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ABSTRACT 

 
 

Deterministic numerical methodologies for solving time-eigenvalue problems are 

valuable in characterizing the inherent rapid transient neutron behavior of a Fast Burst 

Reactor (FBR).  New nonlinear solution techniques used to solve eigenvalue problems 

show great promise in modeling the neutronics of reactors.  This research utilizes 

nonlinear solution techniques to solve for the dominant time-eigenvalue associated with 

the asymptotic (exponential) solution to the neutron diffusion and even-parity form of the 

neutron transport equation, and lays the foundation for coupling with other physics 

phenomena associated with FBRs. 

High security costs and proliferation risks associated with Highly Enriched 

Uranium (HEU) fueled FBRs are the motivation for this research.  Use of Low Enriched 

Uranium (LEU) as fuel reduces these risks to acceptable levels.  However, the use of LEU 

fuel introduces complexities such as, increased volume, and longer neutron lifetimes.  

Numerical techniques are sought to explore these complexities and determine the 

limitations and potential of a LEU fueled FBR. 



vii 
 

 A combination of deterministic and stochastic computational modeling 

techniques are tools used to investigate the effects these complexities have on reactor 

design and performance.  Monte Carlo N-Particle (MCNP) code is useful to determine 

criticality and calculate reactor kinetics parameters of current and proposed designs.  New 

deterministic methods are developed to directly calculate the fundamental time-

eigenvalue in a way that will support multi-physics coupling.  The methods incorporate 

Jacobian Free Newton Krylov solution techniques to address the nonlinear nature of the 

neutronics equations.  

These new deterministic models produce data to determine LEU designs that may 

meet the performance requirements of proven HEU FBRs in terms of neutron burst yield 

and burst duration (pulse width) based on the Nordheim-Fuchs model.  This 

computational data and measured performance characteristics of historical LEU FBRs 

show that LEU designs can generate pulses that are beneficial for meeting Research and 

Development (R&D) requirements.  These modern computational neutronic results 

indicate that a LEU fueled FBR is a plausible alternative to current HEU fueled reactors.  
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Introduction 

A Fast Burst Reactor (FBR) is a nuclear reactor that obtains fission primarily from 

fast (fission spectrum) neutrons [1].  The reactor operates by the rapid insertion of excess 

reactivity that places the system into a super prompt critical state and produces a short 

(~25-700 micro-seconds) burst (or pulse1) of neutrons (1016-1018) [1, 2].  Negative 

temperature-reactivity feedback, or thermal expansion, quenches the reactor and returns it 

to a sub-critical state [1, 2].  In addition to thermal quenching, many designs utilize a shock-

induced disassembly of the core that aides in the return to sub-criticality [2].  FBRs support 

a variety of radiation effects experiments as well general research in to fast-reactor-

dynamics [2, 3].  

This work seeks to provide modern computational neutronic solutions to support 

research in the practicality of a Low Enriched Uranium (LEU) fueled FBR.  Specifically, 

this research seeks to solve for the time-eigenvalue associated with the time dependent 

solution and behavior of the neutron economy in HEU and LEU fueled FBRs and 

determine the resulting burst duration.   

                                                 

1 The FBR is a Pulsed Aperiodic Reactor that operates on Fast Neutrons.  This is a subset of Pulsed Reactors 

[1].  For this reason, literature often uses the terms burst and pulse interchangeably.   
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Practical Motivation  

Scientists require a short burst duration for specific radiation effects research.  

Material properties of LEU fuel tend to produce a longer burst than HEU.  This research 

expects to inform users on whether LEU FBRs have potential to achieve an adequate burst 

duration that will meet Research, Development, Testing, and Experimental (RDT&E) 

needs. 

Increased security requirements for a Highly Enriched Uranium (HEU) fueled Fast 

Burst Reactor (FBR) are making continued operation of these reactors cost prohibitive.  Of 

the three FBRs used in defense radiation effects testing at the turn of the century, only the 

Molybdenum Godiva (MollyG), located at the White Sands Missile Range (WSMR) 

remains in operation.  To reduce costs, stakeholders in the field are searching for 

alternatives to the HEU fueled MollyG to conduct required tests and experiments on 

materials requiring neutron exposure for relatively short durations [3].  

In addition to increased security costs, the availability of HEU is in deliberate 

jeopardy.  Many programs of the U.S. National Nuclear Security Administration (NNSA) 

are seeking to reduce drastically the demand for HEU worldwide.  The Material 

Management and Minimization (M3) program seeks to eliminate the civilian use of HEU, 

and down blend the fuel to 19.75 percent LEU for use in research reactors [4].  The Global 

Threat Reduction Initiative (GTRI) Convert Fuel Development program, formerly the 

Reduced Enrichment for Research and Test Reactors (RERTR), is also determined to 

eliminate the demand for HEU.  This program has led both the Idaho National Laboratory 

(INL), and Oak Ridge National Laboratory (ORNL) to develop processes to down blend 
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HEU and produce 19.75 percent LEU alloyed with 10 percent molybdenum (moly) for use 

in research and test reactors [5, 6].  

This combination of decreased availability, and increased security cost support 

research into developing alternatives to the HEU fueled FBRs.  To support this research, it 

is valuable to capitalize on the many recent advances in nonlinear solution techniques in 

steady-state neutronic problems [7, 8].  These techniques have great potential for 

application in the heavily time-dependent transient neutronic problems of FBRs.  

Additionally, non-linear solution techniques provide a convenient interface for coupling 

neutronic solution with other important physics associated with a FBR [9].   

Objectives of the Research 

The overall objective of the research is to provide the fundamental mode of time- 

eigenvalue calculations to help determine the practicality of an LEU fueled FBR that meets 

the burst duration requirements for research currently conducted using MollyG.  The 

supporting objectives required to meet the overall objective satisfactorily are: 

1. Consolidate applicable historical research efforts in the use of LEU fuel for 

FBRs. 

2. Implement modern nonlinear solution methods to solve for the fundamental 

mode of the time-eigenvalue neutron diffusion and even-parity transport 

equations.  
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3. Develop an efficient and intuitive desktop tool that maintains the flexibility 

for use in parallel computing systems, and is ready to couple with other 

physics required to support FBR research. 

By meeting these objectives this research will inform decisions affecting the future 

methods of producing required neutron environments for research and testing. 

Literature Review 

Fast Burst Reactors 

Scientist at Los Alamos designed the earliest FBR in 1945, the Dragon Machine, 

using measured cross-sections, and analytical methods, which were not especially 

predictive.  Scientist built early designs incrementally based on measurements during 

assembly.  The Dragon experiments were successful, and did support the theory of fast 

fission reactions at the time.  However, follow on experiments that relied heavily on real-

time measurements during assembly resulted in at least two deaths [10, 11].  

 Following these early experiments, Los Alamos scientists designed another critical 

assembly using a HEU metallic spherical design called Lady Godiva (see figure 1.1).  

Scientists designed Godiva with more caution than the previous reactors, and certainly used 

lessons learned from the early Dragon experiments, but still lacked adequate predictive 

design analyses.  The original simple spherical design failed to reach criticality due in part 

to a lacking in both design and manufacturing capability.  Godiva required the addition of 

a cylindrical disk of HEU to the design to achieve criticality.  Godiva went into delayed 
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critical operation in 1951, but did not achieve burst operation until 1953 [12, 2].  

 

Figure 1.1 View of Lady Godiva Components1 

 

Godiva experiments provided much information that supported the design of other 

FBRs.  One element of interest was the measurement of the time constant associated with 

                                                 

1 Most parts shown are of HEU material.  Exceptions are the steel tubing structure and the ball portions of 

the flexible couplings.  The radius of the reactor is 8.697 cm [12]. 
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prompt fission chain reactions, “alpha”, that is essential in predicting the neutron economy 

in FBRs.  LANL scientist used the Rossi and betatron methods to conduct measurements 

of alpha on the Godiva assembly [12, 13].  Both methods of measurement are challenging, 

time consuming and face difficulties making measurements during peak reactivity, but 

academic work continues to improve these experimental measurement techniques [14].  

The time constant, “alpha”, is synonymous with the time-eigenvalue, the calculation of 

which is the focus of this research. 

In the years following the burst operation of Godiva, many FBRs were 

manufactured using lessons learned from the previous designs [2].  In 1964, the cylindrical 

FBR, MollyG, was placed in operation at WSMR, and is the only remaining FBR of its 

type in current operation in the United States [3].  Testing of material and system response 

to intense radiation of short duration is the primary purpose of MollyG [15].  MollyG is a 

HEU fueled design and produces 35-50 microsecond burst [15, 16].  WSMR is now 

considering replacing MollyG with a device that meets research requirements but does not 

carry the overhead of HEU.  MollyG serves as the base design for the neutron transport 

calculations of this research and an adequate LEU replacement is the ultimate material 

goal. 
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Figure 1.2 View of MollyG Components1 

Also in 1964, the Lawrence Radiation Laboratory (LRL) designed LEU FBR Super 

Kukla, went into operation [2].  This LEU design achieved sub millisecond burst, but the 

annular design contained a significant void in the center of the reactor [17, 18].  The void 

                                                 

1 The assembly bolts are depicted here as, Inconel X, a special high-strength nickel alloy.  U-Mo bolts were 

also fabricated for use, which made the system more homogeneous [2].  The height of the cylindrical core is 

19.3 cm and the radius is 10.3 cm [15]. 
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was desirable for experiments requiring exposure to a high neutron flux, but is likely to 

have increased the pulse width significantly. 

 

Figure 1.3 View of Super Kukla Components1 

The HEU fueled Sandia Pulsed Reactor III (SPR III), also an annular design, was of a more 

modern design, and went into operation in 1975, but was decommissioned in 2006 [19, 3].  

SPR III was the latest FBR designed and built in the U.S., which translates to a time lag of 

over 40 years in the field of development and design of FBRs.  Research related to FBRs 

has continued over this period, but often relies heavily on empirical data obtained from 

reactor operation [20].   

 

                                                 

1 The core element of Super Kukla was 38.1 cm in radius and 93.98 cm in height.  This measurement includes 

the sample container of 22.86 cm in radius and 60.96 cm in height [18]. 
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Computational Methods 

The small number of reactors and their highly specialized purpose limit academic 

work in the field of FBR neutronic calculations.  Recent research in predictive modeling 

tends to focus on physics other than neutronics using only a diffusion approximation and 

the multiplication factor, k, to calculate the neutronic contributions [20, 21].  These trends 

make the neutronics contribution to FBR modeling the area most needing refinement [21]. 

Current trends in engineering, fiscal constraints and an appreciation for safety make 

it unlikely that the incremental development and improvements of multiple FBRs that 

existed in the 1950s and 60s will be acceptable for developing a new FBR.  Extensive 

computational modeling will certainly be required prior to building a new FBR.  

Fortunately, computational methods have improved since 1975.  Many of these 

improvements have applicability to FBR design.  Computational hardware improvements 

alone represent a significant improvement in capability over what was commonly available 

in 1975.  In addition to hardware improvements, scholars and scientists have developed 

many schemes to calculate the time-eigenvalue.  The fundamental time-eigenvalue 

translates to the inverse period of an FBR and is very useful in describing the transient 

nature of a FBR [22].  Solution of the time-eigenvalue is complicated by the fact that the 

fundamental mode is not the dominant eigenvalue of the system, but instead the 

algebraically largest.  This characteristic increases the computational effort required to 

calculate the time-eigenvalue over a more familiar, k-eigenvalue calculation.  This has 

often resulted in using k-eigenvalue calculations as the recommended technique to solve 

most neutronic problems [23].      
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The LANL Monte Carlo N-Particle (MCNP) code does not have a standard feature 

to calculate the time-eigenvalue [24].  However, Monte Carlo methods, some using MCNP, 

are available to calculate the time-eigenvalue, but the methods are time consuming and do 

not readily support coupling with other physics [25, 26].  Deterministic methods often 

attempt to calculate the time-eigenvalue through modification of solvers designed to 

determine the multiplication factor, k, of a system [27, 28].  These modified k solvers 

require many complete k calculations to arrive at a converged time-eigenvalue [29].  Other 

techniques tend to manipulate algebraically the time-eigenvalue to a form suitable for 

solution by a traditional power iteration [30].  Other methods use the robust Arnoldi 

Package (ARPACK) to solve for all modes the time-eigenvalues [31].  Unfortunately, the 

previous two methods result in a form of the equation that requires the reciprocal of the 

eigenvalue for solution, which causes complications in near critical systems where the 

fundamental mode is near or equal to zero.  Researches have made few attempts to solve 

the even-parity transport equation due to the inherent nonlinear nature of these forms of 

the time-eigenvalue problem [31].  Lathouwers used ARPACK to solve the 𝑃𝑃1 even-parity 

time-eigenvalue problem.  His method required calculating both the even and odd fluxes, 

which diminishes some of the advantage of the even-parity form, and required the 

reciprocal of the eigenvalue [32].  The LANL code, NIKE, uses the even-parity form of 

the transport equation and calculates the fundamental mode of the time-eigenvalue 

problem.  The NIKE solution method is a Preconditioned Conjugate Gradient (PCG).  The 

fundamental mode of the time-eigenvalue, α, is approximated by a time step ratio of 

neutron population, 
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 𝛼𝛼𝑡𝑡 ≈
1
∆𝑡𝑡 ln �

𝑛𝑛𝑡𝑡
𝑛𝑛𝑡𝑡−1

�. (1-1) 

   
In this case, NIKE approximates α dynamically and does not directly solve for α as part of 

the transport equation1 [33].  The NIKE code is the most similar to the codes used in this 

work.  Unfortunately, it is not available at this time for comparison calculations [34].  

Additionally, the NIKE method for determining the time-eigenvalue is significantly 

different from the methods presented in this work.  In 2013, Fichtl and Warsa of LANL 

presented results of first order transport time-eigenvalue calculations [29].  These 

calculations utilized a SN method that initialized the nonlinear method using indirect 

methods described above.  Specifically, they used a modified k solver that at least 

occasionally resulted in solving for other than the fundamental mode.  Although the 

methods were not the same as the ones used in this work, they serve as a good proof of 

concept for utilizing nonlinear solvers for time-eigenvalue calculations.  At this time, there 

seems to be no published method of directly solving for the time-eigenvalue of the 

diffusion equation, or that takes advantage of the efficiencies of the even-parity, second 

order form of the transport equation. 

Nonlinear solution techniques used to efficiently solve for the dominate eigenvalue 

of a matrix have shown great applicability in solving for the neutron multiplication factor, 

                                                 

1 NIKE seems to be the most similar code to the one developed in this research.  Unfortunately, the NIKE 

code is not available from RSICC, and as a result, no comparative calculations are available for inclusion in 

this research [34]. 
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k [35, 7, 8, 36, 37].  These nonlinear solution methods have proven successful in coupling 

multi-physics problems into a single solution routine [9].  As mentioned previously in this 

section, the time-eigenvalue is of great importance to the prompt fission chain reaction of 

FBRs.  Although the time-eigenvalue is inherently more computationally intensive than a 

k calculation, these modern non-linear solution techniques when computed on modern 

equipment show great promise in providing robust time-eigenvalue calculations that will 

provide the refinement necessary to model predictively, the inherently transient neutron 

behavior in FBRs.  Additionally, these methods are inherently suited to address the non-

linear nature of the time-eigenvalue problem of the diffusion equation and even-parity form 

of the transport equation. 

Methodology 

This work first solves the one-dimensional, time-dependent neutron diffusion 

equation in spherical coordinates,  

 1
v
𝜕𝜕𝜕𝜕
𝜕𝜕𝑡𝑡

= 𝜈𝜈𝜎𝜎𝑓𝑓 𝜕𝜕 − 𝜎𝜎𝑎𝑎 𝜕𝜕 + 𝐷𝐷 �
𝜕𝜕2𝜕𝜕
𝜕𝜕𝑟𝑟2

+
2
𝑟𝑟
𝜕𝜕𝜕𝜕
𝜕𝜕𝑟𝑟
� 

(1-2) 

   
where, 

• v ≡ neutron velocity 

• 𝜕𝜕 ≡ scalar flux 

• 𝑡𝑡 ≡ time variable 

• 𝜈𝜈 ≡ mean number of neutrons per fission 
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• 𝜎𝜎𝑓𝑓 ≡ macroscopic fission cross-section 

• 𝜎𝜎𝑎𝑎 ≡ macroscopic absorption cross-section 

• 𝐷𝐷 ≡ diffusion coefficient = 1

3�𝜎𝜎𝑡𝑡𝑡𝑡+
𝛼𝛼
v�

 

• 𝑟𝑟 ≡ radial spatial variable, 

both analytically and numerically (see appendix D) [38].  The purpose of the analytical 

solution is to facilitate study of the nature of the associated eigen-functions, and verify the 

solution techniques of the numerical equation. 

For simplicity, the spatial discretization of the numerical equation is finite 

difference.  The numerical equation is solved using a FORTRAN code, the Jacobian Free 

Newton-Krylov (JFNK) Alpha, and k Eigen-value Solver (JAKES) written to support this 

work.  JAKES calculates the fundamental mode of the time-eigenvalue (α), using a three-

stage standard power iteration, see Figure 3.6, and by a Newton-Krylov nonlinear method, 

see Figure 5.3.  The power iteration algorithm is original to JAKES, and is straightforward 

and simple to implement.  The primary purpose of the power iteration routine is to provide 

understanding of the problem during development and to serve as preconditioner to ensure 

the nonlinear solver converges to the fundamental mode.  JAKES also contains k eigen-

solvers.  The nonlinear solvers can also use the k solution to initialize the routine and ensure 

convergence to the fundamental alpha mode.  Additionally, the k solution, when combined 

with the alpha solution, provides an estimate to the neutron lifetime, l.  JAKES obtains its 

nonlinear solver capability through solution modules that incorporate the Argonne National 

Laboratory (ANL) code Portable, Extensible Toolkit for Scientific Computation (PETSc).  
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This solver package is chosen for its FORTRAN interfaces, robust linear and nonlinear 

solution routines as well as an inherent, but optional parallel computing capability [39, 40, 

41].   

The primary purpose of the one-dimensional code is to verify the solution 

techniques.  The Lady Godiva design will serve as the basis for the one-dimensional test 

cases.  The one-dimensional case only considers homogeneous uranium fuel.  One-

dimensional calculations use spherical coordinates to provide immediate utility to FBR 

calculations at the cost of incrementally developing to a three-dimensional code in 

Cartesian coordinates.   

JAKES then applies the one-dimensional solution techniques to solve the time-

eigenvalue, even-parity neutron transport equation, 

 �𝛀𝛀� ∙ ∇�
1

�𝛼𝛼v + 𝜎𝜎�
�𝛀𝛀� ∙ ∇�𝜓𝜓+ − 𝜎𝜎𝜓𝜓+ + 𝑄𝑄 =

𝛼𝛼
v
𝜓𝜓+ (1-3) 

 

• 𝛼𝛼 ≡ time-eigenvalue 

• 𝜎𝜎 ≡ total macroscopic cross-section 

• 𝛀𝛀� ≡ directional unit vector 

• 𝜓𝜓+ ≡ the even-parity angular flux (time-independent) 

• 𝑄𝑄 ≡ combined source terms (scattering and prompt fission) 
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in cylindrical (r-z) geometry, see appendix E.  The time-eigenvalue, even-parity form of 

the transport equation is clearly nonlinear in α, and requires special techniques to solve 

[31].  However, the even-parity form has several advantages [23, 42, 43, 44]: 

• requires calculation of only half the angular domain 

• spatial and angular matrices are suitable for direct solvers 

• provides the scalar flux directly. 

A commonly perceived disadvantage of the even-parity form is poor performance in voids 

(𝜎𝜎 ≅ 0), due to the 1/𝜎𝜎 term of the equation [43, 44].  However, the FBR design considered 

here is for a possible LEU replace of MollyG which is a cylindrical design with few 

relatively small voids in the actual system, making even-parity a suitable form1. 

The neutron transport program EVEn-parity Neutron Transport (EVENT) supports 

this work by incorporating the solution methods of JAKES developed in the one-

dimensional case.  By using EVENT, the research gains the benefit of using a previously 

benchmarked three-dimensional, finite element, spherical harmonics even-parity neutral 

particle transport code.  EVENT is a FORTRAN code capable of handling anisotropic 

scattering and up scatter.  The code is capable of solving for the k-eigenvalue, and has a 

preprocessor for the front-end data processing that can take many different multi-group cross-

                                                 

1 The addition of 𝛼𝛼/v to σ in the even-parity time-eigenvalue equation is expected to also reduce problems 

associated in voids, especially when modeling FBR transients where alpha is equal to zero only for a short 

time. 
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section formats.  The two-dimensional cylindrical (r-z) geometry is resident in the code as well 

[42, 44, 45].  EVENT gains the capability to solve time-eigenvalues from this research1. 

The research considers two-fuel types of varying uranium enrichments in the two-

dimensional case.  The first is a uranium fuel alloyed with 10% moly.  MollyG uses 10% moly 

fuel, and Super Kukla used the same when in operation, both with good durability [15, 17].  

The second is a 1.5% moly alloy.  Godiva IV used a 1.5% moly alloyed HEU fuel, and LANL 

is currently considering a 1.5% moly alloy for use in a proposed LEU Burst reactor design [46, 

47].  The reduction in mass and volume required for a 1.5% moly alloy reduces the burst 

duration from that obtained using the 10% moly alloy. 

This work uses MCNP calculations with the kinetics option to assist in scoping and 

validating designs, and new computational methods [24].  Data from the operation of Lady 

Godiva, MollyG, Super Kukla, and other reactors also support validation efforts of the 

research.  The commercial code Mathematica provides assistance in analytical development, 

data processing and graphing [48].  All numerical calculations are conducted on office type 

laptops, and desktops using Linux or Unix based operating systems. 

                                                 

1 EVENT also gains a GMRES linear solver as an option for use in its other routines, and the ability to run 

parallel processing from the incorporation of PETSc to the code. 
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FBR Theory 

Basic Design and Operation 

This work considers FBRs that generate a burst of neutrons by a large step increase 

of reactivity into a subcritical system resulting in a short duration of super-critical 

operation.  The FBRs considered are self-limiting by thermal expansion and quickly return 

to a sub-critical state.  The insertion of a burst rod consisting of fuel rapidly increases 

reactivity.  Burst reactors do not typically incorporate poisons for control of the reactor.  

Instead, control systems reduce reactivity by the removal of fuel rather than insertion of a 

poison.  FBRs tend to operate on the 10s of microseconds to millisecond timeframes.  These 

short excursions do not allow the delayed neutrons to contribute to the generation of the 

burst.  However, the delayed neutrons resulting from the super-critical excursion will 

contribute to post burst heating and a slower decay of the burst when compared to the rise 

of the burst.  The FBRs of interest have a shock induced disassembly mechanism to “clip” 

the tail of the burst, and avoid continued heating and slow decay due to delayed neutrons 

[11, 49, 50].  Figure 2.1 depicts a burst from a FBR with a tailed burst (solid line) and a 

tailless or clipped burst.  The solid line depicts the result of a burst terminated only by 

thermal expansion.  The dashed line depicts the burst if the reactor uses a shock-induced 

disassembly to negate the delayed neutron effects.  The tailless burst contains only a prompt 

neutron contribution (see Appendix B). 
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 The primary effort of this work is to study a potential replacement for MollyG, and 

thus focuses efforts on solid (without “glory holes”) cylindrical and spherical designs with 

a shock induced disassembly mechanism to produce a tailless burst.  Strictly speaking, 

Godiva (the model for the one-dimensional case) did not have a shock induced disassembly 

mechanism when in operation.  However, since the goal is to replace FBRs that do, only a 

prompt burst is calculated.1 

                                                 

1 The burst duration of interest is in the range of microseconds.  The shortest-lived delayed 

neutron precursors have a half-life in the range of a tenth of a second [67].  There is no 

time in normal operation of the reactors of interest for a delayed-neutron contribution. 
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Figure 2.1 Comparison of a Tailed and Tailless Burst 

The alpha parameter 

 FBRs operate in a transient condition for a short time period with a rapidly changing 

neutron population.  To begin study of these types of reactors it is beneficial to consider 

the neutron density of a system as a function of time, 𝑛𝑛(𝑡𝑡).  The time-dependent behavior 

of the system is described by [51], 

 𝑑𝑑 𝑛𝑛(𝑡𝑡)
𝑑𝑑𝑡𝑡

≡ lim
Δ𝑡𝑡→0

𝑛𝑛(𝑡𝑡 + Δ𝑡𝑡) − 𝑛𝑛(𝑡𝑡)
Δ𝑡𝑡

 . 
(2-1) 
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For relatively small Δ𝑡𝑡, equation (2-1) is approximated by, 

 𝑑𝑑 𝑛𝑛(𝑡𝑡)
𝑑𝑑𝑡𝑡

≅
𝑛𝑛(𝑡𝑡 + Δ𝑡𝑡) − 𝑛𝑛(𝑡𝑡)

Δ𝑡𝑡
 . 

(2-2) 

 

The prompt neutron lifetimes in an FBR are on the orders of 10-6 – 10-9 seconds, depending 

on the material makeup and geometry [52, 53, 24, 54]. 

For a system containing fissile material, assume there is a multiplication factor, k, 

for the entire system that depends on the average prompt neutron lifetime, l.  That is, for 

every neutron lost, the system produces k neutrons in return.  Therefore, for every time-

step of l, the neutron population changes by a factor of k.  Substituting the values of k and 

l into equation (2-2) gives, 

 𝑑𝑑 𝑛𝑛(𝑡𝑡)
𝑑𝑑𝑡𝑡

≅
𝑛𝑛(𝑡𝑡 + 𝑙𝑙) − 𝑛𝑛(𝑡𝑡)

𝑙𝑙
=
𝐷𝐷 𝑛𝑛(𝑡𝑡) − 𝑛𝑛(𝑡𝑡)

𝑙𝑙
= 𝑛𝑛(𝑡𝑡) �

𝐷𝐷 − 1
𝑙𝑙

� . 
(2-3) 

 

Using this approximation provides the differential equation, 

 𝑑𝑑 𝑛𝑛(𝑡𝑡)
𝑑𝑑𝑡𝑡

= 𝑛𝑛(𝑡𝑡) �
𝐷𝐷 − 1
𝑙𝑙

� . (2-4) 

 

 With a solution of [54], 

 𝑛𝑛(𝑡𝑡) = 𝑛𝑛(0)𝑒𝑒�
𝑘𝑘−1
𝑙𝑙 �𝑡𝑡. (2-5) 
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We now define the alpha parameter of the system as [55]1, 

 𝛼𝛼 ≡
𝐷𝐷 − 1
𝑙𝑙

. (2-6) 

   
The scalar flux, 𝜕𝜕(𝑟𝑟, 𝑡𝑡) is equal to neutron density, n(r, t), multiplied by the neutron 

speed.  Therefore, the time dependence of scalar flux must be, 

 𝜕𝜕(𝑟𝑟, 𝑡𝑡) = 𝜕𝜕(𝑟𝑟, 0)𝑒𝑒𝛼𝛼𝑡𝑡 (2-7) 
   

A similar relation exist between the angular neutron density, 𝑁𝑁(𝑟𝑟,𝛀𝛀� , 𝑡𝑡), and the angular 

flux, 𝜓𝜓(𝑟𝑟,𝛀𝛀� , 𝑡𝑡) [56, 23], 

 𝜓𝜓�𝑟𝑟,𝛀𝛀� , 𝑡𝑡� = 𝜓𝜓(𝑟𝑟,𝛀𝛀� , 0)𝑒𝑒𝛼𝛼𝑡𝑡 (2-8) 
 

This work uses solutions to the flux of the forms found in equations (2-7), and (2-8) to 

derive both the diffusion and even-parity transport time-eigenvalue equations (see 

Appendix D and Appendix E).  Solving for alpha is fundamental to the use of the flux 

solution and is the primary focus of effort in this research.  Alpha is also useful in its own 

right in describing the burst characteristics of an FBR. 

                                                 

1 Inspection of equation (2-6) gives some indication of why the parameter alpha is often of less interest than 

k.  Given a typical thermal power reactor operating near critical, 𝐷𝐷 ≅ 1, the effective neutron lifetime is 

~0.1 seconds making 𝛼𝛼 ≅ 0.0 [38].  However, in the case of a FBR a prompt super-critical state is required 

to generate a burst, and the neutron lifetime is on the order of micro to nanoseconds, making alpha a much 

more significant factor [24, 1]. 
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 Equations (2-7) and (2-8) establish the asymptotic, time-dependent, neutronic, 

solution (see Figure 2.2).  When alpha is positive the neutron population increases with 

time.  When equal to zero the population remains the same, and the neutron population will 

decrease with time when alpha is negative [23].   

 

Figure 2.2 The Asymptotic Behavior of Scalar flux 

The alpha and k Relationship 

Equation (2-5) and the definition found in equation (2-6) show that the relationship 

of alpha to the neutron population with respect to time shown in Figure 2.2 equates to k 

values of greater that one, one and less than one respectively (see Table 2.1).  It is also 

helpful in establishing the solution techniques of Chapter 5 to study another method of 

describing the time dependent behavior of the neutron population of a system that uses the 

concepts of neutron generations and the multiplication factor k. 
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Table 2.1 Relation of α and k to Criticality 

 Subcritical Critical Supercritical 
α 𝛼𝛼 < 0 𝛼𝛼 = 0 𝛼𝛼 > 0 
k 𝐷𝐷 < 1 𝐷𝐷 = 1 𝐷𝐷 > 1 

 

The concept of neutron generations can also derive equation (2-5) from a different 

perspective that is also appropriate for FBRs operating with a k value near unity.  If the 

generation zero is defined as, 

 𝑛𝑛(0) ≡ neutron population of genertation zero (2-9) 
   

then the population of subsequent generations is given by, 

 𝐷𝐷 𝑛𝑛(0) = neutron population of generation one (2-10) 
   

𝐷𝐷2𝑛𝑛(0) = neutron population of generation two 

𝐷𝐷𝑔𝑔𝑔𝑔𝑔𝑔𝑛𝑛(0) = nuetron population of generation 𝑠𝑠. 

Equation (2-11) now describes the time dependent neutron population [57]. 

 𝑛𝑛(𝑡𝑡) = 𝑛𝑛(0)𝐷𝐷𝑔𝑔𝑔𝑔𝑔𝑔 (2-11) 
   

Equation (2-12) determines the scalar flux using the same relationships of the previous 

section. 

 𝜕𝜕(𝑟𝑟, 𝑡𝑡) = 𝜕𝜕(𝑟𝑟, 0)𝐷𝐷𝑔𝑔𝑔𝑔𝑔𝑔 (2-12) 
 

Figure 2.3 shows a graphic comparison of the two solution methods.  The asymptotic 

solution allows for neutron production throughout the time step and is used to model 



24 

 

prompt critical and transient systems [54].  The k based generation model only allows for 

neutron production at the end of a time-step.  This effectively produces a steady-state 

solution between time-steps, and steady-state systems that operate with relatively long 

neutron lifetimes often use this method to model mild transients [58].  

 

Figure 2.3 Asymptotic and Generational Neutronic Solution Comparison 

On average the time when the generation, gen, is born is, 

 𝑡𝑡 = 𝑔𝑔𝑒𝑒𝑛𝑛 ∙ 𝑙𝑙. (2-13) 
   

Solving equation (2-13) for gen and substituting in to the last line entry of equation (2-13), 

the neutron population as a function of time is now, 

 𝑛𝑛(𝑡𝑡) = 𝑛𝑛(0)𝐷𝐷𝑡𝑡/𝑙𝑙. (2-14) 
   

Logarithmic identities [51] transform equation (2-14) to, 

 𝑛𝑛(𝑡𝑡) = 𝑛𝑛(0) 𝑒𝑒[�𝑡𝑡𝑙𝑙� ln(𝑘𝑘)]. (2-15) 

   
Expanding ln(k) by Taylor series about one [59, 51] provides equation (2-16). 
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 ln(𝐷𝐷) = (𝐷𝐷 − 1) + higher order terms. (2-16) 
   

If k is close to one then 

 ln(𝐷𝐷) ≅ 𝐷𝐷 − 1. (2-17) 
   

Substituting equation (2-17) into equation (2-15) again provides equation (2-5) [57].1  This 

relationship between the asymptotic and steady state solutions for near critical systems 

proves useful in initializing the non-linear solution method described in Chapter 5. 

 It is important to understand some things about the time dependence on the neutron 

population: 

1. The depiction of neutron population in Figure 2.3 is not spatially dependent.  It only 

represents the magnitude of the flux.  The spatial flux profile is largely independent 

of time and identical for all of the solution schemes presented in this section.  

Chapter 3 shows this in detail. 

2. The solutions are all equivalent for k = 1 and alpha = 0.  However, nothing can be 

determined about the lifetime based on decay or multiplication of the neutron 

population under this condition. 

3. The same generational assumption of time dependence is the root of all the 

solutions presented.  However, the asymptotic is the least restrictive and most 

accurate for describing transients. 

                                                 

1 Generations per second often describes alpha, presumably due to this derivation method. 
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The asymptotic solution allows for not only the creation of neutrons between time steps, 

but also allows those neutrons to contribute to multiplication.  The concept of compounding 

is useful in explaining this effect.  Let the lifetimes of equations (2-5) and (2-14) be 

independent of each other and set the equations equal to each other. 

 
𝑛𝑛(0)𝑒𝑒�

𝑘𝑘−1
𝑙𝑙𝛼𝛼

�𝑡𝑡 = 𝑛𝑛(0)𝐷𝐷𝑡𝑡/𝑙𝑙𝑘𝑘  
(2-18) 

Now solve for the ratio of lα/lk 

 𝑙𝑙𝛼𝛼/𝑙𝑙𝑘𝑘 =
(𝐷𝐷 − 1)

ln (𝐷𝐷)
 (2-19) 

Plotting (2-19) shows that if 𝑙𝑙𝑘𝑘is reduced by this proportion with respect to lα the solution 

are identical.  This is because equation (2-14) now is able to compound the neutron 

multiplication at a faster rate.  Figure 1.1 shows that this effect becomes more prominent 

as k increases.  
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Figure 2.4 Compounding Effect of the Neutron Population 

 FBRs typically produce 1016-1018 fissions in a timeframe of 35 microseconds to a 

millisecond [2].  These numbers are not obtainable without an exponential rise in neutron 

population.  Therefore, for modeling FBRs, the asymptotic solution is the most appropriate.  

In order to use the asymptotic solution to the neutron flux calculation of alpha is required 

and that is the primary computational effort of this research. 

The Nordheim-Fuchs Model  

The Nordheim-Fuchs model describes self-limiting excursions that take place in a 

short enough amount of time that all neutron sources except prompt fission neutrons are 

neglected [22].  This description matches the subject FBRs exactly.  The following 
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equation describes this type of system (which is identical to equation (2-4) in the preceding 

section), 

 𝑑𝑑 𝑛𝑛
𝑑𝑑𝑡𝑡

= 𝑛𝑛 �
𝐷𝐷 − 1
𝑙𝑙

� = 𝑛𝑛 𝛼𝛼 . (2-20) 

 

 An immediately useful derivation from the Nordheim-Fuchs model is an equation 

for determining the burst width of an excursion, Full Width at Half Maximum (FWHM) 

[2, 49, 22, 1]. 

 
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 ≡ 𝜏𝜏 =

3.524 
𝛼𝛼0

 
(2-21) 

 

Additionally, peak power is determined by, 

𝜕𝜕peak =
𝛼𝛼02 𝑙𝑙 𝐷𝐷0 

2Θ
 . 

 

(2-22) 

Where, 

• 𝑙𝑙 ≡ the prompt neutron lifetime 

•  Θ ≡ energy coefficient of feedback reactivity [22] 

• 𝛼𝛼0 & 𝐷𝐷0 are the peak values 

The codes developed in this work will include k calculations as well as alpha in order to 

determine the neutron lifetime using equation (2-6) and ultimately determine the peak of 

the pulse using equation (2-22).  Alpha alone is all that is required to determine the 

FWHM by equation (2-21).  
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 The results of the alpha and k calculations developed in later chapters are used to 

determine the FWHM and peaks of the neutron pulses of the case study FBRs.  This 

combined with the established behavior of an exponential rise will provide the three 

points necessary to model bursts associated with the FBRs of interest (see Figure 2.5). 

 

Figure 2.5 Burst Derived from Max Flux and FWHM 
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The Neutron Diffusion Equation 

A model that includes material and geometrical properties is required to calculate 

the time-eigenvalue of a FBR and make use of the characterizing equations of the burst 

provided by the Nordheim-Fuchs model.  For simplicity, the neutron diffusion equation is 

the first method considered.  

The time-dependent neutron diffusion equation, 

 1
v
𝜕𝜕𝜕𝜕
𝜕𝜕𝑡𝑡

= 𝜈𝜈𝜎𝜎𝑓𝑓 𝜕𝜕 − 𝜎𝜎𝑎𝑎 𝜕𝜕 + 𝐷𝐷 ∇2𝜕𝜕 , (3-1) 

 

simplifies the time-eigenvalue neutronic calculations when compared to the transport 

equation.  This allows for an initial focus on the novel solution methods for the time-

eigenvalue required to model the burst of an FBR.  The diffusion coefficient, D, does, 

however, replicate the complication of non-linearity of alpha found in the coefficient of the 

streaming term in the even-parity transport equation, see equations (1-3) and (3-5) and also 

Appendix D and Appendix E. 

The diffusion equation considered consists of a single spatial dimension (one-

dimensional).  These initial calculations utilize the spherical coordinate system depicted in 

Figure 3.1 in order to provide practicality to the models, and comparisons to the Godiva 

FBR.  JAKES is capable of solving the system in one-dimensional slab or cylindrical 

geometries, but these cases include the assumption of at least one infinite spatial dimension.  
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The spherical coordinate system in one-dimension has no infinity term, and results in a 

geometry that is possible to build. 

 

Figure 3.1 Spherical Coordinates1 

Equation (3-2) gives the Laplacian of equation (3-1) in spherical coordinates [59]. 

 
∇2=

1
𝑟𝑟2

𝜕𝜕
𝜕𝜕𝑟𝑟
�𝑟𝑟2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑟𝑟
� +

1
𝑟𝑟2 sin 𝜃𝜃

𝜕𝜕
𝜕𝜕𝜃𝜃

�sin 𝜃𝜃
𝜕𝜕𝜕𝜕
𝜕𝜕𝜃𝜃
� +

1
𝑟𝑟2 sin2 𝜃𝜃

𝜕𝜕2𝜕𝜕
𝜕𝜕𝜑𝜑2 

(3-2) 

                                                 

1 The numerical solution methods of the following section uses the discretized sphere overlaid on the 

coordinate systems.  The analytical solution utilizes a continuous variable in r. 
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For a sphere of homogeneous material, it is reasonable to assume that the flux is only 

dependent on the radial distance from the center of the sphere, thus reducing equation (3-2) 

to, 

 
∇2=

1
𝑟𝑟2

𝜕𝜕
𝜕𝜕𝑟𝑟
�𝑟𝑟2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑟𝑟
� =

1
𝑟𝑟2
�𝑟𝑟2

𝜕𝜕2𝜕𝜕
𝜕𝜕𝑟𝑟2

+ 2𝑟𝑟
𝜕𝜕𝜕𝜕
𝜕𝜕𝑟𝑟
� =

𝜕𝜕2𝜕𝜕
𝜕𝜕𝑟𝑟2

+
2
𝑟𝑟
𝜕𝜕𝜕𝜕
𝜕𝜕𝑟𝑟

 . 
(3-3) 

 

Substituting equation (3-3) into equation (3-1) gives equations (1-2) and (3-4). 

Analytical Solution of the Time-Eigenvalue Diffusion Equation 

Solving equation (1-2), 

 1
v
𝜕𝜕𝜕𝜕
𝜕𝜕𝑡𝑡

= 𝜈𝜈𝜎𝜎𝑓𝑓 𝜕𝜕 − 𝜎𝜎𝑎𝑎 𝜕𝜕 + 𝐷𝐷 �
𝜕𝜕2𝜕𝜕
𝜕𝜕𝑟𝑟2

+
2
𝑟𝑟
𝜕𝜕𝜕𝜕
𝜕𝜕𝑟𝑟
� 

(3-4) 

   
 𝐷𝐷 =

1

3 �𝜎𝜎𝑡𝑡 + 𝛼𝛼
𝑣𝑣�

 (3-5) 

   
 

by separation of variables provides an infinite set of eigen-pairs of eigenvectors in scalar 

flux and eigenvalues in alpha. 
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𝜕𝜕(𝑟𝑟, 𝑡𝑡) = �𝐶𝐶𝑔𝑔𝑒𝑒𝛼𝛼𝑛𝑛𝑡𝑡

𝑠𝑠𝑠𝑠𝑛𝑛 � 𝑛𝑛𝑛𝑛
𝑅𝑅+2𝐷𝐷𝑡𝑡�

𝑟𝑟

∞

𝑔𝑔=1

 
(3-6)1 

   
 

𝛼𝛼𝑔𝑔 = v𝐷𝐷 �
𝜎𝜎𝑎𝑎
𝐷𝐷
�
𝜈𝜈𝜎𝜎𝑓𝑓
𝜎𝜎𝑎𝑎

− 1� − �
𝑛𝑛 𝜋𝜋

𝑅𝑅 + 2𝐷𝐷
�
2

� 
(3-7) 

 
 

  

Inspection of equation (3-6) reveals that the term dependent on time, 𝑒𝑒𝛼𝛼𝑛𝑛𝑡𝑡, only acts as a 

scalar to the shape of the flux, 
𝑠𝑠𝑠𝑠𝑔𝑔 � 𝑛𝑛𝑛𝑛

𝑅𝑅+2𝐷𝐷𝑡𝑡�

𝑟𝑟
 , determined by geometry and position. 

 The extrapolated boundary, R + 2D, introduces additional non-linearity to the 

solution of the diffusion equation.  However, since the transport equation does not have 

this non-linearity, numerical solutions to the diffusion equation in this work do not include 

the 𝛼𝛼
𝑣𝑣
 term in the diffusion coefficient used to calculate the extrapolated boundary.  Instead, 

numerical calculations use the extrapolated boundary using the diffusion coefficient for a 

k calculation to improve the validity of solutions and remain consistent with solution 

methods for even parity transport.  This requires adjustments to the analytical solutions 

used to verify and validate the numerical calculations.  In this case, 𝐷𝐷𝑘𝑘 ≡
1
𝜎𝜎𝑡𝑡𝑡𝑡

, and equation 

(3-7) becomes, 

 
𝛼𝛼𝑔𝑔 = v𝐷𝐷 �

𝜎𝜎𝑎𝑎
𝐷𝐷
�
𝜈𝜈𝜎𝜎𝑓𝑓
𝜎𝜎𝑎𝑎

− 1� − �
𝑛𝑛 𝜋𝜋

𝑅𝑅 + 2𝐷𝐷𝑘𝑘
�
2

�. 
(3-8) 

                                                 

1 The solution of the scalar flux in equation (3-6) clearly shows the asymptotic dependence in time that was 

established in Chapter 2, but from a very different approach. 
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Additionally, the analytical solution used for the flux, or eigenvector is, 

 
𝜕𝜕(𝑟𝑟, 𝑡𝑡) = �𝐶𝐶𝑔𝑔𝑒𝑒𝛼𝛼𝑛𝑛𝑡𝑡

𝑠𝑠𝑠𝑠𝑛𝑛 � 𝑛𝑛𝑛𝑛
𝑅𝑅+2𝐷𝐷𝑘𝑘

𝑡𝑡�

𝑟𝑟

∞

𝑔𝑔=1

 
(3-9) 

 

Appendix D provides additional details of the analytical solution as well as motivation for 

the form used with numerical calculations. 

Other than for general interest, this work only considers the fundamental eigen-pair 

where 𝑛𝑛 = 1  for calculation.  The fundamental mode is what the Nordheim-Fuchs model 

requires to model the burst.  However, all eigen-pairs contribute the flux shape that the 

reactor produces.  The eigenvalues of typical FBRs are characterized by a single positive 

eigenvalue (the fundamental mode), and multiple (infinite in the analytical case) negative 

eigenvalues of increasing magnitude.  Figure 3.1 shows the shapes of the first five eigen-

pairs of a Godiva like FBR.  The constant in equation (3-6) is determined through initial 

conditions of a physical problem.  For illustration purposes, this constant is adjusted to 

normalize the peak in the center of the sphere. 
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Figure 3.2 First Five Eigen-pairs of a Notional Spherical FBR 

Inspection of the exponential in equation (3-6)  shows that over time the eigen-pairs 

associated with negative values of alpha will contribute less and less to the sum that 

describes the flux.  Thus, fundamental node (n = 1) is a good approximation of the 

neutronics, and this value is best suited for calculations related to the alpha parameter 

derived in chapter 2.  However, FBRs operate on short timescales, and other FBR modeling 

may require calculation of additional eigen-pairs.  Figure 3.2 depicts the flux shape (sum 

of the first five eigen-pairs) of the same Godiva like FBR used to calculate Figure 3.1, at 

early and late times of operation. 
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Figure 3.3 Early and Late Time Flux Comparison  

 The analytical solution to the neutron diffusion equation derived in this section is 

useful in providing insight into the neutronic behavior of simple FBRs.  Additionally, the 

analytical solution assists in verification of the numerical methods developed in the next 

section to solve for the time-eigenvalue. 

 Numerical Solution of the Time-Eigenvalue Diffusion Equation 

Derivation and Spatial Discretization 

 For the numerical case, it is simplest to assume a time-dependent scalar flux 

solution of the form given by equation (2-7).  Substituting equation (2-7), into equation 

(3-1) provides the time-eigenvalue neutron diffusion equation (see appendix D). 

 𝐷𝐷∇2𝜕𝜕 − 𝜎𝜎𝑎𝑎 𝜕𝜕 + 𝜈𝜈 𝜎𝜎𝑓𝑓 𝜕𝜕 =
α
v
𝜕𝜕 (3-10) 

 

For one-dimensional spherical coordinates equation (3-8)becomes, 
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𝐷𝐷 �

𝜕𝜕2𝜕𝜕
𝜕𝜕𝑟𝑟2

+
2
𝑟𝑟
𝜕𝜕𝜕𝜕
𝜕𝜕𝑟𝑟
�𝜕𝜕 − 𝜎𝜎𝑎𝑎 𝜕𝜕 + 𝜈𝜈 𝜎𝜎𝑓𝑓 𝜕𝜕 =

α
v
𝜕𝜕. 

(3-11) 

 

In order to solve the equation the spatial components of the modelled reactor require 

discretization.  Equally dividing the radius that defines the homogenous sphere into equally 

spaced sections of length Δ accomplishes the task in this simple case.  See Figure 3.4.  

 

Figure 3.4 One-Dimensional Spherical Spatial Discretization   

The resulting discretized geometry is a sphere made up of shells.  Figure 3.5 depicts a 

spherical reactor discretized into five sections1.   

                                                 

1 Figure 3.5 is for illustration purposes only.  The results in Chapter 6 will show that it is very unlikely that 

only five spatial cells would produce a numerical result of acceptable accuracy. 
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Figure 3.5 Discretized Spherical Reactor   

 

 Discretizing spatially using finite difference1, see Appendix F, transforms equation (3-11) 

to, 

                                                 

1 It is not necessary for the entire sphere to be of homogenous material, or that the radius be discretized into 

equal partitions to accomplish one-dimensional calculations.  Changing the material composition for each 

shell to accommodate modifications such as a reflector, and adjusting the size of shells is easily accomplished 

by modifying the spatial discretization scheme.  However, the physical model for these one-dimensional 

calculations is Godiva, which was an un-reflected, bare metal, homogeneous, spherical reactor. 
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 𝛼𝛼
v
𝜕𝜕𝑠𝑠 =

𝐷𝐷
𝛥𝛥2
�1 −

1
 𝑠𝑠
� 𝜕𝜕𝑠𝑠−1 + ��̅�𝜈𝜎𝜎𝑓𝑓 − 𝜎𝜎𝑎𝑎 −

2 𝐷𝐷
𝛥𝛥2

�𝜕𝜕𝑠𝑠 +
𝐷𝐷
𝛥𝛥2 �

1 +
1
𝑠𝑠 �
𝜕𝜕𝑠𝑠+1. 

(3-12) 

 

Renaming the coefficients in equation (3-12), and moving the velocity term to the left hand 

side provides a more compact form. 

 v�𝑎𝑎𝑠𝑠,𝑠𝑠−1 𝜕𝜕𝑠𝑠−1 + 𝑎𝑎𝑠𝑠,𝑠𝑠𝜕𝜕𝑠𝑠 + 𝑎𝑎𝑠𝑠,𝑠𝑠+1𝜕𝜕𝑠𝑠+1� = 𝛼𝛼 𝜕𝜕𝑠𝑠 (3-13) 
   
   

For boundary conditions of equation (3-13), the physics and symmetry of the system 

requires the derivative with respect to ϕ equal zero at the origin (reflective), see Figure 3.2 

and Figure 3.3. 

 d𝜕𝜕
d𝑟𝑟
�
𝑟𝑟=0

= 0 ⇒ 𝑎𝑎1,0 = 0 (3-14) 

   
   

 A sphere with a radius of, R, with, I, cells requires the flux at, R, is to be zero (vacuum). 

 𝜕𝜕𝐼𝐼 = 0 (3-15) 
   
   

  The numerical system now contains I – 1 equations for solution by the techniques to 

follow [38]. 

Solution by Power Iteration 

Equation (3-13) is now written in matrix form for ease of explaining the power 

iteration algorithm used for solution.  

 𝐴𝐴 𝝓𝝓 = 𝛼𝛼 𝝓𝝓 
 

(3-16) 
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 Standard scaled power iteration, using the method of successive substitution with 

the largest resulting value scaled to one each iteration solves equation (3-16) for the 

eigenvector associated with the dominate (largest magnitude) eigenvalue 𝛼𝛼𝑚𝑚𝑎𝑎𝑚𝑚 [60, 61, 

62].  Once the eigenvector has converged to tolerance the dominate eigenvalue is calculated 

using the Rayleigh Quotient [61]. 

 𝛼𝛼𝑚𝑚𝑎𝑎𝑚𝑚 =
𝐴𝐴𝝓𝝓 ∙ 𝝓𝝓
𝝓𝝓 ∙ 𝝓𝝓

 (3-17) 

 

However, unlike a k eigenvalue calculation, the dominate eigenvalue does not 

represent the fundamental mode.  For a time-eigenvalue calculation, the algebraically 

largest eigenvalue is the fundamental mode (see the analytical solution derived Chapter 2, 

for context).  To solve for the fundamental mode, 𝛼𝛼𝑚𝑚𝑎𝑎𝑚𝑚 , which will certainly be negative, 

is essentially added to the diagonal of A. 

 𝐴𝐴 − 𝛼𝛼𝑚𝑚𝑎𝑎𝑚𝑚𝐼𝐼 
 

(3-18) 

This changes the characteristic equation of the matrix (see Appendix C) so that all 

eigenvalues are now such that the dominate eigenvalue 𝜆𝜆 is related to the fundamental 

mode of the original problem by, 

 𝛼𝛼 = 𝜆𝜆 + 𝛼𝛼𝑚𝑚𝑎𝑎𝑚𝑚. (3-19) 
   
   

Therefore, the power iteration scheme is repeated again to find λ, and then equation (3-19) 

is used to find the fundamental mode of the time-eigenvalue problem.  Once, this is 

complete the value for α is substituted into the appropriate coefficients of the matrix A in a 
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fixed-point iteration routine.  The entire process is repeated until α has converged to 

tolerance by fixed-point iteration. 

 

Figure 3.6 Alpha PI Algorithm Flowchart  
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The Even-Parity Transport Equation 

The even-parity form of the time-eigenvalue transport equation is solved for the 

two-dimensional case (see Appendix E). 

 �𝛀𝛀� ∙ ∇�
1

�𝛼𝛼v + 𝜎𝜎�
�𝛀𝛀� ∙ ∇�𝜓𝜓+ − 𝜎𝜎𝜓𝜓+ + 𝑄𝑄 =

𝛼𝛼
v
𝜓𝜓+ (4-1) 

 

The solution of the even-parity transport equation will use two-dimensional cylindrical 

coordinates (r-z) depicted in Figure 4.1, for reasons similar to choosing spherical 

coordinates for the one-dimensional case.  This coordinate system will provide practicality 

to the models, and comparisons to the MolyG FBR.  Two-dimensional slab models include 

the assumption of at least one infinite spatial dimension.  The cylindrical coordinate system 

in two-dimensions has no infinity term, and, as in the one-dimensional case, results in a 

geometry that is possible to build. 



43 

 

 

Figure 4.1 Cylindrical Coordinates1  

Equation (4-2) provides the Laplacian for cylindrical coordinates [59].  

 
∇2=

1
𝑟𝑟
𝜕𝜕
𝜕𝜕𝑟𝑟
�𝑟𝑟
𝜕𝜕𝜕𝜕
𝜕𝜕𝑟𝑟
� +

1
𝑟𝑟2
𝜕𝜕2𝜕𝜕
𝜕𝜕𝜃𝜃2

+
𝜕𝜕2𝜕𝜕
𝜕𝜕𝑧𝑧2

 
(4-2) 

   

                                                 

1 Unfortunately, cylindrical coordinates represent the polar angle similarly to the azimuthal angle of spherical 

coordinates.  This arises from the two-dimensional polar coordinates that serves as the basis for the cylindrical 

system.  The polar coordinate system calculates the polar angle counter-clockwise from the traditional x-axis, 

or pole. 
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For the two-dimensional case, the flux has no spatial dependence on the polar angle and 

the Laplacian reduces to equation  

 
∇2=

1
𝑟𝑟
𝜕𝜕
𝜕𝜕𝑟𝑟
�𝑟𝑟
𝜕𝜕𝜕𝜕
𝜕𝜕𝑟𝑟
� +

𝜕𝜕2𝜕𝜕
𝜕𝜕𝑧𝑧2

=
𝜕𝜕2𝜕𝜕
𝜕𝜕𝑟𝑟2

+
1
𝑟𝑟
𝜕𝜕𝜕𝜕
𝜕𝜕𝑟𝑟

+
𝜕𝜕2𝜕𝜕
𝜕𝜕𝑧𝑧2

 . 
(4-3) 

   
   

The neutron transport program EVEn-parity Neutron Transport (EVENT) produces 

and evaluates the systems of equations that result from the discretization of equation (4-1).  

EVENT spatially discretizes using finite element techniques.  The angle representation is 

achieved through spherical harmonics.  The code contains a capable k-eigenvalue, solver that 

is suitable to initialize the non-linear solver that is presented in Chapter 5.  The code has a 

preprocessor for the front-end data processing that can take many different multi-group cross-

section formats.  The two-dimensional cylindrical (r-z) geometry is a longtime capability in 

EVENT.  The details of development and capability of EVENT are subject of many academic 

and other professional writings, and can be found elsewhere [42, 44, 45].  For this work, the 

primary use of EVENT is to validate the unique solution methods for time-eigenvalue 

calculations in a multi-dimensional transport environment. 

 In setting up the geometry for the EVENT cylindrical calculations, it is useful to do 

some analysis to ensure the runs are productive.  Minimizing the neutron leakage is a good 

nuclear engineering practice.  In the spherical case, the radius determines the surface to 

volume ratio. 

 𝑠𝑠𝑠𝑠ℎ 𝑆𝑆𝑆𝑆𝑟𝑟𝑆𝑆
𝑠𝑠𝑠𝑠ℎ 𝑉𝑉𝑉𝑉𝑙𝑙

=
3

4 𝑟𝑟
 

 

(4-4) 

   
However, in the cylindrical case the height and radius determines the ratio. 
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 𝐶𝐶𝐶𝐶𝑙𝑙 𝑆𝑆𝑆𝑆𝑟𝑟𝑆𝑆
𝐶𝐶𝐶𝐶𝑙𝑙 𝑉𝑉𝑉𝑉𝑙𝑙

=
2
𝑟𝑟
�1 +

1
ℎ 𝑟𝑟�

� 

 

(4-5) 

   
The plot in Figure 4.2 depicts the surface to volume ratio of a cylinder for a normalized 

radius.  The graph shows that a height to radius ratio of up to ~ one, improves the surface 

to volume ratio significantly.  At about a height to radius ratio of ~ two, the surface to 

volume ratio continues to improve, but at a diminished rate.  The height to radius ratio of 

Molly G is 1.874 [15].  From diffusion theory, the leakage is minimized by a height of 

1.847 times the radius, see Appendix K.  This work uses a height to radius ratio of 1.874 

for the proposed LEU cylindrical designs.  This ratio is expected to maintain a desirable 

surface to volume ratio as well as reasonable ease of manufacturing and keeps the basic 

design of MolyG.  

 

Figure 4.2 Surface to Volume Ratio for a Cylinder 
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Non-Linear Solution Method 

  The power iteration algorithm described in Chapter 3 is over twice the effort of a 

k calculation not counting the required outer fixed-point iterations required to account for 

the α dependence of the matrix itself.  This difficulty alone warrants a search for 

acceleration methods. 

Additionally, as the next chapter will show in detail, the time-eigenvalue problem 

is stiff, ill conditioned, and requires power-iterations on a system with a dominance ratio 

of essentially unity for matrixes of a size required for accuracy.  The system is also 

inherently nonlinear in alpha and the flux (see Appendix J), and warrants a Newton method 

[63].  These issues make robust nonlinear solution techniques worthy of consideration.  

Initialization Methods 

The use of nonlinear techniques, specifically Newton’s method, does not guarantee 

convergence to any particular eigen-pair and an adequately accurate starting point is 

required to arrive at the desired result [7, 29, 64].  This makes the starting point of the 

routine important to the result.  Newton’s method is more efficient than most, but efficiency 

at finding the wrong answer is not desirable.  Therefore, the routine uses a coarse power-

iteration on alpha, or a k calculation to chaperone Newton’s methods and guide it to the 

correct solution set [64].   
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The full algorithm may use a coarse alpha power iteration, to provide a good start 

for the nonlinear solver.  This is the most intuitive method.  However, a k calculation is 

also an option for initialization.  The similarity of the time dependent neutron population 

between the alpha and k based solution when k ~ 1 and alpha is ~ 0 was presented in Chapter 

2.  Additionally, the shape of the flux (flux profile) is similar for the steady-state solution 

as it is for the time-dependent.  For an eigenvalue calculation, any scalar of the eigenvector 

will satisfy the solution [61].  Since the shape is similar and only the magnitude differs 

between the solution methods over time, a normalized flux from a k calculation will serve 

as excellent initialization solution vector.  Combining the calculated k eigenvalue with an 

educated estimate of the neutron lifetime1, and using equation (2-6) to solve for alpha 

provides a good initial estimate for alpha.  

Newton’s Method 

 The setup of the nonlinear system for solution by Newton’s method requires 

adjustment of equations (3-14) and (3-15) into a set of functions equal to zero2. 

 𝐹𝐹𝜙𝜙(𝝓𝝓,𝛼𝛼) = 𝐴𝐴 𝝓𝝓− 𝛼𝛼 𝝓𝝓 = 0 
 

(5-1) 

                                                 

1 10-8 seconds proved an adequate estimate for all calculations used here. 

2 Here the scalar flux is used as a representative solution or eigenvector for simplicity and applicability to the 

one-dimensional diffusion case.  For the even-parity transport solution the solution vector is the moments of 

𝜓𝜓+. 
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 𝐹𝐹𝛼𝛼(𝝓𝝓,𝛼𝛼) = 𝛼𝛼 −
𝐴𝐴𝝓𝝓 ∙ 𝝓𝝓
𝝓𝝓 ∙ 𝝓𝝓

= 0 (5-2) 

 

Expanding the non-linear function in the first two terms of a Taylor series about the current 

solution 𝑼𝑼 𝑠𝑠 , where U represents both alpha and the scalar flux of equations (5-1) and (5-2), 

derives the Newton iteration [8]. 

 
𝐹𝐹( 𝑼𝑼 𝑠𝑠+1 ) = 𝐹𝐹( 𝑼𝑼 𝑠𝑠 ) +

𝜕𝜕𝐹𝐹( 𝑼𝑼 𝑠𝑠 )
𝜕𝜕 𝑼𝑼 𝑠𝑠

( 𝑼𝑼− 𝑼𝑼 𝑠𝑠 
𝑠𝑠+1 ) = 0 

 

(5-3) 

   
Redefining the terms of equation (5-3) in the following manner, 

• The Jacobian, 𝕁𝕁 ≡ 𝜕𝜕𝜕𝜕( 𝑼𝑼 𝑠𝑠 )
𝜕𝜕 𝑼𝑼 𝑠𝑠

 

• 𝛿𝛿 𝑼𝑼 𝑠𝑠 ≡ ( 𝑼𝑼 − 𝑼𝑼 𝑠𝑠 
𝑠𝑠+1 ) ⟶ 𝑼𝑼 = 𝑼𝑼 + 𝛿𝛿 𝑼𝑼 𝑠𝑠 

𝑠𝑠
 

𝑠𝑠+1 . 

Substituting the above definitions and derivation into equation (5-3) provides 

equation(5-4). 

 𝕁𝕁𝛿𝛿 𝑼𝑼 𝑠𝑠 = −𝐹𝐹( 𝑼𝑼 𝑠𝑠 ) 
 

(5-4) 

   
Equation (5-4) is a linear set of equations of the form, 𝐴𝐴𝒙𝒙 = 𝒃𝒃 (see Appendix J).  Solving 

this equation for 𝛿𝛿 𝑼𝑼 𝑔𝑔  provides the update, 

 𝑼𝑼 = 𝑼𝑼 + 𝛿𝛿 𝑼𝑼 𝑠𝑠 
𝑠𝑠

 
𝑠𝑠+1  (5-5) 
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for the next Newton iteration.  For a system of equations, like those used to solve the 

discretized forms of the diffusion and even-parity transport equations, the function 𝐹𝐹(𝑼𝑼) 

is a set of functions [8]. 

 𝐹𝐹(𝑼𝑼) = {𝐹𝐹1,𝐹𝐹2, … ,𝐹𝐹𝑠𝑠 , … ,𝐹𝐹𝑔𝑔} 
 

(5-6) 

   
U is the solution vector for the set of functions. 

 𝑼𝑼 = {𝑆𝑆1,𝑆𝑆2, … ,𝑆𝑆𝑠𝑠 , … ,𝑆𝑆𝑔𝑔} 
 

(5-7) 

   
The Jacobian is a matrix with elements of the form found in equation (5-8) where i and j 

are the row and column indexes, respectively. 

 
𝕁𝕁𝑠𝑠,𝑗𝑗 =

𝜕𝜕𝐹𝐹𝑠𝑠(𝑼𝑼)
𝜕𝜕𝑼𝑼𝑗𝑗

 

 

(5-8) 

   
Each element of the Jacobian requires taking derivatives of the equation with respect to U.  

This is the main difficulty in using Newton’s Method.  However, choosing a Krylov based 

linear solver can simplify this process.  This process is detailed in a later section. 

Expanding U back into the problem of interest provides the nonlinear set. 

 �
𝕁𝕁𝜙𝜙,𝜙𝜙 𝕁𝕁𝜙𝜙,𝛼𝛼
𝕁𝕁𝛼𝛼,𝜙𝜙 𝕁𝕁𝛼𝛼,𝛼𝛼

� �𝛿𝛿𝝓𝝓
𝛿𝛿𝛼𝛼
� = −�

𝑭𝑭𝝓𝝓
𝐹𝐹𝜶𝜶
� (5-9) 

   
 

 
𝕁𝕁𝜙𝜙,𝜙𝜙 =

𝜕𝜕𝑭𝑭𝝓𝝓
𝜕𝜕𝝓𝝓

, 𝕁𝕁𝜙𝜙,𝛼𝛼 =
𝜕𝜕𝑭𝑭𝝓𝝓
𝜕𝜕𝛼𝛼

, 𝕁𝕁𝛼𝛼,𝜙𝜙 =
𝜕𝜕𝐹𝐹𝜶𝜶
𝜕𝜕𝝓𝝓

 , 𝕁𝕁𝛼𝛼,𝛼𝛼 =
𝜕𝜕𝐹𝐹𝜶𝜶
𝜕𝜕𝛼𝛼

 
(5-10) 
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The dimensions of the Jacobians making up the block matrix in equation (5-9) are as 

follows [7]: 

 

𝕁𝕁𝜙𝜙,𝜙𝜙 =

⎣
⎢
⎢
⎢
⎡
𝜕𝜕𝐹𝐹𝜙𝜙1
𝜕𝜕𝜕𝜕1

⋯
𝜕𝜕𝐹𝐹𝜙𝜙1
𝜕𝜕𝜕𝜕𝑔𝑔

⋮ ⋱ ⋮
𝜕𝜕𝐹𝐹𝜙𝜙𝑔𝑔
𝜕𝜕𝜕𝜕1

⋯
𝜕𝜕𝐹𝐹𝜙𝜙𝑔𝑔
𝜕𝜕𝜕𝜕𝑔𝑔 ⎦

⎥
⎥
⎥
⎤

 

(5-11) 

   
 

  

 

𝕁𝕁𝜙𝜙,𝛼𝛼 =

⎣
⎢
⎢
⎢
⎡
𝜕𝜕𝐹𝐹𝜙𝜙1
𝜕𝜕𝛼𝛼
⋮

𝜕𝜕𝐹𝐹𝜙𝜙𝑔𝑔
𝜕𝜕𝛼𝛼 ⎦

⎥
⎥
⎥
⎤

 

(5-12) 

   
 

 𝕁𝕁𝛼𝛼,𝜙𝜙 = � 
𝜕𝜕𝐹𝐹𝛼𝛼
𝜕𝜕𝜕𝜕1

⋯
𝜕𝜕𝐹𝐹𝛼𝛼
𝜕𝜕𝜕𝜕𝑔𝑔

� (5-13) 

   
 

 𝕁𝕁𝛼𝛼,𝛼𝛼 =
𝜕𝜕𝐹𝐹𝜶𝜶
𝜕𝜕𝛼𝛼

= 1 (5-14) 

   
 

Block Gaussian Elimination 

The dimensions of the elements of equation (5-9) are not consistent and the system 

is complicated by having two functions and a block matrix.  This situation could complicate 

the algorithm required to solve the system.  Additionally, the dimensions and evaluations 
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of the alpha associated function, and Jacobian are simple and convenient.  These factors 

make desirable the simplification of the system through block Gaussian elimination [65]. 

Writing the system in equation (5-9) as a set of two equations begins the process. 

 𝕁𝕁𝜙𝜙,𝜙𝜙𝛿𝛿𝝓𝝓+ 𝕁𝕁𝜙𝜙,𝛼𝛼𝛿𝛿𝛼𝛼 = −𝑭𝑭𝝓𝝓
𝕁𝕁𝛼𝛼,𝜙𝜙𝛿𝛿𝝓𝝓 + 𝕁𝕁𝛼𝛼,𝛼𝛼𝛿𝛿𝛼𝛼 = −𝐹𝐹𝜶𝜶

 
(5-15) 

   
Now a solution for 𝛿𝛿𝛼𝛼 in terms of 𝛿𝛿𝝓𝝓 is now available in equation (5-16) from the second 

equation of (5-15). 

 𝛿𝛿𝛼𝛼 = 𝕁𝕁𝛼𝛼,𝛼𝛼
−1 �−𝐹𝐹𝜶𝜶 − 𝕁𝕁𝛼𝛼,𝜙𝜙𝛿𝛿𝝓𝝓� (5-16) 

   
   

Substituting into the first equation in (5-15) provides equation (5-17). 

 �𝕁𝕁𝜙𝜙,𝜙𝜙 − 𝕁𝕁𝜙𝜙,𝛼𝛼𝕁𝕁𝛼𝛼,𝛼𝛼
−1 𝕁𝕁𝛼𝛼,𝜙𝜙�𝛿𝛿𝝓𝝓 = −𝑭𝑭𝝓𝝓 + 𝕁𝕁𝜙𝜙,𝛼𝛼𝕁𝕁𝛼𝛼,𝛼𝛼

−1 𝐹𝐹𝜶𝜶 (5-17) 
   
   

Equation (5-14) immediately simplifies equation (5-17) to equation (5-18).    

 �𝕁𝕁𝜙𝜙,𝜙𝜙 − 𝕁𝕁𝜙𝜙,𝛼𝛼𝕁𝕁𝛼𝛼,𝜙𝜙�𝛿𝛿𝝓𝝓 = −𝑭𝑭𝝓𝝓 + 𝕁𝕁𝜙𝜙,𝛼𝛼𝐹𝐹𝜶𝜶 (5-18) 
   
   

Qualitatively, equation (5-18) now contains a residual function on the right hand side (rhs) 

that includes a correction based on the change in ϕ with respect to α.  On the left hand side 

(lhs), the Jacobian is adjusted by a scalar resulting from the product of the change in ϕ with 

respect to α, and the change in α with respect to ϕ.  This effect is captured in practice, by a 

technique called nonlinear elimination [7].  Redefining 𝑭𝑭𝝓𝝓 so the α terms are a function of 

ϕ starts the process. 

 𝑭𝑭𝝓𝝓 = 𝐹𝐹𝜙𝜙(𝝓𝝓) = 𝐴𝐴 𝝓𝝓− 𝛼𝛼 𝝓𝝓 = 0 
 

(5-19) 
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and 

 𝛼𝛼 =
𝐴𝐴𝝓𝝓 ∙ 𝝓𝝓
𝝓𝝓 ∙ 𝝓𝝓

 (5-20) 

   
   

In practice the algorithm never explicitly forms the the Jacobian matrix, but instead 

approximates it by evaluation of Fϕ in a finite difference scheme.  Therefore, evaluation of 

the newly defined residual function Fϕ in the scheme will adequately approximate the 

action of �𝕁𝕁𝜙𝜙,𝜙𝜙 − 𝕁𝕁𝜙𝜙,𝛼𝛼𝕁𝕁𝛼𝛼,𝜙𝜙� in the reduced system.  Now the linear system for solution is in 

the form of equation  

 𝕁𝕁𝛿𝛿𝝓𝝓 = −𝑭𝑭𝝓𝝓. 
 

(5-21) 

   
Where Fϕ is given in equation (5-19), and 𝕁𝕁 = �𝕁𝕁𝜙𝜙,𝜙𝜙 − 𝕁𝕁𝜙𝜙,𝛼𝛼𝕁𝕁𝛼𝛼,𝜙𝜙�. 

 Incremental implementation using the algorithms depicted in Figure 5.1, Figure 5.2, 

Figure 5.31 verified the application of this somewhat complex technique. 

                                                 

1 See Figure 5.4 for the JFNK algorithm.   
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Figure 5.1 JFNK Flux and Fixed Point alpha Algorithm Flowchart 

 

 

Figure 5.2 JFNK Flux & alpha With Fixed Point alpha in Coefficients Algorithm Flowchart 
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Figure 5.3 Full Nonlinear Elimination JFNK Flux & alpha Solution Algorithm Flowchart 

Generalized Minimum Residual 

The complexities associated with the Jacobian and the desire to avoid the explicit 

forming of a matrix for memory efficiency leads to the conclusion that a Krylov method is 

best suited to solve the linear system of equations (5-21).  Krylov subspace methods are 

considered among the most important iterative techniques available for solving large linear 

systems [65].  The initial linear residual of equation (5-21) is, 

 𝒓𝒓0 = −𝑭𝑭𝝓𝝓 − 𝕁𝕁𝛿𝛿𝝓𝝓0. 
 

(5-22) 

   
The Krylov subspace is then [60, 8, 65], 

 𝒦𝒦 = 𝒦𝒦𝑘𝑘(𝕁𝕁, 𝒓𝒓0) = span(𝒓𝒓0, 𝕁𝕁𝒓𝒓0, 𝕁𝕁𝟐𝟐𝒓𝒓0 … 𝕁𝕁𝑘𝑘−1𝒓𝒓0). 
 

(5-23) 

   
In equation (5-23), k is the iteration index for the linear solver.  Krylov methods seek a 

solution from the subspace,  
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𝛿𝛿𝝓𝝓𝑘𝑘 = 𝛿𝛿𝝓𝝓0 + 𝒦𝒦 = 𝛿𝛿𝝓𝝓0 + �𝛾𝛾𝑠𝑠𝕁𝕁𝒊𝒊𝒓𝒓0

𝑘𝑘−1

𝑠𝑠=0

. 

 

(5-24) 

   
The γ terms are constants resulting from the span and are chosen to minimize the residual 

[8].  In practice, calculating the Arnoldi vectors provides the solution [8].  The Arnoldi 

procedure produces an orthogonal projection onto the Krylov subspace and results in the 

ability to rewrite equation (5-24) in the following way [65]. 

 𝛿𝛿𝝓𝝓𝑘𝑘 = 𝛿𝛿𝝓𝝓0 + 𝑉𝑉𝑘𝑘𝒚𝒚 
 

(5-25) 

   
The matrix is Vk is an n by k matrix formed by column vectors v1 through vk.  An 

intermediate step in the Arnoldi process involves determining the matrix-vector product 

𝕁𝕁𝐯𝐯𝑗𝑗.  Forming the Jacobian is not required to adequately approximate this product.  Instead, 

finite difference approximates the product by evaluating the residual function [7]. 

 
𝕁𝕁𝐯𝐯𝑗𝑗 ≈

𝑭𝑭𝝓𝝓�𝝓𝝓 + 𝜖𝜖𝐯𝐯𝑗𝑗� − 𝑭𝑭𝝓𝝓(𝝓𝝓)
𝜖𝜖

 
 

(5-26) 

   
Where epsilon is a small value optimized for the algorithm.  The Generalized Minimum 

Residual (GMRES) is a Krylov subspace method of solving linear systems of equations 

[65, 60, 8].  The kth iterate of a GMRES method seeks to minimize the residual by a least 

squares method. 

 minimize𝛿𝛿𝝓𝝓𝑘𝑘∈𝛿𝛿𝝓𝝓0+𝒦𝒦�−𝑭𝑭𝝓𝝓 − 𝕁𝕁𝛿𝛿𝝓𝝓0�2 
 

(5-27) 

   
Again, in practice, GMRES does this by utilizing an Arnoldi procedure.  Therefore, the 

computation does not form matrixes.  Only matrix-vector products are required.  Of the 
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various Krylov methods, GMRES is arguably the best and is the default linear solution 

method for both the ANL PETSc and SNL Trilinos scientific computational packages [40, 

66].  Both are exceptional pieces of software for scientific calculations and incorporate the 

latest and best methods from applied math and computer science.  Because of the quality 

of the software and the complications of the GMRES algorithm great effort was taken to 

incorporate PETSc1 into JAKES, and retain the independence of remaining functions of 

the JAKES code.  This was the most difficult technical task of the research, and one of the 

greatest contributions. 

 

Figure 5.4 JFNK Algorithm Flowchart 

                                                 

1 Both PETSc and Trilinos are written in C.  PETSc was chosen for use in JAKES due to its superior 

FORTRAN interfaces. 
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Results and Analyses 

One-Dimensional Diffusion Case 

The one-dimensional diffusion case provides a good model for verification of the 

solution techniques developed in Chapter 3 and Chapter 5.  The one-dimensional case 

keeps the neutronics as simple as possible in order to study the computational performance, 

and mathematical accuracy of the solution methods.  The one-dimensional calculations use 

one-group cross-sections [67].  The calculations only consider the isotopes of U235 and 

U238 in the modeled reactor.  Comparisons to MCNP calculations and reference data of 

the Lady Godiva FBR provide a reasonable validation of the technique before considering 

two-dimensional neutron transport calculations in later sections. 

Nuclear Data 

This section provides the nuclear data used for the one-dimensional case based on 

the Lady Godiva FBR.  Table 6.1 provides the average neutrons per fission, ν, the delayed 

neutron fraction, β, and the microscopic cross-sections for U235 and U238 [55, 68, 67, 

69]. 

Table 6.1 One-D, One-Group, Microscopic Cross-section Data 

 neutrons fraction barns 
 ν β 𝜎𝜎�𝑓𝑓 𝜎𝜎�𝑎𝑎 𝜎𝜎�𝑡𝑡𝑟𝑟 
U235 2.60 0.0065 1.40 1.65 6.80 
U238 2.60 0.0157 0.095 0.255 6.90 

 



58 

 

Table 6.2 contains the additional data required to complete the calculations [67, 55, 24]. 

Table 6.2 One-D, Enrichment, Density and Neutron Energy Data  

 Enrichment ρ[grams/cm3] Average neutron 
Energy[MeV] 

HEU 93 18.75 1.45 
LEU 19.75%1 18.80 1.2 

 

Numerical Performance Analysis 

A spatial discretization of 30 cells serves as the verification test case.  This spatial 

discretization is not adequate for desired accuracy, but is convenient to assess whether or 

not the algorithm is solving the problem correctly in a mathematical sense.  The first test 

is to verify that the algorithm is correctly converging to the desired eigenvalue and 

eigenvector.  In this case, mathematically, the eigen-pair that is associated with the largest 

algebraic eigenvalue of the matrix.  For this small matrix, Mathematica was used to 

calculate all eigen-pairs [48].  All tested algorithms converged to the desired eigenvalue 

and eigenvector.  Additionally, this test provided limited validation that the coefficients of 

the equations used in the algorithm adequately represented the physical problem by 

comparing the plots of the first five eigen-pairs of the numerical solution, Figure 6.1, and 

of the analytical solution found in Figure 3.2.   

                                                 

1 19.75 percent enrichment is used in all LEU cases.  This enrichment level is below the threshold set by the 

NRC and is the chosen enrichment level by NNSA for production [79, 6, 5]. 
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Figure 6.1 First Five Eigen-pairs of the Numerical Test Case 

Though all algorithms did converge to the desired mathematical result for the test 

problem, not all algorithms did so with the same efficiency.  Power Iteration, in particular, 

had significant difficulty.  Table 6.3 contains iteration and timing data for the various 

algorithms presented in Chapter 3 and Chapter 5.   
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Table 6.3 Comparisons of Numerical Performance 

 JAKES-
JFNK1 

JAKES- 
Hybrid2 

JAKES- 
Fixed 
Point3 

JAKES-
PI-JFNK4 

JAKES-PI5 

Power Iterations 19 19 19 1452 ~1000/ α 
update 

α-updates -- 5 8 -- 497 

Newton Iterations/ 
α update 

3 1 - 2 2 - 3 4 -- 

GMRES Iterations/ 
Newton Iteration 

19 29 29 to 55 17 to 84 -- 

CPU-time [sec] 2.08E-2 6.53E-2 7.67E-2 4.026E-2 .305 

 

 

The dominance ratio is the primary explanation for the difficult convergence of the 

alpha PI algorithm.  A dominance ratio near unity is likely to cause a prohibitively slow 

convergence rate [7, 36, 37].  This ratio was the primary motivation for JFNK techniques 

                                                 

1 This method uses the algorithm described in Figure 5.3 with a k calculation initialization. 

2 This method uses the algorithm described in Figure 5.2 with a k calculation initialization. 

3 This method uses the algorithm described in Figure 5.1 with a k calculation initialization. 

4 This method uses the algorithm described in Figure 5.3 with an alpha PI initialization. 

5 This method uses the algorithm described in Figure 3.6. 



61 

 

applied to k calculations in slow reactors [37, 7].  Equation (6-1) determines the dominance 

ratio. 

 Dominance Ratio =  
𝛼𝛼2
𝛼𝛼1

, (|𝛼𝛼1| > |𝛼𝛼2| > ⋯ > |𝛼𝛼𝑔𝑔|)  (6-1) 

   
Table 6.4 lists all thirty eigenvalues from the numerical test case in the order specified by 

equation (6-1). 

Table 6.4 Complete List of Eigenvalues for the Numerical Test Matrix 

 

The data from Table 6.4 lists all thirty eigenvalues from the numerical test case in the order 

specified by equation (6 1).  Table 6.4 determines the dominance ratio, in alpha, for this 

problem is 1.008.  This condition will only worsen as the number of spatial cells and the 

number eigenvalues increase.  This analytical solution predicts this condition.  Equation 

(3-7) indicates eigenvalues of ever increasing negative magnitude as n approaches infinity.  

Fortunately, the dominance ratio for a k calculation of the same system is greater than two.  

This is apparent by the relatively low power iterations required to initialize the problem 
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using a k calculation.  Power iteration for alpha calculations quickly becomes unusable for 

our problems of interest1 and all calculations for validation use a k-initialized algorithm. 

Additional analysis of the problem reveals other potential numerical issues with the 

alpha eigenvalue calculation.  The potential issues are associated with instability, stiffness, 

and ill conditioning.  However, the JFNK solution method seems to overcome these with 

ease for the present calculations.  These issues are identified from the eigenvalues, 

𝛼𝛼𝑠𝑠(𝑠𝑠 = 1, … , 𝑛𝑛).  For stability, the condition of the following equation is desirable to reduce 

computational effort [63]. 

 |𝛼𝛼𝑠𝑠| ≤ 1 (𝑠𝑠 = 1, … ,𝑛𝑛) (6-2) 
 

Table 6.4 clearly indicates that this condition does not exist for alpha eigenvalue problems, 

and again will only worsen with a larger matrix.   

Stiffness arises from the fact that the system has eigenvalues with large negative 

real parts.  This causes corresponding components of the solution to vary rapidly when 

compared to other parts of the solution.  A low stiffness ratio is desired to avoid the 

challenges and computational efforts required by stiff systems [63].   

 
Stiffness Ratio =  

Max|𝛼𝛼𝑠𝑠|
Min|𝛼𝛼𝑠𝑠|

 
(6-3) 

   

                                                 

1 Early calculations showed promise for using the alpha power iteration algorithm of Figure 3.6.  However, 

the set up was for an unrealistically reactive system and still took hundreds of iterations. 
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The stiffness ratio calculated by equation (6-3) from Table 6.4 is 95,259. 

 The condition number of the matrix also provides insight to the relative security 

that a small residual vector is indicative of an accurate approximate solution vector [62].  

The condition number of a matrix is related to the norms of the matrix and its inverse. 

 Condtion Number (𝐴𝐴) =  ‖𝐴𝐴‖ ∙ ‖𝐴𝐴‖−1 (6-4) 
   

  A matrix is ill conditioned if the condition number is significantly greater than one [62].  

Using the infinity norm the condition number for the matrix associated with the alpha 

eigenvalue problem has a condition number of 190,085 [48].  Although all solution 

methods proved accurate for the 30 by 30 problem used for numerical analysis, the power 

iteration did fail to converge accurately for larger problems.  This was not observed for the 

JFNK solution methods. 

Table 6.5 Summary of Numerical Performance Metrics 

 Dominance 
Ratio 

Stability Stiffness Ratio Condition # 

α-problem 
metrics value 

0.99 True for only 
one.  All others 
>>1 

95,259 190,085 

Desired 
metrics value 

<<1 |𝛼𝛼𝑠𝑠| ≤ 1 for all  low ~1 

 

Validation of the One-Dimensional Case 

The initial test case uses a basis for comparison with Lady Godiva and consists of 

a homogeneous sphere of HEU.  The nuclear data for the JAKES calculations is provided 

in Table 6.1 and Table 6.2.  MCNP calculations are listed for comparison even though the 
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MCNP calculation uses ENDF/B VI cross-section data.  Published data from the Lady 

Godiva operation is also included for comparison.  Two cases are calculated by JAKES 

and MCNP.  The first is fueled with HEU and based on the Lady Godiva design.  The 

second is 19.75% enriched LEU and designed to provide a reasonable balance between 

increased burst width and an increase in peak flux that is a result of using LEU fuel.  Both 

cases only consider U235 and U238 as fuel constituents.  Table 6.6 provides the results.  
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Table 6.6 One-Dimensional Test Case Results 

 HEU LEU 
 JAKES MCNP1 Godiva2 JAKES MCNP 
Radius [cm]  8.741 8.692 – 8.741 21.562 21.562 
Enrichment 93% 93.7% 93 – 94% 19.75% 19.75% 
Mass [kg] 51.28 52.43 52 – 52.42 789.878 789.43 
Volume 
[cm3] 

2735.188 2797.5 -- 41990.953 41991.0 

Cells 1000 -- -- 1000 -- 
Analytical k 1.000279 -- -- 1.0010736 -- 
Numerical k 1.000280 0.995 -- 1.0010742 0.995 
Analytical α 
[µsec]-1 

0.1032 -- -- 7.455E-2 -- 

Numerical α 
[µsec]-1 

0.1035 -- -- 7.458E-2 -- 

n-lifetime3 
[µ-sec] 

2.706E-3 5.729E-3 -- 1.440E-2 3.298E-2 

FWHM  
[µ-sec] 

34.034 -- 35 – 50 47.246  

Max 1.0 -- -- 2.76  
Max/ 
volume 

1.0 -- -- 0.180  

Max/ 
mass 

1.0 -- -- 0.179  

CPU-time 
[sec] 

0.131 111.2 -- 0.133 380 

  

                                                 

1 For the HEU case, the data for the MCNP benchmark calculation is used [102]. 

2 Data represents ranges found in multiple sources [56, 22, 55, 12, 102, 67]. 

3 At least on expert questions the validity of the lifetimes calculated by MCNP for these types of problems 

[72]. 
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Figure 6.2 shows fitted plots of the burst characteristics of HEU and LEU spherical 

reactors.  JAKES calculations of alpha, k, and the prompt neutron lifetime provide the 

parameters needed by the Nordheim-Fuchs model to determine burst width and peak flux. 

The calculated values are from Table 6.6.  The LEU design still has a pulse width 

comparable to the high end of Godiva, but also experiences a ~3 times increase in peak 

flux. 
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Figure 6.2 Calculated Burst Characteristics of a HEU and LEU Spherical FBR 

Figure 6.3 shows a combined plot of the eigenvectors associated with the analytical 

alpha calculation, and the numerical k, and alpha calculations.  Near perfect agreement is 

seen between all three.  Again, this demonstrates the geometric and material dependence 

on the shape of flux.  This is what allows the k calculation to initialize the alpha JFNK 

calculation so well. 
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Figure 6.3 Analytical & Numerical Scalar Flux Comparison 

Table 6.7 Historical FBR Reference Data 

 Mass [kg] Burst Yield 
[Fissions] 

FWHM  
[µ-sec] 

Lady Godiva 52-52.42 2E16 35-50 
MollyG 97.142 5E15-1.1E17 31-50 
Super Kukla ~4500 2-5E18 600-950 

 

Two-Dimensional Transport Case 

 Table 6.8 provides the enrichment value for MollyG [15] and the HEU case.  HEU 

density with 10% molybdenum if found in reference [70] .  The density for LEU with 10% 

molybdenum is also in reference [70].  The density for LEU 1.5% molybdenum is from 

reference [71].  
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Table 6.8 Two-D, Material Enrichment and Density  

 Enrichment  
 U235 Moly ρ[grams/cm3] 
HEU 93.2% 10% 17.09 
LEU 19.75% 1.5% 18.3 

19.75% 10% 17.14 
 

Table 6.9 provides the data from EVENT calculations using the internal modified 

k eigen-solver.  Dimensions of MollyG are from reference [15].  An associated program to 

EVENT called GEM, the mesh-generating program [45, 42], processes the cross section 

data using the Hansen-Roach 16 group data set.  
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Table 6.9 Two-Dimensional EVENT Test Case Results1 

 HEU 10%Moly LEU 
10%Moly 

LEU 
1.5%Moly 

 EVENT MolyG EVENT EVENT 
Enrichment 93.2% 93.2% 19.75% 19.75% 
Radius 9.771 10.3 23.692 20.53 
Height 18.31 19.3 44.398 38.474 
Numerical k 1.000885 -- 1.0032347 1.0029585 
Numerical α 
[µsec]-1 

9.664E-2 -- 7.434E-2 7.292E-2 

n-lifetime 
[µ-sec] 

9.110E-3 -- 4.351E-2 3.854E-2 

FWHM  
[µ-sec] 

36.4803 35 – 50 47.400 49.665 

Max 1.0 -- 2.83 2.28 
k 
calculations  

21 -- 33 16 

 

The burst characteristics as determined by the Nordheim-Fuchs model and the data of Table 

6.9 are depicted in Figure 6.4. 

 

                                                 

1 It is not clear whether the search routine that generates the data in Table 6.9 includes the 

nonlinearity in the streaming term of the even-parity transport equation. 
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Figure 6.4 Calculated Burst Characteristics of  HEU and LEU Cylindrical FBRs 

 Table 6.10 contains the data from the integrated JAKES-EVENT code.  The values 

differ from Table 6.9 primarily due to a difficulty in EVENT that prevented reliable updates 

to the coefficients of the even-parity transport equation that required a lower order transport 

approximation.  This difficulty also resulted in JAKES using the hybrid solution method 

outlined in Figure 5.2 to solve for the eigen-value in this case.  This was done to monitor, 
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and minimize updates to the even-parity transport coefficients.  As was the case in the one-

dimensional calculations, the JFNK solution routines in JAKES were initialized by a k 

eigen-value calculation. 

Table 6.10 Two-Dimensional JAKES-EVENT Test Case Results 

 HEU 10%Moly LEU 
10%Moly 

LEU 
1.5%Moly 

 JAKES-
EVENT 

MolyG MCNP EVENT EVENT 

Enrichment 93.2% 93.2% 93.2 19.75% 19.75% 
Radius 10.540 10.3 10.3 24.57 21.076 
Height 19.752 19.3 19.3 46.044 39.496 
Numerical k 1.000882 -- 1.09 1.0027996 1.0024298 
Numerical α 
[µsec]-1 

8.4869E-2 -- -- 5.937E-2 5.987E-2 

n-lifetime 
[µ-sec] 

1.0397E-2 -- 8.9108E
-3 

4.716E-2 4.059E-2 

FWHM  
[µ-sec] 

41.5228 35 – 50 -- 59.359 58.864 

Max 1.0 -- -- 2.220 1.943 
k 
calculations 
(if JAKES not 
used) 

38 -- -- 64 64 

alpha 
updates 

1 -- -- 1 1 

Newton 
Iterations/al
pha update 

1 -- -- 1 1 

GMRES 
iterations/N
ewton 
Iteration 

9 -- -- 12 30 

 

The burst characteristics as determined by the Nordheim-Fuchs model and the data of Table 

6.10 are depicted in Figure 6.4. 
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Figure 6.5 JAKES Calculated Burst Characteristics of  HEU and LEU Cylindrical FBRs 
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Conclusions  

Conclusions from the Numerical Analyses of Performance 

   The time-eigenvalue problem presents itself as a classic eigenvalue problem in the 

analytical and linear algebra sense.  However, numerically it is difficult to solve, and the 

dominance ratio of the problem makes solution by power iteration unpractical in almost 

every case.  The eigenvectors of a system are scalable and the shape of the flux is dependent 

on the material and geometry of the system.  The eigenvectors are not dependent in terms 

of shape on the time-dependent terms of the solution.  In a fast reactor, k calculations are 

particularly efficient, and k is related to alpha by the neutron lifetime.  Application of this 

analyses lead to using a k calculation to initialize Newton’s method, and effectively 

eliminated all historical difficulties with calculation of the alpha eigenvalue. 

 The use of nonlinear elimination effectively combined all variables into a single 

residual for evaluation of the JFNK routine.  This method’s accuracy was identical to fixed-

point iterative approaches, but had much better convergence efficiency.  This approach 

effectively provided Newton convergence performance to the entire algorithm. 

Conclusions from the Test Cases 

The calculations indicated that use of LEU is capable of producing bursts on the 

microsecond scale of HEU fueled reactor at the cost of a longer rise time and increased 

peak flux.  Initial calculations indicate the peak flux of the system is greater in an LEU 
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design, but the integrated flux over mass and volume is less.  The increased density of the 

1.5% moly LEU fuel as compared to the 10% moly LEU fuel alleviated the difference in 

burst width and peak flux from the 10% moly HEU reactor somewhat.  However, coupled 

multi-physics calculations using this neutronic solution would be beneficial in providing 

resolution to the effects these differences will have on the reactors, and facilities.  It is not 

clear from the calculations independently, what effect, if any, these differences will have 

on users of FBRs, and their experiments.  Nevertheless, this new calculation method will 

provide options and predictions of LEU performance. 

Continued Related Work & Improvements 

 The development of the new algorithm required a simplified approach in order to 

verify and validate the new techniques.  Now that this work is complete, the algorithm is 

ready for more incremental improvements.  This work developed the one-dimensional 

diffusion case primarily or verification purposes only.  Now that results show good 

agreement with historical Lady Godiva data, the diffusion algorithm would benefit from 

the following improvements: 

1. Update the spatial discretization in one-dimension from finite difference to finite 

volume to increase accuracy in curvilinear coordinates. 

2. Incorporate the Bessel function based two-dimensional, cylindrical, analytical 

solution, and a corresponding two-dimensional finite volume numerical solution. 

The spatial discretization upgrade to finite volume is significant even in the homogeneous 

material cases.  In one-dimensional slab geometry, the finite difference approach is 
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equivalent to finite volume for a homogeneous system.  This is not the case in spherical 

coordinates.  The availability of a two-dimensional analytical and numerical case will 

provide added verification capability as well as serving pedagogical purposes, and is 

worthy of further development. 

 This work completed the difficult task of linking PETSc solution capability to a 

nuclear   engineering code in an exceptionally transparent and modularized way.  Now that 

this is complete, and available for verification purposes, the solution algorithm would 

benefit from continued research into the following: 

1. Development of a JFNK solution scheme inherent to the using engineering code. 

2. An efficient preconditioning scheme to aid the linear solver. 

EVENT contains multiple Preconditioned Conjugant Gradient (PCG) solvers.  PCG is a 

Krylov method and capable of incorporating the matrix-free methods used in this work.  

Not only will the development of an inherently integrated JFNK solver serve the purpose 

of academic development, but would also harden the code against unexpected 

incompatibilities from external developers with conflicting priorities.  This work 

successfully completed all problems efficiently and completely matrix free.  The k 

calculation initialization procedure is largely responsible for the efficiency obtained from 

the GMRES iterations.  However, as problems become more general it is very likely that 

even the GMRES routine in PETSc will become prohibitively inefficient without the use 

of a preconditioner [8, 7].  It is also likely that the k calculation may not be as efficient in 

systems that are more complicated or operate on slow or intermediate neutron energies. 
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 Modifying EVENT to solve the challenging time-eigenvalue problem proved 

difficult.  These difficulties persisted even with direct coordination with the author of 

EVENT during the integration effort.  Efficiency in using JAKES to solve the problem was 

demonstrated by the results.  There is high confidence in the verification of mathematical 

accuracy in the solution method.  However, the many efficiencies and pre-processing 

requirements incorporated into EVENT that make it such a quality tool for traditional 

transport, proved detrimental in integrating the complexities of the time-eigenvalue 

problem.  This resulted in only a proof of concept of JAKES-EVENT integration, at best.  

To achieve full confidence in validation of this integration, a simpler even-parity transport 

code that is written with JAKES integration as a key performance parameter in 

development is recommended.  This would provide a baseline for incremental changes to 

EVENT.  This simpler routine could then support debugging, verification and validation 

of the new EVENT capability.  

 Of course, completing the spatial discretization to a three-dimensional Cartesian 

system is always a challenge and a worthy improvement.  However, FBRs experience 

extreme transients in heat and shock as well as the neutronic state.  The most beneficial 

improvement to this research is to work with other engineering disciplines and incorporate 

this robust asymptotic neutronic solution into existing, and new multi-physics modeling 

software. 

Summary 

This work has achieved success in developing a new algorithm for estimating the 

burst characteristics of FBRs of varying fuel compositions and levels of enrichment.  The 
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nonlinear solution techniques using modern solution software and the JFNK method have 

successfully solved a very difficult problem in a direct, straightforward, accurate, and 

efficient manner.  The solution method is efficient enough to replace other more elementary 

neutronic schemes typically used in multi-physics modeling of FBRs.  The initialization 

using a k calculation allows complete avoidance of previous difficulties found in typical 

time-eigenvalue calculations used for initialization.  This has allowed Newton’s method 

efficiency to dominate the algorithm.  There are many improvements, and applications to 

FBR modeling software that are now available because of this work.  An asymptotic 

neutronic solution of the diffusion and even-parity transport equation with Newton’s 

method efficiency is now available for use in FBR modeling.   
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Appendix A Acronyms and Abbreviations 

ANL – Argonne National Laboratory 

ARPACK – Arnoldi Package 

BNL – Brookhaven National Laboratory 

C.F.R. – Code of Federal Regulations 

cm – centimeter 

CPU – Central Processing Unit 

Cyl – Cylinder  

DSA – Diffusion Synthetic Acceleration 

DSB – Defense Science Board 

EDNA – Externally Driven Neutron Assembly 

EVENT – EVEn-parity Neutron Transport 

ERR – Error  

FBR – Fast Burst Reactor 

FORTRAN – FORmula TRANslation 

FWHM – Full Width at Half Maximum 

GEM – Mesh generating program 
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GMRES – Generalized Minimum Residual 

GTRI -- Global Threat Reduction Initiative 

HEU – Highly Enriched Uranium 

HO – High Order 

JAKES – JFNK Alpha and k Eigen-value Solver 

JFNK – Jacobian-Free Newton-Krylov 

kg – kilogram 

LANL – Los Alamos National Laboratory 

LASL – Los Alamos Scientific Laboratory 

LDG – Linear Discontinuous Galerkin 

LEU – Low Enriched Uranium 

LLNL – Lawrence Livermore National Laboratory  

LO – Low Order 

LRL – Lawrence Radiation Laboratory 

MCNP – Monte Carlo N-Particle 

MeV – Mega electron-Volt 

M3 – Material Management & Minimization 

MollyG – Molybdenum Godiva 
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NCA – Newton-based nonlinear Criticality Acceleration 

NDA – Nonlinear Diffusion Acceleration 

NK – Newton-Krylov 

NRC – Nuclear Regulatory Commission 

ORNL – Oak Ridge National Laboratory 

PN – Legendre or spherical harmonics transport approximation 

PDE – Partial Differential Equation 

PCG – Preconditioned Conjugate Gradient 

PETSc – Portable, Extensible Toolkit for Scientific Computation 

PI – Power Iteration 

RERTR – Reduced Enrichment for Research and Test Reactors 

rhs – right hand side 

RSICC – Radiation Safety Information Computational Center 

SN – Discrete ordinates transport approximation 

SC – Step Characteristics 

sec – second  

SI – Source Iteration 

SNL – Sandia National Laboratory 
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Sph -- Sphere 

SPR – Sandia Pulsed Reactor 

Surf – Surface  

SWLA – Simplified Wareing Larsen & Adams 

TOL – Tolerance  

USAEC – United States Atomic Energy Commission 

Vol – Volume  

WSMR – White Sands Missile Range 
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Appendix B Delayed Neutrons 

The majority of neutrons resulting from a fission are in the form of prompt neutrons, 

and arrive on a time scale of within 10-14 seconds.  The decay of certain nuclides produced 

from a fission, fission products, produce neutrons that that arrive in the system a relatively 

long time after the fission of the parent nuclide.  These neutrons are delayed neutrons, and 

account for less than 1% of neutrons produced from a fission.  Precursors are the nuclides 

that produce delayed neutrons [38].  Delayed neutrons arrive from very complex 

phenomena, but nuclear data sets traditionally simplify them into a six-group description 

of delayed neutron emission [67].  Table B.1 provides delayed neutron data for uranium.  

The shortest-lived precursors have half-lives of ~ 1/10 of a second.  This is significantly 

longer than the operating time of the FBRs studied here.  Therefore, it is prudent to adjust 

the value of the average neutrons per fission, ν, to exclude these neutrons.  Equation (B-1) 

calculates the average number of prompt neutrons per fission. 

 𝜈𝜈prompt = 𝜈𝜈(1 − 𝛽𝛽) (B-1) 
 

• 𝜈𝜈 = the total average number of neutrons per fission 

• 𝛽𝛽 = the delayed neutron fraction 
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Table B.1 Delayed Neutron Data for Uranium Fuel, Fast Spectrum 

 ANL-5800 MCNP1 
U235 U238 93.7% HEU 

β 0.0065 ± 0.0003 0.0157 ± 0.0012 0.00667 ± 0.0003 
ν 2.6 2.6 2.598 
νdelayed2 0.0165 ± 0.0005 0.0412 ± 0.0017 -- 
Half-life [sec] 
1 
2 
3 
4 
5 
6 

 
54.51 ± 0.94 52.38 ± 1.29 51.96582 
21.84 ± 0.54 21.58 ± 0.39 21.18847 
6.00 ± 0.17 5.00 ± 0.19 5.73659 
2.23 ± 0.06 1.93 ± 0.07 2.28502 
0.496 ± 0.029 0.49 ± 0.023 0.81341 
0.179 ± 0.017 0.172 ± 0.009 0.24233 

Relative Abundance 
1 
2 
3 
4 
5 
6 

 
0.038 ± 0.003 0.013 ± 0.001 0.041 ± 0.009 
0.213 ± 0.005 0.137 ± 0.002 0.108 ± 0.012 
0.188 ± 0.016 0.162 ± 0.020 0.114 ± 0.012 
0.407 ± 0.007 0.388 ± 0.012 0.253 ± 0.019 
0.128 ± 0.008 0.225 ± 0.013 0.109 ± 0.012 
0.026 ± 0.003 0.075 ± 0.005 0.042 ± 0.008 

 

  

 

 

                                                 

1 Calculated from the Godiva MCNP benchmark with point kinetic options [102].  

2 This quantity is the average number of delayed neutrons per fission and is very convenient for converting ν 

to only include prompt neutrons.  However, it is not a popular tabulated quantity and using the delayed 

neutron fraction, β, is only slightly more difficult and is a much more universally useful and available quantity 

[67] . 
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The multiplication factor, k, is also adjusted similarly to exclude delayed neutron. 

 𝐷𝐷 = 𝐷𝐷𝑔𝑔𝑓𝑓𝑓𝑓�1 − 𝛽𝛽system� (B-2) 
 

It is important to realize when using equation (B-2) that the delayed neutron fraction must 

be for the entire system.  Like the one presented in the MCNP column of Table B.1. 

 Delayed neutrons make control of steady state reactors possible by extending the 

effective neutron lifetime to ~0.1 sec [38].  However, for an FBR designed to produce a 

prompt critical pulse on a microsecond scale, they are of little interest. 
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Appendix C Characteristic Equation 

The following is an equation for an eigenvalue problem, 

 𝐴𝐴𝒙𝒙 = 𝜆𝜆𝒙𝒙 (C-3) 
 

where A is a square matrix.  An equivalent form of the problem is, 

 (𝜆𝜆𝐼𝐼 − 𝐴𝐴)𝒙𝒙 = 0. (C-4) 
 

Equation (C-2) has non-zero solutions if and only if (𝜆𝜆𝐼𝐼 − 𝐴𝐴) is singular (the 

determinate of (𝜆𝜆𝐼𝐼 − 𝐴𝐴) equals zero).  The equation, 

 det(𝜆𝜆𝐼𝐼 − 𝐴𝐴) = |𝜆𝜆𝐼𝐼 − 𝐴𝐴| = 0 (C-5) 
 

is the characteristic equation of A [61]. 

 As a simple example, consider the matrix, 

 𝐴𝐴 = �
𝑎𝑎1,1 𝑎𝑎1,2
𝑎𝑎2,1 𝑎𝑎2,2

� (C-6) 

 

The characteristic equation of A is, 

 |𝜆𝜆𝐼𝐼 − 𝐴𝐴| = ��𝜆𝜆 0
0 𝜆𝜆� − �

𝑎𝑎1,1 𝑎𝑎1,2
𝑎𝑎2,1 𝑎𝑎2,2

�� = �
𝜆𝜆 − 𝑎𝑎1,1 −𝑎𝑎1,2
−𝑎𝑎2,1 𝜆𝜆 − 𝑎𝑎2,2

�. 

 

(C-7) 

 

Completing the determinate operation results in a polynomial, 

 |𝜆𝜆𝐼𝐼 − 𝐴𝐴| = 𝜆𝜆𝟐𝟐 − �𝑎𝑎1,1 + 𝑎𝑎2,2�𝜆𝜆 + �𝑎𝑎1,1 ∗ 𝑎𝑎2,2� − �𝑎𝑎2,1 ∗ 𝑎𝑎1,2� (C-8) 
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the solutions of which are the eigenvalues of A. 
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Appendix D  Diffusion Equation 

The Time-Eigenvalue form of the Diffusion Equation 

To arrive at the time-eigenvalue form of the diffusion equation, first begin with the 

time-dependent form of the transport equation, derived extensively elsewhere [58, 38], 

 1
v
𝜕𝜕𝜕𝜕
𝜕𝜕𝑡𝑡

= 𝜈𝜈 𝜎𝜎𝑓𝑓 𝜕𝜕 − 𝜎𝜎𝑎𝑎 𝜕𝜕 + 𝐷𝐷∇2𝜕𝜕. (D-1) 

 

 Recall the solution form derived in chapter 2, 

 𝜕𝜕(𝑟𝑟, 𝑡𝑡) = 𝜕𝜕(𝑟𝑟)𝑒𝑒𝛼𝛼𝑡𝑡 (D-2) 
 

and substitute into equation (D-1), 

 1
v
𝜕𝜕(𝑟𝑟)

𝜕𝜕𝑒𝑒𝛼𝛼𝑡𝑡

𝜕𝜕𝑡𝑡
= 𝜈𝜈 𝜎𝜎𝑓𝑓 𝜕𝜕(𝑟𝑟)𝑒𝑒𝛼𝛼𝑡𝑡 − 𝜎𝜎𝑎𝑎 𝜕𝜕(𝑟𝑟)𝑒𝑒𝛼𝛼𝑡𝑡 + 𝐷𝐷∇2𝜕𝜕(𝑟𝑟)𝑒𝑒𝛼𝛼𝑡𝑡. 

(D-3) 

 

Analytically taking the time derivative on the left hand side of equation (D-3) provides, 

 1
v
𝜕𝜕(𝑟𝑟)𝛼𝛼𝑒𝑒𝛼𝛼𝑡𝑡 = 𝜈𝜈 𝜎𝜎𝑓𝑓 𝜕𝜕(𝑟𝑟)𝑒𝑒𝛼𝛼𝑡𝑡 − 𝜎𝜎𝑎𝑎 𝜕𝜕(𝑟𝑟)𝑒𝑒𝛼𝛼𝑡𝑡 + 𝐷𝐷∇2𝜕𝜕(𝑟𝑟)𝑒𝑒𝛼𝛼𝑡𝑡. (D-4) 

 

Dividing by 𝑒𝑒𝛼𝛼𝑡𝑡, rearranging algebraically and dropping the explicit space dependent 

notation, delivers the time-eigenvalue form of the diffusion equation, 

 𝐷𝐷∇2𝜕𝜕 − 𝜎𝜎𝑎𝑎 𝜕𝜕 + 𝜈𝜈 𝜎𝜎𝑓𝑓 𝜕𝜕 =
α
v
𝜕𝜕. (D-5) 
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The Diffusion Coefficient  

The above derivation of the time-eigenvalue diffusion coefficient is correct.  

However, in order to use an appropriate value for “D” in calculations, the derivation of 

Fick’s law must assume the time-dependent form of the solution to the neutron population 

derived in chapter 2.  This is most efficiently done by noting that current is the first moment 

of the angular flux [56, 23]. 

 𝑱𝑱 = �𝛀𝛀�  𝜓𝜓𝑑𝑑Ω (D-6) 

 

In chapter 2 the time-dependent form of the angular flux is derived to be, 

 𝜓𝜓 (𝑟𝑟, 𝑡𝑡) = 𝜓𝜓 (𝑟𝑟)𝑒𝑒𝛼𝛼𝑡𝑡. (D-7) 
 

Substituting this form of the angular flux into equation (D-6) yields, 

 𝑱𝑱(𝑟𝑟, 𝑡𝑡) = 𝑒𝑒𝛼𝛼𝑡𝑡 �𝛀𝛀�  𝜓𝜓(𝑟𝑟)𝑑𝑑Ω = 𝑒𝑒𝛼𝛼𝑡𝑡𝑱𝑱(𝑟𝑟). (D-8) 

 

We can now make the usual simplifying assumptions to the 𝑃𝑃1equations made elsewhere 

in the derivation of Fick’s law, except for letting the  1
v
𝜕𝜕𝑱𝑱
𝜕𝜕𝑡𝑡

 term equal zero [38], 

 1
v
𝜕𝜕𝑒𝑒𝛼𝛼𝑡𝑡

𝜕𝜕𝑡𝑡
𝑱𝑱(𝑟𝑟) +

1
3
∇𝜕𝜕(𝑟𝑟)𝑒𝑒𝛼𝛼𝑡𝑡 + 𝜎𝜎𝑡𝑡𝑟𝑟𝑱𝑱(𝑟𝑟)𝑒𝑒𝛼𝛼𝑡𝑡 = 0. 

(D-9) 

 

Taking the analytical time derivative of 𝑒𝑒𝛼𝛼𝑡𝑡 and dividing by 𝑒𝑒𝛼𝛼𝑡𝑡gives, 
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 𝛼𝛼
v
𝑱𝑱 +

1
3
∇𝜕𝜕 + 𝜎𝜎𝑡𝑡𝑟𝑟𝑱𝑱 = 0. (D-10) 

 

Solving for J provides the time-eigenvalue form of Fick’s law [56]. 

 𝑱𝑱 =
1

3 �𝜎𝜎𝑡𝑡𝑟𝑟 + 𝛼𝛼
v�
∇𝜕𝜕 (D-11) 

 

The Analytical Solution to the Time-Eigenvalue Diffusion Equation 

Analytically solving equation (D-5) is useful in analyzing the problem and avoiding 

difficulties in numerical solutions.  To begin it is best to rewrite the equation in a form 

suitable for determining the homogeneous solution to the differential equation. 

 
𝜕𝜕′′(𝑟𝑟) +

2
𝑟𝑟
𝜕𝜕′(𝑟𝑟) + �

𝜈𝜈 𝜎𝜎𝑓𝑓 − 𝜎𝜎𝑎𝑎 −
α
v

𝐷𝐷
�𝜕𝜕 = 0 

(D-12) 

 

Excluding the imaginary components, the solution to equation (D-12) is, 

 𝜕𝜕(𝑟𝑟) =
c1 cos (𝐵𝐵𝑟𝑟)

𝑟𝑟
+

c2 sin (𝐵𝐵𝑟𝑟)
𝑟𝑟

. (D-13) 

 

Where, 

 
𝐵𝐵2 = �

𝜈𝜈 𝜎𝜎𝑓𝑓 − 𝜎𝜎𝑎𝑎 −
α
v

𝐷𝐷
� 

(D-14) 

 

A plot of sine and cosine is provided in Figure D.1 for reference. 
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Figure D.1 Reference Plot of Sine and Cosine 

As the first boundary condition, the flux must be finite and positive (or zero) at all 

points on the sphere. 

 lim
𝑟𝑟→0

c1 cos (𝐵𝐵𝑟𝑟)
𝑟𝑟

= ∞ (D-15) 

 

 lim
𝑟𝑟→0

c2 sin (𝐵𝐵𝑟𝑟)
𝑟𝑟

= 𝐵𝐵 (D-16) 

 

Equation (D-15) and the first boundary condition require that 𝑐𝑐1 = 0.  The second 

boundary condition requires the flux be zero at the extrapolated boundary.  The 

extrapolated boundary is the geometric radius of the sphere plus two times the diffusion 

coefficient [38].  For reasons outlined in Chapter 3, the diffusion coefficient derived in the 

previous section is not used in this work to calculate the extrapolated boundary.  Instead, 

the diffusion coefficient associated with a k calculation is used.  Further motivation for this 
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approximation is made at the end of this section.  Equation (D-17) defines the extrapolated 

boundary. 

 𝑅𝑅� = 𝑅𝑅 + 2 
1

3𝜎𝜎𝑡𝑡𝑟𝑟
= 𝑅𝑅 + 2 𝐷𝐷𝑘𝑘  (D-17) 

 

So, 

 c2 sin (𝐵𝐵𝑅𝑅�)
𝑅𝑅�

= 0 ⟶ 𝐵𝐵 =
𝑛𝑛 𝜋𝜋
𝑅𝑅�

. 
(D-18) 

 

Where 𝑛𝑛 = 1, 2, 3, …  The solution for c2 = 1, and n = 1 is plotted in Figure D.2. 

 

Figure D.2 Spatial Solution of the Flux 

Substituting the result of equation (D-18) into equation (D-14) provides 

 
�
𝑛𝑛 𝜋𝜋
𝑅𝑅�
�
2

= �
𝜈𝜈 𝜎𝜎𝑓𝑓 − 𝜎𝜎𝑎𝑎 −

α
v

𝐷𝐷
� 

(D-19) 
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Solving equation (D-19) for alpha yields equation (D-20), which is equivalent to equation 

(3-8). 

 
𝛼𝛼𝑔𝑔 = v 𝐷𝐷 �

�𝜈𝜈 𝜎𝜎𝑓𝑓 − 𝜎𝜎𝑎𝑎�
𝐷𝐷

− �
𝑛𝑛 𝜋𝜋
𝑅𝑅�
�
2
� 

(D-20) 

 

For the remainder of this section only the fundamental mode is considered. 

 
𝛼𝛼 = v 𝐷𝐷 �

�𝜈𝜈 𝜎𝜎𝑓𝑓 − 𝜎𝜎𝑎𝑎�
𝐷𝐷

− �
 𝜋𝜋
𝑅𝑅�
�
2
� 

(D-21) 

 

The analytical solution to equation (D-21) results in two roots of a quadratic equation.   

 

𝛼𝛼− = v 

⎣
⎢
⎢
⎡�𝜈𝜈 𝜎𝜎𝑓𝑓 − 𝜎𝜎𝑎𝑎 − 𝜎𝜎𝑡𝑡𝑟𝑟�

3
−

  �3 𝑅𝑅�2�𝜈𝜈 𝜎𝜎𝑓𝑓 − 𝜎𝜎𝑎𝑎 + 𝜎𝜎𝑡𝑡𝑟𝑟�
2
− 4𝜋𝜋2

2√3 𝑅𝑅�
⎦
⎥
⎥
⎤
, 

(D-22) 

 

and 

 

𝛼𝛼+ = v 

⎣
⎢
⎢
⎡�𝜈𝜈 𝜎𝜎𝑓𝑓 − 𝜎𝜎𝑎𝑎 − 𝜎𝜎𝑡𝑡𝑟𝑟�

3
+

  �3 𝑅𝑅�2�𝜈𝜈 𝜎𝜎𝑓𝑓 − 𝜎𝜎𝑎𝑎 + 𝜎𝜎𝑡𝑡𝑟𝑟�
2
− 4𝜋𝜋2

2√3 𝑅𝑅�
⎦
⎥
⎥
⎤
. 

(D-23) 

 

Substituting the value of the extrapolated radius required for criticality will provide the 

correct root for the problem of interest.  The criticality condition is found by equation 

(D-24) [38]. 

 
 𝑅𝑅� = �

𝜋𝜋2

�𝜈𝜈 𝜎𝜎𝑓𝑓 − 𝜎𝜎𝑎𝑎�3 𝜎𝜎𝑡𝑡𝑟𝑟 
�
1/2

 
(D-24) 
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For a critical system alpha must equal zero.  Substituting equation (D-24) into equations 

(D-22), and (D-23) determines the following results [48]: 

1. 𝛼𝛼−, equation (D-22), will only equal zero when 𝜈𝜈 𝜎𝜎𝑓𝑓 > 𝜎𝜎𝑎𝑎 +  𝜎𝜎𝑡𝑡𝑟𝑟.  This is a very 

unlikely condition that would require a significant number of prompt neutrons per 

fission, ν. 

2. 𝛼𝛼+, equation (D-23), will equal zero when 𝜈𝜈 𝜎𝜎𝑓𝑓 ≤ 𝜎𝜎𝑎𝑎 + 𝜎𝜎𝑡𝑡𝑟𝑟.  This condition is 

much more probable and matches all cases studied in this work. 

Using the nuclear data of HEU one-dimensional case found in Chapter 6, Table 6.1, 

and Table 6.2 provides the following values for 𝛼𝛼−, and 𝛼𝛼+: 

1. 𝛼𝛼− = −398.133.  Clearly, this value is incorrect in a physical sense as 

predicted by the analyses above. 

2. 𝛼𝛼+ = 0.1032.  This matches the analytical value of alpha computed by JAKES 

using a fixed-point iteration and a Newton’s method on equation (D-21). 

Forming a residual function, equation (D-25), from equation (D-21) provides 

insight into determining the right answer through numerical methods is accomplished. 

 
𝐹𝐹(𝛼𝛼) = 𝛼𝛼 − v 𝐷𝐷 �

�𝜈𝜈 𝜎𝜎𝑓𝑓 − 𝜎𝜎𝑎𝑎�
𝐷𝐷

− �
 𝜋𝜋
𝑅𝑅�
�
2
� 

(D-25) 

 

Equation (D-25) is plotted in Figure D.3 using the same nuclear data referenced in the 

preceding paragraph. 
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Figure D.3 Residual Function Plot of the Analytical Alpha Solution Using 𝐷𝐷𝑘𝑘 

The curve of Figure D.3 is the key to converging to the correct root.  Starting the search 

near the correct result with an educated initial guess based on knowledge of the system is 

the key.  If a guess for the solution that is to the left of the valley presented in Figure D.3, 

it is very likely that the computation will converge to the wrong root. 

 Another potential difficulty in obtaining convergence is the case where the 

dimensions of the sphere are such that the value under the radicals in the numerators of 

equations (D-22), and (D-23) are negative.  This is possible for relatively small values of 

𝑅𝑅�.  These cases are not of interest to this research since the geometries and materials 

required for the critical assemblies studied do not approach these small values of 𝑅𝑅�.  

However, if this situation occurred additional analyses would be required to form the real 

solution.  
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 If the extrapolated boundary was not approximated by the 𝐷𝐷𝑘𝑘 diffusion coefficient, 

and the coefficient that contains alpha was used, the solution would be in the form of a 

quartic that at best would reduce to a cubic [72].  The solution to the cubic contains one 

real root and two with imaginary components [48].  Additionally, the difficulty in the 

numerical method developed in this research for the diffusion case would require a 

nonlinear iteration to determine the extrapolated boundary.  However, for the analytical 

case, tests converged to the expected value of alpha when an appropriate initial guess was 

provided to the routine.  Figure D.4 provides a plot of the residual function, equation 

(D-26), for this case using the same nuclear data as above. 

 
𝐹𝐹(𝛼𝛼) = 𝛼𝛼 − v 𝐷𝐷 �

�𝜈𝜈 𝜎𝜎𝑓𝑓 − 𝜎𝜎𝑎𝑎�
𝐷𝐷

− �
 𝜋𝜋

𝑅𝑅 + 2𝐷𝐷
�
2
� 

(D-26) 
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Figure D.4 Residual Function Plot of the Analytical Alpha Solution 
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Appendix E Even Parity Transport Equation 

The Time-Eigenvalue Even-Parity Transport Equation 

To derive the time-eigenvalue form of the even-parity transport equation it is 

beneficial to begin with the first order form, derived extensively elsewhere [56, 23]. 

 �
1
v
𝜕𝜕
𝜕𝜕𝑡𝑡

+ 𝛀𝛀� ∙ ∇ + 𝜎𝜎(𝑟𝑟,𝐸𝐸, 𝑡𝑡)� 𝜓𝜓�𝑟𝑟,𝛀𝛀� ,𝐸𝐸, 𝑡𝑡�

= 𝑞𝑞𝑔𝑔𝑚𝑚�𝑟𝑟,𝛀𝛀� ,𝐸𝐸, 𝑡𝑡�

+ �𝑑𝑑𝐸𝐸′ �𝑑𝑑Ω′ 𝜎𝜎𝑠𝑠�𝑟𝑟,𝛀𝛀�′ ∙ 𝛀𝛀� ,𝐸𝐸′ → 𝐸𝐸, 𝑡𝑡�𝜓𝜓�𝑟𝑟,𝛀𝛀� ,𝐸𝐸, 𝑡𝑡�

+ �𝑑𝑑𝐸𝐸′ 𝜈𝜈(𝐸𝐸)𝜎𝜎𝑓𝑓(𝑟𝑟,𝐸𝐸, 𝑡𝑡)�𝑑𝑑Ω′ 𝜓𝜓�𝑟𝑟,𝛀𝛀� ,𝐸𝐸, 𝑡𝑡� 

(E-1) 

 

The external source does not affect the reactivity of the system and is set to zero for this 

derivation.  In addition, to simplify notation the equation is within one energy group, and 

the cross sections are constant. 

 �
1
v
𝜕𝜕
𝜕𝜕𝑡𝑡

+ 𝛀𝛀� ∙ ∇ + 𝜎𝜎�𝜓𝜓�𝑟𝑟,𝛀𝛀� , 𝑡𝑡� = 𝜎𝜎𝑠𝑠 �𝑑𝑑Ω′ 𝜓𝜓�𝑟𝑟,𝛀𝛀� , 𝑡𝑡� + 𝜈𝜈𝜎𝜎𝑓𝑓 �𝑑𝑑Ω′ 𝜓𝜓�𝑟𝑟,𝛀𝛀� , 𝑡𝑡� (E-2) 

 

Using the stated form of the angular flux solution derived in chapter 2, 

 𝜓𝜓�𝑟𝑟,𝛀𝛀� , 𝑡𝑡� = 𝜓𝜓�𝑟𝑟,𝛀𝛀� , 0�𝑒𝑒𝛼𝛼𝑡𝑡  (E-3) 
 

Omitting the initial condition at t = 0, for now, equation (E-3) is substituted into (E-2). 

 1
v
𝜓𝜓�𝑟𝑟,𝛀𝛀��

𝜕𝜕𝑒𝑒𝛼𝛼 𝑡𝑡

𝜕𝜕𝑡𝑡
+ 𝛀𝛀� ∙ ∇ 𝜓𝜓�𝑟𝑟,𝛀𝛀��𝑒𝑒𝛼𝛼 𝑡𝑡 + 𝜎𝜎 𝜓𝜓�𝑟𝑟,𝛀𝛀�� 𝑒𝑒𝛼𝛼 𝑡𝑡

= 𝜎𝜎𝑠𝑠𝑒𝑒𝛼𝛼 𝑡𝑡 �𝑑𝑑Ω′ 𝜓𝜓�𝑟𝑟,𝛀𝛀�� + 𝜈𝜈𝜎𝜎𝑓𝑓𝑒𝑒𝛼𝛼 𝑡𝑡 �𝑑𝑑Ω′ 𝜓𝜓�𝑟𝑟,𝛀𝛀�� . 

(E-4) 
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Analytically solving the time derivative yields, 

 1
v
𝜓𝜓�𝑟𝑟,𝛀𝛀��𝛼𝛼 𝑒𝑒𝛼𝛼 𝑡𝑡 + 𝛀𝛀� ∙ ∇ 𝜓𝜓�𝑟𝑟,𝛀𝛀��𝑒𝑒𝛼𝛼 𝑡𝑡 + 𝜎𝜎 𝜓𝜓�𝑟𝑟,𝛀𝛀�� 𝑒𝑒𝛼𝛼 𝑡𝑡

= 𝜎𝜎𝑠𝑠𝑒𝑒𝛼𝛼 𝑡𝑡 �𝑑𝑑Ω′ 𝜓𝜓�𝑟𝑟,𝛀𝛀�� + 𝜈𝜈𝜎𝜎𝑓𝑓𝑒𝑒𝛼𝛼 𝑡𝑡 �𝑑𝑑Ω′ 𝜓𝜓�𝑟𝑟,𝛀𝛀�� . 

(E-5) 

 

Dividing both sides by 𝑒𝑒𝛼𝛼 𝑡𝑡 provides the first order time-eigenvalue transport equation. 

 �
𝛼𝛼
v

+ 𝛀𝛀� ∙ ∇  + 𝜎𝜎�  𝜓𝜓�𝑟𝑟,𝛀𝛀��  = 𝜎𝜎𝑠𝑠 �𝑑𝑑Ω′ 𝜓𝜓�𝑟𝑟,𝛀𝛀�� + 𝜈𝜈𝜎𝜎𝑓𝑓 �𝑑𝑑Ω′ 𝜓𝜓�𝑟𝑟,𝛀𝛀��  (E-6) 

 

 To derive the even-parity form begin by replacing 𝛀𝛀�  with −𝛀𝛀� . 

 �
𝛼𝛼
v

+ (−𝛀𝛀� ∙ ∇)  + 𝜎𝜎�  𝜓𝜓�𝑟𝑟,−𝛀𝛀��  

= 𝜎𝜎𝑠𝑠 �𝑑𝑑Ω′ 𝜓𝜓�𝑟𝑟,− 𝛀𝛀�� + 𝜈𝜈𝜎𝜎𝑓𝑓 �𝑑𝑑Ω′ 𝜓𝜓�𝑟𝑟,− 𝛀𝛀��  

(E-7) 

 

Now let, 

  𝜓𝜓+�𝑟𝑟,𝛀𝛀��  =  𝜓𝜓�𝑟𝑟,𝛀𝛀�� +  𝜓𝜓�𝑟𝑟,− 𝛀𝛀��  (E-8) 
 

which is an even function in  𝛀𝛀� , and let, 

  𝜓𝜓−�𝑟𝑟,𝛀𝛀��  =  𝜓𝜓�𝑟𝑟,𝛀𝛀�� −  𝜓𝜓�𝑟𝑟,− 𝛀𝛀��  (E-9) 
 

which is an odd function in  𝛀𝛀� .  Now the angular flux becomes, 

  𝜓𝜓�𝑟𝑟,𝛀𝛀��  =  𝜓𝜓+�𝑟𝑟,𝛀𝛀�� +  𝜓𝜓−�𝑟𝑟,𝛀𝛀��,  (E-10) 
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and 

  𝜓𝜓�𝑟𝑟,− 𝛀𝛀��  =  𝜓𝜓+�𝑟𝑟,𝛀𝛀�� −  𝜓𝜓−�𝑟𝑟,𝛀𝛀��.  (E-11) 
 

The scalar flux is now, 

 𝜕𝜕(𝑟𝑟) =  �𝜓𝜓�𝑟𝑟,𝛀𝛀�� 𝑑𝑑Ω  = �𝜓𝜓+�𝑟𝑟,𝛀𝛀�� 𝑑𝑑Ω +  �𝜓𝜓−�𝑟𝑟,𝛀𝛀�� 𝑑𝑑Ω.  (E-12) 

 

Since, 

 
𝑑𝑑Ω = sin𝜃𝜃 𝑑𝑑𝜃𝜃 𝑑𝑑𝑑𝑑 = 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑 → �𝑑𝑑Ω = � 𝑑𝑑𝑑𝑑

2𝜋𝜋

0
� 𝑑𝑑𝑑𝑑
1

−1
= 4𝜋𝜋  

(E-13) 

 

the scalar flux is now  

 
 𝜕𝜕(𝑟𝑟) = � � 𝜓𝜓+�𝑟𝑟,𝛀𝛀��𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑

2𝜋𝜋

0

1

−1
+ � � 𝜓𝜓−�𝑟𝑟,𝛀𝛀��𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑

2𝜋𝜋

0

1

−1
. 

(E-14) 

 

Equation (E-13) illustrates an even function 𝜓𝜓+�𝑟𝑟,𝛀𝛀��, and an odd function 𝜓𝜓−�𝑟𝑟,𝛀𝛀�� 

integrated evenly over their axis of symmetry.  So, the scalar flux becomes, 

 
 𝜕𝜕(𝑟𝑟) = 2� � 𝜓𝜓+�𝑟𝑟,𝛀𝛀��𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑

2𝜋𝜋

0

1

0
. 

(E-15) 
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This is the same value as when integrating 𝜓𝜓�𝑟𝑟,− 𝛀𝛀�� over 𝛀𝛀�  using equation (E-11).  So, 

the dependence of 𝜓𝜓�𝑟𝑟,𝛀𝛀�� and 𝜓𝜓�𝑟𝑟,− 𝛀𝛀�� on the right hand sides of equations (E-6) and 

(E-7) is only in terms of the scalar flux 𝜕𝜕(𝑟𝑟).  So now let, 

 𝑄𝑄 = 𝜎𝜎𝑠𝑠 �𝑑𝑑Ω′ 𝜓𝜓�𝑟𝑟,𝛀𝛀�� + 𝜈𝜈𝜎𝜎𝑓𝑓 �𝑑𝑑Ω′ 𝜓𝜓�𝑟𝑟,𝛀𝛀��

= 𝜎𝜎𝑠𝑠 �𝑑𝑑Ω′ 𝜓𝜓�𝑟𝑟,− 𝛀𝛀�� + 𝜈𝜈𝜎𝜎𝑓𝑓 �𝑑𝑑Ω′ 𝜓𝜓�𝑟𝑟,− 𝛀𝛀��

= 𝜎𝜎𝑠𝑠𝜕𝜕(𝑟𝑟) + 𝜈𝜈𝜎𝜎𝑓𝑓𝜕𝜕(𝑟𝑟). 

(E-16) 

 

Since functional dependencies are clearly established, they are dropped for the remainder 

of the derivation to simplify notation.  Now making the substitution of equation (E-16) into 

the right hand side of equations (E-6) and (E-7) and substituting equations (E-10) and E-

11) into equations (E-6) and (E-7) respectively provides, 

 �
𝛼𝛼
v

+ 𝛀𝛀� ∙ ∇  + 𝜎𝜎�  (𝜓𝜓+ + 𝜓𝜓−)  = 𝑄𝑄  (E-17) 

 

and 

 �
𝛼𝛼
v
− 𝛀𝛀� ∙ ∇  + 𝜎𝜎�  (𝜓𝜓+ −  𝜓𝜓−)  = 𝑄𝑄.  (E-18) 

 

The sum of equations (E-17) and (E-18) is, 

 𝛼𝛼
v
𝜓𝜓+ + 𝛀𝛀� ∙ ∇ 𝜓𝜓− + 𝜎𝜎𝜓𝜓+  = 𝑄𝑄 . (E-19) 

 

The difference of equations (E-17) and (E-18) is, 
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 𝛼𝛼
v
𝜓𝜓− + 𝛀𝛀� ∙ ∇ 𝜓𝜓+ + 𝜎𝜎𝜓𝜓−  = 0 . (E-20) 

 

Solving equation (E-20) for 𝜓𝜓−yields, 

 𝜓𝜓−  = −
1

𝜎𝜎 + 𝛼𝛼
v
𝛀𝛀� ∙ ∇ 𝜓𝜓+.  (E-21) 

 

Substituting equation (E-21) into equation (E-19) provides the second order, even-parity 

time-eigenvalue transport equation. 

 𝛀𝛀� ∙ ∇
1

𝜎𝜎 + 𝛼𝛼
v
𝛀𝛀� ∙ ∇ 𝜓𝜓+ − 𝜎𝜎𝜓𝜓+ + 𝑄𝑄 =

𝛼𝛼
v
𝜓𝜓+ .  (E-22) 
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Appendix F Finite Difference Approximation 

  For the one-dimensional case, this work uses a finite difference spatial 

discretization scheme for the numerical solution of the diffusion equation in spherical 

coordinates.  Spherical coordinates are chosen to provide practicality in reactor design.  A 

one-dimensional spherical calculation models a homogenous spherical reactor reasonably 

well. 

 To arrive at the spatially discretized equation, begin with a Taylor series expansion 

of the scalar flux.  Equation (F-1) is a Taylor series for a function f(x) about x = a [59]. 

 
𝑆𝑆(𝑥𝑥) =  𝑆𝑆(𝑎𝑎) + (𝑥𝑥 − 𝑎𝑎)

𝑑𝑑𝑆𝑆(𝑥𝑥)
𝑑𝑑𝑥𝑥

+
1
2!

(𝑥𝑥 − 𝑎𝑎)2
𝑑𝑑2𝑆𝑆(𝑥𝑥)
𝑑𝑑𝑥𝑥2

+ ⋯

+
1
𝑛𝑛!

(𝑥𝑥 − 𝑎𝑎)𝑔𝑔
𝑑𝑑𝑔𝑔𝑆𝑆(𝑥𝑥)
𝑑𝑑𝑥𝑥𝑔𝑔

+ ⋯ 

(F-1) 

 

 

In this case, the objective is to discretize the sphere spatially in order to arrive at an 

approximation for the Laplacian in one-dimensional spherical coordinates. 

 
∇2=

𝑑𝑑2𝜕𝜕
𝑑𝑑𝑟𝑟2

+
2
𝑟𝑟
𝑑𝑑𝜕𝜕
𝑑𝑑𝑟𝑟

 . 
(F-2) 

 

  First, to simplify notation, 𝜕𝜕(𝑟𝑟𝑠𝑠) ≡ 𝜕𝜕𝑠𝑠 , 𝜕𝜕(𝑟𝑟𝑠𝑠+1) ≡ 𝜕𝜕𝑠𝑠+1,  and 𝜕𝜕(𝑟𝑟𝑠𝑠−1) ≡ 𝜕𝜕𝑠𝑠−1.If the 

radius of the sphere is discretized in the manner depicted in Figure 3.4 the flux is expanded 

in a Taylor series about 𝑟𝑟𝑠𝑠 in the following manner [38]. 
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𝜕𝜕𝑠𝑠+1 =  𝜕𝜕𝑠𝑠 + (𝑟𝑟𝑠𝑠+1 − 𝑟𝑟𝑠𝑠)

𝑑𝑑𝜕𝜕𝑠𝑠
𝑑𝑑𝑟𝑟

+
1
2!

(𝑟𝑟𝑠𝑠+1 − 𝑟𝑟𝑠𝑠)2
𝑑𝑑2𝜕𝜕𝑠𝑠
𝑑𝑑𝑟𝑟2

 
(F-3) 

 

 
𝜕𝜕𝑠𝑠−1 =  𝜕𝜕𝑠𝑠 + (𝑟𝑟𝑠𝑠−1 − 𝑟𝑟𝑠𝑠)

𝑑𝑑𝜕𝜕𝑠𝑠
𝑑𝑑𝑟𝑟

+
1
2!

(𝑟𝑟𝑠𝑠−1 − 𝑟𝑟𝑠𝑠)2
𝑑𝑑2𝜕𝜕𝑠𝑠
𝑑𝑑𝑟𝑟2

 
(F-4) 

 

Only the first three terms are needed since the objective is to determine an approximation 

for equation (F-2).  Using the discretization depicted in Figure 3.4 allows simplification of 

equations (F-3) and (F-4). 

 
𝜕𝜕𝑠𝑠+1 =  𝜕𝜕𝑠𝑠 + Δ

𝑑𝑑𝜕𝜕𝑠𝑠
𝑑𝑑𝑟𝑟

+
1
2
Δ2
𝑑𝑑2𝜕𝜕𝑠𝑠
𝑑𝑑𝑟𝑟2

 
(F-5) 

 

 
𝜕𝜕𝑠𝑠−1 =  𝜕𝜕𝑠𝑠 − Δ

𝑑𝑑𝜕𝜕𝑠𝑠
𝑑𝑑𝑟𝑟

+
1
2
Δ2
𝑑𝑑2𝜕𝜕𝑠𝑠
𝑑𝑑𝑟𝑟2

 
(F-6) 

 

Adding and subtracting equations (F-5) and (F-6) results in following equations. 

 
𝜕𝜕𝑠𝑠+1 + 𝜕𝜕𝑠𝑠−1 =  2𝜕𝜕𝑠𝑠 + Δ2

𝑑𝑑2𝜕𝜕𝑠𝑠
𝑑𝑑𝑟𝑟2

 
(F-7) 

 

 𝜕𝜕𝑠𝑠+1 − 𝜕𝜕𝑠𝑠−1 =  2Δ
𝑑𝑑𝜕𝜕𝑠𝑠
𝑑𝑑𝑟𝑟

 (F-8) 

 

Solving equation (F-7) for  𝑑𝑑
2𝜙𝜙𝑖𝑖
𝑑𝑑𝑟𝑟2

 results in equation (F-9) [38]. 

 
 
𝑑𝑑2𝜕𝜕𝑠𝑠
𝑑𝑑𝑟𝑟2

=
𝜕𝜕𝑠𝑠+1 − 2𝜕𝜕𝑠𝑠 + 𝜕𝜕𝑠𝑠−1

Δ2
 

(F-9) 
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Solving equation (F-8) for 𝑑𝑑𝜙𝜙𝑖𝑖
𝑑𝑑𝑟𝑟

 results in equation (F-10). 

 𝑑𝑑𝜕𝜕𝑠𝑠
𝑑𝑑𝑟𝑟

=
𝜕𝜕𝑠𝑠+1 − 𝜕𝜕𝑠𝑠−1

2Δ
 (F-10) 

 

Recognizing that the radius is discrete and calculated by, 

 𝑟𝑟 = Δ𝑠𝑠 (F-11) 
 

and substituting equations (F-9), (F-10) and (F-11) into (F-2) gives a numerical 

approximation for the Laplacian. 

  

 
∇2=

𝜕𝜕𝑠𝑠+1 − 2𝜕𝜕𝑠𝑠 + 𝜕𝜕𝑠𝑠−1
Δ2

+
2(𝜕𝜕𝑠𝑠+1 − 𝜕𝜕𝑠𝑠−1)

2𝑠𝑠Δ2
 

(F-12) 

 

Replacing the two in the numerator of the second term with a variable, c, generalizes 

equation (F-12) for multiple one-dimensional geometries. 

 
∇2=

𝜕𝜕𝑠𝑠+1 − 2𝜕𝜕𝑠𝑠 + 𝜕𝜕𝑠𝑠−1
Δ2

+
𝑐𝑐(𝜕𝜕𝑠𝑠+1 − 𝜕𝜕𝑠𝑠−1)

2𝑠𝑠Δ2
 

(F-13) 

 

By letting = 2, 1 or 0 , equation (F-13) will approximate the Laplacian for one-

dimensional spherical, cylindrical and slab geometries, respectively [38].
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Appendix G Glossary 

A 

Adjoint – An operator, O, and a function, f, has an adjoint operator, O†, and an adjoint 

function, f†, if the relationship,  is satisfied.  A Hermitian or self-

adjoint operator satisfies O = O† [23, 56].   

 

Albedo – When used in the context of neutron transport, the albedo is the probability that 

neutron incident on a surface will return through that same surface [73]. 

 

Algabraic equation – Equaitons that follow the rules of algebra [74]. Polynomial 

equations.  Algabraic equations are non-linear when they contain variables with powers 

not eaqual to one [64]. 

 

Algebraically – According to the laws of algebra. 

 

Angular flux – The total of path lengths traveled by all particles in direction, 𝛀𝛀� , per unit 

volume per unit time [23].  Angular flux is derived from the angular particle density, N 

[#/(steradian-volume)] and the velocity of the particles, v [length/time].  So that, 
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𝜓𝜓 = v 𝑁𝑁 → �length
time

� � #
steradian∙volume

� → � #
steradian∙area

� [56]. 

 

Asymptote – A straight line where the perpendicular distance from it to a function value 

becomes less than an any postitive value assigned  to it as the function recedes indefinately 

from the origin [75]. 

 

Asymptotic – Approaching a value or curve arbitrarily close [74]. 

B 

barn – A common unit of microscopic neutron cross sections.  barn = 10−24cm2 [38].  

Scientist at Purdue University named the unit in 1942 after noting that the cross section of 

10-24 cm2 was as big as a barn in terms of nuclear processes [76]. 

C 

cgs units – “A system of units based upon the centimeter, gram, and second.  The cgs 

system has been supplanted by the International System (SI).” [77] 

 

Condition Number – The product of a matrix norm and the norm of its inverse. 

𝐾𝐾(𝐴𝐴) = ‖𝐴𝐴‖ ∙ ‖𝐴𝐴−1‖ 
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Ther condition number infers the relative safety that a small residual vector of a solution 

process implies a correspondingly accurate approximation.  If 𝐾𝐾(𝐴𝐴) is close to 1 then the 

matrix is considered well-conditioned, and is ill-conditioned if significantly greater than 1 

[62]. 

 

Cross section – 1.  Macroscopic cross section – the probability of collision per unit path 

length.  Has units of inverse length.  2.  Microscopic cross section – the effective cross-

sectional area seen by a particle.  Has units of area [23]. 

 

Current – 1. Net current J, is the net number of particles crossing per unit area of surface 

per unit time. For comparison with scalar flux, φ , J, is the first moment of angular flux ψ, 

𝑱𝑱 = ∫�𝐧𝐧 ∙ 𝛀𝛀��𝛀𝛀�  𝜓𝜓𝑑𝑑Ω .  2. Directional current is the number of particles crossing a surface 

in a given direction [23, 56].  

D 

Diffusion Length – The neutron diffusion length is essentially the distance that a neutron 

will diffuse from a source before being absorbed.  The length is calculated by, 𝐿𝐿 = �𝐷𝐷/𝜎𝜎𝑎𝑎 

[38]. 
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Dollar Reactivity – Reactivity in dollars is equal to the reactivity divided by the delayed 

neutron fraction, 𝜌𝜌
𝛽𝛽

.  The prompt critical condition where, 𝜌𝜌 = 𝛽𝛽, defines one dollar of 

reactivity [52]. 

 

Dominance Ratio – “ρ”, the ratio of the second greatest eigenvalue and the dominate 

eigenvalue, ρ = λ2/λ1 (without units).  Where, is a set of eigenvalues ordered as, 

 [7].  

 

Dominate Eigenvalue – The eigenvalue that is largest in absolute value [61]. 

G 

Generation – A neutron of one generation absorbed in fissionable material that causes a 

fission gives birth to the next generation of neutrons [57].   

 

Glory Hole – Cavity located in the interior of a reactor used to hold experiments [11]. 

I 

Inner Product – If f and g are both functions of the same variables, the inner product of 

these functions is, .  Evaluate the integral over the entire range of all 

independent variables [56, 23]. 
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Isotopes – “Nuclides having the same atomic number, but different mass numbers.” [73] 

J 

Jacobian – The matrix formed by the partial derivatives of a system of functions [74]. 

𝕁𝕁𝑠𝑠,𝑗𝑗 =
𝜕𝜕𝐹𝐹𝑠𝑠(𝑼𝑼)
𝜕𝜕𝑼𝑼𝑗𝑗

⟶ 𝕁𝕁 =

⎣
⎢
⎢
⎢
⎢
⎡
𝜕𝜕𝐹𝐹1(𝑼𝑼)
𝜕𝜕𝑼𝑼1

⋯
𝜕𝜕𝐹𝐹1(𝑼𝑼)
𝜕𝜕𝑼𝑼𝑔𝑔

⋮ ⋱ ⋮
𝜕𝜕𝐹𝐹𝑔𝑔(𝑼𝑼)
𝜕𝜕𝑼𝑼𝑗𝑗

⋯
𝜕𝜕𝐹𝐹𝑔𝑔(𝑼𝑼)
𝜕𝜕𝑼𝑼𝑔𝑔 ⎦

⎥
⎥
⎥
⎥
⎤

 

K 

Kernel – Is a function,  of several variables, including the variables of integration 

in an integral of the form,  [38]. 

 

Kinetics – Nuclear reactor kinetics is the topic of predicting the time behavior of the 

neutron population as a result of changes in reactor multipication [38]. 

 

Kronecker delta –  Is the discrete form of the delta function,   [74, 78].  

The Kronecker is used in the description of  Legendre polynomial orthogonality 

relationship [23]. 
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L 

Low Enriched Uranium – “Fuel in which the weight percent of U-235 in the uranium is 

less than 20%” [79].   

 

M 

MKS units – “The system of units based on measuring lengths in meters, mass in 

kilograms, and time in seconds” [74]. 

N 

Neutronics – The study of the processes related to the neutron economy (production and 

losses) in a system [38]. 

 

Nuclide – “A species of atom characterized by its mass number, atomic number, and 

nuclear energy state provided the mean life in that state is long enough to be observable” 

[73]. 

O 

Orthogonal – 1. Perpendicular.  2. Two vectors with a dot product equal to zero 3. 

Polynomials are orthogonal if defined over a range [a, b] and adhere to the relationship, 
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.  Where w(x) is a weighting function and cn is a constant.  If cn 

is equal to one, then the polynomials are also orthonormal [74]. 

 

Optical thickness, distance or path – Is “the geometrical distance between points, 

multiplied by the inverse of the mean free path averaged over the line segment between 

them” [80].  The mean free path is 1/𝜎𝜎 [56].  The term optically thick commonly means a 

medium with a high total or specific cross-section [43]. 

P 

Picard linearization – Iterative scheme to solve the nonlinear problem, 𝐴𝐴𝑥𝑥 = 𝑥𝑥, by the 

fixed point iteration of the form 𝒙𝒙 𝑠𝑠+1 = 𝐴𝐴 𝒙𝒙 𝑠𝑠  [60]. 

 

Poison – Material that removes neutrons from a system [52]. 

 

Preconditioning – Operation that “replaces a given system with one having the same 

solutions but with better convergence characteristics.” [62] 

 

R 

Reactor Period – “The amount of time required for the flux to change by a factor of e [52].  
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Richardson Iteration – Iterative scheme to solve the linear equation, 𝐴𝐴𝑥𝑥 = 𝑏𝑏, by a fixed 

point iteration of the form 𝒙𝒙 𝑠𝑠+1 = (𝐼𝐼 − 𝐴𝐴) 𝒙𝒙 𝑠𝑠 + 𝑏𝑏 [60]. 

  

S 

Scalar flux – (or total flux) The total of path lengths traveled by all particles in any 

direction per unit volume per unit time.  Scalar flux is derived from the particle density, n 

[#/volume] and the velocity of the particles, v [length/time].  So that, 𝜕𝜕 = v 𝑛𝑛 →

�length
time

� � #
volume

� → � #
area

�.  For comparison with current J, φ is the zero moment of angular 

flux ψ, 𝜕𝜕 = ∫�𝐧𝐧 ∙ 𝛀𝛀��𝜓𝜓 𝑑𝑑Ω [56] [23]. 

 

Symmetric Matrix – A matrix that is equal to its transpose [61]. 

   

Singularity – “Points at which functions are not analytic.” [78] 

 

Span – The span of a set of vectors is the sum of the each vector multiplied by any real 

scalar [74]. 

Span(𝐯𝐯1, 𝐯𝐯2) ≡ {𝑟𝑟𝐯𝐯1 + 𝑠𝑠𝐯𝐯2 ∶ 𝑟𝑟, 𝑠𝑠 ∈ ℝ} 
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T 

Telegrapher equation – An equation governing the propagation of electromagnetic waves 

in conducting media [81, 78].  The equation itself is a hyperbolic differential equation that 

is similar to the diffusion equation, but that includes a second order time derivative [82]. 

𝜏𝜏
𝜕𝜕2

𝜕𝜕𝑡𝑡2
𝜌𝜌 +

𝜕𝜕
𝜕𝜕𝑡𝑡
𝜌𝜌 = 𝐷𝐷∇2 

The term comes up occasionally when discussing neutron diffusion theory presumably 

since telegraphist predated nuclear scientists. 

 

Transcendental equation – An equation that contains transcendental functions.  Examples 

of transcendental functions include exponentials, logarithmic, trigonometric, and 

hyperbolic [83].  Transcendental equations are non-linear [64].  

 

Transport sweep – A single source iteration in the numerical solution to the discrete 

ordinates transport equation [43]. 

 

Trilinos – A collection scientific computational software packages produced and 

maintained by Sandia National Laboratories.  A Greek term meaning “a string of pearls”.  

Developers chose the name to convey that each package in the Trilinos collection is a 

“pearl” of useful software [84].   
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V 

Verification – The determination that the system is built right or the problem is solved 

correctly [85]. 

 

Validation – The determination that the right system was built or that the correct problem 

is solved [85].  
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Appendix H PDE Classification & Characteristics 

Classification of Partial Differential Equations 

The classification for the problems addressed in this work from Ordinary 

Differential Equation (ODE) is of the eigen-problem class [63].  However, from a broader 

perspective the neutron transport equation is described as crossing many classifications of   

a Partial Differential Equation (PDE) [86].  A PDE is classified as elliptical, parabolic or 

hyperbolic [63].  In optically thick, high scattering material, the transport equation behavior 

limits to parabolic, or elliptic.  In void streaming regions, the limiting behavior is parabolic 

[86].  The diffusion equation and even-parity transport equations are considered parabolic 

or elliptic depending on spatial dimensions and time-dependence.  This classification is 

most often initially determined by a characterizing polynomial of the form found in 

equation (H-1) [63]. 

 
𝐴𝐴
𝜕𝜕2𝑆𝑆
𝜕𝜕𝑥𝑥2

+ 𝐵𝐵
𝜕𝜕2𝑆𝑆
𝜕𝜕𝑥𝑥𝜕𝜕𝐶𝐶

+ 𝐶𝐶
𝜕𝜕2𝑆𝑆
𝜕𝜕𝐶𝐶2

+ 𝐷𝐷
𝜕𝜕𝑆𝑆
𝜕𝜕𝑥𝑥

+ 𝐸𝐸
𝜕𝜕𝑆𝑆
𝜕𝜕𝐶𝐶

+ 𝐹𝐹𝑆𝑆 = 𝐺𝐺 
(H-1) 

 

The classification is determined by the value of the discriminant, B2 – 4AC [63]. 

Table H.1 PDE Classification  

B2 – 4AC Classification 
Negative Elliptic 
Zero Parabolic 
Positive Hyperbolic 
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The plots resulting from the polynomial and the various cases of its discriminant are plotted 

in Figure H.1. 

 

Figure H.1  Plots of the descriptive polynomial of PDE classifications 

“The analogy is to the classification of the PDEs is obvious.  There is no other significance 

to the terminology.” [63]  In fact, the terminology is misleading in at least one case.  “A 

single first order PDE is always hyperbolic.” [63] However, the resulting discriminant of 

the classifying polynomial implies it is parabolic.  Possibly an “open” parabola where the 

fulcrum equals the vertex, see Figure H.2. 
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Figure H.2  Parabola:  A geometric representation. 

The real classification comes from a much more complicated analysis of the 

characteristics of the solution domain.  Reference [63] provide details on this analysis. 
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Appendix I Symbols and Notation 

Symbols 

α – alpha – Time eigenvalue associated with the asymptotic neutronic solution. 

∀ – For all. 

| | – Absolute value or magnitude. 

≅  – Approximately equal to.   

�  – Average or mean value 

* – asterisk – Multiplication  

β – beta – Delayed neutron fraction. 

c – 1.  Scattering ratio, σs/σt .  2. Generic constant. 

D – The diffusion coefficient 

δmn – Kronecker delta. 

≡ – defined as. 

e – The natural number.  Exponential.  

E – Energy. 

𝔈𝔈 – Eddington factor, also called the quasi-diffusion tensor. 

∈ – Element of. 



120 

 

g – Energy group index. 

h – height. 

 – Inner product. 

i – 1.  Imaginary number.  2. Spatial discretization index. 

I – 1.  The identity matrix.  2.  The max number in a set indexed by i. 

j – Spatial discretization index. 

J – Current. 

𝕁𝕁 – The Jacobian 

k – 1.  Neutron multiplication factor, typically prompt only.  2. Spatial discretization index. 

keff --  Neutron multiplication factor, typically including delayed neutrons. 

l – Neutron lifetime.  

L – Neutron diffusion length. 

ℓ – 1.  Angular discretization index (PN).  3. Legendre polynomial index. 

ln – Natural logarithm. 

Λ – Neutron generation or importance lifetime. 

m – Associated Legendre polynomial index. 

μ – mu – 1. The cosine of the polar angle.  2. Micro. 

n – 1.  Particle density. 2. Angular discretization index (SN) 3.  Generic counter. 
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‖ ‖ -- Norm. 

𝛀𝛀�   – omega “hat” – Directional unit vector. 

† – obelisk – Adjoint. 

⊥ -- Perpendicular or orthogonal to. 

φ – phi – Scalar flux. 

φl – phi “sub el” – Legendre moments. 

' – prime – 1. A different value, often used in notional definite integrals. 2. Derivative. 

ϕ – The azimuthal angle. 

ψ – psi – Angular flux. 

r – Radius, usually variable. 

R – Radius, usually geometric as in the total radius of a FBR 

𝑅𝑅� – The extrapolated boundary used in diffusion calculations  

ℝ  – The set of real numbers  

ρ – rho – 1.  Reactivity.  2. Density. 

s – Iteration index. 

σ – sigma –  Macroscopic cross-section.  

𝜎𝜎� – sigma tilde –  Microscopic cross-section. 
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∑ – Summation. 

Θ – Energy coefficient of feedback reactivity 

θ – theta – The polar angle. 

T – Temperature.  

𝒯𝒯 – Time, used when use of  “t” is confusing due to a time-step index. 

t – 1.  Time.  2.  Discrete time index. 

𝜏𝜏 – tau – The Full Width at Half Maximum 

→ – 1.  Vector.  2. Indicator of the value that a variable tends to in a limit.  3.  Yields. 

Notation 

 𝜓𝜓+�𝑟𝑟𝑠𝑠,Ω�𝑔𝑔,𝐸𝐸𝑔𝑔,𝒯𝒯𝑡𝑡� reads as, the even-parity angular flux at spatial cell i, for a 

discrete direction n in energy group g at time step t.  The chosen angular approximation 

will determine the specific form of the  term as appropriate direction cosines or sums of 

Legendre polynomials and coefficients.  The Figure C.1 shows an abbreviated 

representation of the discretized flux as well as well as an example representation of 

Legendre moments if a PN approximation is used.   
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Figure I.1 Discrete Notation for the Transport Equation: 

(a) The standard locations for indices and exponents of the unknown.  In cases where it 

obvious the angle index does not apply then the spatial index may occupy the right lower 

subscript.  (b) The even-parity angular flux for solution iteration s, energy group g, at time 

step t, in cell i, for discrete angle n, squared. (c) The ℓ𝑡𝑡ℎ Legendre moment, for solution 

iteration s, energy group g, at time step t, in cell i. 
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Appendix J Nordheim-Fuchs 

In the transient operation of a FBR, the neutron population rises and falls in an 

exponential way [87].  The instantaneous alpha describes this dynamic behavior [55]. 

 𝑛𝑛(𝑡𝑡) = 𝑛𝑛(0) 𝑒𝑒∫ 𝛼𝛼�𝑡𝑡′�𝑑𝑑𝑡𝑡
0 𝑡𝑡′  (J-1) 

 

The primary contribution of this research is the JFNK solution method of alpha for ultimate 

use in time-dependent codes that approximate equation (J-1).  However, in the interim the 

Nordheim-Fuchs model proves a valuable tool to assist in validation of the solution 

methods, and to provide immediate utility of calculated values. 

 The Nordheim-Fuchs model is meaningful in cases of power excursions that are 

self-limiting and short-lived.  Additionally, the insertion of reactivity must be large enough, 

and the time of the excursion short enough that delayed neutron contributions are negligible 

[22].  These conditions assume that the neutron population, or power, satisfies equation 

(J-2).  

 𝑑𝑑𝑛𝑛
𝑑𝑑𝑡𝑡

=
𝜌𝜌 − 𝛽𝛽
Λ

𝑛𝑛 =
𝐷𝐷 − 1
𝑙𝑙

𝑛𝑛 (J-2) 

 

Equation (J-2) is identical to equation (2-20) except here the complications of reactivity, 

delayed neutron fraction, β (see Appendix B), and the generation lifetime, are introduced 

to align with traditional representation of the model found elsewhere [22, 1]. 

 
𝑟𝑟𝑒𝑒𝑎𝑎𝑐𝑐𝑡𝑡𝑠𝑠𝑣𝑣𝑠𝑠𝑡𝑡𝐶𝐶 ≡ 𝜌𝜌 =

𝐷𝐷𝑔𝑔𝑓𝑓𝑓𝑓 − 1
𝐷𝐷𝑔𝑔𝑓𝑓𝑓𝑓

 
(J-3) 
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 𝑔𝑔𝑒𝑒𝑛𝑛𝑒𝑒𝑟𝑟𝑎𝑎𝑡𝑡𝑠𝑠𝑉𝑉𝑛𝑛 𝑙𝑙𝑠𝑠𝑆𝑆𝑒𝑒𝑡𝑡𝑠𝑠𝑙𝑙𝑒𝑒 ≡ Λ =
𝑙𝑙

𝐷𝐷𝑔𝑔𝑓𝑓𝑓𝑓
 (J-4) 

 

The initial conditions are of a reactor that is either subcritical or critical at a low power 

level [22].  The Nordheim-Fuchs model does not account for changes in the reactivity in 

the way represented in equation (J-1).  Instead, the model describes the system in terms of 

initial peak reactivity, 𝜌𝜌0, and feedback coefficients [1, 22]. 

 ρ = 𝜌𝜌0 − 𝑏𝑏 𝑇𝑇 (J-5) 
 

Where, b, is the negative of the temperature coefficient of reactivity [87, 22], and, T, is the 

temperature increase above the initial value [22].  Due to the short time scale of the 

excursion, the change in temperature with respect to time uses an adiabatic model [22]. 

 d𝑇𝑇
d𝑡𝑡

= 𝐾𝐾 𝑛𝑛 (J-6) 

 

Where, K, is the reciprocal of heat capacity [22].  Taking the derivative with respect to time 

of equation (J-5) provides equation (J-7). 

 d𝜌𝜌
d𝑡𝑡

= 0 − 𝑏𝑏
d𝑇𝑇
d𝑡𝑡

 (J-7) 

 

Substituting equation (J-6) into equation (J-7) gives equation (J-8). 

 d𝜌𝜌
d𝑡𝑡

= −𝑏𝑏 𝐾𝐾 𝑛𝑛 = −Θ 𝑛𝑛 (J-8) 
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Where, b K, is the energy coefficient of feedback reactivity, Θ.  So, now the system is 

described in terms of the first order differential equations of (J-2) and (J-8).  From these 

equations the derived peak power is [1, 22], 

 
𝑛𝑛� =

(𝜌𝜌0 − 𝛽𝛽)2

2 Θ Λ
. 

(J-9) 

 

 Which simplifies to equation (2-22) in terms of scalar flux, and the values calculated by 

JAKES.  The full width at half maximum (FWHM) is also derived from these equations 

and is found to be [22, 1], 

 
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 ≡ 𝜏𝜏 =

4 cosh−1√2
𝛼𝛼0

≅
3.524 
𝛼𝛼0

. 
(J-10) 

 

Equations (J-9) and (J-10) are solved using values predictively calculated by the new 

algorithms developed in this research to model the burst characteristics of historic, and 

postulated FBRs. 
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Appendix K Leakage Minimization 

Based on diffusion theory the leakage of a system is, 

 𝐿𝐿 = 𝐷𝐷𝐵𝐵2. (K-1) 
 

Where D is the diffusion coefficient and B is geometric buckling [38].  For a two-

dimensional cylinder, r-z, the leakage is, 

 𝐿𝐿 = 𝐷𝐷 ��
𝜐𝜐0
𝑅𝑅
�
2

+ �
𝜋𝜋
𝐹𝐹
�
2
�. (K-2) 

 

Where, υ0 is the first (smallest) zero of the Bessel function J0 and equals 2.405 [38].   

 

Figure K.1 Bessel Function, J0 
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Defining H as a multiple of R, equation (K-2) becomes, 

 𝐿𝐿 = 𝐷𝐷 ��
𝜐𝜐0
𝑅𝑅
�
2

+ �
𝜋𝜋
𝑐𝑐𝑅𝑅
�
2
�. (K-3) 

 

The volume of a cylinder is, 

 𝑉𝑉 = 𝜋𝜋𝑅𝑅2𝐹𝐹 = 𝜋𝜋𝑅𝑅3𝑐𝑐. (K-4) 
 

Solving for R in terms of volume yields, 

 

𝐿𝐿 = 𝐷𝐷

⎝

⎛�
𝜐𝜐0

� 𝑉𝑉𝜋𝜋𝑐𝑐�
1/3�

2

+ �
𝜋𝜋

𝑐𝑐 � 𝑉𝑉𝜋𝜋𝑐𝑐�
1/3�

2

⎠

⎞. 

(K-5) 

 

Now taking the derivative with respect to c and setting to zero will minimize the value of 

c [72]. 

 

0 =
𝜕𝜕
𝜕𝜕𝑐𝑐
⎣
⎢
⎢
⎡
𝐷𝐷

⎝

⎛�
𝜐𝜐0

� 𝑉𝑉𝜋𝜋𝑐𝑐�
1/3�

2

+ �
𝜋𝜋

𝑐𝑐 � 𝑉𝑉𝜋𝜋𝑐𝑐�
1/3�

2

⎠

⎞

⎦
⎥
⎥
⎤
⟶ 

(K-6) 

 

 0 =
2
3
𝜐𝜐02𝑐𝑐−1/3 −

4
3
𝜋𝜋2𝑐𝑐−7/3 (K-7) 

 

Solve for c. 

 
𝑐𝑐2 = 2

𝜋𝜋2

𝜐𝜐02
⟶ 

(K-8) 
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 𝑐𝑐 = √2
𝜋𝜋
𝜐𝜐0

= 1.847 (K-9) 

 

Therefore, to minimize leakage based on diffusion theory the optimum height of a 

cylindrical reactor is 1.847 times the radius [72]. 



130 

 

Appendix L Linearity 

Linear Equations  

Intuitively, linear implies a straight line.  All equations of the form 

 

        (L-1) 

 

are equations of a straight line provided that A and B are not both zero [51].   

Equation (L-1) is an equation of a straight line in the x-y plane and is sometimes referred 

to as linear equation in two variables.  In three-dimensional Cartesian coordinates the 

equation  

 

.            (L-2) 

 

is an equation of a two dimensional plane and is referred to as a linear equation in three 

variables [88].  Beyond three variables the visualization of a linear geometry fails, but 

linear equations are generalized as  

, or .     (L-3) 
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Equation (L-3) is an equation of n variables in the first degree and thus is a linear 

equation.  In this instance, “first degree” means the all exponents of the variables are one, 

and is the unifying principle that defines a linear equation [89].  Additionally, none of the 

variables are multiplied by each other.  This condition would cause the equation to be non-

linear as well [29].  

Systems of Linear and Nonlinear Equations 

Most often, interest is in solving for n unknowns in a system of m linear equations.  

Therefore, the notation of equation (L-3) is expanded to represent this type of system as 

 or  where . (L-4) 

These systems are consistent if at least one solution exists and inconsistent if no solution 

exists [89].   

If n <m, then the system is over determined and no solution exists.  If n =m then a 

unique solution will exists provided the matrix of the coefficients, a, is nonsingular (the 

determinant of the matrix of coefficients is not equal to zero).  If n >m then the system 

underdetermined and multiple solutions exist [74]. 

This work typically writes linear equations like those in equation (L-4) in matrix 

form, 

𝐴𝐴𝒙𝒙 = 𝒃𝒃              (L-5) 
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where,  A is the matrix of the coefficients, and x and b are column vectors containing the 

variables and solutions of equation (L-4) [60]. 

 Many nonlinear equations such as the ones found in this work are formulated as 

fixed-point problems [60], 

𝐴𝐴𝒙𝒙 = 𝒙𝒙.              (L-6) 

 Fixed-point iteration is often the method used to solve equations of this type. 

𝐴𝐴( 𝒙𝒙 𝑠𝑠 ) = 𝒙𝒙 𝑠𝑠+1       (L-7) 

This iteration technique is also called nonlinear Richardson iteration, Picard iteration, 

or, the method of successive substitution [60].  

The system depicted by equation (L-6) is nonlinear because other than the case 

where 𝐴𝐴 = 𝐼𝐼, equation (L-6) is only true for certain x vectors.  This concept is difficult to 

place in a matrix equation form since there is no sensible “vector inverse” to apply.  A 

vector is in fact a non-square matrix and thus has no inverse [61].  However, if we 

consider the action of A on x as similar to an operation on a single variable we can show 

that,  

𝑂𝑂(𝑥𝑥) = 𝑥𝑥     (L-8) 

is only true for cases where, 

𝑂𝑂(𝑥𝑥)𝑥𝑥−1 = 1       (L-9) 

and since equation (L-9) is not of first degree, it is not a linear equation.  Additionally, in 

eigenvalue problems, 
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𝐴𝐴𝒙𝒙 = 𝜆𝜆𝒙𝒙              (L-10) 

the solution is a multiple of two variables, the eigenvalue, λ, and x and thus are non-

linear in this manner also [29].   

 Transcendental and algebraic are the two types of non-linear equations [64].  In 

the algebraic case these are equations that contain powers of the independent variable 

other than one.  Transcendental equations are those that are not algebraic, and are always 

non-linear.  These include, but are not limited to Exponentials, logarithms, trigonometrics 

and hyperbolics [83].  Strictly speaking, a transcendental equation must contain a 

transcendental function, such as those listed previously, but transcendental is often 

applied generally to equations that are particularly difficult to deal with [64]. 

Linear Systems 

The term linear as it applies to functions and systems (not equations and systems 

of equations) is slightly different and often causes confusion when discussing physical 

problems and numerical techniques.  The following definitions and discussion should 

clarify the use of the term linear in this context.  

 

Definition: “A system is any structure of inter-connected components created to complete 

some desired function.  It has distinct inputs and outputs and it produces an output signal 

in response to an input signal.  The functional relationship between the input and the output 

is given by a set of mathematical equations and this set is called a model of the system” 

[90]. 
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Definition:  A system is linear if and only if it possesses both homogeneity and 

superposition properties [90]. 

 

Setting C = 0 and solving for y gives the slope-intercept form of equation (L-1), 

.  Letting  gives a more familiar form of an algebraic equation of a 

straight line with the y-intercept at zero and slope of m, 

 

.           (L-10) 

 

Given that the straight line of equation (L-10) is not parallel to the x-axis (y is not 

held constant), the line may be thought of as a function of x [51].  That is, x is an input to 

a system and f(x) is an output.  

 

               (L-11) 

 

The property of homogeneity requires that an input “x” resulting in an output f (x) 

when multiplied by any real number k results in, 
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.     (L-12) 

 

Multiplying the input “x” and the output f (x) by k demonstrates homogeneity of equation 

(L-11). 

 

           (L-13) 

 

The superposition property requires that the addition of two inputs “x” and “t” 

results in the sum of the outputs of each input individually, 

 

.           (L-14) 

 

 Applying (L-14)  to (L-11) shows the superposition of A-2. 

 

             (L-15) 

 

Figure L.1 graphically depicts the homogeneity and superposition properties of equation 

(L-11). 
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Figure L.1 Homogeneity and Superposition Properties of Linear Systems 

 

Now consider equation (L-11) if C was not set to zero in the derivation, 

 

.    (L-16) 
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Checking equation (L-16) with the superposition property of linear systems gives, 

 

       (L-17) 

 

and it is shown that the property of superposition fails in this case.  Checking the 

homogeneity property gives a similar result, 

 

 .     (L-18) 

 

The somewhat counterintuitive result that the function in (L-16) does not meet the 

criteria of a linear system is best explained by noting that an input, x, of zero does not result 

in an output, f(x), of zero (see figure L.2).  These systems are called initially relaxed, and 

as long as the constant, C, is treated as an initial condition the techniques of linear analysis 

apply to systems described by the function of (L-16) [90].  In fact, math references differ 

in describing the function in (L-16) as linear or non-linear function [51, 59]. 

 



138 

 

 

Figure L.2 Example of an Initially Relaxed System 

An operator is a rule or instruction to apply to a function.  Similar to the requirements for 

linear systems, if an operator, O, meets the following criteria, 

 and ,    (L-19) 

then O, is a linear operator.  In this case k is a number.  f and g are functions, but could also 

be numbers or vectors [59].  Differentiation is an example of a linear operator [83]. 
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