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ADVANCED STOCHASTIC COLLOCATION METHODS FOR POLYNOMIAL

CHAOS IN RAVEN

by

Paul W. Talbot

B.S., Physics, Brigham Young University-Idaho, 2010

M.S., Nuclear Engineering, Oregon STate University, 2013

ABSTRACT

As experiment complexity in fields such as nuclear engineering continually increases, so

does the demand for robust computational methods to simulate them. In many

simulations, input design parameters and intrinsic experiment properties are sources of

uncertainty. Often small perturbations in uncertain parameters have significant impact

on the experiment outcome. For instance, in nuclear fuel performance, small changes

in fuel thermal conductivity can greatly affect maximum stress on the surrounding

cladding. The difficulty quantifying input uncertainty impact in such systems has

grown with the complexity of numerical models. Traditionally, uncertainty

quantification has been approached using random sampling methods like Monte Carlo.

For some models, the input parametric space and corresponding response output space

is sufficiently explored with few low-cost calculations. For other models, it is

computationally costly to obtain good understanding of the output space.

To combat the expense of random sampling, this research explores the possibilities of

using advanced methods in Stochastic Collocation for generalized Polynomial Chaos

(SCgPC) as an alternative to traditional uncertainty quantification techniques such as

Monte Carlo (MC) and Latin Hypercube Sampling (LHS) methods for applications in

nuclear engineering. We consider traditional SCgPC construction strategies as well as

truncated polynomial spaces using Total Degree and Hyperbolic Cross constructions.

We also consider applying anisotropy (unequal treatment of different dimensions) to

the polynomial space, and offer methods whereby optimal levels of anisotropy can be

approximated. We contribute development to existing adaptive polynomial

construction strategies. Finally, we consider High-Dimensional Model Reduction

(HDMR) expansions, using SCgPC representations for the subspace terms, and

contribute new adaptive methods to construct them. We apply these methods on a

series of models of increasing complexity. We use analytic models of various levels of

v



vi

complexity, then demonstrate performance on two engineering-scale problems: a

single-physics nuclear reactor neutronics problem, and a multiphysics fuel cell problem

coupling fuels performance and neutronics. Lastly, we demonstrate sensitivity analysis

for a time-dependent fuels performance problem. We demonstrate the application of

all the algorithms in RAVEN, a production-level uncertainty quantification framework.
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Chapter 1

Introduction

In simulation modeling, we seek to capture the behavior of a physical system by de-

scribing it in a model, a series of mathematical equations. These often take the form of

partial differential equations. These models may be time- and spacially-dependent, and

capture physics of interest for understanding the system. A solver is then written that

can solve the series of equations and determine responses, or quantities of interest, often

through numerical evaluations on computation devices. A traditional solver accepts a

set of inputs and produces a set of single-valued outputs. For instance, a solver might

solve equations related to the attenuation of a beam of photons through a material, and

the response might be the strength of the beam exiting the material. A single evalua-

tion of the solver usually results in a single value, or realization, of the response. Figure

1.1 shows these relationships, and provides an example for nuclear reactor criticality

calculations.

1
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Figure 1.1: Example Models

This single realization might be misleading, however. In most systems there is some

degree of uncertainty in the input parameters to the solver. Some of these uncertainties

may be epistemic, or systematic uncertainty originating with inexact measurements or

measurable unknowns. Other uncertainties might be aleatoric, intrinsic uncertainty in

the system itself, such as probabilistic interactions or random motion. Taken together,

the input parameter uncertainties exist within a multidimensional probabilistic space.

This multidimensional probabilistic space is weighted by the probability of realizations

occurring in hypervolumes within the space. While some points in that space may be

more likely than others, the possible range of values for the response is only under-

stood when the uncertain input space is considered as a whole and propagated through

the model. We note here that while it is possible that some of the input parameters

are correlated in their probabilistic distribution, it is also possible to decouple them

into independent variables (see 2.1.3). Throughout this work we will assume the input

parameters are independent.

One traditional method for exploring the uncertain input space is through random sam-

pling, such as in analog Monte Carlo sampling. In this method, a point in the input

space is chosen at random based on probability. This point represents values for the

input parameters to the solver. The solver is executed with these inputs, and the re-

sponses are collected. Then, another point in the input space is chosen at random. This

process continues until the properties of the response are well understood.
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There are some beneficial properties to random sampling approaches like Monte Carlo.

Significantly, they are unintrusive: there is no need to modify the solver in order to

use these methods. This allows a framework of algorithms to be developed which know

only the input space and response of a solver, but need no further knowledge about

its operation. Unintrusive methods are desirable because the uncertainty quantifica-

tion algorithms can be developed and maintained separately from the solver, such as

frameworks like RAVEN [2].

Monte Carlo (MC) and similar sampling strategies are relatively slow to converge the

response surface. The response surface is the space of all possible outcomes for the

model given the uncertainty in the inputs, weighted by the probability of that outcome

occurring. This surface is difficult to converge accurately in MC. For example, in order

to reduce the standard error of the mean of the response by a factor of two using MC,

it is necessary to evaluate the model four times more often. If a solver is sufficiently

computationally inexpensive, obtaining additional evaluations is not a large concern;

however, for lengthy and expensive solvers such as those found commonly in nuclear

engineering applications, it may not be practical to obtain sufficient realizations to obtain

a clear response surface. In this work MC is used as a benchmark methodology; if other

methods converge on moments of the responses more quickly and consistently than MC,

we consider them “better” for our purposes.

The first advanced uncertainty quantification method we consider is Stochastic Collo-

cation for generalized Polynomial Chaos (SCgPC) [27, 38–40], wherein deterministic

collocation points are used to develop a polynomial-interpolated surrogate model of the

response as a function of the inputs. This method algorithmically expands the solver

as the sum of orthogonal multidimensional polynomials with scalar coefficients. The

scalar coefficients are obtained by numerical integration using multidimensional collo-

cation (quadrature) points. The chief distinction between SCgPC and MC methods is

that SCgPC is deterministic, in that the realizations required from the solver are pre-

determined instead of randomly sampled. Like Monte Carlo, SCgPC is unintrusive and

performs well without any need to access the internal operations of the solver. This

behavior is desirable for construction of black-box approach algorithms for uncertainty

quantification. Other intrusive methods such as Stochastic Galerkin exist [22], but re-

quire solver modification to operate. This makes them solver-dependent and undesirable

for an independent uncertainty quantification framework.
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The other methods we present here expand on standard SCgPC. First, we explore non-

tensor-product methods for determining the set of polynomial bases to use in the ex-

pansion. Because a tensor product grows exponentially with increasing dimensionality

of the input space, we combat this curse of dimensionality using alternative polynomial

set construction methods [29]. These polynomial bases will then be used to construct

Smolyak-like sparse grids [30] to provide collocation points that are used to calculate the

coefficients in the polynomial expansion. Further, we consider anisotropic sparse grids,

allowing higher-order polynomials for particular input parameters. We also consider

methods for obtaining weights that determine the level of anisotropic preference to give

parameters, and explore the effects of a variety of anisotropic choices.

The second method group we consider is High-Dimensional Model Representation (HDMR),

sometimes also referred to as high-dimensional model representation, which is based on

Sobol decomposition [36]. This method is useful both for developing sensitivities of the

quantity of interest with respect to subsets of the input space, as well as constructing a

reduced-order representation of the model itself. We demonstrate the strength of HDMR

as a method to inform anisotropic sensitivity weights for SCgPC.

Finally, we consider adaptive algorithms to construct both SCgPC and HDMR expan-

sions using second-moment convergence criteria. We analyze these for potential efficien-

cies and shortcomings. We also propose future work to further improve the adaptive

methods.

This work is premised on the idea that solvers are often computationally expensive,

requiring many hours per evaluation, and that computational resource availability re-

quires an analyst perform as few evaluations as possible. As such, we consider several

methodologies for quantifying the uncertainty in expensive solver calculations. In order

to demonstrate the range of operation for these methods, we apply them first on several

analytic problems, such as polynomial evaluations. These models have a high degree

of regularity, and their analyticity provides for straightforward benchmarking. Through

gradual increasing complexity, we investigate the behavior of the advanced UQ methods

(SCgPC and HDMR) in comparison to MC.

However, the problems facing nuclear engineering analysts today are rarely analytic

and have simple forms. As a result, we also demonstrate three applications of SCgPC

and HDMR to engineering-scale applications. The first is a single-physics neutronics
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benchmark problem that models a small reactor core. While the responses of this model

have no simple analytic form, the underlying physics are well-understood and provide

for good analysis. The second engineering-scale application is a multiphysics problem

modeling nuclear fuel through burnup depletion. This model couples neutronics and fuels

performance nonlinearly, where neutronics provides flux shapes that determine power

shapes for fuels performance, and fuels performance provides temperature feedbacks to

the nuclear cross sections. Finally, we demonstrate how HDMR and SCgPC can be used

to analyze a time-dependent fuels performance problem in which a fuel rod undergoes

several changes in power level over a long period of irradiation. Instead of converging

moments of responses, this last analysis concerns using changing sensitivity parameters

to detect changes in dominant physics during a transient problem.

We implement all the advanced UQ methods in Idaho National Laboratory’s RAVEN [2]

uncertainty quantification framework. RAVEN is a Python-written framework that non-

intrusively provides tools for analysts to quantify the uncertainty in their simulations

with minimal development. To demonstrate the application of the methods developed,

we apply RAVEN to complex non-linear solvers. To simulate neutronics and fuels perfor-

mance, we use RATTLESNAKE [26] and BISON [23, 25] production codes respectively. Both

of these codes are developed in and based on the MOOSE [24] environment.

The remainder of this work will proceed as follows:

• Chapter 2: We begin by defining concepts and ideas used in uncertainty quan-

tification. We discuss uncertainty spaces, correlated inputs, statistical moments,

the purposes of uncertainty quantification, and some common existing uncertainty

quantification techniques, including Monte Carlo, Grid, and Latin Hypercube sam-

pling strategies.

• Chapter 3: We consider SCgPC as an uncertainty quantification method in com-

parison to Monte Carlo. We discuss implementation of several polynomial expan-

sion types as well as both isotropic and anisotropic approaches. We additionally

consider an adaptive scheme for the polynomial expansion, and offer some im-

provements on existing efforts in adaptivity.

• Chapter 4: We present the performance of SCgPC expansion methods as applied

to a variety of analytic models. We analyze a set of increasingly-complex models
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and contrast collocation methods on models of varying dimensionality. We draw

some conclusions based on performance to determine when SCgPC is a viable

choice over Monte Carlo sampling.

• Chapter 5: Expanding on SCgPC, we further consider HDMR, achieved through

Sobol decomposition. We apply generalized polynomial chaos expansions to the

subspace terms in the HDMR expansion, and demonstrate synergies with the two

expansions. Further, we present a combined adaptive scheme for the two expansion

methods and offer improvements on existing adaptive methods.

• Chapter 6: We add the performance of HDMR to the previous analyses of analytic

models, and consider the merits and shortcomings of several truncation orders of

HDMR expansions. We also consider the adaptive HDMR method when compared

with the SCgPC methods.

• Chapter 7: We apply the uncertainty quantification techniques described in this

work to a single-physics neutronics benchmark problem. We consider the efficien-

cies and limitations of both SCgPC and HDMR as uncertainty quantification tools

for this model, and discuss some findings due to this non-analytic model.

• Chapter 8: We further apply the advanced uncertainty quantification techniques to

a multiphysics engineering-scale problem coupling fuels performance to neutronics.

We consider the efficiency of select methods discussed, and limitations discovered

from these coupled codes.

• Chapter 9: We consider application of low-order HDMR to a time-dependent

fuels performance benchmark. We present the development of Sobol sensitivity

coefficients between responses of interest and uncertain input parameters over a

time-dependent problem. Further, we demonstrate how these sensitivities can yield

additional comprehension of the underlying physical models. We discuss briefly

the limitations discovered as a result of performing this analysis.

• Chapter 10: We summarize the efforts of this paper and offer conclusions, includ-

ing the types of models for which the uncertainty quantification techniques are

efficient, when they can be expected to be inefficient, and when they will not work

altogether. We also suggest some future work efforts that are logical progressive

steps from the work performed here.



Chapter 2

Traditional Uncertainty

Quantification Methods

2.1 Introduction

In this chapter we describe traditional uncertainty quantification concepts as well as

several common existing uncertainty quantification methods and their applications. We

begin by discussing the principles of input spaces and responses, and define terminology

used in this work. Next we discuss uncertainty quantification at a high level, and finally

describe several common uncertainty quantification tools.

Many simulation models are algorithms constructed to solve partial differential equa-

tions, often in two or three spatial dimensions and possibly time. The inputs to these

models include boundary conditions, material properties, tuning parameters, and so

forth. The outputs are responses, either data fields or scalar values. The responses

are used to inform decision-making processes. For example, a neutronics simulation

in nuclear engineering takes materials, geometries, and boundary conditions as inputs,

and yields neutron flux and the neutron multiplication factor k as responses. Similarly,

a fuels performance code takes materials, geometries, and power shapes as inputs and

yields stresses, strains, and temperature profiles as outputs. Figure 2.1 is an example of

this workflow [1].

In general, we define u(Y ) to be a response as a function of the input space Y =

(y1, . . . , yn, . . . , yN ) where yn is a single uncertain input parameter to the model, n is an

7
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Figure 2.1: Uncertainty Quantification [1]

index spanning the number of inputs, and N is the total number of inputs. Uncertain

input parameters can include any of the inputs to the simulation. We assume each

response to be a scalar, integrated quantity. In the event the output is a vector or

field quantity, each element can be considered as a distinct scalar response. Models are

mathematical equations used to obtain the response u(Y ), and solvers or simulations

are numerical algorithms used to solve models.

Using our examples above, for neutronics calculations Y might include nuclear cross sec-

tions, geometry parameters, and sources, while u(Y ) could be k-effective or the neutron

flux at a particular location of interest. For fuels performance calculations, Y might

entail thermal conductivity of various parameters, geometric construction parameters,

moderator inlet temperatures, and so forth. u(Y ) could be peak clad temperature, max-

imum fuel centerline temperature, clad elongation, percent fission gas released, and so

on.

2.1.1 Uncertain Inputs

Essential to using simulation models is understanding the possibility that significant

uncertainties exist in the inputs. These could be aleatoric uncertainties due to intrinsic

randomness in the inputs, or epistemic uncertainties due to model imperfections or

lack of knowledge. For example, quantum behaviors or Brownian motion often provide

non-deterministic sources of aleatoric uncertainty. Further, the simulation itself might

be solved through non-deterministic methods such as Monte Carlo sampling, in which

case the random seed acts as an uncertain input. Examples of epistemic uncertainties

include initial or boundary conditions that can only be controlled to some finite level,
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such as manufacturing tolerances, temperature and pressure, and so forth. Each of these

aleatoric and epistemic uncertainties has some distribution defining the likelihood of an

input to have a particular value. Sometimes these distributions are known; often, they

can only be approximated. These distributions might be assumed or constructed from

experiment; for our work, we will assume distributions are given, and that the given

distributions are accurate.

The distribution of input likelihoods is the probability distribution function (PDF)

ρn(yn). An integral over any portion of the input space of the PDF provides the proba-

bility that the input’s value is within that portion. We require

∫ b

a
ρn(yn)d yn = 1, (2.1)

where a and b are the minimum and maximum values yn can take (possibly infinite). In

other words, the probability of finding the input between a and b is 100%; similarly, we

can say the value of the input lies between a and b almost surely.

2.1.2 Multidimensional Input Spaces

When there are more than one uncertain input, the combination of distributions for

these inputs make up an uncertainty space Ω. Ω is a part of the probability space

(Ω, σ, ρ), where Ω is the set of all possible outcomes, σ is the set of events ω, and ρ is

the probability function for the space. The dimensionality of Ω is N , the number of

uncertain input variables. The probability of any event in the input space occurring is

given by an integral of the joint-probability distribution ρ(Y ), still enforcing

∫ b1

a1

· · ·
∫ bN

aN

ρ(Y )dy1 · · · dyN = 1. (2.2)

For clarity, we define multidimensional integral operator

∫
Ω

(·)dY ≡
∫ b1

a1

· · ·
∫ bN

aN

(·)dy1 · · · dyN , (2.3)

so that Eq. 2.2 can be written ∫
Ω
ρ(Y )dY = 1. (2.4)
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The function u(Y ) maps realizations (ω) from the input space Ω to a real-valued re-

sponse. That is, for each input variable yn, a realization is taken by selecting a single

value from the distribution of yn, which gives a single input value yn(ω). Taking a single

realization of each of the distributed input parameters yields a full input realization

Y (ω) = (y1(ω), · · · , yN (ω)), which can be used as inputs for u(Y ) to obtain a realization

of the response u(Y (ω)). To simplify notation, in general the dependency of a realization

on ω will be omitted and referred to as sampling or taking a realization.

2.1.3 Correlation and the Karhunen-Loeve expansion

We note the possibility that multiple inputs may be correlated with each other. When

inputs are not independent, the joint probability distribution is not the product of each

individual probability distribution distribution. When this is the case, each distribu-

tion cannot be sampled independently, and this creates complications for many of the

sampling strategies presented in this work.

Using input space mapping, however, a surrogate orthogonal input space can be con-

structed. This surrogate space is functionally identical to the original for our purposes.

There are mathematical approaches to decoupling input parameters through surrogate

spaces. In particular, using principle component analysis (or Karhunen-Loeve expansion

[43] for discrete inputs), the covariance matrix for the distributed input parameters can

be used to construct a multidimensional standard Gaussian normal distribution, whose

components are all orthogonal. As a result, we only consider independent variables in

this work, as dependent variables can be decoupled through this surrogate mapping

process.

2.2 Uncertainty Quantification

The purpose of uncertainty quantification is to propagate the uncertainties present in

the input space of a model through that model and comprehend their effects on the

output responses. This is desirable because single-realization simulations give a very

limited view of real-life operation. In traditional simulations, a single value for each

input variable results in a single value for the response. When performing uncertainty

quantification, a range of values for each input results in a range of response values.
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To quantify the distribution of the output response, often statistical moments are used,

including the mean, variance, skewness, and kurtosis.

2.2.1 Statistical Moments

The four most basic statistical moments used in describing probability distributions

are the mean, variance, skewness, and (excess) kurtosis. The mean (µ) provides the

expected value of the response, or generally the most probable value for the response.

The variance (σ2) establishes the spread of the response, or the distance response values

have from the mean on average. The standard deviation of the response is given by the

square root of the variance, and provides a useful metric to determine the probability of

finding a response value within a range. For instance, Chebyshev’s inequality [49] says

1−1/k2 of a distribution’s values are within k standard deviations from the mean. This

is true whenever the mean and variance can be defined. Table 2.1 shows the minimum

percent of the response covered by including multiples of the standard deviation from

the mean.

Some distributions are much more restrictive than Chebyshev’s inequality requires. For

instance, we show a similar table for a normal Gaussin distribution in Table 2.2. Fig.

2.2 shows the same information graphically.

Number of Std. Dev. Percent of Values

1 0√
2 50

2 75
3 88.89
4 93.75
5 96
10 99

Table 2.1: Percentage of Values within k standard deviations for general distributions

Number of Std. Dev. Percent of Values

1 68.3
2 95.45
3 99.73
4 99.994

Table 2.2: Percentage of Values within k standard deviations for Gaussian normal
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Figure 2.2: Standard Deviations of Normal Gaussian Distribution

Higher order moments, skewness (γ1) and kurtosis (γ2), describe the asymmetry and

”tailedness” of the response distribution respectively. The more asymmetric the distri-

bution, the higher the skewness is. For example, a Gaussian normal distribution has

zero skewness, and skewness is introduced to a Beta distribution by allowing α 6= β.

Kurtosis is more complicated in its interpretation, but in general kurtosis provides an

idea of how much of the variance is contributed by extreme deviations from the mean.

The kurtosis of a Guassian normal distribution is 3. This leads to the definition of excess

kurtosis, which is 3 less than the traditional kurtosis.

An example of similar distributions with different moments is given in Figure 2.3. The

mean shifts the entire distribution, the variance spreads the distribution, the skewness

measures asymmetry, and the kurtosis measures tailedness. In each case, the blue is a

“standard” distribution, and the red demonstrates increasing the indicated statistical

moment.
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Figure 2.3: Visual Representation of Statistical Moments

While both skewness and kurtosis provide insight to the distribution of responses, most

uncertainty quantification is centered on second-order metrics. Second-order uncertainty

quantification seeks for the mean and variance of the perturbed response. Mathemati-

cally, the mean (µ) of a model is the first moment,

µ = E[u(Y )] =

∫
Ω
u(Y )dY, (2.5)

and the variance (σ2) is the second moment less the square of the first,

σ2 = E[u(Y )2]− E[u(Y )]2 =

∫
Ω
u(Y )2dY − µ2. (2.6)

Another use for uncertainty quantification is understanding the sensitivity of the out-

put responses to the uncertain inputs; that is, determining how responses change as a

function of changes in the input space. At the most primitive level, linear sensitivity of

the mean of a response to an input is the derivative of the response with respect to the

input. Sensitivities can be either local to a region in the input space or global to the

entire space.

There are two chief methods to define sensitivity. One of the most typical sensitivities

is mean to mean; that is, the rate of change in the value of the response as a function

of changes in the input values. This metric is most useful what attempting to maximize
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or minimize a response value by changing input parameters. The second method is

variance to variance, or the rate of change in the variance of the response as a function

of changes in the variance of an input. This is useful when trying to mitigate the spread

of possible response values. If there is a possibility of a response having an undesirable

value, knowing the variance-variance sensitivity helps in identifying which inputs need

to have their variance reduced to prevent the undesirable value from occurring.

2.2.2 After Uncertainty Quantification

Once the response distribution is well-understood through statistical moments and sen-

sitivities, further analysis and decisions can be made. For example, one post-uncertainty

quantification analysis is limit surface definition and failure probability. In this type of

analysis, a criteria is given that determines a “success” and “failure” condition for a re-

sponse. For instance, in the simulation of a material undergoing stress during heating, a

failure condition could be whether the material buckles during the simulation. The limit

surface search seeks to determine what portion of the input space results in response

failures, and what portion to successes, and define the hypersurfaces dividing successes

and failures. Figure 2.4 shows a sample limit surface search sampling, and Figure 2.5

shows the surface between success and failure regions [2].

Figure 2.4: Limit Surface Sampling [2]

After a limit surface search, optimization can be performed, which gives some criteria

for ideal operation and searches the success space for optimal inputs. For example, if

alloy compositions are the inputs for the stress and heat material mentioned earlier,
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Figure 2.5: Limit Surface and Failure Regions [2]

optimization can help find the least expensive alloy that won’t buckle in the conditions

given by the simulation.

Another post-uncertainty quantification calculation is to make use of sensitivity infor-

mation to determine the inputs that could benefit from reduced variance to reduce the

variance of the response in turn. If some inputs have minimal impact on variance in the

output, they don’t need the same level of care in manufacturing as other inputs. For ex-

ample, consider the construction of a commercial nuclear power reactor. If the material

properties and geometry of the reflector have a much smaller impact on the operation

variance than the fuel content and geometry of the fuel pellets, the most naive cost-

effective way to control variance is to decrease margins in fuel manufacturing instead

of reflector construction. While this example seems readily evident, often engineering

intuition can be informed by uncertainty quantification and sensitivity analysis.

2.2.3 Analytic Uncertainty Quantification

For some models, there exists analytic techniques for propagation of uncertainty. One

of these is the so-called sandwich formula, often referred to as standard propagation of

error [63]. Assuming independent input parameters (see section 2.1.3), the standard

deviation σu of u(Y ) is given as

σ2
u =

N∑
n=1

(
∂u(Y )

∂yn

)2

σ2
yn , (2.7)
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where σyn is the standard deviation of uncertain input yn. This approximation is limited

to the linear characteristics of the gradient of u(Y ), and so is useful especially when the

standard deviation of the inputs are small compared to the partial derivatives [64].

For models with gradients that are simple to calculate accurately (and sufficiently small

input uncertainties), this formula is very effective at propagating error. However, com-

puting or estimating such gradients accurately for complex models is prohibitive, and

leads to numerical approaches to uncertainty quantification, as we discuss in this work.

2.2.4 Uncertainty Quantification Techniques

There are several common tools used for uncertainty quantification when analytic anal-

ysis is not possible or not practical. These include stochastic methods such as Monte

Carlo sampling, deterministic methods such as Grid sampling, and mixed methods such

as Latin Hypercube sampling (LHS). We discuss each here and show examples of the

sampling strategies.

2.2.5 Monte Carlo

The Monte Carlo method (MC) [14] has been used formally since the 1930s as a tool

to explore possible outcomes in uncertain models. Nuclear physicist Enrico Fermi used

the method in his work with neutron moderation in Rome [15]. In its simplest form,

MC involves randomly picking realizations from a set of possibilities, then statistically

collecting the results. In uncertainty quantification, Monte Carlo can be used to sample

realizations in the input space based on the joint probability distribution. These realiza-

tions are then run through the model solver, and the collection of response realizations

is analyzed to determine its moments.

The mean of a response is determined by MC using the unweighted average of samples

collected:

E[u(Y )] =
1

M

M∑
m=1

(u(Y (ωm))) + εMC
M , (2.8)

where Y (ωm) is a realization randomly chosen based on ρ(Y ), and M is the total number

of samples taken. The error in the approximation diminishes with the root of the number
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of samples taken,

εMC
M ∝ 1√

M
. (2.9)

The second moment is similarly approximated as

E[u(Y )2] ≈ 1

M

M∑
m=1

(
u(Y (ωm))2

)
. (2.10)

The standard deviation (root of the variance) converges similarly to the mean for Monte

Carlo methods. There are many tools that can be used to improve Monte Carlo sampling

[16][17]; we restrict our discussion to traditional analog Monte Carlo sampling.

Monte Carlo has long been a gold standard for uncertainty quantification because of its

consistency. Monte Carlo will always resolve the response statistics given a sufficient

number of samples. Additionally, the convergence of Monte Carlo is largely agnostic of

the input space dimensionality, a feature not shared by the Grid sampling method.

The drawback to Monte Carlo sampling also centers on its consistency. The error in ana-

log Monte Carlo can only be consistently reduced by drastically increasing the number

of evaluations solved. While coarse estimates are inexpensive to obtain, high precision

takes a great deal of effort to converge. Figure 2.6 shows Monte Carlo sampling of a

two-dimensional input space, and Figure 2.7 shows the probability weight of the sampled

points [2].

Figure 2.6: Example Monte Carlo Samples [2]
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Figure 2.7: Example Monte Carlo Probabilities [2]

2.2.6 Grid

One of the drawbacks of Monte Carlo is lack of control over points sampled. An alterna-

tive is using a structured orthogonal grid. In this strategy, the input space is divided into

hypervolumes that are equal in volume either in the input space or in uncertainty space.

For demonstration, we first consider a one-dimensional case with a single normally-

distributed variable y with mean µ and standard deviation σ. If the input space is

divided into equal volumes in the input space, a lower and upper bound are determined,

then nodes are selected on the ends and equally spaced throughout. If the input space

is divided into equal probability volumes, nodes are selected to be equidistant along

the cumulative distribution function (CDF). This assures that the volume between each

set of nodes has equal probability. See Figure 2.8, in which both equal in value and

equal in CDF grid spacing is applied to a standard Gaussian normal distribution. In

multidimensional input spaces, the tensor product of each grid is taken to result in the

full grid.

Since the grid nodes are user-defined, approximating integrals are slightly more compli-

cated than in the Monte Carlo space. The mean is approximated by

E[u(Y )] =

∫
Ω
u(Y )dY ≈

M∑
m=1

wmu(Y (ωm)), (2.11)

where m iterates over each node in the grid, Y (ωm) is the multidimensional input re-

alization at grid node m, and wm is a probability weight determined by the volume of



Chapter 2. Methods: Traditional UQ 19

4 2 0 2 4

Value

CDF

Example Grid Spacing

Figure 2.8: Grid Sampling

probability represented by the grid node. In grids constructed by CDF, all wm are of the

same value, while in grids spaced equally by value, wm can vary significantly. Similarly,

the second moment is approximated by

E[u(Y )2] =

∫
Ω
u(Y )2dY ≈

M∑
m=1

wmu(Y (ωm))2. (2.12)

An advantage to grid sampling is its regular construction, which can give more clarity

to how a response behaves throughout the input space. However, the grid construction

suffers greatly from the curse of dimensionality, which makes it inefficient for input

spaces with large dimensionality. Figure 2.9 shows Grid sampling of a two-dimensional

input space, and Figure 2.10 shows the probability weight of the sampled points [2].
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Figure 2.9: Example Grid Samples [2]

Figure 2.10: Example Grid Probabilities [2]

2.2.7 LHS

A cross between Monte Carlo and Grid sampling strategies, the Latin Hypercube Sam-

pling (LHS) strategy is a sampling tool used to reduce the total samples needed without

significantly sacrificing integration quality [20]. In LHS, the input space is also divided

into a grid just as in the Grid sampling strategy. However, unlike Grid sampling, only

one sample is taken per hyperplane; that is, for any of the input variables, there is only

one sample taken between each of the one-dimensional nodes. Once a hypervolume is

selected to take a sample, the exact point is selected by random sampling in the probabil-

ity space within the hypervolume. Figure 2.11 shows lhs sampling of a two-dimensional

input space, and Figure 2.12 shows the probability weight of the sampled points [2].
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Figure 2.11: Example LHS Samples [2]

Figure 2.12: Example LHS Probabilities [2]

As in the Grid method, the weight of each sample is the probability volume of the

hypervolume it represents. While LHS has been a boon to computational researchers

due to its low sample size, it struggles to resolve responses with significant nonlinear

shape. Because only a small portion of the input space is used to obtain the response

statistics, there is a risk of missing important response features that may include high-

probability spaces.

2.3 Conclusion

Monte Carlo, Grid, and LHS sampling are all useful tools in uncertainty quantification.

Each one, however, also has weak points that make it undesirable for some responses.
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Monte Carlo tends to be slow in converging to high-order accuracy, Grid suffers greatly

from the curse of dimensionality, and LHS relies on slowly-changing responses. In the

remainder of this work we explore advanced UQ methods to improve on these three

standard techniques.



Chapter 3

Stochastic Collocation for

Generalized Polynomial Chaos

Method

3.1 Introduction

Expanding beyond the traditional uncertainty quantification methods of MC, Grid, and

LHS sampling, there are more advanced methods that are very efficient in particular

applications. Generalized polynomial chaos (gPC) expansion methods, for example,

interpolate the model as a combination of polynomials of varying degree in each dimen-

sion of the input space. There are several advantages to expanding in polynomials [27].

First, orthonormal polynomials have means and standard deviations that are trivial to

calculate analytically, even for computer algorithms. Second, the resulting polynomial

expansion is an inexpensive surrogate that can be used in place of the original model.

Polynomials are generally inexpensive to evaluate, especially in comparison to complex

solvers. Third, the unknowns in the expansions are scalar coefficients, which can often

be efficiently calculated through numerical integration.

Originally Wiener proposed expanding models in Hermite polynomials for Gaussian-

normal distributed input variables [21]. Askey and Wilson generalized Hermite polyno-

mials to include Jacobi polynomials, including Legendre and Laguerre polynomials [28].

Xiu and Karniadakis combined these concepts to perform gPC expansions for a range of

23
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Gaussian-based distributions with corresponding polynomials, including Legendre poly-

nomials for uniform distributions, Laguerre polynomials for Gamma distributions, and

Jacobi polynomials for Beta distributions, in addition to Hermite polynomials for normal

distributions [27]. More information on how to use these distributions and polynomials

is contained in Appendix A.

In each of these cases, a probability-weighted integral over the distribution can be cast

in a way that the corresponding polynomials are orthogonal over the same weight and

interval. These chaos Wiener-Askey polynomials were used by Xiu and Karniadakis to

develop the generalized polynomial chaos expansion method (gPC), including a trans-

formation for applying the same method to arbitrary distributions (as long as they have

a known inverse CDF) [27]. Two significant methodologies have branched from gPC

applications. The first makes use of Lagrange polynomials to expand the original func-

tion or simulation code [35], as Lagrange polynomials can be made orthogonal over the

same domain as the distributions; the other uses the Wiener-Askey polynomials [27].

We consider the latter in this work.

We consider a simulation code that produces a quantity of interest u(Y ) whose ar-

guments are the uncertain, distributed input parameters Y = (y1, . . . , yn, . . . , yN ). A

particular realization ω of yn is expressed by yn(ω), and a single realization of the entire

input space results in a solution to the response as u(Y (ω)). We acknowledge obtaining

a realization of u(Y ) may take considerable computation time and effort, and may be

solved nonlinearly. There also may be other input parameters that contribute to the

solution of u(Y ) but have no associated uncertainty; we neglect these, as our interest is

in the uncertainty space. All parameters without uncertainty are held at their nominal

values. In addition, it is possible that the quantity of interest u(Y ) is an integrated

quantity or some norm of a value that is temporally or spatially distributed. We restrict

u(Y (ω)) to a single scalar output, but the same principles apply to a multidimensional

response. Further, a quantity of interest may be time-dependent in a transient simula-

tion. In this case, the gPC expansion can be constructed at several selected points in

time throughout the simulation, which can then be interpolated between. In effect, the

polynomial coefficients become time-dependent scalar values. This will be discussed and

demonstrated in Chapter 9. For now, we consider a static case with no time dependence.

We expand u(Y ) in orthonormal multidimensional polynomials Φk(Y ), where k is a
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multi-index tracking the polynomial order in each axis of the polynomial Hilbert space,

and Φk(Y ) is constructed as

Φk(Y ) =
N∏
n=1

φkn(Yn), (3.1)

where φkn(Yn) is a single-dimension Wiener-Askey orthonormal polynomial of order kn

and k = (k1, . . . , kn, . . . , kN ), kn ∈ N0. For example, given u(y1, y2, y3), k = (2, 1, 4) is

the multi-index of the product of a second-order polynomial in y1, a first-order polyno-

mial in y2, and a fourth-order polynomial in y4. If φ were taken from monomials, this

polynomial would be

φ(2,1,4) = y2
1 y2 y

4
3. (3.2)

The gPC for u(Y ) using this notation is

u(Y ) ≈
∑

k∈Λ(L)

ukΦk(Y ), (3.3)

where uk is a scalar weighting polynomial expansion coefficient, sometimes called a

polynomial expansion moment. The polynomials used in the expansion are determined

by Λ, a set of chosen multi-indices, which can be selected in a variety of ways we

will discuss in section 3.2. In the limit that Λ contains all possible combinations of

polynomials of any order, Eq. 3.3 is exact. Practically, however, Λ is truncated to some

finite set of multidimensional polynomials.

We make use of orthonormal Wiener-Askey polynomials

∫
Ω

Φk(Y )Φk̂(Y )dY = δkk̂, (3.4)

where Ω is the multidimensional domain of Y and δnm is the Dirac delta. We can

isolate an expression for the polynomial expansion coefficients using the properties of

orthonormality. We multiply both sides of Eq. 3.3 by Φk̂(Y ), integrate both sides over

the probability-weighted input domain, and sum over all k̂ to obtain the coefficients uk,

sometimes referred to as polynomial expansion moments,

u(Y ) =
∑

k∈Λ(L)

ukΦk(Y ), (3.5)

∫
Ω

u(Y )Φk̂(Y )dY =

∫
Ω

uk̂

∑
k∈Λ(L)

ukΦk(Y ) dy, (3.6)
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〈u(Y ),Φk̂(Y )〉 = 〈Φk̂(Y ),
∑

k∈Λ(L)

ukΦk(Y )〉, (3.7)

〈u(Y ),Φk̂(Y )〉 = 〈Φk̂(Y ),
∑

k∈Λ(L)

ukΦk(Y )〉, (3.8)

〈u(Y ),Φk̂(Y )〉 =
∑

k∈Λ(L)

ukδk,k̂, (3.9)

〈u(Y ),Φk̂(Y )〉 = uk̂, (3.10)

and swapping k̂ for k for convenience,

uk = 〈u(Y ),Φk(Y )〉, (3.11)

where we use the angled bracket notation to denote the probability-weighted inner prod-

uct,

〈f(Y ), g(Y )〉 ≡
∫
Ω

f(Y )g(Y )dY, (3.12)

=

b∫
a

f(Y )g(Y )ρ(Y )dY. (3.13)

When u(Y ) has an analytic form, these coefficients can be solved by direct integra-

tion; however, in general numerical integration must be used instead. While tools such

as Monte Carlo integration can be used to evaluate the integral, we can harness the

properties of Gaussian quadratures because of the probability weights, domain of in-

tegration, and the orthonormal polynomials. This stochastic collocation numerical in-

tegration method is discussed in section 3.4, and a discussion of the synergy between

probability weights, domain of integration, and the orthonormal polynomials is included

in Appendix A. Once the polynomial expansion coefficients uk are all obtained, the gPC

expansion is complete.

3.2 Polynomial Index Set Construction

The chief concern in expanding a function in interpolating multidimensional polyno-

mials is choosing appropriate polynomials to make up the expansion. There are many
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generic ways by which a polynomial set can be constructed. Here we present three static

approaches: tensor product, total degree, and hyperbolic cross.

In the tensor product case, Λ(L) contains all possible combinations of polynomial indices

up to truncation order L in each dimension, as

ΛTP(L) =
{
k̄ = (k1, · · · , kN ) : max

1≤n≤N
kn ≤ L

}
. (3.14)

The cardinality of this index set is |ΛTP(L)| = (L + 1)N . For example, for a two-

dimensional input space (N=2) and truncation limit L = 3, the index set ΛTP(3) is

given in Table 3.1, where the notation (1, 2) signifies the product of a polynomial that

is first order in Y1 and second order in Y2.

(3,0) (3,1) (3,2) (3,3)
(2,0) (2,1) (2,2) (2,3)
(1,0) (1,1) (1,2) (1,3)
(0,0) (0,1) (0,2) (0,3)

Table 3.1: Tensor Product Index Set, N = 2, L = 3

It is evident there is some inefficiencies in this index set. First, it suffers dramatically

from the curse of dimensionality ; that is, the number of polynomials required grows

exponentially with increasing dimensions. Second, the total order of polynomials is not

respected. Assuming the contribution of each higher-order polynomial is smaller than

lower-order polynomials, the (3,3) term is contributing sixth-order corrections that are

likely smaller than the error introduced by ignoring fourth-order corrections (4,0) and

(0,4). This leads to the development of the total degree (TD) and hyperbolic cross (HC)

polynomial index set construction strategies [29].

In TD, only multidimensional polynomials whose total order are at most L are permitted,

ΛTD(L) =
{
k̄ = (k1, · · · , kN ) :

N∑
n=1

kn ≤ L
}
. (3.15)

The cardinality of this index set is |ΛTD(L)| =
(
L+N
N

)
[29], which grows with increasing

dimensions much more slowly than TP. For the same N = 2, L = 3 case above, the TD

index set is given in Table 3.2.

In HC, the product of polynomial orders is used to restrict allowed polynomials in the

index set. This tends to polarize the expansion, emphasizing higher-order polynomials
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(3,0)
(2,0) (2,1)
(1,0) (1,1) (1,2)
(0,0) (0,1) (0,2) (0,3)

Table 3.2: Total Degree Index Set, N = 2, L = 3

in each dimension but lower-order polynomials in combinations of dimensions, as

ΛHC(L) =
{
k̄ = (k1, . . . , kN ) :

N∏
n=1

(kn + 1) ≤ L+ 1
}
. (3.16)

The cardinality of this index set is bounded by |ΛHC(L)| ≤ (L+ 1)(1 + log(L+ 1))N−1

[29]. It grows even more slowly than TD with increasing dimension, as shown in Table

3.3 for N = 2, L = 3.

(3,0)
(2,0)
(1,0) (1,1)
(0,0) (0,1) (0,2) (0,3)

Table 3.3: Hyperbolic Cross Index Set, N = 2, L = 3

It has been shown that the effectiveness of TD and HC as index set choices depends

strongly on the regularity of the response [29]. TD tends to be most effective for

infinitely-continuous response surfaces, while HC is more effective for surfaces with lim-

ited smoothness or discontinuities.

3.2.1 Anisotropy

While using TD or HC to construct the polynomial index set combats the curse of

dimensionality present in TP, the polynomial set still grows swiftly with increasing di-

mension, and this continues to be an issue for problems of large dimensionality. Another

concept that can be applied to mitigate this issue is index set anisotropy, or the unequal

treatment of various dimensions. In many models we expect different input dimensions

to have different effective polynomial orders. As defined above, polynomial index sets

are isotropic in dimension; anisotropy will cater to the unequal effective polynomial or-

ders in each dimension. In this strategy, weighting factors α = (α1, . . . , αn, . . . , αN ) are

applied in each dimension to allow additional polynomials in some dimensions and less
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in others. This change adjusts the TD and HC construction rules as follows,

Λ̃TD(L) =
{
p̄ = (p1, · · · , pN ) :

N∑
n=1

αnpn ≤
|α|1
N

L
}
, (3.17)

Λ̃HC(L) =
{
p̄ = (p1, · · · , pN ) :

N∏
n=1

(pn + 1)αn ≤ (L+ 1)|α|1/N
}
. (3.18)

where |α|1 is the one-norm of α

|α|1 =

N∑
n=1

αn. (3.19)

Considering the same case above (N = 2, L = 3), we apply weights α1 = 5, α2 = 3, and

the resulting index sets are Tables 3.4 (TD) and 3.5 (HC).

(2,0)
(1,0) (1,1) (1,2)
(0,0) (0,1) (0,2) (0,3) (0,4)

Table 3.4: Anisotropic Total Degree Index Set, N = 2, L = 3

(1,0)
(0,0) (0,1) (0,2) (0,3)

Table 3.5: Anisotropic Hyperbolic Cross Index Set, N = 2, L = 3

There are many methods by which anisotropy weights can be chosen. Often, if a problem

is well-known to an analyst, it may be enough to use intuitive judgement to assign

importance arbitrarily. Otherwise, a smaller uncertainty quantification solve can be

used to roughly determine sensitivity coefficients (such as Pearson coefficients), and the

inverse of those can then be applied as anisotropy weights. Sobol sensitivity coefficients

[50] could also serve as a basis for these weights. A good choice of anisotropy weight can

greatly speed up convergence; however, a poor choice can slow convergence considerably,

as computational resources are used to resolve low-impact polynomials.

3.3 Polynomial Expansion Features

As previously mentioned, there are several benefits to the gPC expansion once con-

structed. First, the gPC expansion is a surrogate for the original model, and can be

used in its place as long as all the inputs are within the same bounds as when the original
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gPC expansion was constructed. The error in this representation will be of the same

order as the truncation error of the expansion.

Second, the first and second moments of the gPC expansion are very easy to obtain.

Because the probability-weighted integral of all the Wiener-Askey polynomials is zero

with the exception of the zeroth-order polynomial, and using the notation G(y) to signify

the gPC expansion of u(Y ),

u(Y ) ≈ G(Y ) ≡
∑
k∈λ

ukΦk(Y ), (3.20)

the mean is simply

E[G(Y )] =

∫
Ω

∑
k∈Λ

ukΦk(Y )dY,

= u∅, (3.21)

where we use ∅ = (0, · · · , 0). The second moment is similarly straightforward. The

integral of the square of the gPC expansion involves cross-products of all the expansion

terms; however, because the integral of the product of any two polynomials is the Dirac

delta δi,j , this simplifies to the sum of the squares of the expansion coefficients,

E[G(Y )2] =

∫
Ω

[∑
k∈Λ

ukΦk(Y )

]2

dY,

=

∫
Ω

∑
k1∈Λ

∑
k2∈Λ

uk1Φk1(Y ) · uk2Φk2(Y )dY,

=
∑
k1∈Λ

∑
k2∈Λ

uk1 · uk2δk1,k2 ,

=
∑
k∈Λ

u2
k. (3.22)

3.4 Stochastic Collocation

Having outlined the gPC expansion construction and its uses, we turn to the method of

calculating the polynomial expansion coefficients. Stochastic collocation is the process

of using collocated points to approximate integrals of stochastic space numerically. In

particular we consider using Gaussian quadratures (Legendre, Hermite, Laguerre, and
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Jacobi) corresponding to the polynomial expansion polynomials for numerical integra-

tion (see Appendix A). Quadrature integration takes the form

∫ b

a
f(x)ρ(x) dx =

∞∑
`=1

w`f(x`), (3.23)

≈
L̂∑
`=1

w`f(x`), (3.24)

where w`, x` are corresponding points and weights belonging to the quadrature set trun-

cated at order L̂. L̂ should not be confused with the polynomial expansion truncation

order L. We can simplify this expression using the operator notation

q(L̂)[f(x)] ≡
L̂∑
`=1

w`f(x`). (3.25)

A nominal multidimensional quadrature is the tensor product of individual quadrature

weights and points, and can be written

Q(L) = q
(L̂1)
1 ⊗ q(L̂2)

2 ⊗ · · · , (3.26)

=
N⊗
n=1

q(L̂n)
n . (3.27)

It is worth noting each dimension’s quadrature may have distinct points and weights;

they need not be constructed using the same quadrature rule.

In general, one-dimensional Gaussian quadrature excels in optimally integrating poly-

nomials of order 2p − 1 using p points and weights; equivalently, it requires (p + 1)/2

points to integrate an order p polynomial. For convenience we repeat here the coefficient

integral we desire to evaluate, Eq. 3.11.

uk = 〈u(Y )Φk(Y )〉. (3.28)

We can approximate this integral with the appropriate Gaussian quadrature as

uk ≈ Q(L̂)[u(Y )Φk(Y )], (3.29)

where we use bold vector notation to note the order of each individual quadrature,
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L̂ = [L̂1, . . . , L̂n, . . . , L̂N ]. For clarity, we remove the bold notation and assume a one-

dimensional problem, which extrapolates as expected into the multidimensional case.

uk ≈ q(L̂)[u(Y )Φk(Y )], (3.30)

=
L̂∑
`=1

w`u(Y`)Φk(Y`). (3.31)

In order to determine the quadrature order L̂ needed to accurately integrate this ex-

pression, we consider the gPC formulation for u(Y ) in Eq. 3.3 and replace it in the

sum,

uk ≈
L̂∑
`=1

w`Φk(Y`)
∑

k∈Λ(L)

uk̂Φk̂(Y`). (3.32)

Using orthogonal properties of the polynomials, this reduces as L̂→∞ to

uk ≈
L̂∑
`=1

w`ukΦk(Y`)
2. (3.33)

Accepting the truncation error, the order of the integral to determine the expansion

coefficient is 2k. As a result, the quadrature order needed to exactly integrate this

expression should be order

p =
2k + 1

2
= k +

1

2
< k + 1, (3.34)

so we can conservatively use p = k+ 1. In the case of the largest polynomials with order

k = L, the quadrature size L̂ is the same as L + 1. This balances the truncation error

with quadrature integration error.

It is worth noting that if u(Y ) is effectively of much higher-order polynomial than

L, this equality for quadrature order does not hold true; however, it also means that

gPC of order L will be a poor approximation. In some cases, a “quadrature floor”

can be enforced, limiting the smallest allowable quadrature with which to integrate

any expression. This can result in more expansion coefficients when only low-order

polynomials are used in the gPC expansion.

The naive choice for multidimensional quadrature is to find the largest quadrature needed
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in each dimension, then take the grid of all possible combinations of the largest quadra-

ture points as the multidimensional points and weights. While a tensor product of

highest-necessary quadrature orders could serve as a suitable multidimensional quadra-

ture set, the number of necessary model evaluations grows very quickly. We can make use

of Smolyak-like sparse quadratures to reduce the number of model evaluations necessary

for the TD and HC polynomial index set construction strategies.

3.4.1 Smolyak Sparse Grids

Smolyak sparse grids [30] are an attempt to discover the smallest necessary quadra-

ture set to integrate a multidimensional integral with varying orders of predetermined

quadrature sets. For example, consider a two-dimensional input space with a hyperbolic

cross index set (see Table 3.2). The highest quadrature order needed in y1 is fourth

order for k = (0, 3), and the highest quadrature order needed in y2 is also fourth order

for k = (3, 0). Traditionally, this would require a multidimensional quadrature with

16 (four by four) quadrature points. However, to integrate the polynomial k = (1, 1),

only second order in y1 by second order in y2 is required, and the single-dimensional

fourth-order quadratures are sufficient to cover all the other polynomials. As a result,

only 12 quadrature points are needed (four for single-dimensional y1 quadrature, four for

single-dimensional y2 quadrature, and four for two-by-two mixed quadrature). Even for

this low-order simple example, the reduced sparse grid has three-fourths the points of

the original tensor quadrature. This type of savings is the principle idea behind Smolyak

sparse quadrature. Additional discussion and some example figures are included in [12].

In our case, the polynomial index sets determine the quadrature orders each one needs

in each dimension to be integrated accurately. For example, the polynomial index set

point (2,1,3) requires three points in y1, two in y2, and four in y3,or

Q(2,1,3) = q
(3)
1 ⊗ q

(2)
2 ⊗ q

(4)
3 . (3.35)

The full tensor grid of all collocation points would be the tensor product of all quadrature

for all points, or

Q(Λ(L)) =
⊗
k∈Λ

Q(k). (3.36)
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Smolyak sparse grids consolidate this tensor form by adding together the points from

tensor products of subset quadrature sets. Returning momentarily to a one-dimensional

problem, we introduce the quadrature difference ∆ notation [39]

∆
(L̂)
k [f(x)] ≡

(
q

(L̂)
k − q(L̂)

k−1

)
[f(x)], (3.37)

q
(L̂)
0 [f(x)] = 0. (3.38)

A Smolyak sparse grid quadrature operator S is then defined and applied to the desired

integral in Eq. 3.11,

S
(L̂)
Λ,N [u(Y )Φk(Y )] =

∑
k∈Λ(L)

(
∆

(L̂1)
k1
⊗ · · · ⊗∆

(L̂N )
kN

)
[u(Y )Φk(Y )]. (3.39)

Equivalently, and in a more algorithm-friendly approach [38],

S
(L̂)
Λ,N [u(Y )Φk(Y )] =

∑
k∈Λ(L)

c(k)
N⊗
n=1

q(L̂n)
n [u(Y )Φk(Y )] (3.40)

where

c(k) =
∑

j={0,1}N ,
k+j∈Λ

(−1)|j|1 , (3.41)

using the traditional 1-norm for |j|1. The values for polynomial expansion coefficients

uk can then be calculated as

uk = 〈u(Y )Φk(Y )〉, (3.42)

≈ S(L̂)
Λ,N [u(Y )Φk(Y )]. (3.43)

With this numerical method to determine coefficients, we have a complete method for

performing SCgPC analysis in an algorithmic manner.

3.5 Adaptive Sparse Grid

One method for improving SCgPC is to construct the polynomial index set adaptively.

This effectively constructs anisotropic index sets based on properties of the expansion

as it is constructed, instead of in a predetermined way. This method is presented in [32]
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and used in [12]. Essentially, the polynomial index set Λ is constructed one polynomial

at a time by choosing from prospective polynomials. Prospective polynomials are defined

as those for whom all lower-order subset polynomials have already been included. The

algorithm proceeds generally as follows:

1. Begin with the mean (zeroth-order) polynomial expansion.

2. While not converged:

(a) Collect a list of the prospective polynomial index sets whose predecessors

have all been evaluated.

(b) Calculate the impact of adding each prospective polynomial to the existing

polynomial index set.

(c) If the total impact of all prospective polynomials is less than tolerance, con-

vergence is reached.

(d) Otherwise, add the predicted highest-impact prospective polynomial and loop

back to 2a.

This adaptive algorithm has the strength of determining the appropriate anisotropy to

apply when generating a polynomial index set. For strongly anisotropic cases, or cases

where the static index set construction rules are not ideal, the adaptive index set could

potentially provide a method to avoid wasted calculations and emphasize high-impact

polynomials in the expansion.

Figures 3.1 and 3.2 show a single adaptive step and the progression of multiple steps, re-

spectively, for a demonstrative two-dimensional model. In each, the algorithm progresses

from the upper left diagram to the lower right. The blue squares indicate polynomials

already included in the gPC expansion, and the green circle shows the next selected

polynomial to include. It can be seen how the algorithm is including more polynomials

along the x-axis variable than the y-axis variable because x has a higher impact on the

response for this arbitrary model.
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Figure 3.1: Adaptive Sparse Grid Step
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Figure 3.2: Adaptive Sparse Grid Progression

There are, however, some weak points in this algorithm. First, the current algorithm has

no predictive method to determine the next polynomial index to include in the set in step

2b in the adaptive algorithm above; instead, it evaluates each prospective polynomial

and selects the one with the most impact. This is somewhat inefficient, because many

SCgPC expansion coefficients that are calculated are not used in the final expansion.

One improvement we make to this algorithm is to predict the impact of prospective

polynomials based on the impact of predecessors.
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In order to predict the most valuable polynomial to add to an expansion during an adap-

tive search, we first identify a metric by which different polynomials can be compared

to determine impact. Because our interest is in second-order statistics, and the variance

of the polynomial expansions is the sum of the polynomial expansion coefficients, we

consider the impact parameter ηk of a polynomial to be the square of its polynomial

expansion coefficient,

ηk = u2
k. (3.44)

This choice is made because the total variance is the sum of the square of the polynomial

expansion coefficients; therefore, the impact of the square of each polynomial coefficient

is also the impact on the variance. To estimate the impact of a polynomial whose

coefficient is not yet calculated, we consider the average of the proceeding polynomials.

That is, for a polynomial k = (3, 2, 4) we average the impacts of (2, 2, 4), (3, 1, 4), and

(3, 1, 3),

η̃k =
1

N − j

N∑
n=1

ηk−en , (3.45)

where η̃k is the estimated impact of polynomial k, en is a unit vector in dimension n,

and for every entry where k−en would reduce one index to less than 0, it is skipped and

j is incremented by one. In this way any polynomial with some missing predecessors is

still averaged appropriately with all available information. While occasionally this pre-

diction algorithm may be misled, in general it saves many evaluations over the previous

algorithm.

Another weakness of the adaptive sparse grid algorithm is that there are certain types

of models for which the adaptive algorithm will stall, converge too early, or similarly

fail. For instance, if the partial derivative of the model with respect to any of the

input dimensions is zero when evaluated at the mean point (but nonzero elsewhere), the

algorithm will falsely converge prematurely, as adding additional polynomial orders to

the input in question will not change the value of the model at the mean point.

For example, consider a model

f(a, b) = a3b3, (3.46)

with both a and b uniformly distributed on [-1,1]. We note the partial derivatives with

respect to either input variable evaluated at the central point k = (0, 0) are zero. The

first polynomial index set point to evaluate is zeroth-order quadrature in each dimension,
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L̂k = (0, 0). The quadrature point to evaluate this polynomial coefficient is Yω = (0, 0),

which, when evaluated, gives f(0, 0) = 0.

The next polynomial index set combinations are k = (0, 1) and k = (1, 0). For k = (0, 1),

the quadrature points required are Yω = (0,±
√

1/3). This evaluates to f(0,±
√

1/3) =

0, as well. Because of model symmetry, we obtain the same result for k = (1, 0).

According to our algorithm, because our old value was 0, and the sum of the new

contributions is 0, we have converged; however, we know this is false convergence.

While we expect few applications for SCgPC to exhibit these zero partial derivatives in

the input space, it is a limitation to consider. An argument can be made that, since

lower-order polynomials correspond to lower-energy modes of the modeled physics, it

is expected that higher-order polynomials should not often contribute to an accurate

expansion unless lower-order polynomials contribute as well.



Chapter 4

Results for Stochastic Collocation

for Generalized Polynomial Chaos

4.1 Introduction

In this chapter we present results obtained using stochastic collocation for generalized

polynomial chaos expansions (SCgPC) using the three presented static polynomial sets

(tensor product, hyperbolic cross, and total degree) as well as the adaptive construction

approach for polynomial sets. We present performance on a variety of increasingly-

complex models, from linear polynomials to discontinuous products. For each model, we

demonstrate the efficiency of each collocation method on a variety of input space sizes

where possible. The increasingly complex models in addition to the increasing input

space sizes will provide a survey of where collocation-based methods clearly outperform

Monte Carlo (MC) and where they fall short.

We use these six analytic models as a means to study convergence on the first two

statistical moments of the response. This requires a high-precision evaluation of the

moments, which is not practical for non-analytic models. We are concerned chiefly with

the convergence rate of each model; that is, for the cost of increasing the number of

computation solves, how much error can be reduced. Because Monte Carlo converges

linearly on a log-log plot of error versus solves, this linear convergence provides the

benchmark for collocation methods.

39
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Our primary objective in expanding the usability of collocation-based methods is to

reduce the number of computational model solves necessary to obtain reasonable second-

order statistics for the model. For each analytic model, we present value figures and

convergence figures.

Value figures show the values of the mean or standard deviation obtained, along with

the benchmark analytic value as a dotted line. MC performance is taken at a few

representative points. Error bars are provided for MC and are estimated using the

population variance,

ε95 =
2σ̄M√
M
, (4.1)

σ̄2
M =

M

M − 1
σ2
M =

M

M − 1

(
1

M

M∑
m=1

u(Y (ωm))2 − ū(Y )2
N

)
, (4.2)

where Y (ωm) are a set ofM independent realizations taken from the identically-distributed

input space. These error bars estimate where the value of the statistic is with a proba-

bility of at least 0.75, as discussed in section 2.2.1. The estimate of this error improves

as additional samples are taken.

Convergence figures are log-log error graphs with the number of computational solves

required on the x-axis and error with respect to the analytic solution on the y-axis. The

distinct series plotted demonstrate results obtained for each UQ method. The series we

show here are analog traditional MC; static SCgPC expansions using the hyperbolic cross

index set (SC:HC), total degree index set (SC:TD), and (where possible) tensor product

index set (SC:TP); and adaptive SCgPC (SC:adapt). Each series obtains additional

values by increasing the refinement of the method. For MC, additional random samples

are added. For static SCgPC, higher-order polynomials are used in the representative

expansion. For adaptive methods, additional solves are allowed to adaptively include

additional polynomials.

The measure of success for a method is not dependent on the absolute value of the

error shown. While informative, we are more concerned with how increasing refinement

reduces error. The rate of convergence as refinement increases determines the desirability

of the method for that model. We expect the rate of convergence to depend primarily

two factors: the dimensionality of the uncertain space for the model, and the continuity

or smoothness of the response measured. The value of the error, on the other hand, will

additionally depend on how well a particular choice of polynomials matches the analytic
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polynomial representation of the model. We consider the convergence of both the mean

and the standard deviation for each model.

The uncertainty quantification analysis in this chapter is all performed in RAVEN [2] on

external python models. Results from RAVEN computations were written to file using 10

digits of accuracy. As a result, any apparent convergence past this level of accuracy is

coincidental or the result of machine-exact values, and we consider a relative difference

of 10−10 to be converged.

4.2 Tensor Monomials

4.2.1 Description

The simplest model we make use of is a first-order tensor polynomial (tensor monomial)

combination [12]. Each term in this polynomial expression is at most linear in any

dimension. This provides a simple calculation of the statistical moments, and no second-

order polynomials are required to exactly reproduce this model. The mathematical

expression for tensor monomials is

u(Y ) =

N∏
n=1

(yn + 1). (4.3)

For example, for N = 3 we have

u(Y ) = y1y2y3 + y1y2 + y1y3 + y2y3 + y1 + y2 + y3 + 1. (4.4)

For this model we can distribute the uncertain inputs in several ways because of its

simplicity: uniformly on [-1,1], uniformly on [0,1], and normally on [µ, σ]. A summary

of analytic statistics is given in Table 4.1. The two-dimensional representation of this

response is given in Figure 4.1.

Distribution Mean Variance

U [−1, 1] 1
(

4
3

)N − 1

U [0, 1]
(

3
4

)N (
7
3

)N − (3
4

)2N
N [µ, σ]

∏N
n=1(µyn + 1)

∏N
n=1[(µyn + 1)2 + σ2

yn ]−
∏N
n=1(µyn + 1)2

Table 4.1: Analytic Expressions for Tensor Monomial Case
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Figure 4.1: Tensor Monomials Response

For purposes of demonstration, we pick several increasing orders of dimensionality: three

input variables, five variables, and ten variables.

4.2.2 Discussion

As this polynomial contains only combinations of first-order polynomials, we expect the

Tensor Product index set construction method to be very efficient in absolute error. As

such, it will be difficult to observe the convergence rate for this method, as it converges

exactly with first-order polynomials. Because the model has infinite continuity, we

expect all collocation-based methods to be quite efficient. Plots with the values and

errors of the mean and standard deviation are given for each of three (Figures 4.2 through

4.5), five (Figures 4.6 through 4.9), and ten (Figures 4.10 through 4.13) input parameters.

Note especially that TP exactly reproduces the original model with expansion order 1,

so no convergence is observed past the initial sampling point.

4.2.3 Tensor Monomials: 3 Inputs

The strength of collocation methods is clear for this small-dimensionality problem of

three uncertain inputs. The convergence on the mean and standard deviation is swift

for all the methods. The convergence of the mean is instant for all methods, since the

linear nature of the problem means only the zeroth-order polynomial term is required to
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exactly reproduce the mean. More convergence behavior can be seen for the standard

deviation. Because hyperbolic cross polynomials emphasize single-variable polynomials

over cross terms, it is the slowest to reach effectively zero error. Similarly, the total

degree quickly obtains most of the polynomials in the exact expansion, but takes a

few levels to include the term that has all the input variables in it. Because first-

order tensor product polynomials is exactly the model itself, it converges instantly. The

adaptive SCgPC method initially explores high-order polynomials before finding the

remaining tensor monomials, which makes it less directly efficient than tensor product

but otherwise desirable over the other two static polynomial sets.
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Figure 4.2: Tensor Monomial, N = 3, Mean Values
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Figure 4.3: Tensor Monomial, N = 3, Std. Dev. Values
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Figure 4.5: Tensor Monomial, N = 3, Std. Dev. Convergence

4.2.4 Tensor Monomials: 5 Inputs

While the convergence on the mean is still direct for the five-dimensional input problem,

we begin to see degradation in the convergence on the standard deviation for collocation-

based methods. As with the three variable case, the mean is trivial and obtained with the

zeroth-order polynomial. Exponential convergence can be seen for the total degree and

hyperbolic cross polynomials, while the adaptive method is still exploring higher-order

polynomials as more likely candidates for inclusion in the expansion and hasn’t seen the

same rapid convergence curve yet. This is a flaw in the default search parameters for the

adaptive algorithm when applied to this model. Total Degree outperforms Hyperbolic

Cross and Adaptive, as the adaptive search algorithm struggles to find the optimal

tensors of low-order polynomials required. Hyperbolic Cross is outperformed by Total

Degree as expected for a problem with this level of regularity.
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Figure 4.6: Tensor Monomial, N = 5, Mean Values
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Figure 4.7: Tensor Monomial, N = 5, Std. Dev. Values
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Figure 4.8: Tensor Monomial, N = 5, Mean Convergence
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Figure 4.9: Tensor Monomial, N = 5, Std. Dev. Convergence

4.2.5 Tensor Monomials: 10 Inputs

As we increase to ten inputs, we see significant degradation of all the collocation methods

in converging on the standard deviation. While it appears there might be exponential

convergence, the curvature is quite large, and only somewhat better than linear conver-

gence is observed for up to 1000 computational solves. One reason the adaptive method

does not perform more admirably for this case is the equal-weight importance of all the
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input terms as well as the polynomial terms; the high-dimensional space takes consider-

able numbers of runs to explore thoroughly, and this model contains some of the most

difficult polynomials to find adaptively: those including all ten of the inputs.
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Figure 4.10: Tensor Monomial, N = 10, Mean Values
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Figure 4.11: Tensor Monomial, N = 10, Std. Dev. Values
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Figure 4.12: Tensor Monomial, N = 10, Mean Convergence
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Figure 4.13: Tensor Monomial, N = 10, Std. Dev. Convergence

4.3 Sudret Polynomial

4.3.1 Description

The polynomial used by Sudret in his work [45] is another tensor-like polynomial, and

is a test case traditionally used to identify convergence on sensitivity parameters. It is

similar to tensor monomials because it is constructed by the tensor product of simple
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polynomials; in this case, Sudret used second-order polynomials. As a result, only zeroth

or second-order polynomials exist in the expression. Statistical moments are also quite

straightforward for this model. The mathematical expression for Sudret polynomials is

u(Y ) =
1

2N

N∏
n=1

(3y2
n + 1). (4.5)

The two-dimensional representation of this response is given in Figure 4.14. The vari-

Figure 4.14: Sudret Polynomial Response

ables are distributed uniformly on [0,1].

The statistical moments and sensitivities for this model are given in Table 4.2, where

Sn is the global Sobol sensitivity of u(Y ) to perturbations in yn.

Statistic Expression

Mean 1

Variance
(

6
5

)N − 1

Sn 5−n

(6/5)N−1

Table 4.2: Analytic Expressions for Sudret Case

Because of its similarity to tensor polynomials, the cases we show are three inputs and

five inputs.
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4.3.2 Discussion

The Sudret polynomial model is a near neighbor to the tensor monomials model; how-

ever, it includes only even-ordered polynomials. Because the model is still a tensor

product, the tensor product collocation method converges most directly in all dimen-

sionality cases.

An interesting feature of the mean for this model is that the zeroth-order expansions tend

to estimate the variance more accurately than the first-order expansions; as a result, it

appears that the error is very small then grows rapidly. This is misleading to considering

convergence, however, as the initial approximation exhibits some cancellation of errors

to obtain such an “accurate” result.

4.3.3 Sudret Polynomial: 3 Inputs

As with the tensor monomials, we see a good rate of convergence for many of the

polynomial methods. With this model, the mean is not trivially given by the zeroth-

order polynomial, and so some convergence is seen in obtaining the expected value.

The total degree and adaptive methods converge at a similar rate for the mean, while

the hyperbolic cross demonstrates its poor convergence for highly regular systems with

nonlinear cross-term effects. Quickest to converge (aside from the tensor product case)

is the adaptive SCgPC, because its search method allows it to discover the second-order

polynomials quickly.

Similar behavior is seen for the standard deviation. The tensor product still converges

very rapidly, and total degree shows a good rate of convergence, while hyperbolic cross

demonstrates poor convergence.
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Figure 4.15: Sudret Polynomial, N = 3, Mean Values
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Figure 4.16: Sudret Polynomial, N = 3, Std. Dev. Values
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Figure 4.17: Sudret Polynomial, N = 3, Mean Convergence
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Figure 4.18: Sudret Polynomial, N = 3, Std. Dev. Convergence

4.3.4 Sudret Polynomial: 5 Inputs

In the five-input case for the Sudret polynomials, we see slower but strong convergence

for adaptive and total degree methods. For the mean, each method is showing some level

of exponential convergence, with the exception of the hyperbolic cross method. For the

standard deviation, however, the radius of curvature for the convergence is quite large.
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This demonstrates the negative impact growing input spaces have on the effectiveness

of collocation methods in comparison with MC.
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Figure 4.19: Sudret Polynomial, N = 5, Mean Values
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Figure 4.20: Sudret Polynomial, N = 5, Std. Dev. Values
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Figure 4.21: Sudret Polynomial, N = 5, Mean Convergence
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Figure 4.22: Sudret Polynomial, N = 5, Std. Dev. Convergence

4.4 Attenuation

4.4.1 Description

While this model is effectively a tensor product of polynomials and has an analytic re-

sponse, it also is the model for a common physical problem. Consider a one-dimensional

geometry that consists of a material with unit length and vacuum to the left and right
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of the material. We consider a beam of neutral particles that have a probability of in-

teracting with the material through absorption, or passing through it. This beam enters

the material on the left and exits on the right with a fraction of its original flux. See for

example Figure 4.23, where the dark arrows represent beam travel direction and their

thickness generally depicts the beam attenuating through the material. The spatial do-

main is [0,1]. The quantity of interest is the percent of particles that pass through the

material without interacting anywhere along its length. The boundary conditions for

this problem are a constant positive current on the left boundary, and a vacuum on the

right boundary.

Figure 4.23: Attenuation Model Visualization (N = 5)

This model represents the idealized single-dimension system where an beam of particles

impinges on a purely-absorbing material with total scaled length of 1. The material is

divided into N segments, each of which has a distinct uncertain interaction cross section

yn. The cross section has units of probable interactions per unit length, and the integral

of a cross section over a length provides the probability of interaction within that length.

The response (percent of the beam to pass out the right boundary) takes the form

u(Y ) =
N∏
n=1

exp(−yn/N). (4.6)

The two-dimensional representation of this response is given in Figure 4.24. Because

negative cross sections have dubious physical meaning, we restrict the distribution cases

to uniform on [0,1] as well as normally-distributed on [µ, σ]. A summary of analytic

statistics is given in Table 4.3.

Distribution Mean Variance

U [0, 1]
[
N
(
1− e−1/N

)]N [
N
2

(
1− e−2/N

)]N − [N(1− e−1/N
)]2N

N [µ, σ]
∏N
n=1 exp

[
σ2
yn

2N2 − µyn
N

] ∏N
n=1 exp

[
2σ2
yn

N2 − 2µyn
N

]
Table 4.3: Analytic Expressions for Attenuation Case
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Figure 4.24: Attenuation Model Response

4.4.2 Discussion

This model has some interesting properties to demonstrate performance of polynomial-

based UQ methods. First, because the solution is a product of exponential functions,

it cannot be exactly represented by a finite number of polynomials. Second, the Tay-

lor development of the exponential function (about the origin) includes all increasing

polynomial orders,

e−ay = 1− ay +
(ay)2

2
− (ay)3

6
+

(ay)4

24
− (ay)5

120
+O(y6). (4.7)

As a result, the product of several exponential functions is effectively a tensor combina-

tion of polynomials for each dimension. The coefficients of higher-order polynomials are

smaller than lower-order polynomials. Further, coefficients for combined polynomials

have larger coefficients than single-dimensional polynomials with the same effective or-

der. For example, for a two-dimensional exponential function and considering effective

fourth-order polynomials, the coefficient for y2
1y

2
2 is a4/4, while the coefficient for y4

1 is

a4/24. This is shown graphically in Table 4.4. The magnitude of each coefficient for the

tensor product of two Taylor expansions of the exponential function are given tabularly.

The grayed entries are those for which the total polynomial order is four. We can see

that the coefficients for polynomials equally split between the two input variables have

a smaller denominator than those made up entirely of one input variable, and so those
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Polynomial Order (y1)
0 1 2 3 4

0 1 a a2/2 a3/6 a4/24
Polynomial 1 a a2 a3/2 a4/6 a5/24

Order 2 a2/2 a3/2 a4/4 a5/12 a6/48
(y2) 3 a3/6 a4/6 a5/12 a6/36 a7/144

4 a4/24 a5/24 a6/48 a7/144 a8/576

Table 4.4: Coefficient Magnitudes, Tensor Taylor Development of e−ay

that are equal in both dimensions are more important to include in the expansion than

those that are solely of one order or another. Note that in our case, a = 1/N , which

causes the polynomial coefficients to drop off more quickly, so that low-order polynomial

orders are more important to the expansion. As a result, we see good convergence from

the collocation methods generally.

4.4.3 Attenuation: 2 Inputs

With only two input parameters, we see excellent convergence for all methods in the

response mean, while Hyperbolic Cross struggles to accurately represent the standard

deviation. As mentioned in the description, this is likely because monomials are less

important in the Taylor representation, while Hyperbolic Cross emphasizes monomials

over cross terms. Interestingly, while Tensor Product demonstrates the smallest error,

its apparent curvature is slightly larger than for the other methods. Because of the

small input space, the total degree, hyperbolic cross, and adaptive methods all perform

similarly. Because the adaptive method uses the impact of previous polynomials to

choose future polynomials, its convergence rate appears to improve as it continues.
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Figure 4.25: Attenuation, N = 2, Mean Values

100 101 102 103 104

Number of Solves

0.4

0.3

0.2

0.1

0.0

0.1

0.2

0.3

0.4

S
td

. 
D

e
v
. 
o
f 

R
e
sp

o
n
se

attenuate_2, Std. Dev. Values, N=2

SC:HC
SC:TD
SC:TP
SC:adapt
actual
Monte Carlo

Figure 4.26: Attenuation, N = 2, Std. Dev. Values
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Figure 4.27: Attenuation, N = 2, Mean Convergence
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Figure 4.28: Attenuation, N = 2, Std. Dev. Convergence

4.4.4 Attenuation: 4 Inputs

As with the two-input case, all methods show good convergence on the mean, and only

the Hyperbolic Cross polynomials show poor performance for the standard deviation.

Interestingly, despite Tensor Product matching the construction shape of the model well,

both Total Degree and Adaptive perform quite similar to TP and converge quickly as

well.
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Figure 4.29: Attenuation, N = 4, Mean Values
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Figure 4.30: Attenuation, N = 4, Std. Dev. Values
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Figure 4.31: Attenuation, N = 4, Mean Convergence
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Figure 4.32: Attenuation, N = 4, Std. Dev. Convergence

4.4.5 Attenuation: 6 Inputs

The general trend in the two-input and four-input cases continues for six inputs, with one

exception. For six inputs, the Adaptive method struggles to find the most suitable set

of polynomials to include in the expansion. This is likely because of the large number of

polynomial combinations available to consider with the larger input space. If there is any

tendency to inaccurately guess the path to take, this misstep is likely to be taken many
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times before the more accurate path is discovered. Otherwise, exponential convergence

is still observed, but with a larger radius of curvature than the lower-dimension cases.
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Figure 4.33: Attenuation, N = 6, Mean Values
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Figure 4.34: Attenuation, N = 6, Std. Dev. Values
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Figure 4.35: Attenuation, N = 6, Mean Convergence
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Figure 4.36: Attenuation, N = 6, Std. Dev. Convergence

4.5 Gauss Peak

4.5.1 Description

Similar to the attenuation model, the Gaussian peak [46] instead uses square arguments

to the exponential function. A tuning parameter a can also be used to change the

peakedness of the function. Increased peakedness leads to more difficult polynomial



Chapter 4. Results: SCgPC 65

representation. A location parameter µ can be used to change the location of the peak.

The mathematical expression is

u(Y ) = exp

(
−

N∑
n=1

a2(yn − µ)2

)
. (4.8)

We allow each yn to vary uniformly on [0,1] and set peakedness to a = 3, with the center

of the peak at (0.5,0.5). The two-dimensional representation of this response is given in

Figure 4.37. A summary of analytic statistics is given in Table 4.5.

Figure 4.37: Gaussian Peak Response [3]

Statistic Expression

Mean
(√

π
2a (erf(aµ) + erf(a− aµ))

)N
Variance

(√
π/2

2a

(
erf(aµ

√
2)− erf(a

√
2(1− µ))

))N
−
(√

π
2a (erf(aµ) + erf(a− aµ))

)2N

Table 4.5: Analytic Expressions for Gaussian Peak Case

4.5.2 Discussion

This case offers particular challenge because of its Taylor development, which only in-

cludes even powers of the uncertain parameters,

e−a
2y2

= 1− a2y2 +
a4

2
y4 − a6

6
y6 +

a8

24
y8 +O(y10). (4.9)
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Polynomial Order (y1)
0 1 2 3 4

0 1 0 a2 0 a4/2
Polynomial 1 0 0 0 0 0

Order 2 a2 0 a4 0 a6/2
(y2) 3 0 0 0 0 0

4 a4/2 0 a6/2 0 a8/4

Table 4.6: Coefficient Magnitudes, Tensor Taylor Development of e−a2y2

This suggests added difficulty in successive representation, especially for an adaptive al-

gorithm. A visual demonstration of this is shown in Table 4.6. This Taylor development

shows the same tendencies as the Attenuation model Taylor development; however, only

even polynomials are present, and these drop off at a slower rate than the Attenuation

model. Also, because a is greater than one for this model, it counteracts the polynomial

coefficient dropoff seen in the expansion, whereas in the Attenuation model a was less

than one and coefficients dropped off more quickly as a result. Due to these factors, we

see poorer performance for the collocation methods on converging this model than the

Attenuation model, despite their apparent similarities.

4.5.3 Gauss Peak: 3 Inputs

For this smaller input space, we see good exponential convergence on the mean for the

Hyperbolic Cross, Total Degree, and Tensor Product index sets. However, the adaptive

method fails entirely. This is because none of the first-order polynomials have any

contribution even when integrated coarsely; as a result, the adaptive algorithm is duped

into believing it is converged. This same behavior is seen for the five-input case as well.

As expected, the standard deviation shows poorer performance for all three methods

than the mean; in fact, only the Tensor Product is clearly converging exponentially for

the standard deviation even with only three inputs. This demonstrates the challenge of

this model to be represented well with low-order polynomials.



Chapter 4. Results: SCgPC 67

100 101 102 103 104

Number of Solves

0.00

0.05

0.10

0.15

0.20

0.25

0.30

M
e
a
n
 o

f 
R

e
sp

o
n
se

sfu_gauss_peak_3, Mean Values, N=3

SC:HC
SC:TD
SC:TP
SC:adapt
actual
Monte Carlo

Figure 4.38: Gauss Peak, N = 3, Mean Values
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Figure 4.39: Gauss Peak, N = 3, Std. Dev. Values
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Figure 4.40: Gauss Peak, N = 3, Mean Convergence
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Figure 4.41: Gauss Peak, N = 3, Std. Dev. Convergence

4.5.4 Gauss Peak: 5 Inputs

The same trends are observed for five inputs as for three, but with poorer convergence

in all methods. While it appears there is some exponential convergence benefits in the

collocation methods, for up to 1000 computation solves there is little advantage over

MC.
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Figure 4.42: Gauss Peak, N = 5, Mean Values
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Figure 4.43: Gauss Peak, N = 5, Std. Dev. Values
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Figure 4.44: Gauss Peak, N = 5, Mean Convergence

100 101 102 103

Number of Solves

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

E
rr

o
r 

in
 S

td
. 
D

e
v
.

sfu_gauss_peak_5, Std. Dev. Errors, N=5

Monte Carlo
SC:HC
SC:TD
SC:TP
SC:adapt

1/
√
N

Figure 4.45: Gauss Peak, N = 5, Std. Dev. Convergence
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4.6 Ishigami

4.6.1 Description

The Ishigami function [47] is a commonly-used function in performing sensitivity anal-

ysis. It is given by

u(Y ) = sin(y1) + a sin2(y2) + b y4
3 sin(y1). (4.10)

In our case, we will use a = 7 and b = 0.1 as in [48]. The graphical representation of this

response is given in Figure 4.46, with the three axes as the three inputs and the color

map as the function values ranging approximately from -10.74 to 17.74. In particular

Figure 4.46: Ishigami Model Response

interest for this model are its strong nonlinearity and lack of independence for y3, as it

only appears in conjunction with y1. The analytic statistics of interest for this model are

in Table 4.7, where Dn is the partial variance contributed by yn and Sobol sensitivities

Sn are obtained by dividing Dn by the total variance.
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Statistic Expression Approx. Value

Mean 7
2 3.5

Variance a2

8 + bπ4

5 + b2π8

18 + 1
2 13.84459

D1
bπ4

5 + b2π8

50 + 1
2 4.34589

D2
a2

8 6.125

D1,3
8b2π8

225 3.3737

D3, D1,2, D2,3, D1,2,3 0 0

Table 4.7: Analytic Expressions for Ishigami Case

4.6.2 Discussion

The Ishigami function is sinusoidal in y1 and y2. Because the sine function is exclusively

odd, this presents a similar challenge as previous models to adaptive methods, at least for

these two dimensions. y3, however, only appears as a fourth-order coefficient to the sine

of y1, which makes for a relationship that is difficult for the polynomial representations

to capture. For this model, there is no flexibility in the dimensionality of the input

space; we show the only case (N = 3) here.

4.6.3 Ishigami: 3 Inputs

For the mean we see good convergence for the three static methods, and surprisingly

good convergence for the Hyperbolic Cross polynomials. Because the two dominant

parameters are largely independent, the polar focus of the Hyperbolic Cross set captures

the essential components with less computation than the other two static methods.

The adaptive method, as predicted, struggles to find any important polynomials before

finding false convergence.

For the standard deviation, however, we see significant divergence for both the Hy-

perbolic Cross and Adaptive methods. Despite some oscillations, however, we do see

exponential convergence for both the Tensor Product and Total Degree methods. De-

spite this, marked improvements over MC are not distinct until after 100 computational

solves, despite the small input space.
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Figure 4.47: Ishigami, N = 3, Mean Values
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Figure 4.48: Ishigami, N = 3, Std. Dev. Values



Chapter 4. Results: SCgPC 74

100 101 102 103

Number of Solves

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

E
rr

o
r 

in
 M

e
a
n

ishigami_3, Mean Errors, N=3

Monte Carlo
SC:HC
SC:TD
SC:TP
SC:adapt

1/
√
N

Figure 4.49: Ishigami, N = 3, Mean Convergence
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Figure 4.50: Ishigami, N = 3, Std. Dev. Convergence

4.7 Sobol G-Function

4.7.1 Description

The so-called “g-function” introduced by Saltelli and Sobol [50] is a discontinuous func-

tion used most commonly as a test for sensitivity coefficients. The function is often used
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as an integrand for numerical estimation methods [51]. The function is given by

u(Y ) =

N∏
n=1

|4yn − 2| − an
1 + an

, (4.11)

where

an =
n− 2

2
. (4.12)

The two-dimensional representation of this response is given in Figure 4.51.

Figure 4.51: Sobol G-Function Response [3]

There are some implementations [51] that force an ≥ 0, which allows for a simple

understanding of the sensitivity coefficients:

• an = 0: yn is very important

• an = 1: yn is relatively important,

• an = 9: yn is non-important,

• an = 99: yn is non-significant.

However, for our purposes, we set no limit to the value of an, as our interest is primarily

in the moments instead of the sensitivity coefficients.
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We select this model because it offers the challenge of a function without a continuous

first derivative. We expect the polynomial representations to perform poorly in this

instance, and more so as dimensionality increases.

4.7.2 Discussion

As expected, even for 3 input variables this discontinuous model provides a difficult

challenge for polynomial representations. Despite thousands of computational solves,

there is no discernible benefit in using collocation methods over traditional MC. As with

the Gaussian peak, the adaptive method completely stalls in trying to converge this

model.

4.7.3 Sobol G-Function: 3 Inputs

As evidenced in the figures, there is little justification for using any of the collocation

methods for uncertainty quantification with this model. The level of discontinuity ren-

ders the benefits of the polynomial expansions moot.
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Figure 4.52: Sobol G-Function, N = 3, Mean Values
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Figure 4.53: Sobol G-Function, N = 3, Std. Dev. Values
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Figure 4.54: Sobol G-Function, N = 3, Mean Convergence
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Figure 4.55: Sobol G-Function, N = 3, Std. Dev. Convergence

4.7.4 Sobol G-Function: 5 Inputs

As with the smaller input space, it is clear that discontinuous models such as this are

poor candidates for collocation-based uncertainty analysis.
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Figure 4.56: Sobol G-Function, N = 5, Mean Values
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Figure 4.57: Sobol G-Function, N = 5, Std. Dev. Values
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Figure 4.58: Sobol G-Function, N = 5, Mean Convergence
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Figure 4.59: Sobol G-Function, N = 5, Std. Dev. Convergence

4.8 Conclusions

We have demonstrated the performance of SCgPC using a variety of polynomial set

construction techniques described in Chapter 3: tensor product, total degree, and hy-

perbolic cross, as well as adaptive. There are several conclusions that can be drawn

from these models.

First, in all cases the ability of collocation-based methods to be efficient in converging

second-order statistics was reduced in direct correlation with the dimensionality of the

input space. For an input space of five or less variables, in general the collocation

methods performed well, while for more than five variables, performance was degraded

significantly.

Second, as a model demonstrates less regularity, the performance of SCgPC methods in

comparison to MC degrades. In the case of the Sobol G-Function, which is only zeroth-

order continuous, SCgPC fails to offer any benefits over MC. However, in models with

more smoothness, in general SCgPC converged exponentially on the response statistics.

The combination of dimensionality and smoothness can be seen through the several mod-

els presented. The Tensor Monomials and Attenuation models demonstrate performance

of collocation methods on tensor-construction models with polynomial representations
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whose coefficient magnitudes are monotonically decreasing; that is, there are no polyno-

mial order coefficients which are zero, and each polynomial coefficient of a higher order

is smaller than one of a lower order. In these conditions, all the collocation methods

performed very well for reasonably-sized input spaces.

The Sudret Polynomial and Gauss Peak models represent functions in which there are

“missing” polynomial orders; that is, there are some polynomial orders whose coefficients

are zero, while higher-order polynomials have nonzero coefficients. These presented a

greater challenge to the SCgPC methods, especially the adaptive method. Because

the adaptive method uses lower-order coefficients to predict higher-order impacts, these

missing polynomials cause poor performance in the search algorithm. In particular for

the Gauss Peak model, the high-order polynomials drop off slowly in importance, making

polynomial representation costly.

The Ishigami function demonstrates performance when there is an irregular relationship

between the input variables and the response. While two of the static methods (total

degree and tensor product) demonstrated good exponential convergence, the adaptive

method was not convergent. Finally, in the Sobol G-Function, we saw that even first-

order tensor polynomials, when made zeroth-order continuous, are very difficult for

SCgPC methods to converge.

In conclusion, the SCgPC methods excel when the input space is of small dimensional-

ity and the response is regular with respect to the input space. The adaptive method

performs well when the polynomial representation of the response has monotonically

decreasing reliance on increasing polynomial orders. SCgPC methods also perform es-

pecially well when the model is represented well by relatively low-order polynomials.

SCgPC methods should not be used on discontinuous responses or models with large

input space dimensionality, as MC is a more practical tool to converge second-order

statistics for such models.



Chapter 5

High-Dimension Model

Representation Methods

5.1 Introduction

As demonstrated in Chapter 4, the Stochastic Collocation for generalized Polynomial

Chaos (SCgPC) methods for uncertainty quantification defined in Chapter 3 can be

very efficient tools in comparison with traditional Monte Carlo to converge second-order

statistics. In particular, SCgPC methods excel when the input dimensionality of a model

is low and the response of interest is regular with respect to the input space. Conversely,

they perform poorly with discontinuous responses and high dimensionality input spaces.

Another useful model reduction method is High-Dimension Model Representation [36],

which is based on Sobol decomposition and is an ANalysis Of VAriance (ANOVA)

method. ANOVA is a class of methodologies in statistics that seeks to determine the

source of variances in a response when considering the input space. ANOVA methods

originate in sampling statistics, where the structure of a collection of samples is desired

[66]. The HDMR expansion helps mitigate the problem of large input space dimen-

sionality by dividing the model into a linear superposition of terms, each of which only

depends on a subset of the full input space. The subsets are developed by integrating

out the undesired dimensions.

82
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Let H(Y ) represent the HDMR expansion of u(Y ),

u(Y ) = H(Y ) = h0 +

N∑
n=1

hn +

N∑
n1=1

n1−1∑
n2=1

hn1,n2 + · · ·+ h1,2,...,N , (5.1)

The h0, the expected value, is given by

h0 ≡
∫

Ω1

. . .

∫
ΩN

u(y1, . . . , yN ) dy1 . . . dyN , (5.2)

=

∫
Ω
u(Y )dY, (5.3)

where Ω denotes the uncertainty space spanned by Y . Recall also the definition of

integration over the input space Ω given in Eq. 2.3. The first-order expansion terms hn

are integrated as

hn(yn) ≡
∫

Ω̂n

u(Y ) dŶn − h0, (5.4)

where we use “hat” notation to refer to all elements except the one listed; for example,

Ŷn ≡ (y1, · · · , yn−1, yn+1, · · · , yN ), (5.5)

Ŷm,n ≡ (y1, · · · , ym−1, ym+1, · · · , yn−1, yn+1, · · · , yN ). (5.6)

Similarly, Ω̂ is the slice of the input space only containing variables in Ŷ and integration

over Ω̂ is weighted with respect to ρ(Ŷ ). Second and higher-order HDMR expansion

terms are defined as

hn1,n2(yn1 , yn2)) ≡
∫

Ω̂n1,n2

ρ̂n1,n2(Ŷn1,n2)u(Y ) dŶn1,n2 − hn1 − hn2 − h0, (5.7)

and so on. Written another way, each subset is constructed by integrating over the

domain with respect to all input parameters the subset is not dependent on, then sub-

tracting all other expansion subsets who depend on an input space that is a subspace of

the space on which the subset depends, including the expected value.

hs =

∫
Ω̂s

u(Y )dŶ −
∑
s ⊂ s

|s|1 < |s|1

hs, (5.8)

where s is a vector of dimensional ordinates with length less than or equal to the dimen-

sionality N of the input space.
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There are many useful properties of this generic HDMR expansion. First, each term

represents the contribution of that subset to the original response; that is, h1 provides

the contributions to the response solely from variable y1. Further, the total contribution

of a variable is the sum of all subsets for whom variable is part of the subspace. For

example, the total contribution of y1 to the response is the sum of contributions from

h1, h1,2, · · · , h1,2,3, etc.

Second, full HDMR can easily be approximated by truncating terms from the expansion.

In particular, the expansion can be limited to interactions between a finite number of

variables. Experience has shown [19] that most of the high-order interaction terms

are negligible. The resulting truncated expansion contains terms that are much lower-

order than the original model, often without incurring significant truncation error. The

full expansion requires many integrals to construct, often making it inefficient when

compared with using the original model. Because the full expansion takes significant

work to construct, we assume some level of truncation is performed when using HDMR.

Third, the individual terms in the HDMR expansion are orthogonal with respect to the

probability weight over the input space; that is,

∫
Ω
hahbdY = 0 ∀ a 6= b. (5.9)

Because of this, the second statistical moment of the HDMR expansion with respect to

any subset dimension is the equivalent to the second statistical moment of the associated

subset, ∫
Ωn

H(Y )2dyn =

∫
Ωn

h2
ndyn. (5.10)

This in turn directly yields Sobol sensitivity coefficients. Sobol sensitivity coefficients

measure the impact on the variance of a response as the result of changes in the variance

of an input (or combination of inputs). For the HDMR expansion,

Sn ≡
var[hn]

var[H(Y )]
, (5.11)

Sm,n ≡
var[hm,n]

var[H(Y )]
, (5.12)

and so on.
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5.2 Cut-HDMR

The primary challenge in implementing HDMR for arbitrary responses is the integrals

in Eq. 5.2, 5.4, and 5.7. These integrals are of as high dimensionality as those required

for SCgPC. As a result, at first glance HDMR seems to offer no benefits. However, we

make use of an approximation for HDMR called cut-HDMR [18] that makes a simplifying

assumption. In cut-HDMR, we assume the integral of a function over a dimension can be

approximated by evaluating the function at a set of reference values Ȳ = (ȳ1, ȳ2, · · · , ȳN ),

where bar notation indicates the expected value of each input variable. The reference

value in this case is a single point in the input space, often the mean of the input

multidimensional probability distribution. The reference point, as well as planes and

hyperplanes passing through the reference point, make up the cuts that give this method

its name. The cut-HDMR expansion T (Y ) of model u(Y ) is expressed as

u(Y ) = T (Y ) = tr +

N∑
n=1

tn +

N∑
n1=1

n1−1∑
n2=1

tn1,n2 + · · ·+ t1,2,...,N . (5.13)

Eq. 5.13 is identical in form to the traditional ANOVA HDMR expansion in Eq. 5.1,

but the subset components are defined differently,

tr ≡ u(Ȳ ), (5.14)

tn(yn) ≡ u(yn,
ˆ̄Yn)− tr, (5.15)

tm,n(ym, yn) ≡ u(ym, yn,
ˆ̄Ym,n)− tm − tn − tr, (5.16)

and so on. Note that Ȳ is the reference input realization, and ˆ̄Yn denotes a partial input

realization where all inputs are at reference values and yn is excluded:

ˆ̄Yn = (ȳ1, · · · , ȳn−1, ȳn+1, · · · , ȳN ). (5.17)

In the limit where each subset of cut-HDMR is at most linearly dependent on an input

parameter, cut-HDMR and ANOVA are identical and exact. Additionally, both ANOVA

and cut-HDMR converge exactly on the model if no truncation is performed.

The immediate benefit from cut-HDMR is the ability to computationally calculate the

terms in Eq. 5.13; we only need the reference input realization Ȳ to construct the
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expansion. However, there are two drawbacks to this expansion. First, cut-HDMR ap-

proximates the expected value of a model as the value of the model evaluated at the

input parameters’ expected value. While higher-order expansion terms correct this as-

sumption, for low-order truncations it can have significant impact. Second, cut-HDMR

component terms are not orthogonal, unlike standard HDMR (hereafter referred to as

ANOVA to avoid confusion). This results in difficulty when attempting to algorithmi-

cally determine statistical moments. Fortunately, this will be resolved in section B.1.

First, however, we consider how to represent the subset terms in the cut-HDMR expan-

sion in an algorithmically-efficient manner.

5.3 gPC and cut-HDMR

Consider the cut-HDMR expansion,

u(Y ) = T (Y ) = tr +
N∑
n=1

tn +
N∑

n1=1

n1−1∑
n2=1

tn1,n2 + · · ·+ t1,2,...,N , (5.18)

with subsets t defined in section 5.2. Each subset besides the reference solution tr is a

function of at least one uncertain input; for example, t1(y1) and t1,3,7(y1, y3, y7). We can

consider each of these an independent uncertain model, with many of the same features

as the entire model u(Y ). These subset terms have their own mean, variance, and

sensitivities. Additionally these subsets can each be represented by a SCgPC expansion,

tn ≈
∑

k′∈Λ′(L′)

tn;k′Φk′(Yn)− tr, (5.19)

where we make use of prime notation k′, Λ′, L′ to denote a SCgPC expansion for a

subset term of a cut-HDMR expansion and tn;k′ are the scalar expansion coefficients.
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Eq. 5.13 can then be written

T (Y ) ≈ tr +
N∑
n=1

 ∑
k′∈Λ′n(L′)

tn;k′Φk′(Yn)− tr

 (5.20)

+
N∑

n1=1

n1−1∑
n2=1

 ∑
k′∈Λ′m,n(L′)

tm,n;k′Φk′(Ym, Yn)− tm − tn − tr


+ · · ·

+

 ∑
k′∈Λ′1,··· ,N (L′)

t1,··· ,N ;k′Φk′(Y1, · · · , YN )− (· · · )

.

There are several synergies make available by using SCgPC to expand the subset terms

in the cut-HDMR expansion as in Eq. 5.20. First, the scalar expansion coefficients

can be calculated using the same collocation-based methods developed for the SCgPC

method. As we demonstrate in chapter 4, these collocation methods are most efficient

when the dimensionality is low and the response is smooth. Because we expect the cut-

HDMR expansion to be truncated at some finite level, consider the progression of the

terms retained in Eq. 5.13. The first term has zero dimensionality, the next set of terms

all have dimensionality of one, the next set two, and so forth. All of the terms kept in

cut-HDMR expansions truncated to third-level interactions are dimensionality three or

smaller, which is ideal size for exceedingly efficient convergence of SCgPC methods.

In addition, SCgPC methods are most efficient when the response is regular, or has a

high degree of continuity. Whatever the continuity of the original model, the continuity

of the subsets in the HDMR expansion of that model are at least as continuous, and

can often be more continuous. This is because the subsets are obtained by removing

the dependence on some of the constituent variables. If any discontinuity in the original

response is contributed by any of those variables, the resulting continuity is greater for

the subset. Since cut-HDMR naturally divides up the subset space, it will converge the

smooth subsets rapidly, possibly converging on the original model more efficiently than

purely SCgPC can without using cut-HDMR for somewhat discontinuous responses.

Second, SCgPC polynomials are constructed to be inherently orthonormal. As long

as consistency is maintained in the polynomial families between different cut-HDMR

subsets, this orthonormality extends into interactions between subsets. We explore

using this advantage to reconstruct ANOVA terms in Appendix B.
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5.4 On convergence of gPC and cut-HDMR with gPC

We pause momentarily to make a note about the convergence of SCgPC methods alone

in contrast to using SCgPC as part of a cut-HDMR expansion. There are two degrees

of freedom in defining static SCgPC expansion construction. The first is the polynomial

construction strategy, such as hyperbolic cross, total degree, or tensor product, along

with level of anisotropy. The second is the polynomial order limit L. For cut-HDMR,

however, in addition to the polynomial set and level, we add another option: the HDMR

truncation level. The HDMR truncation level determines the maximum dimensionality

of any subset in the cut-HDMR expansion. Equivalently, it determines the order of

interactions between variables to include in the expansion. For instance, second-order

HDMR truncation limits the expansion to at most pairwise interactions.

Consider a cut-HDMR expansion that uses isotropic total degree polynomial index set

construction strategy with a limiting total polynomial order of L for its subset gPC

terms, and a comparable pure SCgPC expansion with the same isotropic total degree

polynomial index set construction strategy and same limiting total polynomial order L.

In this situation, cut-HDMR without truncation is equivalent to the SCgPC expansion.

Any truncation of the cut-HDMR yields an approximation to the pure generalized poly-

nomial expansion, and as mentioned in section 5.1, an untruncated HDMR expansion is

by nature inefficient. As a result, for a given polynomial order limit L, cut-HDMR can

at most match the convergence of the corresponding generalized polynomial chaos ex-

pansion. Usually, it will be less accurate than the SCgPC equivalent because of HDMR

truncation error. Additionally, the full cut-HDMR expansion will use a very similar

number of numerical evaluations to obtain an equal level of convergence. This means

there is no improved efficiency for cut-HDMR over SCgPC.

However, the real benefit of cut-HDMR is seen in models with large input dimension-

ality. In this case, even a first-order SCgPC expansion using total degree index set

construction could take thousands of evaluations to construct. Because cut-HDMR can

be truncated to limited interactions, however, for far fewer evaluations, cut-HDMR can

be constructed. For models that are computationally expensive and thousands of solves

are prohibitive, the error incurred by truncating cut-HDMR may be worth the reduction

in necessary evaluations. Even though cut-HDMR might be less efficient, it may still be

constructed when the SCgPC cannot.
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5.5 Reconstructing ANOVA from cut-HDMR

In general, it is not straightforward to calculate second-moment statistics of a cut-HDMR

expansion, as the subset terms are not orthogonal. This means evaluating the integral

of the product of every pair combination of subsets in the expansion, which almost

surely cannot be done analytically. When using gPC to represent individual cut-HDMR

subsets however, it is simple to analytically recover ANOVA statistics for a cut-HDMR

expansion, despite the lack of orthogonality in cut-HDMR terms. This is because the

gPC components of each subset term are replete with orthogonal relationships. Note

that while this method will obtain ANOVA results for cut-HDMR terms, the statistics

gathered are for the cut-HDMR expansion, not for the original model. If the cut-HDMR

expansion is truncated as expected, the ANOVA terms will only be as accurate to the

original model as the cut-HDMR expansion itself is.

Ultimately, because of orthogonality, the variance contribution for each subset is the

sum of the squares of all polynomial coefficients whose associated polynomials are at

least first-order polynomials with respect to all of the subset’s input space, and only the

subset’s input space. The total variance is the sum of each subset’s variance contribution.

More discussion and an example of this process is provided in Appendix B.

5.6 Adaptive HDMR

As discussed regarding the adaptive SCgPC method in section 3.5, it is not only possible

but likely that different input variables have different effective polynomial order impact

on a response. When constructing an HDMR expansion, we similarly expect that of-

ten some subsets in the expansion will require fewer polynomials to represent well than

others. Often, however, an analyst cannot know a priori to what order input subsets

should be expanded to accurately represent a response This is especially true when work-

ing with abstract inputs such as those provided through a Karhunen-Leove expansion

[43]. As with the adaptive SCgPC, it is convenient to have an algorithmic adaptive

HDMR expansion construction strategy. Such an algorithm was proposed by Gerstner

and Griebel [32] and demonstrated by Ayres and Eaton [12]. The algorithm is used

to determine which subsets in the HDMR expansion should be included depending on
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what computational resources are available, in an adaptive manner. We extend existing

methodology to include predictive algorithms for choosing forward directions. Addition-

ally, we consider an intermingled adaptive approach of adaptive HDMR construction

with adaptive sparse grid generalized polynomial chaos expansions for subsets.

5.6.1 Adaptive Algorithm

The existing algorithm [12, 32] is expanded by considering both adaptive SCgPC and

adaptive HDMR acting simultaneously, as well as using predictive searching. The algo-

rithm proceeds as follows:

1. Begin by constructing all the first-order HDMR subsets up to first-order polyno-

mial expansions.

2. While not converged:

(a) Iterate through each existing HDMR subset and determine the estimated

impact of adding the next-favored polynomial for that subsets SCgPC expan-

sion.

(b) Determine the Sobol sensitivity coefficient for each HDMR subset using ANOVA

(see Appendix B).

(c) Predict the expected impact of adding each new eligible subset to the HDMR

expansion.

(d) Compare the product of a polynomial impact and its subset Sobol sensitivity

with the expected impact of the eligible subsets.

(e) Perform the most likely impactful operation (adding a new subset or adding

a polynomial to an existing subset)

(f) Use the estimated impact of eligible HDMR subsets and eligible polynomi-

als for each subset to estimate total truncation error (total of all SCgPC

truncation errors as well as HDMR truncation error).

(g) Use previous iterations to approximate the convergence of the algorithm

(h) Combine estimated remaining variance with approximated convergence to

determine convergence
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(i) If convergence and estimated remaining variance are less than tolerance, con-

vergence is reached.

(j) Otherwise, continue the algorithm.

This process is diagrammed in Figure 5.1. Note that this diagram assumes there is

a sample submission process in a larger uncertainty quantification framework such as

RAVEN [2], which handles computation resources in an efficient manner. In the flow

chart, green indicates initialization, purple is the HDMR portion, blue is the SCgPC

algorithms, yellow is the convergence process, and red indicates successful exit. Note

that a path to the exit has been added for reaching some user-defined maximum number

of runs; this is useful for allowing the algorithm to perform a search using a restricted

amount of computational resources.

Figure 5.1: Adaptive HDMR with Adaptive Sparse Grid Flow Chart

Recall from section 3.5 that the impact of a polynomial within a subset generalized

polynomial chaos expansion is given by Eq. 3.45,

η̃k =
1

N − j

N∑
n=1

ηk−en , (5.21)
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where we omit a superscript (yn) to indicate the subset for which this polynomial is part

of the SCgPC expansion. As we discuss in section 5.6.4, we restrict each polynomial

to be eligible for addition to only one HDMR subset apiece, making the distinction

unnecessary. The Sobol sensitivities provide the (current) impact of an existing subset,

Sβ =
var[hβ]

var[T (Y )]
, (5.22)

computing h as described in appendix section B.1, and introducing subset descriptor β

which can be any number and combination of input variables yn such that β ⊂ Y , or

equivalently β ⊂ (y1, · · · , yN ).

The estimated global impact ξ̃k of a polynomial k within a subset tβ is the product of

its (estimated) local and (current) subset sensitivities,

ξ̃k = η̃k · Sβ. (5.23)

Analogously, the actual global impact ξk of a polynomial k within a subset tβ is the

product of its local and subset sensitivities,

ξk = ηk · Sβ, (5.24)

with ηk given in Eq. 3.44. The estimated impact S̃β of adding a new subset to the

HDMR expansion is the average of its dependent subsets’ Sobol sensitivities,

S̃β =
1

dim(β)

∑
γ ⊂ β

1 + dim(γ) = m

Sγ , (5.25)

where by dim(β) we denote the dimensionality of β. For example,

S̃y1,y2 =
1

2
(Sy1 + Sy2). (5.26)

The philosophy behind combining polynomial impact parameters and Sobol sensitivity

parameters is to provide a means to allow the adaptive algorithm to optimize computa-

tional resources. In effect, taking the product of the polynomial impact with the Sobol
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sensitivity provides a local-to-global contribution,

ηk · Sβ = ξk, (5.27)

local contribution

local variance
· local variance

global variance
=

local contribution

global variance
. (5.28)

We consider momentarily the decision-making process of the adaptive algorithm. There

are four possible comparisons the adaptive HDMR with adaptive SCgPC has to make:

between polynomials within a HDMR subset, between polynomials in different HDMR

subsets, between potential new HDMR subsets, and between polynomials and a potential

new HDMR subset. In each case, the algorithm must decide which modification to

existing expansions is most likely to contribute the largest to converging on second-

order statistics.

Comparing polynomials within a subset is simple, and involves inquiring the truth of a

statement like the following:

η̃k1

?
> η̃k2 . (5.29)

Similarly, comparing new subsets is straightforward,

S̃β1

?
> S̃β2 . (5.30)

Comparing polynomials from different subsets requires only weighting them by their

subset Sobol sensitivities,

η̃k1Sβ1

?
> η̃k2Sβ2 . (5.31)

Comparing polynomials to subsets is somewhat more ambiguous,

η̃k1Sβ1

?
> S̃β3 . (5.32)

Three cases can occur in comparing subsets to polynomials:

• If Sβ1 = S̃β3 , because η̃k1 must be equal to or less than one, the algorithm will

choose to add the new subset.

• If Sβ1 < S̃β3 , it is more reasonable to add a new subset before attempting to

improve the resolution of the existing subset.
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• If Sβ1 > S̃β3 , the determination is left up to the polynomial’s sensitivity. If the

polynomial is expected to have a low impact on the Sobol sensitivity coefficient

of its subset, the algorithm will likely choose to add a new subset. If, however,

the Sobol sensitivity coefficient is poorly converged, the algorithm will prefer to

resolve it adding new subsets to the HDMR expansion.

5.6.2 Adaptive Search Preference Parameter

Because the predictive algorithm is somewhat arbitrary, we additionally offer a method

to provide analysts a parameter to guide the adaptive process. By introducing a pref-

erential factor α ∈ (0, 2), the user can push the algorithm to prefer either new subsets

over polynomials or vice versa.

(η̃k1)αS2−α
β1

?
>
(
S̃β3

)2−α
. (5.33)

If α is zero, the polynomial impact is entirely ignored, and algorithm progression de-

pends entirely on the Sobol sensitivity data. This means that even if a Sobol sensitivity

coefficient is entirely resolved, as long as it is the largest coefficient, additional polyno-

mials will be added to it. If α instead is 2, the Sobol sensitivity information is ignored

and only polynomial impacts are considered. In this case, no new subsets will ever be

added. The default algorithm is restored with α = 1. While we recommend strongly

against α = 0 and α = 2, there is a range of values that can provide some manual control

to either prefer resolving polynomials (α < 1) or prefer adding new subsets (α > 1).

The use of predictive measures to algorithmically choose a path of polynomial explo-

ration is an addition from previous efforts to couple SCgPC with HDMR. Previously,

such as in [32], the algorithm evaluates all potential candidates then keeps the most

impactful one. While this is more guaranteed to find the most effective path, it also is

much more computationally expensive. Even if the predictive adaptive algorithm guesses

incorrectly, it can do so many times before matching the expense of the non-predictive

algorithm.

Whenever an iteration is taken in the algorithm, it is important to re-calculate all the

sensitivities and impacts, both estimated and actual, for each subset and polynomial.

Because of the properties of both the SCgPC and HDMR expansions demonstrated
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(1,0)
(0,0) (0,1)

Table 5.1: Standard SCgPC Ini-
tialization

(1,0) (1,1)
(0,0) (0,1)

Table 5.2: SCgPC Initialization
for Adaptive HDMR

Table 5.3: Index Set Initialization, Adaptive HDMR

in Appendix B, this is quite computationally inexpensive. Whenever a new element

is added to the global expansion, it changes the total variance, and so adjusts all the

impact parameters.

5.6.3 Initializing Subsets

When the algorithm determines a new subset should be added to the expansion, tra-

ditionally we would initialize the subset as we would a typical adaptive sparse grid

expansion, with a single first-order polynomial in each direction making up initial the

polynomial index set. However, this is a poor choice for this algorithm. Because the

algorithm has selected a new subset, the impact of the new subset will be zero unless it

adds at least a polynomial that is first order in all the inputs that are part of the subset.

As a result, for this combined adaptive algorithm we initialize each subset with a tensor

combination of linear polynomials instead of the traditional collection of non-interactive

first-order polynomials only. This assures at least tensor first-order behavior in the

subspace is added to the HDMR expansion whenever a subset is added. This is shown

graphically in Table 5.3.

5.6.4 Polynomial Uniqueness

We note that the same polynomial may appear in several different subset terms and

have a different impact in each. For example, the first-order polynomial φ1(y1) appears

both in the SCgPC expansion for subset ty1 as well as subset ty1,y2 (as φ1,0(y1, y2)). As a

result, the impact parameter ηy1 might ambiguously have multiple definitions depending

on which subset is considered. However, since φ1(y1) = φ1,0(y1, y2) is technically only a

function of y1, it should be associated with subset ty1 only. To simplify this problem,

we restrict eligible polynomials in each subset to include all nonzero orders for inputs
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(0,0) (0,1) (0,2)

Table 5.4: Λx for
tx(x)

(1,0)
(0,0)

Table 5.5: Λy for
ty(y)

(1,0) (1,1) (1,2)
(0,0) (0,1) (0,2)

Table 5.6: Λx,y

for tx,y(x, y)

Table 5.7: Polynomial Dependency in Adaptive HDMR

on which the subset relies. For example, the polynomial order k = (1, 0, 0) in a three-

dimensional problem is potentially eligible for subset t1 but we restrict it from being

eligible for t1,2 in the adaptive search algorithm.

If a subset is selected to add a polynomial in the adaptive algorithm and the selected

polynomial depends on a polynomial with lower effective dimensionality, that lower-

order polynomial is added to the lower-dimensional subset at the same time the selected

polynomial is added to the selected subset. For example, consider an adaptive cut-

HDMR expansion T (x, y) of a two-dimensional model u(x, y) that consists of three

subsets tx(x), ty(y), and tx,y(x, y). This example is shown graphically in Table 5.7.

Let the adaptive polynomial set for tx(x) be Λx = ((0, 0), (1, 0)), for ty(y) be Λy =

((0, 0), (0, 1)), and for tx,y(x, y) be Λx,y = ((0, 0), (0, 1)(1, 0), (1, 1)). Further, let the

adaptive cut-HDMR algorithm have selected the polynomial k = (1, 2) to add to subset

tx,y(x, y). Traditionally, this would require k = (0, 2) to be present first. However, the

algorithm indicates there is more to be gained from expanding the interaction of x, y.

Because (0, 2) belongs to subset tx(x), the adaptive algorithm step adds k = (1, 2) to

tx,y(x, y) and (0, 2) to tx(x) simultaneously. This is most likely to occur when there are

strong interaction effects that overshadow single-input effects.

We consider this example again as shown graphically in Table 5.7. On the left is the

index set for the subset only dependent on x, while on the right is the index set for the

subset dependent on x, y. The unmarked indices are the starting indices for each subset.

The boxed index (1,2) on the right is the polynomial the adaptive algorithm has selected

to add to subset tx,y(x, y). As a result, however, the polynomial in gray (0,2) must be

added, both to the index set for tx,y(x, y) as well as to the index set for tx(x). We add

index (0,2) in the same adaptive step that the index (1,2) is added.
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5.7 Conclusion

We have presented existing algorithms using the HDMR and cut-HDMR expansion, and

expanded those algorithms to include interoperability with SCgPC as well as predictive

algorithmic searching. We have discussed some of the obstacles encountered while imple-

menting these features and offered solutions to ensure more reliable adaptive searches.

There are several further improvements that can be made to this combined adaptive

algorithm, which we discuss in section 10.4.

In Chapter 6 we analyze the performance of HDMR methods in contrast to pure SCgPC

and MC on the analytic models introduced in Chapter 4.



Chapter 6

Results for High-Dimension

Model Representation

6.1 Introduction

In this chapter we contrast results obtained using stochastic collocation for general-

ized polynomial chaos expansions (SCgPC) and high-dimension model representation

(HDMR) uncertainty quantification methods. In each case we also include Monte Carlo

(MC) as a comparison benchmark.

As with SCgPC, the objective in introducing HDMR methods is to reduce the number

of computational model solves necessary to obtain reasonable second-order statistics for

models. The analytic models we use for initial demonstration are described in Chapter

4, along with the performance of SCgPC methods in representing the same. In this

chapter, we add HDMR methods to the analysis, and consider their performance in

comparison to MC and SCgPC methods.

We consider three static HDMR cases as well as adaptive HDMR using adaptive SCgPC

to expand subset terms. In static HDMR, each series represents an HDMR truncation

level. The HDMR truncation level determines the maximum level of interactions allow-

able in the expansion. For example, HDMR 1 includes only first-order interactions. We

consider first-, second-, and third-order HDMR truncations. For each of these trunca-

tions, we use SCgPC expansions of growing polynomial order limit, with polynomials

98
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selected by using the total degree index set construction method. Each successive data

point in each static series is obtained by increasing the limiting total polynomial order

L for the subset terms.

As discussed in section 5.4, we do not expect the convergence rate of the static HDMR

methods to exceed the convergence rate of their corresponding SCgPC counterparts.

However, there may be some static HDMR constructions that require less computational

solves than SCgPC methods. In addition, we expect the flexibility of the adaptive HDMR

method to allow improved convergence over other methods for some models.

As in Chapter 4, the performance of each method is analyzed using value figures and

convergence figures for both the mean and standard deviation of each model’s response.

Value figures will provide actual values obtained for the moments, while convergence

figures show the relative error of the values obtained to the analytic benchmark value.

Monte Carlo error bars are calculated as described in Chapter 4.

All computations shown here were performed using the RAVEN [2] framework. As noted

previously, computations were written to file using 10 digits of accuracy. As a result,

any apparent convergence past this level of accuracy is coincidental or the result of

machine-exact values, and we consider a relative difference of 10−10 to be converged.

6.2 Tensor Monomials

This model is described in section 4.2.1. As the tensor product of linear polynomials, it is

very conducive to SCgPC. Because all terms are equally important, however, truncating

the HDMR expansion of this model removes important elements, which makes HDMR

less ideal for this model in general.

6.2.1 3 Inputs

With only three input parameters, we can clearly see the contribution of the first-order

interaction terms, second-order interaction terms, and third-order interaction terms from

HDMR 1, HDMR 2, and HDMR 3. As expected, with only first-order polynomials

HDMR 3 converges exactly; however, HDMR 1 and HDMR 2 neglect critical polynomials

in the expansion, and so are less suitable methods for this model. Note also that after
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first-order polynomials, adding additional polynomial orders does not reduce error for

the static HDMR methods, as no higher-order polynomials exist in the original model.

The adaptive HDMR method, however, performs admirably for this model, quickly

finding the appropriate search direction for the response dependencies and converging

as rapidly as the adaptive SCgPC method.
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Figure 6.1: Tensor Monomial, N = 3, Mean Values
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Figure 6.2: Tensor Monomial, N = 3, Std. Dev. Values
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Figure 6.3: Tensor Monomial, N = 3, Mean Convergence
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Figure 6.4: Tensor Monomial, N = 3, Std. Dev. Convergence

6.2.2 5 Inputs

Increasing the dimensionality serves to enforce those observations already recorded for

the three-dimensional input space. HDMR methods perform no better than their SCgPC

counterparts, and because of their truncation are limited in their ability to converge

the statistical moments for this model. Interestingly, however, the adaptive HDMR

method outperforms the adaptive SCgPC method in finding the exact solution, because
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it searches both subspaces to add as well as polynomials, and wastes less time searching

higher-order polynomials that do not exist in the expansion. In essence, it eliminates

portions of the Hilbert spaced spanned by the bases polynomials more quickly than the

adaptive SCgPC method.
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Figure 6.5: Tensor Monomial, N = 5, Mean Values
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Figure 6.6: Tensor Monomial, N = 5, Std. Dev. Values
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Figure 6.7: Tensor Monomial, N = 5, Mean Convergence
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Figure 6.8: Tensor Monomial, N = 5, Std. Dev. Convergence

6.2.3 10 Inputs

Moving to an input space with dimensionality 10, we predictably see the static HDMR

methods performing quite poorly for this model. Because the model includes polynomial

interactions up to tenth order, truncating at even three orders incurs significant error.

However, we note the adaptive HDMR method appears to be performing at least as well

as any other method for this larger dimensionality, for the same reasons as discussed
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in the 5-input case. Note also that the adaptive HDMR method obtains representation

long before the total degree or tensor product methods do.
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Figure 6.9: Tensor Monomial, N = 10, Mean Values
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Figure 6.10: Tensor Monomial, N = 10, Std. Dev. Values
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Figure 6.11: Tensor Monomial, N = 10, Mean Convergence
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Figure 6.12: Tensor Monomial, N = 10, Std. Dev. Convergence

6.3 Sudret Polynomial

This model is described in section 4.3.1. This model is similar to the tensor linear

polynomials, but instead is a tensor product of second-order polynomials. We observe

similar performance here as for the tensor monomials, but with faster degredation as

the input dimensionality increases.



Chapter 6. Results: HDMR 106

6.3.1 3 Inputs

Because of the tensor construction of these polynomials, the HDMR truncation level

once again plays a critical role in determining the error of the HDMR methods. The

three plateaus for HDMR 1, HDMR 2, and HDMR 3 show that adding higher than

second-order polynomials will not substantially decrease the error in these expansions,

indicating that the error is dominated by the HDMR truncation error. Note also that

while the adaptive HDMR method performs well, it is outperformed by adaptive SCgPC.

This is because it is challenging for the adaptive HDMR method to find the second-order

polynomials while the first-order polynomials have no contribution to the expansion.

This is especially seen in the convergence of the standard deviation. Note that for the

standard deviation, HDMR 3 is still converging; this is because the HDMR subsets

are expanded in total degree index sets, which require higher-order polynomial limits

to obtain the tensor product of second-order polynomials; in particular, third-order

interaction subsets require total degree order 6 to obtain the polynomial with orders

k = (2, 2, 2), which is required for this model.
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Figure 6.13: Sudret Polynomial, N = 3, Mean Values
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Figure 6.14: Sudret Polynomial, N = 3, Std. Dev. Values
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Figure 6.15: Sudret Polynomial, N = 3, Mean Convergence
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Figure 6.16: Sudret Polynomial, N = 3, Std. Dev. Convergence

6.3.2 5 Inputs

We continue to see degredation of performance from HDMR methods moving from three

inputs to five. The truncation of HDMR 1, HDMR 2, and HDMR 3 incurs too much error

to converge significantly, and the adaptive HDMR method struggles like the adaptive

SCgPC method to explore the polynomial space effectively.
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Figure 6.17: Sudret Polynomial, N = 5, Mean Values
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Figure 6.18: Sudret Polynomial, N = 5, Std. Dev. Values
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Figure 6.19: Sudret Polynomial, N = 5, Mean Convergence
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Figure 6.20: Sudret Polynomial, N = 5, Std. Dev. Convergence

6.4 Attenuation

This model is described in section 4.4.1. As the tensor product of polynomials whose

scaling drops off with increasing order (see Table 4.4), this model is well-suited to HDMR

methods. However, this model demonstrates some of the limitations in the default

search parameters for the adaptive HDMR method. While combinations of polynomials

of similar order are most important to this expansion, the adaptive HDMR method

tends to expand polynomials with low interaction because of the sensitivity estimation

methods. This demonstrates when the adaptive HDMR might be ill-suited to exploring

the input space.

6.4.1 2 Inputs

Because the input space is only two-dimensional, HDMR 3 is equivalent to HDMR

2 and not shown in this case. As with the SCgPC methods, all HDMR methods show

exponential convergence on the mean and standard deviation for this response, although

the adaptive HDMR does not perform as well as the adaptive SCgPC method because of

the way the polynomial coefficients decay. The HDMR 1 method stagnates at first-order

interactions, and error is dominated by the HDMR truncation instead of polynomial

truncation.
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Figure 6.21: Attenuation, N = 2, Mean Values
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Figure 6.22: Attenuation, N = 2, Std. Dev. Values
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Figure 6.23: Attenuation, N = 2, Mean Convergence

100 101 102 103

Number of Solves

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

E
rr

o
r 

in
 S

td
. 
D

e
v
.

attenuate_2, Std. Dev. Errors, N=2

HDMR 1
HDMR 2
HDMR adapt
Monte Carlo
SC:HC
SC:TD
SC:TP
SC:adapt

1/
√
N

Figure 6.24: Attenuation, N = 2, Std. Dev. Convergence

6.4.2 4 Inputs

The same trends exist here as for the two-dimensional case, but with degradation because

of the increase in dimensionality. The plateaus for HDMR 1, HDMR 2, and HDMR 3

are all clearly evident. These plateaus indicate when error is dominated by HDMR

truncation instead of polynomial truncation. It is also worth noting that while the

adaptive HDMR method hits a plateau for some time in this model, it obtains a decent
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approximation of the standard deviation and mean earlier than most of the other static

methods.
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Figure 6.25: Attenuation, N = 4, Mean Values
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Figure 6.26: Attenuation, N = 4, Std. Dev. Values
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Figure 6.27: Attenuation, N = 4, Mean Convergence
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Figure 6.28: Attenuation, N = 4, Std. Dev. Convergence

6.4.3 6 Inputs

The SCgPC and HDMR methods continue to degrade as input space increases in di-

mensionality. The static method plateaus are still evident. The adaptive SCgPC and

adaptive HDMR methods both struggle to find the appropriate polynomials to use to

most accurately represent this model.
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Figure 6.29: Attenuation, N = 6, Mean Values
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Figure 6.30: Attenuation, N = 6, Std. Dev. Values
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Figure 6.31: Attenuation, N = 6, Mean Convergence
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Figure 6.32: Attenuation, N = 6, Std. Dev. Convergence

6.5 Gauss Peak

This model is described in section 4.5.1. As discussed there, this model exhibits slow

polynomial coefficient drop off, and all polynomials containing an odd number have a

zero coefficient. This yields the adaptive search algorithms paralyzed, as any attempts

the assumption of monotonically-decreasing polynomial coefficients is a poor assumption

for this model.
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6.5.1 3 Inputs

The static HDMR methods show no improvement over Monte Carlo for this model. It

requires a great number of polynomials in tensor combination to accurately reproduce

this response; as a result, even HDMR 3 shows poor convergence for this model.
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Figure 6.33: Gauss Peak, N = 3, Mean Values
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Figure 6.34: Gauss Peak, N = 3, Std. Dev. Values
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Figure 6.35: Gauss Peak, N = 3, Mean Convergence
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Figure 6.36: Gauss Peak, N = 3, Std. Dev. Convergence

6.5.2 5 Inputs

The same trends for the three-input case are observed here for the five-input case,

and exacerbated. This model requires a great number of high-order, tensor-product

polynomials to produce an accurate surrogate, and neither HDMR nor SCgPC methods

are well-equipped to provides them efficiently.
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Figure 6.37: Gauss Peak, N = 5, Mean Values
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Figure 6.38: Gauss Peak, N = 5, Std. Dev. Values
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Figure 6.39: Gauss Peak, N = 5, Mean Convergence
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Figure 6.40: Gauss Peak, N = 5, Std. Dev. Convergence

6.6 Ishigami

6.6.1 3 Inputs

This model is described in section 4.6.1. The behavior for the HDMR method on this

model are quite interesting. Because much of this response is determined by single-order

interactions, the static HDMR 1 method converges the mean quite effectively compared
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to other methods. Both HDMR 2 and HDMR 3 also perform well, but HDMR 3 wastes

substantial effort as there are no third-order interactions in this model. The adaptive

HDMR method fails in its search because it misses the important interaction between y3

and y1, which isn’t observed until the fourth-order polynomial of y3. Additionally, both

y1 and y2 are arguments to sine functions, which when expanded in polynomials only

contain odd powers. As a result, upon obtaining zero contribution from even-ordered

polynomials, the adaptive algorithm has no metric by which to search for additional

contributions.
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Figure 6.41: Ishigami, N = 3, Mean Values
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Figure 6.42: Ishigami, N = 3, Std. Dev. Values
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Figure 6.43: Ishigami, N = 3, Mean Convergence
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Figure 6.44: Ishigami, N = 3, Std. Dev. Convergence

6.7 Sobol G-Function

This model is described in section 4.7.1. Unsurprisingly, this zeroth-order continuous

response continues to provide a great challenge to any polynomial-based method rep-

resentation. The adaptive SCgPC and adaptive HDMR methods both fail to converge

more than a single data point, and the static methods all show no clear benefits over

traditional Monte Carlo sampling.
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6.7.1 3 Inputs
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Figure 6.45: Sobol G-Function, N = 3, Mean Values
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Figure 6.46: Sobol G-Function, N = 3, Std. Dev. Values
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Figure 6.47: Sobol G-Function, N = 3, Mean Convergence

100 101 102 103

Number of Solves

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

E
rr

o
r 

in
 S

td
. 
D

e
v
.

sobolG_3, Std. Dev. Errors, N=3

HDMR 1
HDMR 2
HDMR 3
Monte Carlo
SC:HC
SC:TD
SC:TP
SC:adapt

1/
√
N

Figure 6.48: Sobol G-Function, N = 3, Std. Dev. Convergence
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6.7.2 5 Inputs
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Figure 6.49: Sobol G-Function, N = 5, Mean Values
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Figure 6.50: Sobol G-Function, N = 5, Std. Dev. Values
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Figure 6.51: Sobol G-Function, N = 5, Mean Convergence
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Figure 6.52: Sobol G-Function, N = 5, Std. Dev. Convergence

6.8 Conclusions

We have demonstrated the performance of HDMR methods using three different trun-

cation orders as well as adaptive HDMR subset construction, all based on SCgPC ex-

pansions for the HDMR subsets. We observed good performance of the adaptive HDMR

algorithm when the input space is limit in size and behaves predictably, and good perfor-

mance in the static truncated HDMR methods when the interaction terms in the model
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were limited. Additionally, we observed that adaptive HDMR and HDMR 1 could ob-

tain UQ solutions with fewer evaluations than the other SCgPC and HDMR methods,

which can be valuable when only very few realizations are practical. However, these

less-expensive solutions are not necessarily proportionately accurate in comparison to

SCgPC.

However, in general SCgPC methods outperform HDMR when the input space is regular

and isotropic. This leads to the conclusion that when computational resources are

available, the SCgPC methods may be a better initial choice than the HDMR methods,

while if resources are limited, the adaptive HDMR method can still be a good candidate.



Chapter 7

Neutron Transport Example

7.1 Introduction

The analytic models used in chapters 4 and 6 are useful to analyze the behavior of the

stochastic collocation for generalized polynomial chaos (SCgPC) and high-dimension

model representation (HDMR) methods. Because they have simply-derived analytic

expressions for statistical moments, convergence and behavior can be analyzed to a

high degree of accuracy. Analytic demonstrations for SCgPC and HDMR have provided

insight regarding when these methods converge quickly, and when they fail to perform

better than traditional Monte Carlo (MC). In practice, however, the models on which

we seek to apply advanced uncertainty quantification methods are seldom analytic. The

response is often solved using nonlinear, iterative methods, and often involves many

different physics in a single calculation.

In the next several chapters, we explore application of advanced uncertainty quantifi-

cation methods to engineering-scale performance codes. In this chapter, we consider a

well-understood problem with relatively few physics, but without an analytic solution.

For this demonstration, we make use of a neutronics problem. Neutronics deals with

the population and transport of neutrons through some geometry of materials using the

Boltzmann neutron transport equation [61]. This model is selected for demonstration

because it is more complex than the analytic models, in that there is not a simple ana-

lytic expression for the statistical moments of the responses. However, the model is still

128
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a single integro differential equation, and contains no direct nonlinearities in its input

terms. This allows some clear analysis despite lack of analyticity.

7.1.1 Neutron Transport

Neutronics is a branch of nuclear engineering that involves the study, simulation, and

design of neutral particle transport, particularly free neutron transport. The term free

neutron describes a neutron that is not bound to a particular nucleus and moves about

with some energy. The fundamental science behind nuclear engineering is the fission

event, where a free neutron interacts with an atomic nucleus in a way that produces

new free neutrons as well as high-energy fission fragments. The released energy can be

converted to a variety of uses, most particularly the generation of electrical power.

In order to perform neutronics calculations, we desire to determine the number of neu-

trons traveling through a plane in the domain in a given period of time. The field

variable used to describe this quantity is the angular flux ψ(r, E, Ω̂, t), which should

not be confused with φ used to describe polynomials in a gPC expansion. Angular flux

generally is dependent on where in the domain it is quantified, the energy of neutrons

considered, the direction of neutron travel, and time.

The controlling equation that approximates neutron transport is the Boltzmann trans-

port equation [58] The Boltzmann equation is used to develop a balance equation for

neutron conservation as in Eq. 7.1. In this equation, the time rate of change in the

angular flux is balance on the left hand side by removal terms and on the right by

source terms. Removal terms include neutrons traveling out of a differential area dr,

and neutrons interacting with nuclei which potentially changes their position, energy,

direction of travel, or free state. Source terms include new neutrons produced because

of fission events, neutrons scattering from other directions of travel or energies into the

direction of travel and energy of consideration, new neutrons emitted because of delayed

precursors (or post-fission radioactive nuclei emitting neutrons), and other unspecified
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sources such as neutrons entering from outside the domain.

(
1

v(E)

∂

∂t
+ Ω̂ · ∇+ Σt(r, E, t)

)
ψ(r, E, Ω̂, t) =

χp(E)

4π

∞∫
0

νΣf (r, E′, t)φ(r, E′, t) dE′

+

∫
4π

∞∫
0

Σs(r, E
′ → E, Ω̂′ → Ω̂, t)ψ(r, E′, Ω̂′, t) dE′ dΩ′

+

I∑
i=1

χd,i(E)

4π
λiCi(r, t)

+ s(r, E, Ω̂, t), (7.1)

where

• r is location in three-dimensional space,

• E is neutron energy,

• Ω̂ is a unit vector solid angle parallel to neutron velocity,

• t is time,

• v(E) is the magnitude of the neutron velocity,

• ψ(r, E, Ω̂, t) is the angular flux,

• φ(r, E, t) is the integral of ψ over angle (scalar flux ),

• ν is the average number of neutrons produced per fission,

• χp(E) is the probability distribution function for neutrons produced by fission,

• χd,i(E) is the probability distribution function for neutrons with energy E pro-

duced by delayed neutron precursors,

• Σt(r, E, t) is the macroscopic total interaction cross section,

• Σf (r, E′, t) is the macroscopic fission cross section,

• Σs(r, E
′ → E, Ω̂′ → Ω̂, t) is the macroscopic scattering cross section for neutrons

scattering from energy E′ to energy E and from solid angle trajectory Ω̂′ to Ω̂,

• I is the number of delayed neutron precursors,
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• λi is the decay constant for precursor i,

• Ci(r, t) is the total number of precursor i in dr at time t,

• s(r, E, Ω̂, t) is an arbitrary source term,

and we assume

• free neutrons have no interaction with other free neutrons,

• total and fission cross sections are assumed angularly independent,

• fission neutrons are emitted isotropically after fission events, and

• delayed neutrons are emitted isotropically after precursor decay.

More details about the physical interpretation of these terms can be obtained in [58],

[59], and [61].

One particular application of the neutron transport equation is reactor criticality. Crit-

icality problems are chiefly concerned with the sustainability of a neutron reaction in

fissionable material. Given a particular set of materials in a given geometry, an analyst

needs to determine if the number of neutrons is growing over time, diminishing over time,

or remaining constant. This analysis is performed by reducing the neutron transport

equation (Eq. 7.1) to steady-state operation and introducing the k-eigenvalue,

(
Ω̂ · ∇+ Σt(r, E)

)
ψ(r, E, Ω̂) =

1

k

χp(E)

4π

∞∫
0

νΣf (r, E′)φ(r, E′) dE′

+

∫
4π

∞∫
0

Σs(r, E
′ → E, Ω̂′ → Ω̂)ψ(r, E′, Ω̂′) dE′ dΩ′, (7.2)

where we have removed the precursors and arbitrary source for this population-balancing

problem. The k-eigenvalue is defined such that the following relationship between its

value and the reaction sustainability exists:

• If k > 1, the number of neutrons is growing in time.

• If k < 1, the number of neutrons is diminishing in time,

• If k = 1, the reaction is exactly sustained.



Chapter 7. C5G7 Neutronics 132

For design of commercial nuclear power plants, a k-eigenvalue near unity is often desired

to maintain balanced plant operation.

In order to reduce Eq. 7.2 into a form suitable for numerical application, we discretize

the energy space E into G distinct energy groups. For historical reasons, the energy

group with the highest-energy neutrons are labeled with energy group g = 1, while the

lowest energy neutrons are in group g = G. This allows integrals to be approximated

by sums, and introduces the subscript g to refer to the energy group for which each

term applies. This discretization generates G equations coupled through the fission and

scattering terms, each with the form

(
Ω̂ · ∇+ Σt,g(r)

)
ψg(r, Ω̂) =

1

k

χp,g
4π

G∑
g′=1

νΣf,g′(r)φg′(r)

+

∫
4π

G∑
g′=1

Σs,g′→g(r, Ω̂
′ → Ω̂)ψg′(r, Ω̂

′) dΩ′, (7.3)

where cross sections and material properties are taken at their expected value within

the energy group, such as

Σt,g ≡
Eg∫

Eg+1

Σt(r, E
′) dE′, (7.4)

where Eg is the maximum energy in group g and EG+1=0. By discretizing the energy

space, some error is introduced which is dependent on the number of energy groups G. In

coarse problems, often the energy space is divided into two energy groups: those neutrons

with energy less than or equal to equilibrium thermal neutron energy in the reactor, and

those neutrons with greater energy. In more fine calculations, up to hundreds of energy

groups can be used [61].

One dimension that still causes difficulty in Eq. 7.3 is the dependence on angular

scattering; that is, there is no limit placed on the distribution dependence of scattered

neutrons on the incident neutron angle. One approach to this numerical obstacle is to

discretize angular space into discrete solid angles. This method is referred to as SN

or discrete ordinates. If the approximation is made that scattering is at most linearly

anisotropic, the resulting simplification of Eq. 7.3 is the diffusion equation [58],

−Dg(r)∇2φg(r) + Σa,g(r) =

G∑
g′=1

Σg′→gφg′(r) +
χp,g
k

G∑
g′=1

νΣf,g′(r)φg′(r), (7.5)
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where we introduce the diffusion coefficient D,

Dg(r) =
1

3Σt,g(r)
, (7.6)

which comes from Fick’s first law of diffusion and relates flux in a diffusive problem to

steady-state concentration [59]. Because of integration over angle our field quantity of

interest transitions from angular flux ψg(r, Ω̂) to scalar flux φg(r), defined by

φg(r) ≡
∫
4π

ψg(r, Ω̂) dΩ̂, (7.7)

where we introduce the macroscopic absorption cross section Σa,g(r). Eq. 7.5 is well-

suited to solution by numerical means by discretizing the domain mesh and applying a

solution scheme such as finite elements. In some simple geometries Eq. 7.5 has analytic

solutions.

We note that this diffusion approximation is most accurate when the dominant physics

is isotropic neutron scattering. As a result, it performs poorly near strong absorbers,

transition boundaries between materials, and on the boundaries of the problem. As long

as the problem has large scattering cross sections and the domain is large with respect

to the neutron mean free path, however, it is a reasonable approximation to the full

neutron transport equation, and is much more conducive to numerical solution.

7.2 Problem

The problem we apply the diffusion equation and our advanced uncertainty quantifica-

tion techniques is a benchmark for mixed-oxide (MOX) fuel assemblies in a pressurized

water reactor. This benchmark is commonly referred to as C5G7 [62], and specifications

are available for both two-dimensional and three-dimensional geometries. In our case,

we consider the two-dimensional specifications.

7.2.1 Physical Problem

The geometry of this problem consists of a quarter-symmetric miniature core with four

assemblies surrounded by a reflector. The geometry can be seen in Figure 7.1. In
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Group Upper Energy Bound

7 0.02 eV
6 0.1 eV
5 0.625 eV
4 3 eV
3 500 keV
2 1 MeV
1 20 MeV

Table 7.1: C5G7 Energy Groups

this figure, reflecting boundary conditions are imposed on the left and bottom, while

vacuum boundaries are applied at the top and right. The mesh is fine triagonal elements,

as shown for fuel elements in Figure 7.2, with a coarser mesh in the moderator. In Figure

7.1 we see four assemblies in a two-by-two array surrounded by a reflector. Two example

scalar flux profiles from the reference input realization can be seen in Figs. 7.3 and 7.4.

Seven materials make up the domain:

• UO2, the fuel for the bottom-left and upper-right assemblies;

• 4.3% enriched MOX fuel, the outer fuel for the bottom-right and upper-left assem-

blies;

• 7.0% enriched MOX fuel, the next-to-outer fuel for the MOX assemblies;

• 8.7% enriched fuel, the innermost fuel for the MOX assemblies;

• Guide tubes, interspersed points within the innermost fuel in all assemblies;

• Fission chambers, the central point in each assembly; and

• Reflector, the material outside the assemblies.

Each assembly is comprised of 17 by 17 square pin cells. Each pin cell is un-homogenized;

that is, a pin cell is comprised of either a fuel pin, guide tube, or fission chamber

surrounded by moderator. The pin cell is 1.26 centimeters on a side, while the radius

of the fuel pin, guide tube, or fission chamber has a radius of 0.54 centimeters. The

cladding and gap for fuel pins are homogenized into the fuel pin itself.

We discretize the energy space for this problem into eight energy groups. The discrete

energy group boundaries are given in Table 7.1 [62].
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Figure 7.1: C5G7 Geometry

This problem is solved using MOOSE-based application RATTLESNAKE [26] using the diffu-

sion equation as the driving physics. MOOSE-based applications use continuous finite ele-

ments for mesh interpolation. The flux field parameter is set to use first-order Lagrange

polynomials to interpret the finite element space. For this problem the RATTLESNAKE

solver parallelizes quite effectively up to six parallel processes per evaluation. On the

Idaho National Laboratory supercomputing framework FALCON each run takes approx-

imately one minute to converge using MOOSE’s preconditioned Jacobian-free Newton

Krylov solver [24] when parallelized with six processes.

7.2.2 Uncertainty

There are a total of 168 correlated macroscopic cross sections as uncertain inputs to this

problem. To introduce uncertainty in these cross sections, we use the nominal reference

case cross sections as the mean values of Gaussian normal distributions, and assign a

standard deviation of five percent of the mean to all inputs. We also assign correlations

between cross sections of the same type and material but different energy groups, as

well as correlations between cross sections of the same energy group and material but
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Figure 7.2: Partial C5G7 Mesh

different types. The correlation we assign in either case ten percent. This results in

a symmetric covariance matrix that is sparse with blocks of nonzero entries. This ap-

proximate covariance matrix could be improved by using uncertainty propagation on a

cross section generation tool to calculate actual covariances; however, for demonstration

purposes, we make use of these assigned values.

We consider three responses for this model: the k-eigenvalue, and the thermal and

fast (g = 1, 5) scalar flux measured in the center of the bottom-left element in the

mesh, which is near to the center of the reactor. In order to provide an orthogonal and

reasonably-sized uncertainty space, we first use RAVEN [2] to perform a Karhunen-Loeve

(KL) [43] expansion. This results in a surrogate input space made up of orthogonal,

standard normally-distributed variables. We refer to the collection of surrogate input

variables as latent variables, which are labeled only by their ranking in the KL expansion.

For example, latent 6 is the sixth dimension in the KL expansion. The original input

space we designate the manifest input space, as these are the inputs manifested to the

simulation model. This follows the naming convention in RAVEN.

We then perform a sensitivity analysis of the responses to the latent inputs using ten
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Figure 7.3: C5G7 Group 1 (Fast) Flux

Figure 7.4: C5G7 Group 5 (Thermal) Flux

thousand Monte Carlo samples. The sensitivity values and KL eigenvalues are used

together to construct an importance index, ranking the impact of each latent variable

on both the input and response spaces. Importance rank is normalized to one, giving

roughly an idea of the percent of the model retained due to truncation. The KL expan-

sion and sensitivity ranking, along with importance determination, are utilities we use

in RAVEN’s toolkit [44].

The first several importance-ranked eigenvalues for each response are shown in Table
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k-eigenvalue Center Flux, g = 1 Center Flux, g = 5

Rank Dimension Importance Dimension Importance Dimension Importance

1 24 0.09606 24 0.07231 24 0.07032
2 9 0.08555 9 0.06472 9 0.06648
3 0 0.06861 0 0.04856 100 0.06474
4 17 0.04737 116 0.03472 13 0.03396
5 23 0.03415 17 0.03470 0 0.03092
6 158 0.03047 10 0.02726 17 0.02716
7 164 0.02852 8 0.02468 10 0.02651
8 50 0.02695 164 0.02174 118 0.02600
9 6 0.02315 20 0.02157 117 0.02420

Table 7.2: C5G7 Importance Ranking

7.2. There are many latent input dimensions common in the first several importance

rankings for each variable; in particular, latent dimensions 24, 9, 0, and 17 are common

to all three, while additionally 10 is common to both the flux terms. We elect to truncate

the latent input space to include these common terms plus dimension 116 (important

to the group 1 flux) and dimensions 100 and 13 (important to the group 5 flux). In

total this gives our reduced input space a dimensionality of eight. This reduction is

significant; we only keep 18 percent of the k-eigenvalue importance, and 16 percent of

the two flux importance.

Figures 7.5 through 7.7 show the importance rank of each response. The red cross series

corresponding to the left y-axis is the importance of each rank as a function of the

ranking itself, as is shown in Table 7.2. The blue circle series corresponding to the right

y-axis is the cumulative importance rank as a function of the number of dimensions kept

in order of rank. A black line has been added to indicate at which level each series

was truncated. The flux responses were both truncated at the end of the steep drop in

importance rank values, while the eigenvalue was truncated somewhat more than that.

Despite this steep truncation, we see much of the original response preserved.
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Figure 7.5: C5G7 Eigenvalue Importance Ranking
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Figure 7.6: C5G7 Center Flux (g = 1) Importance Ranking
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Figure 7.7: C5G7 Center Flux (g = 5) Importance Ranking

The agreement for the mean and standard deviation of the original full input space

and the truncated latent space are shown in Figures 7.8 through 7.13. In each of these

figures, the plot on the left shows the process of ten thousand Monte Carlo samples

on either the mean or the standard deviation. The blue square series is MC on the

original, untruncated space, while the red crosses is MC on the truncated space. The

plot on the right shows the agreement level at ten thousand Monte Carlo runs. For

the nearly-matching means, the plots are cropped near the calculated values. For the

poorly-matching standard deviation, we scale the range to demonstrate the portion of

the standard deviation retained. Error bars on both the left and the right plots are given

using the mean-based approximation described in section 4.1.

For all three responses the agreement on the mean values has significant overlap, suggest-

ing the mean was largely uncompromised by the input space truncation. The standard

deviations, however, do not match as closely. For the two flux responses, roughly one

quarter of the value was lost due to truncation, while for the eigenvalue response ap-

proximately one fifth of the standard deviation value was lost. This loss is expected, as

the importance eigenvalues in Table 7.2 drop off somewhat slowly after the truncation

performed. With another 12 inputs retained, it is possible to reduce the error in the

k-eigenvalue truncation from roughly 25 percent to nearer 10 percent. However, this

truncation is suitable for demonstration.
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Figure 7.8: C5G7 Eigenvalue Input Reduction, Mean
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Figure 7.9: C5G7 Eigenvalue Input Reduction, Std. Dev.
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Figure 7.10: C5G7 Center Flux g = 1 Input Reduction, Mean
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Figure 7.11: C5G7 Center Flux g = 1 Input Reduction, Std. Dev.
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Figure 7.12: C5G7 Center Flux g = 5 Input Reduction, Mean
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Figure 7.13: C5G7 Center Flux g = 5 Input Reduction, Std. Dev.

Since the efforts in this demonstration are to establish the effectiveness of collocation-

based methods for this model, we consider agreement between collocation expansions and

the reduced-space Monte Carlo statistics only. We ignore the original model statistics

and instead consider agreement with the truncated input space. Comparison to the

original model can be done by comparing to the reduced case MC, then comparing

reduced space MC with the original model as we have shown here.
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7.3 Results

In general, we observe that no one particular SCgPC or HDMR method stands out as

faster converging for the responses in this model. All of them converge quite quickly on

a solution that is reasonably close to the one obtained by MC. While occasionally the

converged values are just outside the error bands shown in the plots, these error bands

only guarantee 75 percent certainty (see section 2.2.1). Thus, we do not see significant

disagreement between the MC values and the SCgPC and HDMR values in these cases.

We also note that in none of the responses does adding additional polynomial affect the

predicted mean and standard deviation from the SCgPC and HDMR methods. This

suggests strong linearity between the responses and the input parameters, which can

be captured by only first-order polynomial expansions. For this particular model, the

results obtained with under 20 samples with any of the SCgPC or HDMR methods is

as good as spending ten thousand samples using MC.

7.3.1 k-Eigenvalue

The performance of SCgPC and HDMR methods for the C5G7 uncertainty quantification

problem are shown in Figures 7.14 and 7.15. All the results shown, including the Monte

Carlo comparison case, are performed with the reduced-size input space. As seen in

the figures, for this response even linear polynomials are sufficient to quite accurately

capture the first two statistical moments of the k-eigenvalue. This suggests a strongly

linear dependence of k on cross sections, which can be justified through analyzing the

first derivatives Eq. 7.5 with respect to each cross section independently. This means

that any of the collocation methods are very well-suited to represent the original model,

and a cost of far less computational solves than traditional MC. Even when scaling the

plot to very small ranges, the various collocation-based methods have indistinguishable

values for both the mean and standard deviation.
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Figure 7.14: C5G7 k-Eigenvalue Mean Values
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Figure 7.15: C5G7 k-Eigenvalue Std. Dev. Values

7.3.2 Center Flux, g = 1

As with the k-eigenvalue, the high-energy flux response appears to be entirely linearly-

dependent on the input parameters. Adding additional polynomials to any SCgPC or

HDMR method does not notably change the predicted mean or standard deviation.

In the case of the HDMR method, adding pairwise interactions also seems to have no

effect on the predicted response moments. This suggests the response is not only linear
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with respect to the inputs, but that there is little interaction between the inputs when

considering the first two statistical moments of the response. However, for the standard

deviation of this response, there does appear to be some small amount of shape in the

SCgPC and HDMR series, suggesting some level on nonlinearity.
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Figure 7.16: C5G7 Center Flux g = 1 Mean Values
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Figure 7.17: C5G7 Center Flux g = 1 Std. Dev. Values
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7.3.3 Center Flux, g = 5

The low-energy flux demonstrates similar performance to the other two responses. What-

ever nonlinearity between inputs and the response was present in the high-energy flux

standard deviation does not appear to be present in the low-energy flux. This seems

reasonable, as the mean free path of neutrons in the high-energy flux is much larger than

the low-energy flux, making interaction with many different cross sections in a variety of

ways more likely. As with the k-eigenvalue response, the second-order statistics for the

low-energy flux converge with first-order interactions and first-order polynomials, and

show no change in value after that point. Both the mean and standard deviation are in

good agreement with the estimate provided by MC.
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Figure 7.18: C5G7 Center Flux g = 5 Mean Values
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Figure 7.19: C5G7 Center Flux g = 5 Std. Dev. Values

7.4 Conclusion

Through this model we have explored application of SCgPC and HDMR to responses

that are without analytic form and are solved using an engineering-scale production

code. We observed the methodology for using input space reduction techniques in order

to make collocation-based method more accessible. We observed that for all three re-

sponses of this model, the SCgPC and HDMR methods both very efficiently converged

on statistical moments in less than 20 computational solves that agreed with MC af-

ter ten thousand samples. For this particular model and set of responses, SCgPC and

HDMR are both excellent uncertainty quantification tools.
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Fuel Pin Cell Example

8.1 Introduction

While analytic models provide insight to the operation of stochastic collocation for

generalized polynomial chaos and high-density model reduction methods, we are chiefly

interested in applying these methods to engineering applications that lead to decision

making in real-world activities. In Chapter 7, we demonstrated SCgPC and HDMR

methods on a single-physics neutron transport model with several responses. We turn

attention now to a more complicated multiphysics model whose physics are not simple

to describe in their entirety. To this end, we selected a model solved by multiphysics

simulation code MAMMOTH, a MOOSE-based code that couples neutronics code RATTLESNAKE

[26] and fuel performance code BISON [25].

We discussed the neutronics solved by RATTLESNAKE in Chapter 7. For this particular

application, we will not make the diffusion approximation, but track neutrons in dis-

crete angles of travel in the neutron transport equation instead [61]. BISON solves several

physical models as part of fuels performance. As described in the code documentation,

for light-water nuclear reactors BISON models fuel oxidation behavior through temper-

ature, burnup, and porosity-dependent material properties, volumetric heat generation,

thermal fission product swelling and densification, thermal and irradiation creep, fuel

fracture via relocation, and fission gas release. In addition, it models heat transfer

through interstitial gaps in the fuel-cladding construction, mechanical contact, plenum

pressure, cladding creep and thermal expansion, cladding plasticity, and coolant heat

149
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transfer coefficients. There are equations for each of these phenomena that are too

extensive to cover in this work; we refer instead to the BISON documentation [25].

The coupling between RATTLESNAKE and BISON is two-way and involves an iterative pro-

cess. The neutronics solved in RATTLESNAKE determines the shape of the distribution

of neutrons in the domain, often referred to as the power shape. The fuels performance

code uses this power shape to determine temperatures throughout the domain and de-

termine all of the resulting changes in performance because of the physics mentioned

above. The temperature calculated is then provided as feedback to neutronics, which

adjusts the material cross sections accordingly. These two physics iterate using Picard

iterations until they reach a specified maximum number of iterations or converge to a

specified tolerance.

8.2 Problem

The specific model to simulate is a coupled multiphysics engineering-scale model docu-

mented in [4]. It simulates fuel behavior for a pressurized water reactor fuel rod as it

is used as fuel in a nuclear reactor. It simulates fuel behavior through the depletion of

fissile material over a year-long process without reactor power changes.

8.2.1 Physical Problem

The domain for this two-dimensional slice of a fuel rod is from 0 to 6.3 millimeters

square, with reflective boundaries on all sides. The fuel pin radius is 4.09575 millime-

ters including the cladding. The heterogeneous materials include fuel, gap, clad, and

moderator, and represents a symmetric quarter fuel pin cell. The response of interest is

the k-eigenvalue of the infinite reactor, which serves the same function as described in

Chapter 7.

There are two meshes used in this coupled model, one for BISON and another for

RATTLESNAKE. The distinction is necessary because of the physics solved by each. In

BISON it is important to not mesh the gap between fuel and cladding, as in the limit that

the fuel expands and makes contact with the cladding, the gap mesh cells will become

infinitely long and thin. This causes a number of numerical errors. For RATTLESNAKE
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however it is critical to mesh the gap, as neutron transport will be affected by the ma-

terials of the gap. The two meshes are shown in Figures 8.1 and 8.2. The meshes each

contain 20 rings of fuel element groups (red) and the clad (green), and the neutronics

mesh additionally contains the gap (yellow) and the moderator (blue). The boundaries

are reflective on all sides to simulate operation in an infinite reactor.

Figure 8.1: Pincell Mesh for Fuels Performance [4]



Chapter 8. Fuel Pin Cell 152

Figure 8.2: Pincell Mesh for Neutronics [4]

The neutronics is calculated using 8 energy groups and second-order level-symmetric

quadrature for angle, and takes as uncertain inputs 671 material cross sections, including

fission, capture, scattering, and neutron multiplication factor.

8.2.2 Uncertainty

Variance and covariance data was previously collected for all the material inputs using

cross section code SCALE [57] with a Monte Carlo (MC) random sampling approach. In

an effort to capture more interesting physics and uncertainties, the covariance matrix

was scaled up uniformly by a factor of 10 for this work. The resulting covariance ma-

trix was used to construct a multidimensional Gaussian distribution to encompass the

collective neutronics inputs. Additionally, we perturb three material properties from

the BISON simulation: the fuel thermal expansion coefficient, fuel thermal conductivity,

and cladding thermal conductivity. The uncertain distribution for these parameters are

provided in Table 8.1. Note that the fuel thermal conductivity is in actuality a scaling

factor to the value used within BISON, while the actual value is calculated based on

changing material properties.
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Parameter Mean Std. Dev. Units

Fuel Thermal Expansion Coefficient 1× 10−5 7.5× 10−7 /K
Clad Thermal Conductivity 16 2.5 W/m-K

Fuel Thermal Conductivity (Scale Factor) 1 0.075 –

Table 8.1: BISON Uncertain Input Parameters

The neutronics uncertain input space is highly correlated, so a Karhunen-Loeve (KL)

component analysis and associated sensitivity analysis is performed as two-part reduc-

tion [44] in RAVEN similar to the process for the neutronics model in Chapter 7. The

resulting variables and distributions are latent inputs and can be translated back to the

manifest (original) space by way of a transformation matrix. Table 8.2 gives the first

several importance ranking eigenvalues for latent variables, which are identified only by

their ranking in the KL expansion. We elected to truncate at 20 input variables.

Figure 8.3 shows the importance rank information graphically. The red cross line asso-

ciated with the left y-axis shows the importance rank eigenvalue for each latent variable,

sorted by value. The blue circle line associated with the right y-axis shows the cumu-

lative importance obtained by keeping any number of the latent inputs. We note that

in both cases the x-axis is log scale; this is because the importance eigenvalues drop

off quite quickly, and we wish to emphasize the first eigenvalues over the remainder.

We also add a black line to the plot and chart to indicate where the truncation was

performed.

Figures 8.5 and ?? show the level of matching between the original and truncated input

spaces for the mean and standard deviation, respectively. The values for both metrics

are taken at several numbers of samples and shown in the left plot of each, and the final

values are shown on the right along with (at least) 75 percent confidence bars. Unlike

the neutronics case in Chapter 7, we included more terms from the KL expansion, and

the resulting match between the mean and standard deviations is largely within the

Monte Carlo sampling error.
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KL Rank Importance Eigenvalue

0 0.385343134782

2 0.178983653121

8 0.136388464634

7 0.0490658001469

4 0.0259995867302

12 0.0192003280782

3 0.0159149198373

18 0.0137261803754

10 0.0119423872093

14 0.0116995399806

11 0.0105619452358

1 0.00930331126013

19 0.00772899277483

6 0.00699483215964

15 0.00682086107147

28 0.00601178948093

17 0.00515798964297

16 0.00453075658143

25 0.00402772081725

9 0.00368309194804

23 0.0029116602401

21 0.00220070148712

13 0.00219721801241

5 0.00130555372756

Table 8.2: KL Expansion Eigenvalues for Pin Cell Problem

8.2.3 Code Versions

MOOSE and its applications including RATTLESNAKE, BISON, and MAMMOTH do not generally

have a versioning system or release schedule; instead, it is tracked by Git [56] commit

hashes. This computation was performed with the application versions listed in Table
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Figure 8.3: Pincell k-Eigenvalue Importance Ranks
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App Git Version Hash

MOOSE 1fea13a34357a56c6fd049a239e57d597b1c277e
BISON 5552eca741fa30be0efdefd35fecd954b47c9586

RATTLESNAKE 2c892fad29ed7d1f7fb9833116d2b718f7b72055
MAMMOTH be676b5974f990a0d2a7589ab2a2e58163a47b22

RAVEN 8f7c477740a8277c536d9bd6734614615a8b5cb7

Table 8.3: Application Versions Used

8.3. There is nothing particularly special about these versions, except that they were

concurrent and compatible at the time calculations were performed.

8.3 Limitations

During the collection of data, it was discovered that the performance of BISON can fluc-

tuate depending on the way is is parallelized. There were instances where BISON would

fail to converge, but report an unconverged temperature as a converged solution. As a

result, there is artifical numerical error that is difficult to track or account for. Regard-

less, we demonstrate the performance of various uncertainty quantification methods on

this model, as this behavior indicates true simulation behavior. This issue was submitted

to the BISON and MAMMOTH developers for consideration in the future.

8.4 Results

Figures 8.6 and 8.8 show the values obtained for the mean and variance of the k-

effective response for a selection of uncertainty quantification methods, including MC,

static SCgPC using the total degree polynomial construction indices, first- and second-

order static HDMR, and adaptive HDMR using both adaptive cut-HDMR and adaptive

SCgPC. For additional clarity, we provide graphs centered more especially on the non-

Monte Carlo data in Figures 8.7 and 8.9. Because the number of MC samples necessary

to obtain a well-resolved benchmark is prohibitive, we do not present any error conver-

gence plots for this model.

Table 8.4 summarizes the number of calculations required for each collocation method.

Entries marked with a † indicate results that were not obtained because of MAMMOTH

simulations that failed to converge. Entries marked with a ∗ indicate results that were
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Figure 8.6: MAMMOTH Pin Cell, Mean Values
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Figure 8.7: MAMMOTH Pin Cell, Mean Values (Zoomed)

not attempted because of the number of samples required. We note that in Table 8.4 for

first-order static HDMR method successive runs have the same number of evaluations

required despite constructing higher-order polynomials. This is because we enforced a

floor function for quadrature, requiring a minimum number of quadrature points for a

polynomial despite its low order. This artificially increases the points for odd-numbered

sets for this particular method, but prevents abnormally poor integration.

We observe that for both the mean and the variance, the collocation-based methods

all converge within the estimated Monte Carlo value single-standard deviation band
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Figure 8.8: MAMMOTH Pin Cell, Variance Values
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Figure 8.9: MAMMOTH Pin Cell, Variance Values (Zoomed)

with only first-order results. This suggests a high degree of linearity in the response.

In both the mean and the standard deviation, there appears to be some convergence

towards increasing the moment magnitudes from the first-order expansions, but without

a near-analytic benchmark it is difficult to be certain if this is convergence to the true

solution.

We also observe that for the standard deviation, second-order truncated HDMR matches

the Total Degree SCgPC line almost exactly. This is expected because the HDMR
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Method Degree Runs

Total Degree 1 47
Total Degree 2 1105
Total Degree∗ 3 17389

HDMR (1) 1 47
HDMR (1) 2 47
HDMR (1) 3 93
HDMR (1) 4 93
HDMR (1) 5 139

HDMR (2) 1 47
HDMR (2) 2 1105
HDMR (2)† 3 3221
HDMR (2)† 4 7361
HDMR (2)∗ 5 13571

Table 8.4: Evaluations Required for 23 Input Pin Cell Model

subsets are constructed using the Total Degree index set construction method; as a

result, the two have identical form for up to second-order polynomial terms.

8.5 Conclusions

While the lack of an analytic benchmark makes it difficult to be certain how much better

the collocation-based methods are performing than traditional MC, it is clear they are no

worse even with first-order approximations. With these first-order approximations only

requiring roughly 47 evaluations instead of ten thousand, we are prepared to conclude

that all the collocation-based methods considered here are more efficient for this response

than traditional analog Monte Carlo when determining second-order statistics.



Chapter 9

Time-Dependent Analysis

Example

9.1 Introduction

Up to now in this work we have restricted ourselves to models with a set of single-

valued responses. One of the strengths of the RAVEN [55] framework is its innate ability

to extend reduced-order models (such as SCgPC and HDMR expansions) to include

time-dependent analysis. RAVEN does this by taking snapshots in time and interpolating

between them to evaluate the reduced-order model at any time. As part of implementing

methods in RAVEN we added the algorithms necessary to do this snapshot-based time-

dependent analysis for both SCgPC and HDMR methods. Conveniently, no additional

quadrature points are required to perform transient instead of static uncertainty quantifi-

cation using SCgPC or HDMR. It should be noted, however, that adaptive SCgPC and

adaptive HDMR are not well-suited to time-dependent analysis because of the plethora

of responses; effectively, there is a full set of responses for each snapshot in time, making

it difficult for the adaptive algorithms to determine the ideal polynomials to add.

To demonstrate performance of this feature, we sought a time-dependent response with

transient behavior. We consider a BISON [54] simulation of an OECD benchmark [52]

where the performance of light-water reactor fuel through several power transients is

analyzed. A first effort at uncertainty quantification for this benchmark is performed in

160
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[53], and we use the same input variables and uncertainty distributions here. This effort

has been duplicated using RAVEN [9] as part of this work.

9.2 Problem Description

The problem considered here is Case 2a defined in Chapter 2 of the benchmark report

[52]. It involves several different steady-state fuel behaviors after transitioning power

levels for a pressurized water reactor fuel pin. The power transients are shown in Figure

9.1.
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Figure 9.1: OECD Benchmark Power Transients

The BISON mesh used for this problem is a smeared-pellet mesh, as was also used in

[53] and is shown in part in Figure 9.2. This allows the mesh to be generated directly

through the BISON input rather than coupling a mesh generation code to BISON in RAVEN.

During the simulation the pellet (red) expands to make contact with the cladding (blue),

and modeling persists through this phenomenon. The mesh is axisymmetric 2-D in R-Z

geometry, using 4290 QUAD8 finite elements providing 324 thousand degrees of freedom

[53]. The domain is four meters tall by 0.55 centimeters wide, and uses an R-Z geometry.

Because RAVEN couples with BISON natively, the input-output processing was handled

without any need for adjustments to the nominal input file.
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Figure 9.2: OECD Benchmark Example Mesh

The uncertain inputs to this model are given in Table 9.1, which is based on the data

in [53]. The input parameters are all distributed normally, with the exception of the

inlet temperature which was instead distributed uniformly. In addition, there were

several dependent inputs in the BISON input file that had to be perturbed based on the

independent inputs; these are provided in Table 9.2. The responses of interest for this

model are the following:

• maximum cladding temperature (max clad surf temp),

• percent fission gas released (fgr percent),

• elongation of the cladding (max clad creep strain), and

• maximum creep strain on the cladding (clad elongation).

When we use the term maximum, we refer to the maximum value obtained from 13

axial positional along the length of the fuel. There is a separate maximum value for

each burnup time step.

9.3 Results

In this problem we are interested in analyzing sensitivity coefficients as they develop

in time. As the simulation progresses, there is a shift in the dominant physics behind
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RAVEN Name Uncertain Parameter Mean Std. Dev.

clad cond Clad Thermal Conductivity 16.0 2.5
clad thick Cladding Thickness 6.7e-4 8.3e-6
clad rough Cladding Roughness 5.0e-7 1.0e-7
creep rate Clad Creep Rate 1.0 0.15
fuel cond Fuel Thermal Conductivity 1.0 0.05
fuel dens Fuel Density 10299.24 51.4962
fuel exp Fuel Thermal Expansion 1.0e-5 7.5e-7
fuel rad Fuel Pellet Radius 4.7e-3 3.335e-6
fuel rough Fuel Pellet Roughness 2.0e-6 1.6667e-7
fuel swell Solid Fuel Swelling 5.58e-5 5.77e-6
gas cond Gas Conductivity 1.0 0.025
gap thick Gap Thickness 9.0e-5 8.33e-6
mass flux Mass Flux 3460 57.67
rod press Rod Fill Pressure 1.2e6 40000.0
sys press System Pressure 1.551e7 51648.3
sys power System Power 1.0 0.016667

RAVEN Name Uncertain Parameter Lower Bound Upper Bound

inlet temp Inlet Temperature 558.0 564.0

Table 9.1: OECD Benchmark Independent Inputs

Variable Calculation

clad inner 2*(fuel rad + gap width)
outer diam heat 2*(fuel rad + gap width + clad thick)
sys press cool sys press
outer diam cool 2*(fuel rad + gap width + clad thick)
porosity thermal 1 - fuel dens/10980
fuel diam 2*fuel rad
gap diam 2*gap thick
porosity sifgr 1 - fuel dens/10980

Table 9.2: OECD Benchmark Dependent Inputs

response values. For example, one of the more dramatic physics transitions occurs as

the fuel expands enough to make contact with the cladding. We wish to understand how

this affects the sensitivity of the responses to the various inputs.

To produce this results, first-order HDMR using first-order SCgPC. One of the limita-

tions explored during this analysis is simulation codes that cannot be perturbed arbitrar-

ily and expected to converge. While attempting to use higher order HDMR and SCgPC,

there were several required quadrature points that failed to converge. In order to solve

these realizations, it is necessary to change more than simply the input space. Changes

in the solver mechanics itself, such as preconditioners and iterative solve mechanisms,

need to be explored for each failed input realization. This is out of the scope of RAVEN’s

operation, so we limit analysis to first-order HDMR. We discuss this limitation further

in section 10.3.
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Figures 9.5 through 9.8 show the development of Sobol indices over the burnup of the

fuel, expressed in percent FIMA (fissions per initial metal atom). In each plot, the

power history shape as a function of burnup is superimposed in dotted red, providing

insight to some of the sensitivity behaviors. Because of the large number of input

parameters, we only show those parameters on each plot that have significant impact on

the response considered. For clarity, we use a consistent scheme for coloring and marking

throughout the plots, where green is fuel parameters, black is system parameters, blue

is gap parameters, and magenta is clad parameters. In each set of parameters, different

symbols are used to differentiate the various related inputs. We consider each plot

separately. For reference, we also include the burnup-dependent mean and standard

deviation in Figure 9.3 and 9.4 respectively. In each figure, the magnitude of the values

are scaled for each parameter by a factor shown in the legend, which allows all the shapes

to be seen clearly.
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Figure 9.3: OECD Response Mean Values over Burnup
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Figure 9.4: OECD Response Variance Values over Burnup

9.3.1 Maximum Clad Surface Temperature

Maximum clad surface temperature is One of the key design parameters for fuel in

nuclear power plants. This response is used to quantify margin to clad melting points,

at which point radioactive fuel and gas could escape into the primary moderator loop.

Understanding the behavior of this parameter is key to the design of nuclear fuel.
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Figure 9.5: Maximum Clad Surface Temperature Sensitivities
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As can be seen in Figure 9.5, the variance in this response is dominated throughout the

simulation by the variance in the inlet temperature of the moderator. This is reason-

able, since the inlet moderator temperature determines the amount of heat that can be

transferred out of the clad and into the moderator. Immediately around power changes,

however, there are spikes where the variance in peak clad temperature is instead domi-

nated for a very short time by the system power, instead. Near changes in the system

power, and before steady-state operation is achieved, variance in the system power itself

will drive the amount of heat transferred from the fuel to the clad, and dominates the

variance in the clad temperature.

In a similar fashion, we see a trade-off between two less-impacting variables. The mass

flux, or the amount of moderator passing over the cladding, and fuel density share a

similar relationship as the inlet temperature and the system power. During steady-state

operation the clad temperature is more sensitive to the mass flux, but this changes to

fuel density near power transients, for the same reasons as the inlet temperature and

system power.

Interestingly, we see several new parameters demonstrating impact near the end of the

simulation at high burnup. The fuel conductivity, clad thickness, fuel expansion coef-

ficient, and creep rate all exhibit stronger influence toward the end of life, though the

inlet temperature continues to be dominant except for a peak around 0.055 FIMA, where

there is a transition in physics that emphasizes the clad thickness over other inputs. This

is likely because the peak clad temperature reaches quite low values towards the end of

its life, as the fuel produces less heat.

9.3.2 Percent Fission Gas Released

During fission events on the atomic scale in the fuel, some of the yields are fission

gases. These are often radioactive themselves and can escape the confines of the fuel

and cladding more easily than pieces of fuel, making them another design concern for

mitigating contamination of the moderator.
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Figure 9.6: Percent Fission Gas Released Sensitivities

As can be seen in Figure 9.6, the variance in this response is split into two regions, with

some effects crossing between the two. The dividing phenomenon appears to be when the

fuel has expanded through the gap to contact the cladding, which occurs around 0.015

FIMA. Prior to this, there is an interesting interplay between the sensitivities to gap

thickness, the creep rate, and the fuel conductivity, with lesser impact from the system

power and clad conductivity. Clearly the ability to remove heat effectively from the fuel

has a large impact on how likely fission gas is released. After contact, the variance in

the fuel conductivity and system power dominate variance in the fission gas released.

9.3.3 Maximum Cladding Creep Strain

Cladding creep describes the physics of pressurized water outside the fuel cladding press-

ing onto the cladding while the cladding experiences changes in temperature. Clad creep

strain is the measure of the strain on the cladding as a result of creep.
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Figure 9.7: Maximum Cladding Creep Strain Sensitivities

As can be seen in Figure 9.7, the variance in this response has three distinct regions:

before fuel-clad contact, high-power contact, and low-power contact. Nearly all the way

through the simulation, the variance in the creep strain is unsurprisingly dominated by

variance in the creep rate. Once contact is made, however, the gap thickness plays a

more important role, and grows in importance until the second drop in power. This is

likely because the creep strain is mitigated by the expanding fuel pushing back onto the

cladding, and the size of the gap determines how early that strain begins to be relieved.

Also of interest, the variance in the clad conductivity is initially important, but tails off

as physics besides the moderator pressure begin influencing the creep strain. The fuel

expansion and fuel swelling parameters, which describe the fuel expansion as a result

of both thermal expansion and cracking and expansion due to fission gas buildup, are

important after contact and before the second power drop, but insignificant in the first

and third portions of the simulation.

9.3.4 Clad Elongation

Clad elongation measures the changing length of the clad as temperatures and pressures

act on it throughout the simulation. As seen in Figure 9.3, the clad tends to elongate

quickly under high power, but tails off as power diminishes.
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Figure 9.8: Clad Elongation Sensitivities

As can be seen in Figure 9.8, the variance in this response has two remarkably different

sets of physics, one before fuel-clad contact and one after. Before contact, the variance

in the elongation is determined by variance in the clad conductivity, inlet temperature,

and system power, with growing importance from the fuel density. The first three

parameters all deal with the amount of heat the clad is receiving and its ability to remove

it, suggesting during this phase thermal expansion is the main source of elongation. As

the fuel expands, however, the fuel density grows in importance until contact is made.

After contact, the elongation variance is initially determined almost solely by the gap

thickness, which determines when exactly the fuel begins to push on to the clad. This

slowly trades places with the creep rate as power levels diminish and the expanding fuel

provides less variance than the pressure of the moderator. Interestingly, even as the gap

thickness diminishes in importance, the fuel swelling parameter grows during the power

reduction, showing how after contact the gap thickness becomes less important than the

swelling of the fuel itself.
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9.4 Conclusion

Time-dependent sensitivity analysis provides means to better understand uncertainty

propagation throughout a transient simulation. As physics shift throughout the simu-

lation, so too does the sensitivity of the response to the input parameters. If this same

simulation were performed using only static analysis on time-averaged responses, the

ability to make informed and accurate decisions would be reduced because of the lack

of time-dependent information. The addition of time-dependent analysis is quite ben-

eficial to analysts considering time-dependent simulations, and doing so using SCgPC

and HDMR provides means to perform this analysis with much less computational time

than MC for many problems.



Chapter 10

Conclusions

10.1 Introduction

In this work we have explored the advanced uncertainty quantification methods Stochas-

tic Collocation for generalized Polynomial Chaos (SCgPC) and High-Dimensional Model

Representation (HDMR), and their application to a variety of models. In addition to

implementing existing algorithms in uncertainty quantification framework RAVEN, new

predictive methods for adaptive algorithms have been introduced and demonstrated.

We have compared convergence performance to traditional analog Monte Carlo (MC),

and observed cases both when collocation-based methods are desirable and when MC is

preferable. We have also demonstrated performance of these methods on three engineer-

ing problems, including single physics neutronics, multiphysics coupled neutronics and

nuclear fuels performance, and time-dependent analysis of an OECD benchmark. Here

we summarize the observed results and generalize them, as well as discuss limitations

discovered during this work.

In Chapter 2 we discussed uncertainty quantification in general, including the concepts

of uncertain input spaces and uncertain responses. We discussed statistical moments

and why they are valuable in describing output responses. We also considered analysis

that can be performed once basic uncertainty quantification has been completed. We

considered three traditional uncertainty quantification techniques for numerical models,

including MC, Grid, and Latin Hypercube sampling, and motivated advanced methods

for uncertainty quantification.

171
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In Chapter 3 we introduced the generalized Polynomial Chaos (gPC) expansion method,

and its applicability to response-input relationships. We discussed several static meth-

ods for choosing polynomials to include in gPC expansions, and the merits of each.

We also introduced Smolyak-based sparse grid quadrature as a collocation technique

to numerically construct gPC methods, leading to the full Stochastic Collocation for

generalized Polynomial Chaos (SCgPC) methodology. Finally, we introduced existing

adaptive techniques for SCgPC and expanded them to include novel prediction algo-

rithms.

In Chapter 4 we considered the application of SCgPC to a variety of analytic models

of increasing complexity, varying the regularity and size of the input space for many

problems. We mostly considered problems that are tensor and isotropic in nature, but

also evaluated models with a wide range of analytic polynomial representations. We set

convergence of second-order statistics with as few computational solves as possible as the

benchmark for uncertainty quantification methods. We observed SCgPC to outperform

MC in cases when the response was regular and the dimensionality of the input space

was small. At worst, SCgPC usually performed on-par with Monte Carlo except when

the response was discontinuous.

In Chapter 5 we furthered SCgPC by introducing the high-dimensional model represen-

tation (HDMR), in which the response is expanded as the linear superposition of many

subset terms that rely on some subset of the input space. We demonstrated the ANOVA

approach to HDMR, and also demonstrated its inconvenience for numerical computa-

tion. We introduced cut-HDMR, which makes some approximation to ANOVA HDMR

but simplifies calculations substantially. We also showed that ANOVA expansion mo-

ments could be recovered for cut-HDMR. We further showed that SCgPC made an ideal

candidate to expand the subset terms in cut-HDMR because of their orthogonal proper-

ties and efficiency converging regular responses with small-dimensionality input spaces.

Finally, we introduced adaptive HDMR with adaptive SCgPC subsets, and added novel

algorithms to reduce the cost of performing adaptive searches.

In Chapter 6 we considered the application of HDMR methods to the analytic mod-

els introduced in Chapter 4. In general we observed similar performance, and noted

that HDMR methods seldom outperform SCgPC methods, but might allow uncertainty

quantification to be performed even when SCgPC is prohibitively expensive.
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In Chapter 7 we demonstrated SCgPC and HDMR on a single-physics neutronics bench-

mark calculation. We observed strong linearity in the responses, which allowed all the

static SCgPC and HDMR methods to very quickly converge on solutions for the mo-

ments of the responses. We demonstrated several orders of magnitude improvement in

convergence for SCgPC and HDMR over MC for these responses.

In Chapter 8 we increased model complexity by considering a multiphysics coupled neu-

tronics and fuel performance benchmark. We applied SCgPC and HDMR to this model

and discovered once again several orders of magnitude faster convergence on second-order

statistics from SCgPC and HDMR when compared to MC, continuing to support the

idea that significant linearity still exists in this model despite the multiphysics coupling.

In Chapter 9 we applied low-order HDMR to a time-dependent sensitivity study of an

OECD fuels performance benchmark case. We observed that with only a few evaluations,

significant patterns of changing physics were detectable in changing sensitivities as a

function of time. These changing sensitivities present valuable information that would

not be accessible without time-dependent sensitivity analysis, which was made possible

by implementing this analysis for SCgPC and HDMR methods in RAVEN.

10.2 Performance Determination

The results of this work are twofold. First, we added novel prediction algorithms for

both the SCgPC and HDMR (using SCgPC subsets) adaptive expansion algorithms.

Second, we demonstrated performance of these algorithms in an industry uncertainty

quantification code (RAVEN(), and applied them to analysis of existing industry codes

(BISON, RATTLESNAKE, and MAMMOTH). While we can observe trends in behavior, we ac-

knowledge our observations are taken from analysis of only a few applications, and are

not representative of all possible uses.

As seen in several analytic models as well as engineering performance models, the con-

vergence rate of both SCgPC as well as HDMR (using SCgPC subsets) depends pri-

marily on two factors. First, despite many tools to combat the curse of dimensionality,

grid-based collocation methods still degrade significantly as the size of the input space

increases. For any more than approximately 10 independent inputs, collocation-based
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methods often perform little better than Monte Carlo until many thousands of sam-

ples are taken. Second, SCgPC and HDMR perform much better for models with a

high level of continuity than discontinuous models. As seen in the Sobol G-Function,

the collocation methods have great difficulty representing the absolute value function.

However, for models with high levels of continuity and low dimensionality, collocation

methods prove very effective in comparison to traditional Monte Carlo methods, often

by requiring orders of magnitude fewer evaluations for similar accuracy.

Between different collocation-based methods, we also see several trends. First, static

HDMR methods never outperform their corresponding SCgPC methods; that is, second-

order polynomial expansions in SCgPC always match or outperform HDMR methods

that are limited to second-order polynomials. This is expected because HDMR at any

truncation is a subset of the SCgPC expansion. However, the static HDMR method is

still valuable, as even in larger input dimensionality problems some solution, however

inaccurate, can be obtained with few runs. For example, for first-order HDMR using

first-order polynomials, only three times the input dimensionality samples are required

to obtain a solution. For very costly models, it may not be possible to use SCgPC

without HDMR.

Second, we observe for all continuous functions the total degree polynomial construction

method significantly outperforms the hyperbolic cross method, as expected by its design.

Since polynomial expansion methods struggle to perform well for discontinuous models

anyway, total degree is a good method to use if the response is expected to be smooth.

Third, we note that for the engineering applications considered, low-order polynomials

with low-order interactions were sufficient to capture the uncertainty of the responses

considered as accurately as using Monte Carlo with ten thousand samples. This lends

to the idea that, in general, the quantities of interest in fuels performance and neutron-

ics codes have low-order interactions between inputs, and a nearly linear relationship

between the inputs and the response.

Finally, we note that in general the adaptive methods seldom completely outperform

all the other collocation methods. Because the prediction algorithm is imperfect, there

will always be a static choice of polynomials that is more effecient. However, if the

nature of the response in polynomial representation is not well-known, the adaptive

algorithms can be effective tools in exploring the response polynomial space, especially
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when anisotropic dependence of a response on some inputs is expected but the degree

of anisotropy is unknown.

10.3 Limitations Discovered

One limitation discovered during this work is the reliability of model algorithms. Because

many engineering codes are complicated and involve a great number of options to assure

particular realizations can be solved, they are also often somewhat fragile. Changes in

the input space can require changes in other solution options, such as preconditioning

tools, spatial and temporal step sizes, and so on. The changes required are often not

predictable, and if not applied, can result in regular failure to converge a solution.

Traditional Monte Carlo methods overcome this issue by rejecting failed points and

choosing new samples. This introduces some bias, but ideally a small amount relative

to the overall sample size. For collocation-based methods, however, re-sampling is not a

valid option, and failure to converge results for any quadrature point results in a failure

of the method. In the process of searching for a suitable engineering demonstration

model, many months were spent considering problems using a variety of codes; however,

after extensive collaboration, it was determined many of these codes accepted as much as

a 10% failure rate in random perturbations of the input space. This failure rate almost

surely renders the collocation-based methods unusable. Thus, in addition to considering

the dimensionality of the input space and regularity of the response, the robustness of

the algorithms used to solve the model responses must be considered before applying

SCgPC or HDMR methods.

10.4 Future Work

There are results in this work that naturally lead to areas of improvement that could be

explored. We mention some of them here.
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10.4.1 Adaptive Quadrature Order

One limitation observed for Smolyak sparse grid quadrature is integrating low-order

polynomials poorly if there are no higher-order polynomials in the index set. The as-

sumption made is that acceptable error should be of the same order as the truncation

error of the SCgPC expansion. While this works well for higher-order polynomials, it

can lead to very poor integration of expansion coefficients at low orders. As a result, it

could be beneficial to provide a parameter that is the lowest bound for quadrature size

that can be set by an analyst in the event poor results are observed.

Additionally, it should be possible to implement some sort of convergence algorithm

for quadrature use so that the SCgPC can estimate how well expansion coefficients are

being calculated. If the error estimate is sufficiently high, the algorithm could adaptively

increase the order of the quadrature in hopes of performing much better integration for

low-order polynomials.

One of the struggles for this algorithm will be efficiency. Because most models using only

low-order polynomials are probably computationally expensive, arbitrarily increasing

quadrature orders may not be possible given available resources. An intelligent method

of estimating quadrature integration convergence might close this gap.

10.4.2 Impact Inertia for Adaptive Samplers

The failure of adaptive SCgPC and adaptive HDMR to resolve responses that are ex-

clusively even or exclusively odd in polynomial order is troubling. This failure occurs

because the algorithm currently only uses the immediate proceeding entries in the ex-

pansions to determine the likelihood of a future term in the expansion contributing

to the variance of the response. Thus, if a zero-contribution term exists between two

contributing terms, it prevents the algorithm from moving forward.

One way to combat this stagnation would be to include an inertia term in the expansion

predictions. This would allow a potential expansion addition to not only consider its

most immediate predecessors, but several additional terms as well. For example, when

estimating the impact of a fourth-order polynomial, not only the third-order polynomial

impact is considered, but the second- and first-order as well. Presumably there would be
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a decay of impact as distance from the proposed expansion term increased, or perhaps

a hard line set by the user for how many past terms could be considered.

While this would not prevent stagnation entirely, it would greatly increase the robustness

of the algorithm in seeking out the expansion terms most likely to help resolve the

approximation of the response.



Appendix A

Quadratures, Polynomials, and

Distributions

A.1 Introduction

Thanks to the work of Xiu and Karniadakis [27], many distributions have corresponding

polynomials and integrating quadratures that are ideally suited for generalized Poly-

nomial Chaos (gPC) expansion construction. In this appendix, we consider the four

continuous distributions with corresponding ideal polynomials and quadratures, as well

as an arbitrary case for other distributions. In general, domain transformations must

be performed to shape a general distribution into a form that matches the quadrature

integration scheme; we discuss those transformations for each distribution here as well.

For clarity, we define x as the variable for standard distributions and domains, while

y is the variable for generic distributions and domains. Transformation involves the

relationship between x and y.

A.1.1 General Syntax

We use the following syntax when describing polynomials, distributions, normalizations,

and quadratures.

• x: Argument of standard distribution with specific domain.

178
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• y: Argument of general distribution with generic domain.

• h(y): Generic function with dependence on distributed variable y.

• ρ(y): Probability measure, or the functional part of the probability distribution.

• A: Normalization factor, or scalar part of the probability distributions.

• µ: Distribution mean.

• σ: Distribution standard deviation.

Note that because of the definitions above, for each distribution we require

A

b∫
a

ρ(y)dy = 1, (A.1)

where a and b are the extreme values of the distribution, and might be infinite. We also

make use of the two standard functions, the Gamma function (not to be confused with

the Gamma distribution),

Γ(x) =

∞∫
0

zx−1 exp(−z)dz, (A.2)

and the Beta function (not to be confused with the Beta distribution),

B(z1, z2) =

1∫
0

tz1−1(1− t)z2−1dt. (A.3)

In each example the quadrature nodes and weights xi, wi will use subscripts that relate

to the symbol of the associated polynomials, for increased clarity.

A.2 Uniform Distributions and Legendre Polynomials

The uniform distribution is a single value between finite extrema a and b and zero every-

where else so that x ∈ [a, b]. The uniform distribution has the following characteristics.

µ =
a+ b

2
, (A.4)

σ =
b− a

2
(A.5)
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A =
1

2σ
, (A.6)

ρ(y) = 1, (A.7)

1 =
1

2σ

∫ b

a
dy. (A.8)

Legendre polynomials Pn(x) are defined on the range x ∈ [−1, 1] with polynomial order

n ∈ N. They are defined by the contour integral [65]

Pn(x) =
1

2πi

∮ (
1− 2tx+ t2

)−1/2
t−n−1dt, (A.9)

and are made orthonormal as

2n− 1

2

1∫
−1

Pm(x)Pn(x)dx = δmn. (A.10)

Legendre quadrature approximates the following integrals:

1∫
−1

h(x)d(x) =

∞∑
`=1

w`h(x`) (A.11)

In order to convert a general uniform distribution to share the domain of Legendre

polynomials and quadrature, the following conversion is necessary:

y = σx+ µ, (A.12)

x =
y − µ
σ

. (A.13)

As a result, Legendre quadrature integrates arbitrary uniform distributions as

∫ b

a
h(y)ρ(y)dy =

1

2

∞∑
`=1

w`h(σx` + µ). (A.14)

A.3 Normal Distribution and Hermite Polynomials

The normal distribution is a symmetric, bell-shaped distribution with domain y ∈

(−∞,∞). The normal distribution has the following characteristics.

ρ(y) = exp

(
−(y − µ)2

2σ2

)
, (A.15)
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A =
1

σ
√

2π
, (A.16)

1 =
1

σ
√

2π

∫ ∞
−∞

exp

(
−(y − µ)2

2σ2

)
dy. (A.17)

Hermite polynomials Hen(x) are defined on the range x ∈ (−∞,∞) with polynomial

order n ∈ N. They can be defined through the contour integral [65]

Hen(x) =
n!

2πi

∮
exp
(
−t2 + 2tx

)
t−n−1dt, (A.18)

and are made orthonormal as

1√
2πn!

∞∫
−∞

Hem(x)Hen(x) exp

(
−x2

2

)
dx = δm,n. (A.19)

Hermite quadrature approximates the following integrals:

∞∫
−∞

h(x) exp

(
−x2

2

)
dy =

∞∑
h=1

whh(xh). (A.20)

In order to convert a general normal distribution to share the domain of Hermite poly-

nomials and quadrature, the following conversion is necessary:

y = σx+ µ, (A.21)

x =
y − µ
σ

, (A.22)

As a result, Hermite quadrature integrates arbitrary normal distributions as

∞∫
−∞

h(y)ρ(y)dy =
1√
2π

∞∑
h=1

whh(σxh + µ). (A.23)

A.4 Gamma Distribution and Laguerre Polynomials

The Gamma distribution has a finite lower bound a and infinite upper bound so that

y ∈ [a,∞). This distribution also takes as an argument shape factors α and β. The

Gamma distribution has the following characteristics:

ρ(y) = yα−1e−βy, (A.24)
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A =
βα

Γ(α)
, (A.25)

1 =
βα

Γ(α)

∫ ∞
a

(y − a)α−1e−β(y−a)dy. (A.26)

Laguerre polynomials Ln(x)(α̃) are defined on the range x ∈ [0,∞] with polynomial

order n ∈ N. An additional argument α̃ is required to specify the polynomial family.

Note that we use α̃ for the polynomial parameter, and α for the distribution parameter.

Laguerre polynomials can be defined through the contour integral [65]

L(α̃)
n (x) =

1

2πi

∮
1

(1− t)α̃+1)tn+1
exp

(
− xt

1− t

)
dt, (A.27)

and are made orthonormal as

n!

Γ(n+ α̃+ 1)

∞∫
0

xαe−xL(α̃)
m L(α̃)

n dx = δmn. (A.28)

Laguerre quadrature approximates the following integrals:

∞∫
0

h(x)xα̃e−xdx =
∞∑
g=1

wgh(xg). (A.29)

In order to convert a general Gamma distribution to share the domain of Laguerre

polynomials and quadrature, the following conversion is necessary:

y =
x

β
+ L, (A.30)

x = (y − L)β. (A.31)

As a result, ∫ ∞
L

h(y)ρ(y)dy =
1

(α− 1)!

∞∑
g=1

wgh

(
xg
β

+ L

)
, (A.32)

where points and weights are obtained using α̃ = α − 1 for Laguerre polynomials and

quadrature.
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A.5 Beta Distribution and Jacobi Polynomials

The Beta distribution is a flexible distribution with finite range y ∈ [a, b] and shaping

parameters α and β. In the event α = β, the distribution is symmetric. If α = β = 0, the

uniform distribution is recovered. The Beta distribution has the following characteristics:

ρ(y) = yα−1(1− y)β−1, (A.33)

A =
Γ(α+ β)

Γ(α)Γ(β)
, (A.34)

1 =
Γ(α+ β)

Γ(α)Γ(β)

∫ b

a
yα−1(1− y)β−1dy. (A.35)

Jacobi polynomials Jn(x)(α̃,β̃) are defined on the range [−1, 1] with polynomial order

n ∈ N. Two shaping arguments α̃ and β̃ are used to uniquely define the polynomial

family. Note that we use α̃, β̃ for the polynomial parameters, and α, β for the distribu-

tion parameters. Jacobi polynomials can be defined through solution of the recurrence

relation as

J (α̃,β̃)
n (x) =

(−1)n

2nn!
(1− x)−α̃(1 + x)−β̃

dn

dxn

[
(1− x)α̃+n(1 + x)β̃+n

]
, (A.36)

where both α̃ and β̃ are greater than -1. Jacobi polynomials are made orthonormal as

ξ(α̃, β̃, n)

1∫
−1

(1− x)α̃(1 + x)β̃J (α̃,β̃)
m (x)J (α̃,β̃)

n (x)dx = δmn, (A.37)

where

ξ(α̃, β̃, n) =
2n+ α̃+ β̃ + 1

2α̃+β̃+1

Γ(n+ α̃+ 1)Γ(n+ β̃ + 1)

Γ(n+ α̃+ β̃ + 1)n!
. (A.38)

Jacobi quadrature approximates the following integrals:

∫ 1

−1
h(x)(1− x)α̃(1 + x)β̃dx =

∞∑
j=1

wjh(xj) (A.39)

Transforming general Beta distributions to compatible domain with Jacobi polynomials

and quadrature will be done in two steps, first to standard Beta distribution (using

variable argument z) and then to Jacobi quadrature domain. To convert to standard
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Beta:

z =
y − a
b− L

, y = (b− a)z + a, dy = (b− a)dz, (A.40)

1 =
1

B(α, β)

∫ 1

0
zα−1(1− z)β−1dz, (A.41)

To convert to same form as the Jacobi probability weight,

z =
1 + x

2
, x = 2z − 1, dz =

1

2
dx, (A.42)

so that

1 =
1

2α+β−1B(α, β)

∫ 1

−1
(1 + x)α−1(1− x)β−1dx. (A.43)

Combining the transformations,

y =
b− a

2
x+

b+ a

2
, x =

(
y − b+ a

2

)(
2

b− a

)
(A.44)

In a potentially confusing twist, the Jacobi polynomial characteristic α̃ is related to the

Beta distribution parameter β, and the Jacobi polynomial characteristic β̃ is related to

the Beta distribution parameter α, as

α̃ = β − 1, β̃ = α− 1. (A.45)

As a result,

∫ b

a
h(y)ρ(y)dy =

1

2α̃+β̃−1B(α̃, β̃)

∞∑
B=1

wBh

(
b− a

2
xB +

b+ a

2

)
. (A.46)

A.6 Arbitrary Distributions and Legendre Polynomials

In general there is not a family of polynomials and quadratures that corresponds nicely

for every probabilistic distribution. However, many continuous distributions have a CDF

and inverse CDF that map the distribution to and from the domain [0, 1]. As a result,

we can apply Legendre quadrature to the converted space. This does not perfectly

preserve the integration properties of Gaussian quadrature, but does allow for general

distributions to be covered. We require for arbitrary distributions that y is finite, or
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−∞ < a ≤ y ≤ b <∞. In this case, the distribution has the following properties:

ρ(y) = ρ(y), (A.47)

F (y) =

∫ y

a
ρ(y′)dy′, (A.48)

1 =

∫ b

a
ρ(y)dy. (A.49)

We now consider transforming to the domain [0, 1] using the CDF. Let u ∈ [0, 1], and

note F (y) ∈ [0, 1]. Let

du = dF (y) = ρ(y)dy, (A.50)

then

F (y) = u ∴ y = F−1(u), (A.51)

dy =
1

ρ(y)
du, (A.52)

∫ b

a
h(y)ρ(y)dy =

∫ 1

0
h
(
F−1(u)

)
ρ
(
F−1(u)

) 1

ρ(F−1(u))
du, (A.53)

=

∫ 1

0
h
(
F−1(u)

)
du. (A.54)

x =
u− µ
σ

∴ u = σx+ µ, (A.55)

u =
b̂− â

2
x+

b̂+ â

2
, b̂ = 1, â = 0, (A.56)

u =
1

2
(x+ 1), (A.57)

∫ b

a
h(y)ρ(y)dy =

∫ 1

0
h
(
F−1(u)

)
du, (A.58)

=
1

2

∞∑
`=1

w`h

(
F−1

(
1

2
(x` + 1)

))
du. (A.59)

In this manner, arbitrary distributions with a continuous CDF and inverse CDF can be

expanded using Legendre polynomials and integrated using Legendre quadrature. This

work was presented in [27], and we have added the transformation algorithms explicitly.



Appendix B

Recovering ANOVA from

cut-HDMR

B.1 Introduction

When using SCgPC to represent individual cut-HDMR subsets (see 5.3), it is simple

to recover analytic ANOVA statistics for a cut-HDMR expansion, despite the lack of

orthogonality in cut-HDMR terms. This is because the gPC components of each subset

term are replete with orthogonal relationships. Note that while the following algorithm

will obtain ANOVA results for cut-HDMR terms, the statistics gathered are for the

cut-HDMR expansion, not for the original model. When the cut-HDMR expansion is

truncated, the ANOVA terms will only be as accurate to the original model as the

cut-HDMR expansion itself is.

To reconstruct the ANOVA decomposition of a cut-HDMR expansion, we simply apply

ANOVA to the cut-HDMR expansion, which results in significant reduction of terms due

to gPC orthogonalities. We begin at the cut-HDMR expansion with subsets determined

186



Appendix 2. Recovering ANOVA from cut-HDMR 187

by generalized polynomial chaos expansions by repeating Eq. 5.20,

T (Y ) ≈ tr +
N∑
n=1

 ∑
k′∈Λ′n(L′)

tn;k′Φk′(Yn)− tr

 (B.1)

+
N∑

n1=1

n1−1∑
n2=1

 ∑
k′∈Λ′m,n(L′)

tm,n;k′Φk′(Ym, Yn)− tm − tn − tr


+ · · ·

+

 ∑
k′∈Λ′1,··· ,N (L′)

t1,··· ,N ;k′Φk′(Y1, · · · , YN )− (· · · )

,
and recall the definition of ANOVA in Eq. 5.1, 5.2, 5.4, and 5.7. For demonstration, note

we truncate the cut-HDMR to second-order effects in Eq. B.1, but the concepts extend

to higher-order truncations. To further simplify, we consider a three-dimension input

space for T (Y ) = T (x, y, z), which again can be extended to higher dimensions. Further,

to simplify some notation, we express the generalized polynomial chaos expansion of a

subset with respect to an input variable yn as G(yn),

T (yn,
ˆ̄Yn) ≈ G(yn) =

∑
k′∈Λ′n(L′)

tn;k′Φk′(Yn), (B.2)

so that for example

tn(yn) = T (yn,
ˆ̄Yn)− tr ≈ G(yn)− tr. (B.3)

Eq. B.1 then becomes

T (x, y, z) = tr + tx + ty + tz + txy + txz + tyz, (B.4)

with the following definitions:

tr = T (x̄, ȳ, z̄), (B.5)

tx = T (x, ȳ, z̄)− tr ≈ G(x)− tr, (B.6)

ty = T (x̄, y, z̄)− tr ≈ G(y)− tr, (B.7)

tz = T (x̄, ȳ, z)− tr ≈ G(z)− tr, (B.8)

txy = T (x, y, z̄)− tx − ty − tr ≈ G(x, y)− tx − ty − tr, (B.9)
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txz = T (x, ȳ, z)− tx − tz − tr ≈ G(x, z)− tx − tz − tr, (B.10)

tyz = T (x̄, y, z)− ty − tz − tr ≈ G(y, z)− ty − tz − tr. (B.11)

Substituting and collecting terms,

T (x, y, z) ≈ tr −G(x)−G(y)−G(z) +G(x, y) +G(x, z) +G(y, z), (B.12)

where the approximation primarily depends on the ability of SCgPC to represent each

subset space. In the limit that infinite polynomials are available, the equation becomes

exact.

For the purposes of derivations in this section, we continue to implicitly assume all

integrations over an input space Ωn are with respect to ρn(yn),

∫
Ωn

f(yn)dyn =

∫ bn

an

ρn(yn)f(yn)dyn, (B.13)

∫
Ω

f(Y )dY =

∫ b1

a1

· · ·
∫ bN

aN

ρ(y1, · · · , yN )f(y1, · · · , yN )dy1 · · · , dyN . (B.14)

We now apply ANOVA to T (x, y, z) as H[T ](x, y, z) by considering each ANOVA subset

term individually. The first term in ANOVA, the expectation value h0, is given as

h0 =

∫
Ω

T (Y )dY, (B.15)

which expands into the sum of individual integrals

h0 =tr (B.16)

−
∫

Ωx

G(x)dx−
∫
Ωy

G(y)dy −
∫
Ωz

G(z)dz

+

∫
Ωx,y

G(x, y)dxdy +

∫
Ωx,z

G(x, z)dxdz +

∫
Ωy,z

G(y, z)dydz,

recalling that by definition ∫
Ωn

dyn = 1. (B.17)
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Also recalling the nature of the orthonormal polynomials families in SCgPC,

∫
Ωn

φkn(yn)dyn = 0 ∀ kn > 0, (B.18)

all nonzero polynomial terms integrate to zero,

∫
Ωx

G(x)dx =

∫
Ωx

∑
k′∈Λ′

ck′Φk′(x)dx = c
(x)
∅ , (B.19)

∫
Ωx,y

G(x, y)dxdy =

∫
Ωx,y

∑
k′∈Λ′

ck′Φk′(x, y)dxdy = c
(x,y)
∅ , (B.20)

where we use the parenthetical superscript to denote the subset origin of the scalar

coefficients and the subscript ∅ to indicate k = {0}Ns , where Ns is the dimensionality of

the expansion subset. Because of model symmetry, the same process applies for subsets

(y) and (z) as for subset (x), and the same process applies for subsets (x, z) and (y, z)

as for subset (x, y). As a result, the zeroth-order ANOVA term is

h0 = tr − c(x)
∅ − c

(y)
∅ − c

(z)
∅ + c

(x,y)
∅ + c

(x,z)
∅ + c

(y,z)
∅ , (B.21)

or simply the zeroth polynomial order contribution terms from each subset expansion

subset in Eq. B.12.

For first-order ANOVA terms (first-order interactions), we consider first hx.

hx =

∫
Ωy,z

T (x, y, z) dy dz − h0, (B.22)

= tr −G(x)−
∫
Ωy

G(y) dy −
∫
Ωz

G(z) dz +

∫
Ωy

G(x, y) dy +

∫
Ωz

G(x, z) dz

+

∫
Ωy,z

G(y, z) dy dz − h0.



Appendix 2. Recovering ANOVA from cut-HDMR 190

Performing the integrals, for example

∫
Ωy

G(x, y) dy =

∫
Ωy

∑
k∈Λ

ckΦk(x, y) dx, (B.23)

=

 0, ky ≥ 1,

c(kx,0)φkx(x), ky = 0,


=

∑
k ∈ Λ

ky = 0

ckφkx(x).

Evaluating all integrations and simplifying, we have an expression for hx,

hx = tr −G(x)− c(y)
∅ − c

(z)
∅ +

∑
k ∈ Λ

ky = 0

c
(xy)
k φkx(x) +

∑
k ∈ Λ

kz = 0

c
(xz)
k φkx(x) + c

(yz)
∅ − h0,

(B.24)

= c
(x)
∅ −G(x) +

∑
k ∈ Λ

ky = 0

c
(xy)
k φkx(x) +

∑
k ∈ Λ

kz = 0

c
(xz)
k φkx(x)− c(xy)

∅ − c(xz)
∅ ,

= −
∑
k ∈ Λ

kx > 0

c
(x)
k Φk(x) +

∑
k ∈ Λ

kx > 0

ky = 0

c
(xy)
k φkx(x) +

∑
k ∈ Λ

kx > 0

kz = 0

c
(xz)
k φkx(x).

Note that all the terms in Eq. B.24 are elements from each polynomial set where the only

nonzero polynomial orders are those with respect to x. Because of the model symmetry

in the cut-HDMR expansion, the procedure for hy and hz will be identical to hx.

For second-order ANOVA terms (second-order interactions), we consider hx,y.

hx,y =

∫
Ωz

T (x, y, z) dz − hx − hy − h0, (B.25)

= tr −G(x)−G(y)− c(z)
∅ +G(x, y) +

∑
k ∈ Λ

kz = 0

c
(xz)
k φkx(x) +

∑
k ∈ Λ

kz = 0

c
(yz)
k φky(y)

− hx − hy − h0,

=
∑
k ∈ Λ

kx > 0

ky > 0

ckΦk(x, y).
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As with the first-order case, the second-order case contains only those polynomials whose

order is greater than zero in all of its dependencies. Model symmetry dictates the same

procedure for both hx,z and hy,z as hx,y.

With all of the ANOVA terms in Eq. 5.1 calculated, it is possible to obtain moments

of the cut-HDMR expansion using them. The expected value is simply the zeroth-order

ANOVA term. The only subset gPC polynomials that do not integrate to zero are those

that are entirely zeroth-order polynomials.

E[H[T ](x, y, z)] = h0. (B.26)

The second moment is the integral of the sum of the square of the terms, because each

ANOVA term is orthogonal with respect to the remainder of the ANOVA terms,

E[H[T ](x, y, z)2] = h2
0 +

∫
Ω

h2
x + h2

y + h2
z + h2

x,y + h2
x,z + h2

y,zdxdydz. (B.27)

Because of the orthonormal properties of the polynomials within each expansion term,

∫
Ω

∑
`∈Λ1

∑
k∈Λ2

Φ`(x, y, z)Φk(x, y, z) dx dy dz = δ`,k, (B.28)

and because lower-dimensional polynomials are subsets of higher-dimensional polynomi-

als,

Φkx=1(x) = Φkx=1,ky=0,kz=0(x, y, z) = Φ1,0,0(x, y, z), (B.29)

Φky=1(y) = Φkx=0,ky=1,kz=0(x, y, z) = Φ0,1,0(x, y, z), (B.30)

Φkz=1(y) = Φkx=0,ky=0,kz=1(x, y, z) = Φ0,0,1(x, y, z), (B.31)

and so on, The integral of the square of each term is the sum of the squares of each

applicable polynomial coefficient. For h2
x,

∫
Ωx

h2
xdx =

∑
k ∈ Λ

kx > 0

(
c

(x)
k

)2
+

∑
k ∈ Λ

kx > 0

ky = 0

(
c

(xy)
k

)2
+

∑
k ∈ Λ

kx > 0

kz = 0

(
c

(xz)
k

)2
, (B.32)
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and by symmetry we obtain h2
y and h2

z as well. For h2
x,y,∫

Ω

h2
xy dx dy =

∑
k ∈ Λ

kx > 0

ky > 0

(
c

(xy)
k

)2
, (B.33)

and similarly for h2
x,z and h2

y,z.

Note that implementing cut-HDMR to ANOVA algorithms is more straightforward than

the derivation; ultimately, the Sobol coefficients, which are equivalent to the second mo-

ment of each ANOVA subset term, are simply a sum of the square of all the coefficients

in all the constituent cut-HDMR subset SCgPC terms for whom the only nonzero poly-

nomials are those that the Sobol coefficient term is with respect to. Because the terms

in both the expected value and the variance are only scalar values, there are efficient to

obtain computationally with a high degree of accuracy and with little effort to imple-

ment.
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