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ABSTRACT 

LIM Kinase 1 (LIMK1), a modulator of actin and microtubule dynamics, 

has been shown to be involved in cell cycle progression.  In this study we 

examine the role of LIMK1 in G1 phase and mitosis.  We found ectopic 

expression of LIMK1 resulted in altered expression of p27Kip1, the G1 phase 

Cyclin D1/Cdk4 inhibitor.  Overexpression of LIMK1 resulted in lower levels of 

p27Kip1 and p27Kip1-pY88 (inactive p27Kip1).  Knockdown of LIMK1 resulted in 

elevated levels of p27Kip1 and p27Kip1-pY88.  Together, these results suggest 

LIMK1 regulates progression of G1 phase through modulation of p27Kip1 

expression. 

LIMK1 is involved in the mitotic process through inactivating 

phosphorylation of Cofilin.  Aurora kinase A (Aur-A), a mitotic kinase, regulates 

initiation of mitosis through centrosome separation and proper assembly of 

bipolar spindles.  Phosphorylated LIMK1 is recruited to the centrosomes during 

early prophase, where it colocalizes with γ-tubulin.  Here, we report a novel 

functional cooperativity between Aur-A and LIMK1 through mutual 

phosphorylation.  LIMK1 is recruited to the centrosomes during early prophase 

and then to the spindle poles, where it colocalizes with Aur-A.  Aur-A physically 

associates with LIMK1 and activates it through phosphorylation, which is 

important for its centrosomal and spindle pole localization.  Aur-A also acts as a 

substrate of LIMK1, and the function of LIMK1 is important for its specific 

localization and regulation of spindle morphology.  Taken together, the novel 
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molecular interaction between these two kinases and their regulatory roles on 

one other’s function may provide new insight on the role of Aur-A in manipulation 

of actin and microtubular structures during spindle formation. 

The substrates of LIMK1, Aur-A and Cofilin, are also involved in the mitotic 

process.  Aur-A kinase regulates early mitotic events through phosphorylation 

and activation of a variety of proteins.  Specifically, Aur-A is involved in 

centrosomal separation and formation of mitotic spindles in early prophase.  The 

effect of Aur-A on mitotic spindles is mediated by modulation of microtubule 

dynamics and association with microtubule binding proteins.  In this study we 

show that Aur-A exerts its effects on spindle organization through regulation of 

the actin cytoskeleton.  Aur-A phosphorylates Cofilin at multiple sites including S3 

resulting in inactivation of its actin depolymerizing function.  Aur-A interacts with 

Cofilin in early mitotic phases and regulates its phosphorylation status.  Cofilin 

phosphorylation follows a dynamic pattern during progression of prophase to 

metaphase.  Inhibition of Aur-A activity altered subcellular localization of Cofilin 

and induced a delay in the progression of prophase to metaphase.  Aur-A 

inhibitor also disturbed the pattern of Cofilin phosphorylation, which correlated 

with the mitotic delay.  Our results establish a novel function of Aur-A in the early 

mitotic stage through regulation of actin cytoskeleton reorganization. 
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CHAPTER ONE: INTRODUCTION 

The cell cycle is a highly complex process that is regulated by two main 

proteins: Cyclins and their counter parts Cyclin-Dependent Kinases (Cdks).  

Together Cyclin/Cdk complexes regulate the transition from one cell cycle phase 

to another.  Cell cycle progression follows four distinct phases: G1, S, G2, and M 

or mitosis.  Each phase-to-phase transition has a specific set of Cyclin/Cdks that 

are required for that particular phase transition.  Expression and degradation of 

each Cyclin and Cdk is highly regulated as to prevent premature entry into the 

next phase of the cell cycle. 

Dysregulation of cell cycle regulatory proteins has been implicated in the 

pathophysiology of a variety of diseases.  In normal cells, the harmful effects of 

aberrantly expressed cell cycle regulatory proteins are contained through 

apoptosis.  When too little cell death occurs the cells will grow uncontrollably and 

develop a malignant phenotype leading to tumor formation and cancer.  Too 

much cell death may cause neurodegenerative diseases, autoimmune diseases, 

metabolic disorders, and ischemic injury [1]-[4].   

1.1 Regulation of Progression Through G1 Phase 

Progression of G1 phase is regulated by Cyclin D and Cyclin E and their 

respective Cdks, Cdk4/6 and Cdk2.  Cyclin D/Cdk4 regulates progression of cells 

from early to late G1, while Cyclin E/Cdk2 promotes progression from late G1 

into S phase [5].  The main target of G1 Cdks is the retinoblastoma protein (pRb) 

which, when hypophosphorylated, binds to and inhibits the activity of the E2F 
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family of transcription factors [6]-[10].  Activated Cdk4 upon binding to Cyclin D, 

phosphorylates pRb leading to its dissociation from the inhibitory complex with 

E2F.  Released E2F triggers transcription of genes that promote progression to 

late G1 phase, such as Cyclin E and Cdk2 [11], [12].  Active Cdk2 also 

phosphorylates pRb, which results in increased E2F activity and transcription of 

genes that promote progression into S phase, including Cyclin A [13].  

Phosphorylation of pRb is maintained throughout the S, G2, and M phases.  

During the transition of cells from M to G1 phase, pRb is dephosphorylated by 

protein phosphatase 1, which allows pRb to form an inhibitory complex with E2F 

and inhibit cell cycle progression [14]. 

Growth factors in serum are required for progression of cells from G0 or 

quiescent stage to G1 phase.   After cells progress through the Restriction point 

in late G1, removal of serum does not have any effect on cell cycle progression.  

If serum is removed before the Restriction point, cells become arrested in G1 and 

are not able to progress further [15].  One of the main proteins responsible for 

cell cycle arrest is the Cdk inhibitor, p27Kip1 [16]-[18].  p27Kip1 is able to inhibit 

both Cyclin D1/Cdk4 and Cyclin E/Cdk2 complexes [19]-[22]. 

Upon addition of serum, G0 cells progress to G1.  At early G1, p27Kip1 is 

phosphorylated at S10, which leads to its translocation from the nucleus to the 

cytoplasm [23], [24].  Phosphorylation of p27Kip1 at S10 has also been implicated 

in increasing the stability of the protein [23], [25]-[27].  Hyperphosphorylation of 

p27Kip1 at S10 and T187 has been shown to prevent the inhibitory activity of p27Kip1 

against Cdk2 [28]-[32].  As cells progress into late G1, Cyclin D/Cdk4 complexes 



3 

 

can sequester p27Kip1 and allow some of the Cyclin E/Cdk2 complexes to remain 

unbound to p27Kip1.  Early in S phase, active Cyclin E/Cdk2 complexes can 

phosphorylate p27Kip1 at T187, which leads to its degradation through 

polyubiquitination by SCF-Skp2 [33]-[36]. 

Phosphorylation of p27Kip1 at Y88 by Src, Lyn, and BCR-ABL prevents the 

inhibitory activity of p27Kip1 while still bound to its respective Cdk [37], [38].  

Phosphorylation at this residue ejects the inhibitory 310 helix from the active site 

of Cdk4/Cdk2. Cdk2 is then able to phosphorylate p27Kip1 at T187 leading to 

degradation of the protein [39], [40] (Fig. 1).  Binding of p27Kip1 may actually act 

as a promoter of Cyclin D/Cdk4 complex formation [38].     
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Figure 1: Model of p27Kip1 degradation at the G1/S transition.  

(A) A self-amplifying feedback mechanism governs p27Kip1 stability at the G1/S 
transition. p27Kip1 stability and protein level decrease dramatically when cells 
progress from G1-phase to S-phase. Free Cyclin E/Cdk2 can phosphorylate Cdk-
bound p27Kip1 on T187. The resulting phosphodegron is recognized by the SCF-
Skp2 ubiquitin ligase. SCF-Skp2 polyubiquitinates p27Kip1, which is subsequently 
degraded by the 26S proteasome. The released Cyclin/Cdk complexes become 
active and can phosphorylate additional Cdk-bound p27Kip1 on T187. (B) 
Phosphorylation of Y88 of p27Kip1 evokes the ejection of an inhibitory 310 helix of 
p27Kip1 from the catalytic cleft of Cdk2, allowing access of ATP to the ATP-
binding pocket of the kinase. The resulting partial active cyclin-Cdk2 complex is 
now able to phosphorylate bound p27Kip1 on T187, resulting in ubiquitination by 
SCF-Skp2 and proteasomal degradation [see (A)].  

 

Source: Jäkel, H., Peschel, I., Kunze, C., Weinl, C., & Hengst, L. (2012). 
Regulation of p27 (Kip1) by mitogen-induced tyrosine phosphorylation. Cell Cycle 
(Georgetown, Tex.), 11(10), 1910–1917. doi:10.4161/cc.19957 
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Cyclin E/Cdk2 complexes are also negatively regulated by 

phosphorylation.  Cdk2 can be inhibited by phosphorylation at T14 and Y15 by the 

kinases Wee1 and Myt1 [41], [42].   The phosphatase Cdc25A promotes cell 

cycle progression by removing this inhibitory phosphorylation [43].  

Overexpression of Cdc25A leads to early activation of Cyclin E/Cdk2 and 

premature progression from G1 to S phase [44]. 

1.1.1 LIM Kinase 1 

The LIM Kinases (LIMK1/2) are a family of LIM domain containing 

serine/threonine and tyrosine kinases whose established function is to modulate 

the actin cytoskeleton.  The LIM kinases contain two N-terminal zinc finger LIM 

domains which are involved in protein-protein interaction and may also have a 

role in protein-DNA interaction [45], [46].  The LIM domains are followed by a 

PDZ domain, which facilitates protein-protein interactions in signaling proteins 

[47].  The C-terminal of the protein contains a proline/serine rich region of 

unknown function, and a C-terminal kinase domain.  LIMK1 contains a nuclear 

localization sequence between the PDZ and kinase domains and a nuclear 

export sequence within the PDZ domain [48]-[51] (Fig. 2).  LIMK1 and LIMK2 

share an overall identity of 50% while the kinase domain is highly conserved 

between the two with an identity of 70% [19], [21], [52].   
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Figure 2: The Structure of LIMK1. 

LIMK1 contains two N-terminal LIM domains and a C-terminal PDZ and kinase 
domain separated by a proline/serine (P/S) rich region.  The PDZ domain 
contains a nuclear exit signal (NES) and a nuclear localization signal (NLS) lies 
between the PDZ and kinase domain. 

 

The main known substrate of LIMK1 is the actin depolymerizing protein, 

Cofilin [53].  Active Cofilin depolymerizes filamentous actin to produce pools of 

actin monomers [54].  LIMK1 phosphorylates Cofilin at S3, which inhibits its ability 

to bind to actin, thereby preventing actin depolymerization [55], [56].  

Overexpression of LIMK1 has been shown to cause the accumulation of 

filamentous actin through excessive Cofilin phosphorylation [53], [57].   

The LIM domains of LIMK1 can bind to the kinase domain and prevent 

catalytic activity.  Phosphorylation at T508 can activate LIMK1 by interrupting the 

interaction between the LIM and kinase domains, allowing full catalytic activity 

(Fig. 3) [23], [58], [59].  Activation of LIMK1 is mediated by Rho-GTPases, 

specifically by Pak1 activated by Rac, Pak4 activated by Cdc42, and ROCK 

activated by RhoA [23], [25], [27], [54].  This activation results in the formation of 

membrane ruffles and lamellipodia (Rac), filopodia (Cdc42), and stress fibers and 

focal adhesion (ROCK) [28], [30]-[32], [60].  LIMK1 activity is also regulated by 

dephosphorylation at T508 by Slingshot-1 phosphatase (SSH-1) [33].   
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Figure 3: Regulation of LIMK1 Activity by Phosphorylation at T508. 

Binding of the LIM domains to the kinase domain autoinhibits LIMK1.  
Phosphorylation by Pak1, Pak4, or ROCK at T508 removes the LIM and kinase 
domain binding, resulting in full activity of LIMK1.  Active LIMK1 can result in 
formation of lamellipodia, filopodia, and stress fibers. 

 
It has also been suggested that LIMK1 can be activated by 

phosphorylation at S323 by MAPKAPK-2 in VEGF-A treated cells.  Treatment also 

induced phosphorylation at S310 by p38 MAPK but did not cause activation of the 

protein [37].  PKA was also able to activate LIMK1 by phosphorylation at S323 

[61].  Additionally, Hsp90 may promote dimerization of LIMK1 which then may 

cause transphosphorylation of LIMK1 dimers, thereby increasing protein stability 

[39], [62]-[64].   

LIMK1 was first implicated in cell cycle regulation when LIMK1 

overexpression was noted to retard growth of fibroblast cells [65].  Additionally, 

we found overexpression of LIMK1 delayed the G1-S and G2-M transitions [45].  

It is unknown how LIMK1 contributes to G1-S phase progression. 

One study has suggested that p57Kip2 regulates actin dynamics through 

interaction with LIMK1.  Interaction with p57Kip2 increases LIMK1 catalytic activity 

and results in its nuclear translocation [48], [66].  A separate study suggested 

that interaction with p57Kip2 increased LIMK1 activity but concluded that this 
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protein-protein interaction occurred only in the cytoplasm [52], [67].  Additionally, 

silencing of p57Kip2 expression led to increased migration and invasion of 

nasopharyngeal carcinoma cells via modulating LIMK1 phosphorylation/activity 

[59], [68]-[70].  Although these studies do show an interaction between LIMK1 

and p57Kip2, this interaction has not been studied during cell cycle progression. 

Overexpression of LIMK1 has been noted in a variety of cancers including 

breast, prostate, and melanoma [71]-[74].  Overexpression of LIMK1 was 

associated with increased cell motility, while inhibition of LIMK1 expression 

decreased the invasiveness of prostate cancer cells [72], [73].  In addition to 

cancer, LIMK1 has been reported to be involved in Williams syndrome, primary 

pulmonary hypertension, and the formation of intracranial aneurysms [75]-[77]. 

1.1.2 Cofilin 

Through regulation of the actin cytoskeleton, Cofilin is vital for various 

cellular functions including cell cycle progression, cell motility, and cell migration.  

Cofilin modulates the actin cytoskeleton through the depolymerization of actin 

filaments (F-actin) into monomers (G-actin) [54], [67], [78].  Cofilin increases the 

treadmilling of actin filaments in a pH dependent manner [79]. 

Cofilin activity is regulated via phosphorylation at S3 by LIMK1/2 and 

TESK1/2 [55], [80], [81].  Phosphorylation at S3 inactivates Cofilin by blocking its 

ability to bind to actin [56].  Cofilin activity is also regulated by the 

dephosphorylation of S3 by Slingshot-1 phosphatase (SSH1), Chronophin 

phosphatase, and protein phosphatase 1 and 2A [82], [83].  V-Src 
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phosphorylation of Cofilin at Y68 increases ubiquitination and proteasomal 

degradation [84].   

The actin cytoskeleton is involved in cellular response to growth factors 

and G1 phase progression.  The extracellular matrix and the actin cytoskeleton 

have both been shown to play a role in the induction of G1 phase regulatory 

proteins, including Cyclin D [85]-[89].  Interestingly, overexpression of Cofilin 

blocked G1 phase progression through destabilization of the actin cytoskeleton 

and induction of p27Kip1 expression [90].  Together, these studies suggest Cofilin 

may play a role in G1 progression through modulation of the actin cytoskeleton. 

Cofilin has been implicated in tumor invasion and metastasis through 

modulation of the actin cytoskeleton.  Cofilin severs actin filaments to produce 

shorter filaments with free barbed ends.  These free barbed ends can be used to 

produce F-actin rich structures such as lamellopodia and invadopodia.  

Lamellopodia are present at the leading edge of the cell and are involved in cell 

migration [91]-[93].  Cancer cells produce invadopodia to degrade the 

surrounding extracellular matrix and invade surrounding tissue during 

dissemination [94], [95]. 

1.2 Regulation of Progression Through Mitosis 

A common factor in many cancer types is the overexpression of mitotic 

kinases.  Overexpression of mitotic kinases is associated with centrosome 

instability and aneuploidy [96]-[100].  Therefore, regulation of mitotic kinases is 

essential for proper mitotic progression and cell division. 
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1.2.1 Aurora A Kinase 

The Aurora kinases are a family of serine/threonine kinases involved in 

regulation of the mitotic process.  The family consists of three members, Aurora 

A, Aurora B, and Aurora C [60], [68], [69], [101], [102].  Aurora A localizes to the 

centrosome and mitotic spindle and is involved in centrosome maturation and 

mitotic spindle assembly [5], [103].  Aurora B localizes to the centromere, central 

spindle, and later the contractile ring and is involved the chromosome separation 

and cytokinesis [24], [104], [105].  Little is known about the function of Aurora C 

but it has been shown to localize to the centrosome from anaphase to telophase 

and is involved in the formation of cilia and flagella [62]-[64], [66].  Aurora A and 

B share 71% sequence identity within their C-terminal catalytic domain, while 

they vary greatly in their N-terminal domain [67], [69], [103], [106].  While the 

active site of Aurora B and C are identical, there are three amino acid variants in 

Aurora A [107].   

Aurora A is expressed throughout all phases of the cell cycle but only 

becomes highly expressed during G2 phase.  Aurora A localizes to the 

centrosome after centrosome duplication in S phase and the protein remains 

localized to the centrosome throughout mitosis.  Although Aurora A is expressed 

in all mitotic phases, it has only been well studied during the early mitotic phases 

such as, prophase and metaphase.   

Depletion of Aurora A in Xenopus oocytes resulted in delayed mitotic entry 

through delayed activation of Cdk1 [108].  In contrast, down regulation of Aurora 
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A expression by RNAi in HeLa cells did not effect mitotic entry but rather resulted 

in a mitotic arrest with cells containing monopolar spindles [102], [109], [110].  

These conflicting reports can be explained by a regulatory feedback loop 

between Aurora A, Polo-like kinase 1 (Plk1), Bora, and Cdk1 [111].  Individual 

inhibition of Aurora A or Plk1 did not effect Cdk1 activation while dual inhibition of 

both kinases delayed activation of Cdk1 resulting in delayed mitotic entry [112].  

Plk1 is activated by phosphorylation at T210 within its activation loop [113]-[116].  

When unphosphorylated the Polo-box domain (PDB) binds to the kinase domain, 

preventing its catalytic activity [116], [117].  During G2 phase, Bora binds to Plk1 

and removes the autoinhibition of the PDB [118].  It has been suggested that 

interaction with Plk1 first requires a priming phosphorylation by Cdk1 [119].  

Aurora A then phosphorylates Plk1 at T210 leading to full activation of the protein 

[118], [120].  Once active, Plk1 regulates Cdk1 activation by 

phosphorylating/activating Cdc25 and downregulating Wee1 [113], [121], [122].   

During G2 phase, Aurora A is activated by autophosphorylation after 

interaction with protein cofactors.  One such partner is the LIM-domain containing 

protein Ajuba, which is involved in the early activation of Aurora A at the 

centrosomes [123].  Bora has also been shown to interact with Aurora A, 

resulting in Aurora A autophosphorylation [124].  To date, nine Aurora A protein 

cofactors have been identified [125]. 

During prophase, Aurora A is involved in centrosome separation and 

maturation.  Introduction of dominant negative Aurora A induces monopolar 

spindle formation through a defect in centrosome separation [66], [126].  It has 
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been suggested that Aurora A is not necessary for initial centrosome separation, 

but is necessary to maintain centrosome separation prior to the mitotic spindle 

formation [67], [127].   

Aurora A has been implicated in centrosome maturation as RNAi silencing 

of Aurora A results in defects in centrosome maturation including reduced 

microtubule length and organization [67], [69], [128]-[130].  Additionally, absence 

of Aurora A results in ~60% reduction in the mass of spindle microtubules and 

aberrant spindle morphology [67], [78], [131].  Centrosome maturation occurs 

through recruitment of proteins involved in microtubule nucleation.  The 

microtubule organization center (MTOC) at the centrosome is the site of 

microtubule nucleation to form the mitotic spindle.  Within the MTOC, the γ-

tubulin ring complex (γTuRC) forms a cap at the minus end of the microtubule 

and allows for nucleation at the plus end of the microtubule to produce the mitotic 

spindle.  Aurora A contributes to centrosome maturation by recruiting proteins 

involved in microtubule nucleation to the centrosome.   These proteins include: 

members of the γTuRC such as γ-tubulin, centrosomin, XMAP215, SPD-2, Lats2, 

NDEL1, and TACC [68]-[70], [131]-[134].   

Aurora A and centrosomin (CNN) interact in the cytoplasm and are 

dependent on one another for their localization to the centrosome [67], [68].  In 

Drosopohila CNN plays a role in microtubule nucleation at the centrosome by its 

recruitment of γ-tubulin.  Through phosphorylation, Aurora A is able to regulate 

Lats2 localization to the centrosome [133].  Lats2 has also been shown to recruit 
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γ-tubulin to the centrosome [135].  Aurora A interaction with CNN and Lats2, 

regulates centrosome maturation via recruitment of γ-tubulin to the centrosome. 

Aurora A phosphorylates NDEL1 which recruits TACC3 to the centrosome 

[134].  In Drosophila, Aurora A directly interacts with D-TACC which functions to 

nucleate and stabilize microtubules [136].  In C. elegans, Aurora A interacts with 

SPD-2 which is involved in recruiting γ-tubulin and Zyg-9 to the centrosome [70].   

In addition to centrosome maturation, it has been suggested that Aurora A 

may regulate bipolar spindle assembly through interaction with motor proteins.  

During interphase the motor binding protein TPX2 is maintained in the nucleus by 

importin α/β.  During mitosis, a gradient of Ran GTP interacts with importin α/β, 

allowing TPX2 to then interact with centrosomal Aurora (Fig. 4).  This interaction 

leads to activation of Aurora A through autophosphorylation and its translocation 

to the spindle microtubules [68], [69], [101], [102], [123].  At the mitotic spindle, 

Aurora A interacts with a Ran-dependent protein complex, consisting of TPX2, 

XMAP215, Eg5, and HURP, to form the bipolar mitotic spindle [137].  Aurora A 

kinase activity is necessary for the formation of this complex.  
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Figure 4: Regulation of Aurora-A activity by Ran–GTP and TPX2.  

As cells enter mitosis, targeting protein for XKLP2 (TPX2) is in a complex with 
importins α or β. A gradient of Ran–GTP surrounding chromosomes (lower right) 
promotes the release of TPX2 from the importin. TPX2 then binds to Aurora A, 
which has been kept in an inactive state by protein phosphatase 1 γ (PP1γ). 
TPX2 interferes with PP1 action, enabling the kinase to autophosphorylate and 
activate itself and other substrates, including TPX2. TPX2 then also targets the 
kinase to microtubules proximal to the centrosome. Note that the kinase might 
not require continued association with TPX2 to phosphorylate other substrates. 

 

Source: M. Carmena and W. C. Earnshaw, “The cellular geography of aurora 
kinases,” Nature reviews. Molecular cell biology, vol. 4, no. 11, pp. 842–854, 
Nov. 2003. 
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Aurora A phosphorylates the kinesin, Eg5, which may activate the protein 

[66], [139].  Aurora A also regulates the spindle associated protein, HURP, via 

phosphorylation [140].  When hypophosphorylated, the C-terminal region of 

HURP binds to its N-terminal microtubule binding domain, inhibiting its interaction 

with microtubules.  Phosphorylation in the C-terminal region prevents its 

interaction with the microtubule binding domain.  Aurora A phosphorylates the 

kinesin MCAK at two sites, S196 and S719, to promote proper pole focusing and 

bipolar spindle formation [141]. 

Aurora A is activated by phosphorylation at T288, which lies within the 

activation loop of the protein [126], [127], [130].  Although PKA has been shown 

to phosphorylate Aurora A at T288 in vivo it is widely accepted that Aurora A 

activation occurs through autophosphorylation after interaction with a variety of 

protein cofactors [127], [142].  The most studied protein cofactor of Aurora A is 

TPX2.   Binding of TPX2 induces autophosphorylation of Aurora A, enhancing 

Aurora A activity [131], [132], [143].  Additionally, binding of TPX2 induces a 

conformational change which orients the phosphate residue at T288 inward 

thereby preventing dephosphorylation by protein phosphatase 1 and allowing 

Aurora A to retain full activity [97], [103], [131], [144]-[149].  

In addition to interaction with protein cofactors, a negative regulator of 

Aurora A has been recently identified, the Aurora A kinase interacting protein 

(AIP).  AIP is a nuclear protein and specifically interacts with Aurora A in vivo.  

Co-expression of AIP and Aurora A results in the downregulation of Aurora A 

expression through proteasome-dependent degradation [139], [150]. 
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Aurora A concentration is maintained throughout all stages of mitosis but 

is reduced upon mitotic exit through proteasomal degradation.  Aurora A contains 

a N-terminal A-box and a C-terminal D-box and is degraded through the APC/C-

ubiquitin-proteasome pathway [128]-[130], [151], [152].  Phosphorylation of S51 

within the A-box prevents degradation of the protein by Cdh1 activated APC/C 

[127], [130], [153].  Protein phosphatase 2A dephosphorylates S51 at the end of 

mitosis and induces degradation of the protein [142], [154].  Constitutive 

phosphorylation at this site has been attributed to overexpression of Aurora A in 

cancer cells [143]. 

The gene encoding Aurora A is located on the 20q13 chromosome and is 

frequently overexpressed in many cancer types including breast, colorectal, 

bladder, lung, pancreatic, prostate, hepatocellular, and esophageal squamous 

cell carcinoma with poor prognosis [97], [103], [144]-[149], [155]-[158].  Though 

not considered a strong inducer of cell transformation, Aurora A overexpression 

was able to transform rat fibroblast cells [103], [159].  Aurora A is considered an 

oncogene, but the exact mechanism of Aurora A contribution to a malignant 

phenotype is not fully understood.  Overexpression of Aurora A induces 

aneuploidy and genetic instability, which are the leading causes of tumor 

development [160].  Aurora A overexpression overrides G2 arrest induced by 

DNA damage and interferes with the spindle assembly checkpoint [160], [161].  
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1.2.2. LIM Kinase 1 

LIMK1 has been shown to play an important role in the mitotic process.  

One major contribution of LIMK1 to the mitotic process is through its regulation of 

the actin cytoskeleton via Cofilin phosphorylation.  Although not widely studied, 

LIMK1 may also contribute to the mitotic process through the regulation of 

microtubule polymerization. 

During mitosis the subcellular localization of LIMK1 is regulated by 

phosphorylation of T508.  Phospho-LIMK1 (pT508) colocalizes with γ-tubulin from 

prophase throughout telophase where it additionally localizes to the cleavage 

furrow/contractile ring during cytokinesis [151], [152].  Additionally, LIMK1 

colocalized with F-actin at the cleavage furrow, suggesting it plays a role in 

cytokinesis via actin cytoskeleton remodeling [151].  LIMK1 is involved in mitotic 

progression, as LIMK1 knockdown arrested cells at G2-M phase [72]. 

Upon entry into mitosis, LIMK1 becomes hyperphosphorylated at a site 

other than T508 [150].  The specific site of phosphorylation was not identified but 

was found to lie outside of the kinase domain.  Additionally, both ROCK and 

PAK, interphase activators of LIMK1, were not responsible for the mitotic 

phosphorylation of LIMK1.  Treatment with the Cdk inhibitor roscovitine did 

reduce phospho-LIMK1 levels, suggesting Cdk1 may have a role in the 

phosphorylation of LIMK1 [162].  Although the proteins responsible for the mitotic 

activation of LIMK1 have yet to be identified, a mitotic protein that inhibits LIMK1 

activity has been identified.  Lats1, a member of the family of large tumor 
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suppressor proteins, has been shown to interact with and inhibit LIMK1 activity 

[154].  Interaction with Lats1 is able to suppress the formation of multinucleated 

cells induced by LIMK1 overexpression. 

The primary known function of LIMK1 during the early stages of mitosis is 

regulation of the actin cytoskeleton via Cofilin phosphorylation.  LIMK1 

phosphorylation of Cofilin is necessary for the mitotic spindle to maintain proper 

orientation within the cell [163].  siRNA knockdown of LIMK1 caused 

mislocalization of Cofilin to the cell cortex, suggesting that cortical actin maintains 

the orientation of the mitotic spindle.  Knockdown of LIMK1 also leads to a mitotic 

delay, which may be mediated through low levels of phospho-Cofilin since 

overexpression of a non-phosphorylatable Cofilin (S3A) mutant induced a similar 

phenotype.  

In addition to the regulation of actin dynamics during mitosis, LIMK1 may 

also participate in the regulation of microtubule dynamics.  LIMK1 was shown to 

interact, via the PDZ domain, with tubulin in endothelial cells [164].  This 

interaction was shown to be necessary for thrombin induced actin polymerization 

and microtubule depolymerization. LIMK1 also phosphorylates p25α/tubulin 

polymerizing promoting protein (TPPP), preventing its ability to polymerize 

tubulin [153].  LIMK1 overexpression has been associated with abnormal mitotic 

spindle structures and multiple centrosomes [45].  LIMK1 knockdown resulted in 

centrosome defocusing and multipolar spindles [165].  Together these studies 

suggest LIMK1 may play a role in mitotic microtubule disassembly.  
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Overexpression of LIMK1 induces cytokinesis defects leading to the 

formation of multinucleated cells [150].  It is likely that these cytokinesis defects 

occur through enhanced F-actin accumulation as a result of excessive Cofilin 

phosphorylation [150].  LIMK1 catalytic activity is necessary for the formation of 

multinucleate cells as kinase dead LIMK1 did not alter cytokinesis.  Additionally, 

co-expression of the LIMK1 inhibitor, Lats1, and LIMK1 prevented the 

multinuclear cell  phenotype [154].  Overexpression of a phosphatase inactive 

SSH1 mutant also resulted in accumulation of F-actin and multinucleated cells 

[166]. 

1.2.3 Cofilin 

Studies have shown that the function of Cofilin is necessary for mitosis.  

Regulation of Cofilin phosphorylation is critical for proper mitotic progression and 

cytokinesis.  During mitosis, LIMK1 phosphorylates Cofilin during prometaphase 

and metaphase [150], [166].  As cells progress into anaphase and telophase, 

Cofilin is dephosphorylated by SSH-1 phosphatase [150], [166].  In early mitotic 

stages, Cofilin is localized to the cytoplasm but then localizes to the cleavage 

furrow in late mitosis [150].   

Regulation of Cofilin phosphorylation is the key to its function during each 

phase of mitosis.  In early mitosis, phosphorylation of Cofilin by LIMK1 is 

necessary for proper orientation of the mitotic spindle [163].  Additionally, Cofilin 

knockdown results in spindle oscillation and as shown in studies in Xenopus 

laevis, dephosphorylation of Cofilin is necessary for spindle assembly [167], 
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[168].  Cofilin may regulate mitotic spindle orientation through interaction with 

cortical actin.  Altered actin distribution during mitosis alters the cortical rigidity 

leading to increased astral microtubule numbers and decreased centrosome 

integrity [165].  Mitotic accumulation of F-actin has been attributed to a delay in 

mitosis [169].   

Cofilin has also been implicated in the formation and constriction of the 

contractile ring during cytokinesis.  Actin depolymerization by Cofilin is necessary 

for actomyosin ring constriction [170].  Overexpression of LIMK1 blocked 

cytokinesis and increased the number of multinucleated cells and F-actin 

accumulation [150], [154].  Inhibition of LIMK1 activity does not affect cytokinesis 

suggesting that the phospho-regulation of Cofilin is critical for proper cell division 

during cytokinesis [150], [154].  Similarly, loss of Cofilin results in excessive F-

actin accumulation at the contractile ring [167], [171]-[174].  
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CHAPTER TWO: HYPOTHESIS AND SPECIFIC AIMS 

Abnormal processes during cell cycle progression can lead to incorrect 

mitotic spindle positioning, chromosomal instability, and formation of 

multinucleated cells, all of which are cancer phenotypes.  Proper maintenance of 

interphase and mitosis by cell cycle regulatory proteins is essential for prevention 

of abnormal cell division and accumulation of genetic abnormalities.  LIMK1 has 

been shown to play an important role in cell cycle regulation.  LIMK1 has been 

found to be overexpressed in a variety of advanced cancer types including 

prostate, lung, advanced breast, and pancreatic cancer.  Studies from our 

laboratory indicate that LIMK1 expression needs to be tightly regulated for proper 

progression of G1/S and G2/M phases.  Our studies showed that increased 

expression of LIMK1 promoted accumulation of chromosomal abnormalities and 

induced transient G1/S phase arrest.  However, the exact mechanism whereby 

LIMK1 exerts its regulatory role in G1/S and mitosis is not clear.  We hypothesize 

that LIMK1 participates in the regulation of cell cycle progression, specifically in 

G1 and mitosis.  In this project, we plan to define the role of LIMK1 in G1/S 

phase and mitotic progression by pursuing the following specific aims. 

 

Aim #1.  Examine the role of LIMK1 on G1/S Phase Progression. 

In this aim we will examine how LIMK1 expression affects the subcellular 

localization and expression of G1 phase regulatory proteins. 
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Aim #2.  Examine the role of LIMK1 during mitosis. 

In this aim we will identify mitotic kinases that interact with LIMK1 during 

mitosis.  We will also examine how this interaction affects mitotic progression. 

 

Aim #3.  Examine the involvement of LIMK1 substrates on the mitotic 

process. 

In this aim we will identify kinases responsible for the phosphorylation of 

Cofilin during mitosis.  We will also examine how Cofilin phosphorylation is 

regulated during mitosis. 
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CHAPTER THREE: METHODOLOGY 

3.1 Cell Culture and Cell Cycle Enrichment 

RWPE-1 cells were maintained in keratinocyte media supplemented with 

bovine pituitary extract and EGF (Gibco), at 37°C and 5% CO2.  At ~75% 

confluency the cells were trypsinized and incubated at 37°C for 8 min.  Cells 

were transferred to a tube containing 2% FBS in PBS to inactivate the trypsin.  

Cells were centrifuged at 125 x g for 6 min at 4°C, then resuspended in complete 

media (1:3) and plated. 

PC3 cells were maintained in F-12 HAM (Sigma) with 10% FBS (Atlanta 

Biologicals) and 1% antibiotic/antimycotic (Gibco) at 37°C and 5% CO2.  At ~75% 

confluency cells were trypsinized for 30 seconds at room temperature then 

incubated at 37°C without trypsin for 10 min.  Cells were resuspended in 

complete media (1:3) and plated. 

P69 and M12 cells were maintained in RPMI-1640 (Sigma) containing 

EGF (10ng/ml) (BD), dexamethasone (0.1uM) (Sigma), Gentamycin (50μg/ml) 

(Gibco), ITS (Insulin 5μg/ml, Transferrin 5μg/ml, Selenium 5ng/ml) (Fisher).  At 

~75% confluency cells were trypsinized for 5 min at room temperature then 

trypsin was removed and the cells were incubated at 37°C without trypsin for 15 

min.  Cells were resuspended in complete media (1:3 or 1:5) containing 5% FBS 

and plated.  The next day the cells were washed once with PBS and incubated in 

complete media without FBS. 
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NIH-3T3 and MCF7 cells were maintained in DMEM (Gibco) containing 

10% FBS and 1% antibiotic/antimycotic.  At ~75% confluency cells were 

trypsinized for 30 seconds at room temperature then cells were incubated at 

37°C without trypsin for 10 min.  Cells were resuspended in fresh media (1:5) 

and plated. 

3.2 Cell Cycle Enrichment  

PC3 cells were synchronized to G0 by serum starvation.  Cells (5x105) 

were seeded onto a 10 cm dish in complete media.  24 hrs later the media was 

removed and cells were washed three times with PBS and incubated with F12-

HAM media without FBS for 48 hrs.  Cells were released from G0 by the addition 

of EGF (10ng/ml) to the media and harvested at specific time points.  G0 

enrichment was confirmed by flow cytometry as described below.  

M12, 3T3, and PC3 cells were synchronized to G2/M by treatment with 

nocodazole (Sigma).  Cells were seeded in complete media and 24 hrs later 

were treated with nocodazole at a concentration of 80ng/ml (M12), 600ng/ml 

(3T3), or 2nM (PC3) for 24 hrs.  To enrich cells at metaphase, media was 

changed to complete media without nocodazole and cells were incubated at 

37°C for 35 min.  For some experiments, nocodazole treated cells were 

incubated in complete media without nocodazole and harvested at 0, 30, and 60 

min.  For inhibitor treatments, cells were treated with MLN8237 (100nM), BMS-5 

(5µM), BMS-5 (5µM) and MLN8237 (100nM), or DMSO (Vehicle) and nocodazole 

for 24 hr.  Cells were washed to remove nocodazole and released into mitosis for 
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30 or 60 mins with fresh media containing either MLN8237 (100nM), BMS-5 

(5µM), BMS-5 (5µM) and MLN8237 (100nM), or DMSO. 

3.3 Transfection 

All plasmid DNA used in transfections was extracted using the PureYield 

Plasmid Miniprep System (Promega).  3mL of LB broth containing the 

appropriate antibiotic (30mg/mL kanamycin or 10mg/mL ampicillin) was 

inoculated with 20μl glycerol stock of the appropriate plasmid DNA construct.  

Cultures were incubated at 37°C, shaking at 250 rpm, for 16-18 hrs.  Bacterial 

cultures were centrifuged at 2000 rpm for 3 mins and pellets were resuspended 

in 600μl dH20 and lysed with 100μl Cell Lysis Buffer.  The lysis buffer was 

neutralized with 350μl of Neutralization Solution and centrifuged at 12,000 rpm 

for 3 min.  The supernatant containing plasmid DNA was transferred to a 

PureYield Minicolumn and centrifuged at 12,000 rpm for 1 min.  The column was 

washed with 200μl Endotoxin Removal Wash and spun at 12,000 rpm for 1 min.  

The column was washed with 400μl Column Wash Solution and centrifuged at 

12,000 rpm for 1 min.  The DNA was eluted with 50μl sterile dH2O in aseptic 

condition and spun at 12,000 rpm for 1 min.  DNA purity and yield was 

determined using a nanodrop spectrophotometer and confirmed by restriction 

enzyme digestion and DNA gel electrophoresis.  All plasmid DNA samples were 

stored at 4°C. 

For ectopic expression of LIMK1, RWPE-1 cells were seeded onto a 6-

well (3.5x104) or 10 cm dish (2.4x105).  The next day, p3XFlag-CMV-14 (vector 
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only) or LIMK1-p3XFlag-CMV-14 plasmid DNA constructs (2µg or 12µg) were 

incubated with Fugene HD (Promega) in OPTI-MEM serum free medium (Life 

Technologies) at a ratio of 1:2 for 20 min at room temperature.  The mixture was 

added drop-wise to the dishes and the cells were harvested after 24 hrs.  

Expression of Flag-tagged LIMK1 was validated by immunoblotting as described 

below with anti-Flag antibodies. 

For inhibition of LIMK1 expression in G0 synchronized PC3 cells, cells 

were seeded onto a 6-well (3.5x104) or 10cm dish (1.05x105).  The next day, 

DNA contructs (2µg or 12µg) of LIMK1 shRNA or scrambled shRNA were 

incubated for 20 min at room temperature in OPTI-MEM with either Fugene HD 

at a ratio of 1:4 or X-tremeGENE HP (Roche) at a ratio of 1:1.  The mixture was 

then added drop-wise to the cells.  24 hrs later the cells were washed three times 

with PBS and incubated with HAM-F12 without FBS for 48 hrs to enrich the cells 

to G0.  Reduced expression of LIMK1 was validated by immunoblotting as 

described below with anti-LIMK1 antibodies. 

For LIMK1 overexpression experiments in P69 cells, cells were seeded 

onto a 6-well dish (3.5x104).  The next day, cells were transfected with p3XFlag-

CMV-14 (vector only) or LIMK1-p3XFlag-CMV-14 plasmid DNA constructs.  

Plasmid DNA (2µg) was incubated with X-tremeGENE HP in OPTI-MEM at a 

ratio of 1:1 at room temperature for 20 min.  The mixture was added drop-wise to 

the cells and cells were incubated for 24 hrs.  Expression of Flag-tagged LIMK1 

was detected by immunoblotting as described below with anti-Flag antibodies. 
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For Cofilin-RFP expression, M12 cells (3x104) were seeded onto poly-L-

lysine coated coverslips.  The next day, cells were transfected with Cofilin-RFP 

or CofilinS3A/S8A/T25A-RFP plasmid DNA.  DNA constructs (200ng) were incubated 

with X-tremeGENE HP in OPTI-MEM at a ratio of 1:1 at room temperature for 20 

min, added to the cells and cells were incubated at 30°C.  After 48 hrs, cells were 

fixed and stained as described below.  The expression/localization of Cofilin-RFP 

constructs was visualized by confocal microscopy. 

3.4 LIMK1 Inhibition with BMS-5 

PC3 cells (5x105) were seeded onto a 10cm dish and treated with BMS-5 

(5µM) for 24 hrs.  LIMK1 inhibition was confirmed by immunoblotting as 

described below with anti-pS3-Cofilin antibodies. 

3.5 Nuclear/Cytoplasmic Protein Extraction 

Nuclear and cytoplasmic proteins were isolated from G1 released PC3 

cells using the NE-PER kit (Pierce).  After G0 enrichment and EGF release as 

described above, cells were trypsinized and washed three times in PBS and 

centrifuged at 1000 rpm for 10 min.  Cell pellets were resuspended in CERI 

buffer at a volume 10 times greater than the volume of the cell pellet and 

incubated on ice for 10 min.  CERII buffer was added at 1/20 of the volume of 

CERI buffer, samples were vortexed and incubated on ice for 1 min.  Nuclei was 

pelleted by centrifugation at 12,000 rpm for 5 min at 4°C.  The supernatant, 

containing cytoplasmic proteins, was transferred to a chilled microcentrifuge 

tube.  The pelleted nuclei were resuspended in NERI buffer at a volume 2 times 
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greater than the original cell pellet volume.  The sample was then incubated on 

ice for 40 min while, vortexing every 10 min.  The lysed nuclei were pelleted by 

centrifugation at 12,000 rpm for 10 min at 4°C and the supernatant containing 

nuclear protein was transferred to a chilled microcentrifuge tube.  Protein 

concentration was determined by Bradford assay.  Nuclear (20µg) and 

cytoplasmic (50µg) proteins were diluted in sample buffer and denatured by 

boiling at 95°C for 5 min.  All proteins were stored in aliquots -80°C or -20°C after 

boiling, prior to using them for immunoblotting.  Protein aliquots were 

electrophoresed, transferred to PVDF membrane, and immunoblotted as 

described below. 

3.6 Whole Cell Protein Extraction and Immunoblotting  

Whole cell lysate was prepared from pelleted cell lines by resuspension in 

RIPA lysis buffer (5mM Tris, pH 7.5, 2mM EDTA, 150mM NaCl, 1% Nonidet P-

40, 1mM phenylmethylsulfonylfluoride, 1mM sodium orthovanadate, 1mM sodium 

fluoride, 40mM β-glycerophosphate, 1μg/mL aprotinin, 1μg/mL leupeptin) and 

lysed by 6 freeze-thaw cycles in a dry ice/ethanol bath and incubation at 37°C.  

Samples were clarified by centrifugation at 12,000 rpm for 15 min at 4°C.  Protein 

concentration was quantified by Bradford assay.  50μg whole cell extract was 

diluted in sample buffer (240mM Tris, pH6.8, 5% β-mercaptoethanol, 8% SDS, 

40% Glycerol, 0.04% bromophenol blue) and denatured by boiling at 95°C for 5 

min.  Proteins were separated in a 12% SDS-PAGE gel transferred to a PVDF 

membrane (Pall).  Separated proteins were visualized on the membrane by 



29 

 

staining with India ink and the membrane was blocked for 90 min with 5% milk in 

TBS-T (20mM Tris base, 137mM NaCl, 0.1% Tween, pH 7.6).  The membrane 

was aligned to SURF blotter slots and primary antibodies (Table 1) were diluted 

in milk and incubated on the membrane for either 1 hr at room temperature or 

overnight at 4°C.  Unbound primary antibodies were removed by washing three 

times with milk for 10 min at room temperature.  Horseradish peroxidase 

conjugated secondary antibodies (Table 2) were diluted in milk and incubated 

with bound primary antibodies on the membrane for 45 min at room temperature.  

Unbound secondary antibodies were removed by washing in TBS-T for 5 min at 

room temperature, for seven times with the final wash in TBS.  Proteins were 

visualized using a chemiluminiscence ECl kit (Pierce) or Immun-Star WesternC 

kit (Biorad).  
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Table 1. Immunoblotting Primary Antibodies 

Antigen Company Catalog No. Host Dilution Blotting 
Condition 

Aur-A Abcam ab1324 Mouse 1:100 o/n; 4°C 

Aur-A(pT288) Cell Signaling 3079 Rabbit 1:100 o/n; 4°C 
Cdc25A Santa Cruz sc-97 Rabbit 1:100 o/n; 4°C 
Cdk2 Santa Cruz sc-6248 Mouse 1:100 o/n; 4°C 
Cdk4 Santa Cruz sc-260 Rabbit 1:100 o/n; 4°C 
Cofilin Novus NBP1-

19828 
Rabbit 1:1000 o/n; 4°C 

Cofilin Cytoskeleton PA5-19727 Rabbit 1:1000 o/n; 4°C 
Cofilin(pS3) Cell Signaling 3313 Rabbit 1:100 o/n; 4°C 
Cyclin D1 Neomarker MS-210-P1 Mouse 1:100 o/n; 4°C 
Flag Sigma F1804 Mouse 1:1000 1hr; RT 
GAPDH Sigma G8795 Mouse 1:1000 1hr; RT 
LIMK1 BD Transduction 611748 Mouse 1:100 o/n; 4°C 
LIMK1 Santa Cruz sc-5576 Rabbit 1:1000 o/n; 4°C 
LIMK1 Millipore MAB10750 Rat 1:800 o/n; 4°C 
LIMK1(pT508)/ 
LIMK2(pT505) 

Cell Signaling 3841 Rabbit 1:100 o/n; 4°C 

p27 Santa Cruz sc-528 Rabbit 1:100 o/n; 4°C 
p27(pS10) Santa Cruz sc-12939 Rabbit 1:100 o/n; 4°C 
p27(pY88) ---- --- Rabbit 1:1000 o/n; 4°C 
p57 Santa Cruz Sc8298 Rabbit 1:100 o/n; 4°C 
γ-tubulin Sigma T3559 Rabbit 1:500 1hr; RT 
SSH-1 Cell Signaling 13578 Rabbit 1:1000 o/n; 4°C 
α-tubulin Sigma T9206 Mouse 1:1000 1hr; RT 

 

Table 2. Immunoblotting Secondary Antibodies 

Antigen Company Catalog No. Host Dilution 

Rabbit IgG Jackson 
Laboratories 

111-035-003 Goat 1:5000 

Mouse IgG Jackson 
Laboratories 

115-035-003 Goat 1:5000 

Rat IgG Jackson 
Laboratories 

112-035-003 Goat 1:5000 
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3.7 Production of a p27Kip1 phospho-Y88 antibody 

An antibody specific for p27Kip1-pY88 was produced by GenScript using the 

peptide sequence EF(pTyr)YRPPRPPKGAC.  The specificity of the antibody was 

confirmed by a competition assay with the peptide.  Antibodies at 1:10,000 

dilution were incubated with 1, 2, 5, 10x molar ratio of the peptide, in milk for 1 hr 

at 4°C.  This mixture was used for incubation with total proteins (50μg) of PC-3 

cell lyates immobilized on a PVDF membrane overnight at 4°C.  The immunoblot 

was completed as described above.   

3.8 Plasmid DNA and shRNA Constructs 

The coding sequence of human LIMK1 was previously cloned into the 

p3XFlag-CMV-14 (Sigma) and pET-50b(+) vectors (Novagen).  A kinase domain 

only construct (nucleotides 774-1941) was generated by PCR amplification using 

the primers listed in Table 4 and cloned into the p3XFlag-CMV-14 and pET-

30Ek/Lic (Novagen) vectors.  A LIM domain only construct (nucleotides 1-411) 

was generated by PCR amplification using the primers listed in Table 4 and 

cloned into p3XFlag-CMV-14.  The coding sequence of human Aur-A was 

previously cloned into the pET-30Ek/LIC vector.  The coding sequence of human 

cofilin was previously cloned into the pET-30Ek/LIC vector [71].  This sequence 

was PCR amplified using primers listed in Table 4 and cloned into the pCMV6-

AC-RFP vector.  The LIMK1S307A and LIMK1T508A non-phosphorylatable mutants, 

Aur-AK162M kinase dead mutant, and CofilinS3A, CofilinS3A/S8A, and 

CofilinS3A/S8A/T25A non-phosphorylatable mutants were all generated by site-
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directed mutagenesis using the QuikChange II XL Site-Directed Mutagenesis Kit 

(Agilent Technologies).  Specific primers for each construct were created 

following the manufacturer’s guidelines: between 25-45 base length, Tm ≥78°C, 

and G/C content ≥40%.  The PCR reactions were carried out following the 

manufacturers protocol.  25ng template DNA and 125ng of each primer were 

used (Table 4).  PCR cycling parameters are shown in Table 3. 

 

Table 3. Site-Directed Mutagenesis PCR Cycling Parameters 

Segment Cycles Temperature Time 

1 1 95°C 1 minute 
2 18 95°C 50 seconds 

60°C 50 seconds 
68°C 1 minute/kb of 

plasmid length 
3 1 68°C 7 minutes 

 

To reduce the expression of LIMK1, a HuSH shRNA construct against 

LIMK1 was cloned into the pGFP-V-RS vector (Origene Techonologies) was 

used.  Four different shRNA constructs with LIMK1 shRNAs directed against a 29 

base sequence within the kinase domain of LIMK1 were screened and the 

construct with the highest reduction in LIMK1 expression was used in 

subsequent experiments (AAGGACAAGAGGCTCAACTTCATCACTGA).  A 

scrambled shRNA construct was also used to monitor produced to control for off 

target effects of transfection.  
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Table 4. Plasmid DNA Constructs and Primers 

Sequence Construct Vector Mutation 
F: 5’-GGCTCAACTTCATCGGTGAGTACATCAAGGG 
R: 5’-CCCTTGATGTACTCACCGATGAAGTTGAGCC 

LIMK1 p3XFlag-CMV-14 N/A 

F: 5’-AAGCTTATGGCCCCAGGTGTGGCTGTCTCT 
R: 5’-AGAGAAGCCACACCTGGGGCCATAAGCTT 

LIMK1K p3XFlag-CMV-14 Kinase domain only 

F: 5’-ATCGATATGAGGTTGACGCTACTTTG 
R: 5’-TCTAGAGGTGACGGTGTGGGGCAG 

LIMK1L p3XFlag-CMV-14 Lim domains only 

F: 5’-CGGGGAGCCCAGTGCGCCAGCGCCCGGAG 
R: 5’-CTCCGGGCGCTGGCGCACTGGGCTCCCCG 

LIMK1S307A p3XFlag-CMV-14 Non-phos. at S307 

F: 5’-GCAAGAAGCGCTACGCCGTGGTGGGCAAC 
R: 5’-GTTGCCCACCACGGCGTAGCGCTTCTTGC 

LIMK1T508A p3XFlag-CMV-14 Non-phos. at T508 

F: 5’- AAGCTTATGGCCCCAGGTGTGGCTGTCTCT 
R: 5’- AGAGAAGCCACACCTGGGGCCATAAGCTT 

LIMK1K pET-30 
 

Kinase domain only 

F: 5’- GGCTCAACTTCATCGGTGAGTACATCAAGGG 
R: 5’- CCCTTGATGTACTCACCGATGAAGTTGAGCC 

LIMK1 pET50b(+) N/A 

F: 5’-CGGGGAGCCCAGTGCGCCAGCGCCCGGAG 
R: 5’-CTCCGGGCGCTGGCGCACTGGGCTCCCCG 

LIMK1S307A pET50b(+) Non-phos. at S307 

F: 5’-GCAAGAAGCGCTACGCCGTGGTGGGCAAC 
R: 5’-GTTGCCCACCACGGCGTAGCGCTTCTTGC 

LIMK1T508A pET50b(+) Non-phos. at T508 

F: 5’-GACGACGACAAGATGGACCGATCTAAAGAAAACTGC 
R: 5’-GAGGAGAAGCCCGGTCTAAGACTGTTTGCTAGCTG 

Aur-A pET-30 N/A 

F: 5’-GTTTATTCTGGCTCTTATGGTGTTATTTAAAGC 
R: 5’-GCTTTAAATAACACCATAAGAGCCAGAATAAAC 

Aur-AK162M pET-30 Kinase dead 

F: 5’-GACGACGACAAGATGGCCTCCGGTGTGGCTG 
R:5’GAGGAGAAGCCCGGTTCACAAAGGCTTGCCC 

Cofilin pET-30 N/A 

F: 5’-ACAGCCACACCGGCGGCCATGAATTCG 
R: 5’-CGAATTCATGGCCGCCGGTGTGGCTGT 

CofilinS3A pET-30 Non-phos. at S3 

F: 5’-GGTGTGGCTGTCCCAGATGGTGTCATCAAGTG 
R: 5’-CACCTTGATGACACCATCTGGGACAGCCACACC 

CofilinS3A/S8A pET-30 Non-phos. at S3 and S8 

F: 5’-GGTGCGTAAGTCTTCACCACCAGAGGAGG 
R: 5’-CCTCCTCTGGTGGTGAAGACTTACGCACC 

CofilinS3A/S8A/T25A pET-30 Non-phos. at S3, S8, and 
T25 

 5’-AAGAAGGAGATATACATATGGAGACCAAGGAGAGCAAG Cofilin90-166 pET-30 C-terminal truncation 

F: 5’-AAGCTTATGGCCTCCGGTGTGGCTG 
R: 5’CTCGAGACACAAAGGCTTGCCCTCCA 

Cofilin pCMV6-AC-RFP N/A 

F: 5’-TGCGTAAGTCTTCAGCGCCAGAGGAGG 
R: 5’-CCTCCTCTGGCGCTGAAGACTTACGCA 

CofilinS3A/S8A/T25A pCMV6-AC-RFP Non-phos. at S3, S8, and 
T25 
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3.9 Recombinant Protein Expression and Purification 

LIMK1, Aur-A, and Cofilin constructs were all expressed by transforming 

BL21-CodonPlus (DE3) RIPL cells.  Protein expression in transformed cells was 

induced with 1mM IPTG at 20°C, overnight.  Recombinant Aur-A and Cofilin 

expressing bacterial cultures were then spun down at 2000 rpm for 20 min.  The 

bacteria pellet was resuspended in PBS containing Complete ULTRA Protease 

Inhibitor Cocktail Tablets EDTA-free (Roche) and lysed by sonication.  The 

sample was clarified by centrifugation at 12,000 rpm for 20 min.  The 

recombinant proteins were bound to a Talon bead cobalt affinity column 

(Clontech) and washed with wash buffer (50mM Sodium Phosphate, 300mM 

NaCl, 10% Glycerol) to remove unbound protein.  Proteins were eluted with a 

700mM imidazole (Fisher) linear gradient.  The proteins were concentrated and 

the buffer was changed to storage buffer (50mM Tris, pH7.5, 150mM NaCl, 

250µM DTT, 15% Glycerol for Aur-A; 50mM HEPES, 150mM NaCl, 5mM MgCl2, 

5mM MnCl2; 15% Glycerol for Cofilin) with Pierce Concentrators 9K MWCO 

columns (Pierce).   

Expression of recombinant LIMK1 was induced with 1mM IPTG at 20°C, 

overnight.  Protein was isolated using a Protein Refolding kit (Novagen).  

Inclusion bodies were solubilized in 1x solubilization buffer (50mM CAPS, pH 

11.0, 0.3% N-lauroylscarcosine, 1mM DTT) at room temperature for 15 min.  

Proteins were clarified by centrifugation at 10,000x g for 10 min at room 

temperature and refolded in dialysis buffer (1M Tris-HCL, pH 8.5) with 0.1 mM 
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DTT for 3 hrs at 4°C.  DTT was removed by additional dialysis using dialysis 

buffer without DTT for 3 hrs at 4°C.  Next, the protein was dialyzed in dialysis 

buffer with 1mM reduced glutathione and 0.2mM oxidized glutathione, overnight 

at 4°C.  Proteins were concentrated and buffer was changed to storage buffer 

(50mM HEPES, 150mM NaCl, 5mM MgCl2, 5mM MnCl2, 15% Glycerol) with 

Pierce Concentrators 9K MWCO columns (Pierce).  Purity of expressed proteins 

was determined by SDS-PAGE followed by Coomassie staining.  Catalytic 

activity of His-Aur-A and His-LIMK1 recombinant proteins was quantified by in 

vitro kinase assays as described below.  All proteins were stored in aliquots at -

80°C or -20°C.   

3.10 Kinase assays 

In vitro kinase assays for Aur-A, LIMK1, and Cdk4, were done using the 

following assay buffers: 50mM MOPS, pH7.2, 25mM β-glycerophosphate, 10mM 

EGTA, 4mM EDTA, 50mM MgCl2, 0.5mM DTT for Aur-A; 50mM HEPES, 150mM 

NaCl, 5mM MgCl2, 5mM MnCl2 for LIMK1; 250mM HEPES, 50mM MgCl2, 5mM 

DTT for Cdk4. 

For Aur-A in vitro kinase assays, 500ng or 220ng His-Aur-A, His-Aur-

AK162M, or 50ng GST-Aur-A (Cell Signaling) was incubated with its substrate, 

either myelin basic protein (MBP) (500ng) (Sigma), GST-LIMK1 (Abnova) (1μg), 

His-LIMK1 (1μg), His-LIMK1K (1μg), His-LIMK1S307A (1μg), His-LIMK1T508A (1μg), 

His-Cofilin (1μg), His-CofilinS3A (1μg), His-CofilinS3A/S8A (1μg), or His-
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CofilinS3A/S8A/T25A (1μg) in kinase assay buffer containing 250μM ATP and 5nM γ-

32P-ATP.  The reaction mix was incubated for 30 min at room temperature.   

For Aur-A immunocomplex kinase assays, Aur-A was immunoprecipitated 

from 500μg PC-3 whole cell extract with 2μg anti-Aur-A antibodies for 4 hr at 4°C 

with rotation.  Protein/antibody complexes were incubated with 40μl Sepharose 

A/G beads (Santa Cruz), overnight at 4°C with rotation.  Unbound proteins were 

removed by washing the complex three times with Aur-A kinase assay buffer.  

The immunocomplexes were then resuspended in kinase assay buffer containing 

250μM ATP and 5nM γ-32P-ATP and incubated with 1μg His-Cofilin for 30 min at 

room temperature. 

For LIMK1 immunocomplex kinase assays, LIMK1 was 

immunoprecipitated from 500μg PC-3 whole cell extract with 2μg anti-LIMK1 

antibodies for 4 hr at 4°C with rotation.  Protein/antibody complexes were 

incubated with 40μl Sepharose A/G beads, overnight at 4°C with rotation.  

Unbound proteins were removed by washing three times with LIMK1 kinase 

assay buffer.  The immunocomplexes were then resuspended in kinase assay 

buffer containing 250μM ATP and 5nM γ-32P-ATP and incubated with the 

appropriate substrate (1μg His-cofilin or 1μg His-Aur-AK162M) for 30 min at 30°C.   

For G1 synchronized immunocomplex kinase assays, LIMK1, or Cdk4 was 

immunoprecipitated from 100μg nuclear PC-3 extract with 200ng anti-LIMK1 or 

anti-Cdk4 antibodies for 4 hr at 4°C with rotation.  Protein/antibody complexes 

were incubated with 20μl Sepharose A/G beads overnight at 4°C with rotation.  

Unbound proteins were removed by washing three times with the appropriate 
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kinase assay buffer.  The immunocomplexes were then resuspended in kinase 

assay buffer containing 250µM ATP and 5nM γ-32P-ATP and incubated with 1μg 

His-Cofilin (LIMK1) or 1μg purified recombinant His-Rb (amino acids 779-928) 

(Millipore) for 30min at 30°C.   

All reactions were stopped by the addition of sample buffer and proteins 

were denatured by boiling at 95°C for 5 min.  Proteins were run on 12% SDS gel 

and visualized by staining with coomassie stain (1% coomassie brilliant blue R-

250, 50% methanol, 10% acetic acid) for 1 hr or overnight.  The unbound dye 

was removed with destaining buffer (50% methanol, 10% acetic acid) for 2 hrs.  

Gels were placed in between two cellophane sheets and then dried.  The dried 

gels were placed in an autoradiography cassette with Classic Blue 

Autoradiography Film (Midsci) at -80°C.   

Aur-A non-radioactive kinase assays were performed as described above 

except in the absence of γ-32P-ATP.  In some experiments, whole cell extract 

(50μg lysate or 500μg IP) of PC-3 or transfected RWPE-1 cells were prepared 

with RIPA lysis buffer without phosphatase inhibitors and incubated with calf 

intestinal phosphatase (100 units for IP, 5 units for lysate) at 37°C for 30 min 

(NEB) to remove existing phosphorylation.  Next, either lysate or 

immunoprecipitated LIMK1 were used for kinase assays in the presence or 

absence of phosphatase inhibitors (sodium orthovanadate, sodium fluoride, and 

β-glycerophosphate).  LIMK1 phosphorylation was detected by immunoblotting 

as described above with anti-pT508-LIMK1 antibodies.   
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LIMK1 non-radioactive kinase assays were performed as described above 

except in the absence of γ-32P-ATP.  LIMK1 was immunoprecipitated from 500μg 

PC-3 whole cell extract as described above and incubated with 1µg His-Aur-A or 

His-Aur-AK162M.  Aur-A phosphorylation at T288 was detected by immunoblotting 

as described above and with anti-pT288-Aur-A antibodies. 

3.11 His-pull-down assays 

His-tag affinity precipitation was performed using PC-3 and RWPE-1 

whole cell extracts.  RWPE-1 cells were transfected with LIMK1 constructs as 

describe above and harvested at 24 hrs post-transfection.  For the assay, 30μg 

of recombinant His-Aur-A or His-Aur-AK162M was incubated with MagNi-His beads 

(Promega) for 45 min at room temperature.  Beads were washed with 100mM 

HEPES, pH 7.5 three times and incubated with 500μg whole cell lysates at room 

temperature for 1 hr. Beads were washed three times with a buffer (100mM 

HEPES, pH 7.5) containing 20mM Imidazole and proteins were eluted in the 

same buffer containing 500mM imidazole.  The presence of LIMK1 in the eluates 

was determined by immunoblotting as described above with anti-LIMK1 or anti-

Flag antibodies. 

3.12 Co-Immunoprecipitation assays 

For Aur-A/Cofilin co-immunoprecipitation, PC-3 cells (5x105) were seeded 

onto a 10cm dish.  The next day, cells were treated with 2nM nocodazole for 24 

hr to enrich the cells at G2/M.  Cells were released into mitosis with fresh media 

without nocodazole for 0, 30, or 60 min.  Cells were harvested by trypsinization 
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and total protein extracted in RIPA lysis buffer as described above.  Extracts 

(500μg) were incubated with 2μg anti-Aur-A antibodies for 4 hr at 4°C.  

Sepharose A/G beads (40μl) were added and incubated overnight at 4°C.  

Protein/antibody complexes were washed in RIPA lysis buffer three times.  The 

beads were resuspended in 10μl dh20 and diluted in sample buffer and boiled at 

95°C for 5 min.  The immunoprecipitate was electrophoresed, transferred to 

PVDF membrane, and immunoblotted as described above with anti-Cofilin 

antibodies. 

3.13 Phosphopeptide analysis 

For analysis of phosphorylation sites in LIMK1, 1μg GST-LIMK1 was 

incubated with 1μg His-Aur-A or His-Aur-AK162M in Aur-A kinase assay buffer 

containing 250μM ATP at room temperature for 30 min and separated on a 4-

20% SDS gradient gel.  For Cofilin phosphorylation site analysis, 1μg His-Cofilin 

was incubated with 1μg His-Aur-A or His-Aur-AK162M in Aur-A kinase assay buffer 

containing 250μM ATP at room temperature for 30 min and separated on a 12% 

SDS gel.  Proteins were coomassie stained and LIMK1 or Cofilin bands were 

excised from the gel for LC MS/MS analysis performed at the W.M. Keck 

Foundation Biotechnology Resource Laboratory (Yale Cancer Center Mass 

Spectrometry Resources).  Samples were digested with trypsin and 

phosphopeptides were enriched with TiO2.  Enriched fractions and flow through 

were analyzed on a LTQ Orbitrap mass spectrometer.  The enriched fraction 

contained phosphopeptides and the flow through contained all the other peptides 
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that did not bind to the TiO2 column.  All MS/MS spectra were searched using the 

automated Mascot algorithm with a confidence level set at 95% against the 

NCBInr database human taxonomy. 

3.14 Immunofluorescence 

For immunofluorescence of mitotic cells, PC-3 or M12 (1.5x104) cells 

were seeded onto a coverslip in a 24-well dish.  The next day, the cells were 

treated with nocodazole as described above for 24 hrs.  Media was removed by 

washing with PBS three times and the cells were fixed with 4% 

paraformaldehyde (Sigma) for 5 min at room temperature.  Next, cells were 

further fixed with cold methanol for 10 min at -20°C.  The coverslips were blocked 

in PBS containing 10% goat serum (Sigma), 2% BSA (Sigma), and 0.2% tween-

20 (Fisher).  Cells were incubated with primary antibodies (Table 5) diluted in 

blocking solution for 1 hr at room temperature.  Unbound primary antibodies were 

removed by washing with blocking solution three times.  Cells were incubated 

next with fluorophore conjugated secondary antibodies (Table 6) in blocking 

solution for 30 min at room temperature in the dark.  Unbound secondary 

antibodies were removed by washing with 100mM sodium phosphate buffer three 

times, 5 min each.  Coverslips were mounted using DAPI Fluoromount G 

(Southern Biotech).   

M12 cells (4x104) were seeded onto poly-L-lysine coated glass coverslips 

and transfected with Cofilin-RFP constructs 24 hrs later as described above.  At 

48 hrs post-transfection, cells were washed with PBS, fixed using 4% 
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paraformaldehyde and permeablized with 4% paraformaldehyde containing 0.2% 

tween-20 as described above.  Cells were stained with phalloidin and DAPI 

mounted as described above.   

For F-actin staining of MCF7 cells, 3x104 cells were seeded onto poly-L-

lysine coated glass coverslips.  Coverslips were washed with PBS and fixed with 

4% paraformaldehyde and permeabilized with 4% paraformaldehyde containing 

0.2% Tween-20 as described above.  Coverslips were stained with phalloidin and 

DAPI mounted as described above.  Cells were visualized on a Leica TCS SP5II 

confocal microscope. 
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Table 5. Immunofluorescence Primary Antibodies and Stains 

Antigen Company Catalog No. Host Dilution 
Α-tubulin Sigma T9026 Mouse 1:200 

Aur-A Abcam Ab13824 Mouse 1:200 
Aur-A(pY88) Cell Signaling 3079 Rabbit 1:250 

Cofilin Cytoskeleton PA5-19727 Rabbit 1:200 
Cofilin(pS3) Cell Signaling 3313 Rabbit 1:75 
Phalloidin-

488 
Molecular 

Probes 
A12379 --- 1:200 

 

Table 6. Immunofluorescence Secondary Antibodies 

Antigen Fluorophore Company Catalog 
No. 

Host Dilution 

Mouse IgG 488 Molecular 
Probes 

A11001 Goat 1:300 

Mouse IgG Cy3 Molecular 
Probes 

A10521 Goat 1:300 

Rabbit IgG Cy3 Molecular 
Probes 

A10520 Goat 1:300 

Mouse IgG 647 Molecular 
Probes 

A21244 Goat 1:300 

Rabbit IgG 647 Molecular 
Probes 

A21235 Goat 1:300 

Sheep IgG 647 Molecular 
Probes 

A21448 Donkey 1:300 

 
3.15 Flow Cytometry 

G0 enriched and asynchronous populations of PC3 cells were trypsinzed, 

washed with PBS and resuspended in PBS at a concentration of 5x105 cells/mL.  

Cells were fixed with 4% paraformaldehyde in PBS on ice for 10 min.  

Paraformaldehyde was removed by washing with PBS three times and cells were 

permeablized with PBS containing 0.25% saponin (Sigma) and 100ng RNAse A 

(Sigma) at room temperature for 20 min.  Saponin was removed by washing 
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three times with PBS and cells were resuspended in PBS containing 2% BSA 

and 0.1% pluronic (Sigma).  DNA was stained with propidium iodide (400μg/mL) 

(BD Pharmagen) for 30 min at room temperature in the dark.  Flow cytometry 

was performed on a FACS-Calibur (Becton Dickinson) and data was analyzed 

using ModFit software (Verity Software House). 

3.16 Actin Depolymerization Assays 

Pyrene labeled actin (Cytoskeleton) was polymerized in the presence of 

polymerization buffer (2mM MgCl2, 0.5mM ATP, 0.2M KCl, pH 7.0) for 2 hr at RT.   

The polymerized actin was then incubated with His-Cofilin, His-CofilinS3A, His-

CofilinS3A/S8A/T25A that had previously been phosphorylated by Aur-A as described 

above for 10 min at RT.  F-actin was stained with phalloidin (1:200 dilution) as 

described above and the actin/protein mixture was mounted on coverslips.  Actin 

filaments were visualized by confocal microscopy.  
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CHAPTER FOUR: THE ROLE OF LIMK1 IN G1/S PHASE 
PROGRESSION 

4.1 Introduction 

LIMK1 has been implicated to play a role in G1/S phase progression.  

Previous studies in our laboratory showed  that overexpression of LIMK1 resulted 

in a transient G1/S phase arrest, but the mechanism behind this arrest is 

currently unknown [45].  In this study, we examined how expression of LIMK1 

altered the expression of G1 phase regulatory proteins.  Ectopic expression of 

LIMK1 altered the amounts of p27Kip1, p27Kip1-pY88, and p27Kip1-pS10 in G0 

enriched cell populations.  We noted decreased levels of p27Kip1, p27Kip1-pY88, 

and p27Kip1-pS10 upon overexpression of LIMK1 and increased levels p27Kip1, 

p27Kip1-pY88, and p27Kip1-pS10 upon knockdown of LIMK 1. 

To examine the role of LIMK1 during G1 phase progression, we enriched 

PC-3 cells in G0 by serum starvation.  Cells were released in to G1 phase by the 

addition of EGF and nuclear accumulation of the G1 phase regulatory proteins: 

such as LIMK1, Cyclin D1, p27Kip1-pY88, and Cdc25A, were quantified by 

immunoblotting.  Immunocomplex kinase assay was used to determine the 

kinase activities of nuclear LIMK1 and Cdk4.  Our results showed increased 

phosphorylation of LIMK1 and Cdk4 activities as early as 30 min after EGF 

release. Increased phosphorylation of p27Kip1 at Y88 was also noted at 30 min 

after release, suggesting early progression of G1 phase. 

.  
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4.2 Results 

4.2.1 Ectopic Expression of LIMK1 Altered p27Kip1 Expression and 
Phosphorylation  

To study the expression and subcellular localization of G1 phase 

regulatory proteins, PC-3 cells were synchronized at G0.  PC-3 cells were 

seeded onto 10cm dish and next day the media was changed to F12-HAM 

without FBS.  Cells were incubated for 48 hrs and were harvested. Cell cycle 

profile of the serum starved cells was analyzed by propidium iodide staining and 

quantified by flow cytometry (Fig. 5).  Serum starvation enriched the G0 

population of cells (~20%) compared to the asynchronous cell population.   

To study p27Kip1 phosphorylation during G1, we produced antibodies 

directed against a peptide that would recognize Y88 phosphorylation.  To confirm 

the specificity of the antibodies a peptide/antibody competition assay was 

performed.  Fifty μg of the whole cell extract was separated by SDS-PAGE and 

transferred to a PVDF membrane.  The p27Kip1-pY88 antibodies were incubated 

with 0, 1, 2, 5, or 10 times the molar ratio of the phospho-peptide to antibodies 

for 1 hr at 4°C (Fig. 6).  A PVDF membrane bound p27Kip1 was incubated with the 

phospho-peptide bound antibodies overnight at 4°C.  p27Kip1 bound to the 

membrane was detected by immunoblotting using p27Kip1-pY88 antibodies.  Our 

results showed that p27Kip1-pY88 antibodies specifically recognized the phospho-

peptides as the intensity of p27Kip1 polypeptide bands was reduced significantly 
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when antibodies were incubated with the peptide at 2x molar ratio compared to 

untreated antibodies. No polypeptide bands were detected with antibodies 

incubated with the peptides at 5x and 10x molar ratios. 

Next, we examined if alteration of LIMK1 expression affects the 

expression of p27Kip1.  P69 cells, which express low levels of LIMK1 were 

transfected with a construct containing Flag-tagged full-length LIMK1.  At the 

same time, cells were incubated in serum free media for 48 hrs, to enrich the G0 

population (Fig. 7A&B).  Cells were harvested and expressions of p27Kip1, 

p27Kip1-pY88, and p27Kip1-pS10 were detected by immunoblotting. Cells expressing 

LIMK-Flag showed reduced levels of p27Kip1, p27Kip1-pY88, and p27Kip1-pS10 

compared to the vector only cells.  Next, we transfected PC-3 cells, which 

express higher levels of LIMK1, with LIMK1 shRNA or scrambled shRNA and 

cells were incubated in serum free media to enrich the G0 population (Fig. 

8A&B).  Cell transfected with LIMK1 shRNA expressed higher levels of p27Kip1 

and p27Kip1-pY88 compared to cells transfected with the scrambled shRNA 

control.  Together, this data suggests that LIMK1 regulates G1 phase 

progression through alteration of p27Kip1expression and phosphorylation.   
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Figure 5: Enrichment of PC-3 cells at G0. 

Two parameter histogram showing progression of asynchronous (A) or G0 
enriched (B). The X-axis represents the DNA content and the Y-axis represents 
number of cells.  Data shows an increased percentage of cells in G1 phase of 
serum starved cells compared to the asynchronous PC-3 cells.  
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Figure 6: Confirmation of p27Kip1-pY88 antibody specificity. 

Western blot analysis of the p27Kip1 in the whole cell extracts using peptide-
bound p27Kip1-pY88 antibodies. Data shows a gradual decrease in the band 
intensity upon incubation of antibodies with increasing molar ratio of phospho-
peptides . GAPDH was used as a loading control. 
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Figure 7: Overexpression of LIMK1 altered p27Kip1 expression. 

(A) Western blot analysis of the expression of p27Kip1, p27Kip1-pY88 and p27Kip1-
pS10 in LIMK1-Flag expressing P69 cells using specific anti-p27Kip1, anti-p27Kip1-
pY88 and anti-p27Kip1-pS10 primary antibodies.  Expression of LIMK1-Flag was 
detected using anti-Flag antibodies.  GAPDH was used as the loading control. 
Data shows decreased levels of unphophorylated and phosphorylated p27Kip1 in 
cells expressing LIMK1 compared to the vector control.  (B) Densitometric 
analysis of p27Kip1, p27Kip1-pY88, and p27Kip1-pS10 levels from A normalized to the 
vector only control. 
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Figure 8: Knockdown of LIMK1 Altered p27Kip1 Expression.  

(A) Western blot analysis of the expression of p27Kip1, p27Kip1-pY88 and p27Kip1-
pS10 in LIMK1-shRNA expressing PC-3 cells using specific anti-p27Kip1, anti-
p27Kip1-pY88 and anti-p27Kip1-pS10 primary antibodies.  Expression of endogenous 
LIMK1-Flag was detected using anti-LIMK1 antibodies.  GAPDH was used as the 
loading control.  Data shows increased levels of unphosphorylated and 
phosphorylated p27Kip1 in cells expressing LIMK1-shRNA compared to the cells 
expressing scrambled RNA. (B) Densitometric analysis of p27Kip1, p27Kip1-pY88, 
and p27Kip1-pS10 levels from A normalized to the scrambled RNA control only 
control. 
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4.2.2 Expression and Activities of Nuclear Localized G1 Phase Regulatory 
Proteins 

To study the role of LIMK1 on G1 phase regulatory proteins we first 

examined the steady state expression and activities of these proteins.  PC-3 cells 

were synchronized to G0 by serum starvation and released into G1 by the 

addition of EGF for 0, 15, 30, 120, 240, or 480 mins.  Cells were harvested and 

nuclear and cytoplasmic proteins were prepared.  Immunoblot analysis revealed 

the highest nuclear localization of LIMK1 at 15 and 30 mins, which decreased ~2-

fold at 120, 240, and 480 mins (Fig. 9A&B).  Catalytic activity of nuclear LIMK1 

was highest at 30 mins and remained relatively stable at all other timepoints (Fig. 

10A&B).  Nuclear localization of Cyclin D was stimulated early as high levels 

were detected at 15 and 30 mins, but then slowly declined from 120 through 480 

mins (Fig. 11A&B).  Nuclear expression of p27Kip1-pY88 followed the opposite 

pattern with low levels at 15 and 30 mins, but increased greatly from 120-480 

mins (Fig. 12A&B).  The kinase activity of nuclear Cdk4 followed a similar 

pattern, as the activity was low at 15 mins but increased at 30 and 120 mins and 

plateaued out at 240 and 480 mins (Fig. 13A&B).  Expression of Cdc25A was not 

detected in the nuclear extracts upto 24 hrs but was detected in the cytoplasmic 

extracts in all timepoints (Fig. 14).  
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Figure 9: Nuclear localization of LIMK1 During G1 progression.   

(A) Western blot analysis LIMK1 expression in G0 enriched PC-3 cells at 
specified time points upon treatment with EGF using anti-LIMK1 antibodies.  (B) 
Densitometric analysis of the values from A normalized to 0hr. 
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Figure 10: Kinase activity of nuclear LIMK1 during G1 progression.   

(A) Autoradiograph of the immunocomplex kinase assay of nuclear LIMK1 in G0 
enriched PC-3 cells at various time points after EGF treatment were enriched at 
G0 by serum starvation for 48 hours and stimulated with EGF. (B) Densitometric 

analysis of the radioactive pCofilin bands in A normalized to 0hr.  
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Figure 11: Nuclear expression of Cyclin D1 during G1 progression.   

(A) Western blot analysis of Cyclin D1 in the nuclear extracts of G0 enriched PC-
3 cells at different time points after EGF treatments using anti-Cyclin D1 

antibodies. -tubulin was used as the loading control to analyze the relative 
expression. (B) Densitometric analysis of values from A normalized to 0hr. 
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Figure 12: Nuclear expression of p27Kip1-pY88 during G1 progression.   

(A) Western blot analysis of p27Kip1-pY88 in the nuclear extracts of G0 enriched 
PC-3 cells at different time points after EGF treatments using anti-p27Kip1-pY88 

antibodies. -tubulin was used as the loading control to analyze the relative 
expression. (B) Densitometric analysis of values from A normalized to 0hr. 
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Figure 13: Kinase activity of nuclear Cdk4 during G1 progression.   

(A) Autoradiograph of the immunocomplex kinase assay of nuclear Cdk4 in G0 
enriched PC-3 cells at various time points after EGF treatment. (B) Densitometric 
analysis of the radioactive pRb bands in A normalized to 0hr. 
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Figure 14: Nuclear and cytoplasmic expression of Cdc25A during G1 
progression.   

Upper panel: Western blot analysis of Cdc25A in the nuclear extracts of G0 
enriched PC-3 cells at different time points after EGF treatments using anti-

Cdc25A antibodies. -tubulin was used as the loading control to analyze the 
relative expression. Lower panel: Western blot analysis of Cdc25A in the 
cytoplasmic extracts of G0 enriched PC-3 cells at different time points after EGF 
treatments using anti-Cdc25A antibodies. GAPDH was used as the loading 
control  

  

Nuclear 

12hr 16hr 20hr 

Cdc25A 

γ- tubulin 

0 15 30 120 240 480 

50kD 

50kD 

Cytoplasmic 

12hr 16hr 20hr 

Cdc25A 

GAPDH 

0 15 30 120 240 480 

50kD 

37kD 



58 

 

4.3 Discussion 

Our lab has shown that overexpression of LIMK1 causes a transient G1/S 

arrest but the mechanism of this arrest is unknown [45].  In this study, we found 

overexpression of LIMK1-Flag resulted in reduced concentration of p27Kip1-pY88, 

while knockdown of LIMK1 resulted in increased levels of p27Kip1-pY88.  Since 

phosphorylation at Y88 inactivates p27Kip1, our data suggests LIMK1 

overxpression delays G1 progression via induction of p27Kip1 functions. 

Alternatively, LIMK1 knockdown most likely increased G1 phase progression via 

increased levels of inactive p27Kip1 (p27Kip1-pY88).  However, the mechanism of 

LIMK1 induced alterations of p27Kip1 expression and phosphorylation is currently 

unknown.  LIMK1 has been shown to physically interact with p57Kip2 but not with 

p27Kip1, so it is unlikely that LIMK1 is directly involved in p27Kip1 phosphorylation 

[48].  Studies have shown that overexpression of Cofilin arrests cells in G1 phase 

through induction of p27Kip1 expression [89].  The phosphorylation status of 

Cofilin was not examined, but LIMK1 may have a role in p27Kip1 induction through 

regulation of Cofilin phosphorylation.    

We also identified the steady state nuclear expression of G1 phase 

regulatory proteins.  We noted elevated nuclear expression of p27Kip1-pY88 and 

Cdk4 activity as early as 30 minutes after EGF release, suggesting early G1 

progression.  Since Cdc25A was not detected or barely detected in the nuclear 

extracts at 20 hrs after release, it is likely that the transition into late G1/S phase 

took longer than 24hrs after EGF release.  
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CHAPTER FIVE: FUNCTIONAL COOPERATIVITY BETWEEN 
AURORA A KINASE AND LIM KINASE 1: IMPLICATION IN THE 

MITOTIC PROCESS 

5.1 Introduction 

Aurora A kinase (Aur-A) is a serine/threonine kinase and a member of the 

Aurora kinase family, which plays important roles in various but distinct mitotic 

processes [175], [176].  Although not a bonafide oncogene, Aur-A is 

overexpressed in a variety of adenocarcinomas, including cancers of the breast, 

skin and prostate [144], [177], [178] .  Therefore, much attention has been 

focused on identification of Aur-A inhibitors as anticancer agents [179],[180], 

[181] some of which showed success in clinical trials [182]-[184] singly or in 

combination with EGF-R inhibitors for drug-resistant cancer or with actinomycin 

D in p53-based cyclotherapy [185], [186].  At the same time, an increased 

interest in understanding the mechanism of Aur-A activation, and identification of 

interacting partners and substrates that are phosphorylated by Aur-A led to a 

multitude of published reports in recent years [112], [187]-[189].   

Aur-A activity increases in G2, with its targeting to the centrosomes by 

activated Plk1 [190],  which then allows initiation of early mitotic events, such as 

centrosome maturation and separation and spindle assembly [138], [175], [176], 

[191], [192].  Aur-A plays a role in centrosome maturation through recruitment of 

γ-tubulin [67], ChToh [193], NDEL1 [134], TACC [134],  and LATS2 [135]  to the 

centrosomes and bipolar spindle assembly through interaction with microtubule 

associated proteins TPX2, XMAP and HURP, forming a complex [102], [137], 



60 

 

[194].  Aur-A phosphorylates LATS2 at a specific site (S380), which allows its 

colocalization with the other family member, Aur-B, at the central spindle  [133].  

Recent studies showed that MT-binding protein TPX2 targets Aur-A to the 

spindle microtubules and induces autophosphorylation of Aur-A at T288 through a 

conformational change [131], [188], [195].  Binding of TPX2 prevents 

dephosphorylation of Aur-A-pT288
 and promotes accumulation of activated Aur-A.  

Aur-A then phosphorylates a variety of substrates [196], including LIM domain 

containing Ajuba [123] and Plk1 [118],  which allows spindle assembly and 

bipolarity [135].   

Ajuba interacts with centrosomal Aur-A through its LIM domain with the 

non-catalytic N-terminal region of Aur-A, which then induces its phosphorylation 

by Aur-A. This interaction and subsequent phosphorylation promotes 

autophosphorylation of Aur-A and its complete activation [123].  Although a 

number of studies indicated involvement of a variety of interacting partners of 

Aur-A [197], [198], some of which are responsible for inhibition of Aur-A catalytic 

function [132], [199],  the understanding of Aur-A regulation and protein functions 

regulated by Aur-A during mitotic phases is far from complete.   

Recent studies on LIM domain containing protein LIMK1 showed its 

localization to the centrosomes and association with γ–tubulin [152].  

Furthermore, LIMK1 was shown to be involved in positioning of mitotic spindles 

during metaphase through modulation of cortical actin through phosphorylation of 

cofilin [163].  LIMK1 is a LIM domain containing serine/threonine kinase, which 

modulates actin and microtubule dynamics and participates in a variety of cellular 
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processes [55], [200]. Function of LIMK1 on the actin cytoskeleton is mediated 

through an inactivating phosphorylation of the actin depolymerizing family protein 

Cofilin [53], [57] and microtubule-binding protein p25α [153].  LIMK1 has two N-

terminal LIM domains, a PDZ domain and a C-terminal kinase domain. LIMK1 

interacts with a variety of proteins through its LIM and PDZ domains [154], [201], 

[202]. LIMK1 is activated by phosphorylation at T508
 by ROCK, PAK1 or PAK4 

and phosphorylates Cofilin at S3, rendering it inactive. LIMK1 is activated in early 

mitotic phases, but its inactivation is required for cytokinesis [150], [162].  

Overexpression of LIMK1 leads to cytokinesis defects [150] and formation of 

multipolar spindles [45], which are noted in a variety of cancers [45].  Although 

LIMK1 needs to be phosphorylated during early prophase [162] for its targeting to 

the centrosomes [152], it is not known which kinase(s) phosphorylates LIMK1 

during mitosis.  It has been shown that LIMK1 is not phosphorylated by ROCK or 

PAK during mitosis [150].   In this study, we show that LIMK1 is phosphorylated 

by the centrosomal kinase Aur-A and also participates in phosphorylating Aur-A. 

We further show that functions of both LIMK1 and Aur-A are important for 

integrity and bipolarity of mitotic spindles.  

5.2 Results 

5.2.1 LIMK1 Acts as a Substrate of Aurora A in vitro 

Our lab has previously shown that LIMK1 co-localizes with γ-tubulin at the 

centrosomes during mitosis [26], [152].  Another group found that LIMK1 

dependent phosphorylation of Cofilin during mitosis is necessary for proper 
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mitotic spindle alignment [29], [163].  We sought to examine the interaction, if 

any, of LIMK1 with other centrosomal mitotic proteins.  Aurora A is a mitotic 

kinase that is expressed from late G2 through mitosis and localizes to the 

centrosome.  It is responsible for proper mitotic spindle assembly.  Another lab 

member used immunofluorescence assays to show that Aurora A and LIMK1 

colocalized at the centrosome during mitosis.  To study if this colocalization 

results in phosphorylation of LIMK1 by Aur-A, we performed in vitro kinase 

assays with recombinant His-tagged Cofilin (Fig. 15), GST-tagged inactive LIMK1 

and active GST-Aur-A (Fig. 16).  The activity of recombinant LIMK1 and Aur-A 

was tested by their ability to phosphorylate Cofilin and MBP, respectively, which 

showed that LIMK1 was not active, while Aur-A retained a high level of activity.  

Kinase assays showed a radioactive polypeptide band corresponding to LIMK1 in 

the presence of GST-Aur-A.  Because GST-LIMK1 was inactive, LIMK1 

phosphorylation was mediated by Aur-A.  We also noted autophosphorylation of 

Aur-A during in vitro assays. 

Because Aur-A interacts with the LIM domains while phosphorylating 

Ajuba [34]-[36], [123], we studied if LIM domains are required for Aur-A mediated 

phosphorylation of LIMK1.  We used recombinant His-Aur-A, inactive His-Aur-

AK162M (Fig. 17&18), and inactive His-tagged kinase domain of LIMK1 (LIMK1K), 

which contains the known phosphorylation site T508, as the substrate for kinase 

assays.  Indeed, the kinase domain of LIMK1 was phosphorylated by Aur-A 

independently of the LIM domains.  Since the autophosphorylated His-Aur-A was 

similar in size to that of His-LIMK1K (~50 kD) (Figure 19), the specificity of 
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phosphorylation was confirmed using increasing amounts of His-LIMK1K as the 

substrate, which showed a corresponding increase in phosphorylation (Fig. 19, 

lanes 4-6).  No phosphorylation was detected when His-LIMK1K was incubated 

with the inactive Aur-A (Aur-AK162M) (Fig. 19, lanes 7-9). 
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Figure 15: Purification of Recombinant His-Cofilin. 

Coomassie stained SDS-PAGE of His-Cofilin expression in E.coli induced with 
1mM IPTG. Lanes 2 and 3 show the expression of soluble His-Cofilin in the 
supernatant.  Lanes 3 to 7 show retrieval of purified soluble His-Cofilin in different 
fractions of the affinity chromatography.   
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Figure 16: LIMK1 Acts as a Substrate of Aur-A 

(A and B) Kinase assays with inactive GST-LIMK1 (500ng) and GST-Aur-A 
(50ng) kinases and His-Cofilin (1μg) or MBP (500ng) as respective substrates.  
(A) Coomassie stained SDS-PAGE showing location of the peptide bands.  MW: 
molecular weight marker.  (B) Autoradiogram showing no phosphorylation of His-
Cofilin by GST-LIMK1 (lane 2), which confirms its inactivity.  Strong 
phosphorylation of MBP and LIMK1 by Aur-A (lanes 4 and 5) and 
autophosphorylation of Aur-A (lanes 4 and 5) could be seen.  Aur-A 
autophosphorylation seemed to be enhanced in the presence of MBP and 

LIMK1.   
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Figure 17: Expression and Affinity Purification of Recombinant His-Aurora 
A and His-Aurora AK162M.  

Coomassie stained SDS-PAGE of His-Aurora A (A&B) and His-Aurora AK162M 
(C&D) expression in E. coli induced with 1mM IPTG.  (A&C) Lanes 2-9 show 
retrival of purified soluble His-Aurora A or His-Aurora AK162M in different fractions 
of the affinity chromatography.  (B&D) Lanes 2 and 3 show 1 and 3µg of His-
Aurora A or 1 and 5µg of His-Aurora AK162M after buffer exchange and 
concentration. 
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Figure 18: Kinase assays of recombinant His-Aur-A and His-Aur-AK162M.  

(A) Coomassie stained SDS-PAGE of kinase assay. (B) His-Aur-A (0.25μg) or 
His-Aur-AK162M

 (0.25μg) was incubated with MBP (0.5μg) in kinase assay buffer 
containing γ-32P-ATP. Phosphorylation was detected by autoradiography. 

  



68 

 

 
 

Figure 19: Aurora A Phosphorylates the Kinase Domain of Aurora-A.   

(A and B) Phosphorylation of His-LIMK1K by active His-Aur-A.  (A) Coomassie 
stained SDS-PAGE.  (B) Autoradiogram showing increased phosphorylation 
intensity with increasing amounts of His-LIMK1 (0.25μg, 0.5μg, and 1μg) by 
active His-Aur-A (0.22μg) (lanes 4-6) but not by inactive His-Aur-AK162M kinase 
(0.22μg) (lanes 7-9).  His-Aur-AK162M was also unable to phosphorylate MBP 
(1μg) (lane 2), which confirms catalytic inactivity of Aur-AK162M mutant.  SDS-
PAGE images are representative of 3-5 independent experimental repeats. 

  



69 

 

5.2.2 Aurora A Interacts with the LIM and Kinase Domains of LIMK1 

 The physical association between Aur-A and LIMK1 was determine by co-

immunoprecipitation (CO-IP) and pull-down assays using both BPH-1 (benign 

prostatic hyperplasia) stable subline expressing FLAG-tagged LIMK1 (F-LIMK1) 

(BPHLCA) and transiently transfected RWPE-1 cells expressing different domains 

of LIMK1 (Fig. 20).  We used a construct of constitutively active phosphomimic 

(CA) mutant of LIMK1 (T508EE) for stable expression to have fully active LIMK1.  

In the unphosphorylated form of LIMK1, the N-terminal LIM domains associate 

with the kinase domain, preventing its full activation.  Phosphorylation at T508 

disrupts this association, making the protein optimally active.  Another student 

performed Co-IP assays followed by western blotting with Aur-A antibodies 

showed that Aur-A was pulled down with LIMK1 in BPHLCA cells but not in the 

vector-only controls.  There was no increase in overall expression of Aur-A in 

cells expressing F-LIMK1CA.  In a reverse experiment, LIMK1 was detected when 

Aur-A was immunoprecipitated from BPHLCA extracts.   

Experiments using extracts of PC-3 cells, which naturally overexpress 

LIMK1, and immobilized His-Aur-A or His-Aur-AK162M (kinase dead) followed by 

western blotting showed that LIMK1 was pulled down with His-Aur-A and His-

Aur-AK162M but not the bead-only control (Fig. 21A).  Densitometric analysis 

revealed that Aur-AK162M was ~50% less efficient than Aur-A at pulling down 

LIMK1 (Fig. 21B).  Lysates from RWPE-1 cells transiently transfected with 

pCMVLIMK1-FLAG (RWPE-1L) (Fig. 20) also showed pull down of LIMK1 with 
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His-Aur-A (Fig. 21C, top part).  Next, we examined if it interacts with the LIM-

domains of LIMK1.  We used pCMVLIMK1LD-FLAG and pCMVLIMK1K FLAG 

constructs containing the LIM-domains or the kinase domain of LIMK1 (LIMK1LD 

or LIMK1K) (Fig. 20) and repeated the pull-down assays with extracts from 

RWPE-1 cells expressing these domains (RWPE-1LD or RWPE-1K).  Both 

LIMK1LD and LIMKK were pulled down with His-Aur-A and not with the bead only 

control (Fig. 21C, and bottom and middle parts). 
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Figure 20: Expression of LIMK1-FLAG fusion proteins.  

(A) Diagram of FLAG-tagged LIMK1 constructs.  LIMK1: full-length, wild type 
LIMK1, LIMK1LCA: constitutively active LIMK1 phospho-mimic, LIMK1K: LIMK1 
kinase domain and linking region, LIMK1LD: LIMK1 LIM-domains only.  (B) 
RWPE-1 cells were transiently transfected with LIMK1 constructs and harvested 
after 48 hrs.  Expression of FLAGLIMK1 peptides was detected by western 
blotting using anti-FLAG antibodies.  Nsp: nonspecific signal 
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Figure 21: Aur-A physically associates with LIMK1.   

(A and B) Interaction between His-Aur-A and endogenous LIMK1 affinity 
precipitated from PC-3 extracts.  (A) Immunoblots showing binding of LIMK1 with 
both His-Aur-A and His-Aur-AK162M (lanes 3 and 4).  No nonspecific binding was 
noted with the beads (lane 2).  (B) Densitometric analysis of the binding affinity of 
Aur-A and Aur-AK162M to LIMK1 from equal amounts of extracts.  Data shows a 
50% reduction in the affinity of binding of Aur-AK162M with LIMK1.  Data 
represents a mean ± SD of three independent experiments.  (C) Interaction of 
Aur-A with different domains of LIMK1.  Total extracts of RWPE-1 cells 
transiently transfected with LIMK1-p3XFlag-CMV-14, LIMK1LD-p3XFlag-CMV-14, 
or LIMK1K-p3XFlag-CMV-14 were used for affinity precipitation with His Aur-A.  
Data shows that in addition to wild type LIMK1, Aur-A was capable of binding 
both LIM domains and kinase domain independently.  The lane for bead control 
(lane 1) shows some nonspecific binding but the intensity was much lower than 
the beads with bound Aur-A.  Data shows representative images from thee 

independent experiments. 
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5.2.3 Aurora A phosphorylates LIMK1 at S307 

Phosphopeptide analysis by mass spectrometry was used to identify all 

sites of phosphorylation of inactive LIMK1 by Aur-A.  In vitro kinase assays were 

performed with His-Aur-A, His Aur-AK162M and GST-LIMK1, and gel extracted 

LIMK1 bands were used for mass spectrometry.  Phosphopeptide analysis 

showed that LIMK1 was phosphorylated at S307 by Aur-A but not at T508 (Fig. 22).  

LIMK1 was not phosphorylated at either site by inactive Aur-A (His-Aur-AK162M) 

(data not shown).  Phosphorylation of LIMK1 at S307 by Aur-A was confirmed by 

in vitro kinase assays using wild type (His-LIMK1) and LIMK1 with mutated 

serine to alanine at position 307 (His-LIMK1S307A) (Fig. 23).  Wild-type LIMK1 was 

strongly phosphorylated by Aur-A, but phosphorylation of His-LIMK1S307A was 

barely detectable (Fig. 24).  To elucidate the phosphorylation site further, 

nonradioactive kinase assays were performed, and phosphorylation of LIMK1 

was detected using phosphospecific LIMK1 (T508) antibodies (Fig. 25).  Although 

a strong phosphorylated band of LIMK1 was noted for wild-type LIMK1, only a 

weak phosphorylation of T508 was detected for His-LIMK1S307A (Fig. 25, lane 5).   

Serine 307 lies within the gap region between the PDZ domain and kinase 

domain, an area that contains many sites of serine phosphorylation (Fig. 22).  

Published studies showed phosphorylation of LIMK1 at S307 [38], [203], [204] 

specifically during mitosis [40], [204] as a site of phosphorylation but functional 

implication of phosphorylation at this residue is unknown.  Motif analysis 

indicated a partial homology of the S307 phosphorylation site to one of the motifs 
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that are phosphorylated by Aur-A (pS/T with a bias of L at the +1 position) (Fig. 

22).  Interestingly, the motif at the T508 phosphorylation site (KRYpTV) shows a 

perfect match to the motif of Aur-A phosphorylation site ([K/N/R]-R-X-[pS/pT]-V) 

(Fig. 20A).   

To confirm Aur-A phosphorylation of LIMK1 in vivo, we performed in vitro 

kinase assays using whole-cell extracts and immunoprecipitated protein 

complex.  Extracts of RWPE-1 cells expressing LIMK1 (RWPE-1L) were 

phosphatase treated to remove any phosphorylated residues and used for kinase 

assays with His-Aur-A with addition of phosphatase inhibitor.  We detected 

phosphorylation of LIMK1/2 by Aur-A in western blotting using anti-pLIMK1/2 

(pT508/pT505) antibodies (Fig. 26A).  Phosphorylation of LIMK1 at T508 was further 

confirmed using immunoprecipitated LIMK1 from phosphatase-treated PC-3 

extracts and from RWPE-1L cells using anti-FLAG antibodies (Fig. 22B&C).  

Strong phosphorylation at T508 in both assays was noted after incubation with 

recombinant His-Aur-A.  Phosphorylated LIMK1 was not detected upon 

incubating with inactive Aur-A (Aur-AK162M) (Fig. 26C), confirming that the 

phosphorylation was due to Aur-A activity rather than LIMK1 

autophosphorylation.  These experiments show that Aur-A also phosphorylates 

LIMK1 at T508 but requires an intact S307 phosphorylation site.  Western blot 

analysis of total extract of RWPE-1 cells expressing FLAG-tagged LIMK1, 

LIMK1S307A and LIMK1T508A showed phosphorylation of LIMK1, LIMK1S307A but 

not LIMK1T508 (Fig. 27) at T508.  This data confirms that expressed LIMK1S307A 

could be phosphorylated by kinases other than Aur-A. 
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To assess the importance of this phosphorylation another student in our 

lab analyzed the immunolocalization of LIMK1S307A and pAur-A.  P69 prostate 

cells were transiently transfected with pCMVLIMK1-FLAG or PCMVLIMK1S307A-

FLAG, and colocalization of FLAG-tagged LIMK1 with pAur-A was analyzed 

using antibodies against FLAG and pAur-A.  Although LIMK1 was colocalized 

with pAur-A at the centrosomes and the spindle poles, no obvious colocalization 

between pAur-A and LIMK1S307A was noted.  Analysis of Pearson’s correlation 

coefficient confirmed the loss of colocalization between these two proteins.  

Furthermore, α-tubulin staining showed aster formation, but proper spindle 

structure was rarely seen in cells expressing LIMK1S307A mutants.  We have also 

noted loss of colocalization between LIMK1S307A and γ-tubulin. 

  



76 

 

 
Figure 22: Aurora A Phosphorylates LIMK1 at a Site Other than T508.   

Phosphopeptide analysis of GST-LIMK1 after incubation with GST-Aur-A in 
kinase assay buffer showing phosphorylation of S307 at the linking region 
between the PDZ, and the kinase domain, which shows a partial motif for Aur-A 
phosphorylation (L at +1 position after phosphorylating residue).   
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Figure 23: Solubilization of Recombinant His-LIMK1 and His-LIMK1S307. 

Coomassie stained SDS-PAGE of His-LIMK1 (A&B) and His-LIMK1S307A (C&D) 
expression in E. coli induced with 1mM IPTG.  (A&C) Lanes 2-5 show expression 
of insoluble His-LIMK1 and His-LIMK1S307A in the pellet.  (B&D) Lanes 2-4 show 
5, 10, or 15µl of His-LIMK1 or His-LIMK1S307A after solubilization, buffer 
exchange, and concentration. 
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Figure 24:  Aurora A Phosphorylates LIMK1 at S307 

(A and B) Kinase assay showing loss of phosphorylation by His-Aur-A of His-
LIMK1 with S307A mutation.  (A) Coomassie stained SDS-PAGE.  (B) 
Autoradiogram of the kinase assay with His-LIMK1 (0.5ug), His-LIMK1S307A 
(0.5ug), His-Aur-A (0.22ug) and His-Cofilin (1ug).  Both His-LIMK1 and His-
LIMK1S307A were inactive as no His-cofilin phosphorylated polypeptide was 
detected (lanes 4 and 7).  While strong phosphorylation of the wild type LIMK1 by 
His-Aur-A was noted (lane 4), very weak to no phosphorylation could be seen 
with LIMK1S307A mutant protein (lane 8), which further confirms the unique Aur-A 
phosphorylation site on LIMK1 
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Figure 25:  Phosphorylation of His-LIMK1 at S307 by Aur-A was essential for 
phosphorylation at T508.   

Immunoblot analysis of nonradioactive kinase assays using phosphospecific 
antibodies (pT508) showing strong phosphorylation of wild type His-LIMK1 at T508 
by His-Aur-A (lane 2), which was not noted with Aur-AK162M (lane 3).  No 
phosphorylation at T508 could be seen when His-LIMK1S307A was incubated with 
His-Aur-A (lane 5).  Some nonspecific signals were noted in lanes 1, 3, and 5.  
Data presented are representatives of at least 3 separate experiments. 
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Figure 26: Aur-A allows T508 phosphorylation on endogenously expressed 
LIMK1.  

(A) Nonradioactive kinase assays using calf intestinal phosphatase (CIP) (5 

units) treated extracts (50μg) of RWPE‑ 1 cells transfected with pCMVLIMK1-
FLAG. CIP treated extracts were incubated with His-Aur-A (0.22μg) with 
phosphatase inhibitor (PPI) (lane 3) and phosphopeptide band was detected by 
western blotting using anti-pT508-LIMK1 antibodies.  Data show strong 
phosphorylation at T508 by His-Aur-A but not without Aur-A. No phosphorylated 
LIMK1 (T508) could be seen in the absence of PPI (lane 1). GAPDH was used as 
the loading control. (BC) Nonradioactive kinase assays using immunoprecipitated 

FLAG-tagged LIMK1 from CIP treated (100 units) transfected RWPE‑ 1 cell 
extracts (500μg) or LIMK1 from CIP treated (100 units) PC-3 cell extracts 
(500μg) and His-Aur-A (0.22μg).  Phosphorylated LIMK1 at T508 was detected by 
immunoblotting using anti-pT508-LIMK1 antibodies. (B) A strong phosphorylated 
band of FLAGLIMK1 at T508 was evident upon incubation with His-Aur-A but not 
in the lane without Aur-A. (C) A similar phosphorylation at T508 of 
immunoprecipitated LIMK1 by His-Aur-A was noted (lane 3) which was not seen 
upon incubation with Aur-AK162M, which confirms the requirement of active Aur-A 
to achieve phosphorylation at T508 of LIMK1. Data show a representative image 
of at least 3 independent experiments. 
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Figure 27: Western blots showing that both recombinant FLAG-tagged 
LIMK1 and LIMKS307A

 are phosphorylated at T508
 in transfected RWPE-1 

cells.   

Total extracts (50μg) of transiently transfected RWPE-1 cells were probed with 
anti-FLAG and anti-pT508-LIMK1 antibodies. GAPDH was used as the loading 
control. Extracts expressing FLAG-tagged LIMK1T508A

 was used as the negative 
control, which did not show any corresponding phosphopeptide band. 
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5.2.4 Functional Inactivation of Aurora A Kinase was Associated with pLIMK1 
Mislocalization 

Next, we studied the implication of Aur-A mediated phosphorylation on 

intracellular localization of LIMK1.  Another student in the lab, treated PC-3 and 

RWPE-1 cells with a specific Aur-A inhibitor, MLN8237 [205], and studied the 

spindle morphology and targeting of pLIMK1 to the centrosomes.  MLN8237 

treatment (0.01μM) showed distinct defects in spindle morphology, multipolarity 

and diffused staining of pAur-A, including distinct speckles of pAur-A. Inhibition of 

Aur-A activity showed appearance of a stretched spindle, possibly due to defects 

in nuclear membrane dissolution.  This observation supports studies showing a 

role of Aur-A in nuclear membrane breakdown [206], [207].  In RWPE-1 cells, 

spindles were formed but not as tightly organized as the vehicle-treated cells.  

Inhibition of Aur-A activity also severely disrupted localization of pLIMK1 in 

mitotic PC-3 and RWPE-1 cells. In MLN8237 treated PC-3 cells, pLIMK1 was not 

localized to the centrosomes, but located toward the cell periphery.  Inhibition of 

Aur-A activity did not affect centrosomal localization of centrin, as two distinct 

spots of centrin staining were observed in PC-3 and RWPE-1 cells.  MLN8237 

treated RWPE-1 cells, showed similar results, with pLIMK1 localized to the edge 

of the cell, rather than the centrosomes, as noted in the vehicle-treated cells. 

Centrin staining was largely localized to the cell periphery in these cells 
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5.2.5 Aurora A also acts as a substrate of LIMK1 in vitro 

To determine any potential reciprocal catalytic relationship between LIMK1 

and Aur-A, we examined the ability of endogenous LIMK1 from PC-3 cells to 

phosphorylate inactive His-Aur-AK162M in vitro using immunocomplex kinase 

assays.  We noted that Aur-AK162M was phosphorylated by LIMK1 (Fig. 28).  

Immunoprecipitated LIMK1 also phosphorylated His-tagged Cofilin as its bona 

fide substrate.  Importantly, LIMK1-mediated phosphorylation was not at T288, the 

Aur-A autophosphorylation site, as anti-Aur-A phosphospecific (pT288) antibodies 

failed to recognize the phosphorylated Aur-A polypeptide band in western blots 

(Fig. 29).  Phosphospecific Aur-A-pT288 antibodies were able to recognize 

autophosphorylation of Aur-A in kinase assays, which was not seen for inactive 

Aur-A.  This observation suggests that LIMK1 phosphorylates Aur-A at a site 

different than the activating autophosphorylation site. 
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Figure 28. LIMK1 phosphorylates Aur-A.  

(A and B) Kinase assays using immunoprecipitated LIMK1 and His-Aur-AK162M 
and His-cofilin as the substrates. (A) Coomassie stained SDS-PAGE of the 
kinase assays. (B) Autoradiogram of the SDS-PAGE showing phosphorylation of 
His-Aur-AK162M (lane 3) and His-Cofilin (lane 1) by LIMK1. LIMK1 was 
immunoprecipitated from PC-3 cells using anti-LIMK1 antibodies and incubated 
with His-Aur-AK162M or His-Cofilin in kinase assay buffer with γ-32P-ATP. 
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Figure 29. Non-radioactive immunocomplex kinase assays showing LIMK1 
mediated phosphorylation of Aur-A was not at T288.  

Western blot analysis of phosphorylated Aur-A using anti-p-Aur-A-pT288 
antibodies in kinase assays with immunoprecipitated LIMK1 (500μg extracts) and 
His-Aur-AK162M (0.25μg). Anti-pAur-A antibodies recognized autophosphorylation 
of His-Aur-A (0.25μg) (lane 4). No phosphorylated bands were seen in lanes with 
LIMK1 (lanes 2 and 3). The image is the representative of two separate assays. 
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5.2.6 Knockdown of LIMK1 was Associated with Decreased pAur‑A (pT288) 
Levels, Mislocalized pAur-A and Abnormal Spindle Structures 

To elucidate the implication of Aur-A phosphorylation by LIMK1, we 

examined the effect of knockdown of LIMK1 on the levels of pAur-A (pT288).  

Another student in the lab, transfected PC-3 cells with LIMK1 shRNA constructs, 

and 72 hr post-transfection, total pAur-A levels were examined by western 

blotting. A substantial decrease in the overall pT288-Aur-A levels in LIMK1 shRNA 

transfected cells compared with nonspecific shRNA transfected cells was noted. 

Densitometric quantification showed that inhibition of expression of LIMK1 

resulted in a ~40–50% decrease in pAur-A levels compared with the control cells, 

while total Aur-A levels were unaltered. Knockdown of LIMK1 also interfered with 

localization of pAur-A in mitotic PC-3 cells, which was more diffused compared 

with control cells. The majority of pAur-A remained associated with α-tubulin, 

which appears to be organized in astral microtubules. The overall spindle 

structure was disorganized and not as tight and uniform as noted in nonspecific 

shRNA expressing cells. Knockdown of LIMK1 expression interfered with 

centrosome separation and spindle bipolarity, although it did not inhibit 

centrosomal localization of pAur-A. To verify the effect of LIMK1 knockdown on 

spindle structure, we quantified the number of transfected cells containing mitotic 

spindle abnormalities. There was a significant increase (2.4-fold) in the number 

of cells with abnormal spindles for LIMK1 shRNA expressing cells compared with 

the scrambled shRNA expressing cells. Taken together, these results suggest 
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that LIMK1 may regulate mitotic spindle organization and bipolarity through 

localization of pAur-A. 

5.3 Discussion 

The findings presented in this study suggest that a functional cooperation 

between Aur-A and LIMK1 is important in the early mitotic phase, specifically 

during mitotic spindle formation.  This study also partly explains our recent 

observation showing localization of pLIMK1T508 to the centrosomes during 

prophase through telophase [152].  In this study, we noted that pLIMK1T508 

colocalizes with Aur-A to the centrosomes during mitosis.  At the centrosomes, 

upon activation through autophosphorylation at T288, Aur-A phosphorylates a 

number of proteins, including LATS2 [133],  NDEL [134] for centrosome 

maturation, kinesin motor protein Eg5 [66],  MCAK [141] for spindle bipolarity and 

ASAP [208] for spindle formation.  It is speculated that activated Aur-A maintains 

continued activation of centrosomal LIMK1 throughout its localization to the 

spindle poles.  The requirement of sustained activation of LIMK1 at the spindle 

poles is supported by studies showing that LIMK1-induced Cofilin 

phosphorylation is essential for accurate spindle orientation during metaphase 

through stabilization of cortical actin network [163]. 

Our observation that pLIMK1T508
  colocalized with Aur-A and γ-tubulin 

[152]  to the centrosomes during prophase suggests that recruitment of LIMK1 to 

the centrosomes is necessary for proper spindle formation through modulation of 

actin filaments.  We noted that Aur-A binds to the LIM domains and the kinase 
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domain of LIMK1 independently and phosphorylates LIMK1 in vitro.  Published 

studies showing similar interaction of Aur-A with the LIM domains of Ajuba and 

subsequent phosphorylation of Ajuba and autophosphorylation suggest that Aur-

A exhibits preference for binding to LIM domain containing proteins [123], [209]. 

 Our data further show that Aur-A phosphorylates LIMK1 primarily at S307, 

which lies outside the kinase domain of LIMK1, and that interaction between 

LIMK1 and Aur-A results in phosphorylation of LIMK1 at T508.  We speculate that 

once S307 is phosphorylated, a possible change in conformation makes the T508 

residue accessible for phosphorylation as the secondary site.  Results from in 

vitro kinase assays and immunoprecipitation followed by immunoblot analysis 

suggest that Aur-A-mediated phosphorylation at S307
 is essential for its 

phosphorylation at T508
 by Aur-A.  Active Aur-A was unable to phosphorylate 

inactive recombinant LIMK1S307A at T508.  It is possible that the conformational 

change induced by S307 phosphorylation could either (1) allow Aurora A to 

directly phosphorylate at T508 or (2) allow LIMK1 to autophosphorylate at T508.  

Earlier, it was shown that LIMK1 becomes hyperphosphorylated upon initiation of 

mitosis at a site other than T508, but the site was not identified [150].  Our data 

shows phosphorylation of LIMK1 at an additional site S307 by the mitotic kinase 

Aur-A and colocalization of these two proteins to the centrosomes. Treatment 

with Aur-A inhibitor MLN8237 showed a diffused accumulation of pLIMK1 (T508) 

in the cytoplasm. It could be speculated that LIMK1 is phosphorylated at T508 by 

other kinases in the absence of functional Aur-A, but pLIMK1 was not recruited to 

the centrosomes. This suggests that targeting of LIMK1 to the centrosomes 
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requires Aur-A-mediated phosphorylation at S307.  This speculation is further 

supported by our result showing that LIMK1S307A
 does not colocalize with Aur-A in 

mitotic cells.   

Unlike interaction of Aur-A with Ajuba, association of Aur-A with LIMK1 

also induces phosphorylation of Aur-A, but not at the autophosphorylation site 

(T288). LIMK1-mediated phosphorylation of Aur-A was at a site other than T288, as 

phosphospecific (T288) Aur-A antibodies did not recognize the resulting 

phosphopeptide. Catalytic activation of Aur-A is through T-loop phosphorylation 

at T288 directly by PAK1 [198] or mainly through autophosphorylation by Aur-A. 

Nevertheless, the possibility of a kinase that phosphorylates Aur-A in vivo and 

sensitizes it for autophosphorylation cannot be ruled out. Immunoprecipitated 

LIMK1 effectively phosphorylated kinase-dead His-Aur-A, suggesting that active 

LIMK1 was capable of such phosphorylation. This observation is in support of the 

report showing that cell extracts immunodepleted of pT288
 Aur-A retained the 

ability of T288
 phosphorylation of GST-fused Aur-A activation loop peptide [210].  

Depletion of LIMK1 resulted in 40–50% reduced levels of pT288 Aur-A, which 

suggests an indirect regulatory role of LIMK1 in Aur-A phosphorylation at T288. 

Furthermore, knockdown of LIMK1 indicated a physiological consequence in 

centrosome separation and spindle bipolarity. Inhibition of LIMK1 did not inhibit 

Aur-A targeting to the centrosomes and actually favored microtubular localization 

of pAur-A. However, knockdown of LIMK1 expression interfered separation of 

asters needed for spindle bipolarity. Additionally, a 2.4-fold increase in the 

number of abnormal mitotic spindles was noted in PC-3 cells following 
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knockdown of LIMK1. Based on our observation, we speculate that decreased 

phosphorylation of Aur-A at T288
 could occur by two different mechanisms. First, 

upon binding to LIMK1, Aur-A may autophosphorylate at T288, as it does upon 

interaction with Ajuba. Second, LIMK1 knockdown disrupts proper Aur-A 

subcellular localization whereby it may prevent interaction of Aur-A with 

interacting proteins that stimulate direct phosphorylation or autophosphorylation 

at T288. Nonetheless, LIMK1 induced phosphorylation of Aur-A may be important 

for optimal activation of Aur-A at the microtubule organization center (MTOC), 

and regulation of spindle bipolarity. It is known that activated Aur-A mediates 

formation of bipolar spindles through regulation of microtubule dynamics by 

inactivating phosphorylation of MCAK at the center of the aster [141].  

In this study, we presented a novel functional relationship between Aur-A 

and LIMK1. This functional relationship seems to be mediated through reciprocal 

phosphorylation of one another. Our data show that small-molecule inhibitors 

alter mitotic progression not only through direct inhibition of Aur‑A, but also 

through altered LIMK1 localization and function.  Although Aur-A regulates 

functions of a variety of proteins, not many kinases that regulate Aur-A function 

are known to date. Our study provides evidence of a new mechanism whereby 

the function of Aur-A is regulated and that Aur-A has an additional regulatory 

function during mitosis. Additionally, our data suggests that development of 

small-molecule inhibitors targeted toward LIMK1 may have the added benefit of 

disrupting Aur-A function. 
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CHAPTER SIX: AURORA A KINASE MODULATES ACTIN 
CYTOSKELETON THROUGH PHOSPHORYLATION OF COFILIN: 

IMPLICATION IN THE MITOTIC PROCESS 

6.1 Introduction 

Aurora A (Aur-A) is a member of the family of Aurora serine/threonine 

kinases, which play important roles in the mitotic process. Expression of Aur-A is 

significantly increased during late G2 when it is targeted to the centrosomes.  

Aur-A is responsible for centrosomal maturation and separation by recruiting -

tubulin, centrosomin, NDEL1, TACC, and LATS2 to the centrosome [67], [133], 

[134], [193].  Aur-A also regulates mitotic spindle assembly through interactions 

with LIMK1, TPX2, Eg5, Hurp, and XMAP215 [102], [137], [194], [211].  Although 

the function of Aur-A is essential during early prophase, spindle pole localization 

of Aur-A is sustained through the mitotic phases, suggesting its involvement in 

later mitotic events. Recent studies showed a cooperative function of Aur-A and 

Aur-B on anaphase microtubule dynamics [212]. Aur-A expression is tightly 

regulated and altered expression of Aur-A results in mitotic spindle defects. 

Inhibition of Aur-A expression resulted in chromosome misalignment and 

multinucleated cells [213], whereas overexpression of Aur-A induced generation 

of supernumerary centrosomes, multipolar spindles, and aneuploidy. Importantly, 

overexpression of Aur-A is seen a variety of cancers including, breast, ovarian 

and prostate [103], [149], which may lead to development of aneuploidy in the 

cancerous cells.  
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In addition to its regulation of microtubule dynamics and chromosome 

segregation during mitosis, Aur-A has been implicated in the regulation of actin 

cytoskeleton.  Activation of Drosophila Aur-A has been suggested to play a role 

in actin dependent asymmetric protein localization during mitosis [78].  

Overexpression of Aur-A was shown to induce up-regulation of SSH-1 leading to 

dephosphorylation and activation of the actin depolymerizing protein, Cofilin 

[214].  Aur-A also interacts with LIMK1 and Ajuba, proteins that are involved in 

reorganization of the actin cytoskeleton  [123], [211]. Recent studies showed an 

indirect relationship between Aur-A and regulation of actin-dependent processes 

through phosphorylation of Rho kinases in Drosophila [215].  Nonetheless, the 

role of Aur-A regulation of the actin cytoskeleton has not been clearly defined.   

Although not widely studied, actin has an important function throughout 

mitosis.  During G2 phase, the actin cytoskeleton is involved in centrosome 

separation [216], [217].   Cortical actin plays a role in the anchoring and 

orientation of the mitotic spindle  [218], [219].  Additionally, regulation of actin 

dynamics is essential for completion of cytokinesis through formation of the 

contractile ring [220], [221]. The dynamics of the actin cytoskeleton is regulated 

by the actin depolymerizing protein, Cofilin. Kinases, such as LIMK1/2 and 

TESK1/2, regulate Cofilin activity through phosphorylation, which prevents its 

binding to actin  [53], [80], [81], [222], [223]. However, functionally active Cofilin is 

essential for completion of cytokinesis. Also, LIMK1 mediated inactivating 

phosphorylation of Cofilin during mitosis is necessary for proper mitotic spindle 

orientation [163], however, the exact function of Cofilin during mitosis has yet to 
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be determined.  In this study, we identified Cofilin as a novel substrate of Aur-A.  

Aur-A regulates Cofilin activity through phosphorylation, thereby regulating actin 

polymerization.  Additionally, we found that Aur-A is involved the regulation of 

Cofilin phosphorylation during mitosis. 

6.2 Results 

6.2.1 Cofilin Acts as a Substrate of Aurora A 

LIMK1/2 act as the bona-fide kinases for inactivating phosphorylation of 

Cofilin but treatment with BMS-5, a specific inhibitor of LIMK1/2 catalytic activity 

did not completely inhibit Cofilin phosphorylation. Although a significantly 

decreased phosphorylation of Cofilin was noted after treatment with BMS-5 

compared to the vehicle control, DMSO (Fig. 30A) a small amount of 

phosphorylated Cofilin was still detectable. This suggests that either the kinase 

activity of LIMK1 is not completely blocked by BMS-5 or a different kinase, may 

be responsible for Cofilin phosphorylation.  In our previous studies we identified a 

novel interaction between LIMK1 and Aur-A at the centrosomes, which prompted 

us to investigate if Aur-A is responsible for the remaining Cofilin phosphorylation.  

To determine if Cofilin is a substrate of Aur-A, we performed in vitro kinase 

assays with recombinant His-tagged Cofilin and Aur-A (Fig. 30C).  A radioactive 

polypeptide band corresponding to the size of Cofilin was detected after 

incubation with Aur-A (Fig. 30B, lane 3).  To further confirm that Cofilin is a 

substrate of Aur-A, we performed an immunocomplex kinase assay (Fig. 

30D&E).  Endogenous Aur-A was immunoprecipitated from asynchronous PC-3 
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cell lysate with anti-Aur-A antibodies and incubated with recombinant His-tagged 

Cofilin and -32P-ATP (Fig. 30D&E).  Results showed phosphorylation of 

recombinant Cofilin by the immunoprecipitated Aur-A (Fig. 30E, lane 2).  

However, our previous studies showed that LIMK1 co-precipitates with Aur-A so 

it is possible that the phosphorylation seen may be due to a combination of both 

LIMK1 and Aur-A activity on Cofilin. Together, this data confirms that Cofilin acts 

as a substrate of Aur-A. 
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Figure 30: Phosphorylation of Cofilin by Aurora A:  

(A) Western blot analysis of PC3 cells treated with either DMSO or BMS-5 (5M) 
(LIMK1/2 inhibitor) for 24 hr.  Immunoblotting with anti-pS3-Cofilin and anti-
GAPDH (loading control) antibodies show reduced cofilin phosphorylation after 
treatment with BMS-5 compared to the DMSO control.  (B & C) In vitro kinase 

assays with recombinant His-Cofilin (1g) and His-Aurora A (0.22g).  (B) 
Coomassie stained SDS-PAGE showing location of polypeptide bands.  (C) 
Autoradiogram showing phosphorylation of His-Cofilin.  (D&E)  Immunocomplex 

kinase assays of immunoprecipitated Aur-A and His-Cofilin (1g).  Aurora A was 

immunoprecipitated from PC3 whole cell lysates (500g) with anti-Aur-A 
antibodies and used in a kinase assay with recombinant His-Cofilin. (D) 
Coomassie stained SDS-PAGE showing location and loading of Cofilin 
polypeptides.  (E) Autoradiogram of phosphorylated Cofilin.  
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6.2.2 Aurora A Phosphorylated Cofilin at S3, S8, and T25 

Cofilin activity is regulated by phosphorylation/dephosphorylation of its 

main phosphorylation site, S3.  To determine if Aur-A phosphorylates Cofilin at 

S3, we performed in vitro kinase assays with a nonphosphorylatable S3A mutant 

Cofilin (CofilinS3A) (Fig. 31).  Phosphorylation of recombinant His-CofilinS3A by 

His-Aur-A (lane 2) was reduced compared to phosphorylation of wild-type His-

Cofilin, suggesting that S3 is a site of phosphorylation by Aur-A (Fig. 32).  

Because phosphorylation of CofilinS3A was reduced compared to wild-type Cofilin 

but not eliminated, it can be speculated that Aur-A phosphorylates Cofilin at 

additional residue(s).  To identify the additional sites of phosphorylation, we 

performed phosphopeptide analysis of recombinant wild type full-length Cofilin 

subjected to in vitro non-radioactive kinase assays with recombinant wild type 

His-tagged Aur-A or catalytically inactive His-Aur-AK162M. Mass spectrometric 

analysis detected two phosphopeptides containing the phosphorylated residues 

S3, S8, and T25 in the sample incubated with active Aur-A (Fig. 33).  

Phosphorylation at these sites was not detected in the sample incubated with 

inactive Aur-AK162M (data not shown).  To confirm these results, we expressed 

recombinant His-tagged triple mutant Cofilin (CofilinS3A/S8A/T25A) in which these 

three residues were mutated to Alanine (Fig. 34) and used for in vitro kinase 

assays (Fig. 35). Results showed CofilinS3A/S8A/T25A was still phosphorylated by 

Aur-A (Fig. 35, lane 3), which was not detected when incubated with inactive Aur-

AK162M (lane 7).  Phosphorylation of CofilinS3A/S8A/T25A by Aur-A was reduced 
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compared to phosphorylation of CofilinS3A, suggesting that these sites are 

phosphorylated by Aur-A but additional site(s) may also be phosphorylated by 

Aur-A.  To broadly identify Cofilin fragments containing other possible 

phosphorylation sites, we expressed recombinant His-tagged C-terminal 

fragment of Cofilin containing amino acids 90-166 (Cofilin90-166) and used for in 

vitro kinase assays. Our results showed that Cofilin90-166 was not phosphorylated 

by Aur-A (Fig. 35, lane 4), suggesting that putative additional phosphorylation 

sites in Cofilin are between amino acids 1-89. Other than S3, S8, T25, possible 

additional phosphorylation sites within this region are S23, S24, S41, T63, T70, and 

T88 (Fig. 36).   
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Figure 31: Expression and Affinity Purification of Recombinant His-
CofilinS3A. 

Coomassie stained SDS-PAGE of His-CofilinS3Aexpression in E. coli induced with 
1mM IPTG.  (A) Lanes 2 and 3 show expression of His-CofilinS3A in the 
supernatant.  Lanes 4-10 show retrival of purified soluble His-CofilinS3A in 
different fractions of the affinity chromatography.  (B) Lanes 2-5 show 0.5, 1, 2, 
and 3µg of His-CofilinS3A after buffer exchange and concentration. 
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Figure 32: Aurora A Phosphorylates Cofilin at S3 

Aurora A Phosphorylated Cofilin at Specific Sites: (A & B) In vitro kinase assays 
with recombinant His-Cofilin, His-CofilinS3A mutant, and His-Aur-A.  (A) 
Coomassie stained SDS-PAGE showing protein location and loading.  (B) 
Autoradiogram showing reduced phosphorylation of His-CofilinS3A compared to 
His-Cofilin.  
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Figure 33 : Aurora A Phosphorylates Cofilin at S3, S8, T25 

Phosphopeptide analysis of phosphorylated Cofilin by mass spectroscopy. Two 
phosphopeptides were detected containing a total of three sites phosphorylated 
by Aur-A.  
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Figure 34: Expression and Affinity Purification of Recombinant His-
CofilinS3A/S8A/T25A. 

Coomassie stained SDS-PAGE of His-CofilinS3A/S8A/T25A expression in E. coli 
induced with 1mM IPTG.  (A) Lanes 2-10 show retrival of purified soluble His-
CofilinS3A/S8A/T25A in different fractions of the affinity chromatography.  (B) Lanes 1 
and 2 show 0.5 and 1µg of His-CofilinS3A/S8A/T25A after buffer exchange and 
concentration. 
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Figure 35:  Aurora A Phosphorylates Sites in Addition to S3, S8, and T25  

(A&B) In vitro kinase assays of recombinant wild type His-Cofilin and His-
CofilinS3A, His-CofilinS3A/S8A/T25A, and His-Cofilin90-166 mutants using His-Aurora A 
or His-Aurora AK162M mutant.  (A) Coomassie stained SDS-PAGE showing 
protein location and loading.  (B) Autoradiogram showing phosphorylation of His-
Cofilin, His-CofilinS3A, and His-CofilinS3A/S8A/T25A.  No phosphorylation of His-
Cofilin90-166 could be detected. 
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Figure 36: Possible phosphorylation sites in Cofilin by Aurora A  

Possible sites of phosphorylation are in bold.  Sites identified by mass 
spectroscopy are underlined. 
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6.2.3 Phosphorylation by Aurora A Reduced the Actin Depolymerizing Activity of 
Cofilin 

To examine the effect of phosphorylation of Cofilin by Aur-A on its actin 

modulatory function, we performed actin polymerization assays to assess the 

functional status of Cofilin.  Wild-type recombinant His-Cofilin depolymerized F-

actin as reduced Phalloidin staining and reduced length of F-actin were noted 

compared to the actin only control (Fig. 37A).  Next, we examined the 

depolymerizing activity of His-Cofilin, His-CofilinS3A, and His-CofilinS3A/S8A/T25A 

after phosphorylation by His-Aur-A (Fig. 37B&C).  His-Cofilin incubated with 

inactive His-Aur-AK162M was more active than His-Cofilin incubated with His-Aur-A 

as noted by the reduced length of F-actin and the reduced intensity of Phalloidin 

staining.  Phosphorylation of His-CofilinS3A by His-Aur-A reduced its activity 

compared to His-CofilinS3A incubated with His-Aur-AK162M.  Additionally, His-

CofilinS3A/S8A/T25A incubated with His-Aur-A was significantly more active than His-

CofilinS3A incubated with Aur-A, suggesting that phosphorylation at S8 or T25 may 

regulate Cofilin activity. Together, this data suggests that phosphorylation by Aur-

A negatively regulates Cofilin activity via phosphorylation.  
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Figure 37:  Phosphorylation by Aurora A Reduced Actin Depolymerizing 
Activity of Cofilin. 

(A) Images showing depolymerization of actin by Cofilin.  Decreased Phalloidin 
staining of F-actin could be noted in the presence of His-Cofilin. (B) Recombinant 
His-Cofilin, His-CofilinS3A, or His-CofilinS3A/S8A/T25A mutants were in vitro 
phosphorylated by His-Aur-AK162M (top panels) or His-Aur-A (bottom panels) and 
incubated with polymerized actin and stained with Phalloidin.  (C) Quantification 
of actin filament length from B.  Incubation with phosphorylated His-Cofilin or His-
CofilinS3A mutant by inactive Aur-A reduced Phalloidin staining compared to His-
cofilin or His-CofilinS3A phosphorylated with active Aur-A. Incubation with 
phosphorylated His-CofilinS3A/S8A/T25A by active Aur-A partially retained Cofilin 
activity as noted by shorter fragments of Phalloidin stained F actin compared to 
His-Cofilin or His-CofilinS3A.  Data is representative of ten longest actin filaments 

each in 15 fields of two independent experiments.   Scale bar: 25m, *p<0.05 
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6.2.4 Inhibition of Aurora Kinases Decreased the Distribution of F-Actin 

Next, we wanted to examine the effect of Aurora A activity on actin 

polymerization in vivo.  MCF7 cells were treated with the pan-Aurora inhibitor, 

VX-680, or the vehicle and F-actin status was monitored by staining with 

Phalloidin (Fig. 38A-C).  The mean intensity of F-actin was reduced to ~50% in 

cells treated with VX-680 compared to vehicle treated cells.  This data suggests 

that actin depolymerizing activity of Cofilin was higher in cells treated with VX-

680. 
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Figure 38:  Inhibition of Aurora Kinases Reduced the Levels of F-Actin.   

(A)  Immunofluoresence analysis of MCF7 cells treated with either VX-680 
(100nM) or DMSO for 24 hrs.  F-actin (green) was visualized by staining with 
Phalloidin.  DNA was stained with DAPI (blue).  (B)  Phalloidin staining from cells 
in A was imaged after increasing exposure time to show  actin staining in detail 
within the cell.  (C) Quantitation of the mean intensity of Phalloidin staining.  Data 
is representative of 150 cells from two independent experiments. Scale bar: 
10µm. 
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6.2.5 Mutation of Aurora A Phosphorylation Sites on Cofilin Caused 
Mislocalization of Cofilin 

To examine the effect of phosphorylation at S3, S8, and T25 by Aur-A we 

prepared a mammalian expression construct of non-phosphorylatable RFP-

tagged Cofilin in which all three phosphorylation sites were mutated to alanines 

(CofilinS3A/S8A/T25A-RFP).  M12 cells were transfected with either wild type RFP-

tagged Cofilin (Cofilin-RFP) (Fig. 39A) or RFP-tagged CofilinS3A/S8A/T25A (Fig. 39B) 

for 48 hours.  In cells expressing lower amounts of Cofilin-RFP (top panel), 

Cofilin-RFP localized primarily to the perinuclear region (white arrows). In cells 

expressing higher amounts of Cofilin-RFP (bottom panel), the expressed protein 

was also localized throughout the cell although in some areas accumulation of 

Cofilin-RFP could be seen. CofilinS3A/S8A/T25A-RFP, however, did not show specific 

localization to the perinuclear region (bottom panels). Cells expressing lower 

amounts of CofilinS3A/S8A/T25A-RFP (top panel) showed punctate localization of the 

expressed Cofilin throughout the cytoplasm while in cells with higher amounts of 

expressed protein (bottom panel), diffuse localization of CofilinS3A/S8A/T25A-RFP 

throughout the cytoplasm could be noted. Both proteins colocalized with F-actin 

(yellow arrows), but to a lesser extent for CofilinS3A/S8A/T25A-RFP.  This data 

suggests phosphorylation by Aur-A regulates subcellular localization of Cofilin.  
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Figure 39:  Mutation of Aurora A Phosphorylation Sites Resulted in 
Mislocalization of Cofilin. 

Immunofluorescence analysis of M12 cells transfected with Cofilin-RFP (A) or 
CofilinS3A/S8A/T25A-RFP (B). F-actin was stained with Phalloidin-488 (green) and 
DNA was stained with DAPI (blue).  Cofilin-RFP localized to the perinuclear 
region (white arrows) while CofilinS3A/S8A/T25A-RFP showed diffuse staining 
throughout the cell. Colocalization of the wild type Cofilin and the mutant Cofilin 

with F-actin could be noted (yellow arrows).  Scale bar: 10m. Top panel: cells 
expressing lower amounts of Cofilin RFP or CofilinS3A/S8A/T25A-RFP; bottom panel: 
cells expressing higher amounts of Cofilin-RFP or CofilinS3A/S8A/T25A-RFP.  
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6.2.6 Aurora A Physically Associates with Cofilin During Mitosis 

Aur-A is primarily expressed from late G2 throughout mitosis. In our next 

experiment, we wanted to examine if Aur-A and Cofilin interact during mitosis.  

M12 cells synchronized at the G2/M boundary were isolated by shake off and 

released into mitosis for 0, 30, and 60 mins.  Aur-A was immunoprecipitated from 

mitotic cell extracts using anti-Aur-A antibodies and co-precipitated Cofilin was 

detected by immunoblotting.  Cofilin was precipitated equally in all time points, 

which suggests that Cofilin and Aur-A interact throughout the early mitotic 

phases (Fig. 40A). The interaction was confirmed using NIH-3T3 cell extracts in 

which Cofilin was precipitated with Aur-A in all time points (Fig. 40B). Specificity 

of the antibodies was detected by immunoprecipitating Cofilin and Aurora from 

Nocodazole treated extracts. Immunorecipitated antigens were detected by 

immunoblotting with anti-Cofilin or anti-Aurora A antibodies (Fig. 41).  This result 

suggests that Aur-A may play a role in regulation of Cofilin activity during mitosis. 
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Figure 40: Interaction of Aurora A with Cofilin During Mitosis 

Coimmunoprecipitation of Cofilin with Aur-A in Nocodazole treated M12 (A) or 
NIH-3T3 (B) cell extracts harvested at different times after release. Aur-A was 
immunoprecipitated using anti-Aurora A antibodies, and Cofilin was detected by 
immunoblotting using anti-Cofilin antibodies. Mouse IgG was used as a control. 
Data represents the results of three independent experiments.  
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Figure 41:  Confirmation of antibody specificity.  

Immunoprecipitation of Cofilin (A) or Aurora A (B) from Nocodazole treated M12 
cell extracts.  Cofilin or Aur-A was immunoprecipitated and immunoblotted with 
anti-Cofilin and anti-Aur-A antibodies.  Rabbit IgG and mouse serum were used 
as controls.  
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6.2.7 Inhibition of Aurora A Activity Altered Cofilin Phosphorylation During Mitosis 

Next, we examined the association of Aur-A catalytic activity with Cofilin 

phosphorylation during mitosis.  M12 cells were treated with the Aur-A specific 

inhibitor, MLN8237, or DMSO and synchronized at the G2/M boundary with 

nocodazole.  Mitotic cells were collected and released for 0, 30, and 60 mins. 

Phosphorylated-Cofilin (pS3) and total Cofilin were detected in mitotic cell 

extracts by immunoblotting (Fig. 42A&B).  Total Cofilin levels in DMSO and 

MLN8237 treated cells remained relatively constant in all time points but 

phospho-Cofilin levels fluctuated. In DMSO treated cells, Cofilin phosphorylation 

was highest at 30 mins (~1.5-fold increase compared to 0 hr) and barely 

detectable at 60 mins (~0.5-fold decrease compared to 0 hr). This is in support of 

an earlier study showing Cofilin phosphorylation during mitosis [166].  

Interestingly, MLN8237 treated cells had low levels of phospho-Cofilin at 0 hr, but 

a > 4-fold increased levels at 30 and 60 mins. Total Cofilin decreased slightly at 

30 and 60 mins in MLN8237 treated cells compared to DMSO treated cells (Fig. 

42C). MLN8237 treated cells contained ~70% less phospho-Cofilin compared to 

DMSO treated cells at 0 hr (Fig.42C).  From 0 to 30 mins, Cofilin phosphorylation 

increased ~4-fold in MLN8237 treated cells to a level about equal to that in 

DMSO treated cells. However, between 30 to 60 mins Cofilin phosphorylation in 

DMSO treated cells decreased while phosphorylation in MLN8237 treated cells 

did not change, causing ~2.5-fold difference in phosphorylation between the two 
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treatments.  This data suggests that Aur-A plays a role in regulation of Cofilin 

activity during mitosis.  

To coordinate the mitotic phases with Cofilin phosphorylation, we 

evaluated the stages of mitosis in MLN8237 treated cells as Aur-A inhibition has 

been shown to cause a mitotic delay [213]. We used immunofluorescence 

analysis to quantify the distribution of cells released in fresh medium in each 

mitotic phase at each time point in MLN8237 treated cells (Fig. 43A-D and Table 

7&8).  DMSO treated cells had a higher percentage of cells in mitosis (~40% at 

each time point) compared to MLN8237 treated cells (~20% of cells at each time 

point) (Fig. 43C and Table 7).  In DMSO treated cells, quantitative analysis of 

mitotic phases in DMSO treated cells showed that ~30.2%, ~68.48%, ~1.86%, 

and 0% of cells were in prophase, metaphase, anaphase, and telophase 

respectively, at 30 mins. At 60 mins, cells progressed to anaphase and telophase 

as evident from ~25.41%, ~59.61%, ~7.93%, and ~7.06% of cells in prophase, 

metaphase, anaphase, and telophase, respectively (Fig. 43D & Table 8). 

Treatment with Aur-A inhibitor caused a delay in mitotic progression as evident 

from ~77.54% and ~22.46% of cells at 30 mins and ~78.34% and ~19.84% of 

cells at 60 mins in prophase and metaphase, respectively. No cells in anaphase 

or telophase were noted at 60 mins.  This data suggests that alteration of Cofilin 

phosphorylation may be associated with the mitotic delay induced by the 

inhibition of Aur-A activity.  
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Figure 42:  Inhibition of Aurora A Activity Altered Cofilin Phosphorylation. 

Western blot analysis of endogenous Cofilin (A) and phospho-Cofilin (pS3) (B) in 
nocodazole treated M12 cell extracts released at different times with treatment 
with MLN8237 (100nM) or the vehicle. Anti-Cofilin and anti-phospho-Cofilin 
antibodies were used for the immunoblots. GAPDH expression was used as the 
loading control. Values below each figure indicates relative protein levels 
normalized to 0 minute expression (not released from G2/M boundary). (C) 
Densitometric analysis of Cofilin and phospho-Cofilin in MLN8237 treated cells 
compared to DMSO treated cells. Data shows mean±SD of three independent 
experiments.  
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Figure 43: Treatment with Aur-A Inhibitor Delayed Progression of Cells 
Through Prophase. 

Immunofluorescence analysis of DMSO (A) or MLN8237 (100nM) (B) treated and 

nocodazole synchronized M12 cells released into mitosis for 0, 30, or 60 mins. -

tubulin (green) and Cofilin (red) were visualized by staining with anti--tubulin 
and anti-Cofilin antibodies.  DNA was stained with DAPI (blue).  Representative 
enlarged mitotic cells are shown in the extreme right column in each row. White 
arrows show the cells selected for the enlarges images.  (C) Quantitation of the 
percent of cells in interphase or mitosis. Data shows average numbers of cells 
counted in 20 fields each from two separate experiments. (D) Quantitation of the 
percent of cells in each mitotic phase. Data shows average number of cells 
counted in 20 random fields each from two separate experiments. Scale bar: 

10m. 
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Table 7.  Distribution of cells in interphase and mitotic phases  

  DMSO   MLN8237  
 0 Min 30 Min 60 Min 0 Min 30 Min 60 Min 

Interphase 55.07±12.56 56.97±10.24 57.84±11.11 88.10±9.23 80.04±7.88 80.06±11.42 
Mitosis 44.93±11.76 43.03±9.84 42.16±8.65 11.90±8.83 19.96±7.13 19.94±11.88 
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Table 8.  Distribution of cells in different mitotic phases 

  DMSO   MLN8237  
 0 Min 30 Min 60 Min 0 Min 30 Min 60 Min 

Prophase 100±0 30.20±8.99 25.41±6.50 100±0 77.54±18.43 78.34±4.12 
Metaphase 0 68.48±7.12 59.61±15.36 0 22.46±18.42 19.84±1.54 
Anaphase 0 1.86±1.11 7.93±6.46 0 0 0 
Telophase 0 0 7.06±2.39 0 0 0 
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6.2.8 Inhibition of Aurora A Activity Altered Slingshot-1 Expression During Mitosis  

It has been shown that overexpression of Aur-A can increase the 

expression of slingshot-1 phosphatase (SSH-1) [214]. Hence, we wanted to 

examine if inhibition of Aur-A altered expression of SSH-1.  M12 cells were 

treated with either MLN8237 or DMSO and synchronized to the G2/M boundary 

with nocodazole.  Mitotic cells were isolated by mitotic shake off and released 

into mitosis with fresh media containing either MLN8237 or DMSO.  SSH-1 

expression was detected in mitotic extracts by immunoblotting (Fig. 44).  In 

DMSO treated cells, SSH-1 expression increased through 60 mins.  SSH-1 

expression in MLN8237 treated cells followed a similar trend but expression was 

significantly lower in all time points compared to DMSO treated cells.  Together, 

this data confirms that Aur-A modulates SSH-1 expression during early mitotic 

phases.   
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Figure 44:  Inhibition of Aurora A Activity Altered Slingshot-1 Expression  

(A) Western blot analysis of SSH-1 expression in nocodazole treated M12 
extracts released at different times with treatment of MLN8237 (100nM) or 
vehicle.  Anti-SSH-1 antibodies were used for the immunoblots and α-tubulin 
expression was used as the loading control.  (B) Densitometric analysis of SSH-1 
expression in MLN8237 and DMSO treated cells.  Data is representative of at 
least three independent experiments.  *p=<0.05.  **p=<0.005. 
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6.2.9 Both Aurora A and LIMK1 Contribute to Cofilin Phosphorylation in the Early 
Mitotic Phase  

Recently, a bidirectional functional relationship between Aur-A and LIMK1 

during mitosis has been demonstrated [211]. Earlier it was shown that LIMK1 

phosphorylates Cofilin during mitosis [166]. To determine the contribution of 

LIMK1/2 in maintaining phospho-Cofilin levels during early mitotic phases, we 

examined the effect of the LIMK1/2 inhibitor BMS-5 on Cofilin phosphorylation by 

western blot analysis. We noted a significant reduction in phospho-Cofilin (pS3) 

levels in all time points in released M12 cells treated with BMS-5, which was 

further reduced to undetectable levels upon combination treatment of BMS-5 and 

MLN8237 (Fig. 45). Because Aur-A phosphorylates and activates LIMK1 [211], 

we examined the activation status of LIMK1 during mitosis in cells treated with 

MLN8237. It could be noted from our results that phosphorylated LIMK1/2 was 

barely detectable in DMSO treated cells but was undetectable in MLN8237 

treated cells (Fig. 46).  Since, low levels of pLIMK1/2 were detected in DMSO 

treated cells it is more likely that pLIMK1/2 is further lowered in MLN8237 treated 

cells rather than completely absent.  Together, this data suggests both LIMK and 

Aur-A participate in the regulation of Cofilin phosphorylation during mitosis. 
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Figure 45: Both Aurora A and LIMK1 Contribute to Cofilin Phosphorylation 
During Mitosis. 

Western blot analysis of pS3-Cofilin in extracts of nocodazole synchronized M12 

cells treated with BMS-5 (5M) singly or in combination with MLN8237 (100nM) 
using anti-pS3-Cofilin antibodies. Cells were released into mitosis and harvested 
at different times. GAPDH expression was used as the loading control Lys: 
untreated whole cell lysate.   
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Figure 46:  MLN8237 Treatment Reduced pLIMK1/2 levels in Mitotic Cells. 

Western blot analysis of phospho-LIMK1/2 in MLN8237 or DMSO treated G2/M 
synchronized M12 cells released into mitosis for 0, 30, or 60 minutes.  Cell 

extracts were used for immunoblots using anti-p-T505/T508-LIMK1/2 antibodies. -
tubulin was used as the loading control  
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6.3 Discussion 

In this study, we show a novel interaction between Aur-A and Cofilin. Our 

study identified that Cofilin acts as a substrate of Aur-A, which phosphorylates 

Cofilin at multiple sites including S3, S8, and T25.  Phosphorylation at S3 renders 

Cofilin inactive by blocking its binding to actin.  Therefore, one role of Aur-A 

phosphorylation is to regulate the activity of Cofilin.  Serine8 phosphorylation has 

been mentioned in two proteomics studies [56], [166] but has never been 

experimentally confirmed therefore, the consequence of this phosphorylation is 

unknown. Threonine25 phosphorylation has also been noted in a number of 

proteomics studies  [56], [224], [225] including a mitotic phase proteomics study 

[226], but the function of this phosphorylation is also unknown.   

In vitro phosphorylation of the CofilinS3A/S8A/T25A mutant suggested 

additional residues are phosphorylated by Aur-A.  Because the C-terminal 

fragment of Cofilin (residues 90-166) was not phosphorylated by Aur-A, the 

additional phosphorylation sites most likely lie between amino acids 1-89. Two 

putative residues are S23 and S24 (RKSST) because they share a partial 

homology with the Aur-A phosphorylation motif ([K/N/R]-R-X-[pS/pT]-V) with a 

bias at the n+1 position.  Interestingly the phosphorylation motif of Aur-A 

maintains that the n+1 position must not be a proline residue while T25 precedes 

a proline residue.  Additionally, T63 and T70 may be phosphorylated by Aur-A but 

their phosphorylation would not have been detected by mass spectroscopy 

because the tryptic digestion would not have produced a peptide containing 
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these residues. Serine41 and T88 are two residues that could have been the 

additional phosphorylation sites but were not detected by mass spectrometry. 

Phosphorylation by Aur-A negatively regulates Cofilin activity as noted in 

actin polymerization assays.  Phosphorylation at S3 inactivates Cofilin by 

preventing its ability to bind actin filaments.  Therefore, reduced actin 

depolymerization by wild-type recombinant Cofilin incubated with His-Aur-A may 

be due to phosphorylation specifically at this site.  Importantly, His-CofilinS3A 

activity was also noticeably reduced by phosphorylation by His-Aur-A, while His-

CofilinS3A/S8A/T25A retained a significantly higher level of activity when incubated 

with His-Aur-A.  This data suggests phosphorylation at residues in addition to S3 

are involved in regulation of the depolymerization activity of Cofilin.  Since S8 is in 

close proximity to S3, phosphorylation at that site may result in a similar 

conformational change that would prevent binding to actin.  Inhibition of Aurora 

activity was also correlated with the reduced levels of F-actin in vivo.  Taking this 

result into account with our early data, it is likely that the alteration in F-actin by 

Aur-A was mediated through Cofilin.   

Aur-A phosphorylation of Cofilin also influences intracellular localization of 

Cofilin. Wild type Cofilin-RFP and CofilinS3A/S8A/T25A-RFP showed distinct 

differences in subcellular localization. Cofilin has been reported to localize to the 

Golgi to aid in cargo sorting and fission of carrier vesicles  [227]-[229].  Aur-A 

may regulate Cofilin localization to this area through phosphorylation.   

Our results also showed that Aur-A and Cofilin interact during mitosis and 

that this interaction is maintained during mitotic progression from prophase to 
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telophase. However, the activation status of Cofilin through phosphorylation 

changes as cells progress through the mitotic phases. Phospho-Cofilin levels are 

at the peak when cells are mostly in prophase and metaphase between 0 to 30 

minutes after Nocodazole release, but declined significantly as the cells start to 

progress to anaphase between 30-60 minutes. It can be speculated that actin 

depolymerization is required as the spindles start to change shape and elongate 

during anaphase possibly through interaction with cortical actin. Interestingly, 

inhibition of Aur-A activity through MLN8237 resulted in a sustained increase in 

phospho-Cofilin levels as noted in 60 minutes after release, which is 

counterintuitive of decreased phospho-Cofilin as a result of inactivation of Aur-A. 

Importantly, MLN8237 treated cells showed a delayed progression of mitosis, as 

the majority of the cells are in prophase and only a small percentage of cells in 

metaphase. It can be speculated that inhibition of Aur-A activity induced mitotic 

delay is partly mediated by the failure of Cofilin-mediated deploymerization of 

actin. However, the question is how phospho-Cofilin levels increased upon 

inhibition of Aur-A kinase activity. We speculate that LIMK1 and SSH-1 

phosphatase mediated Cofilin phosphorylation/dephosphorylation is responsible 

for the optimum phospho-Cofilin levels during mitosis. We have previously 

reported that Aur-A phosphorylates LIMK1 during mitosis, activating the protein 

and regulating its localization to the centrosomes [211]. An earlier report from 

another group showed that Aur-A regulates SSH-1 expression, as Aur-A 

overexpression led to increased expression of SSH-1 and dephosphorylation of 
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Cofilin [214]. Our data supported this previous finding as SSH-1 expression was 

significantly reduced after treatment with MLN8237.   

Based on these observations we propose a Cofilin phosphorylation model 

during mitosis (Fig. 47). In early mitotic phases, LIMK1 and Aur-A phosphorylate 

and inactivate Cofilin (Fig. 47D and A) while at the later stages SSH-1 inactivates 

LIMK1 by removing the phosphate group at T508 [230](Fig. 47G), and additionally, 

dephosphorylates and activates Cofilin (Fig. 47F) [214]. Aur-A being a key 

regulator of early mitotic phases is participating in maintenance of phospho-

Cofilin levels through activation of LIMK1, and SSH-1 as a negative feedback 

loop (Fig. 47B and E), which possibly resulted in decreased phospho-Cofilin 

levels as cells start to progress to anaphase. Hence, we speculate the possible 

scenario for increased phosphorylation of Cofilin following MLN8237 treatment. 

Inhibition of Aur-A may decrease the level of SSH-1 (Fig. 47E), thereby 

increasing the amount of phosphorylated/inactive Cofilin (Fig. 47F). Earlier 

studies showed that LIMK1 dependent phosphorylation of Cofilin is necessary for 

proper mitotic spindle orientation [163]. Treatment of cells with the Aur-A specific 

inhibitor, MLN8237, causes multipolar spindles and abnormal spindle 

morphology [211].  Therefore, in conclusion, our data suggests that regulation of 

spindle morphology and orientation by Aur-A in the early mitotic phases may be 

mediated, in part, through its control over Cofilin activity and actin polymerization. 
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Figure 47:  Model of the Regulation of Cofilin Phosphorylation. 

(A) Aur-A phosphorylates Cofilin, causing inactivation of the protein leading to 
accumulation of F-actin. (B) Aur-A phosphorylates LIMK1 at S307 priming it for full 
activation by phosphorylation at T508. (C) Interaction with LIMK1 allows for 
activation of Aur-A through autophosphorylation at T288.  (D) LIMK1 
phosphorylates Cofilin and inactivates it.  (E) Overexpression of Aur-A up 
regulates SSH-1. (F) SSH-1 activates Cofilin in late mitosis through 
dephosphorylation leading to depolymerization of F-actin.  (G) SSH-1 inactivates 
LIMK1 in late mitosis by dephosphorylation at T508. 
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 CHAPTER SEVEN: GENERAL DISCUSSION AND CONCLUSION  

The aim of this dissertation was to examine the role of LIMK1 and its 

substrates in cell cycle progression.  We found that LIMK1 contributes to cell 

cycle progression in the following ways: 1) LIMK1 expression altered p27Kip1 

expression during G1 phase, 2) LIMK1 regulates the activation and localization of 

Aurora A and vice versa during mitosis, 3) LIMK1 and Aurora A both regulate 

phosphorylation Cofilin during mitosis.  Our findings are further discussed in the 

following sections. 

7.1 The Role of LIMK1 in G1 Phase Progression 

Prior to this study, little was known about the role of LIMK1 during G1 

progression.  We had previously found that overexpression of LIMK1 caused a 

transient G1/S phase arrest [45], but the mechanism of this arrest was unknown.  

In this study, we found overexpression of LIMK1 resulted in lower levels of 

p27Kip1 and its phosphorylated forms p27Kip1-Y88, and p27Kip1-S10.  This 

observation was confirmed by knock down experiments, which showed elevated 

levels of p27Kip1 and p27Kip1-Y88 in cells with inhibition of LIMK1 expression.  Our 

data suggests that ectopic expression of LIMK1 induces G1/S phase arrest 

through decreased levels of p27Kip1-pY88 (inactive p27Kip1).  Further studies will 

need to be performed to identify the mechanism behind the alteration in p27Kip1 

levels.  
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7.2 The Role of LIMK1 and its substrates, Aurora A and Cofilin, in Mitosis 

LIMK1 becomes highly phosphorylated during the early stages of mitosis, 

but it was not known which kinase was responsible for this phosphorylation.  

Inhibition ROCK or Pak did not effect LIMK1 phosphorylation [150], but treatment 

with the Cdk inhibitor, roscovitine, reduced LIMK1 phosphorylation [162].  

Additionally, this phosphorylation was found to be at a site other than T508.  In this 

study, we found that Aurora A is responsible for the early mitotic phosphorylation 

of LIMK1.  Aurora A phosphorylates LIMK1 at S307, which then primes LIMK1 to 

be phosphorylated at T508 by Aurora A.  Since Aurora A is activated by Cdk1, it is 

likely that roscovitine reduced LIMK1 phosphorylation through Aurora A 

inactivation [112].   

Phosphorylation of LIMK1 at T508 regulates the centrosomal localization of 

LIMK1 during mitosis [152].  We found that phosphorylation at S307 is necessary 

for LIMK1 localization to the centrosome.  Additionally, catalytic inhibition of 

Aurora A resulted in mislocalization of LIMK1.  Based on this observation, it can 

be speculated  that Aurora A regulates the centrosomal localization of LIMK1 

during mitosis. 

The phosphorylation pattern of Cofilin during mitosis has been well 

established.  Cofilin is phosphorylated during metaphase by LIMK1 and 

dephosphorylated during the late stages of mitosis by Slingshot-1 [166].  In this 

study, we noted dual inhibition of LIMK1 and Aurora A reduced phospho-Cofilin 

levels more than single inhibition of either kinase.  Therefore, it is likely that both 
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LIMK1 and Aurora A contribute directly to the phosphorylation of Cofilin during 

mitosis.  Additionally, Aurora A also exerts regulation on Cofilin phosphorylation 

indirectly through the regulation of Slingshot-1 expression. 

Previous studies have shown that regulation of the actin cytoskeleton is 

necessary for proper centrosome separation and maintenance of centrosome 

integrity.  Knockdown of LIMK1 results in a loss of centrosome integrity causing 

defocused/diffused centrosomes [165].  Enrichment of F-actin at the cell cortex 

maintains cell rigidity which is necessary for proper spindle orientation and 

placement of the cleavage furrow [231]  Therefore, centrosome defocusing after 

LIMK1 knockdown was attributed to a loss in cortical rigidity.  Additionally, 

mutation of Twinstar, Drosophila homolog of Cofilin resulted in abnormal 

accumulation of F-actin leading to defects in centrosome separation [232].  Our 

study showed that LIMK1 knockdown resulted in  loss of centrosome integrity, 

mislocalization of Aurora A, and decreased levels of Aurora A-pT288.  Therefore, 

in addition to regulation of the actin cytoskeleton, LIMK1 may regulate 

centrosome separation and integrity through its interaction with Aurora A. 

 Studies in Drosophila have suggested Aurora A may be involved in actin-

dependent protein localization [78].  Our study supports this finding since Aurora 

A regulates LIMK1 and Cofilin during mitosis.  Additionally, Aurora A may exert 

additional control over centrosome separation through the regulation of LIMK1 

and Cofilin. 

The actin cytoskeleton is essential for proper mitotic spindle orientation.  

Disruption of the actin cytoskeleton with the actin polymerization inhibitors, 
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Latrunculin B or Cytochalasin D, resulted in random orientation of the mitotic 

spindles [219].  Cells treated with Lat-A did not elongate during anaphase and 

many  cells were unable to undergo cytokinesis [163].  siRNA knockdown of 

LIMK1 or treatment with Lat-A resulted in weakened astral microtubules as 

assessed by decreased staining of α-tubulin [163].  Additionally, LIMK1 mediated 

phosphorylation of Cofilin is necessary for proper mitotic spindle orientation 

[163].  Therefore, Aurora A may indirectly regulate microtubule dynamics through 

actin cytoskeletal modulation via interaction with LIMK1 and Cofilin. 

In addition to regulation of the actin cytoskeleton, LIMK1 is involved in the 

regulation of microtubule dynamics.  LIMK1 interaction with thrombin in 

endothelial cells induces actin polymerization and microtubule depolymerization 

[164] .  Phosphorylation of p25α/TPPP by LIMK1 prevents tubulin polymerization 

[153].  This study presents a novel role for LIMK1 in maintenance of microtubule 

dynamics through interaction with Aurora A.  Our study identified LIMK1 as a 

protein cofactor of Aurora A necessary for Aurora A localization to the 

centrosomes.  siRNA knockdown of LIMK1 resulted in diffuse Aurora A 

localization and also abnormal mitotic spindles. Our findings and published 

studies suggest that both LIMK1 and Aurora A may be involved in regulating 

microtubule dynamics. 

Overexpression of LIMK1 results in an increased number of 

multinucleated cells [150].  The formation of multinucleated cells has been 

attributed to cytokinesis defects caused by F-actin accumulation at the contractile 

ring [154].  Although Aurora A has been studied primarily during early mitosis, 
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our data suggests that Aurora A may play a role in the regulation of the later 

stages of mitosis.  Based on our observation it can be speculated that Aurora A 

may participate in the regulation of cytokinesis through the regulation of LIMK1 

and Cofilin activation, and hence the actin cytoskeleton,  

Both Aurora A and LIMK1 are overexpressed in a multitude of cancer 

types, including breast and prostate [71], [72], [144], [156].  Therefore, identifying 

interacting partners for these proteins and understanding their mechanism of 

action during mitosis has become a highly studied area.  Additionally, identifying 

small molecule inhibitors of Aurora A and LIMK1 as anticancer therapeutics is of 

high importance.  Although inhibitors of Aurora A are widely available, very few 

LIMK1 inhibitors are available, none of which show therapeutic potential. Our 

data suggests that inhibition of LIMK1 or Aurora A in combination, would have 

the added benefit of inhibition of cell cycle progression. 
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