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Comparing Water to DNA for Simulation
of Auger Electron Direct Damage to
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by

Elliott Jacob Leonard

B.S., Nuclear Engineering, University of New Mexico

M.S., Nuclear Engineering, University of New Mexico, 2013

Abstract

Typically water is used as an analog material for Deoxyribonucleic Acid (DNA) in

Monte Carlo simulations of biological radiation interactions. Prior to this work, it

was unclear whether water is an appropriate stand-in for DNA when simulating di-

rect radiation damage on the nano scale. The increased interest in targeted tumor

therapy using Auger electrons has requires an understand of the radiobological ef-

fectiveness of low energy electrons. A chromatin fiber was constructed within the

Geant4 simulation toolkit down to the molecular level. The Binary Encounter Bethe

(BEB) model for electron impact ionization was added to the Geant4 Toolkit so

the cross sections of molecules could be more accurately modeled. Validation was

performed by comparing the BEB model to the ab initio Born model already im-

plemented in Geant4. The BEB produces less ionization events but is effective at

comparing DNA to water in this context by providing order-of-magnitude similar-

ities in the results. Using the BEB model the number of double strand breaks for

DNA was shown to be much greater than for water, indicating that water is not an

effective analog for DNA.
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Chapter 1

Introduction

The field of small-scale dosimetry has grown with the realization of the potential of

biologically significant targets and short range particles for therapeutic applications

[23]. The short range of the particles reduces collateral damage to healthy tissue

by targeting malignant tissues. The reduction in damage to healthy tissues reduces

the patient’s risk of treatment. Auger electrons are an ideal candidate for targeted

tumor therapy, because most Auger electrons have low energies of ∼20-500 eV with

subcellular ranges (∼1-10nm) in biological material [20]. Experiments have shown

that the radiobiological effectiveness of Auger electrons is much higher than what

is approximated through the widely used Medical Internal Radiation Dose (MIRD)

method [13]. On the nanometer scale; the heterogeneities of biological material, the

stochastic nature of radiation energy deposition, and the geometry of radiosensi-

tive targets, requires consideration in calculations [23]. As such, the The American

Association of Physicists in Medicine (AAPM) formed a task group to investigate

the dosimetry of Auger electrons because conventional dosimetry ignores the risk of

low-energy electrons [13].

The usage of Auger electrons for treatment requires an intimate understanding of
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Chapter 1. Introduction

the damage they cause. Deoxyribonucleic Acid (DNA) is regarded as the molecular

target of radiosensitivity [13]. Far from the DNA, Auger electrons typically result in

inconsequential dose, as the safety record of nuclear medicine imaging has shown [23].

The range of Auger electrons requires that they are in close proximity to DNA to be

effective. Radiation’s stochastic nature of interactions and the high non-uniformity

of the radiotoxicity of low energy electrons increases the need for the track structure

of the electrons. This is done by convention in health and medical physics, were

tissue is treated as water. Typically, modeling the DNA geometry is not necessary

for bulk calculations, however, Auger emitting isotopes can be incorporated into

the DNA and require detailed geometric models [23]. One such incorporated auger

emitter is 125I-labled thymidine precursor idodeoxyuridine (125IUdR) which acts like

a direct replacement for the thymine base. 125IUdR can be incorporated in the

nuclear DNA strand at a thymine location, and has been shown to be even more

effective than interlacing an Auger emitter to the grooves of the DNA strand [13].

99mTc is another candidate for Auger therapy, it is widely used in nuclear medicine

applications already, and can be used for in vivo imaging as well [1].

According to Roeske et al. [23]: there is insufficient data to accurately model

electron interactions within the DNA, and therefore numerous simplifications are re-

quired. One typical simplification is to use water as an analog for DNA material in

the geometry of the simulation [2]. It is unclear whether the use of water as the ma-

terial in the complicated DNA geometry is suitable for molding the effects of Auger

Therapy. Using the constituent molecules of DNA would refine the model ensuring

that reaction rates of Auger Electrons are accurately represented in simulation mod-

els. This work determines if the previous use of water as an analog for DNA material

is accurate enough to characterize damage done to DNA through Auger Electron

interactions.

The current work is focused on comparing the damage done to DNA, when DNA
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Chapter 1. Introduction

is modeled as water or the constituent molecules for low energy electrons on the

nanoscale. This comparison serves as a test for the water material analog. Geant4

was used for the simulation, but the available physics models would not allow DNA

molecules. A model had to be implemented that could be quickly and easily adapted

to different materials. The Binary-Encounter Bethe model was chosen for its sim-

plicity and reasonable accuracy. GAMESS was used to calculate molecular orbital

information necessary of the physics model. Chapter 2 discusses the structure of

DNA, how it is damaged, the implications of damage, and the repair mechanisms.

The chapter is intended to give a brief overview of the applicable biology. Chapter 3

derives the implemented physics model and describes the available model already

included in Geant4. It also explains the geometrical implementation, cross section

sampling, and the strand break algorithm. The results and a discussion is presented

in Chapter 4. The final two chapters 5 and 6 make the concluding remarks and

describe the work that can be done in the future to increase the accuracy of the

work.
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Chapter 2

Background

2.1 Auger Electrons and Radiation Termonology

Auger electron emission is a form of atomic deexcitation, which is usually the result

of electron capture or internal conversion radioactive decay processes [23]. Electron

capture is a result of a proton-rich nucleus capturing an orbital electron. Typically

a K-shell electron is captured leaving an inner shell vacancy. The atom is left in an

excited state, and deexcites by the outer shell electrons cascading into the vacancies

releasing either x-rays or Auger electrons with each transition. Auger emission is

more common than x-ray emission, especially with low Z materials [23]. The kinetic

energy of the emitted Auger electron is the difference between the orbital energies

minus the binding energies. An Auger electron can also be created as a result of

internal conversion. An excited nucleus can return to ground state by transferring

the energy difference between the ground and excited state to an electron. The

electron is ejected and given the energy of the transition minus the binding of the

orbital in which the electron was occupying.

Molecular structures can be damaged through ionization, where radiation with
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Chapter 2. Background

sufficient energy interacts with atomic electrons, imparting enough energy to liberate

the atomic electron. DNA is critical molecular structure which is critical to biologic

function. Macroscopically, radiation’s ability to cause damage is given by radiobio-

logical effectiveness (RBE), which is measured as the damage done from a test dose

relative to a reference dose, usually 220 kVp x-ray or 60Co γ-ray [10]. For charged

particles, the amount of energy transferred to the medium along a given length,

referred to as linear energy transfer (LET), is an important factor determining the

RBE. Higher LET radiations impart more energy to radiosensitive areas, such as

DNA. Due to the stochastic nature of radiation interactions, imparting more energy

in a smaller length increases the chance of damage from depositing energy in DNA

[27]. The International Commission of Radiological Protection (ICRP) also defines

a radiation weight or quality factor that indicates the radiation’s ability to cause

damage [27]. Typically, the higher the LET, the higher the quality factor: heavily

charged particles (non-relativistic ions) have a quality factor of 20. Low LET radi-

ations: electrons and photons, have a factor of 1[27]. Mass, at higher energies, is a

very important quantity in creating radiation damage.

2.2 DNA Structure

Deoxyribonucleic Acid (DNA) is a macro-molecule that contains the encoding for

the development and function of all living organisms on Earth. It is composed of

a long string of mono-metric units known as nucleotides. The lower right side of

Figure 2.1 shows the four possible nucleotides. Each nucleotide, is an assembly of 3

molecular fragments: 2-deoxyribose sugar, a phosphate, and one of four nucleobases.

[24]. The nucleobases: thymine, cytosine, adenine and guanine are divided into two

groups: pyrimidines and purines. Pyrimidines are 6 member rings (cytosine, and

thymine) while purines are fused 5 and 6 member rings (adenine and guanine). The

5



Chapter 2. Background

nucleobases are bound by the first carbon in the deoxyribose sugar to a nitrogen in

the base. The sugar and the phosphate make up the structural scaffolding of DNA.

The phosphate of one nucleotide is bonded to the sugar molecule of another. Each

phosphate is bound to the deoxyribose in the third (3 prime) and fifth (5 prime)

carbon. The linked nucleotides form a chain of DNA, with one ending in the fifth

carbon (5’ end) and the other in the third carbon (3’ end). DNA exists as two

chains hydrogen-bonded together running antiparallel. At each end of the DNA

strand one chain has a 5’ end and the other chain has a 3’ end. The nucleobases

facilitate the hydrogen bonding between the nucleotides of the 2 molecules. To form

a stable molecule, there must be at least two “cyclic” hydrogen bonds (N-H· · ·O or

N-H· · ·N) [24]. Due to this restriction and the structure of the bases, guanine can

only hydrogen bond to cytosine and adenine can only bond to thymine. This process

is referred to as base pairing and provides redundancy in the DNA.

DNA has several layers of structure; the first being the double helix twist of

the strand. There are several orientations of the double helix structure that are

dependent on the surrounding conditions, however only the B-DNA configuration is

being considered in this work. B-DNA is the most common form found in mammalian

cellular environments, and is therefore, the most relevant for this work [16]. A double

helix geometry leads to a major and a minor grove, which have been shown to have

widths of almost 7:4 [32]. With about 10 base pairs per 360◦ turn and 3.32 Å

rise per base pair, the grove widths for the major and minor groove are 22 Å and

12 Å respectively [4]. Figure 2.1 shows DNA including the double helix and the

composition of the nucleotides.

Mammalian DNA contains about 2 × 109 base pairs; with each base pair rising

3.32 Å , the total length of the DNA strand is 66.4 cm. Eukaryote cells (general

classification of cells that includes mammals) are on the scale of µm, which requires

a vast amount of DNA folding to allow it to fit within a cell. 147 (± 2) base pairs
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Chapter 2. Background

Figure 2.1: A ball and stick representation of DNA. Included are the details of of

the nucleotides and and their hydrogen bonding (represented by a dashed line). The

major and minor grooves are labeled on the left. The bases are grouped into their

respective groups, pyrimidines and purines[30].

are wrapped 1.6 to 1.8 times in a flat, left-handed superhelix around an octomer of

4 core histones (H2A, H2B, H3, H4) [17] . H1 and H5 histones bind the two groups

of the core histones and another 20 base pairs to compete a nuclesome. Nuclesomes

are connected together through “linker DNA” that consists of 0-80 base pairs [22].

The nuclesomes are then organized into a chromatin fiber, 33nm in diameter with 11

nuclesomes per turn [22]. The fiber is left-handed single start helix. There are other

forms of chromatin fiber, but a nuclesome-repeat-length of 197 base pairs is the most

abundant, and the left-hand single start is the only way to fulfill such constraints[22]
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Chapter 2. Background

Figure 2.2: 11-nm DNA is packed into a 30-nm chromatin fiber slice called a solenoid

consisting of several nucleosomes coiled together. During condensation to the mitotic

chromosome, the 30-nm fiber forms a series of looped domains that further condense

into a 300-nm fiber. The 300-nm fibers then coil into the chromatid arms seen in

metaphase chromosomes. [15]

[31]. Figure 2.2 shows the assembly of the nuclesomes into the chromatin fiber.

For cell division (metaphase), the chromatin fiber will be further organized into a

chromosome by more binding proteins. The structure of the chromosome is important

because it can affect the viability of the cell [7]. A chromosome contains origins for

replication, a telomere, and a centromere [29]. The chromosome is an assembly of

chromatids (replicated chromatin assemblies) resembles and ’X’ with the centromere

serving as the crossing point. DNA replication begins at the aptly named origins of

replication where replication proteins are assembled to initiate the process. These

sites occur about 30-40 thousand base-pairs apart [29]. A telomere is DNA bound

by telomeric proteins located at the ends of the linear chromosome. The telomeres

distinguish the natural ends of the chromosome from ends of broken DNA [29].

During mitosis, the two chromatids are pulled into the daughter cells; this requires
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Chapter 2. Background

machinery (mitotic spindles) to pull on the daughter chromosomes. The site where

the spindles attach is a protein complex called a kinetochore. A centromere is the base

pair sequence that constructs the kinetochore. The centromere is a very important

structure. If it is missing, the chromosomes separate randomly leading to loss of or

the duplication of chromosomes as they are not pulled by the spindles to their correct

locations [29]. Multiple copies of the centromere creates multiple kinetochres where

a single chromosome can be pulled to both daughter cells causing breakage [29].

2.3 DNA Damage and Repair

DNA damage is of interest because it can lead to cell death or mutations through

incorrect repair. Single cell death will be of little consequence to multicellular organ-

isms, but mutations can lead to carcinogenesis [10]. The carcinogenesis can result

in the organism’s death. Understanding DNA damage can lead to understanding of

the process of carcinogenesis and radiation-induced cell death.

Ionizing radiation can cause damage in two ways: direct and indirect action.

Radiation acting upon the constituent atoms of DNA is referred to as direct action.

Damage is caused by deposition of radiative energy into the bonds that bind DNA

together. Indirect action is caused by the ionizing radiation interacting with the

water surrounding the DNA strand. The ionization of the water produces a free

radical (OH−) that acts chemically upon the DNA strand. Indirect action typically

has a time delay (10−12sec. to 10−9sec.) as a result of the radical needing to diffuse

to the DNA site [27].

The most important interactions, whether they be chemical or radiological, are to

the sugar-phosphate backbone that holds the strand together. When the backbone

is damaged the strand is broken. Damage to one of the chains is referred to as a

Single Strand Break (SSB), damage to both chains is a Double Strand Break (DSB).
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While it is likely after irradiation that the DNA will be damaged on both chains, for

a double strand break to occur, two single strand breaks must occur close enough to

cleave the DNA into two sections. For 60Co γ rays, there is a ratio of SSB to DSB

of about 20:1, and a ratio of direct and indirect action of about 36:65 [6].

DNA damage is not perminate, the cell has pathways in which to repair the

damage. Inaccuracies in the repair process are typically what lead to biological

effects. Single strand breaks are handled by excision repair, where a damage base,

or set of bases are removed and new bases are synthesized [29]. Excision repair

requires the strand containing the damaged bases to be broken (as in a SSB event),

and the new bases synthesized in the same manner as DNA replication using DNA

polymerase. The backbone of the new bases is then joined to the backbone of the

existing DNA using DNA ligase [7]. In a SSB, the last step of excision repair is to

rejoin the phosphodiester bond. This process is fairly accurate as the undamaged

strand can be used as a template for the new bases, and the backbone being of

uniform composition is simple to repair [29].

Double strand breaks are much more serious and can lead to structural changes

of the chromosome or mutations [7]. The repair mechanisms for double strand breaks

depend where the cell is in the cycle, as the presence of a “sister chromosome” (copy

of the undamaged DNA) is required for the more accurate pathway [29]. When a

“sister chromosome” is present, homologous recombination can occur. This process

begins by an enzyme degrading the DNA strand such that single strand (ssDNA) tails

exist. The tails then invade the undamaged homologous “sister chromosome” and are

synthesized from the 3’ ends. The newly synthesized bases are joined to the 5’ end,

and the DNA has been repaired [29]. If a sister chromosome is not available, early in

the cell cycle, the DNA will be repaired through nonhomologous end joining (NHEJ),

where the ends of the DNA strand are simply joined together. The misalignment

between the two strands protruding from the ends is what facilitates this process.

10
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There only needs to be as few as one base pair of complementary bases [29]. The

tails are removed, gaps are filled, and the DNA is said to be repaired. However, as

mentioned before, NHEJ is very error prone and leads to the survival of only one

yeast cell per 1000 when DSB are introduced [29].

Chromosome aberrations are caused by irradiation early in interphase (time when

the cell performs its functions), before the chromosome has been duplicated. Later in

the cell cycle, after interphase, there exist two chromatin fibers, which if damaged, are

referred to as chromatid aberrations [10]. The types of aberrations are quite extensive

and beyond the scope of this document, however, a brief overview of the two major

types, lethal and viable, and examples provide insight into the biologic implications of

strand breaks. Lethal refers to a mitotic death, where the cell will die during mitosis.

A cell may complete several rounds of mitosis before chromosomal damage causes

the cell to die [10]. Lethal aberrations are characterized by gross deformations of the

chromosome such as, deletions of telomeres or addition or deletion of centromeres.

Without the proper structure, four telomeres and one centromere the chromosome

will not be able to undergo mitosis without severe damage. Figure 2.3 gives three

common examples of lethal chromosomal aberrations. Non-lethal aberrations result

in rearranged genetics (mutations), but the structure remains intact, allowing the

mutations to be carried into further generations. Figure 2.4 shows three examples of

non-lethal aberrations. Mutations from non-lethal damage can lead to malignancies

and endanger the organism [7]. A cell has mechanisms for dying used to remove old

and damaged cells. If the cell detects chromosomal damage (assuming the damage

is not to the diagnostic genes) a cell can undergo apoptosis, programmed cell death,

to protect the organism [10].

The structure and composition of DNA is essential to developing simulations.

The biologic implications of damage provides an understanding of the outcomes of
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(a)

(b)

(c)

Figure 2.3: A diagram representation of three lethal Chromosomal aberrations. 2.3a

shows a normal chromosome with a break in both chromatids. The “sticky” ends

rejoin to form the bridge. 2.3b demonstrates the ring type chromatid aberration

where a DDS break occurs on both sides of the centromere and rejoins to form a ring

and the fragments form an acentric fragment. 2.3c illustrates the process of forming

a dicentric chromosome. Two nearby pre-replication chromosomes (represented by

black and white) each have a DSB, followed by the two chromosomes join together

leaving a acentric fragment. Note the chromosomes are extremely distorted from the

a normal chromosome in the first image of 2.3a.

12
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(a)

(b)

(c)

Figure 2.4: A diagram representing chromosomal damage that is potentially viable.

2.4a shows a translocation event where a section of DNA (one or several genes)

is switched with a section of DNA from another chromosome. 2.4b demonstrates

how sections of DNA are deleted from the genome. Two DDS occur creating a

fragment which never recombines with the chromosome. 2.4c illustrates a section

of DNA becoming inverted. The shading in the figure represents the directionality

of the original DNA fragment. Note how the chromosomes end up without sever

distortions and will likely function properly during mitosis.

DNA irradiation. DNA is composed of four nucleobases which contain the genetic

information of an organism. The nucleobases are arranged in a long strand held

13
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together by a sugar-phosphate backbone. That strand in folded into a chromatin

fiber, which is in turn folded into chromosomes. DNA can be damaged through

radiological direct action or radiation induced chemical indirect action. The radiation

can be any ionizing radiation, but the focus of this work is on Auger electrons. The

low energy Auger electrons are a result of atomic deexcitation. A single ionization in

the DNA backbone can result in a strand break. When another strand break occurs

on the opposite side near the former, there is a double strand break (DSB). A DSB

can be difficult to repair resulting in chromosomal aberrations, that can be either

lethal or non-lethal mutations.

14



Chapter 3

Simulation

3.1 Geant4

The simulations follow the Monte Carlo approach to radiation interactions and trans-

port. Monte Carlo utilizes the the stochastic nature of radiation interactions by

simulating the track structure of particles. Essentially, Monte Carlo methods sam-

ple Probability Distribution Functions (PDF) to estimate the probability of an event

taking place [9]. Since cross sections are PDFs, the use of Monte Carlo is particularly

suited for such problems. This methodology does raise issues, because to properly

sample a PDF with low probability regions requires numerous samples.

On such simulation package is the Geant4 toolkit. Geant4 was developed at

The European Organization of Nuclear Research (CERN) for high energy physics

simulations related to the Large Hadron Collider[12]. Unlike most simulation codes,

Geant4 is open source, which means the software is available for user modification.

This allows for complete transparency, a wide user base, and the ability to change or

expand the capabilities. This has lead to development and adoption of the toolkit for

many applications including astrophysics, medical physics, and safeguards. Geant4,
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Chapter 3. Simulation

written in C++, was an improvement of its predecessor Geant3, written in FORTRAN,

as a result of an inquiry on how to adopt modern computing techniques to to the

existing program [3]. The first release of Geant4 was in December of 1998, followed by

the establishment of the collaboration the next month [3]. The Geant4 collaboration

continues development, support and maintenance of the ever growing code package.

It was developed with 7 higher level domains:

• geometry and materials,

• particle interaction with matter (physics),

• tracking management,

• digitization and hit management (detector simulation),

• event and track management,

• visualization and visualization framework, and

• user interface [3].

These can be utilized through included, 3rd party, or user-developed interfaces.

Geant4 is not a fully functional simulation package but simply a toolkit, meaning

that the end user must write an application tying the physics, tallies and geometries

to the foundation dstributed by CERN [3]. This processes is aided by Geant4’s uti-

lization of the object-orientated philosophy of C++. The user is given immense power

to control precisely what physics models are used, which particles are simulated and

how the information is extracted from the simulation. Furthermore, the user may

choose to not use the included physics but write his/her own, if the hundreds of

models are suitable. The user can still utilize the other physics, the geometry han-

dlers, random number generators, and equally important Monte Carlo functionality
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without having to write a standalone code. This can also increase the scope of some

problems. Geant4 includes physics for many particles over a very large energy range,

thereby allowing more complicated problems to be simulated in depth. All of these

properties make Geant4 the ideal candidate for testing Monte Carlo-based physics

models. The modularity of the toolkit gives the user, after writing the application,

“plug-and-play” capabilities. The physics models inherent from virtual classes that

outline the necessary content that will be called by other parts of the program. As

long as the physics model is written with the appropriate functionality, Geant4 will

adopt it as if it were a part of the release.

3.2 Physical Model

DNA direct strand breaks are caused by an electron dislocation [9] following an

inelastic collisions. There are two inelastic collisions with electrons in the low energy

range: excitation, and ionization. In both process an incident electron interacts with

bound orbital electrons. The incident electron is scattered and energy is transferred

to the target electron. The difference lies in the final state of the target electron.

Excitation leaves the target election bound to its atom but in a higher energy orbital.

The electron can fall back into its vacancy through atomic deexcitation. Electron

impact ionization liberates the atomic electron from any bound states. The target

electron becomes indistinguishable from the scattered electron but it is customary

to call the faster electron the primary scattered electron with the lower energy being

the secondary. Both electrons can cause subsequent ionizations if they have sufficient

energy to do so. Ionizations are the principal mode of direct damage; electrons are

dislocated causing the molecule to break apart.

Many models for cross sections of electron impact ionization have been proposed;

they range from analytic to empirical. The analytic cross sections are a result of
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quantum mechanical calculations utilizing the inner product between the initial and

final states of two electron wavefunctions [18]. Using first order-perturbation the-

ory, the interaction between the bound, incident, ejected and scattered electrons’

wavefunctions (ϕb, ϕi, ϕe, ϕs respectively) can be described as

Md =

〈
ϕbϕi

∣∣∣∣ 1

r1 2

∣∣∣∣ϕeϕs〉 (3.1)

where the transition operator is the Coulomb potential. The free electron wavefunc-

tion with momentum ~p is an expansion of eigenfunctions and takes the form

ϕ(~p, ~r) =
∑
lm

almYlm (θ, φ)Fl (~p, r) (3.2)

Where Ylm (θ, φ) is a spherical harmonic corresponding to the orbital and azimuthal

quantum numbers l and m respectively. Ylm (θ, φ) is simply the solution to the

angular Schrödinger equation. The radial solution Fl (~p, r), is more complicated as

it depends on the applied potential V (r). There are three standard approximations

when describing a free electron: Plane Born Wave, Coulomb, and Distorted Wave

[18]. The Plane Born Wave approximation sets the potential to zero and completely

ignores the target. The Coulomb approximation sets the potential to the nuclear

charge (Z) scaled by the separation between the target and the free electron (1/~r).

Typically nuclei do not sit without atomic electrons, as the Coulomb approximation

assumes. The Distorted wave accounts for charge shielding and the addition of

atomic electrons to the target[18]. With the interaction matrix, the cross section for

incident energy (T )and secondary energy of the ejected electron (W ) can be derived

by summing the interaction probability over L, the angular momentum eigenvalues

for the whole system to give

dσ (W,T )

dW
= 16

a20
T

∑
L

(2L+ 1) |Md|2 (3.3)

with the total cross section being integrated over the ejected electron energy. Giving

σ (T ) =

∫ 1
2
(T−I)

0

σ (T,W ) dTe (3.4)
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where I is the ionization energy [18].

Quantum cross sections pose problems for simulations. Monte Carlo, as applied

to radiation transport, requires a classical treatment of the particles. The transport

equation is linear, and the superposition principal is essential for Monte Carlo tallies.

Also the cross sections are typically not easy to calculate, especially for complicated

materials where the potential is difficult to calculate. These make the quantum cal-

culations for cross sections acceptable for limited applications. Geant4 already uses

The First Born Approximation (FBA) model with corrections for k-shell interactions

and low and high energy electrons [28]. These calculations can be very complicated

and consume a vast amount of time for even simple molecules such as water. The

Geant4 FBA cross sections are tabulated only for water, which is a major limitation

when simulating low energy electron interactions. There are many materials that

are of interest when studying electrons in any energy regime. There has been a lot

of work to generalize the theories for a broad class of atoms, molecules and ener-

gies [18]. One such effort was performed by Kim and Rudd where they develop a

Binary-Encounter-Dipole model for cross sections [14].

Binary-encounter models are an extension of the Mott cross section, which is a

generalized version of the Rutherford cross section [14]. Rutherford cross sections

describe the collision of a particle of charge Ze with a free electron at rest. Mott was

able to generalize the cross section to account for the collision of two electrons. The

Mott cross section can be modified to account for bound electrons by taking into

account the binding energy of the shell (B) and the number of electrons occupying

the shell (N). The modified Mott cross section is given by

dσ (W,T )

dW
=

4πa20R
2N

T

[
1

(W +B)2
− 1

(W +B) (T −W )
+

1

(T −W )2

]
(3.5)

where R is the Rydberg energy and a0 is the Bohr radius[14]. Accounting for the

fact that bound electrons are moving within the orbital leads to the binary-encounter

model. This is done by associating a momentum distribution to the bound target
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electron represented by the average kinetic energy, U, defined as [14]

U ≡ 〈~p
2〉

2m
. (3.6)

These cross sections are more convenient to express in terms of the reduced variables

and a summation. Defining:

t =
T

B
(3.7)

w =
W

B
(3.8)

u =
U

B
(3.9)

S = 4πa20N

(
R

B

)2

(3.10)

we can rewrite the single differentiable cross section in terms of a generalized sum-

mation taking the form[14]

dσ (w, t)

dw
=

S

B (t+ u+ 1)

3∑
n=1

Fn(t)

[
1

(w + 1)n
+

1

(t− w)n

]
. (3.11)

This form exposes the physical significance of each term. The (w + 1) terms

account for the energy given to the secondary electron while the (t − w) terms

account for the energy lost by the primary electron. n = 1 describes the interference

between the primary and secondary electron, while n = 2 represents close collisions.

The n = 3 terms arise from the broadening of the energy distribution due to the

momentum of the bound electrons [14]. By varying the Fn functions, the model is

also varied. The binary-encounter models are given by

F1 = − 1

t+ 1
, F2 = 1, F3 =

4u

3
. (3.12)

When integrated from w = 0 to w = (t−1)
2

, equation 3.11 with 3.12 gives the total

cross section. However, when t becomes large, the cross section exhibits asymptotic
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behavior, which does not agree with predictions from the Bethe theory or experiment

[14]. To correct for this, Kim and Rudd [14] developed the Binary-Encounter-Dipole

(BED) model. Following the asymptotic cross section derivations by Bethe using the

FBA, they take into account the differentail oscillator strength represented by df(w)
dw

.

They go on to define

Ni ≡
∫ ∞
0

df(w)

dw
dw, M2

i =
R

B

∫ ∞
0

1

w + 1

df(w)

dw
dw, Q =

2BM2
i

NR
. (3.13)

The correction for the asymptotic behavior leads to Fn being

F0 =
ln t

N (w + 1)

df(w)

dw
, F1 = − F2

t+ 1
, F2 = 2− Ni

N
. (3.14)

Equation 3.11 can be used but the sum runs from n = 0 to n = 2 to ensure the

t−w term is ignored in the asymptotic region (i.e. when t� w) as t−w will simply

approach t as t becomes larger.

Differential oscillator strengths are often difficult to obtain, particularly for each

subshell [14]. Some molecules have simple shapes for the differential oscillator, which

can be represented with inverse polynomials. Doing this changes M2
i , Ni and Q into

simple forms [14]

Ni = b, M2
i =

RNi

2B
, Q =

Ni

N
(3.15)

where b is a constant. This form further simplifies the BED model into the Binary-

Encounter-Bethe (BEB) model. This is model used in this work of calculations for

electron impact ionization. It is in the same from as Equation 3.11 but with different

Fn functions, which are given as [14]

F1 = −2−Q
t+ 1

, F2 = 2−Q, F3 = Q ln t. (3.16)

The BEB model can be further simplified by setting Q = 1, for situations where M2
i

is not known [14]. This approximation will lead to cross sections of the correct order
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of magnitude and are very useful when the molecule is complex or nothing is known

about the differential oscillator strength.

The total cross section is determined by integrating Equation 3.11 with 3.16 from

w to t−1
2

to give [11]

σ (t) =

∫ t−1
2

0

dσ (w, t)

dw
dw =

S

t+ u+ 1

[
ln

2

(
1− 1

t2

)
+ 1− 1

t
− ln t

t+ 1

]
. (3.17)

Kim and Rudd have shown good agreement of the BEB model with experiments

over many atoms and molecules including water [11] [14]. Within the energy range

of 10 eV to 106 eV , the model was particularly good at reproducing cross sections

for hydrocarbons, which is ideal for application to DNA. While the BEB model can

produce accurate singlely differential cross sections, the BED model produced better

energy distributions [11]. As this current work is a proof of concept, accuracy is not

of the utmost importance; as long as all the cross sections are produced through the

same method, they will serve the purposes of this research.

The angular distribution is less well known [9]. Therefore, the deflection of the

secondary electron was calculated kinematically. For higher energies (> 200eV ) the

assumption is that the incident electron collided with a free electron, “ejecting” the

free electron at some angle θ. The result of the simple calculation is given by

cos θ =

√
1−

(
1− T

W

)(
1 +

W

2me−c2

)−1
(3.18)

where me−c
2 is the electron rest mass in eV . For energies between 50eV and 200eV ,

the electron is ejected with an average of 45o. Energies below 50eV see isotropic

ejection.

The values for B, U,1 and N used in the Binary-Encounter models were calcu-

lated using the General Atomic and Molecular Electronic Structure System (GAMESS).

1It is important to note that the value of U is only a theoretical value and has no
physical meaning. Its importance comes from a classical treatment of the target election.
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Table 3.1: The Molecular properties of the electrons in the molecular orbits of the
materials used. This values are taken from the output from GAMESS. The orbits are
all doubly occupied as a result of the use of the Restricted-Hartee-Fock method.

H2O Phosphate 2-dexoribose
B (eV ) U (eV ) B (eV ) U (eV ) B (eV ) U (eV )
559.29 1674.1 2182.4 6322.4 559.90 1673.7
36.961 88.330 561.50 1673.6 559.44 1674.1
19.350 88.330 561.50 1673.6 559.03 1673.9
15.344 109.73 561.40 1673.9 307.82 904.60
13.720 109.73 558.97 1676.8 307.54 904.82

210.72 710.99 307.28 904.66
153.50 710.79 307.05 904.61
153.46 710.63 306.11 904.66
153.43 710.63 38.164 111.25
41.519 89.600 37.593 88.518
39.160 89.600 36.812 88.198
38.923 89.334 29.426 48.203
36.646 103.04 28.349 50.109
24.705 97.365 24.868 50.042
22.047 97.785 22.817 49.886
20.694 97.365 22.177 50.191
18.909 108.59 19.881 95.988
18.395 108.59 19.021 64.904
18.082 109.00 18.079 95.123
16.610 109.00 17.772 49.936
15.551 108.87 17.328 49.983
15.146 102.48 16.770 110.61
15.121 108.87 15.715 64.114
13.344 94.762 15.687 95.394
13.230 103.04 15.094 63.484

14.784 110.29
13.951 48.534
13.415 110.77
12.729 111.25
12.267 64.479
12.044 110.38
11.314 95.439
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GAMESS performs ab initio molecular quantum chemistry [25]. While able to calcu-

late orbital wavefunctions through many methods, the Restricted Hartee Fock (RHF)

method was used for the obtaining B, U, and N . Briefly, the RHF method approxi-

mates a N-body wave function (molecular orbitals) with a single Slater Determinate.

The restricted aspect assumes a molecule is a closed-shell with all orbitals doubly

occupied. The orbitals are approximated as a linear combination of Gaussian-type

orbitals, which are similar to Slater-type but are computationally much faster [25].

This current work used a 6-311G Pople basis set, meaning 6 primitive Gaussians

were used for the core atomic orbital functions. The valance orbitals were composed

of three bases function each; the first bases functions contain a linear combination of

3 functions, while the other 2 bases functions have 1 function each. The values for

B, U, and N can be found in Table 3.1. The first molecular orbital corresponds to

the S orbit of the oxygen, carbon, or phosphorous which results in the high energies

reported. Examples of the GAMESS input files for the three materials are listed in

Appendix B.

Equation 3.11 with 3.17 is not an invertible function, meaning that direct Monte

Carlo sampling is impossible. The single differentiable cross section must be sampled

by rejection; where the cross section probability density function (PDF) is bound by

an easily invertible PDF. The bounding function is inverted and normalized to a

cumulative distribution function (CDF); the CDF is sampled to obtain an indepen-

dent variable; in this case the reduced secondary energy. The dependent variable is

multiplied by a random number; if the result is greater than the cross section the

value is rejected and the CDF is sampled again. The process repeated until the

independent variable multiplied by a random number falls below the value of the

cross section. Because the cross sections must be sampled many times, efficiency

is essential. The choice of the bounding function can greatly affect efficiency. The

ratio of the area under the cross section to the area under the bounding function

should be minimized, however, the bounding function must always be greater than
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the cross section. The choice for the bounding function is important; in this work

the bounding PDF takes the form

g(w) =
dσ
dw

(0)[
dσ
dw

(0)
]
w + 1

. (3.19)

The bounding function is easily invertible, and provides a good ratio of areas without

getting into very complex mathematical theory.

3.3 Geometry

Simulating direct damage to DNA requires a DNA strand to be constructed within

the simulation. Monte Carlo handles materials in a way that is not ideal for nanome-

ter length scales. Geometry is modeled as a homogenous material with no molecular

structure, with a single number density and corresponding interaction cross section.

In the case of electron impact ionization, the ejected electron is essentially created

from nothing, and the material remains unchanged. There is no tally for the number

of electrons in the material (this would be far too computer intensive). This im-

plies that even if the model is on the nano scale, the molecules must be modeled as

“chunks” of that molecule. To do this, a rough volume of the molecule must be cal-

culated, and its shape approximated by a primitive volume. In this case, the volume

was chosen to be a prism, a cylinder with angular sides. The dimensions of the prism

follow closely to that outlined by M.A. Bernal and J.A. Liendo [2]. There are some

key differences between Bernal and Liendo’s model and the model implemented in

this work. Most importantly is the backbone (phosphodiester) of each base. In their

work [2] the phosphodiester is one prism, while in this work the 2-dexoribose and

the phosphate are broken up into separate prisms that will be referred to as a phos-

phodiester Unit (PU). This was done due to computational restrictions with GAMESS;

when the molecules become too large GAMESS would not converge. The dividing of

the backbone into two constituent molecules was a work around for this issue. The
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Figure 3.1: A rendering of the fundamental building block for the DNA model, a

phosphodiester unit (PU). The Red, inner, prism is the 2-deoxyribose sugar and the

blue, outer, prism is the Phosphate

volume of 24.0 Å3 and the outer radius of 1.185nm were maintained, but the shape

was changed slightly. The shape and dimensions of the fundamental building block

of the DNA backbone are shown in Figure 3.1. The height of 0.33nm is derived from

the rise per base pair of B-DNA [4]. The aperture angle and radius of the prisms

were chosen to maintain the overall outside diameter of the DNA strand and the

volume of 24.0 Å3. The aperture angle of 95.0o for the 2-deoxyribose was varied to

give a reasonable aperture angle for the phosphate of 29.6o. The area from the center

line to the beginning of the prism is void to allow for the nucleobases. Other work

([2], [12]) includes the base-pair as cylinders with a radius of 0.5nm and a height
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(a) DNA Strand (b) nucleosome (c) Chromatin Fiber

Figure 3.2: The assembly of the basic phosphodiester unit into a DNA strand. The

strand makes a complete circle and is copied to make a nucleosome. The nucleosomes

are assembled into a hexagonal spiral to make a chromatin fiber.

of 0.33nm. After repeating the primitive solids in Figure 3.1 numerous times, the

memory requirements for the geometry would be quite intensive. Damage to the base

also does not result in strand breaks. Therefore, the decision was made to neglect

the bases pairs, leaving the area void and subject to the properties of the mother

volume.

The PU in Figure 3.1 was assembled into a chromatin fiber through the use of the

G4AssemblyVolume class to create the geometry in Figure 3.2. The figure indicates

that the prism extends to the centerline; this is simply a artifact of the visualization

that is unable to construct void at the center of a prism. This class allows the user

to assemble smaller volumes into a larger unit that can be easily placed. In this case,

200 PU were assembled into a double helix that wraps into a full circle creating half

of a nucleosome. The DNA strand was built by creating the double helix around a

circular centerline in the x − z plane with a diameter of 12.37nm which allows 100

base pairs or 200 PU. Building the helix required placing units in a rotating reference
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Figure 3.3: The model of a chromatin fiber that the simulation geometry is modeled

from[22].

frame and translating it to the Cartesian coordinates native to Geant4 geometry. To

begin, two PU were placed with their centers (centerline of the prism and half height)

and their “z” axis tangent to the 12.37nm circular centerline and in the same plane.

They are placed at a polar offset of 9.92o. Another set of PUs are placed at a polar

offset of 3.6o and rotated about the centerline 35.9o to give the 10 bp per turn [4].

This is done 100 times to create a half of a nucleosome, which can be moved and

copied as an assembly.

A nucleosome as shown in Figure 3.2b is created by taking two assemblies of

PUs and stacking them along their centerline axis. The spacing between them is

minimal (< 1nm), and the histone proteins are simply modeled with void. As the

G4AssemblyVolume can not make an assembly of an assembly, each half of a nucle-

osome had to be placed independently when constructing the chromatin fiber. The

geometry of this work also differs from other work in the chromatin assembly. Pre-
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Table 3.2: The properties of the materials and the volumes they occupy used in the
Geant4 simulation. The density of the 2-deoxyribose and the phosphate are based
on the mass of the molecule placed into the volume. The density of water is based
on bulk properties of water, used in already implemented Geant4 physics.

Molecule
Name

Chemical
Formula

Molecular
Mass (g/mol)

Primitive
Volume (nm3)

Density
(g/cm3)

Water H2O 18.015 0.2400 1.0000
2-deoxyribose C5H10O4 118.432 0.2055 0.9546

Phosphate PO4H3 97.994 0.0345 4.7166

vious efforts ([2], [12]) placed the nucleosome such that the centerlines would create

a hexagon. The hexagons were stacked in layers to create the chromatin fiber. This

work follows the work of Robinson et. al. [22] where the nucleosomes are assembled

in one start helix, which greatly increases the packing ratio. Figure 3.3 shows the

model that is the basis for this work. The nucleosomes are tilted off-vertical 34o

and a rotation of 6 nucleosomes has a pitch of 9.8nm. This leads to an outside

diameter of 39.58nm which corresponds well to the largest measured diameter of

≈ 44nm [22]. The simulation utilizes a 60 nucleosome long chromatin fiber, which

corresponds to 10 rotations. An example of the chromatin fiber implemented can be

found in Figure 3.2c, which is 5 rotations long, half of the implemented length. The

entire chromatin fiber is contained within a cylinder of radius of 25nm and 120nm

high. This cylinder is the boundary where the high fidelity physics is activated; it is

surrounded by a cube with sides measuring 1.5µm.

The cube and cylinder are water filled and roughly represent the nucleus and

water surrounding the DNA strand respectively. These areas are filled with water

from the NIST libraries in Geant4, and has a density of 1g/cm. The PU can be one of

two materials: water or phosphodiester. The water-filled PUs have the same water as

the surrounding structures. When simulating actual DNA, the phosphodiester unit

is filled with one phosphodiester molecule. The molecule is of course divided into the

2-dexoribose, which fills the red area (outer prism) of Figure 3.1, and the phosphate,
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which fills the blue area (inner prism) of Figure 3.1. The number density of the PU

subunits were calculated using the molecular mass of the respective molecule and

the volume of the prism containing the molecule. Table 3.2 shows the properties of

the materials used in the simulation.

3.4 Analysis overview

The Geant4 simulation package gives the user vast ability to extract information from

the simulation. This instance, requires information from the ionization process, and

the areas in which it occurs. For the verification and validation simply the number of

ionizations and the information about the scattered and ejected electrons is needed.

The strand break simulations require much more geometrical information. A strand

break occurs in any PU that experiences and ionization event. Other methods only

use energy deposited which includes excitation. Excitation, as mentioned above,

does not directly lead to strand breaks. Only ionizations that occur in unique PUs

were added to the strand break count. It is possible for an electron to cause two

ionization events in the same PU, which does not lead to extra strand breaks. While

it was possible for multiple ionization events to occur in the same volume, they do

not cause an extra strand break. A double-strand break was said to occur if two

ionization events occurred on opposing strands within 10 base pairs. While it is

possible for single-strand breaks to cause a double-strand break, this phenomenon

occurs so infrequently that it can be neglected [6]. The DSBs must be counted at

the end of every event (birth and death tracking of a particle) and not at the end of

a run (all the events). The event level processing mimics natural conditions, where a

single particle is emitted causing damage. The simulation resets and another particle

is launched, tracked, and the damage counted. This repeats for the total number

primary events in a run.
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Results

4.1 Validation

Validation was performed by comparing the physical models in Geant4 to the im-

plemented model. Typically simulations need to be compared to experiments, but

the limited scope of this work has made finding experiments to simulate particularly

problematic. In an experimental setting, it is very difficult to separate damage done

to DNA in water via direct and indirect action [26]. One solution is to dehydrate

the DNA via a vacuum, but this leads to other issues. Water is still present up to

10% of the weight of the DNA by binding to the phosphate group [26]. Overlying

salt also contributes to to the shielding effects of electrons impinging on “dry” DNA.

It was found that the salt that prevented denaturing could not be removed to less

than a ratio of 1:1 of DNA to salt by weight, as it would result in DNA damage

[5]. All of these factors would be computationally very difficult to include; the result

would be a meaningless comparison. The salt addition would add to the already

expensive computations, and the water contributes indirect damage to DNA that

cannot be accounted for in the current model. The geometry of the experiment used

31



Chapter 4. Results

20 50 75 100 250 500 750 1000
0

5

10

15

20

25

30

Primary Energy: T (eV)

N
u
m
b
er

o
f
Io
n
is
a
ti
o
n
s
p
er

P
ri
m
a
ry

 

 

Born
BEB

Figure 4.1: The total number of Ionization events that occurred during the validation

run. The chart shows the comparison of the ionizations from the Born model available

in Geant4 and the BEB model implemented for this work.

a pBR322 supercoiled plasmid, which would require a complete redesign of the su-

percoiled geometry implemented in this work [5]. Such efforts are beyond the scope

of this project.

Comparing the total number of ionizations from each model in a water volume

evaluates the ability of a particular energy electron to cause ionizations. Figure 4.1

shows the total number of ionizations for both models. 1 × 106 elections at each

energy were run which gives a statistical uncertainty of 0.1%. The total number of

ionizations from the BEB is consistently smaller than that of the Born. The difference

grows as the energy becomes larger. The total cross section for the Born and the

BEB model are nearly identical, which indicates the difference does not arise from the

incident electrons. The primary electrons are equally likely to produce ionizations

over other processes for all energies.

Figure 4.2 shows the energies of the scattered and ejected electrons for different
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(b) T = 100eV
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(c) T = 500eV
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(d) T = 1000eV

Figure 4.2: The energy of the secondary electrons, scattered and ejected, from the

two models at primary energies of 50, 100, 500 and 1000eV . The values have been

normalized to the number of primary electrons at that energy

incident energies. It is clear that the BEB model produces lower energy electrons

than the Born model. The area under the BEB curve is much smaller than the area

under the Born curve; this indicates that the the BEB model gives less energy to

the secondaries overall. The only way this is possible is the BEB model is causing

ionizations in tighter bound shells than the Born model. Thus, the BEB model must

deposit more energy to liberate the electrons in an ionization event. This can easily

lead to the discrepancy seen in Figure 4.1. The electrons have less energy after an

average ionization event; thus, the scattered and ejected electron have less potential
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Figure 4.3: The total cross section for water for each orbit as a function of the

incident election energy for both the BEB and Born Models. Each color represents

a different molecular orbital: black = 1b1, red = 3a1, blue = 1b2, magenta = 2a1

ionization events. Figure 4.3 shows the total cross sections for each of the molecular

orbits of water. The most probable orbit (1b1) has the lowest binding energy, making

the energy given to the secondary electrons maximum. The 1b1 and the 1b2 orbitals

are the source of the discrepancy. For the 1b2, the BEB models give a much larger

cross section than the Born; with a binding energy of 19.350eV versus the 13.720eV

for the 1b1 a significant energy discrepancy can be seen. At the peak, ≈ 900eV ,

the Born model produces ≈ 1.5× the probability that the BEB model produces for

the 1b1 orbit. At the same energy, the BEB model for the 1b2 orbital shows ≈ 1.5×

higher probability than the Born. Given a significant number of ionizations the Born

model will produce more 1b1 ionizations giving 13.720eV to the volume for electron

liberation, while the BEB model will produce more 1b2 ionizations giving 19.350eV

to the volume. Over the course of the simulation, this difference compounds giving

the large discrepancy in Figures 4.1 and 4.2.

Another source of discrepancy comes from the differential cross section, which is
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Figure 4.4: The water differential cross sections for the Born and BEB models at

incident energy of 500eV . The BEB is peaked at the low energies while the Born

does not allow energies below 8eV . This indicates that the BEB model produces

more lower energy electrons.

displayed in Figure 4.4. For 500eV incident electrons, the differential cross section

for the BEB model is shifted to lower energies. The Born model produces a spike at

about 25eV , the BEB has the highest probability of zero energy electrons. While the

zero energy elections are not physical, this is accounted for by the random number

generator, which never produces 0 as a random number. The cross section for the

BEB has been artificially extended past its operational limit of 1
2
(T − B) to show

comparison to the Born. According to the models, the scattered electron receives the

remaining energy after the electron is ejected and freed from the orbital. The ejected

electron from the BEB will have likely have less energy than electrons ejected in the

Born model. The scattered BEB electrons will recover that energy but “spend” it on

freeing electrons from lower orbits, which accounts for the smaller amount of energy

given to the ejected electrons. As was mentioned prior, the BEB model produces

order-of-magnitude differential cross sections that are more suited for total cross

sections. As the results are relative to water, the cross sections serve the purpose for
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this work.

To validate the strand break algorithm, the work by Grosswendt shows the direct

action double strand breaks as calculated through global doses to sensitive targets

[9]. Grosswendt shows from a 523eV Auger electron there are 1.50% DSB to SSB.

The single strand break is calculated by assuming a cell nucleus receives 1Gy. With

the mass of the backbone assumed to be 1.7pg and 1.36 × 104 ionizations in the

nucleus, there are about 360 single strand breaks /cell/Gy [9]. While this is a gross

oversimplification of the process, it serves as a guide for calculating the strand breaks

in the volume. The simulation volume is smaller than the calculation volume and

receives more energy in a much more targeted way. As a result the number of DSBs

is larger in the simulation, giving a ratio of (6 ± 4)%. This puts the number of DSBs

on the same order of magnitude, as calculated by Grosswendt. This indicates that

the program is functioning correctly, and the physics is adequate for the purposes of

this work.

4.2 DNA Simulations

The simulations were carried out using GEANT4.9.6 on a Mac Pro running OS X

10.8.3. More information on the system is listed in Appendix A. The geometry

used both water and the DNA in the phosphodiester units. For each electron energy,

1 × 106 events were run. While typical Monte Carlo simulations can run into the

billions of events, this simulation had two limitations. When running higher energies,

the simulation would hang, refusing to continue. This was caused by an issue with

the way Geant4 handles the assembly volume. The error output can be seen in

Appendix C; it manifests as a geometry overlap. All of the tools in Geant4 were used

to ensure no overlaps. The PUs were so small that electrons would get stuck in or

in between a PU, with the space so small, the program could not resolve the volume
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Figure 4.5: The total number of ionizations in a phosphodiester unit per event for

the water analog and the DNA materials.

where the particle resided. The PU would meet at an edge causing unresolvable

points. This caused the electron to scatter indefinitely. The other limiting factor

was time; analog Monte Carlo is very time intensive, especially when the geometry

is large enough to contain every electron and they do no leave. This means that they

must track the particles until their energy falls below a certain threshold. This can

add time to the simulations. The simulation was carried out in “run parallelism”

where anywhere from 2-12 instances of Geant4 were run at any one time. The higher

energy simulations (> 500eV ) were broken into 4 simultaneous simulations of 250,000

events.

Figure 4.5 shows the total unique ionizations in the phosodiester units for water

and DNA per event. Each unique ionization in a PU represents a strand break,

there is a significant difference in the strand breaks between DNA and water. The

DNA material resulted in nearly 3× more strand breaks than the water. This could

be a result of the larger number density or the differences in cross section, which is
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Figure 4.6: The Cross sections for the materials of the Phosphodiester Unit (2-

dexorbose, Phosphate) and the water cross sections.

accounted for by the larger number of orbitals. As the cross section is a sum of the

cross sections of the individual orbits, the DNA will have a larger cross section. The

phosphate, is a small molecule that is much heavier than water giving it a density

of nearly 5 g/cm3 . This increases the number density, and therefore, the macroscopic

cross section. The ribose is less dense than water, but has more orbitals. To get the

same number of orbitals for deoxyribose, there would have to be 5 water molecules.

The phosphate would require 6+ water molecules. As mentioned above, only 1.2

water molecules could fit in the space of the phosphate. The code does not distinguish

whether the ionization occurred in the phosphate or the deoxyribose. Figure 4.6

shows the microsopic and macroscopic cross sections for the three materials used in

the simulation. The microscopic cross sections are proportional to the number of

orbitals. The molecules with the highest number of orbitals have the highest cross

sections. However, when the number density is factored in, the phosphate molecules

have become the highest probability of ionization. Phosphate molecules are so dense

that they far exceed that of other molecules. The water and ribose are on similar

magnitudes, and water may be a good approximation for the deoxyribose but not

the phosphate.
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Table 4.1: The results of the simulations, showing the the ratio of double strand
breaks to single strand breaks and the total ionizations per event for the water analog
and the actual DNA material over the energies of common Auger emitters. The 50eV
incident required more primaries to make the values statistically significant. At that
energy, 1× 107 events were run for DNA and 1× 108 for water

Water DNA
Energy DSB

SSB
(%)

Ionizations DSB
SSB

(%)
Ionizations

(eV ) (×10−3) (×10−3)
20 —– 17.5 ± 7.5 —– 55.3 ± 4.1
50 1.52 ± 0.59 45.2 ± 4.6 3.23 ± 1.72 115.9 ± 2.8
75 2.92 ± 1.09 67.8 ± 3.7 5.47 ± 2.31 167.7 ± 2.2
100 4.05 ± 0.84 88.2 ± 3.2 7.39 ± 1.74 217.1 ± 1.9
250 6.48 ± 0.40 203.2 ± 2.0 13.45 ± 0.92 537.2 ± 0.9
500 6.35 ± 0.23 445.7 ± 1.1 14.69 ± 0.62 1244.8 ± 0.4
750 5.82 ± 0.18 699.3 ± 0.7 14.21 ± 0.51 2047.8 ± 0.7
1000 5.43 ± 0.16 862.0 ± 0.4 13.39 ± 0.47 2704.3 ± 0.8

The number of ionizations might be elevated above the actual value. Only the

ionization model accounts for the DNA materials. Excitation and scattering have the

proper ratio to ionization when the water analog is used. When the DNA material is

used, the number density of the phosphate would increase the probability of excita-

tion and scattering proportionally to the number density. This leads to an artificial

increase of number of ionization events in the phosphate volume. Another source

of artificial increase in the ionizations in the phosphate is the volume given to the

phosphate could be too small. The volume was calculated to be slightly larger than

a sphere with a radius from the center of an oxygen to the center of the phosphate.

This effect would be less pronounced, as any volume given to the phosphate would

be taken from the ribose, increasing the number density and probability of ionization

in the ribose.

Double strand breaks are more important than the number of ionizations. The

ratio of double strand breaks as well as the ionizations presented in Figure 4.5 are

shown in Table 4.1. The presence of double strand breaks beginning at 50eV and
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(b) T = 100eV

50 100 150 200 250
0

0.5

1

1.5

Energy (eV)

N
u
m
b
er

p
er

E
v
en

t

 

 

DNA
Water
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(d) T = 1000eV

Figure 4.7: The energy of the secondary electrons, scattered and ejected, from the

two materials (DNA and Water) at primary energies of 50, 100, 500 and 1000eV . The

values have been normalized to the number of events, in this case 1× 106

higher corresponds well with experiment [5]. The DNA show marked improvements in

the number of DSBs over water. Not only are ionizations in general more probable,

the increased probability gives rise to more DSBs. This is simply a function of

increased ionization probability with the DNA material. Figure 4.7 shows that the

energies of the secondary electrons coming off DNA and water are very similar. At

100eV the DNA seems to have higher energy electrons than the water. This is

likely contributing to the increase in DSBs in DNA. The higher energy electrons will
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have a more energy they can deposit in the opposite strand causing a DSB. The

discrepancy is highest over the energy range where the cross sections are the largest;

only accentuating the effects of DNA.
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Conclusion

The assumption that water can serve as an analog for DNA in Monte Carlo simu-

lations was tested. Geant4 was used as the simulation package because the design

of the code allows easy addition of physics modules without the need to write the

other supporting parts of Monte Carlo simulations. The current release of Geant4

can only handle water for low energy electron physics. To change the materials in

the simulation another physics module needed to be added to handle a variety of

materials, including phosphate and 2-dexoribose. Ionization drives the process of di-

rect DNA damage (strand breaks), thus, only the ionization model was altered. The

model chosen was the Binary-Encounter-Bethe (BEB) model developed by Rudd and

Kim [14]. The geometry was built to represent a chromatin fiber, on the molecular

level. The fiber was built by approximating the DNA backbone as an assembly of

prisms. Each prism represented a 2-deoxyribose or a phosphate molecule. The chro-

matin fiber was surrounded by liquid water and irradiated by low energy (≤ 1000eV )

electrons. The model was verified and validated by comparing the results to the ex-

isting model in Geant4, The Born Model. The simulation could not be validated

against experiment because there are few experiments and the preparation of the

DNA does not allow for free DNA that can only be affected by direct action [5].
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The BEB model was found to produce fewer ionizations over the higher energies.

This was due to the fact that the BEB allows lower orbitals, with higher binding

energies, to be ionized. This deposits more energy and the secondary electrons have

less energy and therefore, less probability of ionization. The model was determined

to be accurate for the scope of this work. The BEB model is an approximate model

and is not ideal for producing the energies of secondary electrons [14]. As the BEB

model for water was compared to the BEB model for DNA, the total ionizations

are not as crucial as the relative ionizations for water and DNA. The BEB model

does produce same order of magnitude results. The test was performed over several

energies: 20, 50, 75, 100, 250, 500, 750 and 1000eV . The DNA proved to more sus-

ceptible to strand breaks than the water analog. This is a result of many things;

most importantly is that the phosphate has a very high number density. Phosphate,

with a phosphorous and four oxygen atoms, is a compact and heavy molecule. This

increases the electron interaction probability making ionizations in the phosphate

unit more probable per volume of DNA than for water. This increased probability

leads to an increase in double strand breaks (DSBs); the most biologically important

damage. The other factor working is the fact that ionization in phosphate has to be

artificially increased, as the other processes were not scaled by the higher number

density. This gives ionization an even greater chance of happening in phosphate than

the calculations show. More work must be done to definitively say whether the water

analog is a good approximation. However, the work indicates that water is not able

to accurately represent DNA when simulating the effects of low energy electrons,

specifically Auger electrons.
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Future Work

6.1 Model Improvements

The first improvements needs to be made by adding the excitation and scattering

models that handle DNA materials. Scattering can be added using the independent

atom method (IAM) [19]. This method assumes that each atom of the molecule

scatters independently, multiple scattering is negligible, and any redistribution of

electrons for molecular binding are ignored [19]. This method gives a differential

cross section of the form:

dσ

dΩ
=

N∑
j=1

dσA

dΩj

+
N∑

i 6=j=1

fi(θ, k)f ∗j (θ, k)
sin(srij)

srij
(6.1)

where N is the number of atoms, θ is the scattering angle and fi(θ, k) is the scattering

amplitude due the i-th atom, s is the wave number, and rij is the internuclear

distance between the i-th and j-th atoms. [19]. Much of the information for this

can be determined using the GAMESS. Finding the scattering amplitude for each atom

requires the partial wave analysis and solving the asymptotic radial Schrödingier

equation with the static and polarization potentials.
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Excitation is much more ad hoc; most theories are very sophisticated and require

more calculations than is reasonable for this work [18]. Following the work of Nikjoo,

et. al. [21] the excitation cross section can be approximated by:

[σexc]DNA ≈ [σion]

[
σexe
σion

]
water

(6.2)

giving a simple order of magnitude approximation for the excitation cross section.

Deexcitation also needs to be added. Many of the ionizations come from inner

shells; the process leaves a vacancy, in which an electron can fall releasing an x-

ray or an Auger electron. This x-ray or Auger electron can go on to cause more

ionizations, specifically in DNA as it was born in close proximity to the backbone.

This could potentially increase the the number of double strand breaks. There exists

an atomic deexcitation module in Geant4 but it is only applicable for free atoms

[8]. The molecular energy levels can be quite different than atomic orbitals, and this

discrepancy would lead to inaccuracies. The physics could be overloaded to accept

the already available orbital information needed for the ionization model.

The issues with the geometry need to be fixed; having an electron trapped between

volumes due to the small nature of the geometry makes simulations very difficult to

execute en mass. A work-around for this must be found. A similar Geant4 geometry

object, G4PVReplica, has a well documented problem that gives the same output.

The developers have not fixed it but they have found a work-around by using an odd

number of volumes, this work-around has not worked for the G4AssemblyVolume.

Perhaps this will be fixed in the next release of Geant4; it is clearly a bug and has

been submitted as such to the development team.

Another improvement would be the addition of nucleobases to the geometry; while

it is simple, it was not necessary for this simulation. The extra material between

the strands’ backbones could reduce the number of strand breaks by attenuating the

electrons. An ionization event in a base geometry would not result in a strand break
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and would cause a loss of energy in the primary electron making it possible that it

may not be able to cause an ionization in the strand. Also the angle would change

making it likely that the electron might not pass through a PU. Scattering would

have a similar effect. This would only help refine the simulation and may not make

a large difference in the overall outcome.

This simulation only took into account the DNA damage done by direct action,

which is important but not the only mode of DNA damage. Indirect action could

be added to accurately simulate DNA in a biological environment. The Geant4-

DNA team is working to include chemical diffusion and strand breaks, but these

are not in the current release. This can be done through Monte Carlo, or by an

approximation stating that a certain percentage of ionizations inside a volume result

in a strand break [9]. This would provide a comprehensive simulation package for

nanodosimetric calculations and would be able to characterize true damage done by

incorporated Auger emitters or secondary radiation.

6.2 Other Particles

The addition of photon physics would greatly improve the simulation. Geant4 already

includes low energy photon physics, including Rayleigh Scattering and the photoelec-

tric effect, which dominate the low energy photon spectrum [8]. The models require

atoms and do not work for molecules; while this would be a quick addition to the

simulation, its accuracy would be suspect. Creating a way to incorporate molecular

information would follow in a similar manner as was done for electrons. This physics

might be easier to include, but the possibility has not been investigated.
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Appendix A

Computer Specifications

System:

Mac Pro 5,1

Processor: 2 x 2.4 GHz 6-Core Intel Xenon

L2 Cash 256 kB per Core

L3 Cas 12 MB per Core

Memory: 24 GB 1333 MHz DDR3

Software:

Operating System: Mac OS X 10.8.3 Mountain Lion

GEANT Version: GEANT4.9.6.p01

Data: G4EMLOW6.32

GEANT Build Information:

CMake: Version 2.8.10

Complier: i686-apple-darwin11-llvm-gcc-4.2

Terminal: GNU bash, version 3.2.48(1) release

XQuartz: Version 2.7.4 (xorg-server 1.13.0)
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GAMESS Input Files

Water Energy:

$contrl scftyp=RHF runtyp=energy icharg=0

mult=1 coord=zmt $end

$system timlim=60 mwords=5 $end

$basis gbasis=N311 ngauss=6 $end

$guess guess=huckel $end

$data

Water...RHF_STO-3G

Cnv 2

O

H 1 rOH

H 1 rOH 2 aHOH

rOH=0.9894194

aHOH=100.0270395

$END
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Phosphate Orbital Energy Decomposition:

!phosphate orbital decomp

$contrl scftyp=rhf runtyp=eda $end

$system timlim=3 $end

$basis gbasis=n311 ngauss=6 $end

$guess guess=huckel $end

$lmoeda matom(1)=8 mcharg(1)=0 mmult(1)=1 $end

$contrl nosym=1 $end

$system mwords=8 $end

$DATA

Title

C1

P 15.0 -1.97427 2.12256 -0.09723

O 8.0 -0.55508 2.04447 -0.80221

O 8.0 -1.85182 3.39603 0.84366

O 8.0 -1.96826 0.87728 0.88828

O 8.0 -3.15385 2.16112 -0.99903

H 1.0 -2.27265 4.17000 0.42495

H 1.0 -2.45931 0.13109 0.49648

H 1.0 0.15673 2.02336 -0.13698

$END
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2-Deoxiribose Energy:

!deoxyribose Energy

$contrl scftyp=rhf runtyp=energy $end

$system timlim=1 $end

$basis gbasis=n311 ngauss=6 $end

$guess guess=huckel $end

$DATA

Title

C1

O 8.0 -0.57985 2.82851 -0.56428

C 6.0 -1.68696 1.91614 -0.40336

C 6.0 -1.13223 0.71233 0.35027

C 6.0 0.27552 0.64848 -0.19029

C 6.0 0.63470 2.11490 -0.28659

C 6.0 -2.84735 2.58587 0.33699

O 8.0 -3.44939 3.62544 -0.43599

O 8.0 -1.86203 -0.47141 0.08413

H 1.0 -2.49906 3.04485 1.26783

H 1.0 -3.62829 1.85745 0.57595

H 1.0 -2.01542 1.63195 -1.41110

H 1.0 -1.11900 0.89142 1.43216

H 1.0 -1.38763 -1.21184 0.50096

H 1.0 0.96004 0.07852 0.44436

H 1.0 0.28372 0.17963 -1.18203

H 1.0 1.03045 2.48834 0.66401

H 1.0 1.36839 2.31624 -1.07212

H 1.0 -3.51808 3.31127 -1.35365

$END
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Geant4 Geometry Error

-------- WWWW ------- G4Exception-START -------- WWWW -------

*** G4Exception : GeomNav1002

issued by : G4Navigator::ComputeStep()

Track stuck or not moving.

Track stuck, not moving for 10 steps

in volume -Target- at point (1.69028e-06,1.31183e-05,-3.37702e-05)

direction: (-0.202246,-0.281709,-0.937943).

Potential geometry or navigation problem !

Trying pushing it of 1e-07 mm ...Potential overlap in geometry!

*** This is just a warning message. ***

-------- WWWW -------- G4Exception-END --------- WWWW -------
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