
University of New Mexico
UNM Digital Repository

Nuclear Engineering ETDs Engineering ETDs

9-12-2014

Efficient Multiphysics Coupling for Fast Burst
Reactors in Slab Geometry
Japan Patel

Follow this and additional works at: https://digitalrepository.unm.edu/ne_etds

This Thesis is brought to you for free and open access by the Engineering ETDs at UNM Digital Repository. It has been accepted for inclusion in
Nuclear Engineering ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact disc@unm.edu.

Recommended Citation
Patel, Japan. "Efficient Multiphysics Coupling for Fast Burst Reactors in Slab Geometry." (2014). https://digitalrepository.unm.edu/
ne_etds/37

https://digitalrepository.unm.edu?utm_source=digitalrepository.unm.edu%2Fne_etds%2F37&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ne_etds?utm_source=digitalrepository.unm.edu%2Fne_etds%2F37&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/eng_etds?utm_source=digitalrepository.unm.edu%2Fne_etds%2F37&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ne_etds?utm_source=digitalrepository.unm.edu%2Fne_etds%2F37&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ne_etds/37?utm_source=digitalrepository.unm.edu%2Fne_etds%2F37&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ne_etds/37?utm_source=digitalrepository.unm.edu%2Fne_etds%2F37&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:disc@unm.edu


     
  

           
       Candidate  
      
           
     Department 
      
 
     This thesis is approved, and it is acceptable in quality and form for publication: 
 
     Approved by the Thesis Committee: 
 
               
                   , Chairperson 
  
 
           
 
 
           
 
 
           
 
 
           
 
 
           
 
 
            
 
 
            
 
 
            
 
 
  



EFFICIENT MULTIPHYSICS COUPLING FOR FAST BURST REACTORS IN SLAB 
GEOMETRY 

 

 

BY 

 

 

JAPAN KETAN PATEL 

 

HONORS B. S., NUCLEAR ENGINEERING, OREGON STATE UNIVERSITY, 2011 

 

 

 

 

THESIS 

Submitted in Partial Fulfillment of the 
Requirement for the Degree of  

Master of Science 

Nuclear Engineering 

The University of New Mexico 
Albuquerque, New Mexico 

 

 

July, 2014 

 

 

 

 



 
 

iii 
 

 

 

 

 

 

 

 

 

 

 

©Copyright,  Japan K. Patel 

 

 

 

 

 

 

 

 

 

 



 
 

iv 
 

 

Acknowledgements 

At this point, I would like to thank Dr. Cassiano de Oliveira for his infinite patience and support. I 

am grateful to him for making me an independent researcher. His insights on multiphysics 

modeling have been invaluable. I would like to thank Dr. Hyeongkae Park for teaching me almost 

everything that went into this thesis. It is, really, his ideas that have been executed in this thesis. I 

thank Dr. Salvador Rodriguez for teaching the CFD class, being on my committee, going through my 

thesis, and important edits inspite of bad health. I would also like to thank Dr. Anil Prinja for 

various discussions over the last year that proved to be helpful in understanding the subject matter. 

I thank my thesis committee – Dr. Cassiano de Oliveira, Dr. Hyeongkae Park, Dr. Anil Prinja, and Dr. 

Salvador Rodirguez for being on my thesis committee.  

I thank Ms. Jocelyn White, and Mr. Doug Weintraub, for helping me with all the paperwork. 

I owe everything to my parents. Thank you, Mohna and Ketan Patel. 

 

 

 

 

 

 

 

 

 

 



 
 

v 
 

 

 

EFFICIENT MULTIPHYSICS COUPLING FOR FAST BURST REACTORS IN SLAB 
GEOMETRY 

 

 

BY 

 

 

JAPAN KETAN PATEL 

 

HONORS B. S., NUCLEAR ENGINEERING, OREGON STATE UNIVERSITY, 2011 

 

 

 

 

ABSTRACT OF THESIS 

Submitted in Partial Fulfillment of the 
Requirement for the Degree of  

Master of Science 

Nuclear Engineering 

The University of New Mexico 
Albuquerque, New Mexico 

 

 

July, 2014 

 

 



 
 

vi 
 

EFFICIENT MULTIPHYSICS COUPLING FOR FAST BURST REACTORS IN SLAB 

GEOMETRY 

by 

Japan Ketan Patel 

Honors B. S., Nuclear Engineering, Oregon State University 

M. S., Nuclear Engineering, University of New Mexico 

 

ABSTRACT 

In this thesis, we discuss a coupling algorithm to model simplified fast burst reactor 

dynamics. Kadioglu presented a tightly coupled multiphysics algorithm of diffusion 

neutronics and linear. An implicit-explicit (IMEX) algorithm was used to follow the 

dynamical time-scale of the problem. However, as noted by Kadioglu and his co-authors, 

the diffusion model does not adequately represent the neutronics of the system due to its 

small. Our objective is to extend the IMEX algorithm to incorporate transport effects using 

moment based acceleration concept. We will demonstrate the differences between 

diffusion and transport models (SN). We will also demonstrate how the introduction of 

moment based acceleration enables us to isolate the angular flux from coupled 

multiphysics system by using a discretely consistent lower order (LO) system.  
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Chapter 1: Introduction 

Fast burst reactors are highly enriched uranium/plutonium, unshielded, pulsed reactors that 

produce bursts of neutrons and photons to irradiate test samples (Shabalin, 1979). These reactors 

rely on natural thermo-mechanical properties to turn on (supercritical) and off (subcritical) 

(Burgreen, 1962). We are interested in accurately modeling this transition of the reactor from 

supercritical to subcritical and the corresponding material response with a novel multiphysics, 

multiscale algorithm. 

Following the evolution of such systems involves adequately accurate prediction of flux, 

temperature, and displacement fields over time. In this thesis, we use one group, slab geometry 

neutron transport model (SN) with isotropic scattering to predict the flux distribution. We neglect 

delayed neutrons since the physical time-scales of interest are too small for delayed neutrons to 

have any substantial bearing. We use the linear elasticity model to approximate material feedback, 

and the adiabatic heat-up model to approximate the temperature evolution of the system. We do 

not account for heat conduction, convection or radiation cooling in the adiabatic heat-up model. We 

also note that our study is limited to very small reactivity insertions so that linear mechanics model 

can adequately model the system.  

This study extends the IMEX algorithm from (Kadioglu et al., 2009) is extended to include transport 

effects. We note that the transport sweeps can be expensive so isolating the transport solver from 

the coupled multiphysics system is of interest. Therefore, we also introduce moment based 

acceleration concept into our transport model and evaluate its performance. We use centered finite 

difference spatial discretization throughout this thesis. 

Additional motivation for this work comes from our interest in modeling the fast pulsed and burst 

reactor systems in full 3D geometry with nonlinear mechanics. This thesis will serve as a stepping 

stone towards that goal.  
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1.1 Governing Equations 

We use the following one-group slab geometry neutron balance equation with isotropic scattering 

to model the evolution of the neutron population: 

 

 

  

  
   

  

  
           .    (1) 

Here,        and         are the scalar flux and current respectively at position x and time t.    is 

the macroscopic absorption cross section,    is the macroscopic fission cross section,   is the 

average number of neutrons produced per fission,   is the neutron velocity. Eq. 1 can also be 

viewed as the zeroth angular moment of the following transport equation: 
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Here,      , t) is the angular flux,    is the macroscopic scattering cross section, and    is the 

macroscopic total cross section.  

In addition, when we employ Fick’s law, we can rewrite Eq. 1 as the following diffusion equation: 

 

 

  

  
   

 

  
 

  

  
          .    (3) 

Here, D is the diffusion coefficient.  

The macroscopic cross section,  , is a function of the number density, which in turn, depends on the 

material density. The material density can be evaluated using simple mass conservation,  

      
 

   
  .   (4) 

  

Here,   is the density and u is the material displacement. 

To model the material displacement, we use the following linear elastic wave equation (Reuscher, 

1969): 
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with,  
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(5) 

      

 

(6) 

Here, c,  ,   and E are wave speed, linear thermal expansion coefficient, Poisson’s ratio, and Young’s 

modulus respectively. T is the material temperature. As in (Kadioglu et al., 2009), we note that 

while linear elasticity (linear mechanics) model may accurately solve for small material 

displacements, it may not be adequate to model large displacements. We would need nonlinear 

mechanics – hydrodynamics equations – to solve for large material displacements. Therefore, our 

study is limited to very small reactivity insertions only.  

Finally, we use the following adiabatic heat-up model for the evolution of temperature field: 

   
  

  
      . (7) 

Here,    is the specific heat and   is the average heat produced per fission. 

Note the lack of heat removal mechanism in Eq. 7. This will have its bearing on the model. We will 

see that the reactor will expand and reach a new (expanded) equilibrium state without returning to 

its original state because of this. More will be said about multiphysics modeling of the slab 

geometry FBR in later sections of this thesis.  

We will, now, take a quick detour and look at the work that has already been done in transport 

acceleration, multiphysiscs modeling involving neutron transport, and FBR modeling. 
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1.2 Literature Review 

In this section we will discuss the work done on acceleration of source iteration. We will also 

discuss work done in multiphysics modeling with transport. Finally, we will discuss the work that 

has been done in FBR modeling. 

(Prinja et al., 2010) derives the general transport equation and then simplifies it to one group, slab 

geometry equation with isotropic scattering. We discuss the discrete ordinates method and its 

acceleration for this slab geometry transport model only since this thesis deals with slab geometry 

model. Eq. 2 represents the transient, one group transport equation in slab geometry.  

We have three independent variables – temporal position, spatial position, and angular cosine. We 

discretize the equation in space using the centered finite difference scheme, also known as the 

diamond difference. We use the discrete ordinates (SN) method to discretize angle, and backward 

difference methods - first order backward difference (BDF1) and second order backward difference 

(BDF2) to discretize time. The time dependent transport equation used in this study takes the 

following form with discrete ordinated angular discretization:  
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  (8) 

Note that the above equation is not directly invertible and an iterative method must be employed to 

solve it. The simplest of these methods is the Richardson iteration method where we guess an initial 

angular flux profile and then iterate over the source until convergence to obtain the flux profile. 

This method is also called source iteration. This standard method has been described at length in 

(Bell et al., 1979). Source iteration has a physical significance as each  iteration accounts for one 

scatter plus fission. Thus in a medium with high scatter and fission, we expect higher number of 

iterations and therefore, slow convergence.  
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There have been several studies in which different methods have been employed to accelerate 

source iteration. Some of these methods include linear techniques like diffusion synthetic 

acceleration (DSA), transport synthetic acceleration (TSA), KP synthetic acceleration, Lewis and 

Miller methods (LM), and multigrid methods, and nonlinear acceleration techniques like quasi-

diffusion (QD), nonlinear diffusion acceleration (NDA) and weighted alpha methods (WA). Some 

other methods include rebalance methods, boundary projection acceleration (BPA), asymptotic 

source extrapolation (ASE), Chebychev acceleration, and Conjugate Gradient acceleration methods 

as discussed in by Adams and Larsen in (Adams et al., 2002).   

The source iteration method is iterative; therefore, the convergence depends on suppression of 

error modes. While source iteration effectively suppresses error modes with strong angular and 

spatial dependence, it doesn’t effectively suppress error modes with weak angular and spatial 

dependence. Acceleration techniques, essentially, attempt to suppress these slowly vanishing error 

modes.  Linear acceleration methods do that using additive correction term, while nonlinear 

methods do that using multiplicative term (Adams et al., 2002). Each acceleration method starts 

with a transport sweep (one source iteration) of the higher order (HO) transport equation followed 

by calculation of the correction using the lower order (LO) equation. This LO equation differs with 

different acceleration techniques. DSA, for example, uses diffusion equation for calculation of the 

correction, while TSA uses the transport equation. There may be additional, supplemental steps 

that one may take in order to obtain highly accurate correction terms, as in the case of KP methods 

(Adams et al., 2002).  

Kopp presented the idea of synthetic acceleration in (Kopp, 1963).  Levedev presented his KP 

synthetic acceleration technique in (Lebedev, 1964) and (Lebedev, 1967). Marchuk and Lebedev 

discussed the KP methods, and its convergence at length in (Marchuk et al., 1986). Later, Gelbard 

and Hageman came up with their study that used diffusion and S2 as the lower order equations for 
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synthetic acceleration in (Gelbard, 1969). It was later discovered by Reed in (Reed, 1971) that 

Gelbard and Hageman’s synthetic acceleration technique diverged on coarse grids. Alcouffe 

presented his DSA method that fixed the divergence issue (Alcouffe, 1976) by introducing discrete 

consistency between the HO and LO equation discretization. Gol’din presented his idea of 

quasidiffusion in (Gol’din et al., 1964). Larsen and Anistratov described their WA methods in 

(Anistratov et al., 1995). Larsen presented his multigrid (2 grids) acceleration technique in (Larsen, 

1990). Multiple other multigrid techniques were presented in (Nowak et al., 1987), (Nowak et al., 

1988), (Barnett et al., 1989), etc. The notion of TSA was described by Ramone, Adams and Nowak in 

(Ramone et al., 1997) where transport sweep was used as the LO correction equation. LM first and 

second moment schemes were proposed by Lewis and Miller in (Lewis et al., 1976) where the 

correction is obtained using the P1 equation. A nonlinear version of first moment LM scheme was 

presented recently by Smith and Rhodes in (Smith et al., 2000). The review paper by Adams and 

Larsen (Adams et al., 2002) describes several prominent acceleration techniques and points to all of 

the above cited references along with several others. They also present how the synthetic methods 

may be viewed as preconditioned source iteration methods.  

Knoll, Park, and Smith applied the Jacobian-free Newton Krylov (JFNK) method to nonlinear 

acceleration of transport to slab geometry problems in (Knoll et al., 2011). They also present the 

effect of two grid approach on iteration convergence. In (Park et al., 2012), Park, Knoll, and 

Newman present a nonlinear acceleration method for the transport criticality problem. Both of 

these papers are used extensively in our multiphysics model as will be seen in the coming chapters.   

Multiple studies have looked into coupling neutron transport with other physics. We will look at 

some of the coupling techniques at length in Appendix D. Some of the papers on integration of 

radiation transport into multiphysics algorithms will be cited in this section.  Seker, Thomas and 

Downar present a multiphysics algorithm that integrates transport and fluid dynamics via coupling 
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MCNP5 and STAR-CD in (Seker et al., 2007). Their code coupling method uses Picard iteration to 

converge on flux. Procassini, Chand, Clouse, Ferencz, Grandy, Henshaw, Kramer, and Parsons 

present their report on OSIRIS code that incorporates coupling for stand-alone thermal-hydraulics 

and monte-carlo neutronics legacy codes in (Procassini, 2007). OSIRIS employs loose coupling to 

couple relevant physics. Lockwood presents a coupling algorithm where he couples conjugate heat 

transfer with neutronics in (Lockwood, 2007). He used loose coupling between even parity 

transport code, EVENT for neutronics and his independent implementation of Pressure-Corrected 

Implicit Continuous Eulerian (PCICE) algorithm. Park, Knoll, Gaston, and Martineau present a fully 

implicit multiphysics algorithm to solve coupled thermal-fluid and neutronics problems in (Park et 

al., 2010). They demonstrate the application of their algorithm to modeling pebble bed reactors. 

Tamang presents a coupling algorithm to couple transport with quasi diffusion LO equation and 

grey approximation with heat transfer in (Tamang, 2013). He uses Richardson iteration in order to 

solve for flux.  

FBRs have been studied extensively in the past. In 1969, several papers were presented at the 

National Topical Meeting on Fast Burst Reactors, Albuquerque. McTaggart presented on fast burst 

reactor kinetics where he reviewed methods of deriving reactivity feedback in terms of one point 

model with separable time and space dependence (McTaggart, 1969). Reuscher presented on 

thermomechanical analysis of fast burst reactors where the thermomechanical aspects of the 

reactor were discussed without coupling with neutronics in (Reuscher, 1969). Several papers were 

again presented on pulse reactors at the Topical Meeting on Physics, Safety, and Applications of 

Pulse Reactors in 1994. Hetrick, Kimpland, and Kornreich presented a model coupling point 

kinetics, equation of state for liquid containing radiolytic gas bubbles and equations for fluid 

acceleration to computationally model homogeneous water solution pulse reactors in (Hetrick et 

al., 1994). Pasternoster, Kimpland, Jaegers, and McGhee presented a fully coupled neutronics (point 

kinetics)-hydrodynamic response of fast burst reactors under disruptive accident conditions in 
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(Paternoster, 1994). Wilson, Biegalski, and Coats coupled Nordheim-fuchs kinetics equations and 

thermoelasticity equations to study the behavior of Godiva like nuclear assemblies in (Wilson et al., 

2007). Green coupled multigroup diffusion equation with heat transfer and thermoelasticity models 

to simulate reactor pulses in fast burst and externally drive nuclear assemblies in (Green, 2008). 

Kadioglu, Knoll, and de Oliveira presented an implicit-explicit algorithm to couple diffusion, heat 

transfer, and material energy equations in order to model fast burst reactors in (Kadioglu et al., 

2009). This thesis is a natural extension of this same paper by Kadioglu et al. 
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Chapter 2: Multiphysics Coupling 

In this chapter, we introduce the basic concept of multiphysics and multiphysics coupling in 

numerical modeling. In the following subsections, we will look at what multiphysics is and different 

classes of multiphysics systems. We will also look at numerical techniques that can be used to solve 

such systems. Towards the end of this chapter, we will demonstrate how we specifically couple the 

physics related to our FBR problem and present the solution algorithm that will be at the core all 

further study in this thesis.  

2.1 Introduction to Multiphysics 

Most systems are made of interactive subsystems. This interaction of the subsystem often dictates 

the overall behavior of the system. Therefore, in order to accurately model the overall behavior of 

systems, we must accurately model the interaction between relevant subsystems along with the 

evolution of these subsystems themselves. In numerical modeling, it is this collective modeling of 

individual subsystems and their interactions that is termed as multiphysics modeling.  

According to (Keyes et al., 2012), there are multiple ways to classify multiphysics systems. One way 

to classify them is by region, i.e. whether the coupling occurs in bulk region (bulk coupled) or just at 

interfaces (interface coupled). Examples of bulk coupled multiphysics systems include radiation-

hydrodynamics, magneto-hydrodynamics, reactive transport, temperature feedback in nuclear 

reactors etc. The FBR system under study in this thesis falls under this class of multiphysics 

problems. Examples of interface-coupled multiphysics problems include ocean-atmosphere 

dynamics, and fluid-structure interactions among others. Another class of multiphysics problems is 

that of problems that are inherently multiscale, where the same phenomena are described by 

multiple formulations with a specific transition region or boundary. An example of such multiscale 

phenomena is that of crack propagation in solids where atomistic and continuum models are both 

hold in respective regimes. Yet another class of multiphysics problems is that of multi-rate or multi-
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resolution problems. Other classes of multiphysics problems include systems of partial differential 

equations that include equations of different types and the ones with different discretization for the 

same physical model.  

 

Figure 1: Multiphysics Classification 

Each class of multiphysics problems, whether multiscale, multirate, multilevel, or multimodel, 

include partitioning of the overall system into subparts or subsystems that evolve through a 

sequence of updates of dependent variables (Keyes et al., 2012). More details on each class of the 

multiphysics problems can be found in (Keyes et al. 2012). The evolution of these problems, 

however, depends heavily on how the subsystems interact. That is discussed in the next subsection 

on multiphysics coupling.  

2.2 Introduction to Coupling 

Coupling describes how the subsystems of the multiphysics systems interact. The coupling can be 

classified into one-way coupled and two-way coupled problems depending on how subsystems 
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depend on each other. A one-way coupled system typically consists of a system of equations with 

only forward or backward dependence. In other words, the system of equations is linearly coupled 

and can be solved in a sequential manner. Two-way coupled systems consist of systems of 

equations with both forward and backward dependence. These are non-linearly coupled systems 

and require nonlinear iteration for their solution. Nonlinearly coupled systems may further be 

classified into different classes depending on the solution strategy. The coupling may be tight or 

loose. Loosely coupled systems typically arise out or a Gauss Seidel type or an operator split type 

solution strategy. Picard iteration is predominantly used here. Tight coupling results from Newton 

type solve (Keyes et al., 2012).  

The following figure summarizes different classes of multiphysics coupling: 

 

Figure 2: Multiphysics Coupling 

As in (Keyes et al., 2012), we will now look at the three major multiphysics coupling methods. 

Consider a generic coupled problem with two residual functions: 

Coupling 

Linear (one-way 
coupled) 

Iterative 
Methods 

Direct Methods 

Nonlinear (two-
way coupled) 

Loose Coupling 
(Picard) 

Opertor splitting 

Jacobi/Gauss 
Seidel 

Tight Coupling 
(Newton) 

IMEX 

Fully Implicit 
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(9) 

(10) 

 

In order to model the coupled system of Eq. (9) and Eq. (10), we may typically employ three 

different strategies:  

Gauss Seidel Method: This is the most widely used multiphysics coupling strategy. It preserves the 

integrity of each subsystem where it solves respective subsystems separately, sequentially, and 

then iterates until desired convergence is observed. The following algorithm describes this type of 

coupling. 

Gauss Seidel Coupling (Keyes et al., 2012): 

1) Supply initial fields,       and      .  

2) Start a while loop until convergence with iteration index g. 

3) Compute   in              . 

4) Set     . 

5) Compute   in      
       . 

6) Set     . 

7) Loop back 

8) Loop over to the next time step if the process is transient. 

These types of algorithms result in loose coupling.  

Operator Splitting: Time evolution problems often utilize operator splitting methods in time. The 

following algorithm describes how a generic operator splitting method works. 

Operator Split Coupling (Keyes et al., 2012): 
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1) Supply initial fields,       and      . 

2) Start time loop with iteration index, t. 

3) March in time with                to compute   . 

4) March in time with             to compute    . 

5) Loop back to the next time step. 

Each individual time march in the above algorithm may be implicit or explicit. We may or may not 

have within time-march iterations known as subcycling to obtain better quality solutions. We may 

also stagger the solution in time. The above algorithm results in first order time splitting errors 

which renders the solution first order accurate inspite of using higher order discretization schemes. 

Higher order operator schemes like Strang splitting and temporal Richardson extrapolation must 

be used to obtain higher order solution accuracy for the coupled system while using operator split 

coupling technique (Keyes et al., 2012). This method of coupling also results in loose coupling. 

Newton Method: As per (Keyes et al., 2012), this method takes into account all the subsystems of 

the multiphysics model and formulates a single residual function. In other words,  

        [
       
       

] = 0. 
(11) 

Let        . The Jacobian of the equation system is given by  

   [

   

  

   

  
   

  

   

  

] 

 

(12) 

The following algorithm is used for Newton solve of the multiphysics system. 

Newton’s Method (Keyes et al., 2012): 

1) Supply initial field   . 

2) Start a while loop for convergence with iteration index, k. 
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3) Compute correction   , using  (    )            . 

4) Update           . 

5) Loop back. 

6) Loop back to the next time step for transient problems. 

Newton’s method results in tight coupling. The Newton system in step 3 of the above algorithm can 

be solved by multiple different methods (Kelley, 2003). We can employ direct methods or iterative 

methods to solve that system. Sometimes, however, calculating the exact Jacobian becomes quite 

tedious in which case, Jacobian Free Newton-Krylov (JFNK) method becomes very useful (Knoll et 

al., 2002).  

Now that we’ve seen the three basic coupling schemes, we move on to the next subsection where 

we will describe the coupling scheme to be used for modeling the FBR problem. We will also discuss 

Newton’s method in more detail. 

2.3 FBR Coupling Scheme 

The coupled FBR system can be solved iteratively using Newton’s method (Kelley, 2003). Newton’s 

method iteratively finds the solution U that satisfies the relevant nonlinear residual functions,  

        . (13) 

 

Here, F is the nonlinear residual function. In our FBR system,              , and           . 

In order to solve Eq. 13, Newton’s method utilizes Taylor series expansion,  

              
  

  
   

. (14) 

Rearranging the above equation yields,  
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where,  

     
  

  
   

  

(15) 

 

(16) 

 

is the Jacobian matrix. Specifically, in our FBR system, the Newton system can be represented as 

following: 

(
         

         

         

) [
  
  
  

]    [
  

  

  

]. 
(17) 

  

Moreover, the residual functions can be represented as follows: 

    
 

  

   

     
   

      
      

(    )

  

  
 , 

 

   (18) 
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          , 

 

   (19) 

   =    
  

  
      . 

 

   (20) 

We see that due to no direct dependence of the displacement on scalar flux and scalar flux on 

temperature, the Newton system can be reduced to the following: 

(
       

       
         

) [
  
  
  

]    [
  

  

  

]. 
  (21) 

 



 
 

16 
 

Thus far, we have not assumed any specific temporal discretization. In many cases, the implicit time 

discretization can be advantageous because implicit methods allow one to choose the time step size 

from an accuracy perspective, and not stability perspective. In the FBR system, the dynamical time 

scale of the problem is closely related to the characteristic wave speed of the material displacement 

(linear mechanics equation). Therefore, the implicit-explicit (IMEX) scheme developed by Kadioglu 

et al. (Kadioglu et al., 2009) which solves Eq. 5 explicitly and Eq. 1, and Eq. 7 implicitly can be 

utilized. Assuming explicit temporal discretization for linear mechanics, Eq. 17 is further reduced to 

the following lower block triangular matrix:  

(
     
       
         

) [
  
  
  

]    [
  

  

  

]. 
  (22) 

 

At the same time we also note that time step size required to solve neutronics equations explicitly 

would be impractically small due to the stiffness of the problem. Therefore, we solve the neutronics 

equation implicitly. This combination of implicit neutronics and material energy, and explicit linear 

mechanics yields the IMEX scheme (Kadioglu et al., 2009) to solve the coupled system.  

Notice that with the introduction of explicit linear mechanics (instead of implicit) this system 

becomes one way coupled. This can be verified from the fact that we get a block lower triangular 

Jacobian matrix. This allows us to solve the coupled system in a sequential way where we solve for 

the displacement first, then solve for flux, and then the temperature for each time. The 

implementation of the IMEX scheme makes the coupling linear, therefore, we do not iterate 

between physics. 

We utilize the following IMEX algorithm: 

1. Initialize variables and declare parameters. Use the eigenvalue problem to initialize flux, 

and amplify it so that the power in the system is approximately unity.  



 
 

17 
 

2. March the explicit linear mechanics equation in time to calculate the displacement profile. 

3. Calculate resultant density change and update density. 

4. Update cross sections resulting from change in density. 

5. March the implicit neutronics equation to calculate a new flux profile. 

6. March the implicit temperature equation to calculate a new temperature profile 

7. Loop back for next time step. 
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Chapter 3: Modeling the FBR System 

In this chapter, we solve the FBR problem using diffusion, and transport (SN) neutronics. First, we 

model the system with diffusion neutronics. Then we present the motivation for extension to 

transport neutronics and compare the results from diffusion and transport neutronics. 

3.1 Model System 

 Reactor System 

This study uses a slab reactor which is symmetric about its center. Thus we model a half slab of 

239Pu of length 0.07665 [m] with its center being on the left boundary. Figure 1 presents a pictorial 

representation of the reactor system. 

 

 

 

 

 

Figure 3: Model Reactor System 

The material parameters of the reactor system are as follows. Number density is 4.938×1028 

[atom/m3]. The neutron velocity is 1×107 [m/s]. The microscopic total cross section, microscopic 

absorption cross section, and microscopic fission cross section for the system are 6.8×10-28 [m2], 

2.11×10-28 [m2], and 1.85×10-28 [m2] respectively. The specific heat capacity of the system is 130 

[J/kgK]. The atomic mass is 399.13×10-27 [kg/atom], while the mass density is 19.709×103 [kg/m3]. 

The Poisson ratio, Young’s modulus, and linear thermal expansion coefficient are 0.15, 1×1011 [Pa], 

and 53×10-6 [1/K] respectively.  
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Discretization: The grid used for this problem is as follows: 

 

|_____|_____|_____|_____|_____|_____| 

 

Figure 4: Grid Indexing 

Here,   goes from 1 to I, where I is the number of nodes.  

Throughout this study, we use subscript   for the nodal index and   
 

 
 for cell centered/averaged 

values.  

3.2 Modeling with Diffusion Neutronics: 

Linear Mechanics Equation: The linear elastic wave equation, Eq. 5, is discretized using second 

order, explicit centered time, centered space scheme. The discrete form (Singh, 2014) of the linear 

elastic wave equation is: 
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(23) 

 

where, n is the time step index. This second-order wave equation requires that we impose a set two 

initial conditions and two boundary conditions. There is a fixed surface condition on the left 

boundary, i.e. u(0, t)  = 0, and a free surface condition on the right boundary, i.e. 
  

  
       . We use 

a Neumann boundary condition with  
  

  
      , and a Dirichlet boundary condition with u(x, 0) = 

0.  
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Neutron Diffusion Equation: The transient diffusion equation, Eq. 3, is discretized using the finite 

volume method in space and implicit backward difference method in time. The discrete form of the 

transient neutron diffusion equation is 
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(24) 

There is a reflecting boundary condition on the left, i.e. 
  

  
        and a vacuum boundary 

condition on the right, i.e.           , where         is the incoming partial current at 

position L. To initialize neutronics, we run the eigenvalue problem. Then, we amplify the eigenflux 

such that the system power is approximately unity. This amplified flux is used as the initial flux.  

Adiabatic heat-up: The temperature equation, Eq. 7, is discretized in time using the implicit 

backward difference formulation. The discretized form of the temperature equation is as follows: 
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(25) 

Since there is no spatial derivative, boundary conditions are not required. To initialize the 

temperature, we set it to a uniform temperature field of 290K. 

Simulation 

We insert three different reactivities into a critical FBR system to observe the material response. 

This reactivity insertion leads to temperature increase due to increased fission. Subsequently, 

mechanical feedback reduces the density and macroscopic cross sections which leads the reactor to 

shut down. Due to lack of heat loss mechanism in our model, the system stays in an expanded 
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equilibrium state. Figures 5a, 5b, and 5c demonstrate system’s material response to the three 

reactivity insertions. 

 

Figure 5a: System’s material response – flux peaks 

 

 

 

Figure 5b: System’s material response – displacements 
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Figure 5c: System’s density response 

 

Note that a low enough reactivity insertion follows exactly what is expected – the system expands 

and stays in that expanded equilibrium state. If, however, the reactivity insertion is high enough, we 

observe the ringing effect – periodic oscillation of displacements. This vibrational effect is 

attributed to the fact that, for higher reactivity insertion, the power increases too fast for the 

material to respond in time. Please refer to (Kadioglu et al., 2009) for numerical analysis where it is 

claimed that of the ratio squared of linear mechanics time scale and neutronics time scale is too 

small, time derivative on the non-dimensional wave equation becomes insignificant. Thus that 

equation stops supporting wave structure in the solution of material response. In all other cases 

where the time derivative is significant, wave structure is supported and vibrations are observed.  

The goal of this study is to extend the IMEX algorithm to incorporate transport effects. In the 

following subsections, we will demonstrate why transport neutronics is desired and discuss the 

difference between system’s material response to diffusion and transport neutronics. 
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3.3 Extension to Transport Neutronics 

Why Extend to Transport Neutronics 

To demonstrate the importance of transport neutronics, we present the difference between the flux 

from diffusion and transport eigenvalue calculations for the present FBR system. The system is 

small so we see noticeable transport effects on the flux (Figure 6) and flux gradient. Since the 

temperature is directly proportional to the fission rate and the forcing term on the elastic wave 

equation is proportional to the temperature gradient, we expect the overall solution of the coupled 

system with transport neutronics to differ from that with diffusion neutronics.  

 

 Figure 6: Eigenflux vs. position – Diffusion & Transport (S12) 

This difference in the two neutronics models motivates us to extend the IMEX algorithm presented 
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Discretization 

The transient transport equation, Eq. 2, is discretized in space using diamond difference, and in 

angle using the SN method. We use the one group approximation for treatment of energy, and we 

assume isotropic scattering. We use Backward Euler (BDF-1) implicit time stepping. The following 

equation represents the time discrete form of the transport equation: 
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(26) 

  

Here,   is the angular cosine index,   is the iteration index, and     is the mth angular cosine.  

We have the same discrete forms of the wave equation and temperature equation as given by Eq. 23 

and Eq. 25 respectively.  

Coupling Scheme 

In order to incorporate transport neutronics in our FBR model, we simply replace the diffusion 

equation by the transport equation. As a result, we have the following Newton system: 

(
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(27) 

where, the residual function,   , is as follows: 
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          . (28) 

Note that the system of Eq. 27 is still one-way coupled in physics, so we can solve it in a sequential 

way. 
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Simulation 

Again, we insert different reactivities and observe the material response. Here, we insert two 

different reactivities with keff of 1.00017 and 1.000095 to observe the system response. Just like 

with diffusion, we expect the system to go to a steady expanded state with adequately low reactivity 

insertion, and ring with high enough reactivity insertion.   

 

Figure 7: Surface cell displacement with transport neutronics for varying reactivity insertion. 

  

From Figure 7, we observe that different reactivity insertions lead to different equilibrium states. 

The system expands and stays in that expanded state for low reactivity insertion due to lack of heat 

removal mechanism in our model. At the same time, with high enough reactivity insertion, we 

observe the ringing effect. This phenomenon may again be attributed to the difference in dynamical 
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In conclusion, we observe similar material behavior with transport as we observed with diffusion. 

However, note the difference in keff used for transport and diffusion. This is a major discrepancy. In 

the next subsection, we will present a detailed comparison between diffusion and transport models 

with respect to FBR transient simulations.  

Comparison of Material Response – Diffusion vs. Transport Neutronics 

We observed, earlier in this section, that the eigenflux resulting from diffusion and transport 

calculations for this system had different shapes. The effects of this difference in flux, and flux 

gradient will be seen in this subsection. First, we present how the material response of low 

reactivity insertion to diffusion and transport neutronics differ.  

 

Figure 8: Surface cell displacement evolution with time – Diffusion vs. Transport (S12) 
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From Figure 8, we observe that for a small reactivity insertion, with keff of 1.00017, the system rings 

with transport neutronics but the system goes to an expanded non vibrational state with diffusion 

neutronics. This results from the difference in the dynamical time scales that diffusion and 

transport neutronics exhibit. We note that flux evolution of the system with diffusion neutronics is 

slow enough for the system to settle into a new equilibrium state after undergoing material 

expansion. That, however, is not the case with transport neutronics where the material response 

doesn’t keep up with the flux evolution in time. Therefore, we observe material ringing with 

transport neutronics for this particular reactivity insertion. 

Then we do the same kind of analysis for a slightly higher keff of 1.00052. We look at the difference 

in the material response to different neutronics models.  

 

Figure 9: Flux peaks with different neutronics approximations 
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Figure 10a: Surface cell displacements with different neutronics approximations 

 

Figure 10b: Surface cell density with different neutronics approximations 
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We see different amplitudes and phases in surface oscillations with different neutronics models. To 

understand this we go back to the comparison of eigenflux in Figure 6. We see how different 

neutronics models produce different flux profiles, and therefore different flux gradients. The 

temperature depends directly on the flux, and the temperature gradient forms the forcing term for 

the wave equation. Thus different flux profiles result in different forcing terms on the wave 

equation which cause the material response to be different with different neutronics models.  

In particular, note the difference between the material response to diffusion and S2 transport. While 

we expect diffusion to be equivalent to S2 in steady state, they differ in transient settings. We 

observe that here. The reason for this difference between results from diffusion, and S2 neutronics 

is that the diffusion equation is parabolic, while the S2 equation is hyperbolic. The two have 

different properties which translate into different system behavior.  

Other than that, we see that different angular resolution on transport results in different material 

behavior also (Figures 9, 10a, and 10b). This may again be traced back to different forcing term on 

the wave equation. We must note that once optimal angular resolution is reached, improvement in 

angular resolution has minimal effect on the material response of the system, as seen in the case of 

Figures 9 and 10a. That is again expected since converged flux profile that results from optimal 

angular resolution does not change much further with increasing angular resolution which means 

that the forcing terms do not change much either. This results in converging material response with 

increasing angular resolution. We observe that as we go from S2 to S6 and finally to S12.  

Another reason one may observe this difference between material responses from different 

neutronics models is that the time scales on each model may be different. Figure 9 suggests that the 

flux pulse build up times are significantly different between for the different neutronics models. 

This means that the neutron multiplication time scale is longer for diffusion model as compared to 
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the transport model. This is expected since the diffusion model exhibits more neutron leakage and 

higher scattering.   

Now, we note that source iteration is not necessarily the best way to solve the transport equation. 

We also note the benefit in isolating the angular flux from the coupled system, especially while we 

are dealing with a more complicated 3D system or a fully coupled nonlinear system, while retaining 

the transport effects. This can be done by introducing the moment based acceleration – scale 

bridging HOLO concept – into the neutronics model. We will discuss this concept in the next section. 
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Chapter 4: Extension to Moment Based Acceleration 

In this section, we extend the IMEX scheme to incorporate moment-based acceleration (Smith et al., 

2002), (Knoll et al., 2011), (Park et al., 2012) for neutronics into the coupled system. One of its main 

advantages, as the name suggests, is that it accelerates slowly converging physics like fission 

and/or scattering source. This reduces the number of iterations required per time-step to get the 

new scalar flux. This fact is widely known. The other advantage is that it allows us to isolate the 

angular flux from the coupled system by introducing a discretely consistent LO system which 

resembles the diffusion equation. This moment based acceleration concept is a scale bridging 

concept because it essentially bridges transport and diffusion equations with distinct 

corresponding length scales using the drift term in the LO equation. 

4.1 Standard SN vs. Nonlinear Diffusion Accelerated SN (Moment-Based Acceleration) 

Here, we show consistency of the accelerated transport solution to the eigenvalue problem for the 

present fast burst system. The problem parameters have been stated in section 4.1. Figure 11 

shows a comparison between the standard SN solution and the accelerated SN solution. We observe 

that the nonlinear diffusion accelerated SN follows the standard SN solution quite closely. The 

relative error norm was found to be 1.7043×10-9. 

The total number of transport sweeps required with standard SN was 156, while the total number 

required with HOLO (NDA SN) iteration was 19. Clearly, if we were to solve a transient coupled 

problem, which could involve several hundred thousand time-steps, then using accelerated SN 

instead of standard SN with source iteration would be a good idea. Therefore this is one reason why 

we proceed to extend the present IMEX algorithm to incorporate moment-based acceleration 

concept. The other reason will be explained in the next subsection.  
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Figure 11: Eigenflux comparison for the fast burst reactor problem 

 

4.2 Moment-Based Acceleration – Concept, Equations and Discretization 

The transport equation can have a large dimensions (up to 7D) so we want to isolate the transport 
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The basic idea behind moment based acceleration technique is the reduction of complicated higher 

order (HO) equation, by taking a moment, into a lower order (LO) equation with fewer degrees of 
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equation has lower dimensions. Consider a tightly coupled nonlinear problem where iteration 

between physics is necessary. It is advantageous to minimize the dimensions for such nonlinear 

problems. This is where the moment based acceleration concept becomes very useful since it allows 

us to substitute the large dimensional HO system by a lower dimensional LO system while 

preserving essential physics represented by the HO system. In the case of the FBR problem, we 

want to isolate the transport solver from the coupled system while preserving transport effects. 

This can be done by introduction of moment based acceleration into the transport solver.  

Now, we want to apply moment-based acceleration technique to the transport solver. Therefore the 

transport equation, Eq. 2, becomes our HO system. The next step is to integrate out the angular 

dependency. We take the zeroth angular moment of the transport equation to obtain Eq. 1, which 

forms the LO system.  Now, Eq. 1 comes with a new variable – current J for which we provide the 

standard diffusion plus drift closure. Therefore, the equation system can be written as, 

Higher Order (HO) system: 
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Lower Order (LO) system: 
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    ,                  ∫     
 

  
 

 
(32) 

To make sure our HO, and LO systems are consistent, and for acceleration, we make the drift 

coefficient,  ̂, a function of angular flux from the HO system (Knoll et al., 2011). This makes the 

system nonlinear. Thus, solving it with Picard iteration, first, a transport sweep is carried out for 

calculation of HO angular and HO scalar flux. Then, with this set of new angular fluxes, new drift 

coefficients are calculated which, in turn, are used to solve the LO system. We iterate until the HO 

and the LO scalar fluxes converged to the given tolerance.  

For clarity, we provide the discretized forms of the relevant equations in order in which they are 

solved to achieve moment based acceleration. We start with a transport sweep. We discretize the 

HO system using diamond difference in space and discrete ordinates in angle. We use BDF-1, and 

BDF-2 schemes for time discretization. We use BDF-1 time stepping for testing the accuracy of 

HOLO algorithm since we test it against standard SN transport solution with BDF-1 time stepping. In 

order to investigate the order of accuracy of the algorithm, we use BDF-2 time stepping. The 

discrete forms of the HO equation with BDF-1 and BDF-2 time discretization are respectively, 
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Here, the HO transport sweep solves for        with given scattering and fission source,        . 

Then, we calculate the drift coefficients at cell faces using the following discrete closure equation: 
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After calculating the drift coefficients, we solve the LO system. We discretize the LO system using 

finite difference method for discrete consistency with the HO system. Again, we use implicit BDF-1 

and BDF-2 for time discretization. We calculate the new LO scalar fluxes respectively using the 

following BDF-1 and BDF-2 discrete equations: 
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Here, the superscript   indicates time step n   and HOLO iteration index  . We solve the LO 

equation to get       while treating fission and scattering implicitly.   

The most important attribute of the moment based acceleration concept, for the purpose of this 

work, is that HO and LO scalar fluxes are equivalent as that is built into the convergence criteria (i.e. 
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angular flux dependent transport (equivalent to purely HO system) solver for the diffusion equation 

like diffusion plus drift LO system without affecting the solution of the problem (as long as the 

transport problem is solved within the HOLO framework).   

4.3 Coupling Scheme 

Next, we incorporate the moment based acceleration method into our IMEX algorithm. We begin by 

replacing the transport equation, in Eq. 27, with the LO equation. We get the following Newton step: 
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 (40) 

 

The residual function      is given by, 
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  ̂                    . (41) 

Note that we still have a one way coupled system which may be solved sequentially. 

One may not necessarily see merit in replacing the angular flux for LO scalar flux in this particular 

problem because of the one way coupling – we could couple the HO transport equation directly for 

the multiphysics system (not isolating the angular variable) and the problem would still essentially 

stay the same as long as we did our neutronics using a moment based acceleration technique. But 

imagine a two way coupled problem, as stated before, where iteration between physics is necessary 

- that is where this kind of substitution of equations can be really useful. 

Another advantage of using the LO flux in the coupled system is the ease with which we can 

transition from diffusion to transport as the LO system resembles the diffusion equation. All we 
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need to do is add a consistency term to the existing diffusion solver (plus a transport sweep for 

calculation of the consistency term - outside the coupled system). 

4.4 Simulation 

In this section, we demonstrate how the introduction of moment based acceleration to the 

neutronics affects the material response of the coupled system. We consider a test problem with keff 

of 1.00052 and compare the material response, in time, of the coupled systems with standard SN – 

represented by Eq. 27 and HOLO SN – represented by Eq. 40. Material parameters, for this problem, 

have been presented in section 3. Figures 12a and 13a present a comparison between surface cell 

displacements and fluxes from the two neutronics models. Note that surface flux and displacement 

profiles from the two models follow each other quite well. The relative errors, between the L2 

norms, in the surface cell displacement, and surface cell flux were found to be 3.15×10-4, and 

7.01×10-4 respectively.  

We also present plots of the relative error in the L2 norm of the spatial displacement (Figure 12b) 

and neutron flux (Figure 13b) at every time-step in order to examine the differences between the 

two models. In Figure 12b, we note a spike in the relative error in L2 norm of displacement at time 

5.182×10-5 s where the value of the norm is practically 0 (of the order of 10-22). This spike is an 

artifact of round off errors. At all times, we see low relative error which is acceptable. We also note 

the periodic nature to the error once the system starts ringing. Similarly in figure 13b, with neutron 

flux, we note acceptable relative error in L2 norm values. We also note oscillations, and an 

increasing error trend as the flux magnitude diminishes to insignificant values.  
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Figure 12a: Surface displacements – HOLO (NDA) SN vs. Standard SN 

 

 

Figure 12b: Relative error in the L2 norm of the spatial displacement at each time step – HOLO (NDA) SN vs. 
Standard SN 
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Figure 13a: Surface fluxes – HOLO (NDA) SN vs. Standard SN 

 

 

Figure 13b: Relative error in the L2 norm of the neutron flux at each time step – HOLO (NDA) SN vs. Standard SN 
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The plots examined in this subsection, along with satisfactory error norm numbers, prove the 

applicability of the HOLO concept in true (although simplified) multiphysics setting. 

4.5 Convergence Study 

Now, we look at the convergence rate for scalar flux, material displacement in order to determine 

the quality of the coupled solution with HOLO transport neutronics, and IMEX coupling. To do that, 

we use implicit BDF-2 time integration scheme for neutronics, and the temperature equations. Then 

we run the transient coupled problem with five distinct time steps ranging from 1×10-7 to 6.25×10-9 

s, for 0.5 ms time. We choose the total number of time steps, accordingly, for each time step size. 

Table 1, along with figure 14 and figure 15, presents the data collected after running the five 

transient simulations for this convergence study.  

 

Time step 

(  ) 

Log(  ) Log(||flux(  ) – 

flux(     )||) 

Log(||u(  ) – u(     )||) 

5×10-8 -7.301029995663981 7.447863755282549 -9.641079015622641 

2.5×10-8 -7.602059991327963 6.847704077101912 -10.189050265316403 

1.25×10-8 -7.903089986991944 6.217734674605953 -11.088037041790605 

6.25×10-9 -8.204119982655925 5.669407487493253 -11.162963763319620 

Table 1: Convergence Data 
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Figure 14: Convergence plot for surface flux 

 

Figure 15: Temporal convergence plot for surface displacement 
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From table 1, figure 14, and figure 15, it is clear that we observe a convergence order of 1.98 for the 

neutron flux, and of 1.82 for the displacement. Thus we get near second order convergence. 
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Chapter 5: Summary and Future Work 

In this study, we have extended the IMEX algorithm (Kadioglu et al., 2011) for FBR modeling to 

incorporate transport effects. First, we demonstrated that the use of the diffusion model is 

inadequate for modeling a small FBR system. Because of the difference in flux profile and the 

difference in the PDE characteristics (hyperbolic transport equation vs. parabolic diffusion 

equation), we observe a significant difference in the transient behavior of the two neutronics 

models. 

In order to incorporate transport effects into the IMEX algorithm, we utilized the moment-based 

acceleration method (Smith et al., 2002), (Knoll et al., 2011). When the moment-based acceleration 

method is used in the context of “tightly coupled” multiphysics simulation, the discretely consistent 

LO system, based on scalar flux, can be used to couple seamlessly to other physics. On the other 

hand, the original HO transport equation can be separated from the coupled system. This isolation 

of the transport system helps to mitigate the difficulty of having a prohibitively large number of 

unknowns in the nonlinear system. In addition, we have demonstrated second order convergence 

in the coupled simulation with the combination of the moment-based acceleration concept and the 

IMEX algorithm.  

Several further studies are warranted. First, the combination of the simplified physical model and 

the IMEX algorithm used in this study has simplified physics coupling. More complex nonlinear 

systems should be considered in order to fully test the applicability and efficiency gain of the 

moment-based, scale-bridging concept. Furthermore, it is of interest to further minimize 

computational effort during transient calculations. For instance, a similar use of the moment-based 

acceleration method for thermal radiative transfer in (Park et al., 2013) has demonstrated an 

efficient predictor-corrector algorithm, which uses a single transport sweep per time-step. This 
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kind of more sophisticated time-stepping may be desired when we extend the study to larger 

multiphysics, multidimensional problems.  
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