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Abstract

The subject of this dissertation is a moment-preserving Monte Carlo electron trans-

port method that is more efficient than analog or detailed Monte Carlo simulations,

yet provides accuracy that is statistically indistinguishable from the detailed simula-

tion. Moreover, the Moment-Preserving (MP) method is formulated such that it is

distinctly different than Condensed History (CH) methods making the MP method

free of the limitations inherent to CH and proving a viable alternative for trans-

porting electrons. Analog, or detailed, Monte Carlo simulations of charged particle

transport is computationally intensive; thus, it is impractical for routine calcula-

tions. The computational cost of analog Monte Carlo is directly attributed to the

underlying charged particle physics characterized by extremely short mean free paths

(mfp) and highly peaked differential cross sections (DCS). As a result, a variety of

efficient, although approximate solution methods were developed over the past 60

years. The most prolific method is referred to as the Condensed History method.

However, CH is widely known to suffer from inconsistencies between the underlying
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theory and the application of the method to real, physical problems. Therefore, it

is of interest to develop an alternative method that is both efficient and accurate,

but also a completely different approach to solving the charged particle transport

equation that is free of the limitations inherent to CH. This approach arose from the

development of a variety of reduced order physics (ROP) methods that utilize ap-

proximate representations of the collision operators. The purpose of this dissertation

is the theoretical development and numerical demonstration of an alternative to CH

referred to as the Moment-Preserving method. The MP method poses a transport

equation with reduced order physics models characterized by less-peaked DCS with

longer mfps. Utilizing pre-existing single-scatter algorithms for transporting parti-

cles, a solution to the aforementioned transport equation is obtained efficiently with

analog level accuracy. The process of constructing ROP models and their properties

are presented in detail. A wide variety of theoretical and applied charged particle

transport problems are studied including: calculation of angular distributions and

energy spectra, longitudinal and lateral distributions, energy deposition in one and

two dimensions, a validation of the method for energy deposition and charge de-

position calculations, and response function calculations for full three-dimensional

detailed detector geometries. It is shown that the accuracy of the MP method is

systematically controllable through refinement of the ROP models. In many cases,

efficiency gains of two to three orders of magnitude over analog Monte Carlo are

demonstrated, while maintaining analog level accuracy. That is, solutions gener-

ated sufficient ROP DCS models are statistically indistinguishable from the analog

solution. To maintain analog level accuracy under strict problem conditions, small

efficiency gains are realized. However, loss of efficiency under these conditions is

true of all approximate methods, but the MP method remains accurate where other

methods may fail. That is not to say the MP method does not suffer from limitations

because the MP method will result in discrete artifacts when the problems condi-

tions are strict. However, where limitations of the method arise, they are overcome
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through systematic refinement of the ROP DCS models required by the method. In

addition to accuracy and efficiency results, it is shown that the MP method does not

require a boundary crossing or pathlength correction algorithm, which is in great

contrast to the CH method. Finally, implementation and maintenance of the MP

method was found to be straightforward and requires significantly less effort than

CH when measured by the number of lines of code required for each method. In

particular, as compared with the class II CH method utilized in the Geant4 standard

electromagnetic physics list. Ultimately, the MP is shown to be accurate, efficient,

versatile, and simple to implement and maintain.
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3.9 Möller total cross-section and mfp for inelastic collisions with alu-

minum and gold nuclei. . . . . . . . . . . . . . . . . . . . . . . . . . 34

xiii



List of Figures

3.10 Comparison of stopping powers. . . . . . . . . . . . . . . . . . . . . 35

4.1 Problem schematic for analog calculation examples. . . . . . . . . . 53

4.2 Reflected and transmitted angular distributions of 1000-keV elec-

trons in aluminum slabs with thickness of 100, 300, 1000, and 3000

analog mfp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.3 Reflected and transmitted angular distributions of 1000-keV elec-

trons in gold slabs with thickness of 100, 300, 1000, and 3000 analog

mfp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.4 Reflected and transmitted energy-loss spectra for 1000-keV electrons

in aluminum slabs with thickness of 100, 300, 1000, and 3000 analog

mfp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.5 Reflected and transmitted energy spectra for 1000-keV electrons in

gold slabs with thickness of 100, 300, 1000, and 3000 analog mfp. . . 58

4.6 Longitudinal and lateral distributions of 1000-keV electrons in gold

slabs with thickness of 100, 300, and 1000 analog mfp. . . . . . . . . 58

4.7 Depth-dose profiles for 20000-keV electrons in water and 250-keV

electrons in gold. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.8 Charge deposition for 5000-keV and 10000-keV electrons in aluminum

and gold. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.9 Schematic of the CEASE telescope used to measure energy spectra [1]. 62

4.10 CEASE telescope energy threshold matrix with channel labels . . . . 63

4.11 CEASE telescope response function. . . . . . . . . . . . . . . . . . . 64

xiv



List of Figures

5.1 The normal distribution. . . . . . . . . . . . . . . . . . . . . . . . . 66

5.2 Legendre moments and momentum transfer moments of the Partial-

wave differential cross-section for elastic collisions with aluminum

and gold nuclei.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.3 Energy-loss moments of the Möller differential cross-section for in-

elastic collisions with aluminum and gold atomic electrons. . . . . . 70

5.4 Hypothetical paths traveled by electrons. . . . . . . . . . . . . . . . 72

7.1 Comparison of total cross section of screened Rutherford DCS with

several discrete and hybrid DCSs when colliding with gold nuclei. . . 106

7.2 Comparison of total cross section of Moller DCS with several discrete

DCSs when colliding with gold nuclei. . . . . . . . . . . . . . . . . . 106

7.3 Impact of regularization process on reduced order physics DCSs. . . 107

7.4 Comparison of eigenvalues of various approximations of the elastic

collision operator for 1-MeV electrons colliding with gold. . . . . . . 110

9.1 Problem setup for calculation of angular distributions and energy

spectra. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

9.2 Transmitted angular distributions for 10000-keV electrons on 100

mfp thick aluminum and gold slabs. . . . . . . . . . . . . . . . . . . 133

9.3 Transmitted angular distributions for 10000-keV electrons on 3000

mfp thick aluminum and gold slabs. . . . . . . . . . . . . . . . . . . 134

9.4 Impact of slab thickness on the transmitted angular distribution for

1000-keV electrons on gold. . . . . . . . . . . . . . . . . . . . . . . . 136

xv



List of Figures

9.5 Impact of aluminum slab thickness on the reflected angular distribu-

tion for 10000-keV electrons on aluminum . . . . . . . . . . . . . . . 137

9.6 Impact of gold slab thickness on the reflected angular distribution

for 1000-keV electrons on gold. . . . . . . . . . . . . . . . . . . . . . 138

9.7 Impact of aluminum slab thickness on the transmitted energy-loss

spectra for 10000-keV electrons . . . . . . . . . . . . . . . . . . . . . 140

9.8 Impact of gold slab thickness on the transmitted energy-loss spectra

for 1000-keV electrons. . . . . . . . . . . . . . . . . . . . . . . . . . 141

9.9 Impact of gold slab thickness on the reflected energy-loss spectra for

10000-keV electrons. . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

9.10 Impact of gold slab thickness on the reflected energy-loss spectra for

1000-keV electrons. . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

9.11 Problem setup for longitudinal and lateral distribution calculations. 147

9.12 Comparison of longitudinal distributions for 10000-keV electrons af-

ter traveling a distance of 100, 300, 1000, and 3000 analog elastic

mfps in copper. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

9.13 Comparison of lateral distributions for 10000-keV electrons after trav-

eling a distance of 100, 300, 1000, and 3000 analog elastic mfps in

copper. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

9.14 Comparison of longitudinal distributions for 1000-keV electrons after

traveling a distance of 100, 300, 1000, and 3000 analog elastic mfps

in copper. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

xvi



List of Figures

9.15 Comparison of lateral distributions for 1000-keV electrons after trav-

eling a distance of 100, 300, 1000, and 3000 analog elastic mfps in

copper. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

9.16 Comparison of longitudinal distributions for 100-keV electrons after

traveling a distance of 100, 300, 1000, and 3000 analog elastic mfps

in copper. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

9.17 Comparison of lateral distributions for 100-keV electrons after trav-

eling a distance of 100, 300, 1000, and 3000 analog elastic mfps in

copper. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

9.18 Comparison of depth-dose profiles for 250-keV electrons on gold. . . 158

9.19 Comparison of depth-dose profiles for 20000-keV electrons on water. 160

9.20 Comparison of depth-dose profiles for 150-keV electrons on a gold-

aluminum slab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

9.21 Problem setup for 150-keV electrons incident on 250-µm by 250-µm

Si cube with gold region . . . . . . . . . . . . . . . . . . . . . . . . . 163

9.22 The relative error in dose from 150-keV electrons in a 250-µm by

250-µm Si/Au cube. . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

9.23 The problem setup and analog benchmark for 10000-keV electrons

on a water/bone cube . . . . . . . . . . . . . . . . . . . . . . . . . . 166

9.24 The relative error in dose from 10000-keV electrons on a water/bone

cube calculated using various discrete models. . . . . . . . . . . . . . 167

9.25 The relative error in dose from 10000-keV electrons on a water/bone

cube calculated using various hybrid models. . . . . . . . . . . . . . 168

xvii



List of Figures

9.26 The schematic of region dependent ROP DCS and the relative error

in dose from 10000-keV electrons on a water/bone cube calculated

using the region dependent ROP DCS with 8-angles applied near the

source and 4-angles applied in all other regions. . . . . . . . . . . . . 170

9.27 The schematic of region dependent ROP DCS and the relative error

in dose from 10000-keV electrons on a water/bone cube calculated

using the region dependent ROP DCS with 8-angles applied in the

peak dose region and 1-angle applied in all other regions. . . . . . . 171

9.28 The problem setup for an isotropic point source located at the origin

of a gold cube (a) and the analog benchmark. . . . . . . . . . . . . . 172

9.29 The relative error in dose from 2500-keV electrons in a gold cube

calculated using various discrete models. . . . . . . . . . . . . . . . . 172

9.30 Comparison with Lockwood data for 1000-keV electrons normally on

carbon slab. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

9.31 Comparison with Lockwood data for 500-keV and 1000-keV electrons

normally incident on aluminum slab. . . . . . . . . . . . . . . . . . . 181

9.32 Comparison with Lockwood data for 500-keV and 1000-keV electrons

normally incident on molybdenum slab. . . . . . . . . . . . . . . . . 181

9.33 Comparison with Lockwood data for 500-keV and 1000-keV electrons

normally incident on tantalum slab. . . . . . . . . . . . . . . . . . . 182

9.34 Comparison with Lockwood data for 500-keV electrons with 60 de-

grees off-normal incidence on aluminum slab. . . . . . . . . . . . . . 182

9.35 Comparison with Lockwood data for 500-keV and 1000-keV electrons

with 60 degrees off-normal incidence on molybdenum slab. . . . . . . 183

xviii



List of Figures

9.36 Comparison with Lockwood data for 500-keV and 1000-keV electrons

with 60 degrees off-normal incidence on tantalum slab. . . . . . . . . 183

9.37 Comparison with Tabata data for 5000-keV electrons normally inci-

dent on an aluminum slab. . . . . . . . . . . . . . . . . . . . . . . . 186

9.38 Comparison with Tabata data for 10000-keV electrons normally in-

cident on an aluminum slab. . . . . . . . . . . . . . . . . . . . . . . 186

9.39 Comparison with Tabata data for 20000-keV electrons normally in-

cident on an aluminum slab. . . . . . . . . . . . . . . . . . . . . . . 187

9.40 Comparison with Tabata data for 5000-keV electrons normally inci-

dent on a gold slab. . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

9.41 Comparison with Tabata data for 10000-keV electrons normally in-

cident on a gold slab. . . . . . . . . . . . . . . . . . . . . . . . . . . 188

9.42 Comparison with Tabata data for 20000-keV electrons normally in-

cident on a gold slab. . . . . . . . . . . . . . . . . . . . . . . . . . . 188

9.43 Comparison of response functions. . . . . . . . . . . . . . . . . . . . 190

9.44 Electrons traversing the CEASE telescope. Collimator is in green

and electron tracks are in red. . . . . . . . . . . . . . . . . . . . . . 190

10.1 Comparison of experimental and theoretical energy deposition pro-

files in a tantalum/aluminum configuration for 500 and 1000-keV

electrons normally incident. . . . . . . . . . . . . . . . . . . . . . . . 196

10.2 Comparison of experimental and theoretical energy deposition pro-

files in an aluminum/gold/aluminum configuration for 1000-keV elec-

trons normally incident. . . . . . . . . . . . . . . . . . . . . . . . . . 197

xix



List of Figures

10.3 Energy-deposition distributions of 2-MeV electrons in aluminum and

gold. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

10.4 Energy deposition for 10-MeV and 20-MeV electrons in low-Z and

high-Z materials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

10.5 Charge-depostion distributions by 5, 10, and 20 MeV electrons inci-

dent on copper and silver . . . . . . . . . . . . . . . . . . . . . . . . 199

10.6 Comparison of experimental and theoretical energy backscatter for

electrons incident at 0◦ and 60◦ as a function of target atomic number.200

10.7 Back-scattering coefficient as a function of the mass thickness of alu-

minum films and gold films for different energies normally incident

electrons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

10.8 Absorption coefficient as a function of the mass thickness of alu-

minum films and gold films for different energies normally incident

electrons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

10.9 Fano cavity test schematic. . . . . . . . . . . . . . . . . . . . . . . . 202

10.10 Experimental geometry for Ross et al. experiment and differences of

the calculated and measured square characteristic angle. . . . . . . . 204

xx



List of Tables

4.1 Timing results for analog simulation of 106 1-MeV electrons normally

incident on aluminum and gold slabs with varying thicknesses. . . . 54

4.2 Reflection and transmission fractions. . . . . . . . . . . . . . . . . . 61

9.1 Efficiency gains for various ROP DCSs when simulating 1000-keV

and 10000-keV electrons incident on aluminum slabs 100, 300, 1000,

and 3000 mfps thick. . . . . . . . . . . . . . . . . . . . . . . . . . . 145

9.2 Efficiency gains for various ROP DCSs when simulating 1000-keV

and 10000-keV electrons incident on gold slabs 100, 300, 1000, and

3000 mfps thick. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

9.3 Average longitudinal displacement, 〈z〉, for 100-keV, 1000-keV, and

10000-keV electrons in copper after traveling a distance of 100, 300,

1000, and 3000 mfps. . . . . . . . . . . . . . . . . . . . . . . . . . . 149

9.4 Average lateral displacement, 〈x2 + y2〉, for 100-keV, 1000-keV, and

10000-keV electrons in copper after traveling a distance of 100, 300,

1000, and 3000 mfps. . . . . . . . . . . . . . . . . . . . . . . . . . . 149

xxi



List of Tables

9.5 Efficiency gains for various discrete DCSs when calculating dose due

to a beam of electrons with energies of 250-keV, 1000-keV, and 20000-

keV incident on a gold slab. . . . . . . . . . . . . . . . . . . . . . . . 159

9.6 Efficiency gains for various hybrid DCSs when calculating dose due to

a beam of electrons with energies of 250-keV, 1000-keV, and 20000-

keV incident on a gold slab. . . . . . . . . . . . . . . . . . . . . . . . 159

9.7 Speed-up factors for various discrete DCSs when calculating dose

due to a beam of electrons with energies of 250-keV, 1000-keV, and

20000-keV incident on a water slab. . . . . . . . . . . . . . . . . . . 161

9.8 Efficiency gains for various hybrid DCSs when calculating dose due to

a beam of electrons with energies of 250-keV, 1000-keV, and 20000-

keV incident on a water slab. . . . . . . . . . . . . . . . . . . . . . . 161

9.9 Speed-up factors for various discrete DCSs when calculating dose

from 150-keV electrons in a 250-µm by 250-µm Si/Au cube. . . . . . 166

9.10 Speed-up factors for various discrete DCSs when calculating dose

from 10000-keV electrons incident on a 4-cm by 4-cm water cube

with small bone region. . . . . . . . . . . . . . . . . . . . . . . . . . 169

9.11 Total energy deposition comparison for 500-keV and 1000-keV elec-

trons normally incident on aluminum, molybdenum, and tantalum

semi-infinite slabs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

9.12 Total energy deposition for 60 degrees off-normal incidence electrons

on semi-infinite slabs of aluminum, molybdenum, and tantalum. . . 177

9.13 Timing results for energy deposition calculations for 500-keV and

1000-keV electrons normally incident on carbon, aluminum, molyb-

denum, and tantalum semi-infinite slabs. . . . . . . . . . . . . . . . 178

xxii



List of Tables

9.14 Timing results for dose calculations for 60 degrees off-normal inci-

dence electrons on semi-infinite slabs of aluminum, molybdenum, and

tantalum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

9.15 Timing results for charge deposition calculations for 5000-keV, 10000-

keV, and 20000-keV electrons normally incident on aluminum and

gold semi-infinite slabs. . . . . . . . . . . . . . . . . . . . . . . . . . 185

xxiii



Chapter 1

Introduction

The need for computational charged particle transport developed from early work in

charged particle transport theory, which emerged as a flourishing subbranch of math-

ematical physics when fast charged particles became available to the experimentalist

[2]. As computer technology improved, the problems of interest to charged particle

computational physicist expanded to areas including:

• Accelerator Physics,

• Medical Physics,

• Health Physics,

• Space Physics,

• Electro-magnetic pulses.

The advantage of computational charged particle transport over analytical transport

is the possibility of simulating complicated geometries and sophisticated boundary

conditions or source configurations, which are all characteristics of real world appli-

cations. In other words, it is possible to simulate real, physical phenomena using
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charged particle transport codes. An example of such a code is the Geant4 toolkit

[3] which is used frequently on problems including: design of full-scale experiments

such as the Large Hadron Collider [4, 5], design of radiation therapy machines [6] as

well as treatment planning systems [7], estimation of detector geometric factors [8],

shielding calculations [9], and EMP calculations [10]. It is undisputed that particle

transport codes play an important role in the research and development of charged

particle applications and reasonable to suggest that particle transport codes will con-

tinue to play an important role into future. Therefore, algorithmic improvements to

particle transport codes are critical to improving the field of computational charged

particle transport.

To make clear the impact of this work and the importance of the remaining chap-

ters, it is necessary to provide, at least, a cursory discussion on what is meant by

charged particle transport codes and the associated challenges. First, the purpose

of charged particle transport codes is to obtain solutions to the Boltzmann trans-

port equation [11] using stochastic methods like Monte Carlo [12] or deterministic

methods like SN [13]. The Boltzmann transport equation is a balance equation for

particles in a six-dimensional phase-space including space, angle, and energy. The

solution to this equation describes the particle population and is referred to as the

angular flux. For a given analog DCS model, the corresponding transport equation is

referred to as the analog model and the angular flux is assumed to be exact. Analog,

(detailed, step by step), simulation is feasible under strict circumstances (relatively

low energies, thin targets,...), but for high-energy electrons (above a few hundred

keV), the number of interactions suffered by an electron along its trajectory is too

large for detailed simulations [14]. For this reason, numerous computationally effi-

cient approximate methods have emerged over the past 60 years. The most notable

and prolific approximate method is Condensed History (CH). Berger describes CH

as an (artificially constructed) random walk, each step of which takes into account

the combined effects of many collisions [2]. The distances between collisions or the
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steps are significantly longer than those associated with the analog problem, mak-

ing CH efficient. However, the theoretical basis and practical implementation of the

CH algorithm introduces inherent and irreducible limitations that are unique to the

method [15].

It is of interest to develop a method free of such limitations. That is, an efficient

moment-preserving method for Monte Carlo electron transport, which is the subject

of this dissertation. The central question addressed herein is whether the efficiency

and accuracy associated with the Moment-Preserving (MP) method are sufficient to

recommend this method as an alternative to the CH method. This is addressed in

two ways. First, theoretical development of the method is discussed in great detail

to emphasize how elements of accuracy and efficiency are inherent to the method.

The theoretical development is followed up with an extensive numerical demonstra-

tion of the method including calculations of angular distributions, energy spectra,

lateral and longitudinal distributions, one-dimension and two-dimension dose de-

position, one-dimension charge deposition, and a multi-dimensional space physics

application. In addition, specific results are presented that demonstrate how the

moment-preserving method is free from the limitations inherent to CH. State-of-

the-art tabulated elastic DCSs generated using the ELSEPA code system were used

to demonstrate the versatility of the method. Finally, all of the algorithmic devel-

opment was completed within the Geant4 toolkit [3] to demonstrate the simplicity

of the method from a code implementation and maintenance standpoint. Through

demonstration of the accuracy, efficiency, versatility, and simplicity of the method,

the question central to this dissertation is addressed.

The remainder of the dissertation provides the background information necessary

to understand the results, a discussion of the Geant4 toolkit and implementation de-

tails specific to the MP method, results, conclusions, and future work. The remaining

chapters are organized as follows:
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• Chapter 2: Literature Review

• Chapter 3: Electron Interaction Physics

• Chapter 4: The Analog Problem

• Chapter 5: Differential Cross-Section Moments

• Chapter 6: The Condensed History Method

• Chapter 7: The Moment-Preserving Method)

• Chapter 8: The Geant4 Toolkit

• Chapter 9: Results

• Chapter 10: Conclusions and Future Work
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Chapter 2

Literature Review

This chapter provides a qualitative discussion of the literature relevant to the ana-

log problem and the associated analog differential cross-sections (DCS) (detailed in

chapter 3 and chapter 4), the Condensed History (CH) method (detailed in chapter

6), and the Moment-Preserving (MP) method (detailed in chapter 7). The analog

problem is the point of departure for both CH and ROP models, so we begin with a

discussion of the analog problem.

2.1 The Analog Problem

The analog description of transport can be mathematically expressed in terms of

the linear Boltzmann or transport equation for the angular flux, where the inter-

action physics are represented through total cross sections (inverse mfp) and the

DCSs for angular deflection and energy loss [15]. The total cross sections and DCSs

appear in the elastic and inelastic collision operators, which are integral operators

or Boltzmann-type operators. Though electrons can undergo several different elec-
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tromagnetic interactions1, the dominant interactions are elastic collisions with nu-

clei and inelastic collisions with atomic electrons. Typical DCSs for elastic nuclear

scattering include relativistic screened Rutherford, Wentzel, or the partial-wave ex-

pansion [16, 17, 18], while typical DCSs for inelastic electronic scattering include

Rutherford, Möller, or the Evaluated Electron Data Library [19, 20]. These DCSs

are highly peaked about small changes in direction and small energy losses and the

associated total cross sections are very large resulting in extremely short mfps. In-

teraction physics of this nature present a difficult computational task.

Boundary conditions for the transport equation depend on the application, but

typically include vacuum, pencil beams, or sources distributed in space, energy, and

angle. However, mono-energetic pencil beams are very common in electron trans-

port and further complicate the computational challenges because pencil beams are

singular in space, energy, and angle.

The problem of computational inefficiencies associated with the analog physics

was recognized immediately by early charged particle computational physicists. In

fact, Berger [2] acknowledged that a direct analog Monte Carlo procedure would be

quite costly, because of the enormous number of collisions that must be sampled.

For example, it takes on the order of tens of thousands of collisions for an electron

with energy of roughly 1-MeV to slow down to 1-keV, while only 20 to 30 Compton

scatterings will reduce the energy of a photon from several MeV down to 1-keV

or 18 elastic collisions in hydrogen will reduce a neutron from 2-MeV to thermal

energies [2]. In 1963, only one calculation by direct analog Monte Carlo was reported

[21]. Since then, several analog Monte Carlo electron transport codes have been

developed [14, 22] and a few production codes have included analog physics options

[23, 24, 25]. Solutions to the analog problem are exact for a given DCS; therefore,

1Bremsstrahlung is an important interaction for relativistic electrons. However, bremsstrahlung
does is not a computationally intensive process, so it is neglected in this work. It should be noted
that use of preexisting bremsstrahlung physics with the moment-preserving method will not impact
the efficacy of the method.
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it is understandable that analog physics options were implemented, despite the fact

that analog Monte Carlo is computationally inefficient. Moreover, it is feasible to use

analog Monte Carlo for occasional calculations if significant computing resources are

available. However, analog Monte Carlo remains impractical for routine calculations

with exception of very restrictive problems like transport through optically thin

materials. For this reason, approximate methods remain a critical component of

most Monte Carlo electron transport codes.

2.2 Condensed History

Condensed history has been the prevailing approximate method in computational

charged particle transport since the emergence of the field. The usual practice is to

use “condensed” (class I) simulation methods, in which the global effect of multi-

ple interactions is described by means of approximate multiple scattering theories.

Alternatively, one can use “mixed” (class II) schemes in which hard (catastrophic)

interactions, with energy loss or angular deflection above given thresholds, are sim-

ulated individually. For a given set of DCSs, class II schemes are intrinsically more

accurate than class I simulations [14]. Some examples of codes containing class

I schemes are ETRAN, ITS, MCNP, while examples of production codes contain-

ing class II CH schemes are EGS4, PENELOPE, Geant4 [26, 27, 3]. Both class I

and class II schemes utilize various results from multiple scattering theory, which

is a subbranch of mathematical physics developed around the solution of the trans-

port equation with limited applicability resulting from severe restrictions required

to obtain analytical solutions [28, 29, 30, 31]. The analytical solutions or multiple

scattering distributions describe the angular or energy distributions of electrons after

traveling some distance s or a step, that are on the order of hundreds of analog mfps.

The major distinction between class I and class II schemes is how the grouping of
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collisions is handled. That is, class I schemes utilize precomputed multiple-scattering

(MS) distributions [32, 33, 34, 35] determined for fixed step-sizes on a fixed energy

grid. For this reason, energy straggling is sampled from a MS distribution [34, 35]

and secondaries are accounted for on an average basis. Therefore, it is not possible to

distinguish between inelastic collisions resulting in secondary production (hard) and

those that do not (soft). In contrast, a class II scheme like EGS allows all physical

processes and boundaries to affect the choice of step size [36]. Thus, distance to hard

collision is exponentially distributed and secondary production is treated exactly

by sampling energy-loss from the inelastic DCS above the secondary production

threshold.

Regardless of the choice in the scheme, substantial efficiency gains over analog

Monte Carlo can be realized with CH. However, the accuracy of early forms of CH

was strongly dependent on step-size and while it was found that reducing the elec-

tron step-size causes the results to converge to the correct values, the computing time

increases rapidly in proportion to the inverse of the step-size [37, 38, 39]. Therefore,

special algorithms like PRESTA [40] were developed to select the optimal step-size

during the process of a Monte Carlo simulation. Without an algorithm like PRESTA,

one must resort to a tedious study to determine the optimal step-size such that ac-

ceptable accuracy and efficiency is achieved. However, this optimization may not be

universal. The various production codes currently available differ in this optimization

issue. Some codes, like ITS, have pre-determined step-size parameters, while codes

like EGS utilize the PRESTA algorithm [40] or random hinging combined with lat-

eral corrections found in PENELOPE. In addition to step-size limitations, condensed

history suffers from inconsistent handling of the material and free surface boundaries.

Material interfaces are a fundamental challenge for condensed history because the

MS distributions are infinite medium solutions and are not valid for heterogenous

regions. Therefore, if a material interface is encountered, a special algorithm like the

Jordan-Mack algorithm [41] or PRESTA is required. Another issue specific to class
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I schemes that utilize the Goudsmit-Saunderson distribution [32, 33] for sampling

angular deflection is that the numerical methods required to generate the Goudsmit-

Saunderson distribution are sensitive to small step-sizes. The backwards recurrence

used to generate the Goudsmit-Saunderson is unstable for small steps. Even if the

step-size is sufficiently long that the backwards recurrence is stable, it is possible

that more than the pre-scripted number of recurrence coefficients are required to

accurately resolve the Goudsmit-Saunderson distribution [42].

There are many forms of MS theory that are fundamental to CH, but one of

particular importance to all approximate methods is referred to as Lewis theory [43].

A concise description of Lewis theory is given by Prinja [44]:

Consider an infinite medium in which charged particles undergo scatter-

ing collisions resulting in angular deflection but no energy losses. Let the

differential scattering cross section be given by Σ
(A)
s (~Ω′ ·~Ω) with ~Ω′ and ~Ω

being pre- and post-collision unit direction vectors and where the label A

denotes a specific configuration of this problem. The Legendre moments

of this cross-section are defined by Σ
(A)
s,n =

∫
4π

Σ
(A)
s (~Ω · ~Ω′)Pn(~Ω · ~Ω′)d2Ω,

where Pn(µ), −1 ≤ µ ≤ 1, are the Legendre polynomials. The cross-

section or its associated moments and the charged particle source com-

pletely characterize this problem. Consider now, a second configuration,

labeled B, that is characterized by the same source but a different differ-

ential scattering cross-section Σ
(B)
s (~Ω′ · ~Ω) and hence different moments

Σ
(B)
s,n . In general, the particle angular distributions or angular fluxes for

the two problems, ψA,B(~r, ~Ω), will be different. However, if the cross-

sections are related such that Σ
(A)
s,n = Σ

(B)
s,n , n = 1, 2, ...N, for some fixed

order N and Σ
(A)
s,n 6= Σ

(B)
s,n , n ≥ N + 1,then a classic result due to Lewis

[43] states that space-angle moments of the two angular fluxes defined

by M
mx,my ,mz
j,k,l =

∫
V

∫
|~Ω|=1

xjykzlΩmx
x Ω

my
y Ωmz

z ψA,B(~r, ~Ω)d2ΩdV and com-
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monly referred to as Lewis-moments, are identical through any order

satisfying j + k + l + mx + my + mz = N , where (Ωx,Ωy,Ωz) are the

direction cosines with respect to the Cartesian axes (x, y, z).

The significance of this observation is that if Σ
(A)
s (~Ω′ · ~Ω) is the true

or exact differential cross-section for scattering of the charged particle

by the target nucleus, also referred to as the analog differential cross-

section, and Σ
(B)
s (~Ω′ · ~Ω) is an approximation to it, Lewis’ result points to

a sharp link between accuracy of the approximate model, as measure by

linear functionals (moments) of the angular flux, and number of Legendre

moments of the differential cross-section that are exactly reproduced in

the approximate model.

2.3 Reduced Order Physics Models

For the reasons stated above, various alternatives to the CH method were developed.

Of particular interest are alternatives referred to as Reduced Order Physics (ROP)

models, which are a family of transport-based approximations. ROP models include

various approximate representations of the analog collision operators that are of both

integral and differential forms. ROP models are obtained through some type of reg-

ularization procedure that removes reduce the nearly-singular behavior of the analog

DCS, while systematically capturing the key physics through preservation of angu-

lar and energy-loss moments of the analog DCSs. Moreover, the zeroth or the total

cross section is not preserved, rather it is determined self-consistently by the method.

The resulting ROP model is then characterized by less peaked scattering with mfps

longer than the analog mfp. Efficiency is achieved by not preserving the total cross

section, while accuracy is achieved by preserving the necessary number of moments

beyond the zeroth. There are numerous approximations that qualify as ROP models

10



Chapter 2. Literature Review

including Fokker-Planck, Boltzmann Fokker-Planck, Generalized Fokker-Planck, and

Generalized Boltzmann Fokker-Planck. The remainder of this chapter is devoted to

introducing each of these approximations and indicating how these methods con-

tributed to the development of the MP method.

The classical Fokker-Planck operator is obtained by Taylor expanding the scatter-

ing kernels. This is a reasonable approach, assuming the angular flux is sufficiently

smooth, because the DCSs fall off rapidly away from small deflection cosines and

energy-losses. The resulting operator is differential in angle and energy and models

elastic and inelastic scattering as diffusive processes. As a result, the Fokker-Planck

operator does not capture large-angle scatter and can lead to energy gains. Pom-

raning confirmed these inconsistencies by showing that the Fokker-Planck operator

is an asymptotic limit of the Boltzmann collision operator and only valid for unre-

alistically peaked scattering [45]. That is, the FP approximation is strictly valid in

the limit that the total scattering cross section goes to infinity and the mean deflec-

tion cosine goes to unity such that the transport cross section remains bounded [46].

Under these conditions, large angle scattering is negligible and the FP operator is

equivalent to the Boltzmann integral collision operator. Clearly, there is a limita-

tion on the type of physics for which the classical FP operator is valid. Regardless,

various implementations of Fokker-Planck operator were studied for in deterministic

settings[47, 48, 49, 50].

In efforts to incorporate large-angle scattering, a kernel decomposition approach

was introduced by Ligou and is referred to as the Boltzmann-Fokker-Planck (BFP)

equation [51, 52, 53]. Ligou recognized that it is easier to numerically treat forward-

peaked elastic scattering and small energy losses associated with such scattering

using Fokker-Planck (FP) differential operators [49] rather than Boltzmann integral

operators. However, the FP operator does not accurately capture large angle scat-

tering. Therefore, it is necessary to decompose the scattering cross section into its
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singular and smooth components and apply the FP approximation to the singular

component while leaving the smooth operator intact [54]. One important feature of

the decomposition process is that there is no rigorous definition of the components

so there are infinite decompositions. The key, as indicated by Landesman and Morel

[54], is to select a decomposition that is not only accurate and efficient, but also

easily integrated into existing transport codes. The early methods for solving the

BFP equation were deterministic, but Morel and Sloan [55, 56] developed a hybrid

multigroup/continuous-energy Monte Carlo method for solving the BFP equation or

the MGBFP method. Morel described the MGBFP method as a new form of con-

densed history with the major distinction being that path lengths between collision

sites are exponentially distributed.

In retrospect, application of kernel decomposition serves to stabilize the diver-

gent behavior of the Fokker-Planck expansion [57] by effectively renormalizing the

expansion coefficients. This renormalization process is central to the Generalized

Fokker-Planck (GFP) method [58, 59] and resulted after attempting to generalize

the FP operator to a broad class of physics with higher order FP operators [57]. In

principle, the FP approximation can be improved by retaining higher order terms

in the Taylor expansion of the collision operators. Thus, leading to a more accurate

description of large angle scattering, but this is only true for specific kernels. For

example, it is known that there are no valid FP operators for the Henyey-Greenstein

kernel [45] and that the standard FP operator is only marginally valid for screened

Rutherford or screened Mott [46]. However, Pomraning [57] completed the same

kernel analysis for the exponential and delta function and showed that higher order

FP operators are valid for kernels such as these, but they are unphysical. In addition

to characterizing the stability of higher order FP operators with respect to specific

scattering kernels, this analysis revealed the explicit role of the analog DCS moments

to developing approximations. That is, higher order FP expansions suggest that the

accuracy of the approximation is improved by incorporating higher order moments.
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GFP approaches provide a means to stabilize higher-order FP operators through

renormalization of the various terms that appear in the operator. The renormal-

ization process, in essence, allows for an arbitrary ordered FP operator; hence, the

approach referred to as generalized FP. Lastly, work on GFP showed that the key

to a stable ROP model is preserving the integral form of the collision operator and

retaining an arbitrary number of low order moments while approximating all of the

higher order moments.

Insight gained from the foregoing approximations - FP, BFP, and GFP - com-

bined with Lewis theory and practical experience from implementing and testing

CH led to the development of the Generalized Boltzmann Fokker-Planck (GBFP)

method [60]. Like the other ROP models, the GBFP method is a transport-based

approximation. However, the GBFP method is more appropriate for Monte Carlo

calculations like CH. The emphasis of GBFP method is the development of stable,

moment-preserving representations of the collision operators. This is achieved by

constructing ROP DCSs that are moment-preserving, per Lewis theory, while leav-

ing the collision operators intact by simply replacing the analog DCSs with the ROP

DCSs. Another key feature of the GBFP approach is that angular deflection and

energy-loss interactions depend only on Legendre moments and energy-loss moments,

not the detailed form of the analog DCSs. Therefore, the GBFP method is applicable

to both continuous DCSs [61] and tabulated DCS data [62] and code modifications

are not required for physics refinements because this is accomplished by providing

moments of the desirable analog model through input data. The bulk of the work

on the GBFP method to date emphasizes the most simple, but also the most effec-

tive ROP DCSs referred to as the discrete and hybrid models. The discrete model

[63] is a superposition of discrete points and weights over the full range of the DCS,

while the hybrid model [64] is a superposition of discrete points and weights over the

peaked portion of the DCS and the tail is represented exactly by the analog DCS.

Recently, the name Moment-Preserving method was adopted in place of the GBFP
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method to distinguish the method from Fokker-Planck and to emphasize the concept

most fundamental to the method - moment preservation.
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Chapter 3

Electron Interaction Physics

In this chapter, interactions of electrons are detailed. Differential cross-sections

(DCS) appropriate for moderate to high energies above roughly 10-keV are con-

sidered. At these energies, electrons are treated as point particles where they are

assumed free streaming between collisions. The medium is assumed amorphous and

for a single element with atomic number Z and density ρ the material properties

are given by the number density N . The extension to compounds, and mixtures, is

normally done on the basis of the additivity approximation, i.e., the molecular DCS

is approximated as an incoherent sum of the atomic DCSs of all of the atoms in

a molecule [27]. Electron interactions include elastic scattering with atomic nuclei,

inelastic scattering with atomic electrons, bremsstrahlung emission, and elastic col-

lisions with atomic electrons. However, the subject of this work is the treatment of

Coulomb collisions that contribute significantly to the computational inefficiencies

associated with analog transport (specifically, elastic and inelastic collisions as in

Fig. 3.1). The analog elastic and inelastic DCSs utilized in this work include analyt-

ical functions and tabulated DCS data and are described in the following sections.

Moments of analog DCSs are central to the moment-preserving method, so the last

section defines the elastic and inelastic DCS moments and discusses the physical
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meaning of the moments where it is possible to do so.

Figure 3.1: Electron interaction diagrams for elastic and inelastic scattering [27].

3.1 Nomenclature

In this dissertation, the term electron (e−) is used to designate incident electrons,

while targets are referred to as atomic nuclei and atomic electrons. The microscopic

elastic and inelastic DCSs are designated by σel or σin with units of cm2sr−1 and

cm2MeV −1 respectively, while the macroscopic elastic and inelastic DCSs are des-

ignated as Σel or Σin with units of cm−1sr−1 and cm−1MeV −1 respectively. The

number density of a single element, N , has units of atoms per cm3 and is given by

N = ρNA/A where NA is Avogadro’s number and A is the atomic mass. The follow-

ing is a list of fundamental constants and definitions of frequently used parameters:

16



Chapter 3. Electron Interaction Physics

Speed of Light c = 2.99792458× 108 m/s

Reduced Planck’s Constant h̄ = 6.58211928× 10−16 eV· s

Electron Rest Mass mec
2 = 0.510998910 MeV

Classical Electron Radius r0 = 2.8179403267× 10−13 cm2

Avogadro’s Number NA = 6.0221413× 1023 atoms/mole

Energy Per Rest Mass τ = E/mec
2 (unitless)

Lorentz Factor γ = 1 + τ (unitless)

Ratio of Electron Velocity to c β =
√

1− 1/γ2 (unitless)

3.2 Elastic Collisions with a Nucleus

The basic quantity describing the elastic scattering of electrons by a target system is

the elastic DCS that can be accurately described by a static central potential V (r).

Given an idealized scattering experiment where a mono-directional, mono-energetic

beam of electrons with a current ~jinc of electrons passing through a surface area

per unit time are scattered through some differential solid angle dΩ into a detector

measuring counts per unit time Ṅcount, the microscopic elastic DCS is defined as

σel ≡
Ṅcount

|~jinc|dΩ
. (3.1)

Though the DCS can be determined experimentally, accurate theoretical expressions

for the count rate and the current can be derived. A comprehensive review of such

theoretical expressions is described in great detail in the ICRU Report 77 [65]. How-

ever, some attention is given to the theoretical development of the DCSs that are

utilized in this dissertation.

Herein, incident electrons in the regime of kinetic energies higher than ≈ 10-keV

are considered, where the interaction with the target atom is likely sudden, i.e., the

interaction time is so small that the atomic electron cloud is not appreciably distorted

by the interaction [65]. Under these conditions, the target atom is considered a
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frozen distribution of electric charge (static-field approximation) and treated as a

point nucleus. Elastic scattering is then assumed to be the scattering of the incident

electron by the electric field of the atom. The electric field of an atom is assumed

spherical and therefore it is a good approximation to assume the interaction potential

V (r) depends only on the distance r between the incident electron and the nucleus

of the atom. Given these assumptions several forms of the elastic DCS are reviewed.

3.2.1 Non-relativistic theory

The mathematical description of the scattering experiment presented earlier is given

by a differential equation for a distorted plane wave (DPW). The DPW is related

to scattering amplitude, which completely determines the DCS [65]. There are var-

ious theories with fundamental equations used to derive DCSs including the non-

relativistic (Schrödinger) theory, Klein-Gordon (relativistic Schrödinger) theory, and

one-electron Dirac theory1. For example, the time-independent Schrödinger equation

is given by[
− h̄2

2me

∇2 + V (r)

]
ψk(~r) = Eψk(~r), E =

(h̄~k)2

2me

(3.2)

where h̄~k and h̄~k′ are the electron momentum before and after the collision respec-

tively. It can be shown that the the current of incident particles is

~jinc = (2π)−3 h̄
~k

me

(3.3)

and the current of scattered particles is

~jsc = (2π)−3|f(~k′, ~k)|2r−2 h̄
~k

me

r̂, (3.4)

1Dirac theory is the appropriate theoretical framework for deriving DCSs and includes effects
from spin-polarization [65].
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where the scattered current is related to the count rate by Ṅcount = (~jsc · r̂)r2.

Therefore, for non-relativistic (Schrödinger) theory, Eq. (3.1) becomes

σel =
Ṅcount

|~jinc|dΩ
= |f(~k′, ~k)|2, (3.5)

where f(~k′, ~k) is the scattering amplitude and θ = arccos(~k′ ·~k) is the angle through

which the electron was scattered. Under these conditions, the scattering amplitude

is

f(~k′, ~k) = −4πme

h̄2

∫
φ∗k′(~r)V (r)ψk(~r)d~r, (3.6)

where the interaction potential and the DPW appear again. Eq. (3.6) indicates that

the scattering amplitude, which completely determines the elastic DCS, is strongly

dependent on the scattering potential. Therefore, the most accurate representation

of the scattering potential possible is ideal. However, in the following sections one

will find that analytical expressions for the elastic DCS requires relatively simple

scattering potentials.

3.2.2 Screened Rutherford and classical Rutherford

It is impractical to obtain solutions to Eq. (3.2), so an alternative is to use the Born

Approximation. In the Born approximation, the Schrödinger equation is transformed

into an integral equation or

ψk(r) = φ(r) +

∫
dr′G0(E, r, r′)V (r′)ψk(r), (3.7)

with the Green function

G0(E, r, r′) = − me

2πh̄2

exp(ik|r − r′|)
|r − r′|

. (3.8)

The Born approximation starts with the zeroth-order approximation to Eq. (3.7) or

ψB0
k (r) = φ(r). This is substituted into Eq. (3.7) to get the first order approximation
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or

ψB1
k (r) = φ(r) +

∫
dr′G0(E, r, r′)V (r′)ψB0

k (r). (3.9)

This process is repeated to any order, but first and second order Born approximations

are the most common because beyond second order the approximation becomes un-

manageable. To obtain a familiar DCS, i.e. the screened Rutherford DCS, we begin

by applying the first-order Born approximation to the time-independent Schrödinger

equation. From this, the Schrödinger-Born scattering amplitude is obtained which

is given by

f (SB)(θ) = −2me

h̄2

∫ ∞
0

sin(qr′)

qr′
V (r′)r′2dr′. (3.10)

We then assume the Wentzel potential for a screening radius of R = a0Z
−1/3 or

VW (r) =
Z0Ze

2

r
exp(−r/R). (3.11)

This results in the corresponding Born scattering amplitude or

f
(SB)
W (θ) = −2Ze2me

h̄2

1

(1/R)2 + q2
, (3.12)

where

q = 2k

√
1− cos θ

2
(3.13)

for potential scattering. Therefore, the Wentzel or the “screened Rutherford” DCS

is

σWel (θ) = |f (SB)
W (~k′, ~k)|2 =

(
Ze2

2E

)2
1

[(2kR)−2 + (1− cos θ)]2
(3.14)

where (2kR)−2 accounts for the screening of nucleus by the atomic electrons and k

is the electron wave number, Z atomic number of the target and e is the electron

charge. The classical Rutherford DCS is obtained by letting R→∞, which reduces

the Wentzel potential to a Coulomb potential, VC(r) = Ze2/r, where the effects of

nuclear screening are neglected. This gives,

σCel(θ) = |f (SB)
W (~k′, ~k)|2 =

(
Ze2

2E

)2
1

(1− cos θ)2
(3.15)
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3.2.3 Relativistic screened Rutherford

In practice, the classical Rutherford DCS is not used as it is singular about θ = 0.

The screened Rutherford DCS is not typically used either as it is non-relativistic.

However, Eq. (3.14) is easily generalizable to the relativistic formulation. At this

stage, it is convenient to define a new variable, the deflection cosine, or µ = cos θ.

The relativistic screened Rutherford (SR) DCS is given by

σSRel (E, µ) =
(τ + 1)2

τ 2(τ + 2)2

C

[1 + 2η(E)− µ]2
, (cm2sr−1), (3.16)

where the parameter C is a material constant given by

C = 2πr2
0Z

2N , (atoms cm−1), (3.17)

and the screening parameter [66] due to Molière is

η(E) =
0.25Z2/3

(0.885 · 137)2τ(τ + 2)

[
1.13 + 3.76

(
Z

137

)2
(τ + 1)

τ(τ + 2)

]
, (3.18)

which is an improvement over the screening term that appeared in Eq. (3.14).

The peakedness of the SR DCS is a function of both energy and the target material

atomic number. Since the screening parameter drives the shape of the SR DCS, it

is insightful to understand the dependence of the screening parameter on energy

and atomic number which is given in Fig. 3.2. That is, as the screening parameter

approaches zero, the SR DCS becomes highly forward peaked or anisotropic and

nearly singular about unity. As the screening parameter grows larger, the SR DCS

becomes isotropic. As seen in Fig. 3.2, the screening parameter is dependent on

particle energy and the target material atomic number. Over a single decade in

energy, the screening parameter varies by roughly an order of magnitude. For the

same energy, over all materials, the screening parameter again varies a few orders

of magnitude. The magnitude of screening parameter indicates the strength of the

nuclear screening. Since the screening parameter is largest for high-Z materials and
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Figure 3.2: Screening parameter for various materials

lower energies, nuclear screening has the greatest impact in this regime. For higher

energies and low-Z materials, the effect of nuclear screening is weak and the nucleus

begins to appear bare to the incident electron.

The following figures demonstrate the impact of the screening parameter on the

peakedness of the SR DCS. The SR DCS is most peaked for high-energy particles on

low-Z targets as seen in Fig. 3.3a and effectively isotropic for low-energy particles

on high-Z materials as seen in Fig. 3.3b. The screening parameter is a function

of energy and target Z, so this implies that the peakedness of elastic scattering is

generally driven by energy and target Z. This is made clear in the next section for

the partial-wave (PW) DCS, which does not depend on a screening parameter but

still demonstrates this same behavior.
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Figure 3.3: Screened Rutherford (SR) DCS for elastic scattering of 1.026-keV, 1.051-
MeV, and 20-MeV electrons by aluminum and gold nuclei.

3.2.4 Partial-wave DCS

In contrast to the time-independent Schrödinger equation, the Dirac equation is for

relativistic waves. It describes all spin-1/2 particles and is consistent with both the

principles of quantum mechanics and special relativity. For this reason, DCSs derived

from the Dirac equation are intrinsically better representations of elastic scattering.

Furthermore, the accuracy of the static-field approximation - used in previous sec-

tions to develop the screened Rutherford DCS - is limited by inelastic absorption and

charge-polarization effects [18]. Inelastic absorption causes a reduction of the elastic

DCS at intermediate and large angles that can be described by means of an approx-

imate absorptive potential. Furthermore, as a result of charge-polarization effects,

the charge distribution of the target is polarized by the electric field of the elec-

tron [18]. In turn, the electric field of the induced dipole acts back on the electron.

This can be described approximately by means of a local correlation-polarization

potential, which impacts the elastic DCS mostly at small angles. Thus, the effec-

tive interaction potential is described by an optical-model potential that includes the

electrostatic potential, the exchange potential, the correlation-polarization potential,
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and the imaginary absorptive potential, is given by

V (r) = Vst(r) + Vex(r) + Vcp(r)− iWabs(r). (3.19)

The scattering of relativistic electrons by an interaction potential V (r) with a

finite range (V (r) = 0, r > rc) is completely described by the scattering amplitude

f(θ) and the spin-flip amplitude g(θ), which are solutions to the time-independent

Dirac equation for a given interaction potential V (r) [65]. That is,

σel = |f(θ)|2 + |g(θ)|2. (3.20)

It can be shown that after some tedious manipulations (see ICRU 77 appendices [65]

and references therein) that the scattering amplitude and the spin-flip amplitude

have the following form

f(θ) =
1

2ik

∞∑
`=0

{(`+ 1)[exp(2iδk=`−1)− 1] + `[exp(2iδk=`)]}P`(cos(θ) (3.21)

and

g(θ) =
1

2ik

∞∑
`=0

[exp(2iδk=`) + exp(2iδk=`−1)− 1]P 1
` (cos(θ), (3.22)

where δk are the phase-shifts and determined from the asymptotic behavior of the

radial Dirac equations. That is,

PEk ∼ sin
(
kr − `π

e
+ δk

)
(3.23)

where PEk is a radial function and satisfies the radial Dirac equation [65]. The point

of being pedantic is to illustrate the need for a numerical calculation to determine the

phase-shifts, the scattering amplitude, and the spin-flip amplitude. That is, there

are no analytical representations of the phase-shifts, the scattering amplitude, and

the spin-flip amplitude without applying an approximation (e.g. the Born Approxi-

mation), so they must be calculated numerically.
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Though Eqs. (3.21) and (3.22) do not have an analytical form, which introduces

additional considerations from the standpoint of working with DCS data, PW DCSs

are the most accurate representation of elastic scattering available outweighing the

difficulties associated with DCS data. The following PW DCSs and the DCS data

used for this study were generated using the ELSEPA computer code [18]. The PW

DCSs were generated using the following parameters:

• The Fermi nuclear charge distribution model

• The numerical Dirac-Fock electron distribution model

• The free atom model

• The Furness-McCarthy exchange potential

• The local-density approximation for correlation-polarization potential

• Measured dipole polarizability

• No absorption correction.

Examples of the PW DCS are presented in Fig. 3.4a and 3.4b. In Fig. 3.5, the

PW DCS and the SR DCS are compared. There are distinct differences between the

SR DCS and the PW DCS. The PW DCS are at least an order of magnitude more

peaked and the tail of the higher energy PW DCSs tend to fall-off more rapidly.

Furthermore, at low energies the PW DCS have distinct structure at large scattering

angles resulting from absorption effects. In addition to differences in the behavior

of the two DCSs, the moments also behave differently. Most importantly, the total

cross-section associated with the PW DCS is larger, while the mean deflection cosine

tends to be closer to unity.
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Figure 3.4: Partial-wave differential cross-sections for the elastic scattering of 1-keV,
10-keV, 100-keV, 1000-keV, and 10000-keV electrons by aluminum and gold atoms.
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3.3 Inelastic Collisions with Atomic Electrons

Inelastic collisions with atomic electrons result in a transfer of energy from the inci-

dent electron to the atomic electron producing excitations or ionizations. Just as in

the case of elastic scattering, there is a variety of inelastic DCSs ranging in accuracy

and validity. The most basic form is the Rutherford inelastic DCS and typically

improvements upon Rutherford all contain a Rutherford-like term. For example, the

inelastic DCS used in this work, or the Möller DCS, introduced into the Rutherford

cross-section the effects of quantum-mechanical exchange, and of relativity, by treat-

ing the problem of the collision between two free electrons, using the relativistic Dirac

Theory of the electron [19]. Though Möller is an improvement over Rutherford, it is

really only valid for energy transfers that are large compared to the mean ionization

potential [67]. Therefore, some modifications to the Möller DCS are necessary for

agreement with experimental benchmarks. Of course, advanced inelastic DCSs are

utilized in codes like PENELOPE [27] that improve agreement with experiment, but

for the purposes of this work the modified Möller DCS is sufficient.

3.3.1 Möller

The energy loss DCS for binary collisions of electrons with free electrons at rest,

obtained from the Born approximation, is given by the Möller formula [27]. The

Möller inelastic DCS in which the incident electron with energy E transfers the

energy Q to the slower electron is given by

σin(E,Q) =


K
β2

[
1
Q2 + 1

(E−Q)2 + 1
(E+m0c2)

− m0c2(2E+m0c2)
Q(E−Q)(E+m0c2)2

]
: Q ∈ [Qmin, Qmax]

0 , otherwise,

(3.24)
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where the lower bound, Qmin, is taken to be the mean ionization potential and the

upper bound, Qmax = E/2. In Figs. 3.6a and 3.6b we present the Möller DCS for

electrons of various energies scattered by aluminum and gold respectively. Like the

elastic scattering DCS, the inelastic DCS is peaked about small changes in state or

Qmin. As a function of incident particle energy, the inelastic DCS does not appear to

change significantly in shape. In fact, the impact of the incident electron energy is

subtle, as the inelastic DCS is inversely proportional to β2 which varies slowly above

500-keV and is roughly unity, but grows large as E → Qmin. Hence, the subtle peak

at Σin(E < 0.5MeV,Qmin). Moreover, the Möller DCS does not differ appreciably

from the Rutherford inelastic DCS except for relativistic energies and at Q ∼ Qmax.

The difference appears in the tail of the distribution making Möller slightly more

peaked. As a function of Z, the Möller DCS becomes slightly less peaked. This can

be seen by looking closely at the magnitude of the DCSs in Figs. 3.6a and 3.6b.

0
5

10
15

20

0
2

4
6

8
10

10
−28

10
−26

10
−24

10
−22

10
−20

10
−18

10
−16

E (MeV)
Q (MeV)

σ
e

−
(E

,Q
)	

(c
m

2
M

e
V

−
1
)

(a) Aluminum

0
5

10
15

20

0
2

4
6

8
10

10
−28

10
−26

10
−24

10
−22

10
−20

10
−18

E (MeV)
Q (MeV)

σ
e

−
 (

E
,Q

) 
(c

m
2
M

e
V

−
1
)

(b) Gold

Figure 3.6: Möller inelastic DCS for scattering electrons by aluminum and gold.

In this work, we correct the Möller DCS such that the first moment of Möller is
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equal to the Berger-Seltzer formula [65]. That is,∫ Qmax

Qmin

dQ QΣin(E,Q) = SBS(E), (3.25)

where

SBS(E) = 2πr2
0mec

2ZN 1

β2

[
ln

2(τ + 1)

(I/mec2)
+ F−(γ, γmax)− δ

]
(3.26)

and

F (γ, γmax) = 1−β2+ln[(γ−γmax)]+
γ

γ − γmax
+

1

τ 2

[
γ2
max

2
+ 2(γ + 1) ln

(
1− γmax

γ

)]
.

(3.27)

The following list provides the definitions of the parameters required for the Berger-

Seltzer formula:

τ = E/mec
2 (unitless)

γ = τ − 1 (unitless)

Maximum Energy Transfer γmax = γ/2 (unitless)
Density Effect Correction

See Sternheimer [68] δ (unitless)
Mean Ionization Energy

See ICRU 37 [69] I (MeV)

3.4 Analog DCS Moments

In this section, analog DCS Moments that have a physical interpretation are de-

scribed. In particular, the zeroth, first, and second moments of the elastic and

inelastic analog DCS. These quantities are typically referred to as the total cross-

section (zeroth), the mean scattering angle or energy-loss (first), and the mean-square

scattering angle or energy-loss (second). In the remaining sections, the analog DCS

moments are defined and the aforementioned physical quantities are developed. In

addition, some attention is given to the the limitation of analytical DCSs like screened

Rutherford and Möller.
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3.4.1 Elastic DCS moments

Herein, we define Legendre moments of the elastic DCS as

Σel,` = 2π

∫ 1

−1

Pl(µ0)Σel(E, µ0)dµ0, (3.28)

and the momentum transfer moments as

G` = Σel,0 − Σel,`, (3.29)

where Σel,0 is the total macroscopic elastic cross-section with units of cm−1 and

defined as

Σel,0 = 2π

∫ 1

−1

Σel(E, µ0)dµ0. (3.30)

The macroscopic elastic total cross section, presented in Fig. 3.7a, gives the prob-

ability of an elastic interaction occurring per unit distance and is extremely large

for electrons. The microscopic total cross-section in barns is between 106-108. Con-

trast this to the total microscopic elastic cross section for neutrons that is typically

between 102 to 104 barns for a wide range of materials and energies.

In Fig. 3.7a, one can see the impact of the approximations required to obtain

the relativistic screened Rutherford DCS. Relativistic screened Rutherford is smaller

in magnitude for all energies. As a function of increasing energy, both relativistic

screened Rutherford and the partial-wave DCS monotonically decrease and eventu-

ally saturate. However, for decreasing energies, the partial-wave total cross-section is

monotonically increasing, whereas relativistic screened Rutherford begins to fall-off

for sufficiently low energies. This is a result of the validity of the Born approximation,

which is valid for(
Z

137β

)2

<< 1. (3.31)

One can see the impact of Z on the validity of the Born approximation in Fig. 3.7a

where the relativistic screened Rutherford total cross-section begins to diverge from

30



Chapter 3. Electron Interaction Physics

the partial-wave total-cross section nearby 100-keV as opposed roughly 10-keV for

aluminum. The inverse of the macroscopic elastic total cross-section is the elastic

mfp (cm) or

λel =
1

Σel,0

, (3.32)

which is presented in Fig. 3.7b. The mfp provides a length scale over which a

single collision occurs for the DCSs used in the simulation. For elastic scattering

of electrons, the mfp is extremely small - on the order of microns for medium to

intermediate energies.
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Figure 3.7: Screened Rutherford and partial-wave total cross-sections and mean free
paths for elastic collisions with aluminum and gold nuclei.

The mean scattering angle or

µ̄0 =
Σel,1

Σel,0

, (3.33)

is related to the transport cross-section, or G1, by

G1 = Σel,0 − Σel,1 = Σel,0(1− µ̄0) (3.34)

The transport cross-section is the inverse transport mfp (cm) or

λtr =
1

Σel,1

. (3.35)

The transport mfp, presented in Fig. 3.8, provides a length scale over which an

initially singular beam experiences significant spreading in space, angle, and energy.

The ratio of the transport cross section to the total cross section is known and the

scattering power of the medium. Under conditions of highly peaked scattering one

can invoke the small angle approximation to further understand the significance of

the transport cross-section. That is,

G1 ≈ 2π

∫ π

0

θ2
0

2
Σel(E, θ0) sin θ0dθ0 = 〈θ2

0〉, (3.36)

where 〈θ2
0〉 is the mean-square scattering angle and is related to the spreading of a

beam. That is, the beam broadens with increasing 〈θ2
0〉.
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Figure 3.8: Screened Rutherford and partial-wave transport mean free paths for
elastic collisions with aluminum and gold nuclei.

3.4.2 Inlastic DCS moments

Herein, we define energy-loss moments of the inelastic DCS as

Qk =

∫ Qmax

Qmin

QkΣin(E,Q)dQ. (3.37)

For k = 0, we have Q0 = Σin,0, where Σin,0 is the total inelastic cross-section with

units of cm−1 and defined as

Σin,0 =

∫ Qmax

Qmin

Σin(E,Q)dQ. (3.38)

In Fig. 3.9a the microscopic total cross-sections for aluminum and gold are presented.

Again, the total cross-section begins to fall-off for sufficiently low energies in gold,

which is characteristic of a limitation of the Born approximation used to obtain the

Möller DCS. It is also of interest to note that the minimum and maximum values

are roughly three orders of magnitude lower than the elastic DCS. Therefore, elastic

scattering about 103 times more likely to occur than inelastic scattering.
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The inverse of the inelastic total cross-section is the inelastic mfp (cm) or

λin =
1

Σin,0

, (3.39)

which is presented in Fig. 3.9b. Again, this provides the mean distance to an inelastic

collision and is on the order of mm.
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Figure 3.9: Möller total cross-section and mfp for inelastic collisions with aluminum
and gold nuclei.

For k = 1, we have Q1 = S(E), where S(E) is the stopping power with units of

MeV cm−1 and defined as

S(E) =

∫ Qmax

Qmin

QΣin(E,Q)dQ. (3.40)

The stopping power is the mean energy-loss per unit distance traveled. As previously

noted, Eq. (3.41) does not result in stopping powers that agree with ICRU 37 [69]

and is replaced with the Berger-Seltzer formula from Eq. (3.26). The Möller DCS is

renormalized such that the first moment Q1 is in agreement with the Berger-Seltzer

formula. The differences in the two expressions are seen in Fig. 3.10, where Q1 is

roughly a factor of two lower than the more accurate Berger-Seltzer formula.

34



Chapter 3. Electron Interaction Physics

10
−2

10
−1

10
0

10
1

10
0

10
1

10
2

Energy (MeV)

S
to

p
p

in
g

 P
o

w
er

 (
M

eV
/c

m
)

 

 

Q
1
, Au

Berger−Seltzer, Au

Q
1
, Al

Berger−Seltzer, Al

Figure 3.10: Stopping power from Eq. (3.41) and the Berger-Seltzer formula.

For k = 2, we have Q2 = T (E), where T (E) is the straggling coefficient with

units of MeV 2cm−1 and defined as

T (E) =

∫ Qmax

Qmin

Q2Σin(E,Q)dQ. (3.41)

Energy straggling is the result of occasional inelastic collisions resulting in large

energy-losses. In an energy-loss simulation for a thin slab where stopping power is

applied in a CSD fashion, the resulting energy spectra will be singular and equal

to the mean energy-loss. By including straggling, there will be a spread in energy

about the mean energy-loss. The amount of spreading will depend on the strength

of the energy straggling. Straggling impacts quantities like dose from electrons by

smoothing out the Bragg peak.
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The Analog Problem

In this chapter, the challenges associated with the analog electron transport are ex-

pressed. That is, the challenges associated with solving the transport equation where

the interaction physics are given by the single-scatter or analog DCSs described in

Chapter 3. To understand the challenges it is necessary to describe the transport

equation in some detail. To do so, a description of the independent variables as-

sociated with the transport equation, along with a discussion of the angular flux

(that is, the solution) and quantities of interest that are derived from the angular

flux are provided. Rather than deriving the transport equation, which can be found

in numerous particle transport texts [11, 70], the transport equation of interest is

written down and qualitative descriptions of the various terms that appear are pro-

vided. Furthermore, a summary of the Monte Carlo algorithm for electron transport

is presented within the context of the Geant4 toolkit [3]. The chapter is concluded

with example calculations corresponding to the aforementioned derived quantities

using analog Monte Carlo, along with the computer time required to complete such

calculations. The computational cost associated with analog Monte Carlo transport

of electrons with moderate to high energies is the single-most important reason for

developing efficient approximate methods.
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4.1 Independent Variables

It is of interest to obtain solutions to the 3-D transport equation. The solution,

or the angular flux, is the distribution of particles in a six-dimensional phase-space

including position ~r, energy E, and direction ~Ω, at some time t, where the position

with respect to the origin in Cartesian coordinates is given by

~r = xî+ yĵ + zk̂. (4.1)

A differential hexahedral volume, dV , is obtained by sweeping out an incremental

amount in all directions about ~r and given by dV = dxdydz.

The direction, measured with respect to the polar angle, θ, and azimuthal angle,

ϕ, is given by

~Ω = Ωxî+ Ωy ĵ + Ωzk̂, (4.2)

where

Ωx = (1− cos θ)1/2 cosϕ

Ωz = (1− cos θ)1/2 sinϕ

Ωy = cos θ.

(4.3)

An incremental differential surface on the unit sphere, dΩ, is swept out about ~Ω and

given by dΩ = dµdϕ, where µ = cos θ and dµ is an incremental displacement with

respect to the polar angle, while dϕ is an incremental displacement with respect to

the azimuthal angle.
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4.2 The Angular Particle Density and Derived Quan-

tities

The angular particle density describes a population of particles in the phase space

of interest. The angular flux, or the solution to the transport equation, is related to

the angular particle density. Numerous quantities of interest are derived from the

angular flux. The angular particle density and various derived quantities are the

subject of the following sections.

4.2.1 The angular particle density

The angular particle density is denoted asN(~r, E, ~Ω, t), whereN(~r, E, ~Ω, t)dV dEdΩdt

gives the number of particles in dV dEdΩ about (~r, E, ~Ω) at time t with units of

(cm−3MeV −1). The quantity of interest, the angular flux, is related to the angular

particle density by

ψ(~r, E, ~Ω, t) = vN(~r, E, ~Ω, t), (4.4)

where v is the particle velocity. Therefore, the volume based interpretation of the

angular flux, or ψ(~r, E, ~Ω, t)dV dEdΩ, is the rate at which path length is generated

by particles in dV dEdΩ about (~r, E, ~Ω) at time t with units of (cm−2MeV −1s−1).

Many other derived quantities follow from the angular flux or the scalar flux

which is given by

φ(~r, E, t) =

∫
4π

dΩψ(~r, E, ~Ω, t), (4.5)

and is the zeroth angular moment of the angular flux. For example, quantities of

interest presented in the results section include angular distributions, energy spectra,

longitudinal and lateral distributions, dose or energy deposition, charge deposition,
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and transmission and reflection fractions. Each of these quantities are defined in the

following sections.

4.2.2 Derived quantities

It is uncommon to require the angular flux directly. Typically, quantities derived

from the angular flux are of direct use. This includes quantities like angular distri-

butions, energy spectra, longitudinal and lateral distributions, dose, charge deposi-

tion, and reflection and transmission fractions. These quantities are now described

in greater detail and and in many cases, the result is a function p indicating that

these distributions can be interpreted as probability distribution functions.

Angular distributions

Angular distributions at some position ~r are typically a function of the polar angle θ

or µ = cos θ, which requires integration of the angular flux over all azimuthal angles

and energies or

p(~r, µ) =

∫ 2π

0

dφ

∫ ∞
0

dEψ(~r, E, φ, µ). (4.6)

Though p(~r, µ) can be obtained at any position, it is common in electron transport

to obtain reflected and transmitted angular distributions in thin slabs. For a 1-D

slab of thickness L with the left face at the origin, the reflected and transmitted

distributions are given by

p(0, µ) =

∫ 2π

0

dφ

∫ ∞
0

dEψ(0, E, φ, µ), (4.7)

and

p(L, µ) =

∫ 2π

0

dφ

∫ ∞
0

dEψ(L,E, φ, µ) (4.8)
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respectively. Note that particles traveling in directions with µ > 0 do not contribute

to the reflected distribution, while particles traveling in directions with µ < 0 do not

contribute to the transmitted distribution.

Energy spectra

Energy spectra at some position ~r are a function of particle energy and an angular in-

dependent quantity that requires integration of the angular flux over all contributing

angles. This quantity is effectively an energy dependent current, J(~r, E), or

J(~r, E) =

∫
~Ω·n̂>0

dΩ

∫
∂R

dS (~Ω · n̂)ψ(~r, E, φ, µ)

−
∫
~Ω·n̂<0

dΩ

∫
∂R

dS |~Ω · n̂|ψ(~r, E, φ, µ).

(4.9)

Once again, it is common in electron transport to obtain reflected and transmitted

energy spectra in thin slabs. In this case, the definition of an energy dependent

partial current is necessary where particles flowing in positive directions ~Ω · n̂ > 0

across a surface element ∂S contribute to the positive partial current

J+(~r, E) =

∫
~Ω·n̂>0

dΩ

∫
∂R

dS ~Ω · n̂ψ(~r, E, φ, µ), (4.10)

and particles flowing in negative ~Ω · n̂ < 0 directions across a surface element ∂S

contribute to the negative partial current

J−(~r, E) =

∫
~Ω·n̂<0

dΩ

∫
∂R

dS |~Ω · n̂|ψ(~r, E, φ, µ), (4.11)

where n̂ is a unit vector normal to the surface of flow. Therefore, in the 1-D slab

described in section 4.2.2, the reflected energy spectrum is

p(0, E) = J−(0, E), (4.12)

and the transmitted energy spectrum is

p(L,E) = J+(L,E). (4.13)
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In many cases, one is interested in energy-loss spectra as well which are given by

p(0, E0 − E) = J−(0, E0 − E), (4.14)

and

p(L,E0 − E) = J+(L,E0 − E), (4.15)

where E0 is the initial energy of the particle.

Longitudinal and lateral distributions

Longitudinal and lateral distributions are closely related to Lewis theory. In fact,

these distributions are obtained by solving an infinite medium transport equation

for mono-energetic particles. The longitudinal distribution is

p(z, s) =

∫ ∞
−∞

dx

∫ ∞
−∞

dy

∫
4π

dΩψ(x, y, z, s, ~Ω), (4.16)

and gives the probability that a particle will be displaced a distance ±z along the

axis of the initial direction of the particle given some pathlength s. The lateral

distribution is

p(b, s) =

∫ ∞
−∞

dz

∫
4π

dΩψ(x, y, z, s, ~Ω), (4.17)

where b =
√
x2 + y2 and gives the probability that a particle will be displaced

laterally through a distance b orthogonal to the axis of the initial direction of the

particle pathlength s. That is, the radial spread given some pathlength s.

Dose deposition

The dose gives the spatial distribution of the energy deposited per unit volume. It is

obtained by integrating the product of the average energy lost per distance traveled,
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S(E), or the stopping power and the flux over all energies and angles or

D(~r) =

∫
4π

dΩ

∫ ∞
0

dE S(E)ψ(~r, E, ~Ω) =

∫ ∞
0

dE S(E)φ(~r, E), (MeV/cm3). (4.18)

This quantity is of particular interest to nearly all applications of electron transport.

Moreover, the dose is typically easier to resolve because it is only differential in space

in contrast to some of the previous quantities that are also differential in angle or

energy.

Charge deposition

Charge deposition is the spatial distribution of charge (positive or negative) produced

by a particle slowing down through energies less than Emin. Similar to dose, charge

deposition is related to the scalar flux or

C(~r) =

∫ ∞
Emin

dE ′
∫ Emin

0

dE ′′ Σin(E ′ → E ′′)φ(~r, E ′), (cm−3), (4.19)

where Emin is the energy below which particles are assumed deposited. Eq. (4.8)

can be interpreted as a slowing down density. The inner integral gives the rate at

which electrons with energies E ′ slow down past Emin. The outer integral then gives

the total slowing down density for all electrons with energies E ′ > Emin.

Reflection and transmission fractions

Reflection and transmission fractions are typically thin-slab results and are a mea-

sure of the number of source particles that are not absorbed in the medium and

either forward-scatter (transmission) or backscatter (reflection). For a 1-D slab (as

described in section 4.2.2), the reflection fraction is the negative partial current eval-

uated at x = 0 or

J−(0) =

∫ ∞
0

dE

∫
~Ω·n̂<0

dΩ

∫
∂R

dS |~Ω · n̂|ψ(0, E, φ, µ). (4.20)
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and the transmission fraction is the positive partial current evaluated at x = L or

J+(L) =

∫ ∞
0

dE

∫
~Ω·n̂>0

dΩ

∫
∂R

dS ~Ω · n̂ψ(L,E, φ, µ) (4.21)

4.3 The Electron Transport Equation

Given the definitions from section 4.2, the usual practice is to derive the transport

equation by writing down an equation for the time rate of change in some incremental

population of particles which is related to the rate of loss and the rate of gain. That

is,

∂

∂t
N(~r, E, ~Ω, t) = gains− losses. (4.22)

Next, the angular particle density is related to the angular density, ψ(~r, E, ~Ω, t) =

vN(~r, E, ~Ω, t), and the contributions to gains and losses are obtained from first prin-

ciples. Here, the transport equation for electrons is simply written down and each

term is discussed as it relates to gains and losses. If necessary, the reader should

refer to more complete derivations from the text [11, 70].

To begin, it is of interest to study the time-independent transport equation for

electrons. In this equation, it is assumed that the solution is not changing as a

function of time; therefore, particle losses are exactly balanced by particle gains and

Eq. (4.22) becomes a balance equation or

Ω · ∇ψ(~r, E, ~Ω) + [Σel,0(~r, E) + Σin,0(~r, E)]ψ(~r, E, ~Ω)

=

∫ ∞
0

dE ′
∫

4π

dΩ′
[
Σel(~r, E

′ → E, ~Ω′ · ~Ω) + Σin(~r, E ′ → E, ~Ω′ · ~Ω)
]
ψ(~r, E ′, ~Ω′)

(4.23)

where the left hand side corresponds to losses from leakage and out-scatter and the

right hand side corresponds to gains from in-scatter and secondary production. That
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is, Ω · ∇ψ(~r, E, ~Ω)dV dEdΩ is the net leakage of particles with energies in dE about

E and directions in dΩ about ~Ω from dV . The out-scatter is a loss due to particles in

dV dEdΩ about (~r, E, ~Ω) suffering an elastic or inelastic collision resulting in removal

of the particles from the energy or angular phase-space. The elastic and inelastic

in-scatter or
∫∞

0
dE ′

∫
4π
dΩ′
[
Σel(~r, E

′ → E, ~Ω′ ·~Ω)+Σin(~r, E ′ → E, ~Ω′ ·~Ω)
]
ψ(~r, E ′, ~Ω′)

is a gain from particles in dV dE ′dΩ′ about (~r, E ′, ~Ω′) scattering into dV dEdΩ about

(~r, E, ~Ω). Finally, Qδ(~r, E, ~Ω) is a gain due to production of secondary electrons in

dV dEdΩ about (~r, E, ~Ω).

It is customary to rewrite the transport equation in terms of the Boltzmann

collision operator or

Ω · ∇ψ(~r, E, ~Ω) = HBψ(~r, E, ~Ω) +Qδ(~r, E, ~Ω), (4.24)

where the Boltzmann collision operator is defined as

HBψ(~r, E, ~Ω) =

∫ ∞
0

dE ′
∫

4π

dΩ′
[
Σel(~r, E

′ → E, ~Ω′ · ~Ω)

+ Σin(~r, E ′ → E, ~Ω′ · ~Ω)
]
ψ(~r, E ′, ~Ω′)− Σt(~r, E)ψ(~r, E, ~Ω),

(4.25)

and Σt(~r, E) = Σel,0 + Σin,0. Eq. (4.24) is subject to the following general boundary

condition

ψ(~r, E, φ, µ) = ψb(~r, E, φ, µ), ~r ∈ ∂V, ~Ω(φ, µ) · ~n < 0, 0 < E <∞, (4.26)

For electrons, elastic and inelastic scattering are treated separately as indicated

in Eq. (4.25). Furthermore, it is assumed that elastic scattering occurs without

energy loss and angular deflection from inelastic scattering is given by kinematics,

so the collision operator can be expressed as

HBψ(~r, E, ~Ω) = HB
elψ(~r, E, ~Ω) +HB

inψ(~r, E, ~Ω), (4.27)
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where

HB
elψ(~r, E, ~Ω) =

∫
4π

dΩ′Σel(~r, E, ~Ω
′ · ~Ω)ψ(~r, E, ~Ω′)−Σel,0(~r, E)ψ(~r, E, ~Ω) (4.28)

and

HB
inψ(~r, E, ~Ω) =

∫
4π

dΩ′
∫ ∞

0

dE ′Σin(~r, E ′ → E)δ[~Ω′ − f(E ′, Q)]ψ(~r, E ′, ~Ω′)

− Σin,0(~r, E)ψ(~r, E, ~Ω),

(4.29)

where the angle of the primary is

f(E,Q) =

√
E −Q
E

E + 2mec2

E −Q+ 2mec2
(4.30)

and the angle of the secondary is

g(E,Q) =

√
Q

E

E + 2mec2

Q+ 2mec2
. (4.31)

In the event that secondary production is neglected (Qδ = 0) and deflection of

the primary from inelastic scattering is also considered negligible, Eq. (4.29) reduces

to

HB
elψ(~r, E, ~Ω) =

∫ ∞
0

dE ′Σin(~r, E ′ → E)ψ(~r, E ′, ~Ω)−Σin,0(~r, E)ψ(~r, E, ~Ω). (4.32)

As previously mentioned, direct numerical solution of Eq. (4.24) is not realistic

for most applications of interest because of the large total cross sections, Σel,0 and

Σin,0, and DCSs, Σel and Σin, that are highly peaked about small deflections and

energy losses. Because the computational effort is related to the number of collisions

simulated per particle history and the outcome of the collision, simulation of Coulomb

collisions are far more computationally intensive than the interactions characterizing

neutral particles. Examples of analog electron transport calculations or solutions

to Eq. (4.23), along with the associated computational cost, is the subject of the

following section.
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4.4 Analog Monte Carlo Calculations

When applying the Monte Carlo method to the transport equation, it is possible to

obtain solutions by simulating the physical processes of particles without necessarily

writing down or referring to the transport equation. Furthermore, a Monte Carlo so-

lution does not include the fine detail that is characteristic of deterministic methods

(that is, the angular flux) but instead provides information about certain specified

quantities of interest (that is, derived quantities) [12]. Therefore, the Monte Carlo

method might be described as an intuitive or physical approach to solving the trans-

port equation through direct simulation of particle behavior, where the individual

particle interactions can be considered a Markov process which are independent of

their history.

Of course, one of the drawbacks of analog Monte Carlo is that the detailed physics

may be computationally prohibitive as in the case of electrons. In this section, we

demonstrate the computational cost associated with several analog Monte Carlo

solutions to the transport equation. Before presenting any results, the analog Monte

Carlo algorithm is summarized.

4.4.1 Analog Monte Carlo algorithm

What is generally required for an analog Monte Carlo calculation is a description of

the geometrical boundaries, a description of the material properties in each region,

and the differential and total cross-section for each material. In the algorithm de-

scribed below, it is assumed that particles travel straight lines between collisions,

particles suffer a collision per unit distance with probability Σt, the time during a

collision can be neglected, and the particle transport being simulated is linear [12].

In general, a particle is tracked from “birth” until its “death,” which starts by
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sampling a particle from the source description. The source can be a boundary

source, or boundary condition, and/or an internal source. Both boundary and inter-

nal sources can be functions of space, angle, and energy. Given a source particle, the

distance to collision is sampled according to exponentially distributed collision sites.

The particle is moved the distance to the next collision site in its current direction.

Assuming the particle did not leave the system, the collision type and the collision

outcome are sampled. This process is repeated until the particle is absorbed by the

medium or the particle leaves the system.

As with all probabilistic quantities - the source function, the differential cross-

section, the distance to collision, and so forth - they are determined by sampling

(direct, rejection) a probability density function (PDF), which requires deriving a

cumulative probability function (CDF). Details on direct and rejection sampling

techniques are given in reference [12] and references therein.

The following is an outline of the analog Monte Carlo algorithm specifically for

transporting electrons. The important steps are listed and some detail is given for

the quantity sampled at each step along with other applicable considerations.

Analog Monte Carlo algorithm

1. Sample source particle

– For monoenergetic pencil beams this simply requires initializing the

particles position r0, energy E0, and direction ~Ω0. For distributed

sources one must obtain a CDF and apply inverse mapping. For

example, for an isotropic point source the polar angle is determined by

µ← 2ξ1−1 and the azimuthal angle is determined by ϕ← 2πξ2 where

ξ1 and ξ2 are two different random numbers uniformly distributed

between zero and one.

2. Sample distance to collision
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– Distance to collision is generally given by s← − ln(ξ)/Σt, where Σt is

the probability per unit distance that an elastic or inelastic collision

will occur. Given the distance s and the current direction of the

particle Ωi, this must be compared with the distance to the next

boundary d.

∗ If s < d, the particle is moved to the collision site and algorithm

continues with step 3.

∗ If s ≥ d and the material on each side of the boundary is the same,

the residual s and d are compared and the particle is moved to

the collision site if the residual s < d and algorithm continues

with step 3.

∗ If s ≥ d and the material on each side of the boundary is different,

the particle is stopped at the boundary without colliding and

restart at step 2.

∗ If s ≥ d and the particle crosses a system boundary, the particle is

killed, quantities of interest are tallied, and the algorithm restarts

at step 1.

3. Sample collision type

– The collision type is sampled from the point probability associated

with each collision type. That is, the probability of the ith collision

type is pi = σi,0/σt, where
∑

i pi = 1. As it relates to the analog

problems studied herein, the two point probabilities for elastic and

inelastic collisions are pel = σel,0/σt and pin = σin,0/σt. To determine

the collision type a random number is sampled and the following logic

is applied:

∗ If ξ ≤ pel, then an elastic collision occurred.

∗ Otherwise, an inelastic collision occurred.
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4. Sample collision outcome

– Given the collision type, the appropriate DCS is sampled according

to the necessary method (direct or rejection). For example, when

sampling screened Rutherford the direct method used is

µ0 ← 1 − 2ηξ/(1.0 − ξ + η). When sampling from the partial-wave

DCSs, methods for inverting discrete DCSs are used. Lastly, when

sampling Möller a rejection method must be used because the Möller

DCS cannot be inverted.

5. Update particle state

– Given the collision outcome, the particles energy or direction is up-

dated. In the event of an inelastic collision, some additional steps are

required. That is,

∗ If the sampled energy-loss is greater than the secondary produc-

tion threshold, a secondary must be generated.

∗ Otherwise, the energy-loss is assumed to be deposited locally and

tallied if necessary.

6. Restart at step 1.

4.4.2 Tallies

In Monte Carlo calculations, quantities of interest are obtained through tallies. That

is, counting events that contribute to some quantity being tracked. Each tally is

related to the derived quantities from section 4.2, but it is typically easier to use an

intuitive approach in obtaining expressions for tallies.
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Angular distributions

The particle’s polar angle is tallied when crossing a specified surface, when transmit-

ted, reflected, or after reaching a maximum specified pathlength. Angular Distribu-

tion tallies are determined by summing up all contributions by each particle to some

ith angular bin. If the polar angle of the jth particle is within the limits of the ith

bin, that bin is incremented by one. The expression for the angular distribution is

p(θi) =
1

N∆θi

∑
j

f(θj), (4.33)

where N is the number of source particles, ∆θi = θi+1/2 − θi−1/2, θi−1/2 and θi+1/2

are the lower and upper limit of the ith bin, and

f(θj) =

 1 : θi−1/2 ≤ θj < θi+1/2

0 : otherwise.
(4.34)

Energy-loss spectra

The particle’s energy-loss (Q=E0 − E) is tallied when crossing a specified surface,

when transmitted, reflected, or after reaching a maximum specified pathlength.

Energy-loss spectra tallies are determined by summing up all contributions by each

particle to some ith energy-loss bin. If the energy-loss of the jth particle is within

the limits of the ith bin, that bin is incremented by one. The expression for the

energy-loss spectra is

p(Ei) =
1

N∆Qi

∑
j

f(Qj), (4.35)

where N is the number of source particles, ∆Qi = Qi+1/2−Qi−1/2, Qi−1/2 and Qi+1/2

are the lower and upper limit of the ith bin, and

f(Qj) =

 1 : Qi−1/2 ≤ Qj < Qi+1/2

0 : otherwise.
(4.36)
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Longitudinal and lateral distributions

The particle’s longitudinal displacement (z/s) and lateral displacement

(b/s, b =
√
x2 + y2) is tallied when a particle reaches a maximum specified path-

length s. Longitudinal and lateral distribution tallies are determined by summing

up all contributions by each particle to some ith longitudinal or lateral displacement

bin. The expression for the longitudinal distribution is

p
(zi
s

)
=

1

N∆( zi
s

)

∑
j

f
(zj
s

)
, (4.37)

where N is the number of source particles, ∆zi/s =
zi+1/2

s
− zi−1/2

s
, and

f
(zj
s

)
=

 1 :
zi−1/2

s
≤ zj

s
<

zi+1/2

s

0 : otherwise.
(4.38)

The expression for the lateral distribution is

p

(
bi
s

)
=

1

N∆( bi
s

)

∑
j

f

(
bj
s

)
, (4.39)

where N is the number of source particles, ∆bi/s =
bi+1/2

s
− bi−1/2

s
, and

f

(
bj
s

)
=

 1 :
bi−1/2

s
≤ bj

s
<

bi+1/2

s

0 : otherwise.
(4.40)

Dose deposition

Dose tallies are determined by summing over all energy deposited in the ith spatial

cell, by the jth particle or

D(xi, yi, zi) =
1

ρiVi

∑
j

∆Ei,j
N

, (4.41)

where ρi is the density of the material in the ith cell, Vi is the volume of the ith cell,

and ∆Ei,j is the energy deposited between xi and xi+1, yi and yi+1, and zi and zi+1

by the jth particle.
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Charge deposition

Charge deposition is tallied for the ith spatial bin when a particle slows down past

some minimum energy (negative charge) and when a secondary is created (positive

charge). The expression for charge deposition is

C(xi, yi, zi) =
R0

rcNVi

∑
j

f(cj), (4.42)

where N is the number of source particles, Vi is the volume of the ith cell, R0 is the

CSDA range of the particle, rc is the reflection factor given in the following section,

cj is −1 for charge deposition and 1 for secondary production, and

f(cj) =

 cj : ~rj ∈ Vi
0 : otherwise.

(4.43)

In other words, cj is tallied in the ith cell corresponding to where a charge was

deposited (cj = −1) or where a secondary was produced (cj = 1). The factor rc

is used to normalize the charge deposition such that the total charge deposition

(integration over all spatial dimensions) is unity.

Reflection and transmission fractions

Reflection and transmission fractions are typically calculated in thin slabs or semi

infinite slabs when a particle exits through the left face (reflection) or through the

right face (transmission). If a particle leaves the left face, the reflection tally is

incremented by one, so after N source particles the reflection fraction is

rc =
1

N

∑
j

fr(xj) (4.44)

where

fr(xj) =

 1 : xj < 0

0 : otherwise.
(4.45)
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The transmission fraction is

tc =
1

N

∑
j

ft(xj) (4.46)

where

ft(xj) =

 1 : xj > L

0 : otherwise.
(4.47)

In this case, it is assumed that the left face of the slab is at x = 0 and the right face

is at x = L (that is, this is for a slab with thickness L).

4.4.3 Analog Monte Carlo calculations

In this section, several analog Monte Carlo calculations are presented to demonstrate

the types of results of interest, along with the computational cost associated with

these results. In most cases, the problem setup is a 1-D slab with a normally incident

pencil beam on the left face and a vacuum boundary on the right face, as shown in

Fig. 4.1. This is with exception of the longitudinal and lateral distributions that are

obtained in an infinite medium.

Figure 4.1: Problem schematic for analog calculation examples.
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Table 4.1: Timing results for analog simulation of 106 1-MeV electrons normally
incident on aluminum and gold slabs with varying thicknesses. The slab thicknesses
presented in cm corresponds to aluminum slabs, while the gold slabs are roughly
one-tenth the thickness of the aluminum slab. Note that the computer time scales
roughly linearly for aluminum, while scaling non-linearly for gold.

Timing results for analog simulation

Slab
Thickness

(mfp)

Slab
Thickness

(cm)

CPU Time
Al/Au
(min)

100 0.0019 6/7
300 0.0057 20/21
1000 0.019 72/100
3000 0.057 273/384

In Table 4.1, the computer times required for analog simulation of 106, 1-MeV

electrons in aluminum and gold for varying slab thicknesses are presented. In general,

the slab thickness in Table 4.1 are very small (∼ mm − µm), so this problem is

not representative of the full spectrum of electron transport calculations. Even so,

for this small sampling of calculations the computer times for the simulations with

slab thicknesses ∼ mm are still on the order of one to six hours. This amount of

computer time is impractical for routine calculations; especially, considering that

these times are associated with just the transport of primary particles. That is,

no secondaries were produced in these example calculations. Secondary production

would only increase the amount of computer time required. The computer times

associated with the aluminum slabs scale linearly. However, in gold, as the slab

becomes thicker, inelastic collisions become more probable increasing the computer

time. This is because as particles lose energy the mfp of the particle decreases and

the particle suffers further collisions. Not to mention, inelastic collisions require a

rejection technique that is more costly than direct sampling. In the following sections,

several results associated with the computer times are provided to give a sense of

typical results and how they behave.
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Angular distributions

Reflected and transmitted angular distributions for 1-MeV electrons incident on 1-D

aluminum and gold slabs with increasing thickness are presented in Figs. 4.2 and

4.3. In general, the angular distributions behave the same as a function of the target

atomic number. However, in high-Z materials particles undergo larger-angle scat-

tering because the DCS is less-peaked resulting in reflection distributions that are

larger in magnitude and also transmission distributions that are less-peaked. In both

aluminum and gold, the reflected angular distributions for slabs with thicknesses of

100 and 300 mfps are slightly anisotropic, but difficult to see because the slabs are so

thin that most of the particles are transmitted before they can turn around. How-

ever, for the thicker slabs (1000 and 3000 mfps) the reflected angular distributions

are mostly isotropic because the particles suffer numerous collisions before turning

around; thus, spreading the distribution of angles significantly.
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Figure 4.2: Reflected and transmitted angular distributions of 1000-keV electrons in
aluminum slabs with thickness of 100, 300, 1000, and 3000 analog mfp.

The impact of elastic scattering is seen differently in the transmitted angular

distributions because for thinner slabs particles undergo only enough collisions to

slightly spread the initial singular state of the beam, while for thicker slabs particles
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Figure 4.3: Reflected and transmitted angular distributions of 1000-keV electrons in
gold slabs with thickness of 100, 300, 1000, and 3000 analog mfp.

suffer enough collisions that the beam is spread out significantly from its initial state

resulting in a nearly isotropic distribution of angles.

Energy-loss spectra

Reflected and transmitted energy-loss spectra for 1-MeV electrons incident on 1-

D aluminum and gold slabs with increasing thickness are presented in Figs. 4.4

and 4.5. Once again, the overall behavior of the reflected and transmitted energy-

loss spectra is the roughly same as a function of the target atomic number. The

exception being that more particles are reflected in gold and the magnitude of the

reflected energy spectra are greater in gold, while the transmitted spectra are slightly

lower in magnitude. As the thickness of the slab increases, particles suffer further

inelastic collisions and the energy-loss spectra becomes smoother. This is true for

both reflected and transmitted energy-spectra.
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(b) Transmitted Energy-Loss Spectra

Figure 4.4: Reflected and transmitted energy-loss spectra for 1000-keV electrons in
aluminum slabs with thickness of 100, 300, 1000, and 3000 analog mfp.

Longitudinal and lateral distributions

Longitudinal and lateral distributions for 1-MeV electrons in an infinite copper

medium neglecting inelastic scattering are presented in Fig. 4.6. Longitudinal dis-

tributions give the displacement of the particle along the axis of the initial direc-

tion of the particle. This displacement is measured with respect to some maximum

pathlength and is therefore between −1 ≤ z/s ≤ 1 for longitudinal distributions.

As seen in Fig. 4.6a, for the thinnest slab (100 mfp) most particles stop between

0.95 < z/s ≤ 1 implying that after 100 collisions most particles are deflected incre-

mentally from their initial direction. However, it is clearly possible for the occasional

large angle scatter to result in particles traveling in directions opposite to their ini-

tial direction. As the slab thickens and particles suffer additional collisions, the

longitudinal distribution smoothes out.

Lateral distributions give the displacement of the particle perpendicular to the

axis of the initial direction of the particle. Again, this displacement is measured with

respect to some maximum pathlength, but is between 0 ≤ b/s ≤ 1 for lateral distri-

butions because this is essentially a measure of the radius of a beam. In Fig. 4.6b
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(b) Transmitted Energy-Loss Spectra

Figure 4.5: Reflected and transmitted energy spectra for 1000-keV electrons in gold
slabs with thickness of 100, 300, 1000, and 3000 analog mfp.

the lateral distributions appear to be smoother than the longitudinal distributions.
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Figure 4.6: Longitudinal and lateral distributions of 1000-keV electrons in gold slabs
with thickness of 100, 300, and 1000 analog mfp.

Dose deposition

Depth-dose profiles for 20-MeV electrons normally incident on 30 cm of water and

250-keV electrons normally incident on 0.008 cm of gold are presented in Fig. 4.7 In

58



Chapter 4. The Analog Problem

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Depth (cm)

D
o
se

 (
M

eV
 c

m
2
/g

)

 

 

(a) 20000-keV electrons in water

0 1 2 3 4 5 6 7 8

x 10
−3

0

0.5

1

1.5

2

2.5

3

Depth (cm)

D
o
se

 (
M

e
V

 c
m

2
/g

)

 

(b) 250-keV electrons in gold

Figure 4.7: Depth-dose profiles for 20000-keV electrons in water and 250-keV elec-
trons in gold.

both Fig. 4.7a and Fig. 4.7b, the dose is a smooth function of position as opposed

to depth-dose for protons and heavy ions containing a distinct Bragg peak. In Fig.

4.7a, the peak dose is roughly 10 cm into the slab because 20-MeV electrons mostly

forward scatter at these energies; especially, in low-Z materials. In contrast, the

peak dose in Fig. 4.7b is much closer to the source because the elastic scattering

DCS is less anisotropic at 250-keV and backscattering is more pronounced in high-Z

materials.

Charge deposition

Charge deposition profiles for 5-MeV and 10-MeV electrons normally incident on

aluminum and gold slabs with thicknesses of 1.4r0 are presented in Fig. 4.8, where

r0 is the CSDA range. The impact of atomic number and particle energy is seen in

Figs. 4.8a and 4.8b, where for low-Z materials secondaries produced near the source

penetrate deeper into the slab and are less-likely to back-scatter and recombine in the

regions where they were produced (that is, near z/r0 = 0). For this reason, Fig. 4.8a

is negative in the first several cells as opposed to Fig. 4.8b. The charge deposition

59



Chapter 4. The Analog Problem

0 0.2 0.4 0.6 0.8 1 1.2 1.4
−1

−0.5

0

0.5

1

1.5

2

Scaled Depth (z/r
0
)

S
c
a
le

d
 C

h
a
rg

e
 D

e
p
o
si

ti
o
n
  
 (

r 0
/e

)D
c

 

 

5000−keV

10000−keV

(a) Aluminum

0 0.2 0.4 0.6 0.8 1 1.2 1.4
−0.5

0

0.5

1

1.5

2

2.5

Scaled Depth (z/r
0
)

S
c
a
le

d
 C

h
a
rg

e
 D

e
p
o
si

ti
o
n
  
 (

r 0
/e

)D
c

 

 

5000−keV

10000−keV

(b) Gold

Figure 4.8: Charge deposition for 5000-keV and 10000-keV electrons in aluminum
and gold.

profile in Fig. 4.8b is only slightly negative for 10-MeV electrons. In general, with

increasing source particle energy higher energy secondaries are produced carrying

dose further into the slab. As a result, the peak charge deposition is shifted deeper

into the slab.

Reflection and transmission fractions

Reflection and transmission fractions for 1-MeV electrons incident on 1-D aluminum

and gold slabs with increasing thickness are presented in Table 4.2. As expected,

nearly all of the electrons are transmitted in slabs with thicknesses of 100 to 300

mfps. However, with increasing thickness more particles are reflected; especially, in

gold as particles are more likely to back-scatter. Clearly, reflection and transmission

do not sum to one in all cases because some particles are absorbed in the slab.
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CEASE telescope response function calculation

The Compact Environmental Anomaly Sensor (CEASE) was built as a space parti-

cle radiation environment monitoring and warning system [1]. In particular, CEASE

monitors the radiation environment through measuring the energy spectra. In Fig.

4.9, the CEASE telescope is presented which is used to measure energy spectra.

The major components of the CEASE telescope include the collimator and the front

silicon detector (DFT) and the back silicon detector (DBT). Particles enter the tele-

scope through the collimator and deposit energy in both DFT and DBT. The energy

deposited in each detector is mapped to a channel determined according to the energy

deposition matrix in Fig. 4.10.

CEASE does not measure energy spectra directly, but rather measures raw counts

in response to electrons above ∼50-keV. To obtain energy spectra, one must relate

the raw counts to the spectra through the response function in the following integral

equation

Ci =

∫ ∞
0

Ri(E)φ(E)dE, (4.48)

where Ci is the count rate (counts/sec.) for the ith channel, Ri(E) is the response

of the ith channel to particles with energy E, and φ(E) is the energy spectra. The

Slab
Thickness Material Reflection Transmission

100 mfp
aluminum 0.0002±0.1 0.99979±0.00002

gold 0.003±0.02 0.99715±0.00005

300 mfp
aluminum 0.0009±0.03 0.99964±0.00004

gold 0.017±0.007 0.9825±0.0001

1000 mfp
aluminum 0.009±0.009 0.982±0.0001

gold 0.138±0.002 0.855±0.004

3000 mfp
aluminum 0.041±0.005 0.701±0.001

gold 0.370±0.001 0.470±0.001

Table 4.2: Reflection and transmission fractions with relative uncertainties for 1-
MeV electrons normally incident on aluminum and gold slabs with thicknesses of
100, 300,1000, and 3000 mfps.
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Figure 4.9: Schematic of the CEASE telescope used to measure energy spectra [1].

response function (cm2sr),

Ri(E) = 2π

∫ θmax

0

Ai(E, θ) sin θdθ, (4.49)

is an integral of the effective area, Ai(E, θ), over all angles. The effective area is either

measured in the laboratory or calculated using a particle transport code. That is,

Ai(E, θ) =
N i
D(E, θ, εDFT , εDBT )

ρS
cos θ, (4.50)

where N i
D(E, θ, εDFT , εDBT ) is the number of hits in the CEASE detector with energy

εDFT deposited in the front detector and εDBT deposited in the back detector, ρs = Ns
As

is the source density, Ns is the total number of particles simulated, and AS is the

area of a disc source. Here, N i
D(E, θ, εDFT , εDBT ) is calculated using a Monte Carlo

transport code and then some post-processing is used to carry out the integral in

Eq. (4.49).

62



Chapter 4. The Analog Problem

0.01 0.04 0.06 0.12 0.25 0.75 1.5 2.25 3 10
0.01

0.04

0.22

0.515

1.69

3.04

4.57

6.1
7.5

10

Front Detector Nominal Thresholds (MeV)

B
a
c
k

 D
e
te

c
to

r 
N

o
m

in
a
l 

T
h

re
sh

o
ld

s 
(M

e
V

) (5,4)

(5,5)

(0,3) (1,3)

(0,2) (1,2) (2,2) (3,2)

(0,1) (1,1) (2,1) (3,1) (5,1)

(0,0) (1,0) (2,0) (3,0) (5,0) (6,0) (8,0)

(8,1)

(8,2)

(8,3)

(8,4)

(4,0)

(4,1)

(4,2)

(4,3)

(4,4)

(4,5)

(3,3)(2,3)

Figure 4.10: CEASE telescope energy threshold matrix with channel labels [1].

In this section, the total response due to N channels or

R(E) = 2π
N∑
i=1

∫ θmax

0

Ai(E, θ) sin θdθ, (4.51)

is reported. To generate the total response, electrons with 62 different source energies

at 19 different source angles were simulated. The energy deposition matrix for each

source configuration was stored and processed. The result is given in Fig. 4.11. The

total response indicates the energy range for which the detector is responsive. An

ideal response is flat over all energies of interest. In Fig. 4.11, there is a lower energy

bound below which detector response is negligible and an upper energy bound above

which electrons fully penetrate the collimator and saturate the detector. To complete

a response function calculation 1116 different simulations were run with 30000 source

particles each. The total simulation time was 1380 processor-days. Of course, this

was divided among hundreds of cores making the computational cost manageable.
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Figure 4.11: Response function generated using the partial-wave elastic DCS. Inelas-
tic physics, positron physics, and photon physics are given by the default Geant4
physics with EM option 3.
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Differential Cross-Section

Moments

In this chapter, the concept of a mathematical moment is developed. Given a general

understanding of the information contained in a moment, the elastic and inelastic

moments are again defined. With these definitions, the importance of moments

within the context of electron transport is demonstrated. As previously discussed

(see Chapter 3), it is possible to understand the importance of the lowest order

moments through their physical interpretation. However, beyond low order moments

it is difficult to make a physical connection; therefore, we must rely on mathematical

interpretations where physical interpretations are not possible.

In mathematics, a moment is a specific quantitative measure of the shape of a

set of points used in statistics. Moreover, one can reconstruct a distribution given

the information contained in the moments of that distribution. Take for example the

normal distribution or

f(x, µ̄, σ) =
1

σ
√

2π
e−

(x−µ̄)2

2σ2 , (5.1)

where µ̄ is the mean and σ2 is the variance as seen in Fig. 5.1. A normal distribution
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Figure 5.1: The normal distribution.

is completely specified by the mean, µ̄, and the variance, σ2.

The role of moments is perhaps easier to understand in a mathematical context. It

is then possible to extend these ideas to understanding the importance of moments

of the analog DCS. To begin, the central moments, or moments of a probability

distribution about the mean, are given by

µn =

∫ ∞
−∞

(x− µ̄)nf(x)dx. (5.2)

Given the definition of the normal distribution and the central moments, the zeroth

moment (n = 0) is defined. The zeroth moment gives the total area under a curve. By

definition, all probability distributions are normalized such that the zeroth moment

is unity. Therefore, the zeroth moment of the normal distribution is

µ0 =

∫ ∞
−∞

1

σ
√

2π
e−

(x−µ̄)2

2σ2 dx = 1. (5.3)

In words, the zeroth moment is the probability that any possible outcome will occur

and, therefore, must be one. The first central moment or the mean is given by

µ1 = µ̄ =

∫ ∞
−∞

(x− µ̄)
1

σ
√

2π
e−

(x−µ̄)2

2σ2 dx. (5.4)

The mean provides the central tendency of a probability distribution and because

the normal distribution is symmetric, the distribution is centered about the mean.
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The second central moment or the variance is given by

µ2 = σ2 =

∫ ∞
−∞

(x− µ̄)2 1

σ
√

2π
e−

(x−µ̄)2

2σ2 dx (5.5)

and provides a measure of the width of the distribution. As described by Eq. (5.1),

the normal distribution can be reconstructed with the mean and the variance or the

first and second moments. The third central moment or the skewness is given by

µ3 =

∫ ∞
−∞

(x− µ̄)3 1

σ
√

2π
e−

(x−µ̄)2

2σ2 dx = 0, (5.6)

and is, of course, zero because the normal distribution is symmetric. The forth

central moment or the kurtosis is given by

µ4 =

∫ ∞
−∞

(x− µ̄)4 1

σ
√

2π
e−

(x−µ̄)2

2σ2 dx = 3σ4, (5.7)

and is a measure of whether a distribution is tall and skinny or short and squat.

Higher-order moments, beyond kurtosis or the fourth central moment, are generally

interpreted as estimations of further shape parameters used to capture a distribution.

However, it is difficult to describe exactly how these higher order terms impact a

distribution. That is not to say that these moments can simply be neglected or do

not play an important role.

Observations similar to those made of moments of the normal distribution can be

extended to electron transport and the physics associated with elastic and inelastic

scattering. In general, the moments with clear physical interpretations include the

zeroth, first, and second moments, which are referred to as the total cross-section

(elastic and inelastic), the transport cross-section or the mean scattering angle (elas-

tic), the stopping power or the mean energy-loss per unit distance (inelastic), the

mean-square scattering angle (elastic), and energy straggling or the mean-square

energy-loss (inelastic).
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5.1 Elastic DCS Moments

Herein, we define Legendre moments of the elastic DCS as

Σel,` = 2π

∫ 1

−1

Pl(µ0)Σel(E, µ0)dµ0, (5.8)

and the momentum transfer moments as

G` = 2π

∫ 1

−1

[1− Pl(µ0)] Σel(E, µ0)dµ0 = Σel,0 − Σel,`, (5.9)

which are given in Figs. 5.2a and 5.2b respectively for electrons with energies of

1-keV, 100-keV, and 10000-keV colliding with aluminum and gold nuclei. In general,

the Legendre moments in Fig. 5.2a decrease with increasing order. For lower ener-

gies (the dash curve) the rate of decrease is more rapid than for the higher energies

(the dash-dot curve). This behavior is a result of the shape of the elastic DCS. At

higher energies, the DCS is highly peaked; therefore, the moments decay slowly. The

slow decay of the moments implies that a staggering number of moments (perhaps

hundreds of thousands) are required to reconstruct this distribution. Contrast this

behavior with that of a delta function that requires an infinite number of terms for

reconstruction. That is to say, these distributions are nearly singular like a delta

function. At lower energies, the DCS is less peaked; therefore, the moments decay

rapidly. An alternative interpretation of the behavior of the moments is given by the

momentum transfer moments in Fig. (5.2b). The momentum transfer moments are

the difference between the zeroth moment and the `th moment. For 10000-keV elec-

trons in aluminum and gold this difference is very small for the low order moments;

especially, when compared to the zeroth moment (about 108 to 109 barns). For this

reason, one can also conclude that many of these moments contribute significantly

when reconstructing, for example, the Goudsmit-Saunderson distribution [32, 33] (up

to 240 momentum transfer moments are typically used). The Goudsmit-Saunderson

distribution is discussed in the following section.
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Figure 5.2: Legendre moments and momentum transfer moments of the Partial-wave
differential cross-section for elastic collisions with aluminum and gold nuclei..

5.2 Inlastic DCS Moments

Herein, we define energy-loss moments of the inelastic DCS as

Qk =

∫ Qmax

Qmin

QkΣin(E,Q)dQ. (5.10)

The first seven energy-loss moments are given in Fig. 5.3 as a function of energy.

At lower energies, the moments appear to decay; however, energy-loss moments are

asymptotic. That is, beyond a specific order for all energies, the moments begin to

grow without bound, which is clear in Fig. 5.3 at higher energies where the higher-

order moments begin to grow larger than the lower order moments. This implies

that for higher energies the higher-order moments are more important than for lower

energies. In fact, for energies greater than roughly 7-MeV, the straggling coefficient

Q2 is as large as the stopping power Q1, which would imply that these processes

contribute equally at these energies. In other words, at higher energies particles

suffer numerous collisions resulting in small energy losses, which can be described by

the continuous slowing down approximation through the stopping power. However,

occasional large energy losses do occur that contribute significantly to the solution.
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Figure 5.3: Energy-loss moments of the Möller differential cross-section for inelastic
collisions with aluminum and gold atomic electrons.

5.3 Goudsmit-Saunderson Distribution

To illustrate the role of the momentum transfer moments and by extension the Leg-

endre moments, we turn to a pathlength solution to an infinite medium transport

equation where particles only undergo elastic scattering. That is,

∂

∂s
ψ(s, µ) = 2π

∫ 1

−1

Σel(E, µ0)ψ(s, µ′)dµ0 − Σel,0(E)ψ(s, µ), (5.11)

with

ψ(0, µ) =
δ[µ− µ∗]

2π
(5.12)

Eq. 5.11 is solved in a typical fashion by expanding the solution ψ in terms of

Legendre polynomials

ψ(s, µ) =
∞∑
`=0

2`+ 1

4π
ϕ`(s)P`(µ), (5.13)

where P`(µ) is a Legendre polynomial of order ` and

ϕ`(s) = 2π

∫ 1

−1

P`(µ)ψ(s, µ)dµ. (5.14)
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The DCS is also expanded in terms of Legendre polynomials

Σel(E, µ0) =
∞∑
`=0

2`+ 1

4π
Σel,`(E)P`(µ0), (5.15)

and Σel,` is given by Eq. (5.8). After substituting these expansions and some algebra,

the following result is obtained

ψ(s, µ) = FGS(s, µ) =
∞∑
`=0

2`+ 1

4π
e−sG`P`(µ)P`(µ

∗). (5.16)

Though Eq. (5.16) is limited in applicability, it is a clear illustration of the role played

by the analog DCS moments in electron transport. The solution, which depends on s,

µ, and `, is constructed directly by the moments. The number of moments required

to construct the distribution depends on the product sG`. For short pathlengths and

highly peaked scattering, a large number of moments are required because the prod-

uct sG` is small. As the pathlength grows longer making sG` larger, less terms are

required. For highly-peaked scattering, sG` is small regardless of the size of the path-

length because the momentum-transfer moments are very small, so a large number of

terms are required. For nearly isotropic scattering, the momentum-transfer moments

are larger and sG` becomes large after a few terms. The pathlength dependence is

connected to the momentum-transfer moments in the sense that the solution or the

angular distribution is more peaked for short pathlengths because the particles are

not deflected significantly from their initial direction (this is illustrated in Fig. 5.4)

and therefore requires a larger number of momentum transfer moments to resolve

the distribution (unless scattering is nearly isotropic). However, for sufficiently long

pathlengths fewer momentum transfer moments may be necessary.

5.4 Lewis Theory

An even stronger link between analog DCS moments and solutions to the transport

equation is a result due to Lewis [43]. Lewis showed that space-angle moments of the

71



Chapter 5. Differential Cross-Section Moments

Figure 5.4: Hypothetical paths traveled by electrons.

solution only depend on momentum transfer moments of the analog DCS. In other

words, Lewis theory is a statement of equivalence between preservation of space-

angle moments of the solution and Legendre moments of the analog DCS. Here this

result is derived in 1-D to illustrate the relationship between space-angle moments

of solutions to the transport equation and Legendre moments of the analog DCS for

elastic scattering.

We begin by writing down an infinite homogeneous medium transport equation

in 1-D, planar geometry for mono-energetic electrons or

∂

∂s
ψ(s, z, µ)+µ

∂

∂z
ψ(z, z, µ) = 2π

∫ 1

−1

Σel(E, µ0)ψ(s, z, µ′)dµ0−Σel,0(E)ψ(s, z, µ),

(5.17)

with the following initial condition

ψ(0, z, µ) = δ(z)
δ(µ− 1)

2π
(5.18)

We then define spatial moments of the solution as

ϕn =

∫ ∞
−∞

dz znψ(s, z, µ). (5.19)

If we take zn moments of Eq. 5.17, we have

∂

∂s
ϕn(s, µ)−µϕn−1(s, µ) = 2π

∫ 1

−1

Σel(E, µ0)ϕn(s, µ)dµ0−Σel,0(E)ϕn(s, µ), (5.20)
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with

ϕn(0, µ) = δn0
δ(µ− 1)

2π
. (5.21)

We now define mixed spatial and Legendre moments of the solution as

ϕmn = 2π

∫ 1

−1

dµ

∫ ∞
−∞

dz znPm(µ)ψ(s, z, µ), (5.22)

expand the elastic DCS

Σel(E, µ0) =
∞∑
`=0

2`+ 1

4π
Σel,`P`(µ

′)P`(µ), (5.23)

and take Legendre moments of Eq. (5.20) which gives

∂

∂s
ϕnm(s) + Σel,0(E)ϕnm(s, µ) = Σel,`ϕnm(s) + 2π

∫ 1

−1

µPm(µ)ϕn−1(s, µ). (5.24)

Rearranging Eq. (5.24) and using properties of Legendre polynomials to expand

µPm(µ) gives

∂

∂s
ϕnm(s)+Gmϕnm(s, µ) = n

[
m

2m+ 1
ϕn−1,m−1(s) +

m+ 1

2m+ 1
ϕn−1,m+1(s)

]
, (5.25)

for n,m = 0, 1, 2, ..., where φnm(0) = δn0. The general solution to Eq. (5.25) is

ϕmn(S) = δn0e
−sGm+n

∫ s

0

ds′e−Gm(s−s′)
[

m

2m+ 1
ϕn−1,m−1(s′) +

m+ 1

2m+ 1
ϕn−1,m+1(s′)

]
.

(5.26)

One cannot obtain a solution to Eq. (5.17) given the Lewis moments. One can

show that the mixed spatial and Legendre moments of the solution, which can be

related to space-angle moments of the solution, only depend on Gm. This relationship

is the important result from Lewis theory. To do so, we begin by setting n = 0 which

gives

ϕm0(S) = e−sGm . (5.27)
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This is the result from the Goudsmit-Saunderson section and shows that Legendre

moments of the solution depend only on Gm and s. By setting n = 1 we have

ϕmn(S) =

∫ s

0

ds′e−Gm(s−s′)
[

m

2m+ 1
e−s

′Gm−1 +
m+ 1

2m+ 1
e−s

′Gm+1

]
, (5.28)

which depends only on Gm−1, Gm, Gm+1, and s. By induction, φnm must depend

on Gn+m,...,Gn−m, and s. It is easy to show that the mixed spatial and Legendre

moments ϕnm are related to space-angle moments of the solution Φnm, which are

given by

Φmn = 2π

∫ 1

−1

dµ

∫ ∞
−∞

dz znµm(µ)ψ(s, z, µ), (5.29)

Therefore, what we have shown is that space-angle moments of the solution depend

on momentum transfer moments of the DCS.

The significance of this result is understood by considering two different transport

equations: the analog transport equation which gives the exact solution and an ap-

proximate transport equation that gives an approximate solution with respect to the

exact analog solution. The analog transport equation has a DCS Σel(µ), momentum

transfer moments Gm, and space angle moments Φnm, while the approximate trans-

port equation has a DCS Σ̃el(µ), momentum transfer moments G̃m, and space angle

moments Φ̃nm. If the analog and approximate DCS are related such that Gm = G̃m

for m = 1, 2, ...,M and Gm 6= G̃m for m > M , then it is also true that Φnm = Φ̃nm

for n + m = M . Therefore, Lewis theory provides a strong connection between

preservation of momentum transfer moments and accuracy of an approximation.

In addition, a Lewis-like theory was shown for energy straggling [44], where the

equation for energy loss of a beam of charged particles traversing a target medium

is given by

∂

∂s
ψ(s, E) =

∫ ∞
0

Σin(E ′ → E)ψ(s, E ′)dE ′−Σin,0(E)ψ(s, E), 0 < s < T (5.30)
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with initial condition

ψ(0, E) = δ[E0 − E]. (5.31)

In Eq. (5.30), s is the distance travelled by a particle, E is the particle energy,

ψ(s, E) is the solution or the energy spectrum, and Σin and Σin,0 are the DCS and

total cross-section respectively. Similar to obtaining the result from Lewis theory,

we define energy moments of the solution as

Ik(s) =

∫ ∞
0

Ekψ(s, E)dE, (5.32)

and then relate these moments to the energy-loss moments from Eq. (3.38). The

resulting theorem states that if the energy-loss moments from Eq. (3.38) for the

analog and approximate problem satisfy Qk = Q̃k for k = 1, 2, ..., K for some finite

K then ψ̃(S,E) is an N th-order moment-preserving approximation to ψ(s, E) in the

sense that∫ ∞
0

Ek[ψ(s, E)− ψ̃(s, E)]dE = 0, n = 1, 2, ..., N (5.33)

where ψ̃(s, E) is the approximate solution with an approximate DCS Σ̃el(E
′ → E).

5.5 Eigenvalues of the Elastic Collision Operator

Eigenvalues have a wide variety of applications. In the context of operators, eigen-

values can be used to characterize or understand the properties of an operator. For

elastic collision operator, one finds that the eigenvalues are bounded, therefore, the

operator is stable. Moreover, it of interest to develop approximate operators and

one can get a sense of the accuracy of an approximate operator by comparing the

eigenvalues of the approximation to the eigenvalues of true operator. That said, the

eigenvalues of the elastic collision operator are related to the moments of the elastic
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DCS. Therefore, in a completely different context, yet again we see the necessity of

moment-preservation. To be clear, we derive an expression for the eigenvalues of the

elastic collision operator given by

Helψ = 2π

∫ 1

−1

dµ′Σel(E, µ0)ψ(E, µ′)− Σel,0(E)ψ(E, µ) = λψ(E, µ). (5.34)

We begin by defining Legendre moments of the solution as

ϕ`(E) = 2π

∫ 1

−1

dµP`(µ)ψ(E, µ), (5.35)

and expand the DCS in term of Legendre polynomials

Σel(E, µ0) =
∞∑
`=0

2`+ 1

4π
Σel,`P`(µ

′)P`(µ). (5.36)

Now, Eq. (5.36) is substituted into Eq. (5.34) and the left-hand side is rearranged

such that Eq. (5.35) can be substituted or

λψ(E, µ) =
∞∑
`=0

2`+ 1

2
Σel,`P`(µ)

∫ 1

−1

dµ′P`ψ(E, µ′)− Σel,0(E)ψ(E, µ). (5.37)

We then apply orthogonality

2π

∫ 1

−1

dµPm(µ)

[
λψ(E, µ) =

∞∑
`=0

2`+ 1

2
Σel,`P`(µ)ϕ`(E)− Σel,0(E)ψ(E, µ)

]
, (5.38)

and obtain

λmϕm(E) = − [Σel,0(E)− Σel,m(E)]ϕm(E), (5.39)

In Eq. (5.39),

λm = − [Σel,0(E)− Σel,m(E)] (5.40)

are the eigenvalues and equal to the momentum-transfer moments defined by Eq.

(5.9) (presented in Fig. 5.2b) and ϕm(E) are the associated eigenfunctions. Now if

one were to obtain an approximation to Eq. (5.34), a comparison of the eigenval-

ues of the approximate and exact operator provides a measure the accuracy of the
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approximation. Moreover, if one were to simply approximate the DCS and, in turn,

the operator, then one must ensure that the approximate DCS preserves as many

moments of the analog DCS as reasonably possible. That said, the accuracy of the

approximate operator is difficult to measure irrespective of the problem to which the

operator is applied. That is, when calculating dose in thick targets, one can expect

to reasonably approximate the elastic collision operator with an operator that only

preserves a relatively small number of eigenvalues. However, calculating differential

distributions in angle in thin targets may require preservation of a large number of

eigenvalues.

A similar analysis for the inelastic collision operator is not possible because it is

not possible to determine the eigenvalues of this operator. However, the Lewis-theory

for energy straggling is sufficient to suggest that an accurate approximate inelastic

operator consists of a moment-preserving scattering kernel.
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The Condensed History Method

In this chapter, the condensed history (CH) method for electron transport is re-

viewed. This includes an introduction to the CH method, an outline of the CH class

I and class II algorithms and the limitations associated with these schemes.

Berger describes CH as an alternative approach to direct simulation of Coulomb

scattering, in which the diffusion process is imitated by letting the particles carry out

an (artificially constructed) random walk, each step of which takes into account the

combined effect of many collisions [2]. This artificially constructed random walk is

typically referred to as a step and on the order of hundreds of analog mfps making the

calculation more efficient. However, by extending the distances between collisions to

a step-size, the analog DCS is no longer valid. Therefore, one typically replaces the

DCSs with the corresponding multiple scattering and energy-loss straggling theories

that are solutions to transport equations requiring severe restrictions necessary for

analytical treatment. That is, without making simplifying assumptions it would be

impossible to obtain a useful solution to the transport equation. Use of multiple

scattering and energy-loss straggling distributions rather than a DCS, in effect, re-

quires an operator split procedure [39], where one is now approximating the solution
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to the transport equation.

As a result of applying multiple scattering and energy-loss straggling distributions

and the operator split procedure, CH suffers from inherent limitations. In partic-

ular, these limitations are due to application of multiple scattering and energy-loss

straggling distributions outside of the conditions for which multiple scattering and

energy-loss straggling theory is valid and a deterministic error resulting from the

operator split procedure necessary to utilize multiple scattering theory. These limi-

tations are a result of some or all of the following assumptions required for analytical

treatment:

• infinite medium;

• negligible energy-loss;

• negligible angular deflection;

• small-angle approximation;

• no spatial correlation.

Some specific examples of commonly used multiple scattering and energy-loss strag-

gling theory and the associated limitations are now provided.

First, multiple scattering theories due to Molière [66] and Goudsmit-Saunderson

[32, 33] are discussed. The Molière distribution is typically found in CH algorithms

where multiple-scattering distributions are required for randomly sampled steps. The

form of the Molière distribution, a universal function of a scaled angular variable,

makes it ideal for such CH algorithms. However, the small-angle approximation is

required to obtain the Molière distribution and is limited to deflections of no more

than about 20 degrees. In addition, spin and relativistic effects are not taken into ac-

count and the distribution is restricted to at least roughly 100 elastic collisions, which
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can be difficult to satisfy with the CH algorithm [71]. The Goudsmit-Saunderson

distribution is more complicated for sampling purposes, but it is not restricted by

the small-angle approximation and in theory, it is not restricted to steps of at least

roughly 100 elastic collisions1. Also, the Goudsmit-Saunderson distribution can be

applied to any DCS for which moments up to an arbitrary order can be generated.

However, this all comes at a price because the Goudsmit-Saunderson distribution

must be stored for predetermined steps because it is impractical to apply to randomly

sampled steps. Ultimately, this results in a significantly different CH algorithm from

the CH algorithm associated with the Molière distribution. Regardless of the type

of multiple-scattering distribution, the distributions are only valid for an infinite

medium and though one can account for energy dependence through the CSDA, this

solution does not provide any information about the distribution of energies after a

step. Therefore, the multiple-scattering distributions are limited to angular informa-

tion for particles with steps s in an infinite medium where energy-loss is, at most,

accounted for in a CSD fashion. Furthermore, space-angle correlations are not di-

rectly accounted for in multiple-scattering distributions, so when a particle is forced

to travel a distance s in a straight path some error in the longitudinal and lateral

displacement is incurred.

Another example includes the Landau distribution for multiple excitations and

ionizations [34] or energy-loss straggling. The Landau distribution, accounts for the

energy lost after traveling a distance s. However, Landau theory takes into account

only the mean value, but not the higher moments, of the cross section for small

energy transfers [71]. The Blunck-Leisegang correction [72] takes into account the

correct second moment and consists of convoluting the Landau distribution with a

Gaussian distribution with a zero mean value and with the appropriate variance [71].

Even then, the “appropriate” variance is not necessarily a straightforward quantity

1In practice, the numerics required to generate the Goudsmit-Saunderson distribution struggle
with sufficiently small steps [42]
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and there are various procedures for estimating it. As a result of the condition for the

applicability of Landau theory, the step-size is required to be longer than desirable

for the sampling of the multiple elastic scattering distributions. In addition, by

extending the distance traveled by an electron, secondary production is no longer

sampled directly and must be accounted on an average basis. As an alternative

to Landau theory, it is possible to separate inelastic collisions into “soft” collisions

(with large impact parameters2 and small momentum transfers and energy losses)

and “hard” collisions (with small impact parameters and large momentum transfers

and energy losses). Typically, an energy cut-off is selected below which collisions are

considered soft and the CSDA is applied. Above the cut-off collisions are considered

hard and an inelastic DCS is used to sample energy loss and subsequent secondary

production. With this treatment, secondary production is captured exactly and

random sampling of steps is possible.

Given the multiple-scattering and energy-loss straggling theories, which are ap-

proximate, CH combines the necessary theories into one coherent scheme. The

multiple-scattering and energy-loss straggling distributions are typically smoother

and less peaked than the analog DCS. This feature combined with the fact that a

step is typically hundreds of analog mfps leads to a more efficient calculation. Dif-

ferent combinations of different multiple-scattering and energy-loss straggling dis-

tributions results in different CH schemes. There are two major schemes, class I

and class II, and the major distinction between the two is whether particles move

fixed, deterministic steps or randomly sampled steps. An example of the class I

CH scheme is the ITS code system [73], where particles move a fixed step-size and

elastic and inelastic collisions are given by the Goudsmit-Saunderson and Landau

distributions respectively. An example of the class II CH scheme is the EGS code

system, where the step-size is chosen as the minimum of the distance in the current

2The impact parameter characterizes the “closeness” of the collision. Closer collisions with small
impact parameters are more catastrophic.
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direction to the nearest boundary, the exponentially distributed distance associated

with sampling distance to hard collisions, and the maximum step-size for which

the multiple-scattering theory is valid. In EGS, elastic collisions are given by the

Molière distribution and inelastic collisions separated into soft and hard collisions.

Regardless of the CH scheme, the application of multiple-scattering and energy-loss

straggling theory results in limitations that impact the accuracy of the CH method.

In particular, the accuracy of CH is step-size dependent even when applied to an

infinite medium problem [39]. Moreover, when applying multiple-scattering theory

in a heterogenous media, additional error is introduced at material interfaces because

multiple-scattering distributions are typically valid for an infinite medium. In both

class I and class II CH schemes, it is possible to mitigate the impact of the aforemen-

tioned limitations by introducing algorithms that determine the optimal step-sizes

or perform tedious studies for the same purpose.

In the remaining sections, the CH algorithm is discussed and the class I and

class II schemes are outlined. Given an understanding of the CH algorithm, the

aforementioned limitations are discussed in greater detail along with a demonstration

of the typical approaches for mitigating these limitations.

6.1 The Condensed History Algorithm

In this section, the class I and class II condensed history schemes are discussed. In

particular, the class I scheme discussed is based on the ITS algorithm, while the

class II scheme discussed is based on the Geant4 algorithm. The descriptions of

the algorithms are intended to emphasize the differences between the two schemes

and are not necessarily perfect descriptions. To fully understand the two different

algorithms, one should refer to the manuals and the source code (where possible) for

both code systems [73, 3].
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6.1.1 Complete grouping, class I

Class I CH algorithms have the oldest history of the different schemes and date back

to the original ETRAN code system [16]. One might argue that the distinguish-

ing feature of class I algorithms is the treatment of secondaries, or perhaps, fixed

step-sizes resulting from use of the Goudsmit-Saunderson distribution3. Regardless,

the resulting algorithm is the same. That is, if one decides to use the Goudsmit-

Saunderson distribution for fixed step-sizes, a mixed approach for energy-loss strag-

gling is no longer appropriate. Therefore, Landau theory is used and secondaries are

treated on an average basis. Alternatively, one could decide to use Landau theory

and as a result, would be forced to handle secondary production accordingly making

use of fixed step-sizes and the Goudsmit-Saunderson distribution a natural choice.

That said, class I algorithms move electrons fixed distances over which the electron is

assumed to lose a constant fraction of energy (typically about 8%). An energy grid is

established for corresponding to this fractional energy loss and step-sizes consistent

with the energy grid are determined. Multiple-scattering and energy-loss straggling

distributions are also pre-computed and stored for the previously mentioned energy

grid. Once the pre-processing is completed electrons are transported according to

the design of the algorithm specific to the code system. The remainder of this section

presents an overview of an ITS-like algorithm.

To begin, the data for the simulation must be prepared. For electrons, this

includes generating multiple-scattering and energy-loss straggling distributions for

an energy grid determined by the maximum particle energy and the cut-off energy.

The energy grid is determined by the following expression

Ek = Ek−12−1/J , (6.1)

where J is typically set to 8. Now, steps are generated for the K − 1 energy-losses,

3There are codes that now use Goudsmit-Saunderson for randomy sampled step-sizes [?].
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or ∆Ek = Ek − Ek−1. The Landau distribution is evaluated at each of the k energy

grid points along with the Goudsmit-Saunderson distribution where some effort is

made to account for the changing energy over the step. The steps are sub-divided

into m sub-steps. This is, of course, executed for all materials. Given the necessary

data, the transport begins.

First, energy-straggling is determined for the entire step. Once the energy loss

for the step is determined it is applied in a CSD manner divided evenly among the

sub-steps in the step [74]. The electron is moved the distance of a sub-step and at

this point, angular deflection is sampled from the Goudsmit-Saunderson distribution

and secondaries are sampled. Secondaries are sampled based on the mean number

expected to be produced above the cut-off energy over the sub-step distance. The

mean number expected is determined by integrating the Möller DCS over the range

above the cut-off energy and dividing the sub-step by this quantity. The energies of

the secondaries are also sampled from the Möller DCS above the cut-off. Given the

mean expected secondary production and their energies, the locations of the secon-

daries are sampled randomly along the sub-step. It is important to note that the

energy lost by the primary electron is accounted for at the beginning of the step.

When secondaries are produced negative energy deposition is tallied to account for

the removal of energy in the form of a secondary. Though negative energy deposi-

tion is non-physical, energy balance is achieved over many histories. bremsstrahlung

photons are also produced over a sub-step and sampled from the Poisson distribu-

tion. However, the energy of the primary electron is reduced by the energy of the

bremsstrahlung photons produced along the sub-step because photon production is

not accounted for in the energy-loss straggling. The process of moving a particle over

a sub-step is repeated until the particle reaches the end of the step. At this point,

the energy-loss straggling distribution is again sampled and all of the processes at

the sub-step level are repeated.
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The process of transporting the electron is interrupted when a material boundary

is encountered. This is a complication for the algorithm because the sub-step must

be truncated at the boundary and the multiple scattering distributions are prede-

termined for fixed steps. Therefore, a modified multiple-scattering distribution, or

the Jordan-Mack correction, is applied [41]. This distribution takes the form of

a Gaussian to account for small-angle scatter plus a Poisson to account for large-

angle scatter. The distribution is applied over the truncated sub-step. Secondary

production and bremsstrahlung photons are determined as usual for the truncated

step. However, the energy-loss straggling that was calculated for the entire step must

now be corrected for the abbreviated step. This is done by re-sampling the Landau

distribution for the abbreviated step.

Once the particle leaves the problem volume or slows down through the minimum

energy, the particle is killed and a new history begins.

6.1.2 Mixed procedures, class II

Class II CH algorithms are more modern than class I and according to Salvat [14],

intrinsically more accurate than class I algorithms. The class II algorithm under

consideration in this section is the one associated with the Geant4 default electro-

magnetic physics. Significant detail is provided because this CH algorithm is com-

pared to the Moment-Preserving method in Chapter 9. The Geant4 CH method is

a combination of a multiple elastic scattering model and an hybrid inelastic model.

The multiple-scattering model is based on Lewis’ multiple-scattering theory and uses

model functions to determine the angular and spatial distributions after a step. The

functions have been chosen in such a way as to give the same moments of the (angu-

lar and spatial) distributions as the Lewis theory [75]. The hybrid inelastic model is

based on the Berger-Seltzer stopping power formula for soft collisions and the Möller
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DCS for hard collisions. A secondary production threshold is selected for each ma-

terial. Below the threshold, collisions are considered soft, and above the threshold,

collisions are considered hard.

Precomputed data is not required by class II algorithms, which is the first major

distinction between class I and class II schemes. This is because the distance to

collision is determined as the minimum of the distance in the current direction to

the nearest boundary, the exponentially distributed distance associated with sam-

pling distance to hard collisions, and the maximum step-size for which the multiple-

scattering theory is valid. The Geant4 algorithm begins by determining distance to

collision, s, and then comparing that with the distance to the nearest geometrical

boundary and taking the shortest of the two. The physics step length, or s, must be

transformed into a geometric step length before the comparison. This transformation

is called the inverse pathlength correction. The reason this must occur is because

the step length associated with the physics is path traveled in an infinite medium

and typically longer than the geometrical step length, which is the shortest distance

between the starting point and the ending point associated with a path. If the step

is short enough the transformation is given by

〈z〉 = λtr

[
1− exp

(
− s

λtr

)]
. (6.2)

If the step is longer, energy-loss must be accounted for and the transformation be-

comes

〈z〉 =
a

α
(

1 + 1
αλtr,0

) [1− (1− αs)1+ 1
αλtr,0

]
, (6.3)

where α = λtr,0−λtr,1
sλtr,0

and λtr,0 and λtr,1 are the transport mfps at the beginning and

the end of a step. Given the relationship between z and s, the pathlength correction

is applied and compared to the geometric step length. After the step length is

selected, the particle is moved to the next location and the associated geometric step

length is transformed back to the physics step length so that the multiple-scattering
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distribution and energy-loss distribution can be evaluated. The scattering angle is

sampled from what is referred to as a “model” function that has the following form

g(µ) = p[qg1(µ) + (1− q)g2(µ)] + (1− p)g3(µ), (6.4)

where

g1(µ) = C1 exp (−a(1− µ)) , µcut ≤ µ ≤ 1, (6.5)

g2(µ) =
C2

(b−mu)d
, − 1 ≤ µ ≤ µcut, (6.6)

g3(µ) = C3, − 1 ≤ µ ≤ 1, (6.7)

C1, C2, and C3 are normalization constants, and a, b, d, p, q, and µcut are model

parameters. The model parameters are determined such that g(µ) and its first deriva-

tive are continuous at µ = µcut. Another constraint is that the mean value of g(µ)

must give the mean value from theory. The parameter a is chosen such that

a =
0.5

1− cos θ0

, (6.8)

where θ0 is chosen according to the modified Highland-Lynch-Dahl formula. The

parameter µcut is chosen as

µcut = 1− 3

a
(6.9)

and the parameter d is

d = 2.40− 0.027Z2/3. (6.10)

With the scattering distribution completely determined, the scattering angle can be

sampled. After the scattering angle is sampled, a lateral correction is made according

to

〈xΩx + yΩy〉 =
2λtr

3

[
1− κ

κ− 1
e−τ +

1

κ− 1
e−κs

]
, (6.11)
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where τ = s/λtr and κ = λtrG2 and G2 is the second momentum transfer moment.

Eq. (6.11) gives the correlation strength between final lateral position and the final

direction.

Energy-loss resulting from soft collisions is applied along each step according to

the Berger-Seltzer formula for energy transfers between the mean ionization energy

and the secondary production threshold. After the mean energy-loss is computed over

the step, the energy-loss fluctuations are added to account for the stochastic nature

of the continuous energy-loss process. Energy-loss resulting from hard collisions

are applied randomly as a discrete process and sampled from the Möller DCS. See

Chapter 3 for both the Berger-Seltzer formula and the Möller DCS.

Both step-size limitations and boundary crossing algorithms are used to control

error in the Geant4 CH method. Step-size limitations originate from both the elas-

tic and inelastic physics. For example, continuous energy-loss, or application of the

Berger-Seltzer formula, imposes a limit on the step-size because of the energy de-

pendence of the cross-sections. It is generally assumed that the cross-sections, or

rather the Berger-Seltzer formula, is constant over a step. That is, energy-loss over

a step is small enough to neglect variation in the stopping power. For sufficiently

long steps, this assumption is violated and that is why step limitations are imposed.

The default step limitation for continuous energy-loss limits the step such that the

range of the particle cannot decrease more than 20% over a step. In addition, the

computation of the mean energy loss, ∆E, over a step is given by

∆E = S(E0)s, (6.12)

where S(E0) is the stopping power evaluated at the energy of the particle at the

beginning of the step and s is the step-length. To use Eq. (6.12), ∆E < ξE0, where

ξ is the linear-loss-limit parameter defaulting to ξ = 0.01. If this energy loss limit is

exceeded, the following expression is used

∆E = E0 − fT (r0 − s), (6.13)
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where fT is inverse range that gives the kinetic energy of a particle as the function of

some distance and r0−s is the range of a electron with energy E0 less the step-length.

Eq. (6.14), is presumably more accurate for larger energy losses.

The multiple-scattering step limitations are also considered. The first step limi-

tation is used to prevent steps leaving or entering a volume from taking too large of

steps and is given by

s < Frmax(R(E), λtr), (6.14)

where the step is limited to no longer than a fraction, Fr = 0.2, of the maximum

of the range of the particle with energy E or the transport mfp. This limitation

improves the angular distribution leaving a volume and backscattering for electrons

entering a volume. In addition, a minimum step limit is also imposed according to

s > max(λel, λtr/25) (6.15)

to prevent small, unphysical steps from being taken. To prevent particles from

crossing a volume without colliding, the following limitation is imposed

s <
dgeom
Fg

, (6.16)

where dgeom is the distance to the boundary and Fg = 2.5 forces the particle to have

at least two collisions in a volume.

In addition to the step limitations, the Geant4 CH algorithm also requires a

boundary crossing algorithm. The algorithm prevents the last step in a volume from

being too large. In fact, the last step in a volume is limited to an analog mfp and

the scattering is sampled according to an analog DCS, so the Geant4 CH essentially

switches over to analog Monte Carlo near boundaries. The boundary cross algorithm

is a combination of the analog model and an algorithm for sensing how close a particle

is to a boundary. The key parameter for latter algorithm is referred to as skin. If

skin < 0 the boundary crossing algorithm is not active, or analog Monte Carlo is
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not activated. If skin > 0, analog Monte Carlo is activated in boundary layers with

thicknesses of skin · λel. The scattering at the end of these small steps are single or

plural and no pathlength corrections are made.
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The Moment-Preserving Method

The Moment-Preserving (MP) method employs the experience gained from devel-

opment of various charged particle transport solution methods. Like the condensed

history method, Lewis theory is a critical component of the MP method. In addi-

tion, the MP method incorporates insights from work on the Fokker-Planck equa-

tion, the Boltzmann Fokker-Planck equation, and generalized Fokker-Planck theory.

Ultimately, the MP method is characterized by several key features that are a con-

solidation of many important discoveries drawn from both condensed history and

various reduced order physics models. These key features are:

• Physically sound - physics reflect analog process;

• Mathematically robust - preserves the correct transport mechanics;

• Computationally efficient - longer mfps and less peaked DCSs;

• Systematic - accuracy limits to analog;

• Versatile - physics refinement without fundamental algorithmic modification;

• Simple - implementation and maintenance cost are reduced.
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In the MP method, a reduced order physics (ROP) transport equation is formed

by replacing the analog DCSs in Eqs. (4.28) and (4.29) with ROP DCSs, Σ̃. That

is,

H̃B
elψ(~r, E, ~Ω) =

∫
4π

dΩ′Σ̃el(~r, E, ~Ω
′ · ~Ω)ψ(~r, E, ~Ω′)− Σ̃el,0(~r, E)ψ(~r, E, ~Ω) (7.1)

and

H̃B
inψ(~r, E, ~Ω) =

∫ ∞
0

dE ′Σ̃in(~r, E ′ → E)ψ(~r, E ′, ~Ω)− Σ̃in,0(~r, E)ψ(~r, E, ~Ω). (7.2)

Although simply replacing the analog DCS with an ROP DCS may seem trivial

or even arbitrary, there is no absence of rigor in this method. Particularly, much

consideration is given to the form and properties of the ROP DCSs. The ROP DCSs

are constructed such that they are smoother or less-peaked functions of deflection

angle and energy loss and have significantly longer mfps than the analog DCSs. Thus,

the ROP collision operators in Eqs. (7.1) and (7.2) have better properties than the

analog collision operators, especially, from an efficiency standpoint.

Beyond efficiency, there are additional properties of the ROP collision operators

that set this method apart from other approximate methods. For example, one of the

unique characteristics of this method is that the integral form of the Boltzmann colli-

sion operators are maintained. Therefore, the description of the underlying transport

mechanics is not lost, specifically, the correct Markovian feature of exponentially dis-

tributed collision sites [60]. Therefore, special algorithms for handling material and

vacuum interfaces are not required.

Moreover, exact treatment of collisions as Markov processes and less-peaked DCSs

with longer mfps make it practical to simulate transport with a single-event method.

Implementation of single-event methods are very straightforward compared to other

methods like CH that are considerably more complicated. In fact, Monte Carlo codes

with pre-existing single-event algorithms do not require any retrofitting when imple-

menting the MP method, since this method treats electrons like neutral particles.

92



Chapter 7. The Moment-Preserving Method

The MP method is efficient and implementation is straightforward, but there has

been no mention of accuracy. This method must not only be competitive with, and

potentially superior to CH with regard to efficiency and simplicity, but accuracy as

well, and in many cases it is. Unlike CH, which introduces inherent and irreducible

limits on accuracy as a result of the underlying theory, accuracy is systematically

controllable. This is largely a result of the moment-preserving strategies that are

central to this approach. The moment-preserving strategy is motivated by Lewis

theory [43, 44], where Lewis proved that one can relate space-angle moments of

the angular flux to momentum-transfer moments of the elastic scattering DCS. In

addition, the eigenvalues of the elastic collision operator are directly dependent on

the momentum-transfer moments. For these reasons, it is prudent to construct an

ROP DCS that preserves moments of the analog DCS.

Given the relationship between the ROP DCS and the analog DCS moments, the

following moment-preserving constraints are a natural choice when constructing an

ROP DCS. If the analog elastic scattering moments are given by

Σel,` = 2π

∫ 1

−1

P`(µ)Σel(µ)dµ, (7.3)

the moment preserving constraint is

Σel,` = Σ̃el,`, ` = 1, 2, ...L (7.4)

and the higher order moments are functions of the lower order moments

Σel,` = f(Σel,1,Σel,2, ...,Σel,L), ` > L. (7.5)

For inelastic scattering the moments are given by

Σin,j =

∫ Qmax

Qmin

QjΣin(Q)dQ. (7.6)

The moment preserving constraint is similar and given by

Σin,j = Σ̃in,j, j = 1, 2, ...J. (7.7)
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Again, the higher order moments are functions of the lower order moments

Σin,j = f(Σin,1,Σin,2, ...,Σin,J), j > J. (7.8)

By constructing an ROP DCS that preserves moments of the analog DCS, one can

systematically control the accuracy of the ROP DCS models. That is, improvements

in accuracy are achieved by simply preserving more moments of the analog DCS. In

addition, the higher order moments are functions of the exact lower order moments,

so the higher order moments are good approximations rather than being neglected

as is the case for other ROP models like Fokker-Planck.

The following sections present the two ROP DCS models that are used in this

paper. Given the discrete ROP DCS model, we present a corresponding derivation of

the ROP transport model for a discrete elastic and inelastic ROP DCS to emphasize

the difference in the ROP transport model and the analog model. The details of the

ROP DCS construction process for each model are presented. Finally, we provide

analysis of the efficiency and accuracy of the method.

7.1 ROP DCS models

In this section, we present two forms of the elastic and inelastic ROP DCSs that are

demonstrated herein: the discrete DCS and the hybrid DCS. The discrete DCS is a

superposition of discrete points and weights. One of the benefits of the discrete DCS

is the simple form of the DCS. The discrete DCS is simple to sample and requires

significantly less memory requirements than DCS data because only a few points and

weights are required for most problems of interest. The accuracy and efficiency of

the discrete DCS are especially promising when calculating integral quantities like

dose [60]. We define the discrete DCS for elastic scattering as

Σ̃el(~r, E, µ0) =
N∑
n=1

αn(E)

2π
δ[µ0 − ζn], (7.9)
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and for inelastic scattering as

Σ̃in(~r, E,Q) =
N∑
n=1

βn(E)δ[Q− γn]. (7.10)

The one drawback of the discrete DCS is the presence of discrete artifacts [63, 76],

especially, if the discrete DCS is used when calculating differential quantities in thin

slabs. However, discrete artifacts can be mitigated by use of the hybrid DCS, while

still achieving efficiency gains.

The hybrid DCS is a superposition of both discrete points and weights and a

smooth function represented by an analog DCS. In previous work [64], the smooth

component was represented by the SR DCS over [−1, 1]. The screening parameter

was artificially selected such that the smooth component was less peaked near one.

Moments of the smooth component are then subtracted from the analog DCS mo-

ments and this difference is then used to generate the discrete scattering angles. In

this work, a slightly different representation was chosen where the tail is represented

exactly by the analog model up to some cut-off point, µ∗0. Beyond the cut-off point

or for µ0 ∈ [µ∗0, 1] a discrete representation is used. The resulting hybrid DCS is:

Σ̃el(~r, E, µ0) = ΣS
el(E, µ0) +

N∑
n=1

αn(E)

2π
δ[µ0 − ζn], (7.11)

where ΣS
el(E, µ0) is an analog DCS for µ0 ∈ [−1, µ∗0) and otherwise zero. The cut-

off, µ∗0, is typically chosen to be near the peak or unity to gain the benefit of the

properties of the discrete DCS, while capturing the large-angle scattering exactly by

the analog DCS. For inelastic scattering, the cut-off, Q∗, is selected near the peak or

near Qmin for the aforementioned reasons.

From an implementation standpoint, there is little difference between the discrete

and hybrid DCS. It requires the ability to sample hard collisions from the analog

DCS and soft collisions from the discrete DCS. The only difference in generating the
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discrete DCS versus the hybrid DCS is that the moments are now defined over a

sub-interval corresponding to the peak.

Given the form of the ROP DCSs, a derivation of the ROP collision operators

that comprise the ROP transport equation is presented.

7.2 Derivation of the ROP Collision Operators

The ROP DCS is constructed such that the singular contribution to inscatter and

outscatter cancel (similar to the FP operator [49]). Ultimately, the purpose of con-

structing such a DCS is that the resulting ROP transport equation can be solved

accurately and efficiently using single-scatter models. To be clear, a derivation of

the elastic and inelastic ROP collision operators is presented. A derivation of both

operators is presented because there is a subtle difference between the two that de-

serves some attention. For the sake of simplicity, the discrete DCS is used, but the

same ideas carry over to any ROP DCS.

The starting point is the elastic collision operator. Substitution of Eq. (7.9) into

Eq. (4.28) gives

H̃B
el =

∫
4π

d~Ω′
N+1∑
n=1

αn(E)

2π
δ[µ0− ζn]ψ(~r, E, ~Ω′)−

(
N+1∑
n=1

αn(E)

)
ψ(~r, E, ~Ω). (7.12)

It is required that the discrete point ζN+1 = 1. Now, this point is intentionally

separated from the remaining N points and weights in the inscatter and outscatter

terms. That is,

H̃B
el =

∫
4π

d~Ω′
N∑
n=1

αn(E)

2π
δ[µ0 − ζn]ψ(~r, E, ~Ω′)−

(
N∑
n=1

αn(E)

)
ψ(~r, E, ~Ω)

+

∫
4π

d~Ω′
αN+1(E)

2π
δ[µ0 − ζN+1]ψ(~r, E, ~Ω′)− αN+1ψ(~r, E, ~Ω). (7.13)
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If it can be shown that the last two terms in Eq. (7.13) indeed cancel, the resulting

ROP transport equation will have an elastic scattering kernel that is significantly

less peaked with reduced total cross section because αN+1 no longer contributes to

the total cross section. To do so, one must first expand the delta function in terms

of Legendre polynomials or∫
4π

d~Ω′
αN+1(E)

2π
δ[µ0−ζN+1]ψ(~r, E, ~Ω′) =

αN+1(E)

2π

∫
4π

d~Ω′
∞∑
`=0

2`+ 1

2
P`(µ0)P`(1)ψ(~r, E, ~Ω′),

(7.14)

Through use of the addition theorem for spherical harmonics, or

P`(µ0) = P`(~Ω
′ · ~Ω) =

4π

2`+ 1

∑̀
m=−`

Y ∗`m(~Ω′)Y`m(~Ω) (7.15)

and noting that P`(1) = 1, Eq. (7.22) becomes

αN+1(E)

∫
4π

d~Ω′
∞∑
`=0

2`+ 1

4π
P`(µ0)P`(1)ψ(~r, E, ~Ω′) =

αN+1(E)

∫
4π

d~Ω′
∞∑
`=0

2`+ 1

4π

4π

2`+ 1

∑̀
m=−`

Y ∗`m(~Ω′)Y`m(~Ω)ψ(~r, E, ~Ω′). (7.16)

Next, Eq. 7.16 is reorganized and the following definitions

ψ(~r, E, ~Ω) =
∞∑
`=0

∑̀
m=−`

ψ`mY`m(~Ω), (7.17)

and

ψlm =

∫
4π

d~Ω′Y ∗`m(~Ω)ψ(~r, E, ~Ω), (7.18)

are applied which gives

αN+1(E)
∞∑
`=0

∑̀
m=−`

Y`m(~Ω)

∫
4π

d~Ω′Y ∗`m(~Ω′)ψ(~r, E, ~Ω′) = αN+1(E)
∞∑
`=0

∑̀
m=−`

ψ`mY`m(~Ω)

= αN+1(E)ψ(~r, E, ~Ω).

(7.19)
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This term clearly cancels with the last term in Eq. (7.13). However, the same is not

true for the inelastic collision operator, which is now shown.

The derivation of the inelastic ROP collision operator is easier to follow after a

change of variables change variables from Q to (E ′ − E). This gives

Σ̃in(~r, E ′ → E) =
N∑
n=1

βn(E)δ[(E ′ − E)− γn]. (7.20)

Again, Eq. (7.20) is substituted into Eq. (4.29) and the argument of the delta

function is rewritten as E ′ − (E + γn) which gives

H̃B
in =

∫ ∞
0

dE ′
N+1∑
n=1

βn(E)δ[E ′−(E+γn)]ψ(~r, E, ~Ω)−

(
N+1∑
n=1

βn(E)

)
ψ(~r, E, ~Ω). (7.21)

Now, the singular component or the N + 1 term is separated from the inscatter and

the outscatter, the inelastic ROP collision operator becomes

H̃B
el =

∫ ∞
0

dE ′
N∑
n=1

βn(E)δ[E ′ − (E + γn)]ψ(~r, E, ~Ω)−

(
N∑
n=1

βn(E)

)
ψ(~r, E, ~Ω)

+

∫ ∞
0

dE ′βN+1(E)δ[E ′ − (E + γN+1)]ψ(~r, E, ~Ω)− βN+1(E)ψ(~r, E, ~Ω).

(7.22)

Carrying out the integration over the N + 1 term results in the following singular

contributions to inscatter and outscatter

γN+1(E)ψ(~r, E + χN+1, ~Ω)− γN+1(E)ψ(~r, E, ~Ω)) 6= 0. (7.23)

The terms in Eq. (7.23) do not cancel, unless χN+1 = 0. Typically, the singular

component of the inelastic DCS and the lower bound of the inscatter or energy-loss

moments is chosen as the mean ionization potential. Therefore, χN+1 = IMeV , where

IMeV is the mean ionization potential in MeV . So, if ψ(~r, E + χN+1, ~Ω) is expanded

about E as a Taylor series, one can get a sense of the error introduced by choosing
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χN+1 = IMeV . That is,

γN+1(E)ψ(~r, E + χN+1, ~Ω)− γN+1(E)ψ(~r, E, ~Ω))

=
∞∑
j=1

χjN+1

j!

∂j

∂Ej
[γN+1(E)ψ(~r, E, ~Ω)] + γN+1(E)ψ(~r, E, ~Ω)− γN+1(E)ψ(~r, E, ~Ω)

=
∞∑
j=1

χjN+1

j!

∂j

∂Ej
[γN+1(E)ψ(~r, E, ~Ω)]. (7.24)

So, to first order, the error introduced by assuming that χN+1 = 0 is proportional to

IMeV which is << 1. Therefore, this assumption introduces manageable error.

7.3 Generation of the Discrete and Hybrid Differ-

ential Cross-Sections

The procedure for constructing both the discrete and hybrid DCS from analog DCS

moments is described. The form of the moment preservation constraints in Eqs. (7.4)

and (7.7) is unstable to direct numerical inversion, so another approach similar to

generation of Radau quadrature is taken [77]. First, the discussion in the beginning

of Chapter 7 is expanded. Initially, attention is given to the discrete elastic DCS and

then the discussion is extended to the discrete inelastic DCS and the hybrid DCS.

It is of interest to obtain a DCS that satisfies the moment constraint in Eq.

(7.4). Given the discrete elastic DCS in Eq. (7.9), a system of equations for N

points and weights (in total 2N unknowns) is formed. Substitution of Eq. (7.9) into
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the right-hand-side of Eq. (7.4) results in the following system of equations:

Σel,` = Σ̃el,`

= 2π

∫ 1

−1

P`(µ)Σ̃el(E, µ0)

=
N∑
n=1

αn(E)

∫ 1

−1

P`(µ0)δ[µ0 − ζn]

=
N∑
n=1

αn(E)P`(ζn). (7.25)

A total of L = 2N equations are necessary because there are 2N unknowns,. That

is,

Σel,1 = α1(E)P1(ζ1) + α2(E)P1(ζ2) + ...+ α2N(E)P1(ζ2N)

Σel,2 = α1(E)P2(ζ1) + α2(E)P2(ζ2) + ...+ α2N(E)P2(ζ2N)

...

Σel,2N = α1(E)P2N(ζ1) + α2(E)P2N(ζ2) + ...+ α2N(E)P2N(ζ2N). (7.26)

The system formed in Eq. (7.26) emphasizes the requirement that ζn and αn are

obtained such that Legendre moments of the analog DCS are preserved. The system

is then recast into one encountered when generating Gauss-Radau Quadrature for a

non-classical weight function [78, 79]. That is,

Σel,` =
N∑
n=1

αn(E)P`(ζn) + αN+1(E)P`(ζN+1 = 1), (7.27)

which is a Gauss-Radau Quadrature system for a non-classical weight function, where

in this case, the weight function is the analog DCS. Note that an additional unknown,

αN+1, is added in Eq. (7.27) and multiplied by P`(ζN+1 = 1). This is indicative

of Radau quadrature and an expression for determining αN+1 is given below. A

Radau approach is selected rather than standard Gauss quadrature because Radau
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ensures that one point will correspond to the peaked component of the DCS (that is,

ζN+1 = 1). Once the discrete points and weights are obtained, the peaked component

is eliminated, thus, reducing the total cross section after renormalizing the discrete

DCS. This is equivalent to satisfying the moment preservation constraints given in

Eqs. (7.4) and (7.7).

To obtain the points and weights, coefficients of monic Legendre polynomials (αj

and βj) are mapped to the coefficients of polynomials orthogonal to the analog DCS

(aj and bj). The algorithm for this mapping is referred to as the modified Cheby-

shev algorithm (MCA) [79] and requires 2N − 1 moments of the analog DCS and

2N − 2 coefficients of monic Legendre polynomials. Given a successful mapping and

the resulting coefficients, aj and bj, the Golub and Welsch algorithm [80] is used

to obtain the eigenvalues of the Jacobi matrix. The Jacobi matrix is a tridiagonal

matrix where the diagonal is set to ai and the off-diagonals are set to
√
bi. The eigen-

values of the Jacobi matrix are the points and the first entry of each corresponding

eigenvector squared are the weights. That is, ζn = λn(J) and αn = (Vn,1)2, where V

is a eigenvector matrix. The application of the Golub and Welsch algorithm to the

aforementioned Jacobi matrix will result in Gauss Quadrature and must be modi-

fied according to Golub [78] for Radau quadrature. Therefore, the Jacobi matrix is

modified such that

JN+1 =

 JN bN~eN

bN~e
T
N aN+1

 , (7.28)

where

aN+1 = 1− bN
pN−1(b)

pN(b)
. (7.29)

Application of the Golub and Welsch algorithm to Eq. (7.28) will result in N + 1

points and N + 1 weights normalized to unity. To obtain the final discrete DCS, the

N + 1 point and weight is eliminated and the remaining weights are then scaled by
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the analog total cross section or Σel,0. The total cross section for the discrete DCS

is then

Σ̃el,0(~r, E) =
N∑
n=1

αn(E), (7.30)

which does not include the N + 1 weight. The total cross section in Eq. (7.30) is

significantly reduced depending on the order of the discrete DCS, the particle energy,

and the target material, thus, extending the mfp. This completes the process of

generating a discrete elastic DCS.

The process of generating a discrete inelastic DCS is similar. To use the same

quadrature tools, the inelastic DCS must be mapped to an elastic DCS since the

bounds on the elastic DCS are ideal for these tools (that is, [−1, 1]). Given a mapping,

the moments of the inelastic DCS are related to Legendre moments of an ROP elastic

DCS. Points on (−1, 1] are generated with corresponding weights and then mapped

back to [0, Qmax)
1. The mapping is

Q(µ) =
Qmax

2
(1− µ) (7.31)

and the resulting relationship between the moments is

Σ̂el,` =
∑̀
j=0

c`j
(−1)j

j!

(
2

Qmax

)j
Qj(Σin), (7.32)

where

c`j =
1

2jj!

j−1∏
i=0

[l(l − 1)− i(i− 1)]. (7.33)

This summarizes the process of generating the discrete elastic and inelastic DCS.

Many of the same ideas carry over to generation of the discrete component of the

hybrid DCS.

1Note that the interval (−1, 1] and [0, Qmax) only includes one endpoint. When generating
Gaussian quadrature points are always generated on the interval (−1, 1). When generating Radau
or Lobatto one can include a one or both endpoints respectively. Here the endpoint µ = 1 is
included, but not µ = −1. Therefore, the resulting points are on (−1, 1] and the interval after the
mapping is [0, Qmax).
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To generate the discrete points and weights for the hybrid DCS a cut-off value

is selected. It should be selected such that additional accuracy is gained while still

maintaining efficient runtimes. Although, this is problem dependent and mostly a

heuristic exercise.

Given a cut-off, the following moments are used to generate the discrete points

and weights:

ΣD
el,` = 2π

∫ 1

µ∗0

P`(µ)f(µ)dµ (7.34)

and

ΣD
in,j =

∫ Q∗

Qmin

Qjf(Q)dQ. (7.35)

In both cases, to use the DCS generation tools, the moments must be mapped to the

appropriate domain [−1, 1] just as for the discrete inelastic DCS. For the inelastic

hybrid DCS the mapping does not change significantly from Eqs. (7.31) and (7.32)

and is

Q(µ) =
1

2
Q∗(1− µ), (7.36)

where µ is on [−1, 1] and Q is on [0, Qcut]. Given this mapping, the moments are

related by

Σ̂el,` =
∑̀
j=0

c`j
(−1)j

j!

(
2

Q∗ −Qmin

)j j∑
k=0

(
j

k

)
(−Qmin)j−kQD

k (Σin), (7.37)

where c`j is given by Eq. (7.33).

The map for the hybrid elastic DCS is given by

µ′(µ) =
µ∗ − 1

2
(1− µ) + 1, (7.38)

where µ is on [−1, 1] and µ′ is on [µcut, 1]. Given this mapping, the moments are

related by

Σ̂el,` =
∑̀
n=0

c`n
(−1)n

n!

(
2

1− µ∗

)n n∑
k=0

bnkM
D
k , (7.39)
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where bnk is

bnk =

∫ 1

−1

Pk(µ)(1− µ)ndµ =
∑
m=0

ckm
(−1)m

m!

2n+m+1

n+m+ 1
(7.40)

and the coefficient ckm or c`n is given in Eq. (7.33).

To further demonstrate how the hybrid DCS is generated, a brief summary of the

algorithm is written down.

1. Select a cut-off value.

2. Calculate moments given by Eqs. (7.34) and (7.35).

3. Map moments to ROP elastic DCS on (−1, 1] using Eqs. (7.37) or (7.39).

4. Map resulting points and weights back to proper space using Eqs. (7.36) or

(7.38).

5. Renormalize or remove point and weight associated with µ0 = 1 and Q = 0.

7.4 Properties of the ROP Collision Operators and

Differential Cross-Sections

The notion of an approximation is to simplify a model that is difficult to use with an-

other model that is nearly the same, but easier to use. In doing so, some information

is lost in exchange for the approximate model. In the MP method, information or

accuracy is lost when approximating the analog DCS. However, the loss in accuracy

resulting from the moment-preserving approach is in many cases negligible, while

remaining efficient. As it is, one cannot always gain orders of magnitude in efficiency

while maintaining analog level accuracy. Nonetheless, it is possible to optimize such

that in some cases significant efficiency gains are accompanied by negligible losses
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in accuracy. To better understand the relationship between accuracy and efficiency,

properties of the ROP collision operators and DCSs are discussed along with the

associated impact on efficiency and accuracy.

7.4.1 Efficiency: impact of the regularization process

As discussed in section 7.3, the process of generating discrete points and weights is

completed when the point at µ0 = 1 and the corresponding weight is eliminated (or

Qmin = 0 for inelastic scattering) and the total cross section is renormalized. We

refer to this step as the regularization process, which yields a less-peaked DCS with

a corresponding total cross section that is reduced by the magnitude of the weight

that was eliminated. The impact of the regularization process on the total cross

section is seen in Figs. 7.1 and 7.2. As a function of increasing energy, the elastic

and inelastic DCSs become more peaked (see sections 3.2 and 3.3). The impact of the

regularization process depends on the peakedness of the DCS, so for higher energies

the ROP total cross section is reduced more than for lower energies. Depending on

the collision type, target nuclei, and the particle energy, an ROP mfp is one to four

orders of magnitude longer than the analog mfp. Regardless of the collision type and

target nuclei, all of the ROP DCSs approach analog level efficiency for sufficiently

low energies. However, the same is true for CH methods at lower energies. At

these energies, efficiency gains are not necessarily significant enough to justify the

loss of accuracy when making the approximation. Therefore, analog Monte Carlo

is typically used below a low energy threshold where efficiency gains are negligible.

This threshold is problem dependent and also depends on the approximation, but

it is clear in Figs. 7.1 and 7.2 that below roughly 100-keV the ROP total cross-

section approaches the analog total cross-section. Although, it should be noted that

the following figure correspond to the screened Rutherford DCS, which is less-peaks

for a given energy than the partial-wave DCS. One should expect the ratio of the
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Figure 7.1: Comparison of total cross section of screened Rutherford DCS with
several discrete and hybrid DCSs when colliding with gold nuclei.
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Figure 7.2: Comparison of total cross section of Moller DCS with several discrete
DCSs when colliding with gold nuclei.

partial-wave DCS to a corresponding ROP total cross-section to be even greater.
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Beyond efficiency gains, the regularization process impacts the peakedness of the

the ROP DCSs. As a result, scattering events are not dominated by small deflections

and small energy losses, which also improves efficiency. Take, for example, the four-

point discrete DCSs for elastic scattering in Fig. 7.3a (the weights are normalized

such that the largest weight is one). The discrete DCS only varies by roughly four

orders of magnitude as opposed to 15 to 30 orders of magnitude for the analog DCS

in Fig. 3.5a. This is a dramatic reduction in the peakedness of the elastic DCS.

The inelastic analog DCS is less peaked so the regularization process is not quite as

significant. Regardless, there is still a reduction in the peakedness by two to three

orders of magnitude as seen in Fig. 7.3b.

At high energies where analog Monte Carlo is impractical, longer mfps result in

significant efficiency gains over analog Monte Carlo. In addition, the ROP DCSs are

significantly less peaked than the analog DCSs. However, efficiency gains are only

meaningful if sufficient levels of accuracy are maintained. This is the subject of the
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Figure 7.3: Impact of regularization process on reduced order physics DCSs for elastic
and in elastic scattering reduces DCS variation from 10 to 30 orders of magnitude
to 3 to 5 orders of magnitude. In (a) four-point discrete DCS for elastic scattering
of 100-keV, 1-MeV, and 20-MeV electrons by aluminum are shown and in (b) four-
point and eight-point discrete DCS for inelastic scattering of 20-MeV electrons by
aluminum and gold are shown.
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following section.

7.4.2 Accuracy: analog and ROP collision operator eigen-

values

It is difficult to draw any conclusions on the accuracy of this method without pre-

senting results. However, we know heuristically that electron transport problems

require physics models that preserve the first few moments of both the analog elastic

and inelastic DCS. That is, the most important physics are captured by the trans-

port cross section, stopping power, and straggling as discussed in section 5. The

eigenvalues of the Boltzmann elastic collision operator (analog and approximate) are

given by

λl(H
B
el ) = − [Σel,0 − Σel,`] . (7.41)

Specifically, the analog eigenvalues are

λl(H
B
el ) = 2π

∫ 1

−1

P`(µ0)Σel(E, µ0)dµ− Σel,0, (7.42)

the discrete eigenvalues are

λl(H̃
B
el ) =

N∑
n=1

αn(E) [P`(ζn)− 1] , (7.43)

and the hybrid eigenvalues are

λl(H̃
B
el ) =

N∑
n=1

αn(E) [P`(ζn)− 1] + 2π

∫ µ∗

−1

P`(µ)ΣS
el(E, µ)dµ.− ΣS

el,0. (7.44)

An accurate ROP collision operator will at least preserve the first few moments of

the analog DCS and, in turn, eigenvalues of the elastic operator. In many cases,

preservation of moments beyond the first few will improve accuracy making a gen-

eralized moment-preserving approach ideal because accuracy can be adjusted as the
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problem demands it. For the sake of clarifying the remaining discussion, ROP colli-

sion operators with the first four to eight eigenvalues in agreement with the analog

collision operator typically provide superb accuracy for integral quantities like dose

in 1-D.

As a measure of accuracy the eigenvalues of the various ROP collision operators

are compared with the eigenvalues of the analog collision operator. In Fig. 7.4,

the relative error in the eigenvalues of various elastic ROP collision operators are

given for 1-MeV electrons colliding with gold nuclei. For the discrete DCSs, the

eigenvalues, λ1, ..., λ2N , are in excellent agreement with the analog eigenvalues. There

is a distinct jump in the relative error at λ2N+1 where the higer-order eigenvalues

are approximated in terms of the lower order eigenvalues. As discussed in previous

sections, this result is expected and follows from the form of the discrete DCS and the

moment-preservation constraint. Furthermore, the relative error in the higher-order

eigenvalues for the discrete DCSs grows non-linearly.

Expectations for the accuracy of the hybrid DCS are not as clear. In fact, one

can only expect perfect agreement with λ1, ..., λ2N , as was the case for the discrete

DCS. For example, only λ1 and λ2 are exact in the event a single-point is selected to

represent the peak. As it is, the hybrid DCS is more effective at approximating the

higher order moments because the exact representation of the tail results in improved

accuracy of higher order moments as seen in Fig. 7.4. In addition, the relative error

in the higher-order moments grows linearly for the hybrid DCSs. In Fig. 7.4, the

hybrid DCSs have a single discrete point near one. As the cut-off approaches one,

the hybrid DCS becomes more accurate and the higher-order eigenvalues are better

approximated. Although the level of accuracy associated with the hybrid DCS with

µ∗0 = 0.999 may not be necessary, it demonstrates a favorable property of this method.

That is, the ROP DCS models can systematically limit to the analog DCS.

This analysis is only appropriate for the elastic collision operator, because one
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Figure 7.4: Comparison of eigenvalues of various approximations of the elastic colli-
sion operator for 1-MeV electrons colliding with gold.

cannot obtain eigenvalues of the inelastic operator. However, eigenvalues are closely

related to the moments of the DCS, so one can assume that preservation of more

moments will result in a more accurate inelastic ROP collision operator. Moreover,

we know from Lewis theory that preservation of moments of the DCS is equivalent to

preservation of moments of the solution. Therefore, we will not present any inelastic

moment results since it was shown in previous sections that the ROP DCS are formed

such that moments are preserved exactly up to some finite order.
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The Geant4 Toolkit

Geant4 is a C++ object-oriented simulation toolkit. The toolkit provides a diverse,

wide-ranging, yet cohesive set of software components which can be employed in a

variety of settings. These range from simple one-off studies of basic phenomena and

geometries to full-scale detector simulations for experiments at the Large Hadron

Collider and other facilities [3]. Geant4 utilizes advanced software engineering tech-

niques to maximize functionality, modularity, extensibility, and openness based on

the Booch methodology. Geant4 is modular and flexible, and the implementation of

the physics is transparent and open to the user such that the user can understand

and customize, or extend, the various classes available in the toolkit. The key do-

mains of Monte Carlo simulation that subsequently led to class categories within the

framework of the Geant4 toolkit include:

• geometry and materials,

• interaction physics,

• tracking management,

• digitization and hit management,
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• event and track management,

• visualization and visualization framework,

• user interface.

The following sections discuss how users interact with the toolkit, whether as a

typical user building applications against the toolkit or as an advanced user inter-

ested in toolkit development. The implementation of the Moment-Preserving method

within Geant4 toolkit is detailed including a discussion of the physics classes, the

cross-section construction classes, and the data libraries along with the Geant4 data

processing classes that were utilized.

8.1 Developing with the Geant4 toolkit: Applica-

tion Developers and Toolkit Developers

There are two types of Geant4 developers or users: those that develop simulation

applications for research purposes requiring the development of the mandatory user

classes specific to the users needs and the building of said application against the

toolkit; and those that develop the toolkit itself (toolkit developers are typically

application developers as well). These two types of developers interact with the

toolkit differently.

Application developers do not necessarily need to know the details and the com-

plexities of the entire toolkit. Application developers are typically interested in

solving some specific radiation transport problem for which they have a varying

knowledge of the geometry and materials, the source characteristics (that is, energy,

angular, and spatial dependence), and the necessary physics models. Geant4 pro-

vides the abstract interface for eight user classes, but the concrete implementation,
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instantiation and registration of these classes are mandatory for only three of the

eight classes. In other words, Geant4 application developers are required to create a

user specific implementation of the methods specified by the mandatory classes.

These three mandatory classes are G4VUserDetectorConstruction,

G4VUserPhysicsList, and G4VUserPrimaryGeneratorAction, and describe the ge-

ometry and materials, the physics models to be used, and the particle source, respec-

tively. These classes in addition to a main are all that application developers are re-

quired to implement. However, additional user classes are available that can be used

to complete a wide variety of tasks including setting problem parameters, extracting

information, modifying the state of the particle, printing results, and so on. These

user classes include G4UserRunAction, G4UserEventAction, G4UserStackingAction,

G4UserTrackingAction, and G4UserSteppingAction and are all associated with a

“unit of simulation.” That is, the Run, Event, Stack, Track, and Step. The Run is

the largest unit of simulation and is a sequence of Events. An Event includes a source

particle and all of the secondary particles produced by the source particle which are

all classified as Tracks. A Track contains all of the information about a particle from

its birth to its death (primary or secondary). The Stack manages the Tracks and can

be used to prioritize or kill Tracks. The smallest unit of simulation where physics

processes are applied is the Step. With the eight user classes, application developers

can accomplish a great deal by only implementing any number of the optional user

classes. However, possibilities for ambitious Geant4 users are seemingly limitless

with sufficient time and knowledge of the toolkit.

On the other hand, toolkit developers are typically interested in adding classes

relevant to any of the aforementioned class categories to enhance the toolkit. This

does not necessarily require any of the development that was just discussed; however,

toolkit developers are typically application developers as well. In efforts to implement

the Moment-Preserving method, both types of development were undertaken. The
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various aspects of the Moment-Preserving method development are discussed in the

following section.

8.2 The Moment-Preserving Method Classes

Reduced order physics DCS models are central to the Moment-Preserving method

and therefore, the majority of the development effort is in generating, storing, and

accessing the ROP DCSs. Geant4 considers all physical interactions as processes,

requiring implementation of the G4VEmProcess class, and the details of each pro-

cess is captured by the model.This is accomplished through implementation of the

G4VEmModel class, which is the primary source of development for the Moment-

Preserving method (assuming the ROP DCS are available in the form of a DCS

data library). The reason that the majority of the development occurs at the level

of implementing the G4VEmModel class is because this is where the ROP DCS are

stored by means of reading-in the data and storing in Geant4 data classes, and this

is where the ROP DCSs are accessed when looking-up the total cross-section and

sampling the DCS.

The other major component of development was creation of the ROP DCS con-

struction classes. These were initially developed and interpreted as stand-alone DCS

objects, in that upon construction of the ROP model class the ROP DCS is con-

structed for every material using the ROP DCS construction classes. This required

that the ROP DCSs were constructed during runtime, which can be relatively CPU

intensive (at most one minute). Further into the development of this method, with a

better understanding of the toolkit, the ROP DCS construction classes were used to

create a library of ROP DCS models making the ROP model classes more compact

and easy to integrate into the toolkit.

The remaining sections provide detail on the associated physics process and model
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classes, the cross-section construction classes, and the cross-section library and data

processing tools. In addition, coding examples are provided when possible.

8.2.1 Physics processes

Physics processes for discrete and hybrid DCSs were implemented and include:

• G4DiscreteElasticProcess

• G4HybridSoftElasticProcess

• G4HybridHardElasticProcess

• G4DiscreteInelasticProcess

• G4HybridSoftInelasticProcess

• G4HybridHardInelasticProcess

The physics process is relatively simple because use is made of many of the virtual

functions in G4VEmProcess. For example, G4VEmProcess contains a function for

calling the physics model at the end of a step to sample a collision outcome. A user

can override a virtual function, but only if it is necessary. Therefore, code duplication

is reduced (this is a C++ concept and not specific to Geant4) and the resulting pro-

cess class is very simple. The only functions that required implementation include a

function that initializes the process class (this consists of constructing the associated

physics model and setting a few data members) and a function that determines the

applicable particles.

8.2.2 Physics models

Physics models for discrete and hybrid DCSs were implemented and include:
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• G4DiscreteElasticModel

• G4HybridSoftElasticModel

• G4HybridHardElasticModel

• G4DiscreteInelasticModel

• G4HybridSoftInelasticModel

• G4HybridHardInelasticModel

Three important functions are included in the physics model class: an initial-

ization function where the cross-section data is constructed or read in; a function

for obtaining the total cross-section; and a function for sampling the DCS. In de-

veloping the Moment-Preserving method, there were two versions of the associated

physics classes. The early version was designed to be included locally. That is,

in application development the source files specific to the application are stored in

some user working directory. Here, the user develops the mandatory classes and any

additional classes required. It is possible to bring in new physics locally by stor-

ing the classes in this working directory. This approach was used during the early

testing phases and the ROP cross-sections were constructed at runtime. For exam-

ple, in the following lines of code, the crossSection vector is populated with pointers

to GBFPAngularDeflection objects (see section 8.2.3 for detail on the GBFPAngu-

larDeflection cross-section class ). Each object corresponds to a different element

from which the problem materials are composed, so the crossSection vector will have

a length equivalent to the number of elements required by the problem. The draw-

back of this approach is that the GBFPAngularDeflection objects are constructed at

runtime and this adds to the total time for the run. In addition, the Geant4 data

classes make it very straightforward to access data for an element with atomic num-

ber Z. Here, additional functionality must be added to access the correct position
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in the crossSection vector, which is not ideal for integration of the models into the

toolkit.

// loop through all materials or couples

for (int i=0; i<numOfCouples; i++)

{

// get a list of the each element in current material

matEle = theCoupleTable->GetMaterialCutsCouple(i)->

GetMaterial()->GetElementVector();

// loop through each element

for (int j=0; j<theCoupleTable->GetMaterialCutsCouple(i)->

GetMaterial()->GetNumberOfElements(); j++)

{

crossSection.push_back(new

GBFPAngularDeflection(numPoints,evec,(*matEle)[j],theModel));

}

}

During later stages of development, a more effective approach was identified where

the ROP DCS library (see section 8.2.4) is constructed and the necessary data is read

in at runtime. Not only does this cut down on runtime, but the pre-existing Geant4

data tools were utilized reducing development overhead and easing integration of the

models into the toolkit. The code required to utilize the Geant4 data classes is left

to the appendices (see appendix ??) and section 8.2.5 describes the use the Geant4

data classes in greater detail.

There are two functions remaining for the physics model discussion, a function

for obtaining the ROP total cross-section and a function for sampling the ROP DCS.

These functions are essentially the same regardless of how the ROP cross-section data
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is handled (constructed at runtime or read in from DCS data library). Obtaining the

total cross-section is trivial and requires a table look-up as a function of energy. Given

a particle energy, the upper and lower energy indices are determined using a binary

search algorithm such that Ek ≤ E < Ek+1. Then total cross-section is interpolated

by using a linear weighting on log-log scale, or Σel,0 = Σel,0(Ek)πk + Σel,0(Ek+1)πk+1.

The weights are given by

πk =
lnEk+1 − lnE

lnEk+1 − lnEk
,

πk+1 =
lnE − lnEk

lnEk+1 − lnEk
. (8.1)

The function for sampling the DCS requires two steps. First, the energy index

of the data is determined using the previously discussed binary search; however,

the linear interpolation is accomplished through random sampling using the weights

from Eq. (8.1). That is, a random number, r, is sampled between zero and one,

and if r ≤ πk the DCS data for energy Ek is used; otherwise, the DCS data for

energy Ek+1 is used. This is possible because the weights can be considered as point

probabilities and they sum to unity. Given the energy index for the DCS data, and

of course, the material index which is assumed to be known, the discrete cumulative

distribution function (CDF) can be accessed and used to sample the DCS. This is

done by sampling another random number, r, and then searching the CDF until a

bin is determined such that Fj < r ≤ Fj+1 is satisfied. The form of the discrete CDF

can be taken advantage of because it is known that for a CDF with J discrete values

FJ corresponds to the most probable bin, so the CDF search is done in reverse as

seen in the following code example. Here, m and k are known and are the material

index and the energy index respectively. This loop cycles through the CDF values

for the (m, k) data and locates the bin for the quantity sampled. Once the angular

or energy-loss bin is determined, the jth deflection cosine or energy-loss for (m, k)

material and energy is retrieved and the state of the particle is updated accordingly.
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It should be noted that the largest typical discrete DCS is no more than eight points

and weights, so sampling the discrete DCS is rapid.

for (G4int j=numPoints-1;j>0;j--)

{

if ( (r>=crossSection[m]->GetCDF(k,j-1))

{

G4double cosTheta = crossSection[m]->GetPoint(k,p);

break;

}

}

At this point, no mention was made of the hybrid cross-section. As seen in the list

of models, the hybrid cross-section is composed of two models: one for soft collisions

and one for hard collisions. The soft collisions are given by the discrete cross section

and all of the previous discussion carries over. The hard collisions are given by the

analog DCS. For the partial-wave elastic DCS much of the previous discussion also

carries over. However, for the Möller inelastic DCS, an analytical expression is used

to obtain the total cross-section and a rejection technique is used to sample the DCS.

This summarizes the physics model classes required for this work. The remaining

sections provide additional detail on the classes used for generating the ROP DCSs,

the structure of the ROP DCS data library, and the Geant4 data classes required to

process the data library.
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8.2.3 Cross-section construction

All ROP DCS classes inherit from the GBFPCrossSection1 base class. The

GBFPCrossSection base class contains data members and functions required to gen-

erate an ROP DCS. The data members include vectors for storing ROP DCS points

and weights, CDFs, and total cross-sections, along with vectors associated with the

quadrature functions like coefficients of Legendre polynomials and Gauss-Legendre

quadrature points and weights. The critical functions include the function for the

modified Chebyshev algorithm and the function for obtaining Radau quadrature

which includes a matrix eigenvalue solver (see Chapter 7 for details). The ROP

DCSs are generated when constructing either a GBFPAngularDeflection or a

GBFPMollerEnergyLoss object. The GBFPAngularDeflection or

GBFPMollerEnergyLoss classes have data members and functions specific to elastic

and inelastic DCSs respectively. Here, an outline of the algorithm for generating a

discrete DCS is provided with some coding examples.

When a GBFPAngularDeflection object is created,

GBFPAngularDeflection* crossSection

= new GBFPAngularDeflection(numPoints,evec,(*matEle)[j],theModel);

data members are initialized. For example, the vectors points, CDF, and Sigmat are

sized appropriately and set to zero.

points.resize(energyGrid.size()); CDF.resize(energyGrid.size());

Sigmat.resize(energyGrid.size()); int N = numberOfPoints;

for (int i = 0; i < energyGrid.size(); i++){

points[i].resize(N,0.0); CDF[i].resize(N,0.0);}

1The significance of GBFP is from the previous naming of the method; that is, the Generalized
Boltzmann Fokker-Planck method [60].
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In addition, vectors for the coefficients for Legendre polynomials are populated

and local or temporary vectors for storing the coefficients of the polynomials orthog-

onal with respect to the analog DCS are initialized along with vectors for temporarily

storing points and weights.

vector<double> alpha = GetALeg(); // coefficient of Legendre polynomials

vector<double> beta = GetBLeg(); // coefficient of Legendre polynomials

// Temp vectors for coefficient of special polynomials (aa,bb)

// and points and weights (x,w)

vector<double> aa(N,0.0), bb(N,0.0), x(N,0.0), w(N,0.0);

Once the necessary data members are initialized, a loop over all energies is executed,

where the ROP DCSs for the current material are generated for each energy. Below,

the associated code is provided for generating a discrete elastic DCS based on the

screened Rutherford analog DCS. For a given energy, the parameters defining the

screened Rutherford DCS are determined. That is, the screening parameter and the

material constant (eta and CC). Now that the analog DCS is completely described,

moments of the DCS are generated using an adaptive quadrature technique. The

modified Chebyshev algorithm (MCA) requires monic moments, so the moments are

then renormalized. These moments, along with the coefficients of monic Legendre

polynomials (that is, Ml, alpha, and beta) are passed to the MCA. The MCA then

returns the coefficients of polynomials that are orthogonal with respect the screened

Rutherford DCS. These coefficients (aa and bb) are passed to the Radau function

where a tridiagonal matrix is setup and the discrete points and weights are deter-

mined from this matrix (that is, the Jacobi matrix). The points and weights returned

by the Radau function, must be regularized. The Regularize function removes the

N + 1 point and weight, and then multiplies the remaining points and weights by

the total cross section, Ml[0] because the weights passed to Regularize sum to unity.
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Prior to storing the DCS data, testing is completed to ensure meaningful data. The

discrete points are stored as the weights are summed. The sum of the weights are

then stored in the total cross-section vector and a CDF is generated and stored as

well. All of the temporary vectors are cleared and reset to zero. The process then

continues for the next energy. The cross-section generation classes are provided in

appendix ??.

for (int i=0; i<E.size(); i++){

G4double eta =

model->CalculateScreeningParameter(E[i], 0.51099891, ele->GetZ());

G4double CC =

model->CalculateMaterialConstant(E[i], 0.51099891, ele->GetZ());

SetAngularDeflectionMomentsWithAdaptiveQuadrature(E[i],CC,eta,Ml);

Monic(Ml);

orthog(Ml,alpha,beta,aa,bb);

Radau(aa,bb,x,w);

Regularize(x,w,Ml[0]);

// Testing of points and weights removed for compactness

// in coding example

sum = 0.;

for (int j=0; j<x.size(); j++){

SetPoint(i,j,x[j]); sum += w[j]; SetCDF(i,j,sum);}

SetSigt(i,sum);

for (int j=0; j<x.size(); j++){SetCDF(i,j,GetCDF(i,j)/sum);}

//normalizing CDF

aa.clear(), bb.clear(), x.clear(), w.clear(), Ml.clear();

aa.resize(N,0.0), bb.resize(N,0.0), x.resize(N,0.0), w.resize(N,0.0),

Ml.resize(2*N,0.0);}
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8.2.4 Cross section library

An ROP cross-section library was generated for the screened Rutherford DCS and the

partial-wave DCS for 1, 2, 4, and 8 points and weights. The libraries are formatted

such that the Geant4 data classes could be used (see section 8.2.5). For each material

and number of points and weights, there are two data files: one for the total cross-

section and one for the CDF. The files are named accordingly. For example, for

a 2-angle discrete DCS based on the partial-wave DCS for aluminum the two files

are named gbfp pwe tcs 13 2.dat and gbfp pwe cdf 13 2.dat, where the first number

is the atomic number and the second number is the number of points and weights.

The total cross-section file has the following format

20 0.00102648 123 123

0.00102648 1.895310594263357e-15

0.00111939 1.895310594263357e-15

0.00122070 1.735008462388171e-15

...

18.3401000 3.231888773330259e-21

19.1521000 3.014865567609761e-21

20.0000000 2.812460738247908e-21

The first row indicates that maximum energy, the minimum energy, and the length

of each column. The first column is the particle energy and the second column is the

total cross section in mm2. The CDF file has the following format
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0.1253630590705352 -0.5474023266341548

1.0000000000000000 0.7102211565388719

0.1253630590705352 -0.5474023266341548

1.0000000000000000 0.7102211565388719

0.1176158475868398 -0.5376566009643416

1.0000000000000000 0.7163622043775827

...

0.0013006768714632 -0.0091294921937126

1.0000000000000000 0.9732752885064547

0.0012783923557266 -0.0076636446407933

1.0000000000000000 0.9735167107563724

0.0012560788028267 -0.0060866632871608

1.0000000000000000 0.9737602097136864

The first column is the value of the CDF for some discrete angle and because this is

a 2-angle data file, every two values corresponds to one energy. The second column

is the discrete angle associated with the CDF.

The next section discusses the Geant4 data classes required and the how the data

files are processed.

8.2.5 Data processing

There are two primary Geant4 data classes utilized in processing and storing the ROP

DCS data: G4ElementData and G4PhysicsVector. G4ElementData is a very powerful

class that stores data for a particular element and then only requires the atomic

number to retrieve the data. Upon construction, the G4ElementData object requires

the atomic number and the data in the form of a pointer to a G4PhysicsVector object,

so the G4ElementData class is really a container of G4PhysicsVector objects. The

124



Chapter 8. The Geant4 Toolkit

data is actually stored in the G4PhysicsVector object, which is also a very powerful

class because as long as the data is properly formatted, one must simply pass the

G4PhysicsVector object a stream of the data.

As an example, the process of reading total cross-section data is provided, where

tcs is a pointer to a G4ElementData object. First, in the initialize function of the

G4DiscreteElasticModel, the materials and their constituents are processed. The

atomic number of the current element is determined and a check is performed to

determine if the data already exist. If it does not exist, ReadData is called with the

material Z and the path to the data.

for(G4int i=0; i<numOfCouples; ++i){

const G4Material* material =

theCoupleTable->GetMaterialCutsCouple(i)->GetMaterial();

const G4ElementVector* theElementVector = material->GetElementVector();

G4int nelm = material->GetNumberOfElements();

// loop through all elements

// if data for element does not exist process it

for (G4int j=0; j<nelm; ++j){

G4int Z = (G4int)(*theElementVector)[j]->GetZ();

else if(Z > maxZ){ Z = maxZ; }

if(!tcs->GetElementData(Z)) { ReadData(Z, path); } } }

The following code provides an example of what occurs inside ReadData specifically

for processing the total cross-section data. First, a stream is opened for the total

cross-section data determined by the path to the data file. A temporary pointer

to a G4PhysicsVector object is constructed. Then the Retrieve function is used to

read in the data for the current stream. Once the data is read in, the pointer to the

G4PhysicsVector object containing the data is passed to the G4ElementData object,
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tcs, using the InitialiseForElement function. At this point, the total cross-section

data for the current element is processed.

std::ifstream in(tcsPath, std::ifstream::binary|std::ifstream::in);

// Create a temporary G4PhysicsVector object pointer

G4PhysicsVector* tempData = new G4PhysicsVector(false,true,false);

// Use retrieve to read in the total cross section (tcs) data

tempData->Retrieve(in,true);

// pass this data to the tcs object and initialise for current element

tcs->InitialiseForElement(Z,tempData);

in.close();

Another powerful feature of the G4ElementData class is the simplicity in access-

ing the data. For example, to obtain the total cross-section for an electron with

energy E in an element with atomic number Z, one uses the GetV alueForElement

function.

tcs->GetValueForElement(Z,E);
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Results

In this chapter, a wide array of results that capture the key features of the Moment-

Preserving (MP) method are presented. In particular, the key features of this method

demonstrated are:

• systematic accuracy,

• efficient,

• mathematically robust,

• versatile,

• simple.

The results section begins by demonstrating the first feature of the MP method

through calculation of highly differential quantities like angular distributions and

energy spectra. In these calculations, the MP method is tested under the strictest

possible conditions (that is, high-energy mono-energetic pencil beams normally in-

cident on thin slabs). Under these conditions, analog or single-scatter models are
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typically required. However, it is shown that both transmitted and reflected angular

distributions and energy-loss spectra can be resolved through use of the hybrid DCS.

Though the emphasis of this section is the demonstration of the systematic nature of

the MP method, efficiency gains of at least five times analog efficiencies were demon-

strated while maintaining analog level accuracy in very thin slabs. Under these

extreme conditions where the hybrid model is successful, the discrete model tends to

result in artifacts. However, it is possible to utilize the discrete model in thicker slabs

where the benefit of efficiency gains is significantly improved. Following the angular

distribution and energy spectrum results, longitudinal and lateral distributions are

presented where the first two features of the method are again demonstrated on this

different, but important quantity.

Given a clear understanding of the systematic feature of this method, results

for less extreme problem conditions are presented to show that for more practical

applications the MP method is not just accurate, but also very efficient. That is, we

show that for 1-D and 2-D dose calculations the MP method achieves analog level

accuracy while improving efficiency up to three orders of magnitude over analog

efficiencies. We show that this is true for low-Z and high-Z materials, for molecules

like water or bone, and multi-region problems. Furthermore, it is shown that material

interfaces in multi-region problems do not introduce additional error at interfaces as

does the condensed history method. This is because the MP method is a transport-

based approximation and the benefit of this type of approach is that no additional

algorithm is required to handle material interfaces.

Prior to this work, no effort had been made to validate the MP method through

comparison with experimental benchmarks. Therefore, several results are presented

in efforts to begin this validation process. Specifically, results from the MP method

are compared to the experimentally determined energy deposition profiles (that is,

the Lockwood data [81]). Similar calculations are made with the Geant4 default elec-
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tromagnetic physics option 3, so that accuracy and efficiencies for the MP method

can be compared to the Geant4 physics. In addition, we compare charge deposition

results generated using MP method with experimentally determined charge deposi-

tions (that is, the Tabata data [82]). A key concept to point out in comparing with

experimental results is that if an analog model exists that is in acceptable agreement

with an experimental benchmark and moments of this analog model are readily

available, one can generate reduced order physics DCSs based on the aforementioned

analog model and show similar levels of agreement while significantly improving ef-

ficient. In this sense, the versatility and simplicity of the method is demonstrated.

That is, to improve agreement through use of a different analog model algorithmic

changes are not required; one must simply obtain moments of some preferable analog

model, generate an ROP DCS library for this analog model, and run the calculation.

Finally, for completeness the MP method is applied to a space weather application

to show that this method is not just effective for theoretical calculations. In particu-

lar, the total response function is generated for the CEASE detector telescope using

an analog model, a discrete model, and the default Geant4 electromagnetic physics

with option 3.

In all comparisons, the analog benchmark is obtained by using an analog elastic

DCS and an analog inelastic DCS (with exception of the validation section). The

analog benchmark is numerical rather than experimental, so to some degree it is ide-

alized. This type of benchmarking is required to illustrate how accuracy is achieved

through preservation of the analog DCS moments. In the following sections, accuracy

and efficiency is measured with respect to the analog benchmark.
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9.1 Angular Distributions and Energy Spectra

In this section, the accuracy of the MP method is tested under conditions that are

often times impractical to simulate without the use of an analog model. That is, the

transport of a mono-energetic pencil beam of electrons with energies above several

hundred keV in thin slabs. Of particular interest is the calculation of reflected and

transmitted angular distributions and energy spectra in slabs with varying thick-

nesses down to 100 analog elastic mfps (∼ 1 to 100 µm). It is shown that under

these conditions the MP method is effective at resolving angular distributions and

energy spectra through the use of suitable reduced order physics (ROP) DCSs. Un-

der these extreme conditions, a hybrid DCS is, in most cases, required to resolve

these distributions. While it is possible to resolve highly peaked distributions with

analog level accuracy using the MP method, this is typically accompanied by losses

in efficiency. Nonetheless, the ability to systematically control accuracy such that

one can predict angular distributions and energy spectra for highly-peaked scattering

in thin slabs is a strong feature of this method.

While it is true that one cannot expect to realize significant efficiency gains with

analog level accuracy under the aforementioned conditions, in more realistic settings

(that is, thicker regions) it is possible to relax the ROP models such that both analog

level accuracy and significant efficiency gains are achieved. Relaxation of the ROP

models is possible in thicker slabs because the initial pencil beam experiences more

spreading in space, angle, and energy in thicker slabs. This is simply an effect of

the number of collisions sustained by an electron while traversing a medium. In

thicker slabs, electrons suffer more collisions; thus, causing additional spreading of

the initial state of the beam. With additional spreading of the beam, less information

in the form of analog DCS moments is required to resolve angular distributions and

energy spectra. Therefore, the ROP DCS can be relaxed or models preserving fewer

moments can be utilized.
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In the following two sections, the impact of the size of the slab on the accuracy

of the MP method is demonstrated. Both discrete and hybrid models are tested for

angular distribution and energy spectrum calculations in low-Z and high-Z slabs with

varying thicknesses. The thickness of the slab is measured with respect to the analog

elastic mfp corresponding to the source particle energy and the target material.

Results for slabs with thicknesses of 100, 300, 1000, and 3000 analog elastic mfps are

presented (in the remaining discussion mfp implies analog elastic mfp). In Fig. 9.1,

problem setup is described.

Figure 9.1: Problem setup for calculation of angular distributions and energy spectra.

9.1.1 Angular distributions

Reflected and transmitted angular distributions are presented below for one-dimensional

slabs composed of aluminum or gold with thicknesses of 100, 300, 1000, and 3000

mfps (that is, L = 100λel, 300λel, 1000λel, 3000λel). The source is positioned at

x = 0 with a direction of ~Ω = (1, 0, 0). A total of 4× 107 source particles are simu-

lated when calculating the angular distributions. The analog benchmark is a solution

to the aforementioned problem using analog Monte Carlo, where elastic scattering is

131



Chapter 9. Results

given by the partial-wave DCS and inelastic scattering is given by the Möller DCS.

Uncertainties associated with these results are within 1% in most bins, such that one

can state conclusively that good agreement exists between the ROP models and the

analog benchmark.

First, the most challenging problem is presented. That is, calculation of transmit-

ted angular distributions for 10000-keV electrons incident on an aluminum or gold

slab 100 mfps thick. In Figs. 9.2a and 9.2b, transmitted angular distributions in

aluminum and gold computed using the discrete and hybrid DCSs are compared to

the analog benchmark. There are a few features to note in Fig. 9.2. The peakedness

of this distribution is extreme and varies about three orders of magnitude over only

10 degrees. This level of peakedness is difficult to resolve with a discrete elastic DCS

and results in the discrete artifacts seen clearly in the Figs. 9.2a and 9.2b. The dif-

ficulty in resolving highly peaked distributions using the discrete DCS results from

the form of the DCS. That is, electrons can only scatter through N discrete angles

determined by the order of the DCS. Therefore, the N discrete angles are favored

in the angular distribution because in thin slabs electrons do not suffer enough col-

lisions such that various combinations of scattering events smooth out the artifacts.

However, through use of the hybrid model the discrete artifacts are mitigated and the

only noticeable differences in the hybrid model solution and the analog benchmark

are in the tail where the differences in the solutions are statistically insignificant.

In Fig. 9.2c, the impact of target atomic number is shown, where for increasing Z

the distribution is less-peaked. However, the impact of the atomic number on the

peakedness of the scattering is not significant enough to dramatically improve the

discrete results in thin slabs for 10000-keV electrons.

Even in aluminum slabs with thicknesses of 3000 mfps for 10000-keV electrons,

the discrete DCS results in artifacts as seen in Fig. 9.3a. This is an indication of the

extreme peakedness of the scattering at higher energies and in this regime a hybrid
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Figure 9.2: Transmitted angular distributions for 10000-keV electrons on 100 mfp
thick aluminum (a) and gold (b) slabs calculated using the analog model (solid black),
a purely discrete model with 4-angles and 4-energies (solid blue), and a hybrid elastic
model with a single angle and µ∗ = 0.999 and a discrete inelastic model with 4-
energies (dashed red). The analog benchmarks (c) are in black for aluminum and
blue for gold.

DCS is required to resolve the transmitted angular distribution unless additional

angles are used. However, it is clear by Figs. 9.3a and 9.3b that in thicker slabs

where particles undergo thousands of collisions that the discrete artifacts are greatly

reduced. Furthermore, the impact of the atomic number is seen in Fig. 9.3b, where

the discrete artifacts are less pronounced in the gold slab because scattering of elec-

trons by high-Z materials is less peaked. Nonetheless, it is always possible to utilize

a hybrid model to resolve angular distributions overwhelmed by discrete artifacts.
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In thicker slabs, it is possible to relax the cut-off to µ∗ = 0.99 for the hybrid model

improving the efficiency of the calculation while remaining accurate.
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Figure 9.3: Transmitted angular distributions for 10000-keV electrons on 3000 mfp
thick aluminum (a) and gold (b) slabs calculated using the analog model (solid
black), a purely discrete model with 4-angles and 4-energies (solid blue), and a hybrid
elastic model with a single angle and µ∗ = 0.999 and a discrete inelastic model with
4-energies (dashed red).

The results in Figs. 9.2 and 9.3 indicate that it is possible to resolve angular

distributions in highly-peaked scattering regimes by systematically increasing the

accuracy of the ROP DCS through preservation of additional moments. Of course,

increasing accuracy will reduce the efficiency of the calculation, but under these

conditions (highly-peaked scattering in thin slabs) analog Monte Carlo efficiencies are

typically manageable, so efficiency gains of two to five times faster than analog Monte

Carlo is considered a significant improvement. As was pointed out, the emphasis of

this section was not to necessarily demonstrate orders of magnitude efficiency gains,

but rather to show that the ROP models limit to analog level accuracy even under

extreme conditions. That said, it is of interest to maximize efficiency gains whenever

possible. Therefore, the following results provide a sense of the accuracies associated

with a less-extreme scattering regime. Efficiency results are presented later in section

9.1.3 and indicate that it is possible to resolve angular distributions efficiently (up
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to two orders of magnitude more efficient than analog) and accurately; especially, in

less-extreme scattering regimes.

The following figures present transmitted angular distributions in a less-peaked

scattering regime. That is, 1000-keV electrons incident on gold slabs with varying

thicknesses. As noted, the peakedness of the scattering is a function of particle

energy and the target atomic number. With decreased particle energy and increased

atomic number, the peakedness is reduced. Nonetheless, even for 1000-keV electrons

on gold the problem is still extremely anisotropic with respect to neutral particle

scattering. In Fig. 9.4, the impact of slab thickness and in turn, the effectiveness

of the discrete model is demonstrated. In Figs. 9.4a and 9.4b, discrete artifacts are

present for slabs 100 and 300 mfps thick, but the hybrid model is in good agreement

in these cases. However, in Figs. 9.4c and 9.4d, discrete models with at most 4-

angles are sufficient when resolving the transmitted angular distribution. In fact,

in Fig. 9.4d the discrete artifacts resulting from a single-angle discrete model are

almost negligible and though there is not perfect agreement the general behavior of

the transmitted angular distribution is captured.
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Figure 9.4: Impact of slab thickness on the transmitted angular distribution for
1000-keV electrons on gold. Various discrete and hybrid models are compared to the
analog benchmark for gold slabs 100, 300, 1000, and 3000 mfps thick.

We now present reflected angular distributions for 1000-keV and 10000-keV elec-

trons on aluminum or gold slabs with thicknesses of 100, 300, 1000, and 3000 mfps.

In Fig. 9.5 reflected angular distributions for 10000-keV electrons on gold are pre-

sented. First, note the distributions in Fig. 9.5 are significantly reduced in magnitude

relative to the transmitted angular distributions for 10000-keV electrons. For highly-

peaked scattering, a very small fraction of particles are reflected. Slab thickness has
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Figure 9.5: Impact of slab thickness on the reflected angular distribution for 10000-
keV electrons on aluminum. Various discrete and hybrid models are compared to
the analog benchmark for aluminum slabs 100, 300, 1000, and 3000 mfps thick.

a similar impact on reflected distributions as for transmitted distributions. That is,

with increasing slab thickness electrons suffer more collisions before being reflected,

spreading the distributions in angle. In general, the discrete model tends to have

the correct behavior; however, the distribution is roughly two to five times greater in

magnitude. Once again, the hybrid model can be used in all cases. The disagreement

between the analog benchmark and the hybrid models is statistical because very few

particles are reflected.
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In Fig. 9.6 angular distributions for 1000-keV electrons incident on gold slabs

with thicknesses of 100, 300, 1000, and 3000 mfps are presented. For lower energies

in high-Z materials the scattering is less-peaked and the ROP model can be relaxed

under these conditions. Specifically, reflected angular distributions generated using

the discrete model are not overwhelmed by artifacts as seen in Fig. 9.6. For slabs

of sufficient thickness, a hybrid model is not required and the more efficient discrete

model can be utilized. For slabs that are 3000 mfps thick (Fig. 9.6d), a single-angle,

single-energy discrete model provides noteworthy agreement.
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Figure 9.6: Impact of slab thickness on the reflected angular distribution for 1000-
keV electrons on gold. Various discrete and hybrid models are compared to the
analog benchmark for gold slabs 100, 300, 1000, and 3000 mfps thick.
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9.1.2 Energy spectra

Next, reflected and transmitted energy spectra are examined. The simulation charac-

teristics, including slab thickness, material types, and the number of source particles,

are the same as described in the previous section. Discrete inelastic DCS models are

not presented because a sufficient number of inelastic collisions do not occur in thin

slabs overwhelming the spectra with discrete artifacts. Therefore, the focus is on

two different hybrid inelastic DCS models. The hybrid models include DCSs with

Q∗ = 10-keV and one or two discrete energies. In each of the following results, elas-

tic scattering is modeled by a discrete four-angle DCS. Again, the most challenging

problem, 10000-keV electrons on aluminum slabs, is considered first. In Fig. 9.8,

transmitted energy-loss spectra are presented for aluminum slabs with thicknesses

of 100, 300, 1000, and 3000 mfps. As seen in Fig. 9.7, it is possible to resolve the

transmitted energy-loss spectra with a sufficiently accurate hybrid inelastic model.

For 10000-keV electrons on aluminum, a two-energy hybrid model is required. How-

ever, for 1000-keV electrons on gold, it is possible to relax the inelastic model to a

single energy with the same cut-off. In Fig. 9.8, results for 1000-keV electrons on

gold are presented. Under these conditions, inelastic scattering is also less-peaked

and the hybrid model can be relaxed. However, a discrete representation is still not

sufficient.
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Figure 9.7: Impact of slab thickness on the transmitted energy-loss spectra for 10000-
keV electrons on aluminum slabs 100, 300, 1000, and 3000 mfps thick.
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Figure 9.8: Impact of slab thickness on the transmitted energy-loss spectra for 1000-
keV electrons on gold slabs 100, 300, 1000, and 3000 mfps thick.
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Reflected energy-loss spectra for 10000-keV and 1000-keV electrons on gold are

presented next. Reflected energy-loss spectra for 10000-keV electrons on aluminum

are not presented because the reflected electrons experience almost no inelastic colli-

sions. This is true even for gold as seen in Figs. 9.9a and 9.9b for slabs that are 100

and 300 analog mfps thick, where the distributions are nearly singular about zero

energy-loss. That said, the hybrid model also predicts this nearly singular behav-

ior. For thicker slabs, 1000 and 3000 analog mfps, the reflected energy-loss spectra

spreads out more. Here, the hybrid model is in good agreement in the statistically

significant regions of the spectra (that is, the peaked region of the spectra).
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Figure 9.9: Impact of slab thickness on the reflected energy-loss spectra for 10000-
keV electrons on gold slabs 100, 300, 1000, and 3000 mfps thick.
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In Fig. 9.10, reflected energy-loss spectra are presented for 1000-keV electrons on

gold. Once again, in this less-peaked regime the spectra are not nearly as singular

and a relaxed, single-energy hybrid model can be utilized.
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Figure 9.10: Impact of slab thickness on the reflected energy-loss spectra for 1000-
keV gold slabs 100, 300, 1000, and 3000 mfps thick.
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9.1.3 Efficiencies for thin slab problems

In this section, efficiency results for the previously discussed thin slab problems

are presented in Tables 9.1 and 9.2 for 1000-keV and 10000-keV on aluminum or

gold slabs of various thicknesses respectively. In general, efficiency gains depend on

the slab thickness, the target atomic number, and the energy of the particle. The

dependence of efficiency on target atomic number and energy was noted in Chapter

7 and presented in Figs. 7.1 and 7.2. However, the dependence on the problem

geometry, or the slab thickness in particular, is captured in the following tables.

The greatest efficiencies are realized in thicker slabs where particles undergo more

collisions. In thin slabs (100 and 300 analog mfps), efficiency gains range from 5 to

60 times faster than analog Monte Carlo. Whereas for thicker slabs, efficiency gains

range from one to three orders of magnitude faster than analog Monte Carlo.

In previous sections, it was mentioned that there is a trade-off between accuracy

and efficiency. This will be clarified in remainder of this discussion. First, remember

that under the most extreme conditions (10000-keV electrons on 100 to 300 mfps of

aluminum) hybrid models were required to resolve angular distributions and energy

spectra. The efficiency gains associated with these models, under these conditions

range from 15-47 times the efficiency of an analog Monte Carlo calculation. What

would take a day now requires only an hour without sacrificing accuracy. Now, note

that it was possible to resolve angular distributions for 1000-keV electrons on gold

slabs with thicknesses of 1000 and 3000 mfps using various discrete models. Under

these conditions, efficiency gains of 150-500 times the efficiency of an analog Monte

Carlo calculation are realized without sacrificing accuracy. In this case, what would

take a day takes less than ten minutes.
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Table 9.1: Efficiency gains for various ROP DCSs when simulating 1000-keV and
10000-keV electrons incident on aluminum slabs 100, 300, 1000, and 3000 mfps thick.

Reduce Order Physics Model

Slab-width
(mfps)

Particle
Energy

1-Angle
1-Energy

4-Angles
1-Energies

4-Angles
4-Energies

1-Angle
µ∗ = 0.99
4-Energies

4-Angles
1-Energy

Q∗ = 10-keV

100
1000-keV 21.003 17.829 15.295 4.8543 10.221
10000-keV 22.034 21.951 20.729 15.796 12.956

300
1000-keV 55.862 42.782 32.539 15.688 21.566
10000-keV 60.086 61.626 55.159 47.856 27.176

1000
1000-keV 173.72 63.216 55.952 11.345 40.848
10000-keV 200.40 170.12 145.16 86.197 84.930

3000
1000-keV 475.48 178.07 108.84 20.762 75.594
10000-keV 609.86 555.76 360.40 113.76 71.241

Table 9.2: Efficiency gains for various ROP DCSs when simulating 1000-keV and
10000-keV electrons incident on gold slabs 100, 300, 1000, and 3000 mfps thick.

Reduce Order Physics Model

Slab-width
(mfps)

Particle
Energy

1-Angle
1-Energy

4-Angles
1-Energies

4-Angles
4-Energies

1-Angle
µ∗ = 0.99
4-Energies

4-Angles
1-Energy

Q∗ = 10-keV

100
1000-keV 20.211 16.183 15.049 7.6928 12.279
10000-keV 18.713 20.255 19.429 17.257 19.977

300
1000-keV 60.548 36.899 33.331 10.377 26.222
10000-keV 61.954 56.729 54.230 86.197 45.301

1000
1000-keV 173.72 63.216 55.952 17.954 29.534
10000-keV 200.40 170.12 145.16 89.322 39.129

3000
1000-keV 564.75 133.90 121.69 22.994 90.900
10000-keV 1174.5 860.55 591.36 255.05 254.25
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In section 9.1, it was shown that for a given ROP DCS model, the accuracy of the

result depends on the peakedness of the distribution being resolved. The peakedness

of the distribution, in turn, depends on the slab thickness and the regime of scatter-

ing which is a function of particle energy and target atomic number. Regardless, an

ROP DCS can be made to preserve additional moments of the analog DCS; thus, re-

fining the model and achieving analog level accuracy under very extreme simulation

conditions. While it is not possible to achieve several orders of magnitude efficiency

gains under these conditions, the ROP models were at least five times faster than

analog Monte Carlo and up to 45 times faster in some cases. Under more relaxed

conditions, up to three orders of magnitude efficiency gains were achieved. Regard-

less, accuracy and efficiency suitable for a wide variety of problems can be realized

by adjusting the ROP DCSs.

9.2 Longitudinal and Lateral Distributions

At this point, it is clear that accuracy and efficiency is problem dependent. Nonethe-

less, it is possible to refine the ROP DCS such that sufficient levels of accuracy

and efficiency are realized. In this section, a few additional results are presented

that overlap with the previous section in the sense that problems corresponding to

scattering regimes ranging from extreme peakedness to less-extreme peakedness are

tested. Here, results in connection with Lewis theory are presented to demonstrate

the moment-preserving property of this method, while again demonstrating the ac-

curacy of this method is systematically controllable.

In particular, longitudinal and lateral distributions for 100-keV, 1000-keV, and

10000-keV electrons after traveling a distance of 100, 300, 1000, and 3000 mfps in an

infinite medium of copper are presented (similar to Benedito et al. [83]). In these

problems, energy-loss is not considered. The longitudinal and lateral distributions
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are generated using the analog Monte Carlo method where elastic scattering is given

by the partial-wave DCS. These distributions are referred to as the analog bench-

mark and are compared with several solutions generated using discrete and hybrid

models. In all of the results presented in this section, 4 × 107 electrons were simu-

lated for each model and uncertainties associated with the majority of the results are

within 1%; especially, in the highly probable regions. However, in regions where the

distribution is small with respect to the maximum value (for example, in the tails of

the distributions), the results are statistically insignificant.

In Fig. 9.11, a diagram of the problem simulated is presented. The electron

starts at s = 0 with an initial direction and travels until reaching a distance of

s = smax. At this point, the electrons longitudinal displacement, or the projection

of the path traveled onto the initial trajectory, and lateral displacement, or the

orthogonal projection of the pathlength, is tallied. Although it is not clear from Fig.

9.11, it is possible for an electron to turn around and travel in directions opposite to

the initial direction. In these cases, it is possible for the electron to have a negative

longitudinal displacement. The same is not true for lateral displacement because the

lateral displacement is a measure of radius and therefore, non-negative.

Figure 9.11: Problem setup for longitudinal and lateral distribution calculations.
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In addition to the longitudinal and lateral distributions, a few Lewis moments

are compared including 〈z〉 and 〈x2 + y2〉 or

〈z〉 =

∫
4π

dΩ

∫ ∞
−∞

dx

∫ ∞
−∞

dy

∫ ∞
−∞

dz zψ(x, y, z, s, ~Ω), (9.1)

and

〈x2 + y2〉 =

∫
4π

dΩ

∫ ∞
−∞

dx

∫ ∞
−∞

dy

∫ ∞
−∞

dz (x2 + y2)ψ(x, y, z, s, ~Ω). (9.2)

Here, the Monte Carlo method is used to carry out the integrals in Eqs. (9.1) and

(9.2), by simulating the particle transport and tallying the longitudinal and lateral

displacement after traveling 100, 300, 1000, or 3000 analog mfps. These results are

presented in the following tables for each energy. As predicted by Lewis theory

and seen in Table 9.3, models preserving at least Σel,1 will preserve 〈z〉. Therefore,

even the very efficient single-angle model will have the correct average longitudinal

displacement. Once again as predicted by Lewis theory and seen in Table 9.4, models

preserving at least Σel,1 and Σel,2 will preserve 〈x2 + y2〉. Therefore, the single-angle

model that preserves Σel,1 and Σel,2 will have the correct average lateral displacement

as well. Models preserving additional moments are not presented in Tables 9.3 and

9.4 because these results are redundant. Preservation of average longitudinal and

lateral displacement are important to electron transport methods and in many cases

these methods seek to preserve at least average longitudinal and lateral displacement.

One of the major distinctions between condensed history and the MP method is that

typically in condensed history the underlying multiple scattering theory is only setup

to preserve Σel,1 and Σel,2, while the MP method can preserve an arbitrary number

of Legendre moments guaranteeing preservation of higher-order Lewis moments. Not

to mention, the most simple, efficient ROP model associated with the MP method

preserves at least the average longitudinal and lateral distances.
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Table 9.3: Average longitudinal displacement, 〈z〉, for 100-keV, 1000-keV, and 10000-
keV electrons in copper after traveling a distance of 100, 300, 1000, and 3000 mfps.

〈z〉
Pathlength

(mfps)
Particle Energy

(keV) Analog 1-Angle Rel. Unc.

100
100 0.8432 0.8433 0.00006
1000 0.986664 0.986667 0.00001
10000 0.999643 0.999644 0.000001

300
100 0.61815 0.61820 0.0002
1000 0.96069 0.96070 0.00004
10000 0.998931 0.998932 0.000005

1000
100 0.2761 0.2763 0.001
1000 0.87673 0.87680 0.0001
10000 0.996449 0.996448 0.00001

3000
100 0.09493 0.09497 0.006
1000 0.6861 0.6863 0.0007
10000 0.989399 0.989387 0.00005

Table 9.4: Average lateral displacement, 〈x2+y2〉, for 100-keV, 1000-keV, and 10000-
keV electrons in copper after traveling a distance of 100, 300, 1000, and 3000 mfps.

〈x2 + y2〉
Physics Model

Pathlength
(mfps)

Particle Energy
(keV) Analog 1-Angle Rel. Unc.

100
100 0.154457 0.154456 0.0003
1000 0.016420 0.016415 0.0008
10000 0.000455 0.000454 0.003

300
100 0.26942 0.26944 0.0004
1000 0.04683 0.04682 0.0009
10000 0.001365 0.001364 0.004

1000
100 0.2365 0.2366 0.0007
1000 0.1315 0.1314 0.001
10000 0.0045244 0.0045245 0.0009

3000
100 0.11012 0.11016 0.002
1000 0.2532 0.2531 0.001
10000 0.01338 0.01339 0.004
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Although preservation of Σel,1 and Σel,2 guarantees preservation of 〈z〉 and

〈x2 + y2〉, resolving the longitudinal and lateral distributions
(
p(z, s) and p(b, s)

)
respectively (see section 4.2) requires preservation of additional moments. Similar to

results from the previous section, discrete artifacts impact the shape of the longitu-

dinal and lateral distributions. The impact of the artifacts is again dependent on the

peakedness of the scattering and the number of collisions suffered by the electrons

before tallying their displacement.

In Figs. 9.12-9.17, longitudinal and lateral distributions for 10000-keV down to

100-keV electrons in an infinite copper medium are presented. Each figure contains

four results corresponding to gradually increasing pathlengths of 100, 300, 1000,

and 3000 mfps. Again, the most challenging problem, or longitudinal and lateral

distributions for 10000-keV electrons in copper, is presented first in Figs. 9.12 and

9.13. In all cases, the hybrid DCS utilized is in excellent agreement with the analog

benchmark. For shorter pathlengths, both discrete models oscillate about the analog

benchmark. The oscillations are an effect resulting from the discreteness of the DCS

model where electrons tend to travel in preferential directions. Even for pathlengths

of 1000 analog mfps, the 16-angle discrete model still oscillates subtly about the

analog benchmark, but does not for pathlengths of 3000 analog mfps.
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Figure 9.12: Comparison of longitudinal distributions for 10000-keV electrons after
traveling a distance of 100, 300, 1000, and 3000 analog elastic mfps in copper.
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Figure 9.13: Comparison of lateral distributions for 10000-keV electrons after trav-
eling a distance of 100, 300, 1000, and 3000 analog elastic mfps in copper.

As the energy of the particle decreases, the effectiveness of relaxed models (that

is, models preserving fewer moments) is improved. For example, longitudinal and

lateral distributions for 1000-keV electrons in copper are presented first in Figs. 9.14

and 9.15. In all cases, the hybrid DCS utilized is in excellent agreement with the

analog benchmark and was relaxed from a cut-off of 0.99 down to a cut-off of 0.9 for

pathlengths of 100 and 300 analog mfps and down to a cut-off of 0.5 for pathengths of

1000 and 3000 analog mfps. Moreover, discrete artifacts are not nearly as significant

for 1000-keV electrons with exception of longitudinal and lateral distributions for

pathlengths of 100 and 300 analog mfps. In fact, a 4-angle discrete model is sufficient

for resolving longitudinal and lateral distributions for pathlengths of 1000 and 3000
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analog mfps.
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Figure 9.14: Comparison of longitudinal distributions for 1000-keV electrons after
traveling a distance of 100, 300, 1000, and 3000 analog elastic mfps in copper.
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Figure 9.15: Comparison of lateral distributions for 1000-keV electrons after traveling
a distance of 100, 300, 1000, and 3000 analog elastic mfps in copper.

Finally for 100-keV electrons, the most relaxed models tested are sufficient for

pathlengths down to 100 analog mfps as seen in Figs. 9.16 and 9.17. Although

single-angle results were not presented, a single-angle model is reasonably accurate

for 100-keV electrons for pathlengths of 100 analog mfps and greater.
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Figure 9.16: Comparison of longitudinal distributions for 100-keV electrons after
traveling a distance of 100, 300, 1000, and 3000 analog elastic mfps in copper.
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Figure 9.17: Comparison of lateral distributions for 100-keV electrons after traveling
a distance of 100, 300, 1000, and 3000 analog elastic mfps in copper.

In this section, longitudinal and lateral results were presented to demonstrate

the effectiveness of the MP method when calculating quantities that are critical to

most CH methods and electron transport methods in general. It was shown that

the average longitudinal and lateral displacement (typically used in CH pathlength

correction algorithms) is in exact agreement with analog results for a single-angle

(two moment-preserving) model. In other words, no additional pathlength correction

algorithm is required in the MP method because the ROP DCS are constructed

such that the Lewis moments are inherently preserved. In addition, longitudinal and

lateral distributions for 100-keV (less-peaked scattering) to 10000-keV (highly-peaked
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scattering) were generated using various ROP models. Depending on the problem at

hand, ROP models requiring preservation of only a few moments were required for

agreement with the analog benchmark. When necessary, additional moments were

preserved to achieve analog level accuracy, but there was never a problem too extreme

that the MP method failed to resolve the longitudinal or lateral distributions.

9.3 1-D and 2-D Dose Calculations

In this section, 1-D and 2-D dose results are presented. The dose results were gener-

ated using the partial-wave elastic scattering DCS and the Möller inelastic scattering

model for the analog benchmark and the ROP DCSs were, in turn, constructed from

these DCSs. Secondary production was not considered for this section. The fol-

lowing results show that the MP method can be used to calculate dose accurately

in both relatively isotropic and highly peaked regimes regardless of the form of the

analog model used to construct the ROP DCS. That is, accurate models can be

constructed from both analytical DCS and tabulated DCS data. In this dissertation

the emphasis is on tabulated elastic DCS data, as applications of the MP method

to analytical DCSs has been demonstrated in the past [60, 61]. Efficiency gains im-

prove significantly with increasing source energies without sacrificing accuracy. The

trade-off between accuracy and efficiency, where it exist, ultimately depends on the

application and the level of accuracy required by the user.

9.3.1 One-dimensional depth-dose profiles

Transversely integrated depth-dose profiles and relative differences are presented for

250-keV electrons in gold and 20000-keV electrons in water. In Fig. 9.18a, the re-

sults are nearly indistinguishable from the benchmark. However, Fig. 9.18b shows
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disagreements that would otherwise be indistinguishable. In this simulation, dis-

agreement is attributed to both the elastic and inelastic scattering models. Addi-

tional angles or use of the hybrid DCS smooths out the overestimation in the first

cell. Adding another energy point to the discrete inelastic model smooths out the

oscillation that begins near the peak dose. Though some refinement was necessary,

only small adjustments were required to reduce the relative differences to within 1%.
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Figure 9.18: Comparison of depth-dose profiles (a) from 250-keV electrons on gold
with discrete and hybrid elastic scattering and discrete inelastic models. The relative
error in dose (b) from 250-keV electrons on gold calculated using discrete and hybrid
elastic scattering models and discrete inelastic models. The relative error is measured
with respect to the numerical benchmark generated using the partial-wave expansion
elastic DCS and the Möller inelastic scattering models. The associated statistical
uncertainty is included below each plot.

Efficiency gains are presented in Tables 9.5 and 9.6. For 250-keV electrons in

gold efficiencies range from about 3 to 50 times faster than analog depending on the

accuracy of the ROP DCS used. For 20000-keV electrons, in gold efficiencies range

from about 70 to 1800 times faster than analog, while achieving accuracies nearly

the same as those presented in Fig. 9.18b.
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Table 9.5: Efficiency gains for various discrete DCSs when calculating dose due to a
beam of electrons with energies of 250-keV, 1000-keV, and 20000-keV incident on a
gold slab.

ROP Model

Particle Energy
1-Angle

1-Energy
2-Angles
1-Energy

2-Angles
2-Energies

4-Angles
1-Energy

4-Angles
4-Energies

250-keV 50.843 23.112 22.960 10.879 10.990
1000-keV 163.62 72.155 71.199 31.292 31.261
20000-keV 1793.6 967.01 883.47 416.00 378.52

Table 9.6: Efficiency gains for various hybrid DCSs when calculating dose due to a
beam of electrons with energies of 250-keV, 1000-keV, and 20000-keV incident on a
gold slab.

ROP Model

Particle Energy

µcut = 0.5
1-Angle

2-Energies

µcut = 0.9
1-Angle

2-Energies

µcut = 0.99
1-Energy

2-Energies

250-keV
17.929
18.490

7.5518
7.4511

2.5423
2.5341

1000-keV
58.737
60.332

19.882
21.725

6.2259
6.1956

20000-keV
915.00
843.63

306.25
301.63

69.465
68.203
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In Fig. 9.19a, the results are distinguishable from the benchmark at 20000-keV

because the relaxed approximations do not capture large angle scatter or large energy

losses. Once again, small refinements to the elastic and inelastic ROP scattering

models improves the accuracy of the results. As seen in Fig. 9.19b, model refinement

through preservation of additional moments reduces the relative differences to <1%.

Efficiency gains for the 20000-keV water simulation range from about 110 to 1600.

However, accuracies within 1% were achieved with models that were 650 to 700 times

more efficient than analog. Additional efficiency gains are presented in Tables 9.7

and 9.8.
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Figure 9.19: Comparison of depth-dose profiles (a) from 20000-keV electrons on water
with discrete and hybrid elastic scattering and discrete inelastic models. The relative
error in dose (b) from 20000-keV electrons on water calculated using discrete and
hybrid elastic scattering models and discrete inelastic models. The relative error is
measured with respect to the numerical benchmark generated using the partial-wave
expansion elastic DCS and the Möller inelastic scattering models. The associated
statistical uncertainty is included below each plot.
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Table 9.7: Speed-up factors for various discrete DCSs when calculating dose due to
a beam of electrons with energies of 250-keV, 1000-keV, and 20000-keV incident on
a water slab.

ROP Model

Particle Energy
1-Angle

1-Energy
2-Angles
1-Energy

2-Angles
2-Energies

4-Angles
1-Energy

4-Angles
4-Energies

250-keV 54.199 30.066 24.115 14.945 11.246
1000-keV 147.31 82.849 60.842 39.284 26.781
20000-keV 1606.6 1121.6 709.04 612.26 292.89

Table 9.8: Efficiency gains for various hybrid DCSs when calculating dose due to a
beam of electrons with energies of 250-keV, 1000-keV, and 20000-keV incident on a
water slab.

ROP Model

Particle Energy

µcut = 0.5
1-Angle

2-Energies

µcut = 0.9
1-Angle

2-Energies

µcut = 0.99
1-Energy

2-Energies

250-keV
26.038
19.603

10.944
9.4577

3.4617
3.2682

1000-keV
74.289
52.097

29.799
24.925

8.0258
7.4572

20000-keV
1078.5
646.91

500.96
380.35

118.02
109.18
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In addition to the single-material depth-dose profiles, an interface problem is pre-

sented. In this problem a 150-keV pencil beam of electrons is normally incident on

a gold-aluminum slab. The first 0.0004 cm of the slab is gold and the remainder of

the slab is aluminum. In Fig. 9.20, the depth-dose profiles for the analog benchmark

and a single-angle, single-energy discrete model are presented along with the relative

error in several discrete models. The interface occurs between the 4th and 5th cells;

however, there is no distinguishable error in Fig. 9.20b resulting from the interface.

As previously noted, the MP method preserves transport mechanics allowing for ex-

ponentially distributed collision sites. Clearly, boundary crossings are a non-issue for

this method and no additional algorithms are required to handle boundary crossings.
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Figure 9.20: Comparison of depth-dose profiles (a) from 150-keV electrons on a gold-
aluminum slab with discrete elastic scattering and discrete inelastic models. The
relative error in dose (b) from 150-keV electrons on a gold-aluminum slab calculated
using discrete and hybrid elastic scattering models and discrete inelastic models. The
relative error is measured with respect to the numerical benchmark generated using
the partial-wave expansion elastic DCS and the Möller inelastic scattering models.
The associated statistical uncertainty is included below each plot.
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9.3.2 Two-dimensional dose deposition

As indicated by the transversely integrated dose results in the previous section,

this method provides excellent accuracy and efficiency when radial spreading is not

considered. However, in this section we present two-dimensional dose deposition

results that include the impact of radially spreading. At lower energies this method

is more effective at capturing radial spreading. We begin the two-dimensional dose

deposition results by presenting the low energy simulation. The geometry setup for

this simulation is presented in Fig. 9.21a. For the 150-keV simulation 109 histories

were completed. In Fig. 9.21b, the analog benchmark for the 150-keV simulation is

presented. A significant portion of the dose is deposited along the beamline close to

the source. In the gold region the dose is deposited more rapidly than in the silicon

region where it is apparent that the dose diffuses slower.

(a) Problem setup
(b) Analog Benchmark

Figure 9.21: Problem setup for 150-keV electrons incident on 250-µm by 250-µm Si
cube with gold region and analog benchmark. The benchmark was generated using
the partial-wave expansion elastic DCS and the Möller inelastic scattering models.
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In Fig. 9.22, relative differences for discrete models are presented to demonstrate

the impact of adjusting the number of discrete angles and energies, and in turn,

the number of moments preserved. In Figs. 9.22a and 9.22b, low-order moment-

preserving models are presented. Discrete artifacts are very distinct in in Fig. 9.22a

for the single-angle, single-energy model. By increasing the number of discrete angles

in both Figs. 9.22b and 9.22c, the discrete artifacts are mitigated without requiring

the hybrid model. However, there are still some significant differences in the dose in

some regions resulting from the single-energy model seen in Figs. 9.22b and 9.22c. By

including additional energies, the relative error in all regions is significantly reduced

as seen in Fig. 9.22d. Notice that along the gold-silicon interface near the beam, the

agreement is within 1%, with exception of the single-angle model where the solution

is overwhelmed with discrete artifacts.

Another artifact to point out is the over/under estimation of the dose in the first

two cells next to the source. This error persists as the models are refined, but it is

actually an artifact of the source type and source location. That is, the source is

a pencil beam that is singular in space and it is directed at the tally cell boundary

between. In the next 2-D result, the source is no longer singular in space and the

artifact is no longer present.
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(a) 1-Angle, 1-Energy (b) 2-Angles, 1-Energy

(c) 4-Angles, 1-Energy (d) 4-Angles, 4-Energies

Figure 9.22: The relative error in dose from 150-keV electrons in a 250-µm by 250-
µm Si/Au cube calculated using a discrete (a) single-angle and single-energy model,
(b) two-angle and single-energy model, (c) four-angle and single-energy model, and
(d) four-angle and four-energy model. The relative error is measured with respect
to the numerical benchmark generated using the partial-wave expansion elastic DCS
and the Möller inelastic scattering models.
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Table 9.9: Speed-up factors for various discrete DCSs when calculating dose from
150-keV electrons in a 250-µm by 250-µm Si/Au cube.

ROP Model

Particle Energy
1-Angle

1-Energy
2-Angles
1-Energy

2-Angles
2-Energies

4-Angles
1-Energy

4-Angles
4-Energies

150-keV 51.4 29.3 29.2 15.5 15.5

In Fig. 9.23a, the two-dimensional problem setup is given along with the analog

benchmark in Fig. 9.23b. In this simulation, a beam of 10000-keV electrons are

transported with radius of 0.02 cm is normally incident on a water cube with a small

bone region. The analog benchmark is in logscale and provides a sense of where most

of the dose is deposited. That is, a significant portion of the dose is deposited along

the beamline within fractions of a cm to the left and right of the origin. The electrons

with these energies penetrates deeply into the medium as seen in Fig. 9.23b.

(a) Problem Setup (b) Analog Benchmark

Figure 9.23: The problem setup (a) and analog benchmark (b) for 10000-keV elec-
trons on a 4-cm by 4-cm water/bone cube. The benchmark was generated using the
partial-wave elastic DCS and the Möller inelastic DCS models.

The following figure presents relative error results corresponding two discrete

ROP DCS models. In Fig. 9.24a, the relative error in the four-angle, four-energy

discrete DCS models with respect to the analog benchmark is presented. Discrete
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artifacts can be seen clearly in Fig. 9.24a. However, by refining the model through

preservation of additional moments with the addition of four more discrete angles,

discrete artifacts aremitigated and backscatter is captured more accurately as seen

in the relative error result in Fig. 9.24b. In both the four-angle and eight-angle

results, no interface effects are present. It should be noted that in the backscatter is

not significant at 10000-keV and some of the error in the lower left and right corners

is statistical in nature.

(a) 4-Angles, 4-Energies (b) 8-Angles, 4-Energies

Figure 9.24: The relative error in dose from 10000-keV electrons on a 4-cm by 4-cm
water/bone cube calculated using a (a) four-angle discrete elastic DCS model and
four-energy discrete inelastic DCS model and a (b) eight-angle discrete elastic DCS
model and four-energy discrete inelastic DCS model. The relative error is measured
with respect to the analog benchmark generated using the partial-wave expansion
elastic DCS and the Möller inelastic scattering models.
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In Fig. 9.25, the relative error between the analog benchmark and two hybrid

models are presented. In Fig. 9.25a, a hybrid model with µ∗ = 0.9 shows very subtle

discrete artifacts, but otherwise is in good agreement. In Fig. 9.25b, a hybrid model

with µ∗ = 0.99 does not suffer from any discrete artifacts and the only disagreement

is in the lower left and right corners where again the error is statistical in nature.

(a) Hybrid µ∗ = 0.9, 4-Energies (b) Hybrid µ∗ = 0.99, 4-Energies

Figure 9.25: The relative error in dose from 10000-keV electrons in a 4-cm by 4-
cm Water/Bone cube calculated using a (a) single-angle hybrid elastic DCS model
with µ∗ = 0.9 and four-energy discrete inelastic DCS model and a (b) single-angle
hybrid elastic DCS model with µ∗ = 0.99 elastic DCS model and four-energy discrete
inelastic DCS model. The relative error is measured with respect to the analog
benchmark generated using the partial-wave expansion elastic DCS and the Möller
inelastic scattering models.

In adding more discrete angles, or through use of the hybrid model, we demon-

strated an approach to mitigate discrete artifacts through controlling the accuracy

of the ROP DCS models. The only drawback to applying a more accurate ROP DCS

model is the loss of efficiency as presented in Table 9.10. Here, the 4-angle model is

the most efficient as expected. Inclusion of additional discrete angles or use of the

hybrid model reduces the efficiency gain from roughly 120 to between 47 and 94.

As previously noted, it is possible to optimize such that significant reduction

in efficiency is not incurred by applying higher-order models in regions nearby the
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Table 9.10: Speed-up factors for various discrete DCSs when calculating dose from
10000-keV electrons incident on a 4-cm by 4-cm water cube with small bone region.

ROP Model

Particle Energy
4-Angles

4-Energies
8-Angles

4-Energies

1-Angle
µ∗ = 0.9

4-Energies

1-Angle
µ∗ = 0.99
4-Energies

10000-keV 120.7 85.6 93.9 47.0

source where the solution remains highly peaked and splaying lower-order models

in regions where the solution is less-peaked. The following results present region

dependent elastic ROP DCSs.

In Fig. 9.26, the schematic for a region dependent discrete elastic model is pre-

sented along with the associated relative error from such an approach. As seen in

Fig. 9.26a, default 4-angle, 4-energy discrete model is applied to all regions. The

default is then deactivated in the region bounded by the red dashed line and an 8-

angle, 4-energy discrete model is applied in this region. The associated relative error

is given in 9.26b. The relative error in Fig. ??b is nearly indistinguishable from the

relative error in Fig. 9.24b where an 8-angle discrete model is applied everywhere.

The resulting gain in efficiency is 106 times faster than the analog simulation as

opposed to 86 when applying an 8-angle model to all regions.

In Fig. 9.27, the schematic for another region dependent discrete elastic model

is presented along with the associated relative error from such an approach. Again,

in this problem a 4-energy discrete inelastic model is used in all regions. As seen

in Fig. 9.27a, an 8-angle model is applied in the region where the peak dose occurs

and a single-angle model is applied in all other regions. The associated relative

error is given in 9.27b and is a modest improvement over the relative error in 9.26b

as the backscatter is captured more accurately. Again, the relative error in Fig.

9.27b is nearly indistinguishable from the relative error in Fig. 9.24b where an 8-
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(a) Region dependent ROP DCSs (b) Relative error

Figure 9.26: The schematic of region dependent ROP DCS (a) and the relative error
(b) in dose from 10000-keV electrons on a 4-cm by 4-cm water/bone cube calculated
using the region dependent ROP DCS 8-angles applied near the source and 4-angles
applied in all other regions. A 4-energy discrete inelastic model is used throughout.
The benchmark was generated using the partial-wave elastic DCS and the Möller
inelastic DCS models.

angle discrete model is applied everywhere. The resulting gain in efficiency is 97

times faster than the analog simulation and is reduced slightly from 106, which was

efficiency gain associated with the previous region dependent models, but accuracy

was improved.

Ultimately, a region dependent application of the ROP DCS models is simply an

exercise in demonstrating that accuracy and efficiency can be optimized. In practice,

a more suitable approach would be to develop an algorithm that determines the

optimal DCS model as the electron is transported. At this point, it is unclear what

metric should is ideal for determining the optimal ROP DCS model because the

parameter space is large. The following problem is illustrates this point.

For problems with singular boundary conditions like the previous problem, it is

clear that high-order models are necessary nearby the source and low-order models

can be used away from the source as the solution becomes less peaked. However, the

same is not necessarily true for distributed sources. For example, in the following
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(a) Region dependent ROP DCSs (b) Relative error

Figure 9.27: The schematic of region dependent ROP DCS (a) and the relative error
(b) in dose from 10000-keV electrons on a4-cm by 4-cm water/bone cube calculated
using the region dependent ROP DCS with 8-angles applied in the peak dose region
and 1-angle applied in all other regions. A 4-energy discrete inelastic model is used
throughout. The benchmark was generated using the partial-wave elastic DCS and
the Möller inelastic DCS models.

problem an isotropic point source of 2500-keV electrons in a gold cube 1 cm on each

face is simulated. The problem setup and analog benchmark is given in Fig. 9.28.

As seen in Fig. 9.28b, the dose is deposited uniformly about the point source located

at the origin. It is also of interest to point out that most of the dose is deposited

nearby the source.

As seen in Fig. 9.29, relatively low-order models can used to estimate the dose due

to distributed sources. The most efficient model tested, single-angle, single-energy,

is about 400 times more efficient than the analog simulation and the associated

relative error is presented in Fig. 9.29a. By adding another discrete energy the

relative error improves as seen in Fig. 9.29b, but the efficiency decrease to about 300

times faster than the analog simulation. Finally, the most accurate model tested,

2-angles, 2-energies, is presented in Fig. 9.29c. This model provides good agreement,

while remaing roughly 180 times more efficient than the analog simulation. Here we

showed that accuracy and efficiency is impacted by the source configuration. Again,
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(a) Problem setup
(b) Absolute dose

Figure 9.28: The problem setup for an isotropic point source located at the origin
of a 1-cm by 1-cm by 1-cm gold cube (a) and the analog benchmark (b) generated
using the partial-wave elastic DCS and the Möller inelastic DCS models.

region dependent models could be applied in this setting for optimization, but more

importantly an adaptive cross-section algorithm that incorporates source information

and solution information for given problem would improve the MP method.

(a) 1-Angle, 1-Energy (b) 1-Angle, 2-Energies (c) 2-Angles, 2-Energies

Figure 9.29: The relative error in dose from 2500-keV electrons in a 1-cm by 1-
cm by 1-cm gold cube calculated using (a) a single-angle, single-energy discrete
model, (b) a single-angle, two-energy discrete model, and (c) a two-angle, two-energy
discrete model. The relative error is measured with respect to the analog benchmark
generated using the partial-wave elastic DCS and the Möller inelastic DCSmodels.
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9.4 Comparison with Experiment

In this section, an initial validation of the Moment-Preservation method is presented.

Given the nature of the method, the key is to first obtain analog elastic and inelas-

tic DCSs that are in good agreement with the experimental benchmarks of interest.

Therefore, the following results are really a validation of the analog DCS models

used herein. Initial validation results indicate that the renormalized Möller DCS

(see Chapter 3) does not give good agreement with the Lockwood energy deposi-

tion data [81]. Use of the Geant4 G4eIonization class in place of the renomarl-

ized Möller DCS improved agreement. However, when comparing with the Tabata

charge deposition data [82], differences between the renormalized Möller DCS and

the G4eIonization class were negligible. Until further development of the analog in-

elastic model is completed, use is made of the G4eIonization class (see Chapter 8) for

the validation test under consideration in this section to be consistent. Once again,

the analog elastic DCS models used are the partial-wave elastic DCSs generated us-

ing the ELSEPA code. The first validation test includes comparisons to depth-dose

profiles referred to as the Lockwood data [81]. Next, comparisons to charge depo-

sition experiments due to Tabata [82] are presented. In addition to the Lockwood

and Tabata data, numerous experimental benchmarks are available for validation

test [84, 85, 86, 87, 88, 89, 90, 91]. However, further validation of the MP method

remains as future work.

9.4.1 Energy deposition profiles

One of the most common electron transport results in basic research is energy de-

position, where an accurate description of particle transport is required for different

energies in various materials. Below, energy deposition profiles and total energy de-

position calculations are compared with experimental results from Lockwood et al.
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[81]. The Lockwood data was produced by Sandia National Laboratories using a

sophisticated calorimetric technique for measuring absolute, high-resolution electron

energy deposition profiles in a wide range of materials. The uncertainty of the data

is estimated to be from 1.0% to 2.0%.

The comparisons cover low-Z and high-Z materials including carbon, aluminum,

molybdenum, and tantalum for pencil beam sources with energies of 500-keV and

1000-keV and angles of incidence of 0◦ and 60◦. In each simulation, 105 source

particles were transported and the energy deposition profiles are normalized to the

mean CSDA range and the depth variable is in terms of a fraction of the mean CSDA

range. The primary objective of this comparison is to validate the ROP models that

are the subject of this dissertation, but also to demonstrate how well these models

perform with respect to the current state-of-art physics models available to Geant4

users. Both accuracy and efficiency results are presented, contrasting the MP method

and the default Geant4 electromagnetic physics.

Simulations were completed for three different models where the treatment of

elastic scattering varies between each model. These models include an analog elastic

scattering model given by the partial-wave DCS, a discrete single-angle DCS, and

the geant4 elastic multiple scattering model referred to as the Urban model or the

G4UrbanMscModel96 class. Each of the models tested used the same inelastic scat-

tering model and bremsstrahlung model along with the same physics for transporting

photons and positrons. The settings associated with the aforementioned physics are

in accordance with the Geant4 standard electromagnetic physics list option 3, which

was found to give the best agreement with the Lockwood data [92] and enforces the

strictest multiple scattering step limitation [93] (this is only relevant to the Urban

model). In addition, the maximum step-size was set to 0.01 mm for carbon and alu-

minum and 0.001 mm for molybdenum and tantalum when using the Urban model

(step limits are not required for the analog model or the discrete model).
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In general, the energy deposition profiles calculated using the analog model, the

ROP model, and the geant4 CH model exhibit behavior similar to the experimental

results. The Geant4 physics tends to estimate values higher than the discrete model

in the peak energy deposition region, while the discrete model tends to estimate

higher values in the tails of the energy deposition profile (see Figs. 9.31-9.36). This

is true for both normal incidence and 60◦ off-normal incidence. The total energy

deposition tends to be nearly the same for both the MP method and the Geant4

physics models. For normally incident electrons, the agreement between all models

and the experimentally determined total energy deposition is roughly 1-3% relative

difference for all materials and energies with exception of 1000-keV electrons on

tantalum which is between roughly 4-5% (see Table 9.11). For off-normal incidence,

the agreement between all models and the experimentally determined total energy

deposition is roughly 2-4% relative difference (see Table 9.12) for all materials and

energies with exception of 1000-keV electrons on molybdenum which is between

roughly 6-7%. While this level of agreement is generally acceptable, it is of interest

to develop an analog inelastic model that improves overall agreement to within a few

percent relative error.

The timing results are presented in Tables 9.13 and 9.15. For normal incidence,

efficiency gains are roughly the same for the MP method and the Geant4 physics.

However, for off-normal incidence, the MP method is in all cases a factor of two

times faster than the Geant4 physics.

For energy deposition calculations, neither the MP method or the Geant4 physics

overwhelmingly outperform the other. However, the MP method was more efficient

for the off-normal incidence simulations. In addition, if an analog model is developed

that provides better agreement with experiment, the same level of agreement would

be anticipated for the MP method. Therefore, it is important to identify an ideal

analog inelastic model as the partial-wave DCSs are assumed to be most accurate
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representation of elastic scattering and do not contribute to any disagreement found

herein.

Furthermore, no multi-region problems were validated in this section. It is known

that material interfaces are problematic for condensed history methods and there

are reported discrepancies between the Geant4 physics and the Lockwood data for

material interfaces [92]. Validation of the MP method for energy deposition in slabs

with material interfaces remains as future work, but it has been shown in the past

that the MP method does not suffer from boundary crossing limitations [60, 61, 62]

(see section 9.3). Therefore, no significant interface discrepancies are anticipated.

Table 9.11: Total energy deposition comparison for 500-keV and 1000-keV electrons
normally incident on aluminum, molybdenum, and tantalum semi-infinite slabs.

Energy
(keV)

Material
Type

Model
Type

Total Energy
(keV)

Relative
Error

500 aluminum
Analog 472.921 -0.013

Discrete 1-Angle 471.169 -0.016
G4EmStandard 468.550 -0.022

1000 aluminum
Analog 958.381 -0.012

Discrete 1-Angle 954.665 -0.016
G4EmStandard 953.089 -0.017

500 molybdenum
Analog 383.612 0.028

Discrete 1-Angle 381.167 0.022
G4EmStandard 376.032 0.008

1000 molybdenum
Analog 801.527 0.029

Discrete 1-Angle 795.534 0.021
G4EmStandard 791.940 0.017

500 tantalum
Analog 323.144 0.023

Discrete 1-Angle 316.823 0.003
G4EmStandard 321.674 0.018

1000 tantalum
Analog 681.921 0.052

Discrete 1-Angle 675.622 0.043
G4EmStandard 678.301 0.047
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Table 9.12: Total energy deposition for 60 degrees off-normal incidence electrons on
semi-infinite slabs of aluminum, molybdenum, and tantalum.

Energy
(keV)

Material
Type

Model
Type

Total Energy
(keV)

Relative
Error

500 aluminum
Analog 380.501 -0.027

Discrete 1-Angle 379.573 -0.029
G4EmStandard 375.752 -0.038

500 molybdenum
Analog 282.940 0.040

Discrete 1-Angle 279.703 0.028
G4EmStandard 277.925 0.022

1000 molybdenum
Analog 597.557 0.073

Discrete 1-Angle 593.249 0.065
G4EmStandard 591.644 0.062

500 tantalum
Analog 230.202 0.014

Discrete 1-Angle 226.327 -0.003
G4EmStandard 232.331 0.023

1000 tantalum
Analog 493.342 0.045

Discrete 1-Angle 489.207 0.036
G4EmStandard 495.368 0.050
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Table 9.13: Timing results for energy deposition calculations for 500-keV and 1000-
keV electrons normally incident on carbon, aluminum, molybdenum, and tantalum
semi-infinite slabs.

Energy
(keV)

Material
Type

Model
Type

CPU time
(mins.)

Efficiency
Gains

1000 carbon
Analog 75 1

Discrete 1-Angle 3 25
G4EmStandard 3 25

500 aluminum
Analog 41 1

Discrete 1-Angle 3 14
G4EmStandard 2 21

1000 aluminum
Analog 74 1

Discrete 1-Angle 4 19
G4EmStandard 3 25

500 molybdenum
Analog 100 1

Discrete 1-Angle 2 50
G4EmStandard 2 50

1000 molybdenum
Analog 151 1

Discrete 1-Angle 3 50
G4EmStandard 5 30

500 tantalum
Analog 90 1

Discrete 1-Angle 2 45
G4EmStandard 1 90

1000 tantalum
Analog 134 1

Discrete 1-Angle 3 45
G4EmStandard 3 45
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Table 9.14: Timing results for dose calculations for 60 degrees off-normal incidence
electrons on semi-infinite slabs of aluminum, molybdenum, and tantalum.

Energy
(keV)

Material
Type

Model
Type

CPU time
(mins.)

Efficiency
Gains

500 aluminum
Analog 60 1

Discrete 1-Angle 2 30
G4EmStandard 5 12

500 molybdenum
Analog 71 1

Discrete 1-Angle 1 71
G4EmStandard 2 35

1000 molybdenum
Analog 115 1

Discrete 1-Angle 2 58
G4EmStandard 4 29

500 tantalum
Analog 61 1

Discrete 1-Angle 1 61
G4EmStandard 2 30

1000 tantalum
Analog 103 1

Discrete 1-Angle 1 103
G4EmStandard 2 52
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Figure 9.30: Comparison with Lockwood data for 1000-keV electrons normally on
carbon slab.
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Figure 9.31: Comparison with Lockwood data for 500-keV and 1000-keV electrons
normally incident on aluminum slab.
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Figure 9.32: Comparison with Lockwood data for 500-keV and 1000-keV electrons
normally incident on molybdenum slab.
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Figure 9.33: Comparison with Lockwood data for 500-keV and 1000-keV electrons
normally incident on tantalum slab.
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Figure 9.34: Comparison with Lockwood data for 500-keV electrons with 60 degrees
off-normal incidence on aluminum slab.
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Figure 9.35: Comparison with Lockwood data for 500-keV and 1000-keV electrons
with 60 degrees off-normal incidence on molybdenum slab.

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

Fraction of a Mean Range

E
n
e
rg

y
 D

e
p
o
si

ti
o
n
 (

M
e
V

c
m

2
/g

)

 

 

Partial−wave + G4eIonization

Discrete 1−Angle + G4eIonization

G4EmStandard Option 3, step max=0.001 mm

Lockwood

Tantalum

500−keV

60 degrees

(a) 500-keV

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

4

Fraction of a Mean Range

E
n
e
rg

y
 D

e
p
o
si

ti
o
n
 (

M
e
V

c
m

2
/g

)

 

 

Partial−wave + G4eIonization

Discrete 1−Angle + G4eIonization

G4EmStandard Option 3, step max=0.001 mm

Lockwood

Tantalum

1000−keV

60 degrees

(b) 1000-keV

Figure 9.36: Comparison with Lockwood data for 500-keV and 1000-keV electrons
with 60 degrees off-normal incidence on tantalum slab.
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9.4.2 Charge deposition

Another important electron transport result is charge deposition. Charge deposition

is important to understanding charge buildup in nonconductive materials. Below,

charge-deposition profiles are compared with experimental results from Tabata et al.

[82]. Among the published experimental results of charge deposition distributions,

those of Tabata et al. [84] cover the widest regions of absorber atomic number (from

4 to 79) and incident-electron energy (from 4.09 to 23.5 MeV) [82].

Calculations of charge deposition distributions were performed for normally inci-

dent electron pencil beams with energies of 5000-keV, 10000-keV, and 20000-keV on

aluminum and gold targets of thickness 2.5r0, where r0 is the CSDA range. A total

of 2.4 × 105 source particles were simulated. The target regions were divided into

80 sub-regions for scoring (scoring regions are not physical boundaries) for 5000-keV

source particles and 40 sub-regions for 10000-keV and 20000-keV source particles.

Particles are tracked down to 250-keV.

Figs. 9.37-9.42, present comparisons of charge-deposition and dose distributions

generated using the partial-wave elastic DCS or a discrete DCS with the default

Geant4 inelastic physics for electrons and the default Geant4 physics for positrons

and photons. The charge-deposition distributions are compared with experimen-

tal results from Tabata et al. [82]. In general the correct behavior of the charge-

deposition distribution is captured for all energies and materials tested. In alu-

minum, agreement with the experimental benchmark is satisfactory with exception

of a slight shift in the distribution. In gold, agreement with the experimental bench-

mark is again satisfactory with exception of the 5000-keV results where the charge

deposition is overestimated. Notice that the analog solution and the discrete solution

are in excellent agreement. Again, the conclusion is that an analog model that gives

good agreement should be identified and it is assumed that the ROP models will
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provide similar levels of agreement. Further investigation is required to understand

the disagreements seen below (in particular, 5000-keV electrons on gold).

The dose results in Figs. 9.37-9.42, do show good agreement in gold but do not

in aluminum. This result was not anticipated considering the level of agreement in

the previous section and suggest that future validations should be avoided until this

disagreement can be identified. Possible sources of the disagreement includes the

increased presence of bremsstrahlung radiation at higher energies, an inconsistency

between the Geant4 physics implementation and discrete model, or a coding error.

Regardless, future work will include the use of an inelastic ROP model based on an

improved inelastic DCS, so that reliance on the Geant4 physics is reduced.

Table 9.15: Timing results for charge deposition calculations for 5000-keV, 10000-
keV, and 20000-keV electrons normally incident on aluminum and gold semi-infinite
slabs.

Energy
(keV)

Material
Type

Model
Type

CPU time
(mins.)

Efficiency
Gains

5000 aluminum
Analog 1.6 1

Discrete 4-Angles 0.009 178
Discrete 8-Angles 0.02 80

10000 aluminum
Analog 2.7 1

Discrete 4-Angles 0.01 270
Discrete 8-Angles 0.03 90

20000 aluminum
Analog 5.8 1

Discrete 4-Angles 0.02 290
Discrete 8-Angles 0.05 116

5000 gold
Analog 2.3 1

Discrete 4-Angles 0.03 77
Discrete 8-Angles 0.06 38

10000 gold
Analog 4.3 1

Discrete 4-Angles 0.06 72
Discrete 8-Angles 0.11 43

20000 gold
Analog 13.8 1

Discrete 4-Angles 0.2 69
Discrete 8-Angles 0.3 46
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Figure 9.37: Comparison with Tabata data for 5000-keV electrons normally incident
on an aluminum slab.
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Figure 9.38: Comparison with Tabata data for 10000-keV electrons normally incident
on an aluminum slab.
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Figure 9.39: Comparison with Tabata data for 20000-keV electrons normally incident
on an aluminum slab.
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Figure 9.40: Comparison with Tabata data for 5000-keV electrons normally incident
on a gold slab.
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Figure 9.41: Comparison with Tabata data for 10000-keV electrons normally incident
on a gold slab.
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Figure 9.42: Comparison with Tabata data for 20000-keV electrons normally incident
on a gold slab.
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9.5 CEASE Response Function Calculation

Given the experimental validation and the associated level of confidence in the accu-

racy of the analog DCS models and the ROP DCSs constructed from such models,

the CEASE response function calculation is revisited. Here, it is shown that the

response function can be generated with an efficient ROP DCS model while remain-

ing accurate. For this calculation, three models were tested each with the same

positron, photon, and electron inelastic physics. What varies for each of the models

is the elastic scattering physics. An analog model given by the partial-wave elastic

DCS is tested and a single-angle discrete model based on the partial-wave elastic DCS

is compared. In addition, the response function is also calculated using the default

Geant4 electromagnetic physics option 3. In Fig. 9.43, response functions generated

using each different model are compared. The analog and the discrete model are in

excellent agreement, while the Geant4 physics (that is, class II CH with out a user

applied step limitation) shows significant disagreement at higher energies. Assuming

the analog model is the most accurate, the Geant4 physics tends to under predict

the detector response at higher energies. This could be an effect of the collimator, as

it is known that the Geant4 physics, without step limitation, tends to overestimate

energy deposition in high-Z materials. Therefore, it is possible that electrons do not

fully penetrate the collimator because they lose too much energy in the tungsten

collimator (see Fig. 9.44 for an example of trajectories penetrating the collimator).

The efficiency gains associated with the discrete DCS are outstanding. To com-

plete an analog simulation of 1116 runs for 18 source angles and 62 source energies

with 1000 source particles each, it requires roughly 46 days, while for the discrete

model it only takes roughly five days. That is an order of magnitude efficiency gain.

The CH runs were roughly 10 times faster than the discrete model or 0.5 days.
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Figure 9.43: Comparison of response functions generated using the partial-wave
elastic DCS, the discrete model, the default Geant4 physics with EM option 3. All
inelastic physics, positron physics, and photon physics are the same and given by
the default Geant4 physics with EM option 3.

Figure 9.44: Electrons traversing the CEASE telescope. Collimator is in green and
electron tracks are in red.
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Conclusions and Future Work

In this chapter, the dissertation is concluded by restating the objectives of this work,

discussing what was required to satisfy the objectives, and discussing to what level

the objectives were achieved. In addition, future work is organized into several

subjects and a research pathway is considered for each subject.

10.1 Conclusions

It is of interest to develop an alternative to the CH method that is free of the limi-

tations inherent to CH. The subject of this dissertation, or the Moment-Preserving

method, is such an alternative and therefore, the accuracy and efficiency of this

method must be demonstrated and contrasted (to some degree) with the CH method.

To do so, the theoretical development of the method was discussed in great detail,

emphasizing how elements of accuracy and efficiency are inherent to the method,

while also providing an exhaustive numerical demonstration including validation of

the method.

Through theoretical development, it was shown that in the Moment-Preserving
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method a reduced order physics (ROP) transport equation is formed by replacing

the analog DCS with ROP DCSs that are less-peaked with longer mfps. By doing

so, solution to the ROP transport equation using a single-event Monte Carlo method

is computationally efficient with respect to analog Monte Carlo. To simply replace

the analog DCSs with another more ideal DCS requires a process for constructing

such a DCS that guarantees accurate results. This is achieved by applying a theory

ubiquitous in electrons transport methods, or Lewis theory, that relates moments of

the analog DCS to moments of the solution. By recognizing the importance of Lewis

theory, a process was developed for constructing ROP DCSs by applying a moment-

preservation constraint, where both elastic and inelastic ROP DCSs are constructed

such that they preserve some finite number of moments of the analog DCS exactly and

higher-order moments are approximated in terms of the lower-order moments. The

resulting ROP DCSs preserve key physical moments like the mean scattering cosine,

the transport cross-section, the stopping power, and the straggling coefficient, along

with any other user specified higher-order moments. Furthermore, by constructing

the ROP DCSs such that one point is required to coincide with the nearly-singular

point of the analog DCS, the method takes advantage of a convenient cancellation

of in-scatter and out-scatter due to these nearly-singular points about zero changes-

in-state resulting in a reduction of the total cross-section. Between the moment

preserving constraint and the cancellation of the nearly-singular points, moment-

preserving ROP DCSs that are less-peaked with a longer mfp (up to four orders

of magnitude longer than the analog mfp) can be generated and accurate solutions

to the corresponding ROP transport equation can be obtained efficiently. These

findings, though satisfactory, only partially satisfy the objective of the dissertation

which is to develop and demonstrate an alternative for electron transport.

To completely satisfy the objectives, a numerical demonstration of the Moment-

Preserving method was presented. The results associated with the numerical demon-

stration, served to extend and modernize the significant body of work completed by
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Franke and Prinja in 2005 [60]. By extending their study, several key features of this

method were addressed including: systematically controllable accuracy, efficiency,

mathematical robustness, versatility through the independence of the method from

the form of the analog DCS, flexibility of the method through usage of both the dis-

crete and hybrid DCS, and simplicity easing implementation in transport codes. The

accuracy and efficiency of the method was demonstrated through calculation of both

differential and integral quantities in both highly-peaked scattering regimes and less-

peaked scattering regimes for a wide variety of target materials and source energies.

Results including reflected and transmitted angular distributions and energy-loss

spectra in thin slabs, longitudinal and lateral distributions in infinite media, dose

deposition in 1-D and 2-D slabs, and charge deposition were presented. For the the-

oretical problems where the method is compared to an analog benchmark, analog

level accuracies were achieved with efficiency gains up to three orders of magni-

tude greater than analog level efficiencies. For the validation results, the accuracies

and efficiencies were similar to the default Geant4 electromagnetic physics with a

factor of two improvement in efficiency for off-normal incidence source problems. Al-

though the Moment-Preserving method was not a dramatic improvement over the

default Geant4 electromagnetic physics, this was a first attempt at validating the

method and much work remains in identifying an analog DCS model for inelastic

scattering. Improvements in accuracy beyond what was reported herein are antic-

ipated with such an inelastic DCS model. As it stands, the Moment-Preserving is

a suitable alternative; however, with these improvements one can expect that the

Moment-Preserving method will provide a clear advantage over the default Geant4

electromagnetic physics.

In its current state with regards to accuracy and efficiency, the Moment-Preserving

method is a strong alternative to CH methods. Under conditions where CH methods

and the Moment-Preserving method provide identical levels of accuracy and effi-

ciency, the Moment-Preserving method has the added advantage of versatility and
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simplicity. That is, no changes to the source code or the algorithm are required to

make significant changes to the underlying physics. The moment-preserving algo-

rithms are completely independent of the form of the analog DCS that ultimately

drives the accuracy of this method. Therefore, if an improved elastic or inelastic

DCS is developed, one must simply generate an ROP DCS library corresponding to

the improved models. In addition, initial implementation of the Moment-Preserving

method is straightforward; especially, in transport codes with pre-existing single-

scatter algorithms. As a result of the mathematical robustness of the method, no

additional algorithms are required beyond what is typically used for a single-scatter

algorithm that uses tabulated DCS data. The algorithm simply requires methods

for table look-ups to obtain the total-cross section, methods for sampling DCS data

without interpolation, and methods for processing the ROP DCS. In Geant4, this

required utilization of the existing data classes and base classes for physics models

and processes. Any maintenance associated with Moment-Preserving method would

be a result of changes to the base classes from which the Moment-Preserving method

physics inherit.

Given the accuracy, efficiency, mathematical robustness, versatility, flexibility,

and simplicity of the Moment-Preserving method, this method provides a clear al-

ternative to the prevailing electron transport method - Condensed History. This

work establishes a modern basis from which further testing of this method will be

completed. This is the subject of the final section.

10.2 Future Work

Although a significant demonstration of this method was completed, further testing

and demonstration remains. Furthermore, there are other areas of work related to

this method that have not yet been investigated. This includes an adaptive cross-
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section selection algorithm, extension of the method to protons and heavy ions, im-

plementation with variance reduction techniques, and countless applications. Lastly,

extension of the Moment-Preserving method for use deterministic transport codes is

an area of research where only Fokker-Planck and improved Fokker-Planck schemes

like Boltzmann Fokker-Planck and generalized Fokker-Planck methods have been

tested. Detail on each of these topics is provide below.

10.2.1 Identification of an analog model

Prior to any further work on the Moment-Preserving method, it is of interest to

identify and benchmark an analog model. As demonstrated in this work, use of

the partial-wave DCS with both renormalized Möller and the Geant4 default inelas-

tic model requires improvement. Presumably, the disagreement in the validation

results is attributed to the inelastic model because the partial-wave elastic DCSs

are the most accurate description of elastic scattering available. Therefore, what

remains is identification of an inelastic DCS model that improves agreement with

experiment. At this point, a few inelastic models have been identified including the

evaluated electron data library (EEDL) or the Livermore data [20], and the PENE-

LOPE inelastic physics that simulates inelastic collisions on the basis of a generalized

oscillator strength model [27, 94], and a modified Möller DCS [71]. What remains is

implementation and testing of the aforementioned models along with a study of the

application the moment-preserving algorithms to these inelastic models.

10.2.2 Validation

Given an analog model that provides reasonable agreement with experimental bench-

marks, it is of interest to complete a more thorough validation of the Moment-

Preserving method including further studies of energy deposition and charge depo-
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sition, along with reflection, transmission, and absorption studies, and other studies

like the Fano cavity test and an external beam radiotherapy test. The following sec-

tions provide specific details on the potential validation studies along with references

to experimental benchmarks.

Energy deposition

In addition to the energy deposition validation test [81] completed herein, further

energy deposition experimental benchmarks remain. For example, several multiple-

material configurations from Lockwood et al. [81] remain unstudied which are pre-

sented in Figs. 10.1 and 10.2. In addition, Tabata et al. provided an energy-

deposition comparison [85] with several experiments for source energies ranging be-

tween 2-MeV up to 20-MeV as seen in Figs. 10.3 and 10.4. It would be insightful to

extend the scope of the validation test beyond single-material configurations and to

energies as high as 20-MeV for low-Z and high-Z materials.

(a) 500-keV (b) 1000-keV

Figure 10.1: Comparison of experimental and theoretical energy deposition profiles in
a tantalum/aluminum configuration for 500 and 1000-keV electrons normally incident
(fig. ref. [81]).
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Figure 10.2: Comparison of experimental and theoretical energy deposition profiles in
an aluminum/gold/aluminum configuration for 1000-keV electrons normally incident
(fig. ref. [81]).
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(a) Aluminum (b) Gold

Figure 10.3: (a) Energy-deposition distributions of 2-MeV electrons in aluminum.
Line, ITS/TIGER; circles experiment by Trump et al. [95]; squares experiment by
Nakai et al. [96] (fig. ref. [85]). (b) Energy-deposition distributions of 2-MeV
electrons in gold. Line, ITS/TIGER; circles experiment by Aiginger and Gonauser
[97] (fig. ref. [85]).

(a) 10-MeV (b) 20-MeV

Figure 10.4: Energy deposition in (a) lead for 10-MeV electrons and in (b) carbon,
aluminum, and gold for 20-MeV electrons. Line, ITS/TIGER; symbols, experiment
by Harder [98] (fig. ref. [85]).
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Charge deposition

The charge deposition results presented in this work only included aluminum and

gold target materials. For the sake of completeness, the Moment-Preserving method

should be validated for lower-Z (like beryllium) and mid-Z (like copper and silver,

see Fig. 10.5 ) targets. Tabata et al. [82] included experimental charge deposition

results for a wide range of targets.

(a) Copper (b) Silver

Figure 10.5: Charge-depostion distributions by 5, 10, and 20 MeV electrons incident
on copper and silver. Historgrams, ITS Monte Carlo results; curves, experimental
results obtained by the interpolation of data.
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Reflection, transmission, and absorption

At this point, no reflection, transmission, or absorption fraction validation stud-

ies have been completed. The Moment-Preserving method has been shown to give

good agreement with an analog benchmark when calculating reflection, transmis-

sion, or absorption fractions, but there were no efforts to compare with experimental

benchmarks. That said, assuming an analog DCS model is identified that provides

acceptable agreement with experiment, there is no reason to believe that the Moment-

Preserving method will not provide similar agreement. There is a variety of reflec-

tion, transmission, or absorption fraction experiments due to Bishop, Darlington,

Lockwood, Nubert, and Ebert [99, 87, 100, 101, 102]. The following figures provide

examples of quantities of interest from a few of these studies.

Figure 10.6: Comparison of experimental and theoretical energy backscatter for elec-
trons incident at 0◦ and 60◦ as a function of target atomic number (fig. ref. [100].)
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Figure 10.7: Back-scattering coefficient as a function of the mass thickness of alu-
minum films and gold films for different energies normally incident electrons (fig. ref.
[101]).

Figure 10.8: Absorption coefficient as a function of the mass thickness of aluminum
films and gold films for different energies normally incident electrons (fig. ref. [101]).
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Fano cavity test

One of the most stringent tests for the electron transport and boundary crossing

algorithms in any condensed history Monte Carlo code is the simulation of an air

cavity as a representation of an ionization chamber [91]. The Fano cavity test (see

Fig. 10.9) is an ionization chamber test under idealized conditions such that use

can be made of the Fano Theorem [30]. That is, under charged particle equilibrium

in an infinite medium, the charged particle fluence will not be altered by density

variations from point to point. Under these conditions, a condensed history method

should agree with theoretical prediction regardless of the step-size. Ultimately, the

Fano cavity test is used to test the different mechanisms involved in CH electron

transport including step limitation, energy-loss fluctuation, and multiple scattering.

At this point, it is unclear whether or not the Fano cavity test is applicable to

the Moment-Preserving method. However, if the test is applicable it would present

an interesting comparison because the Moment-Preserving method is not step-size

dependent and does not require boundary crossing algorithms.

Figure 10.9: Fano cavity test schematic (fig. ref. [90]).
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External beam radiotherapy

The last suggestion for a validation test is a comparison to the experimental results

due to Ross et al. [103] similar to work by Faddegon et al. [89]. With increased avail-

ability of Monte Carlo methods for planning electron beams, there is an increased

interest in modulated electron radiotherapy. It is imperative to determine the accu-

racy of various Monte Carlo methods for fluence and dose calculation in emerging

electron therapy treatments [89]. The accuracy of the calculated fluence distribution

may not be as accurate as calculated dose distributions. Electron therapy is generally

done using scattered electron beams and the accuracy of calculated dose distributions

is typically not as sensitive to scattered beam effects. However, calculated fluence

distributions may not be as accurate as calculated dose distributions because fluence

is sensitive to scattered beam effects. Therefore, it is important to make efforts to

validate electron transport codes against accurate measurements of fluence. Ross et

al. [103] completed such an experiment that allows a more accurate assessment of

fluence calculations. The experimental setup is presented in Fig. 10.10a, and results

from an accuracy test of EGSnrc, Geant4, and PENELOPE [89] are presented in

Fig. 10.10b.
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(a) Experimental Setup (b) Characteristic Angle Comparison

Figure 10.10: (a) Experimental geometry, as simulated. Drawing is not to scale.
Positions of the different components are listed below. (b) Difference of the calculated
and measured square characteristic angle, 13 MeV beam. EGSnrc top panel, Geant4
center panel and PENELOPE bottom panel. The triangular area bounded by a solid
straight line is 1% experimental uncertainty (fig. ref. [89]).
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10.2.3 Adaptive cross-section selection

In section 9.3.2, 2-D dose deposition results were presented where the impact of radial

spreading is seen in the form of discrete artifacts. The discrete artifacts are mitigated

in one of two ways. That is, by adding more discrete angles to the discrete elastic

DCS or through use of the hybrid DCS with a sufficient cut, the discrete artifacts

are no longer present. As a result, the efficiency of the calculation is reduced because

more accurate representation of elastic scattering is required.

It is likely that the more accurate models are not necessary throughout the entire

calculation. For example, one could assign an ROP DCS to regions of the problem

where higher accuracy is required (for example, nearby the source) and relax the

ROP DCS in regions where lower levels of accuracy are sufficient. The selection of

the ROP DCS for each region will depend on how much information, in the form of

analog DCS moments, should be propagated from the source to the various regions

of the problem. Although interesting, this process would be tedious and is problem

dependent.

Alternatively, one could use an adaptive cross-section selection algorithm for de-

termining the ideal DCS given the initial and current state of the particle. The

metric for determining what cross-section is required is the key subject of the devel-

opment of an adaptive cross-section selection algorithm. For example, the number of

collisions suffered by the particle or the fraction of the transport mfp travelled could

be used. In addition, spatial information like longitudinal or lateral displacement

with respect to the source could be a viable metric. If such an algorithm is devel-

oped, users would not be required to select the DCS and can rely on the adaptive

cross-section selection algorithm for optimization of accuracy and efficiency.
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10.2.4 Protons and heavy ions

Currently, the Moment-Preserving method has only been applied to electrons. Ex-

tension of the method to positrons is trivial and simply requires the necessary analog

DCSs. However, extension to protons and heavy ions has not yet been studied. This

will require identification of an elastic and inelastic DCS like those given by Janni

or Evans [104, 19] or for a generic ion there is a DCS suggested by Boschini et al.

[105].

Given a DCS model, the moment-preserving algorithms should be tested to de-

termine if they are effective for protons and heavy ions where the peaked-ness of the

scattering is even more extreme. It is possible that the numerics could break down;

although, some testing has been completed where the screening parameter for the

screened Rutherford elastic DCS was driven to machine precision and the moment-

preserving algorithms still produced ROP DCS that passed all tests for determining

if a viable ROP DCS was generated. One last complexity, that is converting from

center-of-mass to the lab frame when using ROP DCSs for protons and heavy ions,

must be addressed.

Lastly, the algorithms for generating ROP DCSs and the Geant4 physics models

will remain unchanged for protons and heavy ions, which makes extension of the

Moment-Preserving method to additional particles straightforward.

10.2.5 Variance reduction

Variance reduction techniques are used to reduce the number of source particles; in

turn, the efficiency of a Monte Carlo calculation is improved. There are a variety

of variance reduction techniques and all of these techniques require that the physics

models do not change throughout the calculation. For this reason, variance reduc-
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tion techniques can be used in conjunction with the Moment-Preserving method

because one can select a single elastic and inelastic ROP model for use throughout

the calculation.

No testing has been completed on this subject with respect to the Moment-

Preserving method. Geant4 supports some variance reduction tools like importance

sampling (or geometrical splitting and Russian roulette) and the weight window tech-

nique, so testing of variance reduction techniques in conjunction with the Moment-

Preserving method will not require further code development.

10.2.6 Deterministic methods

Various deterministic methods based on Fokker-Planck, Boltzmann Fokker-Planck,

and generalized Fokker-Planck have been implemented. However, each of these meth-

ods rely on Fokker-Planck when regularizing the singular component of the elastic

DCS. Therefore, only the transport cross section is preserved. Deterministic meth-

ods based on the Moment-Preserving method have yet been tested. It is unclear

what kernel decomposition will be required, but it is likely that a discrete or hy-

brid model will not be appropriate in deterministic settings because of the discrete

representation. However, it is possible to construct ROP models where the singular

component is regularized with a “smoothing” function. That is, one can use an ap-

proach similar to the hybrid DCS, where the tail is represented by the analog DCS

and a moment-preserving smoothing function is applied over the peaked region of

the DCS.
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