
University of New Mexico
UNM Digital Repository

Nuclear Engineering ETDs Engineering ETDs

Spring 1-30-2019

APPLICATION OF MACHINE LEARNING
TO CHF MODELLING
Mingfu He Mr
nuclear enginering

Follow this and additional works at: https://digitalrepository.unm.edu/ne_etds

Part of the Nuclear Engineering Commons

This Thesis is brought to you for free and open access by the Engineering ETDs at UNM Digital Repository. It has been accepted for inclusion in
Nuclear Engineering ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact amywinter@unm.edu.

Recommended Citation
He, Mingfu Mr. "APPLICATION OF MACHINE LEARNING TO CHF MODELLING." (2019).
https://digitalrepository.unm.edu/ne_etds/83

https://digitalrepository.unm.edu?utm_source=digitalrepository.unm.edu%2Fne_etds%2F83&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ne_etds?utm_source=digitalrepository.unm.edu%2Fne_etds%2F83&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/eng_etds?utm_source=digitalrepository.unm.edu%2Fne_etds%2F83&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ne_etds?utm_source=digitalrepository.unm.edu%2Fne_etds%2F83&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/314?utm_source=digitalrepository.unm.edu%2Fne_etds%2F83&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ne_etds/83?utm_source=digitalrepository.unm.edu%2Fne_etds%2F83&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:amywinter@unm.edu


i 
 

   
  

     Mingfu He 
       Candidate  
      
     Nuclear Engineering 
     Department 
      
 
     This thesis is approved, and it is acceptable in quality and form for publication: 
 
     Approved by the Thesis Committee: 
 
               
     Dr. Youho Lee, Chairperson 
  
 
     Dr. Sang Lee 
 
 
     Dr. Amir Ali 
 
 
      
 
 
      
 
 
      
 
 
       
 
 
       
 
 
       
 
 
  

 

   
  



ii 
 

  
  
  
  

 
APPLICATION OF MACHINE LEARNING TO CHF 

MODELLING 
 
 
 
 

BY 
 
 

MINGFU HE 
 

B.S., Nuclear Engineering, Chengdu University of Technology, Chengdu, 2016 
 
 
 
 
 
 
 

THESIS 
 

Submitted in Partial Fulfillment of the 
Requirements for the Degree of 

 
Master of Science  

 
Nuclear Engineering 

 
 

The University of New Mexico 
Albuquerque, New Mexico 

 
 
 
 
 

May 2019 
 
 



 

iii 
 

ACKNOWLEDGMENTS 

At this time, I feel like grabbing this opportunity to express my sincere gratitude for the 

help and advice that I have received in the performance and the completion of this thesis. 

First and foremost, I gratefully thank my advisor, Prof. Youho Lee, for giving me the 

opportunity to explore the world of boiling heat transfer of thermal hydraulics systems. I 

would also like to express my sincere appreciation to my advisor for his patience, 

encouragement and trust. It has always been a privilege to learn from Prof. Youho Lee’s 

vast experience in the field of heat transfer.  

Special thanks are extended to my colleagues who shared the happiness and sorrows in 

studies and researches with me these years, including Dr.Seung Gu Kim, Dr. Maolong Liu, 

Mr. Soon Lee, Mr Dongjune Chang, and Mr. David Wetzel.  

Last but not the least, I would like to thank my adorable daughter, Yangyang for your 

lovely smiles. Without your unwavering understanding; this project would not have been 

completed.   



 

iv 
 

Application of Machine Learning to CHF Modelling  

By 

Mingfu He  

B.S., Nuclear Engineering, Chengdu University of Technology, 2016 

M.S., Nuclear Engineering, University of Technology, 2019 

ABSTRACT 
 

Accurate prediction of CHF is still a challenging issue in the study of boiling heat transfer. 

Many factors contribute to the occurrence of CHF and the various trigger mechanisms are 

proposed to unravel physical phenomena behind CHF. However, those mechanisms cannot 

cover the multiple primary factors simultaneously and even some of them still remain 

controversially unresolved. In light of the complexity and difficulty of CHF modelling, 

hereby an ensemble-learning based framework is proposed to model and predict CHF 

based on the databank of CHF. Some prior trials have been done for three primary aspects 

of dominant factors, that is, surface morphology, geometrical dimension and operation 

condition. These three primary constituents are respectively analyzed though three 

different sub-models of the ensemble framework in Chapter 3, 4 and 5.   

In Chapter Three, relevant experiments about micro-pillar enhanced CHF are reviewed and 

the corresponding databank of microstructure enhanced CHF is compiled based on those 

CHF experiments from published papers. Although the impacts of micro-pillars on CHF 

are still not clear, through qualitative analyses, the parametrical trends of CHF with respect 

to geometrical parameters of pillar array can be roughly foreseen. Meanwhile, this study 

also evaluates performance of prediction accuracy among four current physical models of 

microstructure-enhanced CHF. Comparative results show that two capillary wicking 
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models have higher prediction accuracy. Particularly, a special terminology, zero-infinity 

convergence, is introduced to discuss the parametrical trends of CHF and qualitatively 

assess veracity of two capillary wicking models. Given the drawbacks of current physical 

models, the DBN is proposed to more accurately predict CHF and study parametric trends 

of CHF based on the microstructure enhanced CHF databank. Different from the training 

process of other regression modelling problems, constrained CHF points, which are 

artificially derived from the training data datasets, are required to be coupled with the raw 

training datasets for achieving the zero-infinity convergence of the DBN based CHF model, 

exhibiting accurate parametric trends of CHF and improving the prediction accuracy. This 

new training technique provides a new reliable solution to the similar constrained machine 

learning problems. Numerical results demonstrate that DBN can achieve the best 

performance of CHF prediction in terms of prediction accuracy. Through studying 

parametrical trends of CHF reveals that micro pillar arrays with the same parameters on 

heat transfer substrates with different dimensional sizes presents different CHF 

enhancement profiles. The presented methodology provides new insights for CHF 

modelling in pool boiling enhanced by other surface modification techniques, including 

porous layer coating, nanoparticle deposition, textured roughen, and nanowire fabrication.    

The effects of dimensions and materials of boiling surfaces on CHF are correlated and 

studied through the GRNN modelling in Chapter Four. Instead of inputting all parameters 

that indicate the thermal properties of materials into the trained model, the aggregated 

parameters from the primitive parameters of thermal properties, thermal activity and 

thermal diffusivity, are utilized as the input parameters of the trained model. This technique 

not only could capture the effects of thermal properties of materials on CHF effectively but 
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also helps reduce the computational loads. The trained model shows the similar parametric 

trends of CHF to that of the traditional empirical correlation with respect to the thermal 

activity. If the thermal activity of heat transfer substrate is beyond a certain value, the 

corresponding effect of thermal activity will be absent, which somehow implies that the 

thickness of heat transfer substrate will not impact CHF after the asymptomatic thickness 

is reached. On the other hand, thermal diffusivity still affects CHF occurrence even if the 

effect of thermal activity is negligible. When coming to the effect of dimension size on 

CHF, it was found that when the side length of square heat transfer substrate is 5 times 

greater than the capillary length of working fluid, the CHF will be independent on the side 

length. Otherwise, CHF will be affected by the side length, and the influence of side length 

on CHF reaches ultimate if the side length of square boiling surface is exactly equal to the 

Raleigh-Plateau instability wavelength. This instability wavelength is only dependent on 

the thermal properties of working fluids, meaning that the optimal side length for CHF 

optimization is only related to the thermal properties of working fluid, namely, the surface 

tension, and the liquid and vapor densities of working fluid.       

In Chapter Five of this study, ν-support vector machine is adopted to explore and study 

experimental strategies for the data-driven approaches of CHF look-up table construction, 

on the basis of sparingly-distributed experimental CHF data points.  In the virtue of the 

CHF look-up table of Groeneveld et al (2007), those CHF data was used as the reference 

data of this research. In this data collection, CHF data of the subcooled flow boiling (Xe < 

0) is chosen to concentrate on the PWR steady-state condition because the in the normal 

operation of PWR, the system is under the subcooled flow boiling. The numerical results 

have demonstrated that ν-SVM trained by well sparsely-distributed training data in the 



 

vii 
 

parameter region of interest (pressure and mass flux) can yield a fairly acceptable degree 

of CHF prediction accuracy. Procuring training data points that can imply the parametric 

behaviors of CHF with respect to pressure and mass flux for support vector machine is the 

essential key of machine learning to achieving a high level of CHF prediction accuracy. 

For capturing the pressure-variant CHF behavior, training data that are in the proximity of 

the CHF inflection point significantly contribute to the improvement of prediction 

accuracy. Hence, training data preparation physics-informed with knowledge of CHF 

inflection points definitely augments the prediction accuracy of CHF. How the 

parametrical trends of CHF with respect to pressure and mass flux are close to the linear 

trends determines the level of prediction accuracy when lacking of a good spread of training 

data points. Besides, it is found that CHF extrapolation to a higher pressure with many data 

points collected at different low pressures can be effectively achieved by SVM if a few 

CHF data points are available under the high pressure, especially for PWR pressure of 15.5 

MPa. This announces a possibility of strategic integration experiments between high 

pressure and low pressure, reducing experimental costs associated with the high pressure 

testing in terms of efforts and money. The proposed methodologies provides engineers and 

experimentalists with useful strategies to construct the look-up table tabulation of advanced 

cladding materials of ATFs.  

It is found out that there are multiple sub-problems that could be divided for CHF 

prediction and each sub-problem has its individual suitable machine learning model. Those 

prior work done by this study proves that the data-driven CHF modelling by sub-models 

can provide accurate CHF prediction under various scenarios and correct parametrical 

trends with respect to separate variables.  
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Last but not least, another contribution of this thesis to the field of boiling heat transfer is 

that two databanks of experimental CHF data are compiled for the CHF enhancement by 

microstructures. The compiled databanks provide useful information and guidelines to the 

future design of surface structures that will possibly be applied to heat exchanger and 

nuclear fuel rod.     
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NOMENCLATURES 
 

 
CHF critical heat flux  

BHT boiling heat transfer  

ONB onset of nucleate boiling  

HTC heat transfer coefficient  

LWR light water reactor  

PWR pressurized water reactor  

BWR boiling water reactor  

ANN artificial neural network  

GRNN general regression neural network  

DBN deep belief network  

SVM support vector machine  

DNBR departure from nucleate boiling ratio   

RBMs Restricted Boltzmann Machines 

BPNN back propagation neural network  

RBFNN radial basis function neural network  
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1 INTRODUCTION  

1.1 Boiling Heat Transfer  

Boiling heat transfer is a ubiquitous application from the daily lives to industrial fields. 

Besides, all modes of boiling heat transfer, no matter from pool boiling to flow boiling, 

seem to physically present complex and dynamical behaviors that are very hard to elaborate 

based on the very first principle. However, meticulous and methodical investigations have 

been conducted to explicate the difficult and ambiguous parts of boiling heat transfer and 

to understand physical phenomena observed in experiments. “What does the engineering 

field know about boiling heat transfer?” is essentially posed in a review presented by 

Lienhard and Dhir(J. H. Lienhard & Dhir, 1973a).  Yes still, up to now, this is a formidable 

question to the field of heat transfer. Most of the primary and experiential knowledge in 

boiling heat transfer we enjoy nowadays is a comprehensive collection of the pioneered 

theoretical and experimental works conducted over the last serval decades. In the recent 

developments and advancements, the field focuses of boiling heat transfer have already 

stepped into the subfield of micro and nano-scale heat transport (Cahill et al., 2003).  

Boiling heat transfer is an essential and complicated part of thermal nuclear reactor 

systems. A complete understanding through all aspects of boiling heat transfer is important 

to management of thermal systems at various scales.  

 

An inherent primary explanation of the boiling heat transfer needs basic principles analyses 

from the nano-scale to the macro-scale. Many efforts have been put into the understanding 

of boiling. For the perspective of macro-scale, continuum mechanics based boiling models 

are completely able to provide an empirical understanding of most of macro-scale 
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phenomena. However, it is very doubtful that the results from macro scale models could 

be applied to micro and nano scales to which it is doubtful to apply the continuum 

mechanics. Fang et al.(Jaeseon Lee & Mudawar, 2009) demonstrated that at micro and 

nano scale, thermal transport would be a different story. Understanding boiling heat 

transfer from molecular level is a better resolution to the complicated phenomena. 

Mukherjee et al (Mukherjee, Datta, & Kumar Das, 2018) the molecular vibration of 

working fluids increases, further repelling the neighbors molecules of less vibration to run 

away and finally forming vapor bubbles.    

 

Although numerous theoretical and experimental observations have been performed, 

boiling heat transfer is a kind of the category of physical phenomena that are incompletely 

understood or still remains controversial since the incipience of boiling researches. This is 

a result out of two common difficulties that are prohibiting the development of physical 

analytical model. The first hindrance is scarce of a complete understanding to interaction 

between the solid-liquid interfaces. Surface structure and nucleation site heterogeneity are 

two essential characteristics of the heat transfer surface that has impact on the wetting 

dynamical behaviors of resupplying liquids at the solid-liquid interface. The wetting 

dynamical kinetics of liquids plays a vital role of the entire boiling stage from boiling 

incipience to film boiling at the interface between solid and the liquid. But, it is an 

understatement to boiling heat transfer that barely stating that wetting is a governing factor. 

Besides, the surface features of wettability can vary a lot from hyper hydrophobic to 

hydrophobic to hydrophilic to super hydrophilic. Both of wetting extremes can exhibit 

remarkably different behaviors in four different stages of boiling heat transfer. Both 
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nucleation site heterogeneity and surface structure further make it more complicate to 

physically depict the wetting dynamics behaviors of resupplying liquids. Surface 

structures, depending on their sizes and patterns, can significantly change wettability and 

two-phase flow dynamics. Besides altering the wettability and site heterogeneity of boiling 

surface modify the distribution pattern of local temperature fields if the local adjacent 

regions vary significantly in terms of thermal mechanics properties. The aforementioned 

discussion is a bare glance of the total complexities involved in accurate descriptions of 

the liquid-solid interaction when boiling heat transfer occurs. Secondly, it is the lack of 

understanding the molecular dynamics of phase change that hinders the precise explanation 

of boiling heat transfer based on the very first principle. It can be determined that the 

temperature at which boiling is about to occur, the temperature of the heat transfer surface 

that is necessary to boiling inception can be much greater than the boiling point.  

 

1.2 Boiling Curve Enhancement  

The boiling curve, as seen in Fig 1-1, is a typical standard graphical method to characterize 

boiling stages. Boiling processing is categorized into four different regimes that are typified 

by the characteristics of the bubble formation: natural convection, nucleate boiling, 

transition boiling and film boiling.  If the boiling system works with a saturated liquid, and 

the temperature of heated surface is slightly greater than the saturation temperature of 

working fluids, then no bubble forms on the surface and heat is transferred with method of 

the natural convection of superheated liquid, which is driven via buoyancy forces. This is 

the regime of natural convection from the origin point to Point A.  
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Fig.1-1 Typical Boiling Curve (Leong, Ho, & Wong, 2017) 

 
Nucleate boiling is initiated when the temperature of the heated surface is greater than the 

saturation temperature and the heat surface begins to generate bubbles, which detach from 

the heat transfer surface and float upward to the free surface of working fluid, marking the 

onset of nucleate boiling (ONB) by point A. Nucleate boiling is often characterized by a 

sharp increase in slope of the boiling curve, that is, a sudden incremental of HTC. As 

bubble becomes more regularly and densely growing, bubbles start to coalesce vertically 

and horizontally and merge into slugs or columns, which reduces heat transfer coefficient 

due to the formation of vapor layer upon the surface. As the heat flux is further applied, 

the maximum heat flux is reached for nucleate boiling, point C that is typically referred to 

as the critical heat flux (CHF).   
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Care and caution must be taken if the heat flux of thermal system is close to the CHF of 

that system.  The surface temperature suddenly “jumps” to temperatures in the order of 

thousands of degrees (point E) where film boiling occurs for maintaining equilibrium, if 

the heat flux is further increased due to some uncertain factors. This is known as the 

burnout crisis since the temperature overshoot could allow the surface temperature to reach 

the melting point of surface material.  

 

Up to now, the extensive researches have been conducted to enhance the boiling curves, 

including CHF enhancement, the improvement of heat transfer coefficient (HTC), and the 

reduction to ONB, that is, to shift the boiling curve leftwards and upwards.  In Fig.1-2, the 

multiple boiling curves present enhanced heat transfer features, such as ONB, CHF and 

HTC. Therefore, it is essential for the design of thermal systems to maximize the efficient 

heat removal region and determine the resulting CHF and HTC enhancements.  To enhance 

CHF and HTC ultimately, surface modification technologies have been widely applied in 

various experimental conditions. The CHF and HTC enhancement mechanisms by using 

deposition of nano or micro particles on heating surfaces were attributed to surface area 

enlargement (You, Kim, & Kim, 2003), surface wettability enhancement (H. Kim & Kim, 

2009), formation of porous structure (S. D. Park & Bang, 2014), and wavelength 

modulation (H. Seo, Chu, Kwon, & Bang, 2015). Hydrophilic surfaces achieved by 

nanoparticle deposition can delay CHF via rewetting processes but this did not improve 

the HTC significantly (H. Seo et al., 2015). The surface characteristics and properties 

affecting CHF and HTC can be controlled by applying traditional mechanical methods.   
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Fig.1-2 Schematic of Ideal Enhanced Boiling Curves(H. Seo, Lim, Shin, & Bang, 2018) 

 
 

1.3 Critical Heat Flux  

During boiling process, boiling heat transfer is governed by the nucleation, growth, and 

departure of bubbles from a surface, characterizing much tremendous heat being removed 

by the latent heat of phase change. CHF will occur if the vapor generation cannot be 

adequately balanced by the liquid rewetting to the local hot spots of surface. When CHF 

occurs the local hot spots will develop to dry-out spots, where vapor blankets isolate the 

solid surface from the liquid contact, further leading to an overshoot of surface temperature 

and incurs catastrophic consequences, including failures of boiling surface or the surface 

meltdown. Hence, the thermal systems are supposed to be operated at a heat flux whose 

value is fairly much below CHF of that system. Because of the addressing importance of 
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CHF to the design and operation of thermal systems, numerical researches about CHF 

modelling have been conducted over the last 50 years and different physical mechanisms 

are proposed to explain the occurrence of CHF in the past decades.  

 

It is widely accepted that CHF is determined by various factors such as, operation 

conditions (Misale, Guglielmini, & Priarone, 2009), thermal properties of working fluids 

and boiling surface materials (Arik & Bar-cohen, 2006), surface morphologies (Ferjančič 

& Golobič, 2002), geometrical configurations (Kandlikar, 2002), and the surface oxidation 

of boiling surfaces (Kang, Kim, Lee, Kim, & Park, 2018).  The graph of factor tree 

demonstrates relationships between CHF and various components as shown in Fig.1-3.  As 

shown in Fig.1-3, CHF occurrence is dominated by multiple various factors. It is 

impossible to give the analytical CHF model based on physical basis. Because multiple 

mechanisms are coupled and even some of them still remain controversial. Besides it is 

rather tough to account for the effects of multiple factors on CHF in single individual 

models.  
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Fig.1-3 the graph of factor tree: five primary constituents affecting CHF 

 

Machine learning is a data-driven statistical method that only replies on the training 

datasets, unlike physical models, the assumptions don’t need the physics basis but the 

assumptions should be held true for the requirement of training datasets, for example, the 

training sets are supposed to be unbiased in terms of feature distributions, meaning that the 

size of training data for each feature understanding should be uniformly distributed in the 

total amount of training dataset. A typical example is like this, if a behavior descriptor 

framework of semantic role labelling and multi-label object classifying is trained by only 
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a tiny amount of pictures in which men cook in the kitchen and a tremendous amount of 

pictures that show women prepare food in the kitchen, this trained framework will 

misidentify a man in a kitchen from a given picture as a women because of the gender bias 

distribution in the training datasets (Zhao, Wang, Yatskar, Ordonez, & Chang, 2017). 

However, practically speaking, each modelling problem has its own predictive model based 

on individual machine learning framework. For example, multiple-layer forward feed 

neural network gives best modelling for CHF enhanced by nanofluids (Esfe, Rejvani, 

Karimpour, & Abbasian Arani, 2017) and HTC could be modelled by adaptive neuro fuzzy 

inference system for nanofluids pool boiling (Salehi, Zeinali-Heris, Esfandyari, & 

Koolivand, 2013). While for the CHF modelling with regard to nuclear fuel rods of light 

water reactor, the support vector machine seems best modelling framework (Jiejin Cai, 

2012a, 2012b).  In order to adapt to the applicability of various models to different CHF 

triggering mechanisms discussed above, the ensemble learning framework is adopted to 

predict CHF under different circumstances.  An ensemble-based learning system is 

obtained by combing diverse models (henceforth regression), which yields better 

predictive performance than could be obtained from any of constituent learning 

frameworks alone (Krawczyk, Minku, Gama, Stefanowski, & Woźniak, 2017). In the CHF 

study of Lee (M. Lee, 2000), a set of seven correction factors is proposed to extend the 

applicability of the CHF lookup table to flow between rod bundles of square array in light 

water reactors including the hydraulic diameter factor, the bundle factor, the heated length 

factor and et al. These correction factors are multiplied together to correlate the induced 

effects on CHF. As a matter of fact, the correction approach proposed by Lee (M. Lee, 

2000) is a kind of ensemble method based on physical and empirical corrections. A 
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pioneered trial of ensemble learning in nuclear engineering was that Baralidi et al, (Baraldi, 

Razavi-Far, & Zio, 2011) proposed an approach of ensemble learning for incrementally 

learning transients of different operational BWR conditions based on bagging and majority 

voting strategies under the framework of several supervised fuzzy C-means classifier. 

Ayodeji and Liu (Ayodeji & Liu, 2018) adopted the ensemble approach of multi-class 

support vector machines separately trained by simulated transient accidents of PWR to 

identify the most likely accidental causes. In light of the modelling complexity and 

difficulty of CHF prediction, this study proposes a framework of ensemble learning to 

predict CHF under different scenarios and improve the adaptability of the proposed CHF 

prediction model. The schematic illustration about the proposed framework is shown in 

Fig. 1-4, noting that K is a CHF correction factor based on learning-schemes, defined as 

the ratio of experimental CHF to the CHF predicted by Zuber’s model.   

 

1.4  Objectives of this Study and Thesis Structure  

Many efforts have been put into investigating the effects of thermal properties of working 

fluids, operating conditions and surface modification on CHF. This study is a prior work 

to the data-driven CHF prediction based on the ensemble learning framework. However, 

the effects of surface materials and dimensional sizes on CHF are not extensively explored. 

Based on various collected CHF experimental datasets, how surface materials and 

dimensional sizes have influence on CHF are analyzed by the data-driven machine learning 

frameworks, which partially belongs to the regression model of (D2, K2).  Besides, pin fin 

array, one of primary techniques in boiling heat transfer, are studied for their parametrical 

trends of CHF with respect to geometrical parameters through data-driven machine 
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learning frameworks. This micropillar CHF enhancement could be modelled by the 

regression model of (D3, K3).  The CHF Lookup table is strategically reconstructed by the 

machine learning model falls on the sub-framework of (D1, K1).         

 
Fig.1-4 the schematic graph of the ensemble learning based framework for CHF prediction 

 

The thesis contents are scheduled as follows: Chapter 2 gives a comprehensive review 

about which factors are dominant in CHF triggering mechanisms, elaborates what CHF 

enhancement techniques are focused now and analyzes the enhancement mechanisms 

behind those useful techniques; in Chapter 3, the deep belief network based model is 

proposed to regress the relation between CHF and pin fin array parameters and the 

enhancement mechanisms are explored in a more detailed manner; In Chapter 4, the effects 

of dimensions and materials of boiling surfaces are studied and analyzed by GRNN 

modelling based on experimental results; Chapter 5 discusses how support vector machine 
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can assist thermal hydraulics experimentalists to design CHF experiments with less 

experimental efforts for pressurized water reactor; the concluding summaries and remarks 

are made in Chapter 6.   

1.5 Summaries of Chapter 1   

Chapter 1 addresses the importance of boiling heat transfer, elaborates the enhancement 

details of boiling curves, describes the occurrence of CHF, and reviews the primary 

influential aspects of CHF dominant mechanisms. In light of complicated triggering 

mechanisms behind CHF occurrence, the framework of ensemble learning was proposed 

to predict CHF regardless of pool or flow boiling no matter what enhancement techniques 

are present on boiling surfaces. However, in this study, a prior work was done for studying 

and analyzing how the operation conditions of system, the dimensional sizes and materials 

of boiling surfaces and the surface structures affect CHF in the sub-regression models of 

the proposed ensemble approach.            
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2 EFFECTS OF DIFFERENT FACTORS ON CHF  

2.1 Dominant Factors   

The prediction of CHF over a heated surface is one of the hottest study aspects of pool 

boiling heat transfer. When the heat transfer surface is covered by a vapor layer, CHF 

occurs and represents the upper limit of efficient boiling. For a plain heated surface, 

multiple factors that affect the CHF have been identified including thermal mechanical 

properties of working liquids and heat transfer substrate, interfacial properties and system 

conditions.  

2.1.1 Thermal physical properties of working liquids   

Boiling curves for different fluids are very different because of their own thermal properties 

including the latent heat of vaporization, the liquid and vapor densities, and the surface 

tension. The boiling heat transfer that is an effective method for dissipating heat with high 

thermal power, involves the phase change of liquid and utilizes the latent heat of 

vaporization. In that regard, the liquid with higher latent heat of vaporization can promote 

the higher heat absorption during the phase change, thus indicating the higher CHF. Fluidic 

bulk accessibility to the local hot spot is controlled by the surface tension of the working 

fluid, which measures the elastic tendency of the fluid acquiring the least surface area as 

much as possible. However, the buoyancy force induced by bubble formation is in conflict 

with the surface tension force of the liquid. That means the higher surface tension of the 

liquid can mitigate the formation of vapor film on the surface, therefore resulting in higher 

CHF. The higher liquid density of the working fluid needs more heat before vaporization 

and delays the occurrence of CHF. On the other hand, vapor and liquid densities of fluids 

act together on the formation of vapor layer because of the phase change.  
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By increasing or decreasing the pressure of boiling system, the thermal physical properties 

of the working liquids are subjected to change with pressures, thus resulting in the shift of 

the boiling curves and various CHF points.   

Drastic changes of the pressure can significantly influence the removal capacity of the heat 

transfer. Pressure increasing raises the saturated temperature and reduces the latent heat of 

vaporization, and reinforces the density difference between liquid and vapor states. 

However, the increased pressure also results in smaller bubble size due to the 

compressibility of the vapor. As a result of the smaller bubble size, there is a higher density 

of nucleating bubbles on the surface as well as a higher departure frequency(Mukherjee et 

al., 2018). In light of the competing mechanisms induced by pressure variation, there exists 

an optimal inflection point of pressure where CHF peaks. Motivated by Kutateladze’s prior 

CHF work, Zuber made use of hydrodynamic instability theory and developed an analytical 

CHF model for saturated pool boiling on an horizontally-placed infinite flat surface, only 

accounting for thermal physical properties of the working fluids as follows  

 𝑞𝑞𝐶𝐶𝐶𝐶𝐶𝐶′′ = 0.131ℎ𝑓𝑓𝑓𝑓�𝜎𝜎𝜎𝜎𝜌𝜌𝑓𝑓2(𝜌𝜌𝑙𝑙 − 𝜌𝜌𝑓𝑓)4  (2-1) 

where 𝜎𝜎 is the surface tension, 𝜌𝜌𝑙𝑙 and 𝜌𝜌𝑓𝑓 are the liquid and vapor density, ℎ𝑓𝑓𝑓𝑓 is latent heat 

of vaporization and 𝜎𝜎 is the gravitational acceleration constant, respectively.   
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Fig. 2-1 Zuber’s CHF Profile with Respect to Pressure 

  
2.1.2 Subcooling and Surface Inclination   

An increase in subcooling is believed to provide the beneficial effect on heat transfer rates 

during the rewetting process because the fluid bulk temperature is less than the saturation 

temperature. Previous experimental investigations have demonstrated that subcooling 

increasing decreases the departure bubble size, forces departing bubbles to rapidly collapse and 

finally liquefies again. Also increasing the subcooling of the bulk liquid promotes the natural 

convection.  The departure bubbles are less likely to develop to local dry spots.  CHF delay 

with respect to subcooling increases have been observed experimentally and this delay 

occurrence is due to the reduced rewetting liquid flow resistance to the local dry spots. Bubbles 

that immediately detach from the heat surface begin to collapse and condense into liquid states 

because of the subcooled liquid. This in turn allows more fluid to reach the surface. The CHF 

correlation between subcooled and saturated states is well established and presented as follows:  

𝑞𝑞𝐶𝐶𝐶𝐶𝐶𝐶,𝑠𝑠𝑠𝑠𝑠𝑠
′′ = 𝑞𝑞𝐶𝐶𝐶𝐶𝐶𝐶,𝑠𝑠𝑠𝑠𝑠𝑠

′′ (1 + C(𝜌𝜌𝑔𝑔
𝜌𝜌𝑙𝑙

)𝑛𝑛Δ𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠)  (2-2) 
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where  𝐶𝐶 and 𝑛𝑛 are fitting factors determined by properties of working fluid and Δ𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠 is 

the subcooled temperature. Due to the various configuration requirements, the plate heat 

transfer substrates cannot always be placed upward-facing horizontally. For example, the 

nuclear fuel rods are placed vertically in the reactor cores. How the surface orientation has 

impacts on CHF are experimentally investigated and empirically correlated by empirical 

relations but theoretical analyses associated with orientation effects are limited. Based on 

Howard and Mudawar’s experimental investigations (Howard & Mudawar, 1999), three 

categories of surface orientations were suggested to be divided: upward-facing (0-60°), 

near-vertical (60-165°), and downward-facing (165-180°). Each category is linked to a 

unique CHF trigger mechanism. For the upward-facing region, the buoyancy forces remove 

the bubbles vertically off the heater surface. The near-vertical region is characterized by a 

wave-like liquid–vapor contact interface, along which bubbles sweep. In the downward-

facing region, bubbles repeatedly stratify on the heater surface, thus which allows vapor 

layers to be more easily formed, greatly decreasing CHF. At least ten empirical formula 

are proposed to correlate the relation between surface orientation angles and CHF on 

horizontally-placed surfaces(Howard & Mudawar, 1999; Liang & Mudawar, 2018a; Mei, 

Shao, Gong, Zhu, & Gu, 2018a). Besides, the effects of surface inclination on HTC are 

different from that of CHF (Sasaki & Ashiwake, 2002).   
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Fig.2-2 changes of water thermal properties over increasing pressure: (a) liquid density, (b) vapor density, (c) 
latent heat of vaporization and (d) surface tension 
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When coming to intermediate levels of heat fluxes, the inclination was experimentally 

observed to have no obvious effects on HTC. In the high heat flux region, close to CHF, 

the increasing of the inclination angle had negative impacts on HTC because of the 

accumulation influence of previously-formed vapors on later-formed vapors.  As for those 

correlations that account for the effect of surface inclination angle, Liang and Mudawar 

summarized those correlations in terms of working fluids, inclination ranges and system 

pressures (Liang & Mudawar, 2018a). In their findings, numerical experimental results 

demonstrated that the best surface inclination correlation was proposed by Chang and You 

(Chang & You, 1996).    

2.1.3 The Effects of Oxidation 

There is mounting evidence that CHF depends strongly on the morphology and 

composition of the boiling surface. In particular, CHF can be markedly enhanced on 

surfaces that are very hydrophilic and capable of significant capillary wicking. This is in 

contrast with the classical CHF model based on the Kelvin-Helmholtz hydrodynamic 

instability, which completely ignores surface effects. When working fluids become 

oxygen-free active at high temperature, such as water, the metal heated surfaces are likely 

pick up oxygen-atoms and become oxidized. Accordingly, the CHF on oxidized surfaces 

are different from that of fresh surfaces. Although in many CHF experiments, the effects 

of oxidation layer on CHF have been observed, the further analyses about mechanisms are 

still not clear.   Due to continuous heating and cooling of the chip during and after pool 

boiling test, the morphology of the test surface underwent various changes. It was observed 

that the contact angle and wickability of the surface changed in the experiments performed 

by Rishi, Gupta and Kandlikar (Rishi, Gupta, & Kandlikar, 2018). The effects of oxidization on 
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CHF present different stories due to different surface materials. In pool boiling CHF 

experiments of stainless steel and reactor pressure vessel prototype material (Juno Lee & 

Chang, 2012; Mei et al., 2018a). The oxidation effect on the CHF could be contributed by 

two distinct mechanisms.   On the one hand, the formation of metallic oxide layer 

deteriorates the CHF because it has low thermal effusivity and enhances the heat resistance; 

on the other hand, the porous structure of metallic oxide layer helps augment the surface 

wettability and increase the nucleation density, which enhance the CHF(Mei et al., 2018a). 

Unlike ironic surface materials, the oxidization layers on copper surfaces degrade the 

overall thermal diffusivity of heat transfer substrates, further decreasing CHF(I. Golobič & 

Ferjančič, 2000).   

 

2.1.4 Materials and Dimensional Sizes of Heat Transfer Substrate    

While the role of the liquid properties, surface morphology and operating conditions on 

CHF in pool boiling is well investigated, the effects of the properties of the heater material 

are not well understood including thermal conductivity, mass density and specific heat. 

Previous studies indicate that the heater thickness plays an important role on the CHF 

phenomenon. However, beyond a certain thickness, called the asymptotic thickness, the 

local temperature fluctuations on the heater surface caused by the periodic bubble 

ebullition cycle are evened out and the CHF is not influenced by further increasing the 

thickness. In previous studies, the thermal activity is defined by the product of heater 

thickness and the square root of thermal effusivity to analyze the effects of thermal 

properties of heat surface on CHF.  
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Bemath (Bernath, 1960) firstly investigated  how thermal properties and thickness of the 

heated surface had impacts on the CHF by noticing that thicker heaters produced higher 

CHF than thinner structures. Later on, his research on vertically oriented cylindrical heaters 

in water was extended to both solid and hollow cylinders. Experimental results revealed 

that the solid cylinders had about 43% higher CHF than hollow structures. A study 

employing zirconium ribbon heaters immersed in toluene was performed by Cole and 

Shulman (Cole & Shulman, 1966) . Experimental results were similar to previously 

published studies, with 42% higher CHF for the thickest heater. These early studies kept 

the attention of many researchers during the following years. Then, it was proposed that 

the product of thickness and thermal conductivity was a good correlation indicator of the 

effect of the heater.  

Tachibana (Tachibana, Akiyama, & Kawamura, 1967) performed a series of experiments 

with a variety of materials and thicknesses in water. A theory on the transient effect of the 

heater was proposed based on vapor shrouding of the surface, preventing resupplying liquid 

from wetting the surface. This effect could be correlated with the product of the volumetric 

heat capacity and the heater thickness. An experimental investigation was conducted under 

saturated pool boiling of water at the atmospheric pressure on thin, horizontally oriented, 

cylindrical walls of different metals and thicknesses (Magrini & Nannei, 1975). The heated 

walls, ranging in thickness from 5 to 250 pm, were obtained by plating copper, silver, zinc, 

nickel and tin on non-metallic rods. They observed that the smaller the thermal 

conductivity of the metal layer, the higher the influence of the thickness. Guglielmini and 

Nanei (Guglielmini & Nannei, 1976) performed an experimental study with different 

cylindrical heaters formed with an electroplating technique. Lower CHF values on thin 
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heaters were observed. The heater thermal parameter depended on a constant value, C. The 

thickness required to achieve 90% of the CHF thermal activity of the metal was given by 

𝛿𝛿90% = 𝐶𝐶(𝜌𝜌𝑐𝑐𝑝𝑝𝑘𝑘)−1.63 .  CHF was reported to be increasing asymptotically until the 

thickness of 350 pm. Based on a comprehensive review on the heater property effects on 

CHF, Saylor (Saylor, 1989) proposed the following parameter, 𝑆𝑆 = δ�𝜌𝜌𝑐𝑐𝑝𝑝𝑘𝑘. Golobič and 

Bergles (Iztok Golobič & Bergles, 1997) performed an extensive study on the thermal 

property effect and they agreed that S is the best correlating parameter. The experimental 

studies showed that the thick copper blocks created higher CHF. But the Zuber relationship 

was found to under predict CHF by as much as 50 percent. An experimental study was 

carried out by Bar-Cohen and McNeil (Bar-Cohen & McNeil, 1992) with sputtered 

platinum and silicon heaters in dielectric liquids. They found silicon heaters had CHF about 

80% higher than thin film heaters. The total effect of the heater on CHF was found to be 

correlated as 𝑆𝑆 (𝑆𝑆 + 0.8)⁄ . This relationship gives the 90 percent of CHF when S is equal 

to 8 while the asymptotic value is approached around S>25. However, there were no 

experimental results cited to confirm the asymptotic approach for S>25. Later on, a 

comprehensive literature review was done by Watwe and Bar-Cohen (Watwe, Bar-Cohen, 

& McNeil, 1996) to better understand the combined effects of the pressure, subcooling, 

and heater properties on the CHF. It was complemented by solving the energy equation 

numerically for both transient and steady state cases. They improved their previous 

correlation that under-predicted CHF for very thin heat surface by modifying the constant 

from 0.8 to 0.1.   
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2.2 CHF Enhancement Techniques  

2.2.1 Nanofluids Applications  

By altering the thermal properties of the fluid, the performance of boiling could be greatly 

enhanced. In recent years, it has been extensively observed that the by adding micro/nano 

scale thermally conductive particles into the boiling fluid can largely enhance CHF (M. S. 

Kamel, Lezsovits, Hussein, Mahian, & Wongwises, 2018). These particles suspended in 

the base fluids could be metallic (Cu, Au, and Ag), metal oxides (Fe3O4, Al2O3, and TiO2), 

silicon compounds (SiO2, SiC and SiN) and carbon materials (diamond, nanotubes and 

graphite particles) (Barber, J.; Brutin, D.; Tadrist, 2011).  Until so far, there have been 

considerable significant researches about the CHF enhancements of nucleate boiling by 

application of nanofluids for pool boiling systems. Under convective flow conditions, 

research on CHF enhancements by nanofluids have been experimentally performed. It is 

also noteworthy that most of the experimental data given in the literatures are to study 

enhancement effects of nanoparticles on CHF. The effects of nanofluids on HTC still 

remain controversial and ambiguous since some experimental results have demonstrated 

that that nanofluids provide an enhancement (Abdollahi & Reza Salimpour, 2016) on the 

HTC, others a deterioration (Bang & Chang, 2005) and some others no change at all 

(Vassallo, Kumar, & D’Amico, 2004). A remarkable benefit of application of nanofluids 

to boiling heat transfer systems is the freedom to change their properties based on the 

demands of thermal systems. That is, it is very easy and plausible to adjust the thermal 

conductivity and surface wettability by varying the nanoparticle concentration, choosing 

materials of nanoparticles and modifying the average diameter of nanoparticles. But it is 

also important to address that adding nanoparticles to base fluid also changes the dynamic 
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viscosity, fluid density and even the specific heat capacity;  thus having unpredictable 

effects on CHF and HTC (M. Kamel & Lezsovits, 2017).  Nanofluids experiments show 

that the smaller nanoparticles can delay the occurrence of CHF a lot under the same 

materials and concentrations because it is less likely to let particles agglomerate together 

(Kumar, Urkude, Sonawane, & Sonawane, 2018).  Also, there exists an optimal 

concentration of nanofluid achieving the ultimate CHF, and the optimal concentration is 

determined by the nanofluid type and average diameter of nanoparticles (Rostamian & 

Etesami, 2018).   

  

2.2.2 Nanowire and Nanotube Fabrication  

Nanowires array coated surface was experimentally justified by Chen et al to drastically 

promote boiling heat transfer performance in terms of CHF and HTC (R. Chen et al., 2009). 

There are four widely-recognized contributors behind the enhancements of HTC and CHF 

by nanowire array; first, a surface coated with nanowires could be thought superhydrophilic 

because nanowire array coated surface may have efficient wickingability, and the small 

pores between nanowires provide a very large capillary force (J. Yuan et al., 2008); second, 

nanowire arrays contain much more cavities and pores compared to any other processed 

surface by microfabrication or micromachining, which effectively mounts up the 

magnitudes of nucleation site density and surface roughness (R. Chen et al., 2009); finally, 

due to the thermal fin effect, the effective heat transfer area of nanowires may be 

dramatically higher than that of microstructured surfaces such as those with micro silicon 

pin fin array (Im, Joshi, Dietz, & Lee, 2010). Chen et al (R. Chen et al., 2009) fabricated 

nanowire arrays of silicon and copper on plain silicon surfaces and found that Cu nanowire 
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array coated surface could allow CHF of saturated water pool boiling to reach beyond 2000 

kW/m2. In CHF experiments by nanowire arrays (Shi, Wang, & Chen, 2015; Yao, Lu, & 

Kandlikar, 2011), the surface with the tallest nanowire yields the highest CHF among 

others. It is observed that during the stage of nucleation boiling, more bubbles were 

generated at the nanowire surface than the plain surface at a given heat flux and the density 

and size of surface cavity increase as the nanowire height increases (Yao et al., 2011). 

However, Kim et al (B. S. Kim, Shin, et al., 2014) pointed out that the coated surfaces with 

higher ratio of height to diameter of nanowire that result in larger and more cavity-like 

structures would further improve boiling heat transfer performance accompanying 

advanced ONB and extended CHF with higher HTC.     

 

Nanotubes of carbon and silicon with ultrahigh thermal conductivity have been suggested 

for boiling heat transfer enhancement including CHF and HTC. Meanwhile fully coating 

the heat transfer substrate with nanotubes was greatly effective at reducing the incipience 

superheat and advancing ONB (Ujereh, Fisher, & Mudawar, 2007). In the paper (Ahn et 

al., 2006), the effects of nanotube height were investigated for boiling performance in 

nucleate and film boiling regimes, and also the experiments demonstrated the nanotube 

coated surfaces can ultimately yield 57% higher heat flux at Leidenfrost point. Besides, 

Ahn et al (Ahn et al., 2006) proposed another four mechanisms behind boiling performance 

augmentation apart from the ultrahigh thermal conductivity of nanotubes, i.e., (1) larger 

sized code spots, (2) vapor film collapse and fragmentation by nanotubes, (3) enhanced 

liquid-solid contacts resulting in transient surface quenching and (4) enhanced heat 

removal surfaces areas. Chen et al (Y. Chen, Mo, Zhao, Ding, & Lu, 2009) investigated 



 

25 
 

the bubble behaviors on TiO2 nanotube array coated surfaces that the bubbles departed 

from the coated surface at smaller diameters and in higher frequencies than the pure Ti 

metal surface. However, nanotube enhancement for subcooled pool boiling of dielectric 

liquids presents a different story. In CHF experiments of PF-5060 performed by 

Sathyamurthi et al (Sathyamurthi, Ahn, Banerjee, & Lau, 2009), CHF enhancement 

percentage decreased with the increasing liquid subcooling, potentially due to 

condensation effect during the bubble departure process over an increasing of subcooling. 

McHale et al (McHale, Garimella, Fisher, & Powell, 2011) compared pool boiling CHF 

enhancement on smooth and sintered copper surfaces with and without carbon nanotubes 

for liquids with different wetting ability (HFE-7300 and deionized water). In those 

experiments, the increased capillary effect of liquids on nanotube coated surface was, 

however, attributed to enhance both CHF and HTC. Instead of coating nanotubes on heated 

surfaces, adding nanotubes in working fluids seems a better manner to enhance CHF by 

utilizing ultrahigh thermal conductivity of nanotubes (Kathiravan, Kumar, Gupta, Chandra, 

& Jain, 2011; K. J. Park, Jung, & Shim, 2009). It is widely accepted that through modifying 

thermal properties of working fluids and surface structures only gives limited enhancement 

to boiling heat transfer performances. Moreover the optimal modification is determined by 

various factors (Kathiravan et al., 2011). Sarafraz and Hormozi  (Sarafraz & Hormozi, 

2016) experimentally investigated HTC, CHF and the bubble formation rate for carbon 

nanotube mixed water boiling on micro-finned surfaces and demonstrated the CHF of 

nanotubed water on structured surface are greater than the sum of CHF enhanced by two 

individual techniques. Nevertheless, using nanotube to enhance flow boiling heat transfer 

is not cases that are observed in pool boiling. In the flow boiling of nanotube mixed water 
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(Khanikar, Mudawar, & Fisher, 2009), CHF is degraded by nanotubes when the mass flux 

of flow is 86 kg/m2s. As for this experimental phenomenon, physics explanations are not 

still covered yet.      

 

2.2.3 Porous Layer Coating and Deposition  

Considerable experiments have shown that porous surfaces were potent valid at decreasing 

incipience of nucleate boiling and enhancing nucleate boiling heat transfer by improving 

large number of active nucleation sites, although aforementioned enhancement techniques 

were explored a lot. Numerous mechanisms for boiling through porous surfaces have been 

suggested and analyzed in various experiments. The first possible mechanism was 

proposed by Bergles and Chyu (Bergles & Chyu, 1982) that a stable vapor formation kept 

occurring inside the porous media unlike the ebullition cycle of bubble formation on plain 

surfaces. Vapors escape channels in the porous medium surrounded by a network of 

channels supplying liquid and low wall superheat results from a higher surface area offered 

by porous surface.  

The porous network has many cavities that act as active nucleation sites (X. S. Wang, Wang, 

& Chen, 2010). In their assumptions, when the bigger bubbles detach from the surface, the 

smaller nucleation cores become active, producing bubbles over and over again. Sintering 

is a method of producing metal components from powdered metal particles by fusing 

particles upon the treated surface. Hanlon and Ma (Hanlon & Ma, 2003) fabricated a porous 

medium from  149 µm average diameter pure particles sintered for 45 minutes most. They 

investigated how the particle size, the porosity, and the wick structure thickness had 

impacts on the enhancement of boiling heat transfer. By decreasing the average particle 
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diameter, HTC can be enhanced. Furthermore, there exists an optimum thickness of porous 

layer for CHF augmentation. More importantly, the maximum allowable superheat for the 

film evaporation at the sintered surface is presented to be greatly dependent on wick 

porosity while weakly determined by the particle radius and the layer thickness.  

Electrodeposition is the simplest way of fabricating micro and/or nanostructures, involving 

simple electrochemical process of ion reduction at the cathode by passing direct current 

through the solution or holding the substrate that is used as cathode at a potential field.  El-

Genk and Ali (El-Genk & Ali, 2010) utilized a solution mixed with 0.8 mol/L CuSO4 and 

1.5 mol/L H2SO4  and applied the two-stage direct current technique to deposit porous 

copper layers on plain copper surfaces. When verifying boiling heat transfer of PF-5060 

on those porous layered surfaces, it was observed that 171-µm-thick layer yielded the best 

boiling heat transfer performances in terms of CHF, HTC and the wall superheat of CHF 

occurrence. Besides the existence of the optimal thickness, they concluded that an optimal 

porosity could optimize CHF, HTC and wall superheat.        

2.2.4 Acoustic Enhancement of Boiling Process 

Instead of modifying surface structures and altering thermal physical properties of fluids 

and heat surfaces, it is a plausible method to extrinsically excite the motions of bubbles 

and liquid bulks through applying ultrasounds for boiling heat removal performances 

(Legay, Gondrexon, Le Person, Boldo, & Bontemps, 2011).       

The acoustic field was utilized to induce capillary waves on the bubble surface. The waves 

oscillated largely enough to result in detachment of the bubble from the heated surface. 

Once bubbles detached from the surface, the acoustic forces can more easily let the bubbles 

collapse into the bulk liquid to allow for cooler liquid to take its place and improve the heat 



 

28 
 

transfer from the boiling surface, resulting in increased CHF due to the acoustic 

enhancement (Jeong & Kwon, 2006). Douglas et al (Douglas, Smith, & Glezer, 2007) 

reported that  the acoustic field generated by a low-power acoustic driver of  could  increase 

CHF during pool boiling by as much as 107% and proposed two primary enhancement 

mechanisms behind the acoustic field: first, the acoustic wave induces capillary waves on 

the bubble surface, which forces the contact line to shrink, and allows bubbles detach from 

the surface in a higher frequency; second, the acoustic field provokes radiation forces, as 

known as Bjerknes forces, that help facilitate the bubble detachment process and suppress 

the transition to film boiling.  Apart from intensification to HTC and CHF, Cai et al (Jun 

Cai, Huai, Liang, & Li, 2010) conducted the experimental study to investigate the effects 

of acoustic cavitation on natural convective heat transfer and found that the augmentation 

at low heat flux was better than that in the case of high heat flux because bubble formation 

rates have mitigation effects on the acoustic field. Boziuk et al (Boziuk, Smith, & Glezer, 

2017) thought that low-power ultrasonic acoustic forces could control the formation and 

evolution of the vapor bubbles, and inhibits the instability that leads to film boiling at CHF, 

Although the acoustic actuation can delay the occurrence of CHF and promote HTC of 

nucleate boiling, the wall superheat also increases owing to the suppression of boiling at 

most nucleation sites and the removal of small vapor bubbles from active nucleation sites 

before they can grow significantly. Their experiments showed that the boiling suppression 

is diminished and wall superheat reduction is achieved when heat surfaces have 

protrusions, such as ridges, pin fins and porous layers.   
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2.3 Summaries of Chapter 2  

Chapter 2 reviews what factors have influential impacts on CHF and how those factors 

affect CHF and HTC. Although many analytical CHF models and empirical correlations 

are proposed to analyze the effects of various factors and predict CHF under particular 

conditions, there are still some aspects that are not satisfactory including the effects of 

oxidation, material properties, heater geometries and dimensional sizes of heater. Thermal 

physical properties of working fluids and the surface morphologies are primary factors of 

affecting CHF, HTC and ONB. Many enhancement techniques are studied and proposed 

to improve boiling performances based on these two primary factors, for example, 

nanoparticles, nano carbon tubes and micro colloids are added into the working fluids to 

modify the thermal physical properties of working fluids including thermal conductivities, 

contact angles, wicking, surface tensions and densities of liquid and vapor. Modifying the 

surface morphologies are primary techniques to improve CHF and HTC, and to decrease 

ONB and wall superheat. Those surface modification techniques are extensively studied 

including micro-structures fabrication, micro-porous layers coating and nanoparticle 

sintering. Although substantial experimental investigations have been performed to show 

evidences that those surface modification techniques could help augment boiling heat 

transfer performances, the plausible physical enhancement mechanisms still remain 

ambiguous and controversial, and corresponding analytical models have limited 

applications requiring the unmeasurable parameters such as the liquid resupply velocities 

and bubble departure frequencies. In all enhancement techniques discussed above, each of 

them needs specific strategies to optimize the maximum CHF and HTC, for example, in 

nanofluid application, there are optimal concentrations and average diameters of 
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nanoparticles allowing CHF to be ultimately enhanced, micro pillar array with certain 

parameters can optimize CHF, those optimal parameters are determined by thermal 

properties of materials related with heater, working fluids, nano particles and operation 

conditions. Meanwhile those proposed techniques might improve CHF but deteriorate 

HTC including nanofluids and micro-porous layers.                 

 

 

 

 

 

 

 

 

 

 

 

3 MICROSTRUCTURE ENHANCED CHF BY DATA-

DRIVEN MODELLING  

3.1 Pool Boiling CHF Experiments by Microstructures  

A lot of efforts have been made for CHF enhancement, such as using materials with higher 

thermal conductivities as heat transfer medium and/or fluids with higher heat capacities 

and saturation points as working fluids, modifying surface morphologies. CHF 

enhancement by surface modification in saturated pool boiling has been widely considered 
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because recent novel micro fabrication and manufacture techniques enable precise surface 

modification to be embedded on heat transfer surfaces (Mori & Utaka, 2017). 

 

Regular fin microstructures, one of surface modification techniques, have been 

investigated in many experiments mainly by means of two microstructure patterns as 

shown in Fig.3-1. Generally speaking, the pin fin array microstructure holds better 

enhancement to CHF and HTC than that of the ridge fin array microstructure because the 

first pin fin array has more liquids filled in gaps between fins than that of ridge fin 

microstructured surface although both of microstructured surfaces have the same total 

surface areas. Several physical mechanisms are proposed to explain CHF triggering 

phenomena observed in microstructure enhanced CHF experiments, such as extended 

surface areas, higher nucleation site density, improvements of surface wettability, and 

reinforcement of capillary wicking and critical wavelength decrement of hydrodynamic 

instability (Mori & Utaka, 2017).  

 
Fig.3-1 Two Microstructure Patterns for CHF Enhancement: (a) Pin Fin  (b) Ridge Fin ( note that Fig.3-1(a) 
and (b) are respectively citied from (Rahman, Ölçeroglu, & McCarthy, 2014) and (Zou, Singh, & Maroo, 
2016)) 
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In microstructure enhanced CHF experiments, thermal-mechanical properties are 

examined for various materials and fluids. For example, silicon wafer is often used as a 

heat transfer substrate material because silicon can be easily and precisely fabricated into 

different geometries upon a bare silicon surface. Stainless steel and copper are also adopted 

as sample materials of heat transfer medium in experiments (Choi & No, 2016; C. K. Yu 

& Lu, 2007) since stainless steel is widely applied in industrial thermal systems and copper 

has preferred heat conductivity. In addition, microstructures are also applied to flow boiling 

CHF and HTC (Bigham, Fazeli, & Moghaddam, 2017).    

 

A uniform micro-structured surface can be fabricated via several micro manufacturing  

methods such as electrical discharge machining(C. K. Yu & Lu, 2007), reactive ion etching 

(S. H. Kim, Lee, et al., 2015a), laser etching (Shojaeian & Koşar, 2015), chemical vapor 

etching (Shojaeian & Koşar, 2015), and dry etching (J. J. Wei, Guo, & Honda, 2005). 

Besides cylindrical pillars with the square lattice distribution, other microstructured pillars 

shown in Fig.2 are also investigated in pool boiling experiments, such as square pillars, 

triangular lattice distributed pillars, staggered  pillars and piranha pillars. It is noteworthy 

that piranha pillars in Fig.2 (d) are widely applied to enhance flow boiling CHF. In the pool 

boiling enhancment by microstructures, both water (K. Chu et al., 2013) and FC-72 (J. J. 

Wei et al., 2005; Zhang, Zhou, Zhou, Qi, & Wei, 2018a) are often utilized to study the 

effects of microstructures on CHF, besides, the cylindrical pillars are usually deployed in 

saturated water pool boiling while the cuboidal pillars are generally investigated in FC-72 

subcooled and saturated pool boiling. Considering the influence of oxidized surface 

materials on improvement of CHF limits, microstructured pillars that are made of silicon 
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dioxide and copper oxide are respectively evaluated for their CHF enhancement 

performance (K. H. Chu, Joung, Enright, Buie, & Wang, 2013). In most experimental 

studies of pool boiling, the heat transfer substrate is cuboidal while the disk-shape transfer 

surface is examined in a few experiments (Mei, Shao, Gong, Zhu, & Gu, 2018b).     

 

  

Fig.3-2 Four Different Structures of Pillars: (a) square pillar (Zhang et al., 2018a), (b) triangular lattice (B. 
S. Kim, Lee, Shin, Choi, & Cho, 2014), (c) aligned pillars (Zhang, Zhou, Zhou, Qi, & Wei, 2018b) and (d) 
piranha pillars (X. Yu, Woodcock, Wang, Plawsky, & Peles, 2017).  
 

A micro-structured array of micro-pillars on a boiling surface can intensify the heat 

removal capacity, i.e., increasing CHF and HTC when comparing with pool boiling on a 

smooth surface. Microstructure enhanced CHF experiments conducted on cuboidal heat 

transfer substrates are reviewed as follows. In the microstructure enhanced boiling 



 

34 
 

experiments of Chu et al. (K.-H. Chu, Enright, & Wang, 2011; K. Chu et al., 2013; K. H. 

Chu et al., 2013), experimental CHF data obtained from microstructured silicon surfaces 

are harnessed for validating the improved model that accounts for the surface wettability 

magnification on the basis of Kandlikar’s model (Kandlikar, 2001a) and the effects of 

microstructured material oxidation on CHF enhancement are simulated by depositing silica 

and copper oxide layers respectively on silicon and copper microstructures.  In a set of 

micropillar enhanced boiling experiments (S. H. Kim, Kang, et al., 2015; S. H. Kim, Lee, 

et al., 2015a; S. H. Kim et al., 2016a), the critical gap with the optimal CHF is discussed 

analytically considering  the improvement of surface wettability by liquid entrapment 

between micropillars and the augmentation of dry-region rewetting capability by capillary-

induced inflow. In different pool boiling CHF experiments enhanced by engineered 

micropillars (Dong, Quan, & Cheng, 2014a; B. S. Kim, Lee, et al., 2014; D. E. Kim, Yu, 

Park, Kwak, & Ahn, 2015; J. M. Kim, Park, Kong, Lee, & Ahn, 2018a; Nguyen et al., 

2018; Rahman et al., 2014; D. I. Yu et al., 2018), the capillary-wicking induced flow is 

regarded as the primary CHF enhancement mechanism on structured surfaces. Park et 

al.(Y. Park, Kim, Kim, & Kim, 2016) analyzed the fundamental parameters of pool boiling 

on nano and micro structured surfaces, mainly nucleation site density bubble nucleation 

frequency and dry area fraction by using an infrared-based detection technique, and argued 

that the increasing density of nucleation sites might improve CHF limits.   

 

In their successive FC-72 pool boiling experiments (Cao et al., 2018a; Honda, Takamastu, 

& Wei, 2002a; Kong, Zhang, & Wei, 2018a; J. J. Wei et al., 2005; J. J. Wei & Honda, 

2003; J. Wei & Xue, 2011; Xue, Zhao, Wei, Zhang, & Qi, 2013a; M. Yuan, Wei, Xue, & 
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Fang, 2009a; Zhang et al., 2018a), four distinct experimental conditions are designed for 

understanding the effects of subcooled temperature, microgravity, nanoparticle deposition, 

and aligned arrangement of micro-pillars on CHF and HTC. Wei et al. evaluated the 

enhancement performances of square micopillar structures with different geometrical sizes 

for CHFs at various subcooled temperatures (Honda, Takamastu, & Wei, 2002b; J. J. Wei 

et al., 2005; J. J. Wei & Honda, 2003; J. Wei & Xue, 2011; M. Yuan, Wei, Xue, & Fang, 

2009b; Zhang et al., 2018a). Experimental results demonstrated that micropillars have 

much better enhancement to CHF and HTC under the microgravity condition (Xue, Zhao, 

Wei, Zhang, & Qi, 2013b), and the results shows that allowing micro-pin-finned and 

smooth areas alternately distributed on the whole surface of heat transfer yields around 

20% higher CHF compared to the heated surface completely covered by micropillars 

(Kong, Zhang, & Wei, 2018b). However, the heat transfer enhancement only by 

microstructures is limited but depositing nanoparticles on microstructured surfaces can 

further improve HTC and CHF (Cao et al., 2018b).  Rainey et al. (Rainey & You, 2000a; 

Rainey, You, & Lee, 2003) coated microporous layers on pin-fined copper surfaces to 

further enhance FC-72 pool boiling heat transfer and corresponding experiments showed 

that significant increases of HTC but limited improvements of CHF compared to pure pin-

finned copper surfaces.  Choi et al. (Choi & No, 2015, 2016) extended the hot spot model 

based on the Walli’s correlation to explain the peak profile of CHF with respect to the 

increasing height of square micropillars. In FC-72 CHF experiments of copper 

microstructure enhanced pool boiling (S. Lee & Chien, 2011a; C. K. Yu & Lu, 2007), 

through bubble visualization, it is revealed that nucleate boiling was initiated from the tip 

of the pillar, then spread to the pillar foot where the denser and/or higher pillar array 
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initiates nucleate boiling at lower wall superheat. The maximum CHF of FC-72 obtained 

from the pin-finned surface is five times greater than that of the plain surface.  

 

Details about the experiments discussed above are included in Tab.3-1. Noting that all 

experiments listed in Tab.3-1 are performed on the upward horizontal surfaces, the 

materials of heat transfer substrates are the same to that of pillars arrays. Apart from 

cylindrical and square pillars, other novel geometries are also investigated in 

microstructure-enhanced pool boiling, such as hoodoo-shaped silicon pillar array (Guan, 

Bon, Klausner, & Mei, 2014), elliptical pin fins (Ndao, Peles, & Jensen, 2014), hydrofoil 

pin fins (Ndao et al., 2014) and diamond pin fins (Ndao et al., 2014).  In addition, nanowire 

coated surfaces have the similar enhancement with microstructured surfaces but only differ 

in that the geometrical parameters of nanowires are not fixed for an individual surface (B. 

S. Kim, Choi, Shin, Gemming, & Cho, 2016). The databank of microstructure enhanced 

CHF experiments is presented in Appendix.  

 

The experimental studies confirm that the linear relation between subcooled temperature 

and CHF also holds true for subcooled pool boiling enhanced by microstructures. From 

Tab.3-1, Tab. V and Tab. VI, the significant difference is found in the dimension scales 

of pillars that are made of different materials: the geometrical parameters of silicon pillars 

are usually scaled from nanometers to micrometers while copper pillars are fabricated on 

a plain surface at a scale of millimeters. Because of the scale effect of hydraulics, the CHF 

enhancement mechanisms of silicon pillars at micrometer scales may present a different 

story from those at millimeter scales. Whether the effects of the distribution pattern and 



 

37 
 

geometry of pillars can be correlated by 𝑟𝑟 and 𝜑𝜑𝑠𝑠  are not validated in experiments yet. 

Hydrophilic surfaces have higher CHF while HTC is higher for pool boiling on 

hydrophobic surfaces, and much higher CHF can be obtained on the surface embedded 

with hydrophilic and hydrophobic in a certain manner. Fabricating micro-pillars 

meanwhile leaving some regions untouched on a plain surface have similar pool boiling 

enhancement to a hydrophilic and hydrophobic mixed surface because a microstructured 

surfaces has higher CHF and lower HTC compared to a plain surface (Cao et al., 2018a; 

Kong et al., 2018b). Therefore, how to balance pin-finned and untouched regions for 

achieving the maximum microstructure-enhanced CHF should be explored in future 

experiments. Besides, whether the optimal geometrical parameters of pillars are dependent 

on the dimensional sizes of heat transfer substrate or not are not covered by experimental 

or theoretical studies.    

 

3.2 The effects of geometries of pillar array 

The rationale for microstructure enhanced CHF still remains controversial although several 

mechanical interpretations are proposed to explain the enhancement mechanisms such as 

wettability (Kong, Wei, Deng, & Zhang, 2017), wickability (Rahman et al., 2014), 

hydrodynamic instability (Quan, Dong, & Cheng, 2014), incremental of total surface area 

and nucleation site density (Zou et al., 2016). Most of microstructure enhanced CHF 

experiments, however, supports the wickability improved by capillary-induced flow as the 

primary CHF enhancement mechanism on structured surfaces (Shojaeian & Koşar, 2015). 

The parametrical trends of CHF with respect to geometrical parameters of pillars can be 

qualitatively analyzed even if related CHF enhancement mechanisms are still ambiguous. 
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Kim et al. (S. H. Kim, Lee, et al., 2015a) analyzed the effects of spacing on CHF and 

discussed the optimal spacing between micropillars through analysis of the capillary flow 

rate on the structured surface. Given pillar arrays with specific diameter and height, small 

spacing can generate a compact pillar array that makes it difficult for liquid to rewet the 

dry region between micro-pillars, thus resulting in low CHF. On the other hand, big spacing 

leads to fewer sparsely-distributed  micropillars and reduces the capillary forces of pillars, 

resulting in low spreading velocity of liquid and CHF decrement. Accordingly, the spacing-

variant CHF behavior presents a concave trend and the CHF enhancement effect will be 

negligible if spacing is much greater than diameter and height. In an engineered surface 

with large diameter pillars, bubbles are initiated at the tip of the fin and then spread to the 

root of pillars (C. K. Yu & Lu, 2007). Thus CHF very likely occurs on the top surfaces of 

large diameter pillars, which results in little-enhanced CHF. If diameter is much smaller 

than height and spacing, heat removal by pillars is limited and CHF occurs first at the root 

of pillars, resulting in lower CHF. Moreover, Li et al.(R. Li & Huang, 2017) pointed out 

that CHF is proportional to the flow velocity of the surface rewetting liquid following a 

concave function of diameter. Consequently, there exists a critical diameter that can 

ultimately enhance CHF of microstructured surfaces. Compared with that of diameter and 

spacing, the effects of increasing height on CHF are thought more complicated due to 

multiple mechanisms acting together, such as bubble departure frequency degradation, 

vapor film fragmentation enhancement (Zou & Maroo, 2013), bubble entrapment 

enhancement (Rainey et al., 2003), and the surface area increment.  It can be postulated 

that there should be an optimal height for pillars with specific diameter and spacing because 

CHF enhancement by very short pillars is limited, while bubbles along the axial surface of 
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long pillars tend to form vapor regions that result in lower CHF. The effects of pillar shape 

and distribution patterns are not elaborated in experiments but cylindrical pillars with 

square lattice distribution pattern may have better enhancement performance due to the 

higher solid fraction and fluidic resistance.    

 

3.3  Physical CHF Models and Discussions  

Physical models, which account for the effects of microstructures, are developed on the 

assumed mechanisms discussed above and cannot cover multiple mechanisms. However, 

explicit CHF triggering mechanisms remains ambiguous although many relevant 

experiments have been performed. Consequently, applications of current physical models 

are limited.   

For example, Rahman et al (Rahman et al., 2014) proposed a hydrodynamics-wavelength 

based model that correlates with wicked volume flux at the occurrence of CHF but the 

wicked volume flux is difficult to be measured in industrial applications. The objective of 

this study is to compile the databank of microstructure enhanced CHF for future model 

developments that account for the effect of microstructures. At the same time, this study 

evaluates advantages and disadvantages of current physical CHF models.  

 

In papers (Liang & Mudawar, 2018b; M. C. Lu, Huang, Huang, & Chen, 2015a; Rainey & 

You, 2001), the material, area, and thickness of  heat transfer substrate have impacts on the 

pool boiling CHF although the thermal-mechanical properties of working fluids are 

correlated by Zuber model, which models CHF in saturated pool boiling of a specific liquid 

on any upward-facing infinite horizontal smooth surface. The dimensionless CHF 𝐾𝐾 is 
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often adopted to correct for the effects of medium materials, surface orientation, subcooled 

temperature, surface wettability, wickability among others, defined as the ratio of the 

experimental CHF to the predicted CHF of Zuber model. Kandlikar (Kandlikar, 2001a) 

correlated the effects of surface wettability and surface orientation on CHF as follows:  

𝐾𝐾 = 1+𝑐𝑐𝑐𝑐𝑠𝑠𝛽𝛽𝑟𝑟𝑟𝑟𝑟𝑟
16

(2
𝜋𝜋

+ 𝜋𝜋
4

(1 + 𝑐𝑐𝑐𝑐𝑐𝑐𝛽𝛽𝑐𝑐)𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)1 2⁄     (3-1) 

, where 𝛽𝛽𝑐𝑐 is the receding contact angle of the plain surface and 𝑐𝑐 is the inclination angle 

of surface orientation (in this study, 𝑐𝑐 = 0°).    
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Tab.3-1  CHF Studies on Microstructures over Flat Surfaces for Pool Boiling 
ID Reference Fluid Pressure Subcooled Material Substrate  

Dimension 
 ( mm3) 

Pillar 
Shape 

Physics 
Modeled 

Features 

1 Chu et al. 
(K. Chu et 
al., 2013) 

water 1 atm 0 K Si 20×20×0.635 Cylindrical Yes the extended model based on  
Kandlikar correlation(Kandlikar, 
2001a) 

2 Chu et al. 
(K.-H. Chu 

et al., 
2011) 

water 1 atm 0 K Si 20×20×0.635 Cylindrical Yes as above 

3 Chu et al. 
(K. H. Chu 

et al., 
2013) 

water 1 atm 0 K SiO2 
CuO 

20×20×0.635 Cylindrical Yes as above, surface oxidation and 
roughen of pillars   

4 Kim et al. 
(S. H. Kim, 
Lee, et al., 

2015a) 

water 1 atm 0 K Si 28×25×0.5 Cylindrical No fin efficiency evaluation 
,liquid inflow modelling by 
capillary pressure and friction 

5 Kim et al.  
(S. H. Kim, 

Kang, et 
al., 2015) 

water 1 atm 0 K Si 28×25×0.5 Cylindrical No as above 

6 Kim et al.  
(S. H. Kim 

et al., 
2016b) 

water 1 atm 0 K Si 28×25×0.5 Cylindrical No heat flux partitioning analysis 
through  essential parameters of 
bubble  

7 Rahman et 
al. 

(Rahman et 
al., 2014) 

water 1 atm 0 K Si 10×10×1 Cylindrical Yes hydrodynamic analysis, 
nanowire-coated micropillars 

8 Kim et al.  
(D. E. Kim 

et al., 
2015) 

water 1 atm 0 K Si 15×10×0.5 Cylindrical Yes bubble dynamics analysis  
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9 Nguyen et 
al. (Nguyen 

et al., 
2018) 

FC-72 1 atm 0 K Si 10×10×0.5 Cylindrical Yes nanoscale-pillar induced 
rewetting velocity  analysis 

10 Moon  
et 

al.(Moon, 
Yoon, 
Park, 

Myung, & 
Kim, 2016) 

water 1 atm 0 K Si 15×10×0.525 Cylindrical No comparison between micro-sized 
pillars and cavities 

11 Kim et al. 
(B. S. Kim, 
Lee, et al., 

2014) 

water 1 atm 0 K Si 10×5×0.5 Cylindrical Yes the hydrodynamic 
analysis of wickability 

12 Kim et al.  
(J. M. Kim, 

Park, 
Kong, Lee, 

& Ahn, 
2018b) 

water 1 atm 0 K Si 25×20×0.475 Cylindrical No micropillars coated with  porous 
graphene networks 

13 Park et 
al.(Y. Park 

et al., 
2016) 

water 1 atm 0 K Si 20×10×0.5 Cylindrical No bubble dynamics analysis 

14 Dong  
et 

al.(Dong, 
Quan, & 
Cheng, 
2014b) 

Ethanol 1 atm 0 K Si 15×15×0.5 Cylindrical No CHF enhancement comparison 
between pillars and cavities  

15 Yu et al. 
(D. I. Yu et 
al., 2018) 

water 1 atm 0 K Si 10×10×NA Cylindrical No capillary-induced flow analyses 
synchrotron x-ray imaging 

16 Ho et al. FC-72 1 atm 0 K AlSi10Mg 10×10×1 Cylindrical Yes the modified  Rohsenow model 
accounting for pillars’ effects 



 

43 
 

(Ho, 
Wong, & 
Leong, 
2016) 

17 Wei et al.  
(J. J. Wei 
& Honda, 

2003) 

FC-72 1 atm 0,3, 
25,45 K 

Si 10×10×0.5 Square No the influence of dissolved gas and 
orientation on CHF 

18 Wei et al. 
(J. J. Wei 

et al., 
2005) 

FC-72 1 atm 3,25, 
35,45 K 

Si 10×10×0.5 Square No fin efficiency evaluation  

19 Zhang  
et 

al.(Zhang 
et al., 

2018a) 

FC-72 1 atm 15,25,35 
K 

Si 10×10×0.5 Square Yes semiempirical CHF regression for 
micropillars and subcooling  

20 Honda  
et 

al.(Honda 
et al., 

2002b)  

FC-72 1 atm 0,3, 
25,45 K 

Si 10×10×0.5 Square No enhancement comparison 
between roughened and pin-fined 
surfaces  

21 Choi et al 
.(Choi & 
No, 2015, 

2016) 

water 1 atm 0 K stainless 
steel 

50 ×15 ×2 Square Yes CHF modelling based on  
capillary and  counter-current 
flow, hot spot  

22 Rainey et 
al.(Rainey 

& You, 
2000b; 

Rainey et 
al., 2003) 

FC-72 30,60, 
100,150 

kPa 

0,10, 
30,50 K 

Cu 10×10×2 Square No heat transfer comparison between  
microporous-coated and pin-fined 
surfaces  

23 Lee et al. 
(S. Lee & 

Chien, 
2011b) 

FC-72 78.18 
kPa 

0 K Cu 10×10×2 Square No HTC and CHF evaluation 
between ridged and pin-fined 
surfaces 
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Notes:  represents the triangular distribution pattern of pillars.     

24 Yu et al. 
(C. K. Yu 

& Lu, 
2007) 

FC-72 1 atm 0 K Cu 10×10×2 Square No studies about effects of pillars on 
boiling  incipience 

25 Kong  
et al.(Kong 

et al., 
2018b) 

FC-72 1 atm 15,25,35 
K 

Si 10×10×0.5 Square No CHF comparison of different 
distribution patterns of pillars 

26 Cao et al. 
(Cao et al., 

2018a) 

FC-72 1 atm 15,25,35 
K 

Si 10×10×0.5 Square No further enhancement of micro-
pin-finned surface CHF by  
nanoparticle deposition 

27 Xue et al.  
(Xue et al., 

2013a) 

FC-72 1 atm 32,41,43 
K 

Si 10×10×0.5 Square No bubble dynamics analysis of 
microstructure enhanced boiling 
under microgravity condition  

28 Kim et al. 
(S. Kim et 
al., 2010) 

water 1 atm 0 K Si 15×10×0.5 Cylindrical No dual CHF enhancement studies 
via nanofluids and nanostructures 
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On the basis of the Kandlikar model, Chu et al.(K.-H. Chu et al., 2011; K. Chu et al., 2013; 

K. H. Chu et al., 2013) extended to account for the effects of micro pillars on CHF as 

follows:  

 𝐾𝐾 =
1 + 𝑐𝑐𝑐𝑐𝑐𝑐𝛽𝛽

16
(
2(1 + 𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐𝛽𝛽𝑐𝑐)
𝜋𝜋(1 + 𝑐𝑐𝑐𝑐𝑐𝑐𝛽𝛽)

+
𝜋𝜋
4

(1 + 𝑐𝑐𝑐𝑐𝑐𝑐𝛽𝛽)𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)1 2⁄  (3-2) 

, where 𝑟𝑟  denotsthe ratio of total surface area to the projected area ( 𝑟𝑟 = 1 +

𝜋𝜋𝜋𝜋ℎ (𝜋𝜋 + 𝑐𝑐)2⁄ ), and 𝛽𝛽 is the apparent receding contact angle which can estimated with 

Extand’s proposed model (Extrand, 2016),  

 β =
1

1 + 2𝑐𝑐 𝜋𝜋𝜋𝜋⁄
(𝛽𝛽𝑐𝑐 − 180°) + 180° (3-3) 

but 𝑐𝑐𝑐𝑐𝑐𝑐𝛽𝛽 = 1 if 𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐𝛽𝛽𝑐𝑐 > 1. Terms, ℎ,𝜋𝜋 and 𝑐𝑐 indicate the height, diameter and spacing 

of the cylindrical pillar respectively. In the papers (Nguyen et al., 2018; Rahman et al., 

2014), the effects of microstructures on CHF are correlated based on the hydrodynamics 

model of Eq.(3-4) coupled with measured indicators of  micro pillar induced capillary 

wickability, such as the measured wicked volume flux �̇�𝑉0" and the measured velocity of 

liquid inflow 𝛿𝛿𝑣𝑣𝑐𝑐𝑠𝑠  

     𝐾𝐾 = 1 + �̇�𝑉0
,, 𝜌𝜌𝑙𝑙

𝜌𝜌𝑣𝑣
1 2⁄ (𝜎𝜎𝑓𝑓(𝜌𝜌𝑙𝑙−𝜌𝜌𝑣𝑣))1 4⁄

         (3-4) 

where �̇�𝑉0
,, is assumed here, however, to scale linearly with 𝛿𝛿𝑣𝑣𝑐𝑐𝑠𝑠, 𝜌𝜌𝑙𝑙 and 𝜌𝜌𝑣𝑣 are respectively 

the liquid and vapor densities of working fluid, 𝜎𝜎 is the surface tension of the liquid and 𝜎𝜎 

is the local gravitational  acceleration. Nevertheless, it is difficult to measure those two 

parameters in practical applications. The analytical prediction methods of average liquid 

inflow velocity can approximate these two parameters with fair accuracy (S. H. Kim, Lee, 

et al., 2015a; Mai et al., 2012).  Instead of incorporating effects of microstructures into the 

dimensionless CHF, the enhanced CHF, due to surface rewetting by the capillarity-induced 
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liquid, is considered to linearly superpose upon the CHF of Kandlikar’s model (B. S. Kim, 

Lee, et al., 2014; R. Li & Huang, 2017), expressed as a sum of two terms  

𝑞𝑞𝑝𝑝𝑝𝑝𝑙𝑙𝑙𝑙𝑠𝑠𝑝𝑝−𝐶𝐶𝐶𝐶𝐶𝐶
,, = 𝑞𝑞𝐾𝐾𝑠𝑠𝑛𝑛𝐾𝐾𝑙𝑙𝑝𝑝𝐾𝐾𝑠𝑠𝑝𝑝−𝐶𝐶𝐶𝐶𝐶𝐶|𝑝𝑝𝑙𝑙𝑠𝑠𝑝𝑝𝑛𝑛

,, + 𝑞𝑞𝑒𝑒𝑛𝑛ℎ𝑠𝑠𝑛𝑛𝑐𝑐𝑒𝑒𝐾𝐾 𝐶𝐶𝐶𝐶𝐶𝐶
,,                 (3-5) 

In Eq.(3-5), 𝑞𝑞𝑒𝑒𝑛𝑛ℎ𝑠𝑠𝑛𝑛𝑐𝑐𝑒𝑒𝐾𝐾 𝐶𝐶𝐶𝐶𝐶𝐶
,,  can be derived based on different assumptions: Kim et al. (B. S. 

Kim, Lee, et al., 2014) derived the enhanced CHF from the wickability dependence on 

capillary pressure and hydraulic resistance as follows,  

𝑞𝑞𝑒𝑒𝑛𝑛ℎ𝑠𝑠𝑛𝑛𝑐𝑐𝑒𝑒𝐾𝐾 𝐶𝐶𝐶𝐶𝐶𝐶
,, = 𝐶𝐶1

ℎ𝑙𝑙𝑣𝑣𝜌𝜌𝑙𝑙(1−𝜑𝜑𝑠𝑠)𝑊𝑊2

𝜆𝜆𝑅𝑅𝑅𝑅
2                                    (3-6) 

where 𝐶𝐶1 is the compensating factor for the wicking capacity, ℎ𝑙𝑙𝑣𝑣is the latent heat of fluid, 

𝜆𝜆𝑅𝑅𝑅𝑅  is the Rayleigh–Taylor wavelength (Kandlikar, 2001a) and 𝑊𝑊  is the wicking 

coefficient, satisfying as follows,  

𝑊𝑊 = 2
3(1+4ℎ2 𝑤𝑤2⁄ )

𝜎𝜎ℎ
𝜇𝜇
𝑐𝑐𝑐𝑐𝑠𝑠𝛽𝛽𝑟𝑟−𝑐𝑐𝑐𝑐𝑠𝑠𝜃𝜃𝑟𝑟

𝑐𝑐𝑐𝑐𝑠𝑠𝜃𝜃𝑟𝑟
         (3-7) 

in Eq.(3-7), 𝜇𝜇 is the viscosity of the liquid, 𝑤𝑤 is the characteristic width of the pillar and 𝜃𝜃𝑐𝑐 

is the critical angle (more details about 𝑤𝑤 and 𝜃𝜃𝑐𝑐, see (Mai et al., 2012)); Li et al. (R. Li & 

Huang, 2017) assumed that the liquid film had the same height as the pillars and based on 

the balance equation between energy that the bubble absorbs and the evaporation heat of 

liquid inflow to derive the additional CHF that evaporates the capillarity-induced liquid 

supply as follows,  

𝑞𝑞𝑒𝑒𝑛𝑛ℎ𝑠𝑠𝑛𝑛𝑐𝑐𝑒𝑒𝐾𝐾 𝐶𝐶𝐶𝐶𝐶𝐶
,, = 𝐶𝐶2

ℎ𝑙𝑙𝑣𝑣ℎs𝐾𝐾
(𝑠𝑠+𝐾𝐾)2 �𝑐𝑐𝜎𝜎𝜌𝜌𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐𝛽𝛽𝑐𝑐(𝜌𝜌𝑙𝑙 − 𝜌𝜌𝑣𝑣)                      (3-8) 

where 𝐶𝐶2 is a resultant factor obtained by experimental data fitting.  

In the physical models discussed above, CHF models of Chu et al.(K. Chu et al., 2013), 

and Kim et al.(B. S. Kim, Lee, et al., 2014) are dependent on the apparent contact angle. 

In practical applications, it is implausible to measure the apparent contact angle 
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experimentally for CHF prediction. As a result, it is of importance to estimate the apparent 

contact angle of bubbles on the microstructured surface in an accurate manner. Besides the 

estimation method proposed by Extand (Extrand, 2016), a piece-wise estimation method 

of contact angle is suggested in the paper (R. Li & Huang, 2017), as follows,  

cos𝛽𝛽 = �
𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐𝛽𝛽𝑐𝑐 , if 𝛽𝛽𝑐𝑐 ≥  𝜃𝜃𝑐𝑐

1 + 𝜑𝜑𝑠𝑠(𝑐𝑐𝑐𝑐𝑐𝑐𝛽𝛽𝑐𝑐 − 1), if 𝛽𝛽𝑐𝑐 <  𝜃𝜃𝑐𝑐
      (3-9) 

where  𝜑𝜑𝑠𝑠 is the solid fraction defined as the ratio of the area of the top of the pillar to the 

projected area (𝜑𝜑𝑠𝑠 = 0.25𝜋𝜋𝜋𝜋2 (𝜋𝜋 + 𝑐𝑐)2⁄ ), it should be noteworthy that cos𝛽𝛽 =  𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐𝛽𝛽𝑐𝑐 is 

the Wenzel contact model for any roughened surface (Bhushan & Chae Jung, 2007).   

 

Prediction performance of various physical models is evaluated through the experimental 

microstructure-enhanced CHF datasets of saturated water pool boiling from (K.-H. Chu et 

al., 2011; K. Chu et al., 2013; K. H. Chu et al., 2013; B. S. Kim, Lee, et al., 2014; D. E. 

Kim et al., 2015; J. M. Kim, Park, et al., 2018b; S. H. Kim, Kang, et al., 2015; S. H. Kim, 

Lee, et al., 2015a; S. H. Kim et al., 2016b; Y. Park et al., 2016; Rahman et al., 2014). Due 

to the triangular lattice distribution of micropillars in (B. S. Kim, Lee, et al., 2014), both 𝑟𝑟 

and 𝜑𝜑𝑠𝑠 are increased by a factor of 2 √3⁄ . The hydrodynamics CHF model proposed in 

papers (Nguyen et al., 2018; Rahman et al., 2014) is dependent on  the measured wicked 

volume flux or the measured velocity of liquid inflow. However, in this study, the velocity 

of liquid inflow is estimated by the approximation method of Mai et al. (Mai et al., 2012), 

and the capillary pressure is calculated by a theoretical model proposed by Hale et al. (Hale, 

Ranjan, & Hidrovo, 2014a). All three constants, the scale factor in (Nguyen et al., 2018), 

the compensating factor (B. S. Kim, Lee, et al., 2014), and the resultant factor in (R. Li & 

Huang, 2017) are obtained by a data-fitting technique. In order to consistently evaluate the 
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prediction performance between various physical models discussed above, 82 experimental 

CHF data of cylindrical micropillar surfaces are screened and comparative results are 

shown in Fig.3-3. It is noteworthy that the model proposed by Li et al. (R. Li & Huang, 

2017) has the best prediction performance compared with the other four physical models 

as indicated by the coefficient of determination  (R2).   

 

It should be noted that the hydrodynamics-based CHF model proposed in (Nguyen et al., 

2018; Rahman et al., 2014) is not necessarily valid due to two factors. First, while papers 

(Nguyen et al., 2018; Rahman et al., 2014) used measurements of rewetting velocity or 

wicked volume flux to predict CHF , in this study, the rewetting velocity is approximated 

with the mean velocity proposed by Mai et al. (Mai et al., 2012) . Second, this study adopts 

a first-order approximation of surface-energy based model from (Hale, Ranjan, & Hidrovo, 

2014b) as the capillary pressure required in  (Mai et al., 2012). As shown in Fig.3-3, the 

models of Chu et al. (K. Chu et al., 2013) and Kim et al.(B. S. Kim, Lee, et al., 2014), tend 

to overestimate the CHF predicted value when the true CHF is less than 1400 kW/m2. 

However, all physical models generally underestimate the predicted value when the true 

CHF is above 1900 kW/m2.   
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Fig.3-3 Comparisons of different models with experimental microstructure enhanced CHF 

 

Although the CHF physical models discussed above are able to predict CHF of 

microstructure enhanced saturated pool boiling water with a high level of accuracy, further 

analyses of parametrical trends are necessary to verify model veracity. Because of their 

relatively low prediction accuracy and measurement requirements , the model proposed by 

Chu et al.(K. Chu et al., 2013) and the hydrodynamics-based models (Nguyen et al., 2018; 

Rahman et al., 2014) are not assessed in terms of parametrical trends and convergence. The 

experimental CHF datasets of microstructured surfaces from (S. H. Kim, Lee, et al., 2015a) 

are utilized for model verification.    

 

Before discussing model convergence and parametrical trends, zero-infinity convergence 

is introduced to define how physical models correlate with positive effects of 
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microstructures on pool boiling CHF.  The zero-infinity convergence means that the model 

is supposed to converge to the CHF behaviors if the diameter, height, or spacing 

approaches zero or an “infinitely big magnitude,” (here “infinitely big” means that the 

magnitude of one parameter is at least 50~100 times greater than that of other one.) but at 

least one of other two variables is positive. For example, if diameter is zero but either height 

or spacing or both are greater than zero, the K value of this imaginary microstructured 

surface will be equal to 1. This means that regardless of height and spacing, all CHF 

profiles start from the point (d=0, CHF plain surface). Infinity-convergence denotes that CHF 

is limitedly enhanced or even not enhanced at all when diameter, height, or spacing is much 

greater than other two parameters. For instance, in an experimental case from the paper (D. 

E. Kim et al., 2015), diameter and height of micro-pillar array are fixed at 80 um and 20 

um, respectively, and spacing is 240 um, but the CHF of this microstructured surface is 

1114.40 kW/m2, slightly greater than the CHF of plain surface 1100 kW/m2. It can be 

anticipated that the further increasing spacing will force the CHF of the sparsely-distributed 

pillared surface approach 1100 kW/m2.  
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Fig.3-4 Parametrical Trends of CHF with respect to: (a) diameter, (b) height and (c) spacing in the Model of 
Li et al. (R. Li & Huang, 2017).   
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For models of Li et al.(R. Li & Huang, 2017) and Kim et al.(B. S. Kim, Lee, et al., 2014), 

the parametrical trends are respectively shown in Fig.3-4 and Fig.3-5 with respect to 

diameter, height, and spacing. As observed in Fig.3-4, the CHF model of  Li et al.(R. Li & 

Huang, 2017) presents zero-convergence for diameter, height, and spacing and achieves 

the infinity convergences of diameter and spacing. However, Fig.3-4 (b) demonstrates that 

the height-variant CHF profile presents a concave parametric trend, resulting in the CHF 

convergence as the increasing height. This is in agreement with the effects of height on 

CHF because the relation between height and CHF is nonlinear and the height-variant CHF 

profile should follow a concave trend. However, the reason why the CHF model of  Li et 

al.(R. Li & Huang, 2017) fails at CHF prediction is that the thickness of liquid film is 

assumed same as the height of pillars, and the total heat carried by bubbles is assumed to 

have a linear relation with the total volume rate of rewetting liquid that is proportional to 

the thickness of liquid film. For the model of Kim et al.(B. S. Kim, Lee, et al., 2014), the 

spacing-variant CHF behavior is in accordance with the zero-infinity convergence as 

demonstrated in Fig.3-5 (c).  But the improvement of CHF enhancement by the increasing 

height of pillar arrays is limited once the height is above a certain value because of the 

model dependence on (𝑤𝑤2 ℎ2) (4ℎ2 + 𝑤𝑤2)⁄  .  Whether the diameter-variant CHF is in 

agreement with zero-infinity convergence is determined by the height and spacing as 

shown in Fig.3-5(a). It is possibly because the model of Kim et al.(B. S. Kim, Lee, et al., 

2014) is developed on the basis that CHF occurs at the bottom regions between pillars. 

This assumption holds true if the height reaches a certain value that can allow bubbles to 

coalesce together and form vapor film before their departure from micro-pillars, otherwise 

CHF occurs at the top surface of micropillars and the gap between pillars is filled with 
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liquid, therefore deteriorating the basis of the model proposed by Kim et al.(B. S. Kim, 

Lee, et al., 2014).   

 

Based on discussions above, theoretical CHF models have several drawbacks. For 

example, the models proposed in (Nguyen et al., 2018; Rahman et al., 2014) depend on 

measurements of rewetting liquid volume flux or rewetting velocity. The model of Li et 

al.(R. Li & Huang, 2017) does not capture the nonlinear trend of CHF with respect to 

height. Besides the application ranges of theoretical CHF models are tough to be 

determined because theoretical models are on the basis of various bubble growth 

assumptions. For instance, when bubbles are about to depart from surface, the gap space 

between pillars can be assumed to be fully filled with liquid only or vapor only. On the one 

hand, theoretical studies are developed based on single enhancement mechanisms such as 

the augmented wettability, the intensified capillary wickability and so on. On the other 

hand, it is difficult to isolate the individual effects of single geometrical parameters of pillar 

arrays on CHF enhancements for mechanisms analyses because the CHF trigger 

mechanisms result from multiple effects of pillared surface. When the spacing between 

pillars is large, bubbles can be initiated at the tip, side and root of pillars, while bubbles 

start to grow on the tip surface of pillars. Microscopic pillar arrays have different 

enhancement mechanisms on CHF from that of macroscopic pillar arrays. Thus, CHF 

models based on the observed phenomena of micro-pillar arrays can not be applied to 

predict CHF enhanced by macro-pillar arrays because of the effects of dimensional scale.  

Therefore, the parametrical trends of CHF with respect to the geometrical parameters of 
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pillar arrays present nonlinear and complicated behaviors that are not accurately correlated 

by theoretical models.   

It should be pointed out that pool boiling CHF can change with the dimensional sizes of 

heat transfer substrate or geometrical shapes if the dimensional sizes are below a certain 

critical size. For instance, if the dimensionless size of silicon heater is greater than 5 (i.e., 

the ratio of the heater characteristic dimension, to the Taylor instability wavelength), the 

pool boiling regime will be assumed in a “infinitely large heater” configuration and the 

heater size will be considered independent of CHF, otherwise, the pool boiling regime will 

be regarded on a small heater, the size of which has influential effects on CHF (H. Yang & 

Banerjee, 2016). Besides, the certain critical size is dependent on working fluids, heater 

materials, operation pressures and etc. However, in current pool boiling CHF experiments 

where the effects of heater sizes and shape are often ignored, most of them fall in the regime 

of small heater.   

 

As a result, it is not clear whether the CHF enhancements reported in microstructure 

enhanced CHF studies are caused by the heater size issues or the geometrical parameters 

of pillar arrays. As a consequence, similar experiments performed on different heater sizes 

yield inconsistent results. And different CHF models are proposed based on various 

observations of CHF occurrence, thus resulting in biased CHF predictions. On different 

size microstructured surfaces with same pillar arrays, the total number of pillars differs, 

which may be attributed to the different CHF enhancement ratios. However, this quantity 

difference of pillars between structured surfaces with different dimensions are not covered 

by experimental and theoretical studies.  In the light of complexity and nonlinearity rooted 



 

55 
 

in microstructure enhanced CHF relation to geometrical parameters and heat transfer 

substrate sizes, machine learning techniques can help model the CHF regression. While 

traditional machine learning approaches successfully solve problems with final values that 

are a simple function of input data, on the contrary, deep learning techniques are able to 

capture composite relations between input and output datasets.  
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Fig.3-5 Parametrical Trends of CHF with respect to: (a) diameter, (b) height and (c) spacing in the Model of 
Kim et al.(B. S. Kim, Lee, et al., 2014).  
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As a class deep learning technique, deep belief net (DBN) is a probabilistic generative 

model that is composed of multiple layers of stochastic, latent variables and it is able to 

regress the nonlinear and complicated relationship hidden in the training datasets (F. Li et 

al., 2018). In this study, DBN is utilized to develop a prediction framework of 

microstructure-enhanced CHF and study the parametrical trends of CHF with respect to 

geometrical parameters of micro-pillars.        

 

3.4 Deep Belief Network Modelling for Microstructure Enhanced CHF  

DBN is a class of deep feed-forward neural network that is composed of multiple hidden 

layers of graphical models having both directed and undirected edges, and is capable of 

revealing complicated patterns deeply rooted in datasets. As shown in Fig.3-3, DBN is 

composed of two modules: an unsupervised feature extraction module sequentially stacked 

by RBMs, and a supervised perceptron for data classification and regression (F. Li et al., 

2018). In the stacked structure of DBN, the visible layer of the former RBM is the hidden 

(latent) layer of the latter RBM.  RBM is a two-layer (visible layer and hidden layer) 

probabilistic neural network. Both visible and hidden (latent) units of RBM are binary and 

stochastic in terms of the data characteristics, and its visible units can be accurately 

reconstructed based on its hidden units through unsupervised training of a RBM. This 

suggests that the visible units can be exactly represented by the hidden units in a different 

dimensional space, and no information is lost during data transformation. Representing a 

dataset in a different dimensional (especially high-dimensional) space improves the ability 

of the network in revealing the patterns hidden in the training datasets. Once a RBM is 

trained, its hidden units are supposed as visible units for the next RBM, initiating the 
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following unsupervised training of the next RBM. The network input data (i.e. the 

geometrical parameters of micro-pillars) can be represented in multiple high-dimensional 

spaces through utilizing a stack of RBMs, resulting in the higher regression accuracy of 

nonlinear and complicated relation hidden in training sets. Subsequently, outputs from the 

RBMs and the original inputs are passed to the perceptron for CHF regression. The 

perceptron is a feedforward neural network trained by a back-propagation algorithm, and 

models the CHF as a function of the outputs from the RBMs. 

 
Fig.3-3 DBN Structure with four RBMs and one Perceptron 

 
The training process of DBN is divided into unsupervised and supervised training stages: 

unsupervised training is implemented by contrastive divergence algorithm and the input 

target of training datasets for obtaining the initial weight matrixes of the stacked RBMs 

𝑾𝑾𝑹𝑹 = (𝒘𝒘𝟏𝟏
𝑹𝑹,𝒘𝒘𝟐𝟐

𝑹𝑹, … ,𝒘𝒘𝒍𝒍
𝑹𝑹) ; then the supervised training is implemented by error back-

propagation algorithm based on the input and output targets of training datasets, which 

fine-tunes the initial weight matrixes to acquire the final global optimal weight matrixes 

𝑾𝑾 = (𝒘𝒘𝟏𝟏,𝒘𝒘𝟐𝟐, … ,𝒘𝒘𝒍𝒍,𝒘𝒘𝒑𝒑). Noting that 𝑙𝑙 is the number of stacked RBMs, 𝑤𝑤𝑙𝑙
𝑅𝑅 and 𝑤𝑤𝑙𝑙 are 
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the pre-trained and fine-tuned weight matrixes for the 𝑙𝑙 th RBM, and 𝑤𝑤𝑝𝑝  is the weight 

matrix of perceptron layer.  

 

The main intention of unsupervised training is to determine the initial weights only by 

using input target samples of training datasets (i.e. the geometrical parameters of 

micropillars), which is enacted by training the sequentially-stacked RBMs. In a typical 

RBM, there are I hidden units in the hidden layer h and J visible units in the visible layer 

v, respectively denoted by 𝒉𝒉 = (ℎ1, ℎ2, … ,ℎ𝐼𝐼) and 𝒗𝒗 = (𝑣𝑣1, 𝑣𝑣2, … , 𝑣𝑣𝐽𝐽); the corresponding 

initial weight matrix is 𝒘𝒘𝑹𝑹. the RBM uses the conditional probability p(h|v) to calculate 

the value of each unit in the hidden layer, and then uses the conditional probability p(h|v)  

to calculate the value of each unit in the  visible layer. This process is performed repeatedly 

until the rank of initial weight matrix converges. Two conditional probabilities are derived 

from the joint probability of RBM, which is defined as follows: 

p(𝒗𝒗,𝒉𝒉; 𝜃𝜃) = exp (−𝐸𝐸(𝒗𝒗,𝒉𝒉;𝜃𝜃)) 𝑍𝑍⁄      (3-10) 

where  𝑍𝑍 = ∑ ∑ exp (−𝐸𝐸(𝒗𝒗,𝒉𝒉;𝜃𝜃))𝒉𝒉𝒗𝒗  is used for normalization. E denotes the energy 

function with the Bernoulli distribution that is calculated via:   

  𝐸𝐸(𝑣𝑣,ℎ;𝜃𝜃) = −∑ ∑ 𝑤𝑤𝑝𝑝𝑖𝑖
𝑅𝑅𝑣𝑣𝑝𝑝

𝐽𝐽
𝑖𝑖=1 ℎ𝑖𝑖𝐼𝐼

𝑝𝑝=1 − ∑ 𝑏𝑏𝑝𝑝𝑣𝑣𝑝𝑝𝐼𝐼
𝑝𝑝=1 − ∑ 𝑎𝑎𝑖𝑖ℎ𝑖𝑖

𝐽𝐽
𝑖𝑖=1    (3-11) 

where 𝑏𝑏𝑝𝑝 and 𝑎𝑎𝑖𝑖  are the biases of the visible neuron and the hidden neuron respectively, 

𝑎𝑎 = (𝑎𝑎1,𝑎𝑎2, … ,𝑎𝑎𝐽𝐽) and 𝑏𝑏 = (𝑏𝑏1,𝑏𝑏2, … , 𝑏𝑏𝐼𝐼) , and θ is the parameter set of RBM given as 

{w𝑅𝑅 , b, a}. The weights can be learned as follows:    

 𝑤𝑤𝑝𝑝𝑖𝑖
𝑅𝑅 = 𝑤𝑤𝑝𝑝𝑖𝑖

𝑅𝑅 + 𝜂𝜂(〈𝑣𝑣𝑝𝑝ℎ𝑖𝑖〉𝐾𝐾𝑠𝑠𝑠𝑠𝑠𝑠 − 〈𝑣𝑣𝑝𝑝ℎ𝑖𝑖〉𝑚𝑚𝑐𝑐𝐾𝐾𝑒𝑒𝑙𝑙)                           (3-12) 

where 〈𝑣𝑣𝑝𝑝ℎ𝑖𝑖〉𝐾𝐾𝑠𝑠𝑠𝑠𝑠𝑠  and 〈𝑣𝑣𝑝𝑝ℎ𝑖𝑖〉𝑚𝑚𝑐𝑐𝐾𝐾𝑒𝑒𝑙𝑙 represent averages with respect to the distribution of 

training dataset and model, 𝜂𝜂 is a learning rate (in this study, 𝜂𝜂 = 0.05 ) Since a RBM is 
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represented by a bipartite graph, it is easy to get an unbiased sample of 〈𝑣𝑣𝑝𝑝ℎ𝑖𝑖〉𝐾𝐾𝑠𝑠𝑠𝑠𝑠𝑠 . 

However, it is very difficult to compute 〈𝑣𝑣𝑝𝑝ℎ𝑖𝑖〉𝑚𝑚𝑐𝑐𝐾𝐾𝑒𝑒𝑙𝑙  and Gibbs sampling is used to 

approximate 〈𝑣𝑣𝑝𝑝ℎ𝑖𝑖〉𝑚𝑚𝑐𝑐𝐾𝐾𝑒𝑒𝑙𝑙  [54], the update of the biases is based on the iterative 

method(Hinton & Salakhutdinov, 2006). During the process of Gibbs sampling, the 

conditional probability distributions of visible neurons and hidden neurons are computed 

as follows:  

 p�ℎ𝑖𝑖�𝑣𝑣;𝜃𝜃� = 𝑓𝑓(∑ 𝑤𝑤𝑝𝑝𝑖𝑖𝑣𝑣𝑖𝑖𝐼𝐼
𝑝𝑝=1 + 𝑎𝑎𝑖𝑖)                                (3-13) 

 p(𝑣𝑣𝑝𝑝|ℎ;𝜃𝜃) = 𝑓𝑓�∑ 𝑤𝑤𝑝𝑝𝑖𝑖ℎ𝑖𝑖
𝐽𝐽
𝑖𝑖=1 + 𝑏𝑏𝑝𝑝�                                (3-14)  

where f is the activation function typically as the Sigmoid function. Since visible neurons 

and hidden neurons are binary, the corresponding values are usually determined by as 

follows:  

 ℎ𝑖𝑖 = �
1 if 𝑝𝑝�ℎ𝑖𝑖�𝑣𝑣;𝜃𝜃� ≥  𝜍𝜍
0 if 𝑝𝑝�ℎ𝑖𝑖�𝑣𝑣;𝜃𝜃� <  𝜍𝜍

                                       (3-15) 

where 𝜍𝜍 is a threshold constant ranging from 0.5 to 1. The supervised training procedures 

proposed in the paper (Hinton & Salakhutdinov, 2006) are adopted to fine-tune the optimal 

weight matrixes based on the initial matrixes obtained by the unsupervised learning. As for 

other parameters of DBN structure including the number of stacked RBMs, a trial-and-

error approach is adopted to find the optimal values for the best performance of DBN.  

 

The physical CHF models discussed in this study usually are dependent on the extended 

surface ratio and the solid fraction that are latent variables while the DBN-based prediction 

framework can directly model the relation between CHF and geometrical parameters and 

keep the orthogonality between input targets of training datasets.  It is evident that the 
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variables of input layer units are length (L), width (W) and thickness (Th) of the cuboidal 

heat transfer substrate, diameter, height, and spacing of the cylindrical micro-pillars, and 

CHF is the single output variable of perceptron. The training datasets are selected from the 

CHF databank complied in the Appendix based on the following screening criteria.   

Table 3-2.  Screening Criteria of Training CHF Datasets  

Working Fluid Heat Transfer Substrate Micro pillar 
Pressure 

Condition 
Type Equilibrium 

Quality 
Geometry 

Shape 
Material Orientation 

Angle 
Material Geometry 

Shape 
Lattice 

Distribution 
1 atm Water 0.0 Cuboid Silicon 0º Silicon Cylinder Square 

 

It is noteworthy that the trained DBN model for modelling CHF at the microstructured 

surface is supposed to converge to CHF at the plain surface if any of d,h and s approaches 

to zero, defined as zero convergence of DBN model. For an example of the microstructured 

silicon surface with specific dimension size, the corresponding CHF is dependent on d,h 

and s; the minimum CHF is obtained at the plain surface of 𝜋𝜋2 + ℎ2 + 𝑐𝑐2 = 0 but there 

should be six CHF cases 𝜋𝜋2 + ℎ2 + 𝑐𝑐2 ≠ 0 that are equivalent to the plain surface 

incorporated into the DBN model, listed in Table 3-3.-1. In this study, the model 

convergence is bounded by using training datasets coupled with constraint CHF data points 

that are artificially derived from the minimum CHF datasets of various plain surfaces. 

Table 3-3.-2 shows 6 constraint CHF data points for the #5 case equivalent to plain surface. 

As anticipated, prediction accuracy demonstrated by the coefficient of determination (R2) 

increases as the number of training data increases (Fig.3-4), however, it should be noted in 

Fig.3-4 that once the number of constraint data points is beyond 25, R2 does not increase 

anymore and it maintains 0.9991. Therefore, the optimal number of constraint CHF data 

points is 25 and there are 150 artificially derived CHF data points that couple with the 

training datasets for completing model convergence.   
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Table 3-3. (-1) the variable values of d,h and s of 6 microstructured surfaces that are 
equivalent to the plain surface, (-2) the exemplary case of #5 deriving 6 constraint CHF 
data points from the silicon plain surface with dimension size of 15×10×0.5 mm3    

T
ab

le
 II

I. 
-1

 
# d (µm) h (µm) s (µm) 

T
ab

le
 II

I. 
-2

 

## d (µm) h (µm) s (µm) CHF (kW/m2) 

1 =0 =0 >0 1 20 1 0 1100 

2 =0 >0 =0 2 40 8 0 1100 

3 >0 =0 =0 3 60 16 0 1100 

4 =0 >0 >0 4 80 24 0 1100 

5 >0 >0 =0 5 100 32 0 1100 

6 >0 =0 >0 6 120 40 0 1100 

 

 
Fig.3-4 Prediction accuracy (R2) change with the increasing number of constraint CHF data points, note that 
the equal numbers of constraint CHF data points are uniformly distributed respectively within the 
parametrical ranges of diameter, height and spacing in the training datasets. 
 

3.5 Comparison of DBN with Other CHF Models 

Apart from DBN, other machine learning techniques are also capable of modelling intricate 

and nonlinear relation patterns rooted in datasets, including ν- SVM, BPNN, RBFNN, and 

GRNN. To highlight the application superiority of DBN over SVM, BPNN, RBFNN and 
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GRNN, comparative experiments are performed in terms of prediction accuracy. The same 

training CHF datasets coupled with the same constraint CHF data points are used to train 

all five machine learning models whose structures parameters are optimized by the trial-

and-error approach. To avoid the overfitting problem, the K-fold cross validation technique 

is adopted, the numerical experiments showed that K=5 can well help avoid the overfitting 

problem in all five machine learning models. There are 144 CHF points meeting the 

screening out criteria of Table.3-2. Two thirds of them are model training while the other 

one third are for testing.  It is observed from Fig.3-5 that DBN has the best performance of 

CHF prediction for pool boiling intensified by micropillar structures compared with other 

4 machine learning techniques.   

 
Fig.3-5 Prediction Accuracies of Different Machine Learning Techniques 

 
As shown in Fig.3-6 (a), the CHF can be accurately predicted by DBN, though Fig.3-6 (b) 

demonstrates that GRNN can still capture the CHF profiles with respect d, h and s but more 

predicted CHF data points are further away from the line of true CHF when compared with 

that of DBN in Fig.3-6 (a). Noting that in Fig.3-6, true CHF denotes the experimental CHF 
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points collected from the published literatures. DBN holds better performance of CHF 

prediction than that of the other 4 machine learning techniques in pool boiling enhanced 

by microstructures. Since multiple complicated physical mechanisms behind CHF 

enhancement are convoluted together and therefore attributable to highly nonlinear 

parametric trends of CHF with respect to geometric parameters of micro-pillars, DBN is 

anticipated more suitable to model the CHF phenomena on micro-structured surfaces.  

DBN, one of deep learning models, can take advantage of training data samples to extract 

the high-level features and to learn the hierarchical representations by combining the low-

level input more effectively for datasets with the characteristics of large variety and large 

veracity due to its two-stage training strategy with pre-training and fine-tuning. However, 

traditional training strategies of multi-layer neural networks and their network structures 

always result in a locally optimal solution or get trapped in overfitting or under-fitting 

problems. Those two factors contribute to the best CHF prediction performance of DBN 

model instead of the other 4 traditional machine learning methods.  Compared with results 

of traditional physical CHF models in this first part of this study, the DBN-based method 

also presents a higher prediction accuracy because the DBN-based method because DBN-

based method has a good agreement with the “zero-infinity” convergence.  
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Fig.3-6 Comparison of Experimental and Predicted CHF: (a) DBN (b) GRNN 

 

3.6 Parametrical Trends of CHF for Geometrical Parameters of Pin Fin 

Array 

It is notable that the parametric trends of CHF with respect to geometrical parameters of 

microstructured surfaces – diameter, height and spacing – are rather complicated and 

highly nonlinear and in a good accordance with the zero-infinity convergence as shown in 

Fig.3-7, Fig.3-8 and Fig.3-9. If micropillars are relatively small, the CHF enhancement will 

be much limited due to pool boiling of tiny micropillars fabricated on the heat transfer 

surface approximately equivalent to that of the plain surface. If spacing is much greater 

than the diameter, there will be very few micropillars sparsely distributed on the surface, 

which results in thumbnail CHF enhancement. That explains the existence of the optimal 

spacing of micropillars in Fig. 3-8 and Fig.3-9. As pointed out by Lu et al.(M. C. Lu, 

Huang, Huang, & Chen, 2015b), CHF is inversely proportional to the total area of heat 

transfer surface. So the micro-pillars with larger diameter is assumed to lead to smaller 

CHF, elucidating the observed parametric trend of CHF with respect to diameter in Fig.3-
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8 and Fig.3-9. Unlike the aforementioned diameter-variant and spacing-variant CHF 

behaviors characterized with single inflection points, the height-variant CHF behavior 

presents two peaks in Fig.3-8 which are contributed by two different competing 

mechanisms. On the one hand, the right peak results from the competing mechanism 

between the decreasing CHF induced by increasing heat transfer surface areas and the 

increasing CHF led by better  fragmentation effect of increasing height on the subsequent 

vapor film; on the other hand, the left peak is the ultimate consequence of the competing 

balance between two distinct CHF triggering mechanisms: the bubble departure frequency 

is lowered by the increasing height of micropillars resulting in lower CHF and the 

fragmentation capability of height is improved by the increasing heights, helping to 

increase CHF. However, for height-variant CHF profiles in Fig.3-9, the competing 

mechanism between the extended surface area and the fragmentation capability of height 

dominates the CHF occurrence. In addition, other potential mechanisms about the effect of 

the pillar height, such as the bubble entrapment and coalescence, also generally affect the 

CHF enhancement. However, it should be noted that dimensional sizes of heat transfer 

substrate have influential impacts on how micro-pillar array affects CHF. As demonstrated 

in Fig.3-8 and Fig.3-9, the parametrical trends of CHF present different behaviors on 

different sizes of heat transfer substrates possibly because of the different total numbers of 

pin fins fabricated on surfaces, and it is observed that a specific micro-pillar array has better 

CHF enhancement on heat transfer surfaces with larger areas due to more pin fins.  
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Fig.3-7 CHF profile in terms of height and spacing of micropillar fin (diameter = 30 um) 

 
Fig.3-8 CHF profile in terms of diameter and spacing of micropillar fin (height = 20 um) 
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Fig.3-9 CHF profile in terms of diameter and height of micropillar fin (spacing = 30 um) 

 

3.7 Summaries of Chapter 3 

This chapter reviews experiments, which are performed for pool boiling CHF enhanced by 

microstructured surfaces, and compiles a microstructure-enhanced pool boiling CHF 

databank, thereby supporting further experimental explorations in the untouched regions 

of microstructure-enhanced pool boiling and the development of more accurate models. 

Through qualitative analyses for the effects of structured surfaces on CHF, the potential 

parametrical trends of CHF are elucidated with respect to geometrical parameters of pillar. 

Based on the complied experiment CHF datasets of saturated water pool boiling on silicon-

microstructured surfaces, four current CHF models are evaluated for their prediction 

performances in terms of coefficient of determinant. The results demonstrate that:  the least 

optimal prediction accuracy is achieved by the hydrodynamics based models in (Nguyen 

et al., 2018; Rahman et al., 2014), of which measurements of wicked volume flux and 

rewetting velocity of liquid inflow are estimated by physical models, but these two models 
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only utilizing measured parameters are capable of accurate CHF prediction; the capillary 

wicking models of Kim et al.(B. S. Kim, Lee, et al., 2014) and Li et al. (R. Li & Huang, 

2017) give higher prediction accuracy compared to that of the model proposed by Chu et 

al.(K. Chu et al., 2013).  Then a term, zero-infinity convergence, is introduced for 

discussing parametrical trends of CHF depicted in two models of Kim et al.(B. S. Kim, 

Lee, et al., 2014) and Li et al. (R. Li & Huang, 2017).  

 

Motivated by the drawbacks of physical CHF models, the deep belief network is proposed 

to predict CHF of microstructure enhanced pool boiling. The proposed CHF model based 

on deep belief network has the best performance of prediction accuracy and shows a good 

agreement with the zero-infinity convergence. Different from the training process of other 

regression models, the microstructure-enhanced CHF model of deep belief network is 

supposed to be trained by CHF training datasets coupled with constrained CHF data points, 

which are manually derived from raw CHF training datasets for zero-infinity convergence 

at the CHF of the plain silicon surface. This new technique not only guarantees accurate 

parametric trends of CHF with respect to geometrical parameters of micropillars, but also 

helps improve the prediction accuracy of the deep belief network model. More importantly, 

the introduction of zero-infinity convergence and the proposal of constrained training 

datasets can provide a new solution to the similar constrained machine learning problems.  

Due to its excellent regression capability in capturing complex and nonlinear trends of 

microstructure-enhanced saturated water pool boiling CHF, deep belief network exhibits 

much better performance of CHF predictions than other traditional neural networks. 

Through studying parametric trends of CHF with respect to geometric parameters of 
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cylindrical micro-pillar array, it reveals that the effect of height on CHF is more 

complicated than that of diameter and spacing. And besides the total number of pillars 

fabricated on the surface has influential impacts of the parametric trends of CHF. The 

DBN-based CHF model is a data-driven method that will becomes more accurate and 

robust in modelling as the accumulation of microstructure enhanced CHF experimental 

datasets.  Last but not least, this paper provides a guideline about how to borrow machine 

learning frameworks for resolving the complex problems and helping interoperate the 

physical mechanisms in boiling heat transfer.     
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4 STUDY OF EFFECTS OF HEATER DIMENSIONS AND 

MATERIALS BY MACHINE LEARNING  

4.1 Impacts of Thermal Properties of Heater Materials on CHF 

The difference of boiling curves among various families of heater materials, such as 

stainless steel, copper, aluminum, zircaloy, silicon and silica, reveals variations in the 

thermal physical properties of boiling surface materials. Those property variations among 

heater materials bring significant disparities in terms of CHF, HTC and ONB. For example, 

in the CHF experiments of pool boiling conducted by Raghupathi and Kandlikar 

(Raghupathi & Kandlikar, 2018), CHF difference could reach 383.8 kW/m2 for water 

boiling on different materials with same dimensions.  Tachibana et al (TACHIBANA, 

AKIYAMA, & KAWAMURA, 1967) suggested that in the CHF model, the thermal 

properties of boiling surface materials should be incorporated to account for predicted CHF 

variations based on hydrodynamic based models. Guglielmini and Nannei (Guglielmini & 

Nannei, 1976) firstly adopted the squared product of thermal conductivity, density and 

specific heat capacity, namely thermal effusivity, to correlate the effects of thermal 

physical properties on CHF. Besides, they also found that CHF was asymmetrically 

dependent on the thickness of heat transfer substrate and gave the empirical expression of 

the asymptotic thickness in terms of thermal effusivity only. To better optimize the relation 

between thermal properties of heater materials and CHF, Saylor (Saylor, 1989) suggested 

the product of the heater thickness and thermal effusivity, namely thermal activity, as the 

control variable in the asymptotic correlation of CHF. Based on FC-72 CHF experiments 

performed on different materials with a set of different thicknesses, Golobi and Bergles 

proposed a new asymptotic CHF correlation and a piece-wise empirical expression of the 
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asymptotic thickness (Iztok Golobič & Bergles, 1997).  Arik and Bar-Cohen compared 

different asymptotic CHF correlations and thought that the thermal activity was the best 

parameter for the optimal CHF correlation (Arik & Bar-cohen, 2006). Although several 

empirical correlations have been proposed to predict CHF within 12.5% deviation, the 

satisfactory analytical basis had not been found yet. However, the Kandlikar CHF model 

partially explained the effects of heater materials on CHF from the physics perspective of 

wettability (Kandlikar, 2001b). Besides wettability, nucleation site density and wickability 

are also traditionally accepted to have impacts on CHF. It is widely believed that CHF 

decreases with increasing nucleation site density (K. Wang, Gong, Bai, & Ma, 2017) while 

improved wettability and wickability can be the major cause of CHF enhancement (Moon 

et al., 2016; Rahman et al., 2014). Therefore, it is extremely difficult to theoretical model 

the effects of heater materials on CHF based on thermal physical-chemical properties of 

materials. Moreover, those properties of materials actually are dependent on the saturation 

temperatures of working fluids. It should be noted that there is considerable uncertainty 

about these aforementioned parameters due to the limited data and generally large data 

scatter.    

 

4.2 Effects of Heater Dimensions on CHF  

It is widely agreed that the dimensions of heat transfer substrates have impacts on CHF. 

The mechanisms causing the dimensional effects, however, still remain undetermined 

(Gogonin & Kutateladze, 1977; Henry, Kim, Chamberlain, & Hartman, 2005; Kwark, 

Amaya, Kumar, Moreno, & You, 2010; Juno Lee & Chang, 2012; J. Lienhard & Dhir, 

1972; M.-C. Lu, Chen, Srinivasan, Carey, & Majumdar, 2011; M. C. Lu et al., 2015a; K.-
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A. Park & Bergles, 1988; Rainey & You, 2001). Several explanations are proposed by 

various researchers to elaborate how dimensions affect CHF. For instance, the heater size 

effects were attributed to the smaller flow resistance on small-sized heaters (Kwark et al., 

2010; Rainey & You, 2001) but the total number of vapor columns was reduced on smaller 

heaters in the CHF model of Lienhard and Dhir (J. H. Lienhard & Dhir, 1973b); however, 

the assumption of Lienhard and Dhir (J. H. Lienhard & Dhir, 1973b) was overridden by 

the experimental results, which demonstrated that there was just one single vapor 

column/mushroom was present on their small plate heaters (M.-C. Lu et al., 2011; M. C. 

Lu et al., 2015a). Lu et al (M.-C. Lu et al., 2011) speculated that the actual Helmholtz 

wavelength might be affected by the size of the heater and the Helmholtz wavelength was 

directly related with the rewetting velocity of liquid to the hot spots on the surface.  

However,  Bar-Cohen and McNeil (Bar-Cohen & McNeil, 1992) attributed the effect of 

heater size on CHF to the transient conduction ability of the heater. On the other hand, the 

systematic experimental study performed by Gogonin and Kutateladze (Gogonin & 

Kutateladze, 1977) had shown that the effect of heater sizer on CHF would be absent if the 

non-dimensional  heater size is beyond a certain critical point (the non-dimensional heater 

size is the ratio of heater length to the capillary length of working fluid). But this critical 

point varied in different reported experiments. It should be addressed that geometrical 

shapes of heater surface also mattered to CHF (Henry & Kim, 2005; Henry et al., 2005; 

Kam, Choi, & Jeong, 2018; S. B. J. Kim et al., 2003; S. H. Yang, Baek, & Chang, 1997). 

Based on the experimental results from the paper (Kam et al., 2018),  it was found that 

CHF decreases as the area aspect ratio approaches to 1. The plausible explanation was how 

the following case occurred, assuming that the length of heater is much greater than the 
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width of heater, meaning the area aspect ratio is close to zero, bubble coalescence will 

occur only along the length, if the length is approximate to the width, denoting that the area 

aspect ratio is 1, the bubble coalescence will take place around all directions, which 

increases the possibility of local dry spot formation. CHF of a bare square copper plate is 

1027 kW/m2 (Kam et al., 2018) while CHF of a bare circular copper disk is 793.6 kW/m2 

(Ha & Graham, 2017) although both heaters have the same volume and operation 

conditions. As a matter of fact, the Hydrodynamic based CHF model correlated the effect 

of heater size by assuming that CHF was proportional to the number of bubbles present in 

the surface and inversely proportional to the total surface area of heater (M. C. Lu et al., 

2015a). In this regard, CHF obtained on finitely big surfaces is proportional to the 

reciprocal of side length squared for square heaters. However, in the empirical correlations 

proposed by Bar-Cohen and McNeil (Bar-Cohen & McNeil, 1992), and Saylor (Saylor, 

1989), CHF decreases linearly with the increasing of heater side length. Nevertheless, 

theoretical models or empirical correlations have not been reported to account for the effect 

of geometrical shapes of heaters on CHF so far.               

 

4.3 Machine Learning Based Study for Effects of Heaters on CHF  

The dedicated selection of the input parameters could help enhance the prediction accuracy 

of machine learning framework and provide an insightful understanding of modelling 

physical problems (Yadav, Malik, & Chandel, 2014). On the other hand, selecting the 

relevant input parameters can help reduce the number of input parameters and 

computational resources (Goodfellow, McDaniel, & Papernot, 2018). Because of limited 

CHF experiments that are involved with rectangular surface plates, the experimental CHF 
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data points that are obtained on square heaters are collected from tremendous various 

publications to investigate how the side length and thermal properties of heaters exert 

impacts on CHF. Training data preparation also matters to the regression accuracy and the 

reliability of predicted results. The criteria of training data selections are listed in Table 4-

1. In the GRNN framework of this study, the input parameters to GRNN are side length, 

thermal activity and thermal diffusivity of boiling heated plates. Although thermal activity 

accounts for the thermal properties of boiling surface materials, the experimental CHF 

results from the paper (Ho et al., 2016) show that FC-72 CHF of saturated  pool boiling on 

Al-6061 and AlSi10Mg surfaces are much higher than the CHF correlated by methods in 

the paper (Arik & Bar-cohen, 2006). However, thermal activities of these two materials are 

less than that of the stainless steel, which should result in lower than CHF on these two 

plates compared with that of stainless steel according to the correlations discussed by Airk 

and Bar-Cohen (Arik & Bar-cohen, 2006). It is pointed out by Seo et al (Arik & Bar-cohen, 

2006) that thermal activity and thermal diffusivity are considered to be factors enhancing 

CHF and activating nucleation sites. The thermal activity speaks for the capacity of heat 

transfer surface dissipating heat from a local region to adjacent regions, thus further 

prohibiting an overshoot of wall superheat (J. M. Kim, Kong, Lee, Wongwises, & Ahn, 

2018).  Also thermal activity indicates thermal energy conductance through the tangential 

direction of the surface. The higher thermal activity could inhibit the development of local 

hot spots into irreversible dry spots, thus delaying the occurrence of CHF during the 

nucleate boiling near the CHF point (M. H. Lee, Heo, & Bang, 2018). The higher thermal 

activity, the more effectively the heat can be dissipated from the hot/dry spots. On the other 

hand, thermal diffusivity quantifies the heat transfer rate of boiling surface materials from 
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the hot side to the cold side. Besides thermal diffusivity somehow might have influence on 

the thermal readjustment time from the high local temperature to the low local temperature 

because of the rewetting liquids (Staszel & Yarin, 2018).   

 

Table 4-1 The selection criteria of training datasets for the GRNN framework of this study 
Shape Surface Inclination Boiling 

State 
Pressure Fluid Boiling Type 

Square Horizontal-FacingUpward  Saturation  101.325 kPa  Water Pool Boiling 
 

GRNN, which was firstly proposed by Specht (Specht, 1991), has been successfully and 

extensively developed and studied by researchers. GRNN is an exemplary illustration with 

high adaptability as well as a better prediction accuracy. GRNN is a kind of feed-forward 

neural network and the model is based on the mechanism of nonlinear regression(Song, 

Romero, Yao, & He, 2016). As shown in Fig. 4-1, GRNN is composed of four neural 

layers, the input layer, the pattern layer, the summation layer and the output layer (Chelgani 

& Jorjani, 2011). First, data is given to the input layer and the number of input parameters 

should be equal to the neurons of the input layer. Then, data is fed into the pattern layer by 

the neurons of the input layer. The pattern layer's output is then given to the summation 

layer which has two kinds of neurons (Ni & Li, 2016). 
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Fig.4-1 Schematic Diagram of GRNN  

 
Finally, the summation layer's data is delivered to the output layer. The equation of GRNN 

can be summarized as (Rooki, 2016) 

𝐸𝐸[𝑦𝑦|𝑥𝑥] =
∑ 𝑦𝑦𝑖𝑖exp (−

(𝑥𝑥−𝑥𝑥𝑖𝑖)
2

2𝜎𝜎2
)𝑛𝑛

𝑖𝑖=1

∑ exp (−
(𝑥𝑥−𝑥𝑥𝑖𝑖)2

2𝜎𝜎2
)𝑛𝑛

𝑖𝑖=1

       (4-1) 

where σ denotes the spread parameter, 𝑦𝑦𝑝𝑝 is the predicted output, 𝑥𝑥𝑝𝑝 is the input parameter 

and 𝐸𝐸[𝑦𝑦|𝑥𝑥] is the expected output value. GRNN possesses only one variable σ, which is 

highly crucial in the GRNN model (Giri Nandagopal & Selvaraju, 2016) and can be 

decided by some trial and error methods. More specifically, the generalization performance 

of GRNN is decided by the parameter σ (Bendu, Deepak, & Murugan, 2016).  

4.4 Results Analyses and Discussions  

Although DBN discussed before might yiled a little better modelling accuracy than GRNN 

for regressional analyses of heater materials and dimensions, GRNN can speed up the 

training process, which helps the network to be trained faster and reduces computional time 

loads.  Unlike other artifical neural networks, such as mulitiple feedforward network, radial 
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neural network and back propagation neural network, GRNN estimation is always able to 

converge to a global solution and won’t be trapped by a local minimum. In the training 

process of GRNN, the split-sample cross validation is adopted to find the spread parameter 

σ (Schenker & Agarwal, 1996). 84 experimental CHF data points of saturated water pool 

boiling are collected from published literatures based on the data screening criteria of Table 

4-1. 34 data points were selected out as for testing data sets while the other 50 data points 

are utilized to train the GRNN model.  The predicted results of testing datasets are shown 

in Fig. 4-2, showing the predicted results in a good agreement with experimental results.    

Based on the trained framework of GRNN, the model produced the parametrical trend 

curves of CHF with respect to increasing thermal activity in terms of different materials 

and dimensions, as shown in Fig.4-3. The predicted results are benchmarked with the 

empirical correlation proposed by Golobic and Bergles (Iztok Golobič & Bergles, 1997), 

and expressed as follows:  

𝑞𝑞𝐶𝐶𝐶𝐶𝐶𝐶
"

𝑞𝑞𝐶𝐶𝐶𝐶𝐶𝐶,𝑎𝑎𝑠𝑠𝑎𝑎
" = 1 − exp (−� 𝑆𝑆

2.44
�
0.8498

− � 𝑆𝑆
2.44

�
0.0580

)       (4-2) 

where S is the thermal activity, 𝑞𝑞𝐶𝐶𝐶𝐶𝐶𝐶"  is the corrected CHF for experimental results that are 

obtained on boiling surfaces of different materials and  𝑞𝑞𝐶𝐶𝐶𝐶𝐶𝐶,𝑠𝑠𝑠𝑠𝑦𝑦
"  is the asymptotic CHF 

value that is usually determined by fitting experimental results with Eq.4-2. 
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Fig.4-2 the experimental CHF VS Predicted CHF of GRNN 

 

 
Fig.4-3 the parametrical trend of CHF with respect to thermal activity 

 
It is observed that CHF is often underestimated by the correlation of Eq.4-2.  Fig.4-3 also 

demonstrated that the parametrical trend predicted by the trained GRNN presents similar 
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behaviors to that of the empirical correlation proposed by Golobic and Bergles (Iztok 

Golobič & Bergles, 1997). But it is notified that there are two obvious result differences 

between GRNN and the empirical correlation, the one is that the boiling surface has 

impacts on CHF and the other is that the GRNN model that also accounts for the thermal 

diffusivity gives better CHF prediction than the empirical correlation does. Because the 

thermal activity is not capable of fully representing the thermal properties of boiling surface 

materials.  Therefore, it is reasonable to postulate that there should be another correlation 

factor on the top of Eq.4-2, only depending on thermal diffusivity and the surface area. 

There would be another possible cause resulting in CHF difference between various 

materials, the wettability. The static contact angle of polished silicon is 89°, 70° for copper 

surface and ~17° for SA508 (Barisik & Beskok, 2013). If the static contact angle is closer 

to 0, the higher wettability the boiling surface will have, thus promoting CHF. Otherwise, 

CHF will be degraded on the hydrophobic surfaces. Besides, in terms of thermal diffusivity 

of material, SA508 is greater than copper while copper is also greater than silicon. In this 

regard, when applying the same heat flux to those surfaces made of SA508, copper and 

silicon, then the average wall superheat on the SA508 surface will be anticipated the lowest, 

hence augmenting the CHF.  

 

The trained GRNN framework renders the parametrical trend of CHF with respect to 

increasing side length of heater in Fig. 4-4. It is observed from Fig.4-4 that CHF will be 

independent on the side length once the side length exceeds 15 mm. This critical side length 

is roughly 5.94 times greater than the capillary length of saturated water 2.5256 mm. 

However, in the literatures (M.-C. Lu et al., 2011; M. C. Lu et al., 2015a; You et al., 2003), 
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when the side length is more than or equal to 5 times of capillary length of working fluid, 

then working fluid can be considered boiling on infinite surface area and CHF can be 

predicted by Zuber’s Model. It is noticeable that in Fig.4-4 there is an optimal side length 

allowing CHF to reach the maximum value, which is, however, decided by the thermal 

activity and other parameters of boiling surface materials. Those peaks indicate that there 

exist two mutually competing mechanisms, the one is for enhancement and the other is for 

degradation.  It was argued by Rainey and You that a significant portion of the heater is 

rewetted from the edges of the heater for smaller heaters, which has a smaller flow 

resistance compared with larger heaters due to the supply liquid rewetting the surface from 

the downward vertical flow on larger heaters, resulting in a higher CHF (Rainey & You, 

2001). On the other hand, Kim et al (E. S. Kim, Jung, & Kang, 2013) found that the increase 

of CHF is proportional to the effective boiling surface area that is dependent on the total 

number of vapor mushrooms present on the surface and the bubbled departure frequency. 

The number of vapor mushrooms increases with the increasing surface area. Besides as 

surface area increases, the rewetting liquid supply transits from the sides to above, which 

boosts the upraising speed of bubbles and improves the departure frequency of bubbles, 

thus delays the occurrence of local dry spots and enhances CHF.       
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Fig.4-4 the parametrical trend of CHF against the increasing side length of square heater 
 

It is found that the critical heater length is independent on the thermal properties of boiling 

surface material and is equal to the Rayleigh-Plateau instability wavelength 𝜆𝜆𝑅𝑅 =

π�𝜎𝜎 𝜎𝜎Δ𝜌𝜌⁄  .  According to the hydrodynamics theory, the instability growth rate is related 

with the characteristic length of surface (Abarzhi, 2010; Abarzhi & Rosner, 2010). Guan 

et al (Guan, Klausner, & Mei, 2011) assumed that the kinetic behaviors of the liquid macro 

layer that is underneath the vapor mushroom could be described by the Rayleigh–Taylor 

instability wave.  Based on viscous potential flow analysis, the linear stability analysis for 

a small disturbance results in the following dispersion relation (de Gennes, Francoise, 

Brochard-Wyart, & Quere, 2004; B. J. Kim, Lee, & Kim, 2016; B. S. Kim, Lee, et al., 

2014; S. H. Kim, Lee, et al., 2015b),   

ω = � Δ𝜌𝜌𝑓𝑓𝜆𝜆−𝜎𝜎𝜆𝜆3

𝜌𝜌1 coth(𝜆𝜆𝛿𝛿1)+𝜌𝜌2 coth(𝜆𝜆𝛿𝛿2) +
𝜎𝜎𝛿𝛿23

3𝜇𝜇𝐿𝐿2
(3𝐿𝐿2𝜆𝜆 − 𝜆𝜆3

12
)i       (4-3) 
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where ω , 𝜆𝜆, ρ, δ, 𝜎𝜎, 𝜇𝜇 , L, and g are the growth rate, wave length, fluid density, fluid layer 

thickness, surface tension, liquid viscosity, characteristic length of surface and 

gravitational acceleration, respectively.     

 

 
Fig. 4-5 Schematic demonstration of the Rayleigh–Taylor instability at a perturbed interface separating two 
liquids of different densities. Here, ω is the perturbation growth rate, u is the velocity of liquid, ρ is the 
density and g is the gravity factor (Alkhadra, 2017).   
 
In Eq.4-3, the real component depicts the instability growth rate along the horizontal 

direction while the complex component speaks for the growth rate along the vertical 

direction. And the coth is the hyperbolic cosine function. In this study, light fluid is the 

vapor of working coolant while heavy fluid is the liquid of working coolant.  Here the 

liquid macrolayer thickness recommended by Rajvanshi et al (Rajvanshi, Saini, & Prakash, 

1992) is adopted to replace 𝛿𝛿2 while the thickness of the vapor film 𝛿𝛿1 is estimated by the 

predictive method proposed by Dasgupta et al (Dasgupta, Chandraker, Nayak, & Vijayan, 

2015).  The occurrence of the most rapid growth rate leads to𝜋𝜋𝑑𝑑 𝜋𝜋𝜆𝜆 = 0⁄ , as a result, 𝜆𝜆𝑐𝑐 =

2𝜋𝜋�3𝜎𝜎 Δ𝜌𝜌𝜎𝜎⁄ , 𝐿𝐿 = 𝜋𝜋�𝜎𝜎 Δ𝜌𝜌𝜎𝜎⁄  .   The perturbation growth rate is of importance because it 

indicates how fast the wavy interface oscillates. Besides the bubble departure frequency is 

determined by rapid growth rate (B. J. Kim, Lee, & Kim, 2015; B. J. Kim et al., 2016).  
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The bubble departure frequency increases over the increasing growth rate of perturbation 

(Cole, n.d.) while Kim et al. (D. E. Kim et al., 2015) proposed an analytical relation 

between CHF and the bubble departure frequency, demonstrating that CHF linearly 

increases with the increasing departure frequency of bubbles.  

 

4.5 Summaries of Chapter 4  

This chapter reviews how dimensional sizes and materials of heaters affect CHF based on 

available mechanistic explanations and experimental results. Based on the aforementioned 

discussions, the thermal activity, which is proposed by Saylor (Saylor, 1989), cannot alone 

sufficiently correlate the effects of thermal properties of materials on CHF. In order to 

capture how thermal properties of boiling surface materials have influence on CHF, 

thermal activity and thermal diffusivity are investigated to better correlate the effects of 

thermal properties of materials on CHF and represent four primitive parameters of heater 

materials, including, thickness, density, specific heat capacity and thermal conductivity. In 

virtue of GRNN regression framework, the parametrical trends of CHF are studied with 

respect to the thermal activity and dimensional sizes. The numerical results demonstrated 

that the trained GRNN framework yields better predicted results than the empirical 

correlation. Although the GRNN showed similar parametrical trends of CHF to that of the 

empirical correlation with respect to thermal activity, the parametrical studies towards the 

effect of heater sizes on CHF are way different in the trained model of GRNN compared 

with that of empirical correlations. Besides the numerical results also demonstrated that 

there was an optimal heater size that allows CHF to reach the maximum point. This optimal 
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heater size is exactly equal to the Raleigh-Plateau instability wavelength, and the physical 

rational behind this phenomenon is also analyzed based on the hydrodynamics theory.           

 

 

 

5 CHF LOOKUP TABLE RECONSTRUCTION    

Noting that the primary contents of Chapter 5 was adopted from the journal paper(He & 
Lee, 2018) written by the author and his advisor.  
 
5.1 Current Status of CHF Lookup Table Reconstruction   

CHF sets the limits to the maximum heat flux of nuclear fuel rods and thus determines the 

attainable maximum thermal power in the steady-state of PWR operation. In order to 

sufficiently marginalize to CHF, nuclear regulation committee addresses the compliance 

with the safety factor, that is, Departure from Nucleate Boiling Ratio (DNBR) - the ratio 

of CHF to the actual local heat flux. CHF is a complicated phenomenon influenced by 

various factors and parameters such as mass flow rate, system pressure, equilibrium 

quality, fuel bundle geometry and surface characteristics of cladding materials (Bruder, 

Bloch, & Sattelmayer, 2017). The empirical CHF correlation models and relevant CHF 

lookup tables are widely used in the thermal hydraulics system codes, such as REALP5-

3D, TRACE and etc.  

 

The high experimental costs that are in association with the CHF investigation 

developments and primarily from high pressure pumping tests prohibits numerous 

experimental CHF studies from their applications to aforementioned thermal hydraulics 
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system codes. This situation has been even more obvious in the recent  developments and 

studies of Accident Tolerant Fuel (ATF) cladding (Brown, Ludewig, Aronson, Raitses, & 

Todosow, 2013; Y. Lee & Kazimi, 2015; Y. Lee, McKrell, Yue, & Kazimi, 2013; Y. Lee, 

NO, & Lee, 2017).  Past studies and investigations that demonstrated the impact of the 

material surfaces on nucleate boiling (G. H. Seo, Jeun, & Kim, 2015, 2016) make the 

community of nuclear engineering think that CHF of ATF cladding materials is more likely 

to be way distinct from CHF of metal alloys of Zirconium family, or steel materials used 

for the W-3 correlation or look-up table (Bruder et al., 2017). The high cost of associated 

CHF experiments measurements covered a wide range of operating conditions, which gives 

us motivations to find a new technology to effectively inter/extrapolate experimentally 

measured CHF data points. Based on this inter/extrapolation techniques, we can setup a 

modeling foundation upon which CHF look-up tables construction can be expedited to 

apply the usage of experimentally measured CHF points to the thermalhydraulic codes and 

nuclear reactor licensing.   

 

Remarkably, the parametric profiles of CHF are relatively simple, despite the complex 

phenomena subjected to dominant operating conditions – pressure (P), equilibrium quality 

(Xe), and mass flux (G). CHF monotonically decreases, and increases with increasing Xe, 

and G, respectively (Fig. 5-1(a), and (b)). The pressure sensitivity of CHF can be 

parameterized by a simple function that gives a local maximum value at a certain pressure 

(Fig.5-1(c)).   

The straightforward parametric profiles of CHF with respect to the three primary 

parameters of subcooled flow conditions (Xe, G, and P) imply that CHF look up tables can 
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be efficiently constructed if an enabling machine learning method is applied with a suitable 

set of training dataset.  

5.2 ν-SVM Aided CHF Prediction with Sparingly Distributed CHF Data 

Points 

SVM is able to determine its model size and obtain the globally optimal and unique solution 

in an automatic manner with contrasting to ANN. In Cai’s study (Jiejin Cai, 2012a, 2012b), 

ε-SVM was adopted to find the correlation of the tube geometry parameters and the 

physical properties of liquids with Kutateladze number. Its comparative analysis with 

experimental results showed that ε-SVM gave a better prediction accuracy than different 

ANNs. Past investigation of CHF prediction modelled by ν-SVM (Jiang, Ren, Hu, & Zhao, 

2013; Jiang & Zhao, 2013b, 2013a) showed that CHF profiles with respect to the 

aforementioned parameters of subcooled flow boiling, mass flux, pressure and quality (G, 

P, and Xe) can be well and accurately predicted by ν-SVM. The numerical investigation 

performed by Jiang and Zhao (Jiang & Zhao, 2013b) improved its model prediction 

accuracy by finding global optimal coefficients of ν-SVM in the virtue of particle swarm 

optimization techniques, with which dryout CHF was predicted by adopting the CHF look-

up tables prepared by Groeneveld et al.(Groeneveld et al., 2007) and Kim et al.(H. C. Kim, 

Baek, & Chang, 2000). These numerical experimentations with concentration on how ν-

SVM models CHF with more than three parameters, showed that ν-SVM has evident 

superiority of CHF prediction when compared with other different machine learning 

algorithms, such as radial basis function network (Jiang & Zhao, 2013a). It is interesting 

that during their training datasets preparation  (Jiang et al., 2013; Jiang & Zhao, 2013b), 

seventy-five percent of the total CHF data collection were used as training datasets for 
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support vector machine in a manner of the subtractive clustering scheme. That is, twenty-

five percent of the CHF dataset are used for the evaluation of prediction performance. 

Bearing this in consideration, the SVM was essentially used and applied to enable 

inter/extrapolation method for the CHF data points of a close distribution.  

 

Practically speaking, it would be best to realize the SVM application to CHF prediction if 

the training data sets successfully capture CHF parametrical behavior on the basis of 

sparingly distributed experimental data. This could strongly suggest that the CHF look-up 

tabulation for different cladding materials including ATF claddings like SiC and  FeAlCr, 

can be achieved only with the limited number of experimental CHF data points, which by 

that expedites system-levelly the simulation of ATF claddings. Additionally, with the 

support of SVM, extrapolation of CHF data beyond the experimental conditions could help 

reduce the experimental costs of CHF procurement. Accordingly, in this study, the goal is 

to model CHF behaviors with respect to three primary parameters of subcooled flow 

boiling and explore strategies for the data-driven CHF look-up table construction with ν-

SVM, based on sparingly distributed experimental data points. Additionally, its potential 

application to the CHF extrapolation beyond the experiments is investigated in this paper.  
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Fig.5-1 The parametric trends of CHF in subcooled flow with respect to (a) equilibrium quality (Xe), (b) mass 
flux (G), and (c) pressure (P) 
 

The CHF look-up table of Groeneveld et al (Groeneveld et al., 2007) is used as the 

reference CHF data bank in this study. The Groeneveld (2007) look-up table is a commonly 

applicable data bank that is incorporated in major system-level codes. Thus, any prediction 

results and conclusions explored in this study can be readily and reasonably used to the 
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system-level codes of thermal hydraulics (i.e., RELAP-5 3D, or COBRA-TF). In this data 

bank of 2007 CHF data, CHF under the subcooled flow (Xe < 0) is selected to study for the 

PWR steady-state conditions.  

5.3 The Proposed Method: CHF Lookup Table Construction by ν-SVM 

In this study, ν-SVM is adopted to reconstruct CHF lookup tables based on experimental 

CHF data (training dataset) in accordance with the consequent methodologies and 

procedures. Given a set of CHF data point under a specific equilibrium quality (x𝑒𝑒), the 

relation between 𝑥𝑥𝑝𝑝 and 𝑦𝑦𝑝𝑝 can be modelled by using ν-SVM, where 𝑥𝑥𝑝𝑝 is the input vector 

of (𝑃𝑃𝑝𝑝,𝐺𝐺𝑝𝑝) and 𝑦𝑦𝑝𝑝 is the output data of CHF value (𝑖𝑖 = 1,2, … ,𝑁𝑁, 𝑁𝑁 is the total number of 

training datasets). And CHF can be predicted in a manner of regression through model 

optimization as follows  

  {𝛼𝛼𝑝𝑝,𝛼𝛼𝑝𝑝∗} = 𝑎𝑎𝑟𝑟𝜎𝜎𝑎𝑎𝑖𝑖𝑛𝑛 1
2
∑ ∑ (𝛼𝛼𝑝𝑝∗ − 𝛼𝛼𝑝𝑝)�𝛼𝛼𝑖𝑖∗ − 𝛼𝛼𝑖𝑖�𝑁𝑁

𝑖𝑖=1
𝑁𝑁
𝑝𝑝=1 𝐾𝐾�𝑥𝑥𝑝𝑝 , 𝑥𝑥𝑖𝑖� − ∑ (𝛼𝛼𝑝𝑝∗ − 𝛼𝛼𝑝𝑝)𝑦𝑦𝑝𝑝𝑁𝑁

𝑝𝑝=1    (5-1)   

Eq. (5-1) is a mutant form of the prime duality optimization problem in the ν-SVM 

classification and regression.  The purpose of the first term of Eq.(5-1) is to minimize the 

total number of support regression vectors while regularization of the deviations of 

solutions is achieved in the second term of Eq.(5-1).   Besiding, the search of optimal and 

unique solution to Eq.(5-1) is a constrained dual problem.  The solution to Eq. (5-1) is 

subjected to the following set of constrained conditions,  

�
∑ (𝛼𝛼𝑝𝑝∗ − 𝛼𝛼𝑝𝑝)𝑁𝑁
𝑝𝑝=1 = 0
0 ≤ 𝛼𝛼𝑝𝑝∗,𝛼𝛼𝑝𝑝 ≤

𝐶𝐶
𝑁𝑁

∑ (𝛼𝛼𝑝𝑝∗ + 𝛼𝛼𝑝𝑝)𝑁𝑁
𝑝𝑝=1 ≤ 𝐶𝐶𝐶𝐶

                    (5-2) 
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where 𝛼𝛼𝑝𝑝∗ and 𝛼𝛼𝑝𝑝 are the Lagrangian multipliers that associate with the constraints. This 

study adopted the Gaussian kernel function to map pressure P and mass flux G into a higher 

dimension space by the Eq.(5-3),  

K�𝑥𝑥𝑝𝑝 , 𝑥𝑥𝑖𝑖� = exp (−
�𝑥𝑥𝑖𝑖−𝑥𝑥𝑗𝑗�

2

2𝜎𝜎2
)        (5-3) 

where �𝑥𝑥𝑝𝑝 − 𝑥𝑥𝑖𝑖�
2

is the ℒ2 -2 norm of 𝑥𝑥𝑝𝑝 − 𝑥𝑥𝑖𝑖  and 𝜎𝜎  is the scale parameter of  the 

hypersurface. This Gaussian kernel function is to map the nonlinear relation of CHF with 

respect to pressure and mass flux into the linear high-dimensional relation. Then the 

regression equation of CHF prediction is defined by as follows:  

𝑦𝑦 = ∑ (𝛼𝛼𝑝𝑝 − 𝛼𝛼𝑝𝑝∗)K(𝑥𝑥𝑝𝑝, 𝑥𝑥)𝑁𝑁
𝑝𝑝=1 + 𝑏𝑏        (5-4) 

where 𝑏𝑏 can be computed as  

𝑏𝑏 = 1
2

(𝑦𝑦𝑚𝑚 + 𝑦𝑦𝑛𝑛 − ∑ (𝛼𝛼𝑝𝑝 − 𝛼𝛼𝑝𝑝∗)[𝐾𝐾(𝑥𝑥𝑝𝑝 , 𝑥𝑥𝑚𝑚)𝑥𝑥𝑖𝑖∈𝑆𝑆𝑉𝑉 + 𝐾𝐾(𝑥𝑥𝑝𝑝, 𝑥𝑥𝑛𝑛)])       (5-5) 

where 𝑎𝑎  and 𝑛𝑛  are the subscripts of which 𝛼𝛼𝑚𝑚 ≈ 0  and 𝛼𝛼𝑛𝑛 ≈ 𝐶𝐶 𝑁𝑁⁄  respectively. 𝑆𝑆𝑉𝑉  is 

referred as the support vector set of |𝛼𝛼𝑝𝑝 − 𝛼𝛼𝑝𝑝∗| ≠ 0. Eq.(5-4) is the so-called expansion of 

support vector. It is noted that three important parameters in the ν-SVM should be properly 

tuned by optimal methods - σ, 𝐶𝐶  and ν. σ2 is automatically determined by the optimal 

method based on distances from samples to enclosing surfaces as proposed by Xiao et al. 

(Xiao, Wang, & Xu, 2015);  an overestimation of σ will enable the kernel function to 

weaken the nonlinear projection power of from low-dimension to high-dimensions while 

underestimating σ  makes kernel function weaken regularization of deviation, and the 

decision hyperplane will become highly sensitive to outliers in training data.  It is very 

significant to tune C correctly in the good practice of SVM application. If C is larger than 

the expected value, the SVM regression model will restrict its fitting ability of trained data 
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points. While a small value of C enhances the fitting ability of SVM, but deteriorates the 

prediction ability of the SVM regression model. ν is also needed to be tuned properly with 

training CHF data. A large value of ν forces the model selector to enclose more support 

vectors and yield an over-fitting model. On the contrary, for a small value of ν, the model 

will utilize less support vectors, which will under-fit the trained data. The grid search 

coupled with five-fold cross validation proposed in the previous research (Rudi, Chiusano, 

& Verri, 2012) is used to obtain optimal C and ν in the SVM regression CHF model of this 

study. In this study, the CHF regression to mass flux and pressure is performed only under 

the highly subcooled flow boiling. This approach capitalizes on the fact that the parametric 

profile of CHF exhibits clearly linear behaviors with respect to Xe in the subcooled flow 

(Fig.5-1 (a)). Hence, the primary objective of CHF regression was to resolve issues with 

the parametric behaviors of CHF with respect to pressure (P) and mass flux (G).   

 

5.3.1 Look-up Table Reconstruction with Sparingly Distributed Experimental Data 

First of all, a CHF-look up table construction from sparingly-distributed experimental CHF 

data points was studied to explore experimental strategies for helping save and rationalize 

efforts in collecting CHF experimental data. That is, the proposed methodology is designed 

to highlight the engineering concern – how many experimental CHF data points are needed 

for ν-SVM to achieve tabulation of CHF look table within an acceptable accuracy. The 

following contents are conducted and investigated to prepare training datasets for ν-SVM: 

evenly-distributed CHF data points shown as A,B,C,D, and E in Fig.5-2 were used for the 

training. The rest untouched region of the look-up table space served as the validation data 

points. In the first trial, 12 light green shaded entries marked by A in Fig.2 (~4% percent 
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of the total 315 data points) are used to train ν-SVM while the other data points were used 

for validation. In the second trial, 24 shaded entries (12 ‘A’ data points + 12 ‘B’ data points) 

are used as training data points. In the third trial, 36 shaded entries (12 ‘A’ data points + 

12 ‘B’ data points  + 12 ‘C’ data points) are used for the training. In the fourth trial, 48 

shaded entries (12 ‘A’ data points + 12 ‘B’ data points  + 12 ‘C’ data points + 12 ‘D’  data 

points) are used for the training. In the fifth trial, all the marked points (total 60 points - A, 

B, C, D, and E) in Fig. 2 were used for the training. By progressively and gradually 

increasing the number of well-distributed data points used for training around the selected 

pattern, this study explores the sensitivity of prediction accuracy with respect to the number 

of training data CHF points. 

 
Fig.5-2 Schematic Illustration of CHF Extrapolation Using a Few Data Points 

 

5.3.2 CHF Extrapolation for High Pressure using Low Pressure CHF Data 

Two numerical validation experiments are performed to investigate the plausibility of high 

pressure CHF prediction using CHF under low pressure data. Firstly, CHF prediction at 

the pressure of 16 MPa (close to PWR steady-state operation,15.5 MPa) was evaluated by 
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SVM machines trained with data all lower than 16 MPa (Fig. 5-3a). Pressure of the training 

data was progressively increased from 100 kPa. It emulates the experimental cases where 

all CHF data were measured and collected at lower pressure than the PWR operating 

pressure. Secondly, a few data points from the high target pressure (16 MPa) were included 

in the training data while the majority of the data points used for training were based on 

the pressure lower than the target pressure (Fig. 5-3b). This emulates the experimental case 

where a limited number of experimental CHF data points is available and accessible at the 

high target pressure of PWR operation while most data points used for training were at 

lower pressures. Similar to the first experiment, training pressure progressively increased 

from 100 kPa while a limited number of data points (1 (A), 3 (A+B), and 5 (A+B+C), in 

Fig. 5-3b) of the target pressure were included for the training set. This methodological 

scheme enables experimentalists to investigate the strategic integration of low pressure 

experiments and high pressure experiments, for a tabulation establishment of 

comprehensive CHF data banks of new ATF cladding materials.   



 

95 
 

 
Fig.5-3 Schematic Illustration of High Pressure CHF Extrapolation using Low Pressure Data: (a) No data is 
available at High Pressure, (b) a limited number of data points (A, B, and C) are available at high pressure  
 

5.4 Numerical Experimental Results 

As expected, prediction accuracy of SVM based CHF model by the coefficient of 

determination (R2) increases as the increasing number of training data (Fig.5-4). It can be 

noticed in Fig.4 that highly subcooled CHF with ( X ≤ −0.1) presents higher levels of 

accuracy compared to relatively less subcooled CHF (−0.1 < X ≤ 0.0). Because PWR 

operates under the equilibrium quality (Xe) between -0.35 and -0.15, the pronounced 

prediction accuracy for the highly subcooled flow CHF experiments is an encouraging 

finding. It is remarkable that only 12 data points can yield a high level of prediction 
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accuracy (R2 >0.8). The cost-benefit curve for the prediction accuracy versus the increasing 

training data population doesn’t present a linear trend while shows an asymptotically 

increasing trend, which supports a rational decision for the number of experimental data to 

be collected, that is at certain point, further increasing the number of CHF training data 

points doesn’t help gain the prediction accuracy much even at all. And two exemplary cases 

of highly subcooled CHF (Fig.5(a)-(b)) and less subcooled CHF (Fig.5(a)-(b)) further 

demonstrate that the region of prediction difference and prediction accuracy are dependent 

on the equilibrium quality because the thermalhydraulic presents different behaviors 

between less and highly subcooled flow boiling.  

      

 
Fig.5-4 Prediction accuracy (R2) change with increasing data population used for training (percentage of data 
in the CHF map for a specific quality, Xe), with the reference data distribution (12 evenly distributed 
locations) 
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 In order to explore further the sensitivity of prediction accuracy with respect to the training 

data distribution, training data points were redistributed in a different manner while the 

total number of training data stayed the same as twelve as before. Four different data 

distributions were tested as shown in Fig.5-6; instead of assigning 12 locations, the number 

of locations for data selection for training respectively reduced to 4 and 6. Hence, the 

presented predictions represent cases where experimental data collection was not as well 

distributed as the reference case of 12 uniformly-distribution locations.  

As shown in Fig. 5-7, increasing spread of data used for training (i.e., 12> 6> 4 for data 

collected locations) in the pressure & mass flux region of the CHF look up table helps 

improve CHF prediction accuracy. Additionally, prediction accuracy with the vertical data 

arrangements (along the pressure axis) is improved when comparing to the horizontal data 

arrangements (along the mass flux axis) implies that capturing CHF behavior with respect 

to pressure is more critical to the overall prediction accuracy. It is clearly observed in Fig. 

5-7 that a nicely spread pattern of experimental CHF data can drastically help reduce 

requirements of experimental CHF data points. 
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Fig.5-5 CHF Prediction with 12 evenly distributed data points: (a) Map for absolute difference in CHF 
prediction (Xe=-0.15), (b) Comparison between prediction and true CHF (Xe=-0.15), (c) Map for absolute 
difference in CHF prediction (Xe=-0.05), (d) Comparison between prediction and true CHF (Xe=-0.05) 
 

As for the CHF extrapolation from low pressure to high pressure is considered, it is clearly 

demonstrated in Fig. 5-8 that a reasonable level of prediction accuracy can be achieved 

only when training data has pressures fairly close to the target pressure (16MPa). The 

prediction accuracy demonstrating non-linear behaviors, showing a sharp increase after a 

certain pressure. It provides us with a suspect that those pressures after which the prediction 
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accuracy sharply increases correspond to the inflection points of the CHF behavior. It is 

elaborated with more details and discussions below.   

 
Fig.5-6 CHF Prediction with data distributions different from the reference 12 even locations for the case 
with Xe =-0.5: (a) 6 vertical locations, (b) 6 horizontal locations, (c) 4 vertical locations, (d) 4 horizontal 
location 
 

Including a few CHF data points from the high target pressure of 16 MPa dramatically 

helps ν-SVM obtain modeling accuracy in CHF extrapolation from low pressure to high 

pressure. In Fig. 8 (a)-(d) , it was found out that incorporating a limited number of CHF 
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data points from the target pressure (16MPa) into training CHF data increases  the too much 

accuracy CHF prediction primarily based on low pressure data. This announces a chance 

of strategic CHF experiment integration between high pressure and low pressure. In other 

words, while most experimental CHF data are measured and obtained at low pressure 

conditions, the ν-SVM can effectively make a good use of a limited number of CHF data 

points in the high target pressure for highly accurate CHF prediction.  

 
Fig.5-7 Investigations of the Effects of Different Blocks Distribution under Subcooled Conditions: (a) Xe = 
-0.50, (b) Xe = -0.20, (c) Xe = -0.15, (d) Xe = -0.05 
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5.5 Results Analyses and Discussions  

5.5.1 Pressure-Variant CHF Inflection and its Impact on Prediction accuracy 

The ν-SVM prediction performance depends on the CHF parametric profiles with regard to 

system pressure, mass flux of coolant and equilibrium quality of flow boiling, and the 

distribution of training data points capturing that parametric behavior. For the CHF 

regression to pressure, the CHF prediction accuracy is directly determined by existence of 

a CHF inflection point and availability of training data in the proximity of that inflection 

point. In the Groeneveld’s look-up table (Groeneveld et al., 2007), when the equilibrium 

quality is above -0.20, an inflection point exists in the parametric profile of CHF with 

respect to pressure. In Fig.5-9 (a), it is demonstrated that for an exemplary case (G=3000 

kg/m2s, Xe=-0.15) the maximum absolute error of CHF prediction with respect to pressure 

occurs at the inflection point of the pressure-CHF variant. In this situation, the pressure of 

the inflection point is 3000 kPa while two closest pressures to the CHF inflection point 

used for the training data are 500kPa and 7000kPa, respectively from left and right sides. 

This explains why the ν-SVM trained by such datasets cannot precisely model the CHF 

profiles with a pressure inflection point. 
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Fig.5-8 ν-SVM supported pressure extrapolation for the target pressure of 16 MPa, and x-axis represents 
progressively increasing pressure level used for training: (a) xe=-0.5, (b) xe=-0.3, (c) xe=-0.15, (d) xe=-0.05 
 

It is shown in Fig.5-9(b) that how the prediction error of the inflection point contributes to 

the overall error (summation of absolute errors of CHF prediction for the range of pressure 

for fixed mass flux and Xe). As the difference between the closest pressure to the inflection 

pressure (∆P𝑝𝑝𝑛𝑛𝑓𝑓𝑙𝑙𝑒𝑒𝑐𝑐𝑠𝑠𝑝𝑝𝑐𝑐𝑛𝑛 = 𝑎𝑎𝑖𝑖𝑛𝑛�𝑃𝑃𝑝𝑝𝑛𝑛𝑓𝑓𝑙𝑙𝑒𝑒𝑐𝑐𝑠𝑠𝑝𝑝𝑐𝑐𝑛𝑛 − 𝑃𝑃𝑠𝑠𝑝𝑝𝑠𝑠𝑝𝑝𝑛𝑛𝑝𝑝𝑛𝑛𝑓𝑓�) increases, the contribution of error 

at the inflection CHF point to the overall error increases. It is seen in Fig. 5-9(b), that in 

the Groeneveld CHF look-up table (2007), around 15~20 percent of the overall CHF 

prediction error with respect to pressure is contributed by the error at the pressure inflection 

point, for the reference data case of 12 evenly distributed CHF data points. This explictly 



 

103 
 

implies that preparation of training data points close to pressure inflection points is key to 

the overall accuracy improvement of ν-SVM CHF prediction.  

All ongoing analyses in Fig5-9.(a)-(d) were evaluated by the reference case  of 12 evenly 

distributed training data that is shown in Fig. 5-2. Contribution of the pressure-variant CHF 

inflection point to the overall prediction accuracy can be explored from a different 

perspective by evaluating the accuracy gain of R2 for CHF prediction but excluding the 

pressure inflection point. It was shown in Fig. 5-9 (c) that the potential improvement of R2 

for CHF prediction in case pressure inflection points were excluded. This implies the 

reduction of the CHF predictability due to the pressure-variant CHF inflection point, 

addressing the importance of procuring training CHF data points around pressure-variant 

CHF inflection points. This insight naturally leads to consideration that conditions (G and 

Xe) with no or less pronounced pressure-variant CHF inflection behavior would produce a 

higher level of CHF prediction accuracy based on ν-SVM.  
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Fig.5-9 (a) Exemplary CHF behavior and ν-SVM prediction error with respect to pressure at Xe =-0.15 and 
G=3000 kg/m2s; (b) Fraction (%) of prediction error of the inflection point to the overall error (summation 
of absolute errors of CHF prediction for the range of P for fixed G and Xe) with respect to the difference of 
closet training data to the inflection pressure (∆P𝑝𝑝𝑛𝑛𝑓𝑓𝑙𝑙𝑒𝑒𝑐𝑐𝑠𝑠𝑝𝑝𝑐𝑐𝑛𝑛 = 𝑎𝑎𝑖𝑖𝑛𝑛�𝑃𝑃𝑝𝑝𝑛𝑛𝑓𝑓𝑙𝑙𝑒𝑒𝑐𝑐𝑠𝑠𝑝𝑝𝑐𝑐𝑛𝑛 − 𝑃𝑃𝑠𝑠𝑝𝑝𝑠𝑠𝑝𝑝𝑛𝑛𝑝𝑝𝑛𝑛𝑓𝑓�), red line shows the 
average; (c) Potential improvement of R2 by excluding the pressure inflection point (∆R2 = 𝑅𝑅∗2 − 𝑅𝑅2, where 
𝑅𝑅∗2 is the coefficient of determination excluding the inflection pressure) with respect to the difference of 
closest training to the inflection pressure, ∆P𝑝𝑝𝑛𝑛𝑓𝑓𝑙𝑙𝑒𝑒𝑐𝑐𝑠𝑠𝑝𝑝𝑐𝑐𝑛𝑛  ; (d) ν-SVM prediction accuracy with respect to 
linearizability of CHF behavior with pressure where R2

linear, CHF vs P is the coefficient of determination for the 
linear fitting of pressure-variant CHF behavior.  
 

How CHF inflection behavior presents could be indicated by parameterizing its pressure-

variant behavior with the linear fitting (R2
linear, CHF vs P).  Fig. 5-9 (d) shows the clearly 

positive correlation between the CHF prediction accuracy and linearizability of CHF with 

respect to pressure (R2
linear, CHF vs P), which demonstrates that ν-SVM could yield a more 

robust prediction under conditions resulting in more linear CHF behaviors with respect to 
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pressure. The inflection point of CHF appears because of the two competing mechanisms 

of the fluid property variation characterized by increasing density and decreasing heat of 

vaporization (hfg) with regard to increasing pressure. Hence, for some fluids with a less 

pronounced hfg decreasing with pressure, the pressure-variant CHF inflection may be not 

so appreciable as water does. As those fluids, the applicability of ν-SVM to support CHF 

prediction is expected to further rise.    

 

The observed behavior of prediction accuracy for CHF extrapolation from low pressure to 

high pressure in Fig. 5-8 can also be explained by the pressure inflection points. There 

exists a pressure inflection point at which the CHF extrapolation accuracy sharply increases 

while the pressure for training data progressively increases towards the high target 

pressure. This pressure point corresponds to the pressure-variant CHF inflection point. 

Physically, the CHF inflection behavior is significantly because of the decreasing heat of 

vaporization (ΔHfg) with respect to increasing pressure.  It implies that the CHF 

extrapolation from low pressure to high pressure can only be accurately performed with 

the presence of training data implying the inflection of pressure-variant CHF. Those 

training CHF data points from which the overall pressure-variant CHF behavior can be 

inferred can be provided by data in the proximity of the inflection point and/or the high 

target pressure.  

 

5.5.2 CHF behavior with Mass Flux and its Impact on Prediction Accuracy  

Unlike the aforesaid pressure-variant CHF profile that is typically characterized with the 

inflection point, the CHF monotonically increases with the increasing of mass flux (G), 
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implying that ν -SVM can predict CHF more accurately for mass-flux-variant CHF 

behavior than pressure-variant CHF behavior. However, the departure from the linear 

behavior of CHF with regard to mass flux still deteriorates the CHF prediction accuracy. 

Fig. 5-10 (a) shows exemplary behaviors of CHF of two completely different conditions; 

highly linear behavior with mass flux (R2
linear, CHF vs G= 0.9512) and significant departure 

from the linear behavior with mass flux (R2
linear, CHF vs G=0.6467). How CHF linearly behave 

with respect to mass flux is the primary key to the CHF prediction accuracy of ν-SVM. As 

clearly demonstrated by the positive correlation between R2 for CHF and R2
linear, CHF vs G in 

Fig.5-10 (b), the linearizability of CHF with mass flux is a robust parameter that is directly 

proportional to prediction accuracy of ν-SVM. Hence, conditions that enhance the linear 

behavior of CHF with mass flux will allow ν-SVM to achieve a higher prediction accuracy. 

It is important, however, to note that ν-SVM is very much applicable for CHF prediction 

as far as parametric behavior dependent on the mass flux is considered in the training data 

as CHF monotonically decreases with mass flux regardless of types of fluids.  

 

Fig.5-10 (a) Exemplary behavior of CHF in two different conditions - highly linear behavior with G (R2
linear, 

CHF vs G= 0.9512) and significant departure from the linear behavior with G (R2
linear, CHF vs G=0.6467) and ν − 

SVM predictions; (b) the predicted CHF respectively based on linear regression and ν-SVM regression for 
the case with Xe= -0.15 and P=7000 kPa. All presented analyses in (a)-(b) were evaluated with the reference 
12 evenly distributed training data shown in Fig. 5-2. 
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5.5.3 Limited predictability for pool boiling using flowing boiling data 

It is noteworthy that the ν-SVM trained by flow boiling CHF data points (G >0) has limited 

ability in predicting pool boiling CHF accurately (G=0). Fig. 5-11 shows the significant 

decrease of prediction accuracy for the pool-boiling CHF (G=0) throughout the entire range 

of subcooled equilibrium qualities. Namely, the abrupt change of CHF for pool boiling due 

to the absence of different flow phenomenology, cannot be solely modelled by the 

numerical method based on the training CHF data of flow boiling. This typifies a limitation 

of the ν-SVM based CHF prediction. More precisly, ν-SVM cannot take the role of 

physics; procuring CHF data in wide ranges to cover the key phenomenology is critical in 

the assurance of an acceptable level of prediction accuracy.  

 

5.6 Summaries of Chapter 5  

In this study, it was demonstrated that the ν-SVM can be effectively and reasonably applied 

to predict CHF under subcooled flow boiling, thereby supporting the tabulation of ATF 

look-up table for PWR operation. Obtainment of training data points that include the 

information about the parametric behavior of CHF with respect to pressure and mass flux 

is the key to predict CHF in a high level of accuracy. As for the pressure-variant CHF 

profile, training data in the proximity of the inflection point drastically contribute to the 

accuracy of CHF prediction. Hence, the prediction accuracy could be much enhanced by 

physics-informed training data preparation with knowledge of CHF inflection points. The 

linearization trend of CHF with respect to pressure and mass flux determines the degree of 

prediction accuracy, in the absence of a good spread distribution of training data points that 

captures the parametric trends. CHF extrapolation to a higher pressure by using many CHF 
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data points measured at low pressure can be efficiently conducted if a few data points are 

available in the high pressure. This speaks to the possibility of the strategical CHF 

experimentation integration between high and low pressure conditions, with a 

significantly-reduced experimental cost associated with the high system pressure 

requirements. Nowadays, there is a compelling demand of CHF evaluation of advanced 

ATF cladding materials compatibly with the current look up table CHF implementation in 

thermal hydraulics codes. The proposed methodological finding provides engineering 

experiment strategies to help the look-up table tabulation for advanced cladding materials 

in an efficient manner.    

 

 
Fig.5-11 CHF prediction accuracy with respect to different equilibrium qualities and mass flux. Note the relatively 
low prediction accuracy for pool boiling CHF (G=0) based on flow boiling data. The prediction was made with the 
reference 12 evenly distributed training data shown in Fig. 5-2. 
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6 CLOSING REMARKS  

6.1 Concluding Summaries  

Various enhancement techniques for boiling heat transfer are comprehensively reviewed 

in this thesis. Macroscale enhancement techniques, including extended surfaces of macro 

fins and ridges, porous mesh grids and foamings, provide different enhancement degrees 

of both HTC and CHF, along with a certain decrement of the incipience superheat and 

ONB. However, attaching extended surfaces on a top of a temperature sensitive device 

might introduce significant contact resistances that increase surface temperature of device, 

and even may induce thermal stresses. On the contrary, macroscale enhancement 

techniques are more able to resist effects of aging and structure failures than both (either) 

micro and(or) nanoscale enhancement techniques. Microscale boiling heat enhancement 

techniques have following primary benefits including increased nucleation site density, 

wettability augmentation, wickability amplification of liquids. It seems that modulated 

microporous structures are especially prominent owing to their significant potential 

improvement of CHF because vapor detachment paths is separated from the rewetting 

paths of resupplying paths through the different microscale techniques. Nanoscale 

enhancement techniques, which are surface coatings by tubes, fibers, wires, porous and 

film layers at nanoscales. The primary advantage of nanoscale enhancement is boiling heat 

enhanced by improving capillary forces of working liquids within nanostructures. 

Nevertheless, surface structures at micro- and/or nanoscale are highly susceptible to the 

blockage of oxidization layer, introducing enhancement decay of HTC and CHF as time 

goes by. The nanofluids application to enhancement of boiling heat transfer is full of 

uncertainties because the mechanisms behind enhancements of CHF and HTC are still not 
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clearly and controversial. On the hand, the concentration of nano-particles will increase as 

the total amount of boiling time accumulates due to the solution vaporization of working 

fluids; there is an optimal concentration of nanofluid allowing CHF to be maximally 

enhanced.        

 

In this thesis, a prior work has been done for the CHF prediction approach based on the 

framework of ensemble learning. Three primary influential factors that remarkably affect 

CHF are explored their effects on CHF respectively by different machine learning 

algorithms, namely, deep belief network, general regression network and support vector 

machine.  The main findings about CHF studies are presented as follows based on the 

proposed methodologies:  

(1) Through studying parametric trends of CHF with respect to geometric parameters of 

cylindrical micro-pillar array reveals that the effect of height on CHF is more 

complicated than that of diameter and spacing and the total number of pillars fabricated 

on the surface has influential impacts of the parametric trends of CHF.  

(2) The parametric trends of CHF predicted by the proposed methodologies corresponds 

to the analyses of experimental results from the published literatures and the qualitative 

analyses to the effects of diameter, height and spacing of micro-pillar arrays.  

(3) In studies of the effects of thermal properties of heater materials on CHF, the trained 

machine learning model gives similar parametrical trends of CHF to that of current 

empirical correlation models with respect to thermal activity. But the trained model 

yields better prediction accuracy because thermal activity alone cannot sufficiently 
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represent the effects of thermal properties of materials on CHF as pointed out in 

published literatures.  

(4) Regardless of boiling surface materials, the effects of dimensional sizes of boiling 

surface on CHF are absent once the side length is beyond a certain value that is related 

with the capillary length of fluids. Besides, CHF reaches the maximum value that is 

determined by thermal activity and diffusivity of boiling surface material when the side 

length of square boiling surface is equal to the Raleigh-Plateau instability wavelength. 

Because in such case, the instability growth rate reaches the maximum value.  

(5) The ν- support vector machine is the best reconstruction method for the CHF lookup 

table of the subcooled flow boiling if the total number of experimental CHF data points 

is small and those experimental data points could reflect the CHF-variance with respect 

to pressure.  

(6) The existence of inflection points has impact on the prediction accuracy and the size of 

training datasets. Because more training data points around those inflection points are 

needed by the machine learning algorithms to capture parametric trends effectively.   

 

From a prospective of thermal system design, despite a large amount of published articles 

addressing experimental investigation and theoretical analyses for boiling heat 

enhancement, there is a scarcity of sufficiently reliable databases elaborating these 

enhancement explanations and experiments in terms of fluid type, surface material, size, 

and orientation, enhancement shape, pattern, scale, subcooled temperature, and operating 

pressure. This thesis renders a prior databased for designing enhanced surfaces for practical 

applications to boiling heat transfer, condensation and cooling.  This thesis also provides a 
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guideline to predict CHF enhanced by multiple techniques such as nanofluids hybrid with 

micro pin fin structures.     

6.2 Recommendations for Future Works  

Although CHF obtained on plain plate surfaces is used as the reference case in many CHF 

enhancement experiments and the side length of those plate surfaces varies from 5 mm to 

50 mm to some extent, almost all of them are square boiling surfaces and a few of surfaces 

are non-square shapes. There are still some experimental investigations about the effects 

of geometrical dimensions on CHF:  

(1) For the plate and circular heat transfer substrates with same surface areas and thickness, 

the CHF is much different for each substrate as experimental results from published paper 

shown, but how to correlate the effect of geometrical shape is still unresolved yet.  

(2) For plate surfaces, some experimental results have shown that the aspect ratio has some 

unknown influences on CHF (Kam et al., 2018). But the experiments about CHF on plate 

surfaces with various aspect ratios and the same surface area are in the pending status.  

 

There are still some untouched regions that are worthy of theoretical and experimental 

exploration in the future design of microstructure enhanced pool boiling although many 

experiments and theories are reported, including:  

(1) Whether  𝑟𝑟 and 𝜑𝜑𝑠𝑠 are capable of correlating the effects of pillar shape and distribution 

pattern should be verified by pool boiling experiments enhanced by different 

microstructured surfaces but the fixed 𝑟𝑟 and 𝜑𝜑𝑠𝑠. 
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(2) How the dimensional sizes of heat transfer substrate affect the microstructure enhanced 

CHF is not clear now, pool boiling CHF experiments are suggested to perform on 

different sized surfaces with a same set of pillar array.   

(3) In the reported experiments, for silicon based pillar arrays, the geometrical parameters 

are at the nano- and micro-scales while the copper or stainless steel pillar array has a 

magnitude of millimeters. Due to the scale effect, the CHF triggering mechanisms at 

the scale of nano-and micrometer present a different story from those at the millimeter 

scale. In order to further utilize the regression capacity of deep belief network, the 

silicon pillar arrays at the macroscale shall be explored in future designs of structured 

surfaces.  

(4) Pillar arrays improve the hydrophilic ability of surface but degrades the heat transfer 

coefficient. Leaving some regions untouched but fabricating pillar arrays on plain 

surfaces in a certain manner can further enhance CHF and heat transfer coefficient 

because experiments demonstrate that much higher CHF and heat transfer coefficient 

are obtained on the heat transfer surface with hydrophilic networks featuring 

hydrophobic islands than of the hydrophilic or hydrophobic surface. Therefore, how to 

configure the untouched and pillared regions optimally for CHF maximization might 

be one of the experimental explorations in future designs of CHF experiments.  

(5) How to reduce and predict the heat flux and superheat at the nucleate boiling incipience 

is of importance to the improvement of thermal efficiency. But relevant experiments 

and studies are not reported yet for the microstructured surfaces. Researches about the 

onset of nucleate boiling should be performed on structured surfaces to complete the 

framework of enhanced heat transfer.  
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APPENDIX 

Microstructure-Enhanced CHF Databanks of Pool Boiling 

CHF datasets from experiments concluded in Tab.3-1 are complied in Tab.V and Tab.VI, 

noting that ID in Tab. V and Tab.VI are referred to the experiment ID in Tab.3-1, and in 

some papers, CHF data are extracted by using plot digitizer app.  For a plain surface, 

diameter, height and spacing are zero.  

Tab. V CHF Databank of Pool Boiling Enhanced by Cylindrical Pillar Surfaces 

ID Subcooled (K) Diameter (um) Height (um) Spacing (um) CHF (kW/m2) 

1 0 0 0 0 756.1156 

1 0 10 10 15 1646.125 

1 0 10 20 15 1678.473 

1 0 5 20 10 1764.83 

1 0 10 20 10 1888.88 

1 0 10 20 5 2018.274 

1 0 5 20 5 2077.627 

2 0 0 0 0 747.4443 

2 0 11.2 10.4 13.8 1687.344 

2 0 11 17 14 1956.18 

2 0 10.8 16.3 14.2 1657.245 

2 0 16 17 9 1464.796 

3 0 0 0 0 794.5586 

3 0 10 20 15 1962.367 

3 0 10 20 5 2044.428 

3 0 5 20 10 2356.65 

3 0 0 0 0 1957.136 
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3 0 30 35 30 2325.918 

3 0 30 61 30 2356.65 

3 0 35 68 30 2494.943 

4 0 0 0 0 699.0447 

4 0 20 10 5 792.5973 

4 0 20 10 20 1032.178 

4 0 20 10 40 671.5166 

4 0 20 20 5 1321.008 

4 0 20 20 20 1711.993 

4 0 20 20 40 1169.818 

4 0 20 40 5 1571.556 

4 0 20 40 20 2171.583 

4 0 20 40 40 1249.607 

4 0 5 20 5 1618.44 

4 0 5 20 10 1589.656 

4 0 5 20 20 1896.302 

5 0 0 0 0 697.8 

5 0 20 10 5 798.484 

5 0 20 10 20 1037.505 

5 0 20 10 40 666.4657 

5 0 20 20 5 1316.257 

5 0 20 20 20 1704.744 

5 0 20 20 40 1167 

5 0 20 40 5 1570.203 

5 0 20 40 20 2162.604 

5 0 20 40 40 1194.329 

5 0 5 20 2 1620.025 
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5 0 5 20 10 1891.419 

5 0 5 20 20 1246.674 

6 0 0 0 0 714 

6 0 20 20 5 1069.963 

6 0 20 20 20 1518.186 

7 0 4 8 70 1420 

7 0 15 16 90 1480 

7 0 120 16 205 1560 

7 0 15 32 90 1600 

7 0 120 32 205 1590 

7 0 40 32 65 1610 

7 0 15 16 21 1780 

7 0 15 32 21 2170 

7 0 4 16 7 2190 

7 0 0 0 0 754.7952 

8 0 4 20 4 1477.838 

8 0 4 20 12 2147.24 

8 0 8 20 8 1807.884 

8 0 8 20 24 2008.544 

8 0 40 20 40 1850.905 

8 0 40 20 120 1286.488 

8 0 80 20 80 1707.393 

8 0 80 20 240 1114.402 

8 0 0 0 0 1100 

9 0 0.44 0.264 0.36 176.5022 

9 0 0.44 0.396 0.36 194.8635 

9 0 0.44 0.704 0.36 222.1063 
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9 0 0.44 1.408 0.36 236.4437 

9 0 0 0 0 158.449 

10 0 0 0 0 906.30453 

10 0 40 20 40 1635.4 

11 0 0 0 0 910.4 

11 0 0.5 2 0.1 1145 

11 0 0.36 2 0.25 1151 

11 0 0.28 2 0.33 2143 

12 0 0 0 0 1260.233 

12 0 10 20 10 2408.851 

12 0 15 20 15 2253.907 

12 0 20 20 20 2294.452 

13 0 0 0 0 1192 

13 0 0.15 5 0.35 1706 

13 0 5 3 5 2096 

14 0 0 0 0 441 

14 0 5 5 5 631.0782 

14 0 10 5 10 615.367 

14 0 20 5 20 533.1851 

14 0 50 5 50 568.1325 

14 0 50 50 50 581.5517 

14 0 100 50 50 569.6814 

15 0 0 0 0 842 

15 0 40 20 40 1877 

15 0 40 20 120 1013 

15 0 80 20 80 1485 

15 0 80 20 240 964 
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16 0 0 0 0 272 

16 0 500 400 500 420 

16 0 500 400 300 462 

16 0 500 400 100 428 

16 0 350 550 250 479 

28 0 50 23.5 6 1563 

28 0 0 0 0 1052 

Tab. VI CHF Databank of Pool Boiling Enhanced by Square Pillar Surfaces 

ID Subcooled (K) Width (um) Height (um) Spacing (um) CHF (kW/m2) 

17 0 0 0 0 160.73 

17 25 0 0 0 222.30 

17 45 0 0 0 310.32 

17 0 30 60 30 263.53 

17 25 30 60 30 483.04 

17 45 30 60 30 674.94 

17 0 30 120 30 276.85 

17 25 30 120 30 520.22 

17 45 30 120 30 719.34 

17 0 30 200 30 290.67 

17 25 30 200 30 555.17 

17 45 30 200 30 808.23 

17 0 50 60 50 287.73 

17 25 50 60 50 451.01 

17 45 50 60 50 546.12 

17 0 50 200 50 297.63 

17 25 50 200 50 581.35 

17 45 50 200 50 772.88 
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17 0 50 270 50 324.30 

17 25 50 270 50 613.44 

17 45 50 270 50 835.55 

18 25 0 0 0 143.56 

18 35 0 0 0 171.40 

18 45 0 0 0 199.13 

18 3 30 60 30 270.56 

18 25 30 60 30 476.90 

18 35 30 60 30 576.06 

18 45 30 60 30 669.38 

18 3 30 200 30 318.21 

18 25 30 200 30 554.27 

18 35 30 200 30 689.19 

18 45 30 200 30 798.25 

19 15 0 0 0 181.5 

19 25 0 0 0 232 

19 35 0 0 0 288 

19 15 30 60 45 365.54 

19 25 30 60 45 465 

19 35 30 60 45 565 

19 15 30 60 30 360 

19 25 30 60 30 476.69 

19 35 30 60 30 546 

19 15 30 60 15 330.88 

19 25 30 60 15 429 

19 35 30 60 15 539.8 

19 15 30 120 45 390 
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19 25 30 120 45 504 

19 35 30 120 45 607.2 

19 15 30 120 30 390.66 

19 25 30 120 30 498.18 

19 35 30 120 30 597.06 

19 15 30 120 15 378 

19 25 30 120 15 460.9 

19 35 30 120 15 516.2 

19 0 30 60 30 262 

19 3 30 60 30 273 

19 25 30 60 30 459.85 

19 45 30 60 30 680 

19 0 30 120 30 276 

19 3 30 120 30 302 

19 25 30 120 30 530 

19 45 30 120 30 720 

19 0 50 60 50 287 

19 3 50 60 50 306 

19 25 50 60 50 445 

19 45 50 60 50 630 

19 0 20 60 20 245 

19 25 20 60 20 430 

19 45 20 60 20 615 

19 0 50 200 50 297 

19 3 50 200 50 322 

19 25 50 200 50 580 

19 45 50 200 50 780 
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19 0 50 270 50 325 

19 3 50 270 50 362 

19 25 50 270 50 610 

19 45 50 270 50 845 

19 0 10 60 10 263 

19 3 10 60 10 286 

19 25 10 60 10 450 

19 45 10 60 10 640 

19 0 30 200 30 290 

19 3 30 200 30 308 

19 25 30 200 30 555 

19 45 30 200 30 800 

20 0 0 0 0 160.72 

20 3 0 0 0 163.80 

20 25 0 0 0 221.42 

20 45 0 0 0 309.7 

20 0 50 60 50 288.8 

20 3 50 60 50 306.0 

20 25 50 60 50 449.16 

20 45 50 60 50 545.63 

21 0 0 0 0 1257.8 

21 0 1000 200 1000 1518.25 

21 0 1000 500 1000 172.58 

21 0 1000 700 1000 148.10 

21 0 1000 1000 1000 128.62 

21 0 1000 2000 1000 1054.25 

21 0 1000 3000 1000 883.54 
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22 0 1000 1000 1000 361 

22 0 1000 2000 1000 523 

22 0 1000 4000 1000 814 

22 0 1000 8000 1000 917 

22 0 0 0 0 188 

23 0 200 500 200 330 

23 0 400 400 400 285 

23 0 200 800 200 351 

23 0 400 1600 400 499 

23 0 0 0 0 154.80 

24 0 0 0 0 181 

24 0 1000 4000 2000 701 

24 0 1000 2000 2000 445 

24 0 1000 1000 2000 345 

24 0 1000 500 2000 297 

24 0 1000 4000 1000 803 

24 0 1000 2000 1000 504 

24 0 1000 1000 1000 378 

24 0 1000 500 1000 301 

24 0 1000 4000 500 983 

24 0 1000 2000 500 693 

24 0 1000 1000 500 489 

24 0 1000 500 500 371 

25 15 0 0 0 182.49 

25 25 0 0 0 205.20 

25 35 0 0 0 225.09 

25 15 30 60 30 310.45 
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25 25 30 60 30 380.06 

25 35 30 60 30 415.62 

26 15 0 0 0 208.23 

26 25 0 0 0 239.72 

26 35 0 0 0 264.56 

26 15 30 60 45 380.11 

26 25 30 60 45 462.95 

26 35 30 60 45 553.13 

Note that the datasets marked in red and bold are the triangular distribution pattern of 

pillars.   
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