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ABSTRACT  

During a preventative maintenance at the Los Alamos Neutron Science Center 

(LANSCE) Isotope Production Facility (IPF), a beam window made of solution annealed 

Alloy 718 was replaced and the old beam window was analyzed. The old beam window 

underwent mechanical testing and microstructure analysis. During the microstructure 

analysis, the formation of γꞌꞌ precipitates was observed in Transmission Electron 

Microscopy (TEM) electron diffraction pattern. The formation of γꞌꞌ precipitates was not 

expected since they are not stable under irradiation. Furthermore, the formation of γꞌꞌ 

precipitates was observed only at a temperature of 33ºC, and a dose of 0.7 displacement 

per atom (dpa) with energetic H+ ions. The precipitate formation was not observed in the 

rest of the analyzed section of the beam window. The present work attempts to explain the 

formation of the precipitates with a series of carefully designed in-situ irradiation 

experiments at different doses, dose rates and temperatures.  

Testing at Sandia National Laboratory’s (SNL) Ion in situ TEM lab (I3TEM) was 

used to investigate the temperature and dose rate that γꞌꞌ precipitates will form under 
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irradiation. The first test was conducted with 1.2 MeV Ni ions at room temperature up to a 

dose of 1.4 dpa. The test results concluded that γꞌꞌ precipitates do not form under high dose 

rates (compared to protons in the actual beam window). The second test was conducted 

using 2.8 MeV Au ions at 200 ºC and came up with the same null findings. The test 

concluded elevated temperatures and irradiation conditions do not foster an environment 

for precipitation growth. A third and final test to investigate phase stability in solution 

annealed Alloy 718 was conducted using 800 KeV H+ ion irradiations and concluded that 

the γꞌꞌ precipitates do not form under slower irradiation doses either.  

Investigation into energy deposition using The Stopping and Range of Ions in 

Matter (SRIM) to compare the formation energy to deposited energy of γꞌꞌ precipitates was 

performed. The energy deposited compared to the formation energy was used to conclude 

there was no correlation.  

The stress state of the material under influence of the ion beam under normal 

operations was simulated with finite element analysis using Solidworks. The simulation 

showed that the maximum stress was located in the same outer region where the γꞌꞌ 

precipitates were discovered.  Furthermore, the stress levels were found to be similar to 

literature work. Therefore, the formation of γꞌꞌ precipitates in the solution annealed beam 

window of LANCE Isotope Production Facility could be attributed to stress. Further studies 

could find a balance between irradiation induced disordering and stress induced formation.  
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CHAPTER 1: INTRODUCTION 
 

The need to find a sustainable, easily accessible, reliable and clean energy source 

is critical for the economic growth of the world [1]. Future designs of nuclear reactors call 

for operations at higher temperatures and higher neutron dose rates. In addition, the 

materials must also withstand very corrosive coolants and internal stresses. A limiting 

factor to some new reactor designs has been finding a suitable materials to withstand the 

extreme environment. In a nuclear reactor, materials serve many different purposes in 

many different environments. Choosing the correct material prompts many challenges for 

research and commercial use [1–10].Since the 1950’s, many reactor designs have been 

introduced. During the last 70 years, reactor designs have been improved to reflect on 

current safety issues and to ensure a more economical reactor. Figure 1 shows the 

advancement of reactors. The future generation of Gen-IV reactors is expected to operate 

at higher temperatures and dose rates. Gen IV reactors are being designed to be more safe 

and economical than previous Gen III reactors [9]. 

  



2 

 

 

 

Figure 1. The progression and future of nuclear reactors. 

There are six initial reactor designs used for producing nuclear power around the 

world [11]. The main six designs are Magnox, Pressurize Water Reactor (PWR), Boiling 

Water Reactor (BWR), Pressurize Heavy Water Reactor (CANDU), Advanced Gas Cooled 

Reactors (AGR) and the Russian’s RBMK reactor. The British’s Magnox reactor design is 

a gas cooled, graphite moderated reactors that used magnesium cladding with a uranium 

metal fuel. The British then went on to improve the Magnox design, AGR, to include 

uranium dioxide (UO2) fuel pellets to increase thermal efficiencies. The Russian’s RBMK 

reactor is a graphite moderated, water cooled reactor with UO2 pellets as fuel. The CANDU 

is a heavy water moderated reactor that used naturally enrich UO2 fuel pellets. BWR and 

PWR use UO2 fuel pellets with zirconium cladding and are classified as Light Water 

Reactors (LWR). The operating temperatures of the most commercial reactors are around 

300 ºC except for AGR designs which can go up to 650 ºC [11]. The change in coolant 

temperature across the core is around 40-50 ºC. Dose rates for structural materials in LWRs 
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can reach 100 displacement per atom (dpa) towards the end of the reactors life [10]. Dpa 

is the universally accepted magnitude of a unit of dose to a material. The unit represents 

the number of times that all atoms are displaced from their original position. For instance, 

1 dpa means on average every atom is displaced from it is lattice position at least once. 

Extensive research has been conducted into current materials inside the commercial 

reactors [12–14]. The materials currently being used in commercial reactors are not feasible 

for some of future reactors designs.  

The current design for a PWR has many material components that need to work in 

harmony with each other and not fail. Figure 2 shows the range of materials that are found 

in a nuclear reactor.   

 

Figure 2. Schematic of PWR with materials at each part of the system [4].  
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The structural materials in a reactor operates at 300 ºC for upwards of 50 years. During the 

lifetime the material can crack, oxidize, and corrode. In addition, the synergistic effects of 

multiple degradation mechanisms is also possible. For instance, stress corrosion cracking 

is one of the well-known problems currently being studied.     

Future upgrades to LWRs include researching and implementing accident tolerant 

fuels (ATF) into current systems. ATF are fuels that have an enhanced accident tolerance 

compared to the standard UO2 – Zirconium cladding systems while keeping or improving 

on fuel performance [15–17]. To be a viable ATF candidate, one or more of the following 

attributes need to be satisfied in comparison with zircaloy cladding: reduced hydrogen 

generation rate, increased fission product retention, improved (reduced) reaction kinetics 

with steam, improved fuel and cladding properties (e.g. high temperature strength, 

corrosion resistance in water). Improved properties also include high melting point and 

higher thermal conductivity [17]. ATFs must go through a very thorough safety test before 

being implemented into current LWRs.  Considerations for economic and fuel cycle 

impacts are heavily taken into consideration.  

The extreme environments of future nuclear reactors designs have resulted in 

challenges to find materials to uphold to these extreme environments. Figure 3 shows the 

temperature and dose challenges of the future reactor designs.  
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Figure 3. Challenges of future Gen-IV reactors in terms of temperature and dose [4]. 

Current reactors on the market are Gen II, Gen III and Gen III+ designs.  The United States 

currently has 100 reactors; 65 PWRs and 35 BWRs. The future Gen IV reactor designs, 

include super critical water-cooled reactor (SCWR), lead fast reactor (LFR), molten salt 

reactor (MSR), gas-cooled fast reactor (GFR), very high temperature reactor (VHTR), and 

sodium fast reactors (SFR) [4].  
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SCWR’s are essentially LWR’s that operate at a pressure higher than 22.1 MPa 

[18]. LFRs use lead as a coolant and operate in a fast neutron spectrum through using a 

liquid metal coolant (rather than water). The fast neutron spectrum is related to the energy 

of the neutron created from fission. Fast neutrons have an energy greater than 1 keV and 

thermal neutrons have an energy less than 1 eV [19].  

 

MSRs use molten fluoride salt as fuels and coolant. The operating temperatures of 

MSRs are around 700 ºC [20] and can reach dose rates in the core of up to 200 dpa [9].  

GFRs are similar to AGR and RBMK but the reactor operates in the fast neutron spectrum. 

The future operating temperature range of Gen-IV GFRs is between 450-850 ºC [21]. 

VHTRs use helium as a coolant and can reach up to 1000 ºC [5,21]. VHTRs are thermal 

reactors and are expected to have an estimated lower dose of around 10 dpa, at end of life 

Figure 2. Neutron Energy Spectrum for a Thermal and Fast Breeder Reactor [71] 
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to surrounding materials. SFR’s use sodium as its coolant and operate in the fast neutron 

spectrum.  

The future Gen-IV reactors operate at in a more extreme environment than previous 

generation reactors. Gen-IV reactors are considering new styles of fuel, coolants, fast 

neutron spectrum and higher temperatures. One design for fuels of GFRs uses coated fuel 

particles packed in graphite structure. The coated fuel particles contain a SiC layer to retain 

fission products and to provide structural support. The fuel particle faces the challenge of 

operating without failure in the environment of high temperatures and high neutron fluxes. 

Coolants for future Gen-IV reactors create highly corrosive environments. Lead and lead 

alloys are being consider as coolants. A challenge with lead is solubility of Fe, Cr, and Ni 

elements [5]. The solubility of elements abundant in most alloys creates challenge for 

corrosion protection in lead systems. Limited fast test reactors create bottlenecks for further 

testing on how a material will react under a fast neutron spectrum. Research time is limited 

in the fast test reactors. High temperatures create a large change in temperature (ΔT) across 

the reactor core. Gen -IV reactors are expected to have a ΔT of around 300-400 ºC with 

some designs having a ΔT of 500 ºC [9]. Material properties can change significantly over 

this large range of temperatures.   Finding a material that could withstand a large ΔT, fast 

neutron spectrum and corrosive coolants is a challenging task.  

 Under irradiation, a material can undergo microstructural changes which lead to 

significant changes in material properties. When a material is in a neutron environment, 

energetic neutrons can knock an atom out of its lattice position. The displacement of atoms 

with sufficient energy creates more point defect pairs (Frenkel pairs) in cascades and 

eventually can create defect clusters such as voids, and dislocation loops. The radiation 
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damage mechanism is discussed in more detail together with quantification in the next 

chapter. The accumulation of voids can cause significant swelling. Figure 4 shows void 

swelling of materials.   

 

Materials can experience radiation hardening and loss of ductility. Radiation can induce 

precipitates, disordering and cause dissolution. An example of radiation induced 

precipitates is Ni-Si system [22]. Radiation damage causes the typical vacancies, voids and 

interstitials to form. The small Si atoms defuse to sinks and creates Ni3Si precipitates.   

 The study of materials at the micro, nano and atomic scale are important to establish 

microstructure-physical property relations. As a result, employing micro, nano, and atomic 

techniques to nuclear materials has proven to be very important [6]. Techniques, such as, 

scanning electron microscopy (SEM), focus ion beam (FIB) analysis, transmission electron 

microscopy (TEM), small angle neutron scattering (SANS) and atom-probe tomography 

(APT) are being used to understand the microstructural changes that result in irradiation 

induced embrittlement, corrosion, segregation at grain/phase boundaries. APT works by 

using a cryogenically-cooled needle shape specimen with a radius of about 50 nm. A laser 

is then pulsed on to the specimen removing ions which then travel to a sub-nano resolution 

(A) (B) 

Figure 3 Void swelling of SS 316 [4] 
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detector. The sub-nano resolution detectors can create 2-D and 3-D images. The images 

produced can show the distribution of particles along a grain boundary and throughout a 

material [6,23].  Commonly less used SANS and small angle x-ray scattering determine 

the element and size by the diffraction of the neutron or x-ray. TEM images defects in a 

material by passing an electron beam through electron transparent material e.g. a sample 

of a thickness less than ~100 nm. TEM is discuss in greater details in Chapter 3.  

Alloy 718, also known as Inconel 718, has been considered as a choice of material 

for many high strength and corrosion resistance environments. Alloy 718 is a nickel-base 

super alloy which contains the elements niobium, titanium, aluminum, molybdenum, 

chromium and balance with iron. Alloy 718 is used in high temperature applications such 

as jet engine and furnace parts [24]. Schlumberger Technologies used Alloy 718 for high 

pressure gas wells because of its material properties [25].  Precipitated hardened and 

solution annealed are two different heat treatments for use of Alloy 718. Precipitation 

hardened uses a series of annealing temperatures, greater than 700ºC, to form two material 

strengthening precipitates. The precipitates that form are γꞌ and γꞌꞌ. The γꞌ precipitate is 

Ni3(Al,Ti) that forms in a L12 lattice.  The γꞌꞌ precipitate is Ni3Nb that forms a D022 lattice. 
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In Figure 3, the lattice structures are illustrated. The average volume fraction of γꞌ and γꞌꞌ 

precipitates are 4% and 15% respectively in a precipitation hardened alloy [26].  

Alloy 718 is used as a material for cooling pipes and beam windows for a neutron 

spallation environment [27]. In a spallation environment, very energetic (600-800 MeV) 

protons collide with the nucleus of a heavy element. The heavy element will undergo a 

intranuclear cascade and emit neutrons and protons. The heavy element will then go to the 

evaporation phase and emit more neutrons or protons through a decaying process or fission 

[28]. The use of Alloy 718 in spallation environment provides information on if Alloy 718 

Figure 4. a.) TEM image of γꞌ and γꞌꞌ precipitates b.) D022 lattice c.) L02 lattice 

a.) 

b.) c.) 
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could withstand some of the aforementioned reactor environments. Under thermal reactor 

conditions, a Ni transmutation interaction can lead to He being produce which at high 

temperatures and under stress can cause He embrittlement. Alloy 718 is used in irradiated 

environments such as bolts for a nuclear reactors [29], coolant pipes for spallation 

environments [27,30] and as a proton beam window [36] for the Los Alamos Neutron 

Science Center (LANSCE) Isotope Production Facility (IPF). Similar alloy, Inconel X-750, 

is used as spacers because of strengthening γꞌ precipitates.    

The γꞌ precipitate has been studied in other nickel base alloys such as Nimonic PE16 

[32,33]. Nelson and Bourdeau teams discovered that around 0.1 dpa at room temperature, 

γꞌ precipitates becomes disordered. Inconel X-750 γꞌ precipitate was investigated at a range 

of temperatures and dpa’s by Zhang et al. [34]. Ion irradiations have been used to study γꞌ 

and γꞌꞌ precipitates of Alloy 718. Sencer et al. studied the precipitate stability after exposure 

to 600-800 MeV protons and temperatures below 60 ºC. The studies reported that at 0.1 

dpa, disordering had occurred [27]. Sencer et al. did another study replicating a spallation 

environment with high energy protons and neutrons, and found that at 0.6 dpa disordering 

had occurred [30]. Alloy 718 was studied under electron irradiation at elevated 

temperatures. The study concluded that at extremely low dose of 0.001 dpa, disordering is 

possibly happening. Jin et al. investigated the evolution of Alloy 718 precipitates with Kr 

ions[35]. The test was conducted at 290 ºC and 550 ºC and noted that γꞌ and γꞌꞌ precipitates 

are easily disordered at 5 dpa.  

Stability of both γꞌ and γꞌꞌ precipitates have been studied under neutron irradiation 

in Alloy 718. Thomas and Bruemmer studied the effects of neutron irradiation on γꞌ and γꞌꞌ 

precipitates[29]. The study reported that dissolution occurred at about 20 dpa and 3.5 dpa 
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at a temperature of 288 ºC for both γꞌ and γꞌꞌ precipitates respectively. Thomas and 

Bruemmer also studied grain boundary elemental segregation and noted that during neutron 

irradiation nickel diffuses to the grain boundary. The study reported that the hardness of 

Alloy 718 decreases with increasing dose due to irradiation hardening.  

In 2009, Los Alamos Neutron Science Center (LANSCE) Isotope Production 

Facility (IPF) investigated a beam window as shown in Figure 3. The IPF is capable of 

making a variety of medical isotopes including Mo-99.  

The investigation was prompted by desire to extend of the lifetime of the window to higher 

doses without incurring failure [36]. The beam window is crucial as it serves as a barrier 

between the vacuum and the target protecting the proton beam components, which are kept 

under vacuum from the coolant in the target chamber. The beam window is 76.2 mm 

diameter and 0.5 mm thick and made entirely out of solution annealed Alloy 718. Analysis 

of the beam window included visual, beam profile measurement, thermal, MCNPX and 

Figure 5. LANSCE Facility at Los Alamos 
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Transmission Electron Microscopy (TEM) analysis.  The samples analyzed from the 

window experienced irradiation temperatures that ranged from 33 ºC – 100 ºC and ranged 

in dose rates of 0.2 displacements per atom (dpa) – 10.6 dpa [31].  

 

 

Figure 6. Ion Beam window at LANSCE IPF. (a) side view of alloy 718 beam window. (b) front view of alloy 718 beam 

window. 

During the 2009 investigation of the ion beam window, γꞌꞌ precipitates were 

discovered in a sample that had a dose of about 0.7 dpa and at a temperature of 34 ºC [36]. 

The selected area diffraction (SAD) pattern showed superlattice reflections from the 

presence of γꞌꞌ precipitates. The finding of γꞌꞌ precipitates was unusual because the regions 

showing the presence of γꞌꞌ precipitates did not have the highest dose rates or temperature. 

A increase in shear strength was observed in the same area as the presence of γꞌꞌ 

precipitates. The increase of hardness is attributed to the γꞌꞌ precipitates. Similar increase 

of hardness have been seen in Byun et al research solution annealed alloy 718 [36]. Byun 

et al tested SA Alloy 718 up to a dose rate of 1.2 dpa and an estimated temperature range 

of 60-100 ºC. The temperature was not held constant because the specimens were in direct 
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contact with the coolant. Post irradiation mechinical properties testing concluded a 

significant increase in yield strength and ultimate tensile strength. The increase of strength 

was contributed to defects and no mircostrucure investagation was conducted.  

The investigation into Alloy 718 under different ion irradiation and temperature 

conditions will help us understand the formation of γꞌ and γꞌꞌ precipitates. LANL 

investigation into the ion beam window at LANSCE IPF facility yielded a discovery of γꞌꞌ 

precipitates in solution annealed Alloy 718. The facilities at both Los Alamos National 

Labs and Sandia National Labs (SNL) were used in the investigation of the cause of the 

formation of γꞌꞌ precipitates in Alloy 718. Tests at the In Situ Ion Irradiation TEM facility 

(I3TEM) were performed at SNL. Material preparation of Alloy 718 occurred at LANL 

where the samples were punched into 3 mm disks and twin jet electropolished. 

The research conducted here investigates Alloy 718 under different doses and 

temperatures to determine conditions that favors the formation of γꞌꞌ precipitates. The 

I3TEM facility at SNL was used to map out a diffraction pattern from the TEM every 3 

minutes. The test was conducted at room temperature with Ni+2 ions and at 200 ºC with 

Au+4 ions. Diffraction patterns showed no indication of any formation of γꞌꞌ precipitates. In 

situ proton irradation was done at room temperature at an energy of 800 keV. The total 

dose rate induced by proton irradation was 0.03 dpa. The test was to simulate the irradiation 

environment that was experienced at the LANSCE IPF facility. The results concluded no 

precipate formation was induced by irradiation.  
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CHAPTER 2: THEORY AND BACKGROUND  

2.1 Radiation Damage on Materials 

 A radiation environment is very harsh and destructive. Radiation can induce defects 

in materials which can lead to microstructural changes. The microstructural changes result 

in a change of mechanical properties. The damage done by radiation can also disorder and 

cause dissolution of existing precipitates. In addition radiation can induce precipitate 

formation. This chapter will discuss these topics in greater detail.  

2.1.1 Defects formed by Radiation Damage  

 A radiation damage event is defined as the transfer of energy from an incident 

projectile to the solid and the resulting distribution of target atoms after completion of the 

event [22]. The damage event is when an energetic ion (or neutron) interacts with a lattice 

atom. The energetic projectile must have enough energy to displace the atom from the 

lattice. The minimum energy to displace an atom is called threshold energy or displacement 

energy. For metals such as Ni, Fe, Cr, the threshold energy is around 40 eV [22]. Once an 

atom is displaced from its lattice, it is known as a primary knock on atom (PKA). The 

passage of the initial particle can cause more than one PKA until termination of the particle. 

The PKAs cause damage cascades which are a collection of point defects. The damage 

event is concluded when all PKAs and the initial projectile come to a rest.   
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 Defects occur naturally in a material and can also be induced in large quantities by 

irradiation. The primary radiation induced defects at 0D are vacancies and self-interstitials. 

A vacancy defect is a missing lattice atom. An interstitial defect is an atom located in a 

matrix where normally an atom would not have existed. Figure 4 shows how a projectile 

can cause damage and defects in a material. Vacancies can cluster to form 3-dimensional 

defects that are called cavities. Cavities can be grouped into two distinct terms, voids and 

bubbles. Voids are clusters of vacancies in the absence of gas pressure while bubbles refer 

to pressurized cavities due to gas atoms such as He. When an atom is knocked out of its 

lattice position, two defects are created which are called Frenkel pairs. A Frenkel pair is a 

vacancy and an interstitial. Crowdions and replacement collisions are defects that occur 

along a line. A replacement defect is when an atom is knocked off its lattice and has enough 

energy to knock the next atom in line. This defect sequence will last if the energy of the 

Figure 7. Possible damage events for a projectile entering a material  [72].  
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projectile atom can overcome the displacement energy the next atom in line. A crowdion 

defect is when an extra atom gets knocked into a line of atoms. 

The magnitude of radiation damage is given in terms of displacement per atom 

(dpa). Dpa is average number of atoms being displaced. A dose of 1 dpa means on average 

every atom has been displaced once [37]. A simple way of calculating dpa is using the 

Kinchin-Pease (K-P) method. K-P introduces a step function. If the energy of the incoming 

particle is less than the displacement energy, Ed, than the number of displaced atoms is 0. 

If the energy of projectile is between the Ed and 2Ed than the number of displaced atoms, 

ν(T), is 1. When the projectile energy is greater than 2Ed and less than an upper limit, Ec, 

the formula for displaced atom is shown in Eqn. 1 [22].  

𝜈(𝑇) =  
𝑇

2𝐸𝑑
                                                                                            Eqn. 1 

Ec is an upper saturation energy when the number of defects being produced is equivalent 

to defects recombining. If the projectile energy is greater than Ec than the number of atoms 

displaced follows the equation 2.  

 𝜈(𝑇) =  
𝐸𝑐

2𝐸𝑑
                                                                                            Eqn. 2 

Modification of K-P model have been made. In 1975, Norgett, Robinson and 

Torrens modified the K-P equation by proposing a efficiency factor and energy lost in 

damage cascade term [22]. The Norgett, Robinson and Torrens (NRT) equation is shown 

below where κ is displacement efficiency, ED is the total damage and η is energy lost in the 

cascade by electron excitation. 

𝜈(𝑇) =  
𝜅𝐸𝑑

2𝐸𝑑
=

𝜅(𝑇−𝜂)

2𝐸𝑑
                                                                             Eqn. 3 

The method on how to calculate dpa in a material will be discussed in detail in Section 

2.3.1.    
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Irradiation temperature play a role in defect mobility and recombination. Agullo-

Lopez et al. [38] studied the defect mobility in copper after electron irradiation. The defect 

mobility and recombination were measured by the induced resistivity of the copper sample. 

Five recovery stages for materials under temperature are shown in Figure 5.  The first stage 

(I) is at very low temperatures. The dose rate is proportional to defect production up until 

defects created are being annihilated by preexisting defects earlier in the irradiation. In this 

stage mobility of self-interstitials atoms is present but vacancy mobility is almost 

nonexistent. Self-interstitial atoms can anneal with vacancies in this stage or partly survive 

by forming interstitial clusters or by being trapped at sinks. In Stage II, self-interstitials 

clusters are mobile but vacancies are not. Self-interstitial clusters grow by mutual 

coalescence, a process that continues up to stage V. The self-interstitial clusters may 

migrate to surface and grain boundary sinks. In alloys, interstitials trapped at foreign atoms 

in stage I can be detrapped.  Stage III is when vacancies become mobile and can either 

annihilate at interstitial clusters or form vacancy clusters that coarsen in Stage IVStage IV 

vacancies become even more mobile. Vacancies start to cluster and create voids. Stage V 

Figure 8 Electrical resistivity of defects and recovery of the defects of copper after 

electron irradiation [38].  
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is about 0.5Tmelt of the temperature. Vacancies cluster start to emit free vacancies which 

anneal with self-interstitial atoms. Vacancies cluster are mobile enough to migrate and 

anneal to the surface. As temperature increase defects decrease due to mobility and 

annealing.  

Radiation induced segregation (RIS) is when elements in the material tend to 

diffuse to or away from a grain boundary. The RIS can lead to lower corrosion resistance 

and strength of material. Thomas and Bruemmer found RIS in neutron irradiated Alloy 718 

[29]. The studied showed a large increase in Ni enrichment and a depletion of Cr and Fe at 

the grain boundaries.  

2.1.1.1 Effect of radiation on material properties    

 Irradiation environments can affect the strength and ductility of a material. As 

defects accumulate in a material the strength of a metal alloy tends to increase while the 

ductility decrease. This increase in hardness due to irradiation is often called radiation 

induced hardening or irradiation hardening. In some cases, hardness/strength of the 

material could be reduced by irradiation because of disordering and dissolution of 

precipitates. The decrease in hardness is called radiation induced softening. PH Alloy 718 

has been studied and noted to have radiation induced softening [39].  The radiation induced 

softening is caused by the disordering and dissolution of γꞌ and γꞌꞌ precipitates found in PH 

Alloy 718. In the case of SA Alloy 718, it tends to show radiation induced hardening 

[29,31,40].  
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 Metal alloys which do not experience a loss of precipitates at higher dose rates are 

prone to see an increase in yield strength (YS) and a significant decrease in elongation. 

Depending on the material, a dose rate saturation point will be reached were YS and 

elongation will reach a maximum or minimum, respectively. Defects induced in the 

material are obstacles to any type of gliding defects. The reduced length in gliding defects 

causes elongation to decrease. Since the radiation induced defects trap and stop the gliding 

defects this increases the YS. The gliding defects could include 1, 2 and 3 dimensional 

defects. Face centered cubic (FCC) and body center cubic (BCC) microstructures act 

differently under irradiation conditions. Both FCC and BCC microstructures experience an 

increase in yield strength as shown in the figure below. BCC microstructures have less 

ductility than FCC microstructures because of the packing of BCC microstructures [22]. 

When materials are deformed, dislocations are produced resulting in deformation by one 

burgers vector for each dislocations that moves through the lattice. Because BCC materials 

have reduced atomic packing compared FCC materials less slip systems are available 

resulting in a reduced elongation. BCC has a lower packing ratio and more areas for 

interstitials atoms.  

Figure 9 (a) The typical Strain vs. Stress curve for a FCC material under irradaiation. (b) The typical Strain vs. 

Stress curve for a BCC material under irradaiation.   [22]. 
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2.1.2 Ion Irradiation versus Neutron Irradiation  

 The use of ions to emulate how a material will act under neutron irradiation has 

become increasingly popular. Different types of irradiating species can create defects at 

different orders of magnitude and depth. Ions, electrons and neutrons all cause different 

damage cascades and penetrate to different depths. Ion irradiation can vary dependent on 

the atomic weight of the ion and the energy used for the irradiation. Higher Z materials 

cause larger damage cascades but do not penetrate far into the material. Lower Z material 

can penetrate further into a material but cannot achieve the damage rate produce by 

cascades similar to the heavy ions. Ions with the same energy will penetrate different depths 

in different materials. In a pure silicon matrix, a 1 MeV Ni ion will penetrate about 1 micron 

compare to 17 microns of a proton of the same energy. Figure 7 shows the depth of Ni ions 

and protons calculated using the program SRIM. . 
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Figure 10. Depth of Ni Ions and Protons in a silicon matrix 

 . Electrons can create displacements in a material but with very low recoil events 

[41].  Using electrons to irradiate a material will not cause the same damage as neutrons. 

Coulomb interaction between electrons and atoms limits the depth an electron can penetrate 

in a material. Since neutrons have a neutral charge, the slowing down of a neutron is by 

neutron-nucleus interactions. A neutron has a mean free path in the order of centimeters.  

 The use of ions to emulate neutron irradiation is a fast and inexpensive compared 

to neutron irradiations in a reactor. Ion irradiations can be grouped into those performed 

with light ions and heavy ions. Heavy ions can achieve very high dose rates in a very short 

amount of time. Heavy ions also produce large cascades which are produced in neutron 

irradiation. Heavy ions have multiple disadvantages [42]. The main disadvantage is the 

limited depth the ion will penetrate in a material. A minor disadvantage is a larger increase 

in temperature due to deposited energy.  Light ions are very promising to simulate neutron 
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irradiation. Light ions still do not penetrate as far as neutrons in a material. Light ions can 

still cause cascade events and produce moderate dose rates and at reasonable irradiation 

times. Below is a table to summarize the disadvantages and advantages of ion irradiations 

versus neutron irradiation.  

 

Table 1. Advantages and disadvantages of ion and electron irradiations vs neutron irradiations 

Irradiation Type  Advantages  Disadvantages  

Electrons   High dose rate  

 Simple Source 

 In-situ observation 

 No cascades 

 Large temperature 

shifts compared to 

neutrons.  

 No transmutation 

Heavy Ions   Very high dose rate  

 Short irradiation time  

 Large cascade production 

 Very limited depth  

 Peak damage profile  

 Implantation of ion  

 High dpa rate which 

cause a higher 

temperature shift 

 No transmutation 

Light Ions  Moderate dose rates 

 Moderated irradiation times  

 Decent depth of penetration  

 Flat damage profile for initial 

part of the depth.  

 Smaller cascade 

 Limited 

transmutation 

 

2.2 Formation of γꞌ and γꞌꞌ Precipitates 

2.2.1 Formation and kinetics of Precipitates 

 The formation of γꞌ and γꞌꞌ precipitates are noticed under high temperature of about 

1400 ºF and long annealing times processes of 15-20 hours. The process of precipitation 

occurs by the nucleation and growth of precipitates from supersaturated solutions [43]. The 

growth rate of the precipitates varies based on the nucleation rate and is time dependent. 

The evolution of the size and distribution of the precipitates is driven by the abundance of 
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surface energy. The process is also known as coarsening. The formation of precipitates can 

be described with diffusion theory, Ostwald Ripening and modification to Ostwald 

ripening such as Lifshitz, Slyozov and Wagner theory (LSW theory).  The formation of 

precipitates have been observed to be enhanced and/or induced from external stress on the 

material and in irradiation environments.  

 The diffusion of atoms is driven by six dominant mechanisms. FCC and simple 

cubic crystalline structures both have vacancies and interstitial diffusion mechanisms. 

While BCC and hexagonal close-packed materials have only vacancy diffusion 

mechanisms [22]. Vacancy diffusion is when an atom resides in a lattice next to a vacancy 

and exchanges places [44]. Interstitial diffusion is the migration of atoms from one 

interstitial position to another. The key factors which help drive diffusion are size of the 

interstitials, amount of vacancies, temperature and microstructure [44]. The size of the 

interstitial will determine how easily the atom can move through the lattice. The amount 

of vacancies allows for more atoms to move from lattice spot to lattice spot. Thus 

increasing the diffusion rate. Temperature has the greatest influence on diffusion. At 

different temperatures, diffusion coefficients can increase by orders of magnitude.. For 

example, for C diffusing into α-Fe, the diffusion coefficient increased from 2.4x10-12
 to 

1.7x10-10 cm2 /s when the temperature increases from 500 ºC to 900 ºC. BCC and FCC 

crystalline structure affects diffusion of atoms. Iron has a BCC (α-Fe) and a FCC (γ-Fe) 

phase. [45]  Carbon settles in octahedral sites in the FCC and BCC lattices. The size of the 

octahedral void in α-Fe (BCC) is 0.159R which is considerable smaller than γ-Fe (FCC) 

size of 0.414R. FCC structures have more sites for carbon to settle in. The solubility of 
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carbon in γ-Fe is about 2.15% compared to 0.03% in ferrite [44]. Figure 11 shows the 

diffusivity of different metal systems.  

 

 Ostwald ripening is a second phase coarsening, where small precipitates dissolve 

and redeposit into larger precipitates [43]. Ostwald described ripening in a two-phase 

system. The derived three equations to describe ripening, kinetic, continuity, and mass 

conservation equations. The kinetic equation describes growth and shrinkage rate of the 

precipitate. The continuity equation describes evolution of a particle size distribution. The 

mass conservation equation ensures that mass is not created or destroyed and must be 

Figure 11. Arrhenius plot of diffusivity for different metal systems[45] 
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satisfied by the kinetic and continuity equation. Modification to Ostwald ripening includes 

the LSW theory [43]. LSW theory modified Ostwald ripening theory to a power-law 

growth and dynamic scaling. The theory also assumes precipitates and lattice are fluids and 

spherical under steady state condition. 

The formation of precipitates typically requires very high temperatures and long 

annealing times. Figure 11 shows the time-temperature-transformation diagram (T-T-T) of 

the common precipitates in Alloy 718.The graph states γꞌꞌ precipitates as Ni3Cb.  

 

Figure 12. T-T-T for Alloy 718. The graph shows γꞌ formation is favorable in intial annealing stages. [46]. 

Figure 9 indicates a driving force for precipitate formation is high temperatures and long 

annealing times. 

  The formation of precipitates can be aided by external forces. Applied stress to a 

material can cause defects and impurities to flow in the direction of stress. The impurities 

and defects can accumulate. The accumulation of impurities could lead to the formation of 

precipitates under stress conditions.    
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The formation of γꞌꞌ precipitates under external and residual stress during thermal 

aging was study by H. Qin et al. [47]. The study tests different external stresses while 

keeping the same thermal aging process the same. The study concluded the nucleation and 

precipitation of γꞌꞌ precipitates are strongly promoted by external stress in the early stages 

of aging. The volume fraction of γꞌꞌ precipitates under external stress is initially higher than 

samples with no external stress during the first 0.5 hours of thermal aging but will gradually 

reach similar volume fractions with longer aging times. Precipitates formed under external 

stress tend to have smaller radius than samples with no external stress. 

 

2.2.2 Formation of Precipitates during Irradiation  

 Under irradiation conditions, due to increased mobility of the atoms an increase can 

be observed in the number of point defects clusters. Radiation induced segregation (RIS) 

and radiation enhanced diffusion (RED) allow for greater mobility of atoms in the lattice. 

The mobility of atoms could lead to the enrichment and depletion of elements in the lattice. 

Thus, the process can destroy existing precipitates or create new precipitates in the 

material. Existing precipitates can display dissolution or disordering. Dissolution and 

disordering will be discussed later in this section. Precipitates have been observed to form 

under irradiation [22,48]. In a Ni-Si and Ni-Al system, precipitates have been observed to 

form at grain boundaries, surfaces and interior dislocation clusters [22].  Since Si and Al 

atoms are much smaller than Ni, the atoms have a higher mobility. The mobility of the 

smaller atoms finds sinks such as grain boundaries, surfaces and interior dislocation 

clusters and over saturates the areas. The over saturated sinks create an environment for 

the formation of precipitates. In Ni-Si and Ni-Al systems, γꞌ precipitates that have the 
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composition of Ni3Al form. To the best of our knowledge, no studies have proven the 

formation of γꞌꞌ precipitates under irradiations.  

 

2.1.3.1 Dissolution and Disordering 

Dissolution is the process of diffusion of precipitates back into the original lattice 

of the material under irradiation conditions. The damage done to the precipitate and the 

surrounding area creates an environment in which the atoms in the precipitates diffuse into 

the surround matrix. The dissolution of precipitates can be estimated by the following 

equations [22]. The Equation 4 describes the shrinkage rate of a precipitate.  

𝑑𝑉

𝑑𝑡
= −4𝜋𝑟𝑝

2𝜁𝐾0𝛺                                                                                                Eqn. 4 

Where, 𝑟𝑝 is radius of precipitate, 𝜁𝐾0 is atoms leaving the precipitate per area per second 

and 𝛺 is atomic volume. 

The shrinkage term assumes the precipitate to be spherical which is known to be 

incorrect for γꞌꞌ precipitates. The growth of the precipitate is defined as the following 

equation anddescribed by diffusion. Where 𝐷 is the solute diffusion coefficient, 𝐶 is the 

total concentration of solute, 𝐶𝑠 is the concentration of solute in solution, 𝐶𝑝 is the 

concentration of solute in the precipitate and 𝜌 is the density of precipitates in solution.  

𝑑𝑉

𝑑𝑡
=

3𝐷𝐶𝑠𝑟𝑝

𝐶𝑝
                                                                                                           Eqn. 5   

The concertation of the precipitate is defined as, 

𝐶 =  
4

3
𝜋𝑟𝑝

2𝜌𝐶𝑝 + 𝐶𝑠                                                                                             Eqn. 6 

Combining growth rate and shrinkage rate will yield overall growth rate of the precipitate 

which is define as, 
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𝑑𝑉

𝑑𝑡
= −4𝜋𝑟𝑝

2𝜁𝐾0𝛺 +
3𝐷𝐶𝑟𝑝

𝐶𝑝
 − 4𝜋𝑟𝑝

4𝜌𝐷𝐶𝑝                                                           Eqn. 7 

If the equation is positive, then the precipitate is more favorable to grow.  

Chemical mixing of precipitates and the matrix are caused by displacement 

cascades and thermal spikes. Klatt et al. describe the mixing parameter as a function of 

thermal spikes and displacement cascades as shown below [49]. Where k is the mixing 

parameter, 𝐷𝑚 is intermixing diffusion coefficient, 𝐹𝐷 is the damage energy deposited per 

unit length, 𝛷 is ion fluence and t is the irradiation time.  

𝑘 =  
𝐷𝑚𝑡

𝛷𝐹𝐷
=  (

〈𝐷𝑡〉

𝛷𝐹𝐷
)

𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛
+ (

〈𝐷𝑡〉

𝛷𝐹𝐷
)

𝑡ℎ𝑒𝑟𝑚𝑎𝑙 𝑠𝑝𝑖𝑘𝑒 
                                              Eqn. 8 

Disordering can be described as the loss of long-range order to irradiation [22]. 

Disordering happens when the lattice structure is damaged by radiation but there is a small 

amount of diffusion. The disordering of a precipitates can be quantified by the electron 

beam spot electron of a TEM electron backscatter diffraction pattern. The disordering rate 

of a precipitate can be described using the model from Liou and Wilkes [22]. The 

disordering rate is determined by irradiation induced disordering and thermal reordering.  

(
𝑑𝑆

𝑑𝑡
) = (

𝑑𝑆

𝑑𝑡
)

𝑖𝑟𝑟
+ (

𝑑𝑆

𝑑𝑡
)

𝑡ℎ
                                                                                       Eqn. 9 

Where (
𝑑𝑆

𝑑𝑡
)

𝑖𝑟𝑟
 is define below and 𝜀 is disordering efficiency, 𝐾0 is damage rate and 𝑆 is 

long range order parameter. 

(
𝑑𝑆

𝑑𝑡
)

𝑖𝑟𝑟
=  −𝜀𝐾0𝑆                                                                                                 Eqn. 10 

Where (
𝑑𝑆

𝑑𝑡
)

𝑡ℎ
 is define below and 𝑆𝑒 is the equilibrium order parameter and 𝑘0 is the rate 

constant for ordering reaction.  

(
𝑑𝑆

𝑑𝑡
)

𝑡ℎ
=

𝑘0(1−𝑆)2

(1−𝑆𝑒)
− (1 − 𝑆𝑒)𝐾0                                                                          Eqn. 11 
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2.1.3.2 Coherent Nucleation  

Coherent nucleation is the formation of a precipitate which continues the same lattice 

parameters of the surrounding matrix under irradiation conditions. The formation of a 

coherent precipitate is dominated by the vacancies in the material and the pseudo-free 

energy. The formation of precipitates can be described by the following equations. Where 

𝑆𝑥 is solute supersaturation, 𝐵(𝑋) is the fraction of solutes arriving at the precipitate, 𝛽𝑣 is 

capture rate of voids, 𝛽𝑖 is capture rate of interstitials, 𝜌𝑣 is the number of clusters with 

trapped interstitials, 𝜌𝑖 is the number of clusters with trapped vacancies and 𝜌𝑛 is the 

number of clusters with no trapped defects. The total number of clusters is defined as 𝜌𝑡 =

𝜌𝑣 + 𝜌𝑖 + 𝜌𝑛. The fraction of solutes arriving at the precipitate, 𝐵(𝑋), is calculated by the 

equation below.  

𝐵(𝑥) =  
𝛽𝑣(𝑥)[𝜌𝑣(𝑥)+𝜌𝑛(𝑥)]+𝛽𝑖(𝑥)[𝜌𝑖(𝑥)+𝜌𝑛(𝑥)]

[𝛽𝑣(𝑥)+ 𝛽𝑖(𝑥)] 𝜌𝑡(𝑥)
                                                              Eqn. 12 

The pseudo-free energy is calculated by the following equation, 

𝜕𝐺′(𝑥)

𝜕𝑥
= −𝑘𝑇 ln 𝑆𝑥 +𝑘𝑇 ln 𝐵(𝑋)                                                                             Eqn. 13 

Plotting each term separately can determine the number of roots, 0, 1, or 2, the terms may 

have in common. The solid solution is considered stable if there are zero roots. With one 

root, the solution is considered a metastable state. In the case of 2 roots the solution is 

metastable below the value X, and the precipitate cannot grow to larger size. 
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2.2.3 Thermal and External Stress 

 Stress has been shown to assist the formation of γꞌꞌ precipitates during the aging 

process. Two types of stress are exerted on the window, thermal and external. Thermal 

stress is caused by the expansion, due to temperature increase, by a temperature gradient 

across a material. The external stress comes from the window being under vacuum on one 

side and atmospheric pressure on the other side. To calculate stress due to thermal 

expansion, the following equations are used.  

𝐸 =  
𝜎

𝜖
                                                                                                                      Eqn. 14 

𝜖 =  
∆𝑙

𝑙
                                                                                                                      Eqn. 15 

∆𝑙 =  𝛼 ∆𝑇 𝑙                                                                                                             Eqn. 16 

Where E is elastic modulus, 𝜎 is stress, 𝜖 is strain, 𝛼 is thermal expansion coefficient, ∆𝑇 

is the temperature difference, 𝑙 is the length of the material and ∆𝑙 is the change in length 

of the material.   

After rearranging and substituting last three equations, the stress can be calculating with 

the equation below.   

𝜎 = 𝐸 𝛼 ∆𝑇                                                                                                             Eqn. 17  

 External forces cause deformation to the molecular structure of the material. A 

material can undergo external force from a difference in pressure.  A rough estimate of 

external forces can be calculated by the difference of pressures multiplied by the area. As 

Shown in Eqn. 18.  



32 

 

𝐹𝑛𝑒𝑡 =
𝑃𝑎−𝑃𝑣

𝐴
                                                                                                                Eqn. 18 

Equation 18 does not consider material properties like the program Solidworks.   

2.2.3.1 Solidworks  

Stress analysis on the ion beam window was conducted using the finite elements 

analysis tool in Solidworks. The Solidworks model chosen was the linear elastic isotropic 

model. The model assumes that the material does not change material properties in any 

direction. The model also assumes young’s modulus follows a linear relationship.  

2.3 Ion Depth and Energy Deposited Simulations 

2.3.1 Stopping Range in Matter (SRIM)  

 SRIM is a Monte Carlo code which stands for the stopping and range of ions in 

matter[50].  The core of the program SRIM is TRIM, which is Transport of Ions in 

Materials. SRIM’s main goal was to establish a program to model the stopping and range 

of ions while using unified theoretical concepts [50]. TRIM can be used to calculate the 

vacancies created by projectile, cascades, ion ranges in 3-Dimensions, energy loss due to 

ionization, energy loss due to phonons and energy loss due to displacement in a given 

material. TRIM can also be used to estimate the dpa in a material for heavy and light ions.  

 SRIM uses two approximations, analytical formula for determining atom to atom 

collisions and Free-Flight-Path between collisions. The atom to atom collisions theory used 

in SRIM, is referred to as the Magic formula in the SRIM handbook [50]. The Magic 

formula technique was developed by Biersack and co-workers for faster computational 

time [51]. The Magic formula allowed for a quick and precise solution to obtain a scattering 

angle. The scattering angle is then used to calculate the energy loss due to atom to atom 
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collisions. SRIM is a Monte Carlo code which uses random numbers to generate the 

probability of a scattering angle. The energy loss per collision is given by the energy loss 

equation shown below. Where T is the amount of energy loss, M1 is the projectile mass, 

M2 is the target mass, E is the projectile energy and φ is the scattering angle.  

𝑇 =  
4𝑀1𝑀2

(𝑀1+𝑀2)
𝐸𝑠𝑖𝑛2 (

𝜑

2
)                                                                                           Eqn. 19 

The Free-Flight-Path approximation is used for a projectile between collisions. The 

approximation is only viable for charge particles. To obtain the free path length of a 

projectile the following equation is used. The parameters of Eqn. 17 below will change 

depending on the size and energy of the projectile. If the particle is relativistic than the ε 

parameter will change.  

𝐿 =  
0.02 [1+(𝑀1+𝑀2)]2

4𝜋𝑎2𝑁

𝜀2+0.1𝜀1.38

ln(1+𝜀)
                                                                               Eqn. 20 

Where L is path length, N is electron density and ε is consider the reduce energy. 

 SRIM follows a computational algorithm. SRIM first starts with the known energy 

of the projectile, E. The code randomly picks an impact parameter. The impact parameter 

is perpendicular distance between the projectile path and the center of the target. Then it 

uses the Magic Formula to calculate the new scattering angle. With the new scattering 

angle, the energy transfer to the atom is calculated. For detailed cascades calculations, the 

energy transfer to the atom is the kinetic energy of the atom minus the displacement energy 

until the energy of the atom is smaller than the displacement energy of the material. The 

free-flight-path is calculated. The projectile is followed until the ion energy is too low to 
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create a displace atom. SRIM repeats this process, while making tallies of important 

numbers, until statistics are good.  

SRIM can be used to calculate the dpa in a material. To calculate the dpa the 

following recommendations by Stoller et al. [52] are to use the “Quick” Kinchin and Pease 

option, for iron base alloys use 40 eV for the displacement energy and set the binding and 

lattice energies to 0 eV. Once the SRIM calculation is complete then the vacancy output 

file is used. The output file will obtain a number of vacancies/ion-Angstrom and the 

calculated atomic number density. The ion flux is from the experiment being conducted. 

The equation to calculate dpa is shown below.  

 

𝑑𝑝𝑎

𝑆
= [𝑖𝑜𝑛 𝑓𝑙𝑢𝑥] ∗ [𝑆𝑅𝐼𝑀 𝑂𝑈𝑇𝑃𝑈𝑇] ∗ [𝑎𝑡𝑜𝑚𝑖𝑐 𝑑𝑒𝑛𝑠𝑖𝑡𝑦]                                     Eqn. 21         

 

The total dpa can be calculated by multiplying the exposure time with the dose rate.  

 The disadvantage of using SRIM is at relativistic energies with light ions, the 

program does not make the correct assumptions. SRIM will under estimate the damage and 

energy deposited. SRIM does not take into account the crystal lattice, nuclear reactions and 

damage accumulation.  

 

2.4 Literature Review and Notable Work 

Inconel 718 has been tested under a variety of irradiation and temperature 

conditions. These sections will talk about previous experiments of Inconel 718.  
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2.4.1 Ion Beam window at LANSCE Facility 

 During preventative maintenance at the LANSCE facility at LANL, the ion beam 

window was replaced and studied [31]. The ion beam window was in operation for about 

5 and half years and was subjected to 100 MeV, 250 µA beam, thermal heating by 

irradiation and stress induced by a differential pressure across the beam window. The ion 

beam window was made of solution annealed Inconel 718. Therefore, γꞌ and γꞌꞌ precipitates 

are not expected to be in the matrix of the material. The thermal analysis of the ion beam 

window estimated the maximum temperature to be around 122 ºC. MCNPX heating tallies, 

computational fluid dynamic code ANSYS CFX and ANSYS finite-element where used to 

estimate a steady-state temperature profile. The temperature and dose profiles of the ion 

beam window exhibit an annular shape as in Figure 10 below. 

 

The maximum dose was estimated to be around 11.3 dpa. The high dose irradiation area 

was located closer to the edge of the ion beam window. The dose at the outer edge of the 

ion beam window was estimated to be about 1 dpa. Shear tests and microstructural analysis 

(a) 

Figure 13 Temperature profile of the ion beam window [31] 
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was investigated in all regions of the ion beam window. At the areas of about 11.3 dose, 

radiation induced defects harden the material according to shear punch tests. TEM analysis 

indicated no change in microstructure no voids were observed. Analysis of the outer edges 

had more interesting results with respect to microstructure changes than the other areas of 

the ion beam window. Shear punch testing indicated a significant increase in hardening 

compare to inner ion beam window specimens.  TEM analysis showed the increase in 

hardness was contributed to the formation of γꞌꞌ precipitates in selected area diffraction 

patterns. The TEM diffraction patterns are shown below in Figure 11.  

The formation of γꞌꞌ precipitates was unprecedented. The γꞌ and γꞌꞌ precipitates are 

known to be disorder and have dissolution occurred. The next section will talk about these 

studies.   

2.4.2 Previous Studies of Inconel 718 Under Irradiation Conditions 

The tensile properties of both SA and PH Inconel 718 was investigated after low 

temperature neutron irradiation by Byun et al [36]. The experiments tested multiple 

Figure 14 TEM diffraction pattern of  γꞌꞌ precipitates [31] 
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samples of SA and PH at an estimated dose range of 0.00057 to 1.2 dpa. The samples kept 

to an estimated temperature range of 60-100 ºC and at a fluence range of 3.7 x 1021 to 7.8 

x 10 24 nm-2 of a fast neutron spectrum (E > 1 MeV). After irradiation, the samples 

underwent tensile tests at room temperature. PH Inconel 718 exhibit minor radiation-

induced increase in yield strength and a significant decrease in ductility. SA Inconel 718 

had almost three times increase in yield strength from the unirradiated sample to 1.2 dpa 

sample. No microstructure analysis was performed with these tests.  

 In 1996, a crack in the LANSCE facility double shell proton beam window was 

noticed. The ion beam window was exposed to 1 mA, 800 MeV protons beam. The highest 

amount of dose to the beam window was estimated to be about 20 dpa. Tensile and hardness 

experiments were done by James et al. [39]. The Inconel 718 window was cut into samples 

based on estimated dose for tensile testing. The samples in regions which were irradiated 

to 20 dpa, had a higher yield strength (YS) and broke in the elastic regime compared to the 

non-irradiated samples which show significant elongation. The study compared and 

concluded the increase in YS to be similar to reactor neutron irradiation data on Inconel 

718 [39]. Hardness tests indicated radiation induce softening of PH Alloy 718, for regions 

of 5-20 dpa of the beam window.  

Precipitated hardened Inconel 718 was investigated under in situ Ar ion irradiation 

at the Accelerator Laboratory of Wuhan University in China by Jin et al. [35]. The test was 

conducted at elevated temperatures of 290 and 550 ºC and at a current of 0.8-1 µA/cm2. 

The dose reached about 30 dpa for the experiments at 550 ºC and about 5 and 15 dpa at 

290 ºC. The selected-area electron diffraction (SAED) patterns was taken in the [110] zone 

axis direction as shown in Figure 12.  
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 Disordering of the precipitate was discovered at 5 dpa at a temperature of 290 ºC. The γꞌꞌ 

precipitate order was completely destroyed by Ar ion irradiation at both temperatures. The 

observed size of γꞌ and γꞌꞌ precipitate gradually decreased from about 23 nm to 14 nm.   

 The Spallation Neutron Source (SNS) group, at Oak Ridge National Laboratory 

conducted microstructure analysis of Inconel 718 as a possible candidate material for the 

accelerator beam window [40,53]. The experiments tested both PH and SA Inconel 718 

with 3.5 MeV Fe+, 370 keV He+, and 160 keV H+ either singular or simultaneous. Fe+ and 

Fe+ + He+ + H+ ion irradiations reached a dose of about 10 dpa. At 0.1 dpa, SA Inconel 718 

microstructure exhibit Frank type faulted loops. As the dose increase, faulted loops turn 

into perfect loops and cavities were observed. The experiment did not publish any electron 

diffraction patterns of SA Inconel 718 and found no evidence of precipitate formation. SA 

Inconel 718 showed radiation induced hardening while PH Inconel 718 exhibit radiation 

induced softening [40]. The test concluded that hardening in SA Inconel 718 is due to 

Figure 15. SAED of γꞌ and γꞌꞌ in the [110] zone axis  [35] 
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radiation induce defects. PH Inconel 718 showed signs of disordering of γꞌ and γꞌꞌ 

precipitates around 0.1 dpa Fe+ and 0.2 at. % He+ irradiation [53]. The γꞌ and γꞌꞌ precipitate 

diffraction pattern completely disappeared at 1 dpa Fe+ and 2 at. % He+.  

 The effects of neutron irradiation on PH In718 was investigated by Thomas and 

Bruemmer [29]. The experiment investigated microstructure and grain boundary 

compositions in PH Inconel 718 at 288 ºC. The temperature was chosen to replicate the 

temperature found in most PWRs.  During microstructure investigation of the as received 

materials, γꞌꞌ precipitates were noted to be forming at the grain boundary. The formation of 

γꞌꞌ precipitates was contributed to the higher concentration of Nb at the grain boundaries. 

After an estimated dose of 2.5-3.5 dpa γꞌꞌ precipitates disorder completely and γꞌ 

precipitates still had a presence in the diffraction pattern. At 20 dpa, both γꞌ and γꞌꞌ 

precipitates completely disordered. For all doses Frankel dislocation loops were discovered 

and ranged in size from 10 nm to 40 nm. At 20 dpa, cavities were observed in the sample. 

The initial grain boundary composition about 8% Nb and 4% Mo. During neutron 

irradiation, Nb and Mo concentrations reduced in the grain boundaries while Cr and Fe 

increased with the increase of dose. The hardness test on the irradiated material showed 

about a 30% decrease from the unirradiated sample to the 20 dpa sample.  

 Sundararaman et al. studied the stability of γꞌ and γꞌꞌ precipitates under electron 

irradiation [54]. Electron irradiation can create displacements of atoms but not the damage 

cascades seen in ion and neutron irradiations. The PH Inconel 718 samples were irradiated 

with electrons at the ultra-high voltage electron microscope at Osaka University. The 

fluence of the electron beam was about 1.15 x 1024 electrons/s/m2 at an energy of 3 MeV. 

The corresponding dose rate was calculated to be about 10-3 dpa/s according to 
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Sundararaman et al. The time irradiated for each same was 15 minutes. The temperatures 

at which irradiation occurred were room temperature, 400 ºC, 500 ºC and 650 ºC. The 

average size of γꞌꞌ precipitates was measured to be about 19 nm. Diffraction patterns were 

taken in the [001] zone axis. At room temperature, disordering was observed but the γꞌꞌ 

precipitates did not completely disorder. At 400 ºC and 500 ºC disordering was observed 

with a much weaker diffraction pattern for γꞌꞌ precipitates than at room temperature. At 650 

ºC the γꞌꞌ precipitates diffraction pattern was enhanced. The temperature was about 0.5 of 

the melting temperature of Inconel 718. The thermal diffusion of atoms is much higher at 

elevated temperatures and Sundararaman et al concluded this was much greater than the 

destruction of precipitates. 

 The Accelerator Production of Tritium (APT) project investigated candidate 

materials, 316L/304L stainless steels, PH Alloy 718 and Mod 9Cr-1Mo, under spallation 

environments conditions [13]. The spallation environment is 1 GeV proton beam which is 

shot at a tungsten target to induce a (p,n) reaction. The environment produces high energy 

neutrons along with non-absorbed high energy protons. The tensile strength and fracture 

properties of the candidate materials were studied. The test studied PH Alloy 718 from 0.5 

dpa up to 10.8 dpa. For a dose of 0.5 and 2 dpa, the study found a slight increase in YS 

while fracture toughness and uniform elongation declined. It was also shown that the YS 

at higher doses decreased about 20% from 2 dpa to 10.8 dpa. The decreases are contributed 

to the disordering of the irradiation sensitive precipitates.  

 The investigation on Inconel 718 irradiated with 800 MeV protons investigated 

microhardness, bend strength tests and microstructure [55]. The PH Inconel 718 samples 

were used as a neutrino source at the Los Alamos Meson Physics Facility (LAMPF) which 



41 

 

is currently called LANSCE. The shape of Inconel 718 samples were two concentric 

spheres. The highest dose rate calculated was 10 dpa. A decrease of about 20% hardness 

was observed as dose increased to 10 dpa. The hardness was calculated as a function of 

radial position. At the center the hardness was observed to be the lowest with the edges of 

the sphere showing an increase in hardness. The softening of the material could be 

explained by the dissolution of γꞌ and γꞌꞌ precipitates at were the higher doses occurred. The 

hardening of PH Alloy 718 was not explained, and the phenomena not seen in any other 

technical documents. TEM analysis showed diffraction patterns of the super lattice, γꞌ and 

γꞌꞌ precipitates not fully disappearing at 10 dpa.  

 A study by Sencer et al. investigated the mechanical properties and microstructural 

development of PH Alloy 718 irradiated with mixed spectra of high-energy protons and 

spallation neutrons [27,30]. The specimens were irradiated at the LANSCE accelerator at 

800 MeV 1mA protons and placed in low exposure in neutron furnaces. The experiment 

was to simulate the APT environment of a spallation environment of 1 GeV protons. The 

samples had a range of doses and temperatures that depends on the position and the beam 

intensity. At 0.1 dpa the temperature was about 72 ºC and at 0.6 and 13.4 dpa was about 

32-55 ºC, respectively. Disordering was noticed at 0.1 dpa but the superlattice reflection 

was still faintly visible. At 0.6 dpa the superlattice reflection was completely gone [30]. 

The precipitate solutes did not fully redistribute back into the matrix. Thus, retaining some 

of the strength of the material. 
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2.4.3 Notable Nickel-Base Alloys Under Irradiation Conditions 

 Rene N4 is a nickel base super alloy being considered for similar applications as 

Inconel 718 and Nimonic PE 16. Rene N4 forms much larger, about 450 nm in diameter, 

γꞌ precipitates than both Inconel 718 and Nimonic PE 16 which are around 20 – 30 nm in 

diameter. Sun et al [56] investigated the disordering and dissolution of γꞌ precipitates in 

Rene N4. The test was conducted with in situ and ex situ ion irradiations.  Kr2+ and Ni3+ 

ions with energies of 1 MeV and 3 MeV were the choice of ions for in situ ion irradiation. 

The tests were conducted at Argonne National Laboratory IVEM and Sandia National 

Laboratory I3TEM.  The in situ ion irradiation went up to 0.3 dpa and found immediate 

disordering of γꞌ precipitates. Ex situ experiments with Ni3+ ions with an energy of 3 MeV 

was conducted at the Ion Beam Materials Laboratory in Los Alamos National Laboratory 

using a Tandem accelerator. The ex situ went up to a dose of 75 dpa. The results concluded 

Figure 16 Disordering of γꞌꞌ precipitates after 0.6 dpa of dose [30] 
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large γꞌ precipitates were still visible, although partially dissolved into the surrounding 

solution.  

 Zhang et al. has investigated Inconel X-750 under both neutron and ion irradiations 

[34,57]. Inconel X-750 is used in CANDU reactors for fuel channel spacers and as cable 

sheathing.  Inconel X-750 has a higher concertation of aluminum compared to Alloy 718 

and Nimonic PE16. The investigation of neutron irradiated sample showed irradiation(?) 

induced instability of γꞌ precipitates. The superlattice spots decrease in intensity which 

proved some disordering [57]. When Inconel X-750 was investigated under  Kr+ 

irradiation, disordering and dissolution was observed [34]. The material was investigated 

across a range of temperatures and doses as shown in the Figure 17.  

The γꞌ precipitates reached a critical temperature of 500 ºC which the precipitates do not 

disorder after irradiation [34]. The γꞌ precipitates irradiated at temperatures under 500 ºC 

did exhibit disordering. EDX mapping shows dissolution of the γꞌ precipitates at 5.4 dpa 

[34].  

Figure 17. ○idicates disordering  ● indicates no disordoring  [34] 
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Nimonic PE 16 is a nickel bas alloy similar to Alloy 718. Nimonic PE16 has more 

aluminum in solution than Alloy 718. With the increase of aluminum, more γꞌ precipitates 

are present in the material. Bourdeau et al. investigated the disordering and dissolution of 

γꞌ precipitates under ion irradiation [33]. The stability of γꞌ precipitates was investigated 

under 300 keV Ni+ ion irradiation at room temperature. The dose varied from 0.001 dpa to 

2 dpa. To determine the kinetics of disordering, the intensity of the superlattice reflections 

was compared to non-irradiated specimens. Disordering of the γꞌ precipitates occurred 

between 0.1 and 1 dpa. Bourdeau et al. claimed after 2 dpa the vanishing of the superlattice 

spots is caused by the dissolution of the γꞌ precipitates.   
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Chapter 3: Materials and Methodology 
 

 3.1 Solution Annealed Inconel 718  

 Alloy 718 is a high-strength and corrosion resistant nickel base alloy. The alloy is 

produced in two different forms: precipitation hardened (also referred as annealed and 

aged) and solution annealed. Precipitation hardened Alloy 718 has two precipitates γꞌ and 

γꞌꞌ which attribute to the strength of the material.  Alloy 718 is a readily fabricated alloy 

with exceptional tensile, creep, rupture, and fatigue strength [24]. The ease and economical 

fabrication of Alloy 718 allows the alloy to be use in a wide variety of applications 

[13,36,40,59]. The physical properties of both forms of Alloy 718 are shown in Table I 

below.    

Table 2. Important Physical Properties of Non-Irradiated Alloy 718 [24] 

Density  

Annealed  0.296 
𝑙𝑏𝑚

𝑖𝑛3  (8.19 
𝑔

𝑐𝑚3) 

Annealed and aged 0.297 
𝑙𝑏𝑚

𝑖𝑛3  (8.22 
𝑔

𝑐𝑚3) 

Melting Range 2300 – 2437 ºF (1260-1336 ºC) 

Poisson Ratio at 70 °F, (at 21°C) 0.29 

Specific Heat at 70 °F, (at 21°C) 0.104 Btu/lb °F (435 J/kg °C) 

Thermal conductivity at 70 °F, (at 21°C)  77 BTU•in/ft2•h•°F (11.1 W/m-ºC) 

 

 Alloy 718 consist mainly of Ni, Cr, and Fe but include small amounts of 

Molybdenum, Niobium, Tantalum, Titanium and Aluminum. High Cr contents in the alloy 

gives excellent oxidation resistance.  Titanium, aluminum and niobium contribute to the 

strength of Alloy 718 by forming γꞌ (Ni3(Al,Ti)) and γꞌꞌ (Ni3Nb) precipitates. Molybdenum 

aids in high temperature stability and strength [59]. Columbium is another term for niobium 

and tantalum and is used in older references [60]. Table II shows the composition range of 

Alloy 718 and the maximum amount of impurities the alloy can have.  
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Table 3. Composition Range of Alloy 718 (wt%)[24,60] 

Nickel 50.00-55.00 

Chromium 17.00-21.00 

Iron Balance 

Columbium (Nb+Ta) 4.75-5.50 

Molybdenum 2.80-3.30 

Cobalt 1.00 Max. 

Aluminum 0.20-0.80 

Titanium 0.65-1.15 

Manganese 0.35 Max. 

Silicon 0.35 Max. 

Boron 0.006 Max. 

Carbon 0.08 Max. 

Sulphur 0.15 Max. 

Phosphorus 0.015 Max. 

Copper 0.30 Max. 

   

  

3.1.1 Annealing Processes 

Annealing is the process of heating a metal to a very high temperature to allow 

atomic diffusion to occur [45]. The process allows for a material to increase in ductility 

and reduce internal stresses and dislocation density that could contribute to brittleness. 

After heating up the material, precipitation hardening is the next step. Precipitation 

hardening is the hardening and strengthening of the material by the dispersion of particles 

that precipitate from the super saturated solid solution [44].  According to Special Metals 

Corporation, there are two ways Alloy 718 are heat treated and sold. Both ways start off 

with solution annealed Alloy 718. The first heat treatment process heats the material to a 

temperature of 1700-1850 ºF (925-1010 ºC) followed by rapid cooling in water. The 

material then undergoes precipitation hardening at 1325 ºF (718 ºC) for 8 hours. The next 
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step is thermally ageing the material at 1150 ºF (620 ºC) for 18 hours and then air cooled. 

The second treatment for PH Alloy 718 process heats the material to 1900-1950 °F (1038-

1066 °C) followed by rapid cooling, usually in water. After the rapid cooling the material 

is thermal aged to induced precipitate growth. The material is held at a constant temperature 

of 1400°F (760 °C) for 10 hours then furnace cool to 1200°F (649 °C). The final step in 

the annealing process is holding the Alloy 718 at 1200 °F (649 °C) for a total aging time 

of 20 hours and finish with air cooling. The two heat treatments are recommended for 

different application at room temperatures. Special Metals Corporation recommends higher 

temperature annealed Alloy 718 be used in tensile-limited applications.   

3.1.1 Mechanical Properties 

The mechanical properties of Alloy 718 are very promising compared to other Ni 

base alloys and metals commercially available. Tensile strength, modulus of elasticity, 

hardness, elongation and fatigue are among the most commonly used properties to explain 

Figure 18 Tensile strength of various nickel base alloys as a function of temperature [73] 
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the durability and strength of a material. Figure 18 illustrates the tensile strength of selected 

nickel base alloys as a function of temperature. Tensile strength is the capability of a 

material to withstand a tension or pulling force [44] Alloy 718 has great tensile strength, 

compared to other nickel base alloys, at temperatures below 650 °C. The alloy has similar 

tensile strength as Haynes 230 and Hastelloy X at higher temperatures. The figure 

illustrates the tensile strength of selected nickel base alloys as a function of temperature.  

The hardness of a material is the resistance to deform surface indentations or 

abrasions. Hardness and how it is calculated will be discuses in greater detail further on in 

Section 3.1.2. Alloy 718 has higher hardness compared to other nickel base alloys such as 
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Waspaloy. Polvorosa et al. studied tool wear on bolts made of  Alloy 718 and Waspaloy 

found that the hardness of Alloy 718 is greater than Waspaloy [58].  

 

3.1.2 Nanoindentation 

 Nanoindentation is the process of testing for mechanical properties of materials 

with small volumes. Nanoindentation uses a small tip, ranging in different areas of contact, 

shapes, and materials types, to apply a load. The displacement of the tip and the load 

applied to the material can be used to determine hardness and Young’s modulus. Figure 19 

is the type of plot you would expect from a typical nanoindentation experiment. The 

displacement is plotted versus applied load during the nanoindentation test.  

The plot shows two curves, loading and unloading curve. The slope of the 

unloading curve is used to calculate the stiffness, S, as shown in equation X. The reduced 

Figure 19. Nanoindentation loading and unloading curve. For the loading and 

unloading curve material properties can be calculated [9]. 
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Young’s modulus, Er can be solved for using equation X, with the known projected (also 

called indentation) area, A.  

𝑆 =
𝑑𝑃

𝑑ℎ
=

2

√𝜋
𝐸𝑟√𝐴                                                                                                    Eqn. 20  

The Young’s modulus can be determined through equation X1, where E and ν are Young's 

modulus and Poisson's ratio for the specimen and Ei and νi are the same parameters for the 

indenter [61].  

1

𝐸𝑟
=

(1−𝜈2)

𝐸
+

(1−𝜈𝑖
2)

𝐸𝑖
                                                                                                   Eqn. 21 

The applied load is used to calculate the hardness, Pload, as shown in equation 20 below. 

𝐻 =  
𝑃𝑙𝑜𝑎𝑑

𝐴
                                                                                                                  Eqn. 22 

 Nanoindentation experiments were conducted at University of New Mexico 

(UNM) Extreme Materials Lab, using NanoMechanics iMicro nanoindenter. The 

nanoindenter setting was set to a max load of 1000 mN. Testing setup included 16 indents 

into the sample. The test had no depth limit and with a distance of 100 µm between the 

indents. The distance was chosen to insure the indents will not interact with one another. 

The load hold time was set to 0 seconds. The results were an average hardness of 3.99 ± 

0.20 GPa and a Modulus of 221.6 ± 5.1 GPa. One indent was omitted because it did not 

extract any data from the indent.  
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3.1.3 FIB Imaging 

 The as received material shown in Figure 17 has an average grain size of 9.8 µm 

with many twins forming. The average grain size was calculated using the line intercept 

method. The image was taken using a Focus Ion Beam (FIB) at UNM. The FIB use Ga 

ions to image the Alloy 718 sample. Twins form under uniform stress across the lattice. 

The formation of twins occurs when the material is formed. A typical stacking pattern 

follows a pattern of ABCABC. In a twin the stacking pattern is mirrored, ABCCBA.  

3.2 Sample Preparation 

 Bulk sample bars of Alloy 718 were obtained from LANL. Using a Buehler Ecomet 

4 polisher/grinder, the material was ground and polished. The majority of the sample bars 

were thinned down to approximately 200 µm using 400, 600, 1200 and 2400 grit paper. 

The polishing of the samples used 1, 0.3 and 0.04 µm Silica slurry. For the in situ tests, the 

Figure 20. Grains in the received material of alloy 718 using the focus ion beam. 
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samples were punched into 3mm disks. The samples were further thinned to electron 

transparency by twin jet electro-polishing at LANL. 

 Twin jet electropolishing is the process of thinning a sample by an electrochemical 

action. A 3mm sample is placed in a holder. The holder is placed into solution twin jet 

polisher. The solution used at LANL was 95% methanol and 5% perchloric. The solution 

and system are cooled by liquid nitrogen. The solution was kept at a temperature of around 

-35 ºC ± 5ºC. The holder is positioned between two jet nozzles and a light source with a 

photodetector. The photodetector determines the amount of light coming though the 

sample. The amount of light signifies the amount of material etched away. The samples 

were etched away to a reading of 30% light by the photodetector. The sample in the holder 

acts as an anode and the jets act as cathodes. The jet pump was set to the setting of 33 (no 

units were given). The voltage current behavior is very important to obtain a good sample. 

High voltage applied to the system can cause the material to pit/relief due to oxygen 

formation. Low voltage can exhibit etching effects due to direct anodic dissolution [62]. 

The voltage was maintained at 22V throughout electropolishing. The samples were 

inspected under an optical microscope.  
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Figure 21. Twin jet electro polisher diagram.  
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3.3 In Situ Ion Irradiated Transmission Electron Microscopy Beam  

3.3.1 Transmission Electron Microscopy (TEM) 

TEM uses a beam of electrons to transmit through a specimen to emit an image. 

High energy electrons have a wave length shorter than high energy photons. The short 

wave length allows for a high resolution image.  Most metallic specimens must be thinner 

than 100 nm to get a good TEM image. The high-resolution image is credited to the 

understanding of the de Broglie wavelength. The electrons can pass through the thin region, 

interact with the material and be detected to create an image. Figure 4 illustrates the basics 

of a TEM.  

The electron gun, typically made out of lanthanum hexaboride, is the electron 

source. Other electron source includes tungsten, Shottky ZrO/W, Thermal FE W (100) and 

Cold FE W (310) [63]. The most commonly use are tungsten and LaB6 because of low 

operational cost and easy maintenance [63].  The beam is then subjected to apertures and 

Figure 22. Schematic of TEM [63]. 
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magnets to focus the beam to desired location and size. Changing the apertures and 

condenser allows for different function on the TEM. The functions of TEM include Bright 

Field imaging, Dark Field imaging, and Electron Diffraction Pattern.  

Electron Diffraction Patterns can be used to determine the crystal structure and 

orientation of the grains of the material being analyzed. By selecting the correct setting, 

apertures and a beam intensity a selected area diffraction pattern (SADP) image is created 

using a TEM. In a SADP, each diffraction spot corresponds to the electron beam scatter 

intensities. A zone axis of [001] will have a different SADP than the same material oriented 

along a zone axis of [013].   

 

Figure 23. SADP in a FCC material at a different orientation [65].  
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Changing the orientation of the specimen will lead to different diffraction conditions. A 

way of finding the zone axis is using Kikuchi lines [63,64]. Kikuchi lines are a pair of 

bands of electron diffraction from a single crystal structure [64].  

Kikuchi lines form by diffusely scatters electrons in diffraction patterns. Kikuchi lines act 

like a road map to lead one to different zone axes of the single crystal or grain in a material. 

FCC and BCC materials exhibit different SADPs and Kikuchi lines for different zone axis 

because of their different crystal structures [63,64].   

3.3.2 Ion beams 

Ion beams are comprised of many types of ions ranging from H+ up to U Ions that 

are accelerated using electrostatic and electrodynamic accelerators. Electrostatic 

accelerators use static magnetic fields to accelerate ions [65]. Examples of electrostatic 

accelerators are van Der Graaff and Cockcroft-Walton generators. Electrodynamic fields 

used magnetic induction or oscillating radio frequency to accelerate ions [65]. Examples 

of electrodynamic accelerators are any linear accelerator and cyclotron. The type of ions 

and energy levels is determined by the ion beam type.  

Figure 24. Kikuchi Line map for a FCC crystal 
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Ion irradiation is being used over neutron irradiation for its high damage rates in a 

short amount of time and the ability to irradiated a material without activating it (as long 

as the ion energy is low enough). Section 2.1.2 discusses the use of ion irradiation over 

neutron in greater detail. Current test reactors in the United States can only reach up to 8 

dpa/year and available world reactors can only reach up to 20 dpa/year [2]. Ions can 

produce similar cascades and defects as neutron irradiations in a much shorter time scale. 

3.3.3 In situ facilities 

TEM has the capability to see specimens at the atomic scale in real time. The TEM 

was first invented in 1933 and commercialized in 1939 [66]. Soon after concepts of in situ 

ion irradiation came into the circulation. The first in situ ion irradiation was done in 1961 

with an oxidized tungsten filament [67]. Technology has since improved through installing 

a separate ion beam into the top column of the TEM to simultaneously observe the 

specimen while irradiating it with a separate ion. There are 12 in situ ion irradiation 

facilities worldwide with more planned to be built. The majority of in situ facilities are in 

Japan with the remaining in Russia, European Union and the United States.  

 In most in-situ ion beam cases, the ion beam enters the TEM above the sample port 

from an energy dispersive X-ray spectroscopy (EDS) port [65]. The beam then hits the 

specimen and exits the TEM column through a different port. Figure 1a. illustrates the 

beam entering the TEM column. Tilting the specimen and the angle the ion beam enters 

and hits the specimen depends on the facility being used.  
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Figure 25. Ion beam entering the TEM and hitting the specimen [65].  

 The advantages of using ion in situ irradiation are studying live time damage events. 

The user can quantify damage as did Haley et al. [68]. Understanding live time damage 

events will lead to better simulations and computer codes to predict damage. Numerous 

groups including Kirk et al. are trying to use in situ ion irradiation to determined ion 

damage and relate it to neutron damage with computer modeling. [69].  

The disadvantages of using in situ ion irradiation in a TEM include the size of the 

specimen,  limited EDX capability and the free surfaces can serve as sinks for defects. Thin 

specimens have a large surface to volume ratio+ and surfaces are unsaturable defect sinks 

that are easily accessible to internal defects. One example is Haley et al [68] reported 

dislocation loops disappearing to the surface.  EDX limitation is a disadvantage because 

analytical TEM such as irradiation induced segregation (and saturation of segregation) type 

of work is not possible during in-situ irradiation experiments. EDX is not available because 

the port the ion beam enters is the port that typically has EDX.  
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3.3.4 Sandia National Laboratories in situ ion irradiation TEM facility  

Sandia National Laboratories (SNL) I3TEM facility opened in 2010 and is funded 

by the Department of Energy and SNL. The major components of the I3TEM facility can 

be seen in the figure below, and include a 200 kV JEOL 2100 high resolution TEM, a 6 

MeV Tandem Van de Graaff–Pelletron accelerator, and a 10 kV Colutron G-1 ion 

accelerator [70]. 

 

Figure 26. I3TEM at SNL. (A) Capabilities and instrumentation the TEM (B) 6 MeV Tandem accelerator and ion 

source (C) 10 keV colutron accelerator   [67] 
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The ion and ion energy vary widely with in situ TEM. The I3TEM at Sandia 

National Labs allows for a wide range of ions and ion energies. The type of ion can range 

from hydrogen/protons up to heavier ions such as gold (Au). Most ions energies stay below 

5 MeV but elements such as Si, Ni and Au can reach higher (10’s of MeV) energies [67]. 

The wide range of ions and ion energies allow for a vast amount of experiments with 

different damage rate and productions.  

 

3.3 Experimental Design 

While undergoing preventative maintenance at the LANSCE IPF, the investigation 

of the Alloy 718 beam window showed formation of of γꞌꞌ precipitates in certain regions 

close to outer ring. Both γꞌ and γꞌꞌ precipitates are known to be unstable under irradiation 

conditions. The experiments which were conducted in this study were to understand the 

formation of γꞌꞌ precipitates. To observe precipitation formation, the TEM technique of 

electron diffraction pattern was used. Under TEM in situ ion irradiation, the formation of 

precipitates could be chronicled if formation of the precipitate occurred. The experiments 

were conducted at the I3TEM facility at SNL. Specimens were twin jet electro polished at 

LANL before the experiment at SNL. The first experiment was Ni ion in situ irradiation. 

The goal of the first test was to see if dose at room temperature will cause the formation of 

γꞌꞌ precipitates. The second experiment was Au ion in situ irradiation at 200 ºC. The goal 

of the second test was to see if a combination of dose and an elevated temperature would 

promote an environment for γꞌꞌ precipitates formation. The third experiment used proton in 
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situ irradiation. The goal of the proton irradiated test was to simulate the environment of 

the ion beam window portion which had γꞌꞌ precipitates formed during irradiation.  
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CHAPTER 4: RESULTS  

4.1 Computational Results 

Computational analysis was conducted to estimate the dpa, range and energy 

deposited into Alloy 718. MCNP and SRIM were the two programs used. The section 

below discusses the computation results. How the codes work discussed in Chapter 2. 

4.1.1 SRIM  

 The Stopping Range in Matter (SRIM) computer code can simulate ion and proton 

irradiation into a material. To conduct dose calculation, range and energy deposited a few 

assumptions were made as to follow Stoller et al.[52]. The SRIM calculations used the 

“quick” K-P method along with 0 eV for surface and lattice energies. The displacement 

energy was set at 40 eV [31]. SRIM does not take into effect recombination of defects and 

atoms. For all SRIM calculations the following material composition was used in Table 4.  

Table 4. Material Input for SRIM.  

Element Atomic % 

Ni 52 

Fe 22 

Cr 17 

Nb 2.5 

Ta 2.5 

Mo 3 

Co 1 

 

Elements such as C, P, B, Si and Cu were omitted because of the low initial amounts and 

known impurities. Each simulation ran for 1e6 particles. All samples used the first 200 nm 

of the material to roughly estimate the TEM specimen. The first 200 nm was used to 

roughly estimate when the specimen is tilted 30º in the TEM holder. The calculations ran 

10e6 particles.  
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4.1.1.1 SRIM Results for Ni ion irradiation  

 The dose calculated for 1.2 MeV nickel ions into Alloy 718 used a maximum depth 

of 650 nm. Figure 23 is the range and dose rate of 1.2 MeV Ni+2 ions in Alloy 718. The 

flux for Ni ion irradiation was calculated to be 7.5x1011  
𝑖𝑜𝑛𝑠

𝑐𝑚2𝑠
. 

 

The average range of 1.2 MeV Ni ions in Alloy 718 is about 500 nm. The dose calculated 

to the specimen for 37 minutes of irradiation was 1.7 dpa. The energy deposited was 

calculated and plotted in Figure 27. The average ionization, for the first 200 nm, was 

calculated to be 166 eV/ Å-ion. The dominate transfer of energy is by ionization for the 

Figure 27. Dose rate and ion range of 1.2 MeV Ni ions into Alloy 718.  



64 

 

first 200 nm. The vertical dotted lines in the plot above represents the 200 nm thick TEM 

foil region.   

 

4.1.1.2 SRIM Results for Au ion irradiation 

The dose rate was calculated for 2.7 MeV gold ions into Alloy 718 at a depth of 450 nm. 

The dose was average to be 0.85 dpa for the first 200 nm (the thickness of the TEM foil) 

for an irradiation time of 54 minutes. The flux for Au ion irradiation was calculated to be 

5x1010  
𝑖𝑜𝑛𝑠

𝑐𝑚2𝑠
.  

 

Figure 28. Ionization of Ni ions in Alloy 718. 
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The average range of the ion was about 275 nm into the material. The average amount of 

energy deposited per Å is about 580 eV/ Å -ion for the first 2000 Å. Figure 26, describes 

the energy being deposited. The vertical dotted lines in the plot above represents the 200 

nm TEM foil region.   

 

Figure 29. Dose rate and ion range of 2.7 MeV Au ions into Alloy 718 

Figure 30. Ionization of Au ions in Alloy 718. 
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4.1.1.3 SRIM Results for Proton ion irradiation 

The dose for 800 keV protons into Alloy 718 was calculated using a depth of 5,500 nm. 

The dose was averaged to be 0.023 dpa for the first 200 nm thickness of the TEM foil. The 

fluence for proton irradiation was averaged to be 1.8 x 1012  
𝑖𝑜𝑛𝑠

𝑐𝑚2𝑠
. Figure 27 shows the 

damage and ion range as a function of depth.  

 

 

 

The range of the ion was about 5000 nm into the material. The energy deposited per Å is 

averaged to be 11.8 eV/ Å -ion. The ionization of protons in Alloy 718 is shown in Figure 

32.  Protons are predominantly slowed down by Coulomb interactions.  The vertical dotted 

lines in the plot above represents the 200 nm TEM foil region.   

Figure 31. Dose rate and ion range of  800 keV protons into Alloy 718. 
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4.2 Ion in situ Irradiation 

The goal of testing solution annealed Alloy 718 under irradiation environments is 

to simulate the Los Alamos Neutron Science Center (LANSCE) Isotope Production 

Facility (IPF) ion beam window to further understand the formation mechanism of γꞌꞌ 

precipitates. A previous study by Bach et al. found at about 0.7 dpa and 33ºC γꞌꞌ precipitates 

Figure 33. Diffraction pattern from Bach et al study of the SA Alloy 718 

beam window.  

Figure 32. Ionization of protons in Alloy 718. 
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formed in SA Alloy 718 [31]. Figure 30 shows the diffraction pattern from that study. The 

experiments were conducted at I3TEM Facility at SNL with additional analysis done with 

the University of New Mexico 2010F JEOL TEM. The ion irradiation performed in situ 

with TEM tried to see and quantify any formation of γꞌꞌ precipitates formed. The formation 

of γꞌꞌ precipitates will be quantified by the intensity of the superlattice beam spot in the 

diffraction pattern in the [001] zone axis.  

4.2.1 in situ Nickel Irradiation  

 Nickel ion irradiation was used to create higher amounts of radiation damage. In 

Figure 31, the before and after SADP in [001] direction is shown. No indication of 

superlattice spots from γꞌꞌ precipitates are visible. No SADP’s were taken during 

irradiation. The maximum dpa calculated using SRIM was 1.7 dpa.  

Contrast plots were created using ImageJ as shown in Figure 32. The contrast plots 

show no signs super lattice patterns.  

 

  1.7 dpa 0 dpa 

Figure 34. Ni ion irradiated SADP 
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4.2.2 in situ Gold Ion Irradiation 

Gold ion irradiation was conducted on an Alloy 718 sample at a temperature of 200 

ºC. The maximum dpa was calculated to be 0.85 dpa. During the irradiation a SADP image 

was taken at the beginning, then at 20 minutes and every 30 seconds after. The first 20 

minutes of irradiation was not captured because of technical difficulties.  

0 dpa 0.85 dpa 

Figure 36 Au ion irradiated SADP 

Figure 35. (Left) pre-irradiation contrast plot. (Right) Post-irradiation contrast plot. 
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Contrast plots were created using ImageJ as shown in Figure 34. The contrast plots show 

that no signs of super lattice patterns were detected.  

 

 

4.2.3 in situ proton Irradiation 

 Proton irradiation was conducted at room temperature. The irradiation time was 64 

hours. The last SADP taken at SNL occurred 12 hours into the experiment. Post analysis 

Figure 38. Proton irradiation SADP 

Coming soon to athesis 

near you.  

T = 64 hrs  

Diffraction pattern  

T = 64 hrs 

800 keV H+ 

020 

220 

200 

Figure 37  (Left) pre-irradiation contrast plot. (Right) Post-irradiation contrast plot. 
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was conducted at the UNM TEM facility. In Figure 38, the SADP for pre- irradiation, 12 

hours into irradiation and post analysis do not indicate any formation of precipitates.  

Contrast plots were created using ImageJ as shown in Figure 36. The contrast plots 

show no signs super lattice patterns. 

 

  

Figure 39.  (Left) pre-irradiation contrast plot. Middle contrast plot after 12 hours of irradiation. (Right) Post-irradiation 

contrast plot. 
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The current of the beam was measured throughout the experiment. Figure 37 plots 

the current as a function of time. Around 24 hours into irradiation, the ion beam was block 

from the sample to try to fix the TEM.  

 

4.3 Ion Beam Window Stress Analysis 

 Following the null results of in situ irradiation, the search to find another possible 

reason for precipitate growth was needed. A study by Qin et al. [47] suggested γꞌꞌ 

precipitates are aided by external stresses on the material.  

The thermal stress of the ion beam was calculated using equation 12, 13, and 14 

from Chapter 2. To calculate the thermal stress, the following variables were used, E = 208 

GPa, α = 13 x 10-6 mm/(m-ºC) and an assumed ΔT to be 100 ºC. The thermal stress induced 

across the temperature difference was calculated to be 0.27 MPa. This value is not in the 

Figure 40. Current (nA) readings thoughout the test 
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same order of magnitude at which Qin et al [47] used in aging the specimens. Since the 

thermal stress was not the same order of magnitude, external force caused by the difference 

in pressure was calculated using Solidworks.    

 Solidworks was used to estimate the stress acting upon the ion beam window during 

normal operations. Properties listed in Chapter 3 were used to describe the alloy in 

Solidworks. The average atmospheric pressure at Los Alamos, 82 kPa, was used in the 

Figure 41. Ion beam widow cutting plan  [31] (a); Mill machine with special 

tungsten cutting bit at the Chemical and Metallurgical Research (CMR) LANL 

facility  (b); view of the cutouts of the ion beam window  (c); Solidworks stress 

profile of LANSCE IPF ion beam window (d).  

(d) 



74 

 

model along with a perfect vacuum of -82 kPa was assumed to be on one. Linear Elastic 

Isotropic Model was used for the Solidworks calculations.  The maximum stress calculated 

was 550 MPa. The maximum stress was seen in the outer area of the ion beam window. In 

Figure 41a, sample 19 had γꞌꞌ precipitates form in the window in the same area of maximum 

stress of the window. The stress across the ion beam window is in the same order of 

magnitude as Qin et al reported. The area where γꞌꞌ precipitates formed had the lowest dose 

rate and highest external stress.  
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CHAPTER 5: CONCLUSIONS AND FUTURE WORK  

5.1 In-situ Experiments  

 In-situ experiments conducted SNL concluded that no precipitates were observed 

induced by irradiation. Formation of γꞌꞌ precipitates were discovered during the Ni, Au and 

proton irradiations of SA Alloy 718. SADP showed now indication of γꞌꞌ precipitates 

formation. The test concluded ion irradiation of SA Alloy 718 with dose rates of 0.028 to 

1.7 dpa does not induce γꞌꞌ precipitates.   

5.2 Stress Analysis  

 SolidWorks stress analysis concluded the maximum stress occurred at the outer 

area of the ion beam where the γꞌꞌ precipitates were discovered. The maximum stress 

calculated was 556 MPa. The maximum stress is on the same order of magnitude as 

previous literature work showing gamma double prime formation. The SolidWorks stress 

analysis along with Qin et al study suggests the γꞌꞌ precipitates form under stress. Qin et al 

study went up to higher temperatures than the calculated temperature of the ion beam. The 

irradiation and stress conditions could create an environment for γꞌꞌ precipitates growth.  

5.3 Future Work  

 Recent publication suggests the formation of γꞌꞌ precipitates is aided by external 

stress applied to the material during the anneal process [47]. Future work should investigate 

the relation of stress applied to the material and dose of the material.  
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