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ABSTRACT 

This project investigates the synthesis of a class of compounds derived from a marine-based 

natural product and probes how iterative changes to its structure affect its derivatives’ biological 

efficacy. The compound class of interest are the motuporamines which were isolated from the sea 

sponge Xestospongia exigua collected off the coast of Motupore island in Papua, New Guinea.1 

The compounds for this project are predicated upon dihydromotuporamine C (Motu33), the 

compound that has been shown to be both cytotoxic to MDA-MB231 breast carcinoma cells and 

has antimetastatic efficacy.1 The motuporamine scaffold contains a large fifteen-membered 

saturated macrocycle and an appended polyamine component. A series of Motu33 derivatives were 

synthesized and evaluated for their ability to target the polyamine transport system as well as 

inhibit cell migration of human pancreatic cancer cells in vitro. By altering the polyamine 

component of the system we attempted to build smart antimetastatic compounds which target the 

upregulated polyamine transport system of human pancreatic cancers and block their migration. 
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I. INTRODUCTION 

Increased metabolism in rapidly dividing cancer cells necessitates a requirement for increased 

nutrients and metabolic fuels, including polyamines. Polyamines are low molecular weight 

aliphatic amines that are positively charged at physiological pH (Figure 1, Structures 1-3). In some 

cases polyamines act similarly to inorganic cations (e.g., magnesium (II) ion) and stabilize the 

negative charges present in DNA and RNA. Unlike inorganic cations, they can be biosynthesized 

and their biosynthesis is tightly-controlled and regulated to maintain charge balance and 

homeostasis. They are crucial for chromatin condensation, the replication of DNA, synthesis of 

RNA, cell cycle regulation, and in the translation of mRNA into protein.2 Perhaps the best example 

of how polyamines are used to facilitate growth is the fact that an aminobutyl fragment of 

spermidine is annealed to eIF-5A precursor protein to form a critical hypusine residue. Only this 

hypusinylated form of eIF-5A is functional , thus illustrating a key role for polyamines in mRNA 

and protein synthesis.3  

 

Figure 1. Native Polyamines: putrescine 1, spermidine 2, and spermine 3 

It has been previously established that an increase in intracellular polyamine content is 

concomitant with the initiation of cancer and maintained throughout the development of the cancer 

cell.4 The concentration of polyamines  in cells is under multifaceted biochemical control via 

regulation of key enzymes in the biosynthetic pathway, the polyamine transport pathway, or by a 
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combination of both pathways as shown in Figure 2.4 The polyamine transport system (PTS) is an 

important system in the development and progression of metastatic cancers, as it provides a means 

to scavenge polyamine metabolites from outside the cell. This polyamine addiction by certain 

cancers can be utilized to selectively target cancer cells over healthy cells.5  

 

Figure 2. Interplay between polyamine metabolism and transport6 

 

As the polyamine transport system has wide structural tolerance of its ligands, it can be leveraged 

to deliver polyamine vectors tethered to anti-metastatic and cytotoxic agents. Assessment of ideal 

polyamine vectors for the PTS is established through a CHO/CHO-MG screen. Chinese Hamster 

Ovary cells (CHO-K1 cell line, ATCC) have a highly active PTS while the CHO-MG mutant cell 

line does not have an active polyamine transport system and relies solely on biosynthesis for 

polyamine levels through ornithine decarboxylase (ODC) as shown in Figure 2.6 CHO-MG was 

derived from CHO cells via random alkylation and was selected for its resistance to a known toxic 



3 
 

PTS ligand (methylglyoxal bisguanyl hydrazine, MGBG).7 and displays no 3H-spermidine uptake 

in radiolabeled polyamine uptake experiments.8 

The macrocycles for this project are inspired by the motuporamine architecture. The 

motuporamines contain two key structural elements: a large macrocycle and an appended 

polyamine component (Figure 2, Structures 4-7,). In 1997, the Andersen group isolated and 

showed that the motuporamines have anti-invasive properties as measured in MDA-231 breast 

carcinoma cells. The Andersen group synthesized over 40 derivatives of the lead motuporamine, 

dihydromotuporamine C (Figure 2, Structure 7a), and none exceeded its potency. While the 

Andersen group probed the nature and size of the macrocyclic ring, they did not change the 

distance between the ring system and the polyamine message; a strategy which should improve 

targeting if the polyamine message is facilitating cellular entry. Synthesis of additional analogues 

of the motuporamines allows the development of additional structure activity relationships and the 

opportunity to enhance key properties such as inhibition of metastasis and angiogenesis, low 

cytotoxicity, and increased targeting to cancer cells.1, 9  
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Figure 3. Native Motuporamines from Xestospongia Exigua. Note the number inside the 

macrocycle indicates the number of atoms involved in the macrocycle 

  

This project defines key structural requirements of polyamine ligands for targeting the PTS by 

developing structure activity relationships with a specific set of macrocycle-polyamine conjugates. 

As the PTS is relatively uncharacterized, most prior progress in the development of drugs 

attempting to target the PTS has been accomplished via the construction of a homologous series 

of derivatives and by ranking their ability to gain entry to cells. Members of the proposed series 

are the result of iterative changes in the degree of saturation in the macrocycle, number of carbons 

in the macrocycle, length of the tether to the appended polyamine message, and the polyamine 

message itself. This project builds upon key features already established for aryl-polyamines and 

extends them to saturated macrocycles. The synthetic schemes focus on changing the length of the 

tether connecting the polyamine message to the macrocycle as well as by changing the spacer 

sequence within the the polyamine message itself. By changing the length of the tether, potency 

has been shown to improve along with cell targeting capabilities because the extended distance 
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decreases steric crowding near the polyamine ligand and  increases the availability of the 

polyamine message for its putative receptor. Muth et al showed a significant increase in anti-

metastatic efficacy with increased distance between the polyamine message and the macrocycle as 

shown in Figure 3 (7a) to Figure 4 (8a to 10a).5 In addition, changing the nature of the polyamine 

message should increase targeting of the macrocycle as specific polyamine sequences are preferred 

by the PTS. Outcomes from these studies could lead to improved polyamine transport ligands and 

inhibitors; both of which have applications as cancer therapies.6, 10,10b  

       

Figure 4. Synthesized Motuporamine derivatives 8-10  

 

Andersen et al established the ideal number of carbons in the macrocycle and degree of saturation 

for optimal potency and identified dihydromotuporamine C (Motu33) as the lead compound.9  

Acetylation of the terminal amino group of Motu33 did not alter the  antimetastatic efficacy of the 

compound, while acetylation of both the secondary amine and the terminal primary amine of 

Motu33 provided a diacetylated adduct with complete loss of antimetastatic potential.11  Other 

studies using N1-(anthracenylmethyl)polyamines as motuporamine derivatives revealed that 
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generation of a tertiary amine at the N1 position completely eradicated PTS targeting, possibly due 

to an increase of steric crowding.10a  Increasing substitution at the N1 amine has also tracked with 

an increase in Ki values and substitution at both ends of the polyamine increases Ki values, yielding 

a decrease in affinity for the PTS.10b   

Previous studies have shown that motuporamines do not use polyamine transport for cell entry.6 

Using prior SAR studies of anthracenylmethyl polyamine compounds and motuporamine 

derivatives, new motuporamine derivatives were designed in an attempt to create smart polyamine 

vectors that selectively target polyamine transport active cells. These ethylene amine motifs are 

based on triethylene tetramine (Figure 4, 11c) which has been shown to interact with established 

oncogenic targets such as eIF-5a and telomerase.12a,b These motifs are of particular interest when 

tethered to the motuporamines as they are charge deficient analogues of the native polyamines 

which further inquiry into the effect of modulating the distance between nitrogen centers and 

motuporamine efficacy.  

 

Figure 5. Synthesized Ethylene Amine motifs based on MotuCH233 

Prior assessment via a CHO/CHO-MG screen has shown that linear triamine motifs are ideal 

vectors for the PTS. Using L1210 cells, Phanstiel et al showed that tetra-amines with low Ki values 
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in the nM range did not enter cells as readily as the less toxic triamines with µM Ki values. 

Evidently, compounds with too high an affinity for the cell surface receptor (i.e. low Ki values) 

bind and stick and do not enter as readily. A homospermidine (4,4-triamine) motif (Figure 3, 

Structure 7b) was selectively delivered via the PTS and displayed 150 fold higher cytotoxicity in 

polyamine transport active CHO cells versus a transport-deficient CHO-MG cell line.10b  The 

distance between nitrogens in the polyamine sequence, therefore, seems to have a large effect on 

cellular entry and the compound’s ability to use the PTS. While the homospermidine message 

seems to be the optimal polyamine motif for targeting the PTS, this does not necessarily imply that 

it also provides optimal cytotoxicity or anti-metastatic properties. This was of interest in our 

investigation into ethylene amine motifs as the decrease from a norspermidine (3,3-triamine) motif 

to the ethylene amine (2,2-amine) motifs as shown in Figure 4 was expected to place the nitrogen 

centers at different distances from the hydrophobic macrocyle substituent and extend our 

understanding of the motuporamine pharmacophore. 

The proposed efficacy of the motuporamines lies in their ability to affect Rho activation. Prior 

investigators found that Motu33 works as an anti-metastatic agent by over-activating Rho.13 The 

Rho pathway is involved in the formation of stress fibers and focal adhesions often found in motile 

cells. However, McHardy et al found that certain tumor cell lines undergo invasion from primary 

sites to secondary sites using an elongated cell structure, invadopodia. They proposed that Motu33 

efficacy is tied to its ability to block metastasis only when elongation is required for invasion, 

which is often the case. Further elucidation of this mechanism, including the specifics of how the 

small molecule alters signal transduction in the Rho pathway, are needed.  
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Baetz et al found that Motu33 was able to alter sphingolipid profiles in yeast cells using a yeast 

haplo-insufficiency screen. Genes involved in sphingolipid metabolism were deleted and those 

mutants were found to be more susceptible to the addition of Motu33.14 Sphingolipid metabolism 

is involved in the production of ceramide which has crucial roles in initiation of apoptosis and was 

also found to be linked directly to migration through a CXCL12/CXCR4 dependent pathway.15 

While the full mechanism as to how motuporamine compounds are able to alter sphingolipid 

profiles and what the consequences are for the cell are unknown, further elucidating these 

mechanisms may be key to understanding the pharmacological mechanism behind their 

antimetastatic and antiangiogenic properties.  

Identifying the mechanism of action is important to understanding efficacy of any potential drug 

candidate as well as managing its off-target effects. This project will complete key structure-

activity relationship studies as a continuation of Muth et al6, Andersen et al9, optimize the drug 

design and provide new probes for future elucidation of potential targets of the motuporamines, 

including the Rho GTPase14 pathway and sphingolipid metabolism.15  
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Figure 6. Synthesized Anthracenylmethyl amines based on monosubstituted anthracene 

conjugates  
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II. RESULTS AND DISCUSSION 

2.1 Chemical Synthesis 

A number of synthetic approaches were investigated in an attempt to utilize the reactivity of 

commercially-available ketone, i.e., cyclopentadecanone, to develop extended motuporamine 

derivatives. This ketone 13 obviated the need for building the fifteen membered ring from scratch 

through ring closing metathesis as had been accomplished in Furstner et al and which resulted in 

an undesirable byproduct due to an inability to control stereochemistry during formation of the 

macrocycle.16 The Phanstiel group has already previously developed a total synthesis of the parent 

Motu33 compound via a multistep scheme using ring closing metathesis and protected 

polyamines.5 

As shown in Scheme 1, Muth et al demonstrated that it was possible to convert commercially 

available ketone 13 to its corresponding alkene 14 through a Wittig reagent5. The alkene could 

then undergo hydroboration oxidation to alcohol 15. From alcohol 15 a number of synthetic routes 

were attempted to use the alcohol as a platform to create an electrophile or a nucleophile. The 

synthesis of extended motifs on the motuporamines had been attempted by Muth et al by 

conversion of alcohol 15 to its corresponding aldehyde resulting in low yields and an impure 

product.5 While extended compounds 9a and 9b were made from the aldehyde, other chemistries 

were investigated in an attempt to improve the yields on extended motuporamine structures.  

Therefore it was attempted to convert the alcohol to an extended primary amine 18 which could 

behave as a nucleophile to attack an electrophilic polyamine scaffold, as shown in Schemes 2,3 .  
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Scheme 1 a 

 

a Reagents: a) MePPh3I, BuLi; b) BH3/THF 

 

The alcohol 15 was converted into a good leaving group (by conversion to its mesylate 16) using 

methane sulfonyl chloride/TEA in DCM in good yields.  Mesylate 16 was then converted to nitrile 

17 using 18-crown-6 ether and KCN with a yield of 87%. The resultant alkylated nitrile was then 

reduced to primary amine 18 using lithium aluminum hydride in THF with a 49% yield. Attempts 

were made to generate the amine on the motuporamine ring with two and three methylene spacers. 

Synthesis of the two methylene spacer amine 18a was successful while the three spacer amine 18b 

was problematic due to low yields of its corresponding nitrile 17b (<11%). 
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Scheme 2a 

 

 

aReagents: a) CH3SO2Cl  b) KCN, c) LiAlH4 

The synthesis of 10 was an attempt to further probe the effects of extending the norspermidine 

message away from the macrocycle core by increasing the number of methylene spacers (Scheme 

3). It was shown by Muth et al, that the extended compound 9a had the best in vivo performance 

in terms of anti-metastatic efficacy. It was hypothesized this efficacy may have been due to the 

increased availability of the message for its putative receptor. 5 The synthesis of 10 was therefore 

an attempt to understand how further extending this message by increasing the number of 

methylene spacers from two to three would affect anti-metastatic potency.  

The polyamine was joined to the macrocycle through a nucleophilic substitution reaction where 

the polyamine portion behaves as the electrophile and the nucleophilic amine on the macrocycle 

attacks the mesylate on the polyamine (Scheme 3). Aqueous sodium carbonate (Na2CO3) was used 

to facilitate alkylation and 4M HCl was used to deprotect the Bocylated amine. This synthetic 

scheme began with the conversion of the Boc-protected polyamine 19 to its corresponding 

mesylate 20 in 80% yield. The N-alkylation of mesylate 20 with amine 18 was performed in the 
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presence of Na2CO3 in DCM and resulted in poor yield of 20%. As this step also required the use 

of amine 18, a compound that was generated through a long synthetic method and also resulted in 

low yields, the scheme was less than satisfactory. The low yields in the synthesis of 21 in particular 

was attributed to the facile formation of a self-cyclized byproduct 22 where (due to the low 

reactivity of the macrocyclic amine 18) the terminal carbamate group of 20 was observed to react 

with and displace the appended mesylate group to form byproduct 22, thus, lowering the amount 

of 20 available to react. 
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Scheme 3a 

 

aReagents: a). TEA, MsCl; b) amine 18a, Na2CO3; c) EtOH, 4M HCl 

 

Due to the low yields in the production of amine 18b and the long synthetic process required for 

its synthesis starting from ketone 13, alternative chemistries were investigated on ketone 13 and 

alcohol 15 in an attempt to create a nucleophilic polyamine motif that could be joined to an 

electrophilic macrocycle in more efficient manner.  

As shown in Scheme 4, the synthesis of alkylbromide 23 began via bromination of alcohol 15 

using phosphorus tribromide in hexane to give a 67% yield. It was then attempted to convert 

bromide 23 to a Grignard reagent A (RMgBr) as shown in step d in Scheme 4 by activating 

magnesium turnings in the presence of dry THF and 1,2-dibromoethane. We envisioned using this 

Grignard reagent for chain extension using formaldehyde or ethylene oxide to impart new one and 

two carbon extensions, respectively on the (cyclopentadecyl)-methyl scaffold. The respective 

alcohols could then be converted to their corresponding mesylates and reacted with Boc-protected 
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polyamines for the crucial ring-joining step.  However, the formation of the Grignard reagent A 

was not observed and the bromide was recovered in full yield.   

 

Chain extension was also attempted using a Suzuki reaction (see Step e in Scheme 4) per the Yang 

group’s 2012 paper on copper mediated cross-coupling of alkyl halides with secondary Grignard 

reagents to form a carbon-carbon bond17. This reaction to form B was, thus, attempted with a 

commercially available Grignard reagent C, a cyclic acetal. We envisioned that compound B could 

be subsequently be deprotected to its aldehyde with heat and aqueous acid.  This aldehyde could 

then be coupled via reductive amination to a Boc-protected polyamine as done previously on 

related systems to afford a chain extended analogue. 5  However, we were unable to form B likely 

again due to the steric hindrance of the macrocycle in 23.  

Due to the lack of formation of the desired macrocyclic Grignard reagent A (Scheme 4), we 

attempted to directly couple  ketone 13 and a commercially available Grignard reagent C. Step g 

in Scheme 4 illustrates this attempt to use a pre-formed Grignard reagent on the ketone through 

nucleophilic addition as an alternative to extend the carbon chain as shown in acetal D..  
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Scheme 4a  

 

aReagents: a) MePPh3I, BuLi; then BH3, THF; b) MsCl; c) PBr3; d) Mg, dry THF; e) CuI, LiOMe, 

TMEDA; f) CH3CN, K2CO3; g) THF; h) glacial AcOH, DCE, NaBH(OAc)3 
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The failed attempts to create the envisioned extended aldehydes through Grignard chemistry, and 

failure to perform chemistry directly on the ketone to form imine E, and the difficulty in synthesis 

of amine 18a suggested that alternative chemistries were needed. Due to the observed by product 

formation seen with the mesylate 20 we elected to reverse the polarity of the two coupling partners 

and  created a nucleophilic polyamine component that could then be appended to an electrophilic 

macrocycle motif. The development of an electrophilic macrocycle motif was limited by the 

reactivity of ketone 13. Many attempts were made to perform chemistry directly on the 

macrocyclic ketone, to no avail. The only method that worked well was Wittig olefination followed 

by hydroboration to create alcohol 15. The conversion of alcohol 15 to its corresponding mesylate 

16 afforded our entry to an electrophilic macrocycle modality. Efforts next focused on preparing 

the nucleophilic polyamine motif for attachment to the alkyl motif in 16.   

 

In an attempt to maximize yields and minimize the formation of undesirable side products, a 

regioselective protection of specific nitrogen centers was performed on the free base of triethylene 

tetramine tetrahydrochloride 24b and tetraethylenepentamine pentahydrochloride 24c. The general 

strategy was to cap all the free secondary amine centers on the polyamine chain as carbamates 

containing t-butoxycarbonyl (Boc) groups. Failure to cap these potential nucleophilic centers 

would result in undesired non-linear, branched byproducts.  

 

Selective protection was performed by formation of an imine on the primary amine of the free base 

form of the polyamine using salicylaldehyde.18 Salicylaldehyde will selectively protect primary 

amines but leave the secondary amines untouched and therefore the secondary amines are subject 
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to protective Bocylation using di-tert-butyl dicarbonate. After the Boc protection of the secondary 

amine and remaining primary amine centers was complete, cleavage of the imine was performed 

with methoxyamine under acid-free conditions to maintain the fidelity of Boc protection.19  

Deprotection of the salicylimine afforded a polyamine chain with one available primary amine as 

a reactive center for selective alkylation with the macrocycle mesylate 16.  

 

 

 

 

 

 

 

 

 

 

 

 



19 
 

Scheme 5a 

 

 

aReagents: a) NaOH; b) di-tert-butyl dicarbonate; c) MeONH2  

 

Following work done by Abdel-Magid et al, a reductive amination was attempted between 

tetramine 25a and ketone 13 with NaBH(OAc)3 to give amine E (Scheme 4). The reaction was 

monitored for disappearance of the ketone and showed no conversion in DCM or in THF after 48 

h in each solvent at both rt and at 40oC.20  

We speculated that the failure of the reductive amination using 25a and 13 was due to steric 

occlusion of the reactive ketone center by the bulky macrocycle. Therefore, attempts were made 

with the extended electrophile of mesylate 16 and the Boc-protected polyamines generated in 

Scheme 5, (i.e., 25a and 25b). 

Step f in Scheme 4 illustrates the attempts to use regioselectively protected polyamines 25a and 

25b to generate the Boc protected motuporamine structures F and G.  The alkylation reaction with 
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pentaamine 25b and mesylate 16 was performed in CH3CN initially at rt and monitored by TLC 

(1% NH4OH/3%MeOH/DCM, Rf  25b: 0.4) for disappearance of starting material. After 48 h and 

no disappearance of starting material, the temperature was raised to 40oC. After the reaction was 

run for an additional 12 days NMR showed a 60% conversion of starting materials. 25b and 

mesylate were both still present when the reaction was stopped by removal of CH3CN and then re-

solvation in DCM for a crude red oil mixture (0.563g). A column was run to separate the mixture 

(100% DCM, mesylate: Rf 0.6, suspected product: Rf 0.4, pentamine 25b: Rf 0.1) and mesylate 16 

was recovered (33mg, 0.102mmol). The suspected product appeared to be the motuporamine ring 

with a cyclized polyamine based-urea byproduct. The failure of this reaction indicated the low 

reactivity of the primary amine on 25b, possibly due to the large bulky Boc substituents a short 

distance away from each other. In the case of 25b there are four Boc groups two carbons away 

from each other. Thus, the steric constraints associated with each of the reactants disfavored the 

coupling chemistry. 

 This coupling was also attempted with the regioselectively-protected tetraamine 25a also in 

CH3CN starting at 40oC and after 48 h raising it to 80 oC. It was shown with the previous attempt 

that the purported self-cyclization of the polyamine portion was facilitated at rt and that raising the 

temperature reduced the formation of the undesirable urea byproduct. Unfortunately, starting the 

reaction with 25a at 40oC did not abate the formation of the byproduct nor did it facilitate the 

formation of the desired linear motuporamine motif, nor did the temperature increase to 80 oC yield 

the desired result. The reaction was also monitored by TLC (1% NH4OH/3%MeOH/DCM, Rf  25a: 

0.4) and by 1H NMR but also showed a self-cyclized byproduct and was aborted after 7 days.  
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Mono N-Boc diamine 28 was available commercially (Sigma Aldrich) and was the only Boc 

protected ethylene amine motif to be used successfully in forming the desired motuporamine 

structure. The Boc protected polyamine 28 was heated at 50 oC overnight and then for 5 days at 

reflux (80 oC). The reaction rate was shown to increase after 48 h when the volume of the solvent 

(CH3CN) was reduced. The product 27c was able to be separated by column chromatography (7% 

MeOH/DCM Rf of 27c: 0.4) from a cyclized urea byproduct that was present in large quantities 

for a total yield of 27c of 53% (Scheme 6). Subsequent removal of the Boc group with acid 

provided the desired adduct 11c in high yield but at a disappointing 10% overall yield from 16.   
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Scheme 6a 

 

aReagents: a) CH3CN, K2CO3 b) 4M HCl, EtOH 

As polyamines 25a and 25b appeared to have hindered reactivity due to their Boc groups and 

displaced their own t-butyl groups to form cyclic ureas in favor of reacting with the mesylate, a 

‘naked polyamine’ approach was attempted with the free base of 24a,b,c as shown in Scheme 7. 

This approach was not initially attempted due to the probability of the secondary internal amines 

reacting with the mesylate and creating tertiary branched motuporamine structures instead of the 

desired secondary amine containing linear motuporamine motifs. Nevertheless, this ‘naked 

polyamine’ approach avoided the possibility of the polyamine portion reacting with its own Boc 

group prior to alkylation. Indeed, the reaction was much more facile without the bulky Boc 

substituents crowding the primary amine reaction center. This approach was successful with 24a 

and 24b while 24c was less productive. In the production of 11a, triamine 24a was reacted with 

bromide 23 while in the production of 11c, tetraamine 24b was reacted with mesyl 16. With both 

24a and 24b the respective alkylations were performed in CH3CN and showed complete 

disappearance of each starting material after 72 h. Workups were performed with 0.1M NaOH and 

DCM to remove the salts and in the case of 24b, the displaced methanesulfonate. These provided 

the expected mixture of secondary and tertiary alkylated products. These were separated by 
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installing Boc groups at every secondary and primary amine center via  bocylation. Since the 

tertiary amine would not be N-bocylated, the byproduct retained its amine functional group 

whereas the desired product was converted to a polycarbamate motif. This change in functional 

group allowed for easy separation by column chromatography of the undesired tertiary amine 

byproduct (which had one less Boc group and was chemically distinct) and the desired 

motuporamine motif. Using this approach, a 25% yield was achieved for both products. 

The use of the pentamine 24c with this method achieved a different result. The free base of 

pentamine 24c was prepared and mesylate 16 was added in CH3CN and refluxed for 72 h and 

monitored by NMR (similar to 24a sequence in Scheme 7). The mixture was then per-bocylated 

and separated by column chromatography (1% NH4OH/4.5%MeOH/DCM, Rf of suspected 

product 0.4 and an additional unknown spot at Rf 0.47). Multiple attempts to separate the product 

failed and ultimately the final product was both unresolvable from its upper spot and appeared to 

be the cyclized byproduct by NMR. The crude weight also suggested it was a significantly less 

productive reaction due to the low conversion of starting material at high temperatures and over a 

long period of time. Therefore, there were clear limitations to using this approach. 
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Scheme 7a 

 

 

aReagents: a) CH3CN, K2CO3; b) di-tert-butyl dicarbonate; c) EtOH, 4M HCl 
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Scheme 8a 

 

aReagents: a) 25%MeOH/DCM; b) NaBH4; c) EtOH, 4M HCl 

 

The synthetic scheme for  N1-Anthracen-9-ylmethyl-ethane-1,2-diamine 12a is shown in Scheme 

8 and was based on prior work established in Gardner et al21 to synthesize Ant44 (12b) . In the 

synthesis of 12a, the ethylene amine motif was joined via reductive amination to the commercially 

available 9-anthraldehyde (Sigma Aldrich) which resulted in 75% yield over 3 steps via the 

intermediate imine 29. 
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2.2 Biological Evaluation 

After synthesis, all compounds were screened for cytotoxicity in CHO, CHO-MG and L3.6pl cells. 

The wild type (wt) CHO cells have high polyamine transport activity and are very sensitive to 

compounds, which exploit the PTS for cell entry. In contrast, the CHO-MG cell line was obtained 

by random DNA-alkylation of CHO cells and selected for their ability to for survival in the 

presence of a cytotoxic PTS targeting compound, methylglyoxal bisguanyl hydrazine  (MGBG).7 

L3.6pl cells are a hyper-metastatic human pancreatic cancer cell line obtained from Dr Isaiah 

Fidler at MD Anderson Cancer Center in Houston, Texas. To synthesize this cell line, COLO-357 

cells were injected into the pancreas of nude mice and allowed to metastasize to the liver. The cells 

were then harvested from the liver and re-injected into the pancreas. This process was repeated six 

times to generate the L3.6pl cell line, which provides a model of very aggressive human cells 

primed for metastasis in vivo.22 

2.3 Polyamine Transport Selectivity Studies 

The CHO and CHO-MG cell screen uses cytotoxicity measurements to assess transport 

preference.23 Since the CHO-MG cell line is defective in polyamine transport, compounds which 

selectively enter via the PTS should be less toxic to these cells and give a high CHO-MG IC50 

value. In contrast, PTS dependent compounds should be lethal to wt CHO cells which have high 

PTS activity and low IC50 value. A ratio of the CHO-MG/CHO IC50 values is then used to assess 

PTS targeting. A compound, which does not enter cells via the PTS, should give similar toxicity 

in both cell lines and an IC50 ratio near 1. In contrast, a compound, which targets the PTS, should 

give a high CHO-MG/CHO IC50 ratio.  
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Compounds 10, 11a,b,c, 12a, and 15 were tested in both the CHO and CHO-MG cell line at a 

range of concentrations from 0.1 µM to 100 µM for 48 h in the presence of aminoguanidine (1 

mM), an inhibitor of an amine oxidase present in calf serum that will oxidize amine-containing 

compounds.5 

As shown in Table 1, all of the motuporamine derivatives did not target the PTS in CHO cells and 

gave ratios near 1. In contrast,  Ant44 (12b) and its derivative Anthracene Diamine 12a gave a 

CHO-MG/CHO IC50 ratios of 14824 and 5.8, respectively. As mentioned before, previous studies 

have shown that dihydromotuporamine C does not use the PTS for cellular entry6 and one of the 

goals of this project was to design derivatives that are able to target the PTS. The results of this 

study suggest that the appended aliphatic macrocycle may not be suitable for PTS targeting. 

Indeed, modulation of both the polyamine message itself and the distance between the polyamine 

message and the ring did not improve PTS targeting. The polyamine message of 11b, when 

appended to the anthracene core in compound 12a, was able to accomplish modest PTS targeting 

while compound 15, the compound that most closely resembles the naked macrocycle, did not. 
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Table 1. Biological Evaluation of Motuporamine derivatives on cytotoxicity in CHO and CHO-

MG cells to assess PTS targeting at 48ha 

Compound CHO-MG IC50 (µM) CHO IC50 (µM) IC50 ratio  

CHO-MG/ CHO 

Motu Diamine  11b 2.37 (±) 0.12 2.66 (±) 0.11 0.9  

Motu Triamine 11a 2.55 (±) 0.07 2.48 (±) 0.10 1  

Motu Tetramine 11c 2.62 (±) 0.13 2.37 (±) 0.09 1.1  

Ant Diamine  12a 11.33 (±) 0.34 1.96 (±) 0.11 5.8  

MotuCH2OH  15 > 100 µM >100 µM ND 

MotuCH2CH233  10 2.80 (±) 0.11 2.51(±) 0.06 1.1  

a All compounds were dosed as aqueous solutions and were compared to a media control with no 

drug, except compound 15. Compound 15 was not soluble in water and was dosed in such a manner 

that the final DMSO concentration was 1% DMSO and was thus compared to a 1% DMSO in PBS 

control with no drug. For all replicates, n =3. ND= not determined. 

 

2.4 L3.6pl cytotoxicity studies  

Compounds 10, 11a-c, 12a, and 15 were tested in the human pancreatic cancer cell line L3.6pl 

which as mentioned earlier, provides a model for aggressive human metastatic cancer. The K-Ras 

mutation present in the cell line has been shown to correlate with high polyamine uptake due to its 

ability to affect caveolin-mediated endocytosis,25 which would lead to an increase in uptake of 

polyamine-like compounds, if they were polyamine-transport selective. For this study, L3.6pl cells 

were treated with a range of compound concentrations (0.1 µM to 100 µM) for 48 h in the presence 

of aminoguanidine (250 µM), a polyamine oxidase inhibitor. Prior studies have shown that an 

oxidase inhibitor was needed to maintain the polyamine compound integrity and potency.  Cell 

viability was evaluated through the MTS assay and the IC5 /IC50 values were calculated from the 
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plots. Each value represents the concentration of the drug needed to produce the designated level 

of toxicity (n=3). The IC5 value is the concentration of the compound, which gives 95% viability 

and represents the dose where minimum toxicity from the compound is expected. The IC50 value 

is the concentration of the compound needed to reduce viability by 50%. The results are shown in 

Table 2, and accompanying cytotoxicity curves are shown in Figures 7-9. 

Table 2. Cytotoxicity evaluation of Motuporamine Derivatives (10,11a-c, 15) and anthryl 

derivative (12a) in L3.6pl cells for 48ha 

 

 

 

 

 

 
 

 

 

a All compounds were dosed as aqueous solutions and were compared to a media control with no 

drug, except compound 15. Compound 15 was not soluble in water and was dosed in such a manner 

that the final DMSO concentration was 1% DMSO and was thus compared to a 1% DMSO in PBS 

control with no drug. For all replicates, n =3.  

 

 

Compound L3.6pl IC50 

(µM) 

L3.6pl IC5 

(µM) 

MotuCH2CH233      10 3.34 ± 0.09 1.64 ± 0.09 

Motu Triamine      11a 1.25 ± 0.05 0.6 ± 0.05 

Motu Diamine       11b 1.44 ± 0.09 0.6 ± 0.09 

Motu Tetraamine   11c 1.64 ± 0.05 0.92 ± 0.05 

Ant Diamine          12a 24.1 ± 1.2 4.15 ± 0.2  

MotuCH2OH          15 42.0 ± 3.4 8.4 ± 0.6 
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Figure 7. Cytotoxicity Profile of 11a in L3.6pl cells at 48 h  

 

 

 

 

 
 

Figure 8. Cytotoxicity Profile of 11b in L3.6pl cells at 48 h 

-20

0

20

40

60

80

100

120

0.01 0.05 0.1 0.5 1 2.5

%
 R

e
la

ti
v
e

 V
ia

b
il

it
y

Log (Drug Concentration)

Concentration of 11a (uM) vs. % Relative Viability

-20

0

20

40

60

80

100

120

0.01 0.05 0.1 0.5 1 2.5

%
 R

e
la

ti
v
e

 V
ia

b
il

it
y

Drug Concentration (uM)

Concentration of 11b (uM ) vs. % Relative Viability



31 
 

 
 

Figure 9. Cytotoxicity profile of 11c in L3.6pl cells at 48h 

 

The motuporamine derivatives (10, 11a-c) displayed sharp cytotoxicity curves with their  

respective IC5 value (where ≤5% toxicity was observed, i.e., maximum tolerated dose (MTD)) was 

very close to their half maximal inhibitory concentration (IC50). These data follow trends from 

prior members of the series.  Interestingly, the toxicity of the motuporamine derivatives was not 

dramatically altered through modulation of the message or the distance of the message away from 

the macrocycle. However, the absence of the polyamine component (such as in 15) or the addition 

of an unsaturated anthracene core in place of the aliphatic macrocycle (e.g., 12a) were sufficient 

to improve toxicity profiles, and in the case of 12a, PTS targeting (Table 1).  These results suggest 

that the specific combination of polyamine and the macrocycle core seems to be responsible for 

the cytotoxicity of these compounds. We noted that no cell lysis was observed at the IC50 
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concentrations of these compounds, and cell lysis was discarded as a potential mechanism of action 

for these amphiphilic molecules. 

Scratch assay.  A scratch assay was performed to assess the anti-migratory properties of 

compounds 10, 11a,b,c, 12a, and 15  in L3.6pl cells. The parent compound 7a and extended 

compound 9a were tested as controls, and non-native polyamines 28 and 24a,b were tested to 

comment on the anti-migratory ability of the non-native motifs. Compounds were dosed at the 

MTD (0.5 µM) of the parent compound 7a to comment on potency by comparison and at 1 µM 

which was close to the MTD of all newly synthesized compounds (10 and 11a-c). 

Untreated cells were plated out in 96 well plates using 90 µL of a L3.6pl cell suspension (55,500 

cells/mL). Every compound except 15 was dissolved in water to make its respective stock solution. 

Compounds were delivered at a volume of 10 µL of the appropriate stock solution to 90 µL of 

media and cells such that the final volume was 100 µL. Due to solubility constraints, compound 

15 was dissolved in 100% DMSO and was diluted down to a total delivered concentration of 10% 

DMSO in PBS prior to addition in the well. Each final stock solution of 15 was in 1% DMSO in 

PBS and 10 µL of this stock was added into 90 µL of cells and media (total volume  = 100 µL). 

Two untreated controls were run in parallel to account for the difference in vehicle; one containing 

a water control where 10 µL of water was added to the well containing cells and media and the 

other control was performed by adding 1% DMSO in PBS (10 µL) to the well containing cells and 

media. The total volumes used for all scratch experiments was 100 µL.  The untreated cells 

migrated 72± 8.8% of the wound area after 24 h for the motuporamine and anthracene derivatives 

experiments (compounds 10, 11a-c, 12a, 15) and 81± 8.9% for the experiments screening the non-
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native polyamine derivatives (compounds 24a,b and 28). Cell migration was assessed by 

measuring the area devoid of cells (white space) over a 24 h period and  migration measurements 

calculated as the following:  

% Cell Migration at 24h = ((Area with no cells at 0h)-(Area with no cells at 24h))/Area with no 

cells at 0h x 100%.  

% Cell Migration normalized to control = % Migration with drug at 24h/ % Migration of control 

at 24h * 100 

% Cell inhibition at 24h =(1-(% Migration with drug at 24h/% Migration of control at 24h))*100 

All experiments were run in triplicate at minimum and representative microscopy images are 

shown in their respective figures and the numeric results are shown in Tables 3 and 4.  
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Table 3. Inhibition of L3.6pl Cell Migration by Motuporamine derivatives (7a, 9a, 10, 11a-c, 15) 

and Anthracene Derivative (12a)a,b 

Compound % Cell Migration 

at 24 ha 

% Migration 

normalized to 

the controla 

% Migration 

inhibition compared 

to controla 

1% DMSO in PBS Control  44.3 ± 2.5 - - 

10% aqueous control 72.3 ± 8.8 b - - 

Motu33 (0.5 µM) 7a 57.4 ± 5.0 b 79.4 ± 6.9 b 20.61 ± 6.9 b 

Motu33 (1 µM) 7a 43.6 ± 4.4 60.2 ± 6.6 39.76 ± 6.6 

MotuCH233 (0.5 µM) 9a 57.7 ± 1.6 79.8 ± 6 20.24 ± 6 

MotuCH233 (1 µM) 9a 50.7 ± 6.8 70.1 ± 7.8 29.92 ± 7.8 

MotuCH2CH233 (0.5 µM) 10 83.5 ± 3.2 115.2 ± 6 -15.52 ± 6 

MotuCH2CH233 (1 µM) 10 71.2 ± 4.2 98.5 ± 6.5 1.55 ± 6.5 

Motu Triamine (0.5 µM) 11a 64.9 ± 7.5 89.8 ± 8.2 10.22 ± 8.2 

Motu Triamine (1 µM) 11a 52.9 ± 3.7 73.2 ± 6.3 26.76 ± 6.3 

Motu Diamine (0.5 µM) 11b 67.8 ± 5.6 93.8 ± 7.2 6.22 ± 7.2 

Motu Diamine (1 µM) 11b 53.3 ± 13.0 73.7 ± 10 26.27 ± 10 

Motu Tetramine  (0.5 µM) 11c 67.9 ± 8.2 93.9 ± 8.5 6.09 ± 8.5 

Motu Tetramine (1 µM) 11c 60.2 ± 5.5 83.2 ± 7.2 16.78 ± 7.2 

Anthracene Diamine (0.5µM) 12a 67.8 ± 4.0 93.8 ± 6.4 6.24 ± 6.4 

MotuCH2OH (1 µM) 15 60.7 ± 1.6 137.2a ± 2.1 -37.19 ± 2.1 
 

a All compounds were dosed as aqueous solutions and were compared to the 10% water control, 

except compound 15. Compound 15 was not soluble in water and was dosed in such a manner that 

the final DMSO concentration was 1% DMSO and was thus compared to the 1% DMSO in PBS 

control. For all values n=3 with the exception of those marked otherwise; b n=4.  

 

 

As mentioned earlier, the Andersen group did not probe the effect of changing the distance between 

the ring system and the polyamine message. The synthesis of 9a by Muth et al5 and 10 allows an 

understanding of the effect of increased distance on facilitating cellular entry. Interestingly, anti-

migration efficacy appears to decrease with the increase of spacers away from the macrocycle 

(from 7a to 9a) and complete loss of efficacy is seen with the two methylene spacer extension 10.  
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Targeting to the PTS was not achieved by any modification to the parent compound 7a. Anthracene 

Diamine 12a and MotuCH2OH 15 were tested well below their MTD in order to comment on their 

efficacy in comparison to the parent compound. Neither control showed any anti-migration 

behavior (see Table 3). Interestingly, both  the macrocyclic alcohol 12a  and the extended system 

MotuCH2CH233 10 appear to promote migration at low doses.  

As both compound 10 and the 11a-c series exhibit sharp cytotoxicity curves, the window between 

the maximum tolerated dose and half maximal inhibitory concentration was very small and a dose-

limiting toxicity was observed. This dose-limiting toxicity may have been the reason for the 

reduced anti-migratory efficacy observed. All compounds were also tested at 1 µM, a 

concentration that doubles the potency of the parent compound 7a. In a similar outcome the 

efficacy for the ethylene amine motifs improved at the higher 1 µM concentration, but did not 

surpass the anti-migration efficacy seen with the parent compound 7a.  
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Table 4. Inhibition of L3.6pl Cell Migration by non-native polyamines 24a,b, and 28 

 

Compound % Cell Migration at 24 h          % Migration Inhibition 

10% water control 81.9  ± 8.9 - 

Triamine HCl (1 µM) 24a 100% 0 

Tetramine HCl  (1 µM) 24b 100% 0 

Diamine HCl (1 µM) 28 100% 0 

 

The non-native ethylene amine motifs were also assessed for their anti-migratory properties via 

scratch assay. However, incubation with each amine for 24 h at 1 µM showed an increase in 

migration compared to control and complete wound closure at 24 h. This experiment clarifies the 

importance of both the macrocycle (e.g., 15) and the polyamine (e.g., 24a) for efficacy of the 

moturporamines as each of these compounds independently is less effective than  the compound 

that has both the macrocycle and the amine motif (e.g., 11a). 
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Figure 10.  L3.6pl Cell Migration studies with 7a using a scratch assay.  L3.6pl cells were 

incubated with 250 µM AG for 24 h prior to the addition of compound 7a  at 0.5 or 1µM. The 

white scale bar indicates 20 µm. 
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Figure 11.  L3.6pl Cell Migration studies with 9a using a scratch assay. L3.6pl cells were 

incubated with 250 µM AG for 24 h prior to addition of compound (0.5 or 1µM). The white 

scale bar indicates 20 µm. 
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Figure 12. L3.6pl Cell Migration with 10 using a scratch assay.  L3.6pl cells were incubated 

with 250 µM AG for 24 h prior to addition of the compound (0.5 or 1µM). The white scale bar 

indicates 20 µm. 
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Figure 13. L3.6pl Cell Migration with 11a via scratch assay. L3.6pl cells were incubated with 

250 µM AG for 24 hours prior to addition of compound (0.5 or 1µM). The scale bar indicates 20 

µm. 
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Figure 14. L3.6pl Cell Migration with 11b via scratch assay. L3.6pl cells were incubated with 

250 µM AG for 24 hours prior to addition of compound (0.5 or 1µM). The scale bar indicates 20 

µm. 
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Figure 15. L3.6pl Cell Migration with 11c via scratch assay. L3.6pl cells were incubated with 

250 µM AG for 24 hours prior to addition of compound (0.5 or 1µM). The scale bar indicates 20 

µm. 
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Figure 16. L3.6pl Cell Migration with 12a via scratch assay. L3.6pl cells were incubated with 

250 µM AG for 24 hours prior to addition of compound (0.5µM). The scale bar indicates 20 µm. 
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Figure 17. L3.6pl Cell Migration with 15 via scratch assay. L3.6pl cells were incubated with 250 

µM AG for 24 hours prior to addition of compound (1µM). The scale bar indicates 20 µm. 
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Figure 18. L3.6pl Cell Migration with 24a via scratch assay. L3.6pl cells were incubated with 

250 µM AG for 24 hours prior to addition of compound (1 µM). The scale bar indicates 20 µm. 
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Figure 19. L3.6pl Cell Migration with 24b via scratch assay. L3.6pl cells were incubated with 

250 µM AG for 24 h prior to addition of compound (1µM). The scale bar indicates 20 µm. 
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Figure 20. L3.6pl Cell Migration with 28 via scratch assay. L3.6pl cells were incubated with 250 

µM AG for 24 hours prior to addition of compound (1 µM). The white scale bar indicates 20 µm. 
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III. SUMMARY 

This project continued the investigation of the synthesis and biological evaluation of extended 

motuporamine derivatives based on the parent compound, Motu33 (7a). Synthetic strategies were 

developed for the extended derivatives 8a,b and 9a,b and involved joining the polyamine 

component to the macrocycle via reductive amination. A correlation was seen between the distance 

separating the polyamine N1 nitrogen and the macrocycle. Steric crowding dramatically influenced 

both synthetic access to the target structures and their observed biological potencies. While the 

synthesis of 8a,b resulted in yields of >70%, those yields decreased to <45% for the synthesis of 

9a,b.5 A different approach was developed for the synthesis of the extended compound 10, but 

resulted in a significant reduction in yield.  

This project also builds on the performance of compounds 9a,b, but with the ethylene amine motifs 

24a-c. The synthesis of these motifs was initially attempted with a regioselective protection 

strategy to mitigate the low yields expected from tertiary amine formation. This occurs when the 

unprotected secondary amines become alkylated during the coupling step to form undesired 

tertiary amines. Ironically, due to unanticipated steric issues, the naked non-regioselective 

approach resulted in the sole productive strategy for accessing the triamine and tetramine motifs, 

11c and 11a.  

Initial chemistries focused on the modification of the bulky macrocycle. The steric hindrance of 

the bulky 15-membered ring system, seems to be a significant determining factor in synthesizing 

motuporamine derivatives. Few chemistries were found to react with this large macrocyclic ketone 

13. In a similar vein, the low reactivity of polyamine chains containing nearby bulky Boc 
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substituents also severely limited the feasibility of the regioselective strategies employed here.  In 

this regard the steric demands of the polyamine component was also important in facilitating 

reactivity. It was of particular interest that while coupling reactions completely failed, the use of 

naked motifs 24a-c was productive. The ethylene amine motifs are shorter than norspermidine (9a) 

and homospermidine (9b) and the decrease in distance between nitrogen centers coupled with the 

closeness in proximity of Boc groups to the reactive site appears to make the nitrogen to carbon 

coupling reaction especially challenging. 

For example, while mesylate 16 and Boc protected tetra-amine 25a failed to generate the desired 

product F, the mesylate 16 and the naked tetraamine 24b produced the desired linear motif in fair 

yields. The non-regioselective approach also worked with bromide 23 and the free base of tetra-

amine 24a. This suggests that once the reactive centers on the macrocycle and the polyamine 

component are accessible to each other (without bulky Boc substituents or buried in the ring system 

like ketone 13) the reaction can occur. Interestingly, diamine 11b was able to be produced with 

the starting mono Boc-protected amine 28, but gave very low yields while the bocylated 

polyamines 25a,b were unable to be used to synthesize the desired linear motifs. This suggests 

that while the Boc group itself may be hindering the reaction by physically blocking access to the 

reaction site. The  steric hindrance is not solely responsible for the low yields because the length 

of the chain and the N1-nitrogen’s ability to react with Boc groups further down the chain is also 

an issue.  

The naked polyamine strategy unexpectedly failed with the pentamine motif and further studies 

are necessary to develop synthetic strategies for synthesis of these longer polyamine chains. The 
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non-regioselective naked strategy, while productive, also facilitates a loss in yield due to the 

formation of tertiary branched byproducts. Interestingly this loss of yield is also seen in the 

regioselective protection step for the polyamine components (25a,b) themselves. While 

salicylaldehyde selectively protects primary amines, it is not absolute and to a smaller extent, 

reacts with secondary amines resulting in the eventual formation of undesired polyamines with 

unprotected secondary amines. While these are easily separated by chromatography, a loss in yield 

by either method seems to be unavoidable and investigations into synthetic processes that lead to 

higher yields for these systems is warranted for future two carbon polyamine systems. 

The IC50 and PTS targeting determinations for the synthesized compounds showed that the two 

carbon polyamine systems 11a-c were unable to target the PTS and have similar cytotoxicity 

profiles as other members of the series. The effect of the reduced distance between nitrogen centers 

had no significant effect on improving potency when appended to the large macrocycle. Studies 

with the naked macrocycle 15 or the ethylene motif appended to an anthracene core (12a) showed 

that the motifs responsible for cytotoxicity appear to be both the polyamine and the macrocycle 

component. Studies with 12a in particular, showed that PTS targeting with the motuporamines 

may not be possible due to the complete lack of targeting seen with derivatives containing the 

macrocycle core. For example, 12a which contain the same polyamine motif as 11b  had some 

PTS selectivity, whereas 11b  did not.  This suggests that replacing the saturated motuporamine 

macrocycle with the anthracene core would improve PTS targeting.  

The macrocyclic alcohol 15 and the unsubstituted non-native ethylene amine motifs (as their 

respective HCl salts), were all found to be non-toxic and displayed no anti-migration properties. 
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Compounds 11a-c, while unable to improve upon the efficacy of 7a, still had modest performance 

as anti-migration compounds.  These results suggest that both the polyamine and macrocycle 

components are required for efficacy. Compound 10 demonstrates that chain extension between 

these two components has its limits, where extended compounds like 10 showed loss of activity.  

In summary, this study revealed that moving the linear triamine message of 7a away from the ring 

(as performed here with 9a and 10), indeed probed the limits of anti-migration efficacy for this 

compound class. While 9a retained the anti-migration properties of 7a, all efficacy was lost when 

two methylene spacers were present between the polyamine message and the macrocycle, as in 10. 

This study shows that efficacy can be significantly altered by minor structural changes in the 

motuporamine architecture and suggests that an optimal placement of the appended nitrogen 

centers is necessary to fully interact with the putative biological target.  
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IV. EXPERIMENTAL 

4.1 Materials.  

Silica gel (32-63 µm) and chemical reagents were purchased from commercial sources and 

used without further purification. All solvents were distilled prior to use or purchased as analytical 

grade. All reactions were carried out under atmospheric pressure unless an N2 atmosphere was 

specified. 1H and 13C spectra were recorded at 500 or 125 MHz, respectively. TLC solvent systems 

were listed as volume percentages. All tested compounds provided satisfactory elemental analyses.  

4.2 Biological Studies.  

CHO and CHO-MG as well as L3.6pl cells were grown in RPMI 1640 medium with the 

addition of 10% fetal bovine serum and 1% penicillin/streptomycin and grown at 37°C under a 

humidified 5% CO2 atmosphere. CHO and CHO-MG cells were seeded at 10,000 cells/mL while 

L3.6pl cells were grown at 5,000 cells/mL for cytotoxicity studies and 55,500 cells/mL for anti-

migration experiments. Cells were treated with aminoguanidine (AG, a known inhibitor of 

polyamine oxidase present in bovine serum) through addition to the growth medium at a 

concentration of 1mM for CHO/CHO-MG cells and 250 µM for L3.6pl cells, 24 h prior to drug 

addition. The presence of AG was important as the compounds tested contained polyamines within 

their structure and active amine oxidase could cause degradation during the course of the assay.  

IC50 determinations. Cell viability was assessed in sterile 96-well plates (Costar 3599, 

Corning). Drug solutions (10 µL/well) in their listed concentrations were added after overnight 

incubation (90 µL/well cell suspension in media with AG). After incubation with the drug for 48 

h, cell viability was assessed through a metabolic assay by measuring formazan formation from 3-
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(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulphenyl)-2H-tetrazolium (MTS) 

via absorbance (490 nm) with a SynergyMx Biotek microplate reader. 

 Anti-Migratory Assay. Anti-migratory properties were assessed in sterile 96-well plates 

(Costar 3599, Corning) Drug solutions (10 µL/well) in their listed concentrations were added after 

overnight incubation (90 µL/well cell suspension in media with AG). 24 h after seeding, a channel 

was scratched laterally across the plate using a 100 µL pipette tip. The cells were then washed with 

PBS (1X, 100 µL) and media was replaced (90 µL/well cell suspension in media with AG) and the 

respective drugs solutions were added (10 µL/well) in quadruplicate. After 24 h, cells were imaged 

(Nikon TE 200) with a 10X objective. To image the same location at two time points, images were 

taken next to a line bisecting each well perpendicular to the channel scratched. To standardize each 

image, all images were cropped in image J to 700x1280 pixels. Cell migration was assessed by 

measuring the area devoid of cells over a 24 h period and calculated as the following:  

% Cell Migration at 24h = ((Area with no cells at 0h)-(Area with no cells at 24h))/Area with no 

cells at 0h x 100%.  

% Cell Migration normalized to control = % Migration with drug at 24h/ % Migration of control 

at 24h * 100 

% Cell inhibition at 24h =(1-(% Migration with drug at 24h/% Migration of control at 24h))*100 

 

4.3 Synthetic Procedures and Characterization 

N-(3-Amino-propyl)-N’-(2-cyclopentadecylethyl)-propane-1,3-diamine 10. Compound 21  

was dissolved in 200 proof EtOH (1 mL) and slowly added dropwise to 4M HCl (1.56 mL) at 0oC. 
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After the addition was complete, the solution was brought to rt and stirred for 24 h. It was then 

concentrated under reduced pressure to yield the product 10. (20 mg, 0.042 mmol, 74% yield). 10: 

1H NMR (D2O):  3.10(m, 10H, J3
H-H = 6.1Hz), 2.09(m, 4H), 1.58(m, 2H), 1.45(m, 1H), 1.29 (s, 

28H); 13C NMR (CDCl3):  45.89, 43.89, 36.80, 33.65, 33.49, 31.28, 30.92, 30.27, 28.69, 28.07, 

27.44, 27.41, 26.46, 25.77, 25.60, 23.98, 23.48. HRMS calc for C23H49N3  (M+H) 367.392, found 

367.3926. Compound 10 was 93% pure by HPLC analysis [UV detection at 210 nm showed a 

major peak eluted (~5 min) on a C18 column using 60% acetonitrile/an aqueous heptane sulfonate 

buffer at pH 3.8 with a flowrate of 1 mL/min]. 

N-(2-Amino-ethyl)-N'-cyclopentadecylmethyl-ethane-1,2-diamine 11a. Compound 27a (96 

mg, 0.153 mmol) was then dissolved in EtOH (3 mL) and 4M HCl in EtOH (3mL) while stirring 

overnight at rt. The solvent was then removed under reduced pressure to give a white solid 11a 

(60 mg, 0.138 mmol, 90% yield).  11a. 1H NMR  (D2O):  3.45 (m, 8H), 3.02 (br s, 2H), 1.83 (br 

s, 1H), 1.32 (br s, 28H);  13C NMR (D2O):  55.57, 47.12, 46.04, 37.92, 36.74, 31.84, 29.29, 28.94, 

28.88, 28.55, 26.09. HRMS for C20H43N3 (M+H) Theory: 325.3439 Found: 325.3457. Anal Calcd 

C20H46Cl3N3 0.56 H20: Theory: C 53.98, H 10.67, N 9.44 Found: C 54.38, H 10.68 N 9.05 

N1-Cyclopentadecylmethyl-ethane-1,2-diamine 11b. Compound 27c (61mg, 0.16 mmol) was 

dissolved in EtOH (1 mL) and 4M HCl/EtOH (1mL) was added dropwise and stirred at rt 

overnight. The solvent was then removed under reduced pressure for a white solid 11b (50 mg, 

0.157 mmol, 98% yield). 11b: 1H NMR (D2O):  3.39 (br s, 4H), 3.01 (br s, 2H), 1.82 (br s, 1H), 

1.33 (br s, 28H); 13C NMR (D2O):  55.48, 47.30, 37.97, 36.73, 31.84, 29.29, 28.90, 28.56, 26.09. 
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Anal Calcd for C18H40Cl2N2 0.05 H20: theory C 60.83, H 11.34, N 7.88; found C 61.12, H 11.44, 

N 7.72. 

N-[2-(2-Amino-ethylamino)-ethyl]-N'-cyclopentadecylmethyl-ethane-1,2-diamine 11c. 

Removal of the Boc groups of 27b was performed in 4M HCl/EtOH by first dissolving the product 

in 200 proof EtOH (5 mL) which required sonication. 4M HCl in EtOH (5 mL) was then added 

dropwise while stirring. Reaction proceeded overnight, the solvent was then removed under 

reduced pressure for a weight of the final product, a white solid, 11c (252 mg, 0.49 mmol, 98% 

yield). 11c: 1H NMR (D2O):  3.51 (m, 12H), 3.04 (br s, 2H), 1.86 (br s, 1H), 1.33 (s, 28H); 13C 

NMR (D2O):  55.43, 47.07, 46.44, 46.15, 38.03, 36.64, 31.79, 30.50, 29.42, 29.05, 28.80, 26.08. 

HRMS C22H48N4 (M+H) Theory: 368.3878, Found: 368.3879; Anal Calcd C22H52Cl4N4 Theory: 

C 51.36, H 10.19, N 10.89 Found: C 51.35, H 10.46, N 10.62. 

N1-Anthracen-9-ylmethyl-ethane-1,2-diamine 12a. To a stirred solution of monoBoc diamine 

28 (268 mg, 1.67 mmol) in 25% methanol/DCM (10 mL) was added a solution of 9-anthraldehyde 

(289 mg, 1.40 mmol) in 5 mL of 25% methanol/DCM under N2. The solution was allowed to stir 

at rt overnight until imine formation was complete (monitored by 1H NMR). The solvent was 

removed in vacuo and the crude imine 29 was re-dissolved in 50% Methanol/DCM and cooled to 

0oC. NaBH4 (167 mg, 4.28 mmol) was added and the mixture was stirred at rt overnight. The 

solvents were removed under vacuum, and the residue was redissolved in DCM and washed with 

saturated Na2CO3. The organic layer was separated, dried over anhydrous Na2SO4, filtered and 

concentrated to give a solid (521 mg crude) which was purified by 5% MeOH/CHCl3 to yield 412 

mg (1.18 mmol) of the desired adduct 30 (80% yield).  Debocylation with 2 mL of ethanol and 2 
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mL of 4M HCl gave the product (340 mg, 1.05 mmol, 89% yield) for an overall yield of 75%. 12a: 

1H NMR (D2O):  8.40 (s, 1H), 8.05 (m, 2H), 7.63 (m, 2H), 7.53 (m, 2H), 4.95 (s, 2H), 3.55 (m, 

2H), 3.35 (m, 2H); 13C NMR (25% d6-DMSO in D2O): δ 133.4, 132.8, 131.9, 130.3, 128.3, 125.4, 

124.3, 47.3, 46.0, 38.26 

 

 

Methylenecyclopentadecane 14.To a stirred solution of methyltriphenyl phosphonium iodide 

(27.17g, 66.9 mmol) in freshly distilled anhydrous THF (300 mL) was added n-Butyl Lithium (n-

BuLi, 66.9 mmol, 1.6M in hexanes) dropwise under N2 via syringe at 0oC. The solution 

immediately turned a dark brown-reddish color and the contents of the solution dissolved. Prior to 

addition of n-BuLi, attempts were made to dissolve the MePh3PI in THF but dissolution only 

occurred upon n-BuLi addition. After the Wittig reagent had formed (20 minutes), ketone 13 (5 g, 

22.3 mmol) was added in a minimal amount of THF followed by an additional 5.0 g of ketone (for 

a total of 44.6 mmol). The reaction was allowed to warm to room temperature and stir overnight.  

The reaction was monitored for the presence of ketone 13 by TLC (5% ethyl acetate/hexane with 

KMnO4 staining and by 1H NMR). Additional butyl lithium (10 mL) was added under the same 

conditions after 48 h after NMR showed only 45% conversion. An additional 10 mL of BuLi was 

added at the 72 h time point. After 96 h the reaction was worked up by quenching excess BuLi at 

0oC with deionized water. The contents were then filtered with minimal amounts of white solid 

present and the THF was removed under reduced pressure revealing a biphasic red-yellow mixture. 

The mixture was redissolved in DCM, the layers were separated, the aqueous layer was washed 

with DCM (3x) and then the DCM was removed to yield a biphasic crude with a red solid and a 
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yellow oil (30.9 g). The red solid was assumed to be the triphenyl phosphonium oxide. The residue 

was then washed 3x with hexanes and then the solvent was removed to reveal a yellow non-viscous 

oil (10.7 g). The crude mixture was then separated by column chromatography (10% DCM, 

hexanes) to yield alkene 14 as a colorless oil. (4.9 g, 22.4 mmol, 50% yield).  

 

Cyclopentadecylmethanol 15.5 Alkene 14 (4.97 g, 22.4 mmol) was added dropwise at 0oC to a 

BH3-THF solution  (67 mmol, 5.7 g, 14.9 mL).  The reaction was stirred for 1 h at 0oC and then 

allowed to warm to room temp and stir for 2 h.  The reaction progress was monitored for 

disappearance of the alkene and then the excess BH3 was quenched with deionized water (31 mL) 

after pre-cooling the mixture to 0oC. 3M NaOH (31 mL) followed by 30% H2O2 (31 mL) was 

added over the course of 1 h at 0oC for the oxidation step in the workup and the reaction was stirred 

overnight. K2CO3 (300 mg: 2.17 mmol) was added and then the THF was removed under reduced 

pressure. DCM was then added, the layers were separated, and the aqueous layer was extracted 

three times with DCM, the organic layers were pooled, dried over anhydrous Na2SO4, filtered and 

concentrated to give a viscous light yellow oil (5.2g). TLC (20% Hexanes/DCM, visualization 

with phosphomolybdic acid, Rf 0.3). Column (100% DCM) was run to separate the crude for a 

clear oil (3.9 g, 16.2 mmol, 73% yield). 1H NMR analysis matched the literature spectrum for this 

compound.5 

 

Methanesulfonic acid cyclopentadecylmethyl ester 16. Alcohol 15 (998 mg, 4.15mmol) was 

added to TEA (643 µL, 4.58mmol) in DCM. Methanesulfonyl chloride was then dispensed by 

syringe (355 µL, 4.58mmol) at 0 oC and stirred overnight at rt. The reaction was monitored by 
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TLC (100% CH2Cl2, Rf mesylate 16 :0.63; Rf alcohol 15: 0.37) and then quenched with 1M NaOH 

(2 mL). The organic phase was washed three times with 1M NaOH (5 mL), then separated, dried 

over anhydrous Na2SO4, filtered and concentrated to give  the mesylate 16 as a yellow oil (1.12 g, 

3.52 mmol, 85% yield). 1H NMR (CDCl3):  4.15 (d, 2H, J3
H-H6.1Hz), 3.0 (s, 3H), 1.34 (br s, 29H).  

 

Cyclopentadecyl-acetonitrile 17. KCN (3.09 g, 47.6 mmol), 18-crown-6 ether (145 mg, 0.48 

mmol), and dry CH3CN (48 mL) were added to mesylate 16 (1.69 g, 5.29 mmol) and the reaction 

was refluxed overnight. The reaction was monitored by TLC (70%Hexanes/CH2Cl2, Rf=0.28) and 

then volatiles were removed, the residue was redissolved in DCM and washed with water. The 

layers were separated, the organic layer was dried over anhydrous Na2SO4, filtered and 

concentrated to give a yellow crude oil (1.29g, 5.17mmol) which was then purified by column 

chromatography (70% Hexanes/CH2Cl2) and concentrated under reduced pressure and subjected 

to high vacuum yielding a colorless oil (0.92g, 3.69 mmol, 82% yield, 91% conversion). Mesylate 

16 was recovered as a white crystalline solid (0.15 g, 0.47 mmol, 9% recovery) in (50% 

Hexanes/CH2Cl2, Rf 0.3).  1H NMR:  2.30 (d, 2H, J3
H-H6.6Hz), 1.80 (m, 1H), 1.34 (br s, 28H). 13C 

NMR:  119.2, 33.7, 31.8, 27.1, 26.8, 26.7, 26.6, 26.5, 24.3, 22.9. HRMS for C17H31N 

(M+H):250.2535, found 250.2527. Anal. C17H31N: Theory: C 81.86, H 12.53, N 5.62 Found: 

82.04, 12.63, N 5.51. 

2-Cyclopentadecyl-ethylamine 18.  Nitrile 17 (412 mg, 1.64 mmol) was dissolved in dry THF (5 

mL, 55.5 mmol) and added dropwise to a stirred solution of LiAlH4 (207 mg, 5.46 mmol) in THF 

(5 mL) at 0oC. The reaction was then warmed to rt and refluxed overnight.  The reaction was 
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monitored for the disappearance of the nitrile with TLC (1% NH4OH/15%MeOH/CH2Cl2, Rf 

Amine=0.28, Rf Nitrile=0.55). After disappearance of the starting material was confirmed by TLC, 

the reaction mixture was concentrated and redissolved in DCM. The organic phase was washed 

with a solution of water (0.9 mL) and 5M NaOH (0.15 mL), and the organic layer was separated, 

dried over anhydrous Na2SO4, filtered and concentrated under reduced pressure to yield a colorless 

oil. Column chromatography (85% CH2Cl2, 15% Methanol, 1 drop NH4OH) provided amine 18 

(203 mg, 0.80 mmol, 49% yield). 18: 1H NMR:  2.72 (m, 2H), 1.41 (m, 4H), 1.34 (m, 28H); 13C 

NMR:  40.00, 38.86, 34.17, 32.42, 27.58, 26.93, 26.59; HRMS for C17H35N (M+H):253.2789, 

found 253.277; Anal. C17H35N 0.2 H20 Theory: C 79.43, H 13.88, N 5.45 Found: C 79.24, H 13.94, 

N 5.37. 

Methanesulfonic acid 3-[tert-butoxycarbonyl-(3-tert-butoxycarboynlamino-propyl)-amino]-

propyl ester 20. DiBoc 33 triamine alcohol 1910b (3-tert-Butoxycarbonylaminopropyl)-(3-

hydroxypropyl) carbamic acid tert-butyl ester, 100mg, 0.3mmol) was added to TEA (127 µL, 0.9 

mmol) and CH2Cl2 (3 mL). Methane sulfonyl chloride (34.9 µL, 0.45 mmol) was added dropwise 

at 0 oC via syringe under a nitrogen atmosphere. Once the addition was complete, the syringe was 

rinsed with CH2Cl2 (0.6 mL). Reaction progress monitored by TLC (5%  MeOH/CH2Cl2, Rf 

alcohol 0.25; Rf mesylate 0.37). After 24 h, 4M NaOH (5 mL) was added with stirring. The organic 

layer was separated, dried over anhydrous Na2SO4, filtered and concentrated under reduced 

pressure to yield mesylate 20 (99 mg, 0.24 mmol, 80% yield).  

19: 1H NMR (CD3OD):  3.55 (t, 2H), 3.28 (t, 2H), 3.24 (t, 2H), 3.04 (q, 2H), 1.62-1.81 (m, 4H), 

1.44 (s, 9H), 1.42 (s, 9H).10b 
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20: 1H NMR (CDCl3):  4.25 (t, 2H, J3
H-H= 6.2Hz), 3.28 (br s, 4H), 3.11 (br s, 2H), 3.02 (s, 3H), 

1.99 (m, 2H), 1.67 (m, 2H), 1.56 (s, 3H), 1.47 (s, 9H), 1.44 (m, 9H)  

 (3-tert-Butoxycarbonylamino-propyl)-[3-(2-cyclopentadecylethylamino)-propyl]-carbamic 

acid tert-butyl ester 21 

2-Cyclopentadecyl-ethylamine 18 (0.07g, 0.28 mmol) was dissolved in CH2Cl2 and added to 

Na2CO3 (75 mL, 1.79 mmol) while stirring at rt. Di Boc Mesylate 20 (121mg, 0.2957mmol) was 

dissolved in CH2Cl2 (1 mL) and added to the solution dropwise. The reaction was stirred for 48 h 

and was monitored by TLC (10% MeOH/CH2Cl2; Rf  0.34).  

After the reaction was complete, CH2Cl2 (2 mL) was added and the solution was washed three 

times with aq. Na2CO3 (10% by w/v, 3 mL). The organic layer was separated, dried over anhydrous 

Na2SO4, filtered, and concentrated under reduced pressure to yield a crude yellow oil (248 mg). 

Column chromatography (10% MeOH/CH2Cl2, followed by 10% MeOH/1% NH4OH, CH2Cl2) 

provided the crude as a clear oil (60 mg, 0.106 mmol, 38% yield) with a self-cyclized starting 

material 22 which was separated by running a second column (4.5% MeOH/CH2Cl2) to yield the 

byproduct 22 (27.3 mg, 0.0572 mmol, 21% yield) and the desired product 21 (32 mg, 0.056 mmol, 

20% yield) as a yellow oil. 

21: 1H NMR (CDCl3):  3.31(br s, 2H), 3.16 (br s, 2H), 3.03 (br s, 2H), 2.84 (br s, 4H), 2.06 (m, 

2H), 1.65 (m, 4H), 1.40 (s, 18H), 1.36 (br s, 29H); 13C NMR:  46.89, 44.97, 37.80, 34.55, 32.38, 

31.26, 29.69, 29.06, 28.33, 27.46, 26.76, 26.60, 26.50, 24.98, 24.25, 22.67.  HRMS for 

C33H65Cl3N3O4 (M+H) 567.4973, found 567.4975. 
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22: 1H NMR (CDCl3):  4.25 (m, 2H), 3.30 (br s, 4H), 3.11 (s, 2H), 2.0 (m, 2H), 1.66 (m, 2H), 

1.46 (s, 18H). 

Bromomethyl-cyclopentadecane 23.  The alcohol 15 (250 mg, 1.04 mmol) was placed under an 

inert atmosphere. Phosphorus tribromide (0.52 mmol, 49 µL) was added by syringe. The reaction 

immediately turned yellow and started bubbling and was stirred at rt for 1.5 h. Hexane (3 mL) was 

added and the reaction was refluxed at 69oC for another 1.5 h. The reaction turned a brownish 

yellow color. The vessel was rinsed and the brown crude (0.48g) was isolated. Column 

chromatography (100% n-hexane) was performed (with a 30:1 ratio of silica gel: crude) due to the 

large Rf difference (Rf 15: 0, Rf 23: 0.8). Visualization of the TLC plate using phosphomolybdic 

acid and heat provided a convenient monitoring tool. The product 23 was isolated and concentrated 

under reduced pressure to yield a clear oil (0.21g, 0.695 mmol, 67% yield). 23: 1H NMR (CDCl3): 

 3.38(d, 2H, J3
H-H = 6.1Hz), 1.72 (m, 1H), 1.38 (br s, 28H); 13C NMR (CDCl3):  40.39, 38.65, 

31.17, 27.25, 26.87, 26.64, 26.53, 24.59. 

Synthesis N-(2-Amino-ethyl)-N'-[2-(cyclopentadecylmethyl-amino)-ethyl]-ethane-1,2-

diamine 25a.  The free base of 2,2-tetraamine 24b was generated using N,N'-Bis-(2-amino-ethyl)-

ethane-1,2-diamine (3.00 g, 10.27 mmol, Sigma-Aldrich) with 4 equivalents of  aq. NaOH (1M, 

41 mmol, 41 mL). The water was removed and then dried by adding and removing benzene under 

reduced pressure to remove the excess water. Anhydrous Na2SO4 (8 equivalents, 82.3 mmol, 11.69 

g) was added to a dried vessel with 25% MeOH/CH2Cl2 (50 mL). One equivalent of 

salicyclaldehyde (10.27 mmol, 1.10 mL) in MeOH (10 mL) was then added dropwise over 2 h at 

0oC while stirring. Upon addition of the reagent, the reaction immediately turned yellow. Imine 
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formation was monitored by 1H NMR. After imine formation, the additional reactive centers were 

protected with di-tert-butyl dicarbonate (3 equiv., 30.87 mmol, 6.74 g) and stirred overnight.  The 

reaction progress was checked by  1H NMR for full bocylation and additional di-tert-butyl 

dicarbonate was then added (0.3 equiv., 0.67g) while heating at 40oC overnight to drive the 

reaction to completion. The reaction was again checked for N-bocylation and confirmed to be 

complete. Then MeONH2
.HCl (10.27mmol, 0.8578g) was added in 1.5 mL of TEA. Note: 

MeONH2 HCl was initially not soluble in the TEA, which was used to generate the free base. Upon 

addition of 25%MeOH/ CH2Cl2 (5 mL) the methoxyamine easily dissolved and the 

TEA/MeOH/CH2Cl2 solution was then added dropwise to the stirring solution. Imine cleavage was 

monitored by NMR.  Note: an oxime byproduct is formed via methoxyamine exchange with the 

imine. The MeOH was then removed under reduced pressure, the residue was re-dissolved in 

CH2Cl2 and then washed with saturated Na2CO3 (22g/100mL solution, 10 mL). The aqueous layer 

was extracted three times with CH2Cl2 and then the organic layer was concentrated under reduced 

pressure to yield a yellow oil (3.65g). The product was separated from the crude by column 

chromatography (1% NH4OH/10%MeOH/CH2Cl2, Product Rf 25a: 0.65). The product 25a eluted 

as a light yellow solid (1.48g, 3.31mmol, 32% yield).  25a: C21H42N4O6 
1H NMR (CDCl3):  3.31 

(br s, 10H), 2.84 (br s, 2H), 1.79 (br s, 2H), 1.46 (br s, 27H); 13C NMR (CDCl3):  155.52, 76.59, 

46.24, 45.45, 40.24, 39.08, 28.06; HRMS for C21H42N4O6 (M+H) Theory 446.3121, Found 

446.3104; Anal C21H42N4O6 0.2 H2O Theory:  C 56.03, H 9.49, N 12.45 Found: C 55.87, H 9.39, 

N 12.23. 
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N-[2-(2-Amino-ethylamino)-ethyl]-N'-(2-cyclopentadecylamino-ethyl)-ethane-1,2-diamine 

25b. The free base of tetraethylenepentamine pentahydrochloride 24c (N-(2-Amino-ethyl)-N'-[2-

(2-amino-ethylamino)-ethyl]-ethane-1,2-diamine, Sigma Aldrich) (3g, 8.07 mmol) was generated 

with 5 equivalents of NaOH (40.4 mmol, 1.61g, 40.35 mL). The water was then removed by 

addition of benzene as an azeotrope and then removal of benzene under reduced pressure. 

Anhydrous sodium sulfate was added (64.6 mmol, 9.18 g) and 25% MeOH/DCM added as solvent 

(30 mL). After the generation of the free base, one equivalent of salicylaldehyde was added (8.07 

mmol, 1.160g/mL, 850 µL) to protect the terminal amine and the solution immediately turned 

bright yellow. After protection was complete by NMR, the remaining amines were protected with 

di-tert-butyl dicarbonate (4 equivalents, 7.05g, 32.29 mmol) and the reaction was heated at 40oC 

overnight.. After complete bocylation was verified by NMR, the imine was cleaved with 1 

equivalent of methoxyamine (8.07 mmol, 0.674g, in 1.13 mL of  TEA and 5 mL of MeOH/CH2Cl2) 

and the disappearance of the imine peak at 8.34 ppm by 1H NMR.  After conversion to the free 

amine was complete, the solvent (MeOH) was removed and residue was redissolved in DCM and 

then washed with saturated aq. Na2CO3 (30 mL) to generate the free base. The organic layer was 

separated, dried over anhydrous sodium sulfate, filtered and concentrated to give a red brown solid 

(6.24g). The crude solid was separated by column chromatography (1% NH4OH/10% 

MeOH/CH2Cl2, product Rf 25b: 0.5) to generate a light red solid (1.23g, 2.09 mmol, 26% yield).  

25b: 1H NMR (CDCl3):  3.32 (br s, 14H), 2.86 (br s, 2H), 1.89 (br s, 2H), 1.46 (s, 36H).; 13C 

NMR (CDCl3):  156.12, 80.1, 50.12, 47.32, 45.72, 40.82, 39.40, 28.4; Anal C28H55N5O8 Theory: 

C 57.02, H 9.40, N 11.87 Found: C 56.75, H 9.31, N 11.61; HRMS for C28H55N5O8 (M+H) Theory 

589.4079, Found 589.4051.  
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(2-tert-Butoxycarbonylamino-ethyl)-[2-(tert-butoxycarbonyl-cyclopentadecylmethyl-

amino)-ethyl]-carbamic acid tert-butyl ester 27a.  Triamine 24a (N1-(2-Amino-ethyl)-ethane-

1,2-diamine, Sigma, 255mg, 2.47 mmol) was added to bromide 23 (250 mg, 0.82 mmol) dropwise 

in CH3CN (3 mL) along with K2CO3 (1.17 g, 8.47mmol) at 120 oC. After 48 h, 1H NMR showed 

complete disappearance of starting material and the reaction was concentrated and ressuspended 

in DCM and washed with 0.1M NaOH. The organic layer was separated, dried over anhydrous 

Na2SO4, filtered and concentrated to give a light yellow oil (272 mg). Di-tert-butyl dicarbonate 

was added (540 mg, 2.47 mmol) in 25% MeOH/DCM (10 mL) at 40 oC and the reaction stirred 

overnight. Bocylation was assessed by NMR and when complete the reaction was concentrated 

and redissolved in DCM and washed with aq. Na2CO3. The organic layer was separated, dried over 

anhydrous sodium sulfate, filtered and concentrated under reduced pressure to give a yellow oil 

(706 mg). The crude was then purified by column chromatography (2% MeOH/DCM Rf 27a: 0.4) 

to give 27a as a viscous yellow oil (154 mg, 25% yield). 27a: 1H NMR  (CDCl3):  3.30 (m, 8H), 

3.06 (m, 2H), 3.04 (m, 1H), 1.68 (s, 1H), 1.45 (s, 27H), 1.31 (br s, 28H). 13C NMR (CDCl3): . 

155.85, 79.89, 52.46, 46.72, 45.50, 39.78, 36.20, 30.17, 28.42, 26.76, 24.43; HRMS for 

C35H67N3O6 (M+H): theory 625.5043; found 625.5030; Anal Calcd for C35H67N3O6 : theory C 

67.16, H 10.79, N 6.71; found C 67.42, H 10.92, N 6.63. 

[2-(tert-Butoxycarbonyl-{2-[tert-butoxycarbonyl-(2-tert-butoxycarbonylamino-ethyl)-

amino]-ethyl}-amino)-ethyl]-cyclopentadecylmethyl-carbamic acid tert-butyl ester 27b. 

Triethylene tetra-amine tetra HCl (N,N'-Bis-(2-amino-ethyl)-ethane-1,2-diamine, Sigma) (1.0 g, 

3.42 mmol) was dissolved in 1M NaOH (13.8 mL) to give the free tetraamine base 24b. The 

aqueous layer was then removed and chased with benzene for complete water removal to give dry 
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24b plus NaCl. Mesylate 16 (628 mg, 2 mmol) was dissolved in CH3CN with K2CO3 (391mg: 2.83 

mmol), the reaction showed complete conversion after 72 h at 50 oC by 1H NMR.  The reaction 

was concentrated to provide a residue, which was dissolved in DCM and washed with 0.1M NaOH 

(30 mL). A difficult emulsion ensued.  The organic layer was separated, dried over anhydrous 

Na2SO4, filtered and concentrated to give organic layer #1. The remaining emulsion/aqueous layer 

was concentrated and re-dissolved in DCM at a lower temperature and any remaining precipitates 

were filtered off. The precipitates were washed with DCM and the organic filtrate was pooled with 

organic layer #1 and concentrated to give a yellow viscous oil (806 mg). The crude oil was re-

dissolved in 25% MeOH/DCM and reacted  with di-tert-butyl dicarbonate (8.75 mmol, 1.91g). 

The reaction was monitored for bocylation by NMR and then worked up in saturated aq. Na2CO3 

and DCM. The organic layer was separated, dried over anhydrous Na2SO4, filtered and 

concentrated to give a yellow oil (1.57 g). Column chromatography (25% EtOAc/hexanes, Rf 27b: 

0.39) gave 27b as a viscous oil (383 mg, 0.5 mmol, 25% yield). 

27b: 1H NMR  (CDCl3):  3.32 (m, 12H), 3.08 (br s, 1H), 3.03 (br s, 2H), 1.46 (s, 36H), 1.33 (br 

s, 29H); 13C NMR (CDCl3):  155.4, 80.16, 79.41, 51.68, 45.41, 36.13, 35.78, 36.13, 35.78, 30.18, 

28.45, 26.77, 26.38, 24.44; HRMS C42H80N4O8 (M+H) Theory: 768.5987, Found: 768.5976; Anal 

Calcd C42H80N4O8 Theory: C 65.59, H 10.48, N 7.28 Found: C 65.89, H 10.64, N 7.26. 

[2-(Cyclopentadecylmethyl-amino)-ethyl]-carbamic acid tert-butyl ester 27c. The 

commercially-available mono N-Boc diamine 28 ((2-Amino-ethyl)-carbamic acid tert-butyl ester, 

Sigma, 286 mg, 1.78 mmol) was added to mesylate 16 (508 mg, 1.59 mmol) in CH3CN (20 mL) 

with K2CO3 (0.72 g) at 50 oC. After 5 days the reaction showed 50% conversion, most of the 
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CH3CN was stripped off (leaving 5 mL) and heated overnight for complete conversion. The solvent 

was removed under reduced pressure, re-dissolved in DCM and washed with water. The crude 

(620 mg) was then purified by column chromatography (7% MeOH/DCM Rf 27c: 0.4) to give 27c 

as a clear oil (75 mg, 0.196 mmol, 12% yield) as well as a large amount of what appeared to be a 

cyclized urea byproduct 27d (250 mg) 27c:  1H NMR  (CD4O):  3.23 (broad s, 2H), 2.78 (br s, 

2H), 2.60 (br s, 2H), 1.63 (s, 1H), 1.45 (s, 9H), 1.37 (br s, 28H);13C NMR (CD4O):  150.80, 68.01, 

50.44, 31.87, 28.88, 28.22, 28.03, 27.91, 27.75; HRMS for C23H46N2O2 (M+H) Theory: 382.3558 

Found: 382.3559; Anal Calcd for C23H46N2O2 0.3 H20: theory C 71.19, H 12.10, N 7.22; found C 

71.02, H 12.05, N 7.20. 

Attempted Synthesis of Grignard A. Briefly, in an attempt to produce the Grignard reagent from 

bromomethyl-cyclopentadecane 23, dried magnesium turnings (64mg, 2.63mmol) were placed in 

a dried 3 neck flask under N2 with 1mL of dried THF. A 0.1:1 ratio of 1,2-dibromoethane (22.7µL, 

0.26 mmol) was added to the turnings dropwise in an effort to activate the surface. The bromide 

23 was then added in a minimal amount of THF by syringe (201mg, 0.659mmol) and allowed to 

stir overnight under reflux. Ethylene oxide was then added in THF by syringe (595 µL, 1.48mmol 

in a 2.5M solution in THF,) and the reaction stirred overnight. The reaction was checked by TLC 

for presence of bromide (100% hexanes, visualization in phosphomolybdic acid and heat) and 

showed no conversion of bromide to the alcohol. The reaction was then quenched with saturated 

NH4Cl. The water layer was extracted with DCM to recover the unreacted bromide. 

Attempted synthesis of Acetal B. Briefly, copper (I) iodide (314 mg, 0.165mmol,) and lithium 

methoxide (63 mg, 1.65mmol) were added together under N2 and then the Grignard reagent C (i.e., 
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bromo-[2-(1,3-dioxan-2-yl)ethyl]magnesium)(0.5M in THF, Sigma, 631 mg, 3.3 mmol, 6.6mL), 

alkyl bromide (500 mg, 1.65 mmol) in 1mL of dry THF, and TMEDA (38 mg, 50 µL, 0.33 mmol) 

were added sequentially at 0oC while stirring. The reaction was stirred for 24 h, 1H NMR showed 

no sign of reaction and again there was 100% recovery of bromide 23.  

Attempted synthesis of Acetal D. Briefly, the commercially available Grignard reagent C (i.e., 

bromo-[2-(1,3-dioxan-2-yl)ethyl]magnesium, 0.5M in THF, Sigma) was placed in a dry three neck 

flask under N2 (9.84 mL, 4.92 mmol) while stirring at rt. Ketone (1.0 g, 4.45 mmol) in THF (0.75 

mL) was added to dioxolane C while stirring. The reaction was refluxed overnight and monitored 

by TLC (5% MeOH, DCM, Rf 0.6)  for the quenched Grignard acetal product and monitored for 

the loss of ketone (5% EtOAc/Hexanes, Rf 13: 0.3). TLC showed no signs of conversion, another 

3-4 equivalents of Grignard reagent were added under reflux over 7 days with continuous addition 

of N2 . No loss of ketone was seen by TLC or by 1H NMR. The no conversion observed in this 

reaction further illustrates the poor reactivity of the bulky ketone. 

Attempted Synthesis of Amine E.  Briefly, tri-Boc-protected tetraamine 25a (500mg, 1.12mmol) 

in 5 mL of CH2Cl2 was added to ketone 13 (230mg, 1.02 mmol) in  CH2Cl2 (5 mL) while stirring 

at rt. NaBH(OAc)3 (1.1g, 5.18 mmol) and glacial acetic acid (58.3µL) were added to the mixture 

at rt. The reaction showed no disappearance of starting material after 24 h at rt or after 48 h at 

40oC. Note: the ketone was monitored by TLC using 5% EtOAc/Hexanes stained with KMnO4. 

The solvent was removed and changed to THF. Reaction was stirred for 48 h at 40oC and monitored 

for loss of ketone (5% EtAc/Hexanes, visualization with KMnO4, Rf 13: 0.3) and appearance of 

the secondary amine E (5% MeOH,/CH2Cl2, Rf 0.3). None was observed. 
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APPENDIX : NMR SPECTRA 
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