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ABSTRACT

Cardiovascular disease is currently the foremost cause of death within the United
States. Heatrt failure (HF) is a syndrome defined by the inability of the heart to
adequately execute requisite pump function in order to deliver nutrients and oxygen to
peripheral tissues, irrespective of etiology. One of the most common causes of HF is
chronic pressure overload due to hypertension. Ischemic heart disease is also a
common driver of HF, often in conjunction with hypertension. Pressure overload initially
causes compensatory metabolic changes. Structural changes follow shortly thereafter
typically resulting in left ventricular hypertrophy. Eventually, the heart loses the ability to
compensate for the aberrant hemodynamic load and begins failing. The failing heart is
unable to supply adequate adenosine triphosphate (ATP) for contractile function as
evidenced by falling phosphocreatine (PCr) levels. This energy deficit occurs
concurrently with a metabolic re-programming that results in a fuel utilization pattern
resembling the fetal heart. Notably, enzymes involved in catabolism of fatty acids, the
chief fuel substrate for ATP generation in the normal adult heart, are downregulated in
the failing heart. However, the extent to which alternative fuels compensate for
decreased fatty acid oxidation (FAO) is not well-known. Furthermore, consequences of
the fuel substrate switches that occur in heart failure are not well established.

In this work, we discover a new paradigm for alternate fuel utilization in the failing
heart and define consequences of altered fuel metabolism in HF. We discovered a post-
translational modification resultant from an accumulation of acetyl groups (C2) present
in a mouse model of early-stage HF and human HF. Mitochondrial proteins were found



to be hyperacetylated in the failing heart, and at least some of these alterations result in
diminished electron-transport chain (ETC) capacity as shown by mutagenesis studies
on succinate dehydrogenase A (SDHA). We also found an accumulation of C4-OH
carnitine, a by-product of ketone oxidation in HF. This metabolite aggregation occurred
alongside an increase in B-hydroxybutyrate dehydrogenase 1 (BDH1) transcript and
protein levels. This signature suggested that the failing heart shifted to ketone bodies as
a fuel. Subsequent experiments confirmed increased capacity for myocardial ketone
oxidation in compensated cardiac hypertrophy and in HF. The consequences of
increased ketone oxidation were then assessed using a cardiac-specific BDH1 knockout
(BDH1 KO) mouse. Despite not having any apparent defect at baseline, we found BDH1
KO mouse hearts are completely unable to oxidize 3-hydroxybutyrate. The deficit for
ketone oxidation capacity became consequential upon subjugation to transverse aortic
constriction with a small apical myocardial infarction (TAC/MI). The BDH1 KO mice
exhibit altered pathological cardiac remodeling compared to wild-type controls. These
latter data suggest the increased reliance on ketone oxidation in HF, mediated by
BDH1, is an adaptive response.

Together the results of these studies provide important information regarding the
consequences of altered fuel metabolism in HF. Recent reports of reduced HF mortality
and elevated circulating ketone levels in patients prescribed Empagliflozin make cardiac

ketone metabolism research in this dissertation particularly apropos.
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CHAPTER ONE: INTRODUCTION

Heart failure (HF) is a major worldwide health problem. The prevalence and mortality
associated with this syndrome are significant (1). Etiology of heart failure varies widely,
but the unifying characteristic is the inability of the heart to sufficiently pump enough
blood throughout the body in order to meet the nutritive and oxygen demands of
peripheral tissues. During the development of common forms of heart failure, contractile
dysfunction occurs concurrently with energy metabolic alterations (2). The failing heart
has diminished high-energy phosphate reserves suggesting inadequate capacity to
supply adenosine triphosphate (ATP) relative to demand (3). Therefore, investigating
the metabolic derangements of the failing heart and delineating the corresponding
changes in fuel utilization and energy production could lead to new strategies for
treatment of the syndrome. Whether metabolic derangements in heart failure are
causative or consequential is a subject of intense investigation. Substantial evidence
supports the conclusion that metabolic derangements serve as an aggravating element
of heart failure, if not outright causative. In some genetic forms of heart failure,
metabolic abnormalities clearly play a primary role as the causative factor (4).

Most heart failure patients in the United States have antecedent hypertension
and/or ischemic heart disease (5). Aberrant hemodynamics increase the amount of
pressure and consequently the requisite work the heart must do to maintain circulation.
Pressure overload of the heart results in early metabolic changes preceding structural
alterations. Chronic high-blood pressure eventually leads to hypertrophy of cardiac
myocytes (6). Cardiac hypertrophy occurs concomitantly with a fuel shift to a more
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“fetal” pattern including decreased reliance on fatty acids as a fuel substrate for ATP
generation. This decrease in fatty acid oxidation (FAO) persists into heart failure.
Downregulation in transcriptional factors and target FAO genes has been well-described
by our lab and others as a driver in the altered fuel oxidation response in the
hypertrophied and failing heart (4, 7). However, the degree to which alternative fuels
compensate for the decreased FAO and consequences of the fuel substrate switch
remain unknown. This is especially true for early-stage heart failure which is the subject
of relatively few inquiries to date. Research into the compensated hypertrophic heart
and early stages of heart failure is particularly important because earlier treatment in
disease progression, prior to significant myocyte loss, would undoubtedly benefit
patients.

In an effort towards understanding the metabolic events in the hypertrophied and
early-stage failing heart, our lab conducted unbiased systems profiling of the
transcriptome and metabolome in well-defined mouse models of compensated
hypertrophy (CH) and early-stage heart failure (8). The transcriptional profiles of
compensated hypertrophy and HF in this study showed strong positive correlation. The
data corroborated previous findings of downregulated FAO genes in the hypertrophic
and failing heart. However, the results also revealed the rather surprising finding that
expression of genes involved in oxidative phosphorylation (OXPHOS) is not altered in
either hypertrophy or early-stage heart failure (8). This finding contrasted studies
detailing global downregulation of OXPHOS gene programs in late-stage heart failure

(9-12).



While the transcriptional profile was similar between CH and HF, the metabolome
exposed profound differences. The CH samples did not show a differential metabolite
profile compared to sham controls. Conversely, there were multiple alterations in the HF
samples including an accumulation of medium and long-chain acylcarnitines and
decreased tricarboxylic acid cycle (TCA cycle) intermediates (8). In heart failure, the
discrepancy between the unaltered gene expression profile and the changes in the
metabolite profile suggested regulation of metabolism occurring at a post-transcriptional

level. This dissertation seeks to investigate the potential source of these metabolite

alterations and consequences in the failing heart.

Chapter 3, a first author manuscript, “Mitochondrial Protein Hyperacetylation in
the Failing Heart”, investigates post-transcriptional changes in CH and HF. This work
tests the hypothesis that lysine acetylation levels of mitochondrial proteins change in the
failing heart. Indeed, we found dramatic lysine hyperacetylation of mitochondrial
proteins not only in mouse models of HF but also in human HF. We then sought to
determine if these hyperacetylation events had functional relevance. To this end, we
focused on lysine 179 (K179) on succinate dehydrogenase, subunit A (SDHA), a
hyperacetylated residue in the failing heart. We report loss-of-function in complex Il of
the ETC and SDHA specific catalytic deficiency resulting from K179 acetylation
suggesting that at least some of the hyperacetylation observed in HF is consequential.

Chapter 4, a co-authored manuscript, “The Failing Heart Relies on Ketone
Bodies as a Fuel”, initially describes the proteome in hearts from CH and HF mouse

models. One of the findings in this unbiased query was that p-hydroxybutyrate



dehydrogenase 1 (BDH1) protein, a ketone metabolism enzyme, is upregulated in the
failing heart. This inspired the hypothesis that the failing heart increasingly depends on
ketone oxidation. Subsequent experiments provided additional support for this
hypothesis. Interestingly, a separate group arrived at the same conclusion in late-stage
human HF.

In Chapter 5, a first-author manuscript in preparation titled “Consequences of
Increased Ketone Oxidation in Heart Failure”, we examine the consequences of the
aforementioned ketone oxidation in HF. This investigation uses a novel cardiac-specific
BDH1 knockout (KO) mouse to directly interrogate ramifications of ketone oxidation in
the failing heart. An experiment utilizing isolated hearts perfused with labeled ketones
show BDHL1 is necessary for 3-hydroxybutyrate oxidation in the heart. BDH1 KO mice
subject to transverse aortic constriction combined with a small apical myocardial
infarction (TAC/MI) exhibit a more severe degree of pathological cardiac remodeling
compared to BDH1 wild-type (WT) leading us to hypothesize that increased ketone
oxidation in HF is an adaptive response. Delineation of the mechanism governing the
BDH1-mediated ketone oxidation benefit in HF remains an active area of investigation.

In summary, this dissertation project was designed to explore the metabolic
derangements in the failing heart. The overall objective was to identify new candidate
therapeutic targets or biomarkers that could aid in treating patients with HF. The
following specific aims were pursued to accomplish this goal:

1.) To define significant and functional consequences of elevated mitochondrial acetyl

pools in the failing heart.



2.) To determine alternative fuel substrates utilized in the failing heart in context of
reduced fatty acid oxidation.
3.) To determine consequences of elevated ketone oxidation, as an alternate fuel, in

heart failure.



CHAPTER TWO:
AN OVERVIEW OF LITERATURE REGARDING HEART METABOLISM

IN PHYSIOLOGICAL AND PATHOPHYSIOLOGICAL STATES
Cardiovascular disease (CVD) kills more people in the United States than any other
cited cause of death. One in nine death certificates implicate heart failure (HF) as a
primary or corollary causation. Individuals diagnosed with HF face daunting odds for
long-term survival. After a patient is initially hospitalized for heart failure, 10.4% die
within a month, 22% die within a year, and 42.3% die within five years (1). Itis
noteworthy that current mortality rates signify improvement. Thirty-four years ago, 50%
of HF patients died within two years of initial hospitalization (13). Similarly, in most of
the world, ischemic heart disease mortality rates declined significantly over the last 30
years (14). The decrease in mortality is largely attributed to changes in treatment
regimens and developments in implantable devices (15).

However, the incidence of heart failure has not similarly improved (1). The fact
that CVD remains the leading cause of death reflects the substantial prevalence of HF;
afflicting almost 6 million adults in the United States alone. Furthermore, the health
burden is expected to grow with an almost 50% increase in prevalence by 2030 (1).
Therefore, it is essential to expand current knowledge of HF pathology and continue

developing strategies for prevention and treatment.



Cardiac Function

The Heart is an Essential Organ to Life

All living things must meet basic requirements of cellular processes in order to survive.
At the most fundamental level, a cell must receive requisite nutrients and conversely
dispose of generated waste products. A prokaryotic organism can accomplish this task
by utilizing a variety of mechanisms including passive diffusion and active transport to
move nutrients and waste across a cell membrane and/or cell wall. In single cell
eukaryotes, these processes occur similarly across membranes of the various
organelles, and compartmentalization allows for appreciable specificity in deliverance of
proper nutrients and removal of appropriate waste. The transport of nutrients and waste
becomes more complex in multicellular organisms as the surface area of the cell
decreasingly interfaces with the environment. As the level of organismal complexity
increases, the requirements to specifically transport nutrients and waste to proper
physical locations must correspondingly evolve (17). In large multicellular organisms like
humans, the process to transport nutrients and waste throughout the body is mediated
by a closed circulatory system.

A closed circulatory system accommodates the blood that carries oxygen and
nutrients to all the cells of the body and similarly carries waste away from origination
cells to sites of disposal. Blood, like all physical substances on Earth, must adhere to
the physical limitations imposed by gravity; and as such, circulation requires an input of
mechanical energy. In closed circulatory systems, the energy to move blood throughout

the body is provided by a biotic pump called a heart. The heart pumps blood throughout
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the body by contracting and relaxing, emptying and filling the chambers with blood
respectively. The rhythm and force of contraction must precisely provide temporal and
spatial regulation of blood flow. Thus, preservation of vertebrate life relies on faithful
operation of the heart (18).

The pump function of the heart results from deliberately coordinated contractions
produced within cardiac myocytes. The contractions made within an individual myocyte
result from force generation produced by proteins in the extracellular matrix. The
proteins involved in myocyte contraction constitute the intracellular contractile
apparatus. The mechanical energy of contraction is derived from transformation of

chemical energy released during adenosine triphosphate (ATP) hydrolysis (6).

Oxidative Phosphorylation in the Cardiac Myocyte

Since contraction of cardiac myocytes depends on ATP, a sufficient supply of ATP is of
paramount importance. The healthy, developed heart generates ATP largely through
oxidative phosphorylation (OXPHOS), which occurs in the mitochondria (16). ATP
production from OXPHOS takes advantage of an electrochemical gradient called the
proton motive force (19). Complexes I, lll, and IV of the electron-transport chain (ETC)
pump protons obtained from oxidation of reducing equivalents into the space between
the inner and outer mitochondrial membranes (20). The electrons obtained from
oxidation of reducing equivalents move through the ETC in a series of redox reactions
that leave the electrons and corresponding complexes in a lower energetic state. This

continues until the electrons reduce oxygen and form water. The energy released during



the transfer of electrons is used to pump protons into the intermembrane space against
the concentration gradient (21). The requirement of oxygen as a terminal electron
acceptor in the ETC is absolute. In absence of oxygen, electrons cannot proceed to
lower energy states, and the proton-pumping complexes, in turn, will not have sufficient
energy to send protons to the intermembrane space (6). For this reason, the importance
of sufficient delivery of oxygenated blood to cardiac myocytes cannot be overstated.

The collection of protons in the intermembrane space of the mitochondria create
a charge differential across the inner membrane. The F, component of complex V, also
called ATP synthase, functions as an ion channel and allows reflux of the protons into
the mitochondrial matrix. The reflux of protons releases free energy previously stored as
potential energy in the electrochemical gradient. The chemical energy released by
proton flow into the mitochondrial matrix is transformed into mechanical energy rotating
the stalk and F, subunit of ATP synthase. The rotation causes conformational changes
in the F; subunit of ATP synthase resulting in the shape required to catalyze
phosphorylation of adenosine diphosphate (ADP) using an inorganic phosphate and
produce ATP (22).

Reducing equivalents employed by the ETC are nicotinamide adenine
dinucleotide plus hydrogen (NADH) and flavin adenine dinucleotide plus hydrogen
(FADHy). NADH and FADH, are formed from a variety of redox reactions occurring in
the cytoplasm and mitochondria. Redox enzymes catalyze the removal of hydrogens
from carbon based substrates, often referred to as fuels, and subsequent reduction of

either nicotinamide adenine dinucleotide (NAD") or flavin adenine dinucleotide (FAD).



The NADH made in the cytoplasm must be transported to the mitochondria, and this
process occurs via the malate-aspartate shuttle (23).

The collected pool of NADH in the mitochondria is oxidized by NADH
dehydrogenase (complex I), a large membrane-bound flavoprotein. Mammalian
respiratory complex | contains 45 subunits with 14 of those catalytically involved in the
oxidation of NADH, transfer of electrons, and pumping of protons (24). The electrons
from NADH are transferred through flavin mononucleotide co-factors to iron-sulfur
clusters and eventually reach ubiquinone at the ubiquinone binding site.

FADH, oxidation occurs at the site of the dehydrogenase reaction. FADH
generated from fatty acid oxidation (FAQO) involves the electron transfer flavoprotein
(ETF). ETF conducts electrons from FADH, to ubiquinone in the respiratory chain. FAD
is directly reduced to FADH; by succinate dehydrogenase (SDH) in a reaction coupled
with succinate oxidation. The electrons are transferred through iron-sulfur clusters of

SDH to ubiquinone. The reduced ubiquinone pool is oxidized by complex Il (25).

Maintenance of ATP Levels in the Heart

In summary, proper function of the ETC requires sufficient: 1) oxygen, 2) catabolic
substrates, and 3) mitochondrial oxidative capacity. The quantity of the aforementioned
factors deemed sufficient depends completely on the demand for ATP. The cardiac
demand for ATP is dictated primarily by the needs of the contractile apparatus, but
anabolic processes also require ATP, albeit a much smaller amount. The heart must

respond virtually instantaneously to the needs of cells, and consequently cardiac
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workload is dynamic. An expeditious mechanism is in place to accommodate
fluctuations in ATP demand (26).

The mitochondrial creatine kinase (MtCK) functions to generate a high-energy
phosphate reservoir in the heart. The creatine kinase reaction works in tandem with
adenylate kinase (AK) to regulate ATP levels and localization. When the heart produces
more ATP than is required, it stores the high-energy phosphate in the form of
phosphocreatine (PCr). PCr also serves to transfer ATP from mitochondria to the
myofibrils, the main site of ATP utilization in the cardiac myocyte. Conversely, when the
energetic demands exceed the rate of ATP production, the heart uses the phosphate
stored in PCr to phosphorylate ADP and make requisite ATP (27). The PCr reserves,
though, only provide momentary compensation. Typical concentrations of ATP and PCr
in a healthy heart can only sufficiently supply no more than a few heart beats before

depletion (6). This fact underscores the importance of flawless cardiac bioenergetics.

Physiological Metabolic Plasticity in the Heart

Cardiac Metabolism during Development

The heart is an energetic omnivore capable of utilizing a variety of substrates to
produce ATP depending on its physiological or pathophysiological circumstances. One
of the most well-described fuel substrate switches occurs in the developing heart. The
heart is the first functional organ in the embryo. It continues to grow in order to meet the

circulatory demands of a growing fetus. Cellular growth, proliferation, and limited
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oxygen availability disproportionally favor anaerobic glycolysis and lactate oxidation as
lipids are needed for biosynthesis of daughter cells.

An embryonic heart primarily uses glycolysis to generate ATP independently of
the mitochondria. The catalytic machinery necessary for OXPHOS is not yet well-
developed, and lactate oxidation accounts for the majority of fetal oxygen consumption.
Only 15% of the ATP generated in the fetal heart is acquired from FAO (28). Another
major determinant of fetal heart metabolism is substrate availability. Circulating fatty
acids are scarce in the fetus whereas lactate is abundant. The fetal heart readily
consumes lactate and predominately expresses the A isomer of lactate dehydrogenase
(LDHA), which converts pyruvate to lactate (29). The metabolic phenotype of the fetal
heart can be summarized as primarily deriving ATP from glycolysis and lactate oxidation
with fatty acids playing a relatively minor role.

Immediately preceding birth, the fetal heart undergoes a surge of mitochondrial
biogenesis, exponentially increasing the number of mitochondria in the heart (30, 31,
32). Recent work also implicated mitophagy of fetal mitochondria as an essential
element in cardiac maturation (33). In the early neonatal period, approximately half of
cardiac ATP is derived from glycolysis. The levels of circulating lactate decrease
dramatically, and consequently lactate oxidation contributes far less to ATP production.
Ketone bodies are believed to be transiently oxidized in the postnatal period. The
remaining ATP is derived from a dramatic increase in capacity for FAO (34). During the
neonatal period, mitochondrial content expands and matures through a process that

involves both biogenesis and fusion/fission dynamics (35).
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Within days of birth, the heart reaches maturation with respect to its bioenergetic
profile. Rates of cardiac FAO are approximately 10-times levels present at birth
concomitant with the ingestion of milk. The increased reliance on fatty acids for ATP
production accompanies a parallel decrease in glycolysis (35, 36).

A network of transcription factors facilitates metabolic gene expression changes
in the postnatal developing heart. Work in the Kelly lab demonstrated that peroxisome
proliferator-activated receptor gamma coactivator 1-alpha (PGC-1a) is necessary and
sufficient for perinatal mitochondrial biogenesis (35, 36). PGC-1a works as a master
regulator by co-activating several critical transcription factors: the peroxisome
proliferator-activated receptors (PPARa, /5, and y), the estrogen related receptors
(ERRa, B, y), and the nuclear respiratory factors (NRF1/2) (37, 38, 39). PPARa and
ERR, in coordination with PGC-1a, induce FAO gene expression allowing for the shift to
increased reliance on fatty acids for ATP generation (40). The ERR transcription factors
are also essential for inducing expression of multiple tricarboxylic acid cycle (TCA cycle)
and OXPHOS genes. They are also at least partially responsible for regulating
expression of developmentally appropriate excitation-contraction coupling proteins (41,
42, 43). NRF-1 and NRF-2 control expression of critical subunits that form ETC
complexes. They also regulate gene expression necessary for mitochondrial
deoxyribonucleic acid (mtDNA) replication and transcription (44, 45).

Contrary to the mitochondrial dynamism seen in the developing heart, rates of
mitochondrial turnover in the adult heart are relatively slow, occurring once every two

weeks. Existing mitochondria must instead adjust their oxidative capacity and fuel
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substrate preference to alterations in physiology (46). Under normal physiological
conditions, OXPHOS supplies approximately 90% of the heart’s ATP and fatty acids are
the preferential fuel substrate. However, the developed myocardium maintains
substantial metabolic plasticity and can use amino acids, glucose, lactate, and ketones
to generate energy (47). This flexibility allows the heart to maintain adequate cardiac

power provided enough substrate is available (48, 49).

Fuel Substrate Preference in the Healthy Adult Heart

In a physiological setting, the heart encounters a variety of potentially competing
substrates. Under these conditions, the healthy heart preferentially oxidizes fatty acids
to form acetyl-CoA and reducing equivalents for the ETC (50). FAO accounts for 60-
90% of the ATP generated in the adult heart (30). Demonstrating the indelible
preference for FAO, providing the heart with excessive glucose does not stimulate
increased pyruvate-derived acetyl-CoA. Similarly, contribution to the acetyl-CoA pool
from the oxidation of fatty acids is not curtailed when uptake of glucose is elevated with
insulin. One can surmise that in the healthy heart, levels of glucose entering the
myocardium do not precipitate decreased FAO (51).

Despite preferentially using fatty acids, the heart will continually import glucose.
The import of glucose does not depend on rates of FAO. Instead, when FAO provides
adequate acetyl-CoA, the pyruvate formed from glycolysis will be converted to lactate or
glycogen (51, 48). The Randle cycle explains this fuel substrate prioritization,

implicating products of FAO as short-term graduated inhibitors of glycolysis (52).
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The normal heart maintains the capacity to oxidize glucose if necessary. The
heart appears to maintain its voracious appetite for glucose as a preparatory measure
for acute metabolic stress. With rapid elevations in workload, the heart will increasingly
use pyruvate to form acetyl-CoA. Also, in hypoxic environments, the heart continues to
import circulating glucose, anaerobically producing ATP through glycolysis and
generating lactate (49, 51). Nonetheless, the heart’s ability to import glucose does
encounter an upper limit, necessitating at least a second fuel substrate in cases of long-
term metabolic stress (49).

Ketone oxidation is considerably limited in the normal, adult heart. Unlike glucose
in the presence of competing substrates, rates of ketone oxidation do not increase with
an increase in cardiac workload (49, 51). However, under experimental conditions fully
suppressing FAO, there is an elevation in ketone oxidation. In fact, an increase in
myocardial ketone oxidation in absence of FAO is preferential to increased glucose
oxidation. The rate of myocardial ketone oxidation is inversely proportional to the rate of
FAO. When provided adequate glucose and ketones, the heart can maintain constant
ATP production in absence of FAO by using ketones as a primary fuel and glucose as a
secondary fuel (49). It is important to note, though, that cardiac ketone metabolism has
not been extensively studied in vivo, and the aforementioned studies were largely
conducted in artificial conditions.

Much of the predilection for FAO in the heart can be attributed to gene regulation
by nuclear receptor transcription factors acting as metabolic sensors. The Kelly

laboratory defined this network in heart. A variety of endogenous fatty acids serve as
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activating ligands for PPARs. Therefore, in the presence of fatty acids, PPARs will
regulate expression of target genes in an isoform specific manner. PPARa and
PPARJ/5 both activate FAO enzyme expression, and PPARJ/d additionally activates
expression of glucose oxidation enzymes (53, 54, 40).

The importance of PPARa as a metabolic sensor was demonstrated in
experiments with cardiac-specific overexpression of PPARa in mice. These mice have
increased rates of cardiac FAO. This substantial increase in FAO occurred concurrently
with an accumulation of triglycerides in the heart. Interestingly, the PPARa
overexpressing mice develop left ventricular hypertrophy (LVH) and dysfunction. This
cardiac pathology can then be prevented by deletion of the fatty acid import protein
cluster of differentiation 36 (CD36). These experiments provide clear evidence that the
levels of PPARa expression are carefully calibrated for optimal rates of import and
oxidation of fatty acids (55).

Other experiments provided further elucidation of the complex gene program
governing FAO. ERRa has been shown to activate expression of PPARa amongst other
metabolic genes (43). ERRa is coactivated by PGC-1a to regulate FAO enzyme
expression such as the medium chain acyl-CoA dehydrogenase (MCAD). MCAD
catalyzes the first step in oxidation of medium-chain fatty acids and is a necessary
intermediate enzyme for oxidation of long and very-long chain fatty acids (42, 56).
Furthermore, ERRa has been shown to regulate nearly all other aspects of oxidative

energy transduction including transcription of TCA cycle genes and ETC related genes
(57, 42).
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Metabolism in the Failing Heart

Demand for Energy Exceeds Supply in Heart Failure

Heart failure in adults is a progressive syndrome that begins when the healthy heart
encounters stress. Chronic pressure-overload of the heart, as occurs in hypertension,
typically results in LVH if left untreated (58, 5). Indeed, high-blood pressure is a
notorious risk factor for heart failure; 75% of HF patients have antecedent hypertension
1, 5).

The mechanism by which hypertension causes hypertrophy occurs at a cellular
level. As afterload (blood pressure) increases, velocity of myocyte shortening
decreases. Ventricles with myocytes enduring these conditions become less effective at
ejecting blood against the elevated systemic pressures (6). To compensate, the heart
increases the number of sarcomeres and mitochondria to supplement contractile
function. This, in turn, triggers a hypertrophic growth response resulting in enlarged
myocytes (59). The auxiliary contractile function in the pathological hypertrophic growth
response is associated with reactivation of gene programs encoding fetal forms of
contractile proteins (60). The increased workload placed upon the heart from abnormal
hemodynamics intrinsically alters left ventricular function and consequently energy
metabolism (2). In fact, hypertension in absence of hypertrophy results in PCr levels
equitable to normotensive individuals, suggesting sufficient capacity for the heart to
accommodate acute elevations in workload (2).

The alterations in cardiac metabolism begin at onset of pressure-overload and

precede myocyte hypertrophy. In human heart failure, considerable evidence exists to
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support the hypothesis that the failing heart cannot produce sufficient ATP for energetic
demand. One study found concentrations of ATP and PCr reduced by 35% and 51%
respectively in the failing human heart (3). Other studies have reported significant
declines in PCr with no change in ATP. These latter studies concluded the discrepant
data likely reflected an earlier stage of heart failure (61). These findings in humans have
also been recapitulated in experimental models of HF (62).

Taken together, these data suggest progressive deterioration in the ability of the
failing heart to meet energetic demand. In early stages of HF, the heart cannot
sufficiently produce ATP. The existing PCr high-energy phosphate stores compensate,
resulting in lower PCr levels but maintenance of ATP concentrations. As heart failure
progresses, PCr levels continue to decline, unable to compensate for insufficient ATP
production. Additionally, significant decreases in creatine and MtCK activity in the failing
heart have been reported, potentially accounting for declining ATP concentrations
before total exhaustion of PCr (63).

In addition to the “energy-starved” condition accompanying heart failure, many
lines of evidence support the notion that metabolic perturbations can cause heart
failure. One of the most compelling pieces of evidence exists in the way of inherited
genetic conditions. Inborn errors in FAO genes cause early onset cardiomyopathy
(PMID: 8114864). Defects in mitochondrial encoded genes cause a variety of
myopathies. Mutations in nuclear encoded genes involved in metabolism also cause
hypertrophy and heart failure (64). A number of knockout and transgenic mice designed

with perturbations in cardiac OXPHOS enzymes develop heart failure as well (65). For
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instance, in loss-of-function experiments deleting ERRa in a mouse, pressure-overload
results in decompensated heart failure (66).

Interestingly, not all transcription factors appear independently critical as many
important regulatory functions have biological “fail-safe” compensatory strategies. For
example, PGC-1a knockout mice do not display overt dysfunction under basal
conditions (35). However, following pressure-overload, loss of PGC-1a results in
accelerated cardiac remodeling (PMID: 16775082). Knockout of peroxisome
proliferator-activated receptor gamma coactivator 1-beta (PGC-1p) results in a similarly
normal phenotype. Further investigation elucidated PGC-1f as functionally redundant,
essentially assuming the role of PGC-1a in the knockout (PMID: 16775082,
PMID:18628400 ). However, the ability for PGC-1-mediated compensation to maintain
function only applies to non-stressed conditions. Mice lacking both isoforms of PGC-1
lose compensatory phenotype seen in single KO, resulting in an early perinatal lethality
accompanied by a late fetal arrest of mitochondrial biogenesis in the
heart(PMID:18628400 ). The decrease in FAO that occurs in HF, which is discussed in
detail in the next section, is especially striking given the redundancy in the oxidative

metabolism gene program.

Fuel Shifts in the Failing Heart: Culprit or Innocent Bystander?

The metabolic plasticity of the heart permits rapid changes in fuel substrate utilization.
Onset of hypertension triggers a decreased reliance on fatty acids as an oxidative fuel

(2). Interestingly, decreased myocardial FAO in hypertensive patients is an independent
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predictor of LVH (66). The rationale for the heart decreasing fatty acid utilization upon
pressure-overload is not well-understood. Furthermore, it is not known if the correlative
decreases in FAO observed during hypertension are causal or consequential of
hypertrophy and eventual failure.

As discussed previously, there is substantial evidence supporting the idea that
the failing heart cannot adequately meet ATP demand. Generally, there is also
agreement that worsening heart failure accompanies reductions in FAO rates. In end-
stage human heart failure particularly, there is well-established impairment in FAO (4).
This is supported by multiple reports of dramatic downregulation in FAO enzymes
including significant reductions in long-chain acyl-CoA dehydrogenase (LCAD) and
MCAD (7).

Early-stage idiopathic dilated cardiomyopathy patients also consistently have
lower FAO rates (4). Experimental models of pressure-overload induced HF repeatedly
show decreases in FAO enzyme expression as well (67, 68, 7, 8). Furthermore, some
studies equate decreased FAO enzyme levels with decreased FAO rates. For example,
in a canine model of HF, 40% reductions in MCAD protein levels are correlated with an
equivalent 40% decrease in FAO capacity (69).

There are a few caveats regarding the downregulation of FAO in HF. Some
etiologies of HF demonstrate elevated FAO capacity early in disease progression and
only exhibit downregulation of FAO in late-stage HF (4). Still other etiologies have a
completely opposite metabolic signature; the diabetic failing heart, as an example, does

not display the characteristic decreased FAO. Instead, diabetic hearts experience an
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upregulation of FAO in hypertrophy, likely reflective of the high levels of free fatty acids
activating PPARs (55, 70). The majority of HF, though, occurs as a result of pressure-
overload and consistently presents a decreased degree of FAO.

The regulatory mechanisms dictating the decrease in FAO during pressure-
overload induced HF are relatively well-described. Similar to the reactivation of fetal
isoforms of contractile genes, the metabolic profile in HF is often referred to as a
reversion to a “fetal” program (30). The ability of the heart to compensate under
hemodynamic stress depends on the same gene regulatory mechanisms responsible
for the cardiac fuel substrate switch that takes place during development. PPARa levels
and activity decline in human HF and animal models of pressure-overload induced
cardiac hypertrophy (7, 71). Also in human HF, expression of ERR target genes are
significantly downregulated (66). Notably, the depression of FAO gene expression starts
in hypertrophy preceding overt dysfunction and persists through heart failure (30).

While evidence for lower FAO rates in HF is well-documented, the degree to
which the failing heart compensates with an alternative fuel substrate is more enigmatic.
Moreover, considerable questions regarding the consequences of a fuel substrate
switch in HF remain unanswered. The failing heart appears to, at least in part,
compensate for decreased FAO with elevated glycolysis. A few studies report elevated
glucose oxidation gene expression (55, 70). However, the vast majority of studies report
no change in levels of enzymes involved with import of glucose, glycolysis, or
conversion of pyruvate into acetyl-CoA (4). The absence of altered glycolytic molecular

machinery implicates regulation of glycolytic enzyme activity, potentially via
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mechanisms employed by the Randle cycle. Therefore, the most plausible explanation
for increased glycolysis in HF is not a deliberate compensation but instead occurs
fortuitously by virtue of decreased FAO. Additionally, the degree to which glycolysis can
effectively augment ATP production is not clear (4).

The research directly describing lactate utilization and ketone oxidation in the
failing heart is scarce. Rodent models of heart failure are consistently reported to have
increases in monocarboxylate transporter 1 (MCT-1), which import both lactate and
ketones (72). Multiple studies also report elevated plasma ketone levels and hepatic
ketogenesis in heart failure patients (73). Additionally, strong positive correlation exists
between acetone concentrations in exhalation and severity of HF (74). Another
investigation directly measured myocardial ketone extraction rates between healthy and
failing human hearts reporting no difference (75). This summarization of the current
literature epitomizes the lack of robust research conducted to date regarding alternative
fuel substrate utilization in the failing heart.

There is no doubt that metabolism plays a critical role in heart function and
dysfunction. Thus, examining the metabolism of the failing heart will certainly provide
valuable insight to inform treatment decisions. Some of the intricacies of metabolism in
the failing heart have been described. It is well-established that downregulation of FAO
occurs in HF. Elucidation of the transcriptional circuitry regulating FAO during HF has
provided insight into the mechanisms governing this process. However, very little is
known about the role of alternative fuel substrates in HF. Questions remain such as,

what happens when FAO is downregulated? What fuel substrates power the failing
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myocardium? What dictates preference for one substrate versus another in HF? How
does alternative fuel substrate utilization affect prognosis of heart failure?

Thus, the objective of this dissertation aims to begin delineating the
consequences of altered short-chain carbon metabolism in heart failure. This
dissertation specifically tests the hypotheses that during heart failure: 1) metabolite
derangements, namely increases in acetyl-pools, result in post-translational
modifications of key metabolic proteins, 2) metabolic reprogramming occurs that
increases myocardial ketone oxidation capacity, and 3) the increased capacity for

ketone oxidation is an adaptive mechanism.
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CHAPTER THREE:
MITOCHONDRIAL PROTEIN HYPERACETYLATION
IN THE FAILING HEART"

This chapter has been published as JL Horton, OJ Martin, L Lai, NM Riley, AL
Richards, RB Vega, TC Leone, DJ Pagliarini, DM Muoio, KC Bedi Jr., KB Margulies, JJ
Coon, and DP Kelly. Mitochondrial protein hyperacetylation in the failing heart. JCI
Insight. 2016;1(2):e84897

Abstract

Myocardial fuel and energy metabolic derangements contribute to the pathogenesis of
heart failure. Recent evidence implicates posttranslational mechanisms in the energy
metabolic disturbances that contribute to the pathogenesis of heart failure. We
hypothesized that accumulation of metabolite intermediates of fuel oxidation pathways
drives posttranslational modifications of mitochondrial proteins during the development
of heart failure. Myocardial acetylproteomics demonstrated extensive mitochondrial
protein lysine hyperacetylation in the early stages of heart failure in well-defined mouse
models and the in end-stage failing human heart. To determine the functional impact of
increased mitochondrial protein acetylation, we focused on succinate dehydrogenase A
(SDHA), a critical component of both the tricarboxylic acid (TCA) cycle and respiratory
complex II. An acetyl-mimetic mutation targeting an SDHA lysine residue shown to be
hyperacetylated in the failing human heart reduced catalytic function and reduced
complex II-driven respiration. These results identify alterations in mitochondrial acetyl-
CoA homeostasis as a potential driver of the development of energy metabolic

derangements that contribute to heart failure.
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Introduction

The adult mammalian heart requires enormous amounts of energy to sustain contractile
function. Given that cardiomyocyte energy stores are limited, ATP must be continually
generated by oxidation of carbon fuels, necessitating a high-capacity finely tuned
mitochondrial system (1-5). Significant evidence suggests that insufficient capacity for
mitochondrial fuel oxidation and ATP production is causally linked to the development of
heart failure (HF). For example, human genetic defects in mitochondrial fatty acid
oxidation (FAO), the chief fuel utilization pathway in heart, or derangements in oxidative
phosphorylation (OXPHOS)/electron transport complex (ETC), cause cardiomyopathy
(6). Studies conducted in animal models of HF have shown reduced capacity for
mitochondrial FAO and increased reliance on glycolysis (7—16). Cardiac magnetic
resonance spectroscopy studies in humans have shown that myocardial “high-energy”
phosphocreatine (PCr) stores are reduced with pathological ventricular hypertrophy and
decline further during the transition to HF (17-21). Notably, the [PCr]/[ATP] ratio
correlates with HF severity and is a strong predictor of cardiovascular mortality (22, 23).
The mechanisms involved in curtailing the ability of the failing heart to satisfy its
voracious appetite for ATP are a subject of intense investigation. To date, most studies
have focused on late-stage HF. The results of such studies have identified widespread
changes in energy metabolic gene expression associated with structural and functional
mitochondrial abnormalities, cardiomyocyte death, and fibrosis, likely reflecting the final
common pathway of late-stage disease (24-27). However, the primary events involved

in energy metabolic remodeling en route to HF have not been well characterized.
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Recently, we employed an unbiased systems biology approach to identify molecular
signatures of altered energy metabolism in the hypertrophied and early-stage failing
mouse heart using integrated transcriptomics and metabolomics (28). This strategy
unveiled the surprising finding that transcription of the majority of genes involved in
mitochondrial energy transduction and OXPHOS is not altered in the hypertrophied and
failing heart, with the notable exception of a progressive downregulation of genes
involved in FAO. In striking contrast, tissue metabolite pools were broadly perturbed in
the failing heart and distinguished the onset of contractile dysfunction and ventricular
remodeling. These integrated profiling results strongly suggest that posttranslational
mechanisms are an important contributor to the derangements in mitochondrial carbon
flux during development of HF.

The results of our recent metabolomic profile of the failing mouse heart (28)
revealed a potential mechanism whereby mitochondrial proteins may be altered at the
posttranslational level. Notably, levels of acetylcarnitine (C2-carnitine), which are
thought to reflect changes in the mitochondrial pool of acetyl-CoA, were increased in the
failing heart but not in compensated cardiac hypertrophy (28). Consistent with this
finding, acetyl-CoA levels were recently shown to be increased in the failing human
heart (29). There is evidence that increased acetyl-CoA concentration can drive
acetylation of nonhistone proteins (30, 31). In addition, emerging evidence indicates that
increased lysine acetylation may result in enzymatic dysfunction (30, 32, 33).
Accordingly, the observed expansion of the acetyl-CoA pool in the failing heart suggests

that increased mitochondrial protein acetylation may contribute to derangements in
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mitochondrial energy metabolism in the failing heart. To address this possibility, we
conducted unbiased, mass spectrometric—based, acetylproteomic studies on heart
samples from well-defined mouse models of cardiac remodeling and in the failing
human heart. The results demonstrate a striking increase in mitochondrial protein lysine
acetylation in the failing heart. Our results also suggest that alterations in protein
acetylation can affect mitochondrial fuel oxidation and respiration, contributing to the

vicious cycle of “energy starvation” that contributes to the syndrome of HF.

Results

Increased Lysine Acetylation of Mitochondrial Proteins in the Failing Mouse Heart

The mitochondrial acetylproteome was profiled in cardiac samples from well-defined
mouse models of compensated pathologic cardiac hypertrophy and HF using mass
spectrometry. Established mouse models of pressure overload—induced cardiac
hypertrophy and failure were used for these studies. In brief, transverse aortic
constriction (TAC) was performed on C57BL/6J mice (34). TAC performed on 8- to 12-
week-old C57BL/6J mice resulted in significant left ventricular (LV) hypertrophy, with
preserved systolic function and no evidence of chamber volume remodeling or reduced
ejection fraction at the 4-week time point, referred to here as compensated hypertrophy
(CH). In a second age-matched experimental group, termed the HF group, TAC was
combined with a small apical myocardial infarction (MI) achieved by placing a ligature in
the distal portion of the left anterior descending coronary artery, which resulted in

predictable global LV systolic and diastolic dilatation and significantly reduced LV
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ejection fraction (LVEF) 4 weeks after the procedure (28, 35). This approach allowed us
to define molecular profiles in the early stages of CH and HF at a similar age and
duration of pressure overload.

Cardiac ventricular mitochondria were purified from the samples taken from CH
and HF groups and corresponding sham-operated controls. Acetylated peptides were
enriched from the extracted mitochondrial proteins via anti-acetyl lysine antibodies. A
total of 244 unique acetylated lysine sites situated in 82 mitochondrial proteins (from a
total of 383 mitochondrial proteins identified) were identified (Supplemental Table 1).
57% of the identified acetylated proteins exhibited two or more acetylated lysine
residues. Considering fold changes greater than = 1.5 as compared to control samples,
42 mitochondrial protein acetylation sites were differentially decorated in the HF
samples (increased acetylation in 37 residues and decreased acetylation in 5
residues; Supplemental Table 2). Of the 37 residues with increased acetylation, 16 of
these sites were identified previously as potential targets of sirtuin 3 (SIRT3)
deacetylase activity in mouse heart (32) (Supplemental Table 2).

Pathway analysis (Ingenuity Pathway Analysis) demonstrated that acetylated
mitochondrial proteins involved in mitochondrial energy transduction were highly
represented (Supplemental Table 3). Notably, a significant number of hyperacetylated
proteins in the HF samples were embedded in key fuel catabolic and ATP synthetic
pathways, including FAO, tricarboxylic acid (TCA) cycle, and ETC (Figure
1A and Supplemental Table 3). In contrast to the acetylproteomic profile of the HF

samples, the CH group exhibited fewer hyperacetylated proteins and greater directional
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heterogeneity (hyperacetylated and hypoacetylated proteins) in the FAO, TCA, and ETC
pathways (Figure 1B and Supplemental Table 4). Taken together, these findings
suggest that, during the progression from compensated cardiac hypertrophy to HF, net

mitochondrial protein acetylation increases.
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Figure 1. Increased lysine acetylation of mitochondrial proteins involved in multiple mitochondrial
energy transduction pathways in cardiac tissue of mice from the heart failure group.

(A) Lysine-acetylated proteins (indicated by circles, protein symbols are noted) identified by mass
spectrometry in both heart failure (HF) samples and sham-operated control samples (n = 2/group) in each
of the 3 main mitochondrial fuel oxidation/ATP synthesis pathways (B-oxidation, tricarboxylic acid [TCA]
cycle, and electron transport complex [ETC]). All acetylated residues with at least + 1.5 fold change for
mean HF/control values are shown. Specific lysine acetylation sites are noted in parentheses. Acetylation
status is indicated by color coding: proteins with increased acetylation (HF/sham) are in red; proteins with
decreased acetylation are in blue; and proteins with no change are in gray. (B) All detected acetylated
mitochondrial proteins were rank ordered according to log2 fold change between compensated
hypertrophy (CH) or HF and their corresponding sham controls in mean protein abundance along the x
axis (blue circles). The log2 fold change between CH or HF and corresponding sham controls of each
detected acetyl isoform (red squares, normalized to corresponding protein abundance) is plotted on the y
axis in the same position on the x axis as the corresponding protein. The dashed line represents no
change in acetylation level. Additional numerical data is provided in Supplemental Tables 2-4. SDHA,

succinate dehydrogenase A.
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Increased Acetylation of Mitochondrial Proteins in the Failing Human Heart

To determine the relevance of the cardiac acetylproteomic findings in mice to human
HF, we interrogated the cardiac acetylproteome of the failing human heart. For these
studies, we conducted proteomics on samples prepared from LV of 5 cardiac transplant
recipients with end-stage dilated cardiomyopathy (DCM group, LVEF = 10%) and 5
nonfailing (NF) organ donors with normal LV function (NF group, LVEF = 47%—-80%).
Significant acetylation changes were defined as a cutoff of + 1.5 fold change or P < 0.05
based on a Student’s t test when comparing mean values of the DCM versus NF
groups. Similar to the findings in the mouse HF samples, failing human heart samples
exhibited a marked increase in mitochondrial protein acetylation (Supplemental Table
5). The general increase in mitochondrial protein acetylation in the DCM samples is
shown in heat map (Figure 2A) and graphic (Figure 2B) formats. Whereas many of the
hyperacetylated lysine residues are shared between mouse and human HF samples, a
substantial number were species-specific (as seen in the comparison

between Supplemental Tables 3 and 5). The reason for this latter observation is unclear
but likely relates to differences in the relative acetylome coverage in each study and, in
some cases, nonconserved residues between mice and humans. Importantly, similar to
the mouse heart results, enzymes and proteins involved in multiple mitochondrial
energy transduction pathways exhibited increased lysine acetylation, including FAO,

TCA, ETC, and OXPHOS (Figure 3).
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Figure 2. Increased acetylation of mitochondrial proteins in failing human heart.

(A) Heat map of the acetylproteomics data set representing the log2-transformed value of mitochondrial
acetyl isoforms from cardiac biopsies of dilated cardiomyopathy (DCM) patients (n = 5) or nonfailing (NF)
controls (n = 5). Acetylation events were normalized to corresponding protein abundance. The horizontal
data lines represent the normalized value for each patient relative to the mean value across all 10
samples. The color coding indicates the direction and magnitude of the normalized log2-transformed
value for each detected acetyl form, blue indicates low and red indicates high, in each patient sample. (B)
All detected acetylated mitochondrial proteins were individually rank ordered according to the log2 fold
change in mean protein abundance (DCM/NF) along the x axis (blue circles). The log2 fold change
between DCM and NF controls of each detected acetyl isoform (red squares, normalized to
corresponding protein abundance) is plotted on the y axis in the same position on the x axis as the
corresponding protein. The dashed line represents no change in acetylation level.
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Figure 3. Hyperacetylated mitochondrial proteins in failing human heart are involved in multiple
energy transduction pathways.

Lysine-acetylated proteins (indicated by circles, protein symbols are noted) identified by mass
spectrometry in dilated cardiomyopathy (DCM) patients and nonfailing (NF) control samples (n = 5/group)
in each of the 3 main mitochondrial fuel oxidation/ATP synthesis pathways (B-oxidation, tricarboxylic acid
[TCA] cycle, and electron transport complex [ETC]) are shown. All acetylated residues with at least + 1.5
fold change for mean DCM/NF values are shown. Mean DCM acetylation levels that were significantly
different compared to NF control values based on Student’s t test are also indicated (*P < 0.05). Specific
lysine acetylation sites are noted in parentheses. Acetylation status is indicated by color coding: proteins
with increased acetylation (DCM/NF) are in red; proteins with decreased acetylation are in blue; and
proteins with no significant change are in gray. All acetylation levels were normalized to corresponding
protein abundance. SDHA, succinate dehydrogenase A.

Altered NAD" Homeostasis in Failing Heart

SIRT3, a mitochondrial-localized NAD*-dependent deacetylase, has been shown to play
an important role in mitochondrial protein acetylation status (32, 36, 37). Therefore, we

sought to assess NAD- levels in the mouse and human HF samples to determine
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whether, in addition to increased acetyl-CoA levels, capacity for enzymatic
deacetylation was altered in the failing heart. Quantitative mass spectrometric assays
revealed that myocardial levels of NAD- were reduced in the mouse HF group but not
the CH group (HF, 1,990 + 80.27 vs. control, 2,532 £ 174.56 pmol/mg tissue; P =
0.018; Figure 4A). Moreover, NAD- was significantly reduced in the human DCM
samples compared to NF controls (Figure 4B). Measurements of additional

NAD* metabolite species in the human heart samples demonstrated that NADH levels
were not significantly altered in the DCM samples but that NAD phosphate (NADP-)
levels were decreased and nicotinamide mononucleotide (NMN) increased in the DCM
samples compared to NF controls (Figure 4B). Taken together, these results suggest
regulation at several points, including NAD- biosynthesis and salvage pathways (Figure

4C) in the failing heart.
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Figure 4. Evidence for altered NAD+ homeostasis in failing mouse and human heart.

(A) NAD+ was measured in mouse cardiac tissue by quantitative mass spectrometry (n = 6/group). The
values shown are normalized to mg of dry weight of tissue (mg dw). CH, compensated hypertrophy; HF,
heart failure; TAC, transverse aortic constriction; Ml, myocardial infarction. (B) Levels of NAD+, NADH,
NAD phosphate (NADP+), and nicotinamide mononucleotide (NMN) in human failing (dilated
cardiomyopathy [DCM]) and nonfailing (NF) control hearts (n = 5 per group). The values shown are
normalized to mg of wet weight of tissue. (C) Schematic of NAD+ biosynthesis and salvage (within
dashed line) pathways. NA, nicotinic acid; Naprt, nicotinate phosphoribosyltransferase; NaMN, NA
mononucleotide; Nmnat, nicotinamide mononucleotide adenylyltransferase; Nadsyn, glutamine-
dependent NAD+ synthetase; Nampt, nicotinamide phosphoribosyltransferase; Nmrk, nicotinamide
riboside kinase 1;2; Nt5e, 5’-nucleotidase ecto; NR, nicotinamide riboside. *P < 0.05 based on Student’s t
test. Bars represent mean = SEM.
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Evidence that Lysine Acetylation Affects Activity of Succinate Dehydrogenase A,
a Key Component of the TCA Cycle and ETC Complex I

As an initial step to explore the functional impact of the altered mitochondrial protein
acetylation pattern observed in the HF samples, we focused on subunit A of succinate
dehydrogenase A (SDHA), an enzyme that serves a critical role in both the TCA cycle
and ETC (as part of complex Il). SDHA exhibited increased acetylation at several
residues in the mouse and human HF samples (Figures 1A and Figure 3), and its
protein levels were not different between failing heart and controls in the mouse and
human samples (data not shown). We first measured the activity of complex Il in
saponin-skinned myocardial LV fibers prepared from HF mice and controls. Complex I1—
driven state 3 respiration (succinate plus rotenone) was significantly lower in the HF
samples compared to sham-operated controls (Figure 5A). In contrast, complex I-driven
respiration rates were shown to be normal in the mouse HF samples (28). These results
are consistent with reduced SDHA activity in the failing heart. In further support of this
conclusion, we have shown that succinate levels are increased in mouse HF samples,
consistent with reduced SDHA activity in the TCA cycle (28).

We next sought to assess the effects of SDHA lysine acetylation on SDHA
catalytic function. For these studies, we determined the impact of a site-directed lysine
acetylation-mimetic (K to Q) mutation on SDHA activity. The mutagenesis studies
focused on the K179 residue of SDHA, given that it is hyperacetylated in human HF
(Figure 3). In addition, K179 is an established SIRT3 substrate and is located in a

conserved FAD"-binding region (32, 36). Enzyme activity studies were conducted on
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mitochondria isolated from HEK293 cells in which WT SDHA or the acetyl-mimetic
mutant (K179Q) was overexpressed. The K179Q mutant exhibited a significantly
increased K, (Figure 5B). These results suggest that K179 acetylation affects substrate
or cofactor (FAD-) binding to SDHA. To further assess the impact of the K179
hyperacetylation on SDHA activity in the cellular context as it relates to complex Il
function, effects on mitochondrial respiration were measured. Complex II—driven
respiration in cells overexpressing K179Q was significantly lower compared to SDHA
overexpression controls (Figure 5, C and D). This effect was also observed under both
basal and ADP-stimulated conditions. Collectively, these results provide evidence that
increased acetylation of SDHA at specific lysine residues, as observed in the failing
heart, reduces its function in the TCA cycle and as a component of complex Il. It is likely
that hyperacetylation of other mitochondrial proteins also confers a functional impact in

the failing heart.
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Figure 5. Evidence for acetylation effects on succinate dehydrogenase A function relevant to heart
failure.

(A) Mitochondrial complex Il respiration rates determined on cardiac muscle strips isolated from heart
failure (HF) and sham-operated control mice using succinate (5 mM) as a substrate in the presence of
rotenone (10 uM) to inhibit complex | flux. Basal, state 3 (ADP-stimulated), and post-oligomycin VO2
rates are shown normalized to mg dry tissue weight (mg dw). RC, respiratory control ratio (state 3/state
4). Bars represent mean respiration rates £ SEM (n = 5-11). *P < 0.05 compared to sham based on
Student’s t test. (B) Succinate dehydrogenase A (SDHA) activity was measured in mitochondria isolated
from HEK293 cells expressing WT SDHA (WT) or the acetyl-mimetic mutant (K179Q). Km was derived
from measurements of initial velocity generated from a range of substrate concentrations using nonlinear
regression. Bars represent mean values + SEM (3 separate experiments each with n = 3/condition). *P <
0.05 compared to WT based on Student’s t test. (C) Oxygen consumption rates (OCRs) were measured
in permeabilized NIH-3T3 cells transfected with either a vector encoding WT SDHA (pCS6-SDHA) or
K179Q (pCS6-K179Q). The OCR was normalized to the total amount of SDHA in each sample, as
quantified by Western blot. The graph shown is representative of 3 separate experiments, each with n =
10. Data points represent mean values + SEM. *P < 0.05 compared to SDHA-K179Q based on Student’s
t test. (D) Area under the curve (AUC) was calculated from the combination of all 3 individual experiments
for basal and succinate-driven respiration (n = 30). Bars represent mean values + SEM. *P < 0.05
compared to WT based on Student’s t test.
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Discussion

We used unbiased quantitative proteomics to detect posttranslational changes in
mitochondrial proteins during the transition from compensated cardiac hypertrophy to
HF in mice. This approach was spawned by the results of our recent study
demonstrating that reduced mitochondrial fuel catabolic flux in the failing heart cannot
be fully explained by alterations at the level of gene transcription (28). In addition, we
and others have recently found that a subset of myocardial short-chain carbon pools,
including acetyl-CoA levels, are increased in the failing mouse heart (28), setting the
stage for posttranslational modifications of myocyte proteins during the development of
HF. The results herein demonstrate striking alterations in the cardiac mitochondrial
protein acetylome during the development of HF in well-defined mouse models and in
end-stage HF in humans.

The basis for increased mitochondrial protein acetylation in the failing heart is
unclear, but several lines of evidence suggest that it is driven, at least in part, by
changes in the mitochondrial matrix environment. Emerging data suggest that the
degree of lysine acetylation of proteins is controlled by both enzymatic and
nonenzymatic mechanisms. Mitochondrial proteins may be particularly susceptible to
nonenzymatic lysine acetylation due to the alkaline pH and relatively high
concentrations of acetyl-CoA within the matrix (38). We recently found that levels of C2-
carnitine, which reflect changes in the mitochondrial pool of acetyl-CoA, were increased
in mouse HF but not CH samples (28). In addition, very recent work has shown that

acetyl-CoA levels are increased in the myocardium of humans with end-stage HF (29).
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The basis for the increased levels of acetyl-CoA in the early-stage failing heart is
unknown, but several possible mechanisms could be at play. First, an increase in
mitochondrial short-chain carbon pools could reflect shifts in myocardial fuel oxidative
flux, leading to metabolite “bottlenecks.” We recently found that the hypertrophied and
failing mouse heart shifts to ketone bodies as a fuel source in the context of reduced
capacity for utilization of fatty acids (39). Chronic utilization of ketones by the
cardiomyocyte increases levels of several intermediates, including C2-carnitine. It is
possible that the concentration of acetyl-CoA generated by ketone oxidation exceeds
capacity for entry into the TCA cycle, increasing the mitochondrion acetyl-CoA pool
size. Second, impaired export of mitochondrial acetyl-CoA may contribute to an
expansion of the mitochondrial acetyl-CoA pool. In support of this notion, we found that
carnitine acetyltransferase (CRAT) is hyperacetylated in the CH and HF samples
(Supplemental Tables 2 and 4). CRAT exports acetyl units from the mitochondrion by
converting acetyl-CoA to the membrane-permeant carnitine conjugate, C2-carnitine.
Progressive reduction in CRAT activity in the context of increased mitochondrial acetyl-
CoA levels could set the stage for increased mitochondrial protein acetylation. Third,
altered NAD- homeostasis could contribute to the increased mitochondrial protein
acetylation observed in the failing heart by diminishing the activity of SIRT3 (40), a key
mitochondrial deacetylase. Notably, SIRT3-null mice exhibit increased mitochondrial
protein acetylation and are more susceptible to stress-induced mitochondrial
dysfunction (32, 36, 37). Cardiac SIRT3 expression was not reduced in the CH or HF

groups (data not shown). However, we found that NAD- levels were significantly
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reduced in the mouse and human HF samples, likely resulting in reduced sirtuin activity
(Figure 4, A and B). Interestingly, our comprehensive profiling of metabolites involved in
NAD- metabolism (Figure 4B) indicated that the basis for reduced NAD- levels could
involve multiple mechanisms, including alterations in both the biosynthesis and salvage
pathways (Figure 4C), given that NMN levels are increased in the context of reduced
NAD-. Taken together, we propose that both increased mitochondrial acetyl-CoA levels
and reduced SIRT3 activity due to derangements in NAD+ metabolism conspire to drive

increased lysine acetylation of mitochondrial proteins in the failing heart.

The results described herein provide evidence that increased acetylation of
selected mitochondrial proteins impairs mitochondrial fuel oxidation and ATP synthesis
in the failing heart. Increased lysine acetylation has been shown to reduce the
enzymatic activity of mitochondrial proteins involved in FAO, glucose oxidation, the TCA
cycle, and ETC (41-45). In this study, we identified hyperacetylated lysine residues of
proteins within the FAO, TCA, and ETC/OXPHOS pathways in the HF samples. The
functional studies described here focused on SDHA, a key component of both the TCA
cycle and respiratory complex II. SDHA was found to be hyperacetylated at multiple
lysine residues in both mouse and human samples. Complex II-driven respiration was
reduced in cardiac strips prepared from the HF samples, consistent with reduced
activity of SDHA. In addition, levels of succinate, the substrate for the TCA cycle
reaction catalyzed by SDHA, are increased in the mouse HF samples (28). We found
that an acetyl-mimetic point mutation in SDHA altered enzymatic function and
succinate-driven respiration via complex Il. Notably, human complex Il deficiency has
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been reported to cause HF (46). As K179 lies within the conserved FAD*-binding
domain, we speculate that acetylation of this residue directly affects FAD- binding to
SDHA. The observed increased K, in the SDHA K179Q mutant is consistent with this
notion. Interestingly, mitochondrial complex | deficiency in mice results in a phenotype
of protein hyperacetylation and HF, suggesting that reduced ETC flux and ATP
synthesis could further contribute to mitochondrial protein acetylation, resulting in a
vicious cycle (47). It should be noted that current methodology does not allow us to
determine the precise acetylation stoichiometry of SDHA and other mitochondrial
proteins in the HF samples. Future studies aimed at defining precise lysine acetylation
stoichiometry, together with pathway flux analyses, will provide key information on
whether the results shown here for alterations in SDHA represent a broader paradigm in

HF and other diseases.

Our collective results suggest a model in which progressive mitochondrial protein
lysine acetylation, driven by an expansion of the acetyl-CoA pool and reduced
NADrlevels, leads to reduced fuel oxidative flux and diminished ATP synthesis (Figure
6). Our results raise the question as to whether strategies aimed at diminishing
mitochondrial protein hyperacetylation by targeting nodal points in this pathogenic
scheme could have therapeutic utility for HF. A few studies have shown that activation
of SIRT1 improves cardiac function in HF and ischemia-reperfusion models, possibly via
activation of AMP-activated protein kinase (48-50). However, the impact of specifically
activating mitochondrial SIRT3 on the development of HF has not been reported to our
knowledge. In addition, as described above, it is likely that a significant subset of the
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hyperacetylated proteins identified herein are not SIRT3 targets. Accordingly, proof-of-
concept experimental strategies aimed at maintaining mitochondrial acetyl carbon

homeostasis or NAD- metabolism should also be considered.

Mitochondrial Respiratory
Dysfunction

TMitochondrial
Protein
Acetylation

Figure 6. Schematic depicting a conceptual model for the impact of mitochondrial protein lysine
acetylation as a driver of the progressive decline in capacity for mitochondrial oxidative flux and
ATP synthesis known to occur during the development of heart failure.
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Methods

Animal Studies
Animal studies were performed on female C57BL/6J mice (purchased from JAX labs), 7
to 12 weeks of age, on standard chow (16.4% protein, 4.0% fat, and 48.5%
carbohydrates; Harlan Teklad, 2016). The TAC and HF (combination of TAC and small
apical Ml) surgeries were performed on 8-week-old female C57BL/6J mice (purchased

from JAX labs) as described previously (28, 34, 35).

Human Studies
Explant dilated nonischemic failing human hearts were procured at the time of
orthotopic heart transplantation, and NF hearts were obtained at the time of organ
donation from brain-dead donors. In all cases, warm ischemia was prevented by
arresting the heart in situ with 1 liter of ice-cold cardioplegia solution, transportation to
the laboratory on wet ice, and flash freezing of biopsies in liquid nitrogen within 4 hours
of cardiectomy. All samples were full-thickness biopsies obtained from the free wall of
the left ventricle. A total of 10 subjects, 5 organ donors, and 5 patients with DCM
provided heart tissue for this research. In each group, there were 2 females and 3
males, the ages were comparable (NF 50 + 3 years vs. DCM 58 + 5 years), and all but
one DCM subject were of mixed European descent. Body mass index was also
comparable (NF 31 + 4 vs. DCM 26 * 3). Based on heart weight at explant (NF 394 + 31

grams vs. DCM 531 + 50 grams, P < 0.05) and LVEF determined by echocardiography

50



(NF 62% * 8% vs. DCM 10% * 0%, P < 0.005), the DCM hearts had significant

pathological hypertrophy and severe contractile dysfunction.

Western Blotting
Western immunoblotting was performed with total cellular lysate. In brief, cells were
harvested with RIPA buffer (1% NP40, 0.1% SDS, 100 mM phenylmethylsulfonyl
fluoride, cOmplete Protease Inhibitors [Roche catalog 11697498001]) on ice. DNA was
sheered by passing the sample through a 21-gauge needle. The lysate was incubated
on ice for 30 minutes and subsequently centrifuged at 4°C at 20,000 g for 20 minutes.
The supernatant was collected, and total protein was quantified using the Micro BCA
Protein Assay Kit (Thermo Fisher Scientific catalog 23235). Protein samples were run
on 12% SDS-PAGE and transferred to nitrocellulose membrane. The membranes were
blocked with Odyssey Blocking Buffer (LI-COR Biosciences catalog 927-50000) for 1
hour at room temperature and then probed with primary antibody complex Il Fp subunit
(Invitrogen catalog 459200) at 1:5,000 in 1:1 Odyssey Blocking Buffer and 0.1% Tween
in Tris-buffered saline (TBS-T) overnight at 4°C. The membranes were rinsed for 10
minutes 3 times with TBS-T at room temperature. Secondary antibody IRDye 800CW
donkey anti-mouse IgG (H + L) (LI-COR Biosciences catalog 926-32212) was applied to
the blot at 1:7,500 dilution in 1:1 Odyssey Blocking Buffer and TBS-T and incubated for
1 hour at room temperature. Western blot image detection and quantification were
performed using the LI-COR Odyssey. Protein quantification was performed using the

Odyssey Image Studio software (LI-COR Biosciences).
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Metabolomic Analysis of NAD:-Metabolites
For the NAD- metabolite measurements, pulverized frozen mouse heart samples (~50
mg per sample) or pulverized frozen human heart (derived from left ventricle; ~50 mg
per sample) were homogenized via hand-held rotary homogenizer in 500 yl of either 0.5
M perchloric acid (for NMN, NAD-, and NADP- determination) or 50:50 methanol/0.1 M
NaOH (for NADH determination). The resulting heart homogenates were aliquoted and
stored at —80°C. For NMN, NAD-, and NADP- extraction, a 100-ul aliquot of heart
homogenate was spiked with a 10-pl aliquot of heavy isotope-labeled internal standards
(*O,-labeled NMN and NAD-; synthesized by the Sanford Burnham Prebys [SBP]
Medicinal Chemistry Core). This was followed by the addition of 100 pl of 1 M
ammonium formate to adjust the homogenate pH to approximately 4. Samples were
vortexed thoroughly and centrifuged at 18,000 g for 5 minutes at 10°C. The clarified
homogenates were passed through an AcroPrep Advance 3K Omega Filter Plate (Pall
Corporation) prior to liquid chromatography—tandem mass spectrometry (LC/MS/MS)

analysis.

For NADH extraction, a 100-ul aliquot of heart homogenate was spiked with a 10-
pl aliquot of heavy isotope-labeled internal standard (*O.-labeled NADH; synthesized by
the SBP Medicinal Chemistry Core). Samples were vortexed thoroughly and centrifuged
at 18,000 g for 5 minutes at 10°C. The clarified homogenates were passed through an
AcroPrep Advance 3K Omega Filter Plate (Pall Corporation) prior to LC/MS/MS
analysis. All pyridine nucleotides were separated on a 2.1 x 50 mm, 3-ym Thermo
Hypercarb column (T = 30°C) using a 5.8-min linear gradient with 10 mM ammonium
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acetate, pH 9.5, and acetonitrile at a flow rate of 0.5 ml/min. Quantitation of pyridine
nucleotides was achieved using multiple reaction monitoring on an Dionex UltiMate
3000 HPLC/Thermo Scientific Quantiva triple quadrupole mass spectrometer (Thermo
Scientific). For NMN, NAD-, and NADP- determination, a standard calibration curve
(0.25-200 uM for NAD-, 0.025-20 uM for NADP-, and 0.0025-2 uM for NMN) was
prepared by spiking 10-pl aliquots of pyridine nucleotides (Sigma-Aldrich) and internal
standards (synthesized by the SBP Medicinal Chemistry Core) into 100-ul aliquots of
0.5 M perchloric acid. Calibration samples were extracted similarly as pyridine
nucleotides in heart homogenate. For NADH determination, a standard calibration curve
(0.25—-200 uM for both species) was prepared by spiking 10-pl aliquots of pyridine
nucleotides (Sigma-Aldrich) and internal standards (synthesized by the SBP Medicinal
Chemistry Core) into 200 pl of 50:50 methanol/0.1 M NaOH. Calibration samples were
extracted similarly as pyridine nucleotides in mouse liver homogenate. Data from heart
samples were normalized to the mass of lyophilized heart powder (mouse) or heart

tissue homogenate (human) provided.

Acetylproteomics
Purified mitochondria (mouse samples) or pulverized tissue (human samples) were
subjected to quantitative proteomics/acetylproteomics using recently developed
methods (36, 51). The mass spectrometry mouse acetylproteomics data have been
deposited into the Proteome Xchange Consortium

(http://www.ebi.ac.uk/pride/archive/login) via the PRIDE partner repository with the data
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set identifier PXD001652. The human acetylproteomics data are available at Chorus

(https://chorusproject.org/pages/index.html) under the project title

heartFailure _acetylation (ID 965).

Chemicals and Supplies

The Tandem Mass Tag (TMT) reagents were purchased from Thermo Scientific. The
BCA assay Protein Assay Kit was purchased from Pierce Biotechnology and Trypsin
Gold was purchased from Promega. Sep-Pak tC18 cartridges were purchased from
Waters Corporation. A polysulfoethyl A column (9.4 mm x 200 mm, 5 mm, 200A) was
purchased from PolyLC Inc. Bridged Ethylene Hybrid (BEH) C18 resin (1.7-m diameter
particles, 130 A pore size) was purchased from Waters Corporation. Fused-silica
capillary tubing was purchased from Polymicro Technologies. Formic acid and
trifluoroacetic acid ampoules were purchased from Thermo Scientific. Pan-acetyl lysine
antibody agarose conjugate was purchased from ImmuneChem. Protease (cOmplete
mini ETDA-free) and phosphatase (PhosSTOP) inhibitors were purchased from Roche.

All other chemicals were purchased from Sigma-Aldrich.

Mitochondrial Preparation

For the mouse studies, mitochondria were isolated by differential centrifugation by
methods previously reported (52). All steps were performed at 4°C. Tissue was
suspended in isolation buffer (220 mM mannitol, 70 mM sucrose, 5 mM HEPES KOH,

pH 7.4, 1 mM EGTA) supplemented with 10 mg/ml bovine serum albumin (BSA),
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protease inhibitor cocktail (Roche cOmplete tablets, 1 tablet per 50 ml buffer),
phosphatase inhibitor cocktail (Roche PhosSTOP), and deacetylase inhibitors (10 mM
nicotinamide, 10 uM TSA, 5 yM MS257, 10 mM sodium butyrate, 2 yM SAHA). Heart
tissue was suspended to 0.1 g/ml in isolation buffer and homogenized with 4 strokes of
a power-driven Potter-Elvehjem glass/Teflon homogenizer. The homogenate was
decanted and spun at 800 g for 10 minutes. Any lipids were removed from the top of the
supernatant by aspiration. The supernatant containing mitochondria was removed and
transferred to a Beckman Ultra-clear centrifuge tube and spun at 8,000 g for 10
minutes. The supernatant was discarded, and the pellet was resuspended in 1 ml of
isolation buffer. The crude mitochondria were transferred to a 1.5-ml microfuge tube and
spun at 8,000 g for 10 minutes in a bench-top centrifuge. The supernatant was
removed, and the pellet was washed with resuspension buffer. (Note, resuspension
buffer is equivalent to isolation buffer but lacks BSA). The mitochondria were pelleted by
centrifugation at 8,000 g for 10 minutes in a bench-top centrifuge. The supernatant was

aspirated, and the pellet was frozen immediately in liquid nitrogen.

Sample Preparation

Either purified mitochondria (mouse samples) or pulverized frozen human heart
samples were suspended in 8 M urea, 40 mM Tris, pH 8.0, 30 mM NacCl, 1 mM CacCl,,
1x protease inhibitor tablet, 1x phosphatase inhibitor tablet, and 1x deacetylase
inhibitors. Protein was extracted by sonication with a probe sonicator on ice and

quantified by BCA assay. Protein from each sample (180 ug for mouse samples, 1 mg
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for human samples) was reduced with 5 mM dithiothreitol for 45 minutes at 58°C and
then alkylated with 15 mM iodoacetamide for 45 minutes at ambient temperature in the
dark. The alkylation was quenched with 5 mM dithiothreitol. Following dilution to 1.5 M
urea with 50 mM Tris, pH 8.0, the samples were digested with trypsin (50:1
protein/enzyme) overnight. Additional trypsin (50:1 protein/enzyme) was spiked into the
sample the following morning, digestions were quenched by TFA acidification 2 hours
later, and samples were desalted with a tC18 sep-Pak. Desalted material was
resuspended in 200 mM TEAB pH 8.5 and labeled with 8-plex TMT. Labeled peptides
were combined and desalted. Labeling efficiency was evaluated by analyzing a test
mixture by LC/MS/MS for each experiment. Labeling efficiency was >95%, calculated by
the number of N-terminal—-labeled peptides divided by the total number of peptide

identifications.

Fractionation and Enrichment

Labeled peptides were fractionated by strong cation exchange on a polysulfoethyl A
column (0.4 mm x 200 mm) with mobile phases A (56 mM KH,PO,, pH 2.7, and 30%
acetonitrile); B (56 mM KH.PO,, pH 2.7, 350 mM KCI, and 30% acetonitrile); C (5 mM
KH.PO.,, pH 6.5, 500 mM KCL, and 20% acetonitrile); and D (water). Peptides were
eluted over the following gradient on a Surveyor LC quaternary pump (Thermo
Scientific) at 3 ml/min: 0-2 minutes, 100% A; 2-5 minutes, 0%-10% B; 5-35 minutes,
10%—-60% B; 35—-41 minutes, 60%—-100% B; this gradient was followed by washes with

C and D prior to reequilibration with mobile phase A. Sixteen fractions were collected
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and desalted. A small portion, 5%, of each was retained for protein analysis, while the

remaining material was pooled into 6 fractions for acetyl lysine enrichment.

These pooled fractions were dissolved in 50 mM HEPES, pH 7.6, 100 mM NacCl,
and each fraction was combined with approximately 50 yl pan-acetyl lysine antibody
agarose conjugate. The samples were rotated overnight at 4°C and then rinsed 8 times
with cold 50 mM HEPES, pH 7.6, and 100 mM NaCl. Rinses were followed by elution

with 0.1% TFA, and eluted peptides were desalted prior to analysis.

LC/MS/MS

Mouse samples were analyzed by reverse-phase liquid chromatography on a
nanoAcquity (Waters Corporation) coupled to an Orbitrap Elite (Thermo Scientific).
Samples were loaded onto a 75-uym-inner diameter analytical column made in-house,
packed with 1.7-m-diameter, 130-A-pore-size, BEH C18 particles (Waters Corporation)
to a final length of 30 cm. The column was heated to 62°C for all runs. The elution
portion of the gradient was 5% to 30% B (A: water/0.2% formic acid; B: acetonitrile/0.2%

formic acid) over 80 minutes for both acetyl enriched fraction and protein fractions.

Instrument methods for mass spectrometry all started with one mass
spectrometry survey scan (resolution = 60,000; 300 Th to 1,500 Th) followed by data-
dependent mass spectrometry fragmentation and analysis (resolution = 30,000) of the
15 most intense precursors by beam-type CAD (HCD; normalized collision energy =

35%, target value = 5e4). Only those precursors with charge state of +2 or higher were
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sampled for mass spectrometry. The dynamic exclusion duration was set to 40
seconds, with a 10-ppm tolerance around the selected precursor and its isotopes, and

monoisotopic precursor selection was turned on.

Human samples were analyzed by reverse-phase liquid chromatography on a
nanoAcquity (Waters Corporation) coupled to an Orbitrap Fusion (Thermo Scientific).
Samples were loaded onto a 75-um-inner diameter analytical column made in-house,
packed with 1.7-m-diameter, 130-A-pore-size, BEH C18 particles (Waters Corporation)
to a final length of 35 cm. The column was heated to 65°C for all runs. Mobile-phase
buffer A was composed of water, 0.2% formic acid, and 5% dimethyl sulfoxide (DMSO).
Mobile-phase B was composed of acetonitrile, 0.2% formic acid, and 5% DMSO.
Samples were loaded onto the column for 12 minutes at 0.35 ul/min. Mobile-phase B
increases to 4% in the first 0.1 minutes and then to 30% B over 80 minutes, followed by

a 5-minute wash at 70% B and a reequilibration at 0% B.

Instrumental methods for mass spectrometry all started with one mass
spectrometry survey scan (resolution = 60,000 at 200 m/z; target value = 5e5; 350 Th to
1,400 Th) followed by data-dependent mass spectrometry fragmentation and analysis in
the Orbitrap (resolution = 60,000 at 200 m/z) of the most intense precursors by beam-
type CAD (HCD; normalized collision energy = 37%, target value = 5e4) over a 5-
second cycle. Only those precursors with charge state of +2 or higher were sampled for

mass spectrometry. The dynamic exclusion duration was set to 30 seconds, with a 10
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ppm tolerance around the selected precursor and its isotopes, and monoisotopic

precursor selection was turned on.

Database Search, FDR filtering, and Acetylation Analysis

Spectra were converted to searchable text files using a DTA generator. Generated text
files were searched for fully tryptic peptides with up to 3 missed cleavages against a
UniProt target-decoy database populated with mouse canonical plus isoforms
(downloaded August 7, 2013) or human canonical plus isoforms (downloaded July 20,
2012) using the Open Mass Spectrometry Search Algorithm v.2.1.8 (53). Mass
tolerance was set to + 2.5 Da for precursors and + 0.015 Da for fragment ions.
Carbamidomethylation of cysteine, isobaric labeling of lysine, and isobaric labeling of
the peptide N-terminus were searched as fixed modifications for all samples. Enriched
fractions were additionally searched for variable acetylation modifications, in which the
acetylation mass shift was set to the difference between an acetyl group and an isobaric
label (-187.1523 Da) to allow the isobaric label on lysine to remain a fixed modification
even for acetylated peptides. Search results were filtered to 1% FDR at the unique
peptide level using the COMPASS software suite (54). TMT quantitation of identified
peptides was performed within COMPASS, as previously reported (55). Peptides were
grouped into proteins according to previously reported rules, and protein identifications
were further filtered to 1% FDR (56). Protein quantitation was performed by summing all

reporter ion intensities within each channel for each protein.
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Acetylation events were localized to specific residues using previously described
probabilistic methods (57). An acetylation event was considered localized if the
calculated localization confidence was 95% or greater based on comparisons to
theoretically possible acetyl isoforms. If localized acetylated peptides shared identical
modification sites, those peptides were grouped together and their reporter ion
intensities were summed; peptides with C-terminal acetylation were excluded from

guantitation.

Protein Normalization

All reporter ion intensities were log, transformed and mean normalized for every acetyl
isoform and protein. To account for protein abundance differences, the acetyl isoforms
were normalized by subtracting the quantitative value of the reporter ion channel for the
corresponding protein from the value for each acetyl isoform reporter ion channel. This
resulted in a protein-normalized acetylation mean value that was then used to
investigate fold changes between conditions. Fold change calculations were made by
averaging the protein-normalized values for each condition and then calculating the

difference of averages.

Mitochondrial Assignment

Proteins were identified as mitochondrial or nonmitochondrial based on inclusion or
exclusion from the MitoCarta compendium of mitochondrial mouse proteins (58).

MitoCarta EntrezID identifiers were converted to Uniprot identifiers with the Uniprot ID

60



mapping function. Our list was limited to contain only proteins that were in the canonical
database used for searching. Additional mitochondrial proteins identified by Database

for Annotation, Visualization and Integrated Discovery were also included.

Mitochondrial Respiration
Mitochondrial respiration rates were determined on saponin-permeabilized LV muscle
strips with succinate (5 mM)/rotenone (10 uM) as substrate as described previously

(28, 59).

Vector Construction
An MGC premier Expression-Ready cDNA clone for SDHA-BC031849 (pCS6-
BC031849) (Transomic Technologies catalog TCM1304) was used for the WT SDHA
vector construct (pCS6-SDHA). Site-directed mutagenesis was performed using a
modification to the QuikChange (Stratagene catalog 200518-5) protocol to create the
SDHA K179Q in the pCS6-SDHA vector as described previously (60). The following
primers were used for the site-directed mutagenesis:
CCTCCAGTTTGGGAAAGGCGGGCAGG (forward) and

CCCAAACTGGAGGCTCTGTCCACCAAATGCAC (reverse).

Cellular Oxygen Consumption Rates
Oxygen consumption rates were measured using the Seahorse Bioscience XF 96
analyzer as described previously (61). Briefly, NIH3T3 (ATCC) cells were transfected

with Lipofectamine 3000 (Thermo Scientific catalog L3000-015) using the
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manufacturer’s instructions with expression constructs for WT or K179Q SDHA (pCS6-
SDHA or pCS6-K179Q). In the Seahorse assay, two measurements were taken at basal
conditions and after each reagent injection. The cells were first injected with 10 mM
succinate, 1.5 nM rPFO (Seahorse Bioscience catalog 102504-100), and 4 uM
rotenone. ADP was added at a final concentration of 4 mM. The final concentration of
antimycin A was 1 pM. The oxygen consumption rate was then normalized to total
amount of SDHA present, as determined by Western blot of cells transfected with

indicated expression construct.

SDHA Activity
HEK293 cells were transfected with pCS6-SDHA or pCS6-K179Q constructs.
Mitochondria were isolated and SDHA-specific activity was measured as described
previously (62—64). In brief, a coupled enzymatic colorimetric assay utilizing 2 redox
dyes, 2,6-dichlorophenolindophenol sodium salt hydrate (DCPIP) and phenazine
methosulfate (PMS), was used to measure the oxidation of succinate to fumarate by
SDHA. Succinate (21.7 mM) was added to the isolated mitochondria and preincubated
to remove oxaloacetate, which is an inhibitor of SDHA succinate oxidation. The reaction
solution (2.17 yM antimycin A, 5.4 uM rotenone, 54 yM DCPIP, PMS between 0 mM
and 1.07 mM) was then added, and absorbance was measured at 600 nm. The K, was
derived by fitting a curve made from measurements of initial velocity at various

substrate concentrations using nonlinear regression analysis in GraphPad Prism 6 after
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measuring the total amount of SDHA present via Western blot. The replicates test

confirmed the adequacy of the fit to the Michaelis-Menten model.

Statistics
All statistical analyses were performed with 2-tailed Student’s t test as indicated. The

level of significance was set at P < 0.05 in all cases.

Study Approval
All animal experiments and euthanasia protocols were approved by the Institutional
Animal Care and Use Committee at SBP at Lake Nona. Procurement of human
myocardial tissue was performed under protocols approved by Institutional Review
Boards at the University of Pennsylvania, and consent for research use of explanted

tissues was prospectively obtained in all cases.
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Supplemental Material

Supplemental Table 1. Cardiac mitochondrial acetyl proteoforms in the mouse heart.

Uniprot ID Gene Symbol Acetyl Proteoform
Q8BWT1 Acaa2 K137
Q8BWT1 Acaa2 K171
Q8BWT1 Acaa? K234
Q8BWT1 Acaa? K240
D3Z7X0 Acad12 K334
Q8JZN5 Acad9 K206
P51174 Acadl K156
P51174 Acadl K419
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Uniprot ID Gene Symbol Acetyl Proteoform

P50544 Acadvl K240
P50544 Acadvl K279
P50544 Acadvl K52
Q8QZT1 Acatl K171
Q8QZT1 Acatl K187
Q8QZT1 Acatl K220
Q8QZT1 Acatl K242
Q8QZT1 Acatl K248
Q8QZT1 Acatl K304
Q8QZT1 Acatl K335
Q8QZT1 Acatl K340
Q8QZT1 Acatl K80
Q99KI0 Aco2 K50
Q99KI0 Aco2 K517
Q99KI0 Aco2 K517|K520
Q99KI0 Aco2 K521
Q99KI0 Aco2 K523
Q99KI0 Aco2 K689
Q99KI0 Aco2 K723
Q99KI0 Aco2 K736
Q99KI0 Aco2 K739
Q9CQR4 Acotl3 K127
Q9CQR4 Acotl3 K27
Q9CQR4 Acotl3 K37
Q9CQR4 Acotl3 K43
QOWTP7 Ak3 K29
Q8CG76 Akr7a2 K123
Q8CHTO Aldh4al K54
Q8CHTO Aldh4al K92
Q9EQ20 Aldh6al K117
Q9EQ20 Aldh6al K47
Q92511 Atad3 K494
Q03265 Atp5al K126
Q03265 Atp5al K239
Q03265 Atp5al K498
Q03265 Atpbal K531
Q03265 Atp5al K539
P56480 Atp5b K133
P56480 Atp5b K485
P56480 Atp5b K522
Q9DCX2 Atp5h K117
Q9DCX2 Atp5h K48
Q9DCX2 Atp5h K63
Q9DCX2 Atp5h K63|K72
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Uniprot ID Gene Symbol Acetyl Proteoform

Q9DCX2 Atp5h K78
Q9DCX2 Atp5h K85
Q9DCX2 Atp5h K95
Q06185 Atp5i K34
Q06185 Atp5i K48
P97450 Atp5j K105
P97450 Atp5j K41
P97450 Atp5j K46
P97450 Atp5j K99
Q9DB20 Atp50 K162
Q9DB20 Atp50 K192
Q9DB20 Atp50 K53
Q9DB20 Atp50 K60
Q9DB20 Atp50 K70
Q9DB20 Atp50 K84
Q9JLZ3 Auh K80
Q91VT4 Cbr4 K151
Q91WS0 Cisdl K68
Q6P8J7 Ckmt2 K292
Q6P8J7 Ckmt2 K344
Q8R4N0 Clybl K55
Q8R4N0 Clybl K80
QB8R4NO Clybl K90
P19783 Cox4il K164
P19783 Cox4il K67
P19783 Cox4il K78
P12787 Coxba K109
P56391 Cox6b1l K85
P56392 Cox7al K31
P56393 Cox7b K75
P17665 Cox7c K25
Q9Czu6 Cs K321
Q9Czu6 Cs K327
Q9Czu6 Cs K370
Q9Czu6 Cs K52
Q9D172 D10Jhu8le K162
Q9D172 D10Jhu8le K201
Q9D172 D10Jhu8le K231
Q9CQ62 Decrl K185
Q9CQ62 Decrl K42
Q8BMF4 Dlat K632
008749 Dld K104
008749 Dld K143
008749 Dld K155
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Uniprot ID Gene Symbol Acetyl Proteoform

008749 Did K273
008749 Did K410
008749 Did K420
008749 Did K66
Q9D2G2 Dlst K268
Q9D2G2 Dlst K268|K273
Q9D2G2 Dlst K273
Q9D2G2 Dlst K278
035459 Echl K97
Q8BH95 Echsl K101
P42125 Ecil K222
P42125 Ecil K229
P42125 Ecil K76
Q99LC5 Etfa K162
Q99LC5 Etfa K164
Q99LC5 Etfa K69
Q99LC5 Etfa K75
Q9DCW4 Etfb K110
Q9DCW4 Etfb K114
P26443 Glud1 K415
P26443 Gludl K503
P26443 Gludl K84
P05202 Got2 K122
P05202 Got2 K296
P05202 Got2 K302
P05202 Got2 K309
P05202 Got2 K363
P05202 Got2 K396
P05202 Got2 K404
P05202 Got2 K73
P05202 Got2 K90
Q61425 Hadh K127
Q61425 Hadh K185
Q61425 Hadh K192
Q61425 Hadh K212
Q61425 Hadh K241
Q61425 Hadh K75
Q61425 Hadh K81
Q61425 Hadh K87
Q8BMS1 Hadha K289
Q8BMS1 Hadha K334
Q8BMS1 Hadha K353
Q8BMS1 Hadha K386
Q8BMS1 Hadha K406
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Uniprot ID Gene Symbol Acetyl Proteoform

Q8BMS1 Hadha K540
Q8BMS1 Hadha K569
Q8BMS1 Hadha K60
Q8BMS1 Hadha K728
Q99JY0 Hadhb K202
Q99JY0 Hadhb K273
Q99JY0 Hadhb K333
Q99JY0 Hadhb K73
Q99L13 Hibadh K237
Q99L13 Hibadh K94
Q8Qzs1 Hibch K352
P38647 Hspa9 K135
P38647 Hspa9 K288
P38647 Hspa9 K300
P38647 Hspa9 K612
P38647 Hspa9 K76
P63038 Hspdl K125
P63038 Hspdl K130
P63038 Hspdl K202
P63038 Hspdl K455
P63038 Hspdl K87
Q8BI1J6 lars2 K725
Q8CAK1 Iba57 K222
P54071 Idh2 K106
P54071 Idh2 K155
P54071 Idh2 K166
P54071 Idh2 K180
P54071 Idh2 K199
P54071 Idh2 K256
P54071 Idh2 K272
P54071 Idh2 K280
P54071 Idh2 K384
P54071 Idh2 K400
P54071 Idh2 K48
P54071 Idh2 K67
Q9D6R2 Idh3a K100
Q9D6R2 Idh3a K336
Q9D6R2 Idh3a K343
Q9D6R2 Idh3a K58
Q9D6R2 Idh3a K77
Q9JHI5 Ivd K76
P14152 Mdh1 K107
P14152 Mdhl K164
P08249 Mdh2 K165
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Uniprot ID Gene Symbol Acetyl Proteoform

P08249 Mdh2 K239
P08249 Mdh2 K296
P08249 Mdh2 K301
P08249 Mdh2 K307
P08249 Mdh2 K328|K329
Q9CQ75 Ndufa2 K64
Q62425 Ndufa4 K56
Q9CPP6 Ndufab K36
Q9CPP6 Ndufa5 K40
Q9CPP6 Ndufa5 K60
Q9CPP6 Ndufab K66
Q9DC69 Ndufa9 K189
Q9DC69 Ndufa9 K254
Q9D6J5 Ndufb8 K176
Q9CQJ8 Ndufb9 K121
Q9DCT2 Ndufs3 K259
P52503 Ndufs6 K41
Q9D6J6 Ndufv2 K60
Q60597 Ogdh K897
Q91ZA3 Pcca K146
Q91ZA3 Pcca K61
P35486 Pdhal K244
P35486 Pdhal K267
P35486 Pdhal K321
P35486 Pdhal K63
P35486 Pdhal K83
Q8BKZ9 Pdhx K321
P20108 Prdx3 K254
P20108 Prdx3 K92
Q8K2B3 Sdha K179
Q8K2B3 Sdha K480
Q8K2B3 Sdha K485
Q8K2B3 Sdha K498
Q8K2B3 Sdha K547
Q8K2B3 Sdha K550
Q8K2B3 Sdha K608
Q9CQA3 Sdhb K269
Q9CQA3 Sdhb K53
Q9CQA3 Sdhb K57
Q8BH59 Slc25a12 K578
P51881 Slc25a5 K105
P51881 Slc25a5 K155
P09671 Sod2 K114
P09671 Sod2 K122
P09671 Sod2 K130
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Uniprot ID Gene Symbol Acetyl Proteoform

P09671 Sod2 K68
QIWUMS5 Suclgl K54
Q8R1I1 Uqcrl0 K59
Q9DB77 Ugcre2 K92
QI9CR68 Uqgcrfsl K172
P99028 Uqgcrh K40
P99028 Uqgcrh K83
Q78IK2 UsmgS K16

All identified mitochondrial acetylproteoforms are listed. Mitochondrial
proteins were defined based on GOCC annotation in DAVID and
MITOCARTA.
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Supplemental Table 2. Mitochondrial protein acetylation sites regulated in HF mice.
SIRT3 Regulated

Uniprot ID Gene Symbol  Acetyl Proteoform HF/Sham (FC) Target in CH
Q8BWT1 Acaa? K137 1.56 No Yes
D3Z7X0 Acadl2 K334 2.08 No No
P50544 Acadvl K52 1.91 No No
P50544 Acadvl K240 1.75 Yes No
Q8QzT1 Acatl K187 1.67 No No
Q99KI0 Aco2 K50 1.50 No No
Q32MW3|Q9R0X4  Acotl0|Acot9 K102 1.69 Yes Yes
QICQR4 Acot13 K27 2.72 No No
Q9Z0X1| B1AU25 Aifml K592 -1.66 No Yes
Q8CG76 Akr7a2 K123 1.63 No No
P47738|Q3U9J7| Aldh2 K370 1.53 Yes Yes
Q3U6I13|Q3UJW1|

Q3TVM2

P56480 Atp5b K133 1.60 Yes Yes
Q9D3D9|QIDCZO| Atp5d K165 -1.55 No Yes
Q9D0J2

Q8R4NO Clybl K80 1.56 Yes No
Q8R4NO Clybl K55 1.56 Yes No
P19783 Cox4il K67 1.77 No No
P47934|H7BX88 Crat K270 1.70 No Yes
Q9D172 D10Jhu81e K231 1.79 Yes No
Q9D172 D10Jhu8le K201 1.62 Yes No
Q9CQ62 Decrl K42 2.07 Yes No
Q8BH95 Echsl K101 1.55 Yes No
P21550 Eno3 K28 -2.43 No No
Q9DCW4 Etfb K114 1.77 No No
Q921G7|Q6PF96 Etfdh K133 1.72 No No
Q61425 Hadh K87 1.60 Yes No
Q8BMS1 Hadha K406 1.68 Yes No
Q99JY0 Hadhb K73 1.92 Yes Yes
P38647 Hspa9 K300 2.26 No No
P63038 Hspd1 K455 2.66 No Yes
P63038 Hspd1 K130 1.52 Yes No
P63038 Hspd1 K125 151 Yes No
Q8CAK1 Iba57 K222 -2.87 No No
P54071 Idh2 K67 2.78 No No
P54071 Idh2 K272 1.56 No No
P54071 Idh2 K106 1.56 No No
P08249 Mdh2 K165 1.69 No No
P03930|A3R404| Mtatp8|mt- K48 1.69 Yes No
Q5GA80 Atp8|ATPS8
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SIRT3 Regulated

Uniprot ID Gene Symbol  Acetyl Proteoform HF/Sham (FC) Target in CH
P09541|Q9CZ19 Myl4 K140 1.66 No No
A2A6Q8
Q3UIU2|A2AP32 Ndufbé K24 1.67 No No
Q9D6J5 Ndufb8 K176 -1.88 No No
P52503 Ndufs6 K41 2.11 No Yes
Q8K2B3 Sdha K608 1.98 No Yes

A fold-change cut-off of £1.5 was used for this analysis.
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Supplemental Table 3. Pathway analysis of mitochondrial proteins with regulated
acetylation sites in murine HF.

#of genes  # of genes in

Ingenuity Canonical Pathways regulated pathway p-value  Acetylated Proteins

Oxidative 7 100 7.943E-10 SDHA,ATP5B,ATP5D,NDUFS6,

Phosphorylation/Electron NDUFB6,NDUFB8,COX4l11

Transport Chain

Fatty Acid p-oxidation | 5 30 2.754E-09 HADHB,ECHS1,ACAA2,HADHA,
HADH

Glutaryl-CoA Degradation 4 11 3.802E-09 HADHB,ACAT1,HADHA HADH

Isoleucine Degradation | 4 14 1.148E-08 HADHB,ECHS1,ACAT1,HADHA

Tryptophan Degradation Ill 4 20 5.623E-08 HADHB,ACAT1,HADHA,HADH

(Eukaryotic)

Ketolysis 3 8 3.715E-07 HADHB,ACAT1,HADHA

Ketogenesis 3 10 7.943E-07 HADHB,ACAT1,HADHA

Mevalonate Pathway | 3 12 1.445E-06 HADHB,ACAT1,HADHA

Superpathway of 3 12 3.631E-06 HADHB,ACAT1,HADHA

Geranylgeranyldiphosphate

Biosynthesis I (via Mevalonate)

Valine Degradation | 3 18 5.370E-06 HADHB,ECHS1,HADHA

TCA Cycle Il (Eukaryotic) 3 22 8.710E-06 SDHA,ACO2,MDH2

Superpathway of Cholesterol 3 27 1.905E-05 HADHB,ACAT1,HADHA

Biosynthesis

Gluconeogenesis | 2 24 8.318E-04 ENO3,MDH2

Phenylethylamine Degradation | 1 4 7.762E-03 ALDH2

Aspartate Degradation Il 1 7 1.148E-02 MDH2

LXR/RXR Activation 2 110 1.950E-02 ECHS1,HADH

Phenylalanine Degradation IV 1 14 2512E-02 ALDH2

(Mammalian, via Side Chain)

Histamine Degradation 1 12 2.512E-02 ALDH2

Methylglyoxal Degradation IlI 1 14 2.692E-02 AKR7A2

Putrescine Degradation 111 1 16 3.090E-02 ALDH2

Fatty Acid a-oxidation 1 15 3.090E-02 ALDH2

Oxidative Ethanol Degradation Ill 1 15 3.090E-02 ALDH2

Tryptophan Degradation X 1 17 3.236E-02 ALDH2

(Mammalian, via Tryptamine)

Aldosterone Signaling in Epithelial 2 148 3.311E-02 HSPA9,HSPD1

Cells

Ethanol Degradation IV 1 17 3.467E-02 ALDH2

Dopamine Degradation 1 20 3.802E-02 ALDH?2

Glycolysis | 1 23 4.169E-02 ENO3

Tumoricidal Function of Hepatic 1 22 4.365E-02 AIFM1

Natural Killer Cells

All significantly regulated pathways as identified by Ingenuity Pathway Analysis are listed. Major energy transduction
pathways are shown in bold.
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Supplemental Table 4. Mitochondrial protein acetylation sites regulated in CH mice.

Gene Acetyl CH/Sham SIRT3 Regulated in
Uniprot ID Symbol Proteoform (FC) Target HF
Q8BWT1 Acaa2 K137 1.59 No Yes
Q8QZT1 Acatl K80 -1.50 No No
Q8QZT1 Acatl K171 -1.65 No No
Q99KI0 Aco2 K739 -1.60 Yes No
Q32MW3|Q9R0X4  Acotl0]Acot9 K102 1.50 Yes Yes
Q9Z0X1|B1AU25 Aifm1 K592 -2.08 No Yes
P47738|Q3U9J7| Aldh2 K370 1.61 Yes Yes
Q3U6I3|Q3UJW1|
Q3TVM?2
Q03265 Atp5al K126 -1.54 Yes No
P56480 Atp5b K133 1.96 Yes Yes
Q9D3D9|QIDCZO| Atp5d K165 1.75 No Yes
Q9D0J2
Q9IDCX2 Atp5h K48 1.77 No No
P97450 Atp5j K99 -1.64 No No
P97450 Atp5j K41 -1.66 No No
Q6P8J7 Ckmt2 K292 1.63 No No
P19536|Q9D881 Cox5b K74 1.67 No No
P19536|Q9D881 Cox5b K121 1.64 No No
P56393 Cox7b K75 1.85 No No
P47934|H7BX88 Crat K270 2.04 No Yes
Q9DOM3|QIDOM3- Cycl K177 -1.98 No No
2
008749 Dld K420 1.79 No No
Q9D2G2 Dlst K278 -1.63 No No
035459 Echl K97 1.69 No No
P42125 Ecil K222 -2.12 No No
QIWUR2|QIWUR2- Eci2 K138 3.39 No No
2| Q3TCD4
Q99LC5 Etfa K164 1.54 No No
P26443 Gludl K415 2.35 No No
P26443 Gludl K84 -1.82 No No
P05202 Got2 K122 1.74 No No
Q61425 Hadh K127 152 No No
Q8BMS1 Hadha K334 1.58 Yes No
Q8BMS1 Hadha K519 1.54 No No
Q99JY0 Hadhb K73 -1.64 Yes Yes
P63038 Hspdl K455 2.46 No Yes
P54071 Idh2 K400 2.32 No No
Q9D6R2 Idh3a K336 -1.57 No No
E9Q800|Q3TEY5 Immt K596 1.80 No No
P08249 Mdh2 K239 1.53 Yes No
P51667 Myl2 K165 1.64 No No

80



Gene Acetyl CH/Sham SIRT3 Regulated in

Uniprot ID Symbol Proteoform (FC) Target HF
QICPP6 Ndufab K36 151 No No
Q91VvDI|Q3TIU7 Ndufsl K98 1.62 No No
P52503 Ndufs6 K41 1.58 No Yes
Q9JHW?2 Nit2 K68 -2.80 No No
Q60597 Ogdh K897 -1.52 No No
P35486 Pdhal K321 1.76 No No
P35486 Pdhal K63 1.65 No No
Q8K1R3|Q8K1R3-2| Pnptl K285 1.64 No No
Q3TSTO|Q3UNLS5|

Q3TN29

Q8K2B3 Sdha K608 2.07 No Yes
Q8VEMS|G5E902]| Slc25a3 K230 2.41 No No
Q3THU8

P51881 Slc25a5 K155 1.57 No No
Q9D855|Q9CQB4 Uqgcrb K110 1.59 No No
Q9D855|Q9CQB4 Uqgcrb K83 -1.99 No No

A fold-change cut-off of £1.5 was used for this analysis.
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Supplemental Table 5. Mitochondrial protein acetylation sites regulated in human failing
hearts.

. Gene Acetyl
Uniprot ID Symbol Proteoform DCMI/NF ( FC) p-value
Q9UKU7 ACADS8 K144 2.22 0.055
P16219 ACADS K343 2.04 0.059
A2A274 ACO2 K50 1.35 0.021
A2A274 ACO2 K138 2.03 0.022
B72452 ACSL1 K561 1.83 0.059
P30038 ALDH4A1 K531 2.01 0.013
P30038 ALDH4A1 K119 1.99 0.042
P30038 ALDH4A1 K93 1.52 0.169
Q8NCW5 APOA1BP K148 1.62 0.030
Q6UXV4 APOOL K105 2.46 0.033
P25705 ATP5A1 K252 2.55 0.004
P25705 ATP5A1 K498 -1.62 0.007
P25705 ATP5A1 K316 1.53 0.010
P25705 ATP5A1 K194 1.82 0.038
P25705 ATP5A1 K506 1.45 0.040
P25705 ATP5A1 K531 -1.62 0.186
P25705 ATP5A1 K230 2.09 0.074
075947 ATP5H K58 1.59 0.110
P18859 ATP5J K94 1.85 0.095
QU2 ATPIF1 K82 1.79 0.045
Q02338 BDH1 K97 1.88 0.045
Q02338 BDH1 K212 1.62 0.060
P04040 CAT K237 2.29 0.023
Q03135 CAV1 K47 1.85 0.064
QINZz45 CISD1 K68 2.05 0.001
P12277 CKB K307 3.76 0.002
P12277 CKB K298 1.67 0.088
P17540 CKMT2 K230 1.67 0.001
Q14061 COX17 K40 2.45 0.003
P13073 COX4l11 K159 1.97 0.040
Q92523 CPT1B K40 2.01 0.022
P07339 CTSD K341 2.01 0.063
Q9UHQ9 CYB5R1 K167 -1.23 0.018
P11182 DBT K295 1.60 0.255
P11182 DBT K243 2.01 0.071
P11182 DBT K257 2.03 0.153
P36957 DLST K267/K272 1.54 0.255
P15924 DSP K916 1.41 0.003
P15924 DSP K1687 2.04 0.012
P15924 DSP K485 191 0.039
P15924 DSP K1099 1.84 0.126
P15924 DSP K2393 1.84 0.095
P30084 ECHS1 K115 1.70 0.056
P13804 ETFA K69 1.94 0.075
Q16134 ETFDH K96 1.60 0.025
P00505 GOT2 K279 2.55 0.016
P00505 GOT2 K94 2.19 0.024
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. Gene Acetyl
Uniprot ID Symbol Proteoform DCMI/NF ( FC) p-value
P40939 HADHA K406 -2.49 0.008
P40939 HADHA K353 -1.67 0.135
P40939 HADHA K411 -1.63 0.072
P40939 HADHA K326/K334 1.54 0.409
P40939 HADHA K605 2.45 0.064
P49590 HARS2 K52 1.92 0.020
P31937 HIBADH K56 1.89 0.103
075874 IDH1 K81 2.28 0.018
P50213 IDH3A K223 -1.82 0.008
043837 IDH3B K199 3.74 0.002
P83111 LACTB K225 1.60 0.187
P42704 LRPPRC K66 2.37 0.038
Q9BQ69 MACROD1 K117 1.53 0.007
P21397 MAOA K469 2.36 0.058
P23368 ME2 K24 -2.33 0.020
P82909 MRPS36 K78 2.13 0.015
Q9Y3D2 MSRB2 K176 2.38 0.038
Q9UI09 NDUFA12 K114 1.70 0.005
Q9UI09 NDUFA12 K47 1.72 0.169
Q9P0JO NDUFA13 K22 2.05 0.288
Q9P0JO NDUFA13 K7 2.80 0.105
P56556 NDUFAG K44 1.60 0.575
P51970 NDUFA8 K106 3.13 0.005
P51970 NDUFA8 K38 1.60 0.148
Q16795 NDUFA9 K163 2.17 0.006
096000 NDUFB10 K121 1.86 0.078
095298 NDUFC2 K114 1.59 0.002
075489 NDUFS3 K109 1.84 0.000
043920 NDUFS5 K38 1.63 0.008
043920 NDUFS5 K101 1.32 0.012
000217 NDUFS8 K88 2.00 0.037
Q13423 NNT K100 2.10 0.007
Q13423 NNT K331 1.58 0.009
Q13423 NNT K462 1.75 0.020
Q13423 NNT K453 2.32 0.030
Q13423 NNT K403 1.69 0.178
E9PCR7 OGDH K363 2.53 0.006
E9PCR7 OGDH K402 1.58 0.033
E9PCRY OGDH K416 -1.64 0.093
E9PCR7 OGDH K252 2.37 0.053
P55809 OXCT1 K41 2.46 0.037
P55809 OXCT1 K296 151 0.333
P30405 PPIF K73 -1.81 0.018
P30405 PPIF K167 1.95 0.040
P47897 QARS K230 2.17 0.036
Q9Y512 SAMM50 K227 1.34 0.012
D6RFM5 SDHA K361 1.64 0.018
E9PEFS8 SDHA K396 1.52 0.020
D6RFM5 SDHA K179 1.84 0.130
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. Gene Acetyl
Uniprot ID Symbol Proteoform DCMI/NF ( FC) p-value
P12235 SLC25A4 K163 1.67 0.003
P12235 SLC25A4 K33 1.81 0.013
P12235 SLC25A4 K96 1.53 0.051
P53597 SUCLG1 K54 1.88 0.012
P21980 TGM2 K672 2.51 0.001
P49411 TUFM K297 2.13 0.015
P49411 TUFM K55 1.78 0.101
P31930 UQCRC1 K447 1.60 0.032
P22695 UQCRC2 K159 1.35 0.043
P07919 UQCRH K85 1.85 0.002
014949 UQCRQ K33 1.90 0.040
P21796 VDAC1 K224 1.20 0.018
P21796 VDAC1 K109 1.23 0.019
P21796 VDAC1 K252 1.74 0.022

A fold-change cut-off of £1.5 or p < 0.05 was used for this analysis.
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CHAPTER FOUR:
THE FAILING HEART RELIES ON KETONE BODIES AS A FUEL?

®This is a non-final version of an article published in its final form as: GA Aubert, OJ
Martin, JL Horton, L Lai, RB Vega, TC Leone, T Koves, SJ Gardell, M Kruger, CL
Hoppel, ED Lewandowski, PA Crawford, DM Muoio, and DP Kelly. The Failing Heart
Relies on Ketone Bodies as a Fuel. Circulation. 2016;133(8):698-705

Abstract

Background

Significant evidence indicates that the failing heart is “energy-starved”. During the
development of heart failure, the capacity of the heart to utilize fatty acids, the chief fuel,
is diminished. Identification of alternate pathways for myocardial fuel oxidation could

unveil novel strategies to treat heart failure.

Methods and Results

Quantitative mitochondrial proteomics was used to identify energy metabolic
derangements that occur during the development of cardiac hypertrophy and heart
failure in well-defined mouse models. As expected, amounts of proteins involved in fatty
acid utilization were downregulated in myocardial samples from the failing heart.
Conversely, expression of 3-hydroxybutyrate dehydrogenase 1 (BDH1), a key enzyme
in the ketone oxidation pathway, was increased in the heart failure samples.

Studies of relative oxidation studies in an isolated heart preparation using ex vivo
NMR combined with targeted quantitative myocardial metabolomic profiling using mass

spectrometry revealed that the hypertrophied and failing heart shifts to oxidizing ketone

85



bodies as a fuel source in the context of reduced capacity to oxidize fatty acids. Distinct

myocardial metabolomic signatures of ketone oxidation were identified.

Conclusions

These results indicate that the hypertrophied and failing heart shifts to ketone bodies as
a significant fuel source for oxidative ATP production. Specific metabolite biosignatures
of in vivo cardiac ketone utilization were identified. Future studies aimed at determining
whether this fuel shift is adaptive or maladaptive could unveil new therapeutic strategies

for heart failure.

Keywords:

heart failure, hypertrophy, metabolism, molecular biology, fatty acid

Introduction

Growing evidence indicates that derangements in myocardial fuel metabolism and
bioenergetics contribute to the development of heart failure, a global health problem.
The adult mammalian heart requires enormous amounts of energy to sustain contractile
function. Given that cardiac myocyte energy reserves are limited, ATP must be
continually generated by oxidation of carbon fuels (1-5). Over 95% of the ATP
produced in the healthy adult mammalian heart comes from mitochondrial oxidative
phosphorylation, with the remainder being derived from glycolysis (2-5). Genetic
studies have provided evidence that alterations in mitochondrial ATP production is

casually linked to the development of heart failure. Specifically, human genetic defects
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in mitochondrial fatty acid oxidation (FAQO) and oxidative phosphorylation (OXPHOS)
cause cardiomyopathy.

Studies in humans with common acquired forms of heart failure have also
provided evidence that derangements in fuel and energy metabolism contribute to heart
failure. Cardiac magnetic resonance spectroscopy studies have shown that myocardial
“high-energy” phosphate (phosphocreatine or PCr) stores are reduced in humans with
pathological ventricular hypertrophy, with further decline during the transition to heart
failure (6—10). Notably, the [PCr])/[ATP] ratio correlates with heart failure severity and is
a strong predictor of cardiovascular mortality (11,12). In addition, studies conducted in
animal models have consistently revealed re-programming of myocardial fuel utilization
in the hypertrophied and failing heart; a shift from the chief fuel metabolic pathway, fatty
acid oxidation (FAO), to increased reliance on glycolysis (13—-20). Cardiac positron
emission tomography studies in humans with hypertensive cardiac hypertrophy or
idiopathic cardiomyopathy have largely corroborated this fuel shift (21-23). The
mechanisms through which the failing heart compensates for this reduced capacity for
oxidizing its chief energy substrate are unknown. Delineation of such alternate fuel
utilization pathways, if they exist, could unveil new therapeutic strategies for heart
failure.

In this study, we undertook an unbiased proteomic approach to probe
mitochondrial fuel and energy metabolic abnormalities that occur during the
development of heart failure in well-defined models of compensated and de-

compensated pressure overload-induced cardiac hypertrophy in mice. Our results
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confirmed that contents of proteins involved in fatty acid utilization are reduced in the
hypertrophied and failing heart. The proteomic dataset also demonstrated that the (-
hydroxybutyrate dehydrogenase 1 (BDH1), a key enzyme in the ketone oxidation
pathway, is upregulated in the hypertrophied and failing heart. Metabolite profiling and
labeled substrate utilization studies supported the conclusion that the hypertrophied and

failing heart shifts to ketone bodies as an alternate fuel.

Methods

Animal Studies

All animal experiments and euthanasia protocols were approved by the Institutional
Animal Care and Use Committee at Sanford Burnham Prebys Medical Discovery
Institute at Lake Nona. Studies were performed on female C57BL/6J mice 7-12 weeks
of age on either standard chow (16.4% protein, 4.0% fat and 48.5% carbohydrates;
Harlan Teklad, #2016) or ketogenic diet (8.6% protein, 75.1% fat and 3.2%
carbohydrates; BioServ Co, AIN-76A). Animals were fed the ketogenic diet starting at
7-8 weeks of age.

8 week old female C57BL/6J mice in the following groups were utilized:
compensated hypertrophy (CH) vs sham controls; heart failure (HF) vs sham controls.
CH was achieved by transverse aortic constriction (TAC). HF was achieved by TAC
plus a small apical myocardial infarction as described (24—26). Mice were harvested 1

month following each procedure.
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Proteomics using Stable Labeling by Amino Acids (SILAC)

Mass spectrometry-based quantitative proteomics was conducted on mitochondrial
enriched fractions (27) prepared from cardiac tissue of CH, HF, and sham control non-
labeled (light) mice, spiked with Lys6 labeled mitochondria prepared from cardiac tissue
of Lys6 (**C6-Lysine, Silantes) labeled (heavy) non-surgery mice, (28) as described in
the Data Supplement. The proteomics data have been deposited into the Proteome
Xchange Consortium (http://proteomecentral.proteomexchange.org) via the PRIDE

partner repository with the dataset identifier PXD001820.

Substrate Oxidation Measurements

Langendorff heart perfusions were performed as previously described (29,30). Briefly,
mice received 100 units of heparin by intraperitoneal injection and 10 min later were
anesthetized with an intraperitoneal injection of 390 mg/kg sodium pentobarbital.

Excised hearts were perfused with a modified Krebs-Henseliet buffer (118 mM
NacCl, 25 mM NaHCOg3, 4.7 mM KCI, 0.4 mM KH,POy,4, 2.5 mM CaCl,, pH 7.4)
supplemented with 5 mM glucose and either i) 0.6 mM [2, 4,6,8,10,12,14,16-*C8]
palmitate complexed (3:1 ratio) to a 3% fatty acid free bovine serum albumin (BSA) plus
unlabeled 1 mM BOHB or unlabeled 0.6 mM palmitate/BSA plus 1 mM [2, 4-1*C2]
BOHB, with 1 mU/ml insulin (rDNA origin; Lilly) and continuous equilibration to a 95%
02/5% CO, gas mixture. Following each perfusion, hearts were snap frozen in LN

cooled tongs.
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In vitro NMR spectroscopy was performed on reconstituted (D20) lyophilized
samples of neutralized, acid extracts of frozen myocardium, as previously described
using either direct detect proton-decoupled **C NMR or **C-edited, 1H-observed NMR
(30,31). The relative contribution of each substrate was calculated as previously
described (29,31). Briefly, glutamate enrichment was used as a reporter of carbon entry
into the TCA cycle. The fractional enrichment of acetyl-coenzyme A (Fc) entering the
TCA cycle and the contribution of anaplerosis relative to citrate synthase activity (Y)
were determined by isotopomer analysis of the glutamate 3- and 4-carbon *3C

resonance.

RNA Analyses

Total RNA was isolated from mouse bi-ventricle using the RNAzol method (Tel-Test).

gRT-PCR was performed as described previously (32) and in the Data Supplement.

Western Blot

Western blotting was performed with lysates from bi-ventricle as previously described
(33) using the following antibodies: VDAC/porin, (Abcam #ab15895); and BDH1 (Abcam
#ab93931). Detection was performed by measuring the chemiluminescent signal as

assayed by SuperSignal Dura (Pierce).

Metabolomic Analysis of Organic Acids and Acylcarnitines

Measurements of succinate, C40H-carnitine, and acetylcarnitine (C2-carnitine) in

mouse heart were conducted as described (25,34) and in the Data Supplement.
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Plasma Biochemistry Measurements

Ketone bodies (total and B-hydroxybutyrate) were measured in blood serum using
assays from Wako (Wako Diagnostics) according to the manufacturer’s instructions or
on a Beckman-Coulter UniCel DxC 600 Analyzer. Plasma glucose and free fatty acids
were measured using assays from Cayman (Cayman Chemical). Plasma triglyceride
levels were determined using the Stanbio (Stanbio Laboratory) assay. The assays were

conducted according to the manufacturer’s instructions.

Statistical Analyses

All data were analyzed with a 2-tailed Mann-Whitney or Student’s T-test (GraphPad
Prism 6), where noted. The level of significance was set at p < 0.05 in all cases. The
Pearson’s correlation coefficient was used to define the relationship between the

amounts of CH and HF proteins.

Results

Mitochondrial Proteomic Profiling Reveals Evidence for Altered Fuel
Utilization in the Hypertrophied and Early Stage Failing Mouse Heart

As an initial step towards defining energy metabolic alterations in the hypertrophied and
early stage failing heart, quantitative mitochondrial proteomics was conducted on two
well-defined mouse surgical models that exhibit distinct cardiac functional
manifestations over a 4 week period: i) Left ventricular (LV) hypertrophy with preserved
ventricular function (compensated hypertrophy or CH) achieved via surgically-placed

transverse aortic constriction (TAC); (24) and ii) decompensated cardiac hypertrophy
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(heart failure or HF) caused by combining TAC with a small apical myocardial infarction
(TAC/MI) leading to reduced LV systolic function and global chamber dilatation (25,26).
To identify regulated proteins, mitochondrial-enriched samples prepared from cardiac
ventricles of CH and HF mice, and corresponding sham-operated control mice were
subjected to quantitative proteomics using Stable Isotope Labeling by Amino Acids
(SILAC) in mouse. Heavy isotope-tagged mitochondrial-enriched proteins were
prepared from the hearts of control mice fed a diet containing *3*C6-Lysine (Lys6) for 3
generations (35) (Figure 7A). 516 mitochondrial proteins were identified in all samples
(Table 1 in the Data Supplement). The levels of 55 of these protein were determined to
be regulated in CH (23), HF (10) or both (22) groups compared to corresponding
controls, using a cutoff of < -1.25 or > 1.5-fold change (Figure 7B, and in the Data
Supplement Table 7). Notably, the majority of dysregulated proteins in the HF group
were similarly impacted in the CH group. In addition, changes in protein amounts in CH
and HF are significantly correlated (Pearson correlation coefficient r=0.82; Figure 7C).
Rather surprisingly, the proteomic data revealed that few proteins involved in the
electron transport chain (ETC) or mitochondrial OXPHOS were downregulated in CH or
HF mice, in contrast to the results from other studies using models of chronic heart
failure (36—39). These results are consistent, however, with the results of our previous
transcriptomic profiling of the same samples demonstrating that very few genes
involved in ETC/OXPHOS were regulated in CH or HF samples (25). Many of the

regulated proteins detected in our study were involved in myocyte fuel metabolism.
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Figure 7. Mitochondrial proteomic profiling in the hypertrophied and failing mouse heart.

(A) Schematic of the experimental design for quantitative proteomic analysis using stable isotope labeling
by amino acids (SILAC), in mitochondrial-enriched fractions, from the ventricles of sham-operated,
compensated hypertrophy (CH), and heart failure (HF) animals. (B) Venn diagram displaying the number
of regulated proteins identified in the CH, HF, or both groups using a cutoff of —1.25- or >1.5-fold change
(FC) in comparison with sham-operated controls (n=2 per group). (C) The graph denotes fold change in
levels of proteins that meet the defined cutoffs: HF/sham (ordinate) and CH/sham (abscissa). The key
denotes regulated proteins involved in 2 fuel utilization pathways of interest as described in the text: fatty
acid B-oxidation (white) and ketone catabolism (black). Spearman correlation coefficient (r) was
calculated to determine the relationship between the CH and HF protein changes. BDH1 indicates B-
hydroxybutyrate dehydrogenase 1

93



First, proteins needed for cellular fatty acid utilization were reduced in both the CH and
HF groups [enoyl-CoA, hydratase/3-hydroxyacyl CoA dehydrogenase (EHHADH), enoyl
CoA hydratase 1 (ECHL1), acetyl-CoA acyltransferase 2 (ACAA2), and hydroxysteroid
(17-beta) dehydrogenase 4 (HSD17B4), non-specific lipid transfer protein (SCP2);
Figure 7C]. These results are concordant with many published studies showing that
expression of genes involved in FAO are downregulated in the hypertrophied and failing
hearts (15,16,20,40-42). Secondly, BDH1, an enzyme involved in ketone body
metabolism, was increased in both CH and HF samples (2.8 and 1.9 fold, respectively;
Figure 7C, and in the Data Supplement Table 7). The induction of BDH1 protein
expression was among the highest in the dataset. Quantitative real-time PCR (qRT-
PCR) and immunoblotting confirmed a significant increase in Bdhl mRNA and protein
expression in CH and HF hearts harvested under both fed and fasted conditions

(Figures 8A, B).

The Hypertrophied Heart Re-programs to Utilize
Ketone Bodies as an Alternate Fuel Source

We next conducted studies to determine whether the hypertrophied heart shifts to using
ketone bodies as suggested by the results of the proteomic profiling. **C-NMR studies
were performed to measure the relative contribution of fatty acids and ketone bodies
tricarboxylic acid (TCA) cycle flux. For these studies, hearts isolated from CH or sham-
operated control groups were perfused in the Langendorff mode with **C-labeled
palmitate in the presence of unlabeled R-B-hydroxybutyrate (R-BOHB), or **C-labeled

R-BOHB in the presence of unlabeled palmitate. Consistent with findings described in
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numerous published studies (15,16,18,31,41,43,44), the contribution of **C-labeled
palmitate to oxidative intermediary metabolism was decreased by approximately 40% in
the CH hearts (Figure 1 in the Data Supplement).
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Figure 8. Bdh1l expression is induced in the hypertrophied and failing mouse heart.

(A) Bdhl mRNA levels in cardiac ventricular tissue from mice 4 weeks after sham, TAC (CH), or TAC/MI
(HF) surgeries. Expression is normalized to Rplp0 (36B4). Bars represent mean+SEM values (n=9-11
per group). *P<0.05. (B) Representative immunoblot analyses performed using protein extracts prepared
from mouse cardiac ventricular tissue homogenates 4 weeks postsham, post-CH, or post-HF surgeries
collected in the fed state (4 hours after feeding) or following a 24-hour fast. Antibodies used are shown on
the left. Anti-VDAC was used as a mitochondrial protein-loading control. AU indicates arbitrary unit;
BDH1, B-hydroxybutyrate dehydrogenase 1; CH, compensated hypertrophy; HF, heart failure; Ml,
myocardial infarction; SEM, standard error of the mean; TAC, transverse aortic constriction; and VDAC,
voltage-dependent anion channel.
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Conversely, the contribution of BOHB to carbon entry into the oxidative pathway of the
TCA cycle increased significantly in hearts from CH mice compared to control mice
(Figure 9, left). These data indicate a 25% increase in the contribution of BOHB to
oxidative production of ATP from carbon flux through the TCA cycle. In addition, the
entry of anaplerotic carbon flux into the TCA cycle was increased in the CH heart,

consistent with previous reports (31,43,45) (Figure 9, right).
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Figure 9. Increased BOHB oxidation in the hypertrophied heart.

Left, The fraction of **C-enriched acetyl-CoA entering the TCA cycle from 3C.labeled BOHB (Fc, BOHB)
is shown. Right, The fraction of carbon entering the TCA cycle via anaplerosis relative to that entering via
citrate synthase () is shown for CH and sham-operated controls. Data are shown as mean+SEM (n=10,
sham; and n=11, CH). *P<0.05. CH indicates compensated hypertrophy; CoA, coenzyme A; BOHB, B-
hydroxybutyrate; SEM, standard error of the mean; and TCA, tricarboxylic acid.

Identification of Metabolite Signatures of Ketone
Utilization in the Myocardium of the Failing Heart

We next sought to determine whether cardiac ketone utilization was increased in vivo in
the failing heart. To this end, we measured myocardial levels of metabolites that reflect
ketone body oxidation. Targeted quantitative metabolomic datasets generated

previously from heart samples of the CH and HF groups and corresponding controls
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(25) were analyzed for changes in metabolites that can be produced during ketone body
metabolism including hydroxybutyrylcarnitine (C40OH-carnitine), acetylcarnitine (C2-
carnitine), and succinate (Figure 10A). Levels of C40H-carnitine and C2-carnitine have
been shown to rise in the context of increased ketone body utilization in human and

mouse skeletal muscle, and in human subcutaneous interstitial fluid (46—48)
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Figure 10. The myocardial metabolite profile of the failing heart is indicative of increased ketone
utilization in the failing heart.

(A) Schematic of the ketone metabolism pathway indicating relevant intermediary metabolite derivatives
(dashed arrows). (B) Levels of ketone utilization pathway metabolite derivatives (C40H-carnitine,
succinate, C2-carnitine) in cardiac biventricular tissue from CH or HF mice and corresponding sham-
operated controls 4 weeks postsurgery as measured previously by using mass spectrometry—based
guantitative metabolomics (25). Data are shown as mean+SEM (n=6 per group). *P<0.05. ACAT1
indicates acetyl-CoA acetyltransferase 1; BDH1, B-hydroxybutyrate dehydrogenase 1; C2-carnitine,
acetylcarnitine; C40OH-carnitine, hydroxybutyrylcarnitine; CH, compensated hypertrophy; CoA, coenzyme
A; HF, heart failure; MCT, monocarboxylate transporters; Ml, myocardial infarction; BOHB, [3-
hydroxybutyrate; SCOT, succinyl-CoA:3-oxoacid-CoA transferase; SEM, standard error of the mean;
TAC, transverse aortic constriction; and TCA, tricarboxylic acid
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Concentrations of C40H-carnitine, C2-carnitine, and succinate were increased in
hearts of the HF group, but not the CH samples, compared to corresponding controls
(Figure 10B), consistent with increased flux through the reaction catalyzed by BDH1The
relevance of the distinct HF metabolite signatures to myocardial ketone body
metabolism was further assessed by comparison with profiles obtained from hearts of
wild-type C57BL/6J mice fed a ketogenic diet for 4 weeks to increase myocardial ketone
body delivery and utilization (29,49-51). As expected, the ketogenic diet resulted in a
dramatic increase in concentration of plasma ketone bodies compared to controls fed a
standard chow (Figure 2 in the Data Supplement). Notably, this dietary intervention had
no effect on ventricular function in this timeframe (echocardiographic data not shown).
Importantly, the pattern of myocardial metabolite alterations observed in the mice fed a
ketogenic diet was strikingly similar to that observed for the HF mice on a standard
chow diet, including elevated amounts of both the R and S enantiomers of C40H-
carnitine (Figure 11A). An increase in both C40OH-carnitine enantiomers is consistent
with an increase in uptake and oxidation of ketone bodies. In addition, rat ventricular
myocytes cultured in fatty-acid free, ketone body-rich media also showed an elevated
content of C40H-carnitine compared to cells in control (ketone body-free) media (Figure
11B). Notably, the amount of Coenzyme A (CoASH) was not different between HF and

control groups (data not shown).
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Figure 11. Myocardial metabolite profile on a ketogenic diet is similar to that observed for the HF
mice on a standard chow diet.

A, Levels of R-C40H-carnitine, S-C40H-carnitine, and C2-carnitine in cardiac ventricular tissue from wild-
type C57BL/6J mice fed a ketogenic (Keto) diet or standard (Std) chow diet for 4 weeks (n=5 per group).
Values were determined by using mass spectrometry. *P<0.05. B, Total C40OH-carnitine levels in extracts
prepared from neonatal rat ventricular myocytes (NRVMs) cultured in media £ 8 mmol/L ketone, R-BOHB,
in the presence of 1g/L glucose and 1 mmol/L carnitine, for 24 hours (n=3 per group, *P<0.05 by the
Student t test). C, Total plasma ketones (acetoacetate+BOHB), glucose, free fatty acids (FFA), and
triglycerides in CH, HF, and sham-operated control mice in the fed state (after a 4-hour morning fast;
n=5-11 per group). Bars represent mean+SEM for all panels.*P<0.05. C2-carnitine indicates
acetylcarnitine; CH, compensated hypertrophy; C40H-carnitine, hydroxybutyrylcarnitine; HF, heart failure;
MI, myocardial infarction; BOHB, B-hydroxybutyrate; SEM, standard error of the mean; and TAC,
transverse aortic constriction.
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Lastly, to assess ketone delivery to the heart in the CH and HF groups, plasma
substrate concentrations were measured. Plasma ketone body levels were modestly but
significantly increased in HF but not CH, compared to corresponding controls (Figure
11C). Plasma glucose, free fatty acid levels, and triglycerides were unchanged in CH or
HF groups (Figure 11C). The expression of the genes encoding the putative cellular
ketone body transporters [SIc16al (MCT1) and Slcl6a7 (MCT2)] were also assessed
as an indirect measure of transport capacity given that Bdhl expression was increased
in CH and HF. Analysis of our published gene expression profiles (25) did not reveal
any differences in CH or HF compared with control myocardium following a 4h fast.
However, after a 24h fast, when circulating ketone bodies are increased, we found that
Slcl16a7 mRNA levels were significantly increased in both CH and HF samples,
compared to corresponding sham-operated controls (Figure 3 in the Data Supplement).
Taken together, these results provide evidence that myocardial ketone body utilization
is increased in the HF mice through several potential mechanisms including increased
delivery of ketone bodies and gene regulatory re-programming of ketone uptake and

oxidation.

Discussion

The results of this study yielded several new findings including: 1) the amounts of
relatively few mitochondrial proteins involved in energy transduction and ATP
production are regulated in the early stages of cardiac hypertrophy (CH) and heart

failure (HF) in the mouse models studied here. Within the subset of regulated proteins in
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the CH and HF samples, a significant number were involved in fatty acid utilization,
providing proteomic confirmation that the failing heart has reduced capacity for oxidizing
fatty acids as a fuel; 2) the hypertrophied and failing rodent heart oxidizes ketone bodies
as an alternate fuel for oxidative ATP production; and 3) metabolite signatures of
myocardial ketone oxidation have been identified and suggest that a subset of
mitochondrial ketone oxidation intermediate pools accumulate in the failing heatrt.

Our data support the conclusion that the shift to ketone oxidation in the failing
heart occurs through several complementary mechanisms. First, ketone bodies are
competitive with other substrates for heart, particularly fatty acids. The observed shift to
ketone body oxidation in the hypertrophied and failing heart occurs in the context of
reduced oxidation of fatty acids, the chief substrate for the normal adult heart.
Downregulation of FAO gene expression is a well-characterized response in the
hypertrophied and failing heart, driven at least in part, by reduced PPARa-mediated
transcriptional control of genes involved in fatty acid utilization (20,52-54). Second, the
delivery of ketone bodies is increased in the failing heart (increased plasma
concentration). Indeed, previous studies have shown that the mammalian heart is
capable of avid ketone body uptake and oxidation (55-57). We also cannot rule out the
possibility that ketone body synthesis is activated in the cardiac myocyte although our
gene expression data do not support this notion. Third, our results indicate that the
hypertrophied and failing heart undergo gene regulatory re-programming to increase
capacity for uptake and oxidation of ketone bodies. Specifically, the expression of Bdh1l

and the transporter Slcl16al were increased in CH and HF.
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Our work has identified metabolite signatures of myocardial ketone utilization in
the failing and normal heart (C40OH-carnitine and C2-carnitine). The metabolites were
selected based on known derivatives of ketone utilization pathway intermediates (Figure
10A), and published work by others focused on tissues known to oxidize ketones (46—
48). It should be noted that this set of metabolites are not unique to ketone utilization
pathways, given that other metabolic pathways can generate the intermediates.
However, our results demonstrate that this metabolite profile is elevated in both HF
samples and normal mice fed a ketogenic diet, providing additional support for our
conclusion. In addition, we found that C40H content is increased in rat neonatal cardiac
myocytes exposed to BOHB. Interestingly, the increase in C40OH-carnitine and C2-
carnitine was observed in HF but not CH samples. The reason for this latter specificity is
unknown, but could reflect higher ketone oxidation rates related to increased ketone
body delivery (elevated plasma levels) in HF. Alternatively, capacity for flux through
downstream pathways such as the TCA cycle, ETC, and OXPHOS may become
reduced with progression to HF creating a mismatch with high flux rates through the
ketone oxidation pathway. This latter conclusion is supported by our observation that
most TCA cycle organic acid intermediates (with the exception of succinate) are
reduced in HF samples, (25) consistent with a “bottleneck” downstream of ketone and
other fuel inputs to the TCA cycle. It will be of significant interest to explore this
metabolomic signature in other experimental heart failure models, and in humans, to
determine whether activation of ketone utilization is a broad paradigm relevant to

energy metabolic reprogramming of the failing heart.
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We speculate that the shift toward ketone body utilization in the hypertrophied
heart is an early adaptive response to maintain adequate fuel supplies for oxidative ATP
production in the context of reduced FAO. Consistent with this notion, a recent study
demonstrated that targeted disruption of succinyl-CoA:3-oxoacid-CoA transferase
(SCOT), a key enzyme in the ketone body metabolic pathway, resulted in a heart failure
phenotype in mice in the context of pressure overload (30). However, it is possible that
over the longer term, high rates of ketone utilization lead to maladaptive consequences.
Others have shown that ketone oxidation may lead to reduced anaplerotic input in an
isolated heart preparation (58). In addition, as noted above, the pools of several
metabolite intermediates including succinate and C2-carnitine are expanded in the
myocardial samples from the HF group. Increased availability of short-chain carbon
moieties and succinate could set the stage for post-translational modifications of
mitochondrial enzymes and proteins reducing oxidative flux or ATP generation.

The findings described herein raise the obvious question of relevance to human
heart failure. Little is known about ketone body metabolism in the failing human heart,
although studies have shown increased concentrations of ketone metabolites in urine
and breath samples of patients with heart failure (59-62). In addition, increased
concentrations of serum BOHB have been described in patients with severe heart failure

(63).
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Conclusions

In summary, our findings indicate that during the development of pathologic cardiac
remodeling in mouse models of heart failure, the myocardium increasingly relies on
ketone bodies as a fuel. We propose that this fuel metabolic shift is triggered by
reduced capacity for oxidizing fatty acids, the chief fuel for the normal adult mammalian
heart. Future studies aimed at determining the relevance of these findings to human
heart failure, and delineation of the impact of chronic ketone utilization on cardiac
metabolism and function will be important to determine whether this response

represents a new therapeutic target for the metabolic modulation of heart failure.

Clinical Perspective

Significant evidence, based on results of pre-clinical studies and observations in
humans, indicates that energy metabolic derangements contribute to the development
of heart failure. A prototypical fuel shift occurs in the hypertrophied and failing heart, in
which the capacity for oxidizing fatty acids, the chief substrate for the normal adult
heart, becomes reduced along with an increase in reliance on glucose. It is generally
believed that reduced capacity for oxidation of fatty acids leads to an “energy-starved”
heart. Therefore, identification of alternate fuel utilization pathways that may
compensate for this fuel shift could lead to new therapeutic strategies aimed at heart
failure. In this study, using well-defined mouse models of cardiac hypertrophy and heart
failure, we demonstrate that the heart begins to utilize ketone bodies en route to the

development of heart failure. This shift to reliance on ketone bodies as a fuel is likely
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driven by multiple mechanisms, including elevation in plasma ketones, a reduction in
competition with fatty acids, and gene regulatory re-programming of the heart. These
findings set the stage for future studies aimed at determining whether the shift to
oxidizing ketone bodies in the failing heart is adaptive or maladaptive. This fuel
utilization pathway could prove to be a new candidate target for metabolic modulatory

therapies aimed at early stages of heart failure.
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Data Supplement

Supplemental Methods

RNA analyses Total RNA was isolated and reverse transcribed with AffinityScript QPCR
cDNA Synthesis Kit (Agilent Technologies). PCR reactions were performed in triplicate
in a 96-well format using the MX3005P (Stratagene). The primer sets (SYBR green)
used to detect specific gene expression are as follows: mBDH1 fwd-
TCTCGGACTGCCTGCGCTAT, revACCGCTGTTGCAGTAGGTTT; m36B4 fwd-
TGGAAGTCCAACTACTTCCTCAA m36B4 rev-ATCTGCTGCATCTGCTTGGAG;

MMCT1 fwdTGCAACGACCAGTGAAGTATC, rev-GACAACCACCAGCGATCATTA;
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MMCT2 fwdATACTTGCAGGTCCTCTCATTC, rev-GGAAGAGGCAGACAACGATAA.
36B4 primer set was included in a separate well (in triplicate) and used to normalize the
gene expression data. Proteomics using Stable Isotope Labeling by Amino Acids
(SILAC) Crude mitochondrial fractions were prepared from cardiac tissue of Lys6
(13C6-Lysine, Silantes) labeled (heavy) and non-labeled (light) mice. Mitochondrial
fractions were prepared as previously described (1) Briefly, immediately following
euthanasia, the mouse ventricles were dissected, washed and placed in ice-cold
isolation buffer (220 mM mannitol, 70 mM sucrose, 5mM HEPES-KOH, pH 7.4, 1mM
EGTA, 1mg/ml BSA and protease inhibitor cocktail). The tissue was then minced and
homogenized using a Potter-Elvehjem glass/Teflon homogenizer. A crude mitochondrial
fraction was extracted from the homogenate using differential centrifugation and
resuspended in small amount of the isolation buffer (300 ul). A 1:1 mixture of heavy and
light heart mitochondrial fractions were then separated by gel electrophoresis on
precast 4-12% NuPAGE gradient gels (Invitrogen) and stained with the 1 Colloidal Blue
Staining Kit (Invitrogen). Evenly sized gel pieces were excised and processed for mass
spectrometry. The gel pieces were subjected to in-gel reduction and alkylation, followed
by LysC (Wako) digestion as described previously (2) In brief, trypsin digested gel
pieces were washed twice with 50% 50 mM NH4HCO3 eluent additive for LC-MS
(Sigma-Aldrich) / 50% ethanol for 20 min, and dehydrated with 100% ethanol for 10 min,
and then vacuum centrifuged. Gel pieces were reduced with 10 mM DTT for 45 min at
56°C and alkylated with 55 mM iodoacetamide for 30 min at RT in the dark. After two

cycles of washing and dehydration, samples were dehydrated twice with 100% ethanol
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for 15 min and vacuum centrifuged. Gel pieces were digested overnight at 37°C in 50 pl
of digestion buffer containing 12.5 ng/pl of LysC (Wako). Released peptides were
extracted once with 30% acetonitrile/ 3% trifluoracetic acid (TFA), twice with 70%
acetonitrile, followed by two final extractions with 100% acetonitrile. Extracts were
vacuum centrifuged to remove acetonitrile and subsequently acidified with 0.5% TFA.
Peptides were desalted and concentrated with homemade "STAGE" tips (Stop and Go
extraction tips) filled with C-18 (C18 Empore Disks, 3M) as described.(3) Mass
spectrometric experiments were performed on a nano-flow HPLC system (Agilent)
connected to a LTQ-Orbitrap XL instrument (Thermo Scientific) equipped with a
nanoelectrospray source (Proxeon). The mass spectrometer was operated in the data
dependent mode to monitor MS and MS/MS spectra. Survey full-scan MS spectra (from
m/z 300-2000) were acquired in the Orbitrap with a resolution of R=60,000 at m/z 400
after accumulation of 1,000,000 ions. The five most intense ions from the preview
survey scan delivered by the Orbitrap were sequenced by collision-induced dissociation
(CID) in the LTQ. Mass spectra were analyzed using MaxQuant software (Version
1.0.14.10)(4) and all tandem mass spectra were 2 searched against the mouse
International Protein Index protein sequence database (IPI version 3.54) and
concatenated with reversed copies of all sequences. The required false positive rate
was set to 1% at the protein and peptide level. Maximum allowed mass deviation was
setto 7 ppm in MS mode and 0.5 Da for MS/MS peaks. The parameter settings were:
LysC as digesting enzyme, a maximum of two missed cleavages, a minimum of six

amino acids, carbamidomethylation at cysteine residues as fixed and oxidation at
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methionine residues as variable modifications. Metabolomic analysis of organic acids
and acylcarnitines Immediately following deep anesthesia by intraperitoneal injection of
pentobarbital (100 mg/kg body weight), bi-ventricle was excised and frozen. Specimens
of powdered bi-ventricle tissue were diluted 20-fold (mass:volume) in 50% acetonitrile
supplemented with 0.3% formate (acylcarnitines, amino acids, and organic acids).
Samples were homogenized in a TissueLyser Il (Qiagen). Tissue extracts were
derivatized and analyzed as previously described.(5) Levels of succinate, C40H-
carnitine, and C2-carnitine were determined using stable isotope dilution techniques.
The data were acquired using a Waters AcquityTM UPLC system equipped with a TQ
(triple quadrupole) detector and a data system controlled by MassLynx 4.1 operating
system (Waters Corporation). Metabolites were quantified using methods described

previously.
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Supplemental Table 6. Mitochondrial proteins identified by proteomic profiling in compensated
hypertrophy (CH) and/or heart failure (HF) samples.

{eene S amy

TEGETA T

AT TR B TR

EFINER 0 TAL, TFIMR002E, FHIDESTTTA

AP 22, IO A

A 203, TPTAa ], L850
PN il TP SAT I, | FHNIQDTA4S, IPINanT e
TPl AT

LIS A, 11T 12

TP, LIRS | | NS0, PRI RS,
EFINCAOT0T, TFIRRa3GE03, LI ) 5 500, 0L
APIGIILI0

HINE 3 S

H TR S
PRI Lt [ 1] e RE T

AN 31 22

UMERST 54, TP M

EPITSONTA, I3 E LTS, [P900TTEE23, (P00 TR,
UPHNFTIR 2P, 00T, [ITTATS

AP e, LI T, 1M
AIFIIMRSATAT, BRI S5, EHHILT 32D, D e R
EPFIINE | FSeht, OGS 3 R0

T T

TR TR

BP0 L 2TAOR, PN 4

IR L2, TII0R R RO, RN, D050,
IIOEAETAL ], Wik 2400

AP, TP 1 0

EFIN

AP 30, D100, |70
DIFHNEL RGN, [T, LI 54

SEOOR AR, PRI, PS040 THI, P&
RO RE T _ '

AT TR T Sa

AP § dtsy

EPFIN R, DIS100 200 1, RIS

AP LU, E1TIO02 2o, LI K
USSR, MRS, LU LL L] L, LI e 26
FE VTR F

UM A, T1I00d 7000, T3 35
NS0 RT 200, DT

ATFIRS | 0, TP B0

BRI YER T, PN )
EPIGSTE 1M, IO, (P aa

UL AP

A0 1550, Bt

NI

R AR TEATRRT

AP BOSTR, PIMRAAT 16, | 0Rsnay

PRI 33

P TI0aT

IS0 ATHED, EPINR LM

NG T Te)

EPINT 23

PN YT5R

LA 1 s

EPYiN | B

P04

RV T

TV H 30

EPHNRSED 3N, D100 322 4

Ui 135930

UIPIRSOTSE, (PNE 1

TP RER L

PG 033z

ZAadimwy| Cash pedbtase |, miivchumbial

"i-]rrdm.n. e pemethrlphnary lUtonmme Jﬂj:u

Tahyioy gty tdehilrigemes, type
Ehnvdvmtyubutry Coreyme A bydndas
Sepmpncd Cn ey |
mmm

Pairun bkl &q-.uwmmn.q'i
Faeldotilme, cytmale 1

A L { PHEN ) anchor prosein 1

ATP svnthamn moncheendrinl F i mosples ssearhly et |
A TP eymbne manchandried | el ssemhly fooor 2wt ATP symeos mosctmadeid || asmples s
i I

AT wyimthorse, 5+ == ST bl F1 comnples, beta s
ATPMEI#mMﬂN ples, it | p
i, mennchemdnnl preneso | A TP apbunn Fa) AT —"'_ s

sy i A TE Rt couplme Lidor
hnleind T8 plizy, mebsmm §

P Ea

ATP wynthuree, i+ srumporing, nsiochandriol Pl ssmplesc, sigwan b, noform 1 peedncind yens 1323]

ATF amihose, H+ mnmpomng, mincbwmdrml B | comples, alppn webami, bmfom |
A TP myntfaes, He mumpong, miochondrr T comples, gomnes polypoptide §

AT bemsiing commetis, 'Ildl-'l.-ﬂ'lf 15 MRS AT, mesnber 7
ATPsbending ceetin, yobeFamily’ B WILEST AT, member §
ATPehnding cossrre. subs famuly 13 | ALD, memba |
ATPas Exmiily, AAA dcmmun cominiman |
AIPm'E-:.ilj-,ﬁM T contommeg B4

NPt shihitwy facwar

AL RNA banching prisysnfese: I=coomaymu’ A hydosme

B2 ik 1% Capopomns feculitnor

OGS o sfur sfestmain |

LIRS H rmn sslllin ismnam &

| I"Ll.ﬁml.iq.ﬂhjm l:mulnl m‘Hp i | |
LY a [E--coli|

i o
L!nltml

v fiomme ¢ odese mibimil |

Cysnchmoene ¢ eeidese spminie 3 ATV ernthisa b 0 A TP armfmss promem §

Fimal { Hap)) homuotog, sobfmmay A, member 3

Linaud {Hagi#li ) Do, s O, mnemsibne 3

Lt {Hspedi ) Dok befimaly 17, e %

ELRIT hnndq.ﬂhn.'lurh.h] !

F AT dnpend dantain ng |

[T

el 13, i |

Ciiehriing ;- T

GUF L GT1hme Rtk {5 eorovinas)

trpb-tike | s mndsml

1E2-K negmem ipmnaed gene @

] dummin fumdy, member 14

HapH usemiilfar el pi b bl (1 sl

Frctl wm-.dﬁrrhmr:;iﬁi.rl homning (E. sohT, smdss w aorogen fraoemn closeyjbn

Lty dchylre preciisied geme THD
unm.rm:m;s '

LY R mmnel sy 7

SAICHT donain pooemimng

S sl plinma Cstorminaf dommin sonininang 3
Hl'l-l!'-n:hl'mml

SALYH = "—_ b b alpte oufcomples 1
MATHEE ,‘ = 3 | alyrta wincomples 1
ﬁﬂ.l.lildlhd.ll:gm-quhm} I-.Iliﬁlq.lt'uu'qin,i‘
MALIH defn dmpessse | ples, 13
\AHiIWlmp I.lhiﬂn.lrﬂm#zu...
AL 3 b | nigis |
SALI derrd = i Iqin_.. .' 4
MALH defmdg b b 1 il soniomepilien, 8
WATIEE ,' - 1 3 | ulyta wicomplen, h (BH 4

HAL defndioprnmss 1:.|]n.|,pm.n!l | byt mcomples, T iHLd 52

115



TPy 20
UL LU RITRT R
1] Ehie )
IaEInEs|

AP 223N

PR IET R

Alsiacecsciss | 5, AP10AE L 202AR
II"HHHIMIHWIITHI I e, T30,
TGEE04

MU LETAN, L1 32D

[P0 22215

iPI 20z .

IPIN 1 33000, TPI00% 1 NI, [PR0US:] ROTy

LFHHa ) E2ES, QPAIAR L AT

AP es, LTi L TROI2 | Pk DETE
Pz

APIIRE 9 9, TPILAN 1 T
T ke

BT PR

TR e

1065624, TRIAESTIS

[P S

[Pl 381 550

TP Tk b

TPIER] T

BT T

IPFHHBOTARN, TFilEHL 22500

TP 11512 )

IPIARSTA |, IPIRATOL, [PR0045 770
(PAREACHIA, TPILIAY T, LPROSSS0 L4, I | T,
AP T, AP SO, EPS006RI0G, LPR00HIS 18,
TIIETy T BE T

TS N

TGRS0 1, TP 3R, [PMTTRE 480

TP 0KE3 |, FITESZE ], 0% ki)

LT TRy

EPiHa ] £

IPIN35T

TPIHBASA 30, TPIHEL EEDS, [0SR, [FH0 LS,
BT b il

L THR R

AP Jiel, TP T
TPFINTSa0ET, TR0 T 20

[T

P ST

TPNEEROERT, TPl TAL4T
1MLy 4, Pl Ty

TP TRE

AP RN |, TPl 1602 |, HORSGAOR, FR0NESTI51
IPINESES T2, TR AR

LT RS

IPIMELER iy

TN

AP R A5H, LN L M1

VI

TPID 3152, (IR ESA9

1P 3354

LUt | Z2os, JiPAYTER N

IPIEE 231, PN RSTT | EIBaES

TR ST, TPI L WT |8

LT TEEREE

[PIHLT 30, 1N 53140

Pl 75

TR T

11K 122553

TP, TP M

NALIH debyudnagersae tubiguamne) | g sibcompies, 0

BTN o § | e sebwomples, U

MaL lhll}ldrwilﬂnmi I #Ilmﬂ'ﬂ.‘ -Iﬁrr]. i 1

WAL debrydna i L3

BALILE detding [T Ill]lln dhe i .n-:mtlyilllnl
N.u’l.L'lE[ﬁlrrdrupm- ¥ b 8 ety qlox % producied peoe 3190
mml&mqmnlmmqmgpw prre 16T ), prafiound gone- 3334
SALH defryitias I et

MALI dletryed 1 B s s I I.iJ

Ki.i]ilddmiwiuhmb i hul&nnq:.lﬂ.f

N.\Ulllhbull*m:‘uhpmb i I:dnu.lh.uq:lu.,ﬁ

S LH defrdmz=rose (uhig §ihem L1

AL deinadnezsmse jubupmme ) | Iu'n:l#qlul,'-l

NM]!IM}*wluhpmﬂ I mﬁmﬁn‘ l‘FﬂﬂlL'l.dFIm

BAT o 8 2, samneu s MATH el horgenene (chagquimiee) |,
uﬂu‘qi.mnﬂmun,-

MARH thllgd.n*:nuluhqmll'ﬁs g |

SALNE debredingsiune (ulniunoe) Fes podein I

SALHE defndz=rosr (uhigmnone | Fe<% potein 4

NM‘EBI ety b ) FesS prolem 5 e A seguenes [l.'lHIItq.'I
N&I]!Im“lum.lmmunﬁ

MALI dletryed Feiy

M\DIIMwlmw 1

HAKIH debrydn Hury

mliﬂmmquwymw ]

A LHatguinone: codnredemse chom |

N_ﬁﬁmmm iz "I-'ii.‘u:lgnhu.__ln ﬂlm chaun &

NFL el closior menfeld Nisedog (5. & edicied gne TR

MLE fiomaly memises X1

LA doneen ponsmimney §
USLAR g, amc Hipey
PLET UL 2<hkr | sl

Farkmam dizess mm—nﬂ.m:_'ly i) T

5 ]

AN, memher KAS snevesse Lmily

BIAEN ol & 1 MK IS pene

RIRCEN LA LS00 M prew

RINCES cDA AT LIS pone

RILEN cfifed IT00HH 4 geng

RIEEN e TR0 1423 =t preduasd g 10770

RICEM <L FEI00300 04 gotie; & 3 i g preibizaad gewd 4 L6

RN cET A 3001 T oo
RICEN cIA 2HNMILT2 genn
RTKEN cLisA T8 INSE 1D geoe
RIMEN chIMA 130281 | geng
RIKEN cLIN A 14N | 5308 yeme
RICEM cIA T | i
1N cLAA 29 3UESE | g
BIKEN cOi% A ST gene
RIRCEN cEW, 50000 1O g
RTKEN cLisA 93301200 smne
RIAEN cEIMA, Y4 3000 k108 geng
RIEEN cONA ALIOE 04 sone

YMELbhe |5 corevinseg

mark dumiane contirg L |

Mdniwld-rmmmlﬂ

1

.lﬂ.'ryl_-" e A eyl wal i

ey bl e A ey lirumfioraee 2 proebonsrsd by L nmeyms A fooles
sl phampt i, It phun idic

xnhdn:?.,mnr];:-ﬂriﬂ

acyLiad synibietise lamly semihies 1

116



PROAAI Ry (IO 12500, DR ATHes, (P,
TFEAA RN, 1S 7210
LR 8, | T, L T T
IEENHHL
e 1547
[T e
[T RN
LM 3560, TFIIN] #4641
LAl
[T TR T
[ p R
LPERTSUER |, IE T, PRTRE
HEOR L, IRl
EFIUAANS, 110071 ), EPMNIRAATED
IPRERA T2, FINH 1RS9E, EP0aEa1 36
TR, 100 9842
PR D, LA
I.Emﬂ‘.ﬂﬂ'l. mllmﬂ IPIMILZ T
LIRS B ZA00, [P FRT88, LISOOTEIuEE
EPRRT |l LR
L7 i IR0
[T0 el
I.Eﬂ]lﬂll-l?l IFHRIESEIT
LN 5201, IOUESRITT
i g
IMES115372
RN ToHed
EFINAT NN, (IR
PRI Lk
IR N
[T T

| PRI
EDRYIIZE, (#1142
PR T, (I 2 20, KO AR

AP HERIY
L R | bt TRTO R AT, ITCAZE TR
EFIOTIRIAT, Wl 24T

IR, PR TY

O 354, (P00} 12T

[T E T e

EMEDS2 T, (PIRZAL TS

FECOEH | s

IPROGEAN 353, (PN Z242, it in 1, (ks See
RO A8

LPEmes LHEL 1P !.\-1:11. Im (21}

EPIORN | Ba :

OO EIRLT, (BN

IFROGNI 7257, (FINHNAEES

AR, OS2 LN, I AT,
LRSS

SR

(LR ES )

T L, LPltin o 8, LIl 1, il e,
IPEE fldre

RO, TN T

FOOEEIIM )

PROCRAEILS, IFI00H | S0, (0T ssa 1

[ s PR TR

(g s L R A R TR o s et AT ]
EEIOOA 1 19, |ORATET, WM 0, I T
[ e kbl E]

[T ST

AP YA b, MR TEY T, DN e s

[T TRy

EPUIO I RIS

ERd O, TIIOUH e, LIl T

(LA T ]

[l = e R LT T

EMECAS TR RIS 24 2, ORI, TP
EI i

Pt 15, (Ml

acyted s i e acsechuin Eamily messiser |

ayhillnd qrﬁm-l-!dmhulfm
ml-l."'m syt STl (e |y mene |
ugl.-{,.h'l.di.u_J

iyl ik theexirmas 16
|-k iH sk 1§

oy L thicesiemee 3

vkl fiietirsme 9
qumqn.qunme mewsel 1
syl A il e iy, i
ay b pemryme A detydoe tumihy, ey
ml-[mu.\hyhpﬂu I.nq-uh:

ﬂyl-l'..l.u'n}m J\..lelnpmﬂ. intisan cian
vl nensme A et Bagenoes, dan chan
oyl ey A deds Sagese, shienbe s bl o
ayhiloemyme & detydoenme, sery loms char
eovblpenryme 4 sialee |, ol
atrm bme Linase |
day'l.d!hlul: A |
i

lﬂchydu il.hndmgm-l 1 iy, Ituh-'.lil.l

wddfiyile dehyibmgrnme § Gy, Sembe 1
ll.ichy.lh drhy drcensse 1, muchonial

ek [ *_.I.‘ s Al

i
o ‘_.'., I 5, Al

wa&,wt—mn-ﬁn A1
M.ﬁ:&dmhjn]u-l t-rl.lr et Al
akdt ke deluadrivge wes fusilv !L:.Hp.ll
e ks peiliinese Gemily |, menbe B3

o il I D e s s |
armiiy bORNA wymbenmar 2, nincechimdoml
g A et T | oo gpatsiive|
agumAiE A mliﬂm
eyl WEEM Iezaur ey

bmin ot S48 wimmiiar L hl:ll pu-lll pﬁhm.Lunt .HII

In "‘l:hl.l

I ! eliae= k -LI.-:- l-l-luﬂ-

WMWLI Tunu oy pépmade s sl o Sty ] J-

A segenen Ak | ST

armtmy e 2

iy ] e 4
TR = HE v

oy sy e g, live

e T *myh:rluh- 18, mumele
npmiyye Pl v s e 2

LT qu'.i.l.ll:_‘f.l'f-_u.lll
TS AT

(11 amigen

prgrafane A TT-demndos, pnssbstia uhung hamoog (£ o)

i

ol B

arahepam (¥
m.ﬂ'lmugu:’hl :
i ety i Togull, mitwin T i
o e e like

e wy il

CEIR W ks

mwm“hm-uﬂ
mna_mibh-lhewm
COCTEFTIE 7 Tamiing | yeesst )
imntedestnl dermaes snmimsee |

117

ol | N, s



[l e ]

iU T

AFERIA I, [T 10, i
IPURETAETI, IPIN & 252 APt T1ies
TR

IIPERTTATE, P10 E27

T

ETR R

PRI

IPREASTEET, IFHNASE20, PRSI
[ TATL

ETITTTR

AR L0 P T T
AMERETH, I 210

iR Ty

MU

R

HET TR

Ttz =i

[P0t

R T TT

IPEa SIS

PR TT2, (PN 22770
PRSI, IR T

P

HIFRT LTS

AR, P 2

IR0

IPXBESHSE, IFTIHLL 528000
IG5, i R 5

RN TEC LT LRTE

IR AHEL, APIHE | RO | 1, (R TR,
1iPHia AR, UPDmBTaT i
TIPHERN | A1, TS T
TR e sl T TEST B

1PER THARY, IPIFTNEL L |

TEEAG LA 1, TEINEL S, S na 4 10n
T IR0, (1N
IPUEEAN 3, N TR

HECRRRE T

A |

AMERMERISRG, PIOIRTIES, PRinT|
(ORI

IPREIINAL L, 1

AFEE G 28, P 33 08, LiROGAAT 4T
U |

1P IR, (P S %
IS, TS F0h

ETRIRIT

AFIER An2T, jPTin T
TP e, PN | 222

[T ]

P3RS, S, 10T 13
TR

AP TR (P 2030

IMED 134440, IPIODEANT, P06 400, TTHEI o1
MO s

PSS, IR b

LRTECaETA LY

P 194

NPT | |01, EPTO TNTZ, TS0 126
e | oty

(TR S

AP A, (P a8

[ riRknil] |

IO TET ML, MRS A

AR ARAD, (A 3301

(a2, [ 2

AT 201, MRS PR, eI

o< f o commmmmg i
il doas conm—mm 5
bl | distrines o LA

;m@wmmrmm‘mwmm

OVElniE - by T

svuuing 4R synilemse T orime el )
suinchrme PO iy 53, sebtmniy w, polyvpepde §
eyvchime b et |

ayvachmme &5 redure -t

ovingtunme o oo |V jwiiom 1

oyinchinme £ ok st s pivseprde 2 wadicied gens o4
evinchime ¢ midee, bt V1 o pulypepliids 2

ytethmme & ridese, sofresb Y ila 1

aytiachmme 2 oy ldess, sl \'Ihmr

ovingtunme ¢ il s Y

ryinchiime ¢ v, v 50 smmbly oo bosedim s oeoi]
q-ndmum.-q.lulh

sptachmme ¢

H‘lnﬂﬂlﬂdpﬂﬂ:ﬂ
ﬁw[mw|m i
ey i g e it {56 fimily ) sl 4
demethy b3

4 ¥ enmpines o Sy e
dth|ﬂmﬂuﬂtm
diinhulisemiile h.nl..d:.iq..r_.l}i_ 15!

At ibislios Lo e

qd:yhmw

dn:h:um-l:un'ly-tﬂ ﬁd.-m-ﬁ,_mmmy-a.m
ey o e

| Ceormryme hulhn-l.l-l.nm i
:Immm:hmmm 1, minctamivasl
oy | opemyime & hyansiee | fericsesal
sty LCienryms A, Modtasssn ey ) Vesssme & dehpdges
il el encepialbipsta |
Ly wath sogueies sy | KL member 4
[amily venh sngee s smilungy £, meseer 0
ViresSo nim s
Verncturl e

Uit 1 0 g il ey
femny
I.I-I.u:_h].'l.nl.—tr

(e st me=any fihmbe e commmng 1
lemary Snesi emytie Inylin s homani comimining 24

=luimery dehypdmpmns | profwesd gese 1
gl aeliacett I mnnctarsinal
Ehnwey s e A sinilogesgs
il B-traimibmee ke |
il Tt e 2 | sl bt acenie seweree|

shveeonl kesuss '

Ehyced Gamme 2

mmmwm-

.lf?q‘pﬂ&'\ﬁ w,'ltlmu

slvanie domess conpemey §

pnith e, el 5 copvmisei ke {nammemm of B regsserron

e

(LI

i nidscible
mw]qwmwﬂmhﬂml‘L
Trefeieed pene I9G
'ﬂ:d:nckjuumlu‘ et WWECKE presen | A hest sheckl e -l
fism bkl e 2
N ik i !

e sbwnsle oo Ul i § et |, b W inemie) |

iz ks pibmucie o |, gluehues pespeidae 4

118



EHGTHIR S, lﬂlli'l.tl WAL IR Finen R,
EMOnaE e 1

o0l s

[ S AT RRTIER

EPee LHLAR

EFI W22, [PHHERHEES

Im'll]. (NI R B o EEIION R, IFIMIKHT Y
10T e

IPRTTRE

AMEAAT, TETO LR 1, EPONetis 52
OO TATE

Lo, TINAL | 3254

Ui 35380, (P b, | FROARiE

IS S0RS, IPUINGEN 1412 IPICHEIIN | 30, (110091415,
[ERGASN

KPR T, TP, EREIIETIAD

(PRI

A TSR, (IR R L, LT
EIOCRITE, (IS

IR0

I b s

Ui i, L i 3, LFROITRES 1

LT 1

AP i, OIS 00, KR 7

RO T, TP IN, ETOE 0, IO LT

103 45, TN
limodisi 177

HPRERITALA T, (FIHBL TN

IERGLTI N

BT M, N

AP AU B, (PUMIN 11 0, EPtEsioiiL 1Y, (it 1
FROE 32, Litib iy

tioc i

EPEOCTUI N, (PN 530

Lo, 1 | A

limiiE i ins, (Fuisdams

LIS T, (O AR

T

BRGS0, ER 2R

[0 3002, T3

It

FFRO0HE T TR}

FFCTH0NI 1, TP W, ERBTE 3
[T TREET

b0 5 14N, IMIHIRAIT T
OO

IPHAIHITS
LRk T2, TR S35, LU R D, [0 PR
LimoaEana R, Pt e

Lin EETR DR

FOGEARAT A, IO 1 23T

FF00 3131 T, TPITNG LB

100 322740

ol Lt

H i

EEROOTUR O, IPUNRIZITIE

[ RE

PRI, (PUHR TS

PRV TRTT, IR | HE25, LR et
IR i, IPHEE | | di

PO LML, (AN S
LROORAA L |, PN

1PN 1395, (PLRIEAATT2, EFRioa s 20y
TSEIT

PG ERTI2Y
BRI 14T, (PN ST

1000 1 e, TP P

o 331 P .

TP A, PR ST

l'ﬂt_lkn--1

hatohines 2

it ikl siik iz bu'h'hn'_;mkm..
Tbstad LM b = el Lif
E:'nmllhmlgﬁu-

mjﬂ.llphmn-. . .
ilrre VelmimavaLs A il 1 Al iereryine A by | ering il

Trvthinwvmy b aenavime A
i, ailpihia subunib
trcidrimscimnil | Tehaty) debvdmpanase 10
mtm-mnnm Mﬁm 4

ity ottt pﬁe- u.u..umjum i, JUiE A § g

e . e,
i ek e
Irm-lil'l.ll.il.l.- by | ook, [N,
e bty i 2ANALE |, sy

|mmzqnm:m

|MW]"«MIW

(nicemie et cdmyrmes 3 iNALS ), g8 .
Iadslemset e tWULA, ymiemictie 2, mintuaboniadia, simila tu ol iV A gyl 2, unninichaiyl
ik cnrse e &

metwees Willesass nuhcss B
i e ooy |0 ey mee AL curhiny baae 1 dulphae
lwhﬁml-l._mj.mhuﬂn .

: .‘.__. Heltndivng DL A i PR RPN I R (WA (|
teemiyl

nﬂ)hh'lclmh‘n Aef wnoyympe F
mﬁhn:wﬁ-mﬂnﬂd-uh&wﬂnpﬂm!;h_

frem
mu._h'ﬂmn_imilL lestai), rndiced gene, SUUEH UL, prstctsd gone, HEMESIE
il nm.ll.unu‘.pql LT
Fﬁ"‘r._'.

i feealriad phospmal jEmenl

i Re i erhoanmat g 100

s healrisl shatanmid gm0

n i Swainlr i pibabssimn goutiu L2

miliirscheastrisd rfwsmnd oo 165
muiicheosriet shosmnd grnem 114

i Reota i prhoanmal g 100

miichosalrial piboaimal e 128

miichosalrial piboaimal guiiem 144
e B i wshissenmil gminen 14
i Faealriad pihosmol e LT
i Rectaria rrhaaial guinie 148
s healriel shaanmid g LA, i w minebuoleial sihisomed ganes {49
n i Swainlrid pibaissimn goutioui L4
i iirschwadried rrfvrmnd proiem 1%

119



FIVASNRAN, LFTUHINY 3301, EFRI-A AN, IPINIRYSTEI
s =it 2 o

R IO, TP, P s e
AP snk, i | Ret

TP ey

IS SITY, IFHAIMETI 09, FER0 TS, (N 52488,
PO, I ST L TR

TR TL Chinn A 1T

ARy 1T

IME L2304

(Al =]

IPRORUARTR, TP T8 50

[IRTE T

TR 3%, TP AN TS, (P

[ e

I, TPlin T _

TR, TP, P RS, IPLIES T IR,
AP S, PN SR

IO A, | K, T2

RIS s, NPT MO | UZ, EEPRONCL ML, (PN 55T
[l = th=l ]

TETCRER T

Nirmaamaniddl, b s, M aFTaT

MR aH2E, LI AL EPYTT

i Taass, TPl ad

RIFROIN L7, TP NI A, NP 5001 1, [N i 12
T e

TP PRI, (PG ) 10T

L L1 IR

[l CrERni I

TR )

LR TRkt T

(MDD s, PO ST

FPRRMAL L, TN V98, EFRBAA BT, PUHMEATET,
I
1M 2ARET
IPUELIALE
TP TaaEE,

IR

5]

A48, (U8 30, LirOvdn 104, P4,
PO R, TPIIH 18645

L TR

IPETNN o )
A0 |, TR, A 201
AMEOEIIN L, TR
(PR, (T B, TRaT0s
DRI IMALET, IFHATTRASS., SRR 2
ML, i) | e

A Al

TP 211

IPUAIIZINS, (PIMSATES
IR EHE, TPHNMTRET)

AP S, III'!I.I'lu!LI.'Ivi'E‘,_I|-'ihitll‘-"i'l-I lﬂlli'l.t AT

i A |

IPURI LR, IPInEANTRD P p0a S

NP T, UPIBMIED

TP MIHAES, TP S S, PR HET L3, TPIa AT,
e TR

APE L DL, PR L S

TPl b3, IPIONEI 2500, D IOORAEHIL, [FLRMEE,
IS

NPEOAFATET, (7 (P AT 0, LPRO 0 DAY, TN e )

PRy TS0, TP S48, e TT g

st Feb e g 5

niinacoefria o mud e S5

i et il b il i 5 LA
bt bl sl e BN
e rind rrhusnmd pepioin 523

st rid s g 528 sanlar e Ml § preids

it lrigd pibyi il peindin 52T

e rid bisamil peinean 318

winaberad i wihis ol peiden 25

e i dhar o e S5

i mctaratd il d i el e B0

ity b i il gaisis i S

mitrcherddred mhosmmd prrem 5%
Mﬂmmwmmmquwm#ﬂu
mmﬂllﬂq.-ﬂgﬂ-ﬁlh\?l]m-

ol 1innsd seel inmatam ficse 2

mnmchoriirl st e sy ufEEE 1
i |

A ceiess 3

b, I.Ishlm Iﬂ.lqinnr_n

nﬂulrmqma.lﬂ.:pp.l‘hnthﬂ family’

mgemEEm e i mlein Rnm e |

i omrmi il b v i e

it e by, miesler 2

it frouxn gen § flm-ﬁ.“lﬂﬂ.pﬁlﬁmﬂp! i i, perEr—
ki v b il e epweartem Lk meweny W ptie mnd 13
iptic gl | ()

S o

mudpl [P
nziduersdariuse A LSty fomes ammeg |

g Ay jlipinmde)

pﬁt.ll-nnlmchm]nd ez hous
prepiadylpralyl iminezeme B i ovelapulin
pevuaipedaniin i, prisbiessd g THid

nermaretin |

rnmdm:m.l

il $

el delial, dele Cenivy-lmemryme A aerrse
}thm.rll'lm—ﬁbi.i q-hm-i-ﬂmmd.lil.

'Ig.m'mlll.nlm.!gl:ﬂ._hm

Fdluad_nﬂ:l[ﬂ!‘l,pnd.lmllpﬂ:ﬂ-l-l,_n.h isFuialiaad sl gt % W o Besiabal bk ]
ez pene E00f i, <yl iy s, prodieled gees 1008 emmilm 10 oyachisme §

piiadicesd pene 0078 pliitnd mi&ﬂ:gﬂm}ws!‘!r NTP vz, He nommummg, micchandmm Frr
i, w72, pesndossne | | gz LITT, pediciel gne #7123 ATP aysifoss, He immsjuriing,
il B dnples, sabmi g Fﬂhmd.m-ﬂ-‘l-‘-
Tuedissd pene §ET5HE hwmllmmihmmﬂﬁl AT eyt Ho e,
mnnchoodred 1) ummples, wetund; pedied pese 353, mmila s A TE wistsse, S e, Mot F)
e, et o

F’d‘hﬂ#"hﬂ |._‘ ™ b Al i
Tunduld!mrliﬂﬂpmihﬂdlmi_h;mlrh—m'lmin

p_u‘lu::l pane LTE 1Y, sngle-dmested DA hisling presewn 1

pafaresi gene ETFAT; en shuck powm | (ciapoomng

prelieed eve L3I0 mte hesurial nbwmind Ful.ul.uﬁ
poreidioned penie 1 VR34 sl o eyl Rirnse O] ademy s binse 5.0

e e — Xty
"\ Ih Jl-m d hmm... :‘I_l_l LA .lJL

ES T |-t.1... 4 BndrsLsse s | —"iﬂ.-lm.pnhﬂu‘l#ﬂ[l
et paree B4 BT Ziabeenviss LD it s 4 pradad gees 055wl i £ 18 )9kt

st mistog

120



IPETI L ARS

[ = e U]

FFIEA TS, (IR S000

IPRCIL T, [P T4

IR 3T, iiPIniaatis, LTS T0A

MR IEIRS

LMK FTR, TFIOUA00S, (IRa a0, (i e,
IR SN, (DR, i suas, Libinciad s,
ARSI [FIAR, (ML, (R,
LS, IR S, |PREDIGIE, (s,
BT A, (IR RRO N, EPHNSSR |, I,
IPOGRIEES, PIELRBET, EFOUTEEI0N, IR,
A 3, (IR 8, LR 0, (N 2,
LT 1112, IR, SEMRTH I, (B4,
EETIIELS, (PSS, [T, IR,
LK1 ), [I0UNS L1n, AT T A, (FIDUEET,
e ki, LU0 TP, (U ST, (it 14

EPRC0 D L, LRI i

TN 144, L 140 0%, (e S T, (s ian
LR a0

0T | T, P

EFO00 1436

DRG], PSR

[T L) i T

1 < asl S]]
IO R AT, Iieie RT18, LMDoasL |t

PO, P2
EMCOITHIT, I

i, PP 1, LA Bt (i 14
LIRS, L | b

B S0900, 1FI E543 7

EPRn i, (PR 02, i Pt

W 5147

EFWAIETAIE S, ISR ST, IR |
LFIEES LGS, FOUNRETT, LS00 1T 1K

T2 T, L1 S, | e aon

PR 1) 4, (B [ CTEIETS
T I, 1P 15aE
B, (IO 00, EPNI AT, (i
TP, (Ml SEAT, 1008 ea | 20

[ PR

[T

EFIOT N

LPENM RN, (DU, LIRS F T, (S 34 nt
PROGATATE Y, IPINHN LR T2, (YRR S04,
[T

EMED T LETIN

TR

BRI L

TS TRS0D2, IPIHIER 2 TAT, LMD 14

PR | 1T, LT 70

[T he ] :

EEFICORA 3, (IR T E1T, KN S5

Il PIOB0 TR, 00 19350, [ 200
IR T S (I T T, L T

IO N, PRI

WML TSS

;nnﬂ.lm.ﬂ.fm LY, HIRER cO1b A 22 et § pmne, s s REE BN G IINA 25 | 0SNG
.pﬂ‘l.lhﬂ'rm:-in— Miveson ne=y wipho il ynepis
mﬂuﬁlpﬂ-m" j Tt 0 Hedeciasr hiding poem
fnﬂlndlﬂ:m* .iﬂmllimmmﬁuﬂﬂhmﬁll
mwhﬁmHMutw-ﬂlllmMpwﬁuMm
mn}rmi e |
p'nd.l:-ﬂ-pt-i..l'l Hwtmn'n-!:-riﬂ'wll s Ems, 1
urnscticne] g 204 L proedioml g Sk, prediind geme 90, prodriad jioe ISGS; peditel g 10201 adiconsd
ﬂpﬁlﬂ.ﬁlgﬂtuﬂﬂ it e T, el 'pmmpm!riiﬁ;pdm!ukﬂlt.
debalinenis; : i

'.ul.'l.l-il-,pudiu.tlﬂlilﬂl' piuﬂlpﬂilm,m!ﬂ:ﬂi?péuﬂ.prﬂ" izl gene (115
it e T, predicied gess ST, podiemd gese [0, predicio? g §300 pindeied gene, GROLT, praaied
Eﬂuiﬂ,pm!_ T preded gmim T80T, prediied zne 705 pivdichl bene 13101 prodicied pene, 13358
;l:d.ud.plﬂ.’ﬂ-t pndu.td.ptlub\!'u-l.. hﬁhlmﬂ,m#ﬂh -H.MHM-&-S-
phaspisne defyd laraei} g S g 1 MR peiieiisl gene- 1242 nooslieied genue 333, nesdicesd
Fu_‘l;'lﬁ',,pr.ndnﬂ.gn: ﬂxmmﬂl FH:I:H#‘II‘JI rehicted pene B30 redieed geve S
jundices] gene ETNI, pdumi.!-lmm“mmg_ﬁhi,m!lllﬂ;m"
"'\-I;pﬂluﬂpueh.‘!ﬁ.uhnL |ietmde. - plampiite At (LA, prolicted peue 1110,
pheeraldeydi- Sp i Fl:ﬂ-:m-:l.gm'lll pemincind wane JULE, predhe o penn S15 5
p'nﬂ.l:mbprlui‘hmuﬂw-tﬂﬂ nﬂl[ﬁ“lﬂpﬂh#ﬂ 2y jeil gene S0, pedeted g
IIH.F’”. e AL pricdiomd mne 3006y, madicsd gen 004 predicasd § Jﬁcpﬂﬂupﬁ-ﬁ,pﬂml

judicent g 1 063H; profues) gree $TIE, pedoied pree 10T precdicind g 1 pralice] geris | LUST,
meilicesd e, BLCAT | pemliied gene 238 F, predoted peee 141530

pnsticasd pese 3430, s w ATP wnthuse, B mmapting, miochmsil §Eoumgles, O maann, ATF eymhase, H+
\rsmap, sl § E oo () sfana

reteicnsd e 4830 omatin g Lph? 2elde 2

jprchicsed prae AL prnaie ety drngens oo ) b

ru'ulﬁ:ﬂgm:ﬁm mnmm:uﬂgﬂu?h,nm;m wminms ¥is

[T RS pu.-l-Hl \ﬂ?mﬁw{w:l I hs.ldn-"ia. ]

uudies] gene BT prahisind gese 2124 predicisd gese S mruy e inase, mecle simnil s N2 nne e
[T

,pnuhﬂu!fﬂ-rcl.l:'u'.thqumemmu.pmthwﬂll

qundicasd gene &4, moesduesc il rbvsaomal po L33 _
pl.udh.dgﬂ:‘h:lﬂ:l'.lnllm B Seppviates malic evepime (S ATRCSE) | Mube enmane L] nee enrvee |, TIPS

pedicesd pene T35 1] wolmpe <deperndess amim ] §

nsticasd pese THIE, mumemetiebaiia e2lle 2, prosan { NS0 eoprese m podired gese 5%, piesioind g S48,

simod i Sneheimide dpdsngriene binme 1IN0 05NN Linee 0 iR

jedicesd pene PEF, Lirtme Selis g & Fullﬂncl e AT

jpoedicasd pros 850, syl cerod ko

et e S0 ST e e |, il amar e e S e

qundicasd mens %401 e il rvsamal o 130

e gene $093; Tu il el enpees: Banioi | s basiidrial

imeilicaed gene W01, i e el prssi el o s g el senjthiage witliny.
B 1

sl aakes slis? stuidimd-lds

jndtibesiny .
ety poredieten) g £T5F, LN eLibA ITUCOTIRN g

ke v nthstuse po-iEEmereed
oy | Cimneynie & cxifvdess, het poipepids
ugniony b st e A dor o lese, alph poby pesid:

FC T

o e, syt 1

ein phonleme 1R (P20 Sommn somnmg
mnmmwlk__—. cmmbyy aufms
sl | danumie) 2

pjrruu.tu.lh-'!hu

punimine deSsdnigsime EN alpha |
me EN alyihs2

animid d.lhnhpuuhn:m i n o dibvibopurides s
ima himolou g fanih, sembe Ul

v P liog: e Eanily | mwmnber 12

el 4 svErtsg protein |

121



DAL, TP, LT 14e
LRG3 b

TPREETL NI,

L etk T

MO0 RS

1A 90057, IPiosnLEs

IPET IRy, (LT TNE
IFEORAAAUZ, 1P |, (PR b
T2 EHW, TP TS

(FOETIAGH, LPHIORRRY =3 {10601 0743, [P0 s

TP TN, PIGT AT, TPFHEIR M3, PRI LT
L
IS NG, TP 2T

IF s femeEn 23
TS A0ET, I IIT, PRI

TP T T TR
IPRERATTEY, [PUHR | KT, (PR et
I T P

PN L35S, TRreesaT s
IACOIRAL 10, TG 1S

UL ERIEEREEY

TP, [FUieniey

L eI

M4ty )

A O PR TR 1P DA, D s,
NI S 7, FIminal | i, St £
RIS 1, HFHME] 1763 T, I IR, TP B,
IR AN N, TPIIA0 E 38, QIR IRTSD
IR ETTUE L, TPl ety

[T

IPREXTLETIOE

L ER T T

AMEOIC, IFLRIET, (el
1A IR [

(L FRLERCLY]

IFEOiLiEed

IO, PNy

IFEER I (PN s

LRl

IFENTTARTE, PIIOTASES], (P00 IsITs, TS,
1L eh e SR

A |, L Sy

I

IO TE, RIS

Mo

PRI, Uit S 0 1 ) 2, i it
5T )

IR, TP, (P00 =140, TP
TP |

1A FIR

AP |, LR g 0

TPRESUneL2

I AT

IFORG S5SG, TP T

IAGaTAHEEE TP =

G PR

IMEEHa

L e R L]

MO0 LT

IO 30t |Piins 1552

TPRETIASAST [PUIDNIRIES

RUHEOHE T L el i S e, 000 L 2dovtes, PO T8
IFERE A, PRI

1A e, TPl 120 nmie o, T i £

itk dofmbvipensee |8 ki wid Wom)
gt (pihirise
e iyt fde

mqmmlmlm

eyl auminnocy i vy miunae 1

uimidor s ARG AT P fonby g 1. bl 2 2 pimm], ARG A s fumslly e 3 ks 2 fpam
aurriiir e il S Eiiainig WE, aubl-u:ll Jlul-.lﬂd_.llll‘.“

simular w Bk muninrmg Seopoas, b Tl eyl
mnﬂnﬂ{mﬁgm;ﬁmﬂtnﬁmi Kﬁﬂl&hcmg— rnhqu.l.l'l'u-: ["n-ﬁjl'm 1 H |'lnd||:|nf

came X

m-ﬁm{@mm;wammthrmﬁm!ﬁ preneiis B prisdicssd
gaue 603
e s S chmnpEne debydeg e {pastery |, seclaopes 2oy T (R

u..l.h'hiﬂhﬂ.l cardier limmify 29 {mishachimdrisl ot ive, plwsiplste coriery, iweniher 1, siliic eariier femdy 23

[ Hisspsl anmii |, ]

um.l.‘-l'-l.l.u.luwn [;I'uurn flar Al 40T AR pl.un:l.hliﬂlﬂl
mkn\'nrmp-dq-nh:muﬂmhna-]m ﬁ'l:lm-z;[mv:w:umvm1muu:rm|m
‘mestvre o pocm 2y pradeoed g TR o dependent mmiim channes: 3
bemabar o selenplite binws 2 whovy o Linsse 3

A w8 b A4 frce ponie v e et i predried sene S85E med:
m-ﬁhwmmmmWﬁnpi
midar m puinotiume ¢ onidses subul Yiic, predcied geie S50 Coincmnme © ondese s mshum
wimular o oyl Beme € omalise pibunn Vi prediced ssae 1778 cvhtnine o siodese, sebonni Wh
ek gl ;M sepme, Uk |4, Dl Dlispkins Limsenary 81 cupreaseil

simzier w kcisme, Incnimrss Tein

miar s ey U A snshetar vl A noi
m-wmmmhmmuw“wm-umw
T RETS ST (= il T

ol e EE1W

smzr e gL sy rli—-md._:hmu_ﬁmmqmdhmmn

uimadar o guily e i L byt Bmictenink nacleendy Tnasi e |
mjﬂnumm il 3 '|Hﬂ-
iy sy amily iy eni e ic 2ok |

il i Lamily ﬁtﬂrmﬂ:._nﬁ.qmummh =il T

ity cwrier fiamiy 2% {mnacbiondal e ﬂmmmtﬂtl

sithin emerier fumily 2§ Jupnchoidial aosier, Aumlai, mwemibey 12

swilide Emries ﬂuﬂ:; '!mmdmu,muuwnkmuhmﬂhl'
mmmmmnwummmmmn

e c=TRT Hmﬂyatnrmﬂm ke nucheTids Fiskineir |, meniet 3] s ALHEATY manslices
"'lldl.l._ml-ﬁl I.nl.lli.l.u.lrr"HM(I Ij[.lDP..\. I i pancabrin 25 l:'uh-m'l.- il H m._lm: 4 penil sl
-i.lqt.-ﬂq:m;“‘! bnmutnn| romer, comme R |

it comien lemily 29 ot oo, ﬁmlmmh-mu

i smmier fmiby 2§ fmichondml come, ghoommsw i mesdes 13

sl csriey ﬂu.ll-'; 28, mermber 2
atfing erice ﬂmﬂt 24 memnbe &7
u]ut LETHT hlnh- 24 mrrnbey A
-ln.rh.rg il ety macborery compeesnl W) ooy 8. muvisae

sitwydn e mifmimi A, fhavopames iFp)

mmﬁdﬁrﬁqpﬂ.mﬂu..ﬁmﬂl it Ry, i b v mrcinaie defvediopeme Up ool

i elediyedi piben, b i il v besng pedes
m&ﬁlﬂiummﬂphpﬁm
snCr st e ey Y |, LS i, et sabnn
mm—ﬂmmilpﬂ,m-q,ﬂm
mﬂﬂlplwmh-ﬂ-ulirutl
| e
sl dismunes 2 mnnosoodrisd
s v, 3-like i I%'.m_n-l

ARNA Sm et |y e s
|lk.l-dul:!g‘l-dn:.L‘LHdﬂm’,,l

Panredinug 2

Ahmmedicm I, wnudaray o e 3

il fas sl Parnmoe Esae, minchinsio)
I e i AL, e vl

122



TP, (PN RS, UL R L, e,
AP AR ISR

IPRL2 A

EFI0 A

[ SERRET R

EPRCGER TN [P0 | 5224 KPR 11 5e

inmnafemies @owih o hew gl gene 4, sl we Danafoming woih Lo bet izuulansd sne 4

tremml i e 1, © pabyperide

trmaloorsn ol e miccsEleed s ) e ng (et
tnsnabitas of e nnstendril sewhiume |0 horolug Gy
irmsiocans ml inner mlhchﬁbd-ndumﬂ}mﬂully-

AT 31RO L inmnislecase ol ey St b bl I

LT | if sl immer wonndrial metnhnum in'h.l.u'ni.uur__vul.
PP mmufmm;nchnti !’mll-g;ymu:
IO, [0UE T4 Arsnialil e sl e 'u.u.l.l-d.r.ul m:unmum
IFioa L |57, ol TTe wl dimer L i b 0 bk A |voret]
I.Ptn!ltﬂs.l ermlmum e i | AF

BRI i) ey | e e -

FPUCOn0NN, (1001 1 1083, IPNEEETER hrpuﬂ-.mﬂhhwrlflﬂ sy ial |

TP LA, (Ml A, i) 1r|ul- k VI ¥ £ v i s, epilion papepisk
[TUTE RN ETE . it eyne 2 el ﬂmz

IFRECRS TSR, Lt al®, | PROOss T 1, (RS, ¥ whirch o piari i r , UHAFF b e yeam)
EFICOSAH N, [FIOORARRT, VMR, M E,

Ll

om0, 1001 L1888 bty dorchi oser £ sodon e wiwr I .

IR 3 224 vind 2 rrdari w.Lur:::wll-pd\-F#!

P i, TPTIEZAT S0 ih i | 2 mniples 10 submni Y11

I‘I'n'.lll._l 155 umﬂq}miqmm ITICE EIE

[ ST g s hu! kol _cl.l w‘lh.!

[ ekl waly %Ay ¥ dal | proitatioe & womiban e ey lgitt A sctthetise 2-0ik
IPRECEES L, (B0 T4, LRSS0 N —

e | iy s bl ing aleoded defndimere. e Covnmne 1

Wi bl puioommsl pirafll g o Coms il hygerengw (£11] el heuit falure 1)), m-m'mluuﬂjuwﬂmmhmmw”h Auminiy Al
PREL AL reaiesl m mnsclassi s m ke vemme e d'.lhn.-qflﬂl.l. Ml HE

-d.&rhlm-muhdmdmﬂpmumm

jals Bt

123

ldenipifiedl i ol sanmpilis ae |l Lvl.'.‘l.‘l. wmsalsn . in TELWIID



Supplemental Table 7. Proteins regulated in compensated hypertrophy (CH) and heart failure (HF)
samples.
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Supplemental Figure 1. Reduced palmitale oxidation in the hypertrophied heart. The
relative contribution of palmitate to TGA carbon cycle flux is shown for CH and sham-operated
controls. Data are shown as mean £5SEM (n=5, Sham and 7, CH),
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Supplemental Figure 2. Ketogenic diet results in an increase in circulating
ketone bodies. Plasma ketone levels measured in wild-type G57BL/GJ mice fed a
ketogenic diet for 4 weeks compared to control diet fed mice. Bars represent mean
+5EM values (n=6-7 per group) "p<0.05.
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Supplemental Figure 3. Slc16a? expression is induced in the hypertrophied and
failing mouse heart. Slc16a71 (MCT1) and Ske16a7 (MCT2) mRNA levels in cardiac
ventricular tissue from mice 4 weeks after sham, TAC (CH), or TAC/MI (HF)
surgeries. Samples were tzken 24 h (Fasted) after feeding. Expression s normalized
to Rplp0 (36B4). Bars represent mean +SEM values (n=8-21 per group) *p<0.05.
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CHAPTER FIVE:
CONSEQUENCES OF INCREASED KETONE
OXIDATION IN HEART FAILURE

Introduction

Heart failure (HF) is a significant public health problem that is growing as a greater
proportion of our population ages. Despite current treatments, ~43% of patients die
within five years of initial hospitalization (1). Heart failure prevalence is predicted to
increase 46% between 2012 and 2030. Realization of this projection amounts to
diagnosed heart failure in over 8 million adults (2). Thus, the expectation of pervasive
critical iliness in the near future necessitates rapid development of therapies to prevent
and treat heart failure.

Heart failure refers to a syndrome in which the heart cannot adequately pump
blood throughout the body. A multitude of studies indicate that there is a fundamental
imbalance in energy transduction to adenosine triphosphate (ATP) and demand in the
failing heart. In the healthy adult heart, fatty acid oxidation (FAO) accounts for 70-90%
of ATP production (3). The failing heart, though, exhibits a dramatically altered fuel
substrate preference. In HF, FAO rates decline concurrent with a decrease in FAO
enzyme expression (4). Increased contribution to ATP production from alternative fuel
substrates accompanies diminution of FAO. The failing heart, in large part due to the
reduction of FAQO, increasingly relies on glucose to generate ATP. Many in the field
believe that this fuel shift with increased reliance on glucose as a substrate is
inadequate to meet the energy demands of the failing heart, further contributing to

cardiac dysfunction and effectively creating a “vicious cycle”.
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As we have recently described, there is also an increased reliance on ketone
metabolism in heart failure (5, 6). Another group concurrently arrived at the same
conclusion in human HF, demonstrating translational relevance of our findings. They
reported an increase in 3-hydroxybutanoyl-CoA (CoA ester equivalent of C4-OH
carnitine) in human HF. Serum ketone levels and decreased levels of ketones in the
myocardium were also observed in HF patients. Importantly, they found increased
expression of 3-hydroxybutyrate dehydrogenase, type 1 (BDH1) in the failing human
heart, confirming our findings in the experimental model of HF (6).

While these collective results demonstrate that ketone oxidation is increasingly
relied on in HF, the implications of this fuel substrate switch are more enigmatic.
Specifically, it is unknown as to whether the switch to ketone bodies as a fuel is an
adaptive response providing an alternative fuel source when FAO is depressed. To
address this key question, we sought to investigate the functional impact of ketone
utilization in the failing heart. To this end, we generated and assessed a novel cardiac-
specific (cs) BDH1 knockout (KO) mouse line. We confirmed that csBDH1 KO mice are
unable to produce acetyl-CoA from 3-hydroxybutyrate oxidation in the heart. In
response to transverse aortic constriction with a small apical myocardial infarction
(TAC/MI), BDH1 KO mice display exaggerated pathological remodeling with severely
depressed left ventricular systolic function and dilatation. Given these results, we

hypothesize that increased ketone oxidation is an adaptive response in heart failure.
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Results

Generation of Cardiac-specific BDH1 KO Mouse
Mice harboring a “floxed” Bdh1l gene were crossed to mice with Cre-recombinase (Cre)
expression regulated by the myosin heavy chain, o isoform (aMHC) gene promoter
(aMHC-Cre mice) to produce csBDH1 KO mice (Figure 12A). This strategy deletes
exons 3 and 4, which encode the majority of the catalytic domain (7). Subsequent
reverse transcription quantitative polymerase chain reaction (RT-gPCR) analysis
confirmed loss of Bdhl (Figure 12B, left). Likewise, western blot shows near complete
knockout of BDH1 protein in hearts of BDH1 KO mice (Figure 12B, right).

BDH1 KO mice did not show any difference in weight, growth rate, or ventricular
weight (vw)/ body weight (bw) compared to WT (data not shown). There was also no
difference in absolute heart weight (HW) or cardiac function as determined by
echocardiograph (echo) (data not shown). Levels of circulating 3-hydroxybutyrate
(30HB) were measured in fed and fasted states and found to be unchanged in BDH1
KO mice compared to WT controls (data not shown). However, assessment of the
Mendelian ratio of the crosses revealed a small but significantly lower than predicted
number of csBDH1 KO mice at time of weaning (Table 1). These latter results suggest
some perinatal or postnatal lethality. We next assessed substrate utilization in the
csBDH1 KO mouse heart using nuclear magnetic resonance spectroscopy (NMR).
Hearts were isolated and perfused in the Langendorff mode with **C-labeled R-B-

hydroxybutyrate.
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Figure 12. Generation of cardiac-specific (cs) BDH1 KO mice.

(A) Schematic of design for generating csBDH1 KO mice. ES cells with Bdh1 targeting (Bdh1-) construct (top row)
were injected into blastocysts to generate founder mice. Bdhl construct contains FRT sites flanking cassette with
SA sequence, reporter genes lacZ and neo, and pA signals. Start sites (ATG) for transcript variants of Bdh1l are
indicated. Loxp sites flank Bdh1 exons 3 and 4. Exon 5-7 are in construct but not shown on diagram. Founder
mice mated with Flp mice to produce progeny with Bdh1" (Functional) alleles. Bdh1"™ mice were subsequently
mated with aMHC-Cre mice. Offspring from this pairing either inherited Cre-recombinase transgene (Cre®)
resulting in aMHC-driven Cre expression and knockout of Bdh1 or did not (Cre). The Bdh1™® (Null) schematic
(bottom row) shows the BDH1 KO allele, which has lost exon 3 and 4. RT-qPCR primer sites indicated as P1
(E1), P2-3 (E2-3), P3-4 (E3-4). (B)(Left) Bdhl mRNA in cardiac tissue of WT (grey) and KO (black) mice .
Expression corrected to 36b4 and normalized to WT (=1). Each pair of bars represents the amplicon region of
gPCR primer pairs; exon 1 (E1), exon 2-3 (E2-3), exon 3-4 (E3-4), and exon 7 (E7). E2-3 and E3-4 primers were
designed to span introns. E1 and E7 were designed within respective exons. Bars represent mean + SEM (n = 6-
12); *p-value<0.05 WT vs. KO with Mann-Whitney test. (Right) Western blot using protein from hearts of Cre’
Bdh1"(WT) and Cre* Bdh1" (KO) mice (n=3). Antibodies used are labeled on the left. Anti-SDHA was used as
a mitochondrial protein-loading control. Cs,cardiac specific, BDH1, 3-hydroxybutyrate dehydrogenase, type 1 ;
KO, knockout; ES, embryonic stem; FRT, flippase recognition target; SA, splice acceptor; neo, neomycin
resistance gene; pA, poly-A; loxp, Locus of Crossover in P1; Flp, FIp1l recombinase; aMHC, myosin heavy chain,
a isoform; mRNA, messenger ribonucleic acid; WT, wild-type; 36b4, Ribosomal Protein Lateral Stalk Subunit PO;
gPCR, guantitative polymerase chain-reaction; SDHA, succinate dehydrogenase, subunit A
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Table 1. Mendelian ratios for offspring from Cre”, Bdh1 " crossed with Cre*, Bdh1 ™",

Cre + - Gender Number of Mice Expected Percentage | Actual Percentage

+ M 26 25% 20%
+ F 21 25% 17%

Chi squared =9.031 with 3 degrees of freedom. Two-tailed p-value=0.0289

BDH1 KO hearts were shown to completely lack the ability to form acetyl-CoA from R-f3-
hydroxybutyrate (Figures 13A,B). Consistent with the substrate oxidation data, levels of

30HB were markedly increased in csBDH1 KO hearts (Figure 13C).

Figure 13. csBDH1 KO mice are unable to oxidize 30OHB.

(A) The fraction of acetyl-CoA formed from 13C-labeled 30HB is shown. (B) The percent of glutamate
derived from **C-labeled 30HB is shown. (C) The total amount of 30OHB in ventricular tissue normalized
to wet weight from Sham WT and Sham KO is shown. Bars represent mean + SEM (n = 3-5); *p-
value<0.05 WT vs. KO using Welch’s t-test. Cs,cardiac specific; BDH1, 3-hydroxybutyrate
dehydrogenase, type 1 ; KO, knockout; 30HB, 3-hydroxybutyrate; Fc, fractional contribution; WT, wild-
type; N.D., not detected; FE, fractional enrichment
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BDHL1 deficiency results in worsened pathologic cardiac remodeling
in context of a pressure-overload stress

We next sought to address the impact of lost ketone oxidation capacity for cardiac
response to a pathophysiological stress known to cause heart failure. For these
studies, BDH1 WT and KO mice were subjected to (TAC/MI) (8). As we previously
reported, the TAC/MI procedure results in left ventricular hypertrophy (LVH) and
remodeling in wild-type mice (8). There was no significant difference in mortality rates
between the BDH1 WT and KO mice up to 4-weeks following surgery (Figure 14).
Echocardiographic analyses were conducted 4-weeks post-surgery to assess cardiac
function and remodeling (Table 2). Although the degree of LVH did not differ (Figure
15A), ejection fraction was significantly lower in the BDH1 KO compared to WT controls
(Figure 15B). Additionally, end-systolic volume (ESV) and end-diastolic volume (EDV)
were both significantly elevated in the BDH1 KO failing heart compared to WT controls

(Figures 15C-D).
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Figure 14. Survival rates following TAC/MI.

Kaplan-Meier plot shows percent of mice surviving (y-axis) at specified time-points (x-axis). Sham WT
(black line) n=5, sham KO (red line) n=6, TAC/MI WT (blue line) n=16, and TAC/MI KO (green line) n=18
are shown. Log-rank (Mantel-Cox) test used to determine significance. TAC,transverse aortic constriction;
MI, myocardial infarction; WT, wild-type; KO, knockout

Table 2. Echocardiography data 4-weeks post-TAC/MI or sham procedure

Mean +/- SEM is shown. *p<0.05 WT vs. KO, #p<0.05 Sham vs. HF using ANOVA with Tukey’s post-hoc
analysis. TAC, transverse aortic constriction; MI, myocardial infarction; HR, heart rate; BW, body weight;
Ao, aorta; Prox, proximity; VTI, velocity-time integral; EDV, end diastolic volume; ESV, end systolic
volume; EF, ejection fraction; SWMI, segmental wall motion score index; WT, wild-type; HF, heart failure;
KO, knockout
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Figure 15. BDH1 KO mice exhibit severe pathological remodeling.

Scatter plots for cardiac remodeling parameters of each TAC/MI mouse that survived to echo (28 days
post-surgery). (A) VW/BW shown as ratio of (mg/g). (B) EF shown as % (C) ESV graphed as volume (vl)
(D) EDV graphed as volume (vl). Values are mean +/- SEM, *p<0.05 WT vs. KO, using ANOVA with
Tukey’s post-hoc. BDHL1 indicates 3-hydroxybutyrate dehydrogenase, type 1 ; KO, knockout; WT, wild-
type; TAC, transverse aortic constriction; MI, myocardial infarction; echo, echocardiograph; VW,
ventricular weight; BW, body weight; EF, ejection fraction; ESV, end systolic volume; EDV, end diastolic
volume

Known gene markers of cardiac hypertrophy and failure were assessed in the
hearts of experimental animals. In the TAC/MI groups, cardiac pathological hypertrophy

gene markers, encoding contractile proteins and natriuretic peptides, were increased in
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the wild-type mice and to a greater extent in csBDH1 KO mice (Figure 16A).
Conversely, a similarly exacerbated pathological gene signature was observed for
ATPase sarcoplasmic/endoplasmic reticulum Ca?* transporting 2 (Atp2a2) and troponin
1, cardiac type (Tnni3), whose transcript levels are known to decrease in HF (Figure
16B). Interestingly, some gene expression changes were noted in the sham treated
BDH1 KO compared to the BDH1 WT sham mice. Specifically, myosin heavy chain beta
isoform (Myh7) levels were increased significantly and Tnni3 levels were significantly
decreased in sham BDH1 KO mouse hearts (Figure 16B). In addition, expression of
genes involved in fatty acid utilization, which are characteristically downregulated in
heart failure (9), was suppressed to a greater extent in csBDH1 KO hearts (Figure 16C).
Lastly, we found an increase in BDH1 expression in the WT failing heart, consistent with
our previous findings (Figure 16C) (5). Collectively, these data demonstrate that the

csBDH1 KO mice exhibit exaggerated cardiac remodeling in response to TAC/MI.

Discussion

Recently, our lab identified an increased reliance on ketone body oxidation in a mouse
model of early-stage HF (5). Another group arrived at the same conclusion in human HF
(6). However, the consequences of increased ketone oxidation in HF are not well-

defined.
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Figure 16. The gene expression signature indicates severe pathological remodeling in the BDH1
KO mouse.

MRNA expression_levels in cardiac tissue of Sham WT (white), Sham KO (black), TAC/MI WT (grey) and
TAC/MI KO (stripes) mice normalized to 36b4. (A) mMRNA levels of Myh6, Myh7, Nppa, and Nppb are
shown. (B) Excitation-contraction coupling Atp2a2 and Tnni3 mRNA levels shown. (C) Oxidative
phosphorylation genes Ppara, Acadm, Acsll, and Bdhl mRNA levels shown. All gene expression levels
are normalized to Sham WT (=1). Bars represent mean + SEM (n=5-16); *p-value<0.05 Sham vs.
TAC/MI; #p-value<0.05 WT vs. KO Mann-Whitney. BDH1, 3-hydroxybutyrate dehydrogenase, type 1; KO,
knockout;; WT, wild-type; 36b4, Ribosomal Protein Lateral Stalk Subunit PO; Myh6, myosin heavy chain
6; Myh7, myosin heavy chain 7; Nppa, natriuretic peptide A; Nppb, natriuretic peptide B; Atp2a2, ATPase
sarcoplasmic/endoplasmic reticulum Ca2+ transporting 2; Tnni3, Troponin 13, cardiac type; Ppara,
peroxisome proliferator-activated receptor alpha; Acadm, medium-chain acyl-CoA dehydrogenase; Acsl1,
long chain fatty-acid CoA ligase 1
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Notably, though, a study using mice with targeted deletion of the gene encoding
succinyl-CoA-3-oxaloacid CoA transferase (SCOT) in the heart, which catalyzes the
acetoacetate—>acetoacetate-CoA reaction, advances pathological progression of
pressure-overload induced HF (10). Other investigations report indirect correlations
between circulating ketone levels and cardiac health.

Recently, the results of trials with sodium-glucose transporter-2 inhibitors
(SGLT2i), new glucose-lowering agents, are of significant interest and may relate to our
work. The EMPA-REG OUTCOME trial was originally conducted to determine the
cardiovascular effects of empagliflozin, which at the time was indicated as a treatment
for type 2 diabetes. This massive study followed 7020 patients for a median of 3.1
years. The results showed a 38% relative risk reduction for cardiovascular related death
in patients given empagliflozin (11). Empagliflozin treatment also commonly causes
elevated circulating ketone levels (12). The precise reasons for improved cardiovascular
mortality are not known, but the correlation between increased ketone levels and
cardiac benefits has provoked intense interest in cardiac ketone metabolism (13).

In this study, we sought to directly determine the consequences of increased
ketone oxidation in the failing heart. To this end, we generated a cardiac-specific (cs)
BDH1 KO mouse. The csBDH1 KO adult mouse exhibits no overt baseline phenotype
other than a possible lethality of incomplete penetrance. We suspect that perinatal
deaths may account for this difference due to the importance of myocardial ketone
oxidation in cardiac maturation (14). Studies monitoring viability of pups at birth are

underway to establish if death occurs in neonates disproportionately.
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Although it is widely believed that 3-hydroxybutyrate is oxidized solely by BDH1,
we sought to verify that csBDH1 KO hearts would be unable to oxidize 3-
hydroxybutyrate (7). We reasoned that if an alternate mechanism is capable of oxidizing
3-hydroxybutyrate in absence of BDH1, our experimental premise of eliminating
myocardial 3-hydroxybutyrate oxidation by KO of BDH1 would be erroneous. We
confirmed the necessity of BDH1 for 30HB oxidation. Given the degree of
compensation typically observed in metabolic enzymes, it is somewhat surprising that
no other enzyme accommodates 30OHB oxidation in the BDH1 KO heart (15). Whether
BDH1 remains necessary for terminal ketone oxidation with varying substrate
concentrations is a question addressed in ongoing experiments. The complete absence
of compensation combined with the lack of evident defects in the csBDH1 KO mouse
suggests that, at least in basal conditions, cardiac ketone oxidation is not essential for
proper function of the adult heart. Indeed, most studies find ketone bodies contribute
minimally to normal cardiac energy production (14). Contrary to the aforementioned
ostensible insignificance, though, we observed ~40% of the acetyl-CoA produced in the
perfusion experiments with BDH1 WT hearts originated from 3-hydroxybutyrate.

Similar experiments using labeled palmitate are planned to assess how absence
of ketone oxidation affects FAO. Based on existing literature, we expect fatty acids will
have an increased contribution to the acetyl-CoA pool in absence of BDH1 (14). Given
that the normal heart generates 70-90% of its ATP from FAO; one could speculate the
heart’s capacity to oxidize ketones “on demand” is insurance for periods of nutritive

stress (3). The fact that we observe accumulation of 30HB in the hearts of BDH1 KO
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mice suggests continuous 30OHB import irrespective of oxidative capacity further
supporting the notion that the heart exists in a perpetual state of preparedness.

The small contribution of 30OHB to the glutamate pool in the csBDH1 KO also
provides insight into potential fates of excessive 30OHB. It appears that when the heart is
completely prevented from oxidizing 3-hydroxybutyrate, some of the ketone enters the
TCA cycle via anaplerosis subverting acetyl-CoA production. To provide further
understanding of the fate of accumulated 30OHB in the heart, we are conducting
unbiased metabolomics with csBDH1 KO hearts and WT counterparts.

When subjected to TAC/MI surgery, csBDH1 KO mice fare worse than BDH1 WT
mice. The significant differences in ejection fraction, ESV, and DSV all demonstrate
more severe remodeling in hearts unable to oxidize 30OHB. The gene expression data
further corroborates the conclusion that csBDH1 KO mice are at a disadvantage in HF.
The combined results from the TAC/MI experiments strongly suggest that the shift to
increased myocardial ketone oxidation in HF is an adaptive phenomenon.

The results also raise the important question: what is the basis for the cardiac
remodeling phenotype in csBDH1 KO mice? Two primary possibilities are currently
being considered to explain the adaptive nature of increased ketone oxidation in HF
(Figure 17). Notably, these hypotheses are not mutually exclusive. The simplest
explanation for the more severe HF pathology in the csBDH1 KO is that 30OHB oxidation
provides additional ATP production when FAO is downregulated. Accordingly, the
worsened heart failure phenotype of csBDH1 KO mice could reflect fuel and, thus,

energy “starvation”. The other possibility is that loss of BDH1 leads to accumulation of
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toxic metabolites related to an elevation in levels of 3-hydroxybutyrate in the
myocardium. If this is the causation for the phenotype observed in csBDH1 KO mice
post TAC/MI, a number of mechanisms could be factors.

Increased levels of 3-hydroxybutyrate or its downstream metabolites could have
a number of ramifications. There is evidence implicating 30HB in a variety of cellular
processes including: redox homeostasis, differentiation, signaling, inflammation,
oxidative stress, epigenomic regulation and other post-translational modification of
proteins (14). BDH1 KO may effectively poison the cell due to the aberrant effects
caused by accumulating 30OHB. Given that BDH1 catalyzes the oxidation of 3-
hydroxybutyrate and simultaneously reduces NAD" to form NADH, it is possible
disturbing this reaction could affect intracellular redox state (14). This possibility will be
addressed with experiments measuring the NAD" and NADH concentrations in normal
and failing hearts of WT and csBDH1 KO mice.

From a mechanistic standpoint, it will be important to distinguish between the
“‘energy starvation” and “metabolite toxin” hypotheses. One approach is to assess the
response of csSCOT KO mice to TAC/MI. If the mice do not exhibit a heart failure
phenotype, the “metabolite toxin” theory would be implied. Conversely, if csSCOT KO
mice phenocopy the csBDH1 KO mice, the “energy starvation” model seems likely.

Given the interest in SGLT2i-mediated positive outcome on cardiovascular
events in patients and the potential connection to ketone metabolism, we are planning
studies using SGLT2i in our mouse model of HF. These studies will first determine if

SGLT2i treatment of non-diabetic mice results in elevated levels of ketones. Once this
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determination is made, we will treat TAC/MI mice with SGLT2i and assess their
outcome. Follow-up experiments combining SGLT2i with csBDH1 KO and csSCOT KO
mice in HF are also planned. This research will elucidate, at least in part, the role of
ketone oxidation in the failing heart and potentially provide insight into the cardio-

protective effects of empagliflozin.
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Figure 17. Proposed models for cardiac remodeling in csBDH1 KO mice.
BDH1, 3-hydroxybutyrate dehydrogenase, type 1; NAD", nicotinamide adenine dinucleotide; NADH,

nicotinamide adenine dinucleotide plus hydrogen; SCOT, succinyl-CoA:3-ketoacid CoA transferase; ATP,
adenosine triphosphate; PCr, phosphocreatine; HDAC, histone deacetylase
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Methods

Animal Studies

All experiments performed with animals were conducted with protocols approved by
Institutional Animal Care and Use Committee at Sanford Burnham Prebys Medical
Discovery Institute at Lake Nona. Studies were performed on male C57BL/6N mice 6 to

12 weeks of age on standard chow.

Cardiac specific BDH1 Knockout Mouse Production
We used the aMHC-Cre recombinase system to make an inducible cardiac myocyte
specific Bdh1 knockout mouse (Figure 12). The engineered Bdhl™ construct contains a
FRT flanked cassette comprised of SA, lacZ, and pA sites. Loxp sites flank Bdhl exons
3 and 4 (Figure 12A, top). Subsequent mating of Bdh1™ mice with Flp mice produced
progeny with Bdh1"* alleles which encode functional BDH1 (Figure 12A, middle). We
backcrossed the Bdh1"™ mice with wild-type C57BL/6N (BL6N) mice to obtain Bdh1"
mice on a BL6N genetic background. Final breeding pairs consisted of a Bdh1" BL6N
mouse and a hemizygous aMHC-Cre BL6N mouse. The litters from final breeding pairs
included mice with floxed Bdh1 allele either with (Cre™) or without (Cre") (Figure 1A,

bottom).

Genotyping
Ear punch samples from 4 week old mice at onset of weaning were used for DNA

extraction. DNA was extracted by adding 100ul 25mM NaOH, 0.2mM EDTA pH 12,
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heating at 95C for 20mins, then adding 100ul 40mM Tris pH 5 to neutralize. Samples
were used immediately following extraction or stored at 4°C. PCR solution used 1ul of
extracted DNA with appropriate primers and Tm as listed. PCR products were analyzed
using standard gel electrophoresis (1.2% for Bdh1, 1.5% Nnt, 2% for Cre). Genotyping

primers are listed in Table 3.

Table 3. Genotyping Primers

Bdh1 Fwd: TGCAGGAATCAGTGCTCTCTCCTAG
Bdh1 Rev: GGTGTCAGGGCTGAAGGATG
Tm=58°C

Cre Fwd: CCGGTGAACGTGCAAAACAGGCTCTA
Cre Rev: CTTCCAGGGCGCGAGTTGATAGC
Tm=60°C

Nnt Fwd: GTA GGG CCAACT GTT TCT GCA

Nnt WT Rev: GGG CAT AGG AAG CAAATA CCA
Nnt MUT Fwd: GTG GAATTC CGC TGA GAG AAC
Tm=60°C

Heart failure model

HF model was achieved by surgical application of transverse aortic constriction
combined with a small apical myocardial infarct (TAC/MI) as described previously (8).
Mice were subject to echocardiograph and harvested 28 days post-operation. Hearts
were immediately excised from mice deeply anesthetized with pentobarbital. Atriums
were removed and ventricles immediately frozen in liquid nitrogen (LN). Samples were

stored at -80°C until use.
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RNA Isolation

One-third of the pulverized heart was partitioned into a Precellys homogenization tube
on ice. After addition of 700ul of QIAzol Lysis Reagent to the samples they were
secured in the pre-chilled Precellys Homogenizer. The homogenization protocol used
three cycles of 20 seconds 6800rpm agitation followed by a 10 second pause. The
remainder of the RNA isolation followed the standard Qiagen miRNeasy kit protocol.

Isolated RNA was diluted to 0.1ug/ul with ddH20

RT-gPCR

A two-step protocol was used to assess mMRNA expression. For cDNA synthesis, 0.5ug
of RNA was used with Agilent Genomics AffinityScript cDNA Synthesis Kit according to
manufacturer instructions. Synthesized cDNA was used with Brilliant Il Ultra-Fast
SYBR Green QPCR Master Mix for gPCR performed in triplicate using Roche
LightCycler 480 Instrument Il and primers for specific genes. Gene expression was

normalized to levels of 36b4. Primers used are shown in Table 4.
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Table 4. . RT-gPCR Primers

Gene Target

Bdh1 Exon 3-4 Fwd

36b4
Acadm
Acsl1
Atp2a2
Nppa
Myh7
Tnni3
Nppb
Ppara

Myh6

Rev
Fwd
Rev
Fwd
Rev
Fwd
Rev
Fwd
Rev
Fwd
Rev
Fwd
Rev
Fwd
Rev
Fwd
Rev
Fwd
Rev
Fwd
Rev

Sequence 5->3'
TCAGGCAGATGCGGCTA
ATGCTTGGCCAGTGAGAAC
TGGAAGTCCAACTACTTCCTCAA
ATCTGCTGCATCTGCTTGGAG
ATGACGGAGCAGCCAATGAT
TAATGGCCGCCACATCAGAG
CGCCCATATGTTTGAGACCG
GTCGTCCATAAGCAGCCTGA
GGAGATGCACCTGGAAGACT
CCACACAGCCGACGAAA
AGTGCGGTGTCCAACACAGA
GACCTCATCTTCTACCGGCATCT
GCCAACTATGCTGGAGCTGATGCC
GGTGCGTGGAGCGCAAGTTTGTCATAAG
TCTGCCAACTACCGAGCCTAT
CTCTTCTGCCTGTCGTTCCAT
GCTGCTTTGGGCACAAGATAG
GCAGCCAGGAGGTCTTCCTA
ACTACGGAGTTCACGCATGTG
TTGTCGTACACCAGCTTCAGC
GGTCCACATTCTTCAGGATTCTCT
CCTTCTCTGACTTTCGGAGGTACT

Metabolite Analysis

3-hydroxybutyrate measurements in the heart were obtained from analysis of organic

acids using methods described previously (5, 16).

Substrate Oxidation Measurements

Mice were heparinized (100 U) by intraperitoneal (IP) injection and anesthetized with 85

mg/kg ketamine and 12 mg/kg xylazine. Following sacrifice, hearts were isolated and
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perfused with a modified Langendorff perfusion protocol (10mM glucose, 0.5mM,
sodium D-3-hydroxybutyrate-2,4-*3C, , 1mM lactate, 0.4mM 1:3 palmitate/BSA).
Following each perfusion, hearts were snap frozen with liquid nitrogen—cooled tongs.
NMR spectroscopy was used to quantify the fractional contribution (Fc) of acetyl-CoA

and fractional enrichment (FE) of glutamate produced from labeled ketone.
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CHAPTER SIX: CONCLUSION

Cardiac metabolism plays a critical role in the vital function of the heart. The heart is
essentially a biotic pump that uses tremendous amounts of energy to force blood
through circulation. In order to satiate the high energy requirement of heart function,
kilograms of adenosine triphosphate (ATP) are produced daily in the heart. The heart
has evolved to be an energetic omnivore, allowing it to adapt to changing physiological
environments and nutrient conditions. This characteristic metabolic plasticity is quite
apparent in the development of the heart. Substantial metabolic reprogramming events
also occur when the heart encounters stress.

Several metabolic abnormalities are signatures of the failing heart. The well-
documented alterations include decreased phosphocreatine (PCr)/ATP (excellent
prognostic indicators) and decreased fatty acid oxidation (FAO) rates. However, the
degree to which the metabolic derangements are causative agents in the pathogenesis
of heart failure (HF) is largely unknown.

In an effort to begin to understand how metabolic changes contribute to
pathogenesis of early-stage HF, an unbiased systems based approach was used to
characterize the metabolome, transcriptome, and proteome. In this series of
experiments, the following observations were made: 1) transcript and protein levels are
positively correlated between compensated hypertrophy (CH) and HF, 2) very little
changes in metabolic gene expression outside of lipid metabolism occur, and 3)
metabolite profiles between CH and HF vary drastically. Based on this data set, we
hypothesized that a post-translational modification (PTM) was likely regulating enzyme
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activity accounting for the discrepant alterations in metabolite profiles without coordinate
changes in gene expression.

We then sought to identify candidates for a post-translational modification that
could be a causative agent. Based on our data showing elevations in acetyl (C2) pools,
we hypothesized that acetylation levels of metabolic proteins may be altered in the
failing heart. Indeed, subsequent acetylproteomic analysis showed hyperacetylation of
mitochondrial proteins specifically in mouse and human HF but not in CH. At this point,
we were unsure of the functional consequences of hyperacetylation, so we used an
acetyl-mimic mutation of one of the hyperacetylated residues to establish whether these
PTM in HF could be causing dysfunction. The lysine 179 (K179) residue of succinate
dehydrogenase, subunit A (SDHA) was mutated to glutamine (K179Q). Whole cell
respirometry and biochemical assays showed the K179Q mutation resulted in significant
loss-of-function. These data suggested that at least some of the hyperacetylation events
observed in HF have functional consequences. Currently, we are establishing
parameters, including stoichiometry, by which acetylation events are more likely to be
functionally relevant.

Our —omics data also revealed elevations in C4-OH, a by-product of ketone
oxidation, leading us to investigate ketone oxidation as an alternative fuel source in HF.
Our query found increased levels of 3-hydroxybutyrate dehydrogenase, type 1 (BDH1)
on both a transcript and protein level. Collaborative efforts led to substrate oxidation
experiments in the isolated heart, showing an increased capacity for ketone oxidation.

Ketogenic diet studies and in vitro studies verified C4-OH carnitine as a valid
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representative metabolite for ketone metabolism. Taken together, these data provided
evidence for the hypothesis that ketone oxidation is increasingly relied upon as a fuel in
HF. Once we established the presence of increased ketone oxidation, we sought to
address the consequences of this fuel substrate shift in HF.

In order to determine if the switch to increased ketone oxidation was adaptive,
maladaptive, or otherwise inconsequential, we generated a cardiac-specific (cs) BDH1
knockout (KO) mouse. These mice did not display any overt phenotype other than a
slight reduction in the Mendelian ratio of KO mice born. However, when subjected to
stress of transverse aortic constriction combined with a small apical myocardial
infarction (TAC/MI), the csBDH1 KO fared worse than wild-type (WT) counterparts.
From these data, we concluded that increased ketone oxidation in the failing heart is
likely an adaptive response. Future experiments are planned to further assess the
mechanism by which ketone oxidation plays an adaptive role.

The elevations observed in acetyl pools result in hyperacetylation of
mitochondrial proteins in the failing heart. While more investigation is needed to
establish which hyperacetylation events are deleterious, we show that at least the K179
SDHA hyperacetylation event is detrimental. The research discussed in this dissertation
also shows ketone oxidation is increasingly used in the failing heart. Furthermore, the
elevation in ketone oxidation is an adaptive event in HF. This could have far-reaching
implications especially in light of the EMPA-REG trials. The main conclusion arrived at
in this dissertation is that short-chain carbon metabolism is a highly consequential

factor in the failing heart phenotype.
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