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ABSTRACT 

Staphylococcus aureus (SA), an opportunistic pathogen colonizing the anterior nares in 

approximately 30% of the human population, causes severe hospital-associated and 

community-acquired infections. SA nasal carriage plays a critical role in the pathogenesis of 

staphylococcal infections and SA eradication from the nares has proven to be effective in 

reducing endogenous infections. To understand SA nasal colonization and its relation with 

consequent disease, assessment of nasal carriage dynamics among a diverse population and 

determining factors responsible for SA nasal carriage have become major imperatives. 

 Here, we report on an extensive longitudinal monitoring of SA nasal carriage in 109 

healthy individuals over a period of up to three years to assess nasal carriage dynamics. 

Phylogenetic analyses of SA housekeeping genes and hypervariable virulence genes revealed 

that not only were SA strains colonizing intermittent and persistent nasal carriers genetically 

similar, but no preferential colonization of specific SA strains in these carriers was observed 

over time. These results indicated that other non-SA factors could be involved in determining 

specific carriage states. Therefore, to elucidate host responses during SA nasal carriage, we 

performed human SA nasal recolonization in a subset of SA nasal carriers within our cohort. In 

these studies, SA colonization levels were determined, and nasal secretions were collected and 

analyzed for host immune factors responsible for SA nasal carriage. Interestingly, we observed 

that stimulation of host immune responses lead to clearance of SA while sustained SA 

colonization was observed in hosts that did not mount a response during carriage. Further, 
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analysis of nasal secretions from hosts revealed that proinflammatory cytokines and 

chemokines were significantly induced during SA nasal clearance suggesting that innate 

immune effectors influence carriage. 

 SA utilizes a repertoire of surface and secreted proteins to evade host immune response 

and successfully colonize the nose. Analysis of the most abundant immunoevasive proteins in 

the exoproteome of SA nasal carrier strains revealed that expression levels of Staphylococcal 

protein A (SPA) produced by SA nasal carrier strains in vitro corresponded to the level of 

persistence of SA in the human nose.  To determine if SPA is involved in modulating the host’s 

response to SA colonization, a subset of participants in our cohort was nasally recolonized with 

equal concentrations of both wild-type (WT) and spa-disrupted (Δspa) autologous strains of SA. 

Interestingly, Δspa strains were eliminated from the nares significantly faster than WT when the 

host mounted an immune response, suggesting that the immunoevasive role of SPA is a 

determinant of carriage persistence. Collectively, this report augments our understanding of SA 

nasal carriage dynamics, in addition to identifying important host and microbial determinants 

that influence SA nasal colonization in humans. Better understanding of this phenomenon can 

lead to improved preventative strategies to thwart carriage-associated SA infections.
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CHAPTER 1: INTRODUCTION  

Staphylococcus aureus nasal carriage  

Staphylococcus aureus (SA), first isolated by Alexander Ogstein in the1880s, is a gram-positive 

cocci that can colonize a number of mammalian hosts including humans [1-3].  SA has emerged 

to be an important human pathogen that causes a plethora of community-acquired and 

nosocomial infections, leading to high levels of mortality and morbidity. Staphylococcal 

infections range from mild skin and soft tissue infections (SSTIs) like boils, furuncles, impetigo 

etc., to more severe infections such as endocarditis, toxic shock syndrome, osteomyelitis, septic 

arthritis and pneumonia [2]. Increasing worldwide emergence of multidrug-resistant SA such as 

methicillin-resistant SA (MRSA) has made SA the world’s leading cause of nosocomial infections 

[4]. In the United States, there are 80,500 invasive MRSA infections each year, leading to 

approximately 11,500 deaths; approximately 78% of these infections are healthcare-associated 

while 22% are community-associated [5]. According to recent estimates, the fatality rate due to 

MRSA infections annually in the United States is more than that attributed to HIV/AIDS [4]. 

 Although SA colonizes multiple body sites in humans, the most frequent carriage site is 

the anterior nares [6]. Specifically, the moist squamous epithelium on the septum adjacent to 

nasal ostium is the main colonization site for SA in nasal carriers [7]. In most SA nasal carriage 

studies single nasal cultures were performed to determine if a healthy individual is SA carrier or 

not. However, by utilizing longitudinal sampling over time, SA nasal carriers can be further 

classified as persistent, intermittent or non-carriers [2,8,9]. Persistent carriers are individuals 

carrying SA in their nares at all times, intermittent carriers are colonized SA transiently and non-
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carriers do not carry SA in their noses. Approximately 20% of healthy individuals are 

persistently colonized with SA in their nares, while the reminder are colonized either 

intermittently or never [2,3]. Recently, van Belkum and colleagues proposed a reclassification of 

SA nasal carriage types as persistent and non-persistent carriers [10].  Using experimental 

human SA nasal inoculations, they showed that nasal elimination kinetics of intermittent and 

non-carriers were similar and significantly higher than that of persistent carriers. Moreover, 

anti-staphylococcal antibody titers within intermittent and non-carriers were significantly lower 

than persistent carriers suggesting that persistent carriage type is distinctly different from other 

types of carriage [10].  

 The distinction between persistent and non-persistent carriage patterns is critical as SA 

nasal carriage is a major risk factor for staphylococcal infections and bacterial load of persistent 

carriers is much higher than non-persistent carriers [11]. Clinical studies have indicated a 

greater risk of bacteremia in SA nasal carriers compared to non-carriers. Greater than 80% of 

hospital-associated bacteremia is caused by invasion of endogenous colonizing SA strains 

[12,13]. Community- associated SA infections, especially skin and soft tissue infections (SSTIs), 

in carriers are also reportedly caused due to endogenously colonized SA [14]. Expectedly nasal 

carriage of antibiotic resistant MRSA strains in the community (CA-MRSA) is associated with 

higher risks of SSTIs than methicillin-susceptible SA (MSSA) nasal carriage [15-17]. 

Epidemiology and population dynamics of Staphylococcus aureus nasal carriage  

The prevalence of SA nasal carriage in the healthy adult population is approximately 30%. 

However, certain patient populations are associated with higher rates of SA nasal carriage 
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compared to healthy adults. Greater than 90% of patients with atopic dermatitis are SA nasal 

carriers and patients with granulomatosis with polyangiitis also have higher rates of SA nasal 

carriage [18,19]. Additionally, higher SA nasal carriage rates are observed in diabetic, renal 

replacement therapy patients and HIV-positive individuals, though underlying mechanisms for 

increased rates are unclear [3,20,21]. 

 To better understand prevalence of SA nasal carriage and its relation with host 

colonization or staphylococcal disease, the genetic diversity and population structure of 

colonizing SA strains needs to be properly defined and detailed. Several genotyping methods 

with varying levels of discriminatory power and reproducibility have been used to analyze the 

population structure of SA nasal carriage strains [22-24]. Multilocus sequence typing (MLST) is 

one of most common frequently used genotyping methodology to define the population 

structure of SA nasal carriage strains in great phylogenetic detail [22,25,26]. Using MLST, a 

majority of the SA isolates have been classified into 5 major clusters (clonal complexes (CC)) – 

CC5, CC8, CC30, CC45 and CC22 [2,27,28]. These CCs contain clinically relevant MRSA strains 

including the CA-MRSA clone USA300 (CC8), which is responsible for the majority of SA-related 

hospital bacteremia [29,30]. To characterize and segregate the subtypes of CA-MRSA clones in 

epidemiological studies, genotyping of Staphylococcal Cassette Chromosome mec (SCCmec) 

element has become a vital tool. Presence of SCCmec element carrying the mecA gene confers 

resistance to methicillin in SA and so far six main SCCmec types have been described for MRSA 

strains [31-34]. Recently, genotyping of hypervariable virulence genes such as Clumping factor B 

(clfB) and staphylococcal protein A (spa) have been employed in epidemiological studies to 

augment SA strain resolution [35-38].   
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Host and microbial determinants that influence Staphylococcus aureus nasal carriage 

Given the association between SA nasal carriage and invasive disease, it is critical to understand 

host and microbial factors that influence carriage. For SA to successfully to colonize the human 

nares, the bacterium has to establish initial attachment or contact with the nasal niche through 

certain receptors, overcome host immune defenses and be able to successfully propagate in 

the nasal milieu [2].   Therefore, SA nasal carriage involves a complex interplay of SA factors 

expressed to overcome innate host defenses, establish attachment and a permissible host that 

is deficient in certain factors to allow for colonization [2,39,40]. 

Host-related factors that determine Staphylococcus aureus nasal carriage 

Host factors are increasingly being implicated as major determinants of SA nasal carriage. 

Genetic studies have identified that polymorphisms in host genes such as human interleukin 4 

(IL-4), glucocorticoid receptor, complement cascade protein (C-reactive protein), mannose-

binding lectin (MBL), toll-like receptor 2 (TLR2) and vitamin D receptor are all linked to SA nasal 

carriage [41-46]. More importantly, the local immune environment and antimicrobial defense 

mechanisms at the nasal epithelial site plays a critical role in host’s permissibility of SA to 

colonize the nose. Host defense lipids, peptides and proteins produced by nasal epithelia and 

immune cells recruited to the colonization site contribute to host antimicrobial defense [47]. 

Such host defense machineries encompassing antimicrobial peptides (AMPs) usually exhibit 

broad-spectrum antimicrobial activity and directly modulate innate immune responses and 

cause direct killing of the pathogen [48]. 
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 Antimicrobial peptides (AMPs) like secretory leukoprotease inhibitor (SLPI), defensins 

and cathelicidins, are small proteins used by the innate immune system to combat bacterial and 

viral infections in multicellular eukaryotes.  Several AMPs and proteins including defensins, 

lysozyme, lactoferrin, hemoglobin have been identified in human nasal secretions and 

secretions from SA nasal carriers, but not noncarriers, support SA growth in vitro [7,49,50]. 

Interestingly, expression levels of Human β-defensins (HBD) HBD-2 and HBD-3 are up regulated 

during an inflammatory host response to S. aureus colonization. Compared to HBD-1 and HBD-

2, HBD-3 is more effective against S. aureus in vitro [51-54]. Unsurprisingly, individuals with 

deficient induction of HBD-3 in keratinocytes have higher instances of persistent SA nasal 

carriage [55].  Polymorphisms in defensin gene promoter region DEFB1, that lead to impaired 

HBD expression were also associated with persistent SA colonization [56]. Down-regulation of 

HBD-3 expression and delaying pathogen recognition receptor (PRR), TLR2 expression and 

inhibiting the production of Interleukin-1 (IL-1) on nasal epithelia in vitro are likely an important 

evasion strategy of S. aureus against host innate immunity leading to better nasal colonization 

by carrier strains [57,58]. Moreover, TLR2 in combination with TLR1/TLR6, CD36 and CD14 as 

well as NOD-like receptors (NOD2) are also known to be involved in recognizing SA by innate 

immune cells [59-61]. Recognition of SA peptidoglycans by NOD2 causes increased expression 

of HBD-2, activation of inflammasomes causing IL-6 production and increased neutrophil-

mediated SA phagocytosis and killing [62-64]. Expectedly NOD2-deficient mice are more prone 

to SA infections and NOD2 mutations in humans are associated with increased neutrophil 

dysfunction and reduced ability to clear SA infections [64,65]. Further, ficollins or MBL can also 

bind to SA thus activating complement system for opsonization and phagocytosis of SA [66]. 
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Despite the importance of ficollins and NOD2-mediated inflammatory signaling cascade in 

combatting SA infections, their relevance with SA nasal colonization remains to be investigated.  

 In addition to innate immunity, adaptive immune responses may also influence SA nasal 

carriage. Several studies have revealed that IgG and IgA antibody levels against SA antigens 

were significantly higher in carriers compared to non-carriers, thus potentially offering greater 

protection for carriers against SA-related fatalities [12,67-69]. Whether SA nasal carriage is 

responsible for elevated anti-SA antibody levels was only recently addressed. Burian and 

colleagues reported that eventhough SA expresses certain non-enterotoxin superantigens 

during nasal colonization, these SA antigens were insufficient to induce a strong antibody 

response [70]. Moreover, experimental nasal inoculation of a laboratory SA strain did not 

significantly alter the antibody repertoire in healthy volunteers and high degree of inter-

individual variation in antibody responses were observed [71,72]. These studies indicate that 

heightened anti-SA antibody levels in SA carriers may not be due to nasal colonization. 

Therefore, innate and cellular adaptive immune responses could be playing a more important 

role in determining SA nasal carriage. 

 Bacterial determinants of Staphylococcus aureus nasal carriage 

In order to persistently colonize the nose, SA must successfully attach and overcome local 

immune defenses within the nose and numerous bacterial factors aid SA with these processes. 

Invading SA successfully adheres to nasal epithelial cells primarily through wall teichoic acid 

(WTA) and sortase-anchored family of proteins known as microbial surface components 

recognizing adhesive matrix molecules (MSCRAMMs) [73-75].  MSCRAMM-host protein 
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interaction studies in vitro and in vivo have detailed that clumping factor B (ClfB) adheres to 

cytokeratin K10, K8 and contributes to nasal carriage of SA [76-79].  Fibrinogen binding proteins 

(FnBPA and FnBPB) that interact with host molecules such as fibrinogen and fibronectin also 

play a crucial role in SA adhesion to host cells [80,81]. Other MSCRAMMs that have been shown 

to interact with human desquamated epithelia such as iron-regulated surface determinant 

proteins IsdA and IsdH, are also expressed during human nasal colonization of SA [11,82]. SA 

proteins such as serine-aspartic acid repeat proteins SdrC, SdrH and surface protein G (SasG) 

are also associated with adhesion of SA to host epithelial proteins; however, the exact 

mechanism of their interaction during nasal colonization remains to be determined [83].  

 In addition to adhesion, SA utilizes numerous proteins to successfully defend against 

host immune responses by inhibiting neutrophil chemotaxis, killing leukocytes using toxins, 

developing resistance to phagocytosis, resistance to killing by AMPs and survival in neutrophil 

phagosomes [84]. To inhibit neutrophil chemotaxis, SA secretes chemotaxis inhibitory protein 

of staphylococci (CHIPS) that binds to formyl peptide receptor (FPR) and C5a receptor and 

inhibit the signaling cascade that causes neutrophil migration to the site of inflammation[85-

89]. In addition to impeding neutrophil chemostaxis, SA utilizes several surface proteins to 

interfere with complement formation and opsonization thereby preventing neutrophil 

phagocytosis [84]. These surface proteins include capsular polysaccharide, the extracellular 

staphylokinase (Sak), SPA, fibrinogen-binding protein Efb, and clumping factor A [84,90-93]. 

SPA, a surface protein involved in preventing SA opsonophagocytosis, is critical for the 

pathogenesis of staphylococcal infections and will be discussed in greater detail here.   
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Staphylococcal protein A (SPA) 

SPA, a 40-60 KDa protein is crucial for evasion of human immune responses and pathogenesis 

of staphylococcal infections. It encompasses five immunoglobulin G-binding domains (A-E) and 

a polymorphic cell wall binding region (X), which is comprised of short 24 base pair sequence 

repeats (Xr) and cell wall attachment sequence (Xc) consisting of a LPXTG motif (Figure 1). This 

motif is important for the covalent anchoring of SPA to the staphylococcal cell wall [94]. SPA’s 

IgG domains, which are approximately 58 amino acids in length each bind tightly with the Fc 

regions of IgG in a conformation not recognizable by neutrophils, therefore preventing 

opsonization and phagocytosis [95,96]. Independent of Fc binding, each IgG binding domain can 

also bind to Fab regions of B-cell receptors, which causes B-cell apoptosis and prevents the 

production of antistaphylococcal antibodies [97,98].   

 

Figure 1: Functional domains of Staphylococcal protein A 

The protein consists of signal peptide sequence (S), five immunoglobulin G-binding domains (A-
E) and polymorphic cell wall binding region (X), which is comprised of short sequence repeats 
(Xr) and cell wall attachment sequence (Xc).  
 

 In addition to anti-complement functions, other binding properties of SPA contribute to 

its virulence. It’s IgG binding domains recognize tumor necrosis factor α (TNFα) receptor 1 

(TNFR1) and activate subsequent proinflammatory signaling cascade resulting in the 
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pathogenesis of pneumonia [99,100]. IgG domains also bind to EGFR and activate EGFR 

signaling and ADAM17 all leading to activation of proinflammatory signaling cascade [101]. SPA 

expression levels are regulated by panton-valentine leukocidin, which is closely associated with 

CA-MRSA pneumonia outbreaks in the hospitals [102]. Furthermore, SPA has also shown to 

promote SA biofilm formation and development of biofilm-associated infections in a murine 

catheter infection model [103].  Interestingly, SPA was detected at the RNA level during SA 

nasal colonization indicating a potential association with nasal carriage [11]. Therefore, we 

hypothesize that SPA, which is involved in immune evasion, is a co-determinant of SA nasal 

colonization. 

Staphylococcus aureus nasal colonization models to study determinants of carriage 

Nasal colonization models are essential to determine whether a bacterial or host factor 

contributes to SA nasal carriage and such studies have been predominantly performed utilizing 

murine models of colonization. The cotton rat model of nasal colonization has been the most 

popular model used for SA nasal carriage studies [104]. Studies performed using such models 

have helped define bacterial determinants of carriage, including wall teichoic acid (WTA), 

sortase, iron-regulated surface proteins IsdA and IsdH [74,82,105-107]. Recently, a murine-

model based colonization study observed SA nasal clearance to be dependent on host 

neutrophil influx and T-cell mediated [108]. Though rodent models are helpful in defining 

molecular mechanisms leading to nasal carriage, these animals neither adequately mimic 

human colonization by SA nor do they naturally carry in SA in their nares and immune 

mediators are different. Therefore, it is essential to perform carriage studies utilizing the 
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physiologically relevant human nares, which would account for the dynamic interaction 

between host and bacteria. Recent human experimental carriage studies have been useful in 

determining the role of ClfB as a determinant of nasal carriage [77]. Utilizing such models, van 

Belkum and colleagues provided crucial insights into SA nasal carriage patterns in humans and 

reported that natural SA nasal survival among intermittent carriers was 14 days, while SA 

survival was greater than 154 days among persistent carriers [10]. Until now, few experimental 

nasal colonization studies have been performed utilizing relevant human nares and more such 

studies are necessary to better identify and elucidate SA nasal carriage determinants. 

 We sought to better understand SA nasal carriage dynamics, its relation with 

staphylococcal infections, and elucidate critical host and bacterial determinants that are 

responsible for SA nasal carriage in humans.  To this aim, we assessed the population structure 

of SA nasal carriage strains in a diverse population of 109 healthy individuals for a period of up 

to three years and determined whether preferential colonization by certain genotypic SA 

strains occurs within persistent versus intermittent carriers. We observed that colonizing strains 

of SA are not specific to a particular host or carriage type and both carriage types change strains 

over time suggesting that other non-SA factors could be contributing to specific carriage states. 

Therefore, to elucidate host responses during carriage, we performed autologous human SA 

nasal recolonization in a subset of participants from our cohort of 109 health individuals. 

Interestingly, we observed nasal clearance of SA occurred within 9 days when host immune 

responses were stimulated, while SA persisted in the absence of a response. These results 

suggested that local inflammatory responses influence SA nasal carriage. To confirm the 

involvement of host immune responses, we hypothesized that disruption of immunoevasive 
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SPA would alter the host inflammatory responses and affect SA carriage. Interestingly, 

autologous recolonization with WT and an isogenic mutant SA lacking SPA (Δspa) revealed that 

Δspa SA were eliminated from the nares significantly faster than WT SA when the host mounted 

an immune response. These results provide first direct in vivo evidence of a potential role for 

human immune responses and SPA in nasal carriage. Collectively, our findings add to the 

growing evidence that host immune responses play a significant role in SA nasal colonization in 

humans. 
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CHAPTER 2: LONGITUDINAL GENETIC ANALYSES OF STAPHYLOCOCCUS AUREUS 
NASAL CARRIAGE DYNAMICS IN A DIVERSE POPULATION 

Introduction 

Staphylococcus aureus (SA) is a leading cause of community-acquired and nosocomial bacterial 

infections in humans. SA infections can range from mild skin infections to severe, highly 

invasive and necrotizing diseases [109]. With the spread of community-acquired methicillin-

resistant SA (CA-MRSA) and vancomycin-resistant SA (VRSA) strains around the world, it has 

become even more pertinent to conduct SA epidemiological studies to monitor its 

dissemination [4,110].  

 The most common niche of SA in humans is the anterior nares [111-113] and SA nasal 

colonization is thought to be a major source of bacterial transmission with SA colonizing 

approximately 25% of the human population asymptomatically [2,39,114]. Staphylococcus 

aureus nasal colonization has been attributed to an amenable host, and numerous 

epidemiological studies have been conducted to identify nasal carriers and non-carriers of SA 

[2,3,12]. However, to understand better the dynamics of SA nasal carriage over time, 

longitudinal studies are required. Nasal carriage patterns amongst healthy individuals can be 

broadly classified as persistent (always colonized by SA in their nares), intermittent or non-

carriers [2,8,9]. This distinction is important as persistent carriers are at a higher risk of 

developing active auto-infections than intermittent and non-carriers [2,12,13,115].  

 To understand better the genetic diversity of SA strains that colonize nasal carriers, the 

population structure of SA strains obtained from healthy individuals must be defined and 
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detailed. Multi locus sequence typing (MLST) is one of the most common means by which 

population structure of SA strains have been analyzed [22,26,27]. More recently, genotyping of 

hypervariable virulence genes (staphylococcal protein A (spa) [37,38] and clumping factor B 

(clfB) [116]) have also been employed to enhance strain resolution and thus offer better 

characterization of genetic relatedness between SA strains. Moreover, with the increasing 

prevalence of CA-MRSA, it is critical to understand the origin and the dissemination of major 

MRSA clones within the healthy population [33,117-119]. SCCmec typing, the most common 

means by which to identify MRSA has become a vital tool for the characterization of CA-MRSA 

clones in epidemiological studies [31,34]. 

 Several studies including ours [49,120] have shown that SA nasal colonization is 

multifactorial, involving not only bacterial determinants but also host factors that predispose 

individuals to SA carriage [39,41,74,77,105,121,122]. However, the exact mechanisms leading 

to persistent versus intermittent or non-carriage remain unclear. It is also unknown whether 

persistent and intermittent hosts preferentially carry a specific genotype of SA strains. 

Therefore, understanding the patterns of nasal carriage and the preferential colonization by 

certain genotypes of SA strains in persistent and intermittent carriers will greatly augment our 

understanding of SA nasal carriage. 

 Recently, we revealed genetic associations between nasal carriage strains and clinical 

isolates in a cross-sectional survey of healthy individuals [36]. In the current study, we extended 

these analyses and longitudinally assessed the population structure of SA nasal carriage strains 

in a diverse population for a period of up to three years to gain a better understanding of nasal 

carriage dynamics, in addition to assessing whether preferential colonization by certain 
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genotypic SA strains occurs within persistent versus intermittent carriers. Interestingly, MLST 

analyses revealed that both intermittent and persistent carriers harbor genotypically similar 

strains that cluster into the same clonal complexes. Furthermore, these strains exhibited 

similarity to SA isolates of clinical significance. Genotyping studies using housekeeping (MLST) 

and hypervariable virulence genes (spa and clfB) revealed that both persistent and intermittent 

carriers change strains over time with no difference in the frequency of strain change between 

the two carrier groups. The current study contrasts previous findings that have stated that 

persistent carriers carry the same SA strain over long periods of time while intermittent carriers 

carry different strains during SA nasal carriage [2,123]. Overall, this study indicates that 

colonizing strains of SA are not specific to a particular host or carriage type (i.e., persistent 

versus intermittent carriers) and both carriage type change strains over time, suggesting that 

other non-SA factors could be contributing to specific carriage states. 

Materials and Methods 

Ethics statement for collection of bacterial strains from donors 

The current study was approved by the University of Central Florida’s Institutional Review 

Board (UCF IRB). All donors provided informed written consent to participate in the current 

study. Nasal swab sample collection for the current study was undertaken in the University of 

Central Florida (UCF) campus. UCF is a diverse community of nearly 60,000 students and 

approximately 8000 faculty and staff members of various ages, ethnic and racial backgrounds. 

All procedures and investigators involved in the sample collection process were Institutional 

 
 

14 



 

Review Board (IRB)-approved with Collaborative Institutional Training Initiative (CITI) 

certification.  

Study population, design and bacterial strains 

A total of 329 healthy individuals at UCF were screened for the presence of SA in their anterior 

nares. Specifically, the donor population (58.35% - Female, 40. 72% - Male and 0.93% - 

Unreported) consists of participants from various racial and ethnic backgrounds (White -

56.84%, Asian – 13.07%, Black – 17.63%, Pacific Islanders – 1.22%, Hispanic/Latino – 13.07%). 

Of the 329 individuals screened, 96 (29.2%) tested positive for SA nasal colonization at least 

once while the remaining 233 (70.8%) donors were classified as non-carriers because SA was 

never isolated from their nares. Of the 329 total individuals enrolled in our study, 109 

participants – comprised of 61 carriers and 48 non-carriers – were monitored longitudinally 

(i.e., multiple nasal swab samples were collected from these individuals). Among the 96 SA 

positive carriers, 61 were monitored longitudinally while the remaining 35 carriers were 

screened for nasal colonization only once. In total, a median of four (range 2-18) nasal samples 

were obtained from each of 109 healthy individuals (including individuals that tested negative 

for SA) for a varying period of up to three years, with duration and frequency of collections 

dependent on donor availability. Following screening, donors were classified into persistent (if 

all nasal cultures tested SA positive for the duration of the study), intermittent (if at least one 

nasal culture tested negative for SA over the course of the study), and non-carriers (no cultures 

tested positive for SA) of SA. 
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 Following nasal sample collection, SA strains were isolated as previously described [36]. 

Briefly, the anterior nares of the donors were swabbed with sterile, unflocked polyester-tipped 

swabs (Fisher Scientific, Pittsburgh, Pennsylvania, USA) and nasal samples were grown 

overnight on nutrient rich Tryptic Soy Agar (TSA) supplemented with 5% sheep’s blood (Becton, 

Dickinson and Company, Franklin Lakes, New Jersey, USA). Bacterial colonies were identified as 

SA using StaphyloslideTM Latex Test reagent (Becton, Dickinson and Company, Franklin Lakes, 

New Jersey, USA) and sub-cultured in Trypticase Soy Broth (TSB; Becton, Dickinson and 

Company, Franklin Lakes, New Jersey, USA) overnight at 37°C and 250 rpm. Overnight cultures 

were subsequently used for isolation of genomic DNA. 

Multilocus sequence typing 

Genomic DNA from SA isolates was extracted using GenEluteTM Bacterial Genomic DNA kit 

(Sigma-Aldrich Co., St. Louis, Missouri, USA), according to the manufacturer’s instructions. 

Following extraction, multi locus sequence typing (MLST) of seven housekeeping genes (arcC, 

aroE, glpF, gmk, pta, tpi, and yqiL) was performed using primers and PCR conditions as 

previously described [26,36]. Sequence types (STs) for each SA strain were obtained based on 

the alleles identified at each of the seven loci using the SA MLST database (http:// 

www.mlst.net). New alleles and STs were submitted to the MLST database curator and 

subsequently added to the database.  
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Phylogenetic analyses of MLST data 

Phylogenetic analysis of the concatenated MLST data of all isolates was performed as 

previously described [36] using the Metropolis-Hastings coupled Markov chain Monte Carlo 

method (MCMC) implemented in MrBayes v3.1.2 [124-126]. Triplicate MCMC analyses were 

performed in parallel [126] using the STOKES IBM High Performance Computing Cluster at UCF.   

Bayesian MCMC analyses were carried out using both partitioned and unpartitioned 

concatenated MLST data. Best-fit evolutionary models for each individual gene fragment (in the 

partitioned dataset) as well as unpartitioned dataset were selected based on Akaike 

Information Criterion implemented in jModelTest v0.1.1 [124,127]. For the concatenated 

unpartitioned MLST dataset, a generalized time-reversible (GTR) evolutionary model with 

inverse-gamma distribution was selected as the best-fit model. For loci glpF, pta and yqiL in the 

partitioned dataset, the Hasegawa, Kishino and Yano (HKY) substitution model was chosen 

while a HKY model with a gamma distribution was chosen for the arcC gene [128]. Additionally, 

the HKY model including invariable sites (HKY+I) was selected for locus gmk. For the tpi locus, a 

GTR substitution was the chosen model while a GTR+I model was identified as the best-fit 

substitution model for the aroE locus. Within each replicate MCMC analysis two independent 

Bayesian runs were performed with random starting trees and default settings. Each run 

consisted of 5 million generations with every 100 steps being sampled. For each analysis, a 

steady stationary state of the run was verified using Tracer v1.5 and a burn-in of 25% of the 

generations was performed. A final run consisting of 20 million generations was also performed 

to verify the likelihood scores from the shorter runs were consistent with the longer runs.  
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eBURST analyses of MLST data 

The different Sequence types (STs) that were identified for each SA strain were classified into 

different groups using the eBURST v3 analysis software [28,129]. Each ST was assigned to a 

cluster group requiring six of the seven loci between members of the group to be identical 

[129]. eBURST analysis was also used to assess relatedness of nasal carriage strains to 

nosocomial epidemic strains. 

spa typing and eBURP analysis of spa types 

SA isolates were spa genotyped using primers and PCR conditions described previously [37,38] 

and sanger sequenced [130] at Eton Bioscience Inc. DNA sequencing facility (Durham, North 

Carolina, USA). spa types were determined using the Ridom StaphType (Ridom GmbH) software 

(http://www.spaserver.ridom.de/). All spa types including those newly identified were 

synchronized with the global spa type database via the StaphType server. To partition the 

intermittent and persistent carriers, eBURP-clustering analysis using the Ridom StaphType 

software was performed using default settings. SA isolates having less than 5 repeat units were 

excluded from the clustering analysis, as it is difficult to infer evolutionary history of a SA strain 

from spa type with less than five repeat units [38]. 

clfB typing and sequence analysis 

For all SA isolates, the hypervariable region of the clfB gene was amplified and sequenced using 

the protocols and primers described previously [35,36].  Subsequently, sequence analyses of 

the hypervariable repeat region was performed using the in-house sequence analysis software 
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described previously [36]. Briefly, the nucleotide sequence of the R region of clfB gene was 

converted into a numeric profile based on the unique repeat units (Appendix A; Table 10). 

Subsequently, each unique repeat unit was assigned a specific color-coded box and the numeric 

output profile of clfB R region was converted into a color-coded representation (Appendix A; 

Figure 21) [36].   

SCCmec typing 

SA isolates were also screened for the presence of the SCCmec gene cassette that confers 

resistance to the antibiotic methicillin. Phenotypic screens for MRSA strains were performed by 

streaking single SA colonies on selective chromogenic MRSASelectTM agar plates (Bio-Rad, 

Hercules, CA, USA) and identified following the manufacturer’s instructions. Following the 

phenotypic screening, a multiplex PCR reaction amplifying eight different loci of the SCCmec 

gene cassette was performed on the MRSA strains to determine the type assignment of the 

mec gene. The primers, protocols, and analyses used for multiplex PCR were performed as 

previously described [31,34]. 

Statistical Analysis 

Student’s t-tests for the differences in the length of clfB R region and X domain repeat region of 

spa gene were conducted using GraphPad Prism 4 software (GraphPad Software, La Jolla, CA, 

USA). A 2 x 2 contingency table was constructed and a G-test was performed to analyze the 

distribution of persistent and intermittent carriers among males and females within the cohort. 

Similarly, a 2 x 2 contingency table was constructed to evaluate the trend of SA strain change 
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between persistent and intermittent carriers and a G-test was performed to assess the 

differences in strain change in persistent and intermittent carriers. G-tests were performed 

using JMP Pro software (SAS Institute Inc., Cary, NC, USA) [131]. 

Results 

Longitudinal assessment of SA nasal colonization in a healthy population identified persistent 
and intermittent carriers 

To assess nasal colonization state over time, extensive longitudinal monitoring was performed 

in which multiple nasal samples were obtained from 109 healthy individuals for a period of up 

to three years. Following longitudinal sampling, donors were classified into persistent, 

intermittent, and non-carriers of SA based on their carrier indices (defined as the number of SA 

positive nasal swabs over the total number of swabs for each individual; Figure 2) such that all 

non-carriers and persistent carriers have carrier indices of exactly 0 and 1 respectively, while 

intermittent carriers have scores between 0 and 1. In total, sixty-one (56%) individuals were SA 

nasal carriers (23.8% persistent and 32.1% intermittent) and 48 (44.0%) were non-carriers. 

Within the study population, 23.8% of all female donors were persistent carriers while 30.1% 

were intermittent and 23.9% of all male participants were persistent carriers while 34.7% were 

intermittent (Likelihood ratio χ2 = 0. 070, N=61, degrees of freedom (df =1), p= 0.7911, Table 1). 

Our comprehensive longitudinal monitoring for SA nasal colonization revealed true persistent 

and intermittent carriers and subsequently, genotyping studies were conducted on the isolated 

SA strains to assess genetic relatedness among them. 

 
 

20 



 

 

Figure 2: Distribution of SA nasal carrier indices among 109 healthy individuals monitored 
longitudinally.  

Carrier index is defined as the number of SA positive nasal swabs over number of total swabs 
for each individual person. A total of 61 SA nasal carriers and 48 non-carriers were monitored 
longitudinally and their respective carrier indices are represented here. (NC) indicates SA non-
carrier state, (IC) indicates SA intermittent carriage and (PC) indicates SA persistent carriage. 
 
Table 1: Distribution of persistent and intermittent carriers among males and females. 

Sex Carriers (% carriage distribution across sex)#  Totala Persistent Intermittent Non-carriers 
Male 11 (23.9) 16 (34.7) 19 (41.4) 46 

Female 15 (23.8) 19 (30.1) 29 (46.1) 63  
Totalb 26 35 48 109 

# Only nasal swabs from carriers sampled 2 or more times were only included 
a Total number of nasal carriers distributed across each sex 
b Total number persistent, intermittent and non-carriers monitored during the study 

SA strains isolated from persistent and intermittent carriers belong to the same genetic clusters 
as nosocomial strains 

We have recently revealed genetic associations between nasal carriage strains and clinical 

isolates [36]; however, this initial study was a static cross-sectional survey that did not account 

for the nasal carrier class of donors (i.e. persistent vs. intermittent). In the current study, we 

have extended these analyses to a larger cohort of donors, including persistent and 

intermittent carrier strains that were monitored longitudinally for a period of up to three years. 
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To determine the genetic relatedness among SA strains, MLST analyses were performed on 297 

SA nasal carriage strains obtained from 96 individuals. A total of 42 different sequence types 

(STs) were observed with 10 being newly identified (refer to Appendix A; Table 8 for genotyping 

details of all SA strains used in this study). Three novel alleles were also identified in this study 

at loci glpF, gmk and pta. Sequence types 5 (21.3% of all carriers), 30 (18% of all carriers) and 8 

(16.4% of all carriers) were the most prevalent STs observed within the cohort (Table 2). 

Staphylococcus aureus strains belonging to ST15 were only isolated from persistent carriers. 

However, only one of these persistent carriers was monitored for more than one year and as 

such, elaborate longitudinal monitoring of a larger cohort of donors containing ST15 SA strains 

is required to determine if there is any preferential colonization of persistent carriers by ST15 

SA strains. 

Table 2: Predominant STs in persistent and intermittent carriers 

Sequence type (ST) 
of S. aureus strains# 

 Number of donors carrying each ST (% of 
donors carrying each ST)a 

Totalb 

Persistent Intermittent 
ST5 5 (19.2) 8 (22.8) 13 (21.3) 

ST30 5 (19.2) 6 (17) 11 (18) 
ST8 4 (15.4) 6 (17) 10 (16.4) 

ST45 1 (3.8) 2 (5.7) 3 (4.9) 
ST15 4 (15.4) 0 4 (6.5) 
ST59 1 (3.8) 2 (5.7) 3 (4.9) 
ST188 1 (3.8) 3 (8.5) 4 (6.5) 

# Only nasal swabs from carriers sampled 2 or more times were included and only the most 
prominent STs prevalent in North America are presented here 
a Percentage calculated using the total number of persistent and intermittent carriers in the 
cohort 
b Total number persistent and intermittent carriers that carried one or more strains in their 
noses 
  

 Bayesian MCMC analysis of the concatenated MLST data revealed that SA strains 

isolated from persistent and intermittent carriers are closely related. Persistent and 
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intermittent carriers as well as strains isolated from clinical studies all group within the same 

clades (Figure 3A). Since the cohort included healthy individuals that were singly sampled 

(cross-sectional), phylogenetic analyses incorporating SA MLST data from these individuals 

were also performed (Appendix A; Figure 19) and the analyses reveal that all SA carrier strains 

within the cohort are highly similar to strains of clinical origin.  

 In addition to identifying phylogenetic relationships, eBURST clustering of the MLST data 

confirmed that persistent and intermittent carrier strains belong to the same clonal complexes 

as that of epidemic strains. As observed in Figure 3B, eBURST delineated nasal carriage and 

clinical strains into 10 groups and 11 singletons. Of these, five groups contained both clinical 

and nasal carriage strains and groups identified by eBURST also contained STs from both 

persistent and intermittent carrier strains (data not shown). Collectively, the phylogenetic 

analyses revealed genetic relatedness between persistent and intermittent carrier strains, in 

addition to genetic similarities with strains isolated from clinical settings. 

SA strains from the nares of both persistent and intermittent carriers change over time 

To date, few studies longitudinally assessed whether nasal carriage strains of SA in the nares of 

persistent and intermittent carriers change over time. Longitudinal monitoring of 61 carriers 

(both persistent and intermittent) revealed variations in the STs of SA nasal carriage strains 

over time. A representative set of persistent and intermittent carriers that were monitored 

between one and three years is depicted in Figure 4, revealing the patterns of strain change. In 

addition, 48 healthy individuals were monitored over time and identified as true non-carriers 

(Appendix A; Figure 20).  
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Figure 3: SA strains from persistent and intermittent nasal carriers are genetically related to 
nosocomial epidemic strains. 

(A) Bayesian MCMC analysis of persistent carrier strains (colored in blue), intermittent carrier 
strains (colored in black) and nosocomial epidemic strains (colored in red). Numbers at each 
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node indicate posterior probability support and grey-filled circles represent 100% posterior 
probability. (B) eBURST analysis of the MLST data clusters STs from intermittent and persistent 
carriers into same clonal complexes and into groups that are represented by numbers in grey. 
STs colored in black are nasal carrier strains, STs colored in red are epidemic strains and those 
in green contain both carrier and epidemic strains. Circle sizes in each cluster are proportional 
to the number of isolates and blue circles are founders of that particular cluster. 
 

 Notably, it was observed that individuals who share households (such as spouses, 

siblings, roommates, etc.) tended to carry genetically similar strains (Appendix A; Table 9). For 

example, family members and individuals living in the same households (D528-D549, D523-

D594, D618-D619 and D20-D547-D604 (Figure 4)) carried genetically similar strains at one or 

more sampling times. Interestingly, we observed that intermittent carriers D523 and D618 

harbored genetically similar strains as that of their living partners D594 and D619, respectively. 

Additionally, it was observed that persistent carriers D619 and D635, who are identical twins, 

carried genetically similar strains during the entire study period. Though additional correlative 

studies are required, interesting trends of SA transmission over time among individuals living in 

the same household were observed within the cohort. 

 Previous reports have indicated that a single strain of SA colonizes the nose for long 

periods of time in persistent carriers while strains colonizing intermittent carriers tend to 

exhibit more extensive genotypic diversity [2,123]. In contrast, within our cohort, we observed 

that over time, 27% of persistent carriers and 23% of intermittent carriers changed the ST of 

their SA strain (Likelihood ratio χ2 = 0.132, N=61, df =1, p= 0.7160, Table 3). Additionally, 

phylogenetic analyses of the MLST data revealed that SA strains from these carriers clustered 

into the same genetic clades exhibiting a high degree of relatedness. Taken together, these 
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results indicate similar genotypic diversities of colonizing strains in persistent and intermittent 

carriers. 

 

Figure 4: Longitudinal monitoring reveals that SA strains from both persistent and 
intermittent nasal carriers change over time. 

A representative set of persistent and intermittent carriers that have been monitored for at 
least one year is depicted here. (C) indicates SA nasal carriage at the time of swabbing and (N) 
indicates SA non-carrier state. Colors represented in the figure correspond to different 
Sequence Types (STs) identified by MLST. STs are segregated into different cluster groups by 
eBURST analysis. Carriers within the same household are grouped next to each other (indicated 
by * and flower bracket). (NA) corresponds to ST not available.  
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Table 3: Persistent and intermittent carriers carrying more than one unique SA lineage in 
their noses during the study period 

Number of different 
S. aureus strains# 

Carriers (% of total in the carrier group)  Totala 
Persistent Intermittent 

1 19 (73) 27 (77) 46 (75.4) 
2 6 (23) 4 (11.5) 10 (16.4) 
3 1 (4) 3 (8.5) 4 (6.6) 
4 0 0 0 
5 0 1 (3) 1 (1.6) 

Totalb 26 35 61 
# Nasal swabs from carriers monitored 2 or more times were only included 
a Percentage calculated using the total number of persistent and intermittent carriers in the 
cohort 
b Total number persistent and intermittent carriers that carried one or more strains in their 
noses 

Genotyping of hypervariable virulence genes revealed no preferential colonization of either 
persistent or intermittent carriers by specific SA strain genotypes 

As MLST is based on housekeeping genes that evolve slowly [22], we also genotyped 

hypervariable virulence genes (spa and clfB) in order to obtain higher levels of strain resolution 

and further characterize the relatedness among strains obtained from persistent and 

intermittent carriers. Genotyping of the virulence gene spa was performed on 242 SA strains 

isolated from persistent and intermittent carriers. A total of 41 unique spa types were obtained, 

nine of which were newly identified in this study. Interestingly, high sub-ST strain resolution 

was obtained at the spa locus (discriminatory index of 0.957), and 11 (26.83%) of the 41 spa 

types identified contained persistent and intermittent carrier strains exhibiting identical X 

domain repeats.  eBURP-clustering analysis performed on the SA strains grouped them into 

seven clonal complexes (spa-CC) and 13 singletons (refer to Appendix A; Table 8 for spa typing 

details of all SA strains used in this study). Interestingly, eBURP revealed that spa types from 
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both persistent and intermittent carriers clustered into the same clonal complexes, confirming 

the high degree of genetic relatedness observed in MLST phylogenetic analyses (Figure 5A).   

 

Figure 5: Genoytping of hypervariable virulence genes revealed no preferential colonization 
of specific genotypes of SA strains in persistent and intermittent carriers.  

(A) eBURP clustering analysis based on spa types revealed that both persistent and intermittent 
carrier strains belonged to same clonal complexes. spa types colored in blue contain only 
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persistent carriers while those in black contain only intermittent carriers. spa types colored in 
green contain both intermittent and persistent carriers. Circle sizes in each cluster are 
proportional to the number of isolates and inferred founders (blue circles) and sub-founders 
(yellow circles) of each cluster are also represented here. spa types with less than 5 repeats 
were excluded from the eBURP analysis. (B) A representative set of SA persistent (colored in 
blue) and intermittent (colored in black) carrier strains having indistinguishable clfB R domain 
repeat region sequences. Like-colored boxes indicate 100% sequence similarity between SA 
strains.  
 

Table 4: Classification of MRSA strains from persistent and intermittent carriers using SCCmec 
typing 

Donor MLST 
Sequence 
type (ST) 

SCCmec 
type 

D535-2a ST30 I 
D535-3-4-5-6-7-8-10-

11-12-13-14-15-16 
ST5 IV 

D547b ST30 I 
D565-1-3 ST87 III 

D618 ST30 IV 
D795-2 ST15 II 

D798-1-2-3-4-5-6 ST8 IV 
   a Bold indicates persistent MRSA carrier strains 
    b Italics indicates intermittent MRSA carrier strains 
 

 In addition to spa typing, we also performed genotyping of the hypervariable R region of 

clfB. This region determines the length of the extracellular ligand binding domain of ClfB 

protein, which is thought to influence bacterial adherence to host epithelia [132]. A previously 

developed in-house software was used to analyze this clfB R region [36]. Nucleotide analysis of 

the clfB R region was performed on 244 SA strains isolated longitudinally, and a total of 109 

unique repeat units were observed (Appendix A; Table 10). Though variability was observed in 

the clfB gene fragments, 34.15% of all persistent carrier strains analyzed in our study contained 

identical sequence repeats to strains isolated from intermittent carriers, revealing relatedness 

between the SA strains. Figure 5B depicts the sequence similarity of the clfB repeat regions in a 
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representative sampling of nasal carriage strains isolated from persistent and intermittent 

carriers. Refer to Appendix A; Figure 21 for clfB typing details of all SA strains analyzed in this 

study. 

 

Figure 6: spa and clfB repeat domain lengths are indistinguishable between persistent and 
intermittent carriers. 

Plots comparing X domain repeat region of spa and R region lengths of clfB between persistent 
and intermittent carrier SA strains. 
 
 Recently, human in vivo nasal colonization studies revealed ClfB exhibits a crucial 

function in bacterial adherence to the nares [77]. Therefore, we assessed whether differences 

in the length of clfB R region would correlate to intermittent or persistent carriage. Persistent 

carrier strains contained nearly identical R region lengths compared to intermittent carrier 

strains (p= 0.6646, Figure 6), suggesting that strains from these groups exhibit a high degree of 

relatedness. A similar analysis of the X domain repeat region of spa also revealed no significant 

difference in length between these two groups (p= 0.7797, Figure 6). 

 Collectively, longitudinal monitoring of SA nasal carriage strains followed by MLST and 

genotyping of hypervariable virulence genes (spa and clfB) revealed a high degree of genetic 
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relatedness between SA strains colonizing persistent and intermittent carriers. These results 

indicate no preferential colonization of either persistent or intermittent carriers by certain 

genotypes of SA. 

Persistent and intermittent carriers harbor epidemic MRSA strains in their nares longitudinally 
over time 

All 297 SA strains analyzed in this study were subjected to phenotypic screening to identify 

MRSA strains, and 11.78% of all SA carriers (sampled once or multiple times) carried MRSA 

strains in their nares. A subset of persistent and intermittent carriers harbored strains that 

were similar to CA-MRSA strains in their nares longitudinally over time (Table 4). Both 

occurrences of losing and acquiring MRSA strains were observed in these carriers throughout 

the colonization study period. Persistent carrier D798 carried an ST8-SCCmec type IV strain, 

which is genetically similar to the widely disseminated epidemic CA-MRSA strain USA300. 

Additionally, the persistent carrier D535 acquired and carried ST5-SCCmec type II MRSA strain 

for over two years. This strain is genotypically similar to another widespread nosocomial 

epidemic MRSA strain N315. These results indicate that some persistent and intermittent 

carriers carry epidemic MRSA strains in their nares over variable periods of time. 

 

Discussion 

There is considerable evidence indicating that SA carriage is an important risk factor for 

endogenous infection, and recent studies have substantiated that SA nasal carriage is multi-
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factorial, involving both host and bacterial factors [2,7,39,43,49,120,133]. However, little is 

known about the extent to which the colonizing strains’ factors contribute to persistent versus 

intermittent carriage of SA in the human nose. Therefore, as one of our goals, we set out to 

investigate whether there is preferential colonization by particular genotypes of SA strains 

among persistent and intermittent carriers. We observed no preferential colonization by 

particular genotypes of SA strains during colonization of either persistent or intermittent 

carriers. These findings reveal the close genetic relatedness of SA strains carried by the carriers 

in our cohort and raise additional questions about other factors that are responsible for 

determining persistent versus intermittent carriage states. Previous studies suggest that host 

factors are crucial determinants of SA carriage [42,133] and the fact that this study could not 

find any genetic differences between strains colonizing persistent and intermittent carriers, 

collectively may imply as yet unknown factors (including host, microbiome and environment 

[134]) could primarily be responsible in determining carriage state. 

 The definition of persistent carriage varies between studies, and one study defined 

persistent carriage based on a semi-quantitative approach, called the “culture rule” where 

nasal swabs were collected one week apart to determine persistent or intermittent carriage 

[135]. However, it is arguable that a more comprehensive longitudinal sampling over longer 

periods of time is required to identify true persistent carriers. In the current study, extensive 

longitudinal monitoring of healthy individuals was performed for a period of up to three years 

to differentiate true persistent carriers from intermittent carriers and non-carriers. This 

distinction is crucial because bacterial loads between persistent and intermittent carriers vary 

widely (about 1000 fold more CFUs in persistent carriers [135]), which puts persistent carriers 
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at a higher risk of acquiring SA infections [12,13]. Interestingly, we observed that some 

persistent carriers carry highly virulent epidemic CA-MRSA strains like USA300 in their nares 

longitudinally over time, potentially putting them at greater risks of acquiring MRSA infections. 

CA-MRSA clone USA300 is a widely disseminated virulent strain that is responsible for majority 

of community associated soft tissue and skin infections [136,137]. Though SA nasal carriage 

itself is seemingly benign to the host’s nose, carriers in general are known to require the use of 

antibiotics more than non-carriers (Rotterdam ERGO cohort [138]). More frequent antibiotic 

usage could lead to the emergence of multidrug resistant SA strains, in addition to affecting the 

equilibrium of the host’s commensal flora. 

 Previous studies have suggested that a single SA strain often colonizes the nose for long 

periods of time in persistent carriers while strains colonizing intermittent carriers tend to 

exhibit more genotypic diversity as periods of decolonization and recolonization occur [2,123].  

In contrast, our longitudinal sampling and genotyping studies (using MLST, spa and clfB) 

revealed that SA strains carried by both persistent and intermittent carriers clustered into the 

same clades exhibiting high degree of genetic relatedness and SA strains carried in their nares 

change over varying periods of time. It is likely, however, that these changes are due to the 

acquisition of distinct strains—that are genetically similar to the one being replaced—as 

opposed to the same strain undergoing mutational events. While high sub-ST strain resolution 

and genotypic analyses of relatedness were obtained in this study, large scale whole genome 

sequencing of SA strains isolated from intermittent and persistent carriers may be the most 

accurate technique in discerning the genetic relatedness in these SA strains. Next generation 

sequencing technologies could surely assist with such large-scale genome studies [139]. 
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 Several hypervariable virulence genes like spa and clfB have been postulated to be 

involved in SA nasal carriage [39,74,77,105,120-122,140]. However, it is unclear whether 

polymorphisms in these genes and differences in their repeat lengths would affect the ability of 

SA to bind nasal epithelia and hence, contribute to persistent or intermittent carriage. Our 

longitudinal analyses revealed that strains isolated from persistent and intermittent carriers 

showed a high degree of genetic relatedness with respect to polymorphic changes in spa and 

clfB genes. These findings echo the findings of a previous study, which demonstrated that 

polymorphisms in repeat regions of virulent genes spa and coa (coagulase) do not contribute to 

persistent carriage [141]. In fact, no studies to date have been able to detect any bacterial 

factors involved in distinguishing persistent versus intermittent carriage states, suggesting a 

greater role for other factors in carriage type. 

 It has been previously speculated that the carriage state can be imposed on members of 

the same household [142,143]. The current study, though limited, also observed patterns of SA 

transmission among individuals living in the same household in which persistent and 

intermittent carriers cohabitating in the household harbored genetically similar SA strains. In a 

similar fashion, studies among the institutionalized elderly population observed that both 

persistent and intermittent carriage strains are shared among household members and the 

transmitted SA strains exhibited genotypic similarities [142]. However, additional correlative 

studies using a larger cohort of individuals living in the same household are necessary. 

 Bacterial interference has been hypothesized to be involved in determining SA non-

carriage state rather than carriage state. Commensal flora of the body are known to protect the 

host against acquisition of new SA strains [144]. The phenomenon of bacterial interference 
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contributing to SA nasal colonization was elegantly demonstrated in a recent study by Iwase 

and colleagues in which Staphylococcus epidermidis, a resident bacterium of the human nares, 

was shown to inhibit both nasal colonization and biofilm formation of SA. Specifically, they 

demonstrated that a serine protease (Esp) secreting S. epidermidis eliminated SA colonizing the 

nasal cavities of healthy individuals [145]. Perhaps, the absence of Esp-expressing S. epidermidis 

in the nasal niche could potentially contribute to persistent SA carriage. Additionally, 

competitive bacterial interference between SA and Streptococcus pneumoniae have also been 

studied extensively. Several studies have confirmed an inverse relationship between SA and S. 

pneumoniae colonization in the nasopharyngeal niche [143,146]. This inverse relationship 

between SA and S. pneumoniae could influence SA carriage.  

While we have achieved our goal of assessing the genotypic diversity between SA strains from 

persistent and intermittent carriers, we find it pertinent to note that some inherent limitations 

complicate data interpretation. This study focused only on nasal carriage strains, although SA is 

known to colonize other extra-nasal regions in humans [2]. Regarding the labeling of persistent 

and intermittent carriers it is important to note that the success rate for isolating SA from swab 

samples never reaches 100%. Moreover, the sample collection was dependent largely on the 

willingness of donors participating in the study, which lead to gaps in periodicity of sample 

collection.  

 In conclusion, the current study illustrates the lack of genotypic differences in SA 

colonizing persistent and intermittent carriers, and the strain relatedness between these 

carriers observed within the study may be higher than previously thought. Assessment of nasal 

carriage dynamics between strains colonizing persistent and intermittent carriers and 
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understanding complex host-pathogen interactions during carriage are crucial for developing 

effective intervention strategies for nasal carriage and subsequent prevention of community-

associated and nosocomial SA infections. 
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CHAPTER 3: EXOPROTEOME OF STAPHYLOCOCCUS AUREUS REVEALS PUTATIVE 
DETERMINANTS OF NASAL CARRIAGE 

Introduction 

Staphylococcus aureus is one of the most common causes of community-acquired and 

nosocomial infections throughout the world [2].  These infections have become even more 

pertinent with the global spread of community-acquired Methicillin-resistant SA (CA-MRSA)[4] 

and the emergence of Vancomycin-resistant SA (VRSA) [110].  In the US alone, the mortality 

rate from SA infections surpasses those attributed to HIV/AIDS [4].  Many community-acquired 

and nosocomial SA infections are disseminated through nasal carriage, which occurs in 

approximately one quarter of the population [2], thus identifying determinants of nasal carriage 

is a priority for successful amelioration of this condition. 

 Although nasal carrier strains of SA have evolved diverse strategies to ensure their 

survival and carriage in nasal passages, colonization can also be attributed to amenable hosts 

that carry SA persistently or intermittently [7,43,147]. In an immunologically robust host, nasal 

secretions contain a plethora of defensive antibacterial proteins and peptides such as lysozyme, 

lactoferrin, secretory leukoprotease inhibitor (SLPI), cathelicidins, α-defensins and β-defensins 

including human β-defensin 3 (HBD-3), the most effective of the β-defensins against SA 

infections [51,53,147,148].  However, a key determinant for the nasal carriage of SA is the 

failure of these secretions to prevent colonization.  Carrier strains, and not non-carrier strains 

of SA, have been reported to persist and replicate within nasal fluids from carrier donors and on 

the surface of organotypic nasal epithelia, indicating that carriers have factors that aid in nasal 

 
 

37 



 

colonization of SA [49,57].  Likewise, investigations by several groups have indicated that 

colonization of the human nose by SA is influenced by bacterial determinants including sortase 

A (SrtA) [74,122], clumping factor B (ClfB) [77,149], tagX [105], and enterotoxins [140,150,151].  

However, this may not represent the complete repertoire of bacterial factors necessary for 

nasal colonization in humans [114,152]. 

 Our previous studies on a nasal carrier strain of SA indicate that it possesses several 

colonization advantages in comparison to its genetically similar non-carrier counterpart [57].  

These advantages included downregulation of host HBD-2, HBD-3 and interleukin-1 (IL-1), along 

with the ability to form biofilms [57,153].  Biofilm-producing strains of SA exhibit higher survival 

rates against not only antibiotic drugs, but also against natural AMPs present in the host’s nasal 

mucosa [153,154].  Interestingly, the formation of protective biofilms was not evident in the 

non-carrier strain [153].  Collectively, these findings led us to postulate that the origin of 

factors, which facilitated nasal colonization by SA carrier strains, are present at the primary 

interface between the host and the pathogen, namely the bacterial surface and freely secreted 

proteins collectively termed the exoproteome. 

 Using high throughput gel-free proteomics in concert with 2D-PAGE, we determined the 

repertoire of proteins contained within the exoproteome of a successful nasal carrier strain of 

SA in comparison to its genetically similar non-carrier counterpart.  Analysis of these differences 

revealed putative determinants of nasal carriage.  For the first time, we also compared the 

exoproteome of the biofilm form of the carrier strain of SA with its planktonic counterpart to 

assess its contribution to successful nasal carriage.  Exoproteome analysis by 2D-PAGE revealed 

a marked difference in the distribution of proteins between carrier and non-carrier SA strains.  
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Subsequent isobaric tagging for relative and absolute quantification (iTRAQ) [155] confirmed 

these findings, revealing that the carrier strain of SA expressed a greater number of proteins 

involved in cell attachment and immunoevasion than the non-carrier strain.  On closer 

examination of the most abundant immunomodulatory proteins, we found that Staphylococcal 

protein A (SPA), known to be involved in SA virulence and biofilm formation [100,103,156], was 

secreted in significantly greater amounts by SA nasal carrier strains compared to the non-carrier 

strain.  This may indicate a relationship between SPA and the carriage status of SA.  By 

comparing the exoproteomes between a successful carrier strain of SA and a non-carrier strain, 

we have identified individual proteins and functional classes of proteins that may determine 

the nasal carriage status of SA. 

Materials and Methods 

Bacterial strains and culture conditions 

SA strain D30 that has been extensively characterized [7,57,152], was originally isolated from 

the anterior nares of a healthy donor, and served as the carrier strain for the experiments 

herein.  SA strain 930918-3, (from Ian Holder, Shriners Burn Hospital, Cincinnati, Ohio, USA), 

which is genetically similar to the carrier strain D30, and has been extensively characterized 

[152], served as the non-carrier strain of SA in these experiments.  Additionally, persistent SA 

carrier strains D20, D98, D39 and intermittent carrier strain D37 were used in this study [7], SA 

was cultivated on Tryptic Soy Agar (TSA; Bacto™, Becton, Dickinson and Company, MD, USA) 

and subcultured in Trypticase Soy Broth (TSB; Bacto™, Becton, Dickinson and Company, MD, 
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USA), from which stocks were prepared.  For all experiments, snap-frozen (-80°C) stocks of SA 

were thawed rapidly and cultured at 37°C.  Levels of inocula were estimated by measuring the 

absorbance of a washed bacterial suspension in PBS (Mediatech Inc., VA, USA) at 625 nm.  An 

OD at 625 nm of 0.1 approximated 2.0 x 107 CFU/ml.  Inocula were quantitated by spreading 

10μl aliquots of the liquid culture on TSA and enumerating CFU following 18 hours incubation at 

37°C [57,153]. 

Preparation of carrier strain biofilms 

SA carrier strain snap-frozen culture was incubated in TSB media and allowed to grow until 

stationary phase (6-8 h).  The stationary culture was transferred to flasks containing 50 ml TSB 

at a 1:100 dilution and incubated without shaking at 25°C for 3 days to promote biofilm 

formation.  Biofilms were subsequently washed three times with 0.85% NaCl and incubated 

overnight in ambient PBS.  The supernatant was then centrifuged and used for exoproteome 

purification [153]. 

Preparation of protein extracts and 2D-PAGE 

2D-PAGE was used to analyze exoproteomes from the carrier strain D30 and non-carrier strain 

930918-3.  Based on the growth kinetics of our SA strains, a modified approach from Dreisbach 

and colleagues was utilized for SA exoproteome preparation [157]. Briefly, one liter of bacterial 

culture was grown for 24 hours at 250 rpm, 37°C, centrifuged and resuspended in 40 ml of PBS.  

Protease and phosphatase inhibitors (Halt™ protease and phosphatase single-use inhibitor, 

Pierce, IL, USA) were added to the culture and shaken overnight and the resulting supernatant 
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was collected and filter (0.2μm) sterilized. The extract was further purified by a C18 SepPak 

(Waters Corporation, MA, USA) column according to the manufacturer’s instructions, except 

that the final elution was in 80% acetonitrile/ 20% HPLC grade water.  The sample was 

dehydrated to 10μl and diluted with 100μl of HPLC grade water.  The total protein 

concentration of the sample was estimated using Micro BCATM Protein Assay Kit (Thermo 

Scientific, Pierce, IL, USA) according to the manufacturer’s instructions [158-161]. 

Approximately 400μg of total protein was subjected to 2D-PAGE analysis as per the 

manufacturer’s protocol (BioRad, CA, USA).  The sample was prepared in rehydration sample 

buffer I (8 M urea, 2% CHAPS, 50 mM DTT (dithiothreitol) 1x ReadyStrip buffer 0.1–0.4% (w/v) 

Bio-Lyte ampholytes) and absorbed onto a ReadyStrip IPG gel strip, pH 4-7 (BioRad, CA, USA).  

The strip was then subjected to isoelectric focusing (IEF) at 50 VµA per strip, initially at 250V for 

15 minutes and then ramping to 10,000V in 3 hours followed by an additional focusing for 12–

16 hrs at 20°C until 60,000 volt-hours was reached.  Strips were rinsed in glycine gel running 

buffer and soaked in Equilibration Buffer I (6 M urea, 0.375 M Tris, pH 8.8, 2% SDS, 20% 

glycerol, 2% (w/v) DTT) for 5 minutes followed by Equilibration Buffer II (6 M urea, 0.375 M Tris, 

pH 8.8, 2% SDS, 20% glycerol, and 2.5% (w/v) iodoacetamide) for 5 minutes.  The gel strips were 

then rinsed in SDS gel buffer and resolved by a 2nd dimension using a precast BioRad Ready Gel 

Tris-HCl, 4–20% linear gradient at 40 mA for 5 hrs.  The gels were subsequently stained using 

silver nitrate. 
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Protein digestion, labeling with iTRAQ reagents and On-Line 2D NanoLC-MS/MS 

Approximately 120 μg of the exoproteome sample from the planktonic SA carrier strain D30, 

the planktonic non-carrier strain 930918-3 and the carrier strain D30 biofilm were subjected to 

overnight acetone precipitation at -20°C.  Samples were resuspended in dissolution buffer, 

alkylated, trypsin-digested at 37°C overnight and labeled with iTRAQ 4plex Reagents kit as per 

the manufacturer’s instruction (AB Sciex Inc., CA, USA).  iTRAQ tags were applied as follows: 

iTRAQ 114 = Carrier strain D30 biofilm, iTRAQ 115 = planktonic non-carrier strain 930919-3, 

iTRAQ 116 = planktonic carrier strain D30, iTRAQ 117 = planktonic carrier strain D30.  The four 

iTRAQ samples were mixed, lyophilized, resuspended in Strong Cation Exchange (SCX) solvent, 

and subjected to LC-MS/MS analysis of each peak fraction by QSTAR ESI quadrupole time-of-

flight tandem MS system (Applied Biosystems, CA, USA) [155,162,163].  Complete iTRAQ 

analyses were performed three independent times for each sample tested. 

iTRAQ Data Analysis 

Raw MS data processing, protein identification, quantification and subsequent statistical 

analyses were performed using the ParagonTM algorithm [164] of ProteinPilot version 2.0.1 

software (AB Sciex Inc., CA, USA).  Comprehensive searches against the National Center for 

Biotechnology Information (NCBI) bacterial database with biological modifications and amino 

acid substitutions were performed to identify the proteins.  Additionally, parameters such as 

cysteine alkylation by MMTS, iTRAQ modification of N-terminal peptide residues, modifications 

of lysine and tyrosine residues were considered during the analyses, as well as other default 

parameters were considered by the software.  Further classification and analyses of the 
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identified proteins were performed using the ProGroupTM algorithm.  This algorithm enabled 

confident protein identification using the least set of identified peptides based on total protein 

scores that is generated from peptide confidence scores.  Scores higher than a 95% confidence 

level were used for identifying proteins.  Mean, Standard Deviation (S.D) and p values 

generated by the ProGroup algorithm were used for relative protein quantification between the 

samples.  iTRAQ fold-ratio >1.2 and <0.8 combined with a p value < 0.05 was used to determine 

differential protein expression between the samples.  These cutoff values for variation in the 

expression, recommended by the ParagonTM algorithm, are a widely accepted fold-ratio 

[163,165-171].  Proteins identified with one distinct contributing peptide were subjected to 

manual validation by the assessment and confirmation of their MS/MS spectra (data not 

shown) [155,162,164,172]. 

Anti-SPA ELISA 

The expression of protein A (SPA) was quantified using the Assay DesignsTM protein A Enzyme 

Immunometric Assay (EIA) kit (Enzo Life Sciences International, PA, USA) as per the 

manufacturer’s instructions with minor modifications.  Briefly, exoproteome samples from 1L of 

stationary phase cultures (∼2.0 x 1010 CFU/ml) of nasal carrier, non-carrier and epidemic strains 

were prepared as mentioned previously and equal volumes (25µl) at dilutions 1/1x105, 1/2 

x105, 1/4 x105 and 1/16 x105 were subjected to assay analysis.  The concentration of SPA was 

calculated against standards according to manufacturer’s instructions and represented as µg/ml 

of total protein.  A one-tailed Student’s t-test was used to measure the significance of SPA 

expression between SA strains. 
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Results 

Comparative analyses of SA exoproteomes reveal differences in the distribution pattern of 
proteins between nasal carrier and non-carrier strains 

Since the first interface between host and pathogen is the bacterial exoproteome, we 

hypothesized that a comparison between a carrier and a genetically similar non-carrier SA 

strain exoproteome would reveal key differences that could be important in nasal colonization 

of SA. To screen initially for these differences we used 2D-PAGE and observed significant 

differences in the distribution of secreted proteins between nasal carrier and non-carrier strains 

as typified by the distribution of MS/MS-verified SPA, (49.5 kDa).  Additionally, multiple 

isoforms of SPA were exclusively detected in the carrier strain (Figure 7) 

 

Figure 7: Comparative exoproteome analysis of carrier (D30) and non-carrier (930918-3) 
strains of SA reveals significant differences in protein distribution. 

The distribution pattern of the exoproteomes of genetically similar strains of SA differed from 
the carrier to the non-carrier strain as evidenced by the distribution of Staphylococcal protein A 
(SPA) 49.5 KDa (circled).  SPA spots were confirmed using ELISA and mass spectrometry. 
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iTRAQ-coupled LC-MS/MS analyses of identified a total of 488 proteins in the aggregate SA 
exoproteome 

An experimental workflow for the analysis of SA exoproteomes by iTRAQ is described in Figure 

8A.  Briefly, purified proteins were subjected to trypsin-digestion and labeled with iTRAQ 

reagents.  Peptides from SA carrier strain (D30) exoproteome were labeled with iTRAQ reagents 

116 and 117 whilst peptides from the non-carrier strain (930918-3) and carrier strain (D30) 

biofilm exoproteomes were labeled with iTRAQ reagents 115 and 114, respectively.  These 

iTRAQ-labeled samples were then mixed, lyophilized and fractionated using Strong Cation 

Exchange (SCX) chromatography.  Subsequently, SCX fractions were subjected to LC-MS/MS 

analysis (Figure 8).  The entire set of experiments from the collection of the exoproteome to LC-

MS/MS analysis was performed 3 independent times (N=3).  LC-MS/MS analysis of 21 SCX 

fractions identified a total of 488 proteins (95% confidence, unused score >1.3) from 5970 

distinct peptides (Appendix B; Table 12 and Table 13).  In addition, the identified proteins’ 

expression levels were significantly different between carrier strain, non-carrier strain and 

carrier strain biofilm (p<0.05) conditions as depicted by the volcano plot illustration of iTRAQ 

data (Figure 8). 

 Representative iTRAQ ion spectra and MS/MS spectra showing protein identification 

and quantification of selected proteins from carrier and non-carrier strains are illustrated in 

Figure 9. Figure 9A reveals representative MS/MS and iTRAQ ion spectra of a uniquely 

identified peptide (99% confidence) from immunoglobulin G binding protein A precursor.  

iTRAQ analysis revealed a >2.2 fold increase in expression of this protein between carrier D30 

(iTRAQ label 116) and non-carrier 930918-3 (iTRAQ label 115) strains. Figure 9A&B illustrate the 
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iTRAQ ion spectra and MS/MS spectra for the proteins ABC transporter substrate-binding 

protein and autolysin revealing lower and equal expression levels, respectively, between carrier 

strain D30 (iTRAQ label 116) and non-carrier strain 930918-3 (iTRAQ label 115).  The 

corresponding amino acid sequences of the peptides depicted in Figure 9 are given in 

supplemental information (Appendix B; Table 11). 

The nasal carrier strain of SA expresses a greater number of proteins implicated in colonization 
than its non-carrier counterpart 

The proteins identified in the exoproteomes were categorized with reference to their potential 

contribution to nasal carriage as conceived by Burian and colleagues [11]. These included 

proteins involved in metabolism, protein synthesis and trafficking, stress, pathogenesis and 

immunomodulation, cell adhesion, cell division and cycle, transport and unknown functions 

(Appendix B; Table 12).  iTRAQ analyses revealed that the carrier strain of SA expressed a 

markedly different repertoire of proteins in comparison to the non-carrier strain (Figure 10). 

We observed that 131 proteins were differentially expressed between carrier and non-carrier 

strain exoproteomes.  Of these 131 proteins, 66 were expressed in higher amounts in the 

carrier strain of SA compared to the non-carrier strain, and 25 of these proteins exhibited a >2-

fold increase in expression levels (see Table 5 for a partial list of proteins and Appendix B; Table 

12 for the complete list). 
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Figure 8: Integrated experimental workflow for the analysis of SA exoproteome by iTRAQ and 
volcano plot illustration of iTRAQ data 

(A) The exoproteome of the carrier strain, the non-carrier strain and a carrier strain biofilm 
(growth media free) were extracted, purified and concentrated with the aid of C18 solid phase 
extraction cartridges.  Proteins were subject to trypsin-digestion and labeled with iTRAQ 
reagents. Digests from the carrier strain (D30) exoproteome were labeled with iTRAQ reagents 

 
 

47 



 

116 and 117 whilst digests from the non-carrier strain (930918-3) exoproteome and carrier 
strain (D30) biofilm were labeled with iTRAQ reagents115 and 114 respectively.  Labeled 
samples were mixed, lyophilized and fractionated using Strong Cation Exchange (SCX) 
chromatography.  The HPLC fractions were analyzed by LC-MS/MS on a QSTAR ESI quadruple 
time-of-flight tandem MS system.  The entire set of experiments from the collection of the 
exoproteome to LC MS/MS analysis was performed 3 times (N=3) and the raw MS/MS data 
were collated together for further analysis.  (B) Protein expression fold change in SA carrier 
strain as compared to non-carrier strain.  (C) Protein expression fold change in SA carrier strain 
under planktonic and biofilm growth conditions.  Fold differences of protein expression are 
plotted against their respective p values.  All proteins identified by at least one peptide with 
greater than 95% confidence are represented here.  Horizontal dashed lines identify fold 
changes with p values of 0.05.  Vertical dashed lines delineate a 2-fold change in the ratio of 
protein expression. 
 

 Our exoproteomic analyses revealed that additional adhesive proteins might play critical 

roles in colonizing the human nasal mucosa (Table 5).  We observed that the SA carrier 

exoproteome contained a markedly larger number of adhesive proteins than the non-carrier 

strain (Figure 10C).  One of the major proteins involved in host attachment, the cell wall surface 

anchor family protein (SasD), demonstrated nearly 4-fold higher expression in the carrier 

compared to the non-carrier strain (Table 5).  iTRAQ analysis also detected significantly higher 

levels of two proteins in the carrier strain that have previously been implicated in nasal 

colonization: serine-aspartate repeat family protein (SrdH) and sortase (Srt) (Table 5).  SasD and 

SrdH are two cell wall-anchored proteins containing host attachment domains (MSCRAMMs) 

[73,173].  These MSCRAMM proteins are covalently anchored to the host adhesive matrix 

molecules via the LPXTG motif recognized by sortase [74].  SasD contains a slightly modified 

LPXAG anchor to host matrix molecules. 
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Figure 9: Representative iTRAQ MS/MS spectra showing protein identification in carrier and 
non-carrier strains from selected proteins. 

Representative MS/MS spectra of uniquely identified peptides (confidence, 99%) from (A) 
Immunoglobulin G binding protein A precursor (B) ABC transporter, substrate-binding protein 

 
 

49 



 

and (C) Autolysin are represented here. The inset reveals the iTRAQ reagent peaks for relative 
quantitation in the SA strains.  Illustrations for higher, lower and equal expression levels 
between carrier strain D30 (iTRAQ label 116) and non-carrier strain 930918-3 (iTRAQ label 115) 
have been provided. 

Immunomodulatory Proteins And Toxins 

Immunomodulatory proteins play critical roles in SA infection of the host and subsequent nasal 

carriage [84].  Based on a comprehensive literature survey of the functions of these proteins, 

our results indicated that the carrier strains of SA contained a greater number of proteins which 

downregulate immunity, whereas the non-carrier strains contained a greater number of 

proteins which upregulate host immunity.  Some of the most noticeable immunomodulatory 

proteins detected in greater abundance in the carrier strain were SPA and surface elastin 

binding protein (EbpS) (Table 5).  On the other hand, penicillin binding protein (PBP) 2, and cold 

shock protein (Csp) that makes SA susceptible to antibiotics and antimicrobial peptide human 

cathepsin G respectively [174,175], were found in higher levels in the non-carrier strain. 

 Immunoevasive proteins including cell surface elastin binding protein (EbpS), SPA, PBP1, 

immunodominant staphylococcal antigen A precursor and α-hemolysin precursor identified in 

our study have also been independently observed in other studies [157,172,176-178].  

However, their roles with relevance to nasal colonization have not been elucidated.  Notably, we 

observed that the expression levels of immunomodulatory toxins such as α-hemolysin 

precursor that are responsible for bacterial invasion of the host, were elevated in the carrier 

strain.  Interestingly, leukocidin/hemolysin toxin family protein that helps in the formation of 

pores during SA pathogenesis of host was dominant in the non-carrier strain (Table 5). 
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Transport Proteins 

SA carrier strains can resist the host’s antimicrobial agents by active efflux of the agents using 

translocation machineries [179].  This phenomenon is mirrored in our results in which the nasal 

carrier strain produced substantially more transport proteins compared to its non-carrier 

counterpart (Figure 10C, Table 5).  These included several proteins from the ATP-binding 

cassette (ABC) transporter super family and one from the common protein translocation 

machinery, Sec translocon (Table 5).  Sec translocon proteins are implicated in bacterial 

pathogenesis and in the secretion of virulence proteins [178].  We observed that a key member 

of this translocon, protein-export membrane protein SecF that is part of the bifunctional 

translocase SecDF, was found in higher levels in the carrier strain indicating the likely 

involvement of these transport proteins in nasal colonization. 

Stress 

SA, when subjected to osmotic shock, heat, oxidative stress, starvation, alkaline shock etc, 

triggers a stress response [180].  Our iTRAQ data revealed that the carrier strain of SA secreted 

fewer stress response proteins in comparison to its non-carrier counterpart.  Specifically, stress 

proteins such as CsbD-like superfamily and alkaline shock protein 23 (ASP23) were expressed in 

lower levels in the carrier strain (Table 5).  However, not all stress proteins were downregulated 

in the carrier strain.  Some stress proteins that are normally expressed when SA is exposed to 

environmental stress such as superoxide dismtase (SOD) and thioredoxin-disulphide reductase 

were expressed at similar levels by both strains (Table 5). 
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Table 5: Proteins from the exoproteome of the nasal carrier strain of SA and the non-carrier 
strains are assigned into functional categories as identified and quantified by iTRAQ.  

Accession 
No. Protein name Number of 

peptidesa 

Fold ratiob 

carrier/ 
non-carrier p value 

Planktonic 
carrier/ 
Biofilm 
carrier 

p 
value 

Stress related proteins 

gi|87162409 CsbD-like superfamily 34 0.4565c 0 1.3708d 0.0058 

gi|87162159 Hypothetical protein SAUSA300_1582, similar to CsbD-
like family protein 13 0.6747 0 2.0123 0.0135 

gi|87162200 Alkyl hydroperoxide reductase subunit C 27 1.1686d 0.0002 1.6239 0.0128 

gi|87161642 Alkyl hydroperoxide reductase subunit F 1 0.4971 0.0957 0.3723 0.188 

gi|87160786 Hypothetical protein SAUSA300_1652, putative universal 
stress protein 24 0.862 0.0006 0.8978 0.2323 

gi|87162087 Universal stress protein family 18 2.9027 0.0004 3.0664 0 

gi|70726220e Hypothetical protein SH1219, putative universal stress 
protein 7     

gi|894289 Alkaline shock protein 23 (ASP23) 20 0.5771 0 1.1024 0.6569 

gi|87160079 Peptide methionine sulfoxide reductase regulator (MsrR) 10 0.8648 0.1957 1.7545 0.0863 

gi|87161086 Methionine-R-sulfoxide reductase 1 1.238 0.8192 15.0177 0.4261 

gi|87161236 Thioredoxin* 12 1.3978 0.0003 0.7305 0.0387 

gi|87161001 Thioredoxin-disulfide reductase 9 0.792 0.169 1.1776 0.6298 

gi|87161687 Thiol peroxidase 8 0.756 0 1.4239 0.2404 

gi|21282513 Hypothetical protein MW0784, similar to thioredoxin-fold 
containing protein family 5 0.8983 0.0001 1.2352 0.3626 

gi|87160477 Putative thioredoxin 5 1.218 0.2208 1.2503 0.6608 

gi|87160405 Hypothetical protein SAUSA300_1909, similar to 
thioredoxin family of proteins 4 0.987 0.9858 0.7007 0.628 

gi|87160511 Catalase 5 0.5021 0.027 4.7999 0.0241 

gi|87161707 Superoxide dismutase (Mn/Fe family) 5 0.9286 0.4111 0.7623 0.7832 

gi|88195790 Putative ferritin 4 0.7199 0.5798 0.4058 0.1265 

gi|87162273 Osmc/Ohr family protein 1 2.1538 0.6357 2.8528 0.3618 

gi|87160980e Hypothetical protein SAUSA300_0725, similar to putative 
Oxidoreductase 1 0.5794  1.3866  

Pathogenesis and immunomodulatory proteins 

gi|87160749 Cell surface elastin binding protein 200 1.7517d 0 1.3029 0.0961 

gi|133853458 Immunoglobulin G binding protein A precursor 138 2.2282 0 1.0756 0.3757 

gi|56749001 Immunodominant staphylococcal antigen A precursor 57 1.4061 0 0.9476 0.656 

gi|15926764 Penicillin-binding protein 1 43 1.3495 0.0004 1.4429 0.0048 

gi|87162077 Penicillin binding protein 2 32 0.6419 0.0001 0.6655 0.1167 

gi|87161157 Penicillin-binding protein 4 6 1.6283 0.1152 2.7796 0.013 

gi|70726765 Beta-lactamase 10 0.0849 0 0.1207 0.0022 

gi|87161577 Cold shock protein, CSD family 36 0.7651c 0 0.7602 0.0001 

gi|87160015 Staphylococcal tandem lipoprotein 14 0.4398 0.0002 1.1702 0.4995 

gi|47169194e Chain A, staphylococcal protein A, B-domain, Y15W 
mutant, Nmr, 25 structures 12 0.9803    

gi|87160380 Alpha-hemolysin precursor 10 2.6865 0 1.1949 0.4484 

gi|87160982 Leukocidin/hemolysin toxin family protein 10 0.3131 0 0.7128 0.2953 
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Accession 
No. Protein name Number of 

peptidesa 

Fold ratiob 

carrier/ 
non-carrier p value 

Planktonic 
carrier/ 
Biofilm 
carrier 

p 
value 

gi|87161881 Antibacterial protein 7 0.5416 0 0.8559 0.5626 

gi|15927581 Hypothetical protein SA1813 similar to leukocidin-like 
protein 2 5 0.3607 0 1.1987 0.519 

gi|87162162 Hypothetical protein SAUSA300_1018 similar to 
SCP/PR1-like extracellular protein 8 1.0669 0.5321 0.6697 0.3322 

gi|87160365 Antibacterial protein 4 0.9121 0.1981 0.2771 0 

gi|87162347 Hypothetical protein SAUSA300_2164 similar to 
extracelluar adherence protein 4 0.3271 0.1009 0.1106 0.0494 

gi|87160217 Secretory Antigen Precursor (SsaA) 4 0.9951 0.9764 0.5127 0.069 

gi|88194063 Hypothetical protein SAOUHSC_00257 similar to EsxA 
virulent protein 4 0.384 0.0557 2.158 0.2965 

gi|68565538 Protein esaA 2 0.2372 0.2204 0.197 0.2859 

gi|87160905e Hypothetical protein SAUSA300_0282 similar to virulence 
protein EssB 1 0.2942  0.4179  

gi|87162375 Hypothetical protein SAUSA300_1323 similar to 
conserved virulence factor C 2 0.809 0.5491 0.1985 0.3431 

gi|87160520 Acetyltransferase family protein in Oat A family 3 2.0482 0.0094 0.8063 0.7857 

gi|87161173 Teicoplanin Resistance Associated Membrane Protein 
(TcaA) 3 0.8209 0.9069 1.4697 0.7023 

gi|88195687 Hypothetical protein SAOUHSC_01999 similar to 
peroxiredoxin Q/BCP 3 2.9885 0.0002 1.9644 0.0359 

gi|87162379e Ferredoxin 1 1.1786  1.8553  

gi|87161897 IgG-binding protein SBI 2 3.6719 0.1219 5.4157 0.0616 

gi|87160565e Immunodominant antigen B 1 29.6467  2.0875  

gi|62391257e Secreted penicillin binding protein [Corynebacterium 
glutamicum ATCC 13032] 1 1.6876  2.2857  

Cell adhesion proteins 

gi|87160939 Cell wall surface anchor family protein 57 3.6116d 0 1.2777 0.0838 

gi|151222604 Hypothetical protein NWMN_2392 similar to cell wall 
surface anchor family protein 40 0.0911c 0 0.2444 0 

gi|87162315 Putative cell wall binding lipoprotein 16 1.2742 0.1446 1.1145 0.7887 

gi|87162026 Autolysin 31 1.0742 0.6135 0.7695 0.2717 

gi|87160697 D-alanine-activating enzyme/D-alanine-D-alanyl protein 
(dltD) 18 1.2272 0.2515 1.9912 0.0001 

gi|87160121 D-alanine-activating enzyme/D-alanine-D-alanyl protein 
(dltC) 1 0.6864 0.533 16.1543  

gi|61213890 77 kda outer membrane protein precursor 11 0.2627 0 0.6572 0.1167 

gi|81781509 UPF0365 protein SAV1573 8 1.8364 0.0005 2.9173 0.0019 

gi|87160285 Rod shape-determining protein MreC 8 0.8103 0.0767 2.9577 0 

gi|87160775 N-acetylmuramoyl-L-alanine amidase 8 1.5402 0.0651 2.0519 0.0096 

gi|87161887 N-acetylmuramoyl-L-alanine amidase domain protein 7 1.893 0.3018 1.3838 0.4234 

gi|88196468 Putative sortase 5 2.0829 0.001 1.2683 0.5337 

gi|87161790 5'-nucleotidase family protein 3 3.6218 0.1664 1.5688 0.1773 

gi|87160715 Fmt protein 2 1.1273 0.8064 1.1849 0.6709 

gi|81673756 Phosphoglucosamine mutase 1 0.7583 0.739 3.3119 0.2556 

gi|87160798 Serine-aspartate repeat family protein (SdrH) 1 1.49 0.0115 1.3251 0.4213 

gi|116694144e Flp pilus assembly protein TadC 1 1.3693  2.585  

gi|81781921 Extracellular matrix protein-binding protein EMP 
precursor 1 0.5809 0.4841 1.4533 0.5086 

gi|91211353e AsmA suppressor of OmpF assembly mutants 1     

Transport proteins 
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Accession 
No. Protein name Number of 

peptidesa 

Fold ratiob 

carrier/ 
non-carrier p value 

Planktonic 
carrier/ 
Biofilm 
carrier 

p 
value 

gi|87162197 Amino acid ABC transporter, amino acid-binding protein 34 0.9535 0.4842 1.3001 0.0518 

gi|87162140 Oligopeptide ABC transporter, substrate-binding protein 30 1.1547d 0.0301 1.3918 0.0533 

gi|87161352 ABC transporter, substrate-binding protein 12 0.2931 0.0126 0.4137 0.092 

gi|21282147 Hypothetical protein MW0418 similar to ABC transporter, 
substrate-binding protein 6 1.0242 0.8594 1.2602 0.507 

gi|87161864 ABC transporter, substrate-binding protein 3 2.8266 0.0151 2.1079 0.0742 

gi|87160588 Molybdenum ABC transporter, molybdenum-binding 
protein (ModA) 17 1.5245 0.0005 1.8056 0.0558 

gi|87161641 Amino acid ABC transporter, permease/substrate-binding 
protein 7 6.1167 0 2.5162 0.0341 

gi|21284120 Oligopeptide transporter putative substrate binding 
domain 6 2.4913 0.0004 1.9632 0.1937 

gi|87161764 Putative iron compound ABC transporter, iron compound-
binding protein 5 1.4063 0.0805 0.7301 0.561 

gi|87160849 Iron compound ABC transporter, iron compound-binding 
protein 4 0.5869 0.0986 0.6344 0.5184 

gi|87161518 Glycine betaine/carnitine/choline ABC transporter 4 0.9366 0.6998 1.0605 0.8404 

gi|87162224 Osmoprotectant ABC transporter, permease 2 0.6537  3.9979  

gi|126355053e ABC transporter-related protein [Pseudomonas putida 
GB-1] 1 37.5193  6.929 0.0699 

gi|149194563e ABC transporter-related protein [Caminibacter 
mediatlanticus TB-2] 1 1.6215  0.0083  

gi|87162212e Amino acid ABC transporter, ATP-binding protein 1 5.1042  0.571  

gi|87161315 Hypothetical protein SAUSA300_2378 similar to 
potassium efflux protein kefA 21 1.4953 0 1.6492 0.0873 

gi|87160965 Phosphocarrier protein (HPr) 11 1.1099 0.0026 0.4598 0 

gi|87162382 PTS system, glucose-specific IIA component 11 1.0668 0.4928 2.9434 0.004 

gi|87162442 Transferrin receptor 8 3.331 0 3.5596 0.0002 

gi|87160279 AcrB/AcrD/AcrF family protein 7 1.4716 0.1045 1.0728 0.9096 

gi|87162284 Putative ferrichrome ABC transporter  1 0.2468 0.0722 0.5068 0.6105 

gi|87161389 Putative iron compound ABC transporter, iron compound-
binding protein  1 2.6052 0.134 1.4787 0.3341 

gi|87160515 Protein-export membrane protein SecF  6 1.4937 0.0097 0.7504 0.4761 

gi|87160369 Hypothetical protein SAUSA300_0833 3 0.5373 0.5051 0.4642 0.5479 

gi|15925912 RGD-containing lipoprotein 3 1.2004 0.4097 1.0422 0.9709 

gi|87161142 Ferric hydroxamate receptor 3 1.0332 0.8931 0.4321 0.2314 

gi|87160674 Putative lipoprotein  41 0.2959c 0 0.7197 0.0011 

gi|87161872 Putative lipoprotein 2 4.2798 0.2519 2.4403 0.1588 

gi|87160414 Multidrug resistance protein A, drug resistance 
transporter 1 0.6934 0.2928 0.7756 0.7943 

gi|23005821e COG1131: ABC-type multidrug transport system, ATPase 
component  1   0.6174  

gi|149201149 Nitrate transport ATP-binding subunits C and D  1 1.5776  7.9917 0.1401 

gi|151575108 Outer membrane efflux protein 1 1.1986 0.2951 3.8451 0.3525 

gi|87161139 Iron transport associated domain protein  1 1.6828  0.1596  

gi|149910101 Hypothetical transport protein [Moritella sp. PE36] 1 2.2325 0 4.2379 0 

gi|35211526e gll0963 [Gloeobacter violaceus PCC 7421] 1     
gi|127512243e Efflux transporter, RND family, MFP subunit  1     

gi|146301866e RND efflux system, outer membrane lipoprotein, NodT 
family  1 0.9695 0.7073 0.4187  

gi|17131745e all2652  1 1.7839  0.8275  

 
 

54 



 

Accession 
No. Protein name Number of 

peptidesa 

Fold ratiob 

carrier/ 
non-carrier p value 

Planktonic 
carrier/ 
Biofilm 
carrier 

p 
value 

gi|87162344 Phosphonate ABC transporter, phosphonate-binding 
protein 1 1.3653 0.3305 6.3883 0.0356 

gi|51595518 Molybdenum transport regulatory (repressor) protein 
(ModE) 1 1.3022 0.3562 1.1322 0.9636 

gi|152936446e Flagellar motor switch protein fliG  1     

a The list contains quantitative information of the proteins (including the number of peptides) 
from the iTRAQ data set. These proteins have met the criteria (i.e., unused prot score >2.0, 
change in expression levels of at least 1.2-fold p-value <0.05 and EF < 1.4 for all ratios) as 
defined in the Experimental Procedures. b Relative change in protein levels between secretomes 
c italicized numbers= down-regulation. d bold numbers =up-regulation. e iTRAQ identified unique 
proteins not  quantified. *Denotes a protein with multiple functions 
 

 
Figure 10: The nasal carrier strain of SA expresses a greater number of adhesion/ binding 
proteins in its exoproteome than its non-carrier counterpart. 

A comparison of SA exoproteomes using iTRAQ has revealed that (A) the nasal carrier strain of 
SA (D30) expresses a different repertoire of proteins than (B) a genetically similar non-carrier 
strain (930918-3). (C) Percentage of proteins that were significantly up-regulated in that 
category in comparison to the other tested strain.  The carrier strain of SA contains a greater 
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proportion of proteins related to binding and adhesion but less stress proteins.  Proteins were 
identified with high confidence (p <0.05) in three independent experiments (N=3). 

The SA nasal carrier biofilm exoproteome contains a greater number of stress and 
immunoevasion proteins than its planktonic counterpart 

We previously reported that the carrier strain of SA (D30) adopted a biofilm mode of growth 

under ambient laboratory conditions [153].  We hypothesized that biofilm formation may 

facilitate nasal carriage, given the importance of this form of growth to colonization and 

defensive capabilities of SA [181].  We therefore compared the biofilm exoproteome of a 

carrier strain of SA with its planktonic counterpart.  To our knowledge, this was the first time 

such a comparison has been reported for the respective exoproteomes.  We observed that 84 

proteins were differentially expressed between planktonic and biofilm growth forms of the 

carrier strain of SA.  Of the 84 proteins, 46 were expressed at higher amounts in the biofilm 

exoproteome compared to its planktonic counterpart and 35 exhibited >2-fold expression (See 

Table 5 for partial list of proteins and supplemental Table 13 for the complete list). 

 It was observed that the exoproteome of the biofilm form of the nasal carrier strain of 

SA was markedly different in terms of stress and immunomodulatory proteins compared to its 

planktonic counterpart (Figure 11A and Figure 11B).  Specifically, iTRAQ analyses revealed that 

the carrier strain biofilm had 4-fold fewer adhesive proteins as compared to the planktonic 

form (Figure 11C).  Specifically, D-alanine-activating enzyme (DltD) protein, involved in D-

alanylation of wall techoic acid (WTA) during cell wall synthesis, was significantly down-

regulated in the biofilm exoproteome [182].  Another protein involved in cell wall 

peptidoglycan synthesis, N-acetylmuramoyl-L-alanine amidase, was also significantly down-
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regulated in the biofilm form, perhaps indicating a lower cell wall turnover in the SA carrier 

strain when it adapts a biofilm mode of growth. 

 Adhesive proteins, together with immunomodulatory proteins, enable biofilms to resist 

the action of antibiotics and other antimicrobial agents [183,184].  Not surprisingly, our iTRAQ 

analyses revealed that the biofilm growth form of the carrier strain of SA secreted more 

immunomodulatory proteins than the planktonic form (Figure 11C).  Curiously, penicillin 

binding proteins (PBPs), including PBP1 and PBP4 that enable SA to resist β-lactam antibiotics, 

were expressed in lower levels in the biofilm growth mode.  Another mechanism that allows 

bacterial biofilms to evade antimicrobial agents is the use of efflux pumps and transporters 

[185].  Unexpectedly, the carrier strain biofilm secreted 3-fold fewer number of transport 

proteins compared to the planktonic form (Figure 11C). 

 Although the number of immunomodulatory proteins was only marginally greater in the 

carrier strain than the non-carrier strain based on the iTRAQ findings, these results did not 

concur with other analyses we conducted.  We had observed that the resistance of the carrier 

strain to innate immune defense molecules (Reactive Oxygen Intermediates) is twice as much 

as the non-carrier strain (data not shown).  Additionally, the resistance of biofilms to innate 

host molecules is 10-15 times greater than the planktonic variety (data not shown).  Perhaps, 

the effectiveness of immune evasion by SA is not determined by the number of 

immunomodulatory proteins, but by the potency and quantity of individual proteins.  To this 

end, we further analyzed one of the most abundant immunological SA proteins, Staphylococcal 

Protein A (SPA). 
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SPA from SA carrier strains is found in higher concentrations than the non-carrier strain 

SPA, which can be found to be either cell-wall associated or secreted, is well known for its 

binding, immunological, and biofilm promoting properties [84,103,156]. Not surprisingly, we 

noticed throughout the SA exoproteomic analyses that levels of SPA were consistently higher in 

the carrier strain than the non-carrier strain (Figure 12).  Using an SPA ELISA, we confirmed that 

the carrier strain had nearly 8-fold higher SPA levels than the non-carrier strain (Figure 12).  This 

was verified in several other persistent carrier strains such as (D20, D39 and D98) and an 

intermittent carrier strain (D37).  The levels of SPA were much higher in persistent carriers and 

comparatively lower in the intermittent carrier, although all carriers had significantly higher SPA 

levels compared to the non-carrier strain (Figure 12).  These results suggest a possible 

correlation between increased SPA levels and nasal carriage. 
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Figure 11: The biofilm growth form of nasal carrier strain of SA, in comparison to its 
planktonic counterpart contains marked differences in its exoproteome related to stress and 
immunoevasion. 

The expression of proteins from the exoproteome of (A) the planktonic form of SA nasal carrier 
strain and (B) the biofilm form of the SA nasal carrier strain differ significantly in (C) proteins 
pertaining to stress, adhesion, immunomodulation and transport.  Proteins were identified with 
high confidence (p <0.05) in three independent experiments (N=3). 
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Figure 12: Immunomodulatory Staphylococcal protein A (SPA) is significantly up regulated in 
nasal carrier strains of SA compared to its non-carrier counterpart. 

The expression of SPA was measured in the exoproteomes of one non-carrier and 4 persistent 
carrier strains (PC) D20 (**p =0.001), D30 (**p =0.006), D39 (**p =0.007), D98 (**p =0.009) and 
1 intermittent carrier (IC) D37 (**p =0.008), strain using anti-SPA ELISA and compared to non-
carrier strain 930918-3.  Equal volumes of total exoproteome from nasal carrier and non-carrier 
strains were used for ELISA in three independent experiments (N=3) and the result was 
expressed as percentage of SPA concentration to total protein concentration. 
 
 Peptide mass fingerprinting of SPA from the carrier strain revealed that one of the 

isoforms of SPA was 49.5 kDa.  Subsequent MS/MS and in silico analyses revealed that the 

protein contains three IgG binding domains as found in most species of Staphylococcus and also 

a cell wall localization motif LysM [186].  This motif is responsible for SPA interaction with cell 

wall components of the bacteria but is not consistently present in all species of SA [181,186].  

Furthermore, MS/MS analysis also revealed the repeated occurrence of the LysM motif in other 

proteins such as cell wall binding autolysin, and cell surface elastin binding protein (data not 
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shown).  This repeated occurrence of LysM motif in important cell attachment proteins may 

indicate its possible involvement in SA nasal colonization. 

Discussion 

 
Through a comprehensive analysis of the exoproteomes of a nasal carrier strain of SA and a 

genetically similar non-carrier strain, we have endeavored to analyze proteins or groups of 

proteins, which may contribute to nasal carriage.  In tandem, we compared the exoproteomes 

of biofilm and planktonic carrier SA cultures in order to evaluate possible determinants of nasal 

carriage.  Interestingly, our results indicated that the exoproteome of the carrier strain of SA 

(D30) contains a greater number of proteins related to adhesion, protein transport and 

immunoevasion, and fewer stress proteins than its genetically similar non-carrier counterpart 

(930918-3).  Similarly, an analysis of the exoproteome of the biofilm growth form of SA carrier 

strain revealed a greater number of immunoevasive proteins in comparison to its planktonic 

counterpart but fewer stress, adherence, and transport proteins. 

 Other researchers have examined various aspects of the SA proteome, with reference to 

proteins that promote adherence [83,187], immunoevasive proteins [84,188], total proteome 

[177], secretome [176], exoproteome [189] and surfacome [157] in addition to mRNA levels 

during nasal colonization [11,190].  However, our studies have focused on the difference 

between proteins in the exoproteome of a carrier strain of SA and a non-carrier strain in order 

to elucidate putative determinants that might influence SA’s ability to colonize nasal mucosa. 
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 Several proteomics studies have indicated that SA proteins present in the extracellular 

milieu such as secreted and cell surface exposed proteins are highly diverse [157,178,191].  

However, no correlation between nasal carriage and heterogeneity of these proteins was 

discussed.  In contrast, our study not only identified similar heterogeneity in cell surface and 

secreted proteins, but also deduced a marked difference in profile of cell surface and secreted 

proteins between nasal carrier and non-carrier strains.  

 The adherence of the SA carrier strain to host cells is an integral process in nasal 

carriage.  Although several adhesive proteins have already been identified as important factors 

for nasal carriage [77,83,105] our exoproteome analysis has revealed that the carrier strain of 

SA contains twice as many adhesive proteins as a non-carrier strain.  The results have 

highlighted the importance of SasD and SrdH, which have hitherto not been considered 

important in nasal carriage.  Together with high expression levels of Srt, this seems to be 

indicative of high processing levels of membrane bound proteins, which is an important 

indicator in nasal carriage as considered by Burian and colleagues [11]. 

 In contrast, SA carrier biofilm exoproteome secreted fewer adhesive proteins compared 

to the planktonic exoproteome.  This may be expected as adhesion is already established once 

the carrier has formed a biofilm and subsequently the main function of the bacteria is survival 

and possibly ongoing detachment to aid in biofilm dissemination.  Specifically, the adhesive D-

alanine-activating enzyme (DltD) (responsible for D-alanylation of WTA during cell wall 

synthesis) was detected in the biofilm exoproteome [182].  It has been noted that inactivating 

the dlt operon in SA leads to increased susceptibility of SA to antimicrobial peptides including 
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defensins and protegrins [192].  Perhaps the presence of dlt operon in SA biofilms confers a 

multifunctional role of resistance to antimicrobial peptides, adhesion and biofilm formation. 

 Together with adhesion, immunomodulation is one of the key factors in the nasal 

carriage of SA, since it allows for long-term survival of the bacteria in the host [84,187].  

Previously, we observed the ability of the carrier strain of SA (D30) to downregulate defensins 

and pathogen receptors [57], indicating the involvement of bacterial immunomodulatory 

proteins in SA nasal carriage.  In support of this concept, the present results revealed that the 

nasal carrier isolates of SA contain a greater number of proteins that downregulate host 

immunity, whereas the non-carrier isolates contain a greater number of proteins that 

upregulate host immunity.  This result is verified in Burian and colleagues’ observations on 

nasal colonization [11].  A large proportion of these immunomodulatory proteins have also 

been corroborated in the surfacomes of the SA COL, Newman, RN6390 and USA300 [157].  

Additionally, our proteomics approach revealed that the carrier strain biofilm revealed a similar 

trend with greater number of immunomodulatory proteins being found in the biofilm when 

contrasted with the planktonic growth form. 

 The high abundance of SPA, a versatile immunoevasive and binding molecule, may be 

linked to the carrier strains’ overall immunoevasive strategy.  Interestingly, differential SPA 

expression patterns even within persistent and intermittent carriers could advantageously be 

used as a diagnostic tool to differentiate them.  Certainly, greater amounts of surface bound 

molecules with high levels of sortase could be associated with the observation that proteins 

involved in protein modification, secretion and trafficking are found in greater numbers in the 

carrier strain of SA in comparison to the non-carrier strain. 
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 The rates of cell wall turnover found in Staphylococcus in general are quite high [193].  

This constant turnover of the cell wall provides ample decoy material for SA to engage host 

innate defenses and is proportional to successful colonization of the human nasal passages 

[11].  This strategy can be seen in other pathogen/host dynamics such as Schistosoma spp and 

is referred to as sloughing [194]. 

 Recently, researchers discovered that low concentrations of host chemokines, including 

CXCL9 and CXCL10, induce the release of SPA, while high concentrations of chemokines can also 

be antibacterial [195,196].  This echoes findings from our previous research on the effects of 

the cytokine IL-1α.  We demonstrated that the carrier strain of SA downregulated the 

production of IL-1α during infection and IL-1α decreased the growth of SA carrier strain on 

nasal epithelial cells [153].  At this stage we have not assessed if the cytokine would also induce 

SPA.  Since we detected multiple isoforms of SPA in the carrier strain of SA but not in the non-

carrier, we suspect that it may be posttranslationally modified in sequential stages such as the 

glycosylation patterns observed in the Golgi apparatus [197].  Glycosylation of exoproteins such 

as SPA might play crucial roles in bacterial pathogenesis and immunoevasion [198].  We 

hypothesize that SPA is sequentially glycosylated in nasal carrier strains of SA and may be linked 

to nasal carriage. 

 One of the more surprising observations from our carrier strain exoproteome analysis 

was the low expression of stress proteins in comparison to the non-carrier strain.  Perhaps, as 

observed by other authors, nasal colonization does not constitute a full-blown infection but 

rather a persistent sub-clinical infection [7,11].  Interestingly, transcript analysis of some key 

stress proteins also revealed that stress response stimuli are absent in the nasal milieu [11]. 
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 It has been postulated that SA develops resistance to nasal fluids by decreasing the 

uptake of antimicrobials or actively translocating them from the cell [179], and several bacterial 

transport proteins play vital roles in these processes.  A greater number of transport proteins in 

the exoproteome of nasal carrier strain in comparison to the non-carrier strain could make it 

more resistant to antimicrobial agents in the nasal milieu.  Specifically, several proteins from 

the ATP-binding cassette (ABC) transporter super family and the protein-export membrane 

protein SecF (part of the bifunctional translocase SecDF) were found in much higher levels in 

the carrier strain.  Further investigation into the implications of these results and the role of 

these transport proteins in the nasal carriage of SA is currently being pursued. 

 Increasing evidence suggests that the phenomenon of SA nasal carriage is a complex 

host-pathogen interaction for which the bacteria have evolved numerous immunoevasion 

strategies for successful colonization of the host [7,57,153].  Our current exoproteomic study 

suggests that the SA nasal carrier strain is able to adapt itself to the human nasal passages by 

secreting a distinct repertoire of proteins in comparison to the non-carrier strain.  Indeed, we 

have elicited the identities of several underreported proteins, which may be important in the 

nasal carriage of SA.  Additionally, while it is not known if every carrier strain of SA adopts a 

biofilm mode of growth in the nose, it has become increasingly apparent that a biofilm mode of 

growth may be more representative of the in vivo condition [199,200].  This comparison can be 

a foundation for future studies to identify fully the state of SA in the nose and its contributing 

factors.  In conclusion, this exoproteome analysis has elucidated important strategies adopted 

by the SA carrier strain in its dissemination through nasal carriage that further augments our 

understanding of nasal carriage of SA. 
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CHAPTER 4: ESSENTIAL ROLES PLAYED BY HOST IMMUNE RESPONSES AND 
STAPHYLOCOCCAL PROTEIN A DURING STAPHYLOCOCCUS AUREUS NASAL 

CARRIAGE 

Introduction 

Staphylococcus aureus (SA) causes many nosocomial and community-acquired infections in 

humans, ranging from mild skin and soft tissue infections to severe and often fatal pneumonia 

[109]. The anterior nasal region is the primary reservoir of SA in humans and approximately 

30% of the normal population carries SA asymptomatically in their nares at any given time, with 

as much as 60% of the population carrying SA transiently when monitored longitudinally over 

time [2,9,110]. SA nasal carriers have an increased risk of being infected by their nasally carried 

SA [12,13] as well as transmitting infectious SA to others. A better understanding of factors that 

influence nasal carriage of SA will be necessary to reduce the risk of these infections. 

 SA nasal carriage is a multifactorial process involving the dynamic interplay between 

both host and bacterial factors in nares [2,39,40]. SA nasal carriage studies performed in rodent 

and human models have helped define bacterial determinants of carriage, including wall 

teichoic acid (WTA), clumping factor B, iron-regulated surface proteins IsdA and IsdH 

[77,82,105-107].   

More recently, reports have increasingly implicated host processes as the major 

determinants of SA nasal carriage (reviewed in [2,40,147]). Human genetic studies have 

revealed an association between polymorphisms in host genes and persistent SA nasal carriage 

[41,42,44,45]. Human nasal secretions contain several components that are critical to innate 

mucosal defense. However, secretions from nasal carriers were defective in killing SA strains 
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and the presence of hemoglobin in nasal secretions promotes SA nasal colonization by 

inhibiting agr quorum sensing in SA [7,49,50]. Additionally, SA carrier strains subvert innate 

host defenses on nasal epithelia in vitro and a recent murine-model based colonization study 

observed SA clearance to be largely dependent on neutrophil influx and mediated by T-

lymphocytes [57,108,153]. Collectively, these studies underscore the importance of host factors 

in influencing nasal carriage. 

 We surmised that in vivo SA nasal colonization, which accounts for the dynamic 

interaction between host and bacteria, would best determine factors that influence carriage 

[201]. Holtfreter and colleagues demonstrated that experimental nasal colonization in humans 

with avirulent NCTC 8325-4 did not boost humoral responses or elicit new antistaphylococcal 

antibodies and that anti-SA antibody profiles were highly variable among individuals [72]. 

Additionally, Burian and colleagues observed that long term SA nasal colonization on intact 

epithelium is insufficient to induce a strong antibody response [70] and such responses usually 

are triggered by SA infections [69,189,202]. These studies suggest that carriage is less 

controlled by differences in antibody response against SA and more by host innate immune 

responses during colonization.  

 Until now no studies have used human experimental colonization approaches to study 

host innate immune responses to SA nasal carriage or investigate how the host response 

influences nasal carriage of SA strains rendered deficient in putative determinants of carriage. 

In the current study, we autologously recolonized human noses with their own strains of SA to 

explore intranasal survival of SA and its relationship to host immune factors that mediate nasal 

carriage of SA. We observed that SA nasal carriage was dynamic and was influenced by 
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differences in global immune responses during carriage. We observed that proinflammatory 

cytokines and chemokines were significantly induced during nasal clearance of SA, while 

extended carriage of SA was observed in the absence of an immune response. To understand 

how the immunoevasive protein staphylococcal protein A (SPA) modulates the host response, a 

subset of participants were subjected to autologous nasal co-colonization with wild-type (WT) 

SA and its isogenic mutant lacking functional SPA (Δspa). Intriguingly, when the host mounted 

an immune response to colonization, autologous Δspa strains were cleared significantly faster 

compared to WT, indicating the role played by SPA in maintaining persistence of SA in the 

nares. Taken together, our studies demonstrate in vivo, the direct involvement of host immune 

responses in SA nasal survival and identify SPA as a likely determinant of SA nasal carriage. 

Materials and Methods 

Ethics statement 

All participants were adults, >21 years of age, who provided informed consent to participate in 

the current study, which was performed at the University of Central Florida (UCF). 

The SA recolonization protocol and all procedures involved in sample collection were approved 

by UCF’s Institutional Review Board (IRB), which is fully accredited by the Association for 

the Accreditation of Human Research Protection Programs (AAHRPP). Per the request and 

approval of UCF’s IRB, oral consent was obtained from each participant, which was 

documented by the study investigators. Participant names were associated with unique 
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identifier codes, and this confidential identifying information was kept under lock and key with 

access granted only to the study investigators. 

Participant population and SA strains used in the study 

A total of 20 different autologous human nasal recolonization studies in 40 nostrils were 

performed using each participant’s own nasal SA strain isolated previously. See Table 6 for 

details about participants and their naturally colonizing SA strains.  In total, 11 healthy 

individuals (6 males and 5 females, median age 38 years, range 22-47 years) participated in this 

study. These nasal SA carriers were selected from among 109 healthy individuals whose 

carriage status was monitored longitudinally for SA nasal carriage for a period of up to three 

years [203]. All participants adhered to the study protocol and none of the volunteers 

experienced any adverse effects during the study period. 

Autologous recolonization of SA in human nares 

The nasal carriage status of the participant was determined prior to decolonization treatment. 

For eradication of bacteria from nares, protocols described elsewhere were adapted with minor 

modifications [10,77]. All participants self-administered mupirocin nasal ointment (Bactroban, 

GlaxoSmithKline, Philadelphia, PA) topically twice a day for 5 days to decolonize microbial flora 

present in their anterior nares. One week after the final treatment, colonization status was 

assessed and nasal secretions were collected as described below. Subsequently, SA nasal 

inoculation was performed using protocols previously described [10,77]. Briefly, each 

participant’s own previously isolated nasal SA strain was grown to log phase in TrypticaseTM Soy 
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Broth (TSB; Becton, Dickinson and Company, Franklin Lakes, NJ) for 2.5 hours at 37 oC and 250 

rpm, then harvested by centrifugation and washed with HBSS (Fisher Scientific, Pittsburgh, PA). 

Each nostril of the participant was inoculated with 2 X 107 CFUs of SA on two consecutive days. 

All SA strains introduced into participants were confirmed for mupirocin sensitivity prior to 

experimental recolonization. 

 Nasal swabbing was performed every 2 to 3 days post inoculation for a period of up to 

35 days using established protocols [203,204]. In summary, the anterior region of each nostril 

was swabbed with sterile unflocked polyester-tipped swabs (Fisher Scientific) and dipped in 2 

mL of TSB to extract the microbial flora from the swab. 100 μL of this culture was plated on 

tryptic soy agar (TSA) containing 5% sheep’s blood (Becton, Dickinson and Company) and 

incubated at 37 oC for 16 hours. Bacterial colonies were identified as SA using StaphyloslideTM 

Latex Test reagent (Becton, Dickinson and Company) and enumerated for all days on which 

follow-up cultures were performed. SA colonies were also genotyped using spa typing and 

compared to that of the inoculated SA strain using primers and PCR conditions described 

previously [37,38,203].   

Nasal fluid collection and processing 

Nasal secretions were collected throughout the in vivo recolonization study at 7 days prior to SA 

nasal inoculation (Day -7) and multiple times every week post inoculation for a period of up to 

35 days as described previously [7] using a vacuum-aided suction device. When required, brief 

microtip sonication was performed for 10 seconds on ice to homogenize nasal fluid samples.  
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Cell lines and culture conditions 

Human nasal epithelial cells (RPMI 2650; American Type Culture Collection (ATCC), Manassas, 

VA) were grown at 37°C, 5% CO2 and seeded on collagen-coated Transwell inserts (0.4-μm 

pore-size, both 12-mm and 24-mm diameter; Corning Inc., Corning, NY) for experiments as 

described previously [57,205,206]. Once confluent, Transwells were exposed to the air-liquid 

interface (ALI) at 37oC and 5% CO2, and treatments were performed within 4-7 days following 

ALI exposure, when each well exhibited a nasal cell layer capable of sealing the basal media 

away from the apical compartment of the Transwell. 

Targeted genetic disruption of spa in SA nasal carrier strains 

Site-directed disruption of staphylococcal protein A (spa) was performed using TargeTron-

based insertion of mobile group II introns into spa (Sigma-Aldrich, St. Louis, MO), as per the SA-

specific procedure described by Yao and colleagues [207]. Here, the TargeTron methodology 

was significantly modified, as the naturally colonizing nasal carrier SA strains were refractory to 

genetic transformations due to Type I and Type IV restriction barriers. To circumvent these 

restriction barriers and enable gene disruption in these natural isolates, spa-pNL9164 intron 

insertion plasmids were passaged through high-efficiency E. coli cloning strain DC10B [208] 

prior to electroporating into SA. Subsequently, site-specific intron-insertion in these natural 

isolates was confirmed by PCR and sequence analysis. A total of 4 different spa-disrupted 

(Δspa) SA nasal strains were generated. Table 6, Table 7 and supplemental Table 14 list all the 

SA strains, plasmids and oligonucleotides generated and used in this study.  
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Immunodetection of analytes from host nasal secretions and SA lysates 

Processed nasal secretions collected from participants during nasal recolonization were 

analyzed using Bio-Rad multiplex cytokine array (Bio-Rad Laboratories Inc., Hercules, CA) to 

detect 27 different cytokines and growth factors (IL-1β, IL-1Ra, IL-2, IL-4, IL-5, IL-6, IL-7, IL-8, IL-

9, IL-10, IFN-γ, IL-12, IL-13, IL-15, IL-17, IP-10, MCP-1, MIP-1α, MIP-1β, PDGF, RANTES, TNF-α, 

Eotaxin, FGF basic, G-CSF, GM-CSF, and VEGF) according to the manufacturer’s instructions. For 

the detection of expressed SPA, cell wall and exoprotein fractions of WT and Δspa SA grown to 

exponential phase were prepared using protocols previously described with minor 

modifications [209,210]. Bacterial lysates equivalent to 5 million CFUs were resolved by SDS-

PAGE alongside 100ng of recombinant staphylococcal protein A (Sigma-Aldrich), used as a 

standard.  Gels were transferred on to PVDF membranes (Millipore Corporation, Bedford, MA) 

and blotted with either rabbit polyclonal antibody against SPA (catalogue # ab60206; Abcam, 

Cambridge, MA) or mouse monoclonal antibody against SPA (catalogue # ab49734-200; 

Abcam). In addition, SPA expression in WT and Δspa were quantified using the Assay Designs 

protein A Enzyme Immunometric Assay (EIA) kit (Enzo Life Sciences International, Plymouth, PA) 

as per the manufacturer’s instructions. Protein sample preparation from WT and Δspa SA 

grown to exponential phase were prepared using protocols previously described with 

modifications [49,211]. Briefly, SA cells were lysed with 10% acetic acid and vortexed for 30 min 

at ambient temperature for protein extraction. The recovered soluble proteins extracts were 

concentrated and used for SPA ELISA. 
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Growth studies to determine the fitness of isogenic Δspa mutant SA in comparison to wild-type 
SA  

In vitro growth studies in nutrient rich TSB, or minimal media (Dulbecco’s Modified Eagle’s 

Medium (DMEM; Mediatech, Inc., Manassas, VA) supplemented with 0.05% fetal bovine serum 

(FBS; Gemini Bioproducts, West Sacramento, CA), were performed for up to 24 hours using WT 

and isogenic mutant (Δspa) SA strains at 37oC and 250 rpm, after which the samples or their 

dilutions were plated on TSA plates and incubated at 37oC for 16 hours. CFUs were enumerated 

to determine the growth of these strains. Additionally, turbidity assays and micro-CFU assays 

were performed using WT and isogenic mutant SA strains using protocols described previously 

[205,212]. 

 Growth studies on human nasal epithelial cells were performed as described previously 

[57,153,205]. Briefly, 50 to 100 CFUs of either WT or isogenic mutant SA were inoculated 

topically on confluent monolayers of nasal epithelial cells exposed to ALI. At each timepoint 

post SA treatment, non-adherent SA was collected by rinsing with PBS (termed “wash fraction”) 

and adherent SA was collected by scraping the cells and subjecting them to mild sonication 

(termed “adhere fraction”). Dilutions of the wash and adhere fractions were plated on TSA, 

incubated at 37oC for 16 hours and subsequently CFUs were enumerated to determine the 

growth of SA on nasal epithelial cells. 
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Autologous nasal co-colonization using WT and Δspa strains 

The study design for the experimental nasal recolonization studies, using both WT and Δspa 

strains, is similar to the protocol described above, but with minor modifications. A total of 7 

nasal colonization studies in 14 nostrils were performed (N= 4 strains, 3 participants, and 1-2 

replicates each). Recolonization was performed by applying 107 CFUs per strain of WT and Δspa 

strains (1:1 mixture) in each nostril of the participant. Follow-up cultures and nasal fluid 

collection were performed, and comparative strain survival of WT and Δspa strains was 

determined using a combination of CFU enumeration and colony PCR with primers that detect 

intron integration in Δspa (primers described in supplemental Table 14). 

Statistical analyses 

All analyses were performed using Microsoft Excel (Microsoft Corporation, Redmond, WA) or 

GraphPad Prism 4 software (GraphPad Software, La Jolla, CA). For all growth studies either 

Student’s t-test or two-way ANOVA with Bonferroni posttest was performed for comparisons. 

All in vivo experiments that were carried out for the complete term of the study (22 days or 

more) were included. For multiplex cytokine data obtained from nasal secretions, total 

picograms of each cytokine at each sampling time were calculated based on the volume of 

nasal fluid obtained. For comparing total cytokine expression levels pre (day -7) and post SA 

inoculation, non-parametric Man Whitney test, Wilcoxon rank test were performed where 

appropriate. For calculating aggregate fold change in cytokine expression (i.e. aggregate 

immune response), picograms/donor cytokine levels were log-transformed, converted to fold 

expression in comparison to mupirocin-treated, pre-inoculation timepoint (day -7) and summed 
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for all cytokines for each day of collection. Subsequently, aggregate fold changes in cytokine 

expression were compared between in vivo studies with SA nasal clearance and SA nasal 

survival. SA carriage patterns in competitive recolonization studies with WT and Δspa strains 

were analyzed using Kaplan-Meier survival curves with log rank tests and mean survival time 

calculations. 

Results 

Nasal carriage state depends on inflammatory host response to SA colonization 

Previous studies have shown that nasal secretions collected from SA nasal carriers support the 

growth of SA in vitro and that SA carrier strains subvert innate host defenses to better attach to 

nasal epithelia in culture [7,49,57,153]. In the current study, we sought to identify human host 

factors that contribute to SA nasal carriage in vivo. We autologously colonized healthy 

participants, previously identified as SA nasal carriers and monitored for 1-3 years, with their 

previously characterized strains of SA. All participants were subjected to a five-day treatment 

with topical nasal mupirocin to decolonize the nose of SA. Each participant’s own previously 

isolated SA strains were used in all experimental colonization studies to account for the 

specificity of host-bacterial associations during SA recolonization studies (see Table 6 for strain 

and participant details). Post inoculation, SA nasal survival was monitored at regular intervals 

for more than 3 weeks by nasal swabbing and CFU enumeration to determine SA clearance 

rates.  

  Interestingly, in the majority of the autologous inoculations, we observed complete 
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clearance of SA from the nares (Figure 13A, p < 0.001, N = 15), and at least a one log-reduction 

in SA load occurred within one-week of inoculation. The median survival of SA in participants 

during complete nasal clearance was 10 days (Figure 13A). We also observed that levels of non-

SA commensal flora in the nose were not significantly affected due to mupirocin nasal 

treatment as commensal levels were restored within 10 days post mupirocin treatment, which 

immediately preceded the first autologous SA recolonization for each participant (Figure 13B). 

Moreover, non-SA commensal flora levels remained relatively unaffected throughout the 

duration of the study post SA inoculation (Figure 13B).  

 

Figure 13: Human autologous recolonization using naturally colonizing nasal SA strains 
revealed distinct carriage patterns within our cohort.  

(A) SA nasal survival rate in participants post inoculation is indicated in days (***p< 0.001, 
N=15). (B) Shown are matched comparisons of non-SA commensal CFU levels pre-mupirocin 
and post-mupirocin nasal treatment in a subset of participant’s involved in recolonization 
studies. 
   

  To determine if host inflammatory factors influence carriage, whole nasal secretions were 

collected throughout the SA recolonization study period and analyzed for a diverse panel of 27 
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different cytokines, chemokines, and growth factors (list of analytes provided in Methods). 

Table 6: Participants and SA strains isolated from nasal carriers used in this study 

Staphylococcus 
aureus strains 

Participants 
information 

MLST Spa type Reference  

D20 Isolated from 
D20  

ST30 t12255 [7] 

D20-24 Isolated from 
D20  

ST5 t688 [203] 

D502-9 Isolated from 
D502  

ST105 t056 [203] 

D528-11 Isolated from 
D528  

ST8 t008 [203] 

D547-14 Isolated from 
D547  

ST5 t688 [203] 

D637-7 Isolated from 
D637  

ST8 t2648 [203] 

D713-4 Isolated from 
D713  

ST5 t548 [203] 

D720-7 Isolated from 
D720  

ST1657 t1001 [203] 

D756-3 Isolated from 
D756  

ST2227 t012 [203] 

D757-5 Isolated from 
D757  

ST8 t008 [203] 

D830 Isolated from 
D830  

ST2233# t12893# This study 

D831 Isolated from 
D83  

ST22 t852 This study 

D20 Δspa (with 
disrupted spa 
gene) 

D20 ST30 t12255 This study 

D20-24 Δspa D20 ST5 t688 This study 
D547-14 Δspa D547 ST5 t688 This study 
D830 Δspa D830  ST2233# t12893# This study 
# Previously unidentified MLST allele profiles and/or spa types 
  

 Analytes IL-2, IL-4, IL-5, IL-9, IL-10, IL-13, IL-15, IL-17, MIP-1α, RANTES and GM-CSF were 

expressed at very low concentrations (< 10 picograms/donor) and so were excluded for further 

analyses. Expression levels of these factors were compared to levels observed in donor-

matched pre-inoculation nasal fluids (Supplemental Figure 22, N=15 experiments). Further, 
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aggregate fold change for each cytokine, which is based on whether analyte concentrations 

increased or decreased as compared to donor-matched pre-SA inoculation cytokine levels was 

calculated.  Subsequently, fold change represented with distinct color assignments of red 

shades for increases in expression upregulation and green shades for decreases in expression 

(Supplemental Figure 22). 

 

Figure 14: Significant induction of proinflammatory cytokines, chemokines and growth factors 
causes SA nasal clearance 
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Shown are matched pre-inoculation and post-inoculation expression levels of cytokines 
(picograms/donor, N=15) during (A) SA nasal clearance and (B) SA nasal survival. Cytokines IL-6 
(**p= 0.004), IL-8 (*p= 0.048), IP-10 (*p= 0.027), IFNγ (*p= 0.037), IL-7 (**p= 0.002), IL-12 (*p= 
0.019), G-CSF (**p= 0.004) and VEGF (**p= 0.002) were significantly induced post-inoculation 
only during SA nasal clearance. 
 
Table 7: E. coli strains and plasmids used in this study 

Bacterial 
strains or 
plasmids  

Description Source or 
Reference  

Escherichia 
coli strains 

  

Max efficiency 
DH5α 

High transformation efficiency cloning strain Life 
Technologies 

DC10B DNA cytosine methyltransferase mutant of an E. coli 
cloning strain. Passage of SA specific plasmids 
through DC10B enables genetic manipulation in 
refractory SA strains 

[208] 

Plasmids   
pNL9164 Temperature sensitive TargeTron Plasmid (E. coli- 

SA shuttle vector) for targeted insertion of group II 
intron in SA 

Sigma 

D20 spa-
pNL9164 

TargeTron plasmid to functionally disrupt spa gene 
in nasal carrier strain D20 

This study 

D547 spa-
pNL9164 

TargeTron plasmid to functionally disrupt spa gene 
in nasal carrier strains D20-24, D547-14 and D830 

This study 

 

 Interestingly, proinflammatory cytokines, chemokines and growth factors including IL-6, 

IL-8, IP-10, and VEGF were significantly induced post-inoculation during SA nasal clearance 

(Figure 14A). Importantly, no significant induction of host inflammatory responses were 

observed during SA nasal survival (Figure 14B) suggesting that the immune state of a participant 

predisposes SA nasal carriage. Remaining cytokine data are included in supplemental Figure 23. 

In addition, overall host immune responses in participants during SA colonization were analyzed 

by computing cumulative expression levels (picograms/donor) of all 16 analyzed cytokines pre- 

and post-inoculation during SA nasal clearance and survival in participants (Figure 15A). We 
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observed that the total cytokine response was significantly upregulated post-inoculation only 

during nasal clearance of SA (Figure 15A, p = 0.01). Intriguingly, aggregate fold change in 

cytokine expression was significantly higher in participants during clearance than in participants 

during SA nasal survival (Figure 15B, p = 0.046). Moreover, aggregate fold change in participants 

calculated over the duration of the study period during SA clearance was also significantly 

higher than during SA survival (Figure 15B, p = 0.041). Collectively, these observations suggest 

that induction of robust inflammatory response to colonizing SA leads to nasal SA clearance. 

 

 
Figure 15: Host immune response during SA nasal colonization corresponds to persistence or 
clearance 

(A) Shown are the cumulative expression levels (picograms/donor) of all 16 analyzed cytokines 
pre-inoculation and post-inoculation during SA nasal clearance and SA survival in participants. 
The total cytokine response was significantly upregulated post-inoculation only during SA nasal 
clearance (** p= 0.01, N=15). (B) Shown is the comparison of aggregate fold change in cytokine 
expression normalized to pre-inoculation levels in participants following > 21 days of 
monitoring and segregated by SA colonization.  Aggregate fold change is significantly higher 
during SA nasal clearance (*p= 0.046, N=15). (C) Aggregate fold change in cytokine expression 
calculated over time in participants during SA clearance and survival. Aggregate fold change 
over time is significantly higher during clearance (#p= 0.041, N=15). 
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Isogenic SA mutants lacking SPA exhibited increased clearance rates compared to WT in human 
nares 

From the recolonization studies with wild-type (WT) community-acquired SA isolates presented 

above, we observed that local inflammatory responses influence SA carriage. To confirm the 

involvement of host immune responses to nasal carriage, we hypothesized that disruption of an 

immunomodulatory bacterial protein would alter host inflammatory responses and affect 

carriage. Staphylococcal protein A (SPA) plays a key role in SA immune evasion by interfering 

with neutrophil phagocytosis and complement activation [84,96]. Recently, Falugi and 

colleagues demonstrated the role of SPA in subverting adaptive immune responses in vivo 

[213]. We postulated that SPA contributes to modulation of host nasal immune responses, and 

thus could affect the survival of SA in human nares. Toward this aim, in a subset of participants 

within our cohort, we sought to perform autologous recolonization studies with equal 

concentrations of WT and spa-disrupted (Δspa) SA nasal carrier strains. 

 

Figure 16: Evolutionary and expression analyses of SPA in SA nasal carrier strains within our 
cohort 

(A) Evolutionary relationships of WT SA strains based on spa typing is depicted using the 
Neighbor-Joining method. The tree is drawn to scale, with branch lengths in the same units as 
those of the evolutionary distances used to infer the phylogenetic tree. (B) SPA expression in SA 
nasal carrier strains used in the autologous recolonization was measured using anti-SPA ELISA. 
(C) spa repeat domain lengths and number of short sequence repeats (number above each bar) 
of all SA nasal carrier strains are also represented. Taxa labels in (A) Bar graphs in (B), (C) 
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colored in black indicate SA carrier strains used in WT recolonization studies, those in red 
indicate strains used in competitive recolonization with WT, Δspa strains. Nasal carrier strains 
D547-14 and D830 were used in both types of recolonization studies. 
  

 We previously showed that expression levels of SPA produced by SA nasal carrier strains 

in vitro corresponded to the level of persistence of SA and type of carriage in the human nose 

[120]. Additionally, Garofalo and colleagues demonstrated that length of the polymorhphic 

region of SPA regulates inflammatory responses in vivo [214]. Our analyses of polymorphic 

regions of spa of SA strains used in WT SA recolonization and SPA expression levels revealed 

marked heterogeneity within the cohort (Figure 16). Therefore, a convenient subset of 

participants and SA strains based on number of spa repeat units and SPA expression levels were 

selected and spa-disruption and recolonization was performed. 

 To achieve isogenic mutants lacking SPA, we performed site-directed disruption of the 

gene using the TargeTron gene knockout system (Figure 17A; see Table 6 for all mutant SA 

strains). Unlike traditional allelic exchange gene knockout methods, the TargeTron 

methodology does not utilize antibiotic-selectable markers and thus eliminates the possibility 

of introducing SA strains, which are resistant to these antibiotics, into human participants 

during experimental SA recolonization. The absence of SPA expression in Δspa strains was 

confirmed by anti-SPA Western (Figure 17B) and ELISA (Figure 17C). Next, we determined if 

gene-disruption affected the fitness of SA nasal carrier strains. In vitro growth studies carried 

out in nutrient rich media (Figure 17D) and minimal media (Figure 17E) revealed no significant 

growth difference between WT and Δspa strains. Further, no growth differences were observed 

between WT and Δspa strains when cultured on nasal epithelial cells at the air-liquid interphase 

(Figure 17F and G; all strains presented in Figure 24). These results suggest that spa-disruption 
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did not affect the fitness of SA nasal carrier strains.

 

Figure 17: Functional disruption of spa did not affect the fitness of nasal carrier strains of SA 

(A) Disruption of spa gene in SA nasal carrier strain D20. Shown is the PCR amplification of spa 
gene in WT and gene-disrupted SA strains. (B) Western immunoblot analysis of SPA expression 
in SA WT and Δspa strains. 100ng of recombinant protein A was used as a standard. (C) SPA 
detected by ELISA in WT and Δspa strains and concentration represented per 10 million CFUs of 
SA (N = 4, 3 replicates each, *p = 0.014). Growth kinetics of D20 WT and Δspa strains in (D) 
nutrient rich media (TSB) and (E) minimal media (DMEM+0.05%FBS). (F) Wash and (G) adhere 
fractions from nasal epithelia inoculation with SA showed no growth difference between D20 
WT and Δspa strains. No significant differences between WT and Δspa observed in panels D-G 
(N=3-4). 
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 We next performed autologous recolonization with equal concentrations of WT and 

Δspa strains in human nares, and monitored host immune responses and nasal carriage of WT 

and Δspa SA strains. Because induction of robust inflammatory response determined nasal 

carriage with WT SA, the competitive recolonization studies were stratified based on aggregate 

fold changes in cytokine expression in the nasal secretions from participants. Interestingly, we 

observed that aggregate fold changes in cytokine expression from participants exhibiting an 

immune response were significantly higher than that of participants who induced any immune 

response (Figure 18A, p = 0.019). Intriguingly, in participants who mounted an immune 

response due to colonization, Δspa SA clearance rate was significantly higher than that of WT 

(Figure 18B; log rank: χ2 = 4.051, p = 0.044).  Mean survival of Δspa SA (7.1 days) was 

significantly lower than that of WT SA (15.8 days) in participants that elicited a response (Figure 

18C, p = 0.035). Conversely, in participants with low immune responses, no difference between 

WT and Δspa SA survival was observed (Figure 18D; log rank: χ2 = 0.004, p = 0.948). Likewise, no 

difference in mean survival was observed between WT (15.1 days) and Δspa (16.0 days) (Figure 

18E, p = 0.217). Collectively, these studies strongly suggest that SPA is likely a co-determinant of 

SA nasal carriage in humans. 

Discussion 

SA primarily colonizes the anterior nares in humans and nasal carriage is established due to the 

complex interplay of bacterial factors and host factors during colonization [2,7,39,49]. How 

these factors lead to stable SA colonization in human noses is incompletely understood. Thus 
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acquiring knowledge about carriage factors is important for controlling carriage and 

dissemination of SA. 

 

Figure 18: Δspa SA exhibits reduced persistence in human nasal colonization 

(A) Aggregate fold change in cytokine expression levels (compared to day -7) of participants 
that produced high immune responses to SA compared to low response participants (**p= 
0.006). Kaplan-Meier survival curves of WT (solid line) and Δspa SA (colored dashed line) in 
noses of participants mounting a (B) High or (D) Low immune response to colonization. Δspa 
strains’ clearance rate was significantly higher than that of WT (*p= 0.0441) in studies with high 
immune responses only. (C) and (E) Median survival of Δspa SA compared to WT SA either in 
high and low immune response (*p = 0.035). 
 

 In the current study, we evaluated the role of host immune responses to SA nasal carriage 

by utilizing a controlled experimental recolonization model that heretofore is the most 

biologically relevant representation of intermittent SA nasal carriage in humans. Using this 

approach we revealed in vivo that the nasal carriage state is influenced by the host’s 

inflammatory response to SA colonization. Interestingly, the majority of time the host elicited 

an immune response during nasal carriage, it led to rapid SA nasal clearance. Less frequently, 
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there was SA persistence, which was attributed to the host failing to elaborate any response 

following SA recolonization. Initially, this was surprising, as we had surmised that by 

reintroducing a participant’s own SA isolate, nasal carriage would be easily restored. Moreover, 

since the same isolate of SA could persist in one recolonization experiment but not in the next, 

or vice versa, in the same participant, this points to a carriage state that is predominantly 

defined by the host’s varied ability to respond to SA. van Belkum and colleagues reported that 

natural SA nasal survival was 14 days among intermittent carriers and greater than 154 days 

among persistent carriers [10]. Perhaps the attenuated immune responses to SA challenge that 

we observed in a subset of participants likely leads to persistent SA nasal carriage in certain 

humans. 

 Analysis of nasal secretions from autologous recolonization revealed that 

proinflammatory cytokines and chemokines secreted into nasal fluid were significantly induced 

during SA nasal clearance. We observed that cytokines IL-6 and IL-8 were significantly 

upregulated post inoculation during SA clearance. Epithelial cells respond to SA challenge, by 

producing IL-6 and IL-8, which are crucial for triggering host innate responses including 

trafficking of neutrophils to the site of infection to phagocytize SA and production of 

antimicrobial peptides that directly kill SA [100,215,216]. Neutrophil recruitment during 

infection is also tightly modulated by IFNγ and interestingly, this cytokine was significantly 

upregulated during clearance [217]. In addition, we observed that IP-10, a chemokine that 

binds to the receptor CXCR3 and recruits inflammatory cells to infection site was significantly 

upregulated during SA nasal clearance. Recently, IL-17-mediated T-helper 17 immune response 

was shown to play an important role in SA nasal clearance using murine models of colonization 
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[108]. Surprisingly, in our human colonization experiments, IL-17 was expressed in extremely 

low levels in nasal secretions. It is possible that IL-17 could be cell-associated and not secreted 

or that lower IL-17 expression is enough to activate T-lymphocytes. Nevertheless, it is clear that 

a predominantly epithelia-derived and neutrophil-mediated inflammatory host response likely 

causes SA nasal clearance in vivo. 

 Commensal flora of the nose, especially serine protease (ESP) secreting S. epidermidis, 

can reportedly protect the host from SA colonization [144,145]. Intriguingly, in S. epidermidis 

isolated from majority of participants during recolonization, presence of the esp gene was 

observed (103 of 124 S. epidermidis isolates from 8 participants; Table 15). Additionally, we 

observed that the overall levels of non-SA commensal flora in recolonization studies remained 

unaffected. However, the shift in nasal microbiome due to topical antibiotic use prior to 

autologous recolonization can influence host responses during SA nasal colonization. 

Nonetheless, the dynamic interaction between SA and resident commensals including ESP-

secreting S. epidermidis in these recolonization studies and how they affect host defenses 

during colonization merits future investigations.  

 SA has evolved a repertoire of factors to evade the host’s immunity and successfully 

colonize the nose [84]. SPA is important for SA immunoevasion [11,96,188] and interestingly, in 

vivo, we observed autologous Δspa strains being eliminated from the nares significantly faster 

than WT when the host elaborated an immune response to recolonization. The IgG domains of 

SPA bind to the Fc region of host immunoglobulins in a confirmation unrecognizable by 

neutrophils, thereby enabling to SA to evade neutrophil-mediated phagocytosis [84]. In our 

competitive recolonization studies, when the host elaborated an immune response, it is 
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possible that SA strains lacking SPA, or expressing significantly lower quantities of SPA were 

more efficiently phagocytized. Thus Δspa strains were more rapidly eliminated from the nares 

than WT strains. Additionally, expression studies both at transcript and protein levels revealed 

an association between SPA levels and persistence of SA carriage in the human nares [11,120]. 

Collectively, these results suggest that SPA is a likely co-determinant of human SA nasal carriage 

and a potential therapeutic target for developing novel SA nasal decolonization strategies. 

 SA virulence and host defense mechanisms during SA pathogenesis and infection have 

been described previously. However, comparatively little is known about the immune 

responses during asymptomatic nasal carriage of SA, which was surprising given the prevalence 

of carriage in humans. For the first time, by utilizing a highly relevant human autologous SA 

nasal recolonization model, we characterized the extent to which immune responses influence 

SA carriage. Given the association between risk of SA infections and nasal carriage, it is essential 

to completely understand the immune mechanisms underlying SA colonization in humans. This 

knowledge can aid in developing novel decolonization strategies to tackle carriage-associated 

SA infections. 
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GENERAL DISCUSSION, CONCLUSION AND FUTURE DIRECTIONS 

SA nasal carriage occurs in approximately 30% human population asymptomatically and if SA 

breaches the physical and immunological barriers of the human host, it can invade the host 

resulting in systemic and often fatal infections. Importantly, it has been known that colonization 

by SA increases the risk of autoinfection [2,3,13,114].  SA nasal colonization is acknowledged to 

be multifactorial; however, our understanding of population structure, mechanism and factors 

responsible to SA nasal carriage is incomplete. In this dissertation, we sought to better 

understand SA nasal carriage dynamics in humans over time and elucidate critical host and 

bacterial determinants that are responsible for SA nasal carriage in humans.   

 Given that persistent nasal carriers of SA have higher risks for endogenous SA infection 

[12,115], it was necessary to investigate whether particular genotypes especially the more 

virulent SA (belonging to CC8, CC5, CC30 or CA-MRSA) preferentially colonize persistent 

carriers. In chapter two, we reported our findings of the population structure of SA nasal 

carriage strains from a cohort of persistent and intermittent carriers. Our comprehensive 

longitudinal sampling and discriminating genotyping studies (MLST, spa type, clfB type) 

revealed that SA carried by persistent and intermittent carriers exhibited high degree of genetic 

relatedness. This lack of genetic differences between SA strains colonizing persistent and 

intermittent carriers implies that host, nasal microbiome, and/or environmental factors could 

primarily determine carriage state in humans. But certain bacterial factors expressed in all SA 

(persistent and intermittent carrier SA) are critical for colonization [11,75,77]. Therefore, to 

better understand carriage, chapters three and four focused on determining host and bacterial 
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factors that are responsible for carriage. Towards this aim, we developed a highly relevant SA 

recolonization model in humans to study these factors that influence carriage. 

 Host factors are increasingly recognized to be major determinants of SA nasal carriage. 

Using SA recolonization, we provided first direct in vivo support for the essential role played by 

local inflammatory responses in the survival of SA in human nares. Importantly, analyses of 

nasal secretions during SA recolonization revealed that proinflammatory cytokines were 

induced during SA nasal clearance. This correlates well with in vitro studies on human nasal 

epithelial cells in which SA carrier strains was shown to subvert host innate immune responses 

by delaying TLR2 and suppressing the production of proinflammatory IL-1β [57,153].  

Additionally, a recent study utilizing a rodent colonization model demonstrated that SA nasal 

clearance is dependent on IL-17 mediated T-helper 17 (Th17) immune response and 

subsequent neutrophil influx [108]. IL-17 is also a crucial regulator of antimicrobial peptide 

production including α defensins (Human neutrophil peptides (HNPs) 1-3 and Human β-

Defensins (HBDs) 1-3 at mucosal surfaces [216,218]. Interestingly, presence of these 

antimicrobial peptides in nasal secretions from SA carriers indicates that a predominantly 

epithelially derived and neutrophil-mediated inflammatory host response influence nasal 

carriage outcome in humans [7,49]. It is not surprising that HIV-positive individuals with 

immune dysregulation or atopic dermatitis patients expressing lower levels of HBD-2 and 

cathelicidin (LL-37) have higher rates of SA persistent colonization than healthy individuals 

[18,20,21,219].  
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 Secreted and surface proteins of SA including MSCRAMMs play a critical role in adhesion 

and immunoevasion of host during nasal colonization. Therefore, in chapter three, using 

quantitative proteomic approaches, we compared the exoproteins of nasal carrier SA strain and 

its genetically similar SA isolated from a skin of burnt of victim. Interestingly, we observed that 

greater number of proteins involved in immunoevasion and adhesion, which influence SA’s 

ability to colonize the nose, were expressed in SA nasal carrier strain exoproteome. In 

particular, high abundance of SPA, an important immunoevasive protein, was detected the SA 

nasal carrier strain. Additionally, we also observed that expression levels of SPA corresponded 

to the level of SA persistence in the nose. Therefore, we hypothesized that SPA is an important 

determinant of SA nasal carriage. Subsequently, in chapter four, we evaluated SPA’s role in 

carriage, by creating SA nasal carrier strains lacking SPA and performed competitive SA 

recolonization studies in humans. Interestingly, we observed that isogenic mutants lacking SPA 

were eliminated from the nares significantly faster than WT when host was able to elicit an 

inflammatory response to recolonization. These findings provide strong in vivo support and 

shed new insights into role of SPA in nasal carriage of SA. Given the significant role for SPA in SA 

virulence, pathogenesis and immune evasion, the functional link between SA nasal clearance 

and role of SPA in modulating host immune responses during nasal colonization remains to be 

investigated. Preliminary studies by other members of our group revealed a correlation 

between absence of SPA in SA and activation of transcription factor NF-kB, which mediates the 

expression of proinflammatory signaling cytokines and chemokines in nasal epithelia. However, 

a recent study indicated that genotypic variability in SA nasal carriage strains caused variable 

host cell responses ex vivo [220].  Collectively, these results further confirm that host immune 
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responses play a predominant role in nasal colonization of SA in humans. Future investigations 

into the mechanism of nasal epithelial responses due to SA infection will be necessary to better 

decipher the functional link between carriage and inflammatory response during SA 

colonization. 

 For human SA recolonization studies, we utilized topical antibiotic mupirocin for 

clearance of SA and commensal flora from the nose prior to recolonization. Eradication of 

nasally colonized SA using the topical mupirocin has proven to be effective in reducing SA 

infections due to carriage [13,221,222]; however, such SA decolonization strategies are 

increasingly being threatened by the emergence antimicrobial resistance in SA including 

mupirocin-resistant SA [223]. Therefore, there is an urgent need for developing innovative 

therapeutics to combat resistant SA infections. A combinatorial approach involving drugs that 

affect host immune responses in concert with antibiotics can ameliorate the growing concern of 

antimicrobial resistance. For instance, a recent study demonstrated that inhibition of Tumor 

Necrosis Factor (TNF) in combination with antibiotic therapy greatly lessened staphylococcal 

arthritis and sepsis in mice [224]. Another study reported that treatments combining antibiotics 

with cytokines Granulocyte-Macrophage Colony-Stimulating Factor (GM-CSF) and TNFα 

improved survival of mice infected with Klebsiella pneumoniae [225].  Such combinatorial 

immunotherapeutics can be adapted for SA decolonization treatments. 

 In addition, development of novel SA decolonization treatments also requires 

conducting SA pathogenesis investigations where riskier interventions would be necessary. For 

such investigations, non-human primate models of SA nasal carriage would be better suited 

than human colonization models. Unlike rodents, primates such as rhesus macaques are natural 
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nasal carriers of SA [226]. A recent cross-sectional survey of 731 rhesus macaques revealed a 

39% SA nasal carriage rate [226]. These primates could serve as useful SA nasal carriage models 

for studying colonization mechanisms in greater detail and developing new SA nasal eradication 

therapies. 

 Together, the studies conducted here advanced our understanding of nasal carriage 

dynamics and host immune responses during SA nasal colonization in humans.  In addition, this 

work provided in vivo support for the essential role played by host immune responses in the 

survival of SA in human nares and importantly identifies the role of SPA as a co-determinant of 

SA nasal carriage. Improved understanding of SA nasal carriage can facilitate for development 

of effective intervention strategies for carriage and subsequently for preventing nosocomial 

and community-associated SA infections. 
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APPENDIX A: CHAPTER TWO SUPPLEMENT 
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Table 8: Complete genotyping details of SA strains analyzed in this study 

Taxa label 
MLST 

Sequence 
type (ST) 

spa type 
spa clonal complex as 

revealed by eBURP 
clustering analysis  

(spa-CC)a 

clfB R region 
sequence 
obtained?a 

D20 59 t216 #7 b YES 
D20-2 59 t216 #7 YES 
D20-24 5 t688 5: no founder YES 
D20-25 5 t688 5: no founder YES 
D20-3 59 t216 #7 YES 
D20-5 1723 t148 4: no founder YES 
D20-6 1723 t148 4: no founder YES 
D20-7 1723 t148 4: no founder YES 
D502-2 106 t056 #1 YES 
D502-3 106 t056 #1 YES 
D502-4 106 t056 #1 YES 
D502-5 106 t056 #1 YES 
D502-6 106 t056 #1 YES 
D502-7 106 t056 #1 YES 
D502-8 106 t056 #1 YES 
D502-9 106 t056 #1 YES 
D507 582 t084 6: no founder YES 

D507-2 582 t084 6: no founder YES 
D507-3 582 t084 6: no founder YES 
D507-4 582 t084 6: no founder YES 
D512 30 t012 2: spa-CC 037 YES 

D512-2 30 t012 2: spa-CC 037 YES 
D512-3 30 t1705 #10 YES 
D512-4 30 t012 2: spa-CC 037 YES 
D512-5 30 t012 2: spa-CC 037 YES 
D512-7 30 t012 2: spa-CC 037 YES 
D512-8 30 t012 2: spa-CC 037 YES 
D512-9 30 t012 2: spa-CC 037 YES 
D517 8 t012 2: spa-CC 037 YES 

D517-2 8 t1705 #10 YES 
D521 30 t122 2: spa-CC 037 YES 

D521-2 30 t122 2: spa-CC 037 YES 
D521-3 8 t036 1: spa-CC 024 YES 
D521-4 8 t036 1: spa-CC 024 YES 
D521-5 8 t036 1: spa-CC 024 YES 
D521-6 8 t036 1: spa-CC 024 YES 
D521-7 8 t036 1: spa-CC 024 YES 
D523-10 188 t189 3: no founder YES 
D523-11 188 t189 3: no founder YES 
D523-14 188 t012 2: spa-CC 037 YES 
D523-5 188 t189 3: no founder YES 
D524c 30 NA NA NA 

D528-10 8 t008 1: spa-CC 024 YES 
D528-11 8 t008 1: spa-CC 024 YES 
D528-2 8 t024 1: spa-CC 024 YES 
D528-3 8 t008 1: spa-CC 024 YES 
D528-5 8 t008 1: spa-CC 024 YES 
D528-6 8 t008 1: spa-CC 024 YES 
D528-7 8 t008 1: spa-CC 024 YES 
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Taxa label 
MLST 

Sequence 
type (ST) 

spa type 
spa clonal complex as 

revealed by eBURP 
clustering analysis  

(spa-CC)a 

clfB R region 
sequence 
obtained?a 

D528-8 8 t008 1: spa-CC 024 YES 
D528-9 8 t008 1: spa-CC 024 YES 
D531 30 NA NA NA 
D535 59 t216 #7 YES 

D535-10 5 t002 7: no founder YES 
D535-11 5 t002 7: no founder YES 
D535-12 5 t002 7: no founder YES 
D535-13 5 t002 7: no founder YES 
D535-14 5 t002 7: no founder YES 
D535-15 5 t002 7: no founder YES 
D535-16 5 t002 7: no founder YES 
D535-2 30 t216 #7 YES 
D535-3 5 t002 7: no founder YES 
D535-4 5 t002 7: no founder YES 
D535-5 5 t002 7: no founder YES 
D535-6 5 t002 7: no founder YES 
D535-7 5 t002 7: no founder YES 
D535-8 5 t002 7: no founder YES 
D535-9 5 t002 7: no founder YES 
D540 15 t346  6:no founder YES 

D540-2 5 NA NA YES 
D543 5 NA NA NA 
D547 30 t3263 2: spa-CC 037 YES 

D547-14 5 t688 5: no founder YES 
D547-15 5 t688 5: no founder YES 
D547-2 1434 t148 4: no founder YES 
D547-3 1507 t002 7: no founder YES 
D547-4 59 t216 #7 YES 
D547-5 59 t216 #7 YES 
D549-2 8 t008 1: spa-CC 024 YES 
D549-3 8 t008 1: spa-CC 024 YES 
D549-4 8 t008 1: spa-CC 024 YES 
D549-5 8 t008 1: spa-CC 024 YES 
D553 50 t185 #5 YES 

D553-2 50 t185 #5 YES 
D553-3 50 t185 #5 YES 
D553-4 2224 t185 #5 YES 
D554 8 NA NA NA 
D558 45 NA NA NA 
D560 508 NA NA NA 
D563 30 NA NA NA 
D564 2225 t216 #7 YES 

D564-2 2225 t216 #7 YES 
D565 87 t216 #7 YES 

D565-2 87 t216 #7 YES 
D565-3 87 t216 #7 YES 
D566 15 t7134 6: no founder YES 

D566-10 30 t037 2: spa-CC 037 YES 
D566-2 15 t7134 6: no founder YES 
D566-3 30 t037 2: spa-CC 037 YES 
D566-4 30 t037 2: spa-CC 037 YES 
D566-5 30 t037 2: spa-CC 037 YES 
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Taxa label 
MLST 

Sequence 
type (ST) 

spa type 
spa clonal complex as 

revealed by eBURP 
clustering analysis  

(spa-CC)a 

clfB R region 
sequence 
obtained?a 

D566-6 30 t9877 1: spa-CC 024 YES 
D566-7 30 t037 2: spa-CC 037 YES 
D566-8 30 t037 2: spa-CC 037 YES 
D566-9 30 t037 2: spa-CC 037 YES 
D574 34 NA NA NA 
D576 30 t363 2: spa-CC 037 YES 

D576-2 30 t363 2: spa-CC 037 YES 
D576-3 30 t363 2: spa-CC 037 YES 
D576-4 30 t363 2: spa-CC 037 YES 
D577 672 NA NA NA 
D579 398 NA NA NA 
D582 5 t002 7: no founder YES 

D582-2 1656 t216 #7 YES 
D582-3 5 t002 7: no founder YES 
D584 45 NA NA NA 
D589 45 t9652 #12 YES 

D589-2 45 t9652 #12 YES 
D589-3 45 t9652 #12 YES 
D592 30 NA NA NA 
D594 188 t189 3: no founder YES 

D594-2 188 t189 3: no founder YES 
D594-3 188 t189 3: no founder YES 
D594-4 188 t189 3: no founder YES 
D594-5 188 t037 2: spa-CC 037 YES 
D594-6 188 t189 3: no founder YES 
D597 15 NA NA NA 
D599 30 t037 2: spa-CC 037 YES 

D599-9 398 t037 2: spa-CC 037 YES 
D604-5 5 t688 5: no founder YES 
D604-6 5 t688 5: no founder YES 
D605 1181 t334 1: spa-CC 024 YES 
D607 30 NA NA NA 
D608 30 NA NA NA 
D613 97 t1247 #9 YES 
D618 5 t954 5: no founder YES 

D618-3 2226 t954 5: no founder YES 
D618-4 5 t954 5: no founder YES 
D619 5 t954 5: no founder YES 

D619-2 5 t954 5: no founder YES 
D619-3 5 t954 5: no founder YES 
D619-5 5 t954 5: no founder YES 
D619-6 5 t954 5: no founder YES 
D619-7 5 t954 5: no founder YES 
D623 5 t688 5: no founder YES 

D623-2 5 t688 5: no founder YES 
D623-3 5 t688 5: no founder YES 
D623-4 5 t688 5: no founder YES 
D627 15 t1509 Excluded YES 

D627-2 1659 t1509 Excluded YES 
D628 109 NA NA NA 
D629 109 t3745 Excluded YES 

D629-2 109 t3745 Excluded YES 
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Taxa label 
MLST 

Sequence 
type (ST) 

spa type 
spa clonal complex as 

revealed by eBURP 
clustering analysis  

(spa-CC)a 

clfB R region 
sequence 
obtained?a 

D635 5 t954 5: no founder YES 
D635-2 5 t954 5: no founder YES 
D635-3 5 t954 5: no founder YES 
D636 1658 t021 2: spa-CC 037 YES 

D636-2 1658 t021 2: spa-CC 037 YES 
D637 8 t2648 1: spa-CC 024 YES 

D637-2 8 t2648 1: spa-CC 024 YES 
D637-4 8 t2648 1: spa-CC 024 YES 
D637-7 8 t2648 1: spa-CC 024 YES 
D643 508 NA NA NA 

D647-2 87 t216 #7 YES 
D647-5 87 t216 #7 YES 
D647-7 87 t216 #7 YES 
D647-8 87 t216 #7 YES 
D651 30 t338 2: spa-CC 037 YES 

D655-3 30 t338 2: spa-CC 037 YES 
D657 45 t9876 #13 YES 

D657-2 2228 t9876 #13 YES 
D662 30 t021 2: spa-CC 037 YES 

D662-2 30 t021 2: spa-CC 037 YES 
D664 72 t3682 4: no founder YES 

D664-2 72 t3682 4: no founder YES 
D664-3 72 t3682 4: no founder YES 
D672 188 t9873 3: no founder YES 

D672-10 188 t9873 3: no founder YES 
D672-12 188 t9873 3: no founder YES 
D672-16 188 t9873 3: no founder YES 
D672-2 1724 t9873 3: no founder YES 
D672-3 188 t9873 3: no founder YES 
D672-4 188 t9873 3: no founder YES 
D672-5 188 t9873 3: no founder YES 
D672-6 188 t9873 3: no founder YES 
D672-7 188 t9873 3: no founder YES 
D672-8 188 t9873 3: no founder YES 
D672-9 188 t9873 3: no founder YES 
D678 109 NA NA NA 
D681 1159 t091 #3 YES 

D681-10 1159 t091 #3 YES 
D681-11 1159 t091 #3 YES 
D681-12 1159 t091 #3 YES 
D681-2 1159 t091 #3 YES 
D681-3 1159 t091 #3 YES 
D681-4 1159 t091 #3 YES 
D681-5 1159 t091 #3 YES 
D681-6 1159 t091 #3 YES 
D681-7 1159 t091 #3 YES 
D681-8 1159 t091 #3 YES 
D681-9 1159 t091 #3 YES 
D686-2 2229 t701 1: spa-CC 024 YES 
D691 30 NA NA NA 
D692 30 t012 2: spa-CC 037 YES 

D692-2 2230 t209 #6 YES 

 
 

98 



 

Taxa label 
MLST 

Sequence 
type (ST) 

spa type 
spa clonal complex as 

revealed by eBURP 
clustering analysis  

(spa-CC)a 

clfB R region 
sequence 
obtained?a 

D692-3 8 t2229 #11 YES 
D692-4 30 t012 2: spa-CC 037 YES 
D697 109 t209 #6 YES 

D697-2 109 t209 #6 YES 
D710 30 NA NA NA 

D713-4 5 t548 7: no founder YES 
D714 81 t127 #4 YES 

D714-4 81 t127 #4 YES 
D714-5 81 t127 #4 YES 
D714-6 81 t127 #4 YES 
D719 30 NA NA NA 
D720 1657 t1001 #8 YES 

D720-2 1657 t1001 #8 YES 
D720-3 1657 t1001 #8 YES 
D720-4 1657 t1001 #8 YES 
D720-5 1657 t1001 #8 YES 
D720-6 1657 t1001 #8 YES 
D720-7 1657 t1001 #8 YES 
D720-8 1657 t1001 #8 YES 
D720-9 1657 t1001 #8 YES 
D724 45 t073 #2 YES 

D724-2 2231 t073 #2 YES 
D724-3 45 t073 #2 YES 
D724-4 45 t073 #2 YES 
D724-5 45 t073 #2 YES 
D724-6 45 t073 #2 YES 
D724-7 45 t073 #2 YES 
D724-8 45 t073 #2 YES 
D725-2 5 t002 7: no founder YES 
D725-3 5 t002 7: no founder YES 
D729 5 NA NA NA 
D732 5 NA NA NA 
D733 5 NA NA NA 

D735-2 8 t3240 1: spa-CC 024 YES 
D739-2 30 t8072 2: spa-CC 037 YES 
D742 1181 t334 1: spa-CC 024 YES 

D742-2 1181 t334 1: spa-CC 024 YES 
D750 72 t3682 4: no founder YES 

D750-2 72 t3682 4: no founder YES 
D752 8 NA NA NA 

D753-5 2232 NA NA YES 
D756 2227 t012 2: spa-CC 037 YES 

D756-2 2227 t012 2: spa-CC 037 YES 
D756-3 2227 t012 2: spa-CC 037 YES 
D757-5 8 t008 1: spa-CC 024 YES 
D758 15 NA NA NA 
D771 8 t008 1: spa-CC 024 YES 

D771-2 8 t008 1: spa-CC 024 YES 
D771-3 8 t008 1: spa-CC 024 YES 
D776 508 NA NA NA 

D785-2 8 NA NA NA 
D785-4 8 t008 1: spa-CC 024 YES 
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Taxa label 
MLST 

Sequence 
type (ST) 

spa type 
spa clonal complex as 

revealed by eBURP 
clustering analysis  

(spa-CC)a 

clfB R region 
sequence 
obtained?a 

D795 15 t084 6: no founder YES 
D795-2 15 t084 6: no founder YES 
D795-4 15 t084 6: no founder YES 
D795-5 15 t084 6: no founder YES 
D795-6 15 t084 6: no founder YES 
D795-7 15 t084 6: no founder YES 
D798 8 t008 1: spa-CC 024 YES 

D798-2 8 t008 1: spa-CC 024 YES 
D798-3 8 t008 1: spa-CC 024 YES 
D798-4 8 t008 1: spa-CC 024 YES 
D798-5 8 t008 1: spa-CC 024 YES 
D798-6 8 t008 1: spa-CC 024 YES 
D798-7 8 t008 1: spa-CC 024 YES 
D799 5 NA NA NA 

D812-3 716 t008 1: spa-CC 024 YES 
D819 30 NA NA NA 

D506-5# NA NA NA NA 
# No ST available. 
a spa typing and clfB typing was performed on S. aureus strains isolated from carriers enrolled 
in longitudinal analysis study (i.e. nasal swabs from carriers monitored 2 or more times).  
b Cluster number to which to the strain belongs as revealed by spa eBURP clustering analysis. 
Founder spa type, if present, for each spa-CC is also shown here.    
c Italicized taxa = Cross sectional donors monitored only once to detect S. aureus in the nares.  
NA = sequence type or spa type or clfB typing information not available. 
 

Table 9: SA nasal carriage pattern among closely related donors 

Closely related 
donors 

Type of donor 
relationship 

Total SA 
strains 

Identical SA 
strains as 

classified by 
MLST 

Non-identical 
SA strains as 
classified by 

MLST 
D528-D549 Spouse 13 13 0 
D523-D594 Spouse 10 10 0 
D618-D619 Living together 10 9 1 
D619-D635 Twins 10 10 0 

D20-D547-D604 Father-Mother-Child 18 12 6 
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Table 10: Nucleotide sequence of SD repeats generated for the gene clfB 

Repeat numbers Repeat sequences Repeat numbers Repeat sequences 

1 TCGGATTCGGACAGTGAC 50 TCGGATTCAAACAGCGAT 

2 TCAGGCTCAGACAGCGAC 51 TCGGACTCAGACAGTGAC 

3 TCAGGTTCAGACAGTGAC 52 TCAAACTCAGATAGTGAC 

4 TCGGACTCAGACAGCGAC 53 TCGGATTCAGATAGCGAT 

5 TCAGATTCAGATAGTGAC 54 TCGGATTCAGATAGCGAC 

6 TCAGACTCAGATAGTGAC 55 TCAGACCCAGACAGTGAG 

7 TCAGATTCAGACAGCGAT 56 TCAGATTCAGACAGTGAG 

8 TCGGATTTAGACAGCGAT 57 TCAGACTCGGATAGCGAT 

9 TCGGATTCAGACAGCGAC 58 TCGGACTCAGACAGTTAC 

10 TCAGATTCAGATAGTGAT 59 TCAGGTTCAGACAGTGAG 

11 TCAGATTCAGACAGCGAC 60 TCGGGTTCAGATAGCGAC 

12 TCAGACTCAGATAGTGAT 61 TCGGAATCAGACAGTGAT 

13 TCAGACTCAGACAGTGAG 62 TCAGATTCCGACAGCGAC 

14 TCAGATTCAGATAGCGAT 63 TCGGACTCAGATAGCAAC 

15 TCAGACTCAGACAGTGAC 64 TCGGATTCGGACAGCGAC 

16 TCCGATTCAGATAGCGAT 65 ACAGATTCAGATAGTGAC 

17 TCGGACTCAGATAGCGAC 66 ACAGATTCAGACAGCGAC 

18 TCCGATTCAGATAGCGAG 67 TCTGATTCAGACAGCGAC 

19 TCAGACTCAGACAGTGAT 68 TCCGATTCAGATAGTGAT 

20 TCGGATTCAGACAGCGAT 69 TCCGACACGGACAGCGAC 

21 TCGGATTCAGACAGTGAC 70 TCAGATTCAGAAAGTGAC 

22 TCAGGTTCAGATAGCGAC 71 TCCGATTCAGACAGCGAT 

23 TCAGAATCAGATAGCGAT 72 TCTGATTCAGACAGCGAT 

24 TCGGATTCAGACAGTGAT 73 TCAGATTCAGAGAGCGAT 

25 TCAGAATCAGATAGCGAC 74 TCCGACTCAGACAGCGAC 

26 TCAGAATCAGATAGTGAG 75 TCCGGTTCAGATAGTGAT 

27 TCAGATTCAGACAGTGAC 76 TCAGATTCCGACAGCGAT 

28 TCGGACTCAGACAGTGAT 77 TCGGATTCCGACAGCGAC 

29 TCAGACTCAGATAGCGAT 78 TCAGATTCCGACAGTGAT 

30 TCAGACTCAGACAGCGAT 79 TCCGACTCAGACAGCGAT 

31 TCAGAATCAGACAGCGAC 80 TCCGATTCAGATAATGAC 

32 TCAGACTCAGATAGCGAC 81 TCCGATTCTGATAGTGAC 

33 TCAGACTCAGACAGCGAC 82 TCCGACTCTGATAGTGAC 

34 TCGGACTCAGACAGCGAT 83 TCTGATTCAGATAGTGAT 
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Repeat numbers Repeat sequences Repeat numbers Repeat sequences 

35 TCAGACTCGGATAGCGAC 84 TCCGATTCAGACAGTGAC 

36 TCGGATTCAGATAGTGAC 85 TCAGACTCAGAAAGCGAT 

37 TCAGAATCAGACAGTGAT 86 TCACACTCAGATAGTGAC 

38 TCAGGTTCAGATAGCGAT 87 TCGGACTCGGATAGTGAC 

39 TCAGATTCAGATAGCGAC 88 TCAGACTCAGGTAGCGAT 

40 TCAGAATCAGACAGTGAC 89 TCAGACTCAGATAGTGAG 

41 TCAGACAGCGAT 90 TCAGATTCAGACAGCGAG 

42 TCAGATTCAGATAGTGAG 91 TCGGATTCCGACAGTGAT 

43 TCGGACTCAGATAGCGAT 92 TCAGATTCAGATAGCAAT 

44 TCGGATTCAGACAACGAT 93 TCAGAGTCAGATAGTGAG 

45 TCAGAATCAGACAGCGAT 94 TCAGATTCGGACAGCGAT 

46 TCAGAATCAGACAGTGAG 95 TCAGATTCAGATAGCAAC 

47 TCAAACTCAGACAGTGAG 96 TCGAATTCAGACAGTGAT 

48 TCGGACTCAGATAGTGAC 97 TCAGACTCATACAGTGAT 

49 TCGGACTCAGACAGTGAG 98 TCAGATTCAGGTAGTGAC 

99 TCAGATTCCGATAGTGAC 114 TCGGACTCAGAGAGCGAT 

100 TCCGACTCCGACAGCGAT 115 TCAGATTCAGACGGCGAT 

101 TTAGATTCAGATAGCGAT 116 TCGGAGTCAGATAGCGAC 

102 TCAGGCTCAGACAGCGAT 117 TCGGACTCAGACAGTGAA 

103 TCGGATTCAGACAGTGAG 118 TCAGAATCAGACGGCGAT 

104 TCAGGTTCCGATAGCGAT 119 TCAGACTCGTGTAGCGAT 

105 TCGGATTCCGATAGTGAC 120 TCCGACTCAGGTAGCTGT 

106 TCCGACTCAGATAGTGAC 121 TCAGACTCCGATAGTGAG 

107 TCGGAGTCAGAGAGTGAC 122 TCAGATTCTTACAGCGAT 

108 TCAGACTCTTATAGTGAC 123 TCCCACTCAGGTAGCAAT 

109 TCGGACTCAGAAAGTGAC 124 TCAGACAGTGAC 

110 TCGGACTCGGACTGTGAA 125 TCAGATTCAGACGGCGAC 

111 TCGGATTCAAAGAGCGAT 126 TCCGATTCAGATAGCGAC 

112 TCGGATTCAGACAGAGAC 127 TCAGACTCCGACAGCGAT 

113 TCGGACGCAGATACCGAC   
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Figure 19: SA strains isolated from nasal carriers are genetically related to nosocomial 
epidemic strains.  

Bayesian analyses of SA strains isolated from all nasal carriers enrolled in both cross-sectional 
(with only single nasal culture) and longitudinal studies (persistent carrier strains (blue), 
intermittent carrier strains (green)) are genetically similar to SA strains isolated from clinical 
settings (red).  Numbers at each node indicate posterior probability support and grey-filled 
circles represent 100% posterior probability. 
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Figure 20: Longitudinal monitoring of healthy individuals for SA nasal carriage also identified 
true non-carriers of SA. 

Shown here is a representative set of true non-carriers of SA that have been monitored for a 
year or more. (N) indicates SA non-carrier state. 
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Figure 21: Color-coded repeat regions of R domains at the locus clfB of all SA strains isolated 
from persistent and intermittent carriers analyzed in this study. 

Shown here is the nucleotide analysis of the clfB R region on all SA strains isolated from 
persistent (colored in blue) and intermittent carriers (colored in black). 
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APPENDIX B: CHAPTER THREE SUPPLEMENT 
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Table 11: Peptide sequence of representative MS/MS spectra of uniquely identified proteins 
(Confidence, 99%) from D30 and 930918-3 depicted in Figure 9 with its multiple b and y series 
daughter ions, is shown here 

I. Immunoglobulin G binding protein A precursor 

Peptide sequence: DDPSQSANVLGEAQK 

Residue b ions b+2 ions y ions y+2 ions 

D 260.1363 130.5718 1847.9225 924.4649 

D 375.1632 188.0853 1588.7935 794.9004 

P 472.2160 236.6116 1473.7665 737.3869 

S 559.2480 280.1276 1376.7138 688.8605 

Q 687.3066 344.1569 1289.6818 645.3445 

S 774.3386 387.6729 1161.6232 581.3152 

A 845.3757 423.1915 1074.5911 537.7992 

N 960.4027 480.7050 1003.5540 502.2807 

V 1059.4711 530.2392 888.5271 444.7672 

L 1172.5552 586.7812 789.4587 395.2330 

G 1229.5766 615.2919 676.3746 338.6909 

E 1358.6192 679.8132 619.3532 310.1802 

A 1429.6563 715.3318 490.3106 245.6589 

Q 1557.7149 779.3611 419.2734 210.1404 

K 1829.9119 915.4596 291.2149 146.1111 

II. ABC transporter, substrate-binding protein 

Peptide sequence: VTPEGIYLIDYR 

Residue b ions b+2 ions y ions y+2 ions 

V 244.1778 122.5925 1582.8597 791.9335 

T 345.2254 173.1164 1339.6892 670.3483 
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Residue b ions b+2 ions y ions y+2 ions 

P 442.2782 221.6427 1238.6416 619.8244 

E 571.3208 286.1640 1141.5888 571.2980 

G 628.3423 314.6748 1012.5462 506.7767 

I 741.4263 371.2168 955.5247 478.2660 

Y 904.4896 452.7485 842.4407 421.7240 

L 1017.5737 509.2905 679.3774 340.1923 

I 1130.6578 565.8325 566.2933 283.6503 

D 1245.6847 623.3460 453.2092 227.1083 

Y 1408.7480 704.8777 338.1823 169.5948 

R 1564.8492 782.9282 175.1190 88.0631 

III. Autolysin 

Peptide sequence: TNTNVTNAGYSLVDDEDDNSENQINPELIK 

Residue b ions b+2 ions y ions y+2 ions 

T 246.1570 123.5821 3612.6915 1806.8494 

N 360.1999 180.6036 3367.5418 1684.2745 

T 461.2476 231.1274 3253.4988 1627.2531 

N 576.2746 288.6409 3152.4512 1576.7292 

V 675.3430 338.1751 3037.4242 1519.2157 

T 776.3907 388.6990 2938.3558 1469.6815 

N 890.4336 445.7204 2837.3081 1419.1577 

A 961.4707 481.2390 2723.2652 1362.1362 

G 1018.4922 509.7497 2652.2281 1326.6177 

Y 1181.5555 591.2814 2595.2066 1298.1069 

S 1268.5875 634.7974 2432.1433 1216.5753 

L 1381.6716 691.3394 2345.1113 1173.0593 
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Residue b ions b+2 ions y ions y+2 ions 

V 1480.7400 740.8736 2232.0272 1116.5172 

D 1595.7669 798.3871 2132.9588 1066.9830 

D 1710.7939 855.9006 2017.9318 1009.4696 

E 1839.8365 920.4219 1902.9049 951.9561 

D 1954.8634 977.9353 1773.8623 887.4348 

D 2069.8904 1035.4488 1658.8354 829.9213 

N 2183.9333 1092.4703 1543.8084 772.4078 

S 2270.9653 1135.9863 1429.7655 715.3864 

E 2400.0079 1200.5076 1342.7335 671.8704 

N 2515.0349 1258.0211 1213.6909 607.3491 

Q 2643.0934 1322.0504 1098.6639 549.8356 

I 2756.1775 1378.5924 970.6053 485.8063 

N 2870.2204 1435.6139 857.5213 429.2643 

P 2967.2732 1484.1402 743.4784 372.2428 

E 3096.3158 1548.6615 646.4256 323.7164 

L 3209.3998 1605.2036 517.3830 259.1951 

I 3322.4839 1661.7456 404.2989 202.6531 

K 3594.6809 1797.8441 291.2149 146.1111 
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Table 12: Functional classification of the total 488 identified exoproteome proteins of nasal 
carrier strain (D30) and non-carrier strain (930918-3) as identified by iTRAQ analysis in three 
independent experiments. 

D30:930918-3 is the ratio of protein expression levels between the carrier and non-carrier 
strain. The p values and the error factor associated with the protein expression levels are also 
indicated here 
 
Accession no. Name Number 

of 

peptides 

Total 

score 

Seq 

Coverage 

(%) 

D30:930918-

3 

p 

value 

Error 

factor 

Amino Acid & Protein Synthesis      

gi|88194310 translation elongation factor Tu 109 63.62 85.8 0.756 0.0005 1.1671 

gi|87161362 50S ribosomal protein L15 47 48.25 83.6 0.676 0 1.0548 

gi|14586725 translation elongation factor Tu 35 26.26 70.4    

gi|87160058 cysteine synthase A 25 40.61 84.8 1.8127 0 1.1792 

gi|73919121 30S ribosomal protein S7 25 18.57 68.6 0.562 0 1.1774 

gi|87161596 30S ribosomal protein S16 23 22.1 52.7 0.7662 0 1.0403 

gi|87160271 30S ribosomal protein S20 23 14 22.9 0.6794 0.0002 1.2112 

gi|87161732 30S ribosomal protein S9 20 24.3 58.3 1.2431 0.0391 1.2293 

gi|87160361 50S ribosomal protein L5 20 20.23 53.6 0.8123 0.0625 1.2449 

gi|87160513 50S ribosomal protein L22 20 13.82 54.7 0.853 0.0052 1.1149 

gi|56961930 elongation factor Tu [Bacillus clausii KSM-K16] 20 23.05 57.3 0.8654 0.464 1.9995 

gi|90110058 50S ribosomal protein L3 19 4.01 18.4 1.0205 0.075 1.0225 

gi|87161210 translation elongation factor Ts 18 26.16 73.4 1.0124 0.9176 1.2729 

gi|87161455 ribosomal protein L7/L12 17 19.7 78.7 0.7709 0 1.0293 

gi|87160153 ribosome recycling factor 17 14.48 64.1 1.8758 0.0001 1.3391 

gi|87161079 translation initiation factor IF-1 17 10.02 77.8 0.6472 0 1.1701 

gi|87162219 30S ribosomal protein S1 16 26.03 57.3 1.3052 0 1.1043 

gi|87161718 50S ribosomal protein L9 15 21.91 63.5 1.1328 0.0289 1.118 

gi|87160155 50S ribosomal protein L4 15 17.22 77.8 0.8015 0.1307 1.3381 

gi|70725821 50S ribosomal protein L30 15 17.07 79.7 0.5375 0 1.2454 

gi|87162334 50S ribosomal protein L2 13 19.76 41.5 1.0102 0.87 1.1294 

gi|87161133 ribosomal protein L11 13 8.83 67.9 1.1874 0.0077 1.1282 

gi|87161952 50S ribosomal protein L32 13 7.36 57.9 1.303 0.199 1.5092 
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Accession no. Name Number 

of 

peptides 

Total 

score 

Seq 

Coverage 

(%) 

D30:930918-

3 

p 

value 

Error 

factor 

gi|11612404 elongation factor Tu [Enterococcus dispar] 13 21.05 74.5 1.3041 0.2037 1.8473 

gi|82581599 50S ribosomal protein L7/L12 13 7.44 84.4    

gi|88909112 50S ribosomal protein L17 11 12.79 35.8 0.9462 0.0318 1.0514 

gi|90101744 30S ribosomal protein S8 10 16.55 89.4 0.9522 0.9051 EF > 2 

gi|91207380 50S ribosomal protein L1 9 11.57 47 0.8113 0.0474 1.2296 

gi|151220721 translation elongation factor G (EF-G) 8 15.92 37.8 0.7577 0.1014 1.4088 

gi|87161329 50S ribosomal protein L21 8 13.4 55.9 0.7865 0.007 1.1665 

gi|91207792 30S ribosomal protein S6 8 10.34 60.2 0.9515 0.8625 1.8119 

gi|97181999 50S ribosomal protein L10 7 12.54 66.9 0.9042 0.7366 1.8768 

gi|87161988 50S ribosomal protein L3 7 9 46.4 0.8124 0.0387 1.2166 

gi|87161367 threonyl-tRNA synthetase 6 13.25 28.2 0.7131 0.2741 1.9426 

gi|91207680 30S ribosomal protein S11 6 10.43 41.9 1.7472 0.3033 EF > 2 

gi|87160873 50S ribosomal protein L23 6 9.18 45.1 1.0434 0.3747 1.0991 

gi|87161591 30S ribosomal protein S15 6 8.82 51.7 1.0212 0.8765 1.3915 

gi|87160559 aspartyl/glutamyl-tRNA amidotransferase 

subunit C 

6 8.68 67 1.1874 0.6344 EF > 2 

gi|56749400 Seryl-tRNA synthetase (Seryl-tRNA(Ser/Sec) 

synthetase) (Serine--tRNA ligase) (SerRS) 

6 8 29.9 1.7623 0.0777 1.9038 

gi|87161370 50S ribosomal protein L31 type B 6 6.22 59.5 0.6056 0 1.141 

gi|87161038 hypothetical protein SAUSA300_0916 [USA300] 5 10.92 60.9 0.6974 0.6352 EF > 2 

gi|87160935 50S ribosomal protein L6 5 7.97 50.6 0.4875 0.2475 EF > 2 

gi|73917907 30S ribosomal protein S10 5 6.9 62.7 1.1065 0.2812 1.2147 

gi|91207889 30S ribosomal protein S5 4 8.59 58.4 0.9047 0.8043 EF > 2 

gi|87161481 50S ribosomal protein L29 4 8.2 47.9 0.6737 0.0947 1.6135 

gi|88195373 glycyl-tRNA synthetase 4 6.23 15.6 0.8245 0.2604 1.5584 

gi|71153662 50S ribosomal protein L25 (General stress 

protein CTC) 

4 6.13 36.4 0.8086 0.0064 1.1431 

gi|59797753 Glutamine synthetase (Glutamate--ammonia 

ligase) (GS) 

4 6.12 16.6 0.8982 0.5688 1.6173 

gi|90101727 30S ribosomal protein S4 3 6 36 0.9035 0.7581 EF > 2 
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Accession no. Name Number 

of 

peptides 

Total 

score 

Seq 

Coverage 

(%) 

D30:930918-

3 

p 

value 

Error 

factor 

gi|87161271 chorismate mutase/phospho-2-dehydro-3-

deoxyheptonate aldolase 

3 6 19.6 0.9876 0.8675 1.3299 

gi|87160953 translation initiation factor IF-3 3 6 21.1 2.5237 0.0001 1.3993 

gi|87162332 50S ribosomal protein L16 3 5.44 42.4 1.2673 0.5251 EF > 2 

gi|153202305 ribosomal protein S21 [HPB2262] 3 5.3 38.2 0.2723 0.0673 EF > 2 

gi|87161395 50S ribosomal protein L24 [USA300] 3 4.54 41 0.7638 0.0191 1.2467 

gi|87161828 50S ribosomal protein L27 3 4.09 35.1 0.6052 0.0193 1.4154 

gi|152937150 translation elongation factor Tu [Clostridium 

botulinum F str. Langeland] 

3 5.28 30.7    

gi|38372424 30S ribosomal protein S8 3 6.04 55.3 0.3701   

gi|87161168 50S ribosomal protein L13 2 5.21 36.6 0.6392 0.4742 EF > 2 

gi|91207727 30S ribosomal protein S13 2 5.03 52.1 1.6113 0.1853 EF > 2 

gi|87162298 30S ribosomal protein S19 [USA300] 2 4.6 51.1 0.8359 0.2643 1.4279 

gi|87160596 50S ribosomal protein L18 [USA300] 2 4.58 46.2 0.7592 0.3675 1.967 

gi|151220702 glutamyl-tRNA synthetase 2 4 22.1 1.1302 0.4851 EF > 2 

gi|87161400 phenylalanyl-tRNA synthetase (beta subunit) 2 3.7 33.3 1.2949 0.1985 EF > 2 

gi|87162294 phosphoribosylaminoimidazole carboxylase, 

catalytic subunit 

2 3.7 48.9 0.7044   

gi|90101380 Translation initiation factor IF-2 2 3.48 35.2 1.3228 0.256 1.7976 

gi|90101385 Translation initiation factor IF-2 1 3.56 14.3 1.4791 0.3052 EF > 2 

gi|87162006 tetrahydrodipicolinate acetyltransferase 1 3.05 33.1 0.2073 0.2206 EF > 2 

gi|87160672 30S ribosomal protein S2 1 2.29 11 2.593   

gi|87162222 translation elongation factor P 1 2.19 12.4 3.0873 0.0778 EF > 2 

gi|149122046 (Glutamate--ammonia-ligase) adenylyltransferase 

[Methylobacterium sp. 4-46] 

1 2.15 38.3 1.7745 0.3525 EF > 2 

gi|138896204 Valyl-tRNA synthetase [Geobacillus 

thermodenitrificans NG80-2] 

1 2.13 9.1 0.9308   

gi|73662075 peptide chain release factor 1 [ATCC 15305] 1 2.11 13.1 0.9875   

gi|91207843 30S ribosomal protein S3 1 2.06 35.5 0.4789   
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Accession no. Name Number 

of 

peptides 

Total 

score 

Seq 

Coverage 

(%) 

D30:930918-

3 

p 

value 

Error 

factor 

gi|113476121 RNA binding S1 [Trichodesmium erythraeum 

IMS101] 

1 2.05 22.7 1.5197   

gi|149376055 imidazole glycerol phosphate synthase subunit 

HisF [Marinobacter algicola DG893] 

1 2.03 32.7    

gi|73918993 Dihydrodipicolinate synthase (DHDPS) 1 2.02 26.4 0.3177 0.5002 EF > 2 

gi|92090969 Arginine biosynthesis bifunctional protein argJ 

[Includes: Glutamate N-acetyltransferase 

(Ornithine acetyltransferase) (Ornithine 

transacetylase) (OATase); Amino-acid 

acetyltransferase (N-acetylglutamate synthase) 

(AGS)] [Contains: Arginine biosynthesis b 

1 2.01 21.1 1.4968   

gi|97051447 Serine hydroxymethyltransferase (Serine 

methylase) (SHMT) 

1 2.01 14.1 0.4881   

gi|21284173 2-hydroxyacid dehydrogenase [MW2] 1 2.01 7.7 11.5272   

gi|90108439 Valyl-tRNA synthetase (Valine--tRNA ligase) 

(ValRS) 

1 2.01 13.8 1.0338   

gi|87161786 1-pyrroline-5-carboxylate dehydrogenase 1 2 12.5 0.1948   

gi|145588242 ribosomal protein L3 [Polynucleobacter sp. QLW-

P1DMWA-1] 

1 2 39 1.1519   

gi|90101261 Dihydrodipicolinate reductase (DHPR) 1 2 16.7 0.2288   

gi|87160676 threonine synthase 1 2 15.9 1.4354   

gi|87161544 branched-chain amino acid aminotransferase 1 2 21.5 0.4505   

gi|87162399 50S ribosomal protein L20 1 1.8 16.1 0.9087 0.5969 1.4847 

gi|38605460 50S ribosomal protein L11 1 2.84 23.4    

gi|121534747 ribosomal protein L11[Thermosinus 

carboxydivoransNor1] 

1 2.01 22    

gi|116491401 Ribosomal protein L11 [Oenococcus oeni PSU-1] 1 2 15.3    

gi|126635115 non-ribosomal peptide synthetase A 

[Actinoplanes friuliensis] 

1 1.54 22.7 1.6096 0.4126 EF > 2 

gi|115502775 50S ribosomal protein L16 1 1.54 42.5 0.9457 0.7245 1.5067 
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Accession no. Name Number 

of 

peptides 

Total 

score 

Seq 

Coverage 

(%) 

D30:930918-

3 

p 

value 

Error 

factor 

gi|15672583 serine hydroxymethyltransferase [Lactococcus 

lactis subsp. lactis Il1403] 

1 1.52 16.4 1.3212 0.0016 1.1075 

gi|148242083 L-asparaginase II [Synechococcus sp. RCC307] 1 1.52 15.9    

gi|58761240 elongation factor [Mycoplasma fermentans] 1 2.51 28.9 1.1529   

gi|89052742 Glutamate synthase (ferredoxin) [Jannaschia sp. 

CCS1] 

1 1.31 13.4 1.3467 0.0291 1.2986 

       

Energy Metabolism       

gi|87161989 quinol oxidase, subunit II 92 88.88 50.8 3.1872 0 1.095 

gi|87161213 hypothetical protein SAUSA300_1720 [USA300] 19 21.88 35.6 0.5872 0.0013 1.3635 

gi|70726902 hypothetical protein SH1901 [JCSC1435] 15 25.23 38.2 4.5461 0.0398 EF > 2 

gi|87162272 triosephosphate isomerase 15 16.92 64.8 1.4153 0.0001 1.1749 

gi|88196553 fructose-bisphosphate aldolase class-I, putative 14 24.51 64.2 1.9277 0.0004 1.3923 

gi|87160110 phosphopyruvate hydratase 14 22.02 50 1.0846 0.077 1.0948 

gi|87162014 fructose bisphosphate aldolase 13 14.13 55.9 1.9282 0 1.2112 

gi|87161115 glyceraldehyde-3-phosphate dehydrogenase, type 

I 

11 16.49 53.3 0.9238 0.4056 1.2517 

gi|87162120 formate acetyltransferase 11 16.45 22.2 2.4393 0 1.3988 

gi|87160940 phosphate acetyltransferase 10 17.3 59.8 1.2661 0.0394 1.2496 

gi|87162024 pyruvate kinase 9 14.37 45 1.02 0.8745 1.3095 

gi|87161439 hypothetical protein SAUSA300_0871 [USA300] 9 11.01 40.3 0.8634 0.137 1.2257 

gi|81782064 3-hexulose-6-phosphate synthase (HPS) (D-

arabino-3-hexulose-6-phosphate formaldehyde 

lyase) 

8 11.53 64.8 0.49 0.0009 1.4616 

gi|91206698 Glucose-6-phosphate isomerase (GPI) 

(Phosphoglucose isomerase) (PGI) 

(Phosphohexose isomerase) (PHI) 

6 10.18 37.2 1.0904 0.2236 1.1689 

gi|87159954 pyruvate dehydrogenase E1 component, beta 

subunit 

5 10.84 41.5 0.5528 0.2345 EF > 2 

gi|87160408 phosphoglycerate kinase 5 9.9 30.1 0.7908 0.1914 1.4523 
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Accession no. Name Number 

of 

peptides 

Total 

score 

Seq 

Coverage 

(%) 

D30:930918-

3 

p 

value 

Error 

factor 

gi|87161599 malate:quinone-oxidoreductase 5 9.38 26.9 0.5397 0.1134 EF > 2 

gi|73663225 glyceraldehyde-3-phosphate dehydrogenase 

[ATCC 15305] 

5 9.64 44.2 0.4823   

gi|87161833 putative lipase/esterase [USA300] 5 8 30 1.396 0.0423 1.3764 

gi|87162313 5'-nucleotidase, lipoprotein e(P4) family 4 8.82 16.2 1.6469 0.0158 1.4105 

gi|87161068 formate-tetrahydrofolate ligase 4 8.03 32.4 1 1 1.3286 

gi|87162359 aconitate hydratase [USA300] 4 8.01 18.1 0.2186 0 1.3832 

gi|87161490 alcohol dehydrogenase 4 8 33.6 1.5432 0.0256 1.4152 

gi|87161543 2,3-bisphosphoglycerate-independent 

phosphoglycerate mutase 

4 8 17.4 1.0673 0.5116 1.3217 

gi|87161186 deoxyribose-phosphate aldolase 4 8 54.1 0.9905 0.8801 1.1671 

gi|87160632 hypothetical protein SAUSA300_1804 [USA300] 4 7.9 65.8 0.7123 0.3467 EF > 2 

gi|81694562 Transketolase 4 7.84 21 0.7876 0.3804 1.9597 

gi|90102247 6-phosphogluconate dehydrogenase, 

decarboxylating 

4 6.32 19 0.6499 0.1914 EF > 2 

gi|87161569 methylenetetrahydrofolate 

dehydrogenase/methenyltetrahydrofolate 

cyclohydrolase 

4 6.2 44.4 0.5754 0.0004 1.2155 

gi|87162047 Ornithine aminotransferase 4 6.01 23.7 2.631 0.0516 EF > 2 

gi|87160754 pyruvate dehydrogenase E1 component, alpha 

subunit 

4 6 17 0.5156 0.0163 1.586 

gi|151221843 hypothetical protein NWMN_1631 [Newman] 3 6.34 45.1 1.6035 0.1536 1.9954 

gi|87161332 succinyl-CoA synthetase, alpha subunit 3 6.09 39.7 1.302 0.0663 1.3363 

gi|91206786 2,3-bisphosphoglycerate-dependent 

phosphoglycerate mutase 

(Phosphoglyceromutase) (PGAM) (BPG-

dependent PGAM) (dPGM) 

3 6 23.2 0.8166 0.0118 1.149 

gi|81695276 Probable acetyl-CoA acyltransferase (Acetoacetyl-

CoA thiolase) 

3 6 32.3 0.3443 0.133 EF > 2 

gi|70727178 hypothetical protein SH2179 [JCSC1435] 3 5.74 15.7 1.9715 0.0273 1.7609 
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Accession no. Name Number 

of 

peptides 

Total 

score 

Seq 

Coverage 

(%) 

D30:930918-

3 

p 

value 

Error 

factor 

gi|73920841 L-lactate dehydrogenase 1 (L-LDH 1) 3 4.35 17.4 0.7067 0.1044 1.6896 

gi|87162164 Acetoin(diacetyl) reductase [USA300] 3 4 21.7 1.2001 0.5029 1.991 

gi|87161124 citrate synthase II [USA300] 2 4.62 11 0.213 0.0447 EF > 2 

gi|61214622 Phosphoenolpyruvate-protein 

phosphotransferase (Phosphotransferase system, 

enzyme I) 

2 4.23 22.9 5.1034 0 1.5376 

gi|87161326 putative NADP-dependent malic enzyme 

[USA300] 

2 4.08 23 0.7235 0.42 EF > 2 

gi|77417488 Succinyl-CoA synthetase beta chain (SCS-beta) 2 4.02 18.6 0.7154 0.1054 EF > 2 

gi|87161670 isocitrate dehydrogenase, NADP-dependent 2 4 19.7 0.2127 0.0402 EF > 2 

gi|73663003 dihydrolipoamide S-acetyltransferase component 

of pyruvate dehydrogenase complex E2 

2 4 16.6 0.8631 0.186 1.2922 

gi|87162156 phosphoenolpyruvate carboxykinase (ATP) 2 4 11.3 0.7101 0.0953 1.9271 

gi|87161885 transglycosylase [USA300] 2 4 11.3 2.726 0.0035 1.2924 

gi|87160719 hypothetical protein SAUSA300_0844 [USA300] 2 2.02 14.9 0.4426 0.0854 EF > 2 

gi|78101526 Chain A, Crystal Structure Of 3',5"-

Aminoglycoside Phosphotransferase Type Iiia 

Adp Neomycin B Complex 

1 2.5 18.6 0.0141 0.0227 EF > 2 

gi|123548254 Putative aldehyde dehydrogenase SAB2006c 1 2.24 9.9 0.872   

gi|87161665 L-lactate dehydrogenase 1 2.18 25.1 0   

gi|87161078 4-oxalocrotonate tautomerase 1 2.03 37.7 1.8234 0.443 EF > 2 

gi|23465821 polyphosphate kinase [Bifidobacterium longum 

NCC2705] 

1 2.04 12.8 0.9744 0.7924 1.451 

gi|87162105 glycerate dehydrogenase-like protein 1 2.01 20.5 1.0281 0.8218 EF > 2 

gi|152976979 pyruvate kinase [Bacillus cereus subsp. cytotoxis 

NVH 391-98] 

1 2.22 11.8    

gi|56748589 Acetate kinase (Acetokinase) 1 2 12.8 0.7315   

gi|87160338 6-phosphofructokinase [USA300] 1 2 31.9 0.4741   

gi|119717219 UDP-glucose/GDP-mannose dehydrogenase 

[Nocardioides sp. JS614] 

1 2 13 0.6648   
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gi|87161715 hypothetical protein SAUSA300_1902 [USA300] 1 2 7.6 0.9099   

gi|87160639 hypothetical protein SAUSA300_0843 [USA300] 1 2 20.2 0.5712   

gi|152933808 L-serine dehydratase, iron-sulfur-dependent, beta 

subunit [Clostridium botulinum F str. Langeland] 

1 1.72 19.2 1.0543 0.2593 1.1182 

gi|110637666 urea amidohydrolase (urease) alpha subunit 

[Cytophaga hutchinsonii ATCC 33406] 

1 1.52 18.6    

gi|78223411 Short-chain dehydrogenase/reductase SDR 

[Geobacter metallireducens GS-15] 

1 1.52 15.4 0.7358   

gi|87161617 chaperone protein DnaK 30 32.79 60.5 1.7333 0.0006 1.3604 

gi|87160551 trigger factor 17 21.26 58.2 1.0493 0.3682 1.1129 

gi|88195151 hypothetical protein SAOUHSC_01427 [NCTC 

8325] 

16 30.82 54.2 1.8927 0.0006 1.4148 

gi|87162356 foldase protein PrsA precursor 15 22.35 49.4 2.3495 0.0003 1.5348 

gi|87161296 putative serine protease HtrA [USA300] 9 17.52 28.5 1.2062 0.3449 1.5089 

gi|87161831 putative ATP-dependent Clp proteinase 7 12.11 37.5 1.0524 0.9183 EF > 2 

gi|87160799 ornithine carbamoyltransferase 7 11.82 30.3 8.6761 0 1.3373 

gi|87159917 urocanate hydratase 5 9.57 31.6 0.982 0.8025 1.1848 

gi|87161225 copper chaperone copZ 5 2.04 64.7 0.7969 0.0951 1.3211 

gi|87161349 dihydrolipoamide dehydrogenase 4 7.4 24.6 0.9476 0.889 EF > 2 

gi|87161339 glycine cleavage system H protein 4 4.1 46 0.9478 0.0326 1.0498 

gi|87160352 hypothetical protein SAUSA300_0857 [USA300] 3 7.61 50.3 1.0465 0.7076 1.3266 

gi|87161328 hydrolase family protein 3 6.41 51.1 0.5022 0.0546 EF > 2 

gi|116248102 Serine protease htrA-like 3 5.76 26.3 1.0002 0.9995 1.9869 

gi|87161390 DJ-1/PfpI family protein 2 4.13 23.3 0.9854 0.9905 EF > 2 

gi|87160700 60 kDa chaperonin 2 4.09 22.9    

gi|87162424 putative membrane-associated zinc 

metalloprotease [USA300] 

2 4 25.4 0.4153 0.0033 1.3841 

gi|87161475 NAD-specific glutamate dehydrogenase 2 4 15.7 0.8324 0.0419 1.166 

gi|87160107 signal peptidase IB 2 4 43.9 0.7953 0.0077 1.0907 

gi|87161613 co-chaperone GrpE 2 4 23.6 2.3294 0.0016 1.1554 
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gi|87160848 peptidase, rhomboid family 2 2.03 9.4 1.5285 0.0132 1.32 

gi|87162079 putative pyridoxal phosphate-dependent 

acyltransferase [USA300] 

1 2.17 10.6 0.133 0.1049 EF > 2 

gi|87161347 Peptidase family M20/M25/M40 1 2 19.6 0.4047   

gi|90183185 ATP-dependent Clp protease proteolytic subunit 

(Endopeptidase Clp) 

1 2 34.9 0.6635 0.1336 EF > 2 

gi|87161219 hypothetical protein SAUSA300_0207 [USA300] 1 2 12 0.8407   

gi|15672533 trigger factor [Lactococcus lactis subsp. lactis 

Il1403] 

1 1.7 12.9 1.3292   

gi|152975536 amino acid adenylation domain [Bacillus cereus 

subsp. cytotoxis NVH 391-98] 

1 1.31 6.8 1.4732   

       

Stress        

gi|87162409 CsbD-like superfamily 34 23.94 90.6 0.4565 0 1.0526 

gi|87162200 Alkyl hydroperoxide reductase subunit C 27 17.18 51.9 1.1686 0.0002 1.0833 

gi|87160786 hypothetical protein SAUSA300_1652 [USA300] 24 31.43 68.6 0.862 0.0006 1.087 

gi|894289 alkaline shock protein 23; ASP23 20 19.57 69.8 0.5771 0 1.2652 

gi|87162087 universal stress protein family 18 22.55 71.7 2.9027 0.0004 1.7367 

gi|87162159 hypothetical protein SAUSA300_1582 [USA300] 13 8.33 75 0.6747 0 1.1266 

gi|87161236 Thioredoxin 12 15.51 83.7 1.3978 0.0003 1.1934 

gi|87160079 peptide methionine sulfoxide reductase regulator 

MsrR 

10 10.51 33.9 0.8648 0.1957 1.2556 

gi|87161001 thioredoxin-disulfide reductase 9 10 36 0.792 0.169 1.423 

gi|87161687 thiol peroxidase 8 8 55.5 0.756 0 1.0849 

gi|70726220 hypothetical protein SH1219 [JCSC1435] 7 13.15 54.7    

gi|87160477 putative thioredoxin [USA300] 5 10.3 58.3 1.218 0.2208 1.4236 

gi|87160511 Catalase 5 7.43 20.2 0.5021 0.027 1.7724 

gi|87161707 superoxide dismutase (Mn/Fe family) 5 6.01 40.2 0.9286 0.4111 1.2176 

gi|21282513 hypothetical protein MW0784 [MW2] 5 4 41.5 0.8983 0.0001 1.0481 

gi|88195790 ferritin, putative [NCTC 8325] 4 6.67 51.8 0.7199 0.5798 EF > 2 
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gi|87160405 hypothetical protein SAUSA300_1909 [USA300] 4 4.21 27.8 0.987 0.9858 EF > 2 

gi|87161642 alkyl hydroperoxide reductase subunit F 1 2.72 12.8 0.4971 0.0957 EF > 2 

gi|87161086 methionine-R-sulfoxide reductase 1 2.33 16.2 1.238 0.8192 EF > 2 

gi|87162273 OsmC/Ohr family protein 1 2 34.3 2.1538 0.6357 EF > 2 

gi|87160980 hypothetical protein SAUSA300_0725 [USA300] 1 2 17.9 0.5794   

gi|87160505 DNA-binding protein HU 36 20 75.6 0.9424 0.0086 1.0451 

gi|87161697 transcription elongation factor GreA [USA300] 9 12 60.1 0.7916 0.0003 1.1165 

gi|87160906 putative transcriptional regulator [USA300] 9 12 39.7 0.7951 0.3188 1.6575 

gi|90110870 DNA-directed RNA polymerase alpha chain 

(RNAP alpha subunit) (Transcriptase alpha chain) 

(RNA polymerase subunit alpha) 

5 6.37 27.7 1.2309 0.3925 1.7145 

gi|87161137 DNA-directed RNA polymerase, beta' subunit 3 6.01 23.4 1.1599 0.1932 1.3917 

gi|87159899 transcriptional regulator, MarR family 3 6 46.3 0.3925 0.0037 1.2802 

gi|81695152 DNA-directed RNA polymerase beta chain (RNAP 

beta subunit) (Transcriptase beta chain) (RNA 

polymerase subunit beta) 

3 4.04 25.2 0.992 0.9968 EF > 2 

gi|81651715 Putative septation protein spoVG 2 3.1 47 0.7076 0.3798 EF > 2 

gi|148556982 Hydantoinase/oxoprolinase [Sphingomonas 

wittichii RW1] 

1 2.23 29.2 1.0013   

gi|87161403 DNA-directed RNA polymerase, omega subunit 2 2.3 62.5 0.2764 0.0037 1.6419 

gi|87161266 anti-sigma-B factor, antagonist 2 2 23.1 0.7145 0.3443 EF > 2 

gi|87160104 hypothetical protein SAUSA300_2547 [USA300] 1 2.15 20.9 0.7023   

gi|87160250 hypothetical protein SAUSA300_0003 [USA300] 1 2.01 58 0.8638 0.3266 1.6311 

gi|87159916 DNA-directed RNA polymerase, delta subunit 1 2 22.2 1.5688   

gi|87162043 lytic regulatory protein 1 2 8.8 0.2805   

gi|153095029 DeoR family transcriptional regulator [PHL213] 1 2 12.5 0.3202 0.0044 1.5926 

gi|126433686 transcriptional regulator, MarR family [JLS] 1 2 25.7    

gi|88193109 Chain B, Crystal Structure Of Sara, A 

Transcription Regulator From Staphylococcus 

Aureus 

1 1.94 21.3 65.0811   
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gi|149186684 transcription-repair coupling factor 

[Erythrobacter sp. SD-21] 

1 1.62 19.3    

gi|94968840 response regulator receiver protein 

[Acidobacteria bacterium Ellin345] 

1 1.52 21.8    

gi|87162130 triacylglycerol lipase precursor [USA300] 3 4.01 20.6 1.1518 0.8098 EF > 2 

gi|87162021 acyl carrier protein 2 5.7 77.9 1.1794 0.6781 EF > 2 

gi|87161805 3-oxoacyl-(acyl-carrier-protein) reductase 2 4 53.7 0.5628 0.2504 EF > 2 

gi|87161662 hypothetical protein SAUSA300_1856 [USA300] 2 4 39.8 0.6643 0.1368 EF > 2 

gi|99032669 Chain B, The Crystal Structure Of B-Ketoacyl-Acp 

Synthase Ii (Fabf) From Staphylococcus Aureus 

1 2.18 17.2 0.4901 0.1839 EF > 2 

gi|87161082 acetyl-CoA carboxylase, biotin carboxyl carrier 

protein 

1 2.02 33.1 1.4737 0.6105 EF > 2 

gi|70726948 enoyl-(acyl carrier protein) reductase [JCSC1435] 1 2.02 14.8 1.9673 0.6946 EF > 2 

gi|87160287 fatty acid/phospholipid synthesis protein PlsX 1 2 10.4 0.821   

gi|119502734 acetyl-CoA carboxylase [marine gamma 

proteobacterium HTCC2080] 

1 1.7 15.2 1.1261 0 1.0379 

gi|148821476 PE-PGRS family protein [Mycobacterium 

tuberculosis F11] 

1 1.4 34.8 0.7261 0.3413 EF > 2 

gi|38604919 Inosine-5'-monophosphate dehydrogenase (IMP 

dehydrogenase) (IMPDH) (IMPD) 

13 20 55.9 0.92 0.4233 1.2392 

gi|87161595 phosphoribosylformylglycinamidine synthase 5 6.32 59.8 0.7704 0.3644 1.9166 

gi|87161373 adenylate kinase [USA300] 4 8.04 53 0.7969 0.039 1.2338 

gi|87161059 uracil phosphoribosyltransferase 3 6.37 31.6 1.1612 0.5693 1.7875 

gi|81650637 Pyrimidine-nucleoside phosphorylase (PYNP) 3 6.05 24 0.3446 0.0274 EF > 2 

gi|87161310 dihydroorotase [USA300] 3 6.02 22.2 1.4411 0.6933 EF > 2 

gi|987497 nucleoside diphosphate kinase 3 6 53 5.5577   

gi|87160143 purine nucleoside phosphorylase 3 3.55 30.5 0.9905 0.8897 1.197 

gi|87160876 adenylosuccinate synthetase 2 4.01 15.5 0.8506 0.4488 EF > 2 

gi|87162294 phosphoribosylaminoimidazole carboxylase, 

catalytic subunit 

2 3.7 48.9 0.7044   
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gi|87160186 polyribonucleotide nucleotidyltransferase 1 2.69 48.9 1.0208 0.9917 EF > 2 

gi|91206761 [Protein-PII] uridylyltransferase (PII uridylyl-

transferase) (Uridylyl-removing enzyme) (UTase) 

1 2.38 15.4 1.4468 0.3403 EF > 2 

gi|84366297 ATP-dependent RNA helicase [Xanthomonas 

oryzae pv. oryzae MAFF 311018] 

1 2.22 33.5    

gi|87161299 hypoxanthine phosphoribosyltransferase 1 2.02 20.8 1.393 0.278 EF > 2 

gi|87160831 dihydroorotate dehydrogenase 1 2 11.6 2.0693   

gi|70726884 phosphoribosylamine--glycine ligase [JCSC1435] 1 2 8.7 0.4665   

gi|91206832 GMP synthase [glutamine-hydrolyzing] 

(Glutamine amidotransferase) (GMP synthetase) 

1 2 10.3 0.8728   

gi|150385859 carbamoyl-phosphate synthase, large subunit 

[Victivallis vadensis ATCC BAA-548] 

1 1.42 17.7    

       

DNA Metabolism: replication, recombination and repair       

gi|88195046 hypothetical protein SAOUHSC_01316 [NCTC 

8325] 

6 10 23.7 1.1427 0.3803 1.3824 

gi|134296873 DEAD/DEAH box helicase domain protein 3 7.7 21.2 1.1963 0.6546 EF > 2 

gi|149125815 LigA [Methylobacterium sp. 4-46] 1 2.96 49.2 0.6642 0.0165 1.3457 

gi|87160839 recombinase A protein 1 2.01 9.3 0.5374 0.0734 EF > 2 

gi|88193844 hypothetical protein SAOUHSC_00023 [NCTC 

8325] 

1 2.01 26.7 1.0471   

gi|70725957 hypothetical protein SH0956 [JCSC1435] 1 2 15.5 0.5701   

gi|88193825 DNA polymerase III, beta subunit 1 2 10.1 0.5518   

gi|150005913 ATP-dependent exonuclease V, alpha subunit - 

helicase superfamily I member [Bacteroides 

vulgatus ATCC 8482] 

1 2 6.8 1.0341   

gi|98311102 thermostable nuclease 1 2 6.9 3.0672   

gi|149189072 MshA, mannose-sensitive haemaglutinin [AK1] 1 2 10.8    

gi|149913440 NAD-dependent deacetylase [Roseobacter sp. 

AzwK-3b] 

1 2 7.7    
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gi|109946687 ComB3 protein  [Sheeba] 1 2 15.9 1.0007 0.9971 1.495 

gi|121611662 DEAD/DEAH box helicase domain protein 

[Verminephrobacter eiseniae EF01-2] 

1 1.91 21.5 0.5971   

gi|153006953 LigA [Anaeromyxobacter sp. Fw109-5] 1 1.82 44.1 0.6966 0.5254 EF > 2 

gi|147676398 DNA polymerase III, gamma/tau subunits 

[Pelotomaculum thermopropionicum SI] 

1 1.7 31.6 1.3459 0.0099 1.1953 

gi|41409059 hypothetical protein MAP2961c [Mycobacterium 

avium subsp. paratuberculosis K-10] 

1 1.54 46.9 0.8078 0.5586 EF > 2 

gi|61215122 DNA repair protein recO (Recombination protein 

O) 

1 1.52 17.7    

       

Pathogenesis and Immunomodulation       

gi|87160749 cell surface elastin binding protein 200 45.07 43.4 1.7517 0 1.2421 

gi|133853458 immunoglobulin G binding protein A precursor 138 58.7 78.8 2.2282 0 1.171 

gi|56749001 Immunodominant staphylococcal antigen A 

precursor 

57 18.55 49.8 1.4061 0 1.0856 

gi|15926764 penicillin-binding protein 1 43 61.62 38.4 1.3495 0.0004 1.1748 

gi|87161577 cold shock protein, CSD family 36 16.74 65.2 0.7651 0 1.0296 

gi|87162077 penicillin binding protein 2 32 52.49 66.6 0.6419 0.0001 1.2366 

gi|87160015 staphylococcal tandem lipoprotein 14 21.24 48.9 0.4398 0.0002 1.4325 

gi|47169194 Chain A, Staphylococcal Protein A, B-Domain, 

Y15w Mutant, Nmr, 25 Structures 

12 12.14 82.3 0.9803   

gi|70726765 beta-lactamase 10 16.53 40.6 0.0849 0 EF > 2 

gi|87160380 alpha-hemolysin precursor 10 14.14 36.7 2.6865 0 1.2524 

gi|87160982 Leukocidin/Hemolysin toxin family protein 10 13.16 49.7 0.3131 0 1.414 

gi|87162162 hypothetical protein SAUSA300_1018 [USA300] 8 16.29 24.9 1.0669 0.5321 1.2388 

gi|87161881 antibacterial protein 7 4.08 50 0.5416 0 1.115 

gi|87161157 penicillin-binding protein 4 6 7.74 23.4 1.6283 0.1152 1.8598 

gi|15927581 hypothetical protein SA1813 [N315] 5 11.45 39.9 0.3607 0 1.4457 

gi|87162347 hypothetical protein SAUSA300_2164 [USA300] 4 6.34 48.2 0.3271 0.1009 EF > 2 
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gi|87160217 secretory antigen precursor SsaA 4 6.25 25.5 0.9951 0.9764 1.4636 

gi|88194063 hypothetical protein SAOUHSC_00257 [NCTC 

8325] - ESAT6 family virulence protein 

4 6.01 53.6 0.384 0.0557 EF > 2 

gi|87160365 antibacterial protein [USA300] 4 2 50 0.9121 0.1981 1.1578 

gi|87160520 acetyltransferase family protein 3 4.09 51.1 2.0482 0.0094 1.5289 

gi|87161173 teicoplanin resistance associated membrane 

protein TcaA protein [USA300] 

3 4.02 11.3 0.8209 0.9069 EF > 2 

gi|88195687 hypothetical protein SAOUHSC_01999 [NCTC 

8325] 

3 3.52 15.2 2.9885 0.0002 1.4259 

gi|68565538 Protein esaA 2 4.01 23.2 0.2372 0.2204 EF > 2 

gi|87162375 hypothetical protein SAUSA300_1323 [USA300] 2 2.01 38.6 0.809 0.5491 EF > 2 

gi|87161897 IgG-binding protein SBI 1 2.7 10.6 3.6719 0.1219 EF > 2 

gi|87160565 immunodominant antigen B 1 2.61 28 29.6467   

gi|87160905 hypothetical protein SAUSA300_0282 [USA300]- 

similar to essB, 

1 2 12.6 0.2942   

gi|87162379 Ferredoxin 1 2 18.9 1.1786   

gi|62391257 secreted penicillin binding protein 

[Corynebacterium glutamicum ATCC 13032] 

1 1.7 7 1.6876   

       

Cell Division and Cycle       

gi|87162194 cell division protein ftsZ 18 20.02 43.6 1.0579 0.704 1.3468 

gi|87161534 putative cell division protein FtsH [USA300] 7 15.83 34.3 1.5338 0.0062 1.2998 

gi|87161782 cell division protein 7 7.81 30.8 1.1558 0.778 EF > 2 

gi|87162117 hypothetical protein SAUSA300_1337 [USA300] 5 9.29 58.8 0.9429 0.9174 EF > 2 

gi|73662607 putative cell division initiation protein [ATCC 

15305] 

3 6.99 46.2 1.2227   

gi|87160736 cell-division initiation protein 3 3.16 51.5 0.7201 0.0097 1.1937 

gi|87161457 HIT family protein 2 3.58 29.3 0.9705   

gi|24374683 hypothetical protein SO_3170 [MR-1] 1 2.01 17.1 2.5571 0.0232 1.871 
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gi|151591524 cell divisionFtsK/SpoIIIE [Methylobacterium 

extorquens PA1] 

1 1.7 22.1 1.1688 0.9016 EF > 2 

       

Cell Adhesion       

gi|87160939 cell wall surface anchor family protein 57 42.04 60.2 3.6116 0 1.1326 

gi|151222604 hypothetical protein NWMN_2392 [Newman] 40 59.98 69.5 0.0911 0 1.3616 

gi|87162026 autolysin 31 42.59 49.3 1.0742 0.6135 1.3283 

gi|87160697 D-alanine-activating enzyme/D-alanine-D-alanyl, 

dltD protein 

18 24.96 49.4 1.2272 0.2515 1.4254 

gi|87162315 putative lipoprotein [USA300] 16 14.26 40.4 1.2742 0.1446 1.3919 

gi|61213890 77 kDa outer membrane protein precursor 11 22.71 36.1 0.2627 0 1.3683 

gi|81781509 UPF0365 protein SAV1573 8 14.02 46.2 1.8364 0.0005 1.3046 

gi|87160285 rod shape-determining protein MreC 8 11.59 51.8 0.8103 0.0767 1.2641 

gi|87160775 N-acetylmuramoyl-L-alanine amidase 8 11.4 29.9 1.5402 0.0651 1.5923 

gi|87161887 N-acetylmuramoyl-L-alanine amidase domain 

protein 

7 14.01 25.4 1.893 0.3018 EF > 2 

gi|88196468 sortase, putative [NCTC 8325] 5 10.01 25.7 2.0829 0.001 1.4021 

gi|87161790 5'-nucleotidase family protein [USA300] 3 2.04 10.4 3.6218 0.1664 EF > 2 

gi|87160715 fmt protein [USA300] 2 4.86 20.4 1.1273 0.8064 EF > 2 

gi|81673756 Phosphoglucosamine mutase 1 2.8 20.4 0.7583 0.739 EF > 2 

gi|87160798 serine-aspartate repeat family protein, SdrH 1 2.21 17.5 1.49 0.0115 1.3123 

gi|116694144 flp pilus assembly protein TadC [Ralstonia 

eutropha H16] 

1 2.19 22.9 1.3693   

gi|81781921 Extracellular matrix protein-binding protein emp 

precursor 

1 2.12 12.9 0.5809 0.4841 EF > 2 

gi|87160121 D-alanine-activating enzyme/D-alanine-D-alanyl, 

dltC protein 

1 1.7 38.5 0.6864 0.533 EF > 2 

gi|91211353 AsmA suppressor of OmpF assembly mutants 

[Escherichia coli UTI89] 

1 1.7 19.9    
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Transport proteins       

gi|87160674 putative lipoprotein [USA300] 41 30.7 68.4 0.2959 0 1.1033 

gi|87162197 amino acid ABC transporter, amino acid-binding 

protein 

34 41.25 63.3 0.9535 0.4842 1.1423 

gi|87162140 oligopeptide ABC transporter, substrate-binding 

protein 

30 41.53 48.3 1.1547 0.0301 1.1385 

gi|87161315 hypothetical protein SAUSA300_2378 [USA300] 21 21.34 58 1.4953 0 1.1373 

gi|87160588 molybdenum ABC transporter, molybdenum-

binding protein ModA 

17 26.41 46.5 1.5245 0.0005 1.2498 

gi|87161352 ABC transporter, substrate-binding protein 12 18.38 38.7 0.2931 0.0126 EF > 2 

gi|87160965 phosphocarrier protein HPr 11 17 89.8 1.1099 0.0026 1.0687 

gi|87162382 PTS system, glucose-specific IIA component 11 12 54.2 1.0668 0.4928 1.2135 

gi|87162442 transferrin receptor 8 12.69 31.9 3.331 0 1.3395 

gi|87160279 AcrB/AcrD/AcrF family protein 7 13.76 34 1.4716 0.1045 1.6227 

gi|87161641 amino acid ABC transporter, permease/substrate-

binding protein 

7 10.49 30.7 6.1167 0 1.7179 

gi|21284120 oligopeptide transporter putative substrate 

binding domain [MW2] 

6 12.01 29.1 2.4913 0.0004 1.4168 

gi|87160515 protein-export membrane protein SecF 6 10.63 16.2 1.4937 0.0097 1.3267 

gi|21282147 hypothetical protein MW0418 [MW2] 6 8.69 49.3 1.0242 0.8594 1.3595 

gi|87161764 putative iron compound ABC transporter, iron 

compound-binding protein [USA300] 

5 10.17 36 1.4063 0.0805 1.4816 

gi|87160849 iron compound ABC transporter, iron compound-

binding protein 

4 8 28.5 0.5869 0.0986 1.9934 

gi|87161518 glycine betaine/carnitine/choline ABC 

transporter [USA300] 

4 8 14.4 0.9366 0.6998 1.4703 

gi|87161864 ABC transporter, substrate-binding protein 3 8.12 25.2 2.8266 0.0151 EF > 2 

gi|87160369 hypothetical protein SAUSA300_0833 [USA300] 3 6.1 20.5 0.5373 0.5051 EF > 2 

gi|15925912 RGD-containing lipoprotein [N315] 3 6.02 17.4 1.2004 0.4097 1.7354 

gi|87161142 ferric hydroxamate receptor 3 4 8.9 1.0332 0.8931 EF > 2 
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gi|87162224 osmoprotectant ABC transporter, permease 2 4 35.1 0.6537   

gi|87161872 putative lipoprotein [USA300] 2 4 16.4 4.2798 0.2519 EF > 2 

gi|87160414 multidrug resistance protein A, drug resistance 

transporter 

1 3.16 15.3 0.6934 0.2928 EF > 2 

gi|87162284 putative ferrichrome ABC transporter [USA300] 1 3.05 22.3 0.2468 0.0722 EF > 2 

gi|149201149 nitrate transport ATP-binding subunits C and D 

[TM1035] 

1 2.4 16.3 1.5776   

gi|151575108 outer membrane efflux protein [Ralstonia 

pickettii 12D] 

1 2.22 15.6 1.1986 0.2951 1.7416 

gi|87161139 iron transport associated domain protein 

[USA300] 

1 2.09 21.1 1.6828   

gi|149910101 Hypothetical transport protein [Moritella sp. 

PE36] 

1 2.02 6.8 2.2325 0 1.1098 

gi|87161389 putative iron compound A C transporter, iron 

compound-binding protein [USA300] 

1 2.01 9.9 2.6052 0.134 EF > 2 

gi|35211526 gll0963 [Gloeobacter violaceus PCC 7421] 1 2 14    

gi|87162212 amino acid ABC transporter, ATP-binding protein 1 2 25.6 5.1042   

gi|127512243 efflux transporter, RND family, MFP subunit 

[Shewanella loihica PV-4] 

1 2 11.1    

gi|126355053 ABC transporter related [Pseudomonas putida 

GB-1] 

1 1.71 6.4 37.5193   

gi|17131745 all2652 [Nostoc sp. PCC 7120] 1 1.7 37.6 1.7839   

gi|149194563 ABC transporter-related protein [Caminibacter 

mediatlanticus TB-2] 

1 1.7 8.4 1.6215   

gi|87162344 phosphonate ABC transporter, phosphonate-

binding protein 

1 1.7 4.4 1.3653 0.3305 EF > 2 

gi|51595518 molybdenum transport regulatory (repressor) 

protein ModE [Yersinia pseudotuberculosis IP 

32953] 

1 1.55 33.5 1.3022 0.3562 EF > 2 
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gi|23005821 COG1131: ABC-type multidrug transport system, 

ATPase component [Magnetospirillum 

magnetotacticum MS-1] 

1 1.52 17.5    

gi|152936446 flagellar motor switch protein fliG [Clostridium 

botulinum F str. Langeland] 

1 1.52 7.7    

gi|146301866 RND efflux system, outer membrane lipoprotein, 

NodT family [Flavobacterium johnsoniae UW101] 

1 1.46 14.1 0.9695 0.7073 EF > 2 

       

Other functions       

gi|21283573 hypothetical protein MW1844 [MW2] 4 6.1 29.1 1.2273 0.2285 1.4175 

gi|15928229 hypothetical protein SA2436 [N315] 2 4.14 12 0.9599 0.637 1.4175 

gi|87161880 manganese-dependent inorganic 

pyrophosphatase 

2 4 18.4 0.5097 0.0232 1.3771 

gi|87161327 S-ribosylhomocysteinase 1 2.16 21.8   1.568 

gi|116696021 signal transduction histidine kinase containing a 

receiver domain (hybrid) [Ralstonia eutropha 

H16] 

1 2.01 23.6 1.4217 0.1981  

gi|62900222 HAM1 protein homolog 1 2 25.1 0.9614  EF > 2 

gi|56749556 6,7-dimethyl-8-ribityllumazine synthase (DMRL 

synthase) (Lumazine synthase) (Riboflavin 

synthase beta chain) 

1 2 30.5    

gi|87161407 hypothetical protein SAUSA300_1160 [USA300] 1 2 21.3 4.1631   

gi|29347076 hydrolase, haloacid dehalogenase-like hydrolase 

[Bacteroides thetaiotaomicron VPI-5482] 

1 1.74 17.1 0.9924 0.9952  

gi|146292939 TonB-dependent siderophore receptor 

[Shewanella putrefaciens CN-32] 

1 1.7 9.8 0.7143  EF > 2 

       

Hypothetical proteins       
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gi|87160135 hypothetical protein SAUSA300_1581 [USA300) 23 8.04 72.9 0.3596 0 0 

gi|87159943 hypothetical protein SAUSA300_1908 [USA300] 21 17.48 29.3 1.5549 0.0001 1.1148 

gi|87160606 hypothetical protein SAUSA300_1698 [USA300] 20 14.73 64.3 0.387 0 1.2259 

gi|87161419 hypothetical protein SAUSA300_1795 [USA300] 18 10.24 86 1.079 0.2432 1.1923 

gi|15926079 hypothetical protein SA0363 [N315] 13 21.12 47.6 1.4849 0 1.1595 

gi|87161713 hypothetical protein SAUSA300_0385 [USA300] 8 8 41.5 0.8594 0.5635 1.138 

gi|88195776 hypothetical protein SAOUHSC_02093 [NCTC 

8325] 

8 6 71.2 0.9873 0.8789 1.7367 

gi|87160537 hypothetical protein SAUSA300_2132 [USA300] 7 11.27 80.2 1.0867 0.6798 1.1881 

gi|87161087 hypothetical protein SAUSA300_2144 [USA300] 7 8.59 28 0.2896 0 1.5006 

gi|87160300 hypothetical protein SAUSA300_1440 [USA300] 6 10.54 27.7 0.1735 0.0003 1.2497 

gi|87160039 hypothetical protein SAUSA300_2330 [USA300] 5 10.04 32.2 1.2051 0.593 1.9882 

gi|87160421 hypothetical protein SAUSA300_0172 [USA300] 5 8 68.7 1.0018 0.9952 EF > 2 

gi|87162221 hypothetical protein SAUSA300_0664 [USA300] 5 8 66.7 0.692 0.0402 EF > 2 

gi|88196395 hypothetical protein SAOUHSC_02759 [NCTC 

8325] 

5 4.01 23.2 2.1631 0.0241 1.4103 

gi|87161527 hypothetical protein SAUSA300_1572 [USA300] 5 2 34.3 1.0092 0.9387 1.8773 

gi|88195426 hypothetical protein SAOUHSC_01721 [NCTC 

8325] 

4 5 53.5 0.8342 0.3307 1.323 

gi|87161381 hypothetical protein SAUSA300_1857 [USA300] 2 4.03 50.9 1.0179 0.8885 1.5208 

gi|15926825 hypothetical protein SA1085 [N315] 2 4.02 13.1 1.2371 0.6284 1.6169 

gi|87160698 hypothetical protein SAUSA300_1906 [USA300] 2 4 13.6 3.2755 0.2111 EF > 2 

gi|87159919 hypothetical protein SAUSA300_2527 [USA300] 2 4 49.5 0.3861  EF > 2 

gi|87161111 hypothetical protein SAUSA300_2212 [USA300] 2 4 61.1 1.0786 0.412  

gi|87161468 hypothetical protein SAUSA300_1215 [USA300] 2 4 41.5 1.2885 0.0096 1.3728 

gi|88195065 hypothetical protein SAOUHSC_01336 [NCTC 

8325] 

2 2.32 41.8 0.834 0.2239 1.2048 

gi|87160907 hypothetical protein SAUSA300_0602 [USA300] 2 2.1 17.9 1.0512 0.9538 1.3997 

gi|87161979 hypothetical protein SAUSA300_2560 [USA300] 2 2 47 0.161 0.0966 EF > 2 

gi|87162360 hypothetical protein SAUSA300_1685 [USA300] 2 2 9.2 1.0751 0.8346 EF > 2 
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gi|150393509 hypothetical protein SaurJH1_1041 [JH1] 2 2 25   EF > 2 

gi|21284001 hypothetical protein MW2272 [MW2] 1 3.17 16.5 4.6526 0.1163  

gi|87162045 hypothetical protein SAUSA300_1788 [USA300] 1 2.68 47.9 1.0535 0.8698 EF > 2 

gi|77465081 hypothetical protein RSP_3067 [Rhodobacter 

sphaeroides 2.4.1] 

1 2.52 26 2.2694 0.0155 EF > 2 

gi|87160235 hypothetical protein SAUSA300_1904 [USA300] 1 2.26 28.1 0.4473 0.0077 1.7548 

gi|87161000 hypothetical protein SAUSA300_1606 [USA300] 1 2.24 47.1 1.5647 0.2156 1.4911 

gi|93140725 Uncharacterized N-acetyltransferase SAB1040c 1 2.19 19.2 0.7824 0.7467 EF > 2 

gi|87161220 hypothetical protein SAUSA300_0383 [USA300] 1 2.14 23.3 0.674  EF > 2 

gi|87161658 hypothetical protein SAUSA300_2148 [USA300] 1 2.1 21.5 1.2192   

gi|87159886 hypothetical protein SAUSA300_2493 [USA300] 1 2.08 34.9 2.9543 0.4404  

gi|55773538 conserved hypothetical protein [HB8] 1 2.06 8.4 1.0904 0.8292 EF > 2 

gi|119386105 hypothetical protein Pden_3391 [PD1222] 1 2.04 30.6 1.2549 0.9572 EF > 2 

gi|87160533 hypothetical protein SAUSA300_1321 [USA300] 1 2.01 17.2 0.9115  EF > 2 

gi|30262516 hypothetical protein BA2524 [Bacillus anthracis 

str. Ames] 

1 2.01 30.1 0.7071   

gi|87160245 hypothetical protein SAUSA300_1864 [USA300] 1 2.01 6.9 0.5931   

gi|87160914 hypothetical protein SAUSA300_1223 [USA300] 1 2 18.3 2.0375   

gi|70726727 hypothetical protein SH1726 [JCSC1435] 1 2 8.6 1.968 0.4486  

gi|21283169 hypothetical protein MW1440 [MW2] 1 2 52.9 0.0267 0.0043 EF > 2 

gi|87162265 hypothetical protein SAUSA300_1057 [USA300] 1 2 18.2 0.8927  EF > 2 

gi|87160560 hypothetical protein SAUSA300_1335 [USA300] 1 2 9.1 0.4827   

gi|87160349 hypothetical protein SAUSA300_0982 [USA300] 1 2 6.1 1.2009   

gi|87160886 hypothetical protein SAUSA300_0990 [USA300] 1 1.84 40.3 1.3089 0.7278  

gi|116618724 hypothetical protein LEUM_1630 [ATCC 8293] 1 1.71 22 2.0837 0.0014 EF > 2 

gi|15595185 Hypothetical protein BB0840 [B31] 1 1.7 7.8 1.9176 0.2845 EF > 2 

gi|145299288 hypothetical protein ASA_2332 [Aeromonas 

salmonicida subsp. salmonicida A449] 

1 1.7 18.2 0.5493  1.2273 

gi|148556846 hypothetical protein Swit_3945 [RW1] 1 1.7 31.8 1.3657 0.0256  
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gi|118602465 hypothetical protein Rmag_0450 [Candidatus 

Ruthia magnifica str. Cm (Calyptogena 

magnifica)] 

1 1.7 10.1 1.0723 0.6071 1.2906 

gi|83647697 hypothetical protein HCH_05022 [Hahella 

chejuensis KCTC 2396] 

1 1.53 8.4 1.3081  1.6444 

gi|89070338 hypothetical protein OG2516_12764 [Oceanicola 

granulosus HTCC2516] 

1 1.53 23.8    

gi|86136324 hypothetical protein MED193_19414 

[Roseobacter sp. MED193] 

1 1.53 38.3 1.1649   

gi|88194234 hypothetical protein SAOUHSC_00444 [NCTC 

8325] 

1 1.52 41.9 1.0288   

gi|149191551 hypothetical protein VSAK1_15442 [Vibrio 

shilonii AK1] 

1 1.52 11.9 1.791   

gi|145220937 hypothetical protein Mflv_0333 [Mycobacterium 

gilvum PYR-GCK] 

1 1.52 5.8    

gi|88194796 hypothetical protein SAOUHSC_01044 [NCTC 

8325] 

1 1.52 15.4    

gi|29610655 hypothetical protein [Streptomyces avermitilis 

MA-4680] 

1 1.4 12.8    

gi|29609637 hypothetical protein [Streptomyces avermitilis 

MA-4680] 

1 1.4 6.9 0.9259   

gi|120610660 hypothetical protein Aave_1980 [Acidovorax 

avenae subsp. citrulli AAC00-1] 

1 1.4 4.8    

gi|149912076 hypothetical protein PE36_12287 [Moritella sp. 

PE36] 

1 1.4 26.5 0.9682   

gi|124268268 hypothetical protein Mpe_A3084 [Methylibium 

petroleiphilum PM1] 

1 1.33 29.6 1.8227 0.0754 1.9466 

       

Unknown funtion       
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gi|87161686 putative lipoprotein 51 32.02 52.2 0.5638 0 0 

gi|82751366 Probable transaldolase 8 13.17 67.9 0.6997 0.0006 1.1679 

gi|87161661 putative lipoprotein 7 13.51 43.8 0.4656 0.0004 1.1939 

gi|87161314 putative lipoprotein [USA300] 4 6.01 29.5 0.6518 0.3505 1.4789 

gi|49484622 putative solute binding lipoprotein [MRSA252] 3 6.91 24.3 1.8307 0.0116 EF > 2 

gi|87160546 putative cell-division initiation protein [USA300] 3 6 40.5 1.7071 0.082 1.4924 

gi|87161260 phiSLT ORF144-like protein, putative lipoprotein                    

[USA300] 

2 4.05 36.1 0.5132 0.0011 EF > 2 

gi|87161351 putative lipoprotein [USA300] 2 4.01 17.5 1.4335 0.1135 1.3614 

gi|87161825 putative lipoprotein [USA300] 2 4 26.9 0.5028 0.2762 1.6214 

gi|153005206 protein of unknown function DUF849 

[Anaeromyxobacter sp. Fw109-5] 

2 2 22.1 4.1702  EF > 2 

gi|124010323 lipoprotein, putative [Microscilla marina ATCC 

23134] 

1 3.36 7.1 1.2868 0.7142  

gi|87161720 putative arsenate reductase [USA300] 1 2.8 26.3 0.7002 0.7028 EF > 2 

gi|117164639 putative modular polyketide synthase [ATCC 

23877] 

1 2.2 12.3 1.7159 0.0172 EF > 2 

gi|121583546 protein of unknown function DUF262 

[Polaromonas naphthalenivorans CJ2] 

1 2 11.4 1.1489 0.1227 1.5354 

gi|81693746 Uncharacterized lipoprotein SACOL2497 

precursor 

1 2 18.4 10.6267  1.2057 

gi|120609276 uncharacterized protein UPF0065 [Acidovorax 

avenae subsp. citrulli AAC00-1] 

1 2 18.6 1.7374 0.2738  

gi|149910937 Uncharacterized protein conserved in bacteria 

[Moritella sp. PE36] 

1 2 17.2 0.9901 0.7765 EF > 2 

gi|148869366 putative patatin [Vibrio harveyi HY01] 1 1.7 20.5 1.0616 0.0931 EF > 2 

gi|116250012 putative methyltransferase [Rhizobium 

leguminosarum bv. viciae 3841] 

1 1.52 12.4   1.0725 
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gi|146306168 protein of unknown function DUF1302 

[Pseudomonas mendocina ymp] 

1 1.52 6.9 2.2487   

gi|51894011 putative cadmium-transporting ATPase 

[Symbiobacterium thermophilum IAM 14863] 

1 1.41 28.7 1.0075   

gi|25027269 putative urea carboxylase [Corynebacterium 

efficiens YS-314] 

1 1.4 6.3 1.0061 0.9669  

gi|29608736 putative integral membrane protein 

[Streptomyces avermitilis MA-4680] 

0 1.41 21.3 0.9063 0.1005 1.7525 
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Table 13: Functional classification of the total 488 exoproteome proteins of nasal carrier 
strain (D30) in planktonic and biofilm growth conditions identified by iTRAQ analysis in three 
independent experiments 

D30 planktonic: D30 biofilm is the ratio of protein expression levels between the planktonic and 
biofilm growth conditions of D30. The p values and the error factor associated with the protein 
expression levels are also indicated here. 
 

Accession no. Name 

Number 

of 

peptides 

Total 

score 

Sequence 

Coverage 

(%) 

D30 

planktonic: 

D30 biofilm 

p 

value 

Error 

factor 

Amino Acid & Protein Synthesis      

gi|88194310 translation elongation factor Tu 109 63.62 85.8 0.5935 0.0053 1.4324 

gi|87161362 50S ribosomal protein L15 47 48.25 83.6 0.7047 0 1.1329 

gi|14586725 translation elongation factor Tu 35 26.26 70.4    

gi|87160058 cysteine synthase A 25 40.61 84.8 1.6513 0 1.2339 

gi|73919121 30S ribosomal protein S7 25 18.57 68.6 0.2482 0.0001 1.9256 

gi|87161596 30S ribosomal protein S16 23 22.1 52.7 1.2803 0.0236 1.2359 

gi|87160271 30S ribosomal protein S20 23 14 22.9 0.9639 0.8864 1.6811 

gi|87161732 30S ribosomal protein S9 20 24.3 58.3 1.3604 0.1011 1.447 

gi|87160361 50S ribosomal protein L5 20 20.23 53.6 1.22 0.2287 1.3869 

gi|87160513 50S ribosomal protein L22 20 13.82 54.7 0.7482 0.2366 1.6294 

gi|56961930 elongation factor Tu [Bacillus clausii KSM-K16] 20 23.05 57.3    

gi|90110058 50S ribosomal protein L3 19 4.01 18.4 0.2327 0 1.0318 

gi|87161210 translation elongation factor Ts 18 26.16 73.4 1.0637 0.7845 1.581 

gi|87161455 ribosomal protein L7/L12 17 19.7 78.7 1.6151 0 1.246 

gi|87160153 ribosome recycling factor 17 14.48 64.1 1.1476 0.6539 1.8627 

gi|87161079 translation initiation factor IF-1 17 10.02 77.8 0.8221 0.1116 1.2702 

gi|87162219 30S ribosomal protein S1 16 26.03 57.3 1.2969 0.4009 1.873 

gi|87161718 50S ribosomal protein L9 15 21.91 63.5 0.9782 0.8161 1.2061 

gi|87160155 50S ribosomal protein L4 15 17.22 77.8 0.4465 0.0751 EF > 2 

gi|70725821 50S ribosomal protein L30 15 17.07 79.7 1.0036 0.9879 1.6157 

gi|87162334 50S ribosomal protein L2 13 19.76 41.5 0.552 0 1.2905 

gi|87161133 ribosomal protein L11 13 8.83 67.9 1.5494 0.0733 1.622 
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gi|87161952 50S ribosomal protein L32 13 7.36 57.9 1.3774 0.2461 1.7414 

gi|11612404 elongation factor Tu [Enterococcus dispar] 13 21.05 74.5 1.2278 0.7976 EF > 2 

gi|82581599 50S ribosomal protein L7/L12 13 7.44 84.4    

gi|88909112 50S ribosomal protein L17 11 12.79 35.8 0.3434 0 1.1362 

gi|90101744 30S ribosomal protein S8 10 16.55 89.4 0.8202 0.6385 EF > 2 

gi|91207380 50S ribosomal protein L1 9 11.57 47 1.2369 0.2505 1.4463 

gi|151220721 translation elongation factor G (EF-G) 8 15.92 37.8 1.1213 0.7264 EF > 2 

gi|87161329 50S ribosomal protein L21 8 13.4 55.9 1.2524 0.6012 EF > 2 

gi|91207792 30S ribosomal protein S6 8 10.34 60.2 1.0042 0.9899 1.9838 

gi|97181999 50S ribosomal protein L10 7 12.54 66.9 1.6519 0.1542 EF > 2 

gi|87161988 50S ribosomal protein L3 7 9 46.4 1.1273 0.6057 1.6072 

gi|87161367 threonyl-tRNA synthetase 6 13.25 28.2 0.5856 0.3288 EF > 2 

gi|91207680 30S ribosomal protein S11 6 10.43 41.9 1.2143 0.6708 EF > 2 

gi|87160873 50S ribosomal protein L23 6 9.18 45.1 0.6365 0.0053 1.3686 

gi|87161591 30S ribosomal protein S15 6 8.82 51.7 1.3098 0.1072 1.4247 

gi|87160559 aspartyl/glutamyl-tRNA amidotransferase subunit C 6 8.68 67 0.9329 0.9588 EF > 2 

gi|56749400 

Seryl-tRNA synthetase (Seryl-tRNA(Ser/Sec) 

synthetase) (Serine--tRNA ligase) (SerRS) 6 8 29.9 1.3812 0.362 EF > 2 

gi|87161370 50S ribosomal protein L31 type B 6 6.22 59.5 1.1487 0.7321 EF > 2 

gi|87161038 hypothetical protein SAUSA300_0916 [USA300] 5 10.92 60.9 1.0217 0.938 1.8773 

gi|87160935 50S ribosomal protein L6 5 7.97 50.6 0.6564 0.5014 EF > 2 

gi|73917907 30S ribosomal protein S10 5 6.9 62.7 0.86 0.7556 EF > 2 

gi|91207889 30S ribosomal protein S5 4 8.59 58.4 0.9539 0.9144 EF > 2 

gi|87161481 50S ribosomal protein L29 4 8.2 47.9 1.1427 0.6818 EF > 2 

gi|88195373 glycyl-tRNA synthetase 4 6.23 15.6 0.9964 0.9956 EF > 2 

gi|71153662 

50S ribosomal protein L25 (General stress protein 

CTC) 4 6.13 36.4 3.1543 0.0067 EF > 2 

gi|59797753 

Glutamine synthetase (Glutamate--ammonia ligase) 

(GS) 4 6.12 16.6 3.2059 0.2443 EF > 2 
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gi|90101727 30S ribosomal protein S4 3 6 36 1.1093 0.8768 EF > 2 

gi|87161271 

chorismate mutase/phospho-2-dehydro-3-

deoxyheptonate aldolase 3 6 19.6 3.2938 0.0406 EF > 2 

gi|87160953 translation initiation factor IF-3 3 6 21.1 2.4551 0.051 EF > 2 

gi|87162332 50S ribosomal protein L16 3 5.44 42.4 0.2155 0.041 EF > 2 

gi|153202305 ribosomal protein S21 [HPB2262] 3 5.3 38.2 0.18 0.0774 EF > 2 

gi|87161395 50S ribosomal protein L24 [USA300] 3 4.54 41 1.165 0.7682 EF > 2 

gi|87161828 50S ribosomal protein L27 3 4.09 35.1 1.0654 0.9425 EF > 2 

gi|152937150 

translation elongation factor Tu [Clostridium 

botulinum F str. Langeland] 3 5.28 30.7    

gi|38372424 30S ribosomal protein S8 3 6.04 55.3 0.2343   

gi|87161168 50S ribosomal protein L13 2 5.21 36.6 1.2251 0.6859 EF > 2 

gi|91207727 30S ribosomal protein S13 2 5.03 52.1 1.3499 0.4334 EF > 2 

gi|87162298 30S ribosomal protein S19 [USA300] 2 4.6 51.1 0.9502 0.9248 EF > 2 

gi|87160596 50S ribosomal protein L18 [USA300] 2 4.58 46.2 0.1403 0.1439 EF > 2 

gi|151220702 glutamyl-tRNA synthetase 2 4 22.1 0.6181 0.1033 EF > 2 

gi|87161400 phenylalanyl-tRNA synthetase (beta subunit) 2 3.7 33.3 1.1207 0.9365 EF > 2 

gi|87162294 

phosphoribosylaminoimidazole carboxylase, catalytic 

subunit 2 3.7 48.9    

gi|90101380 Translation initiation factor IF-2 2 3.48 35.2 0.617 0.4178 EF > 2 

gi|90101385 Translation initiation factor IF-2 1 3.56 14.3 0.1044 0.0105 EF > 2 

gi|87162006 tetrahydrodipicolinate acetyltransferase 1 3.05 33.1 0.9433   

gi|87160672 30S ribosomal protein S2 1 2.29 11 6.0952   

gi|87162222 translation elongation factor P 1 2.19 12.4 1.9077 0.0089 1.3029 

gi|149122046 

(Glutamate--ammonia-ligase) adenylyltransferase 

[Methylobacterium sp. 4-46] 1 2.15 38.3 2.4004 0.5889 EF > 2 

gi|138896204 

Valyl-tRNA synthetase [Geobacillus 

thermodenitrificans NG80-2] 1 2.13 9.1    
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gi|73662075 peptide chain release factor 1 [ATCC 15305] 1 2.11 13.1 0.0294 0.2435 EF > 2 

gi|91207843 30S ribosomal protein S3 1 2.06 35.5 0.0165   

gi|113476121 RNA binding S1 [Trichodesmium erythraeum IMS101] 1 2.05 22.7 0.0634 0.3808 EF > 2 

gi|149376055 

imidazole glycerol phosphate synthase subunit HisF 

[Marinobacter algicola DG893] 1 2.03 32.7    

gi|73918993 Dihydrodipicolinate synthase (DHDPS) 1 2.02 26.4 0.3638 0.3594 EF > 2 

gi|92090969 

Arginine biosynthesis bifunctional protein argJ 

[Includes: Glutamate N-acetyltransferase (Ornithine 

acetyltransferase) (Ornithine transacetylase) 

(OATase); Amino-acid acetyltransferase (N-

acetylglutamate synthase) (AGS)] [Contains: Arginine 

biosynthesis b 1 2.01 21.1 8.2239   

gi|97051447 

Serine hydroxymethyltransferase (Serine methylase) 

(SHMT) 1 2.01 14.1 0.5065   

gi|21284173 2-hydroxyacid dehydrogenase [MW2] 1 2.01 7.7 2.115   

gi|90108439 Valyl-tRNA synthetase (Valine--tRNA ligase) (ValRS) 1 2.01 13.8 0.4091   

gi|87161786 1-pyrroline-5-carboxylate dehydrogenase 1 2 12.5 0.2202   

gi|145588242 

ribosomal protein L3 [Polynucleobacter sp. QLW-

P1DMWA-1] 1 2 39 0.2122   

gi|90101261 Dihydrodipicolinate reductase (DHPR) 1 2 16.7 0.4375   

gi|87160676 threonine synthase 1 2 15.9 1.2543   

gi|87161544 branched-chain amino acid aminotransferase 1 2 21.5 0.9127   

gi|87162399 50S ribosomal protein L20 1 1.8 16.1 0.2449 0.0015 EF > 2 

gi|38605460 50S ribosomal protein L11 1 2.84 23.4    

gi|121534747 

ribosomal protein L11[Thermosinus 

carboxydivoransNor1] 1 2.01 22    

gi|116491401 Ribosomal protein L11 [Oenococcus oeni PSU-1] 1 2 15.3    

gi|126635115 non-ribosomal peptide synthetase A [Actinoplanes 1 1.54 22.7 0.5948 0.6304 EF > 2 
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friuliensis] 

gi|115502775 50S ribosomal protein L16 1 1.54 42.5 0.2859 0.0025 1.52 

gi|15672583 

serine hydroxymethyltransferase [Lactococcus lactis 

subsp. lactis Il1403] 1 1.52 16.4 0.2847 0.0005 1.4125 

gi|148242083 L-asparaginase II [Synechococcus sp. RCC307] 1 1.52 15.9    

gi|58761240 elongation factor [Mycoplasma fermentans] 1 2.51 28.9 1.0522   

gi|89052742 

Glutamate synthase (ferredoxin) [Jannaschia sp. 

CCS1] 1 1.31 13.4 0.265 0 1.1126 

       

Energy Metabolism       

gi|87161989 quinol oxidase, subunit II 92 88.88 50.8 2.0034 0 1.1792 

gi|87161213 hypothetical protein SAUSA300_1720 [USA300] 19 21.88 35.6 0.8644 0.6624 1.9628 

gi|70726902 hypothetical protein SH1901 [JCSC1435] 15 25.23 38.2 0.7721 0.7636 EF > 2 

gi|87162272 triosephosphate isomerase 15 16.92 64.8 1.2911 0.3299 1.6961 

gi|88196553 fructose-bisphosphate aldolase class-I, putative  14 24.51 64.2 0.7455 0.4438 EF > 2 

gi|87160110 phosphopyruvate hydratase 14 22.02 50 1.0613 0.7798 1.5436 

gi|87162014 fructose bisphosphate aldolase 13 14.13 55.9 2.2576 0 1.1896 

gi|87161115 glyceraldehyde-3-phosphate dehydrogenase, type I 11 16.49 53.3 2.2266 0.2818 EF > 2 

gi|87162120 formate acetyltransferase 11 16.45 22.2 1.2969 0.3535 1.7802 

gi|87160940 phosphate acetyltransferase 10 17.3 59.8 1.2194 0.6172 EF > 2 

gi|87162024 pyruvate kinase 9 14.37 45 0.3151 0.1398 EF > 2 

gi|87161439 hypothetical protein SAUSA300_0871 [USA300] 9 11.01 40.3 0.472 0.2802 EF > 2 

gi|81782064 

3-hexulose-6-phosphate synthase (HPS) (D-arabino-3-

hexulose-6-phosphate formaldehyde lyase) 8 11.53 64.8 0.3201 0.0279 EF > 2 

gi|91206698 

Glucose-6-phosphate isomerase (GPI) 

(Phosphoglucose isomerase) (PGI) (Phosphohexose 

isomerase) (PHI) 6 10.18 37.2 1.1617 0.7751 EF > 2 

gi|87159954 pyruvate dehydrogenase E1 component, beta subunit 5 10.84 41.5 0.8038 0.6895 EF > 2 

gi|87160408 phosphoglycerate kinase 5 9.9 30.1 0.7872 0.5093 EF > 2 
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gi|87161599 malate:quinone-oxidoreductase 5 9.38 26.9 0.4397 0.4782 EF > 2 

gi|73663225 

glyceraldehyde-3-phosphate dehydrogenase [ATCC 

15305] 5 9.64 44.2 0.1652   

gi|87161833 putative lipase/esterase [USA300] 5 8 30 0.7626 0.3571 1.896 

gi|87162313 5'-nucleotidase, lipoprotein e(P4) family 4 8.82 16.2 1.9033 0.0782 EF > 2 

gi|87161068 formate-tetrahydrofolate ligase 4 8.03 32.4 1.6538 0.2908 EF > 2 

gi|87162359 aconitate hydratase [USA300] 4 8.01 18.1 0.4778 0.2174 EF > 2 

gi|87161490 alcohol dehydrogenase 4 8 33.6 2.0921 0.0699 EF > 2 

gi|87161543 

2,3-bisphosphoglycerate-independent 

phosphoglycerate mutase 4 8 17.4 1.1148 0.8688 EF > 2 

gi|87161186 deoxyribose-phosphate aldolase 4 8 54.1 3.6127 0.0094 EF > 2 

gi|87160632 hypothetical protein SAUSA300_1804 [USA300] 4 7.9 65.8 0.4563 0.5071 EF > 2 

gi|81694562 Transketolase 4 7.84 21 1.2441 0.5831 EF > 2 

gi|90102247 6-phosphogluconate dehydrogenase, decarboxylating 4 6.32 19 2.0107 0.3038 EF > 2 

gi|87161569 

methylenetetrahydrofolate 

dehydrogenase/methenyltetrahydrofolate 

cyclohydrolase 4 6.2 44.4 1.041 0.9333 EF > 2 

gi|87162047 Ornithine aminotransferase 4 6.01 23.7 0.7286 0.7881 EF > 2 

gi|87160754 

pyruvate dehydrogenase E1 component, alpha 

subunit 4 6 17 1.2496 0.657 EF > 2 

gi|151221843 hypothetical protein NWMN_1631 [Newman] 3 6.34 45.1 1.2844 0.66 EF > 2 

gi|87161332 succinyl-CoA synthetase, alpha subunit 3 6.09 39.7 2.9055 0.1072 EF > 2 

gi|91206786 

2,3-bisphosphoglycerate-dependent 

phosphoglycerate mutase (Phosphoglyceromutase) 

(PGAM) (BPG-dependent PGAM) (dPGM) 3 6 23.2 2.8206 0.1302 EF > 2 

gi|81695276 

Probable acetyl-CoA acyltransferase (Acetoacetyl-CoA 

thiolase) 3 6 32.3    

gi|70727178 hypothetical protein SH2179 [JCSC1435] 3 5.74 15.7 1.1119 0.7969 EF > 2 

gi|73920841 L-lactate dehydrogenase 1 (L-LDH 1) 3 4.35 17.4 0.3571 0.4121 EF > 2 
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gi|87162164 Acetoin(diacetyl) reductase [USA300] 3 4 21.7 1.0084 0.9932 EF > 2 

gi|87161124 citrate synthase II [USA300] 2 4.62 11 0.7236 0.5519 EF > 2 

gi|61214622 

Phosphoenolpyruvate-protein phosphotransferase 

(Phosphotransferase system, enzyme I) 2 4.23 22.9 0.0862 0 1.4532 

gi|87161326 putative NADP-dependent malic enzyme [USA300] 2 4.08 23 1.6469 0.4668 EF > 2 

gi|77417488 Succinyl-CoA synthetase beta chain (SCS-beta) 2 4.02 18.6 0.9444 0.682 EF > 2 

gi|87161670 isocitrate dehydrogenase, NADP-dependent 2 4 19.7 0.4506   

gi|73663003 

dihydrolipoamide S-acetyltransferase component of 

pyruvate dehydrogenase complex E2 2 4 16.6 0.8021 0.5291 EF > 2 

gi|87162156 phosphoenolpyruvate carboxykinase (ATP) 2 4 11.3 0.3495 0.6481 EF > 2 

gi|87161885 transglycosylase [USA300] 2 4 11.3 2.1487 0.389 EF > 2 

gi|87160719 hypothetical protein SAUSA300_0844 [USA300] 2 2.02 14.9 1.2217 0.7089 EF > 2 

gi|78101526 

Chain A, Crystal Structure Of 3',5"-Aminoglycoside 

Phosphotransferase Type Iiia Adp Neomycin B 

Complex 1 2.5 18.6 0.0746   

gi|123548254 Putative aldehyde dehydrogenase SAB2006c 1 2.24 9.9 0.9588   

gi|87161665 L-lactate dehydrogenase 1 2.18 25.1 0   

gi|87161078 4-oxalocrotonate tautomerase 1 2.03 37.7 0.8706 0.8305 EF > 2 

gi|23465821 

polyphosphate kinase [Bifidobacterium longum 

NCC2705] 1 2.04 12.8 1.0581 0.9743 EF > 2 

gi|87162105 glycerate dehydrogenase-like protein 1 2.01 20.5 1.2463 0.6539 EF > 2 

gi|152976979 

pyruvate kinase [Bacillus cereus subsp. cytotoxis NVH 

391-98] 1 2.22 11.8    

gi|56748589 Acetate kinase (Acetokinase) 1 2 12.8 2.1261   

gi|87160338 6-phosphofructokinase [USA300] 1 2 31.9 3.3581   

gi|119717219 

UDP-glucose/GDP-mannose dehydrogenase 

[Nocardioides sp. JS614] 1 2 13 1.3533   

gi|87161715 hypothetical protein SAUSA300_1902 [USA300] 1 2 7.6 1.3104   

gi|87160639 hypothetical protein SAUSA300_0843 [USA300] 1 2 20.2 0.6078   
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gi|152933808 

L-serine dehydratase, iron-sulfur-dependent, beta 

subunit [Clostridium botulinum F str. Langeland] 1 1.72 19.2 0.1046 0.0006 1.8701 

gi|110637666 

urea amidohydrolase (urease) alpha subunit 

[Cytophaga hutchinsonii ATCC 33406] 1 1.52 18.6    

gi|78223411 

Short-chain dehydrogenase/reductase SDR 

[Geobacter metallireducens GS-15] 1 1.52 15.4 0.2848   

gi|87161617 chaperone protein DnaK 30 32.79 60.5 1.225 0.3121 1.4883 

gi|87160551 trigger factor 17 21.26 58.2 1.6286 0.0751 1.7163 

gi|88195151 hypothetical protein SAOUHSC_01427 [NCTC 8325] 16 30.82 54.2 1.7453 0.1671 EF > 2 

gi|87162356 foldase protein PrsA precursor 15 22.35 49.4 1.7512 0.0389 1.699 

gi|87161296 putative serine protease HtrA [USA300] 9 17.52 28.5 1.0613 0.9034 EF > 2 

gi|87161831 putative ATP-dependent Clp proteinase 7 12.11 37.5 0.2175 0.0598 EF > 2 

gi|87160799 ornithine carbamoyltransferase 7 11.82 30.3 1.3897 0.5629 EF > 2 

gi|87159917 urocanate hydratase 5 9.57 31.6 0.4147 0.2731 EF > 2 

gi|87161225 copper chaperone copZ 5 2.04 64.7 0.4044 0.0219 EF > 2 

gi|87161349 dihydrolipoamide dehydrogenase 4 7.4 24.6 1.5271 0.2427 EF > 2 

gi|87161339 glycine cleavage system H protein 4 4.1 46 1.8493 0 1.2776 

gi|87160352 hypothetical protein SAUSA300_0857 [USA300] 3 7.61 50.3 1.8911 0.3026 EF > 2 

gi|87161328 hydrolase family protein 3 6.41 51.1 0.7896 0.6196 EF > 2 

gi|116248102 Serine protease htrA-like 3 5.76 26.3 0.6326 0.5623 EF > 2 

gi|87161390 DJ-1/PfpI family protein 2 4.13 23.3 0.2629 0.345 EF > 2 

gi|87160700 60 kDa chaperonin 2 4.09 22.9    

gi|87162424 

putative membrane-associated zinc metalloprotease 

[USA300] 2 4 25.4 2.7816 0.0399 EF > 2 

gi|87161475 NAD-specific glutamate dehydrogenase 2 4 15.7 1.7125 0.3645 EF > 2 

gi|87160107 signal peptidase IB 2 4 43.9 0.84 0.6979 EF > 2 

gi|87161613 co-chaperone GrpE 2 4 23.6 0.2342 0.5439 EF > 2 

gi|87160848 peptidase, rhomboid family 2 2.03 9.4 0.3986 0.451 EF > 2 

gi|87162079 putative pyridoxal phosphate-dependent 1 2.17 10.6 0.0223   
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acyltransferase [USA300] 

gi|87161347 Peptidase family M20/M25/M40 1 2 19.6 0.0506   

gi|90183185 

ATP-dependent Clp protease proteolytic subunit 

(Endopeptidase Clp) 1 2 34.9 1.2575 0.6154 EF > 2 

gi|87161219 hypothetical protein SAUSA300_0207 [USA300] 1 2 12 2.9775   

gi|15672533 trigger factor [Lactococcus lactis subsp. lactis Il1403] 1 1.7 12.9 0.1057   

gi|152975536 

amino acid adenylation domain [Bacillus cereus 

subsp. cytotoxis NVH 391-98] 1 1.31 6.8 6.2429   

       

Stress        

gi|87162409 CsbD-like superfamily 34 23.94 90.6 1.3708 0.0058 1.249 

gi|87162200 Alkyl hydroperoxide reductase subunit C 27 17.18 51.9 1.6239 0.0128 1.4606 

gi|87160786 hypothetical protein SAUSA300_1652 [USA300] 24 31.43 68.6 0.8978 0.2323 1.1928 

gi|894289 alkaline shock protein 23; ASP23 20 19.57 69.8 1.1024 0.6569 1.5506 

gi|87162087 universal stress protein family 18 22.55 71.7 3.0664 0 1.5719 

gi|87162159 hypothetical protein SAUSA300_1582 [USA300] 13 8.33 75 2.0123 0.0135 1.7222 

gi|87161236 thioredoxin 12 15.51 83.7 0.7305 0.0387 1.3421 

gi|87160079 

peptide methionine sulfoxide reductase regulator 

MsrR 10 10.51 33.9 1.7545 0.0863 1.9197 

gi|87161001 thioredoxin-disulfide reductase 9 10 36 1.1776 0.6298 EF > 2 

gi|87161687 thiol peroxidase 8 8 55.5 1.4239 0.2404 1.8458 

gi|70726220 hypothetical protein SH1219 [JCSC1435] 7 13.15 54.7    

gi|87160477 putative thioredoxin [USA300] 5 10.3 58.3 1.2503 0.6608 EF > 2 

gi|87160511 catalase 5 7.43 20.2 4.7999 0.0241 EF > 2 

gi|87161707 superoxide dismutase (Mn/Fe family) 5 6.01 40.2 0.7623 0.7832 EF > 2 

gi|21282513 hypothetical protein MW0784 [MW2] 5 4 41.5 1.2352 0.3626 1.5996 

gi|88195790 ferritin, putative [NCTC 8325] 4 6.67 51.8 0.4058 0.1265 EF > 2 

gi|87160405 hypothetical protein SAUSA300_1909 [USA300] 4 4.21 27.8 0.7007 0.628 EF > 2 

gi|87161642 alkyl hydroperoxide reductase subunit F 1 2.72 12.8 0.3723 0.188 EF > 2 
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gi|87161086 methionine-R-sulfoxide reductase 1 2.33 16.2 15.0177 0.4261 EF > 2 

gi|87162273 OsmC/Ohr family protein 1 2 34.3 2.8528 0.3618 EF > 2 

gi|87160980 hypothetical protein SAUSA300_0725 [USA300] 1 2 17.9 1.3866   

gi|87160505 DNA-binding protein HU 36 20 75.6 0.6834 0 1.1104 

gi|87161697 transcription elongation factor GreA [USA300] 9 12 60.1 0.5201 0.0799 EF > 2 

gi|87160906 putative transcriptional regulator [USA300] 9 12 39.7 0.8645 0.8012 EF > 2 

gi|90110870 

DNA-directed RNA polymerase alpha chain (RNAP 

alpha subunit) (Transcriptase alpha chain) (RNA 

polymerase subunit alpha) 5 6.37 27.7 0.5049 0.4065 EF > 2 

gi|87161137 DNA-directed RNA polymerase, beta' subunit 3 6.01 23.4 3.642 0.0601 EF > 2 

gi|87159899 transcriptional regulator, MarR family 3 6 46.3 0.6518 0.5505 EF > 2 

gi|81695152 

DNA-directed RNA polymerase beta chain (RNAP beta 

subunit) (Transcriptase beta chain) (RNA polymerase 

subunit beta) 3 4.04 25.2 0.6254 0.3628 EF > 2 

gi|81651715 Putative septation protein spoVG 2 3.1 47 1.6545 0.0649 1.9237 

gi|148556982 

Hydantoinase/oxoprolinase [Sphingomonas wittichii 

RW1] 1 2.23 29.2 0.3135   

gi|87161403 DNA-directed RNA polymerase, omega subunit 2 2.3 62.5 1.2342 0.6411 EF > 2 

gi|87161266 anti-sigma-B factor, antagonist 2 2 23.1 0.4855   

gi|87160104 hypothetical protein SAUSA300_2547 [USA300] 1 2.15 20.9 0.2937   

gi|87160250 hypothetical protein SAUSA300_0003 [USA300] 1 2.01 58 0.3488 0.3713 EF > 2 

gi|87159916 DNA-directed RNA polymerase, delta subunit 1 2 22.2 3.8401   

gi|87162043 lytic regulatory protein 1 2 8.8 4.19   

gi|153095029 DeoR family transcriptional regulator [PHL213] 1 2 12.5 0.1222 0.002 1.9304 

gi|126433686 transcriptional regulator, MarR family [JLS] 1 2 25.7    

gi|88193109 

Chain B, Crystal Structure Of Sara, A Transcription 

Regulator From Staphylococcus Aureus 1 1.94 21.3 0.2275 0.0169 1.6478 

gi|149186684 

transcription-repair coupling factor [Erythrobacter sp. 

SD-21] 1 1.62 19.3    
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gi|94968840 

response regulator receiver protein [Acidobacteria 

bacterium Ellin345] 1 1.52 21.8    

gi|87162130 triacylglycerol lipase precursor [USA300] 3 4.01 20.6 1.4921 0.4387 EF > 2 

gi|87162021 acyl carrier protein 2 5.7 77.9 0.3941 0.2074 EF > 2 

gi|87161805 3-oxoacyl-(acyl-carrier-protein) reductase 2 4 53.7 0.5969 0.8853 EF > 2 

gi|87161662 hypothetical protein SAUSA300_1856 [USA300] 2 4 39.8 1.4886 0.2819 EF > 2 

gi|99032669 

Chain B, The Crystal Structure Of B-Ketoacyl-Acp 

Synthase Ii (Fabf) From Staphylococcus Aureus 1 2.18 17.2 2.6989 0.3598 EF > 2 

gi|87161082 acetyl-CoA carboxylase, biotin carboxyl carrier protein 1 2.02 33.1 2.144 0.0858 EF > 2 

gi|70726948 enoyl-(acyl carrier protein) reductase [JCSC1435] 1 2.02 14.8 0.9001 0.9378 EF > 2 

gi|87160287 fatty acid/phospholipid synthesis protein PlsX 1 2 10.4 1.5645   

gi|119502734 

acetyl-CoA carboxylase [marine gamma 

proteobacterium HTCC2080] 1 1.7 15.2 0.2246 0 1.0826 

gi|148821476 

PE-PGRS family protein [Mycobacterium tuberculosis 

F11] 1 1.4 34.8 3.0713 0.1735 EF > 2 

gi|38604919 

Inosine-5'-monophosphate dehydrogenase (IMP 

dehydrogenase) (IMPDH) (IMPD) 13 20 55.9 1.9091 0.0421 1.8591 

gi|87161595 phosphoribosylformylglycinamidine synthase 5 6.32 59.8 0.5524 0.4703 EF > 2 

gi|87161373 adenylate kinase [USA300] 4 8.04 53 1.3267 0.6999 EF > 2 

gi|87161059 uracil phosphoribosyltransferase 3 6.37 31.6 1.1876 0.4306 1.6122 

gi|81650637 Pyrimidine-nucleoside phosphorylase (PYNP) 3 6.05 24 0.8242 0.7042 EF > 2 

gi|87161310 dihydroorotase [USA300] 3 6.02 22.2 0.9461 0.9381 EF > 2 

gi|987497 nucleoside diphosphate kinase 3 6 53 0.2176 0.0267 EF > 2 

gi|87160143 purine nucleoside phosphorylase 3 3.55 30.5 2.3949 0.081 EF > 2 

gi|87160876 adenylosuccinate synthetase 2 4.01 15.5 3.9573 0.0264 EF > 2 

gi|87162294 

phosphoribosylaminoimidazole carboxylase, catalytic 

subunit 2 3.7 48.9    

gi|87160186 polyribonucleotide nucleotidyltransferase 1 2.69 48.9 0.3073 0.461 EF > 2 

 
 

143 



 

Accession no. Name 

Number 

of 

peptides 

Total 

score 

Sequence 

Coverage 

(%) 

D30 

planktonic: 

D30 biofilm 

p 

value 

Error 

factor 

gi|91206761 

[Protein-PII] uridylyltransferase (PII uridylyl-

transferase) (Uridylyl-removing enzyme) (UTase) 1 2.38 15.4 2.7259 0.3048 EF > 2 

gi|84366297 

ATP-dependent RNA helicase [Xanthomonas oryzae 

pv. oryzae MAFF 311018] 1 2.22 33.5    

gi|87161299 hypoxanthine phosphoribosyltransferase 1 2.02 20.8 0.1858 0.4644 EF > 2 

gi|87160831 dihydroorotate dehydrogenase 1 2 11.6 0.3178   

gi|70726884 phosphoribosylamine--glycine ligase [JCSC1435] 1 2 8.7 2.4564   

gi|91206832 

GMP synthase [glutamine-hydrolyzing] (Glutamine 

amidotransferase) (GMP synthetase) 1 2 10.3 0.8514   

gi|150385859 

carbamoyl-phosphate synthase, large subunit 

[Victivallis vadensis ATCC BAA-548] 1 1.42 17.7    

       

DNA Metabolism: replication, recombination and repair       

gi|88195046 hypothetical protein SAOUHSC_01316 [NCTC 8325] 6 10 23.7 1.4239 0.4191 EF > 2 

gi|134296873 DEAD/DEAH box helicase domain protein 3 7.7 21.2 0.5856 0.5282 EF > 2 

gi|149125815 LigA [Methylobacterium sp. 4-46] 1 2.96 49.2 0.7602 0.6531 EF > 2 

gi|87160839 recombinase A protein 1 2.01 9.3 1.1215 0.7964 EF > 2 

gi|88193844 hypothetical protein SAOUHSC_00023 [NCTC 8325] 1 2.01 26.7 0.8205   

gi|70725957 hypothetical protein SH0956 [JCSC1435] 1 2 15.5 1.8224   

gi|88193825 DNA polymerase III, beta subunit 1 2 10.1 1.3451   

gi|150005913 

ATP-dependent exonuclease V, alpha subunit - 

helicase superfamily I member [Bacteroides vulgatus 

ATCC 8482] 1 2 6.8 1.0835   

gi|98311102 thermostable nuclease  1 2 6.9 6.5589   

gi|149189072 MshA, mannose-sensitive haemaglutinin [AK1] 1 2 10.8 0.0288   

gi|149913440 

NAD-dependent deacetylase [Roseobacter sp. AzwK-

3b] 1 2 7.7 0.0046   

gi|109946687 ComB3 protein  [Sheeba] 1 2 15.9 0.2194 0 1.2431 
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gi|121611662 

DEAD/DEAH box helicase domain protein 

[Verminephrobacter eiseniae EF01-2] 1 1.91 21.5 0 0  

gi|153006953 LigA [Anaeromyxobacter sp. Fw109-5] 1 1.82 44.1 0.0302 0.251 EF > 2 

gi|147676398 

DNA polymerase III, gamma/tau subunits 

[Pelotomaculum thermopropionicum SI] 1 1.7 31.6 0.2573 0.0001 1.2668 

gi|41409059 

hypothetical protein MAP2961c [Mycobacterium 

avium subsp. paratuberculosis K-10] 1 1.54 46.9 1.4137 0.4906 EF > 2 

gi|61215122 DNA repair protein recO (Recombination protein O) 1 1.52 17.7    

       

Pathogenesis and Immunomodulation       

gi|87160749 cell surface elastin binding protein 200 45.07 43.4 1.3029 0.0961 1.3624 

gi|133853458 immunoglobulin G binding protein A precursor 138 58.7 78.8 1.0756 0.3757 1.1747 

gi|56749001 Immunodominant staphylococcal antigen A precursor 57 18.55 49.8 0.9476 0.656 1.2667 

gi|15926764 penicillin-binding protein 1 43 61.62 38.4 1.4429 0.0048 1.2868 

gi|87161577 cold shock protein, CSD family 36 16.74 65.2 0.7602 0.0001 1.1446 

gi|87162077 penicillin binding protein 2 32 52.49 66.6 0.6655 0.1167 1.669 

gi|87160015 staphylococcal tandem lipoprotein 14 21.24 48.9 1.1702 0.4995 1.6198 

gi|47169194 

Chain A, Staphylococcal Protein A, B-Domain, Y15w 

Mutant, Nmr, 25 Structures 12 12.14 82.3    

gi|70726765 beta-lactamase 10 16.53 40.6 0.1207 0.0022 EF > 2 

gi|87160380 alpha-hemolysin precursor 10 14.14 36.7 1.1949 0.4484 1.6137 

gi|87160982 Leukocidin/Hemolysin toxin family protein 10 13.16 49.7 0.7128 0.2953 1.9623 

gi|87162162 hypothetical protein SAUSA300_1018 [USA300] 8 16.29 24.9 0.6697 0.3322 EF > 2 

gi|87161881 antibacterial protein 7 4.08 50 0.8559 0.5626 1.7379 

gi|87161157 penicillin-binding protein 4 6 7.74 23.4 2.7796 0.013 EF > 2 

gi|15927581 hypothetical protein SA1813 [N315] 5 11.45 39.9 1.1987 0.519 1.8296 

gi|87162347 hypothetical protein SAUSA300_2164 [USA300] 4 6.34 48.2 0.1106 0.0494 EF > 2 

gi|87160217 secretory antigen precursor SsaA 4 6.25 25.5 0.5127 0.069 EF > 2 
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gi|88194063 

hypothetical protein SAOUHSC_00257 [NCTC 8325] - 

ESAT6 family virulence protein 4 6.01 53.6 2.158 0.2965 EF > 2 

gi|87160365 antibacterial protein [USA300] 4 2 50 0.2771 0 1.1218 

gi|87160520 acetyltransferase family protein 3 4.09 51.1 0.8063 0.7857 EF > 2 

gi|87161173 

teicoplanin resistance associated membrane protein 

TcaA protein [USA300] 3 4.02 11.3 1.4697 0.7023 EF > 2 

gi|88195687 hypothetical protein SAOUHSC_01999 [NCTC 8325] 3 3.52 15.2 1.9644 0.0359 1.8518 

gi|68565538 Protein esaA 2 4.01 23.2 0.197 0.2859 EF > 2 

gi|87162375 hypothetical protein SAUSA300_1323 [USA300] 2 2.01 38.6 0.1985 0.3431 EF > 2 

gi|87161897 IgG-binding protein SBI 1 2.7 10.6 5.4157 0.0616 EF > 2 

gi|87160565 immunodominant antigen B 1 2.61 28 2.0875   

gi|87160905 

hypothetical protein SAUSA300_0282 [USA300]- 

similar to essB,  1 2 12.6 0.4179   

gi|87162379 ferredoxin 1 2 18.9 1.8553   

gi|62391257 

secreted penicillin binding protein [Corynebacterium 

glutamicum ATCC 13032] 1 1.7 7 2.2857   

       

Cell Division and Cycle       

gi|87162194 cell division protein ftsZ 18 20.02 43.6 0.6616 0.0412 1.4853 

gi|87161534 putative cell division protein FtsH [USA300] 7 15.83 34.3 1.141 0.778 EF > 2 

gi|87161782 cell division protein 7 7.81 30.8 1.8474 0.0095 1.5272 

gi|87162117 hypothetical protein SAUSA300_1337 [USA300] 5 9.29 58.8 0.512 0.5782 EF > 2 

gi|73662607 putative cell division initiation protein [ATCC 15305] 3 6.99 46.2 15.8442   

gi|87160736 cell-division initiation protein 3 3.16 51.5 3.2325 0.0211 EF > 2 

gi|87161457 HIT family protein 2 3.58 29.3 2.9177   

gi|24374683 hypothetical protein SO_3170 [MR-1] 1 2.01 17.1 2.6296 0.3792 EF > 2 

gi|151591524 

cell divisionFtsK/SpoIIIE [Methylobacterium 

extorquens PA1] 1 1.7 22.1    
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Cell Adhesion       

gi|87160939 cell wall surface anchor family protein 57 42.04 60.2 1.2777 0.0838 1.3182 

gi|151222604 hypothetical protein NWMN_2392 [Newman] 40 59.98 69.5 0.2444 0 1.5991 

gi|87162026 autolysin 31 42.59 49.3 0.7695 0.2717 1.6067 

gi|87160697 

D-alanine-activating enzyme/D-alanine-D-alanyl, dltD 

protein 18 24.96 49.4 1.9912 0.0001 1.3862 

gi|87162315 putative lipoprotein [USA300] 16 14.26 40.4 1.1145 0.7887 EF > 2 

gi|61213890 77 kDa outer membrane protein precursor 11 22.71 36.1 0.6572 0.1167 1.6996 

gi|81781509 UPF0365 protein SAV1573 8 14.02 46.2 2.9173 0.0019 1.7732 

gi|87160285 rod shape-determining protein MreC 8 11.59 51.8 2.9577 0 1.4552 

gi|87160775 N-acetylmuramoyl-L-alanine amidase 8 11.4 29.9 2.0519 0.0096 1.6427 

gi|87161887 N-acetylmuramoyl-L-alanine amidase domain protein 7 14.01 25.4 1.3838 0.4234 EF > 2 

gi|88196468 sortase, putative [NCTC 8325] 5 10.01 25.7 1.2683 0.5337 EF > 2 

gi|87161790 5'-nucleotidase family protein [USA300] 3 2.04 10.4 1.5688 0.1773 EF > 2 

gi|87160715 fmt protein [USA300] 2 4.86 20.4 1.1849 0.6709 EF > 2 

gi|81673756 Phosphoglucosamine mutase 1 2.8 20.4 3.3119 0.2556 EF > 2 

gi|87160798 serine-aspartate repeat family protein, SdrH 1 2.21 17.5 1.3251 0.4213 EF > 2 

gi|116694144 

flp pilus assembly protein TadC [Ralstonia eutropha 

H16] 1 2.19 22.9 2.585   

gi|81781921 

Extracellular matrix protein-binding protein emp 

precursor 1 2.12 12.9 1.4533 0.5086 EF > 2 

gi|87160121 

D-alanine-activating enzyme/D-alanine-D-alanyl, dltC 

protein 1 1.7 38.5 16.1543   

gi|91211353 

AsmA suppressor of OmpF assembly mutants 

[Escherichia coli UTI89] 1 1.7 19.9    

       

Transport proteins       

gi|87160674 putative lipoprotein [USA300] 41 30.7 68.4 0.7197 0.0011 1.2149 
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gi|87162197 

amino acid ABC transporter, amino acid-binding 

protein 34 41.25 63.3 1.3001 0.0518 1.3007 

gi|87162140 

oligopeptide ABC transporter, substrate-binding 

protein 30 41.53 48.3 1.3918 0.0533 1.3984 

gi|87161315 hypothetical protein SAUSA300_2378 [USA300] 21 21.34 58 1.6492 0.0873 1.7803 

gi|87160588 

molybdenum ABC transporter, molybdenum-binding 

protein ModA 17 26.41 46.5 1.8056 0.0558 1.8336 

gi|87161352 ABC transporter, substrate-binding protein 12 18.38 38.7 0.4137 0.092 EF > 2 

gi|87160965 phosphocarrier protein HPr 11 17 89.8 0.4598 0 1.4007 

gi|87162382 PTS system, glucose-specific IIA component 11 12 54.2 2.9434 0.004 1.9242 

gi|87162442 transferrin receptor 8 12.69 31.9 3.5596 0.0002 1.7112 

gi|87160279 AcrB/AcrD/AcrF family protein 7 13.76 34 1.0728 0.9096 EF > 2 

gi|87161641 

amino acid ABC transporter, permease/substrate-

binding protein 7 10.49 30.7 2.5162 0.0341 EF > 2 

gi|21284120 

oligopeptide transporter putative substrate binding 

domain [MW2] 6 12.01 29.1 1.9632 0.1937 EF > 2 

gi|87160515 protein-export membrane protein SecF  6 10.63 16.2 0.7504 0.4761 EF > 2 

gi|21282147 hypothetical protein MW0418 [MW2] 6 8.69 49.3 1.2602 0.507 EF > 2 

gi|87161764 

putative iron compound ABC transporter, iron 

compound-binding protein [USA300] 5 10.17 36 0.7301 0.561 EF > 2 

gi|87160849 

iron compound ABC transporter, iron compound-

binding protein 4 8 28.5 0.6344 0.5184 EF > 2 

gi|87161518 

glycine betaine/carnitine/choline ABC transporter 

[USA300] 4 8 14.4 1.0605 0.8404 1.9436 

gi|87161864 ABC transporter, substrate-binding protein 3 8.12 25.2 2.1079 0.0742 EF > 2 

gi|87160369 hypothetical protein SAUSA300_0833 [USA300] 3 6.1 20.5 0.4642 0.5479 EF > 2 

gi|15925912 RGD-containing lipoprotein [N315] 3 6.02 17.4 1.0422 0.9709 EF > 2 

gi|87161142 ferric hydroxamate receptor 3 4 8.9 0.4321 0.2314 EF > 2 

gi|87162224 osmoprotectant ABC transporter, permease 2 4 35.1 3.9979   
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gi|87161872 putative lipoprotein [USA300] 2 4 16.4 2.4403 0.1588 EF > 2 

gi|87160414 

multidrug resistance protein A, drug resistance 

transporter 1 3.16 15.3 0.7756 0.7943 EF > 2 

gi|87162284 putative ferrichrome ABC transporter [USA300] 1 3.05 22.3 0.5068 0.6105 EF > 2 

gi|149201149 

nitrate transport ATP-binding subunits C and D 

[TM1035] 1 2.4 16.3 7.9917 0.1401 EF > 2 

gi|151575108 

outer membrane efflux protein [Ralstonia pickettii 

12D] 1 2.22 15.6 3.8451 0.3525 EF > 2 

gi|87161139 iron transport associated domain protein [USA300] 1 2.09 21.1 0.1596   

gi|149910101 Hypothetical transport protein [Moritella sp. PE36] 1 2.02 6.8 4.2379 0 1.1745 

gi|87161389 

putative iron compound A C transporter, iron 

compound-binding protein [USA300] 1 2.01 9.9 1.4787 0.3341 EF > 2 

gi|35211526 gll0963 [Gloeobacter violaceus PCC 7421] 1 2 14    

gi|87162212 amino acid ABC transporter, ATP-binding protein 1 2 25.6 0.571   

gi|127512243 

efflux transporter, RND family, MFP subunit 

[Shewanella loihica PV-4] 1 2 11.1    

gi|126355053 ABC transporter related [Pseudomonas putida GB-1] 1 1.71 6.4 6.929 0.0699 EF > 2 

gi|17131745 all2652 [Nostoc sp. PCC 7120] 1 1.7 37.6 0.8275   

gi|149194563 

ABC transporter-related protein [Caminibacter 

mediatlanticus TB-2] 1 1.7 8.4 0.0083   

gi|87162344 

phosphonate ABC transporter, phosphonate-binding 

protein 1 1.7 4.4 6.3883 0.0356 EF > 2 

gi|51595518 

molybdenum transport regulatory (repressor) protein 

ModE [Yersinia pseudotuberculosis IP 32953] 1 1.55 33.5 1.1322 0.9636 EF > 2 

gi|23005821 

COG1131: ABC-type multidrug transport system, 

ATPase component [Magnetospirillum 

magnetotacticum MS-1] 1 1.52 17.5 0.6174   

gi|152936446 

flagellar motor switch protein fliG [Clostridium 

botulinum F str. Langeland] 1 1.52 7.7    
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gi|146301866 

RND efflux system, outer membrane lipoprotein, 

NodT family [Flavobacterium johnsoniae UW101] 1 1.46 14.1 0.4187   

       

Other functions       

gi|21283573 hypothetical protein MW1844 [MW2] 4 6.1 29.1 0.4337 0.1254 EF > 2 

gi|15928229 hypothetical protein SA2436 [N315] 2 4.14 12 1.3409 0.624 EF > 2 

gi|87161880 manganese-dependent inorganic pyrophosphatase 2 4 18.4 0.8997 0.7506 EF > 2 

gi|87161327 S-ribosylhomocysteinase 1 2.16 21.8    

gi|116696021 

signal transduction histidine kinase containing a 

receiver domain (hybrid) [Ralstonia eutropha H16] 1 2.01 23.6 0.4873 0.6468 EF > 2 

gi|62900222 HAM1 protein homolog 1 2 25.1 1.6669   

gi|56749556 

6,7-dimethyl-8-ribityllumazine synthase (DMRL 

synthase) (Lumazine synthase) (Riboflavin synthase 

beta chain) 1 2 30.5    

gi|87161407 hypothetical protein SAUSA300_1160 [USA300] 1 2 21.3 8.5821   

gi|29347076 

hydrolase, haloacid dehalogenase-like hydrolase 

[Bacteroides thetaiotaomicron VPI-5482] 1 1.74 17.1 0.1912 0.4991 EF > 2 

gi|146292939 

TonB-dependent siderophore receptor [Shewanella 

putrefaciens CN-32] 1 1.7 9.8 3.3337   

       

Hypothetical proteins       

gi|87160135 hypothetical protein SAUSA300_1581 [USA300] 23 8.04 72.9 1.6716 0.0292 1.5836 

gi|87159943 hypothetical protein SAUSA300_1908 [USA300] 21 17.48 29.3 1.0866 0.5504 1.3214 

gi|87160606 hypothetical protein SAUSA300_1698 [USA300] 20 14.73 64.3 0.5379 0.0027 1.4823 

gi|87161419 hypothetical protein SAUSA300_1795 [USA300] 18 10.24 86 0.5763 0.1351 EF > 2 

gi|15926079 Hypotheticall protein SA0363 [N315] 13 21.12 47.6 2.1698 0.0016 1.5797 

gi|87161713 hypothetical protein SAUSA300_0385 [USA300] 8 8 41.5 2.2422 0.0096 1.7718 

gi|88195776 hypothetical protein SAOUHSC_02093 [NCTC 8325] 8 6 71.2 0.361 0.0015 1.7818 

gi|87160537 hypothetical protein SAUSA300_2132 [USA300] 7 11.27 80.2 1.6246 0.0855 1.746 
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gi|87161087 hypothetical protein SAUSA300_2144 [USA300] 7 8.59 28 0.6785 0.2674 EF > 2 

gi|87160300 hypothetical protein SAUSA300_1440 [USA300] 6 10.54 27.7 0.1828 0.0226 EF > 2 

gi|87160039 hypothetical protein SAUSA300_2330 [USA300] 5 10.04 32.2 0.9286 0.8918 EF > 2 

gi|87160421 hypothetical protein SAUSA300_0172 [USA300] 5 8 68.7 0.2115 0.0234 EF > 2 

gi|87162221 hypothetical protein SAUSA300_0664 [USA300] 5 8 66.7 0.7676 0.8232 EF > 2 

gi|88196395 hypothetical protein SAOUHSC_02759 [NCTC 8325] 5 4.01 23.2 0.9368 0.9304 EF > 2 

gi|87161527 hypothetical protein SAUSA300_1572 [USA300] 5 2 34.3 0.9818 0.9803 EF > 2 

gi|88195426 hypothetical protein SAOUHSC_01721 [NCTC 8325] 4 5 53.5 0.5708 0.1071 EF > 2 

gi|87161381 hypothetical protein SAUSA300_1857 [USA300] 2 4.03 50.9 0.3602 0.4048 EF > 2 

gi|15926825 hypothetical protein SA1085 [N315] 2 4.02 13.1 1.7915 0.1137 EF > 2 

gi|87160698 hypothetical protein SAUSA300_1906 [USA300] 2 4 13.6 0.339 0.1035 EF > 2 

gi|87159919 hypothetical protein SAUSA300_2527 [USA300] 2 4 49.5 0.4974   

gi|87161111 hypothetical protein SAUSA300_2212 [USA300] 2 4 61.1 2.4645 0.2051 EF > 2 

gi|87161468 hypothetical protein SAUSA300_1215 [USA300] 2 4 41.5 0.4229 0 1.3891 

gi|88195065 hypothetical protein SAOUHSC_01336 [NCTC 8325] 2 2.32 41.8 1.7896 0.2728 EF > 2 

gi|87160907 hypothetical protein SAUSA300_0602 [USA300] 2 2.1 17.9 4.5784 0.0414 EF > 2 

gi|87161979 hypothetical protein SAUSA300_2560 [USA300] 2 2 47 0.0879   

gi|87162360 hypothetical protein SAUSA300_1685 [USA300] 2 2 9.2 0.4863 0.3742 EF > 2 

gi|150393509 hypothetical protein SaurJH1_1041 [JH1] 2 2 25    

gi|21284001 hypothetical protein MW2272 [MW2] 1 3.17 16.5 0.2983 0.3902 EF > 2 

gi|87162045 hypothetical protein SAUSA300_1788 [USA300] 1 2.68 47.9 0.8105 0.657 EF > 2 

gi|77465081 

hypothetical protein RSP_3067 [Rhodobacter 

sphaeroides 2.4.1] 1 2.52 26 830% 1% EF > 2 

gi|87160235 hypothetical protein SAUSA300_1904 [USA300] 1 2.26 28.1 0.4476 0.1437 EF > 2 

gi|87161000 hypothetical protein SAUSA300_1606 [USA300] 1 2.24 47.1 3.2155 0.0595 EF > 2 

gi|93140725 Uncharacterized N-acetyltransferase SAB1040c 1 2.19 19.2 2.1143 0.0585 EF > 2 

gi|87161220 hypothetical protein SAUSA300_0383 [USA300] 1 2.14 23.3 0.1962   

gi|87161658 hypothetical protein SAUSA300_2148 [USA300] 1 2.1 21.5 1.4355   

gi|87159886 hypothetical protein SAUSA300_2493 [USA300] 1 2.08 34.9 0.4565 0.4986 EF > 2 
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gi|55773538 conserved hypothetical protein [HB8] 1 2.06 8.4 0.1597 0.1348 EF > 2 

gi|119386105 hypothetical protein Pden_3391 [PD1222] 1 2.04 30.6 0.9539 0.9356 EF > 2 

gi|87160533 hypothetical protein SAUSA300_1321 [USA300] 1 2.01 17.2 6.2229   

gi|30262516 

hypothetical protein BA2524 [Bacillus anthracis str. 

Ames] 1 2.01 30.1 0.4684   

gi|87160245 hypothetical protein SAUSA300_1864 [USA300] 1 2.01 6.9 94.4809   

gi|87160914 hypothetical protein SAUSA300_1223 [USA300] 1 2 18.3 3.0338   

gi|70726727 hypothetical protein SH1726 [JCSC1435] 1 2 8.6 4.4216 0.3643 EF > 2 

gi|21283169 hypothetical protein MW1440 [MW2] 1 2 52.9 0.5239   

gi|87162265 hypothetical protein SAUSA300_1057 [USA300] 1 2 18.2 1.4172   

gi|87160560 hypothetical protein SAUSA300_1335 [USA300] 1 2 9.1 3.9586   

gi|87160349 hypothetical protein SAUSA300_0982 [USA300] 1 2 6.1 0.7242   

gi|87160886 hypothetical protein SAUSA300_0990 [USA300] 1 1.84 40.3 0.4073 0.1543 EF > 2 

gi|116618724 hypothetical protein LEUM_1630 [ATCC 8293] 1 1.71 22 2.3737 0.3812 EF > 2 

gi|15595185 Hypothetical protein BB0840 [B31] 1 1.7 7.8 0.0524 0.0518 EF > 2 

gi|145299288 

hypothetical protein ASA_2332 [Aeromonas 

salmonicida subsp. salmonicida A449] 1 1.7 18.2 2.0155   

gi|148556846 hypothetical protein Swit_3945 [RW1] 1 1.7 31.8 0.2165 0 1.2074 

gi|118602465 

hypothetical protein Rmag_0450 [Candidatus Ruthia 

magnifica str. Cm (Calyptogena magnifica)] 1 1.7 10.1 0.1032 0.0386 EF > 2 

gi|83647697 

hypothetical protein HCH_05022 [Hahella chejuensis 

KCTC 2396] 1 1.53 8.4 2.734   

gi|89070338 

hypothetical protein OG2516_12764 [Oceanicola 

granulosus HTCC2516] 1 1.53 23.8    

gi|86136324 

hypothetical protein MED193_19414 [Roseobacter 

sp. MED193] 1 1.53 38.3 0.0658   

gi|88194234 hypothetical protein SAOUHSC_00444 [NCTC 8325] 1 1.52 41.9 0.3885   

gi|149191551 hypothetical protein VSAK1_15442 [Vibrio shilonii 1 1.52 11.9 0.014   
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AK1] 

gi|145220937 

hypothetical protein Mflv_0333 [Mycobacterium 

gilvum PYR-GCK] 1 1.52 5.8    

gi|88194796 hypothetical protein SAOUHSC_01044 [NCTC 8325] 1 1.52 15.4    

gi|29610655 

hypothetical protein [Streptomyces avermitilis MA-

4680] 1 1.4 12.8 0.0136   

gi|29609637 

hypothetical protein [Streptomyces avermitilis MA-

4680] 1 1.4 6.9 0.3196   

gi|120610660 

hypothetical protein Aave_1980 [Acidovorax avenae 

subsp. citrulli AAC00-1] 1 1.4 4.8 0   

gi|149912076 hypothetical protein PE36_12287 [Moritella sp. PE36] 1 1.4 26.5 0.3601   

gi|124268268 

hypothetical protein Mpe_A3084 [Methylibium 

petroleiphilum PM1] 1 1.33 29.6 2.5243 0.0241 EF > 2 

       

Unknown funtion       

gi|87161686 putative lipoprotein 51 32.02 52.2 0.7716 0.0528 1.297 

gi|82751366 probable transaldolase 8 13.17 67.9 0.9884 0.9746 EF > 2 

gi|87161661 putative lipoprotein 7 13.51 43.8 0.7766 0.5033 EF > 2 

gi|87161314 putative lipoprotein [USA300] 4 6.01 29.5 2.1337 0.4052 EF > 2 

gi|49484622 putative solute binding lipoprotein [MRSA252] 3 6.91 24.3 0.728 0.7599 EF > 2 

gi|87160546 putative cell-division initiation protein [USA300] 3 6 40.5 1.408 0.8736 EF > 2 

gi|87161260 

phiSLT ORF144-like protein, putative lipoprotein                    

[USA300] 2 4.05 36.1 0.3313 0.0857 EF > 2 

gi|87161351 putative lipoprotein [USA300] 2 4.01 17.5 1.6355 0.4519 EF > 2 

gi|87161825 putative lipoprotein [USA300] 2 4 26.9 0.4877 0.3342 EF > 2 

gi|153005206 

protein of unknown function DUF849 

[Anaeromyxobacter sp. Fw109-5] 2 2 22.1 18.383   

gi|124010323 lipoprotein, putative [Microscilla marina ATCC 23134] 1 3.36 7.1 0.2374 0.085 EF > 2 

gi|87161720 putative arsenate reductase [USA300] 1 2.8 26.3 243% 0% 120% 
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gi|117164639 putative modular polyketide synthase [ATCC 23877] 1 2.2 12.3 0.0313 0 EF > 2 

gi|121583546 

protein of unknown function DUF262 [Polaromonas 

naphthalenivorans CJ2] 1 2 11.4 0.2361 0 1.1909 

gi|81693746 Uncharacterized lipoprotein SACOL2497 precursor 1 2 18.4 1.2088   

gi|120609276 

uncharacterized protein UPF0065 [Acidovorax avenae 

subsp. citrulli AAC00-1] 1 2 18.6 2.3592 0.6088 EF > 2 

gi|149910937 

Uncharacterized protein conserved in bacteria 

[Moritella sp. PE36] 1 2 17.2 0.2327 0 1.0888 

gi|148869366 putative patatin [Vibrio harveyi HY01] 1 1.7 20.5 0.2573 0 1.1117 

gi|116250012 

putative methyltransferase [Rhizobium 

leguminosarum bv. viciae 3841] 1 1.52 12.4    

gi|146306168 

protein of unknown function DUF1302 [Pseudomonas 

mendocina ymp] 1 1.52 6.9 0.4866   

gi|51894011 

putative cadmium-transporting ATPase 

[Symbiobacterium thermophilum IAM 14863] 1 1.41 28.7 0.042 0.5037 EF > 2 

gi|25027269 

putative urea carboxylase [Corynebacterium efficiens 

YS-314] 1 1.4 6.3 0.2722 0.0031 1.3676 

gi|29608736 

putative integral membrane protein [Streptomyces 

avermitilis MA-4680] 0 1.41 21.3 0.4418   
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Table 14: Oligonucleotides utilized in this study 

Oligonucleotides Description and Sequence (5’ to 3’) Restriction site 
D30spatgtF Sequence spa; GACGACGTCCAGCTAATAAC  
D30spatgtR  Sequence spa; AAAGCGGATAACAAATTCAA  
755|756s-IBS D20 spa-pNL9164 cloning; AAAAAAGCTTATAATTATCCTTAT 

TGCCTTGTTCGTGCGCCCAGATAGGGTG 
HindIII 

755|756s-EBS1d D20 spa-pNL9164 cloning; CAGATTGTACAAATGTGG 
TGATAACAGATAAGTCTTGTTCTTTAACTTACCTTTCTTTGT 

BsrGI 

755|756s-EBS2 D20 spa-pNL9164 cloning; TGAACGCAAGTTTCT 
AATTTCGGTTGCAATCCGATAGAGGAAAGTGTCT 

 

147|148s-IBS D547 spa-pNL9164 cloning; AAAAAAGCTTATAATTATCCTTATT 
TATCAGCTAAGTGCGCCCAGATAGGGTG 

HindIII 

147|148s-EBS1d D547 spa-pNL9164 cloning; CAGATTGTACAAATGTGGTGATAA 
CAGATAAGTCAGCTAATTTAACTTACCTTTCTTTGT 

BsrGI 

147|148s-EBS2 D547 spa-pNL9164 cloning; TGAACGCAAGTTTCTAATTTCGGTT 
ATAAATCGATAGAGGAAAGTGTCT 

 

D20spatgtF Identify intron insertion in spa in D20 SA; 
TTCTTTGCTCACTGAAGGAT 

 

D20spatgtR Identify intron insertion in spa in D20 SA; 
AAAATGCTTTCTATGAAATCTTACA 

 

pNLmcsF Amplify region around MCS in pNL9164; 
TTGTGTGTTTGTGATATAG 

 

pNLmcsR Amplify region around MCS in pNL9164; GATTTTCAAGCTCTAGTG  
D547spatgtF Identify intron insertion in spa in D547-14, D20-24, D830 SA; 

ATGGTTTGCTGGTTGCTTCT 
 

D547spatgtR Identify intron insertion in spa in D547-14, D20-24, D830 SA; 
GCTCAAGCACCAAAAGAGGA 

 

ESPF# Identify the presence of epidermidis serine protease gene in S. 
epidermidis  TTTGGAGGTTATCATATGAAAAAGAG 

 

ESPR# CTGAATATTTATATCAGGTATATTGTTTC  
# Primer sequence obtained from Iwase and colleagues [145] 
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Table 15: Detection of epidermidis serine protease (esp) gene in S. epidermidis isolated from 
participants undergoing SA recolonization 

Participant Type of SA 
recolonization 
performed 

Days esp gene containing S. 
epidermidis detected# 

Days esp gene containing 
S. epidermidis not 
detected 

D528 WT  Day 1 (D1), D3, D6, D8, D15, 
D17, D24, D28, D32 

None 

D757 WT  D1, D3, D6, D8, D10 D13, D15, D17, D20, D24, 
D27, D31 

D756 WT  D10, D15, D20 D1, D3, D6, D8, D17, D24, 
D28, D32 

D637 WT  D1, D3, D6, D8, D10, D13, D15, 
D17, D20, D24, D30 

None 

D502 WT  D1, D3, D6, D8, D10, D13, D15, 
D17, D20, D24, D30 

D1, D3, D6, D8 

D20 D20 WT and Δspa D1, D3, D6, D8, D10, D19, D21 None 
D20 D20-24 WT and 

Δspa 
D1, D3, D6, D8, D10, D13, D15, 
D17, D21, D24, D27, D35 

None 

D20 D20-24 WT and 
Δspa 

D1, D3, D6, D8, D10, D13, D15, 
D20, D23, D27, D31 

None 

D547 WT and Δspa D1, D3, D6, D8, D10, D13, D15, 
D20, D23, D27, D31 

  

D547 WT and Δspa D1, D3, D6, D8, D10, D13, D15, 
D17, D20, D24, D27 

None 

D830 WT and Δspa D1, D6, D10, D13, D15, D17, 
D20, D24, D27, D31 

D3, D8 

D713 WT  ND* ND 
D720 WT  ND ND 
D831 WT  ND ND 
# PCR-based identification of esp gene in S. epidermidis isolated throughout the duration of SA 
recolonization in a subset of participants. 
* Not determined 
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Figure 22: Inflammatory host response to SA nasal carriage corresponds to clearance 
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Shown are matched SA carriage levels with each point reflecting the CFUs recovered and 
cytokine data for all autologous colonization studies that were performed for greater than 22 
days. Dotted line in the top panel indicates the limit of SA CFU detection and (*) indicates nasal 
fluid collection days. The first tow cytokine panels represent cytokine quantification in pg/ml, 
pg/donor at indicated days. The third cytokine pane with color assignment reflects the fold 
change in each cytokine level compared to day -7 as shown in the legend. Note that within host 
differences in SA nasal carriage pattern was observed due to altered host immune response. 
 

 
Figure 23: Supporting multiplex cytokine panel 

Analytes that did not show any trend in either nasal carriage patterns are represented here. (A) 
SA nasal clearance (B) SA nasal survival. 

 
 

161 



 

 
Figure 24: Supporting growth kinetics data of WT and Δspa strains 

In vitro growth kinetics and ex vivo growth on nasal epithelial cells of the remaining WT and 
Δspa strains are illustrated here (N=3-4). No significant difference in fitness was observed. 
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