropic formation, double wing symmetric fracture is expected to form in the

subsurface (see Figure 5.1, a), however, Geometry and propagation of the hydraulic fracture

may change due to the presence of natural fractures (Figure 5.1, b) to form a non-planar

fracture.

Natural fractures (with length of meters) surrounding the wellbore may affect the direc-

tion of the hydraulic fracture propagation. These natural fractures might not be detected by

conventional tools such as well logs, cores samples, and seismic due logs ratio of investigation

is just few feet, cores samples are of small size, and seismic resolution can detect discontinu-

ities higher than 30 meters. Figure 5.2 shows an example of Mexican oil field which consist

of Upper Paleocene-Lower Eocene alternating sandstone and shale bodies. It can be seen

a wide variation in clay-shale content and not continuous laminar extension thought the

reservoir.
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Figure 5.1: a) Schematic representation of a layered reservoir with natural fractures, where
the ideal hydraulic fracture path (red dotted line) is expected to be perpendicular to the
minimum horizontal stress (σ2), b) probable hydraulic fracture geometry in the presence of
natural fractures, which resembles the situation in the field.

Moreover, facies changes, which consist of sandstone and sand-rich alternating beds of

sandstone (Abbaszadeh, 2003), promote rock properties changes through layering. At well-

bore level, it can be seen in the gamma-ray log (left picture) that intercalation between

sandstone and shales might be important in the pay zone. At seismic scale (right figure),

discontinuity and pinch-outs make assuming uniform height fracture impossible, hence typ-

ical 2D models like PKN and KGD hydraulic fractures (Khristianovic and Zheltov, 1955,

Perkins and Kern, 1961, Geertsma and De Klerk, 1969, Nordgren, 1972) even pseuso-3D

models (Simonson et. al , 1978, Mack and Warpinski, 2000) cannot be fruitful to catch

height varying geometry of these fractureseven pseuso-3D models.

Different analytical and numerical models have been proposed for two- and three-dimensional

geometries, however almost all of these models are limited to simplified geometries. In two-

dimensions, Perkins and Kern (1961) and Nordgren (1972) formulated the famous PKN

model, which represents the hydraulic fracture geometry better for fracture with larger frac-

ture compared with its height. Khristianovic and Zheltov (1955) and Geertsma and De

Klerk (1969) formulated the famous KDG model, which represent the hydraulic fracture

geometry better for fracture with smaller fracture length than its height. These models do

not consider vertical variations in layering. First approaches to three-dimensional models
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Figure 5.2: . Selection of the proper zone to perforate need to take in account interlayering
of the rock at wellbore level and continuity of these layers through the reservoir. Left picture
show gamma ray log intercalation of sandstone and shale. Right picture shows seismic and
cross section of an unconventional reservoir basin with pinch-outs and discontinuities in
Mexico.

were an extension of two-dimensional formulations. The first models were Pseudo-three-

dimensional (P3D) (Simonson et. al , 1978) and planar 3D (PL3D) models (Clifton et. al ,

1981). In P3D models; there are two types of approaches: cell-based and lumped models

(Mack and Warpinski, 2000). In cell-based, the fracture length is sub-divided into a series

of PKN-like cells. Lumped model divides the geometry of the fracture in two half-ellipses.

Fracture length, the tip of the top and bottom ellipses are calculated every step time. In

planar 3D models (PL3D), fluid flow equations and geometry of the fracture are described

by a two-dimensional mesh of cells.

Linear Elastic Fracture Mechanics (LEFM) has been very successful in describing me-

chanics of fracture in brittle rocks. However, the success story has not repeated in the case

of soft rocks (Atkinson and Meredith, 1987). LEFM neglects the details in the fracture pro-

cess zone as it lumps all effects into the fracture tip stress singularity; however, a detailed

description of the fracture process zone could be essential to understanding fracture behavior

at the intersections or heterogeneous interfaces. In these situations, the size of the fracture
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process zone is larger than the grain size, which violates the fundamental assumption of

LEFM. Griffiths criterion states that fracture will propagate once fracture energy reaches

the critical energy associated with the toughness of the rock (Griffith, 1921). However, this

criterion is only limited to non-cohesive materials and can only predict the propagation of

pre-existing fractures, not their initiation.

Cohesive Zone Method (CZM) has primarily evolved initially from the Dugdale-Barenblatt

model (Dugdale, 1960, Barenblatt, 1962). In CZM, the fracture process is lumped into the

fracture line and is characterized by a cohesive law that relates tractions and displacement

jump across cohesive surfaces (T − δ). Therefore, the rock behavior during fracturing is de-

scribed by two constitutive laws: a linear stress-strain relationship for the bulk matrix and

a cohesive surface relationship (cohesive law) that allows spontaneous prediction of fracture

initiation and growth.

Hydraulic fracturing simulation in three-dimensional model has been extensively used in

Linear Elastic Fracture Mechanics (LEFM) to solve different problems such as in-situ stress

contrast between barriers and pay layers which is the major factor that controlled fracture

height (Warpinski et. al , 1982, Teufel et. al , 1984), fracture toughness which fairly affect

both fracture height and propagation (Thiercelin et. al , 1989), lower modulus of barrier

zone may restrict the fracture height (Smith et. al , 2001, Gu et. al , 2006), shear strength of

the interface between barrier zone and pay zone is small at shallow depths (Daneshy, 2009).

However, few publications related to three-dimensional model using cohesive elements have

been published. Zhang et. al (2010) used CZM in a three-dimensional model for hydraulic

fracturing in horizontal wellbores in Daquing Oilfield, China. Zhang confirmed that in-

situ stresses contrast has a higher impact on the hydraulic fracture geometry growth than

others parameters such as modulus, tensile strength, and viscosity injection fluid. Wang

et. al (2012) build multilayer 3D model for a horizontal wellbore to study the influence of

in-situ stress field, elastic modulus, and tensile strength. They found that higher in-situ

stress, lower elastic modulus, and higher tensile strength of barrier zones would promote
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height reduced and fracture length enlarged. Wang et. al (2015) found that serious slippage

between barrier and pay layer occurs, fracture tip becomes blunted, and fracture height is

controlled when the shear strength of interface is lower than a critical value. No publications

have been found at this moment related to the multi-fracture system using cohesive elements

in a three-dimensional model.

The objective of this chapter is to develop a simulation tool based on CZM to predict and

understand changes in the net pressure response in fracturing treatment to identify discon-

tinuities and/or interlayer changes. The methodology described in this paper consists of the

following steps: First, cohesive parameters are obtained by fitting load-displacement curve

obtained from laboratory experiments with the numerical models. Those parameters were

used as a benchmark (after upscaling) to simulate field-scale hydraulic fracturing problems.

A special modification is proposed to present elements containing fracture intersection to

assure fluid flow and displacement continuity. In the following sections, we briefly discuss

fracture interactions and cohesive zone method theory. In the results and discussion section,

we will discuss the main results obtained in this study and the sensitivity analysis for some

of the main parameters.

5.2 Numerical Implementation

Natural fractures and possible paths for the growth of the hydraulic fracture in the formation

are defined with cohesive elements. Cohesive elements used here are linear quadrilateral cou-

pled poroelastic elements (Figure 5.3). Each element consists of two pressure nodes (yellow

dots for the approaching hydraulic fracture and green dots for the intersected natural frac-

ture) and four displacement nodes (red dots). Swept orientation for these cohesive elements

is defined in the fracture opening direction. Pressure nodes are located in the middle of the

element sides in the direction of fracture propagation. To assure the fluid flow continuity

at the intersection, the left pressure node of the element associated with the approaching

fracture and bottom pressure node of the intersected fracture are linked, and right pres-
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sure node of the cohesive element of the approaching crack is linked with the upper-pressure

node of the element corresponding to the intersected fracture. Then, the direction of fracture

propagation at the intersection is determined as the direction that provides larger relative

energy release rate, which is determined not only by local differential stresses but also by

the cohesive properties of rock and natural fracture.

Figure 5.3: Sketch of cohesive elements arrangement at the intersection of a growing hydraulic
fracture (orange path) and a pre-existing natural fracture (blue path). Zoom figure shows
the share pressure nodes to assure the fluid flow continuity.

Cohesive parameters extracted from lab experiments based on the method described in

the previous section are used, in this section, as benchmark values for running simulations in

the field-scale. In this example, a natural fracture crosses the hydraulic fracture path at 30

degrees. The injection point is 10 meters away from the intersection between the fractures.

A three-dimensional finite element model is built to define the reservoir rock using 6-

node linear triangular prism elements; the model dimensions are 100 m x 50 m x 5 m.

A cohesive layer is inserted in the middle of the model to represent a possible path for

fracture propagation using 12-node three-dimensional coupled cohesive elements consisted

of 8 displacement nodes and 4 pore pressure nodes. Displacements at the boundaries of the

model are constrained in the normal direction to impose height growth constraint out of

the model. Figure 7 shows a sketch of the reservoir mesh with 294,000 elements and red
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lines represent the cohesive elements for hydraulic and natural fracture paths with 3,727

elements. The nonlinear constitutive equation of the cohesive elements and their coupled

nature increase the computational cost of simulations to limit them to smallest possible

model with no boundary effect.

Figure 5.4: : Numerical sketch or the reservoir (green elements) and the path of the two
cracks (red lines).

To better identify the configuration of the model demonstrated in Figure 5.4, Figure 5.5

shows the schematics of the formation rock in green, a possible hydraulic fracture path in

orange, and the natural fracture in blue. The yellow zone on the left side of the hydraulic

fracture path represent the zone where one or more layers will have different elastic properties

(tougher or weaker) from the rest of the hydraulic path. That means that in both hydraulic

and natural fractures, the layers cohesive properties might be different from the rest of the

hydraulic fracture path. Well change the rock properties of these layers to understand how

net pressure response will change. The beginning of the tougher/weaker zone is 5 meters

away from the injection point and 15 meters away from the intersection of the fractures.

Then, first the net pressure response of the tougher/weaker zone and later the effect of the

intersection is expected to be seen.

69



Figure 5.5: Schematic representation of three-dimensional model of one hydraulic fracture
path (orange) that is intersected by a natural fracture at 30 degree (blue). Yellow zone
represents lower or higher cohesive rock properties in the hydraulic fracture path (yellow).
Injection point is 10 meters away of the intersection of the fractures and five meters away
the beginning of the plug zone.

5.3 Validation of CZM: Hydraulic Fracturing 3D model

To validate the three-dimensional model, we use analytical solution from Dean and Schmidt

(2009). It can be seen that numerical model using cohesive elements show similar opening

with analytical solution (Figure 5.6).

xf =

{
QEt√

π(1− ν2)KIC∆z

}2/3

(5.1)

where xf is the half-fracture length, Q is the injection rate, E is Young’s modulus, ν is

Poisson’s ratio, KIC is the fracture toughness, and ∆z is the height of the hydraulic fracture.
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Figure 5.6: Comparison of half fracture length shows that analytical solution (Equation 5.1)
gives higher fracture length than numerical model using cohesive elements.

5.4 Results and Discussion

Net pressure response was analyzed when the hydraulic fracture had different cohesive prop-

erties through its path. A zone with different rock properties (tougher/weaker) than the rest

of the layer is defined (yellow color) in Figure 5.5 which is 5 meters away from the injection

point and 15 meters away from the intersection. In this way, the response of the net pressure

of the tougher/weaker zone earlier than the response of the intersection is expected to be

seen. The opening of the fracture will be diverted through the natural fracture path when

the cohesive critical energy is lower (1/5) in the direction of the natural fracture than in the

direction of the hydraulic fracture. Blue line in Figure 5.7 shows net pressure is increasing

like in conventional analysis of Nolte-Smith pressure interpretation (Nolte and Smith, 1981)

because the hydraulic fracture is growing in a vertical direction up to reach the upper and

lower boundaries at 23 seconds. Beyond this point, net pressure declines up to 160 seconds

where is the time that net pressure reaches the intersection. An additional pressure drop is

observed beyond this point because the propagation has changed the direction; now, through

the natural fracture path.
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The cases analyzed in this chapter are summarized in Table 5.1

Table 5.1: Cases analyzed for three-dimensional model

A Plug in the middle hydraulic fracture path
B Plug in the 2- and 4-layer of hydraulic fracture path
C Plug in the 4- and 5-layer of hydraulic fracture path

In the first case, the tougher/weaker zone is located in the middle layer (Figure 5.7).

We tested two scenarios: weak middle layer, where the critical energy of the yellow zone is

1/5 (red line) smaller than the rest of the layer; and tough middle layer, where the critical

energy is five times (green line) larger than the rest of the layer. The red line shows an

additional net pressure drop at 81 seconds because the effect of the weak weaker zone. It

can be seen that the rest of the net pressure response follows the pattern of the first case

with the difference that is a shift around 7 MPa.

Figure 5.7: Net pressure response for the hydraulic fracture diverting into natural fractures:
1) when weaker layer case is in the natural fracture, and 2) when tougher layer case is in the
middle layer of hydraulic fracture path.
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On the other hand, for the tough zone scenario (green line), we still have the net pressure

drop at 81 seconds, but now the intersection is at the shorter time because the hydraulic

fracture is propagating faster in the direction of the intersection. Both cases continue the

net response of the base case example (blue line) at around 300 seconds because yellow zone

effects no longer affect net pressure response. Figure 5.8 shows contours plot for opening for

both scenarios. It can be noticed that there are no big changes in both openings and net

pressure drop.

Figure 5.8: Case 1. Opening of hydraulic and natural fracture due presences of weak (upper
figure) and tougher (bottom figure) layer on the middle layer of hydraulic fracture path.

In a second case, the tougher/weaker zone is in the second and fourth layers (yellow layers

in Figure 5.9)). In this case, weaker yellow zone effects are felt earlier (at around 75 seconds).

Weaker zones (red line) show higher net pressure drop than tougher yellow zone (green

line) because weak layers make hydraulic fracture propagate faster (Figure 5.10) upper).

Tougher zone show lower net pressure drop because now hydraulic fracture is propagating

asymmetrically in the other direction of the tougher zone (Figure 5.10) bottom).
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Figure 5.9: Case 2. Net pressure response when Tougher/weaker layer is in the middle
layer. Weaker layer case shows extra net pressure drop and Tougher layer case shows faster
propagation in the other direction.

Figure 5.10: Case 2. Opening of hydraulic and natural fractures due presence of weak layer
(upper figure) and tough (bottom figure) layer on the 2- and 4-layer of hydraulic fracture
path.
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In a third case, the tougher/weaker zone is in the fourth and fifth layers (in Figure 5.11).

In this case, maximum net pressure, due to boundary effects, is reached at different times

and at different magnitudes. Weak zone (red line) show at 18 minutes the effect of lower

boundary (Figure 5.12 upper). Net pressure is kept almost constant until the upper boundary

is reached at 74 seconds. Then, the net pressure drop is smaller than the base case as the

propagation is faster in the wing than the other before reaching the intersection with natural

fracture (140 seconds). On the other hand, tough zone (green line) show boundary effects

at about 43 seconds because of the small height of the fracture (Figure 5.12 bottom). From

43 seconds to 100 seconds, the higher net pressure drop is observed because the fracture is

propagating in three layers in one wing and in 5 layers in the other wing. Intersection effect

is felt at around 100 seconds. Fracture propagation is mainly in the direction of the natural

fracture showing an increase of net pressure response.

Figure 5.11: Case 3. Net pressure response when tougher/weaker layer is 4- and 5- layer.
Weak layer shows lower net pressure drop and tough layer shows faster propagation in the
other direction.
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Figure 5.12: Case 3. Opening of hydraulic and natural fractures due presence of weaker
(upper figure) and tougher (bottom figure) layer on the 4- and 5-layer of hydraulic fracture
path.

5.5 Conclusions

The presence of natural fractures in many unconventional reservoirs, and their interaction

with induced hydraulic fractures is well known and well documented in the literature. Al-

though these fractures are mostly fully cemented with the diagenetic material, due to their

weakness, they can play a significant role in forming complex fracture geometries. Here, a

workflow to simulate three- dimensional simulation to model hydraulic fracture propagation

through natural fractures is presented, which uses coupled fluid flow and cohesive element

methods. A methodology to derive cohesive properties of rock and cemented natural fractures

from a semi-circular bending test is explained. Verification of a single hydraulic fracture and

its interaction with a single natural fracture is presented. Then, simulations with changes of

rock properties in both hydraulic and natural fracture are shown. Net pressure response iden-

tifies changes in rock properties in horizontal and vertical direction. Also, identify changes
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of propagation direction. Cases testing changes in vertical layers were analyzed. Results

show that net pressure can identify changes when hydraulic fracture diverts in another path

different to the maximum horizontal stress. We observed when only one of the five layers is

weaker or tougher than the others; the net pressure response does not change significantly.

However, tougher layer case shows a little higher pressure drop before and after reaches the

intersection. Beyond this point, the net pressure increases until stabilized with the values of

the weaker layer case. Contour plots show a little sharper tip fracture for the weaker layer

case due propagation in this layer moves a little bit faster than the tougher case. We can

highlight that in this case the layer with different rock properties represent 20 percent of

the total height of the layer there is no significant change in net pressure response. For the

case where the tougher/weaker layer represents 40 percent of the total fracture height with

interlayering with other regular layers, we observed that tougher layer arrests the opening of

the fracture in the direction of the tougher layer and promote the opening in the direction

where the intersection is located. Net pressure starts to decrease once the tougher layer is

detected but and there is not big jump once reaches the intersection because the increase of

the net pressure due tougher layer is compensating with a decrease of changes of direction

of propagation. For the weaker layer case, it can notice a higher net pressure drop due the

faster propagation of the fracture in these layers. Contour plots show flat fracture tip due the

weaker layers are interlayering with the regular layers. For the case when tougher/weaker

layers that represent 40 percent of the total fracture height are in the bottom layers, we

observed that tougher layer case that fracture propagation is not completely arrested in the

direction. Moreover, there is fracture propagation above the tougher layer but with lower

fracture width and fracture propagation occurs mainly propagates in the other direction

where the intersection is located. For the weaker layer case, fracture propagation is mainly

in the weaker layers and propagation in the natural fracture is limited.
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Chapter 6
Conclusions and Recommendations

6.1 Summary

The presence of natural fractures in many unconventional reservoirs, and their interaction

with induced hydraulic fractures is widely known in the oil and gas industry. Although these

fractures are mostly fully cemented with diagenetic material, due to their weakness, they

can play a significant role in change fracture pattern geometry. Here, a workflow to simulate

hydraulic fracture propagation through a network of natural fractures was presented that

uses coupled fluid flow and cohesive element methods. The methodology derived in this

dissertation explains how to obtain cohesive parameters from loading curves obtained in

routine semicircular bending tests for any field when laboratory data is available. The

simulations have been implemented in a two-dimensional model (plane strain geometry) and

three-dimensional planar geometries. Here, it is necessary to remark about the increase of

computational cost for two- and three-dimensional models that might make it difficult to

simulate large models with a significant number of fractures due the high refinement required

in the cracks. Both hydraulic and natural fractures are modeled using cohesive elements.

The results show the strong effect of differential stress and orientation of natural fractures

on the induced fracture geometry. One of the differences of modelling fracture intersection

using cohesive zone methods in comparison to LEFM is partial opening of both fractures

under different circumstances, although like LEFM, the fracture will eventually propagate

in the direction leads to more energy release rate.
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Linear Elastic Fracture Mechanics (LEFM) has been very successful in describing the

mechanics of fracture in brittle rocks, however, the success story has not repeated in the

case of soft rocks. LEFM may not be the best tool to deal with problems such as soft shale

rocks, and rock with ductile behavior under high temperature and high-pressure conditions

in the subsurface. Additionally, LEFM neglects the details in the fracture process zone as it

lumps all effects into the fracture tip stress singularity.

Net pressure response of fracture jobs is different when hydraulic fracture geometry is

created in heterogeneous basins. Results show that initially negative and then positive

slope in net pressure plot in heterogeneous reservoirs is not necessarily corresponding to

uncontrolled or controlled height growth that is expected from Nolte-Smith analysis but

probably is because propagation is not occurring in a planar path.

Results show that in addition to toughness ratio of the rock and cements inside the

natural fractures and intersection angle of fractures, the ductility of the diagenetic cement

inside natural fractures could have a significant effect in determining if the hydraulic fracture

diverts into the natural fracture or not. Also, it is showed that toughness of the cement may

be more significant in determining if the hydraulic fracture can continue its growth along

a natural fracture or not. For instance, the hydraulic fracture will be arrested when the

tensile strength of the natural crack is much lower than the tensile strength of the rock and

only fracture widening may occur when the hydraulic fracture intersects a natural crack. On

the other side, the asymmetric opening of the hydraulic fracture will be observed when the

tensile strength of the crack is higher than the tensile strength of the rock.

Generally, three possibilities might occur while hydraulic fracturing in a naturally frac-

tured reservoir: crossing, diverting, or offsetting. Such occurrences are strongly influenced

by rock and fracture cement strength as well as in-situ stress direction relative to the pre-

existing natural fractures (which determines approach angle between hydraulic and natural

fracture). Fracture opening displacement and fluid pressure profiles for those cases were

explained.
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The use of CZM could address current limitations in simulations of hydraulic fracturing

in naturally fractured reservoirs. For instance, the cohesive models are slower than LEFM

methods due to the nonlinear nature of the cohesive laws for fracture initiation and propa-

gation. The main drawbacks of these methods are their inability to predict the fracture path

and the mesh dependency of their parameters. Cohesive zone methods due to the nature

of this method require elements with certain size that make simulations in different length

scales complicated and meaningless as cohesive parameters are also a function of element

size. On the other hand, CZM has the advantages to predefine fracture path allowing the

study of different setups of natural fractures that hydraulic fracture might be found during

a fracture job. Additionally, traction-separation law (TSL) of CZM can be modeled in a

different way to represent rocks with ductile behavior.

More efforts need to be undertaken to understand better when/where/how CZM can be

applicable in fracture jobs in the presence of natural fractures. In the next section, a list of

possible future works to continue based on the research of this dissertation is included.

6.2 Recommendations for Future Works

The following recommendations are made for possible future research about hydraulic frac-

ture treatments in presence of natural fractures:

� Study that includes compressible injection fluid. Reservoir with low reservoir pressure

needs hydraulic fracture with compressible injection fluids such as N2 or CO2. Study

of compressible injection fluids might help to define better the injection fluid for use

in the presence of natural fractures.

� Study that includes non-Newtonian injection fluids. The combination of proppant, high

fluid viscosity, and high pumping injection might change the properties of the injected

fluid during the fracture job. Then, better approach can be obtained studying how
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rheology of fluids might change in the function of injection pumping in heterogeneous

basins.

� Study that includes non-linear natural fracture paths. Ductility of the material con-

tained inside the natural fracture, and anisotropic in-situ stress might influence in the

creation of non-linear natural fractures.

� Study that includes proppant crash during a fracture job. The integrity of proppant

material might be affected during a fracture job causing heterogeneous proppant con-

centration through the geometry of the hydraulic fracture.
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