
University of New Mexico
UNM Digital Repository

Nuclear Engineering ETDs Engineering ETDs

9-12-2014

An Sn Application of Homotopy Continuation in
Neutral Particle Transport
Nicholas Myers

Follow this and additional works at: https://digitalrepository.unm.edu/ne_etds

This Dissertation is brought to you for free and open access by the Engineering ETDs at UNM Digital Repository. It has been accepted for inclusion in
Nuclear Engineering ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact disc@unm.edu.

Recommended Citation
Myers, Nicholas. "An Sn Application of Homotopy Continuation in Neutral Particle Transport." (2014).
https://digitalrepository.unm.edu/ne_etds/10

https://digitalrepository.unm.edu?utm_source=digitalrepository.unm.edu%2Fne_etds%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ne_etds?utm_source=digitalrepository.unm.edu%2Fne_etds%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/eng_etds?utm_source=digitalrepository.unm.edu%2Fne_etds%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ne_etds?utm_source=digitalrepository.unm.edu%2Fne_etds%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ne_etds/10?utm_source=digitalrepository.unm.edu%2Fne_etds%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:disc@unm.edu


     
  

           
       Candidate  
      
           

     Department 
      
 
     This dissertation is approved, and it is acceptable in quality and form for publication: 
 
     Approved by the Dissertation Committee: 
 
               
                   , Chairperson 
  
 
           
 
 
           
 
 
           
 
 
           
 
 
           
 
 
            
 
 
            
 
 
            
 
 
  

Nicholas T. Myers

Chemical and Nuclear Engineering

Anil Prinja

Jim Warsa

Evangelos Coutsias

Cassiano De Oliveira



An SN Application of Homotopy
Continuation in Neutral Particle

Transport

by

Nicholas T. Myers

H.B.S., Nuclear Engineering, Oregon State University, 2008

M.S., Nuclear Engineering, Oregon State University, 2011

DISSERTATION

Submitted in Partial Fulfillment of the
Requirements for the Degree of

Doctorate of Philosophy
Engineering

The University of New Mexico
Albuquerque, New Mexico

July, 2014

ii



c©2014, Nicholas T. Myers

iii



Acknowledgments

I would like to thank my advisor, Professor Anil Prinja, for his guidance and support
of this research, especially when the results seemed discouraging. I would also like to
thank my mentor from my internships at Los Alamos National Laboratory, Dr. Jim
Warsa, for starting me down the path of this research and helping me understand
the numerical issues of the research as well as learning how to use and develop the
Capsaicin code. I would also like to thank Dr. Evangelos Coutsias and Dr. Cassiano
de Oliveira for being on my committee and supporting the research.

I would also like to thank my family for their support and encouragement to see
this dissertation through to the end. I would like to thank Eric and Teresa Anderson
for encouraging me during this research and allowing me to be part of their family
during my time in New Mexico. I would like to thank all my friends in the department
for their support and willingness to create a supportive environment for discussion
of ideas and research.

Finally, I would like to thank Jesus Christ for being my lord and savior. I would
never have been able to accomplish this work without the strength and peace that
the Lord Jesus Christ has given me. I am very grateful for the mind that He has
blessed me with and the educational opportunities that He has given me in my life.

iv



An SN Application of Homotopy
Continuation in Neutral Particle

Transport

by

Nicholas T. Myers

H.B.S., Nuclear Engineering, Oregon State University, 2008

M.S., Nuclear Engineering, Oregon State University, 2011

P.h.D., Engineering, University of New Mexico, 2014

ABSTRACT

The objective of this dissertation is to investigate the usefulness of homotopy continu-

ation applied in the context of neutral particle transport where traditional methods of

acceleration degrade. This occurs in higher dimensional heterogeneous problems [51].

We focus on utilizing homotopy continuation as a means of providing a better initial

guess for difficult problems. We investigate various homotopy formulations for two

primary difficult problems: a thick-diffusive fixed internal source, and a k-eigenvalue

problem with high dominance ratio. We also investigate the usefulness of homotopy

continuation for computationally intensive problems with 30-energy groups.

We find that homotopy continuation exhibits usefulness in specific problem for-

mulations. In the thick-diffusive problem it shows benefit when there is a strong

internal source in thin materials. In the k-eigenvalue problem, homotopy continua-

tion provides an improvement in convergence speed for fixed point iteration methods

in high dominance ratio problems. We also show that one of our imbeddings suc-

cessfully stabilizes the nonlinear formulation of the k-eigenvalue problem with a high

dominance ratio.
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Chapter 1

Introduction

1.1 Computational Modeling in Nuclear Engineer-

ing Overview

Radiation transport modeling and simulation is a growing field of research in the

nuclear, medical, and health physics industry. Computer modeling and simulation

is becoming increasingly necessary for such applications as nuclear reactor design,

weapons modeling, radiation treatment planning, and criticality safety analysis. Cur-

rently, in the United States, there are 104 operating nuclear reactor plants that

provide about 20% of our country’s energy needs. The Department of Energy has

predicted that our energy needs will grow by 22% by 2035 [27]. Nuclear power pro-

vides a competitive option for meeting these energy demands, but the upfront cost of

a power plant is estimated today to be $6−$8 billion [17]. Computational modeling

of radiation transport reduces the need to build expensive test facilities for design

and safety purposes.

Radiation transport modeling is also necessary for nuclear weapons simulation.

1



Chapter 1. Introduction

By international law (1996 Comprehensive Nuclear-Test-Ban Treaty [40]), signatory

nations are not allowed to perform nuclear explosions as experimental tests. Bio-

logical and infrastructure damage as a result of a nuclear explosion must instead be

analyzed and understood with computational methods.

There are two general means of approaching radiation transport modeling, de-

terministic and monte carlo methods. Monte carlo methods employ pseudo-random

sampling of statistical distributions to simulate the physical interactions of radiation

particles in a system. The user must specify where tallying will occur and must ac-

count for the sampling statistical error. Monte carlo methods allow for modeling of

complex geometry, but require many particle histories to reduce the statistical error.

This generally leads to longer run times for transport problems than deterministic

approaches.

Deterministic methods seek to solve the physical equations describing the radia-

tion field distribution in a problem. Unlike monte carlo methods, solving a problem

deterministically yields all information for the problem, not just where the user spec-

ified a tally. Instead of statistical error, the user must account for systematic error

associated with the various numerical discretization methods. Deterministic meth-

ods are generally faster than monte carlo methods, but are difficult to employ in

modeling complex problems. This research is focused on deterministic methods and

will make no more mention of monte carlo methods.

Deterministic methods are generalized into two classifications; direct methods

and iterative methods. A direct method uses a finite sequence of operations to

solve a problem. The solution delivered will be the exact solution assuming there

is no rounding error. An iterative method involves a series of operational sequences

that repeat until convergence is achieved. As a solution is converged, the error

introduced by lagging parameters in the operational sequence should diminish until

machine precision is reached. Iterative methods are particularly valuable for solving

2



Chapter 1. Introduction

nonlinear problems as well as large linear problems where memory requirements and

computing time render direct methods intractable.

An iterative method may not always be globally convergent, depending on its

formulation and the nature of the problem. The iterative method may even converge

to undesired alternative solutions. This is particularly an issue when solving nonlin-

ear problems. Every iterative method requires an initial starting guess to begin the

process. It is important that these starting guesses be within what is called the ’zone

of attraction’ for the iterative formulation such that a real solution can be converged.

An homotopy approach is a means of dealing with this potential sensitivity to initial

guesses.

1.2 Homotopy Introduction

An homotopy is a continuous transformation between two functions. The use of ho-

motopy continuation methods as mathematical tools were first developed by Poincare’

(1881-1886), Klein (1882-1883), and Bernstein (1910) [2]. Wasserstrom [54] reports

that continuation methods have been fruitful in theoretical proofs of existence and

uniqueness of problems; finding roots of a polynomial; finding solutions to boundary

value problems of nonlinear ordinary differential equations; problems dealing with

identification of parameters; and eigenvalue problems of linear ordinary differential

operators.

Globalized Newton methods are a type of deformation, where the simple system

is a globally convergent iterative scheme that is often linear in convergence rate, and

the complex system is the quadratic convergent Newton method. In these methods,

care must be taken in choosing when/how to switch from the slower, but more stable,

iterative method and into the faster, but less stable, Newton method. However, these

methods are not necessarily homotopic since the transition from the stable iterative

3



Chapter 1. Introduction

solver to the Newton method may not be continuous.

Generally, we are interested in a complex, or difficult to solve, system. A homo-

topy is formed when we postulate a nearby, easier in some sense to solve, system and

then construct a continuous mapping between the two systems. A homotopy may be

developed in a variety of ways. The first distinction to make is whether to deform

the problem based on the available physics, or introduce artificial scaling. These

two approaches are known respectively as natural parameter and artificial parame-

ter continuation. Natural parameter continuation will frequently involve the scaling

of physical constants in the desired system.

A numerical homotopy continuation method traces a solution path (or all solution

paths) from the defined simple system to the desired difficult system. There are

two general approaches to tracing the solution path. Both methods transform the

problem into a system of related problems based upon the homotopy parameter

chosen.

The first method is to simply discretize the path with respect to the chosen

homotopy parameter and solve successively along these discrete points. Tangent

vector information at each step of the homotopy may also be used to formulate

a predictor-corrector scheme. Not using the tangent vector information results in a

naive sequential iteration with an assumed predicted tangent vector of 0.0. Predictor

steps are typically done via Forward Euler with a view to keeping the predicted step

within the domain of attraction for a Newton like method. A Newton like method

is then used to quadratically converge the solution at each step.

The other general path tracing procedure is to formulate the problem in terms

of the arclength of the solution curve and trace the path length directly (as op-

posed to the homotopy parameter). This is called pseudo arc-length continuation

and is typically the standard procedure for numerical homotopy continuation in the

4



Chapter 1. Introduction

Figure 1.1: General Example of Numerical Homotopy Continuation (Wasserstrom,
1973) [54]

mathematical field. This method also makes use of tangent vector information to

establish a predictor-corrector scheme. When using this arclength tracing method,

we must also consider adaptive step length strategies as well as bifurcation point de-

tection/handling. Figure 1.1 shows qualitatively what the procedure might look like

as one incrementally traces the solution curve. At each point the solution from the

previous step is used in projecting an initial guess. Then the problem is minimized

to a tolerance and advanced to the next step. At t = 1 in Fig 1.1 the solution for

the desired difficult problem is converged.

Mathematical considerations of a numerical homotopy formulation are explored

by Allgower and Georg [2]. The existence of the solution path curve and its smooth-

ness are guaranteed by satisfying the implicit function theorem. Allgower and Georg

also mention that suitable boundary conditions at λ = 0 or λ = λ∗ will restrict

the solution path from running off to infinity or looping back to the condition when

λ = 1. These are generally problem dependent and are examined in relation to exis-

5



Chapter 1. Introduction

tence theorems for non-linear equations. A more in depth look at existence theorems

is examined in [2] and will not be discussed further.

The use of continuation techniques in the field of nuclear engineering is limited.

The invariant imbedding method is best thought of as a special case form of continu-

ation method and was developed by Bellman, Kalaba, and Wing [8]. Time stepping

algorithms have also been used to help converge a steady state solution for transport

problems. This is also a type of special case continuation.

Very recently, Martin [38] showed that the Homotopy Perturbation Method (HPM)

[25, 26] can be used to improve convergence of simple 1D slab neutron transport

problems. The HPM is a known homotopy technique for solving nonlinear partial

differential equations that involves a series expansion about the homotopy parameter

(which varies from zero to one) in order to generate a convergent series solution of

differential equations. It is a specialized form of the more general Homotopy Analysis

Method (HAM) [26]. This method is different than what is used in this dissertation

and won’t be elaborated on further.

We investigate using numerical homotopy continuation techniques as a means of

improving convergence of a solution for the difficult nuclear engineering problems

that motivate our research. These problems are: the thick-diffusive neutral particle

transport problem with a fixed internal source and the k-eigenvalue problem with

a high dominance ratio. We are particularly interested with such problems in a

multidimensional setting.

1.3 Motivation

In the nuclear engineering field we are concerned with the linearized Boltzmann equa-

tion for representing radiation fields. This equation is an integro-differential equation

6



Chapter 1. Introduction

that is difficult to solve analytically, except in simplified special case scenarios. A

series of case studies for analytic solutions to the neutron transport equation can be

found in [18].

Instead, numerical methods are employed in order to discretize the continuum

phase space of time, space, angle, and energy. The discretized form of the transport

equation is then solved with iterative methods on a computer. Accuracy, speed, and

stability are typical concerns that we face when deciding which numerical method

to employ for solving our desired radiation transport problem. These issues will be

discussed more in the context of the fixed internal source and k-eigenvalue problems.

1.3.1 Thick-Diffusive Neutral Particle Transport with Fixed

Internal Source

Particle transport problems are difficult to converge in the thick-diffusive limit [1].

This occurs when scattering is dominant and the mean free path of the particle is

very small. This leads to a slow convergence rate when applying an iterative solver

to the transport equation. For a robust transport code to be effective, it must be

able to solve the transport problem in the thick-diffusive limit for complex geometry

and heterogenous materials. This must also be accomplished in an efficient manner.

Many acceleration schemes have been researched in order to speed up conver-

gence of this difficult problem. The most well known method is Diffusion Synthetic

Acceleration (DSA) as first introduced by Kopp [33]. The Diffusion Synthetic Ac-

celeration (DSA) method makes use of a lower order diffusion equation to provide a

correction to the transport sweep iterate. Larsen [34,35] showed through an asymp-

totic limit scheme that the diffusion equation represents the transport equation that

is in the thick-diffusive limit and is indeed an appropriate lower order equation for

the thick-diffusive problem. DSA is a very powerful acceleration method, but has

7
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recently been shown to have some shortcomings. Azmy first showed that DSA is not

unconditionally stable in heterogeneous higher dimensional problems [5–7]. Warsa,

et, al. further examined the degraded effectiveness of DSA when Krylov methods

are used [52].

Another similar acceleration method to DSA is Transport Synthetic Acceleration

(TSA) [1]. This method chooses its lower order equation as the transport problem

with a reduced SN quadrature. Chang and Adams [14] have shown that for highly

heterogeneous problems, the TSA method can become divergent. Other acceleration

methods are the Quasi-Diffusion method as first introduced by Goldin [22], Coarse

Mesh Rebalance [36], and Two-Cycle Acceleration [36] methods. These methods

aren’t implemented in this dissertation and will not be discussed further. We seek to

use homotopy continuation as a means of generating an initial guess for these thick-

diffusive difficult problems such that our numerical solvers have a global improvement

in convergence time.

1.3.2 k-Eigenvalue Problems with High Dominance Ratio

k-eigenvalue problems arise often in reactor design and criticality safety for stored

fissile material. It is an eigenvalue problem that describes the steady state system

of multiplying fissile nuclear material. For time dependent problems, a different

eigenvalue problem known as the ”alpha” eigenvalue problem is employed. We will

not examine such problems in this dissertation.

The standard method in the nuclear engineering industry [16] for solving k-

eigenvalue problems is to use power iteration. Power iteration is a well known nu-

merical iterative method used to converge the dominant eigenmode for an eigenvalue

problem and converges to the largest eigenvalue at a rate determined by the domi-

nance ratio. The dominance ratio is the ratio of the second largest eigenvalue with

8
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respect to the largest eigenvalue for the problem.

The largest, or dominant, k-eigenvalue is also known as the multiplication factor

and is defined as the ratio of the number of particles born in a new generation over

the number of particles born in the previous generation. When the eigenvalue, k, is

less than one, the system is said to be subcritical and is not self-sustaining. When k

is greater than one, the system is said to be supercritical and the neutron population

will rapidly grow. When k is exactly one, the system is said to be critical, or self-

sustaining. For power reactor applications, we generally operate with systems where

the k-eigenvalue is slightly greater than one due to the delayed neutron contribu-

tion. There are also other applications where we are concerned with pulsed prompt

supercritical systems, such as pulsed reactor assembly experiments.

k-eigenvalue problems are difficult to solve when the dominance ratio is close to

1.0 [9]. A high dominance ratio is indicative of neutron multiplication with poor

communication of neutron distribution changes between regions. Such cases occur

often in reactor systems where there are multiple fissioning fuel assemblies with

a moderating material in between, such as water, that causes a high amount of

scattering interactions.

Recently Gill, et, al. [21] have formulated the k-eigenvalue problem in a nonlinear

fashion such that Newton type methods can be utilized to improve convergence speed.

Recasting the problem in this way allows for the eigenvalue to show up anywhere in

the formulation, rather than as a standard or generalized eigenvalue problem. This

has allowed for beneficial operator splitting and utilization of inner iterations to im-

prove convergence for large multigroup problems. However, a nonlinear formulation

of the k-eigenvalue problem is more sensitive to the initial guess.

A study by Chu [15] proved that homotopy paths do not cross for symmetric real

eigenvalue problems with a diagonal matrix chosen as the initial imbedding state.

9
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This guarantees that the dominant eigenmode can be determined via homotopy path

tracing since no bifurcation points are encountered. However, in reality, our matrices

are real non-symmetric where there is no such guarantee [41]. Li and Zeng [37] show

that perturbations in path tracing are necessary to avoid bifurcation. They comment

that round off error from numerically converging the initial imbedding state is usually

sufficient to avoid a bifurcation point. However, undesired ’path jumping’ may occur

during the eigenvalue path tracing.

We seek to use homotopy continuation to robustly provide a stable initial guess

for k-eigenvalue problems with high dominance ratios and whether homotopy con-

tinuation can also be used to improve convergence speed.

1.4 Scope of Document

The remainder of this dissertation is organized in the following way:

II Chapter 2 contains a deeper discussion of homotopy. We develop the theory

behind homotopy continuation in greater detail. We present algorithms for

implementing homotopy continuation in a numerical code and we discuss the

pseudo-arclength formulation and the mathematical considerations apply to the

implementation of the homotopy method. Finally, we give a 1D polynomial

example that utilizes homotopy continuation to solve for the roots of a given

polynomial problem.

III Chapter 3 discusses the neutral particle transport equation model that is used

in this research. We outline the numerical discretization techniques as well as

the various numerical iterative solvers that are applied in this research.

IV Chapter 4 presents the numerical formulation and implementation of the homo-

topy concept with regard to thick-diffusive problems with a fixed internal source.

10
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We develop a natural parameter continuation homotopy called diffusion length

preserving continuation. We also develop two artificial parameter continuations;

a reduced S2 quadrature imbedding and a diffusion imbedding. We test these

homotopy formulations on problems for which diffusion synthetic acceleration

is known to degrade. We compare the effectiveness of each method in terms of

function evaluations and observe where homotopy continuation is useful.

V Chapter 5 presents the numerical formulation and implementation of the homo-

topy concept with regard to k-eigenvalue problems. We present results from a

1D homogeneous slab where we scale the dominance ratio and compare results

for various solution methods. We also present heterogeneous results for low

and high dominance ratio problems. We investigate the usefulness of pseudo-

arclength tracing versus direct parameter tracing with the nonlinear formulation

of the k-eigenvalue problem.

VI Chapter 6 contains the conclusions obtained from this work. We discuss the

benefits of using numerical homotopy continuation for the purpose of improving

convergence of solutions to specific thick-diffusive, fixed internal source prob-

lems. We also discuss the usefulness of numerical homotopy continuation with

regard to k-eigenvalue problems that have high dominance ratios. We suggest a

preferred approach to implementing homotopy continuation in neutral particle

transport codes. Finally, we give suggestions for future work that can be per-

formed in extending understanding and implementation of homotopy methods

in numerical radiation transport.
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Homotopy Continuation

2.1 Overview

An homotopy is a continuous deformation between two functions. Generally, one

is interested in a certain problem, F (x), that is non-trivial to solve. The homotopy

continuation method has one create a neighboring easy–or easier–problem, G(x), and

then trace the solution from G(x) to F (x). This transforms the original problem

into a series of systems by adding an additional rank. This allows us to approach a

problem as an initial value problem. Ideally, this will aid convergence to a solution

for the difficult problem, F (x).

There are multiple ways to formulate a homotopy. The choice of homotopy

parameter(s) is variable, as are the path tracing methods. Path following can be

performed very simply by tracing with respect to the chosen homotopy parameter.

The more generally preferred method in the mathematical field is to implicitly trace

the arc-length of the solution curve.

In this chapter we will outline some of the homotopy formulation possible as well
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as different ways of tracing the solution path. We will further explore the numerical

considerations for implementing homotopy continuation in a code. Finally, we will

present a very simple polynomial root finding problem as an example of homotopy

continuation.

2.1.1 Theory

Consider a system that we wish to converge an answer to

F (x) = 0, (2.1)

where F represents a residual formulation of an equation and is a smooth mapping,

F : Rn → Rn. Generally speaking, F (x) may be a multi-variate system. If the

initial guess, x0, is not well known a priori and the system is difficult to solve (i.e.

is nonlinear), then a homotopy formulation becomes useful for converging a solution

to F (x) in a stable manner. We first construct a similar system, G(x), where the

solution is known, or trivial, to converge

G(x) = 0, (2.2)

where G is also a smooth mapping, G : Rn → Rn. A homotopy is then generally

defined as

H : Rn ×Rm → Rn×m. (2.3)

One or more scaling parameters are embedded to provide the mapping from G to

F . We continue assuming a single parameter, λ. We embed the parameter such that

H(x, 0) = G(x) and H(x, 1) = F (x). The existence of the solution path/curve and

its smoothness are guaranteed by satisfying the implicit function theorem. We can

state the implicit function theorem in terms of our defined quantities in the following

manner:
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Theorem 2.1.1 let H : Rn×R→ Rn be a continuously differentiable function, and

let Rn×R have coordinates (x, λ). Fix a point (a, b) = (a1, . . . , an, b1) with H(a, b) = c

where c ∈ R. If the Jacobian [Jx(a, b)] is invertible, then there exists an open set U

containing a, an open set V containing b, and a unique continuously differentiable

function Z : U → V such that {(Z(λ), λ)|λ ∈ U} = {(x, λ) ∈ U × V |H(x, λ) = c}.

2.1.2 Homotopy Formulation

A homotopy may be developed in a variety of ways. The first distinction to make is

whether to deform the given problem based on the available physics, or introduce an

artificial scaling parameter. These two approaches are known respectively as natural

parameter and artificial parameter continuation.

Natural parameter continuation will frequently involve the scaling of physical con-

stants in the desired system. This scaling will alter the associated physical operators

and forcing functions to the system. An example of such scaling is shown:

H(x, λ) = b (λ)− A (λ)x, (2.4)

with λ ∈ [λ∗, 1] as the natural homotopy parameter. At λ∗ this problem is scaled to an

easily converged system, H(x, λ∗) ≡ G(x, λ∗). At λ = 1, the problem returns to the

original difficult system, H(x, 1) ≡ F (x, 1). The advantage of the natural parameter

formulation is that there is more assurance that the embedded easy problem is in

the neighborhood of the true physical problem. Ideally this means the solution path

is straightforward to trace and has no turning points.

Artificial parameter continuation externally applies an arbitrary parameter to

the chosen simple system, G(x), and the original complex system, F (x). The most

common artificial parameter type is the convex homotopy:

H(x, λ) = (1− λ)G(x) + λF (x), (2.5)
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with λ ∈ [0, 1] as the artificial homotopy parameter. It is not necessary to formulate

G(x) based on any physical parameters from the original system, F (x). This allows

for more freedom in choosing G(x). However, there is a greater responsibility on the

user’s part to verify that the imbedding is a neighbor to F (x). A poor choice of G(x)

may result in the path tracing algorithm degrading or even breaking down.

Another standard formulation is the global homotopy [2] where a manufactured

solution is used to inform the initial system:

H(x, λ) = F (x)− (1− λ)F (x0). (2.6)

This formulation requires F (x) to be evaluated at every step and is unlikely to

help convergence speed. However, possible instabilities from a poor G(x) choice are

avoided by restricting the system to F .

Once a homotopy formulation has been chosen, a path tracing method needs to

be developed. The simplest way of tracing the solution path, is to directly trace along

the homotopy parameter. A more sophisticated technique is to implicitly trace the

arc-length of the solution path in what is known as the pseudo arc-length method.

In either case, it is generally beneficial to formulate some type of predictor-corrector

algorithm that makes use of the tangent vector information (Jacobian in multi-variate

systems).

2.1.3 Homotopy Parameter Path Tracing

Homotopy continuation begins with the imbedded system that has a known solution

or is trivial, or in a sense, easy to solve. Assuming that this solution, x0, is easily

acquired, we project the solution forward along the tangent vector with respect to

the homotopy parameter and solve the homotopy system at the new state. The
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tangent vector may be derived analytically as

∂

∂x
H(x, λ)

∂x

∂s
+

∂

∂λ
H(x, λ)

∂λ

∂s
= 0, (2.7a)

∂

∂x
H(x, λ)

∂x

∂s
= − ∂

∂λ
H(x, λ)

∂λ

∂s
, (2.7b)

∂x

∂s
= −

(
∂

∂x
H(x, λ)

)−1
∂

∂λ
H(x, λ)

∂λ

∂s
, (2.7c)

~t ≡
(
∂x

∂s

)(
∂λ

∂s

)−1
= −

(
∂

∂x
H(x, λ)

)−1
∂

∂λ
H(x, λ). (2.7d)

The predictor step is often performed as a simple forward Euler integration

ωn+1 = xn +

ˆ λn+1

λn

dλ~t(xn, λn), (2.8)

where n is the discrete homotopy point index. The predicted solution is then cor-

rected with some iterative minimization technique with respect to the new homotopy

state, λn+1, using ωn+1 as the initial guess to the iterative solver.

xn+1 = minimize(ωn+1, λn+1). (2.9)

Since the initial guess is ideally near the true solution curve, a Newton type method

is often preferred for a correcting solver. This sequence of steps is repeated until

λN = 1.0. With this approach the user must discretize the homotopy path a priori

when it is not generally known what the optimal number of homotopy intervals (∆λ)

should be.
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Algorithm 1 Direct Continuation Method

Given x0 and H(x, λ)

for n = 0, . . . , N do

λn = n
N

Calculate Tangent ~t(xn, λn) = −H−1x (xn, λn)Hλ(xn, λn)

Predict ωn+1 = xn +
´ λn+1

λn
dλ~t(xn, λn)

Correct for xn+1 by minimizing H(xn+1, λn+1) with initial guess ωn+1

end for

2.1.4 Pseudo-Arclength Continuation

A common homotopy tracing technique is to formulate the problem with respect

to the arclength of the solution path. Tracing with respect to the arclength is ad-

vantageous because it is a natural parameter to the system and should not be as

susceptible to turning point issues like an ill-suited artificial parameter would [2].

It is not necessary to explicitly trace the arclength, but rather to implicitly trace it

using the pseudo-arclength continuation (PSARC) method. We present the basics

of this concept in this section.

We can represent the arc-length as a vector with components equal to our homo-

topy parameter step and our solution parameter step

~s ≡< ∆x,∆λ > . (2.10)

This allows us to represent our homotopy in terms of the arc-length parameter

H(c(~s)) = 0, (2.11)

where c(s) is the solution curve of the homotopy. We can then define our discrete

solution point on the homotopy curve as

cn ≡< xn, λn > , (2.12)
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where n is the homotopy tracing index. We define the tangent of the curve as

~t ≡ ċ(s) =<
∂x

∂s
,
∂λ

∂s
> . (2.13)

From Allgower and George [2] we arrive at the three conditions necessary to uniquely

determine a tangent vector. We restate the Lemma here

Lemma 2.1.2 Let c(s) be the positively oriented solution curve parametrized with

respect to arclength ~s which satisfies c(0) = u0 and H(c(s)) = 0 for ~s in some open

interval J containing zero. Then for all s ∈ J , the tangent, ~t satisfies the following

three conditions:

H ′(c(s))~t = 0, (2.14a)

‖ ~t ‖= 1, (2.14b)

det

H ′(c(s))
~t∗

 > 0. (2.14c)

We now form our problem as an initial value problem (IVP)

dc
ds

= ~t(H ′(c(s))), (2.15a)

c(0) = c0, (2.15b)

where ~t is computed by solving the higher rank system Hx Hλ

(∂x/∂s)∗ (∂λ/∂s)∗


n

∂x/∂s
∂λ/∂s


n

=

0

1

 . (2.16)

We can trace the solution curve by integrating over the arc-length

ωn+1 = cn +

ˆ ξn+1

ξn

dξ~t(H ′(c(ξ)), (2.17)
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where ξ is in the existence of the solution curve c. Finally, we correct to the solution

curve by solving the following higher rank system with a Newton type method

Hx(ωn+1) Hλ(ωn+1)

(∂x/∂s)∗n (∂λ/∂s)∗n

∂x
∂λ


n+1

=

−H(ωn+1)

0

 . (2.18)

The additional rank that corresponds to the homotopy parameter is a constraint

equation that seeks an orthogonal correction step with respect to the tangent vector.

With this IVP, one can trace a solution curve from the imbedding state to the desired

true problem state. We note that the term H ′(c(s)) is the Jacobian of the homotopy

formulation. It is not always efficient, or even possible, to directly calculate this for

large scale scientific problems.

For large scale problems, calculating this tangent vector directly can be unten-

able. Georg recommends using the numerical secant approximation for determining

a tangent vector to the solution curve [19]. The secant tangent vector is determined

as follows

tn+1 :=
cn+1 − cn
‖ cn+1 − cn ‖

. (2.19)

A matrix-free type corrector is also recommended for large scale scientific problems.

In this research, we use the Jacobian-Free Newton Krylov method. This method is

outlined further in section 2.1.5.

A robust numerical implementation of the pseudo arc-length tracing concept gen-

erally involves an adaptive step length algorithm and special point handling. We

implement a basic adaptive step length algorithm from Allgower and Georg’s pa-

per [2] that adapts the step length relative to the contraction rate of the Newton

type method. We define our discrete step length of integration as h. The adaptive
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algorithm to calculate a new step length, h̃, is given as follows

h̃ = h ∗ p̃, (2.20a)

p̃ = max(min(p, 2), 0.5), (2.20b)

p =
√

κ0
κ(c)

, (2.20c)

κ(c) = ‖ε1‖
‖ε0‖ , (2.20d)

where κ represents a contraction rate, κ0 is chosen baseline contraction rate, and ε

is the residual error at the indicated Newton iterate.

There are two types of special points that are important to monitor--turning

points and bifurcation points. A turning point can be detected during the path

length tracing by monitoring when the Schur complement,Υ, is zero for the homotopy

parameter constraint of the Jacobian in Eq. (2.16). For a our general homotopy

formulation, H(x, λ), this takes the following form

Υ =

(
∂λ

∂s

)∗
−
(
∂x

∂s

)∗
H−1x Hλ. (2.21)

If a turning point is detected, the path tracing algorithm perturbs the predicted

values forward with respect to λ in an attempt to ’jump over’ the special point.

Bifurcation points can be detected when there is a sign change of the system deter-

minant

det

 ˙H(c(s))

~t∗

 . (2.22)

If a bifurcation point is detected, the path tracing algorithm perturbs the entire

system and traces this perturbed system for a few steps before returning to the

un-perturbed system. Hopefully this bypasses the bifurcation point. Due to the

computational cost of evaluating for these special points, robust pseudo arc-length

tracing can become untenable for large scale scientific problems.
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Algorithm 2 Pseudo Arc-Length Continuation Method

Given c0 and H(x, λ)

λ0 = 0

~t0 = h

while λ < 1 do

Predict ωn+1 = cn + h~t(cn)

Correct for cn+1 by minimizing

H(ωn+1) + Ḣ(ωn+1)

~t∗

 δc, calculate p̃

if p̃ == 0.5 then

Adapt Step Length h = h ∗ p̃

Break corrector iteration and re-predict

end if

if special point detected then

Perturb system

end if

Calculate Tangent tn+1 = cn+1−cn
‖cn+1−cn‖

Adapt Step Length h = h ∗ p̃

end while

2.1.5 Jacobian-Free Newton Krylov

The well known Newton iteration process [4] is outlined as follows

F (uk) + δukJk ≈ 0, (2.23a)

Jkδuk = −F (uk), (2.23b)

uk+1 = uk + δuk. (2.23c)

Here p is the Newton iteration index and J is the Jacobian matrix. In the JFNK

method [31], we use a Krylov non-stationary iterative solver to solve the linear system
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for the correction step, δu. We also do not explicitly form the Jacobian matrix. We

instead use a finite difference scheme to approximate the action of the Jacobian

operator on δu. A first order finite differencing is given as

Jv ≈ F (u+ εv)− F (u)

ε
. (2.24)

The choice of ε is important. If it is too large, then the approximation to the

Jacobian is too coarse. If ε is too small, machine error can cause instabilities in the

finite differencing. Different schemes exist to calculate an appropriate ε. We present

one such scheme as follows from Knoll and Keyes [31]

ε =
1

N‖v‖2

N∑
i=1

(a|uki |+ a), (2.25)

where v is the Krylov vector, N is the system dimension, upi is the system parameter

at the current iterate, and a is a constant with a magnitude close to the square

root of machine precision. In this dissertation, we simply specify ε to be the inner

tolerance given for the Krylov solver unless it is otherwise noted.

Approximating the action of the Jacobian on a vector requires that two system

vectors be calculated—one for the solution at the current iteration and one for a

perturbed solution at the current iteration. The Newton iteration is continued until

the desired norm of the residual vector is smaller than a specified tolerance. In this

study the L2 norm is used for the purposes of determining the error of the system.

2.2 Polynomial Rootfinding Tutorial

We present a homotopy continuation example using a simple second degree polyno-

mial problem. We begin by establishing our ’hard’ problem that we wish to minimize

(i.e. find the roots)

F (x) = x2 − 3x+ 2. (2.26)
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We know by factoring the problem that there are two real roots at r1 = 2.0 and

r2 = 1.0. However, we will assume for the purpose of this example that we do not

know the solution to this problem. We will construct a polynomial system that we

know the roots for a priori, r̃1 = 3.0 and r̃2 = −1.0,

G(x) = (x− 3)(x+ 1) = x2 − 2x− 3. (2.27)

Now we construct an homotopy using the convex artificial parameter formulation

H(x, λ) = (1− λ)G(x) + λF (x), (2.28)

where λ ∈ [0, 1]. In order to illustrate pseudo-arclength continuation, we show how

the tangent vector for the solution curve is calculated:

∂H(x, λ)

∂x

∂x

∂λ
= −∂H(x, λ)

∂λ
, (2.29)

with the tangent vector defined as ∂x
∂λ

. After performing the necessary derivatives,

we solve for the tangent vector,

∂x

∂λ
=

x− 5

2x− 2− λ
. (2.30)

Clearly, this method will only work if the denominator does not equal zero. If we

were working in a multivariate system, this would require the Jacobian to remain

non-singular over the necessary domains of x and λ.

Now we perform the predictor step with a simple Forward Euler numerical inte-

gration step:

xk+
1
2 = xk + ∆λ

(
∂x

∂λ

)k
, (2.31)

where k is the homotopy interval index such that λk+1−λk = ∆λ. It is assumed here

that the homotopy intervals are uniformly spaced. Now a corrector step is applied.

For this simple problem, we will correct with the Trapezoidal method:

xk+1 = xk +
1

2
∆λ

[(
∂xk

∂λk

)
+

(
∂xk+

1
2

∂λk+1

)]
. (2.32)
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With this answer for xk+1, we repeat the continuation method to predict the solution

at the next step, correct the prediction, and repeat until we arrive at λ = 1. In this

example, each root is individually traced through the homotopy.

Table 2.1: Tabulated results of homotopy continuation with ten homotopy intervals
for the system, F (x) = x2 − 3x+ 2 and G(x) = x2 − 2x− 3.

Interval λ Root 1 Root 2
0 0.0 3.00 -1.00
1 0.1 2.95 -8.48
2 0.2 2.89 -6.92
3 0.3 2.83 -5.30
4 0.4 2.76 -3.62
5 0.5 2.69 -1.86
6 0.6 2.60 −2.99× 10−05

7 0.7 2.50 0.20
8 0.8 2.38 0.42
9 9.0 2.23 0.67
10 10.0 2.00 0.97

Table 2.2: Tabulated results of homotopy continuation using PSARC for the system,
F (x) = x2 − 3x+ 2 and G(x) = x2 − 2x− 3.

Root 1 Root 2
λ x λ x
0.0 3.00 0.0 -1.00
0.089 2.95 2.95 -0.917
0.262 2.85 0.164 -0.749
0.580 2.62 0.373 -0.408
1.0 2.00 0.745 0.297

1.0 1.00

We present results for this simple tutorial problem in Table 2.1 and Figure 2.1

for a direct continuation implementation. Only explicit predictor-corrector methods

were used. It can be seen that the answers are converging to the true roots to the

system, r1 = 2.00 and r2 = 1.00. However, since only ten homotopy intervals were
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Figure 2.1: Plot of homotopy continuation with ten homotopy intervals for the sys-
tem, F (x) = x2 − 3x+ 2 and G(x) = x2 − 2x− 3.
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Figure 2.2: Plot of homotopy continuation using PSARC for the system, F (x) =
x2 − 3x+ 2 and G(x) = x2 − 2x− 3.
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used and only explicit methods were used, there is a slight error with the second root

only reporting as r2 = 0.97.

Table 2.2 and Figure 2.2 show results using the more robust pseudo-arclength

method. We use Newton’s method as a corrector and directly invert the Jacobian

using the LAPACK GESV package [3]. We converge each corrector (Newton) step to

a tolerance of 1.0×10−08. We implement the adaptive steplength algorithm specified

in (2.20). The tracing algorithm has no problem following the solution curves of the

two roots and correctly converges the appropriate solutions for F (x).
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Transport Model

3.1 Overview

In this chapter we present the neutron transport model that concerns this research.

We discuss both the fixed internal source problem and the k-eigenvalue problem.

We first examine the continuous theoretical model and then describe the process of

numerical discretization. Finally, we outline some of the common acceleration and

preconditioning methods used by the transport community to improve convergence.

3.2 Neutral Particle Transport Equation

The radiation transport model of interest is derived from the Boltzmann equation. It

is often referred to as the linearized Boltzmann equation. The steady state, general

27



Chapter 3. Transport Model

geometry transport equation with a fixed internal source can be expressed as

~Ω · ∇ψ(~r, ~Ω, E) + σt(~r, E)ψ(~r, ~Ω, E) = (3.1)
´∞
0

´
4π
dΩ′dE ′σs(~r,Ω

′ → Ω, E ′ → E)ψ(~r,Ω′, E ′) +Q(~r,Ω, E)

,

where the individual components are defined in the following manner

~Ω · ∇ψ(~r, ~Ω, E) ≡ Streaming Losses, (3.2a)

σt(~r, E)ψ(~r, ~Ω, E) ≡ Total Interaction Losses, (3.2b)
´∞
0

´
4π
dΩ′dE ′σs(~r,Ω

′ → Ω, E ′ → E)ψ(~r,Ω′, E ′) ≡ Scattering Source, (3.2c)

Q(~r,Ω, E) ≡ Fixed Internal Source. (3.2d)

The steady state, general geometry k-eigenvalue transport problem can be expressed

as

~Ω · ∇ψ(~r, ~Ω, E) + σt(~r, E)ψ(~r, ~Ω, E) = (3.3)
´∞
0

´
4π
dΩ′dE ′σs(~r,Ω

′ → Ω, E ′ → E)ψ(~r,Ω′, E ′) +

1
k

´∞
0
dE ′ν(E)σf (~r, E

′ → E)
´
4π
dΩ′ψ(~r,Ω′, E ′),

where

ˆ ∞
0

dE ′ν(E)σf (~r, E
′ → E)

ˆ
4π

dΩ′ψ(~r,Ω′, E ′) ≡ Fission Source, (3.4)

and k is the eigenvalue for the system; it represents the ratio of new neutral particles

created in a generation to the number of neutral particles in the previous generation.

Equations (3.1) and (3.3) describe the average angular flux field, ψ(~r,Ω, E), of

neutrally charged particles in the phase space (~r,Ω, E). These equation are rep-

resentative of a linearized Boltzmann Equation for the fixed internal source and

28



Chapter 3. Transport Model

k-eigenvalue problems. There are six dimensions to this equation: three in space,

two in angle, and one in energy. In this dissertation we have neglected the time com-

ponent of the linearized Boltzmann equation because our problems are all steady

state.

We may express the fixed source equation in operator notation as follows

Lψ = MSDψ +Q, (3.5)

and the k-eigenvalue problem in operator notation as

Lψ = MSDψ +
1

k
MFDψ, (3.6)

where L is the transport streaming operator, M is the moment-to-discrete operator,

D is the discrete-to-moment operator, S is the scattering operator, and F is the

fission source distribution operator.

In order to deterministically solve this equation for more general and complex

systems, we discretize the equation over the phase space. The discretized problem

is then solved with an iterative numerical scheme on a computer. We outline our

discretization methods in the following subsections.

3.2.1 Energy Discretization

The energy phase space is discretized using the well known multi-group method [16]

represented in Figure 3.1. Energy space is divided into groups that represent a

range of energy. Angular flux values are then calculated as averages of these groups.

Applying this energy discretization to Equation (3.1) yields the following result for

the fixed source problem

~Ω · ∇ψg(~r, ~Ω) + σtg(~r)ψg(~r, ~Ω) = (3.7)∑G
g′=0

´
4π
dΩ′σsg′→g

(~r,Ω′ → Ω)ψg′(~r,Ω
′) +Qg(~r,Ω),
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and the following for the k-eigenvalue problem

~Ω · ∇ψg(~r, ~Ω) + σtg(~r)ψg(~r, ~Ω) = (3.8)∑G
g′=0

´
4π
dΩ′σsg′→g

(~r,Ω′ → Ω)ψg′(~r,Ω
′) +

1
k

∑G
g′=0 νgσfg′→g

(~r)
´
4π
dΩ′ψg′(~r,Ω

′),

where the subscript, g, is the associated energy group index for the equation and G

represents the maximum number of energy groups chosen. The size of the numerical

problem that must be solved is increased by a factor of G.

Figure 3.1: Multigroup Example Discretization of Continuous Energy Spectrum

The energy group cross sections are defined as flux weighted averages over the

defined energy group. This is given as follows:

σg(~r,Ω) =

´ Eg− 1
2

E
g+1

2

dE ′φ(~r,Ω, E ′)σ(~r,Ω, E ′)

´ Eg− 1
2

E
g+1

2

dE ′φ(~r,Ω, E ′)
. (3.9)

Because we often are trying to solve for φ, the actual flux weighting utilizes spectral or

distribution shape approximations to the true flux, φ. In this research, all group cross

sectional data will be defined explicitly for the problem, or taken from the Nuclear

Data Interface (NDI) database provided by Los Alamos National Laboratory. The

NDI data is averaged according to a Maxwellian distribution.

3.2.2 Angular Discretization

The angular phase space is discretized using the discrete ordinates method [1]. The

unit sphere is divided into discrete ordinates, or directions, with appropriate weights.
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We now represent the scalar flux as a quadrature integration of the angular fluxes

φg(~r) =
N∑
n=1

ωnψg,n(~r). (3.10)

We use Gauss-Legendre quadrature points for our 1D problems and level symmet-

ric [32] quadrature points for our 2D problems. An example of 1D Gauss-Legendre

is represented in Figure 3.2. An example of level symmetric quadrature is shown in

Figure 3.3. Level symmetric quadrature points have the advantage of being rotation-

ally invariant for 90◦, but are disadvantaged by only having one degree of freedom

associated with the arrangement of latitudes.

Figure 3.2: 1D Discrete Ordinate Gauss-Legendre Example

Figure 3.3: 2D Level Symmetric Example [32]

The resulting discretized transport equation, with assumed isotropic angular dis-
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tribution, is written as follows for the fixed source problem

~Ωn · ∇ψg,n(~r) + σtg(~r)ψg,n(~r) = (3.11)

1
4π

∑G
g′=0 σs0g′→g

(~r)
∑N

n=1 ωnψg′,n(~r) + 1
4π
Qg(~r),

and for the k-eigenvalue problem as

~Ωn · ∇ψg,n(~r) + σtg(~r)ψg,n(~r) = (3.12)

1
4π

∑G
g′=0 σs0g′→g

(~r)
∑N

n=1 ωnψg′,n(~r) +

1
4πk

∑G
g′=0 νgσfg′→g

(~r)
∑N

n=1 ωnψg′,n(~r),

where n is the ordinate subscript and ωn is the associated quadrature weight.

3.2.3 Spatial Discretization

Spatial discretization is handled using the linear discontinuous finite element method

applied to structured and unstructured meshes. The linear discontinuous finite ele-

ment method (LDFEM) represents the scalar flux and angular flux in each element

k as a sum of linearly independent basis functions. It also allows for discontinuity at

the volume element boundaries. A 1D example of this is shown in Figure 3.4.

Figure 3.4: 1D Linear Discontinuous Finite Element Method Example
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We will start the description of the LDFEM spatial discretization in a general

spatial coordinate system by writing the SN equations in the form

Ω̂m · ∇ψm + σtψm(~r) = Sm(~r) (3.13)

where Sm(~r) represents the scattering source plus inhomogeneous sources.

The angular flux is first expanded ψm(~r) in a nodal basis on an p–node element

E

ψ̂m(~r) =

p∑
j=1

ψm,jBj(~r), ~r ∈ E\∂E. (3.14)

To introduce the upwind discontinuous approximation, we first define the indexing

function for the kth “face” of an element, ∂Ek,

v(k) = {j | ~rj ∈ ∂Ek}, (3.15)

that is, v(k) is the set of all vertices on ∂Ek. The angular flux on k is upwinded

ψ̃(k)
m (~r) =

∑
v(k)

ψ
B
m,v(k)Bv(k)(~r), ~r ∈ Γ\∂Γ

ψINC
m,v(k)Bv(k)(~r), ~r ∈ ∂Γ

(3.16a)

where

ψB
m,i =

ψm,i, (n̂k · Ω̂m) > 0,

ψm,i(k), (n̂k · Ω̂m) < 0,
(3.16b)

and ψINC
m,i is specified by boundary conditions for the problem domain Γ at vertex i,

to define the discontinuous approximation. The expression i(k) refers to the index

of the vertex in the element sharing face k across from vertex i. With Nf being the

number of faces of an element such that

∂E =
⋃
k=1

∂Ek.
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the weak form of (3.13) is then constructed for each basis function Bi(~r)

Nf∑
k=1

ˆ
∂Ek

(n̂k · Ω̂m)Bi(~r)ψ̃
(k)
m (~r)dA−

ˆ
E

(
Ω̂m · ∇Bi(~r)

)
ψ̂m(~r, Ω̂)dV

+σt(~r)

ˆ
E
Bi(~r)ψ̂m(~r)dV =

ˆ
E
Bi(~r)Ŝm(~r)dV,

(3.17)

where Sm(~r) has been expanded in the same nodal basis as ψm(~r), that is,

Ŝm(~r) =

p∑
j=1

Ŝm,jBj(~r). (3.18)

We can now write the fully discrete equations corresponding to (3.17) for Carteisian

coordinates in matrix form for the vector of angular fluxes Ψm in an element E, and

the angular fluxes on face k, Ψ̃
(k)
m , which may be known from from neighboring cells

sharing face k or from the boundary conditions depending on the upwinding relation

(3.16), and the vector of source coefficients S as follows.

Nf∑
k=1

(
Ω̂m ·N

(k)
)

Ψ̃(k)
m −

(
Ω̂m · L

)
Ψm + σtMΨm = MS. (3.19)

where σt is the total cross section in the element. Note that the bar over N
(k)

and

L is to indicate that they have components in each geometric dimension.

Altogether we can write the (p×p) operators appearing in both (3.19) as follows.

They are given for a given row i and column j, or column v(k) for face k, by

N
(k)

i,v(k) =

ˆ
∂Ek

n̂kBi(~r)Bv(k)(~r)dA, (3.20)

Li,j =

ˆ
E

[∇Bi(~r)]Bj(~r)dV, (3.21)

and

Mi,j =

ˆ
E
Bi(~r)Bj(~r)dV. (3.22)
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The LDFEM spatial discretization is third order accurate for 1D problems and

special cases of higher dimensional problems. LDFEM is more stable in handling

sharp derivatives of the scalar flux because it solves the problem in the weak sense.

A disadvantage with respect to central differencing methods is that the memory

requirement is increased by the number of basis function nodes required for the

specified finite element. Even the simplest 1D bar element requires a doubling in the

number of spatial solution points. In this dissertation, we use a uniform structured

bar mesh for 1D geometry. When we run problems in 2D geometry, we use an

unstructured mesh with either triangle, quadrilateral, or hexagon elements.

3.3 Numerical Solution Methods

Once the transport model has been discretized, the scalar flux (and k-effective for

eigenvalue problems) are computed iteratively. In operator notation, the fixed source

problem is

Lψ = MSDψ +Q, (3.23a)

ψ = L−1MSDψ + L−1Q, (3.23b)

Dψ = DL−1MSDψ +DL−1Q, (3.23c)

φ = DL−1MSφ+DL−1Q, (3.23d)

[I −DL−1MS]φ = DL−1Q, (3.23e)

(3.23f)
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and the k-eigenvalue problem is

Lψ = MSDψ + 1
k
MFDψ, (3.24a)

ψ = L−1MSDψ + 1
k
L−1MFDψ, (3.24b)

Dψ = DL−1MSDψ + 1
k
DL−1MFDψ, (3.24c)

φ = DL−1MSφ+ 1
k
DL−1MFφ, (3.24d)

[I −DL−1MS]φ = 1
k
DL−1MFφ, (3.24e)

where φ = Dψ. For large scale scientific problems, exact inversion would be imprac-

tical. Direct matrix inversion methods, such as Gaussian elimination, are historically

of the order N3 in computation cost (where N is the dimension of the matrix) [50].

Recent research in direct sparse solvers uses hierarchically applied condensation of

internal degrees of freedom for finite element problems to reduce the order of opera-

tions substantially [10]. These newer direct sparse solvers have a setup cost of order

N
3
2 , a memory storage cost of order N log(N) and a solve cost of N log(N).

In this dissertation, we use matrix-free iterative solution methods. Iterative

solvers can reduce the computational cost to as low as order N through proper

preconditioning and taking advantage of matrix sparsity because only the action of

an operator is required. They are also the more widely used solution methods for

computing a solution for the scalar flux from the radiation transport model.

In the following subsections we will outline the iterative methods associated with

the fixed internal source transport problem and the k-eigenvalue problems. The

simplest technique for both problems is the well known linear fixed point iteration,

known in the nuclear engineering community as source iteration [1]. Other popular

methods are Krylov methods [53] and Newton type methods [21,42].
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3.3.1 Fixed Internal Source Problem

This subsection outlines two iterative algorithms used to converge a scalar flux so-

lution to the radiation transport problem with a fixed internal source and no fission

 Lψ = MSDψ +Q. (3.25)

The first is the well known source iteration method. The second method outlines the

use of a Krylov solver to invert the transport operator.

Source Iteration

Source iteration is the most widely known method of computing a scalar flux solution

to the transport equation. It is very simple to implement, but has slow convergence

in the thick-diffusive regime. In thick-diffusive regimes, false convergence becomes a

real issue [1]. Basic source iteration is shown in operator notation as

φk+1 = DL−1MSφk +DL−1Q, (3.26)

where Q is the prescribed fixed internal source and L−1 represents a transport sweep.

A transport sweep works by starting at a known boundary value of the angular flux

and then solving the finite element system of equations in each cell in each discrete

direction Ω until all angular fluxes have been calculated. No direct matrix inversion

is required. This source iteration is guaranteed to converge linearly when the largest

eigenvalue of [DL−1MS] < 1.

Krylov Solver Fixed Point Iteration

An alternative approach is to use a Krylov iterative solver. When used to solve a

linear system of the form Ax = b, an approximate solution is constructed from a
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linear combination of vectors forming the Krylov space [28]

κ(A, c) ≡ span{r0, Ar0, A2r0, . . . , A
N−1r0}, (3.27)

where r0 = b − Ax0. The dimension of the Krylov subspace is equal to the degree

of the minimal polynomial of A [28]. If the minimal polynomial of A is small, then

Krylov methods will quickly converge a solution. Krylov methods are particularly

useful when the matrix A cannot be explicitly represented, or is very expensive to

compute. Instead of requiring an explicit formulation of A, only the action of A

on a vector is required. This can be readily accomplished in computer codes via

functions/methods that represent the action of the operator.

In this dissertation we use restarted GMRES [47] and restarted GCRODR [43]

as our Krylov solvers. GCRODR is a Krylov subspace projection method based on

GMRES that is intended for solving a sequence of related linear systems. By recycling

portions of selected subspaces, GCRODR should be more efficient for our algorithm

than traditional GMRES, because our linear systems are related through a homotopy

parameter λ. Restarted-GCRODR also recycles a portion of the subspaces generated

during the inner iterations between restarts as well, leading to further improvement

in overall efficiency compared to restarted-GMRES.

The convergence rate of both restarted GMRES is related to the minimal poly-

nomial and the eigenvalue clusters of the matrix A. Campbell et. al. [12] show that

the convergence rate is based on the size of the relative radius of the eigenvalue

clusters. In particular, if there is one single dominant cluster of eigenvalues with few

outliers, the convergence factor is the relative radius of the primary cluster. If there

are multiple eigenvalue clusters, then GMRES treats them as a single large cluster

with a convergence factor equal to this compound cluster radius. Eigenvalues near

zero have a large relative radius and are more difficult to converge.

By representing the individual operators from Eqs. (3.23) and (3.24) as matrix-
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vector products, we can formulate the Boltzmann operator [I −DL−1MS] and use

a Krylov solver to invert against the right hand side. An alternative formulation

involves splitting the scattering operator into lower, diagonal, and upper portions

and re-formulating our transport problems in the following way

[I −DL−1MSLD]φ = DL−1M(SU)φ+DL−1Q, (3.28)

and

[I −DL−1MSLD]φ = DL−1M(SU)φ+
1

k
DL−1MFφ, (3.29)

where the up-scattering component is lagged in the iteration. Eq. (3.29) is traditional

power iteration in the nuclear engineering community. We can also move everything

to the right hand side and lag all scattering contribution

φ = DL−1MSφ+
1

k
DL−1MFφ. (3.30)

This is called the flattened formulation [21] and is the default formulation for k-

eigenvalue problems in the Capsaicin code project developed at Los Alamos National

Laboratory.

A Krylov iterative solution can be accelerated through the use of preconditioning.

This is accomplished by choosing an operator, M , that is an approximation to A.

Then we invert it against both sides of the linear system

M−1Ax = M−1b, (3.31)

with the goal that M−1A ≈ I. The previously mentioned acceleration methods for

source iteration can be recast as operators and applied with these types of solvers.

3.4 k-Eigenvalue Formulation

A k-eigenvalue problem is a steady state radiation transport problem where there is

a self multiplying material present and no fixed internal source. We represent this
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eigenvalue problem in operator notation as

Aφ =
1

k
Bφ, (3.32)

where B represents the composite fission source operator with moment-to-discrete

(M) and discrete-to moment (D) already incorporated, and A is all the other physics

(diffusion, scattering, etc.). A typical k-eigenvalue search algorithm involves first

guessing an initial eigenpair, (φ0, k0). Then the eigenvector for the nth iterate is

converged in the following way

φn+1 =
1

kn
A−1Bφn. (3.33)

Once a scalar flux is converged, the k-eigenvalue is updated commonly using the

fission rate update

kn+1 = kn
´
d3rFφn+1´
d3rFφn

, (3.34)

where F is the fission operator from Eq. (3.4).

The eigenpair is iterated on until a prescribed convergence criteria is met. This

is known in the nuclear engineering community as inverse power iteration. The

iteration is slow to converge when the dominance ratio of the problem is close to 1.0.

The dominance ratio, σ is defined as:

σ =
‖k2‖
‖k1‖

, (3.35)

where ‖k2‖ and ‖k1‖ are the two greatest eigenvalues for the k-eigenvalue problem and

‖k1‖ ≥ ‖k2‖. There are a variety of methods used to accelerate convergence of the

k-eigenvalue problem when a high dominance ratio is present, including the Wieland

shift method [46], Chebyshev acceleration [45], nonlinear krylov acceleration [11], and

a nonlinear method developed by Park et. al. [42] that combines nonlinear diffusion

acceleration [30,48] and nonlinear criticality acceleration [20,29].
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3.4.1 Newton Method

Recently the Newton-Raphson method has been used to solve the k-eigenvalue prob-

lem as a fully coupled nonlinear problem [21, 42]. We define the k-eigenvalue trans-

port residual as

R(φ, k) = φ− P (k)φ. (3.36)

The coupled system is represented as

Ξ(φ, k) =

R(φ, k)

κ(φ, k)

 , (3.37)

where P (k) is the chosen operator formulation for the k-eigenvalue transport model.

In this dissertation we use the flattened formulation, P (k) = [DL−1MS+ 1
k
DL−1MF ].

Various constraint equation are discussed by Gill et. al. [21]. We choose the con-

straint equation κ(φ, k) to be the the fission rate update from Equation (3.34)

κ(φ, k) = k − kE
TFP (k)φ

ETFφ
, (3.38)

where ET is a vector of ones to represent the integral over the volume domain on

our discretized mesh. The Jacobian for this problem is

J =

Rφ(φ, k) Rk(φ, k)

κφ(φ, k) κk(φ, k)

 , (3.39)

where

Rφ(φ, k) = I − P (k), (3.40a)

Rk(φ, k) = − 1
k2
DL−1MFφ, (3.40b)

κφ(φ, k) = (ETFφ)(ETFP (k))−(ETFP (k)φ)(ETF )
(ETF )2

, (3.40c)

κk(φ, k) = 1− ETFDL−1MSφ
ETFφ

. (3.40d)
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The Newton algorithm begins by choosing an initial guess, (φ0, k0), and inverting

the Jacobian matrix against the residual to compute a step correctionRφ(φi, ki) Rk(φ
i, ki)

κφ(φi, ki) κk(φ
i, ki)

δφi
δki

 = −

R(φi, ki) = φ− P (ki)φi

κ(φi, ki)

 , (3.41)

where the index, i, is the Newton iteration index. The solution is updated in the

Newton iteration

φi+1 = φi + δφi, (3.42a)

ki+1 = ki + δki, (3.42b)

and is continued until the L2-norm of Ξ(φi+1, ki+1) is less than the prescribed tol-

erance for the problem. For practical large scale scientific problems it is untenable

to compute and store the Jacobian matrix (3.39) explicitly. Instead we use the

Jacobian-Free Newton Krylov method as outlined in Section 2.1.5.
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Homotopy in Thick-Diffusive

Fixed Source Problems

4.1 Overview

In this section we show the derivation of the Diffusion Length Preserving Continu-

ation (DLPC) and show how the respective natural parameter homotopy algorithm

is constructed. The method is an inverted asymptotic scaling from that derived by

Larsen [34, 35] and is similar to the stretch-filtered Transport Synthetic Accleration

in Hanshaw, et, al. [23, 24]. In this dissertation, the DLPC method is applied to

problems that are thick-diffusive. We also detail how to construct artificial homo-

topy formulations using diffusion and S2 isotropic imbeddings. These imbeddings

are revisited in the k-eigenvalue problems of chapter 5. All problems are simulated

through the Capsaicin code project developed at Los Alamos National Laboratory.
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4.2 Diffusion Length Preserving Continuation

We begin our homotopy derivation by stating the definition of the diffusion length

L ≡
√

(D/σa), (4.1)

where D is the diffusion coefficient. The diffusion coefficient is defined as

D = [3(σt − µ̄0σs)]
−1, (4.2)

where µ̄0 is the average cosine of the scattering angle in a neutron collision and σ

represents the total and scattering cross sectional data. In a thick-diffusive regime,

we can assume a largely isotropic scattering distribution such that

D = [3(σt]
−1. (4.3)

This approximation loses accuracy near sharp heterogenous material boundaries. In

a thick-diffusive regime, our diffusion length becomes

L =

√
1

3σtσa
. (4.4)

We now introducing our asymptotic scaling parameter, η, and scale our cross

sectional data and internal source in the following manner

σ̃t = ησt, (4.5)

σ̃a = σa
η

, (4.6)

Q̃ = Q
η

, (4.7)

where σ denotes the cross sectional data and Q is the internal source. We scale the

total group scattering cross section as

σ̃s = σ̃t − σ̃a. (4.8)
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For multi-group problems, the group-to-group scattering cross sections are scaled

respective to the original ratios of the total group scattering cross section

σ̃sg′→g
= σsg′→g

σ̃tg − σ̃ag
σtg − σag

. (4.9)

We construct our homotopy mapping as a natural parameter continuation where

the natural parameters being scaled are the cross sectional data. Our initial state

is chosen to be a scaled purely absorbing problem. The corresponding η for this is

η∗ =
√
σaσt
σt

. This homotopy formulation preserves the thick-diffusive diffusion length

throughout the entire deformation.

We define our Diffusion Length Preserving Continuation (DLPC) as a natural

parameter homotopy of the following form

H(φ, η) = A(η)φ− b(η), (4.10)

where η ∈ [η∗, 1], A(η) ≡ [I −DL−1η MSη], and b(η) ≡ DL−1η MQη. When η = η∗ the

problem is purely absorbing and can be solved without iteration, requiring only a

single transport sweep. When η = 1 we recover the original difficult (thick-diffusive)

problem. We show a 1D numerical DLPC mapping using MATLAB in figure 4.1.

The mapping is smooth, except on the boundaries where the diffusion length is no

longer preserved.

Typically, one will use the uncollided flux as the initial guess for the iterative

solution process. We label our ”reference solution” as that which uses the uncollided

flux as the initial guess and does not utilize homotopy. In this chapter, we measure

effectiveness of our homotopy methods in terms of the total number of global function

evaluations. Unless otherwise specified, all homotopy formulations are direct tracings

with respect to the homotopy parameter. We also use the numerical secant predictor

from Eq. (2.19) in all problems unless otherwise specified. The DLPC homotopy

algorithm is given in Algorithm 3.
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Figure 4.1: DLPC 1D Slab Mapping for 2-group problem

Algorithm 3 Diffusion Length Preserving Continuation

Given φ0 and H(φ, η(t))

for n = 0, . . . , N do

tn = n
N

ηn(t) = (1− tn)η∗ + tn

Deform Data: [σ(η), Q(η)]

Scale Tolerance: Tol = (1− t4)(Itol) + t4(Ftol)

Correct: minimize H(φn) with initial guess φ0

Calculate Tangent: ~t = φn−φn−1

ηn−ηn−1

Predict: φ̃n = φn + ∆ηn~t

φ0 = φ̃n

end for

4.3 Artificial Parameter Continuation

We also construct an artificial homotopy parameter formulation. The generalized

expression of the artificial parameter homotopy is given as

H(x, λ) = (1− λ)G(φ) + λF (φ), (4.11)46
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where λ ∈ [0, 1] and F (φ) is our original thick-diffusive problem. We present two

imbeddings for G, a diffusion and an S2 coherent isotropic approximation of our

original problem, F . The specific algorithm for this artificial parameter formulation

is presented in Algorithm 4.

Algorithm 4 Artificial Parameter Homotopy Continuation

Given φ0, G(φ), and F (φ)

for n = 0, . . . , N do

λn = n
N

Scale Tolerance: Tol = (1− λ4n)(Itol) + λ4n(Ftol)

Correct: minimize H(φn) = (1− λn)G(φn) + λnF (φn) with initial guess φ0

Calculate Tangent: ~t = φn−φn−1

λn−λn−1

Predict: φ̃n = φn + ∆λn~t

φ0 = φ̃n

end for

4.3.1 Diffusion Imbedding

In our diffusion imbedding, we solve the steady state multi-group diffusion equation

for the given problem specifications. This diffusion equation is expressed as

G(φ) = −∇·Dg(~r)∇φg(~r) +σtg(~r)φg(~r)−
G∑

g′=1

σsg′→g
(~r)φg′(~r) +Qg(~r) = 0, (4.12)

where Dg is our multi-group diffusion coefficient. Extra interpolation and ex-

trapolation steps need to be performed when passing the scalar flux between the

diffusion imbedding and the LDFE transport problem. This is due to the diffusion

solution being solved on the cell average rather than at the LDFE corner nodes. An

example figure showing the different solution locations is given in Figure 4.2. The

diffusion imbedding presents an added complexity to computational cost because the
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Figure 4.2: Example of Diffusion [×] vs. Transport [•] Solution Locations

diffusion operator needs to be inverted with a Krylov solver. Because we desire a

trivial problem solution, we restrict our Krylov tolerance to 1.0E-02 when inverting

the diffusion operator. For all instances of the diffusion imbedding, we use GMRES

as our Krylov solver.

4.3.2 S2 Coherent Isotropic

We construct a reduced quadrature formulation for our transport problem where we

use an S2 quadrature. We also extract the coherent isotropic scattering data from the

full problem and use only the within group scattering contribution for our reduced

quadrature problem. This leads to a scattering matrix that is diagonal. We call this

the S2-Coherent Isotropic imbedding where the embedded problem is

G(φ) = LS2ψ −MS̃Dψ +Q = 0, (4.13)

where LS2 represents our transport operator with the associated discrete ordinates

for S2 and S̃ represents the coherent isotropic scattering matrix. In our results, we

often denote this imbedding as S2-Coherent.
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4.4 Results for 1D-Slab Problems

The first problem we examine is a non-dimensionalized 1D-slab with one energy

group. We examine both a homogeneous and heterogeneous case. The homogeneous

case uses only material 1 (thick material). The heterogeneous case inserts a portion

of material 2 (thin material) from x = 0.4 to x = 0.6.

Figure 4.3: Scalar Flux Results for 1D Slab Problem using Homotopy Continuation

The solution profiles for these problems are shown in Fig. 4.6. We give the

numerical problem specifications in Table 4.1. In all our numerical problems we

utilize the linear discontinuous finite element method (LDFE). Because the problem

is non-dimensional, the thickness of the slab is determined by the length, the material

density, and the scattering ratio. The scattering ratio, c, is defined as c = σs/σt.

The problem is solved both without preconditioning and with diffusion synthetic

acceleration (DSA) preconditioning using three different homotopy formulations:

DLPC, S2-Coherent, and Diffusion. The results are shown in figure 4.5. The DSA
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version we use only operates within the respective energy groups and doesn’t couple

the whole spectrum together. Our reference cases uses the uncollided flux as the

initial guess for the Krylov solver. We set the initial tolerance to be looser than the

desired final tolerance. The tolerance is scaled as the continuation progresses in the

following way

tol(t) = (1− t4)(tol0) + t4(tolf ), (4.14)

where tol0 is the prescribed initial tolerance and tolf is the desired final tolerance.

This is plotted in Figure 4.4 with respect to η for a problem with a scattering ratio

of 1.0 at t = 1.0.

Figure 4.4: Tolerance Path Mappings

We use direct homotopy parameter tracing where we a priori discretize our so-

lution path into intervals respective to the homotopy parameter. In the DLPC

formulation, η is discretized uniformly from η = η∗ to η = 1.0. The artificial pa-

rameter construction is discretized uniformly with respect to λ, where we begin with
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λ = 0 and end with λ = 1. Throughout this dissertation we will refer to a homotopy

interval. We define a homotopy interval as the interval between discretized points of

λ. Thus, one homotopy interval corresponds to using homotopy continuation simply

as an alternative initial guess.

We observe that homotopy continuation results in a slight reduction in iteration

count for the un-preconditioned solution. However, DSA is far more effective for

improving convergence. Even coupling DSA and DLPC together does not yield

better results than DSA on its own. DLPC performs better as a homotopy for

the heterogeneous problem while S2-Coherent and diffusion perform better for the

homogeneous case.

Table 4.1: 1D-Slab Geometric and Angular Discretization for Fixed Source Problem

Parameter Value

Length 1.0
Cells 1000
Nodes 1001
Regions 1
Boundaries Vacuum
Spatial Discretization LDFEM
Quadrature Gauss-Legendre S8

Table 4.2: 1D-Slab Numerical Solver Parameters for Fixed Source Problem

Parameter Value

Solver GCRODR Belos
Restart 30
Max Iterations 10000
Final Tolerance 1.0× 10−8

Initial Tolerance 1.0× 10−2

Predictor SECANT
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Table 4.3: 1D-Slab Material Data for Fixed Source Problem

Parameter Material 1 Material 2

σt 1.0 1.0
c 0.99999 0.5
ρ 1.0× 105 1.0× 102

Q 1.0× 105 1.0× 102
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Figure 4.5: Function Evaluation Results for 1D-Homogeneous Slab Problem using
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4.4.1 Results for 2-Group 2D Problem

We investigate a 2D heterogeneous problem as depicted in Figure 4.7. We use two

energy groups and two different materials. On material is defined at the center of

the problem and the other is defined in the surrounding box. We define our thickest

material to be the surrounding box and our thinner material to be the central portion.

Function evaluation results are reported for the DLPC homotopy method with and

without DSA preconditioning. We also show results for the S2-Coherent Isotropic

and Diffusion artificial homotopy formulations.

The random cross section data is generated using the algorithm by Rosa, et,

al. [44] to achieve a high scattering ratio. The resulting cross sections are given

in Table 4.4. The spatial discretization is an unstructured hexagonal linear discon-

tinuous finite element mesh. The problem is solved in parallel with 48 processors

using the Moonlight cluster at Los Alamos National Laboratory. Once again, the

problem is non-dimensionalized and we measure effectiveness in terms of functional

evaluations.

Table 4.4: Cross Section Data for 2D-Heterogeneous Fixed Source Problem

Parameter Material 1 Material 2

Group 1 velocity 2.2× 105 2.2× 105

Group 2 velocity 4.7× 108 4.7× 108

Group 1 Energy Bin 0.0-2.4 [MeV] 0.0-2.4 [MeV]
Group 2 Energy Bin 2.4-17.0 [MeV] 2.4-17.0 [MeV]
σt1 1.5454 1.3766992
σt2 4.5468× 10−1 6.433007× 10−1

σs1→1 6.1789× 10−1 8.65153× 10−1

σs1→2 9.2747× 10−1 4.979156× 10−1

σs2→1 3.8211× 10−1 1.34847× 10−1

σs2→2 7.2534× 10−2 5.020844× 10−1

ρ 1.0× 105 1.0× 102
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Table 4.5: Geometric Parameters for 2D-Heterogeneous Fixed Source Problem

Parameter Value

Side Lengths 1.0
Cells 2529
Nodes 4864
Regions 2
Boundaries Vacuum
Spatial Discretization Unstructured Hexagon LDFEM
Quadrature Level Symmetric S8

In Figure 4.8 we distribute a fixed internal source of Q1 = 1.0 × 105 uniformly

throughout the outer material (green) and a fixed internal source of Q2 = 1.0× 102

uniformly throughout the central material (purple). While this is a problem where

DSA is not helping, neither are any of the homotopy formulations. The best results

were achieved when solving without DSA and without any homotopy application.

In Figure 4.9 we switch the internal source distribution such that the outer material

Figure 4.7: Problem Geometry for 2D Heterogeneous Problems
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Table 4.6: Numerical Solver Parameters for 2D-Heterogeneous Fixed Source Problem

Parameter Value

Solver GCRODR Belos
Restart 30
Max Iterations 10000
Final Tolerance 1.0× 10−8

Initial Tolerance 1.0× 10−1

Predictor SECANT
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Figure 4.8: Convergence Results for Internal Sources of Q1=1.0× 105 and Q2=1.0× 102

internal source is Q1 = 1.0 × 102 and the inner material internal source is Q2 =

1.0 × 105. We observe that DSA again degrades for this problem specification, but

now homotopy continuation is improving convergence speed by a slight amount.

Using only one homotopy interval, which can be viewed simply as an initial guess,

the S2-Coherent Isotropic and DLPC homotopy formulations converge slightly faster

than the reference case. DLPC with and without DSA continues to be effective even

for 32 homotopy intervals. T In Figure 4.10 we fix both internal sources for the two
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Figure 4.9: Convergence Results for Internal Sources of Q1=1.0× 102 and Q2=1.0× 105

materials to be uniformly distributed Q1 = Q2 = 1.0 × 105. Once more we see the

degraded effectiveness of DSA. As with Figure 4.8, the homotopy formulations do

not provide any gain in convergence speed beyond the reference case.

Homotopy continuation appears to be beneficial for problems that have a strong

internal source in thin regions and a weaker internal source in thick regions. A

practical physical case where this occurs is when simulating the thermal flux of a

reactor core. Most of the thermal neutrons are in the water moderator, which is thin

with respect to the fuel elements. Of the three homotopy formulations, the diffusion

imbedding performed the worst. It rapidly degraded in effectiveness as the number

of homotopy intervals increased. This is likely due to compounding error from the

rough inversion of the diffusion operator that is being performed at each step in the

homotopy deformation.
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Figure 4.10: Convergence Results for Internal Sources of Q1=1.0× 105 and Q2=1.0× 105

4.4.2 Results for 30-Group 2D Problem

We now examine a thirty energy group problem using our same 2D geometry. We

generate the scattering data using the same algorithm from Rosa, et, al. [44], keep-

ing the same degree of difficulty, but increasing the number of energy groups over

which to generate the data. We compute the solution in parallel on the moonlight

computing cluster at Los Alamos National Laboratory with 54 processors. All of our

other numerical parameters remain the same as in Table 4.6.

We first examine the problem configuration where the density of the outer (green)

material of Figure 4.7 has a density of 1.0 × 105 and the internal material (purple)

has a density of 1.0 × 102. We assign a fixed internal source of 1.0 × 105 to the

outer material and an internal source of 1.0× 102 to the internal material. We again

measure effectiveness in terms of functional evaluations. The numerical results for

this problem are in Figure 4.11. We observe that the DLPC and Diffusion formulation
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Figure 4.11: Convergence Results for Internal Sources of Q1=1.0× 105 and Q2=1.0× 102

provide no benefit over the reference case. The S2-Coherent Isotropic imbedding

provides a slight benefit over the reference case, but degrades as the number of

homotopy intervals increases.

We next examine the problem configuration where the density of the outer mate-

rial and inner material are unchanged. We change the outer fixed internal source to

1.0×102 and the internal fixed internal source to 1.0×105. The numerical results for

this problem are in Figure 4.12. We observe that the DLPC formulation essentially

provides no benefit over the reference case. However, both the S2-Coherent Isotropic

and Diffusion imbeddings exhibit usefulness, particularly for low numbers of homo-

topy intervals. The S2-Coherent Isotropic imbedding improves the convergence speed

by about 7% when using 2-16 homotopy intervals. This is not a large improvement,

but it is better than using DSA preconditioning. All homotopy formulations appear

to degrade as the number of homotopy intervals increases.
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Chapter 5

k-Eigenvalue Problem

5.1 Overview

In this chapter we develop the homotopy formulations that we use for the k-eigenvalue

problem. We examine a one dimensional slab problem with a high dominance ratio

as well as two dimensional problems that are more representative of nuclear fuel

elements using a thirty-group structure. We investigate whether homotopy contin-

uation can improve convergence speed of these problems as well as provide a stable

initial guess for problems where a high dominance ratio is present. Lastly, we im-

plement pseudo-arclength continuation for the one dimensional slab problem with a

high dominance ratio. We particularly investigate where problem instabilities may

arise for the preferred imbedding (ABLOCK).
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5.2 Homotopy Formulations

We construct all of our homotopy formulations for the k-eigenvalue problem using an

artificial parameter to scale from an imbedded easier problem to the difficult/complex

original problem

H(φ, k, λ) = (1− λ)G(φ, k) + λF (φ, k), (5.1)

where λ ∈ [0, 1], G(φ, k) is our imbedded system, and F (φ, k) is our original sys-

tem. We formulate three different imbeddings for G(φ, k): ABLOCK, S2-Coherent

Isotropic, and diffusion. The algorithm for our implementation of this homotopy

formulation is given in Algorithm 5.

Algorithm 5 Artificial Parameter Homotopy Continuation

Given (φ0, k0), G(φ, k), and F (φ, k)

for n = 0, . . . , N do

λn = n
N

Scale Tolerance: Tol = (1− λ4n)(Itol) + λ4n(Ftol)

Correct: minimize H(φn, kn) = (1−λn)G(φn, kn)+λnF (φn, kn) with initial guess

(φ0, k0)

Calculate Tangent: ~tn = (φn,kn)−(φn−1,kn−1)
λn−λn−1

Predict: φ̃n = φn + ∆λn~tn

φ0 = φ̃n

end for

5.2.1 ABLOCK

Carstensen et. al. [13] recommend a symmetric real initial imbedding matrix even

for nonsymmetric real eigenvalue problems. A symmetric real matrix that is in the

neighborhood of the original system should help keep the eigenpaths from crossing.
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If we represent the k-eigenvalue problem very simply in operator notation as

Aφ =
1

k
Bφ, (5.2)

then we seek an imbedding where the operator A is nearly diagonal (and symmet-

ric) for easy inversion. The operator, A, is representative of the following physical

operators for our problem

A = I −DL−1MS. (5.3)

We formulate a block-diagonal operator for A by decoupling the system with respect

to all elements of the phase space. The only coupling that we keep is the internal

nodal coupling of the spatial finite element space. We will call this imbedding,

ABLOCK, due to the block-diagonal nature of the given matrix, A.

Because this is an imbedding that is mathematically inspired, there is a concern

that the non-physical nature of the imbedding could result in a disjointed path tracing

(singularities and turning points). We numerically model the solution in Figure 5.1

for the 1D slab problem from section 5.3 to show that the path tracing is generally

smooth and continuous, except near the very beginning of the tracing. Figures 5.2

and 5.3 show that the pathing may experience jumping issues when using a loose

initial tolerance (1e-3); although, if it is extremely loose (1e-1) then the path jumping

seems to disappear.

5.2.2 S2-Coherent Isotropic

Just as is in Chapter 4, we create a reduced quadrature formulation for our k-

eigenvalue problem where we use an S2 quadrature. We also extract the coherent

isotropic scattering data from the full problem and use only the within group scat-

tering contribution for our reduced quadrature problem. This leads to a scattering

matrix that is diagonal. We do not alter the fission distribution matrix.
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Figure 5.1: ABLOCK Mapping for Initial Tolerance = 1× 10−6

We again call this the S2-Coherent Isotropic imbedding where the embedded

problem that represents G is

G(φ, k) = φ− [DL−1S2
MS̃ +

1

k
DL−1S2

MF ]φ = 0, (5.4)

where LS2 represents our transport operator with the associated discrete ordinates

for S2 and S̃ represents the coherent isotropic scattering matrix. In our results, we

Figure 5.2: ABLOCK Mapping for Initial Tolerance = 1× 10−3
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Figure 5.3: ABLOCK Mapping for Initial Tolerance = 1× 10−1

will again denote this imbedding as S2-Coherent.

5.2.3 Diffusion

In our diffusion imbedding, we solve the steady state multi-group k-eigenvalue diffu-

sion equation for the given problem specifications. This equation is expressed as

G(φ, k) = −∇ ·Dg(~r)∇φg(~r) + σtg(~r)φg(~r)− (5.5)∑G
g′=1 σsg′→g

(~r)φg′(~r) + 1
k
χg
∑G

g′=1 ν
′
gσfg′φ

′
g(~r) = 0,

where Dg is our multi-group diffusion coefficient, χg is the distribution fraction of

fission neutrons into the energy group, νg is the average number of neutrons emitted

per fission of the material, and σfg′ is the probability of a fission occurring in group

g′.

Just as in the thick-diffusive problem, extra interpolation and extrapolation steps

need to be performed when passing the scalar flux between the diffusion imbedding

and the LDFEM transport. We again restrict our Krylov tolerance to 1.0E-02 when
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inverting the diffusion operator within each function evaluation to keep the com-

putational cost small with respect to the transport sweep. For all instances of the

diffusion imbedding, we use GMRES as our Krylov solver.

5.3 Iteration Results for 1D - 2 Group Problem

In this section we examine the iteration results for the k-eigenvalue problem with

2 energy groups. We first look at a manufactured problem that was first presented

in [21]. This is a one dimensional homogeneous slab problem that has been artificially

scaled such that the dominance ratio is very large. We will examine the case when

the dominance ratio factor (drf) is 32, which corresponds to a dominance ratio of

0.9989.

We apply three numerical solvers to the problem, a fixed point iteration (FPI)

without any acceleration, fixed point iteration with nonlinear krylov acceleration

(NKA), and unpreconditioned Jacobian-Free Newton Krylov (JFNK). The Krylov

solver for JFNK is restarted GCRODR Belos with restart 30. We use a structured

bar element for our finite element method. Further geometric specifications for the

problem are listed in Table 5.1 and cross section data is specified in Table 5.3.

5.3.1 Convergence Acceleration

We first examine the effectiveness of using homotopy continuation to improve con-

vergence for our various numerical solvers (FPI, NKA, JFNK). We use the JFNK

solver from the NOX Trilinos package supported by Sandia National LAboratory.

We use two different JFNK-NOX solvers with different forcing function specifica-

tions. NOX0 uses the internal Krylov solver tolerance as the ε for the Jacobian-Free

approximation. NOX1 uses the packages adaptive procedure for the forcing term
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flag set to 1.

We measure effectiveness of the method in terms of function evaluations from

G(φ, k) and F (φ, k) because most of the computational effort is performed in the

transport sweep operation (L−1). Except for the diffusion imbedding, both G and F

perform one transport sweep per function evaluation. For each function In each case,

we show what the reference number of function evaluations would cost if given the

initial guess for the k-eigenvalue (k0) that is associated with the chosen imbedding.

The k-eigenvalue that we are converging to is 3.1606739.

Table 5.1: 1D-Slab Geometric and Angular Discretization for k-Eigenvalue Problem

Parameter Value

Length 769.632 [cm]
Cells 256
Nodes 512
Regions 1
Boundaries Vacuum
Spatial Discretization LDFEM
Quadrature Gauss-Legendre S8

Table 5.2: 1D-Slab Numerical Solver Parameters for k-Eigenvalue Problem

Parameter Value

Krylov Solver GCRODR Belos, restart 30
Max Iterations 1000
Final Tolerance 1.0e-8
Initial Tolerance 1.0e-2
Predictor SECANT

In Figure 5.4 we observe that homotopy continuation helps standardize the num-

ber of function evaluations for the fixed point iteration to be on the lower end of

what is achievable for various initial guesses for k0. This occurs when many homo-

topy intervals are used. The diffusion imbedding appears to be the most reliable and
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Table 5.3: Cross Section Data for 1D-Slab k-Eigenvalue Problem

Parameter Group (g=1) Group (g=2)

Energy Bins 2.4-17.0 [MeV] 0.0-2.4 [MeV]

σtg 2.16× 10−1[cm−1] 3.456× 10−1[cm−1]
σs1→g 7.824× 10−2[cm−1] 3.60× 10−2[cm−1]
σs2→g 7.20× 10−2[cm−1] 2.6304× 10−1[cm−1]
σfg 1.67× 10−1[cm−1] 1.728× 10−1[cm−1]
χg 0.575 0.425

ρ 1.0[g/cm3]
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Figure 5.4: 1D Slab Results with FPI

performs better than the ABLOCK and S2-Coherent Isotropic imbeddings. This is

not surprising since the problem is a homogeneous slab.

In Figure 5.5 we observe that homotopy continuation sometimes improves con-

vergence rate for NKA, but not according to any systematic pattern. It appears that

all imbeddings perform well for 8 homotopy intervals. The best use of homotopy in

this problem occurs when using S2-Coherent Isotropic with one homotopy interval.
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Figure 5.5: 1D Slab Results with NKA
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Figure 5.6: 1D Slab Results with JFNK-NOX0
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Figure 5.7: 1D Slab Results with JFNK-NOX1

In Figures 5.6 and 5.7 we observe that homotopy continuation generally not

improving convergence speed. The best performance is with the diffusion imbedding,

but it is not much different than any of the reference cases. We note that the NOX0

solver (fixed ε) does not converge the correct eigenmode for the S2-Coherent Isotropic

case when 32 homotopy intervals are used.

5.3.2 Robustness of Newton Type Formulation

We next examine the use of homotopy continuation for the purpose of providing a

stable initial guess for the Newton type formulation of the k-eigenvalue problem.

We run the problem using the built in JFNK solver for capsaicin with initial guesses

ranging from 0.1 to 4.0 in increments of 0.1. The dominant eigenvalue is 3.1606739. In

our reference case without homotopy continuation we observe in Table 5.4 that there

are four initial guesses for k-eff that converge to a wrong (non-dominant) eigenvalue.
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Table 5.4: Failed Initial Guesses for Reference Case

k0 Converged Eigenvalue

2.4 3.1514721
3.0 3.1514721
3.1 3.1514721
3.2 3.1514721

Table 5.5: Failed Initial Guesses with S2-Coherent Isotropic over 1 Homotopy Interval

k0 Converged Eigenvalue
1.6 —
2.5 3.1332529
3.3 3.1514721
3.4 3.1514721
3.5 —
3.6 —

These correspond to the second eigenmode of the problem.

We first formulate our homotopy with an initial tolerance equal to the final tol-

erance, 1e-08. We run the simulation with only one homotopy interval. This corre-

sponds to an alternative initial guess. We observed that the ABLOCK imbedding

converged to the correct eigenvalue for every initial guess of k0. The S2-Coherent

Isotropic and diffusion imbeddings did not always converge to the correct eigenvalue.

We show the tabulated data for these failed initial guesses in Tables 5.5 and 5.6. The

”−” in the tables indicates that the simulation diverged.

We next formulate a homotopy path with 32 intervals and an initial tolerance of

1e-2 that is scaled as shown in Eq. (4.14). We again observe that the ABLOCK

imbedding converges to the correct eigenvalue for every initial guess. The S2-

Coherent Isotropic and diffusion imbeddings continue to converge to the wrong eigen-

value, and even diverge. The failed initial guesses for these imbeddings are show in

Tables 5.7 and 5.8.
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Table 5.6: Failed Initial Guesses with Diffusion over 1 Homotopy Interval

k0 Converged Eigenvalue
3.7 3.1332529

Table 5.7: Failed Initial Guesses with S2-Coherent Isotropic over 32 Homotopy In-
tervals

k0 Converged Eigenvalue
0.2 —
1.6 —

Table 5.8: Failed Initial Guesses with Diffusion over 32 Homotopy Intervals

k0 Converged Eigenvalue
3.0 3.1514721
3.1 3.1514721
3.2 3.1514721
3.3 —
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5.4 Iteration Results for 2D - 30 Group Problems

In this section we investigate the use of homotopy continuation applied in two di-

mensional geometry with multiple materials. We use a multigroup energy structure

that is thirty energy groups large. The material data is provided by the Nuclear

Data Interface (NDI) database supported by Los Alamos National Laboratory. We

first examine a problem that has cruciform geometry with materials representative

of highly enriched uranium and light water. The second problem is a 2D slab forma-

tion composed of the same materials, but artificially thickened to achieve a higher

dominance ratio.

5.4.1 Cruciform Uranium-Water Problem

We use highly enriched uranium (93.71% U235) as one of our materials and water

as our second material. We specify a temperature of 4.0× 10−4 [MeV]. We build our

geometry such that the uranium is distributed in a cruciform manner, with water

filling the corner regions. This is visually depicted in Figure 5.8. We simulate the

problem with and without anisotropic scattering. The first set of results correspond

to isotropic scattering. The second set of results correspond to a P3 scattering cross

section expansion for anisotropic moments. Further geometric and numerical speci-

fications for the problem are given in Tables 5.9 and 5.10. The problems dimensions

are aligned with the data provided by NDI (centimeters, grams, seconds).

This is a hard problem in the sense that it is computationally intensive due to the

large number of energy groups. With thirty energy groups, there is up-scatter present

in the thermal range. We are interested in whether homotopy continuation can

provide a benefit for such difficult problems regardless of whether a high dominance

ratio is present.
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Table 5.9: Geometric and Angular Discretization for 2D-Heterogeneous Cruciform Eigen-
value Problem

Parameter Value

Side Lengths 12 [cm]
Cells 900
Regions 2
Boundaries Vacuum
Spatial Discretization Structured Box LDFEM
Quadrature Gauss-Legendre S8

Table 5.10: Numerical Solver Parameters for 2D-Heterogeneous Cruciform Eigenvalue
Problem

Parameter Value

Krylov Solver GCRODR Belos, restart 30
Max Iterations 1000
Final Tolerance 1.0× 10−8

Initial Tolerance 1.0× 10−2

Predictor SECANT

We observe in Figure 5.9 that homotopy continuation provides marginal benefit

for the fixed point iteration solution method with no cross section expansion. The

benefits are only for 1 or 2 homotopy intervals. All imbeddings degrade in effective-

ness as the number of homotopy intervals increases. The best results were observed

with the diffusion imbedding.

In Figures 5.10 and 5.11 we observe that no homotopy formulation provides

any improvement in convergence compared to the reference cases. Although, in the

JFNK-NOX1 case the reference solution corresponding to the ABLOCK imbedding,

k0 = 0.0382, did not converge to the correct eigenmode. The ABLOCK imbedding

did not converge the correct eigenmode when 2 and 4 intervals were used. This

suggests that stability of the nonlinear solver is an issue, but that ABLOCK is not

the best choice for this type of problem.
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Figure 5.8: Problem Geometry for 2D-Heterogeneous Cruciform K-Eigenvalue Problem

In Figures 5.12, 5.13, and 5.14 we show that our homotopy continuation formu-

lations provide essentially no benefit towards improving convergence speed in the

problems where we specify a P3 scattering cross section expansion.
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Figure 5.9: Results for 2D-30G Cruciform Problem using FPI and Cross Section expansion
order 0
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Figure 5.10: Results for 2D-30G Cruciform Problem using NKA
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Figure 5.11: Results for 2D-30G Cruciform Problem using JFNK-NOX1
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Figure 5.12: Results for 2D-30G Cruciform Problem using FPI and Cross Section expan-
sion order 3
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Figure 5.13: Results for 2D-30G Cruciform Problem using NKA and Cross Section ex-
pansion order 3
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Figure 5.14: Results for 2D-30G Cruciform Problem using JFNK-NOX1 and Cross Section
expansion order 3

78



Chapter 5. k-Eigenvalue Problem

5.4.2 2D-Slab Problem

We now examine a second two dimensional spatial problem that has been artificially

scaled to achieve a higher dominance ratio. We use the same materials as in the

previous 2D problem, but scale the densities of the Uranium and Water materials by

a factor of 1000. We also increase the number of cells to 3879 for greater resolution.

Figure 5.15 shows the geometry for the problem. We prescribe reflecting boundary

conditions on the top and bottom boundaries.

We examine using homotopy continuation with three typical numerical solvers:

fixed point iteration (FPI), FPI with nonlinear krylov acceleration (NKA), and un-

preconditioned Jacobian-Free Newton Krylov (JFNK). We again use the Trilinos

NOX package as our JFNK solver. We measure effectiveness in terms of function

evaluations required to converge the dominant eigenmode. We apply our three imbed-

dings (ABLOCK, S2-Coherent Isotropic, and Diffusion) with varying resolution in

the number of homotopy intervals in the path tracing. The results for this problem

are shown in Figures 5.16, 5.17, and 5.18. The diffusion imbedding results are not

shown because it diverged with the FPI solver and stagnated with the NKA and

JFNK solvers.

We observe that homotopy continuation using the ABLOCK and S2-Coherent

imbeddings provides convergence improvement with the FPI solver, but not NKA

and JFNK. The method improves with the resolution of the path tracing when using

FPI, but the opposite is true when using NKA and JFNK. Because this effectiveness

with the FPI solver was observed in the 1D-slab problem (with a high dominance

ratio) but not in the previous 2D-cruciform problem (without high dominance ratio),

we conclude that homotopy continuation is useful for problems with a high dominance

ratio that use FPI as a solver.
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Figure 5.15: Geometry for 2D Thick Slab K-Eigenvalue Problem
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Figure 5.16: K-Eigenvalue FPI Results for 2D Slab K-Eigenvalue Problem

80



Chapter 5. k-Eigenvalue Problem

1 2 4 8 16 32
Homotopy Intervals

200

250

300

350

400

450

500

F
u

n
ct

io
n

 E
v

al
u

at
io

n
s

ABLOCK
S2-COHERENT
Reference (k0=1.088)

Global Function Evaluations vs. Homotopy Intervals
NKA 2D-30G High DR

Figure 5.17: K-Eigenvalue NKA Results for 2D Slab K-Eigenvalue Problem

1 2 4 8 16 32
Homotopy Intervals

300

400

500

600

700

800

900

1000

F
u

n
ct

io
n

 E
v

al
u

at
io

n
s

ABLOCK
S2-COHERENT
Reference (k0=1.088)

Global Function Evaluations vs. Homotopy Intervals
JFNK-NOX1 2D-30G High DR

Figure 5.18: K-Eigenvalue JFNK-NOX1 Results for 2D Slab K-Eigenvalue Problem
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5.5 Pseudo-Arclength Tracing

We implement the pseudo-arclength continuation (PSARC) algorithm in MATLAB

for the 1D-slab problem with a dominance ratio of 0.6397 (DRF1) and 0.9989 (DRF32) [21].

We investigate whether PSARC provides more stability and requires fewer transport

sweeps than the direct continuation method. We solve the k-eigenvalue neutral parti-

cle transport problem with both an unpreconditioned Jacobian-Free Newton Krylov

implementation and an analytic Newton Method implementation. A plot of the

eigenvalue spectrum for the problem is given in Figure 5.19

5.5.1 Tracing Derivation and Parameters

We use the convex artificial homotopy parameter formulation. Our nonlinear residual

with the added rank for the PSARC formulation is

Ξ(φ, k, λ) =


(1− λ)(φ− P̃ (k)φ) + λ(φ− P (k)φ)

k − kE
TF [(1−λ)P̃ (k)+λP (k)]φ

ETFφ

t∗δu

 = 0, (5.6)

where ˜P (k) represents the initial imbedding physics, t is the calculated tangent vector

at the current step, and δu is the step correction to the solution vector during the

Newton iteration. This additional rank to the residual is a constraint that requires

the step correction to be normal to the tangent vector. The Jacobian for this problem

is calculated directly as follows for the analytic Newton Method

J =


J11 J12 J13

J12 J22 J23

J13 J32 J33

 , (5.7)

where the individual elements are defined as

J11 = I − [1− λ) ˜P (k) + λP (k)], (5.8)
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J12 = (1− λ)(
1

k2
D̃L̃−1M̃F̃φ) + λ(

1

k2
DL−1MFφ); (5.9)

J13 = P (k)φ− P̃ (k)φ, (5.10)

J21 = −k (ETFφ)(ETF [(1−λ)P̃ (k)+λP (k)]
ETFφ)(ETFφ)

(5.11)

− (ETF (1−λ)P̃ (k)+λP (k)φ)(ETF )
ETFφ)(ETFφ)

J22 = 1.0− ETF [(1− λ)(D̃L̃−1M̃S̃ ∗ φ+ λDL−1MSφ]

ETFφ
(5.12)

J23 = k
ETF

[
P̃ (k)φ− P (k)φ

]
ETFφ

(5.13)

J31 =

(
∂φ

∂s

)T
(5.14)

J32 =
∂k

∂s
(5.15)

J33 =
∂λ

∂s
(5.16)

We use two different predictor steps, the numerical secant and the exact Jacobian

inversion. We use the numerical secant method when using JFNK as our corrector.

We use the exact Jacobian inversion when we use the direct Newton method (NM)

as our corrector. We seek to show the differences between an analytic direct tracing

and the matrix-free tracing methods.

We use the adaptive step length algorithm from Eqs. (2.20a)-(2.20d). We set

κ0 = 0.25 as our reference contraction rate for the Newton iteration. We initially

specify h = 0.1.

We check for special points after the predictor step, but before entering the cor-

rector step. We monitor for turning points by calculating the Schur complement for
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Figure 5.19: Eigenvalue Spectrum for DRF=32 1D-Slab Problem

the corner element of the system Jacobian that corresponds to the change in λ. The

Schur complement for λ is calculated as

J31
(
J∗31J33 − J∗31J31J−111 J13

)
J31
(
J∗31J32 − J∗31J31J−111 J12

) − J21
(
J∗21J23 − J∗21J21J−111 J13

)
J21
(
J∗21J22 − J∗21J21J−111 J12

) . (5.17)

When this scalar value evaluates to nearly zero, we know that a turning point is

being approached. We monitor for bifurcation points by observing when the sign of

the determinant of the system Jacobian changes. When a special point is detected,

we perturb our predicted values by integrating an additional step length along the

solution curve in order to try and jump over the problem area.

We also monitor for turning points in the Newton iteration. If a turning point is

detected, we break out of the Newton iteration and perturb our predictor vector by
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Table 5.11: PSARC Geometric and Angular Discretization

Parameter Value

Length 769.632
Cells 256
Nodes 512
Regions 1
Boundaries Vacuum
Spatial Discretization LDFEM
Quadrature Gauss-Legendre S8

Table 5.12: PSARC Numerical Solver Parameters

Parameter JFNK Values NM Values

Inner Solver GMRES Belos, restart 30 LU Gaussian Elimination
Max Outer Iterations 1000 1000
Final Tolerance 1.0× 10−8 1.0× 10−8

Initial Tolerance 1.0× 10−2 1.0× 10−2

Predictor SECANT EXACT

artificially incrementing λ forward to jump over the special point. The geometric and

numerical parameter specifications for the problem are given in Tables 5.11 and 5.12.

We prescribe a maximum number of homotopy steps of 1000 for each simulation. We

end the tracing by flagging when the corrector step corrects to a state where λ > 1.

We then fix λ = 1 and correct for the end state problem. The algorithm for this

method is given in Algorithm 6.
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Algorithm 6 Pseudo Arc-Length Continuation for k-Eigenvalue Problem
Given c0 = (φ0, k0, λ0), G(φ, k), and F (φ, k)

λ0 = 0

~t0 = h

while λ < 1 AND iterations < max iterations do

Calculate Tangent:

 Hx Hλ

(∂x/∂s)∗ (∂λ/∂s)∗


n

∂x/∂s
∂λ/∂s


n

=

0

1


Predict: ωn+1 = cn + h~t(cn)

Correct: converge cn+1 by minimizing

H(ωn+1) + Ḣ(ωn+1)

~t∗

 δc

In Corrector: calculate p̃

if p̃ == 0.5 then

Adapt Step Length h = h ∗ p̃

Break corrector iteration and re-predict

end if

if special point then

Perturb ωn+1 and re-predict

end if

Adapt Step Length h = h ∗ p̃

end while

5.5.2 Low Dominance Ratio Problem

First we investigate the problem with a low dominance ratio of 0.6397 where the

largest eigenvalue is 2.5237. We trace the paths corresponding to four different

initial guesses (k0 = 0.5, 1.5, 2.5, 3.5). Figure 5.20 shows the path tracing for the

ABLOCK imbedding using the JFNK corrector with a numerical secant predictor.

All of the paths lead to the dominant eigenvalue of 2.5237, although the path that

corresponds to k0 = 2.5 initially corrects to a slight negative λ state before moving

positive along the path.
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Figure 5.20: DRF 1: PSARC with JFNK and ABLOCK imbedding
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Figure 5.21: DRF 1: PSARC with NM and ABLOCK imbedding

87



Chapter 5. k-Eigenvalue Problem

−0.75 −0.5 −0.25 0 0.25 0.5 0.75 1
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

Homotopy Parameter Lambda

K
−

E
ig

e
n

v
a
lu

e

K−Eigenvalue vs. Homotopy Parameter Lambda

 

 

k0 = 0.5

k0 = 1.5

k0 = 2.5

k0 = 3.5

Figure 5.22: DRF 1: PSARC with JFNK and S2 imbedding
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Figure 5.23: DRF 1: PSARC with NM and S2 imbedding
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Figure 5.21 shows the path tracing for the ABLOCK imbedding using the NM

corrector and exact Jacobian inversion for the predictor step calculation of a tangent

vector. All initial guesses except k0 = 3.5 immediately correct to a λ > 1 state and

trigger the ending condition flag. The k0 = 3.5 path initially corrects to a strongly

negative λ state before jumping back to the end state. This seems to indicate that

there may be a mirror attraction zone in the nonphysical negative λ space. All initial

guesses lead to the dominant eigenvalue.

In Figures 5.22 and 5.23 we observe the path tracing for the S2-Coherent Isotropic

imbedding using JFNK and NM respectively. Once again, the JFNK tracing appears

to be generally well conditioned, excepting the initial negative domain excursions for

k0 = 2.5 and k0 = 3.5. The NM method with the S2-Coherent Isotropic imbedding

exhibits actual path tracing, though a bit erratic. The k0 = 1.5 and k0 = 3.5

paths trigger the adaptive step length to trace very tightly while the other two paths

both suffer negative domain excursions and what appears to be a jump to a lower

eigenvalue path. The k0 = 2.5 path diverges instead of correcting to any eigenvalue.

The tabulated data for the low dominance ratio problem is given in Tables 5.13 and

5.14.

Table 5.13: DRF1 Tabulated Results for PSARC with ABLOCK Imbedding

JFNK-SECANT NM-EXACT

k0 Transport Sweeps k-eff Transport Sweeps k-eff

0.5 3136 2.5237 736 2.5237
1.5 4720 2.5237 832 2.5237
2.5 5632 2.5237 1040 NaN
3.5 2288 2.5237 1200 2.5237
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Table 5.14: DRF1 Tabulated Results for Direct Tracing with S2-Coherent Imbedding

JFNK-SECANT NM-EXACT

k0 Transport Sweeps k-eff Transport Sweeps k-eff

0.5 2272 2.5237 880 2.5237
1.5 2032 2.5237 22272 2.5237
2.5 2496 2.5237 3632 2.5237
3.5 2288 2.5237 27040 2.5237
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Figure 5.24: DRF 32: PSARC with JFNK and ABLOCK imbedding

5.5.3 High Dominance Ratio Problem

We next examine the problem with a high dominance ratio of 0.9989 where the largest

eigenvalue is 3.16067. Figure 5.24 shows the path tracing for the JFNK corrector

with the ABLOCK imbedding. We observe a change in the sign of the determinant of

the system Jacobian at λ = 0.2 where the path bifurcates along different eigenvalue

paths. Both the k0 = 0.5 and k0 = 1.5 paths trace to the dominant eigenvalue while

the other two trace to much lower eigenvalues.
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Figure 5.25: DRF 32: PSARC with NM and ABLOCK imbedding
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Figure 5.26: DRF 32: PSARC with JFNK and S2 imbedding
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Figure 5.27: DRF 32: PSARC with NM and S2 imbedding

In Figure 5.25 we observe the path tracing using the NM corrector with the

ABLOCK imbedding. Similar to the lower dominance ratio problem, three of the

paths immediately trigger the λ > 1 flag and are forced to correct to the solution

at λ = 1. Unlike the lower dominance ratio problem, only the path that actually is

traced through intermediate steps is able to converge to the dominant eigenvalue.

In Figures 5.26 and 5.27 we observe the path tracing for the S2-Coherent Isotropic

imbedding in the high dominance ratio problem. We again observe a similar bifur-

cation point around 0.2 with the JFNK corrector, but only the path corresponding

to k0 = 2.5 bifurcates to a lower eigenvalue. The NM corrector triggers the adap-

tive step length to adapt to very small values, just as in the lower dominance ratio

problem. Similarly, many steps are taken before the paths jump to lower eigenvalue

paths. Only the path corresponding to k0 = 2.5 traces to the dominant eigenvalue

with the NM corrector. The tabulated data for the high dominance ratio problem is

given in Tables 5.15 and 5.16.
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Table 5.15: DRF 32: Tabulated Results for PSARC with ABLOCK Imbedding

JFNK-SECANT NM-EXACT

k0 Transport Sweeps k-eff Transport Sweeps k-eff

0.5 33744 3.16067 704 2.66184
1.5 35040 3.16067 800 3.13325
2.5 61264 1.09929 352 1.55817
3.5 47616 1.60829 672 2.01930

Table 5.16: DRF 32: Tabulated Results for PSARC with S2-Coherent Imbedding

JFNK-SECANT NM-EXACT

k0 Transport Sweeps k-eff Transport Sweeps k-eff

0.5 35408 3.16067 704 2.97960
1.5 14720 3.15147 640 2.79981
2.5 121968 1.09929 1232 3.16067
3.5 25888 3.16067 672 2.44339

We observe that the unpreconditioned JFNK corrector is generally more stable

than the unpreconditioned Newton Method. We monitored the condition number

of the Jacobian throughout the tracing and observed that the condition number

was often quite large. This seems to indicate that preconditioning of the system is

required for robust path tracing. The approximation error of the JFNK method acts

as perturbation that helps in avoiding correcting directly onto a special point.

5.5.4 Direct Parameter Tracing Comparison

We compare using the pseudo-arclength tracing method against a direct homotopy

parameter tracing with the high dominance ratio problem (DRF32). We simulate the

direct parameter tracing with our MATLAB code to be consistent with the PSARC

results and use all the same numerical parameters as specified previously. We use

both the ABLOCK and S2-Coherent Isotropic imbeddings for the problem. We fix
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the number of homotopy intervals to be 8 uniformly distributed sections along the

solution path.

We observe that the JFNK corrector with the direct parameter tracing method is

more reliable in converging the dominant eigenvalue. The NM corrector also exhibits

improved stability, but still has some paths converge to lower eigenvalues at λ = 1.

We observe again that unpreconditioned JFNK is generally more stable of a corrector

than the direct unpreconditioned Newton Method.

The number of sweeps required to converge the answer is not much different than

what is required with the PSARC method. This leads us to conclude that the direct

parameter tracing method is preferable to the PSARC method for neutral particle

transport problems.

Table 5.17: Tabulated Results for Direct Tracing with ABLOCK Imbedding

JFNK-SECANT NM-EXACT

k0 Transport Sweeps k-eff Transport Sweeps k-eff

0.5 24944 3.16067 1280 3.16067
1.5 32384 3.16067 1280 3.16067
2.5 32256 3.16067 1280 3.13325
3.5 24944 3.16067 1280 3.16067

Table 5.18: Tabulated Results for Direct Tracing with S2-Coherent Imbedding

JFNK-SECANT NM-EXACT

k0 Transport Sweeps k-eff Transport Sweeps k-eff

0.5 35584 3.160674 1280 2.370071
1.5 25216 3.160674 1280 3.133254
2.5 22192 3.160674 1280 3.151472
3.5 22096 3.160674 1280 3.160674
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5.5.5 Eigenvalue Sensitivity

We consider that the instabilities observed at λ = 0 may be due to eigenvalue

sensitivity issues. Eigenvalue perturbation sensitivity has been well developed by

Stewart [49]. Stewart explains that an ill-disposed eigenvalue is ill-conditioned and

may spread that ill-conditioning to the other eigenvalues of the system.

Given our generalized eigenvalue problem

kφ = A−1Bφ, (5.18)

we are interested in how a perturbation in the matrix [A−1B] affects the k-eigenvalues.

From Moler [39], roundoff error can be thought of as a perturbation in the matrix

[A−1B]. Because we begin our tracing algorithm with a very loose tolerance at

λ = 0, we check the eigenvalue condition numbers for our imbedding, G(φ, k, λ).

The imbedding corresponds to an altered eigenvalue problem, [Ã−1B̃]

We calculate the eigenvalue condition numbers using the condeig(A) function

from MATLAB. The condeig(A) function returns a vector of condition numbers (β)

corresponding to the eigenvalues of the matrix A. Large condition numbers magnify

the perturbation error from [A−1B] in solving for the associated k-eigenvalue.

Table 5.19 shows the maximum calculated eigenvalue condition numbers associ-

ated with the ABLOCK, S2-Coherent Isotropic, and the original reference problem

[A−1B]. We observe that the ABLOCK imbedding has extremely ill-conditioned

eigenvalues. This may explain why the analytic Newton Method struggled to con-

verge the initial solution at λ = 0. While the S2-Coherent Isotropic imbedding does

not have such ill-conditioned eigenvalues, they are more sensitive than the original

reference system. Sensitive eigenvalues are not ideal for an imbedding choice, but

the results suggest that the issues with the pseudo-arclength tracing may be more

related to the sensitivity of the problem than the homotopy algorithm itself.
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Table 5.19: Maximum Eigenvalue Condition Number

H(φ, k, λ) max(β)
ABLOCK 4.593× 1011

S2 4.525× 102

Original 1.662× 102
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Conclusions and Future

Development

6.1 Thick-Diffusive Problem Conclusions

We find that homotopy continuation provided some benefit for specific thick-diffusive

problems. While convergence improvement was observed in the 1D geometric cases,

the benefits were not sufficient to warrant implementation when compared with the

power of diffusion synthetic acceleration (DSA). However, in the 2D geometric cases,

we find that homotopy continuation improves convergence in problems where a large

internal source is located in the thin materials of a heterogeneous problem. These

are problems where DSA provides little or no benefit in accelerating convergence.

Physically, these situations might represent the simulation of the thermal neutron

flux in a reactor (where most neutrons are located in the moderator instead of the

fuel elements).

Of the different imbeddings that we applied, we found that the S2-Coherent

Isotropic imbedding performed well where homotopy continuation is useful. The
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diffusion length preserving continuation formulation performed well when the number

of energy groups was low (one or two), but degraded when the number of energy

groups increased to thirty. This might be due to the non-asymptotic preserving

nature of the group-to-group scattering cross sections.

6.2 k-Eigenvalue Problem Conclusions

We examined the use of homotopy continuation applied to the k-eigenvalue prob-

lem of radiation transport. We investigated both the direct and pseudo-arclength

continuation methods to determine whether homotopy continuation would improve

convergence. We measured improvement in reduced function evaluation count as

well as stability in converging the dominant eigenmode of the nonlinear formulation

of the k-eigenvalue problem.

We found that homotopy continuation exhibited usefulness in improving conver-

gence speed with a fixed point iterative solver for problems with a high dominance

ratio–both in the 1D and 2D geometric cases. This requires many homotopy intervals

to bring the number of iterations down to the floor of what is achievable with a great

initial guess.

Between the three different imbeddings, we found that the ABLOCK imbedding

provided the most stability. In particular, we found that the ABLOCK imbedding

improved stability of the JFNK nonlinear formulation of the k-eigenvalue problem in

the 1D spatial geometry problem. We were able to converge the dominant eigenmode

of the problem for each initial guess. This is an improvement over the reference case

where four initial guesses failed.

The diffusion imbedding is very accurate for the 1D geometric problems with high

dominance ratios, but degrades when higher spatial dimensional problems are used.
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The S2-Coherent Isotropic imbedding was most useful in the 30-group 2D spatial

geometry problem where a high dominance ratio is not present.

6.3 Pseudo-Arclength Continuation

We find that pseudo-arclength continuation has limited use in high dominance ratio

problems. Both the ABLOCK and S2-Coherent Isotropic imbeddings experience

severe instabilities early on in the path tracing. Unlike the direct parameter tracing,

there is little guarantee that the correct eigenmode will be converged with pseudo-

arclength continuation.

The JFNK corrector formulation is preferable to the direct Newton method. Not

only is a Jacobian matrix expensive and sometimes impossible to compute explicitly

for large scale scientific problems, but the approximation error of the JFNK method

helps provide a suitable perturbation to avoid special points. However, when the so-

lution paths very near one another (as is the case in a high dominance ratio problem)

the path tracing can bifurcate due to jumping onto the neighboring solution curves.

We find that pseudo-arclength continuation generally requires more functional

evaluations than the direct continuation formulations of the same problem. Pseudo-

arclength continuation experienced more instability in the path tracing than the di-

rect homotopy tracing, even with implementation of special point handling. However,

preliminary eigenvalue sensitivity analysis indicates that the issue is likely caused by

the imbedding eigenvalue sensitivity instead of the pseudo-arclength implementation.

The implementation of pseudo-arclength continuation is much more complex than

that of direct parameter tracing. Because of the advantages of direct parameter

tracing versus pseudo-arclength continuation, we recommend that direct parameter

tracing be used for large scale neutral particle transport problems.
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6.4 Future Development

The idea behind homotopy continuation is useful, even if the implementation of the

concept in this dissertation only yielded positive results for specific problems. As a

means of providing a better initial guess, homotopy continuation is able to be coupled

readily with existing solvers and acceleration/preconditioning methods.

Future work with homotopy continuation might involve adaptive physics based

preconditioning throughout solution curve tracing. We did not apply any matrix

preconditioning with the nonlinear k-eigenvalue problem formulation. Future devel-

opment of the pseudo-arclength continuation algorithm might require careful precon-

ditioning to help damp the numerical instabilities observed in the correcting step.

According to the literature, homotopy continuation is generally best applied to

highly nonlinear problems. While we have applied homotopy continuation to the

nonlinear formulation of the k-eigenvalue problem, a more highly nonlinear problem

might be suitable. Future development would include applying the homotopy contin-

uation concept to multi-physics problems that are highly nonlinear–such as photon

transport with matter coupling.

In this research we restricted ourselves to the real plane where we have applied

the pseudo-arclength tracing algorithm. Future development of tracing algorithms

could allow for tracing into the complex plane. This might allow for the method to

circumvent special points that occur in the real domain.

We took a very experimental approach to measuring the usefulness of homotopy

continuation in the problems examined. Future development of the method would

benefit greatly from rigorous mathematical analysis to guide development of imbed-

dings and path tracing, such as that touched on with our preliminary eigenvalue

sensitivity analysis.
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