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Abstract

Analog simulation of energy straggling of electrons and positrons is computation-

ally impractical because of long-range Coulomb forces resulting in highly peaked cross

sections about small energy-losses and extremely small collision mean free paths. The

resulting transport process is dominated by very frequent small energy transfer col-

lisions but a significant contribution to the overall energy-loss distribution comes

from the infrequent high energy-losses. Sufficient resolution in energy-loss spectra

and dose profiles using single-event Monte Carlo methods would then require a large

number of particle samples. In this thesis, we demonstrate that a pseudo-differential

cross section designed to approximately yet accurately preserve energy-loss moments

is capable of yielding accurate energy-loss spectra and dose distributions in a single-

event Monte Carlo formulation.

A benchmark solution for the analog problem for incident electrons and positrons

is developed in order to provide an exact solution in which our approximation is
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evaluated against. A “random walk” sequence is used to randomly sample a distance

to collision followed by a sampled energy-loss at the distance traveled by the particle.

This process was completed until specific boundaries or cutoffs were met. Due to the

non-linearity of the probability distribution functions for the electron and positron

energy-loss differential cross sections, analog energy-loss sampling is simulated using

the rejection method.

The Landau straggling distribution is examined in detail and its accuracy is

quantitatively assessed. Under the constraints in the formulation of Landau, we

show that the number of energy-loss moments preserved is equal to the number of

energy-flux moments preserved. More specifically, when the energy-losses within a

given distance are sufficiently small so that the mean free path can be considered

constant, the number of energy-loss moments preserved up to order N is equal to

the number of energy-flux moments preserved up to order N . Energy-flux moments

of Landau and the analog solution are compared. This moment-preserving theory

provides the foundation in which a pseudo-transport model based on the Landau

energy-loss distribution is then constructed.

Next, the Landau distribution is used in formulating a pseudo-transport model.

The energy-dependent mean free paths of this model is exponentially sampled while

the energy-loss will be sampled using the Landau energy-loss distribution in terms

of the respective mean free path, incident energy and mean energy-loss of the parti-

cle. The Landau Pseudo-Transport(LPT) model allows longer mean free paths and

smoother distributions increasing the efficiency of electron and positron transport.

Extensive numerical comparisons of the LPT model against the benchmark are

conducted for energy-loss spectra and depth-dose profiles. It is shown that while

high fidelity dose distributions can be obtained at a fraction of the cost of the analog

calculation, energy spectra are difficult to resolve because of the presence of artifacts

associated with the Landau distribution itself. Although these artifacts are reduced
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in thicker materials, a loss of computational efficiency results in step-sizes that are

relatively close to the analog mean free path when attempting to resolve these de-

ficiencies. The step-size of the simulations must be chosen to balance the greatest

efficiency with the highest accuracy. In summation, a pseudo-transport model with

longer mean free paths and smoother cross sections has been developed to increase

computational time producing results comparable to the analog solution.
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Chapter 1

Introduction

Numerical simulation of single-event or analog electron and positron transport can be

quite onerous. Unlike neutral particles, whose transport can be regarded as a series

of free flights between isolated, localized interactions, charged particles in matter

experience very large numbers of small, long-range Coulomb interactions[8]. The

inefficiencies of analog transport for electrons and positrons stem from large elas-

tic (angular) and inelastic (energy-loss) scattering cross sections which are highly

peaked about forward directions and small energy-losses[25]. The mean free paths

corresponding to such events are extremely small and lead to inefficient computa-

tions. In deterministic settings, extremely fine spatial and energy grids and unac-

ceptably high-order Legendre cross section moments would be necessary to resolve

the solutions[18]. In Monte Carlo simulations, the small mean free paths translate

to large numbers of collisions which result primarily in very small energy transfers

and very small angular deflections. While the small energy-losses and angular de-

flections make up for the majority of interactions made by electrons and positrons,

catastrophic collisions and large angular deflections may cause the particle to lose

a large fraction of energy or abruptly turn through a large angle[8]. These large

angle and energy-loss differences within a collision, although rare, contribute to the
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Chapter 1. Introduction

long tails of significant magnitude in both the angular distribution and energy-loss

distribution(known as energy-loss straggling)[17, 2].

The currently most widely used method of simulating electron and positron trans-

port was introduced by Berger as the condensed history Monte Carlo method[1]. This

method approximates the analog process by creating an artificially condensed “ran-

dom walk” from which angular deflections and energy transfers are sampled at the

end of an arbitrarily fixed path-length (step) using several infinite medium multiple-

scattering theories, which compound the large number of effects into a single step.

The angular distributions are attributed to Goudsmit-Saunderson[10] and Moliere[16]

while the energy-loss distribution is formulated by Landau[13]. Despite the efficiency

gained in condensed history, the approximations are limited to infinite and uniform

mediums causing difficulty when faced with material interfaces. Furthermore, the

small-angle approximations inherent in the distributions can not manage the large

angular deflections and catastrophic collisions accompanying electron and positron

transport.

The complexity and inherent limitations of the condensed history algorithm has

motivated the continued pursuit of the more simple single-event Monte Carlo sim-

ulations. Due to the physical nature of electrons and positrons, angular scattering

and energy-loss scattering can be treated independently. Recent work has been done

in constructing effective transport formulations[19, 9] that describe the underlying

transport mechanics of both processes by systematically approximating the physical

interactions to yield longer mean free paths and smoother angular and energy-loss

distributions and hence a computationally more efficient single-event Monte Carlo

simulation. Accuracy is controlled by enforcing the preservation of important physi-

cal information. This physical information comes from moments of the cross sections

used within the transport. Lewis showed that by preservation of low-order moments

resulted in satisfactory results and further accuracy could be obtained by includ-
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Chapter 1. Introduction

ing higher-order moments[15]. These methods discretized the angle and energy-loss

formulations providing accurate results for thick slabs. Unfortunately, energy-loss

spectra for thin slabs as well as material interfaces have shown to produce artifacts

as a result of the discrete representation.

Recent work done by Harding[12] combines the discrete approach of moment-

preservation coupled with a continuous model for electron and positron energy-loss

transport. The analog cross section is decomposed into a superposition of smooth

and singular components. The more probable energy-losses are modeled by a dis-

crete representation of the analog cross section while the less probable energy-losses

are represented by the analog cross section. Any artifacts caused by the discrete

representation have been smoothed out by coupling it with the exact distribution by

essentially approximating higher order moments with greater accuracy. This hybrid

method has been proved to yield highly accurate energy spectra and dose profiles,

but there is no unique way in implementing this approach.

Further work done by Tolar and Larsen[24] has used the accurate multiple-

scattering approximations for angular scattering into what they call a transport

condensed history. Rather than moving a particle an artificial distance, the trans-

port process is treated completely in a stochastic manner by constructing energy-

dependent mean free paths while preserving zeroth and first order angular moments

of the exact solution. This combination of moment-preserving techniques and energy-

dependent step-sizes has produced a true transport process with longer mean free

paths resulting in faster and more accurate results while eliminating the interface

problems and arbitrary step-sizes used in condensed history.

The discontinuous approach of condensed history energy-loss distributions suffer

from arbitrariness in step sizes. Discrete moment-preserving methods, although ac-

curate, produce artifacts from the discretization, while the hybrid discrete-continuous

model has not been generalized. The motivation for this work comes from the trans-
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Chapter 1. Introduction

port condensed history approach taken by Tolar and Larsen[24]. The question we

would like to answer is, does there exist a moment-preserving approximation to the

energy-loss side of electron and positron transport and can we formulate a true trans-

port process with this approximation? We introduce a continuous pseudo-transport

model that uses a moment-preserving cross section to increase the mean free paths

resulting in efficiency and accuracy. Under the premise of the accuracy accompanying

moment-preserving methods, and the proven accuracy of the Landau energy-loss dis-

tribution used in condensed history, we will formulate a single-event pseudo-transport

model. We will first begin by investigating Landau’s energy-loss straggling distri-

bution and assess the accuracy this distribution. While the latter is widely used in

major codes such as MCNP[23] in condensed history simulation, the Landau distri-

bution is used here as a differential cross section to randomly walk particles through

single-event Monte Carlo, ensuring the accurate preservation of energy-loss moments

of the analog cross section.

This thesis is organized as follows. In Chapter 2, we present the underlying

physics of electron and positron transport and the analog transport model. In Chap-

ter 3, we describe the benchmark Monte Carlo solution to the analog transport

problem. Chapter 4 describes the Landau theory followed by Chapter 5 which dis-

cusses its current implementation in condensed history models. In Chapter 6, we will

quantify the accuracy of the Landau energy-loss distribution and follow with a sim-

plified continuous model in Chapter 7. Chapter 8 will contrast numerical results of

the benchmark against this model. We close with concluding comments in Chapter

9.
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Chapter 2

Analog Problem

2.1 Ionization of Matter by Charged Particles

Unlike neutral particles, charged particles undergo many different types of interac-

tions resulting in kinematic changes. These “swift” charged particles, referring to

those particles whose velocities are much higher than velocities of thermal agitation,

not only are affected by collisional and absorption phenomena but must also deal

with electric fields created by target medium nuclei and electrons. As a result of

these Coulomb forces, charged particles do not follow straight paths nor do they

collide primarily with nuclei. The examination of charged particle interactions are

classified by “light” and “heavy” particles. “Light” particles are those which have the

same mass as an electron (i.e., negatrons and positrons) while “heavy” particles are

considered to be mesons, protons, etc. The means by which these “swift” particles

lose their kinetic energy or are moved throughout the medium are by four principal

types of interaction [8]:

1. Inelastic collisions with atomic electrons are the primary mechanism by which

charged particles lose energy in a medium. As the incident particle collides

5



Chapter 2. Analog Problem

with the atomic electrons, one or more of the excited electrons either becomes

unbound or transitions to an excited state. The unbound electron continues to

interact in the same manner causing further electron transitions until it comes

to rest. The incident particle is deflected with a change in kinetic energy

corresponding to the target atomic electron.

2. Inelastic collisions with a nucleus are close, non capture, deflections of the

incident charged particle. In some cases, a quantum of radiation is emitted

with a kinetic energy equivalent to the magnitude of energy lost by the incident

particle. This radiation is also known as bremsstrahlung.

3. Elastic collisions with a nucleus results in a non-radiative deflection of the in-

cident particle without exciting the nucleus. The incident particle only loses

kinetic energy in the conservation of momentum process between the two parti-

cles. This type of interaction is the primary means by which incident electrons

are deflected.

4. Elastic collisions with atomic electrons occur when an incident charged particle

is deflected by the field of electrons of a struck atom. Energy and momentum

is conserved and the energy transfer is less than the lowest excitation potential

of the target electrons. This results in an interaction with the atom as a whole

making elastic collisions with atomic electrons significant for incident electrons

with energies < 100eV .

This thesis is focused on the inelastic collisions of electrons and positrons. These

types of interactions are categorized into two classes, hard and soft collisions. Hard

collisions are those in which the energy transfer is large enough for the struck electron

to be regarded as initially free. Conversely, soft collisions are those in which the en-

ergy transfer is so small the binding of the struck electron must be considered. While

the effects of soft collisions can be accounted for by including quantum-mechanical

6
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effects of the atomic electrons, this research will only be concerned with hard colli-

sions.

2.2 Energy-Loss Cross Sections

Hard collisions of electrons and positrons are governed by Coulomb forces. These

forces determine the manner in which these incident particles are deflected and lose

energy. This work will use two formulations, the Möller and Bhabha differential cross

sections, to describe the energy-loss associated with electrons and positrons incident

on varying media. The Möller differential cross section for electron energy-loss is

given by [8]:

Σ(E,Q) =
K

β2

[
1

Q2
+

1

(E −Q)2 (2.1)

+
1

(E +m0c2)2
+

m0c
2 (2E +m0c

2)

Q (E −Q) (E +m0c2)2

]
dQ

Qmin ≤ Q ≤ Qmax

The Bhabha differential cross section for positrons is given by [8]:

Σ(E,Q) =
K

β2

1

Q2

{
1− β2

[
2
Q

E
− 3

Q2

m0c2
Cβ −

( QE
m0c2

− Q3E

m0c4

)
C2
β (2.2)

−
(Q2E2

m0c4
− Q3E3

m0c6
+
Q4E2

m0c6

)
C3
β

]}
dQ

Qmin ≤ Q ≤ Qmax

In Equations 2.1 and 2.2, E represents the incident energy of the particle, Q the

energy-loss of the particle after a collision, with the incident particle emerging with

7



Chapter 2. Analog Problem

energy E −Q and the secondary particle with energy Q (all energies are in units of

MeV ). β is the ratio of the velocity of the particle to the speed of light (v/c) and

m0c
2 = 0.511MeV is the rest mass energy of the electron. The bounds set for Q will

be defined later. The factor Cβ in Equation 2.2 is defined by

Cβ =
(1− β2)

β2
, (2.3)

while the variable K is a material property constant defined by

K =
2πρZNAvor

2
em0c

2

A
. (2.4)

In Equation 2.4, ρ is the material density [ g
cm3 ], Z is the atomic number of the target,

NAvo is Avogadro’s number, r0 = 2.818×10−13 cm is the classical electron radius and

A is the atomic mass of the target. Both differential equations are generalizations of

the classical Rutherford cross section defined by

Σe±(E,Q) =
K

β2

1

Q2
dQ (2.5)

Figure 2.1 shows the Rutherford cross section for incident electron energies of

10−6MeV to 10MeV on gold. The 1
Q2 term causes a large increase in the cross

section since lower energy-losses drive the cross section to a higher degree. Also,

lower incident energies further increase the value of the cross section since it is also

weighted by 1
β2 . It is important to note that the maximum Q value for each incident

energy is not negligible, therefore there is good probability that high energy-losses

will arise. It is also noted that as Q goes to 0, Σe±(E,Q) approaches∞ and therefore

a restriction on the minimum Q value must be imposed. Since we are only concerned

with hard collisions, the minimum value of Q, Qmin, is simply the mean ionization

energy of the target material. Qmin can be expressed as a function of atomic number

8
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Figure 2.1: Rutherford Differential Cross Section for Electrons on Gold up to 10MeV

Qmax = E/2. In addition to this extension, it also accounts for quantum mechanical

and relativistic effects. Figure 2.2 shows the ratio of the Möller cross section to the

Rutherford cross section. As Q gets very small, the ratio approaches unity, i.e., the

Möller cross section goes to the Rutherford cross section for low energy-loss transfers.

It is also evident that for all values of E, the maximum value of the ratio occurs at

Qmax.

The Bhabha cross section is also distinct from the Rutherford in that it accounts

for relativistic and quantum mechanical effects. It also takes into account that the

positron and the electron can be distinguished after the collision, so that Qmax = E.

Figure 2.3 shows the ratio of the Bhabha cross section to the Rutherford cross section.

For this plot, both the Rutherford and Bhabha cross sections were evaluated from

8

Figure 2.1: Rutherford Differential Cross Section for Electrons on Gold

of the target material by the following equation [25]:

Qmin =


19.0 : Z = 1

11.2 + 11.7Z : 2 ≤ Z ≥ 13

52.8 + 8.71Z : Z > 13

(2.6)

Based on our definition of inelastic scattering of electrons it is possible that one of

them may lose all of its energy in a collision due to the incidence of identical particles,

the Möller cross section accounts for this. When electrons collide distinguishability

issues arise, the electron is unidentifiable after the collision. Therefore, a limit on

the maximum energy-loss Qmax, must also be imposed. One will only keep track

of the higher energy particle and consider it the primary so that Qmax = E/2.

Figure 2.2 shows the ratio of Möller to Rutherford. As Q gets very small, the ratio

9
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Figure 2.2: Ratio of the Möller and Rutherford Differential Cross Sections, for Elec-
trons on Gold.

Qmin to Qmax = E, to cover the entire range of energy transfers from 0 MeV to

10 MeV , for positrons. From the plot, it is evident that similar to the Möller

cross section, the ratio of the Bhabha cross section to the Rutherford cross section

approaches unity as Q → Qmin. Unlike the Möller to Rutherford ratio though, the

Bhabha to Rutherford ratio does not have it’s maximum value at Qmax, but instead

the maximum is always at Qmin. The importance of the maximum value of these

ratios will be further discussed in Chapter 2. It is also important to acknowledge

that we have only shown the differential cross sections and ratios of the differential

cross sections for particles incident on gold. The trends we have illustrated using

gold data will be universal. While the values of the cross sections will not be identical

for different materials, the material dependence of the differential cross sections is

contained in the constant K (given by Equation 2.4), which is independent of energy

and energy-loss. This will lead only to a change in the magnitude of the cross

9
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on Gold

approaches unity, i.e., the Möller cross section goes to the Rutherford cross section

for low energy-loss transfers. It is also clear that for all values of E, the maximum

value of ratio occurs at Qmax.

The Bhabha cross section is also distinct from the Rutherford in that it accounts

for relativistic and quantum mechanical effects. Unlike the Möller, it takes into

account that the positron can be distinguished after the collision, so that Qmax =

E. Figure 2.3 shows the ratio of Bhabha to Rutherford. For this plot, both the

Rutherford and Bhabha cross sections were evaluated from Qmin to E, to encompass

the entire range of energy transfers from 0.001MeV to 10MeV , for positrons. Clearly,

as Q goes to Qmin the ratio approaches unity like the Möller cross section, yet a major

difference arises. Unlike Möller, the ratio of Bhabha to Rutherford does not have a

maximum vale at Qmax. Rather, the maximum is always at Qmin.
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Figure 2.3: Ratio of the Bhabha and Rutherford Differential Cross Sections, for
Positrons on Gold.

section, not the overall shape. In addition, because the material dependence of the

cross section is contained only in K, and the Möller, Bhabha and Rutherford cross

sections have the identical values of K for the same material, the comparisons shown

in Figures 2.2 and 2.3 are material independent.
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on Gold

The importance of maximum values for the ratios of electron and positron cross

sections to the Rutherford cross section will be further discussed in Chapter 3. It is

important to note that we have only shown the cross sections for particles incident

on gold. The cross sections will scale in terms of the variable constant K, yet the

distributions will be identical. In terms of the ratio of cross sections, these plots are

universal and material independent since the material property variable K cancels

out.
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2.3 Analog Transport Problem

For purposes of this investigation of electrons and positrons, the linear form of the

Boltzmann transport equation with no internal source will be used:

~Ω · ∇ψ(~r, ~Ω, E) = (2.7)∫ ∞
0

∫
4π

Σe±(~r, ~Ω · ~Ω′, E ′ → E)ψ(~r′, ~Ω′, E ′)d~Ω′dE ′ − Σ(~r, E)ψ(~r, ~Ω, E),

where ~Ω(µ, φ) is the unit vector describing the direction of the particle in terms of

the polar(µ) and azimuthal (φ) angles, ~r is the particle’s position in Cartesian space,

E is the kinetic energy, ψ is the angular flux at ~r with energy E in the direction of

~Ω, Σe± is the differential cross section for both elastic and inelastic scattering, and

Σ(~r, E) is the total cross section at ~r with and energy E. The boundary condition

corresponds to a mono-energetic beam incident on the left side of the material under

investigation and a vacuum boundary on the opposite side:

ψ(0, y, z, µ, φ, E) =
1

2π
δ(µ− 1)δ(y)δ(z), δ(E0 − E), µ > 0 (2.8)

ψ(X, y, z, µ, φ, E) = 0, µ < 0 (2.9)

Decoupling the inelastic and elastic scattering components of the differential scat-

tering cross section are imperative for the work concerned in this thesis. It has been

shown that elastic scattering without an associated energy-loss and an inelastic scat-

tering without an associated angular deflection is an accurate description of the

slowing down process[22]. The transport equation then becomes:

~Ω · ∇ψ(~r, ~Ω, E) =

∫
4π

Σe±(~r, ~Ω · ~Ω′, E)ψ(~r′, ~Ω′, E)d~Ω′ (2.10)

+

∫ ∞
0

Σe±(~r, ~Ω, E ′ → E)ψ(~r, ~Ω, E)dE ′

− Σ(~r, E)ψ(~r, ~Ω, E),

12
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where the integral containing Σe±(~r, ~Ω · ~Ω′, E) represents the sum of only elastic

interactions and the integral containing Σe±(~r, ~Ω · ~Ω′, E ′ → E) only describes all

inelastic interactions for particles moving from energies E ′ to E. The total cross

section, Σ(~r, E), is still both in terms of elastic and inelastic scattering but can

be split in terms of the sum of the two. We can now ignore the elastic scattering

terms in Equation 2.10 as well as any angular dependence. We will further simply

this equation by imposing the inelastic scattering conditions described in Section

2.2 for electrons and positrons yielding the one dimensional straight ahead transport

equation:

∂ψ(s, E)

∂s
=

∫ Emax

Emin

dE ′Σe±(E ′ → E)ψ(s, E ′)− Σ(E)ψ(s, E) (2.11)

ψ(0, E) = δ(E − E0). (2.12)

In Equation 2.11, Emin and Emax represent range of energies in question, s is the

path length of the particle, E is the emerging energy of the particle, ψ(s, E) is the

energy distribution at s. Equation 2.11 can be expressed alternatively in terms of

the energy-loss variable Q = E ′ − E, defining Σe±(E,Q)dQ such that

Σe±(E ′ → E)dE = Σe±(E +Q,Q)dQ, (2.13)

giving

∂ψ(s, E)

∂s
=

∫ Qmax

Qmin

Σe±(E +Q,Q)ψ(s, E +Q)dQ− Σ(E)ψ(s, E) (2.14)

ψ(0, E) = δ(E − E0). (2.15)

The result from Equation 2.14 allows us to use this total cross section with an

incident energy E of the particle in question without any angular dependence. Using

the definitions of the differential cross sections for electrons and positrons by Möller

(Eq. 2.1) and Bhabha (Eq. 2.2), the total cross section is found by:

Σe± =

∫ Qmax

Qmin

Σe±(E,Q)dQ. (2.16)
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2.4 Energy-Loss and Flux-Energy Moments

Statistical moments of any given distribution describe specific aspects of the distri-

bution itself. These moments help to characterize the physics of the cross section

in an alternative manner as well as the energy distribution in the flux. Recent

work has been done in moment-preserving approximations for energy straggling in

an attempt to explicitly construct approximate transport models to preserve a finite

number of moments of the analog differential cross section yielding more accurate

energy spectra and dose distributions[24, 12, 15]. The ability to capture specific

moments of the differential cross sections has been proven to increase the computa-

tional efficiency and accuracy of condensed history methods allowing longer “mean

free paths” and thus reducing the computational time of the transport model. More

specifically, Lewis[15] has shown, with the assumption of single energy particles in an

infinite medium, two transport models with dissimilar scattering cross sections but

with identical Legendre moments through order N will have the same space-angle

moments of the angular flux also through order N . This has led to the development

of pseudo-transport models that can be efficiently simulated by single-event Monte

Carlo and have become a worthwhile alternative to condensed history.

2.4.1 Energy-Loss Moments of the Differential Cross Section

The moments of the energy-loss cross section for electrons and positrons are defined

as:

Qe±,n =

∫ Qmax

Qmin

QnΣe±(E,Q)dQ, (2.17)

where n = 1, 2, ..., N , Qn is the nth moment of the energy-loss cross section. As stated

above, these moments characterize the physics in the energy-loss cross sections. For

example, the first moment Q1, is the average energy-loss of the particle per unit
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length in the medium, the second moment is the mean-squared energy-loss per unit

length. The average energy-loss is also known as the stopping power of the particle

which describes the mean energy lost in the medium per distance traveled [MeV/cm].

The mean-squared [MeV 2/cm] energy-loss describes a straggling about the mean or

the deviation from the average energy-loss. Comparisons of the first six energy-

loss moments are plotted in Figures 2.4-2.7 for electrons/positrons of 10−3MeV to

20MeV incident on gold and water.

With the exception of the Q1 moment, as the energy increases the dominance of

the higher moments becomes evident. The steep decline of Q2 and sharp peak of Q1

are due to the logarithmic terms within both the electron and positron moments.

After the second moment these logarithmic terms drop out and the moments increase

monotonically. Based on Figures 2.4-2.7 the same trend holds true for different

materials, only the magnitude of the distributions are different due to the material

constant K.

15



Chapter 2. Analog Problem

10
-
6

10
-
4

10
-
2

10
0

10
2

10
4

 0  5  10  15  20

Q
n
 (

M
eV

n
/c

m
)

E (MeV)

Energy-Loss Moments of the Moller Cross Section

Q1
Q2
Q3
Q4
Q5
Q6

Figure 2.4: First 6 Energy-Loss Moments, Electrons on Gold

10
-
6

10
-
4

10
-
2

10
0

10
2

10
4

 0  5  10  15  20

Q
n
 (

M
eV

n
/c

m
)

E (MeV)

Energy-Loss Moments of the Bhabha Cross Section

Q1
Q2
Q3
Q4
Q5
Q6

Figure 2.5: First 6 Energy-Loss Moments, Positrons on Gold

16



Chapter 2. Analog Problem

10
-
6

10
-
4

10
-
2

10
0

10
2

10
4

 0  2  4  6  8  10

Q
n
 (

M
eV

n
/c

m
)

E (MeV)

Energy-Loss Moments of the Moller Cross Section

Q1
Q2
Q3
Q4
Q5
Q6
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2.4.2 Energy-Flux Moments

It has been shown [12] that for thin targets where condensed history straggling

models [13] hold, and for thin enough targets where the energy within the mean

free path is considered constant, that the accuracy of energy straggling models are

directly related to the number of energy-loss moments preserved. This leads to the

suggestive conclusion that if moments of the energy-loss differential cross section are

preserved than the preservation of energy moments of the flux must also provide an

indication of accuracy as well. We will examine this relationship in detail later in

the thesis. Here we introduce the energy moments of the flux:

Ie±,n(s) =

∫ Emax

Emin

Enψe±(s, E)dE. (2.18)

I0(s) = 1 which is simply the percentage of particles that traveled a path length s,

I1(s) defines the mean energy of particles that traveled a distance s, I2(s) the mean

squared energy and so on.
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Chapter 3

Monte Carlo Solution of the

Analog Problem

Monte Carlo techniques are a valid and accurate means of simulating charged particle

transport, although at the cost of computational complexity due to a high magni-

tude of collisions. Monte Carlo does not attempt to solve the transport equation,

rather it uses stochastic techniques of random sampling in order to find a solution.

Analog simulation, although highly inefficient, provides an accurate model for elec-

tron/positron transport where the uncertainty is statistical and therefore a valid

means of producing a benchmark that will be compared to in further chapters.

In the following sections a detailed description of an analog Monte Carlo simula-

tion of electron and positron energy-loss, using the physics described in Chapter 2,

is presented.
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Chapter 3. Monte Carlo Solution of the Analog Problem

3.1 Random Walk

Equation 3.1 is the benchmark problem that we are going to solve. Again, it is the

one-dimensional, angle-independent, straight-ahead transport equation for electrons

and positrons.

∂ψ(s, E)

∂s
=

∫ Qmax

Qmin

Σe±(E +Q,Q)ψ(s, E +Q)dQ− Σ(E)ψ(s, E) (3.1)

ψ(0, E) = δ(E − E0).

Each one of the terms in Equation 3.1 describes different aspects of the particle’s

movement and interaction through the medium, and will allow us to randomly sample

interactions and create a “random walk” through the material in question. The

interactions are described by the following terms:

1. Σ(E)ds is the probability that a particle with an energy E will experience a

collision in a distance ds.

2. Σ(E,Q)dQ is the probability that a particle with an energy of E will experience

a collision resulting in an energy-loss equal to Q.

Based on the formulation of these terms, it is clear that the distance s the particle

travels is independent of the energy-loss Q that it experiences in a collision. As a

result, it is possible to describe both equations by a probability density function

(PDF) and sample randomly from each of these PDF’s to obtain the random walk

of the particle by the following sequence:

1. Define the source of the particle and boundary conditions of the medium.

2. Track the distance of the particle by randomly selecting a distance to collision

from the relative PDF.
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3. Formulate the interaction (in our case energy-loss) of the particle at this colli-

sion site by randomly sampling from an energy-loss PDF.

4. Repeat steps 2 and 3 until the particle has either lost all energy, or has traversed

the slab in question.

As each of these particles are sampled, energy, energy-flux moments, and other

important data will be stored.

3.2 Distance to Collision

In order to properly sample a distance to collision, it is required that through the

flight of the particles’ path the energy must remain constant. With this restriction,

we know that [14] the distribution of particles traveling a distance s with a given

energy E is exponential. By multiplying the probability of a particle traveling a

distance s by the probability of it suffering a collision in a distance s and s+ ds we

get the following PDF describing the probability of a particle traveling s will have a

collision:

Pcoll(s)ds = e−Σ(E)sΣ(E)ds. (3.2)

It can easily be shown [5] that the respective cumulative distribution function (CDF)

of the PDF is equal to:

Ccoll =

∫ s

0

Pcoll(s
′)ds′ = 1− e−Σ(E)s (3.3)

The benefit of the CDF comes from its distribution being uniform over (0,1). By

sampling a uniformly distributed random number ξ from (0,1) allows us to randomly

choose a corresponding value for the distance to collision. Once ξ is chosen, set it
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equal to the integral in Equation 3.3, and solve for a distance s traveled:

ξ = 1− e−Σ(E)s

s = − 1

Σ(E)
log ξ, ξ = 1− ξ (3.4)

Equation 3.4 will now directly sample a distance to collision s for a particle at a

given energy E with a total cross section Σ(E).

3.3 Energy-Loss

Chapter 2 has defined for us the type of particle interactions that we are interested in

and their corresponding differential cross sections (i.e. Möller for electrons, Bhabha

for positrons). We will use the definition of Σ(E,Q)dQ and Σ(E) to formulate a

PDF:

P (Q) =
Σ(E,Q)dQ

Σ(E)
, (3.5)

yielding the following CDF:

C(Q) =

∫ Q
Qmin

Σ(E,Q′)dQ′

Σ(E)
. (3.6)

Equating Equation 3.6 to a randomly distributed variable ξ on (0,1) and solving

for Q will give a direct way of sampling an energy-loss. Using the Rutherford cross

section given by Equation 2.5, for which the integration can be carried out, provides

this simple result for an energy-loss Q:

Q =

(
1

Qmin

− ξΣ(E)

K/β2

)−1

(3.7)

Unlike the Rutherford cross section, Möller and Bhabha contain terms that are more

complicated. Taking the integral of the differential cross sections over the interval
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Qmin to Q for Möller and Bhabha respectively gives:∫ Q

Qmin

Σe±(E,Q′)dQ′ =⇒

Σe−(E)
∣∣∣Q
Qmin

=
K

β2

[(
1

Qmin

− 1

Q

)
+

(
1

(E −Q)
− 1

(E −Qmin)

)

+
Q−Qmin

(E +m0c)2
+
m0c (2E +m0c)

(E +m0c)
2 log

(
Q(E −Qmin)

Qmin(E −Q)

)]
(3.8)

Σe+(E)
∣∣∣Q
Qmin

=
K

β2

{(
1

Qmin

− 1

Q

)
− β2

[
(a1) log

(
Q

Qmin

)

− a2(Q−Qmin) +
a3

2
(Q2 −Q2

min)− a4

3
(Q3 −Q3

min)

]}
, (3.9)

a1 =
2

E
− E

[m0c2]2
C2
β

a2 =

(
3

[m0c2]2
+

E2

[m0c2]4
C2
β

)
Cβ

a3 =

(
1

[m0c2]4
+

E2

[m0c2]6
Cβ

)
EC2

β

a4 =
E2C3

β

[m0c2]6
.

Equation 3.8 and 3.9 contain terms that can not be inverted exactly and therefore

the CDF can not be directly sampled. It is necessary to use an indirect method of

sampling an energy-loss Q.

3.3.1 Rejection Method Solution

It has already been shown [12] that the most efficient manner in which to sample from

our given energy-loss differential cross sections is by means of a rejection method.

By redefining our PDF in terms of a different cross section only dependent on Q for

electrons and positrons:

P (Q) =
K

β2

F (Q)

Σ(E)
(3.10)
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where F (Q) is defined as:

F (Q) =
1

Q2
g(Q), (3.11)

and g(Q) is given by:

g(Q) = Q2Σe±(E,Q). (3.12)

By removing the factor of 1/Q2 allows us to sample directly from K
β2

1
Q2 and reject

this value of Q if it does not belong in the distribution of g(Q). The rejection is done

by sampling a random number uniformly distributed over (0,1) and setting it equal

to the ratio of g(Q) and its maximum value gmax(Q). It is important to notice that

K
β2

1
Q2 is simply the Rutherford cross section. It has been shown in Chapter 2 that for

electrons gmax = g(Qmax) and for positrons gmax = g(Qmin). The following scheme

is used to sample an energy-loss for electrons and positrons:

First sample a potential energy-loss directly from Rutherford(Eq 3.3)

Q =

(
1

Qmin

− ξ1Σe−,+(E)

K/β2

)−1

Next sample another random variable and verify the ratio
g

gmax

if ξ2 ≤
g

gmax
accept,

else sample a new ξ1

where ξ1 and ξ2 are randomly distributed variables between 0 and 1, and gmax is

equal to its respective distribution. This sampling is looped until a value of Q is

accepted and the “random walk” of the particle continues.

3.4 Statistical Evaluation of Monte Carlo

Due to the stochastic nature of the Monte Carlo method, it is necessary to use

a reliable and well tested pseudo-random number generator (PRNG) and define a
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measurement of accuracy for our results. The PRNG used comes from MCNP5 [6].

This 64-bit PRNG will allow us to reproduce any simulations providing experimental

consistency and simplification of necessary debugging.

This thesis will be concerned with quantities such as energy-loss spectra, energy

deposition, and moments of energy-flux. These values will be tallied or stored to

provide information concerning distributions of energy-loss straggling and dose.

3.4.1 Energy-Loss Spectra

Energy-loss spectra tallies consist of tallying particle energy-losses after traversing a

medium and placing them into appropriate energy bins. For our purposes, these bins

will be equally distributed about the range Qmin to E and once the simulation is

finished, normalized by the total number of particles and the width of the energy bin

to provided units of flux [#/MeV −1]. The energy-loss of each particle is determined

by the difference of the initial energy and the outgoing energy of the particle.

The accuracy of Monte Carlo method is completely dependent on the number of

N particles used in the simulation. More specifically, the value of the 1σ relative

error will be used which decreases by
√
N . In order to produce the 1σ relative error,

it is necessary to run simulations in cycles of particles (nc). The number of particles

in a cycle (npc) is simply determined by:

npc =
N

nc
(3.13)

where N is the total number of particles in the simulation and nc will always be

chosen to be 50. Next we must define the number of particles tallied in the ith bin

for cycle j as nbij, the energy value contained in each bin is:

Eij =
nbij

npc∆E
(3.14)
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where ∆E is the energy bin width. The mean value for each bin is then defined as:

Ei =
1

nc

nc∑
j=1

Eij. (3.15)

The variance for each bin is then calculated by:

σ2
i =

1

nc− 1

nc∑
j=1

(Eij − Ei)2

=
1

nc− 1

nc∑
j=1

(E2
ij − 2EijEi + Ei

2
)

=
1

nc− 1

[
nc∑
j=1

E2
ij − 2Ei

nc∑
j=1

Eij +
nc∑
j=1

Ei
2

]

=
1

nc− 1

[
nc∑
j=1

E2
ij − 2ncEi

1

nc

nc∑
j=1

Eij + ncEi
2

]

=
1

nc− 1

[
nc∑
j=1

E2
ij − 2ncEi

2
+ ncEi

2

]

=
1

nc− 1

[
nc∑
j=1

E2
ij − ncEi

2

]

=
nc

(nc− 1)

[
1

nc

(
nc∑
j=1

E2
ij

)
− Ei2

]
. (3.16)

From the variance we can now calculate the standard deviation and finally the 1σ

relative error by:

σi =
√
σ2
i (3.17)

RE1σ =
σi

Ei
(3.18)

3.4.2 Energy Deposition

Energy deposition, or dose, of individual particles are tallied over the range of a

thick slab in question. For our purposes we will use equidistant layers or bins. After
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each particle collision, an energy-loss is calculated, that energy-loss is then placed

in the respective bin based on the penetration of the particle within the slab. Once

a specified number of particles i have been tallied, the sum of energy-losses Qi in

the jth bin is then normalized by the total number of particles sampled N , the bin

width ∆x, and the density of the material ρ to give the energy deposited Dj in bin

j in units of [MeV cm2/g]:

Dj =
1

N∆xρ

N∑
i

Qi. (3.19)

As seen in energy-loss, we must split our statistics in terms of particle cycles in order

to obtain 1σ relative error yielding the following equation for the mean dose in bin

j for cycle k:

Dj =
1

nc

nc∑
k=1

Djk (3.20)

and the variance becomes

σ2
j =

1

nc− 1

nc∑
k=1

(Djk −Dj)
2

=
nc

(nc− 1)

[
1

nc

(
nc∑
k=1

D2
jk

)
−Dj

2

]
. (3.21)

Now we may obtain the standard deviation and 1σ relative error by

σi =
√
σ2
i (3.22)

RE1σ =
σi

Dj

(3.23)

3.5 Benchmark Solutions

Now that the analog transport model has been defined and the method of statistical

measurement has been shown, we define the simulations that will become the bench-

mark solutions for electron and positron transport. Examination of the energy-loss

27



Chapter 3. Monte Carlo Solution of the Analog Problem

and energy-flux moments will be done as well as CPU runtime, number of collisions,

etc. The materials that will be examined are gold and water. The purpose of these

materials is to provide an examination of low and high Z materials as well as a

difference in material type. Both energy-loss and energy deposition of energies at

1MeV and 10MeV have been plotted with respective 1σ relative errors. The slab

lengths are relative to electron steps (Estep) which will be thoroughly discussed in

Chapter 5. For purposes of organization, energy-loss spectra will be presented fol-

lowed by energy deposition. These solutions will be shown in sections of material

and sub-sectioned by increasing energy.

3.5.1 Gold
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Figure 3.1: Energy-Loss Spectra of 1 MeV Electrons on 8.515× 10−3cm of Gold
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Figure 3.2: Energy-Loss Spectra of 1 MeV Positrons on 8.515× 10−3cm of Gold
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Figure 3.3: Energy Deposition of 1 MeV Electrons on 2.0× 10−1cm of Gold
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Figure 3.4: Energy Deposition of 1 MeV Positrons on 2.0× 10−1cm of Gold
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10 MeV
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Figure 3.5: Energy-Loss Spectra of 10 MeV Electrons on 7.47× 10−2cm of Gold
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Figure 3.6: Energy-Loss Spectra of 10 MeV Positrons on 7.47× 10−2cm of Gold
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Figure 3.7: Energy Deposition of 10 MeV Electrons on 1.7cm of Gold
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Figure 3.8: Energy Deposition of 10 MeV Positrons on 1.7cm of Gold
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3.5.2 Water
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Figure 3.9: Energy-Loss Spectra of 1 MeV Electrons on 9.633× 10−2cm of Water
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Figure 3.10: Energy-Loss Spectra of 1 MeV Positrons on 9.633× 10−2cm of Water
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Figure 3.11: Energy Deposition of 1 MeV Electrons on 1.6cm of Water
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Figure 3.12: Energy Deposition of 1 MeV Poitrons on 1.8cm of Water
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Figure 3.13: Energy-Loss Spectra of 10 MeV Electrons on 1.131cm of Water
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Figure 3.14: Energy-Loss Spectra of 10 MeV Poitrons on 1.131cm of Water
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Figure 3.15: Energy Deposition of 10 MeV Electrons on 18cm of Water
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Figure 3.16: Energy Deposition of 10 MeV Positrons on 18cm of Water
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Chapter 4

Landau Theory

As seen in Chapter 3, analog transport of electrons and positrons is very inefficient

due to the large number of collisions suffered by the particle. In an attempt to miti-

gate the number of interactions and computational complexity, Berger[1] introduced

the condensed history method which “condenses” multiple-scattering events into one

single event. In contrast to the “random walk”, the particle is moved a fixed path-

length (or step), and the angle and energy distribution is determined using several

infinite medium multiple-scattering theories, which combine the effects of the large

number of interactions that occur within the step. These multiple-scattering theo-

ries include the Goudsmit-Saunderson [10] and Moliere [10] distributions for angular

scattering, and the Landau[13] distribution for energy-loss straggling. While this

method has been studied and utilized, it suffers from systematic errors from the

limitations of multiple-scattering theories and arbitrariness of the step sizes.

The following sections describe the derivation of the Landau energy straggling

distribution, the manner in which it is being implemented in current condensed

history codes, and how it compares to the benchmark solution defined in Chapter 3.
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4.1 Derivation

The Landau energy-loss distribution is based on the assumption that fast particles

traversing a thin layer of material will experience a form of straggling about the

mean energy-loss for a given energy over a specific step size. These implications are

defined such that:

- fast particles are those in which the energy is sufficiently large that ionization

theory may be applied, yet

- the thin layer of material in which it is traversing is thin enough that the mean

total energy-loss is small compared with the initial energy of the particle.

Landau defines a distribution function f(x,∆) (where the integral is normalized to

1) as the probability that a particle with an energy E0 upon traversing a layer x

will lose an amount of energy ∆ = E0 − E. Next, a balance kinetic equation is

constructed, defined by the change of the distribution function df
dx
dx over a short

distance dx and the“collision integral” which expresses the difference in the number

of particles that acquire, due to ionization losses along dx, an energy E, and the

number of particles which leave the given energy interval. Defining:

ω(E, ε) ≡ probability per unit path length of an energy- loss ε

for a particle of energy E

ω(ε) = ω(E0, ε),where E0 is the initial energy of the

particle on the boundary

f(x,∆− ε) ≡ number of particles which acquire a given energy E

along dx with an energy-loss ε

f(x,∆) ≡ number of particles that do not suffer an energy-loss ε
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the balance equation is given by:

∂f(x,∆)

∂x
=

∫ ∞
0

ω(ε) [f(x,∆− ε)− f(x,∆)] dε, f(0,∆) = δ(∆) (4.1)

Equation 4.1 is analogous to the one-dimensional straight ahead transport dis-

cussed in Chapter 2, namely:

∂ψ(s, E)

∂s
=

∫
Σ(E ′ → E)dE ′ψ(s, E ′)− Σ(E)ψ(s, E) (4.2)

Σ(E ′ → E)dE ′ = Σ(E ′, Q)dQ

Based on the assumptions made by Landau, the energy-loss within the step-size is

small enough that the energy over the step is considered to be held constant:

Σ(E ′, Q)dQ ≈ Σ(E0, Q)dQ

which means that,

Σ(E ′) ≈ Σ(E0)

Equation 4.2 becomes,

∂ψ(s, E)

∂s
=

∫
Σ(E0, Q) [ψ(s, E ′)− ψ(s, E)] dE ′. (4.3)

Now in order to connect Landau with the straight ahead transport, we note that

ε = Q, ∆ = E0−E, and E ′ = E+Q. Substituting these variables into Equation 4.3

and inputting the bounds of the integral defined in Chapter 2 gives the following:

E0/2∫
Qmin

Σ(E0, Q)[ψ(s, E0 −∆ + ε)− ψ(s, E0 −∆)]dQ. (4.4)

The final step will be to redefine the ψ’s as:

ψ(s, E ′) = ψ(s, E0 −∆ + ε) = ψ(s,−(∆− ε− E0)) ≡ f(x,∆− ε) (4.5)

ψ(s, E) = ψ(s, E0 −∆) = ψ(s,−(∆− E0)) ≡ f(x,∆). (4.6)
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Finally substituting ω(ε)dε for Σ(E0, Q)dQ we obtain Landau’s straggling equation:

∂f

∂x
=

∫ ∞
0

ω(ε) [f(x,∆− ε)− f(x,∆)] dε (4.7)

Clearly, the basis of Landau’s distribution comes exactly from the transport equation

in which this thesis is attempting to solve. The significance of this relationship shows

the subsequent derivation is to the exact transport problem in question.

Carrying on, it is important to note that Landau further allowed the mean energy

transfer to be unbounded to facilitate a solution by Laplace transforms. We define

the Laplace transform:

ϕ(p, x) =

∫ ∞
0

f(∆)e−p∆d∆, (4.8)

and the inverse Laplace transform:

f(x,∆) =
1

2πi

+i∞+σ∫
−i∞+σ

ep∆ϕ(p, x)dp. (4.9)

where the integration path is the Bromwich Contour, with the real part σ is chosen

so that all singularities of ϕ are to the right of it. Going back to Equation 4.1 and

multiplying both sides by e−p∆ and integrating with respect to d∆ gives:

∂ϕ

∂x
=

∞∫
0

e−p∆d∆

∞∫
0

ω(ε)f(x,∆− ε)dε−
∞∫

0

e−p∆d∆

∞∫
0

ω(ε)f(x,∆)dε

=

∞∫
0

ω(ε)dε

∞∫
0

e−p∆f(x,∆− ε)d∆−
∞∫

0

ω(ε)dε

∞∫
0

e−p∆f(x,∆)d∆

=

∞∫
0

ω(ε)dε

∞∫
0

e−p∆f(x,∆− ε)d∆−
∞∫

0

ω(ε)dεϕ(p, x) (4.10)

In order to carry out the integration in the first term on the right side of Equa-

tion 4.10, a change of variable is made such that y = ∆− ε yielding:

∞∫
0

ω(ε)dε

∞∫
0

e−p∆f(x,∆− ε)d∆ =

∞∫
0

ω(ε)dε

∞∫
−ε

e−p(y+ε)f(x, y)dy. (4.11)
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Landau uses the fact that it is physically impossible for a particle to experience a

negative energy-loss nor for the particle to gain energy in a collision. This allows the

lower bound to be made such that f(y) = 0, y < 0:

∞∫
0

ω(ε)dε

∞∫
0

e−p(y+ε)f(x, y)dy = ϕ(p, x)

∞∫
0

ω(ε)e−pε. (4.12)

Substituting Equation 4.12 into Equation 4.10 and rearranging:

∂ϕ

∂x
= −ϕ(p, x)

∞∫
0

ω(ε)(1− e−pε)dε , (4.13)

with boundary condition ϕ(p, x) = 1. Equation 4.13 can be readily solved to get:

ϕ(p, x) = e
−x
∞∫
0

ω(ε)(1−e−pε)dε
, (4.14)

and substituted into Equation 4.9 to get the spectrum:

f(x,∆) =
1

2πi

+i∞+σ∫
−i∞+σ

e
p∆−x

∞∫
0

ω(ε)(1−e−pε)dε
dp. (4.15)

Equation 4.15 is the general solution to the energy-loss straggling distribution f in

terms of the differential cross section ω(ε) ≡ Σ(E0, Q). In order to apply this formula

the function ω(ε) must be defined, yet Landau shows that full knowledge of this

function is not necessary. He begins by evaluating the term within the exponential

of Equation 4.15 making the following assumptions:

- let ε0 be the ionization energy of electron

- let εmax be the maximum energy transferred

- only allow values of p such that

pεmax � 1 , pε0 � 1. (4.16)

41



Chapter 4. Landau Theory

Next, the integral term in the exponential part of Equation 4.15 is split by a value

of ε1 where ε1 � ε0 and pε1 � 1. Since the pε1 � 1 the approximation e−pε ∼= 1− pε
can be made in the integral from 0 to ε1 to get:

∞∫
0

ω(ε)(1− e−pε)dε =

ε1∫
0

ω(ε)(1− (1− pε))dε+

∞∫
ε1

ω(ε)(1− e−pε)dε

= p

ε1∫
0

εω(ε)dε+

∞∫
ε1

ω(ε)(1− e−pε)dε (4.17)

For the conditions ε1 � ε the Rutherford differential cross section (Eq. 2.5) can

be used. Substituting K
β2

1
ε2

for ω(ε) and evaluating the first integral term in Equa-

tion 4.17 results in the stopping power (recalling the 1st energy-loss moment defined

in Section 2.4.1)[8]:

ε1∫
ε′

εω(ε)dε =
K

β2
ln
ε1
ε′
, ln ε′ = ln

(
1− v2

c2

)
I2

2mv2
+
v2

c2
(4.18)

Substituting the Rutherford differential cross section for ω(ε) in the second integral

of Equation 4.17 gives:
∞∫
ε1

(1− e−pε)
ε2

dε =

∞∫
ε1

(
1− e−pε

)
d

(−1

ε

)
,

dε

ε2
= d

(−1

ε

)
(4.19)

=

[
−1

ε

(
1− e−pε

)] ∣∣∣∣∣
∞

ε1

+ p

∞∫
ε1

e−pε

ε
dε

=
1

ε1

(
1− e−pε1

)
+ p

∞∫
ε1

e−pε

ε
dε (4.20)

= p+ p

∞∫
ε1

e−pε

ε
dε ,

1

ε1
(1− 1 + pε1) +O(pε1)2 ≈ p (4.21)

and now,

1

p

∞∫
ε1

(1− e−pε)
ε2

dε = 1 +

∞∫
ε1p

e−z

z
dz , z = pε (4.22)
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Another assumption made by Landau allows for a clever change of bounds. From

Equation 4.22 Landau splits the integration at 1, adds and subtracts a definite in-

tegral
∫

dz
z

from ε1 to 1 and combines the negative value of the added term to the

respective integral in Equation 4.22. Once these two terms are combined he makes

the assumption that ε1p does not significantly contribute to the integral and replaces

the lower bound with 0 yielding:

1 +

∞∫
ε1p

e−z

z
dz

= 1 +

1∫
ε1p

dz

z
−

1∫
ε1p

dz

z
+

1∫
ε1p

e−z

z
dz +

∞∫
1

e−z

z
dz (4.23)

= 1 +

1∫
ε1p

dz

z
+

1∫
ε1p

e−z − 1

z
dz +

∞∫
1

e−z

z
dz (4.24)

= 1 +

1∫
ε1p

dz

z
+

1∫
0

e−z − 1

z
dz +

∞∫
1

e−z

z
dz (4.25)

The sum of the two latter integrals is equal to −C where C is equal to Euler’s

constant, finally Equation 4.21 becomes:

∞∫
ε1

(1− e−pε)
ε2

dε = p(1− C − ln pε1). (4.26)

Now we can combine Equations 4.18 and 4.26 to obtain for the exponent in Equa-

tion 4.15:

x

∞∫
0

ω(ε)(1− e−pε)dε = ξp(1− C − ln pε′), ξ = x
K

β2
. (4.27)

and hence:

f(x,∆) =
1

2πi

∫
Γ

ep∆−ξp(1−C−ln pε′)dp. (4.28)
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Now substituting u = ξp, dp = du
ξ

gives:

f(x,∆) =
1

2πi

∫
Γ′

eu
∆
ξ
−u(1−C−ln (uε

′
ξ

)) 1

ξ
du. (4.29)

The exponent in Equation 4.29 can be further simplified:

u
∆

ξ
− u

(
1− C − ln

(
uε′

ξ

))
= u

∆

ξ
− u

(
1− C −

(
lnu+ ln

ε′

ξ

))
= u

∆

ξ
− u(1− C) + u lnu− u ln

ε′

ξ

= u lnu+ u

[
∆

ξ
− (1− C) + ln

ξ

ε′

]
. (4.30)

The term in brackets found in Equation 4.30 will now be redefined to a single variable

λ:

λ =
∆− ξ

(
ln ξ

ε′
+ 1− C

)
ξ

, (4.31)

and the function f(x,∆) can be rewritten as:

f(x,∆) =
1

ξ
ϕ(λ), (4.32)

where ϕ(λ) is defined by:

ϕ(λ) =
1

2πi

+i∞+σ∫
−i∞+σ

eu lnu+λudu. (4.33)

Equation 4.32 now becomes a non-dimensional, single variable equation. It was

found[13] that the maximum value of this function is at λ = −0.05 and therefore the

most probable energy-loss is given by the expression:

∆0 = ξ

(
ln
ξ

ε′
+ 0.37

)
. (4.34)

Using this value, the definition of the probability of an energy-loss lying between ∆

and ∆ + d∆ is:

f(x,∆)d∆ = ϕ

(
∆−∆0

ξ

)
d

(
∆−∆0

ξ

)
(4.35)
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The validity of this result comes straight from Equation 4.16 and the integral variable

u = ξp for:

ξ � ε , ξ � εmax (4.36)

The first condition in Equations 4.36 requires that energy-losses must be sufficiently

large in comparison with the atomic energies of the particle, while the second condi-

tion requires that the energy-loss must be sufficiently smaller than εmax = E0.

Following Equations 4.35, Landau evaluates the integral in order to obtain an

asymptotic formula for the function ϕ(λ) at large values of λ. A more concise evalu-

ation of ϕ(λ) is done by Börsch-Supan[4] providing limits on the numerical evaluation

of λ.

In order to obtain the approximation for large values of λ, Landau had to trans-

form the path of integration as to avoid singularities around the origin[13]. The

asymptotic evaluation for large negative λ is shown[4] to have a negligible value

for λ < −4, while the asymptotic evaluation of large positive λ > 100 tend to the

following equation:

ϕ(λ) ≈ 1

w2 + π2
, where λ = w + lnw +B, (4.37)

where w is an integral approximation made by Börsch-Supan [4] and B = γ − 1
2
.

Tabulation of the function ϕ(λ) was done[4] for −4 ≤ λ ≤ 100. Further work by

Blunck & Westphal[3] and Chechin & Ermilova[7] provide a correction to increase

the accuracy of straggling within Landau’s energy-loss routine.
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Implementation of the Landau

Straggling Distribution

Implementation of the Landau energy-loss distribution has been applied most promi-

nently in the ETRAN code[21]. ETRAN is the basis for modern codes, such as

MCNP[23] and ITS[11], that model electron and positron transport. These codes

begin the transport of charged particles by first declaring a step-size to arbitrarily

move the particle, then sample an energy-loss from the Landau distribution. This

process is repeated after each step until the particle has lost all energy or reached a

boundary.

The following subsections map the variables from Landau’s[13] derivation to those

used in MCNP[23] as well as describe the programming logic involved in sampling

the energy-loss of a particle.
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Chapter 5. Implementation of the Landau Straggling Distribution

5.1 Electron Steps and Substeps

The condensed random walk of electrons and positrons depends on the energy and

the material in which it is moving. The step size sn is computed by the stopping

power −dE/ds of the medium and taken as the average energy-loss over that step

where:

En−1 − En = −
sn∫

sn−1

dE

ds
ds (5.1)

and the difference in energy is chosen such that:

En
En−1

= 2−
1
k . (5.2)

The most accepted value of k is 8 [21], which results in an average energy-loss of

8.3% and an average energy-loss of half the initial energy after 8 steps. The distance

s = sn − sn−1 is defined as an electron energy step(Estep) or major step. However,

representing the particle’s trajectory over smaller steps results in a more accurate

model and therefore minor steps or substeps m are introduced resulting in a path

length of s/m.

5.2 Continuous Slowing Down Approximation for

Landau

The stopping power used in the Landau energy-loss function is given by Berger[1] and

is based on the Bethe theory or the continuous slowing down approximation (CSDA)

and is computed analytically. This stopping power does not make use of the restricted

stopping powers, only the total energy-loss to collisions. Only the range of half the

incident energy down to zero is considered (due to indistinguishability of incident
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and recoiling electrons) and the following supplementary constants are defined:

C2 = ln(2I2)

C3 = 1− ln(2)

C4 =
1

8
+ ln(2)

C5 =
1024α2h2c2

2πmc2β2

so that the stopping power becomes:

−
(
dE

ds

)
= ZC5

{
ln
[
τ 2(τ + 2)

]
− C2 + C3− β2 + C4

(
τ

τ + 1

)2

− δ
}

(5.3)

This is the collisional energy-loss rate in [MeV ∗barns]. The value I and τ are the

ionization potential and incident energy in rest mass units, δ is the density correction

term and β = v/c. The term α represents the fine structure constant defined as:

α =
2πe2

hc
(5.4)

where h is Plank’s constant, c is the speed of light and e is the electron charge.

Table 5.1 provides the values for the CSDA values for specific energies for electrons

in gold.
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Continuous Slowing Down Approximation

Energy (MeV ) CSDA (MeV
cm

)
20 27.466149
15 26.454245
10 25.044129
5 22.730187
2 20.214680
1 19.407789

0.75 19.605981
0.50 20.715516
0.10 53.299391

Table 5.1: Continuous slowing down approximation for electrons in gold as computed
by MCNP5

5.3 Numerical Evaluation of the Landau Energy-

Loss Distribution

Most of the numerical work has been done by Börsch-Supan[4], and relevant tables

have been made[11] in order to make the sampling and computational evaluation

of the distribution efficient. Recall, the probability integral is evaluated such that

the maximum individual energy transfer is allowed to extend to ∞, therefore an

upper bound must be imposed in order to preserve the mean energy-loss ∆ = −dE
ds
s.

Instead of using Equations 4.34 and 4.32 the Landau variable is re-written[21]:

λ =
∆−∆

ξ
+ ν± (5.5)

where for electrons:

ν− = ln
T

ξ
− 0.80907 +

τ2

8
− (2τ + 1) ln 2

(τ + 1)2 , (5.6)

and for positrons:

ν+ = ln
T

ξ
− 0.422784− β2

12

[
11 +

14

τ + 2
+

10

(τ + 2)2 +
4

(τ + 2)3

]
, (5.7)
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where T is the energy of the particle. The upper bound, λcut, is chosen such that

the mean lambda λ = ν±.

Finally, an extension to Landau’s result by Blunck-Leisgang[3](σBL) and a fur-

ther correction by Chechin and Emilova[7](σCE) to the variance of the distribution

computed by Blunck-Westphal[3], has increased the accuracy of the variance about

the mean by convoluting Landau’s distribution with a Gaussian distribution. The

following equation is added to the Landau result:

σ =
σBW

1 + 3εCE
(5.8)

σBW =
√

10eV · Z 4
3 ∆ (5.9)

εCE ≈
[

10ξ

I

(
1 +

ξ

10I

)3
]− 1

2

(5.10)

5.3.1 MCNP5 Computational Sampling of Landau

Now that the step-size, stopping power, and relevant equations have been defined,

the manner in which the code samples an energy-loss is discussed. Preset arrays[11]

within the code have been computed such that the expected mean λ calculated by

Equations 5.6 or 5.7 corresponds to the exact value of λcut needed to preserve the

mean energy-loss. Another array (eqlm) of 5000 equiprobable λ bins have also been

precomputed[11], allowing a direct sampling of λ between [−4, 100]. The function

strag landau from the MCNP source code[23] computes the energy transfer, the

following equations employed in the code are mapped to the relevant equations pre-

sented in previous sections:

step: Equation 5.1

b west: Equation 5.8

qs csda: Equation 5.3
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typical max xfer: Equation 4.27

expected mean lambda: Equation 5.6 or 5.7

blunck et al width: Equation 5.8

The sequence for sampling an energy-loss is described by the following:

1. Determine(sample) if λ > 100.

- If λ > 100 compute λ analytically (Eq. 4.37), else continue.

2. Sample a random value between [1, 5000] choosing a value of λ from the array

eqlm based on the sampled value.

- If λ > λcut repeat sampling, else continue.

3. Sample from the Gaussian distribution (Eq 5.8).

4. Convert λ to proper units for the resulting energy-loss.

The following equations map the Landau energy-loss variable(sp) (Eq. 4.32) to the

sampled deviation from the mean:

∆ = ξ(λ− λ) + ∆ (5.11)

sp = typical max xfer(λ− expected mean lambda) + blunck et al width

(5.12)

Once sp has been sampled and accepted, it is converted to units of MeV and the

final energy-loss Q = (qs csda + sp) · step.
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5.4 Benchmark Comparison

For purposes of this thesis, the Landau energy-loss routine strag landau is taken

from MCNP and employed into a research code. This function is easily implemented

as long as the conditions of Equations 4.36 are met for εmin = I and εmax = Qmax. It

is important to note that in the derivation of the integral in Equation 4.18, Landau

made an assumption on the cross section ω(ε). Before this approximation, by defini-

tion, this integral was the first moment, i.e. stopping power, of ω(ε). Therefore, it is

possible to input any stopping power value into the function. In order to maintain

consistency with the analog benchmark, the stopping power will be changed from

Bethe’s theory (Section 4.2.2) to the first energy-loss moment of the analog cross

section used here (Section 2.4.1), while all other inputs and variables are computed

in the same manner and held constant. An equivalent number of particle samples

from the analog benchmark solutions are used in the strag landau routine. The

same PRNG, computer processor, statistics, and tallies will be used and computed

in the research code. Comparisons for both electrons and positrons are presented for

all benchmark cases over a single major step-size defined in Chapter 3.

In all the figures presented, it is clear that there is a severe cutoff in the energy-

loss spectra for Landau. In the case of the electron benchmarks, there exists a dip

in the spectra near half the initial energy. This drop in the spectra accounts for

the energy cutoff of all electrons that have collided once due to the Qmax = E0/2

limit in a single collision. For example, Figure 5.5 shows a dip around 0.5MeV for

E0 = 1MeV then again at 0.75MeV . This second dip is due to the same reasons

above except for the maximum value for a twice collided electron is Qmax = (E0/2)/2.

In subsequent figures, this characteristic continues for all electron benchmarks. The

Landau distribution does not match the dip in the energy-loss spectra for all figures.

In Figure 5.5 there is a close match to the Landau cutoff and the analog drop-

off for 1MeV electrons, yet with increasing energy, a larger difference between this
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characteristic emerges, while for decreasing energies this difference decreases. The

same cutoff arises for positrons using Landau, while the positron benchmark does

not contain the drop-off seen for electrons. The Bhabha cross section does not suffer

indistinguishability issues and Qmax = E0. Like the electron spectra, the cutoff for

positrons has the same trend with respect to incident energy.

The cutoff seen in Landau is an artifact from the value λcut chosen by the code

in order to preserve the mean energy-loss over the step. In the condensed history

“random walk”, the particle is forced to move the major step while maintaining a

fixed energy. As a result of these conditions and this abrupt cutoff in the spectra,

the possibility of high energy-losses(i.e. energy-losses corresponding to λ > λcut) are

impossible.

Although the tail of our spectra does not agree with the analog benchmarks, the

area where more probable energy-losses occur is closely matched. For both electrons

and positrons, there is a direct relationship between incident energy and accuracy.

With higher energies, there is a higher convergence to the benchmark distribution

around the most probable energy-loss. For energies at or below 1MeV , there is a

distinct difference in the Landau spectra produced by gold and water. Gold breaks

down at 1MeV . The peak around the most probable energy-loss is no longer close

to the magnitude of the benchmark, nor do the peaks match for the most probable

energy-loss. As the incident energy decreases from 1MeV for electrons and positrons

on gold, the distribution around the peak continues to get worse. Water however,

does not have this problem. Although there is slight difference in the most probable

energy-loss, the magnitude of particles is nearly exact.

In all figures there is an increase in the RE1σ for increasing energy-losses. Al-

though these RE1σ’s are lower than 5%, it is possible to decrease these errors with

more particle samples, yet due to computational time and comparison with Landau,

it is sufficient to maintain a RE1σ less than 1% in only the areas of comparison. It
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is also important to note that these high RE1σ are also caused by an insignificant

amount of particles loosing high amounts of energy in the system.

Other than spectra, it is difficult to explain the reasoning behind the accuracy of

this distribution. The Landau distribution has been proven to match experimental

results for high energies[21], yet there does not exists a quantifiable measurement to

evaluate the accuracy in the distribution. The next chapter will, by examination of

the energy-flux moments, assess the accuracy of Landau’s distribution.
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Figure 5.1: Energy-Loss Spectra of 200 keV Electrons on 1.16× 10−3cm of Gold
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Figure 5.2: Energy-Loss Spectra of 200 keV Electrons on 1.25× 10−2cm of Water
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Figure 5.3: Energy-Loss Spectra of 500 keV Electrons on 3.90× 10−3cm of Gold
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Figure 5.4: Energy-Loss Spectra of 500 keV Electrons on 5.07× 10−2cm of Water
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Figure 5.5: Energy-Loss Spectra of 1 MeV Electrons on 8.52× 10−3cm of Gold
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Figure 5.6: Energy-Loss Spectra of 1 MeV Electrons on 9.63× 10−2cm of Water
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Figure 5.7: Energy-Loss Spectra of 5 MeV Electrons on 3.99× 10−2cm of Gold
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Figure 5.8: Energy-Loss Spectra of 5 MeV Electrons on 4.47× 10−1cm of Water
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Figure 5.9: Energy-Loss Spectra of 10 MeV Electrons on 7.47× 10−2cm of Gold
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Figure 5.10: Energy-Loss Spectra of 10 MeV Electrons on 8.84× 10−1cm of Water
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Figure 5.11: Energy-Loss Spectra of 20 MeV Electrons on 1.40× 10−1cm of Gold
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Figure 5.12: Energy-Loss Spectra of 20 MeV Electrons on 1.67cm of Water
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Figure 5.13: Energy-Loss Spectra of 200 keV Positrons on 1.16× 10−3cm of Gold
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Figure 5.14: Energy-Loss Spectra of 200 keV Positrons on 1.25× 10−2cm of Water
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Figure 5.15: Energy-Loss Spectra of 500 keV Positrons on 3.90× 10−3cm of Gold
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Figure 5.16: Energy-Loss Spectra of 500 keV Positrons on 5.07× 10−2cm of Water

62



Chapter 5. Implementation of the Landau Straggling Distribution

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

S
p
ec

tr
a 

(#
/M

eV
)

Q (MeV)

Energy-Loss Spectra of 1 MeV Positrons on 1 Estep of Gold 

1 σ Relative Error
Benchmark

1 σ Relative Error
Landau Energy-Loss

Figure 5.17: Energy-Loss Spectra of 1 MeV Positrons on 8.52× 10−3cm of Gold
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Figure 5.18: Energy-Loss Spectra of 1 MeV Positrons on 9.63× 10−2cm of Water
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Figure 5.19: Energy-Loss Spectra of 5 MeV Positrons on 3.99× 10−2cm of Gold
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Figure 5.20: Energy-Loss Spectra of 5 MeV Positrons on 4.47× 10−1cm of Water
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Figure 5.21: Energy-Loss Spectra of 10 MeV Positrons on 7.47× 10−2cm of Gold
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Figure 5.22: Energy-Loss Spectra of 10 MeV Positrons on 8.84× 10−1cm of Water

65



Chapter 5. Implementation of the Landau Straggling Distribution

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

 0  2  4  6  8  10  12  14  16  18  20

S
p
ec

tr
a 

(#
/M

eV
)

Q (MeV)

Energy-Loss Spectra of 20 MeV Positrons on 1 Estep of Gold 

1 σ Relative Error
Benchmark

1 σ Relative Error
Landau Energy-Loss

Figure 5.23: Energy-Loss Spectra of 20 MeV Positrons on 1.40× 10−1cm of Gold
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Figure 5.24: Energy-Loss Spectra of 20 MeV Positrons on 1.67cm of Water
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Chapter 6

Lewis-type Theory for

Moment-Preserving Energy

Straggling

The investigation of moment-preserving models in an attempt to solve the transport

equation has a long history. Lewis[15] first showed that exact representation of

various moments of the spatial and angular distributions resulted in accurate models.

In doing such, the small-angle approximations that accompany condensed history

multiple-scattering theories are no longer necessary, allowing longer mean free paths

and greater efficiency. Franke and Prinja[9] were able to show for energy-loss, low

order moment-preservation results in a faster and accurate calculation of dose for

electrons, yet artifacts of the discretization resulted in energy-loss spectra of thin

targets.

In order to mitigate these artifacts, Harding[12] decomposed the analog cross

section into a discrete piece and a continuous piece. By allowing more probable in-

teractions to be represented by discrete moments of the cross section coupled with
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less probable interactions represented by the exact analog cross section, these ar-

tifacts were removed while maintaining computational efficiency. By representing

the less probable energy-losses by the continuous part essentially approximates the

higher-order moments to greater accuracy, thus increasing the accuracy of moments

and guarantying a more accurate solution.

Inherent in both of these methods is the preservation of specific physical as-

pects that accompany the cross section of the true analog problem. The accuracy

of moment-preserving is directly related to the number of moments preserved. Both

Franke and Harding[9, 12] have shown this relationship to be true. The Landau

energy-loss distribution, by definition, is constructed to guarantee the mean energy-

loss and therefore the first moment of the energy-loss is preserved. Work done by

Blunck-Westphal[3] has contributed to the distribution by convoluting a Gaussian

distribution about the mean capturing the correct variance about the mean, i.e. sec-

ond moment. Landau is moment-preserving up to the second energy-loss moment[23].

In terms of the definition of energy-loss moments, it is not possible to quantifiably

verify the second moment, nor is it possible to calculate the higher-order energy-loss

moments. This calls for a different approach in describing the Landau differential

cross section in such a manner that is easily compared to the analog solution. As

a result, we will show there exists a direct relationship between the preservation

of energy-loss moments and energy-flux moments, which will allow a quantifiable

comparison of Landau moments to analog moments.

More specifically, work by Prinja [20] has proven that for thin layers or steps

where the mean energy-loss is small compared to the incident energy of the particle,

such that the energy-loss moments of the allowable energy range do not vary, then

the number of energy-loss moments preserved through order N is identical to the

number of energy-flux moments preserved through order N . These constraints are

identical to the conditions of validity of the Landau[13] theory presented in Chapter
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4, and will allow a measurable comparison of high-order moments.

The motivation now is to establish the conditions under which there exists a direct

relationship between the energy-loss moments Qn and the energy-flux moments In.

We will begin by recalling the definitions of energy-loss and energy-flux moments:

Qe−,+,n =

∫ Qmax

Qmin

QnΣe−,+(E,Q)dQ, (6.1)

Ie−,+,n(s) =

∫ Emax

Emin

Enψe−,+(s, E)dE. (6.2)

Prinja [20] has developed equations for the energy-flux moments by beginning

with Equation 2.14, rearranging the incoming and outgoing energy terms and com-

bining the in-scatter and out-scatter terms to yield:

dIn(s)

ds
= −

∫
ψ(s, E)dE

∫
(En − E ′n)Σe(E → E ′). (6.3)

At this point it is convenient to write the integral over E ′ in terms of the energy

transfer Q = E − E ′ and introduce a binomial expansion:

E ′n = (E −Q)n =
n∑

m=0

(−1)m

 n

m

QmEn−m, (6.4)

using the same method for En, rewriting En − E ′n as a binomial expansion and

substituting it into Equation 6.3 gives the following:

dIn(s)

ds
=

n∑
m=1

cnm

∞∫
0

dEEn−mQm(E)ψ(s, E), (6.5)

cnm = (−1)m

 n

m

 , n = 1, 2, ..., N (6.6)

In(0) = En
0 , n = 1, 2, ..., N

Although Equation 6.5 has no value since the flux is unknown, this result does show

there is an implicit relationship between the two types of moments. Next, we will
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proceed with a second transport equation which differs from the first by changing the

differential cross section, and in turn the energy-loss moments. Hatted values will

be used to denote the associated variables in the second transport equation yielding:

dÎn(s)

ds
=

n∑
m=1

cnm

∞∫
0

dEEn−mQ̂m(E)ψ̂(s, E), (6.7)

În(0) = En
0 , n = 1, 2, ..., N (6.8)

giving a new set of energy-loss moments defined by:

Q̂n(E) =

∞∫
0

QnΣ̂e(E,Q)dQ n = 1, 2, ..., N . (6.9)

Now let the second transport equation be a pseudo-transport problem with identical

energy-loss moments to the analog problem up to some fixed order N :

Q̂n(E) = Qn(E), n = 1, 2, ..., N . (6.10)

It is clear in the general definition of the energy-flux that ψ(s, E) and ψ̂(s, E) will

differ regardless of any finite number of moments preserved and thus În and In will

not match. Now a constraint is made on the energy-loss moments to hold for a fixed

energy at E∗ in the range 0 < E∗ < E0:

Q̂n(E∗) = Qn(E∗), n = 1, 2, ..., N . (6.11)

Further more, the assumption is made that energy-loss moments do not differ from

their corresponding values at E = E∗ over this energy range. Therefore we may

write:

Qn(E) = Qn(E∗), (6.12)

Q̂n(E) = Q̂n(E∗), (6.13)

0 < E, E∗ ≤ E0, n = 1, 2, ..., N.
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Substituting Equations 6.12 and 6.13 into Equations 6.3 and 6.7 and expressing the

integral in terms of the respective energy-flux moments yields:

dIn(s)

ds
=

n∑
m=1

cnmQm(E∗)In−m(s); In(0) = En
0 , n = 1, 2, ... (6.14)

dÎn(s)

ds
=

n∑
m=1

cnmQ̂m(E∗)În−m(s); În(0) = En
0 , n = 1, 2, ... (6.15)

I0(s) = 1 = Î0(s). (6.16)

Equations 6.14 and 6.15 are now linear systems of closed moment equations for In(s)

and În(s) which can be solved for n ≥ 1. For 1 ≤ n ≤ N when Q̂n(E∗) = Qn(E∗), the

equations and initial conditions are identical and their solutions are also identical,

which means:

În(s) = In(s), n = 1, 2, ..., N . (6.17)

Finally, the differential energy transfer cross section corresponding to the pseudo-

transport problem has the same energy-loss moments as the true analog differential

energy transfer cross section through order N , and if these energy-loss moments do

not vary over the allowable energy range, then the two transport problems will have

identical energy-flux moments through order N . This condition will be met for thin

layers or steps where the mean energy-loss is small, and E∗ would then be equated to

the initial energy E0. This is precisely the condition in which Landau’s distribution

is applied. Therefore Prinja[20] has proven this moment-equivalence result is true

for any moment-preserving model within the constraints of Landau straggling theory.

However, it is important to note that the converse can not be proven. That is to

say that the number of energy-flux moments preserved through order N does not

guarantee that the number of energy-loss moments through order N are preserved.

The Landau distribution is inherently first moment-preserving, and has been

extended to capture the second moment by Blunck, et. al.[3], but by the definition of

energy-loss moments there is no computational way of evaluating Landau’s function.
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Although experimental comparison of the mean and full-width-half-max give results

for the first and second moment, there is still no way of determining higher moments.

Through the above equivalence, we now have a way of quantifiably measuring the

moments of Landau’s function against the analog solution. More specifically, based

on Prinja’s result and the documentation[23, 13, 3] about Landau’s second moment-

preservation, we may show while the first two energy-loss moments are preserved

so are the first two energy-flux moments. This would strongly suggest, yet not

mathematically prove, that the number of energy-flux moments preserved suggest a

similar equivalence to the number of energy-loss moments preserved.

This numerically observed accuracy of moment-preserving approximations of Lan-

dau energy straggling theory will facilitate the accuracy of a continuous model based

on the the Landau energy-loss algorithm which will be discussed in detail in the next

chapter.

6.1 Landau Energy-Flux Moments

Now that it has been shown under the constraints of Landau that equivalence among

energy-loss moments is true for any moment-preserving model, the following tables

provide evidence to this result. The data presented shows the first five energy-flux

moments of the benchmark compared to moments given by the Landau distribution

along with the percent error to the benchmark. The values in parentheses are the

RE1σ associated with the energy-flux calculations.

There is a noticeable change in RE1σ for all moments. Once a particle has

E0 > 1MeV , it takes a higher amount of particle samples to obtain converged

values. After 5MeV some statistics are not within measurable means for higher

order moments as a result of insignificant samples and high run-times for the standard

analog benchmark.

72



Chapter 6. Lewis-type Theory for Moment-Preserving Energy Straggling

As seen in the previous chapter, there exists a direct relationship between inci-

dent energy and accuracy. For electron and positron energies above 1MeV there is

convergence to the energy-flux moments within 1%. While for energies at or below

1MeV the convergence of moments begins to decrease. The difference in percent

error is lower for water than for gold. This result is also seen in the spectra found

in Figures 5.5 and 5.17 where the distribution around the most probable energy-loss

of the benchmark is more broad than that of higher energies. Convergence in the

percent error for water and gold is found at energies higher than 1MeV and is also

seen in the spectra where areas of most probable energy-loss are nearly exact. This

change in accuracy is due to the conditions made by Landau where energy-losses

for thin slabs are much smaller compared to the incident energy. The use of low

Z materials allows for smaller energy transfers since the ionization energy for these

materials are small. For example, the ionization energy for water is 1.3× 10−4MeV

while for gold the ionization energy is 7.9 × 10−4MeV . A lower ionization energy

extends the validity of the Landau distribution and therefore increases the accuracy

of the energy-loss sampling at lower energies. Furthermore, the ETRAN code[21] has

also mentioned that the handling of energy-loss straggling becomes less adequate at

low energies in materials of high atomic number.

The comparison of energy-flux moments have quantifiably supported the accuracy

of Landau’s distribution in terms of the first two moments. For energies above 1MeV

Landau is exact within 1% to the 5th order. Although at energies less than 1MeV

the moments begin to differ, Landau still remains quite accurate for low Z materials.

Landau has only been given credit for the second energy-loss moment[23], yet without

a quantifiable measurement. The relationship between energy-loss moments and

energy-flux moments can not be shown to be equivalent if compared in the latter,

yet the equivalence of the number of energy-loss moments relative to energy-flux

moments strongly suggests the number of energy-flux moments preserved may equate

to the number of energy-loss moments preserved. Given this suggestion, it is highly
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probable that Landau may be capturing higher order moments as well.

Energy-Loss Data of 200keV Electrons on Gold (1 Electron Step)

Cross Section Möller Landau % Error

I1 0.18373(6.72E-6) 0.18322(4.7E-6) 0.0%

I2 3.4208E-2(2.09E-6) 3.3793E-2(1.60E-7) 1.2%

I3 6.4248E-3(5.12E-7) 6.2671E-3(4.15E-7) 2.5%

I4 1.2141E-3(1.15E-7) 1.1676E-3(9.69E-8) 3.8%

I5 1.2660E-4(2.48E-8) 2.1842E-4(2.15E-8) 72%

Table 6.1: Table of values from simulations running 107 particles on Gold

Energy-Loss Data of 200keV Electrons on Water (1 Electron Step)

Cross Section Möller Landau % Error

I1 0.18317(6.03E-6) 0.18339(3.93E-6) 0.4%

I2 3.3914E-2(1.87E-6) 3.3788E-2(1.32E-6) 0.4%

I3 6.3239E-3(4.54E-7) 6.2487E-3(3.89E-7) 1.2%

I4 1.1851E-3(1.01E-7) 1.1592E-3(7.81E-7) 2.2%

I5 2.2292E-4(2.15E-8) 2.1562E-4(1.71E-8) 3.3%

Table 6.2: Table of values from simulations running 107 particles on Water

Energy- Loss Data of 500keV Electrons on Gold (1 Electron Step)

Cross Section Möller Landau % Error

I1 0.45871(1.54E-6) 0.45838(1.14E-6) 0.1%

I2 0.21280(1.20E-5) 0.21144(9.59E-6) 0.6%

I3 9.9465E-2(7.38E-6) 9.8017E-2(6.13E-7) 1.5%

I4 4.6741E-2(4.13E-6) 4.5625E-2(3.51E-7) 2.4%

I5 2.2053E-2(2.21E-6) 2.1310E-2(1.94E-7) 3.4%

Table 6.3: Table of values from simulations running 107 particles on Gold

Energy-Loss Data of 500keV Electrons on Water (1 Electron Step)

Cross Section Möller Landau % Error

I1 0.45088(1.50E-6) 0.45848(9.89E-6) 1.7%

I2 0.20555(1.15E-5) 0.21119(8.18E-6) 2.7%

I3 9.4395E-2(6.89E-6) 9.7632E-2(5.17E-7) 3.4%

I4 4.3574E-2(3.78E-6) 4.5269E-2(2.95E-7) 3.7%

I5 2.0193E-2(2.21E-6) 2.1041E-2(1.60E-7) 4.2%

Table 6.4: Table of values from simulations running 107 particles on Water
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Energy-Loss Data of 1MeV Electrons on Gold (1 Electron Step)

Cross Section Möller Landau % Error

I1 0.91730(2.87E-5) 0.91692(2.34E-5) 0.0%

I2 0.84973(4.52E-5) 0.84621(2.82E-5) 0.4%

I3 0.79239(5.53E-5) 0.78481(4.81E-5) 0.9%

I4 0.74247(6.19E-5) 0.73067(5.49E-5) 1.5%

I5 0.69822(6.62E-5) 0.68242(5.97E-5) 2.5%

Table 6.5: Table of values from simulations running 5× 107 particles on Gold

Energy-Loss Data of 1MeV Electrons on Water (1 Electron Step)

Cross Section Möller Landau % Error

I1 0.91675(1.16E-5) 0.91700(2.06E-5) 0.03%

I2 0.84716(1.82E-5) 0.84512(3.33E-5) 0.2%

I3 0.78713(2.21E-5) 0.78181(1.81E-5) 0.7%

I4 0.73423(2.46E-5) 0.72537(2.10E-5) 1.2%

I5 0.68691(2.63E-5) 0.67457(2.26E-5) 1.8%

Table 6.6: Table of values from simulations running 5× 107 particles on Water

Energy-Loss Data of 5MeV Electrons on Gold (1 Electron Step)

Cross Section Möller Landau % Error

I1 4.5869 (3.95E-5) 4.5850(3.90E-5) 0.0%

I2 21.196 (3.12E-4) 21.175(3.00E-4) 0.1%

I3 98.456 (1.91E-3) 98.250(1.82E-3) 0.2%

I4 459.04 (1.07E-2) 457.42(1.02E-2) 0.3%

I5 2146.4 (5.70E-2) 2135.1(5.44E-2) 0.5%

Table 6.7: Table of values from simulations running 108 particles on Gold

Energy-Loss Data of 5MeV Electrons on Water (1 Electron Step)

Cross Section Möller Landau % Error

I1 4.5863 (3.61E-5) 4.5849(1.12E-4) 0.0%

I2 21.164 (2.85E-4) 21.147(8.62E-4) 0.1%

I3 98.091 (1.74E-3) 97.916(1.82E-3) 0.2%

I4 456.06 (9.68E-3) 454.62(1.02E-2) 0.3%

I5 2125.4 (5.14E-2) 2115.3(5.44E-2) 0.5%

Table 6.8: Table of values from simulations running 108 particles on Water
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Energy-Loss Data of 10MeV Electrons on Gold (1 Electron Step)

Cross Section Möller Landau % Error

I1 9.1738 (1.07E-4) 9.1701(1.09E-4) 0.0%

I2 84.730 (1.69E-3) 84.695(1.67E-3) 0.0%

I3 786.27 (2.07E-2) 785.75(2.01E-2) 0.1%

I4 7321.6 (2.30E-1) 7312.7(2.22E-1) 0.1%

Table 6.9: Table of values from simulations running 5× 107 particles on Gold

Energy-Loss Data of 10MeV Electrons on Water (1 Electron Step)

Cross Section Möller Landau % Error

I1 9.1729 (2.19E-4) 9.1670(2.24E-4) 0.1%

I2 84.624 (3.46E-3) 84.594(3.41E-3) 0.0%

I3 783.81 (4.22E-2) 783.33(4.10E-2) 0.1%

I4 7281.0 (4.99E-1) 7272.6(4.52E-1) 0.1%

Table 6.10: Table of values from simulations running 107 particles on Water

Energy-Loss Data of 20MeV Electrons on Gold (1 Electron Step)

Cross Section Möller Landau % Error

I1 18.34 (4.59E-4) 18.34(4.83E-4) 0.00%

I2 338.7 (1.44E-2) 338.7(1.45E-2) 0.00%

I3 6281 (3.54E-1) 6281(3.49E-1) 0.00%

Table 6.11: Table of values from simulations running 107 particles on Gold

Energy-Loss Data of 20MeV Electrons on Water (1 Electron Step)

Cross Section Möller Landau % Error

I1 18.345 (4.24E-4) 18.340(1.99E-4) 0.03%

I2 338.36 (1.33E-2) 338.35(5.99E-2) 0.00%

I3 6264.0(3.26E-1) 6264.4(1.43E-1) 0.00%

Table 6.12: Table of values from simulations running 107 particles on Water
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Energy-Loss Data of 200keV Positrons on Gold (1 Electron Step)

Cross Section Bhabha Landau % Error

I1 0.18601 (6.23E-6) 0.18308(5.11E-6) 1.6%

I2 3.4990E-2(1.82E-6) 3.3779E-2(1.72E-7) 3.5%

I3 6.6196E-3 (4.44E-7) 6.2724E-3(4.48E-7) 5.2%

I4 1.2575E-3 (1.00E-7) 1.1709E-3(1.04E-7) 6.9%

I5 2.3963E-4 (2.18E-8) 2.1960E-4(2.32E-8) 8.4%

Table 6.13: Table of values from simulations running 107 particles on Gold

Energy-Loss Data of 200keV Positrons on Water (1 Electron Step)

Cross Section Bhabha Landau % Error

I1 0.18532(5.50E-6) 0.18596(4.62E-6) 0.3%

I2 3.4646E-2(1.59E-6) 3.4792E-2(1.56E-7) 0.4%

I3 6.5067E-3(3.86E-7) 6.5436E-3(4.14E-7) 0.6%

I4 1.2259E-3(8.67E-7) 1.2358E-3(9.78E-8) 0.8%

I5 2.3156E-4(1.87E-8) 2.3425E-4(2.19E-8) 1.2%

Table 6.14: Table of values from simulations running 107 particles on Water

Energy-Loss Data of 500keV Positrons on Gold (1 Electron Step)

Cross Section Bhabha Landau % Error

I1 0.46583(1.29E-5) 0.45849(1.06E-5) 1.6%

I2 0.21869(9.77E-6) 0.21135(8.84E-5) 3.4%

I3 0.10312(6.01E-6) 9.7843E-2(5.60E-6) 5.1%

I4 4.8781E-2(3.42E-6) 4.5451E-2(3.20E-6) 6.8%

I5 2.3135E-2(1.87E-6) 2.1173E-2(1.73E-6) 8.5%

Table 6.15: Table of values from simulations running 107 particles on Gold

Energy-Loss Data of 500keV Positrons on Water (1 Electron Step)

Cross Section Bhabha Landau % Error

I1 0.45799 (1.25E-5) (1.25E-5) 1.6%

I2 0.21134 (9.25E-6) (1.72E-5) 3.2%

I3 9.7931E-2 (5.59E-6) E-2 (6.70E-6) 4.7%

I4 4.5521E-2 (3.13E-6) E-2 (3.87E-6) 6.0%

I5 2.1211E-2 (1.68E-6) E-2(2.12E-6) 7.1%

Table 6.16: Table of values from simulations running 107 particles on Water
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Energy-Loss Data of 1MeV Positrons on Gold (1 Electron Step)

Cross Section Bhabha Landau % Error

I1 0.9169 (8.45E-7) 0.9169 (8.04E-7) 0.0%

I2 0.8478 (1.24E-6) 0.8471 (1.31E-6) 0.1%

I3 0.7876 (1.50E-6) 0.7872 (1.65E-6) 0.1%

I4 0.7343 (1.69E-6) 0.7348 (1.89E-6) 0.1%

I5 0.6864 (1.82E-6) 0.6885 (2.06E-6) 0.3%

Table 6.17: Table of values from simulations running 108 particles on Gold

Energy-Loss Data of 1MeV Positrons on Water (1 Electron Step)

Cross Section Bhabha Landau % Error

I1 0.92776 (9.85E-6) 0.92796 (9.23E-6) 0.0%

I2 0.86560 (1.46E-5) 0.86537 (1.51E-5) 0.0%

I3 0.81015 (1.78E-5) 0.81000 (1.91E-5) 0.0%

I4 0.76000 (2.01E-5) 0.76034 (2.19E-5) 0.0%

I5 0.71428 (2.18E-5) 0.71539 (2.38E-5) 0.2%

Table 6.18: Table of values from simulations running 5× 107 particles on Water

Energy-Loss Data of 5MeV Positrons on Gold (1 Electron Step)

Cross Section Bhabha Landau % Error

I1 4.587 (1.26E-4) 4.585 (1.30E-4) 0.0%

I2 21.20 (9.03E-4) 21.19 (1.00E-3) 0.0%

I3 98.40 (5.37E-3) 98.44 (6.09E-3) 0.0%

I4 457.8 (2.98E-2) 459.1 (3.40E-2) 0.3%

I5 2134 (1.59E-1) 2147 (1.82E-1) 0.6%

Table 6.19: Table of values from simulations running 107 particles on Gold

Energy-Loss Data of 5MeV Positrons on Water (1 Electron Step)

Cross Section Bhabha Landau % Error

I1 4.6207(1.10E-4) 4.6191 (1.12E-4) 0.0%

I2 21.473(7.89E-4) 21.462 (8.70E-4) 0.1%

I3 100.07(4.72E-3) 100.11 (5.30E-3) 0.0%

I4 467.32(2.62E-2) 468.21 (2.96E-2) 0.2%

I5 2185.8(1.41E-1) 2194.4 (1.58E-1) 0.4%

Table 6.20: Table of values from simulations running 107 particles on Water
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Energy-Loss Data of 10MeV Positrons on Gold (1 Electron Step)

Cross Section Bhabha Landau % Error

I1 9.175 (2.48E-4) 9.169 (2.45E-4) 0.1%

I2 84.79 (3.50E-3) 84.69 (3.73E-3) 0.1%

I3 786.4 (4.15E-2) 785.7 (4.49E-2) 0.1%

I4 7312 (4.59E-1) 7312 (4.98E-1) 0.0%

Table 6.21: Table of values from simulations running 107 particles on Gold

Energy-Loss Data of 10MeV Positrons on Water (1 Electron Step)

Cross Section Bhabha Landau % Error

I1 9.0168 (2.45E-4) 9.0117 (2.53E-4) 0.1%

I2 81.906 (3.40E-3) 81.852 (3.77E-3) 0.1%

I3 746.69 (3.95E-2) 747.08 (4.46E-2) 0.1%

I4 6824.3 (4.30E-1) 6842.1 (4.86E-1) 0.0%

Table 6.22: Table of values from simulations running 107 particles on Water

Energy-Loss Data of 20MeV Positrons on Gold (1 Electron Step)

Cross Section Bhabha Landau % Error

I1 18.35 (1.53E-4) 18.34 (1.53E-4) 0.1%

I2 339.0 (4.29E-3) 338.7 (4.61E-3) 0.1%

I3 6283 (1.01E-1) 6281 (1.10E-1) 0.0%

Table 6.23: Table of values from simulations running 107 particles on Gold

Energy-Loss Data of 20MeV Positrons on Water (1 Electron Step)

Cross Section Bhabha Landau % Error

I1 18.447(1.35E-4) 18.441 (1.99E-4) 0.0%

I2 342.12(3.84E-3) 342.07 (6.03E-3) 0.0%

I3 6361.9(9.11E-1) 6367.8 (1.45E-1) 0.1%

Table 6.24: Table of values from simulations running 107 particles on Water
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Chapter 7

Landau Pseudo-Transport(LPT)

Model

We now present a moment-preserving single-event positron/electron transport for-

mulation. It has been shown that Landau’s energy-loss distribution matches the

energy-flux moments of our “exact” analog model suggesting an equivalent moment-

preserving cross section. In order to connect Landau with the transport problem in

question, we first begin by defining Landau as a differential cross section by recalling

the definition of an energy-loss cross section:

Σ(E ′ → E) = Σ(E ′)P
(
E ′ → E,

)
,

∫
P
(
E ′ → E,

)
dE = 1 (7.1)

where Σ(E ′) is the total cross section in cm−1 and P is the probability of an energy-

loss from E ′ to E. Therefore a “Landau” cross section ΣL can be defined by:

ΣL(E ′ → E) = ΣL(E ′)f
(
E ′ → E

)
, (7.2)

The function f
(
E ′ → E

)
is Landau’s function and has been formulated such that∫

fdE = 1. Energy-losses sampled from this function are based on the step-size

input by the user. In other words, Landau samples the probability of an energy-loss
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per given distance traveled by the particle. This is the exact definition of the total

cross section and now:

ΣL(E ′) =
1

λL
, λL = s(E ′), (7.3)

where λL is the mean free path(MFP) equal to an energy-dependent step-size. More

specifically, the step-size is equal to the distance traveled for a particle with an initial

energy E ′ suffering an energy-loss equal to 8.3% (Section 5.1). Our pseudo-transport

equation becomes:

∂ψ(s, E)

∂s
=

∫ Emax

Emin

ΣL(E0) [ψ(s, E ′)− ψ(s, E)] dE ′ (7.4)

ψ(0, E) = δ(E − E0). (7.5)

We now have a moment-preserving cross section that is both smooth and continu-

ous and can easily be solved through single-event Monte Carlo. We will further refer

to this model as the Landau pseudo-transport(LPT) model. The formation of the

Landau single-event transport will follow the same sequence as discussed in Chapter

3. The sampling of a distance to collision will be substituted by the relative Landau

step-size. As a result, a particle will no longer be moved an arbitrary distance spec-

ified by the user, rather an exponential distribution of the mean free path(MFP),

but in our case the step-size, will be sampled moving the particle, on average, the

distance of the step-size. Once the distance to collision has been sampled, the en-

ergy transfer suffered within this collision will then be sampled from the Landau

energy-loss distribution based on the incident energy and step-size used in the dis-

tance to collision sampling. The implementations above should provide a continuous

transport model of energy-loss straggling speeding up the transport of positrons and

electrons by allowing longer MFP’s and smoother energy-loss distributions. A more

detailed description is provided as well as energy-loss spectra and energy deposition

comparisons to the benchmark.
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7.0.1 Distance to Collision

The “random walk” sequence outlined in Chapter 3 will be followed. The step-size

chosen will be based on the accepted value of k = 8(Chapter 5) for the major step

and a substep value chosen by the user. The following equations show the manner

in which the distance to collision will be sampled:

step = [E ∗ (1− 2
−1
8 )]/substeps (7.6)

λL = step (7.7)

P (s)coll ds = e−s/λL
1

λL
ds (7.8)

C(s) =

s∫
0

P (s′)coll ds
′ (7.9)

s = −λLlog(ξ1). (7.10)

Throughout the transport the step-size is verified to meet the constraints in Equa-

tion 4.36. If at any point throughout the “random walk” the step falls below the

Landau constraint, the step is then changed to the smallest allowable step-size based

on allowable values of ξ/I given by the ETRAN code[21]. Throughout, the MFP of

the true differential cross section is computed and compared to the current step-size.

If the step-size falls below the true MFP then the code will switch to the actual

analog differential cross section since there will no longer be an advantage using

Landau.

7.0.2 Energy-Loss

Next, a straggling value is randomly chosen from the Landau distribution described

in Chapter 4. This distribution is solely based on the step-size computed above

(step), the incident energy (energy), and the relative stopping power computed by

the first moment of the respective differential cross section (qs csda). The Landau
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energy-loss routine strag landau[23], Section 4.2.4, will sample an energy-loss as

follows:

Q = (qs csda + strag landau(energy, step, qs csda)) ∗ step. (7.11)

This will continue until the particle has reached a boundary or the particle has lost

all of it’s energy.

The following sections will provide distributions of energy-loss spectra and dose

for gold and water. In this section we will discuss the effect of changing MFP’s in

the Landau single-event model and leave the detailed discussion of comparison to the

benchmark for the next chapter. Due to the decrease in accuracy of Landau found

in Chapter 6, gold and water will be evaluated at energies E ≥ 1MeV .

7.1 Energy-Loss Spectra

Different substeps have been chosen in order to show how the LPT model varies with

step-size. Substeps are chosen to be 1, 5, 10, and 20. The constraint set by Landau

where the energy-losses must be sufficiently larger than the incident energy, is seen

to have an effect on the step-size at E0 = 1MeV . In Table 7.1 the largest number

of substeps for 1MeV electrons and positrons on water and gold is 14. Looking at

Table 7.1 and Table 7.5, with increasing substeps the MFP is nearly as short as the

analog MFP. While MFP’s are energy dependent, at some point during the transport

the step-size becomes smaller than the analog, at that point the cross sections switch

to the analog cross section. This can be seen in the tail of 10 and 14 substeps for

1MeV positrons on gold. Efficiency is lost by the Landau distribution once the MFP

is close to the benchmark MFP, a comparison of CPU time shows this. For 1MeV

positrons on gold, the benchmark calculation is faster than Landau while the MFP of

Landau is 10−4cm greater than the benchmark. As incident energies increase, this is
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no longer an issue. While MFP’s are greater than that of the benchmark, significant

speed-ups arise in CPU time.

There is a direct connection between the number of substeps and runtime. For

increasing substeps, the MFP is reduced causing more collisions and increasing the

runtime of the simulation. For electrons in gold, there is a linear relationship between

the number of substeps, number of collisions and runtime. Table 7.3 shows that for

1 substep there is an average of 1 collision with a CPU time of 6.4min, while for

10 substeps there is an average of 10 collisions with a CPU time close to 60min.

This relationship does not exist in water. Table 7.2 and Table 7.3 show that 1MeV

electrons suffer 5 times more collisions in 1 Estep of water versus 1 Estep of gold.

A distinct artifact that the LPT model produces, is relative to the λcut value

discussed in Chapter 5. Chapter 5 showed there was an increase of this drop-off

point with increasing energy for the Landau distribution, Figures 7.1 and 7.3 verify

this characteristic. Despite the artifact inherent in the Landau distribution, the

energy-loss spectra are closely matched for electrons.

Positrons show a similar artifact. The Bhabha cross section does not have an in-

distinguishability issue and therefore a drop-off of E0/2 does not occur, yet there still

exist a cutoff in the Landau distribution which is seen in Figure 7.5 and Figure 7.6.

There is a clear relationship between the distribution and the number of substeps.

For a single substep, most of the particles are not colliding within the slab. As a

result, the energy-loss is not computed for those particles. Looking at Figure 7.2 it

may appear using 1 substep has a better RE1σ than higher substeps but this is due

to an insignificant number of particles being sampled in these energy bins. As the

substeps increase the distribution becomes more defined, higher energy-losses become

more probable and more energy bins receive significant particle samples. This is seen

in all energy-loss spectra computed.
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Tables 7.1 and 7.2 show an increase of mean energy-loss and most probable

energy-loss with increasing substeps. For 1MeV electrons on water, the mean energy-

loss changes by less than 1% from 1 substep to 14 while for 10MeV electrons the

mean energy-loss is identical from 5 substep to 20, yet for both energies the most

probable energy-loss is always 0MeV for 1 substep and by 5 substeps the value has

converged. This relationship can be seen in Figures 7.1 and 7.3. As the substeps are

increased, the distribution about the most probable becomes more peaked.

The energy-loss spectra for gold and water show overall convergence to the bench-

mark solution around the area of most probable energy-losses. There is a significant

difference in MFP’s for gold and water when compared to their benchmark’s. In

Tables 7.2 and 7.3 Gold’s MFP at 20 substeps is 5 times longer than its benchmark

where water at 20 substeps is 26 times longer. By increasing the substeps to 40

for water, the MFP is 13 times larger than the benchmark and the spectra for 40

substeps moves closer to the benchmark. This difference in MFP’s and spectra show

there exists a direct connection with step-size and number of collisions associated

with that step-size.

It is clear that particle energies greater than 1MeV have smaller changes in mean

energy-loss with respect to subteps yet most probable energy-losses remain depen-

dent. Also, the energy-loss distribution is more defined for greater substeps. This

is caused by the reduction of MFP’s, reducing the estimation of the straggling over

a given step-size, increasing the collisions within the simulated material and allow-

ing for significant sampling at higher energy-losses. This implies that the pseudo-

transport algorithm is highly dependent on step-size. Longer step-sizes reduce the

number of energy-loss sampling within a given slab while transporting the parti-

cle further within the medium. Small step-sizes increase the number of energy-loss

sampling within the slab while transporting the particle a shorter distance.
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LPT Energy-Loss Data of 1MeV Electrons on Water

Substeps 1 5 10 14 Benchmark

Mean Energy-Loss (cm) 8.33E-2 8.33E-2 8.34E-2 8.35E-2 8.33E-3

Most Probale Eloss (cm) 0.00 4.67E-2 5.33E-2 5.33E-2 4.67E-2

MFP(cm) 4.64E-2 1.83E-3 9.14E-3 6.54E-3 1.41E-3

Collisions 2.07 5.27 10.54 14.74 68.2

Fraction Uncollided 0.14 0.01 0.00 0.00 0.00

Runtime (min) 13.0 29.7 54.4 74.1 116.8

Table 7.1: Table of values from 108 samples on 9.6× 10−2cm of Water.

LPT Energy-Loss Data of 10MeV Electrons on Water

Substeps 1 5 10 20 40 Benchmark

Mean Energy-Loss (cm) 1.057 1.057 1.057 1.057 1.057 8.271E-1

Most Probale Eloss (cm) 0.0 6.67E-1 7.33E-1 7.33E-1 7.33E-1 5.33E-1

MFP(cm) 4.17E-1 1.66E-1 8.35E-2 4.17E-2 2.08E-2 1.25E-4

Collisions 2.71 6.78 13.56 27.10 54.19 551.3

Fraction Uncollided 0.08 0.00 0.00 0.00 0.00 0.00

Runtime (min) 3.3 7.4 13.5 26.4 51.0 421.8

Table 7.2: Table of values from 107 samples on 1.13cm of Water.

LPT Energy-Loss Data of 10MeV Electrons on Gold

Substeps 1 5 10 20 Benchmark

Mean Energy-Loss (cm) 8.261E-1 8.265E-1 8.293E-1 8.380E-1 8.262E-1

Most Probale Eloss (cm) 0.00 4.67E-1 4.67E-1 5.33E-1 4.67E-1

MFP(cm) 7.33E-1 1.43E-2 7.15E-3 3.57E-3 6.57E-4

Collisions 1.05 5.23 10.45 20.9 113.7

Fraction Uncollided 0.37 0.01 0.00 0.00 0.00

Runtime (min) 6.4 29.2 53.2 101.3 439.0

Table 7.3: Table of values from 5× 107 samples on 7.5× 10−2cm of Gold.
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LPT Energy-Loss Data of 1MeV Positrons on Water

Substeps 1 5 10 14 Benchmark

Mean Energy-Loss (cm) 7.221E-2 7.223E-2 7.251E-2 7.330E-2 7.223E-2

Most Probale Eloss (cm) 0.00 0.00 4.0E-1 4.0E-1 4.67E-1

MFP(cm) 2.71E-2 2.12E-2 1.06E-2 5.31E-3 1.41E-3

Collisions 3.55 4.5 9.07 18.1 68.1

Fraction Uncollided 0.04 0.01 0.00 0.00 0.00

Runtime (min) 20.0 25.6 46.3 87.1 263.2

Table 7.4: Table of values from 108 samples on 9.6× 10−2cm of Water.

LPT Energy-Loss Data of 1MeV Positrons on Gold

Substeps 1 5 10 14 Benchmark

Mean Energy-Loss (cm) 8.576E-2 8.657E-2 8.973E-2 9.153E-2 8.313E-2

Most Probale Eloss (cm) 0.00 3.0E-2 4.67E-1 4.67E-1 4.67E-2

MFP(cm) 2.41E-3 1.93E-3 9.63E-4 6.48E-4 5.84E-4

Collisions 4.21 5.27 10.5 15.7 17.44

Fraction Uncollided 0.02 0.00 0.00 0.00 0.00

Runtime (min) 47.8 58.0 108.1 150.9 142.1

Table 7.5: Table of values from 108 samples on 1.0× 10−2cm of Gold.
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Figure 7.1: Energy-Loss Spectra of 1 MeV Electrons on 9.6× 10−2cm of Water
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Figure 7.2: Relative Error of 1 MeV Electrons on 9.6× 10−2cm of Water
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Figure 7.3: Energy-Loss Spectra of 10 MeV Electrons on 1.31cm of Water
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Figure 7.4: Energy-Loss Spectra of 10 MeV Electrons on 7.5× 10−2cm of Gold
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Figure 7.5: Energy-Loss Spectra of 1 MeV Positrons on 9.6× 10−2cm of Water
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Figure 7.6: Energy-Loss Spectra of 1 MeV Positrons on 8.52× 10−3cm of Gold
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7.2 Energy Deposition

Energy-loss spectra of thin slabs has proved a dependence on step-size for LPT model

of charged particles. An investigation of energy deposition is made to show how this

dependence effects the dose of the material.

Figures 7.7 and 7.9 show a difference in energy deposition for 1MeV electrons. For

water, a difference in substeps does not change the energy deposited in the first 0.5cm

of the slab. Once the electron has passed this point an increase of energy deposition

is seen relative to the number of substeps. For gold, the magnitude of substeps

determines the magnitude of energy deposited within the slab. Higher substeps

deposit more energy than those of lower substeps. The depth of the electrons for

substeps greater than 1 substep does not change significantly. The use of 10 substeps

increases the dose by almost 10% while reducing the depth of the particle by almost

15%. The cause of this difference in materials is due to the constraints set by the

Landau routine. The use of low Z materials allows for smaller substeps since the

ionization energy for these materials is smaller. A lower ionization energy extends

the validity of the Landau distribution and therefore increases the accuracy of the

energy-loss sampling.

Figures 7.11 and 7.13 show a decrease in material dependence for higher energy

electrons. Again for water, up to a depth of about 5cm a single substep provides

the same energy deposition as all the other substeps. After this point there is a

reduction in energy deposition with an increase of penetration for a single substep.

As the substeps increase, the energy deposition also increases while the distance

traveled by the particle is reduced. Although the length of this slab is sufficiently

large enough to guarantee a complete energy-loss of a 20MeV electron, there is still

a small fraction of electrons that penetrate through the slab. For gold, there is

no longer a change in the magnitude of energy deposited for a change in substeps.
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Figure 7.13 shows this.

The relative errors presented in Figures 7.8, and 7.10 are evidence of the biasing

produced by the substeps. For a single substep, a reduction in energy deposited

produces a higher relative error since the particle is allowed to move further within

the slab thus increasing the spread of energy deposited. Substeps greater than 1

reduce this spreading, causing a more concentrated deposition, decreasing the relative

errors.
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Figure 7.7: Energy Deposition of 1 MeV Electrons on 2.5cm of Water
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Figure 7.8: Relative Error of 1 MeV Electrons on 2.5cm of Water
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Figure 7.9: Energy Deposition of 1 MeV Electrons on 0.2cm of Gold
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Figure 7.10: Relative Error of 1 MeV Electrons on 0.2cm of Gold
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Figure 7.11: Energy Deposition of 10 MeV Electrons on 18cm of Water
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Figure 7.12: Energy Deposition of 10 MeV Electrons through 18cm of Water
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Figure 7.13: Energy Deposition of 10 MeV Electrons on 1.7cm of Gold
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Figure 7.14: Energy-loss of 10 MeV Electrons through 1.7cm of Gold
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Chapter 8

Results and Comparisons to the

Benchmark

Having examined energy-loss spectra and energy deposition of particles incident on

varying widths of gold and water, results show a strong dependence on step-size. Con-

vergence in the distribution, runtime and mean energy-losses are heavily dependent

on the number of substeps chosen. Also, there is a strong relationship concerning the

number of actual collisions within a step-size versus the number of collisions allowed

within the MFP of the LPT model. These relationships were further solidified when

particles were transported through thicker slabs and energy-loss spectra within these

thicker targets showed a decreasing spread of energy-losses with increasing substeps.

In order to find the optimal step-size, simulations were ran with different substeps

and compared against the benchmark. It has already been discussed that energies

around 1MeV show inaccurate results, while higher energies begin to agree. Simu-

lations for 1MeV and 10MeV particles are presented to show where the LPT model

did not work as well as where it did. Relevant data will also be compared against

the benchmark to explain these results.
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8.1 Energy-Loss Spectra

Here we make comparisons of energy-loss spectra obtained using the analog models

that were developed in Chapter 3 against the LPT model described in Chapter 7.

Figures 8.1 and 8.2 are comparisons of the benchmark using the Möller and Bhabha

differential energy-loss cross sections against the Landau pseudo-differential cross

section. These particle have energies of 1MeV and are incident on 9.6 × 10−2cm

of water. From the figures, it is evident that the spectra do not match exactly.

While the areas of most probable energy-loss are closely matched, after 0.5MeV the

tails of the distributions differ significantly. This is caused by the impossibility of

energy-losses associated with the λcut value inherent in the Landau distribution. The

mismatch in the tail of energy-loss spectra is common in all figures, yet Figures 8.2-

8.8 show that with increasing energy, the spectra under the area of most probable

energy-loss is nearly exact.

As mentioned previously, run-times for the LPT model are very efficient. Ta-

ble 8.1 shows the run-times and speed-up(over the benchmark) for the simulations

in figures. In order to show the difference in choosing substeps, 1 substep is also

included. The speed-up for a single substep is high. With increasing energy the

speed-up becomes larger. Even with many substeps taken, the speed-up of the LPT

model is at least 2 times better.

The spectra also shows that there is a more accurate computation for low Z

materials. Water does not only match the spectra better around the most probable

energy-loss but the energy-flux moments are better preserved when compared to gold.

Table 8.2 shows an increasing convergence with increasing energy. The differences

in the moments when compared to the benchmark are more accurate for low Z.

Despite these results, there is still not an accurate spectra for energy-loss. The

inability to capture the higher moments correlates to a less accurate representation
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of the analog problem. The next section will show how the LPT model compares

with the benchmark in thicker slabs.

Run-times, Particles on Water and Gold

Cross Section e− e+

(substeps) runtime(min) speed-up runtime(min) speed-up

1MeV Particles on 2.5cm of Water

Benchmark 116.76 1.00 263.17 1.00

LPT(1) 12.77 9.14 20.38 12.9

LPT(14) 74.75 1.56 87.61 3.00

10MeV Particles on 10cm of Water

Benchmark 546.83 1.00 527.56 1.00

LPT(1) 3.29 166.21 5.51 95.75

LPT(20) 26.38 20.38 23.73 22.23

1MeV Particles on 8.52× 10−3cm of Gold

Benchmark 27.11 1.00 142.16 1.00

LPT(1) 11.77 2.30 48.30 2.94

LPT(14) 70.05 0.39 150.88 0.94

10MeV Particles on 7.5× 10−2cm of Gold

Benchmark 438.96 1.00 409.90 1.00

LPT(1) 6.38 68.80 19.91 20.59

LPT(20) 101.96 4.31 88.51 4.63

Table 8.1: Runtime Comparisons for Spectra Simulations of the LPT Model Against
the Benchmark, for Electrons and Positrons.
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Energy-flux Moments, Particles on Water and Gold

Moments e− e+

Benchmark LPT(substeps) % Error Benchmark LPT(substeps) % Error

1MeV Particles on 2.5cm of Water

I1 0.91675 0.91647(14) 0.0 0.92776 0.92670(14) 0.1

I2 0.84716 0.84473 0.3 0.86560 0.86340 0.3

I3 0.78713 0.78195 0.7 0.81015 0.80765 0.3

I4 0.73423 0.72625 1.1 0.76000 0.75787 0.3

I5 0.68691 0.67634 1.5 0.71428 0.71294 0.2

10MeV Particles on 10cm of Water

I1 8.9420 8.9430(20) 0.0 9.0168 9.0169(20) 0.0

I2 80.570 80.657 0.1 81.906 81.981 0.0

I3 729.77 731.32 0.2 746.69 749.28 0.3

I4 6635.4 6656.0 0.3 6824.3 6873.5 0.7

1MeV Particles on 8.52× 10−3cm of Gold

I1 0.91729 0.91685(14) 0.0 0.91687 0.90846(14) 0.9

I2 0.84971 0.84197 0.1 0.84781 0.83202 1.9

I3 0.79237 0.78028 1.5 0.78764 0.76654 2.7

I4 0.74245 0.72626 2.2 0.73426 0.70950 3.4

I5 0.69820 0.67831 2.8 0.68639 0.65916 4.0

10MeV Particles on 7.5× 10−2cm of Gold

I1 9.1738 9.1619(20) 0.1 9.2422 9.2254(20) 0.2

I2 84.730 84.576 0.2 85.986 85.742 0.3

I3 786.27 784.46 0.2 802.60 800.65 0.2

I4 7321.6 7300.7 0.3 7508.7 7501.2 0.1

Table 8.2: Energy-flux Moments Comparisons for Simulations of the LPT Model
Against the Benchmark, for Electrons and Positrons on Gold and Water.
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Figure 8.1: Energy-loss Spectra of 1 MeV Electrons on 9.6× 10−2cm of Water
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Figure 8.2: Energy-loss Spectra of 1 MeV Positrons on 9.6× 10−2cm of Water
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Figure 8.3: Energy-loss Spectra of 1 MeV Electrons on 8.52× 10−3cm of Gold
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Figure 8.4: Energy-loss Spectra of 1 MeV Positrons on 8.52× 10−3cm of Gold
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Figure 8.5: Energy-loss Spectra of 10MeV Electrons on 1.31cm of Water
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Figure 8.6: Energy-loss of 10 MeV Positrons on 1.31cm of Water
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Figure 8.7: Energy-loss Spectra of 10 MeV Electrons on 7.5× 10−2cm of Gold
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Figure 8.8: Energy-loss Spectra of 10 MeV Positrons on 7.5× 10−2cm of Gold
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8.2 Dose

As mentioned previously, there is a direct relationhip between the MFP and the

energy deposited. With long MFP’s more energy is distributed throughout the ma-

terial, while small MFP’s increase the deposition and decrease the penetration of the

particle. It has already been shown that 1MeV particles on gold did not produce

accurate results in thin slabs, therefore it will not be included in this discussion.

Figures 8.9 and 8.10 model 1MeV electrons and positrons and are compared

against the benchmark. These particles are incident on 2.5cm of water. Each of these

simulations saw the best results at 1 substep. Although the energy-loss spectra and

energy-flux moments showed a low count of accuracy, the distribution comes close to

matching the benchmark. Positrons show a very large increase of energy deposited

as the particle begins to slow down. Run-times for these simulations show a decrease

in run-time by at least a factor of 2. The efficiency gained for dose deposition profiles

can be seen in Table 8.3.

Figures 8.11 and 8.12 model the energy deposition and the energy-loss spectra

for 10MeV electrons through 18cm of water. With only 5 substeps the dose profile is

nearly exact. The speed-up of the LPT model is a factor of more than 6. Figure 8.12

gives an interesting insight. This figure shows that, although the energy-loss dis-

tribution does not match the energy-losses experienced by the benchmark, the dose

profile still remains accurate. The figure does show, although the magnitudes do not

match, that the LPT model matches the peak of the benchmark. If the MFP’s were

made smaller these peaks would begin to converge to the benchmark but 5 substeps

provided a very accurate result with the best speed-up, seeking more substeps would

not be worth the extra time.
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Run-times, Particles on Water and Gold

Cross Section e− e+

(substeps) runtime(min) speed-up runtime(min) speed-up

1MeV Particles on 2.5cm of Water

Benchmark 73.16 1.00 49.26 1.00

LPT(1) 11.24 6.5 29.97 2.28

10MeV Particles on 18cm of Water

Benchmark 237.26 1.00 586.61 1.00

LPT(5) 34.91 6.80 34.28 17.11

10MeV Particles on 1.8cm of Gold

Benchmark 72.93 1.00 141.51 1.00

LPT(5) 24.42 2.99 25.00 5.66

Table 8.3: Run-time Comparisons for Simulations of the LPT Model Against the
Benchmark, for Electrons and Positrons on Water and Gold.
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Figure 8.9: Energy Deposition of 1MeV Electrons on 2.5cm ofWater
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Figure 8.10: Energy Deposition of 1MeV Positrons on 2.5cm of Water
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Figure 8.11: Energy Deposition of 106 10MeV Electrons on 18cm of Water
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Figure 8.12: Energy-loss Spectra of 106 10MeV Electrons Through 18cm of Water
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Figure 8.13: Energy Deposition of 106 10MeV Electrons on 1.7cm of Gold
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Figure 8.14: Energy-loss Spectra of 106 10MeV Electrons Through 1.7cm of Gold
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Chapter 9

Conclusion

The primary objective of this thesis was to develop and demonstrate a computation-

ally efficient moment-preserving single-event Monte Carlo method for electron and

positron energy-loss straggling. We have explicitly shown through detailed simula-

tion that electrons and positrons pose a unique problem for analog transport, in that,

energy-loss distributions are highly peaked about low energy-losses, but have signif-

icant contributions from infrequent large energy-losses. We have shown that these

large energy transfers lead to significant tails in the differential energy-loss cross sec-

tions which in turn result in long tails in energy-loss spectra and broadened dose

profiles. Because of these deficiencies, analog energy-loss straggling simulations are

highly inefficient. In this thesis we have introduced a Lewis-like moment-preserving

theory which strongly suggested the accuracy of Landau’s energy-loss distribution

against the analog cross sections. As a result, we were able to define a pseudo-

differential cross section which is more smooth than the analog and has a longer

mean free path, resulting in a more efficient single-event transport of electrons and

positrons. This pseudo-transport model was thoroughly tested and compared against

the analog.
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We have generalized Lewis Theory to show that for thin layers, that it is possi-

ble to equate number of moments of the energy-loss preserved with the number of

energy-flux moments preserved. This suggested, without formal proof, a relation-

ship between the number of preserved energy-flux moments equating to the number

of energy-loss moments preserved. Before this connection was made between the

two types of moments, it was not possible to quantifiably measure how many mo-

ments the Landau distribution captured and to what accuracy. Landau has been

customarily given credit for two moments, we have quantitatively shown this result

in terms of energy-flux moments. It was shown that while the first two energy-loss

and energy-flux moments were preserved, Landau captures higher order moments of

the energy-flux. This suggested that Landau may also capture higher energy-loss

moments. The ability to calculate the accuracy of Landau’s distribution provided

the development of a pseudo-transport model(LPT). We were able to redefine the

differential cross section with a pseudo-differential cross section based on the Landau

energy-loss distribution. The reason this is considered a pseudo-differential cross sec-

tion is because there is no true physics involved in the redefined cross section, Landau

is simply a distribution of variance about a mean value. The advantages gained by

using the LPT model is allowing longer mean free paths, decreasing computational

run-time and allowing for a true single-event transport process.

Thorough examination of the LPT model has indicated a strong dependence on

the choice of step-size. For longer step-sizes where the greatest gain in run-time is

possible, particles are allowed to move further and as a result increase the distribution

of energy. Shorter step-sizes produce less distributed energy-losses and more peaked

spectra but at the cost of run-time. In cases where the step-size is close to the analog

mean free path, run-time becomes longer and the LPT model is no longer useful.

Due to these conditions on step-size, there does exist a step-size that provides both

an accurate result with the greatest gain in computational time. We have shown

specific cases where these conditions have been met.
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Having successfully implemented the LPT model, we have shown that despite

artifacts that arise in the energy-loss spectra for thin slabs, significant speed-ups

accompanied by accuracy in relation to the analog solution has been obtained. It

was shown for thin slabs that Landau inherently does not allow for energy-losses

equating to energies above a specific cutoff value meant to preserve the average

energy-loss within a given step. This cutoff value produces an artificial cutoff in the

energy-loss spectra resulting in differences in the spectra for high energy-losses. As a

result, it is impossible to match energy-loss spectra without manipulating the Landau

distribution itself. Despite this artifact, comparison of thick material simulations

have been shown to be as accurate as the analog solution. Energy deposition profiles

have been matched while computational times have been significantly decreased.

The analog models that are used in this thesis have been rigorously studied and

are well described by the Möller and Bhabha cross sections. Despite the fact that

we only described a model for hard inelastic collisions with atomic electrons and

positrons, the use of a moment-preserving pseudo-transport model demonstrates a

high achievement in accuracy and efficiency. This moment-preserving model also

demonstrates that the preservation of relatively low-order moments are essential to

the approximation of analog distributions. In addition, the simplicity of this model

stands in contrast to the complexity of the widely used condensed history model.

Further work can be done on optimizing the step-sizes in the LPT model. It was

shown that specific step-sizes produced the best results, yet without some form of

material or energy dependence. Since the step-size is energy dependent, it suggests

that there must be a way to fine-tune the step-size in such a manner that the fastest

and most accurate results will arise. Implementing either a conditional step-size or

an adaptive step-size could guarantee the longest step-size with little accuracy lost

in the simulation. More specifically, the step-sizes for an electron step is relative to

the number of collisions for the particle to lose half of its initial energy. Changing
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this parameter as the particle moves through a material would be worth while since

the number of collisions suffered through a material is not a linear process.

Along with step-size optimization, changing the LPT algorithm could contribute

to further development. The LPT model currently samples an energy-loss relative to

the mean free path, initial energy of the particle and the respective mean energy-loss

within that path. It would be advantageous to examine the effects of sampling an

energy-loss relative to the actual distance traveled by the particle. While it has been

shown that step-sizes close to the analog mean free path produce inefficient results,

this is only in terms of the distance traveled by the particle. Changing the distance

in the energy-loss sampling could provide more accurate results.

A more thorough evaluation of the Landau distribution itself could also mitigate

errors found in the LPT model. Sampling from the Landau distribution uses pre-

computed arrays from the evaluation of 1MeV electrons on gold[4]. Recomputing

these arrays for different energies or materials could remove the dependence on the

cutoff value used in sampling from the distribution.

Lastly, implementing a hybrid method accompanying the LPT model could mit-

igate the artifacts that were produced by the Landau distribution in thin slabs. By

coupling discrete energy-losses for highly probable interactions and using the LPT

continuous model to deal with less probable interactions would potentially remove

the large differences in the tail of energy-loss spectra.
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