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Abstract

The simulation of electrons, protons, and other charged particles can be an expen-

sive computation. On the one hand, the small mean free path of a charged particle

makes direct simulations very costly. On the other hand, the cross sections are very

singular making a deterministic calculation difficult to impossible. Nevertheless, the

accurate computation of high energy charged particle densities is an important task

for many engineering calculations.

In this thesis, a variety of methods for computing these densities and distributions

are assessed. Among these methods are the well-known Fokker-Planck and Fermi

approximations. These methods are known to be particularly bad for electrons.

It is shown in this thesis that they are in fact very poor for all charged particle

transport. Specifically, it will be seen that the Fokker-Planck method and the Fermi
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approximation that can be derived from it allow for higher order spatial and angular

modes to creep into the solutions for shallow and deep penetrations alike. On the

other hand, the true physics only requires a few modes at deeper penetrations. Also,

for shallow penetrations, most of the modes of the actual solution to the transport

equation are incorrectly approximated by the Fokker-Planck approximation.

It has been realized in recent years that the Fokker-Planck approximation is

simply a leading order term in an asymptotic approximation. This realization with

some clever manipulation of mathematical operators allows one to obtain higher

order approximations to the scattering operator. The Fokker-Planck operator is then

simply a specific case of this general framework. This general framework is explained

in great detail. The inability of these higher order approximations to capture the

true physics in some situations is assessed.

Finally, hybrid methods will be introduced with parallels made to the well known

Boltzmann Fokker-Planck approximation. It is seen that the higher order approx-

imations used in place of the Fokker-Planck approximation can make the method

more robust, more accurate, and more efficient. Also, parallels between the hybrid

methodology and naturally occuring physics that is associated with very heavy ions

incident on light targets will be seen. A general framework for approximating the

solutions to these types of equations by using a lab frame analysis of the relevant

physics will be introduced.
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Chapter 1

Introduction

There are many applications in physics and engineering that require an accurate

determination of charged particle densities in a medium. In medical applications, one

would like destroy a tumor by locally depositing a large quantity of energy. This can

be accomplished by aiming a collimated beam of high energy protons or heavier ions

at the tumor. Though this process is theoretically very sound and well understood,

specific treatment plans for patients and various predictive analyses require a model

for repetitive calculations of dose.

There is also great interest in accurately calculating the effectiveness of radiation

shielding designs for satellite electronics. Given the large cost of sending heavy

objects into space, it is of interest to NASA and other agencies to reduce the weight

of their payloads. However, the harsh environment in space demands a large amount

of shielding for many payloads. Meeting this demand while keeping weight to a

minimum thus becomes a primary goal for engineers with these organizations.

These are just a couple of the applications for charged particle transport calcu-

lations. Others include fission damage in reactor materials, semiconductor design,

and particle accelerator operation. We will see later that the physics of charged

1



Chapter 1. Introduction

particle interactions, governed by long range Coulomb interactions, makes a direct

solution of the transport equation for these problems too computationally demand-

ing. Even with computing resources becoming more advanced and widely available,

these problems are still too costly to run using standard Monte Carlo or deterministic

algorithms. Yet, even as we see the growing need for accurate and efficient electron

and ion transport codes, it is a surprise to find that many of the codes in use today

still use very old approximations with well know flaws.

It is the objective of this thesis to systematically examine many of the approxima-

tions used in high energy proton and ion transport. In many cases, the theory behind

these approximations predate mainstream computing languages. The goal will be to

identify under what conditions the old algorithms break down and why they break

down. Newer models developed only recently that have yet to be implemented in

large scale computing architectures will also be presented. The theory behind these

methods, and how the newer methods are connected to the older methods will be

discussed.

The second chapter will be an introduction to transport theory. Without trans-

port theory, the ideas presented in this thesis do not exist. It is the need to resolve

particle density in both physical space and velocity space that we arive at such a

challenging problem. In the third chapter, the physics of charged particles will be

discussed. We will see how the problem becomes very challenging, even by the stan-

dards of transport theory. Also, the physical intuition needed to understand the

results will be developed in this chapter.

The fourth chapter is brief discussion of the Fokker-Planck and Fermi approx-

imations. These approximations, though having known flaws, are important for

understanding the developments of later chapters. Also, these approximations ap-

pear in production level codes to this day, so it is worthwhile to understand the

point at which they fail. In the fifth and sixth chapters, the research that has been

2



Chapter 1. Introduction

this thesis is based on will be discussed. Numerical experiments will be given to

help us understand how good or how bad the moment preserving methods can be.

Drawing on the knowledge gained from previous chapters, a clear understanding of

the methods can be found.
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Chapter 2

An Introduction to Transport

Theory and Methods

Transport theory has been an important topic for describing many types of phenom-

ena. For nuclear engineers, the transport equation is a very accurate description of

the balance of neutrons within the phase space inside a reactor. Though a resolution

of the full phase space density of particles is rarely needed in applications, its reso-

lution is required to accurately obtain quantities that can be derived from it. In this

chapter, we will discuss some basic concepts that pertain to transport theory. We

will also given a brief introduction to the major numerical techniques used to solve

the transport equation.

2.1 The Transport Equation

As an introduction to the topics being discussed in this thesis, we will briefly dis-

cuss the Boltzmann transport equation, often just called the transport equation by

4



Chapter 2. An Introduction to Transport Theory and Methods

professionals in the field. The steady state equation can be written in general as

Ω · ∇ψ(r,Ω, E) + Σt(r, E)ψ(r,Ω, E) =∫ ∞

0

dE ′
∫

4π

dΩ′Σs(E
′ → E,Ω · Ω′)ψ(r, E ′,Ω′) + S(r,Ω, E) (2.1)

ψ(rb,Ω, E) = Γ(r,Ω, E), Ω · n < 0 (2.2)

The variable Ω represents a point on the unit sphere and is given by the unit vector

pointing in the direction of travel of the particle. It is often referred to as just the

angle of the particle. In addition, we have introduced the particle’s position vector

r and kinetic energy E. The dependent variable ψ(r,Ω, E) is known as the angular

flux. The transport equation represents a balance in phase space, where we may

have particles being redistributed in energy and angle based on the integral term.

The source S(r,Ω, E) often contains additional terms that depend on the angular

flux such as particle production due to nuclear absorption and decay.

The boundary condition is called a partial range boundary condition because it

only involves the portion of phase space that is pointing inward at the boundary

which is completely characterized by its outward normal vector n. The meaning

of the partial range boundary condition is that we cannot specify particles leaving

the system because that is part of the solution to the equation. For this reason,

the transport equation can only be used on domains without reentrant surfaces,

characterized by locally concave portions where particles can leave one surface and

enter in an adjacent surface.

Much of the particular physics of the transport equation is in the macroscopic

cross sections Σt and the double differential cross section Σs(E
′ → E,Ω · Ω′). It is

noted by the form of the double differential cross section that the only important

quantity for determining the angular redistribution of particles in the medium is the

angle between the incoming and outgoing direction vectors θ0 or equivalently the

cosine of this angle µ0. In the absence of absorption, the double differential cross

5



Chapter 2. An Introduction to Transport Theory and Methods

section and the total cross section are related by

Σt(E
′) = Σs(E

′) ≡
∫ ∞

0

dE

∫ 1

−1

dµ0Σs(E
′ → E, µ0) (2.3)

When absorption is present, Σt(E
′) = Σs(E

′) + Σa(E ′). The cross sections are

dependent both on the medium and the incident particles. Even in the absence of

complicated flux dependent source, we can still get widely varying behavior of the

system depending on the particular form that the cross sections take.

In practice, only the energy loss, Q = E ′−E and the scattering cosine µ0 = Ω ·Ω′

needs to be specified to compute the redistribution of particles. The azimuthal angle

φ is uniformly distributed during a scattering event. Furthermore, the two quantities,

µ0 and the final energy E are highly correlated in most models. This gives rise to

additional complications when studying the behavior of Eq.(2.1). Often times, the

scattering kernel is rewritten

Σs(E
′ → E, µ0) = Σs(E

′)p(E ′ → E, µ0) (2.4)

where the normalized probability distribution in energy and angle p(E ′ → E, µ0) is

introduced. It satisfies∫ ∞

0

dE

∫ 1

−1

dµ0p(E
′ → E, µ0) = 1, 0 < E ′ <∞ (2.5)

The distribution can be further expanded using the Legendre polynomials, Pl(x).

p(E ′ → E, µ0) =
L∑

l=0

2l + 1

4π
fl(E

′ → E)Pl(µ0) (2.6)

Since the integral is over solid angle Ω′, we must use the addition theorem for Leg-

endre polynomials[2] to obtain

p(E ′ → E, µ0) =
L∑

l=0

fl(E
′ → E)

l∑
m=−l

Y m
l (Ω)Y ∗ml (Ω′) (2.7)

where Y m
l (Ω) are the spherical harmonics with the normalization∫

4π

dΩY m
l (Ω)Y ∗m

′

l′ (Ω) = δll′δmm′ (2.8)
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Often the energy dependence is removed by introducing a multigroup transport

method. In this case, the fl(E
′ → E) becomes f g→g′

l where g represents an en-

ergy group. The result of transforming to a multigroup form is ultimately to identify

ψ(r,Ω, E) with ψg(r,Ω) and append all of the other parameters in Eq.(2.1) with a

g superscript to identify which group the equation represents. To avoid confusion,

these superscripts will be left off.

This expansion allows for various numerical methods that are deterministic in

nature to be applied in solving Eq.(2.1). The two most well known methods are the

SN method and the PN method. The SN method, or discrete ordinates method, uses

a highly accurate quadrature formula to approximate the integral term. To do this,

we must specify a discrete solution in angular space given by

ψ(r,Ω, E) =

 ψn(r) : Ω = Ωn

0 : Ω 6= Ωn

1 ≤ n ≤ N (2.9)

Substituting this into Eq.(2.1) gives the discrete ordinates equations

Ωn · ∇ψ(r)n + Σtψn(r) =

Σs

L∑
l=0

fl

l∑
m=−l

Y m
l (Ωn)

N∑
k=0

Ckψk(r)Y m
l (Ωk) (2.10)

The values of Ck are given by the quadrature set that has been optimized for the

problem. Typically, Gaussian quadrature is used.

The SN equations are a set of first order partial differential equations in space.

It can, in principle, be solved very accurately with well established finite element

methods. In reality, a very complicated method for solving the equations must be

concocted so that a flow of particles may be established in the system. Also, we see

that a sum over all ψn(r) comes in on the right hand side due to the integral term in

Eq.(2.1). To get the solution at a point, the solution at every other point is required

first. Thus, the solution to Eq.(2.10) involves an iteration over the angular variable,

7



Chapter 2. An Introduction to Transport Theory and Methods

known as source iteration, where a complicated solution to a PDE is required for

all n at every iteration. This iteration can be very time consuming when scattering

becomes dominant. In this case, acceleration schemes can also be used under the

assumption that the scattering follows a certain behavior. Finally, since the solution

is assumed to exist only on rays Ωn, the solution for small N exhibits artifacts known

as ray effects. These can only be mitigated by increasing the number of rays N .

The other prevailing deterministic solution to Eq.(2.1) is the PN method, also

known as the spherical harmonics method. In this method, we identify the moments

of the solution by

ψm
l (r, E) ≡

∫
4π

dΩY m
l (Ω)ψ(r,Ω, E) (2.11)

and of the source by

Sm
l (r, E) ≡

∫
4π

dΩY m
l (Ω)S(r,Ω, E). (2.12)

Then the PN equations can be written as

L∑
l=0

2l + 1

4π

l∑
m=−l

[∫
4π

dΩΩY ∗ml (Ω)Y m′

l′ (Ω)

]
· ∇ψm

l (r)

+(Σt − Σsfl)ψ
m
l (r) = Slm (2.13)

These equations appear rather tame except for the integral on the left side. The

integral gives rise to a sum over other moments due to a lack of orthogonality of

ΩY ∗ml (Ω) and Y m′

l′ (Ω). This expression is very complicated, so its one dimensional

analog is given instead. In this case, Ω = µ and Y m
l (Ω) = Pl(µ) and the relation is

written∫ 1

−1

dµµPl(µ)Pl′(µ) =
2(l + 1)

(2l + 1)(2l + 3)
δl′,l+1 +

2l

(2l − 1)(2l + 1)
δl′,l−1 (2.14)

From Eq.(2.14) and the form given by Eq.(2.13) we see that the PN equations couple

higher moments to lower moments. This leads to a lack of closure of the system
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for finite L in general and leads to a very complicated matrix equation to solve in

practice. The resulting system for dimensions higher than 1 were so formidable that

the PN method wasn’t even an option for solving the transport equation until the

advent of the modern computers. Other complications arise in the specification of

boundary conditions and in an apparent smearing of solutions that are discontinuous

in Ω due to the well known Gibbs phenomena. Therefore, the method still has caveats

that have not been addressed in full and there are comparatively fewer engineers using

this method than those using the SN method.

This has been a brief introduction to transport theory. For more information

on general transport theory considerations, the reader is referred to the extensive

literature on the subject. For the problem at hand, we will see that deterministic

methods pose additional complications to an already difficult problem. In particular,

extremely fine grids and very large Legendre expansions are needed to get an accurate

solution to Eq.(2.1) for high energy charged particles using the methods discussed

so far[3]. In most cases, charged particle transport has been done in a Monte Carlo

setting. We will discuss this topic more before delving into the specific problems in

Chapter 2.

2.2 Analog Monte Carlo Methods

The Monte Carlo method was extensively used during the Manhattan Project by

Fermi, von Neumann, Ulam, and others. It was named after a casino in Monaco

where Ulam’s uncle would borrow money to gamble[4]. The method, as it applies

to particle transport, is analogous in many ways to the activities in a casino in

that randomness decides individual outcomes, but long term average behavior is

deterministic.

A particle being transported through a medium is assumed to follow a Markov
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chain of events. That is, the particle has no memory of its past, and its state changes

at discrete instants corresponding to collisions with atoms of the medium. This

process can be imitated easily by sampling outcomes based on cumulative distribution

functions. Using this idea, it was realized early on that an exact solution to the

transport equation could be found, in principle, by following an infinite number of

particle trajectories in the medium. Rigorously, the Monte Carlo method can be

thought of a solution to the integral form of the transport equation[2].

The desired quantities, like local dose deposition or transmission coefficients, can

be found by scoring the appropriate events when they actually happen. Since an

infinite number of trajectories cannot be sampled, one can only get a solution to

within a certain, well defined, statistical error. In practice, one can get an answer

with a small statistical error within reasonable time constraints for many types of

problems. In a Monte Carlo process, a particle is sampled from a source distribution

which can be known a priori or developed over the course of the calculation. This

particle is moved through a path length that is sampled from a specific distribution.

At the end of the path length, the particle has a collision and its state is updated

based on other distributions. The distributions come directly from the physics.

For example, suppose we have a continuous distribution of possible outcomes x

of a particular event described by the probability distribution function f(x). Then,

we have by definition of a cumulative distribution function

F (x) =

∫ x

xmin

f(x′)dx′, (2.15)∫ xmax

xmin

f(x′)dx′ = F (xmax) = 1, (2.16)∫ xmin

xmin

f(x′)dx′ = F (xmin) = 0. (2.17)

From this, we can also show that F (x) is a bijection in the unit interval. With this

information, we know that we can find F−1(y) for any y ∈ [0, 1]. With the Monte
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Carlo method, a user compiles each of the cumulative distribution functions that

describes the physics of particle transport within the media that they are interested.

To sample an event, the user samples a uniform pseudorandom number ξ ∈ [0, 1] and

obtains the outcome x = F−1(ξ). The term pseudorandom is a technicality that has

no effect on the accuracy of the method. Pseudorandom numbers are essentially the

closest thing to a random number that one can get by using deterministic algorithms.

As a concrete example, consider the random determination of path length between

collisions. One would first obtain the number of particles N(s) not removed from

a system with macroscopic total cross section Σt in a path length of s using the

differential equation

dN

ds
= −ΣtN(s), N(0) = N0 (2.18)

The solution to this equation, N(s) = N0 exp(−Σts), is proportional to the proba-

bility of a particle streaming a distance s within the interval [s, s+ ds] before having

a collision. We write this as

P (s)ds = KN0 exp(−Σts), 0 < s <∞ (2.19)

The constant K is used to meet the normalization condition.∫ ∞

0

P (s)ds =
KN0

Σt

= 1 → K =
Σt

N0

(2.20)

The cumulative distribution function for path length x traveled between collisions

then becomes

P (x < s) = F (s) =

∫ s

0

P (s′)ds′ = 1− exp(−Σts). (2.21)

Note that this CDF has the properties given in Eq.(2.17). Setting F (x) = ξ with ξ

a uniform pseudorandom number between 0 and 1, we get

x = −λ ln(1− ξ) = −λ ln(ξ), (2.22)
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where we have defined the mean free path λ = 1/Σt, and we have noted that the

random variable 1− ξ is a uniform pseudorandom number between 0 and 1, just like

ξ.

The outcome of a collision can be found by using the probability distribution that

was identified in Eq.(2.4). For simplicity, we can further break down the distribution

as

p(Q, µ0) = p(E, µ0)g(E,Q|µ = µ0) (2.23)

where the distribution is now defined in terms of the energy transfer Q. This de-

composition explicitly gives the probability distribution in Q for a specific scattering

cosine µ0. Both distributions are normalized to unity and both depend on the par-

ticles kinetic energy E. The scattering cosine µ′ can be sampled using

ξ1 =

∫ µ′

−1

p(E, µ0)dµ0 (2.24)

and the energy loss Q′ from the collision can be sampled using

ξ2 =

∫ Q′

Qmin

g(E, µ′, Q)dQ (2.25)

for two uniform random numbers ξ1 and ξ2. It is always possible to get a unique

energy loss and scattering cosine from these relationships. However, when the re-

sulting equations do not have an analytical representation, special sampling methods

are required. A discussion of these methods are not pertinent here, but a good dis-

cussion is given by Kalos and Whitlock[5] and a thorough analysis of their efficiency

and accuracy for high energy charged particle transport applications is given by

Harding[6].

A three collision realization of some process is shown in Fig.(2.1). The collisions

happen in random intervals whose lengths are determined by the three different

random numbers ξ1,1, ξ2,1, and ξ3,1. The initial state of the particle is given by
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Figure 2.1: A possible realization of an analog Monte Carlo particle history.

(E0,Ω0), and it is evolved at each collision using new random numbers and the

independent distribution functions given by the physics of the scattering process.

For a comprehensive review of Monte Carlo methods, the reader is referred to

the literature. We will see in the next chapter that the methods discussed here are

not suitable for solving a charged particle transport problem. The reason is that the

number of collisions that are generated by this approach are high and the overall

result is very large computational run times. As a result of this difficulty, a number

of methods have been developed that are similar in spirit to the analog Monte Carlo

calculation, but which explicitly treat collision processes over macroscopic distances.
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2.3 The Condensed History Algorithm

One of the most notable approximation methods is the condensed history Monte

Carlo algorithm developed largely by Berger in 1963[7]. Different versions of this

algorithm can be found in almost any of the major charged particle codes in use

today[8, 9, 10]. The algorithm, of course, can take many different forms as it has

evolved over the past 45 years.

Many condensed history algorithms are type I, meaning there is no single event

sampling of particles. In these algorithms, the particle is moved through a fixed

step size based on its energy. Typically, this step size is chosen at the beginning

of the calculation to be the path length required to lose a certain fraction of the

particle’s energy. At the end of the step, a new energy is sampled from an excita-

tion/ionization distribution and a new particle direction is sampled from a multiple

scattering distribution.

The energy loss will typically have a continuous slowing down (CSD) component

and a straggling component. In electron codes, the Landau distribution[11] for energy

straggling is often used for the straggling component, and is sampled at the end

of the step. The cosine of the scattering angle may be sampled at several points

in an energy step to get an accurate representation of the spatial spreading. For

electrons, the Goudsmit-Saunderson[12, 13] or the Moliere[14] distributions are often

used for this purpose. With protons and heavier ions, the energy loss straggling is

typically sampled from the Vavilov[15] distribution while angular spreading from

elastic collisions is sampled from a Gaussian with parameters based on an analysis

done by Rossi[16]. These are the prescribed distributions used in MCNP5[8] and in

MCNPX[17] as well as other codes [9, 10]

In each of these cases, the multiple scattering theory is based on an analysis of

transport in infinite media. The streaming operator can be simplified by expressing
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it in terms of the pathlength variable s,

Ω · ∇ψ(r,Ω, E) → ∂ψ(s, E)

∂s
(2.26)

The distance traveled can be treated as a time variable for this purpose since a

collimated beam looks like an initial condition in this context. This can only be

valid when the particle is far from boundaries and material interfaces. When it is

valid, it has been shown that condensed history algorithms have an error that is

O(∆s) where ∆s is the step size [18]. The error is much like a discretization error

in that it results from approximating the particles average state over the step by its

state at some point on the step. Much like in a discretization scheme, this error can

be made to be O(∆s2) or higher by using more complex particle steps, but this would

not remove the error due to the nature of the multiple scattering distributions. That

is, we cannot remove the intrinsic error that occurs by approximating the spatial

component of the transport equation.

Figure 2.2 shows a typical condensed history step when the particles trajectory

is sampled over several substeps. In this case, the particle step is made up of six

substeps. In each substep, the particle loses a deterministic amount of energy based

on the stopping power and the step length. At the end of the step, a new particle

trajectory is sampled from a multiple scattering distribution based on a random

number ξi uniformly distributed in the unit interval, much the same as we saw in

the previous section. The particle then moves another step in its current direction

with a substep length that can vary with the particle’s energy. This continues until

the particle reaches the end of the full step. At this point, the particle has only lost

a deterministic amount of energy. The energy of the particle is then straggled by

sampling from the ionization/excitation distributions with another random number.

The particle state at the end of the full step can be written as
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Figure 2.2: A typical type I condensed history energy step with a set of six substeps
for sampling angular redistributions.

r̃s = r̃0 +
∑

i

Ω̃i∆si (2.27)

Es = E0 −∆E +Q(ξ) (2.28)

Here we see that the change in energy through the step ∆E is known in advance

and is fixed. The value of Q(ξ) is a random variable sampled from an appropriate

distribution. Other type I algorithms may not use a fixed energy loss to define the

step. In those cases, the value of ∆E is still calculated in advance based on the step

size and the stopping power continuously modeled over the step.

These algorithms are good for approximating the transport of a particle whose

state barely changes during a step. However, the type I algorithm breaks down com-

pletely when considering the infrequent catastrophic collisions that many charged
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particles experience. When these cannot be neglected, one uses a type II algorithm

where the distance to the next catastrophic collision is sampled, and the particle

is moved through fixed steps until reaching that distance. Alternatively, the catas-

trophic collisions can be built into the step as what happens in the MCNP code’s

logic [8].

In any case, we see that there are approximations made in the condensed history

method that cannot be repaired at run time. That is, we cannot simply adjust the

step size to be very small or apply a complicated variance reduction scheme to get

a solution that is converging to the true solution. The true solution still eludes the

user by virtue of the condensed history method itself. Furthermore, we will see later

that these multiple scattering distributions can actually break down completely for

cases where the material is very thin and there are several interfaces.

2.4 Moment Preserving Research Overview

The problem with the condensed history method can be identified with both a rigid

step structure giving rise to the O(∆s) error and an approximation of the distribu-

tions based on infinite medium transport calculations. The errors that occur due

to these approximations are most apparent near boundaries and interfaces. For this

reason, a new method for computing charged particle densities without the approx-

imations of the condensed history method has been needed for quite some time.

One would like instead of a step and sample scheme, to use an event based

algorithm where there is not a step structure built in. This would require a pseudo-

differential cross section that is derived in some way that is consistent with the true

physics but still leads to a computationally efficient treatment. In the next chapter,

we will describe the physics of charged particles, and slowly unravel what makes the

analog Monte Carlo simulation so slow and so difficult to approximate. What will
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emerge is a natural way of creating a pseudo-differential cross section based on the

physics, not the transport equation itself. Due to the procedures involved, some have

coined the term moment preserving methods to describe the general framework for

these approximations.

After exploring the moment preserving concept, we will discuss ways of folding

these methods with other well established methods such as condensed history. The

end product is a set of charged particle algorithms that are more accurate, and in

some cases, faster than the established methods. We will present numerical evidence

to back these statements.
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Chapter 3

Interactions of High Energy

Charged Particles

The interaction of charged particles is dominated by long range Coulomb forces.

Recall that the potential due to a point charge with Zt fundamental charge units e

can be written

V (r) =
1

4πε0

Zte

r
(3.1)

For the purpose of high energy charged particle transport, a nucleus can be treated

like a point charge. This relationship tells us that the potential energy lost or gained

by a particle moving through the field of the nucleus falls off very slowly with distance.

Without further analyzing the problem, we can already see that collisions between

nuclei will happen frequently as a particle need not even be close to the nucleus to

be deflected by it. Compare this reasoning with that of neutral particle interactions

where the field of the nucleus has no effect on the particle. It is clear that the number

of particle interactions will be far greater for the charged particles.

What is required for a transport calculation is not the potential due to the nucleus,

but the differential cross section or DCS. The DCS gives us all of the information that
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we need to compute the redistribution of particles in energy and direction. Figure
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Figure 3.1: Macroscopic DCS for elastic scattering off of water molecules for high
energy neutrons and protons.

3.1 is two views of the the elastic scattering DCS for high energy neutrons (typically

between 1-20 MeV for many applications) and for high energy protons (typically

100 - 1000 MeV) incident on water. For high energy neutrons on water, linearly

anisotropic scattering doesn’t set in until about 5.5 MeV according to a formula

given by Evans[19]. For this reason, the DCS for elastic scattering is nearly flat, and
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its magnitude resembles that of a hard sphere approximation given by

σn ≈ 4πR2
A = 4πR2

0A
2/3, R0 = 0.135× 10−12 cm (3.2)

The DCS for protons will be discussed in the next section. The figure on the right

shows the two cross sections plotted on a log-log scale for varying 1 − µ0 where

µ0 = cos θ is the cosine of the center of mass scattering angle. From the figures we

see that our suspicions are correct. The protons scatter much more frequently than

the neutrons, and the scattering angles are peaked near µ0 = 1 or θ = 0. For lower

energy protons, we will see that the DCS is even larger in magnitude and still as

forward peaked as in the figure.

The DCS for a given collision type can be found by analyzing the equations of

motion for the system. Classically, we can write the equations that describe the

kinematics for a general collision as

∆p = M1(V1 − v1) +M2(V2 − v2) = 0 (3.3)

∆E = M1(V
2
1 − v2

1) +M2(V
2
2 − v2

2) +Qr = 0 (3.4)

Here we have the classical momentum and energy balance equations. The parameter

Qr is the Q-value of the reaction. It can be set to 0 for elastic collisions. For inelastic

collisions where energy is not conserved, this number can be positive for endothermic

and negative for exothermic reactions. In what follows, we will discuss the DCS for

elastic and inelastic scattering of high energy particles due to interactions with the

nucleus and the atomic electrons respectively. These will be the only two types of

interactions that will be considered from here on. The other types of reactions that

are conceivable make up a negligible amount of the total scattering in many cases

and can be neglected.

Its not that the other types of interactions between charged particles are all

negligible. Inelastic scattering with the nucleus is very important for protons and
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heavier charged particles. However, these interactions are very complicated and

require sophisticated nuclear models. Also, these reactions result in the spallation

of the nucleus and a loss of identity of the incident particle. These collisions are an

example of the so called catastrophic collisions that we briefly mentioned in Chapter

1. For this particular brand of catastrophic reaction, we require special handling to

account for the byproducts and the final state of the system even with the analog

Monte Carlo method. Even when taking these collisions into account, we still must

model the elastic and inelastic collisions between the catastrophic collisions. Thus,

we will ignore the catastrophic component to the problem without loss of generality.

3.1 Elastic Scattering of Charged Particles off Atomic

Nuclei

For an incident particle with Zi units of fundamental charge, the potential energy

function becomes ZieV (r) where V (r) is given by Eq.(3.1). A collision occurs when

the incident particle is deflected by the field of the target particle. Using Lagrangian

mechanics[20], we find that the trajectories are hyperbolic with asymptotic deflection

related to the impact parameter by

b = |a| cot

(
θ

2

)
, a =

1

2

ZtZie
2

E
(3.5)

The DCS is given by the expected number of particles crossing the infinitesimal

surface area b db dφ where φ is the azimuthal angle of deflection. We can write the

DCS relation as

dσe = b db dφ = b
db

dθ
dθdφ =

a2

4 sin4(θ/2)
(3.6)

This analysis is completely classical in nature. However, a similar analysis done using

wave mechanics yields the same result, a fact that is said to be “accidental”[21]. The
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Rutherford DCS is better recognized by introducing the parameter µ0 = cos θ0 and

using the trigonometric identity sin4(θ) = (1− cos(2θ))2/4. The resulting form after

identifying σe ≡ dσe/dΩ becomes

σe(µ0) =
a2

(1− µ0)2
=

(
ZtZie

2

2E

)2
1

(1− µ0)2
(3.7)

This DCS corresponds to a bare point charge deflecting off of another bare point

charge. The result is a DCS that is singular at a scattering cosine of unity. This

suggests the very singular nature of the process itself since we would expect scattering

angles to be small and scattering events to be frequent. In reality, nuclear fields do

not behave like this because their field is gradually screened at long distances by the

atomic electrons.

Rossi notes that a lower bound on θ can be set if one accounts for the finite size

ra of the nucleus[16] given by

θ1 =
Z1/3αmec

p
, (3.8)

where α is the fine structure constant. This bound is found by analyzing the ratio of

the wavelength of the particle λ to the atomic radius ra and identifying the point at

which it becomes too small. Independent of this analysis, Goudsmit and Saunderson

found an approximate DCS by using a potential of the form V (r) = V0(r) exp(−r/ra)

where V0(r) is given by Eq.(3.1)[12, 13]. The resulting DCS is

σe(θ) =
a2

4(sin2(θ/2) + sin2(θ1/2))2
, (3.9)

and using the small angle approximation for the second term in the denominator,

one obtains the usual form taken by the screened Rutherford DCS.

σe(µ0) =

(
ZtZie

2

2E

)2
1

(1− µ0 + 2η)2
(3.10)

Here we have introduced the screening parameter η = θ2
1. More accurate formulas

for η can be found in certain cases. Notably, there is the formula due to Moliere[14]

23



Chapter 3. Interactions of High Energy Charged Particles

based on a partial wave analysis of the Klein-Gordon equation and a Thomas-Fermi

model of the nucleus.

η =

(
αZ1/3

(0.75π)2/3

)2
1

τ(τ + 2)

[
1.13 + 3.76

(
αZt

β

)2
]

(3.11)

The dimensionless parameter τ = E/mec
2. There is no reason to believe that this

is a more accurate value of η for particles other than electrons. In fact, it is known

not to be better for positrons. For this reason, and to keep consistent with Rossi’s

analysis which is important for comparisons with MCNPX, we will continue to use

η = θ2
1 unless specifically noted otherwise. Rossi also gave an upper bound on θ for

Rutherford scattering given by

θ2 = 280M
−1/3
t

mec

p
(3.12)

This parameter enters into his theory of multiple scattering, which will be discussed

further in the next chapter. It is often set to unity when it becomes greater than

unity.

All of the differential cross sections given in this section are for collisions in the

center of mass frame. In order to compute the scattering angle in the lab frame, we

must use a relationship from the kinematics. From a completely classical analysis of

elastic scattering, we get

tan(θL) =
sin(θ)

α + cos(θ)
, α = Mi/Mt (3.13)

Figure 3.2 is a graphical depiction of this relationship. We see immediately that the

lower bound on the scattering cosine in the lab frame when α > 1 is

µL,min =

√
α2 − 1

α
=

√
M2

i −M2
t

M2
i

(3.14)

Thus, if Mi >> Mt, then θL ≈ 0 for all center of mass scattering angles. Therefore,

we see that for protons and heavier particles scattering off electrons with α ≈ 1836,

the angular redistribution is negligible.
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Figure 3.2: Lab frame scattering cosine as a function of the center of mass frame
scattering cosine for various α = Mi/Mt.

The screened Rutherford cross section can been extended to relativistic energies

for particles heavier than electrons by replacing E with βpc. It has been demon-

strated that the screened Rutherford DCS is correct at energies above ≈ 1 MeV for

protons and heavier particles but deviates significantly below this energy[22]. For

this research, the energy ranges for which screened Rutherford scattering is correct

for these particles will be the only ones considered.

It is well known, however, that electrons scatter by a law that is very different

than the screened Rutherford law even at high energies. An approximate DCS given

by Mott[16] using Born’s approximation is

σe,M1 =
ZtZie

2r2
e

4

(
mec

βp

)2
1− β2 sin2(θ/2)

(sin4(θ/2))
(3.15)

This DCS still isn’t quite suitable for many problems. An exact solution to the Dirac

equation using a partial wave expansion yields an appropriate DCS for electrons

scattering off atomic nuclei for a larger range of energies and target nuclei. As this

25



Chapter 3. Interactions of High Energy Charged Particles

form is very complicated, the Mott DCS is usually written in terms of the screened

Rutherford DCS multiplied by a ratio of the two.

σe,M2(µ0, E) = σe,R(µ0, E)f(µ0, E) (3.16)

f(µ0, E) = 1 +
Zβπα√

2
cos γ(1− µ0 + 2η)1/2 + h(µ0) (3.17)

cos γ = RE

Γ
(

1
2
− i Zt

137β

)
Γ
(

1 + i Zt

137β

)
Γ
(

1
2

+ i Zt

137β

)
Γ
(

1− i Zt

137β

)
 (3.18)

The function h(µ0) is a tabulated function often approximated by a set of trigono-

metric interpolants. The ratio f(µ0, E) has been tabulated extensively. Figure 3.3

shows this ratio for a few energies for electrons impinging on both lead (bottom) and

carbon (top) based on data from Spencer and Doggett[1].

From the figure we see that the largest discrepancy between the Mott and Ruther-

ford DCS is in large angles and for large nuclei. The Mott DCS is still very peaked

near µ = 1 suggesting that there is still no relief from the singular behavior of the

DCS at small angles. The screened Rutherford cross section will be enough for test-

ing the methods of approximation that will be given in the next few chapters. This

DCS embodies all of the difficulties of charged particle transport as many theories

only perturb the Rutherford cross section for low energies or for certain scattering

ranges. On the other hand, it is simple to analyze making it an ideal test bed for

approximation methods.
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Figure 3.3: Ratio of the Mott DCS σM to the Rutherford DCS σR for carbon and
lead [1].

3.2 Inelastic Scattering of Charged Particles off

Atomic Electrons

An incident particle will frequently interact with atomic electrons as it passes through

a medium. These collisions are often of such high energies that the electron’s binding
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energy is negligible compared to the energy transferred. In this case, the electron

appears to be a free particle, thus greatly simplifying the analysis. Collisions for

which this approximation is true are known as hard collisions. When these assump-

tions are not true, the collisions are considered soft. With soft collisions, an atomic

electron must be treated as bound, and energy transfers must be treated as discrete.

The resulting relationships are very complicated and very difficult to model. Soft

collisions will not be considered further in this thesis. For this reason, ranges will

be reported larger and stopping powers smaller for many of the example cases. This

discrepancy is known and has no effect on the methods that are being researched.

Hard collisions of charged particles incident on electrons are as simple to model

as the elastic collisions in the previous section. We identify the energy lost with

Q =
1

2
mev

2
e =

1

2

(
4M2

r v
2
i

me

)
sin2(θ/2) (3.19)

where Mr is the reduced mass of the system[19]. The differential of this equation

becomes

dQ = 2
M2

r v
2
i

me

sin(θ/2) cos(θ/2)dθ (3.20)

We may solve this equation for cos(θ/2)dθ and substitute into Eq.(3.6) to obtain the

energy loss DCS σin(Q,E) ≡ dσin/dQ.

σin(Q,E) =
2πZtZie

4r2
e

β2

1

Q2
(3.21)

Before proceeding further, we discuss an important point about the nature of

charged particle transport calculations. We purposely did not elaborate on the energy

transferred due to elastic collisions in the previous section because energy losses in

collisions with atomic nuclei are negligible when compared to the energy losses to

atomic electrons. The proof of this statement is in Eq.(3.21) when an arbitrary mass

is placed in the denominator for me. We see that electrons carry far more energy

away after a collision then a much heavier particle because of its very small mass.
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The previous discussion tells us that very little energy is lost in elastic scattering

processes with the nucleus when compared to energy lost due to scattering with

atomic electrons when the Rutherford DCS is valid. That is, we may neglect energy

lost due to elastic scattering processes discussed in the previous section when the

incident particle energy is sufficiently high ( Ai keV). This will always be true for

the research presented here.

Similarly, we see from Eq.(3.14) and Figure 3.2 that the angular redistribution due

to inelastic scattering with electrons is negligible. We may simplify the analysis of

many processes by exploiting these facts. Whereas in many transport calculations,

the energy loss and angular distribution are correlated, this is not so in the case

of high energy charged particle transport processes. This fact becomes useful when

working with multiple scattering theories, which will be presented in the next chapter.

In general, it allows us to more effectively analyze the behavior due to each type of

process without regard to the other while still obtaining meaningful results.

A relativistic derivation of Eq.(3.21) with spin effects taken into account leads to

a slightly more complicated formula. For heavy incident particles with spin 0, the

formula becomes

σin(Q,E) =
2πZtZie

4

β2

1

Q2

(
1− β2 Q

Qmax

)
(3.22)

The formula for spin 1/2 particles reduces to Eq.(3.22) at the energy ranges of interest

in this thesis[19]. As before, the electron obeys more complicated physics and the

DCS for energy loss can be given by the Möller DCS[23]

σin,M(Q) = σin,R(Q)

[
1 +

Q2

(E −Q)2
+

Q2

(E +mec2)2
+

Qmec
2(2E +mec

2)

(E −Q)(E +mec2)2

]
(3.23)

Again we see that the more accurate DCS can be written as a generalization of the

Rutherford DCS σin,R given in Eq.(3.21), much the same as what we’ve seen with

the Mott DCS given in Eq.(3.15).
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The maximum energy loss in a single collision is simple to calculate. The general

formula for arbitrary particles with mass M striking atomic electrons according to

Evans[19] is

Qmax = E

[
1 + 2Mc2/E

1 + (M +me)2c2/2meE

]
(3.24)

This reduces to the two important special cases

2mec
2β2γ2 M >> me (3.25)

Qmax = E M = me (3.26)

This corresponds to backscattering in the center of mass frame. These two formulas

cover almost all cases since the lightest particle other than electrons that we consider

is a proton with M/me ≈ 1836. For electron scattering, the incoming particle is

indistinguishable from the target particle so that it is impossible to tell which particle

to track for the transport calculation. The standard solution to this problem is to

track the higher energy particle, giving a maximum energy loss of

Qmax =
E

2
, M = me (3.27)

The minimum energy transfer in an atomic collision is difficult to evaluate. This is

especially the case since we are neglecting soft collisions. One proposed cutoff is the

ionization potential given by Turner in electron-Volts[24].

Qmin =


19.0 : Zt = 1

11.2 + 11.7Zt : 2 ≤ Zt ≤ 13

52.8 + 8.71Zt : Zt > 13

(3.28)

Since these energies represent a measure of the average binding energy of atomic

electrons, the minimum energy loss for hard collisions cannot be below these values.

Soft collisions can have energy losses extending far below the ionization potential
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leading to a much more highly peaked DCS, just one of the reasons why soft collisions

are so difficult to model.

The differential cross sections presented in these sections are sufficient for the

purpose of this thesis. Although more complicated cross sections have been found,

the forward peaked nature of charged particle transport processes remains. What we

mean by this will be explored shortly. For the present, we simply point out that the

difficulty in computing solutions to the transport equation with electrons, protons,

and heavier ions is completely embodied within the simple formulas given here.

3.3 Transport Equation for Charged Particles

In the absence of electric and magnetic fields and inelastic nuclear interactions (i.e.

spallation and fragmentation), the steady state transport equation for a highly col-

limated monoenergetic beam is

Ω · ∇ψ(r,Ω, E) =

∫
4π

Σe(r, E, µ0)ψ(r,Ω′, E)dΩ′ − Σe,t(r, E)

+

∫ Qmax

Qmin

Σin(E,Q)ψ(r,Ω, E +Q)dQ− Σin,t(r, E) (3.29)

ψ(rb,Ω, E) = δ(r− r0)δ(Ω · Ω0 − 1)δ(E − E0) (3.30)

Compare this to Eq.(2.1) where we see that the scattering integral on the right hand

side is over both energy and angle. As mentioned earlier, the angular component

and the energy component of the scattering decouple due to the physics of charged

particle transport. Also, we have an explicit representation for the boundary con-

dition. In many applications, and particularly in medical physics applications, the

monoenergetic beam problem is predominant for charged particles. However, one

may consider any boundary condition as a sum of monoenergetic beams, and using
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this form explicitly does not subtract from the generality of the methods presented

in the next chapter.

As we are considering the screened Rutherford DCS as sufficient for our inves-

tigations for the time being, all elastic scattering kernels σe will be for screened

Rutherford scattering from Eq.(3.10) and all inelastic scattering kernels σin will be

for Rutherford scattering from Eq.(3.22) unless otherwise noted. We will also use

Eq.(3.28) and Eq.(3.26) for Qmin and Qmax respectively for heavy particles (i.e. pro-

tons and larger) and Eq.(3.28) and Eq.(3.27) for electrons. For clarification, we note

that the macroscopic cross section given by Σ is related to the microscopic cross

section given by σ using the formula

Σ =
ρNA

At

σ (3.31)

where ρ is the material density, At is the atomic number of the particles in the

medium and NA is Avogadro’s number.

Thus, our transport problem is fully specified, and a deeper discussion of the

scattering kernels is in order. For elastic scattering, the DCS can be written

Σe(µ0, E) =
K(E)

(1 + 2η(E)− µ0)2
(3.32)

where the energy and particle dependent parameters have been grouped into the

variable K(E). Thus we see that there are only two parameters needed to discuss

the behavior of this DCS. Figure 3.4 shows the energy dependence of these parameters

using their explicit forms given by Eq.(3.10) and Eq.(3.8) and recalling that η(E) =

θ1(E)2. These figures were generated for three different incident particles on tungsten

metal. For the electron data, a more accurate form for η(E) was used based on the

formula of Moliere given in Eq.(3.11). The unitless parameter τ is given by

τ =
E

Mic2
(3.33)
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Figure 3.4: Screened Rutherford parameters K(E) and η(E) for charged particles
on tungsten metal

To see the significance of Fig.(3.4), we consider two important integrals of the

DCS. First, the total cross section is given by

Σt(E) =
1

λ(E)
=

K(E)

2η(E)(η(E) + 1)
(3.34)

We see that the total cross section, which is the inverse of the mean free path,

is unbounded as η → 0. From the figure, we see that this is an important limit

for all incident particle types. Furthermore, the dependence on the target particle,
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not depicted on these plots, is only O(ρZt/Mt) so the change in magnitude of the

parameters is typically O(1) for most target particles in many applications.

The other important integral is the transport cross section given by

Σtr =

∫ 1

−1

(1− µ0)Σe(µ0, E) = K(E)

(
ln
η(E) + 1

η(E)
− 1

η(E) + 1

)
(3.35)

This is a measure of the average deviation of the particle from the forward direction

per unit distance. In the limit of extremely forward peaked scattering, we can write

Σtr ≡ Σt

(
1− µ0

)
≈
(
1 + µ0

) (
1− µ0

)
2

=

(
1− cos2(θ0)

)
2

=
sin2(θ0)

2

≈ θ2
0

2
(3.36)

Thus, the transport cross section is approximately equivalent to the mean square

angle of scattering. This value is often used in multiple scattering distributions that

are used in medical physics codes.

We see that, since the natural log is a slowly varying function, the magnitude

of Σtr is not sensitive to changes in the screening parameter when η is nearly zero.

Therefore, we see that the variation in the transport cross section is highly dependent

on the parameter K(E). Since this parameter is small for high energy charged

particles, the magnitude of Σtr is very small for all energies of interest. A plot of

these two integrals of the DCS are shown in Fig.(3.5).

Many of the arguments just made are completely analogous to the energy loss

DCS Σin(E,Q). This is expected since the inelastic DCS is derived from the elastic

DCS in the limit of vanishing mass of the target particle. Explicitly, we can make

the correspondence (1− µ0 + 2η) → Q and write the elastic scattering DCS as

Σe(E,Q) =
K(E)

Q2
2η(E) ≤ Q ≤ 2 + 2η(E) (3.37)
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Figure 3.5: Total cross section and transport cross section for particles incident on
tungsten metal.

This form is identical to Eq.(3.21) solidifying the belief that the inelastic DCS and

elastic DCS have similar behavior. The biggest difference between the two is the

magnitude of Qmin. In the case of elastic scattering, the effective minimum Q is

several orders of magnitude below what is given in Eq.(3.28). This fact will be

important when we investigate the moment preserving methods.

35



Chapter 3. Interactions of High Energy Charged Particles

It is worth noting that the two important moments of the inelastic DCS are the

stopping power S(E) and the straggling parameter T (E).

S(E) =

∫ 1

−1

QΣin(E,Q)dQ (3.38)

T (E) =

∫ 1

−1

Q2Σin(E,Q)dQ (3.39)

The stopping power is completely analogous to the transport cross section. However,

it is typically of much larger magnitude then what is depicted in Fig.(3.5) because

the multiplicative constant is comparatively larger. The straggling acts as a measure

of the spreading of the energy distribution. These two parameters play an important

role in the theory of multiple scattering and other approximations.

Figures 3.4 and 3.5 give us intuition as to how ill behaved the cross section can be

for high energy particle transport. To see how this affects the solution to the trans-

port equation in Eq.(3.30), we consider the three methods discussed previously. For

both the PN method and the SN method, we must specify the anisotropic scattering

source as a sum over Legendre polynomials.

Σe(E, µ0) =
L∑

l=1

Σe,l(E)Pl(µ0) (3.40)

Σe,l(E) =

∫ 1

−1

Σe(E, µ0)dµ0 (3.41)

Figure 3.6 is a comparison of the first four Legendre polynomials and the elastic

scattering DCS with K = 1 and η = 1× 10−4. Obviously, it is hard to represent the

nearly singular DCS on the left with the smooth functions on the right. Therefore,

a large expansion order L must be used for these problems. Even at large order, the

peaked portion of the DCS leads to overcorrection and oscillatory behavior. It is very

difficult to make this behavior disappear completely, even for large order expansions.
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Figure 3.6: Comparison of the elastic scattering DCS given by Rutherford to the
first four Legendre polynomials

A problem we see specifically with the discrete ordinates method is the problem

with ray effects. We mentioned this briefly in the first chapter as artifacts appearing

in the spatial solution as a result of solving the problem only along discrete rays.

For this particular transport problem, the number of rays required to eliminate ray

effects is much higher than in neutral particle transport problems because of the

many small angle scatters required to get the large deviations macroscopically. Also,
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a very fine spatial grid would be needed to maintain positivity with many of the

discretization schemes that are used in solving the SN equations. The PN equations

become far too numerous to be solved efficiently when using the analog DCS given

in this chapter also. In addition, a singular boundary condition poses a difficulty in

PN methods since we only have half as many unknowns as boundary conditions to

satisfy. Approximating a delta function with only half of the basis functions of the

angular domain becomes impossible even in principle.

The Monte Carlo suffers from difficulties as well. While the difficulties are not

numerical like we saw with SN and PN methods, the underlying problem is still an

exhaustion of computing resources. Consider Eq.(2.22) with λ given by Eq.(3.34).

We see that the mean free path is O(η/K) which is typically O(10−4)−O(10−7). For

a problem domain where the length scales are O(1) in the same units, we will have

O(104)−O(107) collisions per particle.

Suppose we required 107 collisions to simulate one particle in a given problem.

Typically, about a million particle trajectories are needed to get a low statistical

error. Even if we could process a collision with a single floating point operation,

we would need about 1013 floating point operations to complete the calculation. A

typical processor can do about 109 floating point operations per second so about 3

hours is required to finish the problem.

To make matters worse, we have the basic result from the central limit theorem

concerning the convergence of the mean of a finite sample to the true mean of a

population.

εn
εN

=
µ− xn

µ− xN

=

√
N

n
(3.42)

This means that statistical errors in Monte Carlo calculations, where we are using a

finite number of samples to approximate the true mean, converges slowly with the

number of samples. Thus, if one wanted to get a factor 10 increase in accuracy,
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they would need to simulate 100 times as many particles. From the above discus-

sion, this could make a 3 hour runtime turn into a 12.5 day calculation. This is

completely unacceptable from a design standpoint, where hundreds or thousands of

these calculations are required.

3.4 Characterizing a “Forward Peaked” Differen-

tial Cross Section

Many of the difficulties identified in the previous section have been addressed in

other contexts. For instance, the diffusion equation arises when one needs to treat

small mean free paths in neutron transport theory. However, since the diffusion

equation is derived from a P1 approximation, it is essential that the angular flux and

scattering kernels are nearly isotropic. Treating charged particle transport processes

with a continuum description is a very difficult problem. We will attempt to identify

the additional difficulties before proceeding with the different approximations. The

knowledge gained here will aid us in explaining the results obtained in the next few

chapters.

Rather than working with the DCS itself, it will be more transparent if we use

the distribution function defined by

p(µ0) ≡
Σe(µ0)

Σe,t

=
η(η + 1)

(1 + 2η − µ0)2
(3.43)

From this we identify other key properties of the physics. For instance, we can get

the average cosine of scattering

µ0 =

∫ 1

−1

µ0p(µ0)dµ0 = 2η(η + 1) ln
η

η + 1
+ 2η + 1 (3.44)

or sometimes it is more beneficial to have the average deviation of µ0 from 1 given
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by

1− µ0 = 1− µ0 = 2η(η + 1) ln
η + 1

η
− 2η (3.45)

From this we see explicitly that the scattering cosine is just under unity for very

small η. This is one way of characterizing the forward peaked nature of the DCS.

However, it doesn’t tell the whole story. For instance, we may ask why not treat all

problems below a certain threshold in η as straight-ahead. More appropriately, why

not treat the elastic scattering as a process that happens continuously at a certain

average rate.

In fact, both of these methods have been developed over the years and are in many

cases the state of the art in high energy charged particle transport. However, it is well

known that there is still significant deviation between a solution that accounts only

for the average scattering and the exact solution to the problem[25]. There have been

various explanations of this phenomena and only a few that put it into mathematical

terms. In each explanation, the underlying theme is that the “occasional” large angle

scattering cannot be neglected, but there is seldom a transparent formalism that

supports this claim.

To study this claim, we consider an ensemble of particles which scatter by a

process that has a fixed, small but non-zero mean free path λ. Furthermore, they

redistribute in polar angle θ = cos−1(µ0) according to Eq.(3.43) and in azimuthal

angle φ uniformly. We would like to know the probability that a particle has had an

event with µ0 < µ∗ where we define this reference by

p(µ0 < µ∗) =

∫ µ∗

−1

p(µ0)dµ0 = p (3.46)

p =
2η(1 + η)

1− µ∗ + 2η
− η (3.47)

with p chosen to be arbitrarily small. Then we have a binary outcome space and

the probability of n scattering events with µ0 < µ∗ in m collisions follows a binomial
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distribution.

P (n|m) =
m!

n!(m− n)!
pn(1− p)m−n (3.48)

Since the transport process is Markovian, and since we know the mean number of

collisions per unit distance Σt, we may express the probability of having m collisions

in distance z using a Poisson distribution.

G(m|z) =
(Σtz)m exp(Σtz)

m!
(3.49)

Therefore, the probability of having exactly n collisions with µ0 < µ∗ in distance z

becomes

H(n|z) =
∞∑

m=n

P (n|m)G(m|z)

=
exp(−Σtz)pn

n!

∞∑
m=n

(Σtz)m(1− p)m−n

(m− n)!

=
(Σtzp)

n exp(−Σtz)

n!

∞∑
m=0

[Σtz(1− p)]m

m!

=
(Σtzp)

n

n!
exp(−Σtzp) (3.50)

This gives the probability density function for the number of events n at a distance

z. However, we would like the probability of n ≥ 1 collisions occurring with µ0 < µ∗.

This is given by summing over the probability density H(n|z).

H(n ≥ 1|z) =
∞∑

n=1

H(n|z) =
∞∑

n=1

(Σtzp)
n

n!
exp(−pΣtz)

= 1− exp(−pΣtz) (3.51)

We see that this probability exponentially approaches unity for arbitrarily small

but fixed p. This is a direct result of the very small mean free path. Thus, the

occasional collisions only become important because of the very large number of
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collisions. To put this in perspective, we have plotted H(n ≥ 1|z) for 1700 MeV

protons incident on tungsten metal for various θ∗ = cos−1(µ∗) in Fig.(3.7). In this

problem, η = 4.0 × 10−11 and Σt = 2.2 × 105. We see that relatively large angle

scatters have a high probability of occurring within distances comparable to the

proton range in tungsten at 1700 MeV (≈ 130 cm). This of course assumes that
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Figure 3.7: Probability of a particle having at least on scattering event with θ > θ∗

for 1700 MeV protons incident on tungsten metal.

the parameters stay fixed over the range. However, the particles slow down as they

penetrate a medium and the parameters will adjust in favor of more scattering and

larger scattering angles. Figure 3.8 shows how the probability varies for the three

scattering angles in Fig.(3.7) with decreasing energies. This is very similar to how

Σt varies in Fig.(3.5). From these two plots, we see that in fact the probability of

a scattering event with µ0 < µ∗ approaches unity much faster than exponentially

as the particle penetrates a medium due to the effect of slowing down on the mean

number of collisions and the probability of large angle scatter.

From the arguments presented here, it seems that there is no hope of capturing

the behavior of high energy charged particles with simple continuum descriptions.
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Figure 3.8: Variation of the probability p for fixed µ∗ for the relatively large angle
scatters and problem specification given in Fig.(3.7)

These descriptions necessarily preserve only average behavior, but we’ve seen that

the small probability events will necessarily take place at random points within the

medium. These small probability events will have a large effect on the solution

because they tend to push energy and charge to other points within the medium.

Again, there are similar arguments to be made for the energy redistribution kernel.

In that case, the small probability events tend to deposit large amounts of energy

at random points in the medium. Once again, this important outcome cannot be

captured with a simple averaging of the behavior in a continuum.

These facts were recognized early on in high energy charged particle transport

research. However, computing resources were even more scarce when these problems

were discovered than at present. For this reason, researchers had to settle for approx-

imation schemes that were known to be faulty so that some solution could be found

to their problems. Unfortunately, little progress has been made to replace these older

algorithms. Comparatively more effort has been made in fixing the methods to work

better for specific problems. For this reason, a brief discussion of the older methods
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must precede the developments made during this research.
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Chapter 4

Fokker-Planck and Fermi

Approximations

We will investigate the most widely used approximations for charged particle trans-

port processes in this chapter. Much of what is presented here is a very brief summary

of a very large body of work that started in the early twentieth century. Emphasis

will be placed on the aspects of the theories that was addressed in the research done

for this thesis. These include theoretical indications of when these methods fail and

experimental verification of their failure.

As in the previous chapter, we note that all elastic scattering theories are based

on the screened Rutherford DCS except when specifically noted otherwise. Also, Σe

represents the macroscopic elastic cross section and Σin represents the macroscopic

inelastic cross section. More emphasis will be placed on elastic scattering since it

poses the same challenges as inelastic scattering but adds additional challenges of its

own. The differences are elaborated in the first few sections and general results for

inelastic scattering will be given in future chapters. To keep the arguments simple

and clear, all of the theories for elastic scattering will be presented for the special
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case of monoenergetic particles.

4.1 Notes on the Transport Cross Section

Before delving into the approximations of high energy charged particle transport, a

brief discussion of the parameter Σtr given by Eq.(3.35) is needed. This parameter

shows up often in the theories that were researched because it is synonymous to

the stopping power given in Eq.(3.38). The stopping power has an obvious physical

interpretation; it is the average amount of energy lost by a particle per unit of

distance traversed. Continuous slowing down algorithms rely on the stopping power

to handle particle energy dependence deterministically.

The physical interpretation of Σtr is more difficult to visualize. It can be thought

of as an average increase in deviation of the cosine of the particles direction from

the original forward direction per unit distance. However abstract this may seem, it

follows the same intuition as that followed in interpreting the stopping power. On

the other hand, it is not immediately clear that this quantity is even useful at all.

The particle energy is monotonically decreasing on the real line ideally from some

maximum energy to zero. The randomness is only in how much energy is lost in the

discrete collisions that occur within an interval of distance. The particle direction,

however, follows a random walk on the unit sphere[26].

To see why this parameter is useful, we consider an arbitrary scattering law with

transport cross section Σtr. Azimuthal angles of scattering are uniformly distributed

in the interval [0, 2π). Each scattering event generates the two parameters µ0 and φ.

For simplicity, the scattering angles are all chosen with respect to the particle’s local

z-axis. The transformation of a particle’s trajectory in the fixed frame using these

angles and assuming that the center of mass frame is the same as the lab frame is
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given by

u′ = µ0u+

√
1− µ2

0√
1− w2

(uw cosφ− v sinφ) (4.1)

v′ = µ0v +

√
1− µ2

0√
1− w2

(vw cosφ+ u sinφ) (4.2)

w′ = µ0w +
√

1− µ2
0

√
1− w2 cosφ (4.3)

To simplify the following analysis, we consider a problem where all particles have the

initial trajectory given by (u, v, w) = (0, 0, 1). Any other problem can be considered

as an integrated source over such incident beams with a global change of coordinates.

Thus, the analysis here remains valid for the general case.

We wish to know what the average z-component of a particle’s trajectory is

after moving a distance s in a material. The distance s is not the same as the

z-coordinate of the particle. This matter is given separate consideration in many

multiple scattering theories. For the present problem, we seek the intermediate

result: what is the average z-component of scattering of a particle who has had n

collisions with the 2n random variables (µ1, φ1), (µ2, φ2), ... (µn, φn) to describe the

scattering of the particle into states with z-component of the trajectory equal to w(1),

w(2), ... w(n) respectively. We shall prove by induction that the answer is w(n) = µn
0

with

µ0 =

∫ 1

−1

µ0P (µ0)dµ0 =

∫ 1

−1

µ0
Σe(µ0)

Σt,e

dµ0. (4.4)

By Eq.(4.3), the states can be recursively computed with

w(k) = µkw
(k−1) +

√
1− µ2

k

√
1− (w(k−1))2 cosφk. (4.5)

given the random variables µk and φk. The distribution function for a given state

k will be written Pk(w(k)) and is not known a priori for k > 0. For k = 0, the

distribution is given by P0(w
(0)) = δ(w(0)−1) by definition of the problem. The base
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case is simple to compute.

w(1) =

∫ 2π

0

dφ1

∫ 1

−1

dµ1

∫ 1

−1

dw(0)P0(w
(0))P (µ1)P

′(φ1)

×
[
µ1w

(0) +
√

1− µ2
1

√
1− (w(0))2 cosφ1

]
=

∫ 2π

0

dφ1P
′(φ1)

∫ 1

−1

dµ1µ1P (µ1)

= µ0 (4.6)

The induction hypothesis can be written explicitly

µn−1
0 = w(n−1) =

∫ 1

−1

dw(n−1)w(n−1)Pn−1(w
(n−1)) (4.7)

To compute the average of w(n) we have

w(n) =

∫ 2π

0

dφn

∫ 1

−1

dµn

∫ 1

−1

dw(n−1)Pn−1(w
(n−1))P (µn)P ′(φn)

×
[
µnw

(n−1) +
√

1− µ2
n

√
1− (w(n−1))2 cosφn

]
=

∫ 1

−1

dµnµnP (µn)

∫ 1

−1

dw(n−1)w(n−1)Pn−1(w
(n−1)) +

[∫ 2π

0

dφnP
′(φn) cosφn

]
︸ ︷︷ ︸

= 0

×
∫ 1

−1

dµnP (µn)
√

1− µ2
n

∫ 1

−1

dw(n−1)Pn−1(w
(n−1))

√
1− (w(n−1))2

= µ0w
(n−1) = µn

0 (4.8)

We also have as a corollary to this result that 1− w(n) = 1− µn
0 . This gives the

average “accumulation” of 1− µ0 for a set number of collisions. To get the average

after distance s, we fold the previous result with the Poisson distribution which gives

the distribution of the number of collisions n for a given average collision “rate” Σt.

1− w =
∞∑

n=0

(1− µn
0 )

(Σts)
n exp(−Σts)

n!

= 1− exp[−Σts(1− µ0)] (4.9)
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By definition we have Σtr ≡ Σt(1−µ0). Substituting this identity into Eq.(4.9) gives

1− w = 1− exp(−Σtrs) (4.10)

This is independent of the details of the scattering law including the azimuthal an-

gle dependence and the complicated transformation from local to global reference

frames. The interpretation from this analysis is that any two DCSs with the same

transport cross section will have the same average deviation from the forward direc-

tion. Furthermore, when Σtrs is small, the expression in Eq.(4.10) simplifies to

1− w ≈ 1− (1− Σtrs) =
s(1− µ0)

λ
= N c(s)(1− µ0) (4.11)

where the average number of collisions in distance s, N c(s), has been introduced.

Therefore, the average deviation from the forward direction tends to accumulate

with each collision in this limit, much like energy loss accumulates in the inelastic

scattering formalism. The difference is that this limit will not hold for large pen-

etration depths, and the average accumulation asymptotically approaches zero for

elastic scattering.

4.2 The Fokker-Planck Operator

The Fokker-Planck approximation is the most widely used continuum description of

high energy charged particle transport. It is also the basis for other more sophisti-

cated approximations. The Fokker-Planck approximation represents an asymptotic

equivalence of the Boltzmann scattering operator and the spherical Laplacian opera-

tor. We give a brief summary of its derivation here which follows the work of Larsen

and Leakes[27]. A more rigorous derivation is given by Pomraning[28].
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4.2.1 Derivation of the Fokker-Planck Operator for Forward-

Peaked Transport

Recall that the elastic scattering DCS can be expanded as a series of spherical har-

monics,

Σe(µ0) =
∞∑
l=0

Σe,l

l∑
m=−l

Y m
l (Ω)Y ∗ml (Ω′) (4.12)

Σe,l = 2π

∫ 1

−1

Σe(µ0)Pl(µ0)dµ0 (4.13)

and the Boltzmann scattering operator given by

LBψ(Ω) =

∫
4π

Σe(µ0)ψ(Ω′)dΩ′ − Σe,0ψ(Ω) (4.14)

where

ψ(Ω) =
∞∑
l=0

l∑
m=−l

ψlmY
m
l (Ω) (4.15)

can also be expanded in spherical harmonics,

LBψ(Ω) =
∞∑
l=0

(Σe,l − Σe,0)
l∑

m=−l

ψlmY
m
l (Ω) (4.16)

For high energy charged particles, we can assume that Σe(µ0) is peaked near 1, thus

allowing a Taylor expansion of the Legendre polynomials in Eq.(4.13) about µ0 = 1.

That is,

Σe,l(µ0) =

∫ 1

−1

dµ0Σe(µ0)
[
Pl(1) + (µ0 − 1)P ′l (1) +O

(
(1− µ0)

2
)]

= Σe,tPl(1)− ΣtrP
′
l (1) +O

(
Σe,t(1− µ0)2

)
(4.17)

From the basic properties of Legendre polynomials, we have Pl(1) = 1 and P ′l (1) =

l(l + 1)/2. Substituting these identities into Eq.(4.17) and substituting that into
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Eq.(4.16) gives

LBψ(Ω) =
Σtr

2

∞∑
l=0

−l(l + 1)
l∑

m=−l

ψlmY
m
l (Ω) +O

(
Σe,t(1− µ0)2

)
(4.18)

The spherical harmonics are also eigenvalues of the spherical Laplacian operator, also

known as the angular momentum operator in physics applications. This operator

satisfies the eigenvalue equation

∇2
ΩY

m
l (Ω) = −l(l + 1)Y m

l (Ω) (4.19)

This allows us to write

LBψ(Ω) =
Σtr

2

∞∑
l=0

l∑
m=−l

ψlm∇2
ΩY

m
l (Ω) +O

(
Σe,t(1− µ0)2

)
=

Σtr

2
∇2

Ω

(
∞∑
l=0

l∑
m=−l

ψlmY
m
l (Ω)

)
+O

(
Σe,t(1− µ0)2

)
=

Σtr

2
∇2

Ωψ(Ω) +O
(

Σe,t(1− µ0)2
)

(4.20)

Thus we see that, to leading order, the Boltzmann operator is equivalent to a

spherical Laplacian when scattering is sufficiently forward peaked. That is,

LBψ(Ω) −→ Σtr

2
∇2

Ωψ(Ω)

=
Σtr

2

[
∂

∂µ
(1− µ2)

∂ψ

∂µ
+

1

1− µ2

∂2ψ

∂φ2

]
(4.21)

as µ0 → 1 and Σe,t →∞ such that Σtr ≡ Σe,t(1− µ0) remains finite.

The value of this approximation is immediately clear. We transform an integro-

differential equation into a partial differential equation which is much easier to solve.

The Fokker-Planck approximation for inelastic scattering has an analogous derivation

and can be written as∫ 1

−1

Σin(E,Q)ψ(E+Q)dQ =
∂

∂E
[S(E)ψ(E)]+

1

2

∂2

∂E2
[T (E)ψ(E)]+O(Q3) (4.22)
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The interpretation is that angular spreading happens at a continuous rate given

by Σtr on the unit sphere and that energy loss happens at a constant average rate

S(E) with a deterministic straggling of energies determined by T (E). We see now

explicitly the fundamental differences in the interpretations needed for energy loss

and angular spreading of beams.

4.2.2 Accuracy of the Fokker-Planck Approximation

The caveat to the Fokker-Planck approximation is that it is a weak equivalence.

For the scattering to be sufficiently forward-peaked, we require that higher moments

given by

Σe,n =

∫ 1

−1

(1− µ0)
nΣe(µ0)dµ0 (4.23)

Σin,m =

∫ Qmax

Qmin

QmΣin(Q)dQ (4.24)

are vanishingly small for n > 1 and m > 2. However, this is not the case for differ-

ential cross sections of the Rutherford type. Figure 4.1 shows how the magnitudes

of the moments of both the inelastic and the elastic scattering cross sections vary

with increasing n for protons incident on tungsten metal at various energies. We see

in Fig.(4.1) that the moments may initially decrease with n but they will eventually

start increasing at some sufficiently large value of n.

Individual moments tend to stabilize asymptotically at high energies. Figure 4.2

is a plot of the first four moments of both the inelastic and the elastic scattering

DCS for protons incident on tungsten. We see that the magnitudes of the moments

maintain a nearly constant separation at higher energies. Also, they change relatively

little in the range between about 100 and 1000 MeV. Therefore, the criterion that

the moments fall off very rapidly seems to go unsatisfied for this case. Also, this
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Figure 4.1: Moments of the elastic and inelastic DCS for protons incident on tungsten
at various energies.

example provides a good indication of a more general trend for all high energy charged

particles since the form of the DCS remains nearly the same.

We have seen that the criteria for the validity of the Fokker-Planck approxima-

tion are not necessarily met in applications. However, it is still not clear that the

error is significant from this analysis. Indeed the approximations made in deriving

the Fokker-Planck approximation seemed plausible. However, the following analysis

drives out any doubt that the Fokker-Planck approximation, by itself at least, is not

good enough for simulating high energy charged particles.
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Figure 4.2: Energy dependence of the first four moments and the total cross section
of the elastic and inelastic DCS for protons incident on tungsten.

Larsen and Börgers showed that screened Rutherford scattering and Mott scat-

tering lie on the verge of validity of the Fokker-Planck approximation[25]. In their

analysis, they identified the condition which must be satisfied by any differential
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cross section that is to be approximated by the Fokker-Planck operator.

lim
µ0→1

var(µ0)

1− µ0

= 0 (4.25)

This is equivalent to

lim
µ0→1

Σ2

Σ1

= 0 (4.26)

The latter condition could have been deduced from the analysis already done. How-

ever, the technique used by Larsen and Börgers explcitly gives the leading order error

generated by using the Fokker-Planck operator. This solidifies our earlier analysis.

The condition of Larsen and Börgers is not automatically satisfied for scattering

kernels whose value is peaked near unity. In fact, they showed that∫ 1

−1

C(α, η)ψ(Ω)

(1 + 2η − µ0)α
dµ0 − Σtψ(Ω)

µ0→1−→ Σtr

2
∇2

Ωψ(Ω) if and only if α ≥ 2 (4.27)

Therefore, we would expect that screened Rutherford scattering converges very slowly

to a Fokker-Planck description. We see that this is true using their explicit formula

for screened Rutherford scattering.

var(µ0)

1− µ0

=
−2

ln(1− µ0)
+O

(
1

ln(1− µ0)
2

)
(4.28)

Figure 4.3 shows graphically how the leading order error trends with 1 − µ0. We

see that the leading order error term tends toward zero logarithmically slowly. This

analysis is independent of particle type and thus holds for electrons and ions alike.

The only difference is that a typical value for 1 − µ0 for electrons is 10−3 − 10−5

while for protons and alphas it is 10−8 − 10−10. There is a tendency to assume

that this “super forward-peaked” behavior for heavier charged particles makes the

Fokker-Planck model more accurate for ion transport applications. However, from

Fig.(4.3) we see that there is essentially no difference in the leading order error term

in this range of values of Σtr.
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Figure 4.3: Leading order term for the error in using a Fokker-Planck approximation
in place of screened Rutherford scattering.

4.2.3 Delta Function Representation of the Fokker-Planck

Operator

We still have not seen the true error in using the Fokker-Planck approximation. In-

stead we have seen how slowly the error tends to zero as µ0 → 1 which is a fixed

parameter due to the physics. In order to study the error due to the Fokker-Planck

approximation, we need a way to simulate a Fokker-Planck scattering operator using

Monte Carlo methods. Of course, the Fokker-Planck operator can be easily imple-

mented into a deterministic framework, but the comparison with an analog Monte

Carlo scheme would not be as transparent. Therefore, we introduce a representation

of the Fokker-Planck operator using deterministic scattering angles[25].

Σtr

2
∇2

Ωψ(Ω) = lim
µ∗→1

L∗ψ(Ω)

≡ lim
µ∗→1

Σtr

2π(1− µ∗)

(∫ 2π

0

dφ

∫ 1

−1

dµδ(µ− µ∗)ψ(Ω)− 2πψ(Ω)

)
(4.29)
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This equivalence can be shown easily if we recognize that L∗ is an operator in the

same form as the Boltzmann operator. Then we know that L∗ has a complete set of

eigenfunctions in Y m
l (Ω) and the eigenvalue equation becomes

L∗Y m
l (Ω) = (Σ∗

e,l − Σ∗
e,0)Y

m
l (Ω) ≡ λlY

m
l (Ω) (4.30)

Σ∗
e,l =

Σtr

1− µ∗

∫ 1

−1

dµPl(µ)δ(µ− µ∗) = Σe,0Pl(µ
∗) (4.31)

Then, taking the limit, using L’Hospital’s rule, and recognizing that P ′l (1) = l(l +

1)/2, we obtain

lim
µ∗→1

L∗Y m
l (Ω) = lim

µ∗→1

Pl(µ
∗)− 1

1− µ∗
ΣtrY

m
l (Ω)

= −Σtr

2
l(l + 1)Y m

l (Ω) =
Σtr

2
∇2

ΩY
m
l (Ω) (4.32)

Therefore, these two operators are equivalent since they have the same eigenvalues

and eigenvectors. Furthermore, we may quantify the error by expanding

Pl(µ
∗) = 1− l(l + 1)

2
(1−µ∗)+

l(l + 1)(l + 2)(l − 1)

16
(1−µ∗)2 +O

(
(1− µ∗)3

)
(4.33)

Substituting Eq.(4.33) into Eq.(4.32) without taking the limit we obtain

L∗Y m
l (Ω) = Σtr

[
− l(l + 1)

2
+
l(l + 1)(l + 2)(l − 1)

16
(1− µ∗)

]
+O

(
(1− µ∗)2

)
(4.34)

The relative error in the lth eigenvalue becomes

εl ≡
∣∣∣∣λl − Σtrl(l + 1)/2

Σtrl(l + 1)/2

∣∣∣∣+O
(
(1− µ∗)2

)
=

(l + 2)(l − 1)

8
(1− µ∗) +O

(
(1− µ∗)2

)
(4.35)

The error increases with higher Legendre moments and decreases as µ∗ approaches 1.

Table 4.1 shows the error in using the discrete representation to model the Fokker-

Planck operator for various values of 1− µ∗ and for l = 5, 10, 15, and 20.
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Legendre Moment Error εl(µ
∗)

1− µ∗ 1× 10−3 1× 10−4 1× 10−5 1× 10−6

l = 5 0.0035 0.0004 3.5×10−5 3.5×10−6

l = 10 0.0135 0.0014 1.35×10−4 1.35×10−5

l = 15 0.0298 0.0030 2.98×10−4 2.98×10−5

l = 20 0.0522 0.0052 5.23×10−4 5.23×10−5

Table 4.1: Error in the lth eigenvalue from using a delta function representation with
µ∗ 6= 1.

In practice, this becomes a very simple means of simulating the Fokker-Planck

operator. The first step is to select a µ∗ that is very close to unity. Then, we

randomly sample the distance between collisions using

s =
µ∗ − 1

Σtr

ln(ξ) (4.36)

where ξ is a uniformly distributed random number in the unit interval. At each

collision, the scattering angle is deterministic by construction of the DCS and µ0 = µ∗

each time. The azimuthal angle is still sampled uniformly in the interval [0, 2π), so

the actual spreading of the particle beam is still random at each collision. The real

difficulty is in choosing µ∗ sufficiently close to 1. This requires the user to iterate over

µ∗ until the solution converges. However, in practice an iteration is seldom necessary

as µ∗ can be set very close to 1 and left alone for many applications.

The convergence of this representation is plotted in Fig.(4.4) for Σtr = 1/(1000L)

and Σtr = 1/(10000L) where L is the thickness of the medium. For each case, µ∗

was chosen such that λ∗ = (1 − µ∗)/Σtr was L/10, L/100, and L/1000. Further

increase of λ∗ beyond L/10 leads to discrete artifacts due to the deterministic nature

of sampling the scattering angle. From the figure, we can see that the largest mean

free path is not quite converged while the two smaller mean free paths seem to be

58



Chapter 4. Fokker-Planck and Fermi Approximations

converged. Furthermore, the convergence seems to be independent of Σtr. Though

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

θ (degrees)

ψ
(θ

)

 

 

λ*=L/10

λ*=L/100

λ* = L/1000

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

θ (degrees)

ψ
(θ

)

 

 

λ*=L/10

λ*=L/100

λ*=L/1000

Figure 4.4: Fokker-Planck convergence with λ∗ for Σtr = 1/(1000L) and Σtr =
1/(10000L).

this is not rigorous, it does imply that convergence to the Fokker-Planck operator
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can be nearly achieved by setting µ∗ such that λ∗ ≈ Xmin/100 where Xmin is the

minimum length scale in the problem. That is, we let

µ∗ = 1− ΣtrXmin

100
(4.37)

The run times required to obtain the results in Fig.(4.4) are shown in Table 4.2. All

runtimes are in units of per million particle histories and were obtained using L = 1.

It is conceivable that a problem could have a much smaller length scale, and the

runtime would scale as Xmax/Xmin. Therefore, these runtimes can be deceiving as

to how fast this method works. For instance, one may be simulating particles in a

geometry where the particles are incident on several small layers. Getting the results

correct in each of the small layers separately would be tantamount to shrinking λ∗

to values that would render the method useless.

Length Scale Runtimes

λ∗ = L/10 λ∗ = L/100 λ∗ = L/1000

Σtr = 1/(1000L) 2.58 s 23.2 s 227 s

Σtr = 1/(10000L) 2.51 s 23.0 s 227 s

Table 4.2: Runtime comparison for obtaining the data in Fig.(4.4)

4.2.4 Exponential Representation of the Fokker-Planck Op-

erator

The delta function representation of the Fokker-Planck operator is one of the easiest

ways to simulate a forward peaked scattering operator in a Monte Carlo setting. The

reason why we are allowed to use it in a Monte Carlo simulation is because it is an

operator of the Boltzmann type. Indeed, we may form a valid transport problem
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around this particular scattering kernel. Thus, it is plausible to conceive of other

Boltzmann-like representations of the Fokker-Planck operator that we may use in

Monte Carlo codes. We’ve seen, however, that the very definition of the Fokker-

Planck operator involves a limiting process. Thus, a rigorous and exact Boltzmann

representation of the Fokker-Planck operator is most likely impossible.

On the other hand, the Fokker-Planck approximation is based only on the first

moment of the elastic scattering DCS. For this reason, we may relax the condition

that the Fokker-Planck operator is equivalent to the Boltzmann-like scattering op-

erator, but instead require

lim
µ∗→1

∫ 1

−1

(1− µ)f(µ;µ∗)dµ = Σtr (4.38)

with the auxiliary condition

lim
µ∗→1

∫ 1

−1

(1− µ)nf(µ;µ∗)dµ = 0 n > 1 (4.39)

Then the criteria of Larsen and Börgers are satisfied and the Fokker-Planck repre-

sentation is appropriate for f(µ;µ∗). To this end, we introduce the scattering kernel

Σ∗(µ) =
Σtr

(1− µ∗)2
exp

(
− 1− µ

1− µ∗

)
(4.40)

It is not difficult to show that Eq.(4.38) and Eq.(4.39) are both satisfied. Further-

more, we can set µ∗ as in Eq.(4.37) if we assume that exp(−2/(1−µ∗)) is vanishingly

small. This seems plausible and it can be shown that Eq.(4.37) is in fact appropriate

if Σtrλ
∗ << 1. In a Monte Carlo setting, µ can be sampled using

µ = 1 + (1− µ∗) ln ξ (4.41)

The value of this representation is that µ is now a random variable. To see how

this effects the solution, the method was tested and the results compared to the

results in Fig.(4.4) for Σtr = 1/(10000L). This is shown in Fig.(4.5). We see that

the two methods are nearly identical for λ∗ = L/100 demonstrating that the two
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representations are nearly equivalent. For λ∗ = L/5, the delta function represen-

tation has discrete artifacts rendering the results useless. However, the exponential

representation, though erroneous, is a smooth approximation to the solution.
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Figure 4.5: Comparison of the results obtained from the delta function and expo-
nential representations of the Fokker-Planck operator

4.2.5 Arbitrary Approximate Representations of the Fokker

- Planck Operator

The prescription given previously provides an easy means for checking the validity

of a representation of a Fokker-Planck operator. As stated before, there is no known

rigorous and exact Boltzmann representation of the Fokker-Planck operator, nor do

we expect it to exist since the Fokker-Planck operator is singular by its very definition.

However, a great number of approximate Boltzmann-like representations can exist
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where the approximation can be made arbitrarily close to the actual Fokker-Planck

representation.

To construct these approximate representations, one may use delta sequences as

a starting point. A delta sequence is defined in the theory of distributions as any

smooth function δa(x) such that

lim
a→0

∫
R

δa(x)φ(x)dx = φ(0) (4.42)

where φ(x) is in the space of test functions and R is any compact space. For our

purposes, R = [−1, 1] meets this criterion. It is proven that any function f(x/a)/a

with ∫
R

f(x)dx = 1 (4.43)

is a delta sequence[29]. This theorem gives us an infinite supply of delta sequences.

We also have the elementary result

lim
a→0

∫
R

δa(x− x0)φ(x)dx = φ(x0) (4.44)

To construct approximate representations, we may use any function of the form

f(µ;µ∗) =
ΣtrC(a, µ∗)

1− µ∗
δa(µ− µ∗) (4.45)

with a << 1. Clearly Eq.(4.38) and Eq.(4.39) are satisfied in the limit as a→ 0 with

C(a;µ∗) ≡ 1 since this is equivalent to the delta function representation. However,

we may choose C(a, µ∗) such that

C(a, µ∗) =
1− µ∗∫ 1

−1
δa(µ− µ∗)(1− µ)dµ

(4.46)

to satisfy Eq.(4.38) for a 6= 0 as long as

∫ 1

−1

δa(µ− µ∗)(1− µ)dµ 6= 0 (4.47)

lim
µ∗→1

C(a, µ∗) <∞ (4.48)
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If these conditions are met, then Eq.(4.39) can be written for any n > 1

lim
µ∗→1

1

1− µ∗

∫ 1

−1

δa(µ− µ∗)(1− µ)ndµ = 0 (4.49)

From Eq.(4.44) and by definition of a limit, we may write∫ 1

−1

δa(µ− µ∗)(1− µ)ndµ = (1− µ∗)n + εa (4.50)

where εa is a number that can be made arbitrarily small by appropriate choice of a.

Then Eq.(4.49) becomes

lim
µ∗→1

εa
1− µ∗

+ (1− µ∗)n−1 = 0 (4.51)

For fixed a, εa is fixed and this condition cannot be satisfied rigorously in most cases.

However, since we are not constructing an equivalent operator to the Fokker-Planck

operator, this condition can be nearly satisfied in practice if a is chosen such that

εa << 1 − µ∗. An ad hoc method for achieving this is to let a = (1 − µ∗)m with m

chosen appropriately for the given delta sequence. Typically, the construction of the

representation will suggest an appropriate m.

For example, consider the delta sequence given by

δa(µ− µ∗) =

 1
a

: µ∗ − a < µ < µ∗ + a

0 : µ < µ∗ − a, µ > µ∗ + a
(4.52)

Integration of this function weighted by (1− µ)n gives∫ µ∗+a

µ∗−a

(1− µ)n

a
dµ =

(1− µ∗ + a)n+1 − (1− µ∗ − a)n+1

a(n+ 1)

= 2(1− µ∗)n +O(a2) (4.53)

From this we see that C(a, µ∗) ≡ 1/2 from Eq.(4.46) and a = 1− µ∗ is sufficient for

meeting the condition in Eq.(4.51). Then, the representation is given by

f(µ;µ∗) =

 Σtr

2(1−µ∗)2
: 2µ∗ − 1 < µ < 1

0 : µ < 2µ∗ − 1
(4.54)
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and ∫ 1

−1

f(µ;µ∗)dµ =
Σtr

1− µ∗
(4.55)

We’ve seen that the Fokker-Planck operator can be simulated using a Monte

Carlo framework using various representations of the Fokker-Planck operator. In

each case, we see that additional error is generated by truncating the limit processes

involved. In many cases, one does not use Fokker-Planck because multiple scattering

theories can be made more robust. The first of these that will be explored can be

derived from the Fokker-Planck approximation. However, it will also be shown to

exist independent of the Fokker-Planck approximation.

4.3 Gaussian Distributions and the Fermi approx-

imation

One of the most widely used simplifications in high energy charged particle transport

is the Gaussian distribution. The reason is that it gives an analytical result for the

spreading of a beam of particles traversing a certain thickness of material. This

becomes useful if one needs to correlate the position of particles, say measured by an

array of detectors, by their source. One application that uses this approximation is

muon tomography[30], where particles are measured at two detectors with some item

to be imaged in between. The high energy muons are then assumed to be scattered

in the intermediate region by way of a Gaussian, and the amount of spreading is

assumed proportional to the mass of the target atoms in the material. In this way,

high mass materials can be imaged and isolated in a border control process.

An approximation that gives a Gaussian distribution to the spreading of a beam

of charged particles is often called the Fermi approximation. This is because Enrico
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Fermi was one of the first to recognize that the approximation could be used and he

developed one of the first derivations. However, the approximation can be derived in

many ways. Two methods of deriving the approximation will be discussed here and

the accuracy of the Fermi approximation will be examined afterwards.

4.3.1 Derivation of Fermi’s Approximation from the Fokker-

Planck Equation

The first derivation of the Gaussian approximation can be traced back in the liter-

ature to the earliest charged particle transport approximations. It is a robust for-

mulation because many of its properties can be easily traced back to the Boltzmann

transport equation. We will use the method employed by Prinja and Pomraning[31]

to derive the approximation here. For this purpose, we find it convenient to change

variables from µ and φ to

η =
√

1− µ2 cosφ (4.56)

ξ =
√

1− µ2 sinφ (4.57)

Then Eq.(4.21) can be rewritten in terms of the new independent variables.

√
1− η2 − ξ2

∂ψ

∂z
+ η

∂ψ

∂x
+ ξ

∂ψ

∂y

=
Σtr

2

[
∂

∂η
(1− η2)

∂ψ

∂η
− 2ηξ

∂2ψ

∂η∂ξ
+

∂

∂ξ
(1− ξ2)

∂ψ

∂ξ

]
(4.58)

A change of dependent variable from ψ to

Ψ(x, y, z, η, ξ) =
ψ(x, y, z, η, ξ)√

1− η2 − ξ2
(4.59)
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allows us to rewrite Eq.(4.58) as

∂Ψ

∂z
+ η

∂Ψ

∂x
+ ξ

∂Ψ

∂y
=

Σtr

2

[
∂2Ψ

∂η2
+
∂2Ψ

∂ξ2

]
+ C (4.60)

Ψ(x, y, 0, η, ξ) = δ(x)δ(y)δ(η)δ(ξ) (4.61)

C = (1−
√

1− η2 − ξ2)
∂Ψ

∂z
− Σtr

2

[
η2∂

2Ψ

∂η2
+ 4η

∂Ψ

∂η

+2ηξ
∂2Ψ

∂η∂ξ
+ 2Ψ + 4ξ

∂Ψ

∂ξ
+ ξ2∂

2Ψ

∂ξ2

]
(4.62)

A simple scaling η → εη and ξ → εξ proves that Eq.(4.62) is O(1) while Eq.(4.60)

is O(1/ε2). Also, by Eq.(4.56) and Eq.(4.57), we see that the limit ε → 0 is clearly

justified as long as the beam stays forward directed. Therefore, we set C = 0 to

obtain the Fermi approximation. Also, since η and ξ resemble independent variables

in Cartesian space, we will allow for these variables to be defined on the extended

real line (−∞,∞).

Using these assumptions, Eq.(4.60) has an analytic solution that can be derived

by using Fourier transform methods. It is given by [32],

ψ(x, y, z, η, ξ) =
3

π2Σ2
trz

4
exp

[
− 2

Σtr

(
3(x2 + y2)

z3
− 3(ηx+ ξy)

z2
+

(η2 + ξ2)

z

)]
(4.63)

For the purposes of this thesis, a simpler version of this solution is appropriate. If

we integrate over the x and the y-variables, then we get the angular distribution at

penetration z given by,

Θ(η, ξ, z) =
1

2πΣtrz
exp

[
−(η2 + ξ2)

2Σtrz

]
(4.64)

We see now why it is justified to allow η and ξ to extend over the real line. When

Σtr is small, an assumption that is always valid in these applications, this Gaussian

distribution falls off very rapidly in these variables. A more more suitable form may

be obtained by substituting for η and ξ using Eq.(4.56) and Eq.(4.57),

Θ(µ, z) =
1

2πΣtrz
exp

[
−(1− µ2)

2Σtrz

]
(4.65)
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An intuitive justification of this process can be given by a simple geometric picture.

The scattering process happens on the unit sphere. The Fokker-Planck approxima-

tion for forward peaked transport treats the scattering as random motion on the

unit sphere near µ0 = 1. The Fermi approximation treats this random motion as if

it were on a plane, an assumption that is justified if the particle’s motion does not

allow it to stray too far from µ = 1. Since the planar picture is not practical for

use in transport codes, we use the definitions of the variables η and ξ to cast the

approximation back onto the unit sphere.

A distribution for the scattering angle can be obtained by substituting µ = cos θ

and using sin θ ≈ θ in the small angle approximation to obtain

Θ(θ, z) =
1

2πΣtrz
exp

[
− θ2

2Σtrz

]
(4.66)

A convenient formula for the radial spreading of an initially collimated beam can

also be derived from Eq.(4.63). It is given by[25]

φ(r, z) =
3

2πΣtrz
exp

[
− 3r2

2Σtrz

]
(4.67)

This seems like a long ways from the Fokker-Planck equation. However, it can be

demonstrated that the discrepancy between the Fokker-Planck approximation and

the Fermi approximation is very small[25]. We will give examples demonstrating this

fact soon. However, it is interesting to see that there is another way of obtaining

Eq.(4.66) based on first principles and the assumption of small angle scattering.

4.3.2 Rossi’s Formulation of the Gaussian Approximation

The derivation here follows the work of Rossi[16] and is originally due to Fermi. In

Rossi’s work, the Rutherford scattering kernel takes the form

Σe(θ) =
K

(θ2 + θ2
1)2

(4.68)
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where K is the same energy dependent constant as in Eq.(3.32) and θ1 =
√
η which

is given in Eq.(3.8). We note that this approximation is equivalent to Eq.(3.32) in

the small angle approximation. We introduce the angles θx and θy which are the

xz and yz planar angles between the particles projected trajectory and the z-axis.

A graphical depiction is shown for the angle θx in Fig.(4.6). We also introduce the

Figure 4.6: Graphical depiction of θx to the geometry of the transport problem.

projected differential scattering probability ξ(θx)dθx and ξ(θy)dθy; the probability

per unit path length of scattering into a projected angle in the xz and yz plane

in the intervals [θx, θx + dθx] and [θy, θy + dθy] respectively. When the small angle

approximation is justified, we may write

θ2 ≈ θ2
x + θ2

y (4.69)

ξ(θx,y) =

∫ θ2

−θ2

Σe

(√
θ2

x + θ2
y

)
dθy,x (4.70)

θ2 is given in Eq.(3.12) and is the upper bound to the validity of the DCS given

by Rossi[16]. From the physics, it is clear that all arguments that hold for the xz

plane hold for the yz plane as well. We will consider how the transport of a particle

evolves in the xz plane only. We introduce the probability density function P (x, z, θx)

of finding a particle in the interval [x, x + dx] and [θx, θx + dθx] after traversing a

thickness z. A simple balance can be obtained by equating the change in particle
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density to the in-scatter and out-scatter to obtain,

dP

dz
= −θx

∂P

∂x
+

∫ θ2

−θ2

[P (x, z, θx + θ′x)− P (x, z, θx)]ξ(θ′x)dθ′x (4.71)

Since Σe and hence ξ are highly forward peaked functions, we assume that P (x, z, θx+

θ′x) can be approximated by a Taylor series in θ′x for the purpose of evaluating the

integral. Then, keeping the first two terms gives

∫ θ2

−θ2

[P (x, z, θx + θ′x)− P (x, z, θx)]ξ(θ′x)dθ′x

≈ ∂P

∂θx

∫ θ2

−θ2

θ′xξ(θ
′
x)dθ′x +

1

2

∂2P

∂θ2
x

∫ θ2

−θ2

θ
′2
x ξ(θ

′
x)dθ′x (4.72)

The first integral is zero since the integrand is odd. The second integral is given the

value θ2
s/2 with

θ2
s =

∫ θ2

−θ2

θ2Σe(θ)dθ (4.73)

The factor of 1/2 comes from the symmetry between θx and θy. Then the equation

for P is given by

dP

dz
= −θx

∂P

∂x
+
θ2

s

4

∂2P

∂θ2
x

dθ′x. (4.74)

This equation is similar to Eq.(4.60) and indeed the normalized solution is

P (x, z, θx) =
2
√

3

π

1

θ2
sz

2
exp

[
− 4

θ2
s

(
θ2

x

z
− 3xθx

z2
+

3x2

z3

)]
. (4.75)

Again, the angular distribution at z can be obtained through integration over the x

variable to obtain

Θx(z, θx) =
1√
πzθs

exp

(
− θ2

x

θ2
sz

)
(4.76)

Multiplying this by the same distribution obtained for θy and using Eq.(4.69) gives

Θ(z, θ) =
1

πzθ2
s

exp

(
− θ2

θ2
sz

)
(4.77)
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We see that Eq.(4.77) is equivalent to Eq.(4.66) if we can equate θ2
s/2 to Σtr. An

explicit formula for θ2
s/2 is given by Rossi using the screened Rutherford DCS.

1

2
θ2

s = K

[
ln

(
θ2
1 + θ2

2

θ2
1

)
− 1

]
(4.78)

This is equivalent to Eq.(3.35) if we take η = θ2
1, 1 + η ≈ 1, and θ2 = 1. The first

condition is satisfied by the definitions given in chapter 2. The second condition is

clearly satisfied from previous arguments also given in chapter 2. The third condition

is not always satisfied in high energy, heavy charged particle transport applications.

However, it is noted by Rossi that θ2 = 1 when the formula in Eq.(3.12) increases

above 1. This only happens at sufficiently low energies however. Thus, we see that

the two formulations are indeed equivalent at lower energies, but they deviate slightly

from each other at very high energies.

4.3.3 Accuracy of the Fermi Approximation

Based on the first derivation of the Fermi approximation, we see that it can never

be more accurate than the Fokker-Planck approximation. Therefore, we will discuss

only the accuracy of the Fermi approximation with respect to the Fokker-Planck

approximation and all results obtained for the latter will apply to the limiting case

of the former. This will simplify our analysis later as it won’t be necessary to

carry around separate results for the two different approximations. We will now see

numerical evidence that the Fermi approximation is indeed as good as the Fokker-

Planck approximation for the accuracy that is needed in many calculations.

We consider first the Fermi approximation as it is given in Eq.(4.66) where the

parameter of interest is Σtr as it is given in Eq.(3.35). Very often the Fermi approxi-

mation is used in a condensed history setting where the particle is moved a fixed step

s, and the particles scattering angle is sampled from the distribution in Eq.(4.66) as
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discussed in section 2.3. Obviously, there will be additional error due to the sampling

interval, so several cases of varying s will be examined.

The first test case is a 10 cm thick slab with Σtr = 2.0 × 10−5 and Σt = 44000.

The Fokker-Planck approximation as given by the delta function representation is

observed to converge at λ∗ = 0.01. The Fermi distribution was used with step sizes

as shown in the figures. We see from Fig.(4.7) that the angular distribution due to

the Fermi approximation is not significantly different from the angular distribution

due to the Fokker-Planck approximation. However, the peak scattering angle is still

very small in this test case, so the Fermi approximation is valid even when the step

length is 5 cm.

The second test case is identical to the first except that Σtr = 2.0× 10−3. In this

case, there is much more scattering, and the beam is expected to spread much more

than in the previous test case. The results are shown in Fig.(4.8). However, we see

that the two approximations are nearly identical still, even for large step sizes. For

both cases, the error for the largest two step sizes is shown. We see that the error is

of the same order of magnitude in each case indicating that the effect of raising Σtr

is negligible when considering a step size since Σtr∆s << 1. If this quantity becomes

large, then we expect to see a large deviation between Fokker-Planck and Fermi since

the approximation of the unit sphere with a plane near µ = 1 would then cease to

be justified.

In many condensed history codes, a correction to the particles radial displacement

from the forward direction is not directly sampled at the end of a step. For this

reason, the step sizes are made small so that the trajectory may be accounted for

over very small distances. The reason for this is that many Monte Carlo codes allow

for very complicated geometry specifications, and condensed history methods require

special handling near these interfaces. Therefore, a proper treatment of the radial

redistribution near an interface becomes exceptionally difficult.
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Figure 4.7: Angular distributions for the Fokker-Planck approximation and the Fermi
approximation with varying step sizes for Σtr = 2.0× 10−5

Radial distributions for the previous two test cases were generated with no radial

displacement sampling. The results are shown in Fig.(4.9) for the first case and

Fig.(4.10) for the second case. The distributions are noticeably erroneous for step

sizes equal to or greater than 1 cm for both test cases. Furthermore we see that

the error is more pronounced for the first test case. This is not surprising since the

73



Chapter 4. Fokker-Planck and Fermi Approximations

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

θ

ψ
(θ

) 
si

nθ

 

 

Fokker−Planck
Fermi s=0.01
Fermi s=0.10
Fermi s=1.0
Fermi s=2.0
Fermi s=5.0

0 2 4 6 8 10 12 14 16 18 20
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

θ

|(
ψ

fp
 −

 ψ
fe

rm
i) 

si
nθ

|

 

 

Fermi s=2.0
Fermi s=5.0

Figure 4.8: Angular distributions for the Fokker-Planck approximation and the Fermi
approximation with varying step sizes for Σtr = 2.0× 10−3

distribution for that case is more peaked. However, we see that we are limited to

very small step sizes in both cases in order to resolve the radial distribution at the

end of the slab.

The numerical evidence demonstrates what is already well known; the Fermi
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Figure 4.9: Radial distributions for the Fokker-Planck approximation and the Fermi
approximation with varying step sizes for Σtr = 2.0× 10−5

approximation is as good as the Fokker-Planck approximation when the sampling

step sizes are made sufficiently small. The distribution of scattering angles due to

Rossi is nearly identical to the one used in the previous test cases with one exception.

He gives an upper bound to the limit of integration when computing the mean

square of the scattering angle. This upper bound is energy dependent, and thus
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Figure 4.10: Radial distributions for the Fokker-Planck approximation and the Fermi
approximation with varying step sizes for Σtr = 2.0× 10−3

fairly complicated to discuss generally. To see the effect of the parameter θ2, we

consider protons and alpha particles incident on tungsten metal. A plot of θ2 as

given in Eq.(3.12) is shown in Fig.(4.11). The upper bound on this angle is unity

as described in Rossi’s work. For both particle types, we see that the angle tends

toward zero like 1/
√
E after some initial region.
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Figure 4.11: Rossi’s upper bound θ2 for the validity of a Rutherford scattering for-
mula when used with a Gaussian formulation.

The initial region corresponds to the area where Rossi’s derivation overlaps with

the first derivation of the Fermi distribution. We note that the only relevant param-

eter to discuss in the two distributions is Σtr and θ2
s/2. A ratio of the value used in

Rossi’s distribution and Σtr is shown in Fig.(4.12) for protons and alphas incident

on tungsten. Though the parameter θ2 varies relatively quickly for the energy range

given, the ratio of the mean square scattering varies slower. The interpretation is

that Rossi’s derivation cuts off larger angle scattering, thus reducing the mean square

scattering angle. The overall effect is to shift angular distributions to the left and to

make radial distributions more peaked.

Numerical evidence of this fact can be easily demonstrated. We consider 1000

MeV protons incident on tungsten metal with thickness 1.0 cm. Then the value of

θ2
s/2 is about 0.62 from Fig.(4.12). We see the radial and angular distributions plotted

77



Chapter 4. Fokker-Planck and Fermi Approximations

10
−2

10
−1

10
0

10
1

10
2

10
3

0.6

0.7

0.8

0.9

1

1.1

E (MeV)

θ s2 /(
2σ

tr
)

 

 

Proton −> Tungsten
Alpha −> Tungsten

Figure 4.12: The ratio θ2
s/(2Σtr) in mean square scattering angles between the two

derivations for the Fermi approximation.

in Fig.(4.13) for the Fokker-Planck approximation, both Fermi approximations, and

the result obtained from running an analog Monte Carlo simulation. As expected, the

distribution due to Rossi is more forward peaked then the distribution derived from

the Fokker-Planck approximation. We see more evidence that the Fokker-Planck and

Fermi approximations are identical for identical Σtr.

The interesting result is that, though the Fokker-Planck distribution is very bad at

approximating the analog distribution, Rossi’s approximation appears as a correction

to the Gaussian since it is much closer to the analog distribution. This is the first

indication of a very intuitive fact. Any theory that seeks to obtain results based

on the first moment of the DCS will fail because the large angle scattering is only
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accounted for by an overall shift of the mean scattering angle away from 0. In Rossi’s

formulation, the large angle scattering is neglected in a systematic way such that the

shift is less severe.

In this way, we can make the peak of the Gaussian result move close to the peak of

the analog result by reducing Σtr giving the appearance of a better approximation.

However, we know from section 3.4 that the large angle scattering should not be

neglected. This conundrum leads to the conclusion that a Gaussian approximation

can seldom be an accurate description of high energy charged particle transport

processes.

4.4 Preliminary Conclusions

We have seen two highly favored approximations in the scattering angle distribution

over macroscopic distances. We saw indications of the lack of accuracy of the Fokker-

Planck approximations due to the slowly varying error term in Fig.(4.3). We note

that, for a given problem, Σtr is fixed and this error cannot be reduced by brute

force techniques such as the reduction of the mean free path in the delta function

representation. Also, no other representation will give better accuracy either.

The tendency is to believe that a converging of the Fokker-Planck solution while

adjusting λ∗ in a representation is a convergence to a true solution. However, this

is no more true than saying an iterative method for solving a system of equations

due to the finite element approximation is converging to the analytic solution. The

approximation of the methods still remain, and the error of solving the problem with

the representation is being reduced. Unlike the finite element analogy, there is no

way to fix the error of a Fokker-Planck approximation at runtime.

These facts may seem obvious, but their statement carries powerful conclusions.
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Many real world applications still use these or similar approximations to compute

charged particle densities. Much work is devoted to fixing up these approximations

to make them more accurate. The random hinge approximation in the EGS5 code[9]

and in Sandia National Laboratory’s ITS code[10] are notable examples. In that

approximation, a method of fixing up the radial distribution without using a radial

distribution sampling at the end of a condensed history step is developed.

Energy straggling approximations are similar in form to the approximations pre-

sented here. Some of the same conclusions can be drawn for energy straggling approx-

imations as what have been discussed here. The main difference is that the energy

straggling is approximated much better by a Gaussian approximation. Though the

error still exists, as we will see soon, it is less pronounced because energy redistri-

bution occurs monotonically on the real line while angular distribution occurs as a

random walk on the unit sphere. A good discussion of the effect of random motion

on the sphere is given by Peterson[26].

Other, more accurate multiple scattering theories exist. Some will be discussed

in chapters to come. However, the conclusions drawn here are a good lead into the

research that has been conducted for this thesis. They are the moment preserving

methods that were briefly introduced in section 2.4.
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Figure 4.13: Comparison of the Fokker-Planck, Fermi, and Rossi derived approxima-
tions with an analog Monte Carlo simulation.

81



Chapter 5

Regularization and Moment

Preserving Methods

So far we have seen how the singular nature of the elastic and inelastic DCS near zero

energy loss and scattering angles allow us to approximate the behavior of a particle’s

trajectory smoothly over macroscopic distances. The Fokker-Planck approximation

became a starting point for this analysis since it allowed us to replace the Boltzmann

scattering integral with a smooth diffusion operator. However, the applicability of

this approximation was shown to be very limited.

In formulating the Fokker-Planck approximation, we relied heavily on the trans-

port cross section defined in Eq.(3.35). Though we were able to argue the physical

significance of this parameter, it is no more than a moment of the elastic scattering

DCS. A moment of a distribution f(x) is typically defined as

fn =

∫
R

xnf(x)dx (5.1)

The first moment is what we would normally consider to be the mean of the distri-
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bution x. The central moments of a distribution are defined using the mean as

χn =

∫
R

(x− x)nf(x)dx (5.2)

The second central moment is the variance and the third central moment is the

skewness. The mean and the variance of a distribution are typically the two most

important pieces of information about that distribution since they measure central

tendency and scatter around the central tendency.

In a general sense, however, a smooth bounded function in a region can always

be described by its moments with some complete set of basis functions, typically

countably infinite in number. In quantum mechanics, this plays a central role in the

description of particle states, and thus there has been a large body of work devoted

to the subject. In our own context, we saw this with the Legendre expansion of

the DCS in Eq.(2.7) when we attempted to simplify the transport equation, and in

Eq.(2.11) and Eq.(2.12) when we wrote out the PN approximation.

In the context of the work given here, the transport cross section is the first of a

series of moments given by

ξe,n =

∫ 1

−1

(1− µ)nΣe(µ)dµ = Σe,0(1− µ)n (5.3)

and the stopping power and straggling coefficient are the first and second moments

of a series of moments given by

Qn ≡ ξin,n =

∫ Qmax

Qmin

QnΣin(Q)dQ = Σin,0Qn. (5.4)

The former will be known as the transport moments of the elastic cross section and

the latter will be known as the energy-loss moments of the inelastic cross section. In

section 4.2, the importance of these general moments were alluded to in the derivation

of the Fokker-Planck approximation. We will now present the higher order Fokker-

Planck expansion and further explore the importance that these moments have in

simplifying the high energy charged particle transport equation.
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5.1 Higher Order Fokker-Planck Expansion

The discussion of the higher order Fokker-Planck expansion will again follow the

work of Larsen and Leakes primarily[27]. We consider an arbitrary expansion of the

Legendre polynomials in Eq.(4.13) as follows.

Σe,k(µ0) =

∫ 1

−1

dµ0Σe(µ0)
J∑

j=0

P
(j)
k (1)

j!
(µ0 − 1)j

=
J∑

j=0

(−1)jP
(j)
k (1)

j!
ξe,j (5.5)

Then, it is conceivable to keep as many terms as we like. Consider a three term

expansion, one more than the usual Fokker-Planck approximation, given by

Σe,k(µ0) ≈ ξ0Pk(1)− ξ1P
′
k(1) +

ξ2
2
P ′′k (1)

= ξ0 −
k(k + 1)

2
ξ1 +

[k(k + 1)]2 − 2k(k + 1)

16
ξ2 (5.6)

We again recognize the eigenvalues of the spherical Laplacian operator, λk = k(k+1),

in each term. We can specify the action of LB on a spherical harmonic using the

higher order expansion giving

LBY
m
l (Ω) ≈

(
ξ1
2

+
ξ2
8

)
l(l + 1)Y m

l (Ω) +
ξ2
16

[l(l + 1)]2Y m
l (Ω) (5.7)

Then using the same correpsondance as before, we can rewrite this as

LBY
m
l (Ω) ≈

(
ξ1
2

+
ξ2
8

)
∇2

ΩY
m
l (Ω) +

ξ2
16

[∇2
Ω]2Y m

l (Ω) (5.8)

Therefore, we can write

LBψ =

(
ξ1
2

+
ξ2
8

)
∇2

Ωψ +
ξ2
16

[∇2
Ω]2ψ +O(ξ3) (5.9)

We see that a higher order approximation is given by a higher order partial

differential operator on the unit sphere. However, already we can see that the higher
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order approximation is not suitable. Consider the semi-infinite medium equation for

monoenergetic charged particles given by

∂ψ

∂s
(Ω, s) = LBψ(Ω, s) (5.10)

ψ(Ω, 0) = δ(µ− 1) (5.11)

This system may be solved formally by using an eigenfunction expansion of ψ using

spherical harmonics.

ψ(Ω, s) =
∞∑
l=0

l∑
m=−l

ψlm(s)Y m
l (Ω) (5.12)

ψlm(s) = exp [−(Σe,0 − Σe,l)s] (5.13)

For physically valid solutions, we must have ψ(Ω, s) → 0 as s→∞. Therefore, only

solutions with Σ0 − Σl > 0 are permitted. However, since we have

Σe,l =

∫ 1

−1

dµ0Σe(µ0)Pl(µ0) (5.14)

with P0(µ0) ≥ Pl(µ0) for −1 ≤ µ0 ≤< 1 and all l > 0, then we must have

Σe,l < Σe,0 (5.15)

for every l > 0. This means that the condition is always satisfied for any scatter-

ing kernel used for LB. However, the generalized Fokker-Planck operators are not

Boltzmann operators. If one replaces LB with (Σtr/2)∇2
Ω in Eq.(5.10), then the

Fokker-Planck approximation is obtained and the solution in Eq.(5.12) is the same

except with

ψlm(s) = exp

[
−Σtr

2
l(l + 1)s

]
(5.16)

We again have only negative eigenvalues, so the Fokker-Planck approximation is a

physically valid approximation to the Boltzmann transport operator. However, if we
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use Eq.(5.8) for the right hand side of Eq.(5.10), then we get the solution with

ψlm(s) = exp

[
−
(
ξ1
2

+
ξ2
8

)
l(l + 1)s+

ξ2
16

[l(l + 1)]2s

]
(5.17)

The eigenvalues become positive for

l(l + 1) > 2 +
8ξ1
ξ2

(5.18)

This obviously will occur for some sufficiently large l. Therefore, we cannot use

this approximation for highly forward peaked transport with general boundary con-

ditions. This gives us the indication that obtaining higher order truncations of

Eq.(5.5) is not a robust procedure for obtaining higher order approximation to the

Boltzmann scattering operator. Pomraning showed that the procedure given above

could be extended such that[33]

LBψ(Ω) =
J∑

j=1

aj,J(∇2
Ω)jψ(Ω) +O(ξJ+1) (5.19)

However, there is no reason to believe that an arbitrary approximation will lead to

stable solutions.

We recall that the Fokker-Planck approximation could be written in terms of

arbitrary Boltzmann type operators such that Σtr ≡ ξ1 was conserved and ξn << ξ1.

We now introduce a systematic method for doing the same thing for higher order

Fokker-Planck approximations. The difference, however, is that a perfect equivalence

between the higher order Fokker-Planck approximation is no longer desired as it was

in the previous context. Instead, we wish to find general operators, and eventually

Boltzmann type operators, that are equivalent to the higher order Fokker-Planck

approximation. The remaining degrees of freedom, which are infinite in number, are

used to stabilize the expansion while still maintaining an approximate equivalence

to the unstable expansion.
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5.2 Boltzmann Operator Regularization

Procedures

To begin, we propose an operator L∗n that will approximate the Boltzmann operator

LB up to nth order in ξ. For high energy charged particle applications, ξn is O(εn−1)

where ε << 1. It is usual to construct the operator such that

L∗nψ = LBψ +O(ξn+1) (5.20)

for any function ψ defined on the unit sphere. If this can be accomplished, then the

two operators are equivalent up to O(εn). For this reason, the eigenvalues are also

related by

λ∗n = λB,n +O(εn). (5.21)

The importance of this result is due to the work of Lewis[34]. He showed that, in an

homogeneous infinite medium with monoenergetic particles and bounded solution,

preserving the first n eigenvalues of the scattering operator is equivalent to preserving

the first n space angle moments of the solution. That is, the quantities∫
R

dr

∫
4π

dΩΩn1
1 Ωn2

2 Ωn3
3 r

m1
1 rm2

2 rm3
3 ψ(r,Ω) (5.22)

with

3∑
i=1

ni +mi = n (5.23)

are conserved. In our case, these quantities are conserved up to some number n, and

the remaining moments of the solution are conserved approximately with a leading

order error depending on the order of truncation.

The relationship in Eq.(5.20) is often obtained through an intermediate approxi-

mation such as the higher order Fokker-Planck expansion in order to get a rigorous
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expansion in transport moments. However, this is not always the case as will be seen

shortly. In any case, the operator L∗n may be used to form the approximation itself,

but often it is further shown to be equivalent to a Boltzmann type operator up to

O(εn). We will explore this method further by way of some examples.

5.2.1 Regularization of Larsen and Leakes

Larsen and Leakes proposed the operator

L∗2 = αL(I − βL)−1 (5.24)

L ≡ ∇2
Ω (5.25)

Expanding (I − βL)−1 gives formally

(I − βL)−1 =
∞∑

j=0

(βL)j (5.26)

and substituting this into Eq.(5.24) gives

L∗2 = αL+ αβL2 +O(αβ2) (5.27)

Preserving the first two terms in the expansion in Eq.(5.9) gives α and β in terms of

ξ1 and ξ2 up to O(ε2).

α =
ξ1
2

+
ξ2
8

+O(ε2) (5.28)

β =
ξ2
8ξ1

+O(ε2) (5.29)

Then given the scaling described previously, α is O(1) and β is O(ε). Using this

combined with Eq.(5.27) results in the equivalence described in Eq.(5.20).

L∗2ψ = αLψ + αβL2ψ +O(ε2)

= LBψ +O(ε2) (5.30)
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Also, the eigenvalues of L∗2 can be computed using the full expansion of (I − βL)−1.

L∗2Y
m
l (Ω) = αL(I − βL)−1Y m

l (Ω)

=
∞∑

j=0

αL(−βL)jY m
l (Ω)

=
∞∑

j=0

−αβj[l(l + 1)]j+1Y m
l (Ω)

= −αl(l + 1)
1

1 + l(l + 1)β
Y m

l (Ω)

The final equality holds for l(l + 1)β < 1. Clearly this is the case for sufficiently

small l since β is O(ε) and thus is much less than unity. This does not hold for very

large l, however, but this poses no problem since L∗2 = LB is only an asymptotic

equivalence anyhow. The constants α and β are given explicitly by preserving the

first three eigenvalues of the Boltzmann scattering operator. They are

α =
1

3

Σa1Σa2

Σa2 − Σa1

(5.31)

β =
1

6

3Σa1 − Σa2

Σa2 − Σa1

(5.32)

Σa1 = ξ1 = Σtr (5.33)

Σa2 = 3ξ1 −
3

2
ξ2 (5.34)

The previous analysis shows that the eigenvalues are all negative, so Eq.(5.24)

provides a useful approximation to the Boltzmann scattering operator. In a deter-

ministic setting, the operator can be used by letting

ψ1 = (I − βL)−1ψ0 (5.35)

and writing the transport equation as a coupled set of partial differential equations.

Ω · ∇ψ0 + (Σt − Σs0)ψ0 = αLψ1

ψ1 − βLψ1 = ψ0 (5.36)
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It can also be written as a Boltzmann type equation by using the following procedure.

Rewrite L∗2 as

L∗2 = αL(I − βL)−1

=
α

β
[I − (I − βL)](I − βL)−1

=
α

β
[(I − βL)−1 − I].

This is a Boltzmann operator if (I − βL)−1 can be written as an integral operator.

This is, of course, possible since I−βL is a second order partial differential operator.

Thus, it is possible to find a Greens function G(Ω · Ω′) such that

(I − βL)G(Ω · Ω′) = δ(Ω · Ω′ − 1) (5.37)

and

(I − βL)−1ψ =

∫
4π

dΩ′G(Ω · Ω′)ψ(Ω′) (5.38)

Explicitly, the Greens function for this operator is given by Larsen and Leakes as

G(Ω · Ω′) =
∞∑

j=0

2j + 1

4π

Pj(Ω · Ω′)

1 + βj(j + 1)
(5.39)

This has been a demonstration of how the generalized Fokker-Planck expansion

can be used to construct a regularized operator. It was also implicitly shown that

the whole procedure could be done using only the first two transport moments of the

DCS. The next example shows that the generalized Fokker-Planck expansion is not

necessary for this process.
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5.2.2 Generalized Fermi Expansion

The discussion here follows the work of Prinja[35]. In that work, it was shown that

the Fermi approximation could be given by an expansion of the form

LBψ =
∞∑

n=1

anξnL
n
Fψ (5.40)

 LF =
∂

∂η
+

∂

∂ξ
(5.41)

where the an are positive coefficients in the expansion. Note that the first order

approximation of LB is the Fermi approximation given in Eq.(4.60). Higher order

truncations of Eq.(5.40) give unstable solutions, much like the general Fokker-Planck

expansion.

To proceed with the regularization procedure, we propose the approximate scat-

tering operator

Gψ = α exp(βLF )ψ − αψ (5.42)

Then we may expand G using the Taylor series for the exponential function.

Gψ = αβLFψ +
αβ2

2
L2

Fψ +O(αβ3). (5.43)

To get an asymptotic equivalence of Gψ and LBψ, we require

α = 2
ξ2
1

ξ2
(5.44)

β =
1

4

ξ2
ξ1

(5.45)

Now we introduce the operator χ given by

χ(s) = exp(sLF ) (5.46)
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We can then write Gψ = αχ(β)ψ − αψ. Also, the following partial differential

equation holds for χ.

∂χ

∂s
= LFχ (5.47)

χ(0) = I, lim
η,ξ→∞

χψ = 0 (5.48)

This equation looks like a time dependent diffusion equation. Thus, the Greens

function is well known, and the solution is

χ(s)ψ =
1

4πs

∫ ∞

−∞
dη′
∫ ∞

−∞
dξ′ exp

[
−(η − η′)2 + (ξ − ξ′)2

4s

]
ψ(η′, ξ′) (5.49)

Plugging this into the expression for G with s = β gives the regularized operator.

LBψ ≈
α

4πβ

∫ ∞

−∞
dη′
∫ ∞

−∞
dξ′ exp

[
−(η − η′)2 + (ξ − ξ′)2

4β

]
ψ(η′, ξ′)−αψ(η, ξ) (5.50)

We may write this in terms of the physical variable µ by using 1−µ2 = η2 + ξ2 while

noting that µ is nearly 1 and thus 1− µ2 ≈ 2(1− µ).

LBψ ≈
α

4πβ

∫
4π

dΩ′ exp

[
−1− µ

2β

]
ψ(Ω′)− αψ(Ω) (5.51)

Note that this form is similar to the exponential representation of the Fokker-Planck

operator. Though this is likely to be just a coincidence, it might explain why the

exponential representation that we chose worked so well. In any event, we again see

that the Boltzmann operator can be made asymptotically equivalent to a different

operator of the Boltzmann type. However, the new operator is less singular since the

scattering kernel is a smooth function at µ0 = 1.

5.3 Moment Preserving Methods

In the previous section, we saw how different operators could be made equivalent

to the Boltzmann operator by equating coefficients in formal expansions. This can
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be a cumbersome procedure, especially if the expansions are of very high order.

The moment preserving method prescribes a much easier method for making two

operators equivalent up to an arbitrary order as long as the approximate operator is

of the appropriate form.

5.3.1 The Exponential and Discrete Models

To be more concrete, suppose we have two operators that are of the Boltzmann type.

We shall refer to them as LB1 and LB2. If both operators are sufficiently forward

peaked, then we may write

LB1ψ =
N∑

n=1

anξ1,nL
n
Fψ +O(εN1 ) (5.52)

LB2ψ =
N∑

n=1

anξ2,nL
n
Fψ +O(εN2 ) (5.53)

due to the generalized Fermi expansion. We see that, if ε1 << 1 and ε2 << 1, then

these two operators are asymptotically equivalent provided ξ1,n = ξ2,n for n < N .

Naturally, we may let one of the operators be the Boltzmann scattering operator that

we would like to approximate. The other operator could be of the same form as the

approximation give in Eq.(5.51) since we already know that this form is appropriate.

Then the condition for preserving the first two moments with the lower limit set

approximately to −∞ gives

α

2β

∫ 1

−∞
dµ exp

[
−1− µ

2β

]
(1− µ) = 2αβ = ξ1

α

2β

∫ 1

−∞
dµ exp

[
−1− µ

2β

]
(1− µ)2 = 8αβ2 = ξ2

The approximation of the lower limit poses no serious problem as long as the param-

eter β is found to be very small. Indeed, the solution to the two nonlinear equations
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given above gives,

α = 2
ξ2
1

ξ2
(5.54)

β =
1

4

ξ2
ξ1

(5.55)

which is the same solution as what was given by the renormalization procedure. This

is a comforting result. Also, we see that β is O(ε) by our assumptions about the

properties of the transport moments. Thus, setting the lower limit to −∞ poses no

serious problem, as expected.

From the delta function representation of the Fokker-Planck operator, we sup-

pose that the delta function could also be of a suitable form for approximating the

Boltzmann operator. Then, we have the representation

LB2ψ =

∫ 1

−1

dµαδ(µ− (1− β))ψ (5.56)

and the preservation of the first two moments gives

αβ = ξ1 (5.57)

αβ2 = ξ2 (5.58)

and the solution to these equations is

α =
ξ2
1

ξ2
(5.59)

β =
ξ2
ξ1
. (5.60)

It is interesting to see that, if we let ξ2 → 0, then we get the delta function repre-

sentation of the Fokker-Planck operator. Again, this is a comforting notion.

These approximations work nicely if we only want to preserve two moments, but

two moments may be inadequate. Consider two operators of the Boltzmann type
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LB1 and LB2. Then, by linearity, we may write

(LB1 + LB2)ψ ≡ LB3ψ =
N∑

n=0

an(ξ1,n + ξ2,n)LFψ +O(εN1 + εN2 ) (5.61)

ξ1,n + ξ2,n =

∫ 1

−1

dµ(1− µ)nΣ∗
e,1 + Σ∗

e,2 ≡ ξ3,n (5.62)

This gives us a means for stringing together an arbitrary number of approximate

scattering operators. Then, we may use the same procedure as before to preserve

moments with the combined operator and the Boltzmann scattering operator.

We see now that the only difference between a regularized scattering operator and

the Boltzmann scattering operator is the pseudo-DCS in the integral. For the sake

of transparency, we will speak only in terms of pseudo differential cross sections from

here on. We introduce the exponential elastic scattering model of order N = 2M .

Σ∗
e(µ) =

M∑
m=1

αm

βm

exp

[
−(1− µ)

βm

]
(5.63)

Also, there is the discrete elastic scattering model of order N = 2M .

Σ∗
e(µ) =

M∑
m=1

αmδ(µ− (1− βm)) (5.64)

The order of the pseudo-DCS is the number of free parameters, and thus the number

of moments that can be preserved. Based on the previous discussions, these models

can be used to get arbitrarily high order smooth approximations to the Boltzmann

scattering operator.

Since there is no change in the arguments made up to this point for the inelastic

scattering DCS, then we may simply introduce the exponential and discrete inelastic
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scattering models of order N .

Σ∗
in(Q) =

M∑
m=1

αm

βm

exp

[
− Q

βm

]
(5.65)

Σ∗
in(Q) =

M∑
m=1

αmδ(Q− βm) (5.66)

Preserving the first 2M moments of the DCS using each of these representations

gives the following system of 2M nonlinear equations to be solved.

M∑
m=1

αmβ
n
m = C(n)ξn 1 < n < 2M (5.67)

C(n) =

 1 : discrete

1/n! : exponential
(5.68)

These equations are difficult to solve in general because they are very ill conditioned

at high order. However, their solution can be linked to the classical quadrature

problem. Using this idea, Sloan developed an algorithm for efficiently computing

the solution to these equations for high orders[36]. For the purposes of this thesis,

investigations beyond N = 4 will not be presented. Therefore, analytic solutions

to Eq.(5.67) are known already, and Sloans algorithm is not needed. The analytic

solution for ωn = C(n)ξn for the elastic models and ωn = C(n)Qn for the inelastic
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models is

p =
ω3 − ω2ω4/ω3

−ω1 + ω2
2/ω3

(5.69)

q =
ω4 + ω2p

ω3

(5.70)

β1 =
1

2

(
q +

√
q2 − 4p

)
(5.71)

β2 =
1

2

(
q −

√
q2 − 4p

)
(5.72)

α1 =
ω1

β1

− ω2 − β1ω1

(β2 − β1)β1

(5.73)

α2 =
ω1 − α1β1

β2

(5.74)

From the form of the exponential and discrete models, we can immediately deduce

the transport physics. In each case, the total cross section becomes

Σ∗
t =

M∑
m=1

αm (5.75)

In a Monte Carlo setting, the discrete model contains M discrete angles or energy

losses that can be sampled randomly. The algorithm reduces to

1− µ, Q = βm
αm−1

Σ∗
t

< ξ <
αm

Σ∗
t

(5.76)

When using the exponential model, the algorithm becomes

1− µ, Q = −βm ln ξ
αm−1

Σ∗
t

< ξ <
αm

Σ∗
t

(5.77)

In both cases, α0 is taken to be 0 and ξ is a uniformly distributed random number

in the unit interval.

These relationships give us some insight as to what the pseudo-transport physics

looks like. Typically, Σ∗
t is much smaller than Σt. Therefore, there will be fewer

collisions per unit distance in a moment preserving method. Since we have preserved
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transport or energy-loss moments of the DCS, we expect this to be compensated by a

correspondingly larger average change of state per collision. We can quantify this by

introducing the average energy loss Q and average deviation of the scattering cosine

1− µ both given by the formula

Q, 1− µ =

M∑
m=1

αmβm

M∑
m=1

αm

(5.78)

To see our intuition in action, we consider the case of protons incident on a block of

tungsten. Then we may compute the parameters for each of the models as a function

of the proton’s incident energy. Doing so gives us the data needed to compute the

quantities given above. Figure 5.1 compares the mean free path obtained by using

the analog DCS to the mean free path obtained by using a 4 moment exponential

or a 4 moment discrete model with both elastic and inelastic scattering. From the

figure, we see that there is a major increase in the mean free path for all moment

preserving methods at high energies. At low energies, depending on the model and

the DCS, the mean free path can actually shrink below the analog mean free path.

We can identify at least two problems in Fig.(5.1). On the one hand, inelastic

pseudo differential cross sections become too large, resulting in very small mean free

paths. This is culminated by α parameters actually becoming negative. We note that

this doesn’t happen with a two moment model, but the mean free paths will still

shrink to very small values. On the other hand, elastic scattering pseudo-differential

cross sections become too small, and the resulting mean free paths too large. This

happens primarily because the moments of the DCS are much smaller in magnitude

for elastic scattering than for inelastic scattering. Each of these difficulties will be

considered in more depth soon. First, we look at the values for Q and θ = cos−1(µ).

They are shown for both the analog DCS and the corresponding pseudo-DCS in

Fig.(5.2).
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Figure 5.1: A comparison of the mean free path for the pseudo-DCS and the analog
DCS for both elastic and inelastic scattering.

As was expected, the average change in the particle’s state has increased for both

types of scattering. Since the mean free path for elastic scattering has increased to

very large values by using the pseudo differential cross section, the change in state is

much larger. The scattering angles are about 10-20 degrees on average. This is much

too large considering the scattering angles are about 0.01− 0.1 degrees per collision

on average. For inelastic scattering, the energy losses per collision are also larger, but

the values are physically realistic. However, at smaller energies, the average energy

loss per collision decreases to the same level as is seen with the analog DCS.
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Figure 5.2: A comparison of the mean energy loss and mean scattering angle per
collision for the pseudo-DCS and the analog DCS

One way to deal with the aforementioned difficulties is to use one of the equations

in Eq.(5.67) to artificially set the mean free path of the approximation. In effect,
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for a model of order N , we may preserve the first N − 1 moments. We consider a

pseudo-differential cross section with a free parameter introduced such that

αM =
1

λ∗
−

M−1∑
m=1

αm (5.79)

Then, we have explicitly,

Σ∗
e(µ) =

M−1∑
m=1

αm

βm

exp

[
−(1− µ)

βm

]
+

1

βM

(
1

λ∗
−

M−1∑
m=1

αm

)
exp

[
−(1− µ)

βm

]
(5.80)

The last term is not of the proper form to be a renormalized cross section. Therefore,

we have no rigorous backing to state that it can be used at all in the moment

preserving method. Nonetheless, we may use the first M − 1 terms to preserve the

first 2M − 2 moments as usual. The next moment is also preserved, but it is done in

such a way that the higher order moments may not be approximated quite as well.

We will analyze this more in the next section.

The practical way to introduce a free parameter is to use Eq.(5.67) for n < N

and introduce the auxiliary equation

M∑
m=1

αm =
1

λ∗
(5.81)

We can again find an analytic solution for M = 2. It is

p =
ω2

2 − ω1ω3

ω2
1 − ω2/λ∗

(5.82)

q =
ω2 + p/λ∗

ω1

(5.83)

β1 =
1

2

(
q +

√
q2 − 4p

)
(5.84)

β2 =
1

2

(
q −

√
q2 − 4p

)
(5.85)

α2 =
ω1 − β1/λ

∗

β2 − β1

(5.86)

α1 =
1

λ∗
− α2 (5.87)
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It is typically not useful to use this method with M = 1 since the degree of approx-

imation is roughly equivalent to that of the Fokker-Planck approximation.

5.3.2 Relationship between Moment Preserving Methods

and Renormalization of the DCS

Larsen and Leakes proposed a method to preserve eigenvalues of the DCS since the

eigenvalues are the important player in Lewis’s theorem. However, it is not difficult

to show that the moment preserving method preserves eigenvalues also. Consider

the eigenvalue equation for an arbitrary Boltzmann type operator.

LBY
m
l (Ω) = (Σs,l − Σs,0)Y

m
l (Ω) ≡ λB,lY

m
l (Ω) (5.88)

Using the definition of Σs,n with the finite Taylor expansion about µ = 1 for Pn(µ),

we get

λB,l =

∫ 1

−1

dµ

(
l∑

k=0

(
l

k

)(
−l − 1

k

)
1

2k
(1− x)k − 1

)
Σe(µ)

=
l∑

k=0

bk,lξk (5.89)

This tells us that preserving k transport moments of the DCS is equivalent to pre-

serving k eigenvalues of the DCS.

This result is for arbitrary scattering kernels. This would imply that a wide range

of pseudo-differential cross sections may be used if the higher order moments were

not important. We saw in Fig.(4.1) that the higher order transport moments do not

actually decay away very quickly, and in many cases they actually begin to increase

for sufficiently high n.

The renormalization procedures that were introduced in the previous section

help us approximate the remaining transport moments, and thus approximate the
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Figure 5.3: Comparison of the first ten moments of the Boltzmann DCS and the
discrete and exponential model pseudo-DCS of order 2 and 4.

remaining unpreserved eigenvalues. The generalized Fokker-Planck expansion, for

instance, gives a rigorous expansion of the Boltzmann operator in terms of the gen-

eralized transport moments as does the generalized Fermi expansion. The renormal-

ized Boltzmann operator that results has expansion coefficients that approximate

the true expansion coefficients for all orders greater than the order of the method N .

Figure 5.3 shows how the moments of the two moment and four moment discrete

and exponential models compare to the moments of the Boltzmann operator for

1700 MeV protons incident on tungsten. We see that the unpreserved moments of

our renormalized operators are indeed close to the Boltzmann moments for the four

moment model. Also, the approximation of the unpreserved moments gets better for

a higher order method in both cases. The higher order moments shrink to zero for

the two moment models in both cases making these approximations less accurate.
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Figure 5.4: Comparison of the first ten moments of the Boltzmann DCS and the
discrete and exponential model pseudo-DCS of order 3 with a varying mean free
path.

It is then logical to ask how well we are approximating the higher order moments

when we use the free parameter models. Figure 5.4 shows the same data as in

the previous figure except with the exponential model of order 3 on the left and
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the discrete model of order 3 on the right with various mean free paths. With the

exponential model, we see that the approximation becomes better as the mean free

path is increased, thus bringing it closer to the four moment mean free path. For

sufficiently large mean free paths, we see that the approximation can be worse than

the two moment model approximation since it appears to cause the higher order

moments to grow to arbitrarily large values when using the exponential model. This

may result in unphysical properties of the three moment exponential model in the

thin slab limit.

Curiously, we see that lowering the mean free path tends to make the unpreserved

moments less approximate for the discrete model. On the other hand, we know that

the four moment mean free path is very large. This may indicate that this model

hasn’t been properly renormalized. Nonetheless, it was chosen to take the form of

the delta function representation of the Fokker-Planck approximation, and it will be

left in this form throughout this thesis.

The relevant question becomes whether or not these higher order moments signifi-

cantly effect the solution to a given problem. Recall the solution to the monoenergetic

infinite medium problem given by Eq.(5.12). We see that the solution is a sum over

orthogonal modes, the spherical harmonics, weighted by the exponentials

ψlm(s) = exp(λls) (5.90)

λl = Σl − Σ0 = −
l∑

k=1

(
l

k

)(
l + 1

k

)
1

2k
ξk, l > 0 (5.91)

and λ0 = 0. The interpretation is that all initial conditions to this equation lead to

an isotropic solution as s→∞. At intermediate ranges, we can analyze the relative

magnitudes of the modes since a delta function source leads to equal weighting of each

mode at s = 0. Figure 5.5 is a comparison of the eigenvalues of the discrete moment

model at different orders to the Boltzmann operator eigenvalues. The eigenvalues of
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the Fokker-Planck operator are also included. Though all operators show at least a

slow divergence in the spectra compared to the Boltzmann operator, we see that the

higher order models can be very accurate up to fairly large eigenvalues.
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Figure 5.5: A comparison of the spectra of the various approximations to the Boltz-
mann operator.

As the magnitude of the eigenvalue gets larger, the corresponding mode becomes

less important in the solution. To understand the error of each approximation, we

can introduce the characteristic length scale of each mode defined by

sn =
5

λn

. (5.92)

This length scale assumes that the exponential has negligible value at five relaxation
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lengths (i.e. e−5 ≈ 0). We can also define the number of important eigenvalues at a

given penetration depth as

N(s) = n, sn+1 < s < sn. (5.93)

Figure 5.6 shows how these two quantities vary for the different approximations.

It is now very obvious that the Fokker-Planck model will never capture the trans-

port physics over any reasonable range. Furthermore, the number of non-negligible

modes is significantly higher at almost all length scales of interest for the 2 moment

models. Only for penetrations that are on the order of the particle’s range do the two

moment models have similar mode contributions as the Boltzmann operator. The

same arguments hold for the exponential model since the transport moments have a

similar structure.

5.4 Numerical Experiments with Moment

Preserving Methods

The results in this section can be broken down into three distinct categories. There

are straight-ahead approximations where the angular redistribution is ignored. The

corresponding transport equation for a semi-infinite medium becomes

∂ψ(s, E)

∂s
=

∫ Qmax

Qmin

dQΣin(Q,E +Q)ψ(s, E +Q)− Σin,tψ(s, E) (5.94)

ψ(0, E) = δ(E − E0) (5.95)
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Figure 5.6: The length scale of each mode and the number of non-negligible modes
for Fokker-Planck, discrete moment models, and the Boltzmann operator for 1700
MeV protons incident on tungsten.
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There is also the monoenergetic approximation where the inelastic scattering is ig-

nored. The equation is

∂ψ(s, E)

∂s
=

∫
4π

dΩ′Σe(Ω · Ω′)ψ(s,Ω′)− Σe,tψ(s,Ω) (5.96)

ψ(0,Ω) = δ(µ− 1) (5.97)

Then there is the full equation with angular redistribution and energy loss. These

will each be studied in order. It should be noted that numerical experiments for

electrons have been studied extensively by Harding[6, 37], Fichtl[38] and Franke[39].

Their conclusions are similar to the ones that I will give here. Thus, the focus in this

section will be numerical experiments with protons.

5.4.1 Inelastic Scattering with Straight-Ahead Transport

We consider Eq.(5.94) for 1700 MeV protons incident on tungsten metal. We’ve

used this test example for several of the figures so far, so we understand its behavior

and how it relates to electrons and other ions. We first consider the very thin slab

limit. Figure 5.7 compares the accuracy of each of the models when preserving both

two and four moments. From the figure, we see that the two moment model gives

very inaccurate results. The four moment exponential model is much more accurate,

confirming our notion that the moment preserving methods work better when more

moments are preserved. However, the error in the method is apparent even for the

four moment model. Furthermore, the mean free path decreases when more moments

are preserved. Further increasing the number of moments will lead to marginal gains

but larger run times.

Also, the drawback of the discrete model is apparent in the thin slab limit. The

discrete model cannot be used for thin slabs due to the appearance of discrete ar-

tifacts. They only show up due to the deterministic nature of the approximate
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Figure 5.7: Results for exponential and discrete models of order 2 and 4 for a 0.1 cm
thick medium.

scattering process. Fortunately, the discrete artifacts disappear when thicker media

are encountered.
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Figure 5.8: A comparison of the three moment models with varying mean free path
for protons incident on 0.1 cm of tungsten.

Figure 5.8 shows the same test case for the three moment model with a free
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Figure 5.9: A comparison of the three moment models with varying mean free path
for protons incident on 5.0 cm of tungsten.

parameter, dubbed simply the three moment model. We see that the accuracy of the

model increases as the mean free path decreases toward 0.005 cm. As the method

becomes more accurate, the solution tends toward the four moment model. Since this

is a very thin penetration, we see that the inaccuracy of the higher order moments

tend to give widely varying solutions based on the mean free path. From our earlier

discussion, we would expect to see this variation disappear for larger penetrations.

Indeed, Fig.(5.9) shows that the variation is mostly gone at a depth of 5 cm.

For deeper penetrations, the solutions tend toward the analog solution. This can

be seen in Fig.(5.10) where the penetration depth is 5 cm on the bottom and 20 cm on

the top. Only the 2 moment models fail to capture the solution over the interesting

range of energies. The three moment model captures the solution well since it is

close to a four moment model. We also see the exact solution to the Fokker-Planck

energy loss model in the 20 cm case. It appears to coincide with the 2 moment model

which is consistent since this model requires both the stopping power and straggling

coefficient, Q1 and Q2.
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Figure 5.10: Results for exponential and discrete models of order 2 and 4 for a 5.0
cm and 20.0 cm thick media.

We’ve seen that two moment models appear to work better as the penetration

depth increases. Since many applications only require knowledge of the dose distri-

bution, it is logical to ask if the two moment model is sufficient for dose calculations.

Figure 5.11 shows that this is indeed the case. The results are compared with a con-

tinuous slowing down run. We see that the CSD run leads to a very sharp peak while

higher order approximations lead to a much smoother, less pronounced peak. The
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Figure 5.11: Dose results for protons incident on tungsten metal using a CSD ap-
proximation, moment preserving models, and an analog model.

moment preserving models all work well in reproducing the dose distributions. Only

at the peak of the curve do the two moment models produce slight errors compared

to the analog.

To analyze the relative efficiency of the moment preserving models over the analog

method, we introduce the speedup defined by

τ =
tapprox.

tanalog

(5.98)

The speedup for each of the test cases shown so far are given in Table 5.1. The

loss in speedup with larger penetration depths is clearly due to the sharp increase in

mean free path. The worst case is found with the four moment exponential model,

where the speedup is barely greater than one. This can be remedied by using a
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three moment model. However, at small energies, the three moment model can give

negative parameters. Thus, we are left without a clear reliable method for keeping

the mean free path from blowing up.

Test Case Speedup

2 mom. disc. 2 mom. exp. 4 mom. disc. 4 mom. exp.

0.1 cm 647 488 485 152

5.0 cm 82.2 41.8 37.6 8.1

20.0 cm 63.9 37.3 33.1 8.1

Dose 24.2 11.9 11.5 1.4

Table 5.1: Speedup of moment preserving methods over the analog method for
straight ahead transport.

5.4.2 Monoenergetic Elastic Scattering

Much like the straight ahead transport model, the monoenergetic elastic scatter-

ing transport model allows us to isolate the approximation and study its accuracy

without the influence of the other physics. As mentioned earlier, the problems en-

countered when using a moment preserving methodology with elastic scattering is

that the mean free paths become very large. We can see this by consider the mean

free path for a two moment model from Eq.(5.54)

λ =
ξ2

C(2)ξ2
1

. (5.99)

For inelastic scattering, this resulted in physically reasonable mean free paths at large

energies, and very small mean free paths and small energies. Since Σtr is O(10−4)

and ξ2 is O(10−5) for the applications of interest to us, the resulting mean free path

is very large. In fact, it is of the same order of magnitude as the proton’s range for

very high energy protons incident on tungsten based on data given by Janni[40].
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The result of dealing with this difficulty is that we require the use of the free

parameter model in order to generate physically reasonable results. On the other

hand, we are using the model to tune the mean free path down instead of up. The

extent of the difference between λ∗ and the mean free path that preserves exactly four

moments is large enough that we expect the three moment model to only preserve

three moments rigorously.

Preliminary tests using the three moment model showed that adjusting the mean

free path in the range of 0.001 up to 0.1 resulted in identical angular distributions.

Therefore, the selection of the mean free path is mostly arbitrary up to this point,

and λ∗ was chosen to be 0.01 for all of the results presented here. Figure 5.12 and

Figure 5.13 show how the angular and radial distributions converge with decreasing

mean free path. The test cases for these figures were identical to the test cases used

to do the similar study with the Fermi model shown in Fig.(4.7) to Fig.(4.10).

The total cross section for those two test cases was Σt = 44000 and the transport

cross section was Σtr = 2 × 10−3 in the first case and Σtr = 2 × 10−5 in the second

case. In both cases, the penetration distance was 10 cm. From Fig.(5.12) we see

that the previous statement is confirmed. A significant discrepancy between the

results doesn’t occur until the mean free path of the moment preserving method

rises above 0.1. The same result is obtained in the second case when angular and

radial spreading is much smaller. The indication is that the convergence, like in

the case of the Fermi distribution, depends more on the length scale of the problem

and is nearly independent of the relative magnitude of the scattering parameters.

Fig.(4.7) to Fig.(4.10).

Unlike the Fermi distribution, we see that the angular distribution convergence

is highly correlated with the radial distribution convergence. The interpretation

that will prevail over the course of this section is that the accuracy of the angular

distribution is indicative of the accuracy of the radial distribution. The next few
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Figure 5.12: Convergence of the exponential model of order 3 for varying mean free
path with Σt = 44000 and Σtr = 2× 10−3

results will solidify this hypothesis. The intuitive reason why the moment preserving

methods have correlated radial and angular distributions is that, when we preserve

angular moments of the solution, we are preserving the same number of spatial

moments of the solution too.

The same hypothesis does not hold for the Fermi distribution because of the fixed

step that is introduced and the lack of radial correcting of the method that we have

116



Chapter 5. Regularization and Moment Preserving Methods

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
θ

0

0.2

0.4

0.6

0.8

ψ
(θ

)

λ=0.01
λ=0.1
λ=1.0

0 0.05 0.1 0.15 0.2 0.25
r (cm)

0

5

10

15

20

25

30

φ(
r)

λ=0.01
λ=0.1
λ=1.0

Figure 5.13: Convergence of the exponential model of order 3 for varying mean free
path with Σt = 44000 and Σtr = 2× 10−5

presented. In this context, it is much like the methods used in modern condensed

history. The reliance is on the angular distribution being sampled often enough

that the radial distribution is nearly correct over long distances. However, even in

the absence of of other approximations, the Fermi model will have an increasing

error with larger penetrations that is O(∆s), much like a discretization error in

deterministic methods.

117



Chapter 5. Regularization and Moment Preserving Methods

The accuracy of the Fokker-Planck approximation was considered earlier, and

much of the discussion stemmed from the work of Larsen and Börgers[25]. Their

work became a benchmark on the accuracy of the code developed for this research.

In their paper, they considered parameters typical of high energy electrons incident

on a semi-infinite medium of water. Thus, they used Σtr = 0.05 and Σt = 11000.

Working backwards, this corresponds to K = 3.41 × 10−3 and η = 1.55 × 10−7 in

Eq.(3.32). The results that they obtained matched our results perfectly. They are

shown in Fig.(5.14) along with the discrete and exponential models of order 3.

On the left, we have the radial distributions of particles from the center of the

incident beam. On the right, we have the angular distribution normalized to the

differential ψ(θ) = 2π sin θ Θ(θ). We see that the moment preserving methods

give slightly better solutions for both distributions. This is implicitly due to Lewis’s

space-angle moments theorem. We preserve more moments of the solution by getting

more eigenvalues correct indirectly through the transport moments of the DCS. It

is no surprise that a two moment model correctly preserves more transport physics

than the Fokker-Planck model.

The important thing to carry forward from the previous figure is that, for electron

physics, the Fokker-Planck method has very poor accuracy, and the three moment

models are only slightly better. The logical question to ask is if similar results are

obtained for heavier charged particles. Figure 5.15 is a reproduction of Fig.(4.13)

with the moment preserving results overlaid on the other results. We recall that this

result was for 1000 MeV protons on 1 cm of tungsten metal.

We see that Fig.(5.15) is similar to Fig.(5.14) structurally. Again, the moment

preserving methods do slightly better at approximating the analog solution than the

Fokker-Planck method. However, now we see that the distribution due to Rossi is

apparently better than the moment preserving methods. This apparent improvement

is only due to the neglect of large angle scatter implicit in the Rossi distribution.
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Figure 5.14: A comparison of the moment preserving methods with the Fokker-
Planck model and the analog model for the benchmark problem.

Therefore, we artificially remove particles from the tail of the distribution and put

them into the peak of the distribution. This procedure cannot possibly have the

appropriate deep penetration solution because it is tantamount to setting the first

moment, Σtr to a smaller value.

We consider successively deeper penetrations as a purely academic exercise. Ob-

viously, the loss in energy due to inelastic collisions will render the results invalid

since the energy effects of K and η will creep into the analog solution. However,
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Figure 5.15: A comparison of the moment preserving methods with the Fokker-
Planck model, Rossi’s model, and the analog model for 1000 MeV protons incident
on 1cm of tungsten.

it is a useful limiting case to consider. Figure 5.16 shows the angular distributions

obtained for the moment preserving methods, the Fokker-Planck method and the

analog method with a penetration of 20 cm. Figure 5.17 and Figure 5.18 are the

results obtained for these methods as well as the method due to Rossi for depths of
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100 cm and 200 cm respectively. Since the analog method is very expensive, its result

was not obtained for the 200 cm penetration. It is not a stretch to believe that the

moment preserving method is no worse at approximating the result for the 200 cm

penetration then it is for the 100 cm penetration. In each case, we are considering

1700 MeV protons incident on tungsten.
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Figure 5.16: Analog and moment preserving results for 1700 MeV protons incident
on 20 cm of tungsten.

As noted before, the Rossi distribution doesn’t give accurate results for very deep

penetrations because of its neglect of the large angle scattering. In Fig.(3.7), we see

that the large angle scattering will play a role with most particles within 100 cm of

penetration for the example problem given here. On the other hand, the moment

preserving methods have the appropriate limit for large penetrations. However, there

is still a significant discrepancy between the moment preserving solutions and the

analog solution, even at 100 cm. Nevertheless, they are still much more accurate

than the Fokker-Planck solution at the same depth.
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Figure 5.17: Analog and moment preserving results for 1700 MeV protons incident
on 100 cm of tungsten.
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Figure 5.18: Moment preserving results for 1700 MeV protons incident on 200 cm of
tungsten.
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5.4.3 Results for Elastic and Inelastic Combined Scattering

Due to the decomposition of energy-loss and angular spreading, there are relatively

few new issues to discuss for a combined treatment of inelastic and elastic scatter-

ing. The most important issue to address is the relative frequency of inelastic and

elastic scattering. This issue is relevant to condensed history algorithms too. They

have found empirically that roughly 100 angular redistribution substeps are required

per energy straggling step in the MCNP5 handling of electron transport. We will

investigate the necessity of this type of handling with moment preserving methods.

Assuming that the performance of the moment preserving methods holds for

problems of different energy (while remaining monoenergetic problems), the whole

problem can be thought of as streaming with scattering and no energy-loss covered

by the discussions on monoenergetic transport and relatively infrequent energy-loss

collisions. This interpretation assumes that elastic scattering is the dominant process.

In Fig.(5.19), we see that this is the case since the ratio of the elastic to the inelastic

total cross section is greater than 50 at all energies for protons and heavier particles.

The ratio remains fairly constant for very large ranges of energies, and changes very

little with the size of the incident ions. At lower energies, the ratio increases very

sharply. However, we recall that at this range of energies, the Rutherford scattering

model begins to lose its validity.

There is no reason to believe that we should preserve this ratio in our moment

preserving approach since the total cross section doesn’t enter anywhere into the

theory. However, we see that elastic and inelastic scattering can be linked through

the the spatial spreading of the beam. On the one hand, a decrease in energy tends

to increase average scattering angles at discrete elastic collisions and thus spatial

spreading of the beam over small distances. On the other hand, increased spatial

spreading makes the effective path length of the particle grow as compared to the
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Figure 5.19: Ratio of elastic total cross section to inelastic total cross section for
protons, alpha particles, and carbon ions for energies below 500 MeV.

straight-ahead transport model. This will lead to more inelastic collisions and hence

more energy loss.

Unfortunately, the result due to Lewis that we’ve relied so heavily on thus far does

not hold for the combined problem. We have seen that as λ∗ gets very small for the

three moment model in the elastic problem, the spatial distribution for the pseudo-

transport problem converges to some distribution at a given penetration. We may

also say that, in the limit as λe → 0, for fixed λin, we arrive at a problem equivalent

to monoenergetic transport in between inelastic collisions. Therefore, we conclude

that we can resolve the appropriate spatial spreading between inelastic collisions if

we at least let λ∗e << λ∗in. At this point, it becomes important to understand how

small λ∗e/λ
∗
in needs to be since smaller mean free paths lead to larger run times.

To study this effect, we consider the 5 cm penetration with both elastic and

inelastic scattering. To keep consistent with the previous analysis of this problem,

we will use a four moment discrete model for inelastic scattering and a three moment

discrete model for elastic scattering. The energy spectrum results for varying λ∗e/λ
∗
in

are shown in Fig.(5.20) and the angular distributions are shown in Fig.(5.21).
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Figure 5.20: Energy spectra for 1700 MeV protons incident on 5 cm tungsten using
the analog method and the discrete method of order 3 with varying λ∗e/λ

∗
in.

The surprising result is that the solution changes very little with varying λ∗e. Only

when the elastic mean free path increases above the inelastic mean free path does the

angular distribution begin to deviate from the limiting distribution (i.e. distribution

for λ∗e → 0). The energy distribution is less effected by the changing mean free path.

This is likely due to the loose coupling between the inelastic cross section and the

angular spreading effects. That is, the energy spectrum is effected by a larger effective

range due to the radial spreading and this larger range is effected only slightly by

the changing mean free path of the elastic scattering. We will consider the combined

effect more in the next chapter. For now, it suffices to say that the mean free path

of the elastic and inelastic scattering cross section is roughly uncorrelated at higher

energies.
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Figure 5.21: Angular spectra for 1700 MeV protons incident on 5 cm tungsten using
the analog method and the discrete method of order 3 with varying λ∗e/λ

∗
in.

5.5 Moment Preserving Summary

We have seen that moment preserving methods can be a powerful way of simulating

highly peaked process in high energy charged particle transport physics efficiently.

However, the method suffers from an inability to reliably provide physically reason-

able mean free paths or even physically valid mean free paths. This is due to the

very large or very small parameters that result from solving the system of equations

in Eq.(5.67). In some cases, the equations can even give negative parameters when

more than one pseudo-DCS is used. The three moment model can help mitigate

problems such as these, but it suffers from negativity in the parameters as well.

Also, we find that the elastic scattering DCS is still very difficult to model with
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the moment preserving methods. The reason is that the large angle scattering tail

falls off very slowly. We saw that this was an issue for the Fokker-Planck model as

well. It became clear in this chapter that this difficulty stemmed from the higher

eigenvalues of the operators that were not being rigorously preserved. To get a good

enough approximation over the ranges of interest for elastic scattering, as many as

25 moments would need to be preserved. Of course this is possible with the moment

preserving method, but it would defeat the purpose of the approximation because

the mean free path of the moment preserving cross sections would shrink to values

comparable to the mean free path of the analog DCS.

As with the Fokker-Planck approximation, the conclusion is that the moment

preserving method cannot be used by itself for elastic scattering. The intuitive

reason is that the non-negligible large angle scattering is accounted for only by a

slight increase in the average scattering angle, the average squared scattering angle,

and so on. The result is to overestimate the scattering and radial spreading at

shallow depths. In order for the distributions of the moment preserving method

to converge to the distributions of the analog method, we need to let the particles

penetrate deep enough so that the analog distribution can “catch up” to the moment

preserving distribution. We will now consider ways in which we can speed up the

convergence of the approximation without sacrificing computing time by preserving

more moments.
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Hybrid Methods

The object of developing a hybrid method is to isolate the problematic portion of the

DCS and treat it by another means. In our current problem, we have seen that the

problematic portion is likely due to the large angle scattering tail of the DCS. Thus,

the investigations of this chapter will focus on the isolation of the tail of the scattering

distribution, often dubbed the smooth part, from the forward peaked portion of the

scattering distribution, called the singular part.

Early attempts to isolate the smooth part of the distribution led to the successful

Boltzmann Fokker-Planck operator. A thorough investigation of this first attempt

will be analyzed in detail so that we may understand what further work may need

to be done beyond this approximation. We will use this method as a starting point

for the generalized Boltzmann Fokker-Planck approximation. Other hybrid meth-

ods will also be considered. Again, the focus will be on the elastic scattering of

heavy ions. Hybrid methods for electrons have been treated extensively by other

researchers, and their work won’t be repeated here. Also, we have seen that moment

preserving methods alone are sufficient for treating the energy loss of protons and

heavier particles at high energies. Though hybrid methods are likely to be more
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accurate for inelastic scattering, the importance of treating inelastic scattering is not

as high as the importance of treating elastic scattering.

6.1 DCS Decomposition Methods

We may expand the integral term of Eq.(5.96) to obtain

∂ψ(s, E)

∂s
=

∫ 2π

0

dθ′
∫ µ∗

−1

dµ0Σe(µ0)ψ(s,Ω′)

+

∫ 2π

0

dθ

∫ 1

µ∗
dµ0Σe(µ0)ψ(s,Ω′)− Σe,tψ(s,Ω). (6.1)

If we let µ∗ be very close to 1, then the first integral represents the smooth part of

the scattering DCS and the second integral represents the singular part. In a cutoff

approximation, we treat the smooth part exactly and we use an appropriate approxi-

mation for the singular part. It seems intuitive that the approximate operators from

the last chapter should work well for approximating the singular part of the DCS.

Let 1−µ∗ = 10−5 as an example. Then, we may plot the moments of the singular

part of the DCS for protons incident on tungsten. The results are shown if Fig.(6.1).

The cutoff moments now fall much more quickly with moment number then before.

Indeed we may show that the cutoff DCS moments, ξ∗n will never start increasing as

n → ∞. This is exactly the sort of limit that we are considering when we use the

Fokker-Planck approximation.
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Figure 6.1: Cutoff transport moments, ξ∗n, for protons incident on tungsten with
1− µ∗ = 10−5

6.1.1 Boltzmann Fokker-Planck Approximation

The most widely used hybrid approximation is the Boltzmann Fokker-Planck equa-

tion. For this approximation, we have

∂ψ(s, E)

∂s
=

Σ∗
tr

2
∇2

Ωψ(s,Ω) +

∫ 2π

0

dθ′
∫ µ∗

−1

dµ0Σe(µ0)ψ(s,Ω′)−Σ∗
t,eψ(s,Ω) (6.2)

with

Σ∗
t,e =

∫ µ∗

−1

dµΣe(µ) (6.3)

Σ∗
tr =

∫ 1

µ∗
dµ(1− µ)Σe(µ) (6.4)
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This method has been used successfully in place of the Fokker-Planck approxima-

tion. Since this equation treats the large angle scattering exactly, the Fokker-Planck

operator is left to treat a scattering operator that falls off much more quickly. Thus,

its validity is often not questioned for this approximation.

Recall the error in using the Fokker-Planck operator given in Eq.(4.25).

LBψ(Ω)−∇2
Ωψ(Ω) ∝ var(µ0)

1− µ0

(6.5)

We saw that this error fell off very slowly with decreasing 1− µ0. In particular, the

value given by Eq.(6.5) for our test problem, 1700 MeV protons incident on tungsten

where 1 − µ0 ≈ 10−9 is about 0.1. Figure 6.2 shows how the leading order error

behaves for this same test problem as a function of 1 − µ∗. From the figure, it is

clear that the error of the Fokker-Planck approximation falls off much more quickly.

This is to be expected since the singular part falls off infinitely fast at µ = µ∗.

The trade-off that is introduced with varying µ∗ is the amount of time required

to simulate the smooth part of the DCS as µ∗ → 1. Figure 6.3 shows how the mean

free path varies with increasing µ∗. If we require a mean free path that is O(10−2) at

the energy ranges shown in the figure, we see that we can only let 1− µ∗ ≥ 10−5 at

lower energies and 1−µ∗ ≥ 10−7 at higher energies. Using these values for µ∗ would

apparently result in a small truncation error if we use Fig.(6.2) as a guide.

Even if we are happy with this prescription, there is no reason why we couldn’t

use a higher order approximation for the singular part of the DCS. In fact, it seems

necessary to use a higher order approximation to obtain an equal or lower error if we

require a reduction in µ∗. There is no reason to believe that the mean free path will

not increase to unacceptably high values for certain energies or for other particles.

Indeed, we have seen that larger ions and lower energies lead to larger mean free

paths for the analog DCS. The scattering is more forward peaked also, but we have

seen that this does not mean the Fokker-Planck approximation is more accurate.
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Figure 6.2: Leading order error of the Fokker-Planck approximation for protons
incident on tungsten at various energies as a function of the cutoff 1− µ∗.

On the contrary, we have seen that Fokker-Planck is as bad for protons as it is

for electrons even though the scattering is much more forward peaked for protons.

Thus, we expect that there will be smaller mean free paths required when using the

Boltzmann Fokker-Planck operator for heavier ions.

6.1.2 Generalized Boltzmann Fokker-Planck Approximation

In any case, the need for higher order approximations for the peaked part of the

DCS is clear. We introduce the approximation in the same way as we did for the

Boltzmann Fokker-Planck approximation. We write it here in the operator notation
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Figure 6.3: Mean free path of the smooth part of the DCS for protons incident on
tungsten at various energies as a function of the cutoff 1− µ∗.

introduced in the last chapter.

∂ψ(s, E)

∂s
= L∗Bψ(s,Ω) +

∫ 2π

0

dθ′
∫ µ∗

−1

dµ0Σe(µ0)ψ(s,Ω′)− Σ∗
t,eψ(s,Ω) (6.6)

The cross sections are defined the same in this equation as before. The operator L∗B

is any moment preserving approximation for the singular part of the DCS. That is,

we define the transport moments for the singular part as

ξ∗n =

∫ 1

µ∗
dµ(1− µ)nΣe(µ) (6.7)

The higher order approximations implicitly preserve more eigenvalues of the singular

DCS, and they are much better at approximating the remaining eigenvalues. There-

fore, it is necessarily a better approximation than the Fokker-Planck approximation.
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Figure 6.4 shows the values obtained for the mean free path and θ for protons

incident on tungsten using the discrete model of order 2 and order 4. Unlike our

previous treatment of the moment preserving models, the parameters obtained for

the cut off DCS are physically reasonable. The mean free path is not too large and

the average scattering angle is small enough to be valid for high energy ion transport.

These parameters are indicative of those obtained for other moment preserving

models. The exponential model tends to give nearly equivalent parameters as the

discrete model because the moments fall of very quickly. Thus, the C(n) factor in

Eq.(5.67) has little effect on the solution to those equations. The three moment

model may also be used to approximate the singular part of the DCS. We have seen

that the accuracy of the three moment model is bracketed by the accuracy of the

two moment and four moment models for a full moment preserving treatment. We

expect this result for the treatment of the singular part as well.

6.1.3 A Smooth Decomposition of the DCS

Often times it is very inconvenient to treat the integral decomposition in the ways

depicted so far. The discontinuity at µ∗ that is introduced can cause problems, for

instance, with a deterministic treatment of high energy charged particle transport.

The well know Gibbs phenomena will occur at the discontinuity when attempting

to expand the smooth part of the DCS in Legendre polynomials. This is obviously

not a problem for Monte Carlo calculations since the smooth part is just as easy to

sample from as the entire DCS.

If a smooth decomposition is desired, the smooth part can be accounted for by
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Figure 6.4: Mean free path and θ of the discrete model of order 2 and 4 for protons
incident on tungsten with 1− µ∗ = 10−5.

introducing the DCS given by

Σ∗
e(µ0) =

K(E)

(1 + 2η∗(E)− µ0)2
+

M∑
m=1

αmF (µ0, βm). (6.8)
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The functions given by F (µ0, βm) are the normalized functions given by either the

discrete representation or the exponential representation. They could also be given

by some other pseudo-differential cross section that has yet to be discovered. The

value of η∗ is a synthetic scattering parameter that is chosen by the user to yield a

large mean free path.

The moment preserving method applied to this new approximation is a very sim-

ple extension of the previous treatment. To avoid conflicting notations, we introduce

the transport moments of the smooth DCS

ξ∗∗n =

∫ 1

−1

dµ
(1− µ)nK(E)

(1 + 2η∗(E)− µ)2
(6.9)

These moments are as easy to compute as the moments ξn of the analog DCS. Once

obtained, we may use Eq.(5.67) to get the remaining parameters with ξn replaced by

ξn − ξ∗∗n .

This is equivalent to preserving moments of the “difference DCS” given by

ΣD(µ) =
K(E)

(1 + 2η(E)− µ0)2
− K(E)

(1 + 2η∗(E)− µ0)2
, η∗(E) ≥ η(E) (6.10)

The condition follows from the requirement that η∗ is chosen to yield a larger mean

free path combined with Eq.(3.34). This DCS has some interesting and often not

obvious properties. First, we can prove that it is always positive. Indeed we get

ΣD(µ) = K

[
(1 + 2η∗ − µ0)

2 − (1 + 2η − µ0)
2

(1 + 2η(E)− µ0)2(1 + 2η∗ − µ0)2

]
= 4K(η∗ − η)

[
1− µ0 + (η + η∗)

(1 + 2η(E)− µ0)2(1 + 2η∗ − µ0)2

]
(6.11)

which is always positive for η∗ > η. From the form of Eq.(6.11), we can argue that

the difference DCS is also nearly zero for µ0 sufficiently far from 1 if η∗ is small.

Then we would have

ΣD(µ) ≈ 4K(η∗ − η)
1

(1− µ0)3
(6.12)
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and η∗ << 1 implies η∗ − η << 1. If η∗ is chosen arbitrarily close to η, then we

obtain the analog DCS for the smooth part of Eq.(6.8). The remaining parameters

will shrink to zero as this occurs. At the other extreme, η∗ →∞ would result in an

isotropic smooth part with a negligible mean free path, and the remaining parameters

would be nearly identical to those obtained by a full moment preserving treatment.

Thus, we have a scheme that allows us to choose our degree of approximation where

the approximation can never be worse than the usual moment preserving approach.

It is usual to choose the mean free path of the smooth part initially before treating

the remaining parameters. In particular, if we would like to have a mean free path

given by λ∗ for the smooth part, then it can be shown using Eq.(3.34) that

η∗(E) =

√
1 + 2K(E)λ∗

2
− 1

2
(6.13)

Of course, we can also use a three moment model with a different mean free path

specified to approximate the difference cross section. Therefore, we actually have the

potential for two degrees of freedom in the specification of the smooth decomposition.

The total mean free for the problem becomes

λ∗∗ =

[
1

λ∗
+

M∑
m=1

αm

]−1

(6.14)

Using a three moment model for the peaked part, the mean free path is fully specified

by the user. We will see soon that the mean free path for the monoenergetic case

is driven almost exclusively by the length scale of the problem as opposed to the

physics. Therefore, we can get speedups of thousands or higher!

6.1.4 Spectral Analysis of the Singular DCS

It is reasonable to ask whether higher order treatments are even necessary. To answer

this question, we may compute the eigenvalues of the singular part of the DCS and for

137



Chapter 6. Hybrid Methods

the approximate operators as we did in section 5.3.2. Since the transport moments

fall off very quickly, we see from Eq.(5.89) that the eigenvalues change very slowly.

Since we would like for λ → −∞ very quickly so that the approximate modes are

damped out very quickly, we find that our moment preserving approach may have

problems converging to the true solution as the penetration of the medium increases.

However, since we are approximating the higher modes with a greater accuracy, this

does not pose a problem.

Figure 6.5 shows the first 400 eigenvalues computed for the Boltzmann operator

with 1700 MeV protons incident on tungsten and 1 − µ∗ = 10−5. The length scale

of the eigenvalues as introduced in Eq.(5.92) is also shown in the figure. Unlike the

full Boltzmann operator, where the higher order transport moments increase very

sharply after some initial number, the eigenvalues increase very slowly due to an

almost negligible contribution from the higher order moments. The corresponding

length scale decreases slowly with eigenvalue as well.

We see that approximately 50 eigenvalues are important for resolving the solution

over ranges of interest (i.e. the range of a 1700 MeV proton in tungsten). We look

at the error in the first 50 eigenvalues for the Fokker-Planck approximation, the 2

moment discrete model, and the 4 moment discrete model in Fig.(6.6). Though the

errors are small in each case, we see that there is a slight contribution in error over

several modes. The accumulation of these errors could contribute to an inaccurate

solution for various penetration depths. On the other hand, the 4 moment discrete

model has eigenvalues that are equal to the eigenvalues of the Boltzmann operator

to within machine precision (≈ 10−15) for almost all eigenvalues of interest.

We may similarly analyze the eigenvalues of the three moment models for ap-

proximating the singular part of the DCS. The results of computing the relative

error of the eigenvalues of the three moment model using various mean free paths

for 1700 MeV protons incident on tungsten are shown in Fig.(6.7). The astonishing
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Figure 6.5: Eigenvalues and their length scale for the singular portion of the DCS
for 1700 MeV protons incident on tungsten with 1− µ∗ = 10−5.

fact is that the eigenvalues retain the same accuracy regardless of the mean free path

chosen. Furthermore, the accuracy of the three moment models is perfectly centered

between the two and four moment models. This is a direct consequence of the rapid-
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Figure 6.6: Relative error of the eigenvalues of the approximate operators for 1700
MeV protons incident on tungsten with 1− µ∗ = 10−5.

ity at which the higher order moments fall off with moment number n. The accuracy

of the first few moments will dominate the accuracy of all of the eigenvalues due to

the summation formula given in Eq.(5.89).

We have seen sufficient evidence to suggest that our decomposition schemes are

very accurate for treating a highly peaked DCS. Also, we have seen that the accuracy

of the methods can be much higher for a simple two or three moment model then

for the Fokker-Planck model when approximating the peaked part of the DCS. We

will now consider some numerical experiments to solidify these ideas.
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Figure 6.7: A comparison of the accuracy of the eigenvalues of the two moment,
four moment, and three moment models with varying mean free path for 1700 MeV
protons incident on tungsten with 1− µ∗ = 10−5

6.2 Numerical Experiments with Hybrid Methods

As a preliminary test, we consider the simulation of just the peaked part of the DCS.

That is, we let

Σe(µ) =


K(E)

(1+2η(E)−µ)2
: µ > µ∗

0 : µ < µ∗
(6.15)

In a Boltzmann Fokker Planck model, this represents the portion of the DCS that

is being approximated. We’ve seen that 1 − µ∗ = 10−5 represents a good tradeoff

between run time and accuracy. Thus, we will use this value for the example.
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Figure 6.8: A comparison of the accuracy of the moment preserving methods with
the Fokker-Planck method when simulating just the singular part of the DCS for
1700 MeV protons incident on 0.5 cm tungsten.

The results of a simulation using this cutoff DCS for 1700 MeV protons incident on

0.5 cm of tungsten are shown in Fig.(6.8). We see that, even though the leading order

error of the Fokker-Planck approximation is small, the Fokker-Planck approximation

is still fairly poor at capturing the solution to the problem. We can, of course,

get better accuracy with a larger µ∗, but this would result in a larger run time for

the problem. However, we see that the two moment models are much better at

approximating the solution. This gain in accuracy can be accounted for by the much

better approximation of the eigenvalues of the Boltzmann operator. We see that the

three orders of magnitude difference in accuracy for the eigenvalues gives a much

more accurate DCS over smaller distances since many eigenvalues are required to
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capture the important modes of the solution.

Moving on to more realistic problems, we now consider the solution for 1000

MeV protons incident on 1 cm of tungsten. The solution to this problem for a

full moment preserving treatment was shown in Fig.(5.15). In Fig.(6.9) shows how

accurate the three moment hybrid models are with varying mean free path. A smooth

decomposition described by Eq.(6.8) was used to generate these plots. The mean free

path stated in the figure is that of the smooth part and the singular approximation

(i.e. λ∗∗ = λ∗ =MFP).

The smoothed hybrid methods do quite well at approximating the analog results

with a mean free path of 0.01 cm. The approximation is less accurate when the mean

free path 0.1 cm but is still much better than the Fokker-Planck approximation. The

exponential model is a better model for the larger mean free path. This is no surprise

since the exponential model consistently outperformed the discrete model with the

full moment preserving treatment. Surprisingly, the Fokker-Planck model also does

very well when λ = 0.01 cm. However, it is as bad as the three moment discrete

model when the mean free path is 0.1 cm.

A great many more results can be obtained to prove the accuracy of the hy-

brid models under various conditions. However, we’ve seen that the behavior of

the approximations remains the same for a large range of penetrations in previous

problems. We will now consider other limits to which we may take the methods

considered here. We first consider a reduction in energy of the particles. In Fig.(3.4)

and Fig.(3.5) we see that the magnitudes of K(E) and η(E) increase drastically for

reduced energies. However, they do so in such a way that µ decreases since Σtr

is increasing much more quickly then Σt. This is a difficult limit for each of the

methods because we assume that µ is very close to 1 in their derivations. However,

the moment preserving methods are necessarily better for smaller µ since the higher

order moments and eigenvalues are accounted for.
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Figure 6.9: Comparison of the hybrid methods, Fokker Planck, and Analog methods
for 1000 MeV protons incident on 1 cm tungsten

Figure 6.10 shows the result of using the Fokker-Planck method, the 4 moment

hybrid methods with a smooth decomposition, the hybrid Fokker-Planck method

and the analog method for 100 MeV protons incident on 1 cm of tungsten. As

before, the Fokker-Planck method gives a very poor approximation. However, the

hybrid methods are still very accurate. Though the methods are being tested at a

much lower energy than before, the results are still basically the same. The Fokker-
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Figure 6.10: Comparison of the hybrid methods, Fokker Planck, and analog methods
for 100 MeV protons incident on 1 cm tungsten

Planck method shows some discrepancy near the peak of the radial distribution and

at smaller angles for the angular distribution. We note that this is likely due to

a poorer approximation of the singular part of the scattering DCS. This becomes

apparent now that 1− µ is larger due to the lower energies.
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Figure 6.11: Comparison of the hybrid methods, Fokker-Planck, and analog methods
for 10 MeV protons incident on 1 cm tungsten

At further reduced energies, we consider 10 MeV protons incident on 1 cm of

tungsten. The resulting radial distributions are shown in Fig.(6.11). Somewhat

surprisingly, we find that all methods have almost identical solutions. The analog

solution is somewhat noisier since the number of particles was significantly reduced

to run the problem in a fair amount of time. To explain the apparent success of the

methods, including the Fokker-Planck method, we appeal to the eigenvalues of the

problem. For this problem Σtr = 1.95 cm−1 and 1 − µ0 ≈ 10−6. This is in sharp

contrast to the higher energy problems where the transport cross section and 1− µ0

are both many orders of magnitude smaller.

This tells us that the eigenvalues of the problem are huge and a 1 cm penetration

looks very large to the methods. Therefore, even Fokker-Planck does well for this

problem. However, since the penetration depth is about 107 mean free paths, it is
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unrealistic that we will see this kind of convergence of the methods at low energies

due to energy-loss effects. On the other hand, we do see evidence of the statement

that the Fokker-Planck method does well when penetrations are on the order of λtr,

the transport mean free path. Since this is much larger than the total mean free

path of the problem, it is unlikely that it will help us, even when λtr is small.

Another interesting test of the methods is for their ability to handle larger ions.

We’ve seen that the difference is embodied by the parameters K(E) and η(E) in the

Rutherford DCS. For larger ions, the parameters both decrease in such a way that

Σtr is decreased and Σt is increased. Since µ = 1−Σtr/Σt, we find that µ approaches

unity as the mass number of the incident ion increases. This is precisely the limit

that we require for the methods to work well.

As a test, we consider 200 MeV carbon ions incident on 1 cm of water. For this

problem, Σt = 1.2× 107 and Σtr = 1.35× 10−2. The radial distribution is shown in

Fig.(6.12) for the analog method, the Fokker-Planck approximation, and the hybrid

methods of order 3 with a 0.01 cm mean free path. Though we are considering a

much more forward peaked problem, the Fokker-Planck approximation is still a poor

approximation. However, the hybrid methods do very well at approximating the

solution. In this case, the hybrid Fokker-Planck solution does as well as the other

methods. This is likely due to the much smaller value for 1− µ.

The interpretation that we get from these results is that the moment preserving

hybrid methods are very robust when approximating the transport for many types of

ions and at a wide range of energies. Table 6.1 shows the speedups for the problems

considered in this chapter for each of the methods used. The Fokker-Planck method

is by far faster than any other method. However, it is also the least accurate method.

Also, we find that the mean free path can be chosen to be quite large for the Fokker-

Planck method without effecting the convergence that is associated with the chosen

mean free path. We have the same ability to choose the mean free path of the hybrid
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Figure 6.12: A Comparison of the analog solution, Fokker-Planck solution, hybrid
Fokker-Planck, and the hybrid methods of order 3 with λ∗ = 0.01 cm for 200 MeV
carbon ions incident on water.

Test Case Speedup

F-P Hyb.Exp. Hyb.Disc. Hyb. F-P

1000 MeV p → W (1 cm) 1050 478 503 512

100 MeV p → W (1 cm) 5020 2185 2462 2601

10 MeV p → W (1 cm) 4370 1903 2147 2223

200 MeV C → H2O (1 cm) 12500 5776 6105 6215

Table 6.1: Speedup of hybrid methods and the Fokker Planck method over the analog
method for various elastic scattering problems.

methods. We find that λ∗ = 0.01 cm leads to accurate results, while a larger mean

free path is noticeably less accurate as seen in Fig.(6.9).
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It is also worth noting that the hybrid methods have roughly the same speedup

as the full moment preserving methods because in both cases, the mean free path is

chosen to be the maximum value that doesn’t appreciably effect the results. Thus,

there is almost no additional cost required to use a hybrid method. It can easily

be seen however that the speedup is reduced significantly for the 10 MeV problem.

The reason for this is that the mean free path for the moment preserving method

needed to be reduced by a full order of magnitude to maintain positive parameters.

Though this was not necessary for the Fokker-Planck methods, the mean free path

was reduced anyway so that comparisons could be made honestly with the other

moment preserving methods.

6.3 Heavy on Light Ion Interactions

We’ve seen that the the artificial cutoff imposed on the Rutherford DCS allows for

accurate treatment of the singular portion with a moment preserving method, or

even Fokker-Planck in certain cases. This cutoff carried the caveat that the smooth

portion must also be handled in some way. For heavy ions interacting with light ions,

occurring for instance in an ion implantation application, there is a natural cutoff

associated with the kinematics. We saw this briefly in Chapter 3 and the concept is

displayed in Fig.(3.2). The phenomena is that heavy ions scattering off of light ions

can only scattering into a certain narrow cone of angles.

To see how this phenomena works in our favor, we consider the formulation of

the Fokker-Planck method in the lab frame. Up until this point, the approximation

was made in the center of mass frame and the coordinate change occurred explicitly

during the calculation. This works for Monte Carlo methods, but it does not work

for deterministic methods. The coordinate change must be implicitly defined in the

expression for the differential cross section. In the context of moment preserving
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methods, this means that all of the moments must be defined with respect to the lab

frame scattering cosine µL given by

µL =
α + µ0

(α2 + 2αµ0 + 1)1/2
(6.16)

α =
Mi

Mt

(6.17)

The parameters Mi and Mt are the incident particle and target particle masses

respectively. Thus, the nth moment of the DCS becomes

ξL,n =

∫ 1

−1

(1− µL)nΣe(µL)dµL (6.18)

To simplify matters, we use Σe(µL)dµL = Σe(µ0)dµ0. Then this integral can be

rewritten in terms of the center of mass cosine µ0.

ξL,n =

∫ 1

−1

(
1− α + µ0

(α2 + 2αµ0 + 1)1/2

)n

Σe(µ0)dµ0 (6.19)

Though this integral is much less appealing to solve, it can be done easily using

adaptive quadrature methods. The resulting value for the moments is a significant

decrease from the center of mass moments due to the natural cutoff imposed. When

α > 1, the cutoff is given by

µL,min =

√
α2 − 1

α
=

√
M2

i −M2
t

M2
i

(6.20)

The lab frame DCS is plotted in Fig.(6.3) for increasing α when the center of

mass DCS is given by the screened Rutherford relation. For this plot, K = 0.001

and η = 10−10, values comparable to what is found with heavy ions. Not only does

the natural cutoff increase the minimum µ, but it also reduces the magnitude of the

DCS at larger angles (smaller µ). Since the total cross section remains unchanged

by the kinetmatics, the DCS must be larger at smaller angles. The overall effect of

increasing α is to increase µL toward 1 for a given set of center of mass parameters

K and η.
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Figure 6.13: A comparison of the lab frame DCS for K = 0.001 and η = 10−10 for
increasing α.

We can plot the cutoff µmin as a function of the mass ratio α. The result is

shown in Fig.(6.3) for the same parameters as those given in the last paragraph

for the largest range of realistic values for α. We see that the cutoff is very slowly

varying in the range of interest, but the values are promising since they are in the

range 10−3 − 10−4.

We can also look at a simple bound on the Fokker-Planck error term. If scattering

were isotropic in the center of mass system, certainly we would expect that the ratio

of the variance to the mean of 1−µ0 to be larger than if we had Rutherford scattering

in the center of mass system. Then, we could write the DCS in the lab system for a
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Figure 6.14: The natural cutoff as a function of α for K = 0.001 and η = 10−10.

given Σt as

Σe(µL) =

 Σt/(1− µmin) : µmin ≤ µL ≤ 1

0 : −1 ≤ µL ≤ µmin

(6.21)

Then, it is simple to compute

var(µL)

1− µL

∼ (1− µL)2

1− µL

=
2

3
(1− µmin) (6.22)

Substituting Eq.(6.20) into Eq.(6.22) gives

var(µL)

1− µL

∼ 2

3

(
1−

√
1− 1/α2

)
∼ O

(
1

α2

)
(6.23)

This bound and a numerical calculation of the Fokker-Planck leading order error

term are shown in Fig.(6.15). We see that the numerical calculation and the formula
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Figure 6.15: Leading order error term for the Fokker-Planck approximation for an
isotropic DCS and a Rutherford DCS as a function of µmin.

given in Eq.(6.23) have the same behavior for large α. However, the numerical

calculation gives a magnitude that is much smaller because the Rutherford DCS is

forward peaked in the center of mass frame. That is, we get the same asymptotic

behavior as we see in the isotropic case but with a much smaller magnitude due to

the form of the Rutherford DCS.

To understand how the parameter α effects the accuracy of a Fokker-Planck

solution, we consider three analog problems with Σtr,L = 10−6 with varying α and

the corresponding Fokker-Planck solution for this Σtr. Since we are holding Σtr

fixed, we must increase Σt to compensate for a decrease in 1 − µL with increasing

α. The corresponding physical intuition is that the scattering is becoming more

forward peaked. The angular and radial distributions for this problem are shown

in Fig.(6.16). Though the convergence is slow with increasing α, the Fokker-Planck
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Figure 6.16: Convergence of the analog solutions toward the Fokker-Planck solution
for increasing α with Σtr = 10−6

solution does do well to approximate the solution in the limit of large α. Since the

convergence is determined by the physics, we cannot count on this approximation to

work well in general for realistic problems.
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On the other hand, the procedure given above can be extended to general moment

preserving methods quite easily. We simply required the lab frame moments given

by Eq.(6.19) to obtain identical approximations to those given in this chapter. This

was done for the α = 10 and the α = 50 cases given above. The results with the

same analog and Fokker-Planck solutions are shown in Fig.(6.17) and Fig.(6.18) for

α = 10 and α = 50 respectively.

In the α = 10 case, the second moment in the lab frame was Σ2 ≈ 5.5× 10−8. In

the α = 50 case, Σ2 ≈ 2.2× 10−9. From this we see that the moments are decaying

much more quickly. The solutions are much better for the two moment models than

for the Fokker-Planck model. For α = 50, the two moment model is almost identical

to the analog solution. This demonstrates that a simple two moment model extension

can improve the performance drastically over Fokker-Planck for heavy on light ion

interactions. Obviously, a four moment model should work even better.

The simple advantage to this scheme is that the angular redistribution can be

completely handled by smooth operators for deterministic calculations. Larsen and

Leakes showed that this was easily performed by their eigenvalue preservation tech-

nique [27]. Thus, for this type of transport problem where straight-ahead transport

is often used, one can get accurate solutions very quickly and very simply. If one

would like to use multigroup transport codes to do the calculation, the exponential

model can also be used to get the same result. The advantage to using the expo-

nential model is that the DCS is much more smooth and one needs not worry about

partial range expansions as in the generalized Boltzmann Fokker-Planck procedure.

6.4 A Look at Dose in Higher Dimensions

We’ve seen that dose in a one dimensional setting can be accurately captured with

a simple two moment or four moment model for heavy charged particles. In many
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Figure 6.17: A comparison of the radial and angular distributions for heavy ions
on light ions with α = 10 for analog, Fokker-Planck, and a 2 moment exponential
model.

cases, this is the only quantity of interest. However, simply combining the accurate

moment preserving methods for energy loss with the equally accurate hybrid methods
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Figure 6.18: A comparison of the radial and angular distributions for heavy ions
on light ions with α = 50 for analog, Fokker-Planck, and a 2 moment exponential
model.

for scattering requires some finesse.

Unfortunately, a blind combination of the two physics can lead to very poor
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results. The reason for this is simple. The relaxation of the space-angle modes of the

solution to the transport equation cannot happen properly if energy loss is occuring

to quickly or too slowly. It is not clear at this point what the optimum proportion of

energy loss and scattering should be present so that an accurate solution to the full

transport equation can be obtained. However, this problem has been encountered

already in the development of condensed history codes.

In a condensed history setting, the spatial and angular spreading using distribu-

tions due to Goudsmit and Saunderson are combined with straggling due to Landau

or Vavilov. It was found empirically that energy straggling should occur over an

interval roughly equal to the distance required for a particle to lose 8% of its energy

on average. That is, the step size s becomes

s =

∫ Ei+1

Ei

0.08E

S(E)
dE (6.24)

The integral allows for a continuous slowing down approximation to be used within

the step while Ei and Ei+1 are the energy bin bounds. Scattering within a straggling

step is then done using substeps of varying number based on the energy of the particle.

This number is not easily accessible but condensed history experts at LANL quote

it at about 100 substeps per straggling steps[41].

It would be logical to use Eq.(6.24) to set the mean free path of the inelastic

scattering pseudo-DCS and subsequently setting the mean free path of the elastic

scattering pseudo-DCS to 1/100th of that value. However, this is impossible due

to reasons that have already been discussed. The three moment model for inelastic

scattering where a free parameter is introduced does not allow for an arbitrary setting

of the mean free path. In fact, the upper limit of the mean free path is likely, but

not proven to be, limited to the mean free path of the two moment model. This

discouraging fact can be remidied by using hybrid methods for inelastic scattering.

However, this was not done for the research presented in this thesis.
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To test the ideas considered here, however, the mean free path of the elastic

scattering pseudo-DCS was set to 1/100th of the mean free path of the inelastic

scattering pseudo-DCS. As a test case, we consider 500 MeV protons incident on

tungsten metal with a lower energy cutoff set to 50 MeV. This lower energy cutoff

was chosen to make the problem solvable in a reasonable amount of time with the

methods used. Due to reason discussed in the previous chapter, allowing the lower

energy cutoff to slip to values below 50 MeV substantially increases the computing

time required to complete the calculation for even the moment preserving methods.
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Figure 6.19: Dose profile for 500 MeV protons incident on tungsten metal with a 50
MeV lower cutoff for energy.

Figure 6.19 shows a contour plot and surface plot of the dose profile obtained by
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using an analog method for the problem described above. As we would expect, there

is a distinct Bragg peak located near the range of the particle. It is this Bragg peak

that we are interested in capturing accurately. The radial spreading from the beam

center occurs symmetrically causing the peak to spread out spatially. An inaccurate

means of handling the spatial spreading with respect to the energy loss will result in

signficant error when computing the size and location of this peak.
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Figure 6.20: Local error obtained from computing the dose profile in Fig.(6.19) using
a Fokker-Planck approximation or a 3 moment hybrid discrete method for scattering.

Figure 6.20 shows a profile of the local error near the peak of the dose distri-
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bution when using Fokker-Planck and a three moment hybrid discrete method for

elastic scattering. The three moment hybrid method is applied without taking into

account the mean free path of the inelastic scattering pseudo-DCS. Thus, the error

is as large for the hybrid method as it is for a simple Fokker-Planck approximation

because the energy loss is occuring much more rapidly than scattering. This leads

to an unphysical situation in which there are fewer scatters and thus less spatial

redistribution than what should be present for the physics.

The condensed history like treatment for elastic scattering was used for the same

problem. The resulting error profile is given in Fig.(6.21). The error is noisier indi-

cating that it is statistical in nature. The colorbar also indicates that the magnitude

of the error is much smaller than the error in Fig.(6.20). A sum over the local relative

errors in the y-direction for each of the three approximations is shown in figure 6.22.

Again, we see that the local relative error is about the same for the Fokker-Planck

and the hybrid method when applied arbitrarily. However, the relative error for

the hybrid method with a condensed history like treatment of the elastic scattering

mean free path is much smaller near the peak. Thus, it is appropriate to use this

methodology when combining the elastic and inelastic scattering pseudo-DCS for

multi-dimensional treatments of dose.

However, there is no indication that this is an ideal treatment of combined scat-

tering. In fact, requiring at least 100 times as much elastic scattering as inelastic

scattering makes the problem expensive computationally. The speedup for the prob-

lem given above is only 2.36 when using the condensed history treatment. However,

the hybrid method without the condensed history treatment gives a speedup of 233.

Thus, we lose most of the efficiency by introducing the additional constraints on the

mean free path. Clearly, this can all be remidied by finding an appropriate hybrid

method for inelastic scattering. Such a task has been completed previously and will

not be repeated for this thesis.
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Figure 6.21: Local error obtained when using a condensed history like treatment of
the mean free path for elastic scattering.
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Figure 6.22: Local relative error of the three previously described methods for com-
puting the dose profile summed over the y-direction.

6.5 Hybrid Methods Summary

We conclude that the hybrid methods are a powerful and robust means for simulating

arbitrary charged particles at almost arbitrary energies. We see that the degree
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of approximation can be adjusted very simply by either adjusting the cutoff in the

GBFP model or by adjusting the synthetic parameter η∗ in the smooth model. Thus,

one may easily compare solutions at varying degrees of approximation to determine

the appropriate degree of approximation for their application.

While this concept is not new, indeed the Boltzmann Fokker-Planck model has

been in use for some time, the addition of moment preserving methods to the singular

part of the DCS allows greater flexibility in the choosing of the cutoffs or synthetic

parameters. That is, we may simulate more of the DCS with the moment preserving

models for the same accuracy than with the Fokker-Planck model. In addition,

the moment preserving models can be either smooth operators for deterministic

calculations or probability distributions for Monte Carlo calculations. This is a

flexibility that cannot rigorously be given by the Fokker-Planck model.

For transport problems with a natural cutoff or µmin that is associated with the

problem, one may use the moment preserving schemes to enhance the accuracy of the

Fokker-Planck method. Thus, while Fokker-Planck would still require a decomposi-

tion method to be valid for these problems, a two or four moment model can simulate

the physics accurately without a decomposition scheme. This has the potential to

drastically reduce the work required for this class of problems.

Finally, we have seen that a blind application of moment preserving methods

to the differing physics of the transport problem separately can lead to unphysical

and thus inaccurate results for dose computations. This is due to the local nature

of dose computations requiring a sensitive treatment of the elastic scattering. We

have seen that a simple condensed history like method, where the mean free path

of the elastic scattering pseudo-DCS is set to 1/100th of the mean free path of the

inelastic scattering DCS, can be used to rectify this problem. However, such a method

can be expensive when used with the simple moment preserving inelastic scattering

models. This means that, though the inelastic scattering is well approximated by
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using moment preserving methods alone, a hybrid method is required for combined

scattering. The hybrid method allows us to adjust the mean free path to a large

enough value, while still maintaining accuracy, to keep the problem tractable in

Monte Carlo calculations.
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Conclusions and Future Work

We have seen that the moment preserving methods combined with a hybrid technique

can be a robust and efficient means for accurately solving the transport equations

for high energy charged particles. We see huge speedups for particles of very high

energy where the scattering is very forward peaked. In this region, the Fokker-

Planck limit is valid. However, the Fokker-Planck approximation, and thus the

Fermi approximation, are very slow to converge to the true solution with µ→ 1.

A moment preserving approach speeds up this convergence since more eigen-

values are precisely preserved, and other eigenvalues are accurately approximated.

However, the higher order methods still give only marginal gains over the Fokker-

Planck approximation. In order to capture the higher order modes of the solution,

a hybrid method must be used. In a hybrid method, less of the DCS needs to be

approximated by the moment preserving method. This allows the hybrid methods

to maintain efficiency while still giving an excellent approximation to the physics of

the problem.

There has been much interest in using the moment preserving methods to im-

prove the condensed history method. This method is known to perform badly near
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boundaries and interfaces. Using moment preserving methods to define pseudo-

differential cross sections that may be used to perform the transport within a step

would eliminate this error because it does not require the sampling of a predeter-

mined distribution.

A method for doing this in MCNP6 has been implemented by Harding[6]. He

used discrete moment preserving methods to approximate the inelastic scattering of

electrons, much like we did in this thesis. A similar implementation for the elastic

scattering could also be done. However, other approaches that use the predeter-

mined distributions already present within the condensed history code could also be

developed.

Another requirement for future work is the extension of these methods to the

production of secondary particles. In an analog Monte Carlo simulation, secondary

particles are easily sampled based on the magnitude of the energy transferred during

a collision. However, a moment preserving method relies on the formation of a

pseudo-DCS. The structure of this DCS, by necessity, cannot be used to sample

physical events. Thus, a consistent way of sampling secondaries along a track must

be formulated. To be consistent, the method would require some connection to the

moment preserving approach discussed in this thesis.

Though we have shown the benefits of the moment preserving methods for heavy

and light charged particles, there is still much work to be done. Future work should be

focused on the implementation of these methods into a production level Monte Carlo

code. Extensive studies of the advantages and disadvantages of using the moment

preserving methods in place of the condensed history method should be considered,

and the appropriate method for incorporating moment preserving methods should

be determined.
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Differential Cross Section

Derivation

There are several layers of complexity for computing differential cross sections. The

first layer, which uses only classical ideas, can be very detailed and understandable.

The addition of special relativity adds the additional complexity of treating space

and time on the same footing. This leads to more complex relationships between

energy and momentum. The only appropriate way to treat collisions between charged

particles is to use quantum mechanics. This requires an entirely new set of methods

and approximations.

The object here is to gather each of these physical models into one place where the

reader may see how to treat scattering appropriately given any level of approximation.

The motivation for this appendix is the scattered and often incomplete treatment

that cross section derivation is given in many books. Often times, a formula is

stated with very little discussion on its origin or validity, much like what was done

in Chapter 3. The hope here is to give the reader more insight to these formulas.
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A.1 Full Classical Treatment

The first step in this venture is to obtain an equation of motion. This can be done

using Lagrangian mechanics, Hamiltonian mechanics, or any other classical method.

Each approach has its advantages based on what is known and what information is

needed. Hamiltonian mechanics gives the equation of motion of a particle when the

kinetic energy T (q, q̇) and potential energy U(q, q̇) are both well known functions of

position and velocity of the particle. Also, the equations are first order equations

with direct connections to conservation theorems. Thus, it becomes the optimal

methodology here.

Before substituting the potential, we can actually get the equation of motion for

a general potential U arising from a stationary scattering center in the lab frame.

Using polar coordinates, the kinetic energy of the system of particles can be written

T =
1

2
Mi(ṙ

2
i + r2

i θ̇i
2
) +

1

2
Mt(ṙ

2
t + r2

t θ̇t
2
) (A.1)

The Lagrangian of the system is defined as L = T − U and can be given in the

present case by

L =
1

2
Mi(ṙ

2
i + r2

i θ̇i
2
) +

1

2
Mt(ṙ

2
t + r2

i θ̇t
2
)− U(|r1 − r2|) (A.2)

It is typical to consider these problems in the center of mass frame where we let

Miri +Mtrt = 0 (A.3)

r = ri − rt (A.4)

θi = θt ≡ θ (A.5)

Then the Lagrangian in the center of mass reduces to

L =
1

2
γ(ṙ2 + r2θ̇2)− U(r) (A.6)

γ =
MiMt

Mi +Mt

(A.7)
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This is tantamount to ignoring the transverse displacement of the center of mass of

the system during the collision; this is typically an uninteresting quantity and is not

needed.

In Hamiltonian mechanics, the equations of motion are given by

q̇n =
∂H

∂pn

(A.8)

−ṗn =
∂H

∂qn
(A.9)

H =
∑

n

pnq̇n − L (A.10)

where qn = r, θ and pn are the generalized momenta given by

pn =
∂L

∂q̇n
. (A.11)

Though these equations look complicated, they reduce the equations of motion to

four first order ordinary differential equations in two dimensions. In the present case,

this gives

ṗθ =
d

dt

∂L

∂θ
= 0 (A.12)

→ l ≡ γr2θ̇ = constant (A.13)

This is an expression of the conservation of angular momentum. The other equations

of motion could be used to solve the system. However, the conservation of energy

gives us the final integral of the motion that we seek since conservation of momentum

is automatically satisfied in the center of mass coordinate system.

E = constant = T + U

=
1

2
γṙ2 +

1

2
γr2θ̇2 + U(r)

=
1

2

(
γṙ2 +

l2

γr2

)
+ U(r) (A.14)
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Solving this for ṙ gives

ṙ =

√
2

γ
(E − U(r))− l2

γ2r2
(A.15)

Finally, we may obtain an equation of the form θ(r) by noting ṙ = θ̇ dr/dθ. Substi-

tuting, using separation of variables and integrating we obtain

θ(r) =

∫ r2

r1

(l/r2)dr√
2γ
(
E − U − l2

2γr2

) (A.16)

This integral will give the equation of motion θ(r) for any central potential U(r).

To eliminate the angular momentum from the equation, we introduce the impact

parameter b as the distance of closest approach if the particle had not been deflected.

This quantity is depicted in Fig.(A.1).

Figure A.1: Impact parameter for incident particle deflected by the field from the
target particle

This quantity is useful because the angular momentum can be expressed as

l = γ~̇r × ~r = Mivib

= b
√

2γT0 (A.17)

where T0 is the initial kinetic energy. Then Eq.(A.16) can be rewritten after some

simplification as

θ(r) =

∫ r2

r1

(b/r2)dr√
1− U(r)

T0
− b2

r2

(A.18)
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We may use the bare charge Coulomb potential energy U(r) = −ZiZte
2/r with

charge in statacoulomb so that the constant 1/4πε0 = 1. Also, we may take r1 = −∞

since we are considering a particle moving into a potential in an initially undeflected

trajectory. The resulting form of Eq.(A.18) has an exact solution given by

A

r
= 1 +B cos Θ (A.19)

A =
2b2γE

ZiZte2
(A.20)

B =

√
1 +

4E2b2

ZiZte2
(A.21)

Θ =
θ

2
− π

2
(A.22)

This is the hyperbolic solution promised in Chapter 3. In scattering problems, the

asymptotic scattering angle is the desired quantity. A particle obtains this angle in

the limit as r →∞. Then we can write

cos2 Θ∞ =
1

1 + 4E2b2/(ZiZte2)2
(A.23)

Solving this for the impact parameter b obtains

b2 =
(ZiZte

2)2

4E2
(sec2 Θ∞ − 1)

=
(ZiZte

2)2

4E2
cot2 θ∞

2
(A.24)

The Rutherford cross section is obtained by using the change of variables de-

scribed in Chapter 3. Many other classical differential cross sections may be obtained

by substituting a different central potential for U(r). For instance, the screening of

outer electrons may be approximately accounted for by using a potential of the form

U(r) = −ZiZte
2

r
exp

(
−r
a

)
(A.25)
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where a is some effective atomic radius. Other screening functions that can replace

the exponential in Eq.(A.25) have been introduced. For an excellent summary, see

the discussion by Keen[22].

A.2 Nonrelativistic Quantum Mechanics

The description given above, though used in some limited cases, is often not a valid

description of charged particle kinematics. At length scales and momenta that are

comparable with Planck’s constant h, we are forced to use quantum theory to obtain

differential cross sections. Fortunately, this complication does not extend to the

transport equation since all of the physics of scattering is wrapped into the cross

sections. However, we will see that an exact treatment like the one given previously

cannot be obtained, even with the simplest quantum mechanical relations. We will

give an overview of the calculations involved in computing differential cross sections

in the non-relativistic limit in this section.

A.2.1 Coulomb Interaction and Matter Waves

It is convenient to consider the incident particle as a wave when treating the scatter-

ing of that particle using quantum mechanics. In that case, the Schrödinger equation

is a valid description of the kinematics of that particle. Using a center of mass treat-

ment as before, the Schroedinger equation becomes

− h

4πγ
∇2ψ − U(r)ψ = Eψ (A.26)

The function ψ is the wave function for the system and completely describes the

system’s state at any time. Also, we have the Coulomb potential U(r) as before.

We immediately see a problem with our description in the framework of quantum
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mechanics. The potential function represents a continuous means of transferring

energy to the incident particle. However, quantum mechanics arose from the need

to describe energy transitions in terms of packets of energy called quanta. Thus,

the potential energy must be represented by an operator that gives discrete energy

packets to the incident particle. Thus, already we have an approximation to the full

formalism.

Nonetheless, we can solve this equation for the particular form that the potential

energy takes for a continuous Coulomb field. The solution follows that given by

Messiah[21]. We can substitute the parameter groups

E =
h2k2

8π2γ
(A.27)

b =
2πZ1Z2e

2

hv
(A.28)

into Eq.(A.26) with v the velocity of the incident wave packet and k the wave number.

Doing so gives

∇2ψ +

(
k2 − 2bk

r

)
ψ = 0 (A.29)

Solutions of the form eikzf(r− z) exist for this equation. Substituting this form into

the equation and letting u = ik(r − z) gives the ordinary differential equation

u
d2f

du2
+ (1− u)

df

du
+ ibf(u) = 0 (A.30)

The solution to this equation is

f(u) = C1F (−ib|1|u) (A.31)

where C1 is a constant to be determined and F (α|β|x) is the confluent hypergeometric

series. Thus, the wave function becomes

ψ = C1e
ikzF [−ib|1|ik(r − z)] (A.32)
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This solution can be split into two distinct functions whose asymptotic forms are

ψi = ei[kz+b ln k(r−z)]

[
1 +

b2

ik(r − z)
+ ...

]
(A.33)

ψs = −ei[kz−b ln k(r−z)] bΓ(1 + ib)

k(r − z)Γ(1− ib)

[
1 +

(1 + ib)2

ik(r − z)
+ ...

]
(A.34)

The function ψi is interpreted as the plane wave representing the unscattered beam

and ψs is interpreted as a scattered wave. It can be rewritten using the relation

z = r cos θ as

ψs ≈
1

r
exp[i(kr − b ln 2kr)]g(θ) (A.35)

g(θ) = − b

2k sin2(θ/2)
exp[−ib ln(sin2 θ/2) + 2iσ0] (A.36)

σ0 = argΓ(1 + ib) (A.37)

Forming the current densities

j =
h

4πiγ
[ψ∗∇ψ − ψ(∇ψ)∗] (A.38)

for both the incident wave and the wave scattering into the range of angles between

θ and θ + dθ and taking their ratio gives the differential cross section

σ(θ) = |g(θ)|2 =
b2

4k2 sin4(θ/2)
(A.39)

=

(
Z1Z2e

2

4E

)2
1

sin4(θ/2)
(A.40)

This form is identical to the asymptotic classical solution. However, the approx-

imations made in getting to this form of the DCS leave it as approximate as the

classical version. The difficulty in treating this potential with wave mechanics is its

very long range. The wave function never truly leaves the influence of the potential.

The reader is referred to Messiah for a good discussion on these matters.
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A.2.2 General Potentials and the Partial Wave Expansion

The solution to the Schrödinger equation for a Coulomb potential is special for at

least two reasons. First, the equation can be recast into a form that has an analytic

solution in terms of known functions. Second, the potential has such a long range

that the usual method for solving these problems, that of a partial wave expansion,

leads to a slowly converging series.

However, the bare charge Coulomb potential is itself an approximation to true

physics of elastic scattering. It was mentioned briefly in the previous section that the

screening by atomic electrons of the target nucleus results in a much more rapidly

decaying potential with distance from the nucleus. Furthermore, it can be shown

that any potential that tends to zero more rapidly than 1/r when substituted into

Eq.(A.26) leads to asymptotic eigensolutions of the form

ψ∞ = eikz + f(Ω)
eikr

r
(A.41)

It can be argued that the DCS is then given by

σe(Ω) = |f(Ω)|2 (A.42)

Thus our task is to find this function for a given scattering potential. We note that

the functions ψr and f(Ω) are independent of the azimuthal angle φ. Thus, the

functions can be expanded in Legendre polynomials yielding

ψr(θ) =
∞∑
l=0

yl(r)

r
Pl(µ) (A.43)

f(θ) =
∞∑
l=0

flPl(µ) (A.44)

µ = cos θ (A.45)

For the general problem, we have our solution ψr(θ) given in terms of the functions
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yl(r) solving the equations

d2yl

dr2
+

(
k2 − U(r)− l(l + 1)

r2

)
yl = 0 (A.46)

This equation arises from the separation of variables of the Schrödinger equation.

This function must be asymptotically equivalent to the function ψ∞. Expanding the

asymptotic form in Eq.(A.41) gives

ψ∞ =
∞∑
l=0

(
(2l + 1)iljl(kr) + fl

eikr

r

)
Pl(µ) (A.47)

by using the expansion of eikz in terms of spherical Bessel functions given by

eikz =
∞∑
l=0

(2l + 1)iljl(kr)Pl(µ). (A.48)

Multiplying ψ∞ by r and using the asymptotic form for jl(kr)

jl(kr) ≈
1

kr
sin(kr − lπ/2) =

eikr−lπ/2 − e−(ikr−lπ/2)

2ikr
(A.49)

gives the series

rψ∞ ≈
∞∑
l=0

[
(−1)l+1 2l + 1

2ik
e−ikr +

(
2l + 1

2ik
+ fl

)
eikr

]
Pl(µ) (A.50)

Setting this equal to yl and noting that it has the asymptotic form given by

yl ≈ al sin(kr − lπ/2 + δl) (A.51)

which can be derived from Eq.(A.46), the following equalities must hold if the asymp-

totic form is to be given by ψ∞:

al = il
2l + 1

k
eiδl (A.52)

fl =
2l + 1

k
eiδl sin δl (A.53)
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The parameter δl is the phase shift characterizing the scattering of the incident

particle. The desired function for computing the DCS becomes

f(θ) =
1

k

∞∑
l=0

(2l + 1)eiδl sin δlPl(µ) (A.54)

The summation of this series requires the values δl. Knowing these values requires

the exact solution and analysis of Eq.(A.46). However, the Born approximation gives

the phase shifts as

δl ≈
8π2γk

h2

∫ ∞

0

j2
l (kr)U(r)r2dr (A.55)

when U(r) is sufficiently small and δl is near zero. If one knows the phase shift for

some potential U(r) and would like to estimate the potential for Û(r) close to U(r),

it is given by

δl − δ̂l ≈
8π2γ

h2k

∫ ∞

0

ŷ2
l (U(r)− Û(r))dr (A.56)

This is known as the generalized Born formula.

A.3 Relativistic Quantum Mechanics

In all of the discussions so far, it has been assumed that the particle speed is small

compared to the speed of light. However, in the high energy particle physics world,

this assumption is not valid in most applications. If it still assumed that the field

is continuous, then the Dirac equation for the system may be used to describe the

particles relativistically.

iγν∂νψ − eγνAνψ −mψ = 0 (A.57)

The summation convention (i.e. summation over repeated indices) is used from here

on unless otherwise noted. All indices range over the integers 0, 1, 2, and 3. The
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parameter m now expresses the reduced mass of the system given in Eq.(A.7). Aν is

the electromagnetic field four vector that is given by a particular form of Maxwell’s

equations. It represents the potential energy U(r) in a form more convenient for

solving the Dirac equation. Also, the Dirac matrices γν have been introduced. They

satisfy

γνγµ + γµγν = 2gµν (A.58)

where gµν is the spacetime metric given in special relativity by simply

gµν =


1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

 (A.59)

Finally, we have introduced the generalization of the gradient to space time given by

∂µ =

[
∂

∂t
,∇
]

(A.60)

∂µ =

[
∂

∂t
,−∇

]
(A.61)

∂µ∂
µ =

∂2

∂t2
−∇2 (A.62)

The qualitative differences between the Dirac equation and the Schrödinger equa-

tion is that spin is explicitly treated by the form of the solution ψ. The solution to

the Dirac equation is a bispinor, a four component vector-like quantity that has

certain transformation properties. The components are interpreted as the positive

and negative energy states of the spin up and spin down states of the particle. This

equation is required for the relativistic treatment of electrons and any other swift

particle with non-integer spin. For slow particles, the spin can be accounted for while

still using the Schrödinger equation by hypothesizing its existence in advance.
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For particles that don’t have spin, the Dirac equation can be reduced to the

Klein-Gordon equation given by

(∂µ + ieAµ)(∂µ + ieAµ)ψ +m2ψ = 0 (A.63)

It is this form that can be derived from the correspondence principle and the rela-

tivistic relation

E2 = p2c2 +m2c4 (A.64)

when the natural units are employed where c = h = 1. The Klein-Gordon and

the Dirac equations can be approximately solved using methods described above.

However, the solutions are much more complicated and will not be given here. It is

worth noting that the Mott DCS for electrons is derived using the Dirac equation.

Numerous other differential cross sections exist whose origin is the Klein-Gordon

equation.

Extending quantum mechanics to relativistic particles often requires a relativistic

treatment of the fields. This principle is the foundation of quantum field theory. The

basic idea is to obtain operators that have been quantized through a specific and

complicated procedure. These fields are obtained via the correspondence principle

applied to a set of classical field equations (i.e. Maxwell’s equations). Once the

operators have been obtained, the formalism of collision theory must be used to

obtain the cross sections. That is, the cross section is given by

σa→b =
(2πm)2

h4
| < φb|U |ψa > |2 (A.65)

That is, the scattering from state a given by wave function ψa to state b given

by wave function φb is determined by the transition probability represented by the

inner product < φb|U |ψa >. The operator U determined by a detailed quantum field

theory treatment may contain several transitions from a to b, and a sum over each of

these transitions is required. Also, the actual wave functions ψa is not know a priori
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but is the solution to a complicated equation. However, the Born approximation

is equivalent to setting ψa = φa where φ is just the plane wave solution to the

equation for scattering problems. This solution is often known in advance, and

the determination of the scattering DCS amounts to an integral once the field U is

characterized.
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