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Abstract

A new approach to the kinetic simulation of plasmas in complex geometries, based

on the Particle-in-Cell (PIC) simulation method, is explored. In this method, called

the Arbitrary Curvilinear Coordinate PIC (ACC-PIC) method, all essential PIC

operations are carried out on a uniform, unitary square logical domain and mapped

to a nonuniform, boundary fitted physical domain.

We utilize an elliptic grid generation technique known as Winslow’s method

to generate boundary-fitted physical domains. We have derived the logical grid

macroparticle equations of motion based on a canonical transformation of Hamil-

ton’s equations from the physical domain to the logical. These equations of motion

are not seperable, and therefore unable to be integrated using the standard Leapfrog

method. We have developed an extension of the semi-implicit Modified Leapfrog

(ML) integration technique to preserve the symplectic nature of the logical grid par-

ticle mover. We constructed a proof to show that the ML integrator is symplectic
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for systems of arbitrary dimension. We have constructed a generalized, curvilinear

coordinate formulation of Poisson’s equations to solve for the electrostatic fields on

the uniform logical grid. By our formulation, we supply the plasma charge density

on the logical grid as a source term. By the formulations of the logical grid particle

mover and the field equations, the plasma particles are weighted to the uniform logi-

cal grid and the self-consistent mean fields obtained from the solution of the Poisson

equation are interpolated to the particle position on the logical grid. This process

eliminates the complexity associated with the weighting and interpolation processes

on the nonuniform physical grid.

In this work, we explore the feasibility of the ACC-PIC method as a first step to-

wards building a production level, time-adaptive-grid, 3d electromagnetic ACC-PIC

code. We begin by combining the individual components to construct a 1d, electro-

static ACC-PIC code on a stationary nonuniform grid. Several standard physics tests

were used to validate the accuracy of our method in comparison with a standard uni-

form grid PIC code. We then extend the code to two spatial dimensions and repeat

the physics tests on a rectangular domain with both orthogonal and nonorthogonal

meshing in comparison with a standard 2d uniform grid PIC code. As a proof of

principle, we then show the time evolution of an electrostatic plasma oscillation on

an annular domain obtained using Winslow’s method.
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Chapter 1

Introduction

Traditionally, there have been two approaches to the computational modeling of

plasmas. One emphasizes the fluid nature of the plasma system by solving the fluid

equations assuming appropriate closures are chosen [1]. The other emphasizes the ki-

netic interactions between the plasma particles and electromagnetic fields. The fluid

approach is more appropriate for treating large scale properties of plasmas involving

mass, momentum, and flux transport, while the kinetic description provides a more

accurate treatment of localized, short-scale processes in collisionless plasmas [2]. In

this work, we are solely concerned with the kinetic approach to plasma simulation.

The usual basis for analytic treatment of the evolution of a collisionless plasma

is the Vlasov equation [3]:

∂fα

∂t
+ ~v · ∇~xfα +

qα

mα
( ~E + ~v × ~B) · ∇~vfα = 0, (1.1)

where fα(~x,~v, t) is the time-dependent six-dimensional phase space distribution func-

tion of the plasma particles of species α. The Vlasov equation is valid in the regime

in which particle-particle and higher correlations (collisions) can be ignored, and

therefore the electric and magnetic fields, ~E and ~B, in Eqn. (1.1) are mean fields

that obey Maxwell’s equations. Mean field theory says that the electric and magnetic

1



Chapter 1. Introduction

fields seen by the particle are due to the global charge density and currents, thus the

Vlasov equation requires a long-range force field.

While there are numerous models for solving the Vlasov-Maxwell equations (see

for example Refs. [4–6]), the most common approach is known as the Particle-in-

Cell (PIC) method. The basic approach of the PIC model is to represent the phase

space distribution fα as a collection of macroparticles, each representing a given

number of physical plasma particles. The macroparticles evolve self-consistently in

time according to Maxwell’s equations and the Newton-Lorentz force equations. As

such, PIC is capable of retaining most of the physics involved in a collisionless plasma

system, including kinetic and nonlinear effects which cannot be reproduced by fluid

models.

Ironically, the basis for the PIC method was developed by Harlow [7] in 1955 as a

method to study fluid problems. It was soon after extended to kinetic particle simu-

lations by Buneman [8] and Dawson [9]. These precursors to the modern PIC method

used point particles and calculated the forces on each particle via a direct summation

of Coulomb’s law. In the following two decades, improvements were made, many of

which are still in use today. Perhaps the most fundamental improvement was the

introduction of the spatial grid [10, 11] with which the particles are coupled. In the

PIC method, charge and current densities are accumulated on the grid by weight-

ing the particle charges and velocities to the grid with an interpolation function.

Maxwell’s equations are then solved on the grid using the charge and current density

as source terms. The resulting mean fields are then interpolated from the grid to

the particle positions so that forces can be calculated and the particle positions and

velocities updated.

Throughout this thesis, we refer to the process of transferring information from

the particles to the grid as either accumulation or weighting, whereas the process of

transferring information from the grid to the particles is referred to as interpolation.

2



Chapter 1. Introduction

These two steps are crucial to the accuracy of the PIC method, but they are responsi-

ble for the introduction of “particle noise” into the system as we expect to have some

statistical fluctuation in the number of particles per cell as our simulation advances

in time. These fluctuations cause nonuniformities in the grid density, which are then

perpetuated through the subsequent field solve and interpolation steps. Smoother

(broader) weighting functions allow for more control over these density fluctuations

as particles contribute a fraction of their charge to more cells, leading to smoother

density distributions on the grid and reduced noise within the system.

PIC codes are generally designed using rectangular meshes in Cartesian geometry,

but have been extended to cylindrical and spherical geometries. However, extension

to arbitrary grid shapes has proven much more difficult. Jones [12] was among

the first to develop a curvilinear-coordinate PIC method capable of operating on

boundary-conforming grids tailored to accelerator and pulsed-power applications.

Soon after, other codes were developed along similar lines in an effort to model ion

diodes [13, 14] and microwave devices [15] more accurately. These methods involved

generating a nonuniform initial grid based upon the physical boundaries of the sys-

tem and running the PIC components on this physical grid. There are many benefits

to this type of system, such as smoothly curved boundaries in contrast to the “stair-

stepped” boundaries inherent to the rectangular-grid PIC approach. Furthermore,

higher grid density can be placed in areas of interest within the system either stati-

cally or by allowing the grid to adapt dynamically [16, 17] to the problem by following

a prespecified control function. Implemented wisely, such techniques should allow

complex geometries to be simulated at a fraction of the cost associated with using

a uniform grid code in which the entire mesh must assume the same resolution as is

required to resolve the smallest physical features of the system.

These methods are not without their problems, however. Nonuniform grid cells

make it difficult to locate macroparticles on the grid for the charge accumulation
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Chapter 1. Introduction

and field interpolation steps of the PIC method, as well as for enforcing the particle

boundary conditions. In a standard PIC code, particle positions on the uniform grid

are easily determined by dividing the current particle position by the length of the

cells in the system. On a nonuniform grid, this location must be done iteratively [18],

which increases the computational cost of the method. Furthermore, interpolation

on a nonuniform grid becomes much more complicated, as the variations of the

grid change the shape of the interpolation functions, often in a non-trivial way [19].

Finally, as the ratio of the largest to the smallest cell size increases and the number

of particles per cell in the smallest cells becomes small, the amount of noise near the

small cells also increases (assuming the charge per particle is constant). Thus, careful

and often time-consuming gridding strategies must be utilized in such a way that

the noise within the system is kept to a minimal threshold value while the structures

of interest within the system are still resolved. It is therefore worth considering

whether, for the problem of interest, nonuniform grid methods are sufficiently more

accurate to justify their use over the alternate approach of gridding the hell out

of a problem with a uniform grid code, inserting billions of particles to keep noise

levels low, and running it on the largest computer you can find (with triply-periodic

boundary conditions), but with great computer science techniques applied to make

it run faster [20].

More recently, techniques have been devised which allow uniform grid PIC codes

to model complex problems more efficiently by coupling them to other methods

such as the Immersed-Boundary (IB) method [21] or adaptive mesh refinement

(AMR) [22]. With the IB technique, a set of particles is introduced to fill a region

(or form a boundary) occupied by an object. These particles are assigned properties

suitable for describing the object they represent. In this way, the field equations can

be solved everywhere on a uniform grid, thereby avoiding some of the troubles asso-

ciated with grid generation techniques. Unfortunately, the IB method still requires

that in order to resolve areas of interest, the entire grid must be refined. Furthermore,
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without the addition of some external grid adaptation strategy, the grid cells remain

rectangular and fields still experience the effects of the stair-stepped boundary.

The AMR technique applies “patches” of finer gridding within the physical do-

main of the system. In this method, regions of interest can be more finely gridded

while regions of less importance can be more coarsely gridded. If the areas of the

domain that require higher resolution evolve in time, the AMR technique allows for

automatic redistribution of the refined mesh patches following some specified crite-

rion. However, since the AMR technique involves a jump from one level of resolution

to another, it often leads to a spurious self-force on particles close to the patch

boundaries. Furthermore, since the grid does not vary continuously, AMR can lead

to lack of conservation of total charge within the system and electromagnetic models

can see wave reflection off the boundary of the patch. Much work has been put into

controlling and even eliminating these problems [23]. However, the AMR method,

when it is used, is incorporated in standard uniform mesh PIC codes. Thus, complex

boundaries are still modeled using uniformly-shaped grids, leading to stairstepping

and its associated inaccuracies.

We consider the problems associated with these and other existing adaptive grid

PIC approaches to be serious. As such, we have developed a new approach to the

nonuniform grid PIC method, in which we attempt to adapt some of the best features

of several existing methods to a revolutionary new idea for the implementation of the

PIC method. Our ultimate goal is to design a arbitrary, curvilinear-coordinate (ACC)

PIC code capable of operating efficiently and accurately on an arbitrary moving mesh

with grid shapes in multiple geometries by implementing the main components of the

PIC method–the charge accumulation, particle push, field solve and interpolation–on

a uniform, unit square logical (or computational) domain and coupling them with

state-of-the-art methods for moving mesh generation and particle handling.

The building blocks necessary for reaching our ultimate goal of a 3d, electromag-
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Particle Control
Strategy

ACC-PIC 
Components

Adaptive Mesh
Strategy

Particle Control on 
Stationary Mapped Grid

ACC-PIC on 
Moving Mesh

Production Level
ACC-PIC Method

Figure 1.1: Path envisioned for development of production level ACC-PIC method.

netic, time-adaptive ACC-PIC code capable of handling large-scale simulations are

shown schematically in Fig. 1.1. We envision several key areas for the development

of this new method, in which a set of key components can initially be developed

and benchmarked separately, then combined with the ultimate goal of developing a

production level PIC code. We identify these key areas in the top row of Fig. 1.1.

As described above, nonuniform grids can lead to increased amounts of noise in

the system due to differences in the number of particles populating the smallest grid

cells. As such, a particle controlling strategy capable of efficiently and accurately

control the particles within the system such that resolution is maintained in more

important areas of the grid while also controlling the total number particles in the

system must be developed. While several methods of particle and particle noise

control currently exist [24–28], questions surround the accuracy and/or efficiency of
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each.

Another important ingredient is the development of an efficient and robust time

adaptive mesh method. We require an adaptive mesh method capable of follow-

ing a particular control parameter during the evolution of the physical system and

automatically generating high quality (unfolded) meshes. Recent work on a Monge-

Kantorovich grid adaptation approach by Delzanno, et al. [29] has shown great

promise for satisfying our desired adaptive mesh qualities.

In this thesis, we concentrate on the keystone of our method: the development

of the individual PIC components necessary for the ACC-PIC method. By imple-

menting the PIC components on the logical grid, we expect to eliminate the particle

location and interpolation problems that plagued the earlier boundary conforming

non-uniform grid methods [12–15]. Particle locations are easily found on the logical

grid using the same techniques as standard uniform grid PIC codes. Since the charge

accumulation and field interpolation are both done on the logical grid, we are again

able to use the same functions as are utilized in a uniform grid code. Furthermore,

we develop a Hamiltonian-based, semi-implicit symplectic logical grid mover and ap-

ply it to the time advance of the particles that includes the effects of inertial forces.

Since we are moving particles on a square grid, particle boundary conditions, which

may be difficult to implement on a nonuniform physical grid, are fairly simple with

our approach. Finally, we are able to solve the field equations on a simple square

mesh in the logical domain rather than in the complex physical domain.

For this thesis, we have implemented Winslow’s Laplacian method [30] as our

grid generation tool. This method allows us to create a grid that not only exactly

matches the boundary segments of the system, but also concentrates finer gridding

in certain areas near the boundary, e.g. where the radius of curvature is smallest,

via a smoothly varying grid. With methods such as this, we are able to avoid

the discontinous jump in gridding that troubles the AMR approach but also retain
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the nonuniform gridding that is absent from the IB approach. Furthermore, since

our method maps the nonuniform grid onto a uniform logical mesh, we are able to

do all required differencing using simple central-difference techniques and allowing

the mapping between our physical and logical grids to control the weighting of the

difference scheme due to the nonuniformity of the grid. While we have chosen to

implement a specific grid generation technique to demonstrate the feasibility of our

method, in reality the initial grid can be generated by any means. We require only

that a structured, non-folded initial physical grid be generated in such a way that it

can be directly mapped onto the logical domain.

The remainder of this thesis is structured as follows. In Chapter 2, we provide a

mathematical development of the standard PIC method for a one-dimenional elec-

trostatic plasma system. This chapter is intended to give the reader an elementary

understanding of the components of the PIC method to lay the foundation on which

the rest of this thesis is built. Chapter 3 develops the methods central to our curvilin-

ear PIC method. We detail our approach to grid generation, derive particle equations

of motion on the logical grid, introduce the semi-implicit Modified Leapfrog (ML)

integrator, and derive Poisson’s equation on the logical grid. Chapter 4 incorpo-

rates the methods developed in Chapter 3 into an electrostatic, one dimensional (1d)

curvilinear coordinate PIC code. Several standard tests are performed to validate our

code. Chapter 5 extends the code developed in Chapter 4 to a 2d system, detailing

the intricacies involved in extending the method to multiple dimensions. The stan-

dard tests are again applied as a validation tool. Chapter 6 provides our conclusions

and some suggestions for future work on the method. In Appendix A, we provide the

reader with some of the general background relations between Cartesian and curvi-

linear coordinates which are paramount to this thesis. In Appendix B, we provide a

more detailed explanation of the staggered-grid interpolation and weighting schemes

used throughout this thesis. Finally, in Appendix D, we provide pseudocode for the

modified leapfrog mover as applied to the logical grid particle equations of motion
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in 2d.
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Chapter 2

Mathematical Development of the

Standard PIC Method

In a system in which the collective effects of long-range Coulomb interactions between

plasma particles dominate the binary collision process, the evolution of the phase

space distribution function fα(~x,~v, t) for a given species α of plasma particles is

governed by the Vlasov equation (Eqn. (1.1)) [2]. The electric and magnetic fields

obey Maxwell’s equations:

∇ · ~E =
ρ

ǫ0
(2.1a)

∇ · ~B = 0 (2.1b)

∇× ~E = −∂ ~B

∂t
(2.1c)

∇× ~B = µ0
~J + µ0ǫ0

∂ ~E

∂t
, (2.1d)

where the charge and current density are given by

ρ =
∑

α

qα

∫

fα(~x,~v, t) d~v (2.2a)
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and

~j =
∑

α

qα

∫

~vfα(~x,~v, t) d~v, (2.2b)

respectively. Every plasma particle moves according to the mean fields ~E and ~B

according to the Newton-Lorentz force law:

~F = mα
d~v

dt
= qα( ~E + ~v × ~B). (2.3)

To illustrate more clearly the fundamentals of the PIC method, we now restrict

our system to a one dimensional, electrostatic plasma with no magnetic field such

that the Vlasov-Maxwell system of equations (Eqns. (1.1) and (2.1)) described above

reduces to the Vlasov-Poisson system, in which the electrostatic fields are updated

via Poisson’s equation:

d2Φ

dx2
= − ρ

ǫ0

. (2.4)

Here Φ is the electrostatic potential, related to the electric field by its gradient:

Ex = −dΦ

dx
. (2.5)

2.1 Sampling Phase Space with

Computational Macroparticles

In a particle-mesh (PM) method [11] such as PIC, computational macroparticles are

used to represent a large number of plasma particles which are close to each other

in phase space, thereby discretizing the Vlasov equation [31]. With this notion, we

can define the macroparticle quantities

Q = Kq

M = Km

N = n
K

,

(2.6)
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where n is the plasma particle number density, N is the macroparticle number den-

sity, and K is the number of physical particles present in the element of phase space

represented by a single macroparticle. For simplicity, we have assumed a single

plasma species in which each macroparticle represents an equal number of physical

particles, i.e. K is the same for all particles in the system. The use of macroparticles

allows us to approximate the actual plasma distribution function as:

f(x, v, t) ≈
∑

p

fp(x, v, t), (2.7)

with

K =

∫

fp(x, v, t)dx dv. (2.8)

One way of regarding these macroparticles is as finite sized clouds of “super-electrons”

or “super-ions”, with the position of the macroparticles being the center of mass of

the charge cloud and their velocities being the mean velocities of the physical plasma

particles. As such, we must assign a phase space shape to the macroparticles to sam-

ple accurately the plasma species distribution function:

fp(x, v, t) = KSx(x − xp(t))Sv(v − vp(t)). (2.9)

Here Sx and Sv are the macroparticle shape functions in position and velocity, re-

spectively. In the PIC method, the shape function in the momentum coordinate of

phase space is chosen to be a Dirac delta function. We can then recast Eqn. (2.9) as

fp(x, v, t) = KSx(x − xp(t))δ(v − vp(t)). (2.10)

Since each macroparticle typically represents a large number of plasma particles,

the binary collisional forces between two macroparticles are potentially much larger

than those between two physical electrons or ions [32]. Thus, the choice of a non-

delta function shape for the position coordinate, which for convenience we will write

as S(x), is governed by the need to soften these short-range interactions between
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macroparticles to the extent that they pass freely through each other, minimizing

binary macroparticle interaction effects [32, 33] (not to be confused with binary colli-

sional effects, which are not contained within the Vlasov description of the plasma).

At the same time, we also require that the support of the spatial shape function

is kept relatively small in order to describe a small volume in phase space, meaning

that the function S(x) must go to zero outside a small range to retain the long-range

Coulomb forces between macroparticles [34]. Furthermore, Eqn. (2.8) requires that

the area of the shape function satisfies
∫ ∞

−∞

S(x)dx = 1. (2.11)

Finally, Ockham’s razor suggests that symmetric particle shapes should be chosen

when possible [35]. We will return to this issue in more detail later.

While these rules do not seem to provide too much regulation on the shape

functions chosen for particles, in practice only a small set of shape functions are

generally used on uniform grids. The simplest shape function we can choose is

known as the nearest grid point(NGP) method. However, as we will see in § 2.4,

this shape function is discontinuous across grid cells, meaning it provides no direct

connection between neighboring grid-cell quantities to reduce noise in the system

due to discontinuities in the macroparticle density. As such, this shape function is

rarely used in PIC codes [36]. In general, higher-order, more spatially continuous

particle shape functions are generally chosen, based a series of consecutively smoother

functions obtained from each other by a series of m convolutions with the NGP, or

S0 shape function [37]:

Sm(x) = S0(x) ∗ Sm−1(x) (2.12)

where

S0(x) =
1

∆x







1, for |x| ≤ ∆x
2

0, otherwise
. (2.13)
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xl = 0

S   (x-x  )l i

1/∆

-∆x/2 ∆x/2xi

1/∆

xl = 1
−∆x ∆xxi

xl = 2

3/4∆

-3∆x/2 3∆x/2xi

Figure 2.1: The first three macroparticle shape functions.

Here ∆x is the spacing of our uniform 1d grid. As a result of the series of convolutions

with S0, the support of each consecutive shape function Sm increases in width by

∆x and the particle has its order of continuity increased by one. Shape functions

of this type are known as “splines,” as they are based upon the same principal as

the b-spline functions [38]. As can be seen in Fig. 2.1, the S0 particle shape is a

narrow, discontinuous function in position. In a system of many macroparticles, this

discontinuity can lead to noise, which is then propogated thoughout the system as

the simulation progresses. While higher-m shape functions may not increase the

accuracy of the simulation, it is often more appropriate to use a higher-m shape

function than S0 due to the smoothing properties associated with their progressively
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wider supports and smoother (i.e. higher-order in continuity) shapes. [36]

Whereas the S0(x) particle shape (NGP) is O(∆x), the linear shape function

S1(x) is O(∆x)2, and is constructed using S1(x) = S0(x)∗S0(x). The shape function

for this scheme is triangular, given by

S1(x) =
1

∆x







1 − |x|
∆x

, for |x| ≤ ∆x

0, otherwise
. (2.14)

Note that while this piecewise linear function is continuous, its derivative not. For

calculations requiring more smoothing, i.e. a continuous derivative, it is necessary

to use higher order weighting. One of the inherent advantages of is that we can

control the “smoothness” of the weighted quantity within the host cells by changing

the order of the shape function spline. The second order, or quadratic, spline shape

function (S2(x) = S0(x) ∗ S0(x) ∗ S0(x) = S1(x) ∗ S0(x)) is piecewise parabolic and

globally C1 differentiable, and is given by

S2(x) =
1

∆x







3
4
−
(

|x|
∆x

)2

, for |x| ≤ ∆x
2

1
2

(
3
2
− |x|

∆x

)2

, for ∆x
2

≤ |x| ≤ 3∆x
2

0, otherwise

. (2.15)

Similarly, we can construct a piecewise cubic and globally C2 differentiable third

order (cubic) spline shape function:

S3(x) =
1

∆x







2
3
−
(

|x|
∆x

)2

+ |x|3

2∆x3 , for |x| ≤ ∆x

1
6

(

2 − |x|
∆x

)3

, for∆x ≤ |x| ≤ 2∆x

0, otherwise

. (2.16)

Notice that for successive shape function orders, the weighted quantity has its

order of continuity increased by one. However, it is important to keep in mind that

the order of spline weighting is related to the smoothness of the resulting quantity,
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not the accuracy. This means that while the weighting error is smoother within a

cell for higher-order weighting schemes, they do not improve the accuracy of the

numerical solver, except during the jump from the S0 to S1 shape functions. In fact,

using higher order weighting methods uses grid cells beyond the nearest grid point,

and thus smoothes the results by lowering the resolution at that particular point. [36]

It should also be noted that while we have defined the particle shape functions

above in one dimension, they can be easily generalized to any spatial dimension by

simply multiplying by the same shape function in each direction.

2.2 Macroparticle Equations of Motion

Vlasov’s equation (Eqn. (1.1)) can be written in terms of each individual macropar-

ticle as:

∂f̂p

∂t
+ v

∂f̂p

∂x
+

QαE

Mα

∂f̂p

∂v
= 0 (2.17)

where f̂p denotes a single macroparticle of shape S(x) whose center of mass is located

at some position xp. In § 2.1, we noted that the PIC method chooses a delta-function

representation of the macroparticle velocity-space coordinate. By Eqn. (2.17), we see

that by this particular choice, each macroparticle moves as a single particle, and the

macroparticle shape is not distorted in time due to its finite size. E is the total mean

electric field due to the positions of all the macroparticles.

Applying the method of characteristics [39] to Eqn. (2.17), it can be shown that

the macroparticle orbits in phase-space are given by

dxp

dt
= vp, (2.18a)

and

dvp

dt
=

QpEp

Mp
. (2.18b)
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Figure 2.2: Sketch of the time-centered nature of the leapfrog scheme.

The term Ep in Eqn. (2.18b) is the electric field interpolated to the particle position,

xp. This interpolation will be discussed in more detail in § 2.4, but for the purposes

of the current discussion we simply point out that this term couples the particles

moving on the continuum to the discrete fields given on the grid.

2.2.1 Integration of Equations of Motion

The set of first-order ordinary differential equations (ODE’s) in Eqns. (2.18) can

be integrated in a number of ways. Perhaps the simplest and most widely used

method is the 2nd-order accurate leapfrog (LF) integration scheme, which is based

on staggering the time levels of the macroparticle’s position and velocity by a half

17



Chapter 2. Mathematical Development of the Standard PIC Method

timestep and rewriting Eqns. (2.18) in finite-difference form [10]:

xp(t + ∆t) − xp(t)

∆t
= vp(t +

∆t

2
) (2.19a)

vp(t + 3∆t
2

) − vp(t + ∆t
2

)

∆t
=

QpE(xp(t + ∆t))

Mp
. (2.19b)

The LF integrator can then be written as a composition of two maps, M∆t = V∆t ◦
X∆t, where

X∆t :







xp 1 = xp + ∆t vp

vp 1 = vp

, V∆t :







x′
p = xp 1

v′
p = vp 1 + ∆t

QpE(xp 1)

Mp

, (2.20)

so that it is a composition of two maps which are trivially area preserving in (x, v)-

phase space. As illustrated in Fig. 2.2, LF is a time-centered scheme, and even though

the positions and velocities exist at different times, both will be updated from some

time told to a new time tnew while preserving the accuracy of the integrator. How-

ever,the LF algorithm can also be symmetrized to keep the positions and velocities

colocated in time after a full timestep by composing M̃ = X∆t/2 ◦ V∆t ◦ X∆t/2. This

symmetrized formulation retains the 2nd order accuracy of the standard LF scheme.

We also note here that the LF algorithm is both symplectic (area preserving for 2d

phase space) and time-reversible, properties that other integration techniques such

as forward-Euler and Runge-Kutta lack.

2.3 Field Equations

The Poisson equation (Eqn. (2.4)) can be solved in a variety of ways, with the

majority of PIC codes relying on fast Fourier transforms (FFT’s), finite differences

(FD), or the finite volume (FV) method [10, 11, 34]. In the following, we present

a description of the finite difference method applied to Poisson’s equation on our

uniform 1d grid.
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Eqn. (2.4) can be written in discretized form as the difference between a forward

difference on the electrostatic potential at a grid point, Φi, and a backward difference,

leading to a three-point formula in 1d [11]:

Φi+1 − 2Φi + Φi−1

∆x2
= −ρi

ǫ0
. (2.21)

The charge density and electrostatic potential are colocated on the grid, and thus

the cell index i can refer to our choice of either cell-centers or vertices. As a result

of our choice of discretization, with appropriate boundary conditions it can easily

be seen that Eqn. (2.21) leads to a symmetric matrix (see § 4.2.1 a more detailed

analysis of the properties of this matrix). In 1d, Eqn. (2.21) is easily solved using

a fast direct solver, but in multiple dimensions it must be solved iteratively. Due

to the properties of the discretization, this can be done quite efficiently with a fast

iterative solver such as the conjugate gradient method (CG) [40].

Once we have obtained the electrostatic potential, we again use a centered dif-

ference scheme to calculate the electric field:

Ei =
Φi−1 − Φi+1

2∆x
. (2.22)

Here we are assuming a fully colocated grid, meaning that all grid-based quantities

(ρ, Φ, E) exist at the same points on the grid. The methodology behind this choice

will be discussed in § 2.4. The colocated grid approach is presented here for clarity,

but for our codes we have chosen to use a staggered mesh as detailed in Appendix B.

Alternatively, specific to a 1d system, we can obtain the electric field directly

from ρ using Gauss’ law:

dE

dx
=

ρ

ǫ0
. (2.23)

Eqn. (4.1) can be discretized on a colocated grid using central differences:

Ei+1 − Ei−1

2∆x
=

ρi

ǫ0
, (2.24)
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with the electric field then obtained by an integration over ρ. An extension of this

method on a staggered mesh is presented in § 4.2.2. We note here that while it would

appear that would are able to combine Eqns. (2.22) and (2.24) to get Eqn. (2.21)

directly, it cannot be done on the colocated grid due to stencil spreading. The

staggered grid presents no such problems, and is thus our approach in Chapters 4

and 5.

2.4 Charge Assignment and Field Interpolation

Having fully explored all the properties relating to the macroparticles on the con-

tinuum and the fields on the discrete grid, it now becomes necessary to couple the

two. This is done by assigning charge from the particles to discrete positions on the

grid and interpolation of the discrete electric field to the particle positions on the

continuum (to obtain E(x = xp)).

Starting with Eqn. (2.10), we can obtain the charge density on the continuum

using Eqn. (2.2a):

ρ(x) =
∑

α

qα

∫

fα(x, v, t)dv

=
∑

p

QpS(x − xp), (2.25)

where we have returned to the original notation assuming multiple plasma species

and Qp is the macroparticle charge for whichever species. We can therefore obtain the

charge density on the discrete grid point i directly from the macroparticles’ positions

using

ρi = ρ(xi) =
∑

p

QpS(xi − xp). (2.26)
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We then choose to use the mirror image of the shape function used in Eqn. (2.26) to

define the electric field:

E(xp) =
∑

i

EiS(xp − xi). (2.27)

2.4.1 Conservation of Momentum

We can check the effect of our choice of using symmetric shape functions in weight-

ing the particles to the grid and interpolating the fields to the particles by looking

examining the self-force (force on the macroparticle due to itself). If we have chosen

correctly, this quantity should be zero for every macroparticle in our system.

Following Ref. [10], we now constuct a simple proof to show that on a uniform,

colocated grid, if the above property holds, then for a symmetric shape function,

momentum in a 1d periodic system is conserved and self-forces are eliminated. For

more clarity, we define the matrix notation Sip ≡ S(xi − xp) and Spi ≡ S(xp − xi)

such that Spi = ST
ip for our system.

Defining the total momentum,

P =
∑

p

Mpvp,

such that with Eqn. (2.27) we can express Newton’s equation of motion in terms of

the force on each macroparticle:

dP

dt
=
∑

p

F (xp) =
∑

p

Qp

∑

i

EiSpi. (2.28)

Assuming a symmetric particle shape, Spi = Sip, and changing the order of the sums

we have:

dP

dt
=
∑

i

Ei

∑

p

QpSip. (2.29)
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However, from Eqn. (2.26), we know that
∑

p QpSip is ρi, thus

dP

dt
=
∑

i

ρiEi, (2.30)

with no shape function present. This means that if proper boundary conditions are

chosen, the discretizations used in Eqns. (2.21) and (2.22) or Eqn. (2.24) telescope

and we will have no self-forces on the particles (to computer precision). For example,

if we rewrite Eqn. (2.24) as

ρi ∝ Ei+1 − Ei−1,

where we have ignored the constants ∆x and ǫ0 for now, it is easy to see that

Eqn. (2.30) becomes

dP

dt
∝
∑

i

Ei(Ei+1 − Ei−1), (2.31a)

which telescopes over i such that

dP

dt
= 0, (2.31b)

assuming appropriately applied boundary conditions.
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Development of a Logical

Grid-Based PIC code

3.1 Grid Generation Strategy

Techniques utilizing systems of partial differential equations (PDE’s) to derive co-

ordinate transformations are very popular in structured grid generation. We have

chosen to base our grid generation strategy on a system of elliptic equations, as this

strategy possesses two built-in properties that make it attractive for our grid gener-

ation efforts. First, elliptic systems adhere to the extremum principle, meaning that

the extrema of their solutions are constrained to the system boundaries. Thus, grids

derived from elliptic systems have less tendency to fold, resulting in a “one-to-one”

mapping. Furthermore, these systems of equations exhibit an inherent smoothness

of solution, meaning that boundary slope discontinuities are not propogated into

the interior of the domain, provided proper boundary conditions are used. The

combination of these two properties allows grids to be generated for virtually any

configuration without grid folding.
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Admittedly, there are some disadvantages to elliptic systems, namely that a sys-

tem of PDE’s must be solved in order to generate the coordinate system. This

becomes important in simulations in which the grid is changed at each timestep

(which is not the case in this thesis). Since the most commonly applied equations

are nonlinear in the transformed space, an iterative solver must be used, thereby

increasing the computational cost with respect to other methods of grid generation.

Nevertheless, the relative simplicity associated with these systems is usually enough

to overcome the added computational cost, making them very popular.

We have chosen to implement Winslow’s Laplace method [30], in which a set of

uncoupled Laplace equations are solved on a two-dimensional (2d) logical domain,

ξ, η ∈ [0 : 1]. With Winslow’s Laplace method, the finest gridding is concentrated in

the regions of highest curvature, e.g. around an object at the center of the domain.

While this gridding method is rather primitive in that we have no control over where

the grid is concentrated away from the boundary, we have chosen this method for its

simplicity and suitability for the problems in which we are interested. More advanced

methods such as Winslow’s variable diffusion method [41] allow for greater control

of the grid through an adjustable diffusion coefficient.

The Laplace equations can be written in any coordinate system, but for simplicity

we have chosen to implement Winslow’s method in the Cartesian coordinate system

in physical space. In the physical domain, Laplace’s equations take the form

∇2
xξ

α =
∂

∂xβ

∂ξα

∂xβ
= 0, α, β = 1, · · · , n. (3.1)

Unless otherwise noted, we are summing over repeated indices here and in the rest

of this thesis. (For example, we prefer to solve the Laplace equations on a uniform

grid in logical space (ξ, η) rather than directly gridding Eqn. (3.1) on the physical

space, solving for ξ(x, y), η(x, y) and inverting.) In Eqn. (3.1), ξα are the dependent

variables and xβ are the independent variables. However, we are interested in a

set of PDE’s such that xβ are the dependent variables and ξα are the independent
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variables. In the following, we follow the method outlined by Liseikin [42] to provide

some details of this transformation.

As shown in Appendix A, we can define the Jacobi matrix

jαβ ≡ ∂xα

∂ξβ
, (3.2a)

and its inverse

kαβ ≡ ∂ξα

∂xβ
, (3.2b)

such that

jαβkβγ = δγ
α. (3.2c)

We can then write Eqn. (3.1) as

∂kαβ

∂xβ
= 0. (3.3)

Now, by multiplying both sides by jνα, we have

jνα
∂kαβ

∂xβ
= 0, (3.4)

which we recognize to be of the form

∂

∂xβ

(
jναkαβ

)
− kαβ ∂jνα

∂xβ
= 0. (3.5)

From the definition of the Jacobi matrix and its inverse, the first term in Eqn. (3.5)

is zero. Expanding the spatial derivative in the second term such that

∂

∂xβ
=

∂ξµ

∂xβ

∂

∂ξµ
= kµβ ∂

∂ξµ
, (3.6)

and using the identity

gαµ(~x) ≡ ∂ξα

∂xβ

∂ξµ

∂xβ
= kαβkµβ, (3.7)
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we can write:

gαµ ∂2xν

∂ξα∂ξµ
= 0, α, γ, ν = 1, · · · , n. (3.8)

By its definition, the contravariant metric tensor is a function of the dependent

variable ~x, i.e. gαγ = gαγ(~x), meaning that we would have to treat ξα as the dependent

variables in order to calculate gαγ. In order to solve this system of equations then,

we must utilize the covariant metric tensor as defined in Appendix A:

gαβ(~ξ) ≡ ∂xγ

∂ξα

∂xγ

∂ξβ
= jγαjγβ, (3.9)

such that xγ are the dependent variables. The conversion from the contravariant

metric tensor to the covariant form in 2d can be done using the identity

gαβ = (−1)α+β g3−α,3−β

gcov

, α, β = 1, 2, (3.10)

where gcov = g11g22 − g2
12 is the determinant of the covariant metric tensor. This

allows us to write the final system of equations to be solved:

g22
∂2x
∂ξ2 − 2g12

∂2x
∂ξ∂η

+ g11
∂2x
∂η2 = 0

g22
∂2y
∂ξ2 − 2g12

∂2y
∂ξ∂η

+ g11
∂2y
∂η2 = 0.

(3.11)

While Eqns. (3.11)(a) and (b) appear to be the same, they actually possess op-

posite boundary conditions along each segment of the grid boundary. For example,

for any segment of the boundary, we might have Neumann boundary conditions for

ξ and Dirichlet boundary conditions for η, both expressed in terms of x(ξ, η) and

y(ξ, η). Furthermore, from Eqn. (3.1) and these boundary conditions, we know that

ξ(x, y) and η(x, y) are conjugate harmonic functions. Thus, Winslow’s method forces

the grid lines to be orthogonal (∇ξ · ∇η = g12 = 0) in the physical space.

However, since we solve Eqns. 3.11 numerically, we know that exact orthogonality

is very difficult to achieve. We are able to quantify the amount of nonorthogonality,
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or “skewness,” of our generated grids using the Cauchy-Schwartz inequality [43]. By

this inequality, any two points ~p and ~q in n-space must satisfy

~p · ~q ≤ |~p||~q|. (3.12)

Writing Eqn. (3.7) in the form

gαβ(~x ) = ∇ξα · ∇ξβ (3.13)

such that

g11 = |∇ξ|2

g12 = ∇ξ · ∇η

g22 = |∇η|2.
(3.14)

Eqn. (3.12) can then be rewritten as

∇ξ · ∇η ≤ |∇ξ||∇η|. (3.15)

Squaring both sides and rearranging allows us to define the local grid skewness factor

S(ξ, η) =
(g12)2

g11g22
, (3.16)

where 0 ≤ S ≤ 1. In the limit of S(ξ, η) → 0, the grid is orthogonal at (ξ, η), whereas

for S(ξ, η) → 1, the grid becomes singular, i.e. the grid folds there. Furthermore, we

can define the maximum grid skewness,

Smax = max [S(ξ, η)], (3.17)

such that we can use a single parameter to characterize the maximum nonorthogo-

nality of the generated grid.

Furthermore, while Eqns. (3.11) appear to be a system of linear equations at

first glance, we recognize that by the definition of the covariant metric tensor that

this is indeed a more complicated system of equations. Since the covariant terms

gαβ depend on ∂x
∂ξ

and the solution we seek is x, the system of equations is indeed

nonlinear.
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Figure 3.1: Schematic for mapping from the logical to the physical grid in the annulus
case. The numbers along the boundaries of the square logical domain are used to
indicate which boundary each is mapped to on the physical domain.

3.2 Example Grids

Eqns. (3.11) are discretized using a 2nd order accurate finite-difference method and,

because of their non-linear form, are iteratively solved with an inexact Newton-

Krylov solver [29]. A vast array of physical grids can be generated from the uni-

form logical grid by simply specifying the desired boundary conditions along each

boundary segment on the logical grid as shown in Fig. (3.1). The grids presented

in Fig. (3.2) are of some of the physical grids with circular objects along the inner

boundary which we have generated using Winslow’s method. As alluded to in § 3.1,

one variable of ξ and η satisfies Dirichlet boundary conditions and the other satisfies

Neumann boundary conditions on each boundary segment. We have also generated

grids with elliptically shaped objects, and are capable of generating objects of fairly

general shape and size on any boundary segment.

Furthermore, as shown in Fig. (3.3), we are fully capable of moving an interior

object within the physical system. In the example grids provided here, we make full
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Figure 3.2: Grids generated using Winslow’s method with a circular object along
the inner physical grid boundary. Here we have used a 32× 32 grid in order to show
the mapping more clearly. The appearance of nonorthogonal grid lines is due to the
straight lines used by the plotting tool.

use of the symmetry of the problem, which allows us to simulate half the physical

system in Figs. (3.2a),(3.2b), and (3.3), and only a quarter of the physical system in

Figs. (3.2c) and Figs. (3.2d). Note that by simulating only a quarter of the system

in Figs. (3.2c) and Figs. (3.2d), we are constrained to simulate two objects of equal

size and shape. Alternatively, by modeling two objects in a “half-domain”, we are

able to fix this problem such that we can specify different sizes and shapes for each.
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Figure 3.3: Examples of how the positioning of the object along inner boundary
changes the grid within the physical domain using Winslow’s method. Here we have
used a 32 × 32 grid in order to show the mapping more clearly. The appearance of
curved grid lines near the inner semicircle is due to the straight lines used by the
plotting tool.
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We note here that for the annular grid generated in Fig. 3.2, the maximum grid

skewness as defined by Eqn. (3.17) is Smax ≈ 10−14 for a 32 × 32 grid. For the

offset (eccentric) annulus cases shown in Fig. 3.3, the maximum skewness occurs in

Fig. 3.3(d), with Smax ≈ 10−6 for a 32× 32 grid. The general trend for these grids is

that the skewness increases as the offset of the inner annulus is increased, and this

parameter scales with 2nd-order accuracy in ∆ξ. The same scaling holds true for the

“half-domain” cases shown in Fig. 3.2(c) and (d), where the Smax ≈ 10−4 for the grid

shown in Fig. 3.2(c) and Smax ≈ 10−5 for Fig. 3.2(d) for a 32 × 32 grid. Thus, the

lines that appear be curved in these figures are due to the graphics used for plotting

them, as they are very nearly exactly orthogonal for all cases.

3.3 Logical Grid Equations of Motion

Since we are interested in building a code capable of modeling a wide variety of

domain and cell shapes and sizes in multiple geometries, we have chosen to forgo a

physical grid particle mover as used in many standard PIC codes. We instead focus

our attention on developing a logical grid particle mover. This also eliminates the

need for a complex search algorithm to locate particles on the non-uniform physical

grid [18, 19].

3.3.1 Transformed Newton-Lorentz Equations of Motion

The most obvious method for implementing our mover in logical space would seem to

be by simply converting the Newton-Lorentz equations of motion from the physical

to the logical grid as follows. Eqns. (2.18a) and (2.18b) can be written in multi-

dimensional form as:

dxα

dt
= vα (3.18a)
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and

dvα

dt
= − q

m

∂Φ

∂xα
. (3.18b)

Using Eqn. (3.2a), the physical velocity can be expressed in logical variables as

vα = jαβ
∂ξβ

∂t
. (3.19)

Then, by Eqn. (3.2b),

dξγ

dt
= kγαvα ≡ uγ, (3.20)

where we have used Eqn. (A.5). Inserting Eqn. (3.19) into Eqn. (3.18b) and expand-

ing the ∂Φ
∂xα term using Eqn. (3.6), we can write

d

dt

(
jαβuβ

)
= − q

m

(

kµα ∂Φ

∂ξµ

)

. (3.21)

We can then expand the time derivative,

jαβ
duβ

dt
+ uβ ∂jαβ

∂ξν
uν = − q

m

(

kµα ∂Φ

∂ξµ

)

, (3.22)

where we have used d
dt

(jαβ) =
∂jαβ

∂ξν uν. We now multiply Eqn. (3.22) by kγα and use

Eqns. (A.5) and (3.7) to obtain the “velocity” update equations in the transformed

coordinates:

duγ

dt
= −

[

uβkγα ∂jαβ

∂ξν
uν +

q

m

(

gγµ ∂Φ

∂ξµ

)]

. (3.23)

As expected, the right-hand side of Eqn. (3.23) is comprised of a field force term

as well as an inertial force term. We note here that the field force term contains

gγµ(~x), whereas our grid generation techniques provide us with gαβ(~ξ ). This is not

a problem once the grid is generated, however, as we can then transform between

them freely using Eqns. (A.10) and (A.11).

However, closer inspection of Eqns. (3.20) and (3.23) reveals a problem with

our formulation. To more clearly illustrate this point, we now rewrite Eqns. (3.20)
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Figure 3.4: Phase-space (a) and position vs. time (b) plots for a single particle in
an externally applied harmonic oscillator potential given by Φ = Ax2 on a 1d non-
uniform grid x = ξ+ǫξ2

1+ǫ
. Both the physical (blue) and logical (green) phase space

areas spiral inward with time.
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and (3.23) in their 1d forms as:

ξ̇ = u (3.24a)

u̇ = −J ′u2

J
− q

m

1

J2
Φ′, (3.24b)

where J ≡ dx
dξ

in 1d, an overdot represents a time derivative, and the ′ symbol repre-

sents a derivative with respect to ξ. Taking the formal divergence of Eqns. (3.24a),

∂ξ̇

∂ξ

∣
∣
∣
∣
u

+
∂u̇

∂u

∣
∣
∣
∣
ξ

= −2J ′u

J
, (3.25)

reveals that the Newton-Lorentz equations of motion are in fact not divergence free

under this transformation of variables. As such, a time integration of these equations

of motion with a “naive” LF integrator as in § 2.2.1 will not preserve phase space area,

and the particle orbits will spiral (either inward or outward since we do not know

the divergence of Eqn. (3.25) in general) with time. This effect is demonstrated for a

single particle in an externally applied harmonic oscillator potential well in Fig. 3.4

3.3.2 Hamiltonian Approach to Logical Grid Equations of

Motion

Clearly, the fact that we have not introduced canonical variables for the Newton-

Lorentz equations of motion in logical variables in § 3.3.1 leads to the lack of (ξ, u)

phase space area conservation. We have therefore constructed a logical grid particle

mover based on Hamilton’s equations by using a canonical transformation with an

F2(~x, ~P , t) generating function [44], thereby assuring divergence-free equations of

motion on the logical grid. Under the canonical transformation we have

pα =
∂F2

∂xα
(3.26a)

and

ξα =
∂F2

∂P α
(3.26b)
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where pα = mvα is the physical space momentum, and P α is the logical space

momentum. We have chosen the F2 generating function such that xα and P α are

considered independent, thus

K = H +
∂F2

∂t
. (3.27)

We do not yet have a time-adaptive grid so we can ignore the time-dependent part

of Eqn. (3.27). Specializing to the contact transformation ~ξ = ~ξ(~x), we can write the

F2 generating function as

F2(~x, ~P ) = ξβ(~x)P β, (3.28)

such that by Eqns. (3.26), we have

pα = kβαP β (3.29a)

and

ξα = ξα(~x). (3.29b)

In the absence of a static background magnetic field ~B, the physical grid Hamil-

tonian is given in general form by

H = T (~p) + V (~x)

=
pαpα

2m
+ qΦ(~x). (3.30)

Notice that Eqn. (3.30) is fully separable. For a problem with azimuthal (z) sym-

metry, the physical Hamiltonian can be written

Hazi =
p2

r

2m
+

p2
φ

2mr2
+

p2
z

2m
+ qΦ(~x)

=
p2

x + p2
y

2m
+

p2
z

2m
+ qΦ(~x)

=
pipi

2m
+

p2
z

2m
+ qΦ(~x)

︸ ︷︷ ︸

Ṽ (~x)

i = 1, 2, (3.31)
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Figure 3.5: Azimuthal (a) and axisymmetic (b) coordinate conversions.

where ∂Φ(~x)
∂z

= 0 implies that p2
z

2m
is a constant of the particle motion on in the physical

space perpendicular to the plane of reference as shown in Fig. (3.5a). Here Ṽ (~x) is

the effective potential in the physical space.

Likewise, for an axisymmetric problem,

Haxi =
p2

ρ

2m
+

p2
φ

2mρ2 sin2 θ
+

p2
θ

2mρ2
+ qΦ(~x)

=
p2

x + p2
y

2m
+

p2
φ

2mx2
+ qΦ(~x)

=
pipi

2m
+

p2
φ

2mx2
+ qΦ(~x)

︸ ︷︷ ︸

Ṽ (~x)

i = 1, 2, (3.32)

where ∂Φ(~x)
∂φ

= 0 implies that pφ is a constant of motion and thus the term
p2

φ

2mx2 can

be thought of as a (non-constant) contribution to the effective potential, due to the
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curved motion of the particle perpendicular to the shaded plane in Fig. (3.5b).

Eqn. (3.30) can then be used in conjunction with Eqns. (3.29) to construct the

logical grid Hamiltonian:

K =
1

2m

(
kβαP βkγαP γ

)
+ Ṽ (~x(~ξ))

=
1

2m

(
gβγP βP γ

)
+ V (~ξ). (3.33)

Thus, on the logical grid the Hamiltonian can be written

K = T (~ξ, ~P ) + V (~ξ), (3.34)

meaning that we have transformed the separable physical grid Hamitonian (Eqn. (3.30))

to an equivalent, non-separable system. Applying Hamilton’s equations, ξ̇α ≡ ∂K
∂P α

and Ṗ α ≡ − ∂K
∂ξα to Eqn. (3.33) gives the logical grid equations of motion:

ξ̇µ =
gγµP γ

m
(3.35a)

Ṗ µ = − 1

2m

∂gβγ

∂ξµ
P βP γ − ∂V

∂ξµ
. (3.35b)

The term quadratic in ~P represents the inertial force in these coordinates.

3.4 Modified Leapfrog Integrator

Whereas the physical space Hamiltonian leads to separable equations of motion which

can be integrated by a “naive” LF integrator (§ 2.2.1), in the logical space this is no

longer true. Since Eqns. (3.35a) and (3.35b) are not separable, integration by the

naive LF method will not conserve phase space area.

As such, we have chosen to implement an extension of the semi-implicit modified

leapfrog (ML) integrator originally developed by Finn and Chacón [45] for integrat-

ing solenoidal flows in fluid dynamics and MHD codes. Rewriting Eqns. (3.35a)
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and (3.35b) as ~̇P = ~V and ~̇ξ = ~U , respectively, where ∂Ui

∂ξi
+ ∂Vi

∂Pi
= 0. Denoting

explicit (implicit) updates with a superscript e (i), the ML integrator can be written

as ~M∆t = ~P e
∆t ◦ ~ξi

∆t, where

ξi
∆t :







~ξ1 = ~ξ + ∆t~U(~ξ1, ~P )

~P1 = ~P
, P e

∆t :







~ξ′ = ~ξ1

~P ′ = ~P1 + ∆t~V (~ξ1, ~P1)
. (3.36)

Combining, we have

~ξ′ = ~ξ + ∆t ~U(~ξ′, ~P ), ~P ′ = ~P + ∆t ~V (~ξ′, ~P ). (3.37)

The map ξi
∆t is implicit and must be done by means of Newton or Picard iterations.

The map P e
∆t is explicit, and can therefore be applied directly. It can be shown

that, unlike the standard non-time-centered LF scheme described in § 2.2.1, this

non-time-centered formulation of the ML scheme results in only 1st-order accuracy

in ∆t. To achieve 2nd-order accuracy in time, we simply symmetrize the ML scheme

by composing ~ξe
∆t/2◦ ~P i

∆t/2◦ ~P e
∆t/2◦~ξi

∆t/2. The implicit-followed-by-explicit ordering in

each pair of mappings retains the area preserving nature of the integrator as shown

in a 2d phase space in Ref. [45]. (The volume preserving nature, and its dependence

on the explicit followed by implicit nature, is shown below). The alternation of the

steps in ~ξ and ~P gives second-order accuracy in ∆t. The logical flow of the ML

integrator as implemented on Eqns. (3.35a) and (3.35b) is

~ξi
∆t/2 → ~P e

∆t/2 → ~P i
∆t/2 → ~ξe

∆t/2.

We note here that the charge density is accumulated on the grid and the mean fields

are solved for after the implicit position update step of the symmetrized ML mover.

While this requires us to pass through the particle array twice per timestep, it allows

us to accumulate the charge density and solve for the fields only once per timestep.
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3.4.1 Proof of ML as a Symplectic Integrator

We have constructed a Hamiltonian system of equations to describe the particle

motion on the logical grid, therefore it is important that our integrator is symplectic.

In the following, we prove that the ML integrator is symplectic. For simplicity we

outline the proof for the non-symmetrized ML integrator (Eqn. (3.36)). As a starting

point, we can first show ML to be volume preserving by finding the Jacobians of

both the implicit and explicit maps. For the integrator to be volume preserving, the

product of these two maps as implemented in Eqn. (3.37) must be one. Defining

Aαβ =
∂Uα

∂P β
=

∂2K

∂P α∂P β
(3.38a)

Bαβ =
∂V α

∂ξβ
= − ∂2K

∂ξαξβ
(3.38b)

Mαβ =
∂Uα

∂ξβ
=

∂2K

∂ξβ∂P α
(3.38c)

Nαβ =
∂V α

∂P β
= − ∂2K

∂ξα∂P β
(3.38d)

we can write the Jacobians of the implicit map

J
i =

∂ (ξi, P i)

∂ (ξ, P )
=




(I − ∆t M)−1 (I − ∆t M)−1 ∆t A

0 I



 (3.39)

as well as the explicit map

J
e =

∂ (ξe, P e)

∂ (ξi, P i)
=




I 0

∆t B I + ∆t N



 , (3.40)

in a simplified form. Here I is the identity matrix. We note also that by our

definitions, Aαβ and Bαβ are symmetric matrices, whereas Mαβ = −(NT )αβ. The

determinants of Eqns. (3.39) and (3.40) are simply

det(J i) = det

(
1

I − ∆t M

)

(3.41a)
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and

det(J e) = det(I + ∆t N )

= det(I − ∆t M), (3.41b)

thus their products can be trivially shown to be unity. The subtlety in our for-

mulation is that M and N here depend on the variables ~ξ1 and ~P , such that the

implicit followed by explicit mapping order retains the volume preserving nature of

the integrator as described in § 3.4. It can be easily shown that by reversing this

order, the product of the determinants of the maps is indeed not unity, and volume

preservation is lost.

In one degree of freedom (i.e. a 1d system), area preservation is enough to show

that an integrator is symplectic [45]. However, in order to prove that an integrator is

symplectic for two or more degrees of freedom, one must prove the Poisson bracket

relation [ξ′, P ′] = [ξ, P ], or equivalently, J EJ
T = E . Here J = J

e
J

i, J
T =

J
iT

J
eT , and

E =




0 I

−I 0



 (3.42)

is the unit antisymmetric rotation tensor. Thus,

J =




I 0

∆t B I + ∆t N








(I − ∆t M)−1 ∆t (I − ∆t M)−1

A

0 I





=




C−1 ∆t C−1A

∆t BC−1 ∆t2 BC−1A + C



 (3.43)

where, for simplicity, we have defined C−1 = (I − ∆t M)−1. Since
(
R−1

)T
=

(
RT
)−1

, we also have

C−T =
(
I − ∆t MT

)−1
, (3.44)
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where R is any arbitrary matrix. Using these definitions, we can also calculate

J
T =




C−T ∆t C−T B

∆t AC−T ∆t2 AC−T B + CT



 , (3.45)

where we have used AT = A and BT = B. All that remains is to take the matrix

products and simplify as necessary. The first product is given by:

J E =




−∆t C−1A C−1

−∆t2 BC−1A − C ∆t BC−1



 . (3.46)

Finally,

J EJ
T =




−∆t C−1A C−1

−∆t2 BC−1A − C ∆t BC−1



×




C−T ∆t C−T B

∆t AC−T ∆t2 AC−T B + CT





=




0 C−1CT

−CC−T ∆t
(
BC−1CT − CC−T B

)





=




0 I

−I 0



 ≡ E, (3.47)

revealing that our ML integrator is indeed symplectic for a system of arbitrary dimen-

sion. This proof works equally well when the order of the updates is reversed ~ξe
∆t◦ ~P i

∆t

rather than ~P e
∆t ◦ ~ξi

∆t, so that the symmetrized ML integrator is also symplectic.

3.4.2 Validation of the Logical Grid Particle Mover

The harmonic oscillator potential well test was again performed using the both the

ML mover and a “naive” LF integration of Eqns. (3.35a) and (3.35b). As can be seen

in Figs. (3.6), the new mover exactly preserves phase-space area, while the naive LF
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Figure 3.6: Single particle in an externally applied harmonic oscillator potential given
by Φ = Ax2. Particle phase space area in ξ, P -space for all three mover schemes in
(a) and a view of the phase space area of only the ML mover is shown in (b).
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Figure 3.7: Single particle in an externally applied harmonic oscillator potential
given by Φ = Ax2. Energy evolution in time is compared for all three movers in (a)
and a highly-zoomed view of the ML mover is shown in (b). Here we do not use
interpolations for either fields or grid quantities as both are prescribed everywhere
in the domain.
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mover actually spirals inward at a faster rate than the original transformed Newton-

Lorentz LF mover. Fig. (3.7) shows the evolution of the energy (K(~ξ, ~P ) = H(~x, ~p))

in time for all three movers in (a), and offers a highly zoomed view of the same

evolution of the ML mover in (b). The very small amplitude oscillations evident in

Fig. (3.7b) are at the harmonic oscillator frequency. These are due to the fact that

orbits in the ML mover follow approximate surfaces of a quantity K ′ which is an

approximation to the energy K in phase-space, and are thus expected.

3.4.3 ML Mover Applied to Plane-Polar Coordinate Trans-

formation

As a 2d test of how accurate our ML mover is, we have chosen to implement a

particularly stringent test by running a single particle with zero field forces (Φ = 0),

which should give a straight line trajectory given by vx0. In plane polar coordinates,

this is a particularly stringent test if the particle passes just above the origin. There

is no grid in this system, so we are isolating the time stepping errors. An exact

(in ∆t) integration method would allow this particle to pass all the way across our

system with the same momentum, px(t) = px
0 and py(t) = 0. Since we do not have

an exact integrator, we know there will be some deviation as the particle comes close

to the origin, and this test quantifies that error. Below we develop the method used

for this test.

Assuming a plane-polar system, such that

x = r cos θ (3.48a)

y = r sin θ (3.48b)
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Figure 3.8: Timestep comparison for a single particle moving across a polar-
coordinate grid starting at x = −5, y = 0.1 with an initial velocity px0 = 0.1,
py0 = 0, showing (a) px vs x and (b) y-position vs time as the particle moves across
the system in x.

45



Chapter 3. Development of a Logical Grid-Based PIC code

we are simultaneously making the transformations

(x, y, px, py) → (ξ, η, Pξ, Pη) (3.49)

(x, y, px, py) → (r, θ, Pr, Pθ) (3.50)

such that ξ → r, η → θ, Pξ → pr, and Pη → pθ. By the definition of our contact

transformation, we know that K = H . In polar coordinates, the Hamiltonian takes

the form

H(r, θ, pr, pθ) =
1

2m

(

p2
r +

p2
θ

r2

)

+ qΦ(~r), (3.51)

where we are assuming the the potential term qΦ(~r) = 0. Applying Hamilton’s

equations to Eqn. (3.51) gives the particle equations of motion:

ṙ =
pr

m
(3.52a)

θ̇ =
pθ

mr2
(3.52b)

ṗr =
p2

θ

mr3
(3.52c)

ṗθ = 0. (3.52d)

Notice that the ṗr term is an inertial force term, equivalent to that of Eqn. (3.35b)

for this system.

Fig. 3.8 shows that our ML integrator is 2nd order accurate in time, as we ex-

pected. The results in Fig. 3.8 indicate that small variations in the particle mo-

mentum are to be expected as the particle moves across the grid in our full PIC

simulations. However, we know that this variation is bounded in timestep, scaling

as ∆t2.
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3.5 Generalized Curvilinear Coordinate Poisson

Solver

In order to solve the electrostatic field equation on the logical grid, we must construct

the generalized curvilinear coordinate formulation of Poisson’s equation,

∇2Φ = −ρx

ǫ0
(3.53)

on the logical grid. In this notation, ρx is the physical charge density. Using this

formulation, we are able to solve the field equation in the physical grid geometry and

coordinate system of our choice. This logical grid solver also removes the necessity of

writing and maintaining multiple complex-geometry Poisson solvers for the various

coordinate systems we wish to model.

We begin by rewriting Eqn. (3.53) as the divergence of the gradient of the poten-

tial in generalized coordinates:

1

f
∇ · f∇Φ =

1

f

∂

∂xα
· f ∂Φ

∂xα
= − ρ

ǫ0
, (3.54)

where f is a geometry factor allowing us to switch between azimuthal and axially-

symmetric systems as in Eqns. (3.31) and (3.32). For instance, if we want the physical

coordinate system to be x, y with ∂
∂z

= 0, we set f = 1. For r, z coordinates with

∂
∂φ

= 0, we set f = r.

In matrix notation we can write ∇Φ as

∇Φ =
∂Φ

∂ξm
∇ξm

= Am∇ξm (3.55)

where Am are the covariant components of the 2d vector

~A = Am∇ξm = A1∇ξ + A2∇η. (3.56)
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Likewise, we can represent ~A by its contravariant components, Am:

~A = A1∇η × ẑ + A2ẑ ×∇ξ, (3.57)

such that we can write

A1∇ξ + A2∇η = A1∇η × ẑ + A2ẑ ×∇ξ. (3.58)

We can now find the direct relationship between the covariant and contravariant

components of ~A. For example, taking the inner product of Eqn. (3.58) with ∇η × ẑ

we find:

A1 (∇η × ẑ) · ∇ξ = A1|∇ξ|2 + A2∇η · ∇ξ. (3.59)

By Eqn. (3.7),

∇ξβ · ∇ξγ = gβγ, (3.60)

allowing us to rewrite Eqn. (3.59) as

A1g
11 + A2g

12 = A1 (∇η × ẑ) · ∇ξ = A1∇ξ · ∇η × ẑ. (3.61)

We note that

∇ξ · ∇η × ẑ =
∂ξ

∂x

∂η

∂y
− ∂ξ

∂y

∂η

∂x

= det (k)

=
1

J
, (3.62)

so we can write the left-hand side of Eqn. (3.61) as

A1g
11 + A2g

12 =
A1

J
. (3.63a)

Similarly,

A1g
21 + A2g

22 =
A2

J
. (3.63b)
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Returning now to Eqn. (3.54) and using Eqns. (3.55) and (3.57) and the identity

∇ · (c~v) = ∇c · ~v + c∇ · ~v, (3.64)

we can write the Laplacian operator as

1

f
∇ · f∇Φ = ∇ · ~A

=
1

f
∇ ·
[
fA1(∇η × ẑ) + fA2(ẑ ×∇ξ)

]

=
1

f

[
∇(fA1) · (∇η × ẑ) + ∇(fA2) · (ẑ ×∇ξ)

]
.

Using ∇ξ · (∇ξ × ẑ) = 0, Eqn. (3.65) can be written as

1

f
∇ · f∇Φ =

[
1

f

∂(fA1)

∂ξ
∇ξ · (∇η × ẑ) +

1

f

∂(fA2)

∂η
∇η · (ẑ ×∇ξ)

]

. (3.65)

By Eqn. (3.62), we can rewrite Eqn. (3.65) as

1

f
∇ · f∇Φ =

1

fJ

(
∂(fA1)

∂ξ
+

∂(fA2)

∂η

)

= − ρ

ǫ0
. (3.66)

Now converting the contravariant components of ~A to their covariant formulations

using Eqns. (3.55) and (3.61), we can write the final form of the Poisson equation in

curvilinear coordinates:

1

fJ

∂

∂ξα

(

fJgαβ ∂Φ

∂ξβ

)

= − ρ

ǫ0
, (3.67)

where ρ = ρx is the physical charge density.
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Development of a 1d Logical Grid

PIC Code

The first step in developing any new method is always to start as simply as possi-

ble. In our case, the simplest possible approach to building a nonuniform grid PIC

code is to develop a 1d nonuniform grid code, and add increasing complexity as our

understanding of the method grows. Furthermore, the notation and concepts of the

nonuniform grid PIC method are much more easily understood in 1d.

4.1 Code Normalizations

It is often convenient to use normalized units in a computer code. By making wise

normalizations, we introduce more convenient notation in which the dimensional pa-

rameters are lumped together into a smaller number of dimensionless parameters,

thereby reducing the parameter space without any new physics being added or lost.

As such, we now outline the procedure of converting the “real” macroparticle quan-

tities into dimensionless parameters.
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Parameters Q, M, N0, ǫ0, L

Dynamical Variables x, v, t, Ex, N

Table 4.1: List of the dimensional and independent parameters for a single species
of macroparticles moving according to the 1d particle equations of motion.

In 1d, the physical grid equations of motion are given by Eqns. (2.18a) and (2.18b),

where the electric field is obtained using Gauss’ law,

dEx

dx
=

NQ

ǫ0

=
ρ

ǫ0

. (4.1)

These equations contain the dimensional and independent parameters listed in Ta-

ble 4.1. For simplicity, we outline the normalization procedure for a single species.

Extension to other species is straightforward.

We begin by introducing the following normalizations on the physical plasma

properties. Time scales are normalized with respect to a frequency, Ω, to be deter-

mined later:

t̃ = Ω t. (4.2)

Length scales are normalized a characteristic length scale of the system,

x̃ =
x

L
. (4.3)

For the 2d annulus, we normalize with respect to the outer radius of the system, r2.

We are primarily concerned with two domains in this thesis: the annulus and the

square grid. Using Eqns. (4.2) and (4.3), we can calculate normalized velocities (in

1d):

ṽ =
dx̃

dt̃
=

1

L Ω

dx

dt
=

v

L Ω
. (4.4)

We define the normalized macroparticle density as

Ñ =
N

N0
, (4.5)
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where N0 is the average density of the initial state, and normalize the electric fields

as

Ẽ =
Ex

E0
, (4.6)

where E0 is a normalization parameter to be determined.

Using these normalizations, Eqn. (2.18a) is

dx̃

dt̃
= ṽ, (4.7)

Eqn. (2.18b) becomes

dṽ

dt̃
= −

(
QE0

MLΩ2

)

Ẽ, (4.8)

and Eqn. (4.1) becomes

dẼx

dx̃
= −

(
N0QL

ǫ0E0

)

Ẽ. (4.9)

We want to normalize such that the terms in parentheses in Eqns. (2.18b) and (4.9)

are one, i.e.

eE0

MLΩ2 = 1

N0QL
ǫ0E0

= 1.
(4.10)

From the second term, we see E0 = N0QL
ǫ0

. Plugging this value back into the first

term and solving for Ω gives

Ω2 =
N0Q

2

ǫ0M
≡ ω2

pe. (4.11)

This means that (for electrons) we can set |Q| = M = ǫ0 = 1, such that we can

rewrite the equations of motion of the normalized macroparticles as

dx̃
dt̃

= ṽ

dṽ
dt̃

= −Ẽx

dẼx

dx̃
= −Ñ

(4.12)

such that ω2
pe = 1. We find by direct substitution of the “real” macroparticle quan-

tities defined in Eqn. (2.6) that the Eqns. 4.12 remain unchanged.
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4.2 1d Governing Equations

In a system with a single free parameter in both space and velocity (1d1v), the logical

grid Hamiltonian equations of motion, Eqns. (3.35) can be dramatically simplified

into the form:

ξ̇ =
P

MJ2
, (4.13a)

and

Ṗ = −P 2J ′

MJ3
+ QEξ, (4.13b)

where J ≡ dx
dξ

and J ′ ≡ dJ
dξ

= d2x
dξ2 are the Jacobian and its derivative, and Eξ ≡ −dΦ

dξ

is the logical grid electric field. Here and in the rest of this work we have kept the

normalized macroparticle charges and masses in the particle equations to show the

most general form for species where Q and M are not necessarily one. Furthermore,

the logical grid Poisson equation, Eqn. (3.67), simplifies to

1

J

d

dξ

(
1

J

dΦ

dξ

)

= −ρx, (4.14)

where again ρx is the charge density on the physical grid. However, since ρx dx =

ρξ dξ, we can write

d

dξ

(
1

J

dΦ

dξ

)

= −ρξ, (4.15)

where ρξ is the charge density on the logical grid as obtained by Eqn. (2.26). The

ability to accumulate ρξ on the logical grid is a very beneficial feature of our method,

as location and weighting on the nonuniform physical grid can be quite difficult and

requires special algorithms to minimize the amount of error introduced into the code

(see for example Ref. [18]).

For our 1d code, we have set up a nonuniform grid given by

x(ξ) = ξ + ǫgrid sin(2πξ) (4.16a)
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such that for testing purposes we can analytically calculate the grid Jacobian and

its derivative:

J = 1 + 2πǫgrid cos(2πξ) (4.16b)

J ′ = −4π2ǫgrid sin(2πξ). (4.16c)

This grid was chosen for its periodicity, such that the test cases outlined in the

remainder of this chapter have seamlessly-periodic boundary conditions on both the

fields and the grid. To vary the nonuniformity of the grid, we simply change ǫgrid. To

prevent the grid from folding, the maximum grid nonuniformity parameter we can

choose is ǫgrid = 1
2π

≈ 0.16. For a uniform grid, we simply set ǫgrid = 0.

While this particular grid allows us to find simple analytic solutions for the Jaco-

bian and its derivative, it is important to keep in mind that the idea behind our PIC

method is that we can couple it to any kind of grid generation strategy. As such, we

must in general obtain the grid derivatives by centered-differencing techniques. Since

x(ξ is defined on the vertices, the Jacobian is naturally defined on the cell-centers,

and its derivative J ′ on the vertices.

4.2.1 Discretization of the Poisson Equation

Eqn. (4.15) can be discretized on the logical grid by first applying central differences

to the inner term,

[
1

J

dΦ

dξ

]

i

=
Φi+ 1

2
− Φi− 1

2

Jv
i ∆ξ

, (4.17)

where Jv
i ≡

J
i+1

2
+J

i− 1
2

2
is the Jacobian at the vertex. Now applying central differences

to the outer term of Eqn. (4.15) gives

Φi+ 3
2
− Φi+ 1

2

Jv
i+1

−
Φi+ 1

2
− Φi− 1

2

Jv
i

= −∆ξ2 ρ
ξ

i+ 1
2

. (4.18)
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Notice that for a uniform grid (∆ξ = ∆x), Eqn. (4.18) reduces to Eqn. (2.21).

Eqn. (4.18) can easily be solved using a direct tridiagonal solver. However, since

we have constructed the 1d code as a first stepping-block to the more complex 2d

code where a direct tridiagonal solver would not work, we have chosen to solve the

symmetric matrix generated by Eqn. (4.18) with a CG solver as in § 2.3.

Solvability Condition of Poisson Equation

The test cases presented in this thesis rely on the use of periodic boundary conditions

on the fields. However, without at least one Dirichlet boundary condition, Poisson’s

equation has a 1d null space, i.e. it is negative semi-definite. It is easy to see that

for periodic (or Neumann) boundary conditions, the Laplacian term ∇2Φ can be

written as ∇2Φ̄, where Φ̄ = Φ + C and C is a constant. Since ∇2C = 0, this

also satisfies the equation, meaning that there is not a unique solution to Poisson’s

equation. This will cause a lack of convergence in our CG solver if ρ is not in the

range space of ∇2Φ. We therefore ensure that ρ is in the range space of the Laplacian

operator by integrating the charge density over the entire volume and renormalizing

the background ion density such that

∫

ρx dV = 0. (4.19)

If no electrons have left the system and there is a neutralizing ion background, this

should hold, but our renormalization procedure guarantees that exactly. Eqn. (4.19)

is the solvability condition in the continuum. On the discrete grid, it is obtained

using

∑

i

ρ
ξ

i+ 1
2

= 0. (4.20)

Assuming Φ satisfies Eqn. (4.18), this holds exactly for periodic or Neumann bound-

ary conditions, because the sum telescopes.
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Electric Field

Eqn. (4.13b) dictates that we use the logical grid electric field at the particle’s position

on the logical grid. The most obvious method to do this would seem to be by simply

differencing Φ with respect to ξ,

E
ξ
i = −

Φi+ 1
2
− Φi− 1

2

∆ξ
, (4.21)

where we have defined a staggered grid such that Eξ exists on vertices and Φ and

ρξ exist on cell centers. To check the accuracy of our method, we set up a peri-

odic system in which a single, stationary negatively charged particle in a uniform,

neutralizing ion background (which is necessary to meet the solvability condition) is

weighted to the grid, the fields are solved for, and the electric field Eξ is interpolated

to the particle position. From § 2.4.1 and Appendix B, we know that if the weighting

and interpolation schemes are devised correctly, the self-force on a particle should

be zero to computer precision. However, upon completing this calculation for the

logical electric field, we find that there are actually non-zero self-fields associated

with this method. We observe that these fields scale with 2nd-order accuracy in ∆x,

but nevertheless are not machine precision zero.

We have therefore implemented a second, less direct method of obtaining the

logical electric fields at the particle position, ξ = ξp, in which we solve for the

physical electric field on the logical grid and interpolate this field to the particle

position. As such, we calculate the physical electric fields on the vertices, formulated

on the logical grid as

Ex
i = −

Φi+ 1
2
− Φi− 1

2

Jv
i ∆ξ

, (4.22)

and interpolate this to the particle’s logical space position. Since Eξ = JEx, we then

also interpolate the grid jacobian to the particle position and retroactively multiply

Ex(ξp) and J(ξp) to obtain Eξ(ξp). This is slightly more computationally expensive
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than the direct interpolation of Eξ approach described above, but repeating the test

above reveals that this method leads to computer-precision zero self-fields at the

particle position in 1d. Appendix ?? provides a clear explanation as to why this

method leads to zero self-forces at the particle and the direct interpolation method

does not.

4.2.2 Using Gauss’ Law to Obtain Fields Directly

Unique to a 1d system, we can also obtain the electric fields directly from the charge

density using Gauss’ law (Eqn. (4.1)) as a method for comparison with our logical

grid Poisson solver. Rewriting Eqn. (4.1) in terms of a derivative on the logical grid

as

dEx

dξ
= ρxJ = ρξ, (4.23)

we can now discretize Eqn. (4.23) by central differences. Rearranging such that the

physical electric field at vertex i + 1 can be updated using the electric field at i and

the charge density at the cell center i+ 1
2

by integrating over the logical domain gives

Ex
i+1 = Ex

i + ∆ξρ
ξ

i+ 1
2

. (4.24)

Since the electric field and charge density are on staggered grids, the result of this

integration is 2nd order accurate in ∆x. A constant of integration due to the boundary

conditions on the potential also comes out of the integration of Eqn. (4.23) and must

be accounted for to fix the electric field such that
∫

Exdx = 0:

∆Φ ≡ −
∫

Ex dx, (4.25)

where we have assumed no external electric force has been applied. As such, Eqn. (4.24)

can then be written

Ex
i+1 = Ex

i + ∆ξ ρ
ξ

i+ 1
2

+ ∆Φ. (4.26)
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4.2.3 Validation of the Field Solvers using the Method of

Manufactured Solutions

To compare the two methods of obtaining the electric field given by Eqns. (4.18)

and (4.26), we have set up at test using the Method of Manufactured Solutions

(MMS) [46]. MMS is an amazingly simple, yet powerful tool to construct solutions

to PDE problems. By obtaining analytic solutions to problems, we are able to check

that the error in the numerical solution converges to the analytic solution with 2nd

order accuracy. MMS is based upon choosing a function which satisfies a given set of

boundary conditions a priori, then taking the required derivatives to find the source

term. The source term is then inserted into the numerical system and the solution

is compared to the exact solution. For example, with Poisson’s equation, we simply

choose a potential that satisfies a chosen set of boundary conditions, calculate the

charge density, and use that density in our solver. We note here that the Poisson

solver gives us Φ as an output, whereas the Gauss’ law solver gives Ex. We can

therefore compare both solvers by either differencing Φ obtained by the Poisson

solver to obtain Ex or by integrating the electric field obtained by the Gauss’ law

solver to obtain Φ. We have decided to employ both methods as one more measure

of comparison between the two methods.

For our 1d studies, we wish to construct a non-trivial potential with inhomogenous

Dirichlet boundary conditions in an attempt to demonstrate the flexibility of our field

solvers. As such, we have chosen a potential given by the sum of two Gaussians:

ΦMMS(x) = A1 exp

(

−(x − B1)
2

2C2
1

)

− A2 exp

(

−(x − B2)
2

2C2
2

)

. (4.27)

Using the 1d Cartesian Poisson equation (Eqn. (2.4)), we can analytically cal-

culate the charge density to be inserted into the solvers developed in § 4.2.1 and
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Figure 4.1: 1d MMS potential as constructed by Eqn. (4.27) and the analytic 1d
MMS charge density given by Eqn. (4.28).
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Nξ ǫgrid = 0 ǫgrid = 0.01875 ǫgrid = 0.0375 ǫgrid = 0.075 ǫgrid = 0.15

25 2.57922E-2 2.93183E-2 3.33245E-2 4.17780E-2 5.70396E-2

50 6.64361E-3 7.57754E-3 8.65505E-3 1.10612E-2 1.66014E-2

100 1.67228E-3 1.90873E-3 2.18258E-3 2.79883E-3 4.24558E-3

200 4.18769E-4 4.78063E-4 5.46800E-4 7.01750E-4 1.06707E-3

400 1.04736E-4 1.19571E-4 1.36772E-4 1.75564E-4 2.67118E-4

Table 4.2: L2-norm error between computational and analytic MMS potentials for
different grid resolutions and grid nonuniformities (ǫgrid) for the both the Poisson
and Gauss’ Law solvers. Errors between the two solvers are in the 10−15 range.

§ 4.2.2:

ρMMS(x) =
A1 exp

(

− (x−B1)2

2C2
1

)

(B1 + C1 − x)(x − B1 + C1)

C4
1

+

A2 exp
(

− (x−B2)2

2C2
2

)

(B2 + C2 − x)(x − B2 + C2)

C4
2

. (4.28)

Furthermore, using Eqn. (2.5), we can also calculate the physical MMS electric field:

EMMS(x) =
A1 exp

(

− (x−B1)2

2C2
1

)

(x − B1)

C2
1

−
A2 exp

(

− (x−B2)2

2C2
2

)

(x − B2)

C2
2

, (4.29)

which can also be compared with the computational solutions of the Poisson and

Gauss’ Law solvers. For the following 1d MMS tests, we have employed the following

constants:

A1 = 0.95 A2 = −0.85

B1 = 0.15 B2 = 0.8

C1 = 0.05 C2 = 0.2.

Figs. (4.1(a)) and (4.1(b)) show the MMS potential and charge density as given by

Eqns. (4.27) and (4.28) using these constants.

Upon convergence, the numerical solution and the exact solution are compared,
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Figure 4.2: Scalings of L2-norm of errors between computational and analytic solu-
tions for potential and electric field. Here we are using the nonuniformity parameter
ǫgrid = 0.15.

and the error between the two is calculated using the L2-norm:

||f ||2 =

√
∑Nξ

i=1 (fnum
i − fMMS

i )
2

Nξ

, (4.30)

where f is either Φ or Ex. The data displayed in Table (4.2) is the error in Φ and

was obtained using a grid given by Eqn. (4.16a) for a range of nonuniformities. Both

the potential and electric field errors between the two solvers are indeed equal to

approximately 10−15, and as such the data displayed in Table (4.2) holds for either

solver. We note here that while this data scales with 2nd-order accuracy, the error

coefficient increases as the grid nonuniformity increases. This is due to the fact that

as ǫgrid increases, the ratio of the length of the maximum grid cell size to the smallest

becomes quite large, and accordingly the solution is less accurate in the region where

61



Chapter 4. Development of a 1d Logical Grid PIC Code

the grid is coarse.

We display the error between the numerical and MMS solutions as a function of

the number of grid cells for both the potential and electric field in Fig. (4.2). We

note that in the case of the lowest resolution electric field data, the scaling appears

to be only 1st-order accurate, becoming 2nd-order accurate as the spatial resolution

increases. The reason this apparent 1st-order scaling appears in the electric fields but

not in the potential is that, by calculating Ex, we are effectively “roughing” up the

data with a derivative, and noise caused by under-resolution of the domain becomes

more apparent. Likewise, the process of integrating the electric field to obtain Φ

in the Gauss’ law solver smoothes the noise inherited by a single integration of the

charge density to obtain Ex with this method.

4.2.4 ML Mover Applied to 1d Non-Uniform Grid

If there is no external force applied to a particle moving across a periodic system,

its physical velocity should remain a constant. However, in § 3.4.3, we found that

our ML mover leads to an error of order ∆t2, and as such we know that the physical

velocity will have some variation as a particle crosses a nonuniform grid.

To test the accuracy of our mover on the inertial force term in Eqn. (4.13b), we

set up a system in which a single test particle with some initial physical velocity

vx0 moves across a periodic 1d, nonuniform grid given by Eqn. (4.16a). To ensure

charge neutrality, we assign a uniform ion background, the total charge of which is

equivalent to the magnitude of the test particle charge. As this system is identical

to that described in § 4.2.1, we know the self-forces on the particle are zero, and we

are therefore justified to drop the field force term completely from the following tests

in order to focus solely on the effects of the inertial term.

In our curvilinear coordinate PIC method, Eqn. (4.13b) dictates that we must
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also obtain the grid-based quantities J(ξp) and J ′(ξp) at the particle positions. For-

tunately, since we have chosen an analytic function for our grid, we can obtain these

values by inserting the particle positions on the logical grid directly into Eqns. (4.16b)

and (4.16c). As such, we can use these “analytic grid” values to eliminate all spatial

scaling effects due to the interpolation of grid-based quantities from the problem to

see the magnitude of the variation in the inertial force term as predicted in § 3.4.3,

where we found that the inertial force term of Eqn. (4.13b) is not handled exactly,

but instead gives a 2nd-order accurate approximation in ∆t.

We note here that the analytic grids used here and in the rest of this thesis are

employed solely as debugging tools. In the most general case in which the grid is

obtained via some outside grid generator there is not a simple analytic expression

which can be applied. All test cases in this and the following chapters which incor-

porate the full PIC code will therefore be conducted using an interpolated grid to

describe more fully the properties of our method.

Using the initial conditions Nξ = 100, vx0 = 0.01, and ǫgrid = 0.15, we can

determine how small a timestep is necessary to meet the macroparticle Courant

condition [10, 11],

vmax∆t < ∆xmin. (4.31)

Since ∆x varies widely across the physical grid, we have decided to play it safe

and assume that we must satisfy the most stringent requirement, with ∆xmin. From

Eqn. (4.16b), we can calculate the length of the smallest cell, ∆xmin = ∆ξ (1 − 2πǫgrid) ≈
5.7 × 10−4. Thus, by our initial conditions, Eqn. (4.31) requires a timestep ∆t <

5.7×10−2. To be safe, we have set up a parameter scan over ∆t = 0.003125, 0.00625,

0.0125, 0.025, and 0.05, to follow the physical velocity as a function of its logical grid

position, as shown in Fig. 4.3. From Fig. 4.3, it is quite evident that the error in

the present system scales as ∆t2. Further tests scanning over Nξ show that in this

particular test case there is no scaling with grid resolution, as is expected when the
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Figure 4.3: Comparison of particle velocity vs. logical position for various timesteps.
Here Nξ = 100, ǫgrid = 0.15 and we are using an analytic system with no grid
interpolations.

grid values at the particle positions are given exactly by the analytic grid.

Finally, we wish to quantify the additional amount of error added in our system

by grid interpolation rather than an analytic solution. In Fig. (4.4), we show a

comparison of the effects of linear, quadratic, and cubic spline interpolation of the

grid quantities to the particle position on the initial physical velocity as the particle

moves across the grid. We have also plotted the analytic grid solution for reference.

It is quite clear that the quadratic and cubic spline shape (interpolation) functions

provide a much smoother result than the linear interpolation case. The difference

between the quadratic and cubic splines interpolation cannot be seen at the resolution

level shown in Fig. (4.4), revealing that the step from quadratic to cubic splines
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Figure 4.4: Comparison of particle velocity vs. logical position for linear, quadratic,
and cubic b-spline interpolation, and the analytic grid solution with Nξ = 100,
vx0 = 0.01, ǫgrid = 0.15 and ∆t = 0.0125.

results in a much smaller gain in smoothness than the linear to quadratic step.

We have also performed a set of parameter scans over ∆t, with Nξ held constant

and over Nξ, with ∆t held constant. Fig. (4.5)(a) shows that for a given Nξ, as

∆t gets smaller, the features of the system become more resolved with 2nd-order

accuracy in ∆t, but are not moved closer to the analytic grid solution, which is

plotted in Fig. (4.5)(b). This accuracy scaling is due to the ∆t2 scaling of the ML

solver. Fig. (4.5)(b) shows that for a given ∆t, as Nξ is increased the solution moves

ever closer to the analytic grid solution with 2nd-order accuracy in Nξ. This scaling

is due to the interpolation of the grid. Note that the brown curves in Figs 4.5(a) and

(c) are the same as the blue curves in Figs 4.5(b) and (d), respectively.
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Figure 4.5: Single particle vx vs ξ for different timesteps with fixed grid resolution
Nξ = 100 (a) and different grid resolutions with fixed timestep ∆t = 0.0125 (b). Both
cases use quadratic particle shapes for interpolation. The same runs were performed
with cubic spline interpolation in (c) and (d).

4.3 Selected 1d Full PIC Benchmarking Cases

We have performed a vast array of tests on our code, but for the sake of brevity will

detail only a few here. Several physics problems have become the standard tests for

benchmarking a PIC code; among these are electrostatic plasma waves, two-stream

instabilities, and Landau damping [10].

All tests described below are first performed on a uniform grid on [0 : 1] in the

physical space, such that any problems arising due to the non-uniform grid can be
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easily identified later and a baseline value can be compared to theory. We then

perform the same test using a non-uniform grid given by Eqn. (4.16) to understand

better the full effect of the grid on the problem at hand.

It is important to remember that we are trying to reproduce test cases designed to

work well on the uniform grid, where smooth initial particle distributions can easily

be achieved. Therefore, we must in general use both a higher number of grid points

and particles per cell than is necessary to reproduce the same physics using standard

uniform grid PIC techniques. We are not trying to show that our method performs

better than the standard PIC codes often used on these problems, but rather trying

to show that we can indeed reproduce the correct physics of these analytic problems

to a high degree of accuracy before moving on to more difficult problems in more

complex geometries, in which the nonuniform grid is adventageous.

Particle Initialization Techniques

For our cold plasma test cases, our PIC macroparticles are initialized for these tests

using an extension of the well-known quiet start method [10]: we uniformly space

particles throughout the (continuous) physical space, then map each particle to its

logical position by inverting Eqn. (4.16a) using Newton iterations (the same inver-

sion can be performed on any grid if x(ξ) is given by a one-to-one map). Particle

velocities are also initially generated in the physical space and transformed to to

logical momentum Pξ using Eqn. (3.29a), which in 1d can be written

Pξ = Jpx. (4.32)

While our method does not lead to an exact quiet start due to the fact that the

number of particles per cell is not uniform across our nonuniform physical grid, it

cancels enough particle noise to allow us to initialize a perturbation in the plasma

system with a small amplitude.
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In all the test cases described below, the electron-plasma component is followed

numerically, whereas the ion component is assumed to be a uniform, static back-

ground on the physical grid such that ρξ = ρξ(i) + ρξ(e). As such, the logical grid ion

charge density, ρξ(i), takes the form of the Jacobian on the logical grid,

ρξ(i)(ξ) = J(ξ) = 1 + 2πǫgrid cos(2πξ). (4.33)

The electron charge density is accumulated using the weighting methods described

in § 2.4:

ρ
ξ(e)

i+ 1
2

=

Np∑

p=1

QS(ξi+ 1
2
− ξp). (4.34)

Since these weighting methods are only approximations of the analytic electron

charge density,

ρ̂ ξ(e)(ξ) = −J(ξ) = −1 − 2πǫgrid cos(2πξ), (4.35)

we are automatically introducing some error into the system by adding the interpo-

lated electron and exact ion components to obtain the total charge density. More

specifically, the ion charge density component is exactly uniform on the physical

grid, whereas the electron component has some slight variations from exact unifor-

mity. Since this error is based on the interpolation properties and not the particle

noise, it can be quantified by taking Np → ∞, such that Eqn. (4.34) becomes

ρξ(e)(ξ′) =

∫ ∞

−∞

S(ξ − ξ′)ρ̂ ξ(e)(ξ′)dξ′. (4.36)

Here, ρ̂ ξ(e)(ξ′) is the exact electron density, equal in magnitude to the ion density,

and ρξ(e)(ξ′) is the electron density obtained by the weigthing scheme (in the limit

that Np → ∞). We have written the limits of integration as over all space because

S(ξ − ξ′) is localized by the definition of the particle shape function and we are

ignoring the intracacies of the boundary conditions. Eqn. (4.36) is in the form of a
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convolution of the shape function and analytic charge density; thus we can rewrite

it in the more convenient form

ρξ(e)(ξ′) =

∫ ∞

−∞

S(ξ′)ρ̂ ξ(e)(ξ − ξ′) dξ′. (4.37)

Applying a Taylor expansion to the exact electron density ρ̂ ξ(e)(ξ − ξ′) around ξ

allows us to write Eqn. (4.37) as

ρξ(e)(ξ′) =

∫ ∞

−∞

S(ξ′)ρ̂ ξ(e)(ξ) dξ′ +
1

2

∫ ∞

−∞

S(ξ′)ξ′2ρ̂ ξ(e)′′(ξ) dξ′

+
1

24

∫ ∞

−∞

S(ξ′)ξ′4ρ̂ ξ(e)′′′′(ξ) dξ′, (4.38)

where we have dropped the odd terms from the Taylor expansion because the particle

shape function is an even function. Integrating each term over the interval in which

the shape function is nonzero, e.g. [−∆ξ : ∆ξ] for linear weighting, and recalling

from Eqn. (2.11) that the integral of the particle shape function is one, we can then

carry out the integration of Eqn. (4.38). For linear weighting, we obtain

ρξ(e)(ξ) = ρ̂ ξ(e)(ξ) +

(
2π3(∆ξ)2ǫgrid

3
− 4π5(∆ξ)4ǫgrid

45

)

ρ̂ ξ(e)(ξ); (4.39a)

for quadratic splines it is

ρξ(e)(ξ) = ρ̂ ξ(e)(ξ) +

(

π3(∆ξ)2ǫgrid −
13π5(∆ξ)4ǫgrid

60

)

ρ̂ ξ(e)(ξ); (4.39b)

and for cubic splines it is

ρξ(e)(ξ) = ρ̂ ξ(e) +

(
34π3(∆ξ)2ǫgrid

45
− 38π5(∆ξ)4ǫgrid

45

)

ρ̂ ξ(e)(ξ). (4.39c)

Using Eqns. (4.39), we can then calculate the amount of error introduced into

the system by summing the electron charge density (obtained by weighting) and ion

charge density (exact). For linear interpolation with Nξ = 100 and ǫgrid = 0.15, the

magnitude of the O(∆ξ)2 correction term is |δρ| ≈ 3.1 × 10−4, meaning that even

with an infinite number of particles, we would have a small error introduced into
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our system by the charge accumulation process. We can correct for this error by

simply adding the higher-order correction terms in Eqns. (4.39) to the background

ion charge density, assuring that the charge density is uniform on the physical grid to

O(∆ξ)4 in the limit of Np → ∞. To be clear, the effect of this difference in physical

charge density leads to inaccuracies, it is completely separated from the noise effects

due to having a finite number of particles within the system.

Since we are constrained to a finite number of particles in our system and the

particle induced noise levels in a PIC code scale proportional to 1√
Nppc

[10], we see

that a highly nonuniform grid is capable of producing large levels of noise in the

system, as the smallest cells contain many fewer computational particles than the

largest. For example, with ǫgrid = 0.15, the ratio of the largest cell to the average

cell is 1 + 0.15× 2π ≈ 1.94 and the smallest is 1− 0.15× 2π ≈ 0.057. If we are using

an average of 100 particles per cell, the largest cells contain almost 200 particles,

whereas the smallest have approximately 5! This can lead to large amounts of noise

in the initial charge density where the grid spacing is small. This noise is then

translated back to the particles through the field solve, and thus large amounts of

noise can easily make their way through the system as time marches forward, leading

to, for example, a loss of coherent wave structure.

An alternate method for this initialization process would be to initialize nonuni-

form macroparticle charges and masses based upon the size of the cell they are

initially located in. These particles could then initially be placed uniformly on the

logical grid such that each cell contains a uniform initial charge density. However, as

time marches forward, this method introduces several problems of its own, namely

that as the particles from larger cells move into the smaller cells, their statistical

weight overwhelms that of several small particles and introduces numerical noise to

the system. We note here that there have been several particle control methods

devised to fix this type of problems [24, 25, 27, 28], but they are outside of the scope
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of this thesis.

4.3.1 Cold Plasma Oscillations

If the electrons in a cold plasma are displaced from their equilibrium positions in

the presence of a uniform, static ion background, electric fields will be built up such

that the electrons are pulled back towards their initial positions. However, due to

their inertia, the electrons will overshoot this position and oscillate around their

equilibrium positions at the electron plasma frequency, ωpe.

Since this oscillation is on the electron timescale, it is justified to assume the

ions are fixed. The electrons are perturbed from their initial physical equilibrium

positions using

xpert = x0 + ǫpert sin 2πx0, (4.40)

where ǫpert is a small parameter to control the magnitude of the perturbation on the

k = 2π mode. The electrons are then allowed to oscillate around their equilibrium

positions. As the code progresses in time, we record the electrostatic field energy of

the system,

< E2 >=
1

2

∫

(Ex)2dx =
1

2

∫

(Ex)2Jdξ. (4.41)

The slope of the electrostatic field energy curve in time can be related to the growth

rate, a measure of the imaginary frequency component of Ex, by

γ =
ln <E2>2

<E2>1

2(t2 − t1)
. (4.42)

Here < E2 >1 is the value of the field energy of the system at time t1 and < E2 >2

corresponds to time t2.

For a cold initial distribution the growth rate should be exactly zero, but due to

numerical heating [10] it is nearly impossible to eliminate all growth from the system
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even for a uniform grid PIC code. This test case is a particularly stringent test of

our method, as any noise in the system can excite oscillations in the system due to

grid aliasing [10, 11, 47, 48] which can compete with the primary wave we are trying

to initialize and follow. This can lead to mode interference which looks like growth

and decay within the system on very long timescales.

There are several methods of dealing with this noise. The simplest of these

consists of increasing the resolution in ∆x or ∆t, and increasing the average number

of particles per cell, N̄ppc. We can also increase the initial perturbation on the

equilibrium particle positions such that the magnitude of the 2π-mode we are trying

to induce is much larger than the noise due to the fluctuations varying on the grid

scale. We have performed a large number of parameter scans over ∆x, ∆t, and N̄ppc

to determine the regimes in which our code is able to perform well. Although we

have determined in § 4.2.4 that interpolation of the grid using higher-order shape

functions leads to smoother interpretation of the inertial force term in Eqn. (4.13b),

we find that in this case the grid interpolation order has little effect on the overall

noise in the system. Rather, the interpolation and weighting method used on the

fields appears to be the most important factor for preserving a coherent electrostatic

oscillation. This is to be expected, as the noise within the system lies entirely in the

ρξ → Φ → Ex process. There is no noise induced into the system by interpolation

of the grid quantities to the particle positions.

Fig. (4.6a) shows a comparison of the evolution of a cold electrostatic plasma

wave generated by a uniform and non-uniform grid over a long timescale. It can

easily be seen that the growth rate is practically zero in both cases, but that the

noise levels are different in the two cases. Fig. (4.6b) is a zoomed snapshot of the long

run, which shows that the plasma oscillations occur with a period of 6.29 for both

uniform and nonuniform grids, which is consistent with our normalization such that

ωpe = 1. Here we are using Nξ = 256, N̄ppc = 100 and ∆t = 0.01, with ǫgrid = 0.15
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Figure 4.6: Comparison of cold plasma oscillation field energies for uniform and non-
uniform grids for (a) a long run and (b) a zoomed section of the run at early time
showing the oscillation period of 2π for both grids. Here we have used cubic-spline
(S3) particle shape functions with Nξ = 256, N̄ppc = 100, ∆t = 0.01, for both cases
and ǫgrid = 0.15 for the nonuniform grid.
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and a cubic spline particle shape. We have also performed several tests with higher

values of N̄ppc, and the net effect is a longer run time before loss of the coherent

oscillation with higher numbers of particles per cell, as is expected.

It should be noted here that while we have been forced to use very high resolution

in both ∆x and ∆t, we are in fact simulating this problem on a grid in which the

length of the largest cell is ≈ 35 times that of the smallest. For less nonuniform

grids, much less resolution is required. In fact, for cases with a largest to smallest

cell size ratio of ≈ 2 (ǫgrid = 0.05), we can run to time ωpet = 104 without losing the

coherent wave structure using the same parameters as we have been using for the

uniform grid case, Nξ = 64, N̄ppc = 100 and ∆t = 0.1.

4.3.2 Cold Electron-Electron Two-Stream Instability

A system consisting of two counter-propagating cold beams of particles with velocities

±v0 and density n0

2
per beam can give rise to what is known as the two-stream

instability. A density perturbation on one beam causes bunching of the particles in

the second beam. This bunching of particles produces electric fields which then cause

bunching in the first beam. This leads to the characteristic bunching of the beams in

phase-space and an exponential growth rate. In the case of two cold electron beams, it

is permissable to model the ion species (of density n0) as an immobile background, as

the interaction of the beams happens on the electron timescale. Simple linear theory

for a cold electron-electron two-stream reveals that a quartic dispersion relation with

four independent solutions exists:

ω = ±
√

k2v2
0 +

ω2
pe

2
± ωpe

2

√

8k2v2
0 + ω2

pe. (4.43)

Fig. (4.7) shows a comparison of the growth rate of both the uniform and non-
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Figure 4.7: Comparison of cold electron-electron two-stream instability growth rates
for uniform and non-uniform grids. Note the difference in field energies at ωpet = 0
due to particle noise from the smallest cells.

uniform grid cases, showing again that, for a well-resolved case, there is no difference

between the uniform grid solution and that of our method on a nonuniform grid with

ǫgrid = 0.15. Here we have used Nξ = 128, N̄ppc = 200 (per beam), vx
0 = ±0.1 and

∆t = 0.01 for both the uniform and nonuniform grid. With these initial values, we

have kvx
0 ≈ 0.63 < ωpe. The uniform grid gives a growth rate γun = 0.3516, whereas

the non-uniform grid case shown here gives γnon = 0.3518 , which compare extremely

well with the theory prediction in Eqn. (4.43) of γtheory = 0.3515. It is interesting to

note that as the fidelity of our simulations decreases as we increase ǫgrid, the initial

noise in the system due to the nonuniform grid becomes higher and the period of

linear growth becomes shorter (but retains the correct growth rate). The problem

saturates at the same electrostatic energy regardless of the case studied. From our
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Figure 4.8: Phase-space evolution of the electron-electron two-stream instability.

studies, we conclude that a smaller initial perturbation on the beams simply leads

to a time-delay in the formation of the instability, as the susequent evolution of the

instability is the same for all cases, even in the nonlinear phase! I guess sometimes

the laws of physics just work.

Fig. (4.8) gives the reader an example of the phase-space evolution of the two-

stream instability on the nonuniform grid as in Fig. (4.7). In this example, we have

used used the same parameters as before. In this particular case we have found that

fidelity in the time step becomes the most important parameter, as when the particle
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Figure 4.9: Plot of the electron-electron two-stream instability dispersion relation
(Eqn. (4.43)) overlayed with data points obtained from our PIC code using ǫgrid =
0.15, Nξ = 128, N̄ppc = 200 (per beam), and ∆t = 0.005.

phase-space trajectories become distorted in time as in Fig. (4.8c), the velocities of

the fastest particles can become 2-3 times higher than the initial beam velocity.

Finally, we have run the two-stream instability test for a large number of cases

to test the linear dispersion relation given by Eqn. (4.43). Fig. (4.9) shows the

comparison between the theoretical prediction (lines) and our data for several cases

(circles). As can be seen, the agreement with theory is quite good for all cases.
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vth ωPIC ωtheory %error

0.0 1.00081 1.00000 0.08
0.005 1.00081 1.00148 0.07
0.01 1.00644 1.00590 0.05
0.015 1.01660 1.01324 0.33
0.02 1.02601 1.02341 0.25
0.025 1.02887 1.03635 0.72

Table 4.3: Table of PIC results for Langmuir waves compared with Eqn. (4.44) using
ǫgrid = 0.15, Nξ = 128, N̄ppc = 200, and ∆t = 0.01.

4.3.3 Langmuir Waves

A Maxwellian thermal spread with temperature Te is added to the electrons described

in § 4.3.1 by choosing random velocities according to a Maxwellian distribution at

each position. The resulting oscillation frequency should be related to the electron

plasma frequency by the Bohm-Gross dispersion relation [49]:

ω2 = ω2
pe + 3k2v2

th. (4.44)

Again the ions are assumed to be a uniform immobile background of density n0.

Eqn. (4.44) describes a purely real plasma wave, therefore adding some thermal

velocity to the electrons should produce oscillations quite similar to those shown in

Fig. (4.6), but with an increase in ω2 proportional to square of the thermal velocity.

However, further analysis reveals that there is an imaginary component associated

with Eqn. (4.44) due to Landau damping (§ 4.3.4). We therefore limit our Langmuir

wave comparisons for this section to low thermal velocities, at which the Landau

damping is negligible.

Fig. (4.10) shows a comparison of the oscillation periods for several thermal ve-

locities, using ǫgrid = 0.15, Nξ = 128, and N̄ppc = 200 with ∆t = 0.01. It is quite

evident that as the thermal velocity is increased, the oscillation period decreases (or

conversely, the oscillation frequency increases). For the largest case, vth = 0.025, the
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Figure 4.10: Comparison of Langmuir wave periods for different thermal velocities
using a non-uniform grid with ǫgrid = 0.15, Nξ = 128, N̄ppc = 200, and ∆t = 0.01.

effects of Landau damping become noticeable (see next section). Table (4.3) shows

a comparison of our results with those given by Eqn. (4.44). As can be seen, the

real oscillation frequency results are quite accurate, even for the vth = 0.025 case.

Interestingly, from a computational standpoint, the addition of a thermal velocity

adds “noise” to the system (since for no thermal velocity we applied a quiet start

technique, thereby eliminating the noise from the initial conditions) and as such, the

problem becomes easier to simulate with our nonuniform grid as the thermal velocity

increases and dominates over the noise in the system due to the grid effects.
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vth γPIC γtheory % error

0.06 -0.0732 -0.0774 5.426
0.08 -0.1453 -0.1521 4.471
0.10 -0.1504 -0.1589 5.349
0.12 -0.1311 -0.1354 3.176

Table 4.4: Table of PIC results for Landau damped Langmuir waves compared with
Eqn. (4.45) using Nξ = 256, N̄ppc = 1000, and ǫgrid = 0.075.

4.3.4 Landau Damping

Landau damping [2] is a characteristic of collisionless plasmas in which waves are

damped due to phase mixing in phase space. It leads to the energy exchange between

the plasma waves, which travel at a phase velocity vph = ω
k
, and the plasma particles

that travel at velocities very close to this phase velocity. Particles having velocities

slightly lower than vph are accelerated by the wave electric field. Conversely, particles

moving slightly faster than vph are decelerated by the wave electric field. The net

effect is to remove energy from the wave and transfer it to the particles.

In a thermal collisionless plasma, the plasma particles are distributed according

to a Maxwellian distribution function. As such, there are more slow electrons than

fast ones, leading to a net surplus of particles taking energy from the wave than

providing energy, and the wave is damped according to [49]:

ωi = −
√

π

8

ωpe

|k3λ3
De|

exp

[

−
(

1

2k2λ2
De

+
3

2

)]

. (4.45)

Table (4.4) shows a comparison of the PIC results with the theory presented in

Eqn. (4.45). As can be seen, the PIC data consistently damps at a slightly lower

rate than that predicted by theory, even for higher resolution runs with Nξ = 256,

N̄ppc = 1000, and ǫgrid = 0.075. However, since Landau damping is due to only a
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Figure 4.11: Comparison of Landau damping on uniform and nonuniform grids. Here
L = 1, vth = 0.08, and an initial perturbation of ǫpert = 0.05 is used.

small set of resonant particles, even uniform grid codes have trouble reproducing

Landau damping rates accurately.

As is shown in Fig. (4.11), the uniform and nonuniform grids give nearly identical

damping rates for a case where vth = 0.08 with an initial perturbation on the particle

positions of ǫpert = 0.05. It is impressive that even a highly nonuniform case of

ǫgrid = 0.075 gives results which are very close to those of the uniform grid case.

Here, the initial noise in the system due to the large grid nonuniformity is small

compared to the noise due to the thermal motions of the particles.
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5.1 2d Governing Equations

In two spatial dimensions, the logical grid particle equations of motion (Eqns. (3.35))

can be written as

ξ̇ = 1
m

(g11Pξ + g12Pη) ,

η̇ = 1
m

(g12Pξ + g22Pη) ,

(5.1a)

and

Ṗξ = −1
2m

(

P 2
ξ

∂g11

∂ξ
+ 2PξPη

∂g12

∂ξ
+ P 2

η
∂g22

∂ξ

)

− ∂V (~ξ )
∂ξ

,

Ṗη = −1
2m

(

P 2
ξ

∂g11

∂η
+ 2PξPη

∂g12

∂η
+ P 2

η
∂g22

∂η

)

− ∂V (~ξ )
∂η

.

(5.1b)

Note that we have written Eqns. (5.1) in terms of the contravariant metric tensor,

gµν = gµν(~x ), which is easily obtained from the covariant metric tensor, gµν(~ξ ),

obtained during the grid generation procedure outlined in § 3.1 using Eqn. (A.10).
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The third momentum component, Pz, is generated at t = 0 and held as a constant

as the simulation progresses. This term contributes to the simulation through its

inclusion in the effective potential term, V (~ξ ). In azimuthal symmetry, Vazi(~ξ ) =

p2
z

2m
+ qΦ(~ξ ), such that the ignorable-direction momentum does not contribute to

the momentum update equations. However, for an axisymmetric problem, Vaxi(~ξ ) =
p2

φ

2mx(~ξ )2
+ qΦ(~ξ ), such that its derivative is

∂V (~ξ )
∂ξ

= − j11p2
φ

mx3 − qEξ

∂V (~ξ )
∂η

= − j12p2
φ

mx3 − qEη.
(5.2)

Thus, in the axisymmetric case we must also interpolate the j11 and j12 components

of the Jacobi matrix and the x-coordinate of the particle’s physical space position to

the particle position on the logical grid.

In two dimensions the logical grid Poisson equation, Eqn. (3.67), takes the form

∂

∂ξ

(

D11∂Φ

∂ξ
+ D12∂Φ

∂η

)

+
∂

∂η

(

D12 ∂Φ

∂ξ
+ D22 ∂Φ

∂η

)

= −f ρξ, (5.3)

where we have defined

Dµν ≡ f Jgµν . (5.4)

For our 2d code, we have a wide range of grid choices on which to perform our

test cases. For the sake of brevity, we outline only two here. In addition to the

annulus grid generated numerically in § 3.2, we define a doubly periodic, orthogonal

grid using:

x = xmin + (xmax − xmin)(ξ + ǫgrid sin 2πξ)

y = ymin + (ymax − ymin)(η + ǫgrid sin 2πη).
(5.5a)

Here xmin, xmax, ymin, and ymax are constants to scale boundaries of the physical

grid to form a rectangle of arbitrary size. We have also designed a doubly-periodic,
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Figure 5.1: Grids used for validation of the 2d code given by Eqns. (5.5a) and (5.5b).
For this figure, we have used Nξ = Nη = 32 and ǫgrid = 0.1 so that the structure of
the grid can be more clearly seen.
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nonorthogonal grid given by

x = xmin + (xmax − xmin)(ξ + ǫgrid sin 2πξ sin 2πη)

y = ymin + (ymax − ymin)(η + ǫgrid sin 2πξ sin 2πη).
(5.5b)

to test the effects of non-zero cross terms (g12) in our code. For simplicity, we have

constrained the grid nonuniformity parameter ǫgrid in Eqns. (5.5a) and (5.5b) to be

the same in each dimension. Notice that both Eqns. (5.5a) and (5.5b) require that

ǫgrid < 1
2π

so that the grid does not fold.

5.1.1 Conservative Discretization of Poisson Equation

Eqn. (5.3) is comprised of a set of co-directed derivatives proportional to the orthog-

onal metric tensor components (D11 and D22) and a set of cross-directed derivatives

for the nonorthogonal metric tensor components (D12), i.e.

∇2Φ = (∇2Φ)co + (∇2Φ)cross. (5.6)

We can discretize the co-directed terms of Eqn. (5.3),

(∇2Φ)co =
∂

∂ξ

(

D11∂Φ

∂ξ

)

+
∂

∂η

(

D22 ∂Φ

∂η

)

, (5.7)

using an approach similar to the method used in § 4.2.1. We use two-point centered

differences to first discretize the interior derivatives, then apply another centered

difference on the outer derivative term such that Eqn. (5.7) becomes

(∇2Φ)co
i+ 1

2
,j+ 1

2

=

D11
i+1,j+ 1

2

(

Φi+ 3
2
,j+ 1

2
− Φi+ 1

2
,j+ 1

2

)

− D11
i,j+ 1

2

(

Φi+ 1
2
,j+ 1

2
− Φi− 1

2
,j+ 1

2

)

∆ξ2
+

D22
i+ 1

2
,j+1

(

Φi+ 1
2
,j+ 3

2
− Φi+ 1

2
,j+ 1

2

)

− D22
i+ 1

2
,j

(

Φi+ 1
2
,j+ 1

2
− Φi+ 1

2
,j− 1

2

)

∆η2
. (5.8)
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Figure 5.2: Structure of the Laplacian operator for (a) orthogonal and (b) nonorthog-
onal grids. Here the markers represent nonzero terms in the Laplacian matrix for
Dirichlet field boundary conditions.
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Since the D11 and D22 terms are naturally defined at cell centers, they must be

averaged to the correct cell face locations. By our discretization, the D11 terms must

be defined on the vertical faces of grid cells, whereas the D22 terms are required to

be defined along the horizontal faces. For a uniform grid with x, y ∈ [0 : 1], the D11

and D22 terms become unity (assuming the geometry factor, f = 1) and Eqn. (5.8)

reduces to the standard 5-point discretization used in Cartesian PIC codes. The

structure of the Laplacian operator matrix resulting from the co-directed terms is

shown in Fig. 5.2(a), where we have marked nonzero terms with an x. Here we have

used Dirchlet boundary conditions during the matrix formation.

The discretization of the cross-derivative terms

(∇2Φ)cross =
∂

∂ξ

(

D12∂Φ

∂η

)

+
∂

∂η

(

D12∂Φ

∂ξ

)

(5.9)

requires slightly more care. The correct method for discretizing Eqn. (5.9) is to apply

a 4-point centered difference on each derivative. For example,
(

∂φ

∂ξ

)

i,j

=
Φi+ 1

2
,j+ 1

2
− Φi− 1

2
,j+ 1

2
+ Φi+ 1

2
,j− 1

2
− Φi− 1

2
,j− 1

2

2∆ξ
(5.10)

We also calculate
(

∂φ
∂ξ

)

i+1,j
,
(

∂φ
∂ξ

)

i+1,j+1
, and

(
∂φ
∂ξ

)

i,j+1
such that we can then take

the η-derivatives:

∂

∂η

(

D12 ∂Φ

∂ξ

)

=
1

2∆η

[

D12
i+1,j+1

(
∂φ

∂ξ

)

i+1,j+1

− D12
i+1,j

(
∂φ

∂ξ

)

i+1,j

+

D12
i,j+1

(
∂φ

∂ξ

)

i,j+1

− D12
i,j

(
∂φ

∂ξ

)

i,j

]

.

Here, the D12 terms are defined on the vertices. Combining the contributions from

both terms in Eqn. (5.9) and simplifying, we have

(∇2Φ)cross =
1

4 ∆ξ ∆η

[

D12
i+1,j+1

(

Φi+ 3
2
,j+ 3

2
− Φi+ 1

2
,j+ 1

2

)

−

D12
i,j

(

Φi+ 1
2
,j+ 1

2
− Φi− 1

2
,j− 1

2

)

+ D12
i+1,j

(

Φi+ 1
2
,j+ 1

2
− Φi+ 3

2
,j− 1

2

)

+

D12
i,j+1

(

Φi− 1
2
,j+ 3

2
− Φi+ 1

2
,j+ 1

2

)]

. (5.11)
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We can then construct the final, discretized form of Eqn. (5.3) by combining

Eqns. (5.8) and (5.11):

f ρξ =
D11

i+1,j+ 1
2

(

Φi+ 3
2
,j+ 1

2
− Φi+ 1

2
,j+ 1

2

)

− D11
i,j+ 1

2

(

Φi+ 1
2
,j+ 1

2
− Φi− 1

2
,j+ 1

2

)

∆ξ2
+

D22
i+ 1

2
,j+1

(

Φi+ 1
2
,j+ 3

2
− Φi+ 1

2
,j+ 1

2

)

− D22
i+ 1

2
,j

(

Φi+ 1
2
,j+ 1

2
− Φi+ 1

2
,j− 1

2

)

∆η2
+

1

4 ∆ξ ∆η

[

D12
i+1,j+1

(

Φi+ 3
2
,j+ 3

2
− Φi+ 1

2
,j+ 1

2

)

− D12
i,j

(

Φi+ 1
2
,j+ 1

2
− Φi− 1

2
,j− 1

2

)

+

D12
i+1,j

(

Φi+ 1
2
,j+ 1

2
− Φi+ 3

2
,j− 1

2

)

+ D12
i,j+1

(

Φi− 1
2
,j+ 3

2
− Φi+ 1

2
,j+ 1

2

)]

. (5.12)

The structure of the Laplacian operator matrix generated by this full 9-point stencil

applied to the nonorthogonal grid (Eqn. (5.5b)) is shown in Fig. 5.2(b). We have

again assumed Dirichlet boundary conditions.

We note here that this same discretization can be obtained by the minimization of

a variational principle chosen for Eqn. (5.3) [50]. The variational principle approach

guarantees that, for properly applied boundary conditions, the matrix formed by

the application of the ∇2 operator is symmetric. Since we have obtained the same

result, we know our matrix will also be symmetric. This property is important since

we have chosen to use a CG field solver; for while CG requires a symmetric matrix

to converge to the correct solution, it does not in fact require a symmetric matrix to

converge in general!

5.1.2 Validation of 2d Poisson Solver using MMMS

The MMS technique is again utilized to validate our 2d Poisson solver. Since we are

capable of simulating a wide range of physical domains with our 2d code, we have

decided to run MMS tests appropriate for both a unitary, square grid, as well as for

the case in which an annular grid is numerically generated using the techniques of
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Nξ ǫgrid = 0 ǫgrid = 0.025 ǫgrid = 0.05 ǫgrid = 0.075 ǫgrid = 0.15

16 1.72090E-3 8.29163E-4 6.88949E-4 2.42544E-3 9.06392E-3

32 4.14875E-4 1.97193E-4 1.69813E-4 5.95391E-4 2.21714E-3

64 1.02009E-4 4.83358E-5 4.20043E-5 1.47031E-4 5.47060E-4

128 2.52982E-5 1.19786E-5 1.04332E-5 3.65026E-5 1.35787E-4

256 6.29958E-6 2.98229E-6 2.59901E-6 9.09201E-6 3.38199E-5

Table 5.1: L2-norm error between computational and analytic MMS potentials for
different grid resolutions and grid nonuniformities (ǫgrid) for a 2d orthogonal grid
given by Eqn. (5.5a). For these tests, we have chosen Nξ = Nη.

§ 3.1. While we have run several different MMS cases, we present only one for each

geometry here.

Unitary Square Grid

For the square grid, we have chosen an MMS potential given by

φMMS = sin(2πx) sin(2πy), (5.13)

such that, assuming Cartesian geometry, the MMS charge density is

ρMMS = 8π2 sin(2πx) sin(2πy). (5.14)

For this particular choice of φMMS, we test our Poisson solver with periodic boundary

conditions on all boundaries. We have chosen to display this particular MMS test

because we use doubly-periodic field boundary conditions for the PIC benchmarking

tests presented in § 5.3.

As is seen in Table 5.1, the L2-norm of the error in (φ − φMMS) as given by

Eqn. (4.30) scales with 2nd-order accuracy as expected, even for the ǫgrid = 0.15

case, in which the ratio of the area of the largest to the smallest cells is Jmax

Jmin
=

(
1+2πǫgrid
1−2πǫgrid

)2

≈ 1140!
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Figure 5.3: Graph of the maximum skewness parameter S as defined in Eqn. (3.16)
as a function of ǫgrid for the grid given by Eqn. (5.5b).

Unique to the nonorthogonal grid, we must now also consider the amount of

“skewness” of the grid as a major factor in the difficulty associated with solving the

curvilinear Poisson equation (Eqn. (5.3)). For these tests, we have used the maximum

skewness parameter, Smax, as defined in Eqns. (3.16) and (3.17) to characterize the

nonorthogonality of the grid defined by Eqn. (5.5b) for each particular value of ǫgrid

used.

Fig. 5.3 shows Smax as a function of ǫgrid for the grid given by Eqn. (5.5b). For

ǫgrid ≥ 0.125, Smax is very nearly unity, and thus the grid is almost singular. As

noted in § 5.1, this grid folds at ǫgrid = 1
2π

≈ 0.16. By the definition of the curvilinear
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Nξ ǫgrid = 0.025 ǫgrid = 0.05 ǫgrid = 0.075 ǫgrid = 0.15

16 2.08019E-3 3.27156E-3 5.57519E-3 8.99093E-3

32 5.07340E-4 8.20596E-4 1.44430E-3 2.34622E-3

64 1.25103E-4 2.03916E-4 3.62134E-4 5.90944E-4

128 3.10476E-5 5.07074E-5 9.02599E-5 1.47505E-4

256 7.73260E-6 1.26353E-5 2.25042E-5 3.67914E-5

Table 5.2: L2-norm error between computational and analytic MMS potentials for
different grid resolutions and grid nonuniformities (ǫgrid) for a 2d nonorthogonal grid
given by Eqn. (5.5b). For these tests, we have chosen Nξ = Nη.

Poisson equation (Eqn. (5.3)), we see that as Smax → 1, roundoff errors become large

and the field solver will not easily converge, if at all.

We have performed our MMS tests on the nonorthogonal grid using the same

MMS potential as was used for the orthogonal square grid. Table 5.2 shows that the

L2-norm of the error scales with 2nd-order accuracy in ∆x as expected. We note here

that the ratio of maximum cell area to minimum for the grid defined in Eqn. (5.5b)

scales according to Jmax

Jmin
=

1+2πǫgrid
1−2πǫgrid

, meaning that the ratio of the largest cell area to

the smallest is much smaller than that of the orthogonal, nonuniform grid case, but

the skewness of the grid more than accounts for the difference.

Annular Grid

We have also designed an MMS test to validate our Poisson solver for the annular

grid generated in § 3.2. Since we are able to simulate half the annulus and apply

symmetry conditions, we must choose our boundary conditions carefully. We wish

to be able to apply either Dirichlet or Neumann boundary conditions along the inner

and outer boundaries r = r1, r2, and to satisfy the symmetry of the problem we

apply homogenous Neumann boundary conditions along θ = 0, π. We have therefore
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constructed the following potential:

Φ (r, θ) = 1 − r3 + (r − r1) (r2 − r) cos (θ), (5.15)

such that the boundary conditions become

Φ (r1) = 1 − r3
1 (5.16)

Φ (r2) = 1 − r3
2 (5.17)

∂Φ

∂θ
|θ=0 = − (r − r1) (r2 − r) sin (0) = 0 (5.18)

∂Φ

∂θ
|θ=π = − (r − r1) (r2 − r) sin (π) = 0. (5.19)

Here we have used polar coordinates to express Eqn. (5.15) in the physical space, as

it more naturally aligns with the annular grid case than the Cartesian notation we

have been using up until this point.

As our Poisson solver is designed solve multiple geometries in the physical space,

we have decided apply the MMS test to two cases: an azimuthally symmetric system

and an axisymmetric system. In the context of dusty plasmas, the azimuthally

symmetric case can be thought of as a system in cylindrical
(

r̂c, θ̂, ẑ
)

coordinates

where the ẑ-direction is ignored, creating an infinite cylindrical dust particle of radius

r1. The physical Laplacian in this geometry is given by

∇2Φ (rc, θ) =
1

rc

∂

∂rc

(

rc
∂Φ

∂rc

)

+
1

r2
c

∂2Φ

∂θ2
. (5.20)

Inserting Eq. (5.15) into Eq. (5.20) gives

ρ (rc, θ) = 9 rc +

(

3 − r1r2

r2
c

)

cos (θ), (5.21)

which is then multiplied by the Jacobian and inserted into the Poisson solver with

the proper boundary conditions.

Likewise, the axisymmetric system can be thought of as being in spherical
(

r̂s, θ̂, φ̂
)

coordinates in the physical space, where the φ̂ direction is ignored. Thus, an outer
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(a) Cylindrical Laplacian

N R = 5 R = 10 R = 20

16 4.86684E-3 8.78720E-3 1.35298E-2

32 1.18612E-3 2.15682E-3 3.35229E-3

64 2.92357E-4 5.32567E-4 8.29718E-4

128 7.25471E-5 1.32213E-4 2.06105E-4

256 1.80677E-5 3.29310E-5 5.13433E-5

(b) Spherical Laplacian

N R = 5 R = 10 R = 20

16 3.84324E-3 6.41377E-3 9.23903E-003

32 9.43887E-4 1.60080E-3 2.35531E-003

64 2.33099E-4 3.96923E-4 5.87121E-004

128 5.78702E-5 9.86410E-5 1.46102E-004

256 1.44142E-5 2.45755E-5 3.64121E-005

Table 5.3: L2-norm error between computational and analytic MMS potentials for
different grid resolutions and ratios R ≡ r2

r1
for the annular grids generated in § 3.1

for both Cartesian (a) and cylindrical (b) solvers. For these tests, we have chosen
Nr = Nθ

sphere of radius r2 is created in which an inner sphere of radius r1 has been removed.

The corresponding physical space Laplacian for this geometry is given by

∇2Φ (rs, θ) =
1

r2
s

∂

∂rs

(

r2
s

∂Φ

∂rs

)

+
1

r2
s sin θ

∂

∂θ

(

sin (θ)
∂Φ

∂θ

)

. (5.22)

Inserting Eq. (5.15) into Eq. (5.22) gives

ρ (rs, θ) = 12 rs +

(

4 − 2r1r2

r2
s

)

cos (θ). (5.23)

The L2-norm of the error for both cylindrical and spherical solvers is shown in

Table (5.3). Here R = r2

r1
is the ratio of the outer boundary to the inner boundary

and N is the number of uniformly spaced grid points in logical domain. Fig. (5.4)

displays the chosen MMS potential on both the physical and logical domains as

obtained by the logical grid Poisson solver. Notice that the different values of ρ

inserted in the solver for the different coordinate systems should (and do) return the

same potential on the grid.
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Figure 5.4: Two-dimensional MMS potential plots as obtained computationally using
Eqns. (5.21) and (5.23) in physical (a) and logical (b) space.
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5.1.3 Electric Fields

In § 4.2.1, we determined that the more accurate method of obtaining the logical

electric fields at the particle position was by interpolating the physical electric fields

and Jacobi matrix components to the particle position, then multiplying them to

calculate the logical fields at the particle. We follow the same approach in 2d, but

in order to extrapolate the electric fields onto ghost cells (required for interpolating

the fields to the particles), we must first calculate the logical electric fields on the

grid. In this way, we are able to determine the normal and tangential components

of the electric fields along arbitrary grid boundaries.

The logical electric fields are calculated using

E
ξ
i,j = −

Φi+ 1
2
,j+ 1

2
− Φi− 1

2
,j+ 1

2
+ Φi+ 1

2
,j− 1

2
− Φi− 1

2
,j− 1

2

2∆ξ
(5.24a)

and

E
η
i,j = −

Φi+ 1
2
,j+ 1

2
− Φi+ 1

2
,j− 1

2
+ Φi− 1

2
,j+ 1

2
− Φi− 1

2
,j− 1

2

2∆η
. (5.24b)

We then apply the proper extrapolation techniques such that the overall 2nd order

accuracy of the system is upheld and calculate the physical electric fields on the

vertices using

Ex
i,j =

1

Jv
i,j

(

jv
22,i,jE

ξ
i,j − jv

21,i,jE
η
i,j

)

(5.25a)

and

E
y
i,j =

1

Jv
i,j

(

jv
11,i,jE

η
i,j − jv

12,i,jE
ξ
i,j

)

, (5.25b)

where we have transformed from the inverse Jacobian matrix, kµν to the Jacobian

matrix. Here, the superscript v on the components of the Jacobi matrix and its

determinant signify that they are calculated on the vertices using a four-point average

from their natural cell-centered locations.
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Logical Electric Fields at a Particle

To test the self-forces on the particle in 2d, we have set up a system in which a

single particle is at rest on a doubly-periodic grid with a neutralizing background

such that we can apply the 2d extension of the method developed for 1d in § 4.2.1

by interpolating both of the physical electric fields and required grid derivatives to

the grid positions and retroactively multiplying them to obtain the logical fields at

the particle position. As shown in Appendix ??, the method utilized in the 1d code

will only work for 1d, and we expect to have some small self-force in 2d. Below we

attempt to quantify these forces.

In 2d, the logical electric fields are obtained from the physical fields using

∂Φ

∂ξµ
=

∂xν

∂ξµ

∂Φ

∂xν
(5.26)

such that

Eξ = j11 Ex + j21 Ey

Eη = j12 Ex + j22 Ey.
(5.27)

We have run a number of tests to determine the fields at the particle. As a check,

we first checked the fields on a fully uniform grid. The electric fields at the particle

are zero in this case. However, as soon as we allow one of the grid dimensions to

become nonuniform, the fields at the particle in the nonuniform dimension are no

longer zero, even for ǫgrid = 10−4. We find that the fields at the particle position scale

with 2nd-order accuracy in ∆x, and the magnitude of the field at the particle in the

nonuniform dimension is dependent upon the magnitude of the grid nonuniformity

parameter, ǫgrid. For ǫgrid = 0.15 in x and holding y to be uniform (ǫgrid = 0),

Eξ(ξp, ηp) is ≈ 10−5, whereas Eη(ξp, ηp) is zero to machine precision. For ǫgrid = 0.1,

Eξ(ξp, ηp) is ≈ 10−7. For both of these tests, we have used Nξ = Nη = 32.

We have also tried several other methods of calculating the fields at the particle

position, including direct interpolation of the logical fields and calculation of the
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fields on a colocated grid. All methods tested scale with 2nd order accuracy in

∆x, but the method detailed above (the extension of the method of § 4.2.1 to 2d)

consistently provides the smallest fields at the particle position. However, as will be

seen in § 5.2.1, the effects of the non-exact treatment of the inertial forces are larger

in magnitude than these errors.

5.2 Integration of 2d Particle Equations of Motion

5.2.1 ML Mover Applied to 2d Non-Uniform Grid

In this section, we examine the effects of the inertial forces on a particle moving in a

neutralizing background with doubly periodic background in two degrees of freedom

by repeating the single particle tests performed in § 4.2.4. To ensure we get the full

effects of the 2d grid, we run a single particle across the system at a 45◦ angle. In

§ 5.1.3, we found that the electric field at the particle is not zero. However, for the

purposes of these tests we want to isolate the effects of the inertial force terms in

Eqns. (5.1a), and as such set the field force term to zero.

While we have performed scaling tests in both ∆ξ and ∆t as in § 4.2.4, we only

show the effects of the particle shape function used for interpolation and weighting

here. Fig. 5.5(a) shows the effects of the different shape functions for a nonuniform,

orthogonal grid on the unit square (Eqn. (5.5a)). The analytic grid solution, in which

the grid quantities gµν and ∂gµν

∂ξγ are calculated at the particle position analytically (i.e.

without interpolation), is shown for comparison. The analytic grid, while appearing

as a constant in both of these figures, does actually have an approximately 0.1%

variation in the velocity as the particle crosses the grid (in both cases). In these

tests, we use Nξ = Nη = 100 spatial cells, ∆t = 0.0125, and ǫgrid = 0.15, and

an initial velocity vector of ~v = [0.01, 0.01, 0]. Particles are allowed to cross the
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Figure 5.5: Single particle initially at ~x = [0.01, 0.01] with initial velocity given by ~v =
[0.01, 0.01, 0] moving across a 2d nonuniform (a) orthogonal and (b) nonorthogonal
grid in a unit square, given by Eqns. (5.5a) and (5.5b), respectively. Both cases use
Nξ = Nη = 100 spatial cells, ∆t = 0.0125, and ǫgrid = 0.15.
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Update
tupdate

t∆t

Implicit Position 67.6
Charge Accumulation 25.0

Field Solve 2.2
Explicit and Implicit Momentum + Explicit Position 5.2

Table 5.4: Comparison of the average time required for each update during a PIC
cycle for a cold 2-stream instability test on a non-uniform grid. Times are normalized
with respect to the total time for the current timestep.

grid boundaries to check that our doubly-periodic particle boundary conditions are

working correctly.

5.2.2 Hybrid Particle Sort

In PIC simulations, the particle push and accumulate are generally the most com-

putationally expensive portions of the code in terms of both time and memory. As

the computational particles of the PIC code move about the mesh and are stored in

a global array, adjacent particles in the array at a given time are in general located

randomly on the mesh. Even arrays that have been initially sorted eventually decay

to random positioning as the simulations advance in time [51]. As a direct result,

memory accesses necessary for the push and accumulation steps thrash the memory

cache heavily, stymying the simulation performance. Several authors have shown

that sorting the particles within the global arrays by their physical positions helps to

mitigate this cache-thrashing, leading to much more efficient particle handling, and

therefore faster runtimes. [51–56]

As shown in Appendix D, our ML mover requires two passes through the particle

array: first to update the positions implicitly, after which the fields are solved. The

second pass through the particle array uses the fields defined at t+ ∆t
2

to update the

momentum (both explicitly and implicitly), then the positions are updated explicitly.
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This formulation is required for the ML integrator to retain its’ 2nd-order accuracy

in ∆ξ and ∆t.

As shown in Table 5.4, the implicit position update step alone accounts for ap-

proximately 70% of the of the total code run time, dependent on the ratio of the

total number of particles and Nξ. The reason for this large amount of run time is

that, for the 2d implicit position update, the ξ and η position updates must be solved

simultaneously by iterations, and each iteration moves the particle positions slightly.

This means that all three contravariant metric tensor components must be interpo-

lated to the particle position for every iteration step. We note here that the implicit

momentum update also requires iterations, but since we do not move the particle

during the momentum update, the field and grid quantities are only interpolated

once.

The charge density is accumulated after the implicit position update step, as our

ML integrator allows us to solve the field equations a only once per timestep. The

charge accumulation process accounts for 25% of the code run time, whereas the field

solve uses ≈ 2%. As such, we have implemented a hybrid particle-sort routine similar

to that of Bowers [53] to reduce the cache-thrashing inherent in the memory-intensive

particle pushing and charge accumulation steps of our PIC code. For our particle

sort, we are able to perform efficiently an out-of-place sorting algorithm without

any extra passes through the particle list. The particle list is periodically sorted by

location on the logical mesh simultaneously with the push and accumulation steps,

which already generate most of the data necessary for the sort, leading to gains of

approximately 30 − 35% over the unsorted code run times.
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5.3 Selected 2d Full PIC Benchmarking Cases

We have performed several benchmarking tests to validate the full 2d curvilinear

coordinate PIC code. Presented below are several cases, all of which use physical

grids with x, y ∈ [−π : π]. We have chosen these boundaries such that the boundary

mapping to logical grid is tested more thoroughly, i.e. the physical grid boundaries

are no longer the same as the logical grid boundaries. We utilize the same particle

initialization procedures as outlined in § 4.3 for the tests presented here. For all

tests presented below, we use a nonuniformity parameter of ǫgrid = 0.1 (for both

orthogonal and nonorthogonal grids), as this leads to a ratio of area of the largest

cell to smallest of ≈ 20 for the nonuniform orthogonal grid (Eqn. (5.5a)) and ≈ 4.4

for the nonorthogonal grid (Eqn. (5.5b)). The maximum skewness parameter Smax

is ≈ 0.75 for the nonorthogonal grid with this nonuniformity parameter.

5.3.1 Cold Plasma Oscillations on a Square Physical Domain

Fig. 5.9 shows a comparison of the evolution of the electrostatic field energy, defined

in 2d as

< E2 >=
1

2

∫
[
(Ex)2 + (Ey)2

]
dxdy, (5.28)

for a cold plasma oscillation on the uniform, nonuniform but orthogonal, and nonorthog-

onal grids. For these tests, we initialize a perturbaion in the system by pertubing the

particle positions with respect to the uniform neutralizing background. We define the

quantity ǫpert to be the size of this initial perturbation on the particle positions. For

these tests, the initial particle perturbation is directed at a 45◦ angle across the grid

to check the effects of the interpolation in multiple dimensions on the data produced.

In Fig. 5.9, we show both a long-time evolution and a zoomed section of the field en-

ergy from these same runs. We have used a perturbation of ~ǫpert = (7.07e−5, 7.07e−5),
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Figure 5.6: Comparison of cold plasma oscillation field energies using a uniform grid
and the nonuniform grids given by Eqns. (5.5a) and (5.5b) for (a) a long run and (b)
a zoomed section of the run showing an oscillation period of 2π for all three grids.
Here we have used quadratic (S2) particle shape functions with Nξ = Nη = 128,
N̄ppc = 225, ∆t = 0.025, and ǫgrid = 0.1 (for the nonuniform case).
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such that the magnitude of the perturbation is |~ǫpert| = 1 × 10−4, Nξ = Nη = 128,

N̄ppc = 225, and ∆t = 0.025. No measurable growth in the electrostatic field en-

ergy was observed during the course of these runs. We note that the freqency of the

plasma oscillations observed in Fig. 5.9 is very nearly 2π (as is expected) for all three

grid choices. Further testing has revealed that the period of the plasma oscillations

converges to the value of 2π with 2nd-order accuracy as expected.

5.3.2 Cold Electron-Electron Two-Stream Instability

As our physical grid is x, y ∈ [−π : π], the wave vector ~k is given by ~k = [1, 1], such

that, to generate a two stream instability at a 45◦ degree angle across the grid, we

use the effective wave vector, k45◦ =
√

2 ≈ 1.414. From Fig. 4.9, we know that the

maximum growth rate for the two stream instability occurs at |~k · ~v0| ≈ 0.63. As

such, we have chosen an initial velocity of ~v~x = [0.314, 0.314].

Fig. 5.8 shows the time evolution of the electrostatic field energy for a uniform

grid compared with the nonuniform grids given by Eqns. (5.5a) and (5.5b). Here we

have used quadratic particle shape functions with Nξ = Nη = 128, N̄ppc = 225 per

species, ∆t = 0.025 for all cases, again with ǫgrid = 0.1 for the nonuniform orthogonal

and nonorthogonal cases. The same cases have been performed using bilinear particle

shape functions, revealing identical results. For all cases, the growthrate is ≈ 0.35,

which matches the theoretical curve shown in Fig. 4.9 quite well.

5.3.3 Landau Damping

In this section we study the effects of Landau damping with our 2d code, on a unit

square physical grid. Since the our thermal distribution is taken to be Maxwellian,

the particle velocities are isotropic in x, y, and as such we have set up a case in
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Figure 5.7: Comparison of cold electron-electron two-stream instability growth rates
for uniform and non-uniform grids. Higher initial noise levels due in the nonuniform
grid case provide a larger initial perturbation in the system, leading to the differences
seen between the two curves. Here we have used quadratic particle shape functions
with Nξ = Nη = 128, N̄ppc = 225 per species, ∆t = 0.025 for all cases, with ǫgrid = 0.1
for the nonuniform orthogonal and nonorthogonal cases.

which the initial perturbation is only in x for simplicity. Fig. 5.8 shows the time

evolution of the Landau damping on our electrostatic field energy for the uniform,

nonuniform orthogonal and nonorthogonal square grids. Here we have used Nξ =

Nη = 128, N̄ppc = 400 per species, ∆t = 0.025, and vth = 0.07 for all cases. Note that

the nonorthogonal grid more closely follows the damping rate of the uniform grid

than does the nonuniform, orthogonal grid. The real oscillation frequency agrees

very well with the theoretical values given by Eqn. (4.44), where we have taken

ωpe = 1 by the normalizations described in § 4.1 for all three grids. The damping
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Figure 5.8: Comparison of Landau damping rates for a uniform grid with those
obtained using the nonuniform, orthogonal and nonorthogonal square grids given by
Eqns. (5.5a) and (5.5b). Here we have used Nξ = Nη = 128, N̄ppc = 400 per species,
∆t = 0.025, vth = 0.07, and quadratic particle shape functions for all cases, with
ǫgrid = 0.1 for the nonuniform orthogonal and nonorthogonal cases.

rate across the simulation time agrees to within 3% of the theoretical value of 0.124

as given by Eqn. (4.45) for these parameters for the uniform and nonorthogonal

grids, whereas the damping rate on nonuniform, orthogonal grid agrees to within

5%. The lower damping rate observed for the nonuniform orthogonal grid case is

due to the nonuniformity of the grid. As stated in § 5.3, the ratio of the largest to the

smallest cell areas for this grid, in which we have used the nonuniformity parameter

ǫgrid = 0.1, is ≈ 20. To check this hypothesis, we have also run cases in which we

have used ǫgrid = 0.06 such that the largest to smallest cell area ratio is ≈ 4.88.

These cases give the same damping rates as the uniform grid case shown above.
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5.3.4 Cold Plasma Oscillations on a Concentric Annulus

0 10 20 30 40 50
ω

pe
t

1e-15

1e-12

1e-09

<
E

2 >

Initial perturbation in r
Initial perturbation in r and θ

Figure 5.9: Comparison of cold plasma oscillation field energies on an annular phys-
ical grid using an initial perturbation in r only and a combination of r and θ initial
perturbation showing an oscillation period very close to 2π for both cases. Here we
have used quadratic (S2) particle shape functions with Nξ = Nη = 64, N̄ppc = 400,
and ∆t = 0.05.

As a final test of our entire method, we have set up a cold plasma oscillation on

the concentric annulus grid. As an initial test, we perturbed the initial potential

radially using

φ̃ = ǫpert cos

(

π

(
r − r1

r2 − r1

))

, (5.29)

where we have used ǫpert = 10−4, r1 = 0.25, and r2 = 1.0. This initial perturbation

satisfies homogeneous Neumann boundary conditions along the entire boundary of
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the system. With our input parameters, the ratio of the area of the largest grid cell

to the smallest is 16. This is a very simple test of the system, and is analogous to

perturbing our system in y only on a rectangular grid. The time evolution of the

electrostatic field energy for this test is shown in the blue curve of Fig. 5.9 for a 64×64

physical grid with ∆t = 0.1, N̄ppc = 225, and quadratic spline shape functions. The

period of oscillation of the field energy for this set of initial conditions is ≈ 6.3 for

this case, and scales as ∆ξ2, meaning that the frequency is indeed unity.

As a more challenging case, we then perturbed the initial potential using

φ̃ = ǫpert cos

(

π

(
r − r1

r2 − r1

))

cos (θ), (5.30)

where we have again used ǫpert = 10−4, r1 = 0.25, and r2 = 1.0. The red curve

in Fig. 5.9 shows the time evolution of the electrostatic field energy for a 64 × 64

physical grid with ∆t = 0.05, N̄ppc = 400, and quadratic spline shape functions. We

have used more resolution in this particular case in order to more fully resolve the

complicated features of our initial potential. Again, the period of oscillation is ≈ 6.3

(the difference between the two curves is approximately 0.085%); thus the plasma

frequency is unity.

Fig. 5.10 shows the time evolution of one period of the potential on the physical

grid using the initial perturbation as given by Eqn. (5.30) for the cold electrostatic

plasma oscillation test described above. Figs. 5.10(a) and (b) are from one half of

the plasma period and Figs. 5.10(c) and (d) are from the next. Notice the exact

reversal of the potentials between the two halves of the plasma period.
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Figure 5.10: Snapshots of one period of the evolution the potential of a cold plasma
oscillation on the annular physical grid. Here we have perturbed the inital potential
using Eqn. (5.30).
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Conclusions and Future Work

The PIC method has become one of the most widely used methods for the kinetic

simulation of plasmas over the course of the past 50 years. However, most “produc-

tion level” PIC codes used today are still confined to using the standard, decades-old

uniform physical grid methods to simulate systems in complex physical geometries.

In this thesis we set out to study the feasability of developing a new approach to

the PIC method, in which the key components of the PIC method–the mover, field

solve, charge accumulation, and field interpolation–are carried out on a uniform, unit

square logical grid mapped to an arbitrary grid on an arbitrary physical domain. For

simplicity, our studies were limited to an electrostatic code and 2d.

An elliptic grid generation technique known as Winslow’s method [30] was used to

generate an initial boundary-fitted grid by solving a set of coupled elliptic equations

using a nonlinear Newton-Krylov solver. The generated grids are then mapped onto

the logical grid through the use of the mapping ~x(~ξ ) and its inverse, ~ξ(~x), such

that the PIC components can be run on the logical grid using these mappings. We

have shown examples of Winslow’s method as applied to a concentric annulus, for

which we know the analytic solution by conformal mapping theory, as a method of
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checking the accuracy of our numerical solution of the coupled equations. We have

also applied the method to more complicated systems such as an eccentric annulus

grid, domains to represent multiple circular objects, and to elliptic objects within a

circular outer boundary.

We have derived the logical grid macroparticle equations of motion based on a

canonical transformation of Hamilton’s equations from the physical domain to the

logical. We have shown that, by our choice of canonical transformation, the initially

separable physical grid Hamiltonian is transformed into a nonseparable system. The

momentum component of the particle equations of motion is composed of two terms.

The first is an inertial force term, which accounts for the curvature of the physical

grid through the derivatives of the metric tensors on the logical grid. The second is

a term proportional to the electric field which accounts for the effects of the mean

fields on the particle’s trajectory.

Integration of the logical grid particle equations of motion by standard “naive”

leapfrog techniques would result in the loss of the Hamiltonian property inherent

in our system of equations. As such, we have extended the semi-implicit modified

leapfrog integrator, which was originally developed for a single degree of freedom to

higher dimensions to update the logical grid particle positions and momenta in time.

This method was shown here to be symplectic for a system of arbitrary dimension

and 2nd-order accurate in ∆t if a time-centered formulation is utilized. Being semi-

implicit, we are required to solve a half-timestep each of the particle positions and

momenta implicitly. We have chosen to use Newton iterations for the efficiency of

its convergence. The implicit position update and charge accumulation steps of the

ACC-PIC cycle were shown to account for more than 90% of the total simulation

run time, and as such we have implemented a hybrid particle sort method based on

Bowers’ [53] algorithm to manage more efficiently the particle list and reduce cache-

thrashing caused by the memory-intensive push and accumulation stages of the PIC
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cycle. This sorting routine was shown to increase the overall performance of the code

by approximately 30 − 35% with respect to unsorted code run times.

In order to obtain the electrostatic fields on the logical grid, we have constructed a

generalized curvilinear coordinate formulation of Poisson’s equation. This equation is

discretized conservatively on the logical grid using a staggered mesh. Field boundary

conditions are applied in such a way as to produce a symmetric operator matrix which

we then solve using a Jacobi-preconditioned conjugate gradient solver. We have

performed validation tests on our Poisson solver using the method of manufactured

solutions with both orthogonal and nonorthogonal grids.

By our formulation of the curvilinear coordinate Poisson equation, we are required

to supply the logical grid charge density as a source term. As such, we accumulate

the charge from the particles directly onto the logical grid using standard particle

shape functions rather than the more complicated, weighted shape functions which

must be used if the charge is accumulated on a nonuniform physical grid. In this

way, the symmetric particle shape functions on the logical grid can be thought of

as automatically weighted in the physical space by the components of the Jacobi

matrix. Furthermore, the particle equations of motion require that the derivative of

the electrostatic potential on the logical grid be obtained at the particle positions for

the update of the particle momentum. These logical electric fields are interpolated to

the particle positions on the logical grid using the symmetric particle shape functions

which have been slightly modified from the standard shape functions used in the

charge accumulation process in order to account for our choice of a staggered mesh.

We have devoted much time and effort to the study of the errors introduced into

the system by the inertial and field force terms in the momentum update equations.

Since our modified leapfrog integrator is not an exact integrator, we expect to have a

small amount of error introduced into nonuniform grid systems by the inertial force

term. We have found that this error is indeed small and scales with the expected
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2nd-order accuracy in ∆t. On a uniform grid, it can easily be shown that if the same

particle shape functions are used for the charge accumulation and field interpolation

steps of the PIC code, the force on a single particle in a neutralizing background

with periodic boundary conditions will have zero self-forces on itself. This seemingly

simple proof can no longer be done for a nonuniform grid, but we have developed

a method for obtaining the fields at the particle position which leads to zero self

forces in 1d. The analagous method to the 1d field interpolation method has been

applied to the 2d code, but does not result in zero self forces. However, our method

did result in 2nd-order accuracy in ∆x, and the resulting fields are several orders of

magnitude smaller than the errors due to the integration of the inertial forces.

The individual PIC components were then coupled to form a complete ACC-PIC

code, first in 1d as a proof of principle, and then extended into two dimensions.

We have validated the accuracy of both codes against a standard, uniform physical

grid PIC code for several standard physics tests, including electrostatic plasma oscil-

lations, Langmuir waves, linear and nonlinear two-stream instabilities, and Landau

damping in both 1d and 2d for nonuniform, orthogonal (in 1d and 2d) and nonorthog-

onal (in 2d) square domains. For simplicity, we have chosen to initialize our all of

our macroparticles with uniform charges and masses. As such, we initially uniformly

distribute our particles across the physical domain in order to keep the initial charge

density as close to uniform as possible. This means that for a nonuniform grid, the

smaller grid cells tend to contain fewer particles than do the larger cells. Fluctua-

tions in the number of particles per cell in the smallest cells leads to localized noise

within the system, which was seen to lead to loss of coherence in the electrostatic

plasma oscillations after very long time intervals. As expected, our method applied

to a nonuniform physical domain generates more noise than the standard uniform

physical grid PIC method for our chosen initial conditions. However, by increas-

ing the resolution of our nonuniform grid simulations we are able to reproduce the

theoretical values for each test to high accuracy.
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Finally, we have used the concentric annulus grid as generated using Winslow’s

method to show that our ACC-PIC method generalizes to the boundary fitted ge-

ometry of that domain. Tests were performed in which an electrostatic wave was

initialized within the annular domain. We have shown that for multiple initial per-

turbations within this domain, the oscillation period is indeed 2π as predicted by

our code normalizations.

6.1 Future Work

There is much work to be done to extend the methods developed and tested in this

thesis to the full production level ACC-PIC method discussed in the Chapter 1.

Logical extensions of our work include the extension to 3d and the inclusion of

electromagnetic effects. Furthermore, parallelization techniques should be utilized

to handle more efficiently the particle push and charge accumulation stages of our

method.

In Chapter 1, we alluded to the fact that other key components must be developed

in parallel with the development of the ACC-PIC method presented in this thesis.

These include a particle control method capable of managing the number of particles

per cell throughout the grid and a robust moving mesh adaptation method. Both of

these objectives are major undertakings, each worthy of dissertations as stand-alone

methods.

Once fully developed, our method can be coupled to a moving mesh algorithm.

This moving mesh, ACC-PIC coupled method would be limited by the same particle

noise we have noted in this thesis, however, and therefore work must also be done

to couple our method to the particle control method mentioned above, particularly

because the ACC methods should be more efficient than standard PIC techniques

only if the grid is quite nonuniform. This method must first be proven capable of

113



Chapter 6. Conclusions and Future Work

operating on the logical domain with a static, nonuniform physical grid before we

can allow the physical grid to change in time. In short, the road to our ultimate

goal of a fully adaptive ACC-PIC code is sure to be a challenging, but worthwhile

journey for the evolution of the PIC method.
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Appendix A

Curvilinear Coordinates: General

Relations and Background

This Appendix presents the reader with a coherent overview of the relations between

Cartesian and curvilinear coordinates which form the basis for this thesis.

Let the values xα, α = 1, · · · , n be the Cartesian coordinates of the vector ~x. The

coordinate transformation ~x(~ξ ) defines a set of curvilinear coordinates ξα, · · · , ξn in

the domain Xn. We define the Jacobi matrix of this transformation

jαβ(~ξ ) ≡
(

∂xα

∂ξβ

)

, α, β = 1, · · · , n, (A.1)

and its Jacobian

J(~ξ ) ≡ det (j) . (A.2)

Conversely, we can also think of this transformation as a mapping of ~ξ onto ~x, ~ξ(~x ).

Defining the inverse of the matrix jαβ as

kαβ(~x ) ≡
(

∂ξα

∂xβ

)

, α, β = 1, · · · , n, (A.3)
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we can write its Jacobian

K(~x) ≡ det (k) =
1

J
. (A.4)

Simple linear algebra tells us that

jαβkβγ =
∂xα

∂ξβ

∂ξβ

∂xγ
≡ δγ

α, (A.5)

therefore jk = I.

Given a Euclidean metric on the physical space, we have

dxγdxγ =
∂xγ

∂ξα

∂xγ

∂ξβ
dξαdξβ = gαβdξαdξβ, (A.6)

and the covariant metric tensor is defined as

gαβ(~ξ ) ≡ ∂xγ

∂ξα

∂xγ

∂ξβ
, α, β, γ = 1, · · · , n. (A.7)

From Eq. (A.1), we see gαβ = jγαjγβ , which is simply gcov = jT j. Likewise, the

contravariant metric tensor is based upon the inverse Jacobian matrix, k:

gαβ(~x ) ≡ ∂ξα

∂xγ

∂ξβ

∂xγ
, α, β, γ = 1, · · · , n, (A.8)

thus gcontra = kkT .

Finally, by multiplying the covariant and contravariant metric tensors and apply-

ing the identity jk = I, we can prove that the covariant and contravariant metric

tensors are in fact inverses of each other:

gcovg
contra = jT jkkT = jT kT = (kj)T = IT = I. (A.9)

In two dimensions, we can easily convert from the covariant to the contravariant

metric tensor using the following equation:

gαβ = (−1)α+β g3−α,3−β

gcov

, α, β = 1, 2, (A.10)
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where gcov = J2 is the determinant of the covaraint metric tensor, and gcov = 1
gcontra ,

where gcontra = K2 is the determinant of the contravariant metric tensor. Likewise,

we can shift from the contravariant to the covariant metric tensor using

gαβ = (−1)α+β
gcovg

3−α,3−β, α, β = 1, 2. (A.11)
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Macroparticle Interpolation and

Weighting on a Staggered Mesh

In a method utilizing spatial differencing such as PIC, it is often more convenient

to define grid-based quantities on a uniform, staggered mesh. In § 2.4.1, we showed

that it is imperative that the same shape functions be used in weighting the particles

to the grid as for interpolation from the grid to the particles (on a uniform grid).

However, on a staggered mesh, we are weighting particles from the contiuum to

the cell-centers, whereas the electric fields are interpolated from the vertices to the

continuum. This means that without some corrections to our weighting function for

the staggered grid, we will have self-forces on the macroparticles. As a reminder, in

arbitrary curvilinear coordinates, total momentum conservation is dependent on two

terms: inertial forces and field forces. The proof constructed below deals solely with

the field force terms. We specialize to 1d for clarity.
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B.1 Extending Momentum Conservation to a Uni-

form, Staggered Grid

To extend the proof of § 2.4.1 to a uniform staggered grid, we must first define our

grid layout (assuming a 1d grid for simplicity). As in § 2.4.1, we assume that ρ and

Φ exist at the cell-centers and will be denoted by i ± 1
2
, whereas the electric field is

placed at the vertices, as it is obtained from Eqn. (2.5) by a centered-differencing of

the potential:

Φi− 1
2
− Φi+ 1

2

∆x
= Ei. (B.1)

Starting with Eqn. (2.30) and defining the vertex-valued density as ρv
i ≡

ρ
i+1

2
+ρ

i− 1
2

2
,

we can write

dP

dt
= ∆x

∑

i

Ei

(
ρi+ 1

2
+ ρi− 1

2

2

)

. (B.2)

From a direct implementation of Gauss’ law on the staggered grid, we can find the

electric field on the vertices due to the charge density on the cell-centers by

Ei+1 = Ei + ∆x ρi+ 1
2
, (B.3)

therefore we can rewrite Eqn. (B.2) as

dP

dt
=
∑

i

Ei

(
Ei+1 − Ei−1

2

)

, (B.4)

which is identical to Eqn. (2.30) but with the electric field now defined on vertices

instead of cell-centers. This sum telescopes for appropriate boundary conditions,

leading to exact momentum conservation in a Cartesian system.
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Figure B.1: The shape function S̃1(y) for linear interpolation of vertex-defined quan-
tities on a staggered grid in 1d. S̃1(y) is half the sum of the cell-centered shape
functions S1

(
y − ∆x

2

)
and S1

(
y + ∆x

2

)
.

B.2 A Straight-Forward Approach to Linear In-

terpolation by Substitution

Here we present an application of the staggered-grid momentum conservation meth-

ods detailed in § B.1 to find the electric field at a particle using linear interpolation.

To do this, we create a new particle shape S̃1 such that the charge accumulation step

can retain its normal weighting scheme. The algorithm based on values of the electric

field at the cell-centers Ec
i+ 1

2

to be linearly interpolated to the particle position is
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given by

E(xp) =
Ec

i− 1
2

(1 − xl) + Ec
i+ 1

2

(1 + xl)

2
. (B.5)

The quantity xl = xl(xp) is the local particle position on the interval [xi− 1
2

: xi+ 1
2
]

mapped linearly onto [−1 : 1].

If we choose to substitute the cell-centered electric fields using their vertex-based

counterparts, Ec
i− 1

2

= Ei+Ei−1

2
and Ec

i+ 1
2

= Ei+Ei+1

2
, we obtain

E(xp) =
(Ei−1 + Ei) (1 − xl) + (Ei + Ei+1) (1 + xl)

4
. (B.6)

Simplifying, we have

E(xp) =
Ei−1(1 − xl) + 2Ei + Ei+1(1 + xl)

4
, (B.7)

which gives us a three-point linear interpolation as shown in Fig. B.1. In this case, the

particle is located on a grid vertex, and the resulting coefficients for the vertex-based

electric fields are
(

1
4
, 1

2
, 1

4

)
.

B.3 Extension to Quadratic Spline Interpolation

We can extend the method utilized in § B.2 to account for a smoother particle

shape by using quadratic splines. Assuming that we now locate our particles within

the computational interval [xi : xi+1] and map them linearly onto [−0.5 : 0.5], the

algorithm for a colocated electric field to be interpolated to the particle position via

quadratic splines is given by

E(xp) =
1

2
Ei− 1

2

(
1

2
− xl

)2

+ Ei+ 1
2

(
3

4
− x2

l

)

+
1

2
Ei+ 3

2

(
1

2
+ xl

)2

. (B.8)
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Figure B.2: The shape function S̃2(y) for quadratic spline interpolation of vertex-
defined quantities on a staggered grid in 1d.

Again replacing the cell-centered electric fields with their vertex-based counterparts,

expanding the coefficient terms, and simplifying gives

E(xp) =
1

4

[

Ei−1

(
1

2
− xl

)2

+ Ei

(
7

4
− xl − x2

l

)

+

Ei+1

(
7

4
+ xl − x2

l

)

+ Ei+2

(
1

2
+ xl

)2
]

. (B.9)

Again we see that the shape function stencil for S̃2(y) is wider than the original shape

functions S2 by ∆x, leading to a smoother particle shape. Also notice that both 1st-
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and 2nd-order terms are now included for the two middle grid points. Fig. B.2 shows

the final shape of S̃2 in relation to the two original shape functions S2.
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Self-forces on Nonuniform Grid

In § 2.4.1 and Appendix B.1 of this thesis, we showed that for a distribution of

particles in a neutralizing background on a periodic grid, the total momentum of the

system is conserved. On a 1d grid, we can also show that for a single particle in a

uniform neutralizing background, the self-forces at the particle position are zero if

implemented correctly.

C.1 Uniform physical grid

The force on a single particle is given by

F x(xp) = q
∑

i

Ex
i S(xp − xi). (C.1)

Since

ρx
i = qS(xi − xp) − ρx

n, (C.2)
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where ρx
n is the uniform neutralizing background (a constant on the physical grid),

we can rewrite Eqn. C.1 as

F x(xp) =
∑

i

Ei

(
ρx

i+ 1
2

+ ρx
i− 1

2

2
+ ρp

n

)

(C.3)

=
∑

i

Ex
i

(
ρx

i+ 1
2

+ ρx
i− 1

2

2

)

+ ρx
n

∑

i

Ei, (C.4)

where we have assumed a staggered grid. Here we have used the symmetry of the

particle shape function, Spi = Sip. (Since ρx
n is a constant on the uniform physical

grid, it doesn’t matter where we define it.)

By Gauss’ law (Eqn. (4.1)),

ρx
i+ 1

2

=
Ei+1 − Ei

∆x
(C.5)

we can rewrite Eqn. C.3 as

F x(xp) =
1

2∆x

∑

i

Ei (Ei+1 − Ei−1) + ρx
n

∑

i

Ei. (C.6)

The first term in Eqn. C.6 telescopes as was shown in § 2.4.1, and is therefore zero.

The second term is also zero since, because of our periodic boundary conditions, the

discrete form of
∫

E dx = 0, namely
∑

i Ei = 0, holds.

C.2 Nonuniform physical grid

C.2.1 Direct interpolation of the logical electric fields

On a nonuniform grid, we can follow the same procedures to interpolate the logical

electric fields (in 1d), Eξ = −∂Φ
∂ξ

, to the particle position on the physical grid. For a
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single particle on the logical grid, we have

F ξ(ξp) = q
∑

i

E
ξ
i S(ξi − ξp). (C.7)

On the logical grid,

ρ
ξ

i+ 1
2

= qS(ξi − ξp) − ρ
ξ

n,i+ 1
2

, (C.8)

where ρ
ξ

n,i+ 1
2

is the neutralizing background charge density at the cell center i + 1
2
.

Since we are on the logical grid this background density is not a constant (the charge

density on the physical grid is a constant). As such, we rewrite Eqn. C.7 as

F ξ(ξp) =
∑

i

E
ξ
i





ρ
ξ

i+ 1
2

+ ρ
ξ

i− 1
2

2



+
∑

i

E
ξ
i





ρ
ξ

n,i+ 1
2

+ ρ
ξ

n,i− 1
2

2



 . (C.9)

Since ρ
ξ

i+ 1
2

= ρx
i+ 1

2

Ji+ 1
2
, we can write

F ξ(ξp) =
1

2∆ξ

∑

i

E
ξ
i

(
Ex

i+1 − Ex
i−1

)
+

ρx
n

2

∑

i

E
ξ
i

(

Ji+ 1
2
− Ji− 1

2

)

=
1

2∆ξ

∑

i

E
ξ
i

(

Jv
i+1E

ξ
i+1 − Jv

i−1E
ξ
i−1

)

+ ρx
n

∑

i

E
ξ
i Jv

i (C.10)

where Jv
i is the Jacobian defined at the vertex i. If we now look at these terms,

we can easily see that neither is zero, thereby explaining the nonzero logical electric

field at the particles observed in § 4.2.1.

C.2.2 Interpolation of Ex and J to Obtain Eξ

If instead we first interpolate the physical electric fields on the logical grid and

the Jacobian to the particle position, then multiply, there are no self-forces at the

particle. In the following we examine why this occurs. Starting with

F x(ξp) = q
∑

i

Ex
i S(ξp − ξi) (C.11)
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Appendix C. Self-forces on Nonuniform Grid

and using Eqn. (C.8), we can then rewrite Eqn. C.11 as

F x(ξp) =
1

2

∑

i

Ex
i

(

ρ
ξ

i+ 1
2

+ ρ
ξ

i− 1
2

)

+
1

2

∑

i

Ex
i

(

ρ
ξ

n,i+ 1
2

+ ρ
ξ

n,i− 1
2

)

=
1

2∆ξ

∑

i

Ex
i

(
Ex

i+1 − Ex
i−1

)
+

ρx
n

2

∑

i

Ex
i Jv

i . (C.12)

The first term telescopes in the same fashion as in the uniform physical grid case

and is therefore zero. In the second term of Eqn. (C.12), we are able to simply

pull the Jacobian off the charge density term and apply it to the electric field terms.

Therefore, since Ex
i Jv

i = E
ξ
i and

∫
Eξ dξ =

∫
Ex dx = 0, the second term is also zero.

Therefore, after interpolating the Jacobian to the particle positions and multiplying

by the physical force on the particle, we have F ξ(ξp) = 0 as well. There are therefore

no self forces at the particle position using this method. We note here that while the

Jacobian must also be interpolated to the particle positions here and in our mover,

the method used for this interpolation does not have to be the same as that used for

the charge weighting/field interpolation steps.

Interestingly, the method outlined here happens to be a “trick” that only works

in 1d. If we apply this same method to the 2d case, we can no longer simply pull the

Jacobian off the neutralizing background density term and apply it to the electric

field term, as the electric field is now a 2d tensor (Eξ, Eη), requiring individual

components of the 2d Jacobi matrix rather than the entire determinant.
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Appendix D

2d ML Mover Pseudocode

In this Appendix, we provide pseudocode for the 2d ML integrator applied to the

logical grid particle equations of motion.
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Appendix D. 2d ML Mover Pseudocode

Algorithm 1 Unsorted ML Integration of 2d Logical Grid Equations of Motion

for i = 1, Ntot do

if (particle is alive) then

Interpolate grid properties to particle position

Make an initial guess for implicit position update:

call explicit position update

Update positions implicitly:

call implicit position update

Check particle boundary conditions

if (particle is alive) then

Update ρξ

end if

end if

end for

Update boundary conditions on ρξ

Update fields

for i = 1, Ntot do

if (particle is alive) then

Interpolate grid properties to particle position

Interpolate fields to particle position

Calculate logical electric fields:

Eξ = j11Ex + j12Ey; Eη = j21Ex + j22Ey

Make an initial guess for implicit momentum update:

call explicit momentum update

Update momentum implicitly:

call implicit momentum update

Update momentum explicitly:

call explicit momentum update

Update position explicitly:

call explicit position update

Check particle boundary conditions

end if

end for

130



Appendix D. 2d ML Mover Pseudocode

Algorithm 2 Explicit Position Update Subroutine

Input: Grid quantities g11(ξp, ηp), g
12(ξp, ηp), g

22(ξp, ηp)

ξ′p = ξp + ∆t
2Mp

(

g11(ξp, ηp)P
ξ
p + g12(ξp, ηp)P

η
p

)

η′p = ηp + ∆t
2Mp

(

g12(ξp, ηp)P
ξ
p + g22(ξp, ηp)P

η
p

)

Algorithm 3 Implicit Position Update Subroutine

Input: Initial position guess ξ(0), η(0)

2d Newton iterations:

while (not converged) do

Interpolate grid properties to particle position:

g11(ξp, ηp), g
12(ξp, ηp), g

22(ξp, ηp)

∂g11

∂ξ (ξp, ηp),
∂g11

∂η (ξp, ηp),
∂g12

∂ξ (ξp, ηp),
∂g12

∂η (ξp, ηp),
∂g22

∂ξ (ξp, ηp),
∂g22

∂η (ξp, ηp)

Set up nonlinear residual

f1(ξ
′, η′) = ξ′ − ξ − ∆t

2Mp

(

g11(ξ′p, η
′
p)P

ξ
p + g12(ξ′p, η

′
p)P

η
p

)

f2(ξ
′, η′) = η′ − η − ∆t

2Mp

(

g12(ξ′p, η
′
p)P

ξ
p + g22(ξ′p, η

′
p)P

η
p

)

Calculate Jacobi matrix components from residual:

a = ∂f1

∂ξ′ b = ∂f1

∂η′

c = ∂f2

∂ξ′ d = ∂f2

∂η′

Invert:

δ
(n)
ξ = −df1−bf2

ad−bc

δ
(n)
η = −af2−cf1

ad−bc

Update positions for current iteration:

ξ(n) = ξ(n−1) + δξ (n)

η(n) = η(n−1) + δη (n)

end while
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Appendix D. 2d ML Mover Pseudocode

Algorithm 4 Explicit Momentum Update Subroutine

Input: Grid quantities ∂g11

∂ξ (ξp, ηp),
∂g11

∂η (ξp, ηp),
∂g12

∂ξ (ξp, ηp),
∂g12

∂η (ξp, ηp),

∂g22

∂ξ (ξp, ηp),
∂g22

∂η (ξp, ηp)

Input: Field quantities Eξ(ξp, ηp),E
η(ξp, ηp)

if (Spherical Poisson Solve) then

Input: Grid quantities j11(ξp, ηp), j12(ξp, ηp),x(ξp, ηp)

V
ξ
eff =

∆t j11(ξp,ηp) P z 2
p

Mp x(ξp,ηp)3

V
η
eff =

∆t j12(ξp,ηp) P z 2
p

Mp x(ξp,ηp)3

else

V
ξ
eff = 0.

V
η
eff = 0.

end if

P
ξ′
p = P

ξ
p − ∆t2

2m

(

P
ξ 2
p

∂g11

∂ξ (ξp, ηp) + 2P ξ
p P

η
p

∂g12

∂ξ (ξp, ηp) + P
η 2
p

∂g22

∂ξ (ξp, ηp)
)

+ V
ξ
eff +

∆t Qp Eξ(ξp, ηp)

P
η′

p = P
η
p − ∆t2

2m

(

P
ξ 2
p

∂g11

∂η (ξp, ηp) + 2P ξ
p P

η
p

∂g12

∂η (ξp, ηp) + P
η 2
p

∂g22

∂η (ξp, ηp)
)

+ V
η
eff +

∆t Qp Eη(ξp, ηp)
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Appendix D. 2d ML Mover Pseudocode

Algorithm 5 Implicit Momentum Update Subroutine

Input: Initial momentum guess P ξ (0),P η (0)

Input: Grid quantities ∂g11

∂ξ (ξp, ηp),
∂g11

∂η (ξp, ηp),
∂g12

∂ξ (ξp, ηp),
∂g12

∂η (ξp, ηp)

∂g22

∂ξ (ξp, ηp),
∂g22

∂η (ξp, ηp)

Input: Field quantities Eξ(ξp, ηp),E
η(ξp, ηp)

if (Spherical Poisson Solve) then

Input: Grid quantities j11(ξp, ηp), j12(ξp, ηp),x(ξp, ηp)

V
ξ
eff =

∆t j11(ξp,ηp) P z 2
p

Mp x(ξp,ηp)3

V
η
eff =

∆t j12(ξp,ηp) P z 2
p

Mp x(ξp,ηp)3

else

V
ξ
eff = 0.

V
η
eff = 0.

end if

2d Newton iterations:

while (not converged) do

Set up nonlinear residual

f1(P
ξ′ , P η′

) = P
ξ′
p −P

ξ
p +∆t2

2m

(

P
ξ 2
p

∂g11

∂ξ (ξp, ηp) + 2P ξ
p P

η
p

∂g12

∂ξ (ξp, ηp) + P
η 2
p

∂g22

∂ξ (ξp, ηp)
)

−
V

ξ
eff − ∆t Qp Eξ(ξp, ηp)

f2(P
ξ′ , P η′

) = P
η′

p −P
η
p +∆t2

2m

(

P
ξ 2
p

∂g11

∂η (ξp, ηp) + 2P ξ
p P

η
p

∂g12

∂η (ξp, ηp) + P
η 2
p

∂g22

∂η (ξp, ηp)
)

−
V

η
eff − ∆t Qp Eη(ξp, ηp)

Calculate Jacobi matrix components from nonlinear residual:

a = ∂f1

∂ξ′ b = ∂f1

∂η′

c = ∂f2

∂ξ′ d = ∂f2

∂η′

Invert:

δ
(n)

P ξ = −df1−bf2

ad−bc

δ
(n)
P η = −af2−cf1

ad−bc

Update positions for current iteration:

P ξ (n) = P ξ (n−1) + δ
(n)

P ξ

P η (n) = P η (n−1) + δ
(n)
P η

end while
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