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ABSTRACT 

Pain is a public health issue affecting the lives of nearly 116 million adults in the US, annually. 

Understanding the physiological and phenotypic changes that occur in response to painful stimuli 

is of tremendous clinical interest, but, the complexity of pain and the lack of a representative in 

vitro model hinders the development of new therapeutics. Pain stimuli are first perceived and 

transmitted by the neurons within the dorsal root ganglia (DRG) which become hyperexcitable 

under these conditions. It has now been established that satellite glial cells (SGCs) that ensheathe 

the DRG cell body actively contribute to this neuronal dysregulation. To understand the role of 

SGCs in this pain circuit, first, we looked at the development of SGCs within the DRG of rats, and 

we showed that SGCs developed postnatally, and appeared morphologically, transcriptionally and 

functionally similar to Schwann cells precursors (SCs), supporting the idea that these cells may 

exhibit multipotent behavior. Secondly, we describe here, a three-dimensional in vitro model of 

the DRG which is functionally characterized on a microelectrode array (MEA). This model can be 

used to assess the long-term recording of spontaneous activity from bundles of axons while 

preserving the neuronal-SGC interactions similar to those observed in vivo. Furthermore, using 

capsaicin, an agonist of the TRPV1 nociceptive receptor, we show that this model can be used as 

an in vitro assay to acquire evoked responses from nociceptive neurons. Overall, this study 

advances our knowledge on the development and differentiation of SGCs and establishes a novel 

functional three-dimensional model for the study of SGCs. This model can now be used as a tool 

to study the underlying basis of neuronal dysregulation in pain.   
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CHAPTER ONE: GENERAL INTRODUCTION 

Scope 

Chronic pain is a significant health problem and affects the lives of nearly around 116 million 

adults in the United States ("Relieving Pain in America: A Blueprint for Transforming Prevention, 

Care, Education, and Research," 2016). Rather than being curative, the current treatments are 

aimed at managing the symptoms of pain. Moreover, new drugs in the market are often 

reformulations of the existing drugs (Backonja & Woolf, 2010; "Relieving Pain in America: A 

Blueprint for Transforming Prevention, Care, Education, and Research," 2016). This highlights 

the need to understand the mechanisms underlying neuropathic pain. Neuropathic pain is a highly 

complex phenomenon that involves not just the neurons, but other important players like the 

immune and glial cells are integral pieces that contribute to this pathology (Scholz & Woolf, 2007). 

Often, neurons were the sole focus of these studies, and the contribution of the non-neuronal cells 

in this dysregulation was overlooked. Satellite glial cells (SGCs) are specialized glial cells in the 

peripheral nervous system (PNS) that envelops the neuronal cell body of the sensory neurons (E. 

Pannese, 1981, 2010). Recent studies have demonstrated that SGCs are not just bystanders to 

injury but, undergo characteristic changes that lead to alterations in the neuronal function that 

trigger neuropathic pain (P. T. Ohara et al., 2009).  

The following dissertation describes the origin of SGCs and investigates the plasticity of this 

enigmatic cell type. Further, to assess the direct contribution of SGCs to the altered neuronal firing 

seen in neuropathic conditions, we developed a system where neurophysiological assessments 

from in vitro sensory nerves could be achieved. Understanding the origins and signals involved in 



2 

 

the specification of SGCs, as well as the use of a model which can be used to study the mechanisms 

by which neuronal activity is regulated is of enormous clinical importance. 

Complexity of Pain  

Pain is defined as ‘an unpleasant sensory and emotional experience associated with actual or 

potential tissue damage’ (Millan, 1999). Pain is a complex and heterogeneous phenomenon, where, 

manifestations vary depending on the etiology, genes and environmental factors (von Hehn, Baron, 

& Woolf, 2012).  Pain has a protective role wherein; it seeks to act as a warning signal to imminent 

danger or damage. Symptoms of pain usually disappear when the stimulus is removed (Woolf & 

Mannion, 1999). In contrast, pain can be pathological and can be thought of as a disease state when 

the nervous system itself is injured, and changes remain persistent and irreversible (von Hehn et 

al., 2012). Medical treatment and decreased productivity due to pain in the United States amount 

to a staggering $600 billion (Holmes, 2016) annually. The widespread prevalence along with the 

huge economic burden on the society underscores the need to develop new strategies to tackle this 

debilitating disease.  

Acute and Chronic Pain 

Pain can be classified as acute when the sensation is momentary or short-term (less than six 

months) and is reversed with the repair of the damaged tissue. Acute pain is often referred to as 

physiological pain since it often alarms us of potentially dangerous stimuli and seeks to protect by 

evoking a flight response (Millan, 1999). Acute pain is easily managed, and several over-the-

counter medications help with its management. Whereas, pain is considered chronic when the 
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sensation of pain persists longer than six months. Chronic pain is deemed to be pathological as 

there is no biological benefit, and furthermore, it can be more complicated to tackle, as it can often 

arise in the absence of stimuli (Woolf & Mannion, 1999).  

Neuropathic Pain 

One of the more common forms of chronic pain is neuropathic pain, which is defined as pain that 

develops due to injury to the nerves. This sustained injury can lead to sensitization which results 

in the perception of non-noxious stimuli as painful (allodynia), or this could result in an 

exaggerated perception of pain in response to a nociceptive stimulus (hyperalgesia). In addition to 

this hypersensitivity, central and the peripheral nervous system undergo pathological changes that 

can be detected by employing electrophysiological or imaging techniques (Woolf, 2011). The pain 

pathway starts at the periphery, and a cascade of events leads to the transmission and perception 

of pain in the central nervous system (CNS). Afferent neurons within the sensory nervous system 

generate electrical signals in response to the pain stimuli and transduce it to the secondary neurons 

in the dorsal horn of the spinal cord. The signal gets modulated at this level before it is transmitted 

to the thalamus and finally, the tertiary neurons guide the signals to different structures in the 

cortex (Marchand, 2008) (Figure 1).  
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Image by author 

Figure 1. Ascending pain pathway 
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Management of Pain 

Several different classes of medication including opioids, anticonvulsants, anti-inflammatory 

drugs, tricyclic antidepressants or a combination of these is used to manage pain (Egan, 2005). 

While some treatments appear beneficial for some patients, they provide little to no benefit for 

others. These treatments often have many adverse side effects given that the molecular targets of 

these drugs are globally expressed. For example, opioids act by inhibiting the release of 

neurotransmitters from hyperpolarizing spinal cord neurons but, it can also, in a similar fashion 

affect other neurons within the CNS (Egan, 2005) causing side effects. The use of opioids can also 

result in short-term side effects such as dysphoria, nausea, constipation etc., whereas long-term 

use can lead to addiction and drug abuse. Novel targets and treatments to tackle pain are necessary 

and significant work needs to be focused in this direction. As pain is initiated in the sensory 

neurons within the peripheral nervous system, these neurons present themselves as ideal targets 

for the design of new analgesics. The sensory neurons within the dorsal root ganglia (DRG) are an 

integral part of this pain pathway, and a detailed understanding of molecular mechanisms 

underlying changes that occur within the DRG would prove beneficial. 

The following section highlights the role of the sensory neurons namely, the neurons within the 

DRG and their role in the transmission of pain. 

Anatomy and Physiology of Dorsal Root Ganglion 

Information to the cerebral cortex is conveyed through one of the two somatosensory pathways: 

posterior column-medial lemniscal pathway (PCML) or the anterolateral system (ALS). ALS 

pathway transmits modalities of temperature, touch, and pain whereas PCML is involved in the 
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sensory modality of proprioception and vibration (Haines & Mihailoff, 2018). The sensory stimuli 

are converted to electrical impulses or action potentials and are transmitted upstream. Parallels 

exist between the two pathways including the transmission of signals through sensory neurons 

within the DRG.  

The DRG is a structure where sensory neuronal cell bodies are clustered together in the dorsal root 

of the spinal nerve. DRG neurons are generated from the neural crest cells in three sequential 

waves during early embryonic development. Spatial and temporal signals from the spinal cord and 

the adjacent somites generate the different types of neurons seen within the DRG (Marmigere & 

Ernfors, 2007).  These neurons can be classified based on cell size, axonal diameter, conduction 

velocity, molecular markers they express and by their sensory modality. 

Subtypes of Neurons within the DRG 

The small neurons typically have small diameter axons which can either be unmyelinated or thinly 

myelinated, while the larger neurons tend to have a larger diameter, myelinated axons (Lee, Chung, 

Chung, & Coggeshall, 1986). The larger myelinated Aα/Aβ fibers conduct velocities higher than 

2.5m/s while, the smaller thinly myelinated Aδ and unmyelinated C fibers have conduction 

velocities lower than 2.5m/s (Harper & Lawson, 1985). Large neurons mostly receive non-noxious 

stimuli and are involved in proprioception (sense limb movement and position) or 

mechanoreception (receive mechanical stimuli such as touch, pressure, and motion) while the 

small Aδ and unmyelinated C fibers receive thermal and noxious stimuli and are involved in 

nociception (Marmigere & Ernfors, 2007). Each of these classes of neurons can also be classified 

based on the expression a unique set of molecular markers. For instance, capsaicin receptor, 
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TRPV1 which is known to be important in the transduction of noxious stimuli is uniquely 

expressed by the nociceptors (Immke & Gavva, 2006). Although this categorization is an over-

simplistic generalization, and while there are many exceptions to this classification, interestingly, 

these neurons establish reproducible patterns of connectivity within the spinal cord (Figure 2) 

(Marmigere & Ernfors, 2007) For example, C fibers synapse with lamina I and outer lamina II 

neurons whereas, Aδ neurons synapse with neurons in lamina I and lamina V (Dubin & 

Patapoutian, 2010).  

 

 

Image by author 

Figure 2. Reproducible patterns of connectivity of the DRG neurons to the spinal cord.  

 

Regardless of the subtype of the sensory neuron, these neurons are pseudounipolar in structure. 

The cell body of the neuron is attached to the bifurcating conducting axonal branches via a short 

stem axon. These neurons lack dendrites and therefore do not synapse with each other, and no 

synaptic processing occurs within the DRG. Yet, cross-talk between neurons within DRG 

commonly occurs in response to nerve injury or neuropathic pain.  Recent evidence has alluded to 
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the fact that this cross-talk could be a result of the coupling of glia within the DRG (Cherkas et al., 

2004; Huang, Cherkas, Rosenthal, & Hanani, 2005). The glial organization within the DRG is 

described in detail below.  

Satellite Glial Cells 

It is now well established that glial cells are integral to several aspects of neuronal function. Glial 

cells are involved in the development of the nervous system, formation of synaptic contacts, 

synaptic transmission and are known to regulate the microenvironment of the brain. (Goldman, 

2003; M. Hanani, 2005; HANSSON & RÖNNBÄCK, 2003; Haydon, 2001). Importantly, glial 

cells are known to play a role in the development and maintenance of certain pathological 

conditions such as neuropathic pain (Aldskogius & Kozlova, 1998). Considering the importance 

of glial cells, it is quite surprising that not much is known about the glia within the DRG. Often, 

Schwann cells (SCs) are the only glial cell type considered when peripheral glia is described. 

Structure of SGCs within the DRG 

Valentin first described satellite glial cells in 1836, and Pannese in 1981 detailed the structure and 

organization of these cells in incredible detail. Satellite glial cells (SGCs) surrounds the cell 

body/soma of sensory neurons and form a tight sheath around them (M. Hanani, 2010; E. Pannese, 

1956) (Figure 3) Together, the SGC and the neuron can be considered as a distinct morphological 

unit where the neurons are separated from each other by this SGC sheath. This unique organization 

of SGCs distinguishes them from Schwann cells (SCs), the other major peripheral glia which aligns 

along the axons. SGCs are laminar and do not bear processes. A small extracellular space lies in 
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between the neuronal soma, and the SGC (about 20nm) and neurons are known to extend microvilli 

into this space, it is suggested that these processes facilitate chemical exchanges between the SGC 

and neurons (E. Pannese, 1981; Ennio Pannese, 2002).  SGCs offer metabolic support to the 

neurons they ensheathe, and there is a linear relationship in the number of SGC associated with 

the neuron to the size of the neuronal soma (Ledda, De Palo, & Pannese, 2004). Interestingly, the 

number of SGCs associating with the neuron considerably increases after injury (Vera Shinder et 

al., 1999). 

 

Image by author 

Figure 3. Illustration of a single DRG neuron with SGCs enveloping the cell body and with 

myelinating SCs along the axon            

                                        

Regulation of Neuronal Microenvironment  

Although SGCs envelop the soma of the neurons, it does not form a complete structure like the 

blood-brain barrier seen in the CNS. Several studies have shown that tracers like La3+, 

macromolecules, and neurotransmitters can penetrate through the SGC sheath into the neuronal 

space (Allen & Kiernan, 1994; Arvidson, 1979; M. Hanani, 2005; V. Shinder & Devor, 1994). 
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Another study examined the effect of heavy metal poisoning in DRGs and it was shown that the 

neurons were less labeled than the SGCs surrounding them (Kumamoto et al., 1986) suggesting 

that, even though SGCs do not form a complete barrier, they still exert control over the 

microenvironment by slowing the diffusion of larger molecules. SGCs exhibit gap junctions 

composed of mainly Cx43 and studies using tracer molecules have shown that SGCs around a 

neuron is functionally coupled (M. Hanani, Huang, Cherkas, Ledda, & Pannese, 2002b; E. 

Pannese, 1981) with bidirectional signaling between the neurons and the glia taking place via 

calcium waves (Suadicani et al., 2010). It is suggested that this coupling of SGCs may play a role 

in spatial buffering to control the microenvironment and that the unique arrangement of SGCs 

around the soma facilitates cross-excitation seen within the DRG neurons (V. Shinder & Devor, 

1994).  

SGCs express several transporters for neurotransmitters like glutamate and gamma-aminobutyric 

acid (GABA), and this facilitates the removal of these neurotransmitters from the neuronal 

extracellular space (Berger & Hediger, 2000). SGCs are also endowed with enzymes that catalyze 

the conversion and therefore, the removal of the released neurotransmitters. Glutamate released 

into the neuronal microenvironment is taken up by the glutamate transporters expressed on SGCs 

and glutamate is converted to glutamine by the activity of enzyme glutamine synthetase (GS). 

Glutamine is then recycled back to the neuron, and SGCs modulate neuronal activity in this 

manner. Because of the abundance of GS in SGCs, it has been used as a molecular marker to 

identify these cells (Miller, Richards, & Kriebel, 2002).  
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Role of SGCs in Pain 

In addition to ensuring the normal function of neurons, SGCs also play an essential role in the 

dysfunction or disease state of these neurons. SGCs undergo many characteristic changes 

following injury. Similar to astrocytes in the CNS, SGCs upregulate the expression of the glial 

fibrillary acidic protein (GFAP) and become activated in response to neuronal injury (Nadeau, 

Wilson-Gerwing, & Verge, 2014). Although the significance of this upregulation is not apparent, 

the increase of GFAP is a well-documented phenotype of astrocytes in response to injury (Romao, 

Sousa Vde, Neto, & Gomes, 2008). SGCs phagocytose the injured and degenerated cells in their 

vicinity in a manner similar to SCs and microglia (Aldskogius & Arvidsson, 1978). 

Under normal conditions, SGCs have a half-life of 600 days and are not highly proliferative cell 

types (Elson, Ribeiro, Perelson, Simmons, & Speck, 2004). But, in response to injury, SGCs 

proliferate rapidly and the SGC-neuron ratio changes as early as a day after injury (A. Humbertson, 

E. Zimmermann, & M. Leedy, 1969). It has been suggested that the SGC-neuron ratio becomes 

skewed to support the high metabolic needs of the neuron during injury. It is well established that 

long-term treatment with capsaicin leads to the loss of DRG neurons (Pini, Baranowski, & Lynn, 

1990; J. Wood et al., 1988) and interestingly, Gallaher et al., showed that the neuronal numbers 

are restored 60 days post capsaicin administration. The presence of BrdU/Ki67 positive SGCs 

along with the expression of nestin (a neuronal progenitor marker) suggested that SGCs were the 

cell type that replaced the lost neurons (Z. R. Gallaher, Ryu, Larios, Sprunger, & Czaja, 2011).  In 

support of this observation, it has also been shown that after axotomy, SGCs express isolectin IB4, 

a marker for nociceptive neurons (Li & Zhou, 2001). Together this suggests that SGCs are not 
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passive players in transmitting pain, but instead are actively involved in contributing to the 

neuronal changes that underlie neuropathic pain (Peter T. Ohara et al., 2009).  

DRG neurons become hyperexcitable in response to injury, and this is identified as a decrease in 

firing threshold and a measurable increase in the spontaneous activity (M. Hanani, Huang, 

Cherkas, Ledda, & Pannese, 2002a; Xie, Strong, & Zhang, 2010). The underlying mechanism for 

this altered neuronal sensitization is still not known. In response to axotomy, increased coupling 

(around six-fold) between SGCs surrounding an individual neuron and SGCs surrounding different 

neurons was observed (M. Hanani et al., 2002a). This increase in coupling was due to an increase 

in the expression of gap junctions between SGC-SGC and between SGC-neuronal units. Although 

the functional significance of this coupling is not entirely clear, it has been suggested that changes 

in the number of gap junction lead to alterations in the neuronal microenvironment which could, 

in turn, reflect changes in the excitability of the neurons. Efforts in this direction could be 

beneficial in understanding the molecular basis for the sensitization of the DRG neurons. 

Physiological Characteristics of SGCs 

Patch clamp studies have shown that SGCs are non-excitable, and have a negative resting potential 

between -33mV to -78mV (Bowery, Brown, & Marsh, 1979). It was shown that SGCs surrounding 

GABA neurons were depolarized after a small delay period (Hosli, Andres, & Hosli, 1978) and 

further, it was shown that SGC depolarization occurred only in the presence of neurons. This 

indicated that SGCs were depolarized indirectly by the neuron suggesting a bidirectional 

communication that exists between the neuron and SGC. 
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Although the neuronal soma does not directly participate in the transmission of sensory 

information to the CNS, invasion of action potentials via the short stem axon can lead to 

biochemical changes within the soma (Amir & Devor, 2003; Dubin & Patapoutian, 2010) and how 

the peculiar arrangement of SGCs around the soma contribute to these changes that are observed 

in the neuronal soma warrants further research. It is also known that DRG soma expresses various 

receptors and neurotransmitters including capsaicin receptor TRPV1 (Immke & Gavva, 2006). The 

expression of these receptors on the soma is quite puzzling considering that the sensory 

information is received at the sensory terminals at the periphery. The expression of these receptors 

along with the fact that the soma is electrically active promotes the idea that the signals within the 

DRG may be crucial in uncovering the basis of pathological conditions like neuropathic pain. 

Current Models  

There are several in vivo and in vitro models developed to study pain, but most of these models 

are limited either because of the complexity or the lack thereof, reproducibility, subjective 

interpretation of behavioral readouts, lack of biological manifestations of pain, etc. The current 

knowledge in the field is limited partly due to the lack of accurate models. 

One of the more commonly used models of peripheral pain is the chronic constriction injury (CCI) 

model. Here, the sciatic nerve of the mouse is ligated and which causes these mice to display a 

pain phenotype including allodynia and hyperalgesia (Attal, Jazat, Kayser, & Guilbaud, 1990). 

Partial sciatic nerve ligation leads to spontaneous pain which is characterized by excessive licking 

and paw guarding. Other non-surgical in vivo models include streptozocin-induced diabetic 

neuropathic pain model (Courteix, Eschalier, & Lavarenne, 1993) and latent varicella-zoster virus 
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infected models (Fleetwood-Walker et al., 1999). While the pathophysiological changes of pain 

are accurately reflected in these models, variability in administering tests, interpretation of the 

behavioral response, ethical concerns and the cost and time associated with these studies lessen 

the enthusiasm of their use. 

Cell culture models of neuropathic pain have been developed, which include the use of dissociated 

primary embryonic DRG neurons, reprogrammed fibroblasts and cell lines (Brian J. Wainger et 

al., 2015; Yin, Baillie, & Vetter, 2016). These models offer a highly reproducible and cost-

effective system. The neurons in culture respond to the noxious stimuli and therefore can be used 

to study pain (Barber & Vasko, 1996). But several of these in vitro models lack the complexity 

that is needed for the precise understanding of the mechanisms of pain. For example, the 

embryonic DRG neurons are known to differ phenotypically from the adult neurons with respect 

to their dependence on trophic factors like the nerve growth factor (Zhu & Oxford, 2011). To be 

able to make meaningful conclusions, these models need to efficiently recapitulate the diversity 

and physiology of neurons seen within the DRG. Moreover, most of the in vitro studies do not 

include glial cells, as these cultures are often treated with antimitotic agents to remove the 

contaminating glia to enable acquisition of electrophysiological readings (Newberry et al., 2016). 

One of the significant challenges in investigating the direct contribution of SGCs towards neuronal 

activity lies in the fact that in culture, SGCs migrate away from the soma of the neurons as early 

as 24 hours (Vitali Belzer, Nathanael Shraer, & Menachem Hanani, 2010). SGCs can be studied 

in isolation from the neurons, and although electrophysiological readings cannot be acquired, 

useful information can be extracted from the cells in isolation. But, to date, there has been no 

description of the isolation of this cell type. Intact explant (organ) culture would be useful, as the 
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association of SGC and neurons can be preserved. Taking into account the limitations of the field, 

we have described a novel method of isolation of SGCs and have developed a three-dimensional 

explant model system where we can acquire electrical readings and, evaluate the contribution of 

SGCs to the electrical activity of neurons under neuropathic conditions. 
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CHAPTER TWO: SATELLITE GLIAL CELLS REPRESENT A 

POPULATION OF DEVELOPMENTALLY ARRESTED SCHWANN 

CELLS 

Preface 

This chapter was previously published in Glia, and is reprinted here through Copyright Clearance 

Center’s RightsLink® service. 

George D, Ahrens P, Lambert S. Satellite glial cells represent a population of developmentally arrested 

Schwann cells. Glia. 2018;00:1–11. https://doi.org/10.1002/glia.23320 

Introduction 

Gap in Knowledge 

Although the involvement of SGCs in the generation and maintenance of pain has been widely 

accepted, much less is known about the mechanisms by which they influence the neuronal activity. 

Despite their clinical importance, not much is known about the origin and development of these 

cells. Development of new therapeutics and novel drugs depend on our ability to identify new 

targets. Hence, understanding their origins and the mechanisms that signal the development of 

SGCs are important. 

The lineage of SGCs remains relatively uncharacterized. The lack of knowledge surrounding the 

development of SGCs within the trigeminal ganglia and DRG contrasts with what is known about 

the development of the other PNS glial cell type, Schwann cell (SC), which has been well 

https://doi.org/10.1002/glia.23320
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characterized in developing nerves such as the sciatic. The origin and development of SCs are 

briefly discussed below. 

Schwann Cell Lineage 

SCs are one of the most abundant glia in the peripheral nerves. SCs that associate with the larger 

diameter axons form myelin around them and increases the conduction velocity of those axons, 

whereas, SCs that associate with the smaller diameter axons bundles them tightly together to 

develop structures known as the Remak bundles.  

Neural crest cells undergo three different developmental stages to differentiate into a mature 

myelinating or non-myelinating SC. Neural crest cells are often referred to as the fourth germ layer 

due to the large variety of cells that they generate. Gliogenesis of the neural crest cell occurs during 

embryonic development (embryonic day 14 in rats) to give rise to SC precursor cells.  

SC precursors are transient and are dependent on axonal contact for survival. Removal of this 

axonal contact leads to apoptosis but, they can be rescued in culture by the addition of the axonal 

forms of neuregulin. These cells have extensive processes, have a fibroblast morphology and 

associate with many axons. In culture, they become flattened and exhibit cell-cell contacts (Jessen 

et al., 1994). SC precursors have been described as a multipotent cell type capable of becoming 

endoneurial fibroblasts and even neurons within the parasympathetic ganglia (Espinosa-Medina et 

al., 2014a; Joseph et al., 2004). Further, it was shown that SC precursors could be specified to 

generate melanocytes by the addition of basic fibroblast growth factor (Joseph et al., 2004). 

Around embryonic day 15-17, SC precursors develop autocrine survival signals and differentiate 

into immature SCs. This differentiation can be recapitulated in vitro as well. Considerable changes 
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to the nerve also accompany these transition points such as the deposition of extracellular matrix, 

formation of connective tissue, etc. To match the axon and SC numbers, a delicate balance of 

proliferation and apoptosis of the immature SCs is seen during this stage. Axons are grouped into 

bundles with the immature SCs surrounding them.  

The immature SCs then differentiate to either a mature myelinating or a mature non-myelinating 

SC during perinatal stages (reviewed in (Jessen & Mirsky, 1997; Mirsky et al., 2008)). SCs 

defasciculate the axons to establish a 1:1 ratio and myelination is initiated in the large diameter 

axons. The small diameter axons remain unmyelinated and are surrounded by non-myelinating 

SCs. Different signals specify the differentiation of the immature SC to the two different mature 

phenotypes.  

The ensheathment of axons destined to be myelinated is initiated around birth, and the process of 

myelination continues after birth. SCs aligned along the length of the axon form a myelin sheath 

around them. The node of Ranvier that exists between each of these myelinating SCs is packed 

with voltage-gated sodium channels. The arrangement of myelin interspaced with the nodes of 

Ranvier facilitates the salutatory conduction of impulses. Myelin is composed mainly of lipids and 

about 20% of proteins. Proteins in myelin are important for the structure, compaction, and stability 

of the myelin sheath.  Myelin basic protein (MBP) is one such protein involved in the compaction 

of myelin and is often used as a marker to identify myelin segments in culture (Martini, Mohajeri, 

Kasper, Giese, & Schachner, 1995). 

 Each of the stages in the development of the SC is well defined by the set of markers they express 

(Jessen & Mirsky, 1998).  Markers like Sox 10, P75NTR are expressed through all stages of 
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development while certain antigens are expressed only during specific developmental stages and 

this allows us to distinguish the cells at each stage of development (Figure 4). For example, 

cadherin-19 (CDH19), is a unique marker that is expressed solely during the SC precursor stage 

(Takahashi & Osumi, 2005) and the expression of this antigen is downregulated as SC precursors 

transition into immature SCs.  

 

Image by author 

Figure 4. Progression of the Schwann cell lineage  
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Origin and Development of SGCs 

Neural crest cell gives rise to boundary cap cells around embryonic day 11 in rats. Studies have 

shown that the boundary cap cells migrate along the axons and populate the DRG. It has been 

thought that SGCs arise from boundary cap cells during the development of the small diameter 

nociceptive neurons (Maro et al., 2004) but, this topic has not been explored. Certain clues suggest 

that SGCs may be closely related to SCs. In Sox 10 mutants, both SGCs and SC precursors fail to 

develop, indicating the potential for a common lineage (Britsch et al., 2001). Moreover, when 

cultured independently of neurons, SGCs start to adopt the characteristic bipolar morphology 

associated with SCs (V. Belzer, N. Shraer, & M. Hanani, 2010; Poulsen, Larsen, Duroux, & 

Gazerani, 2014) and express several biomarkers (e.g., GFAP, S100 and L1) also observed in SCs. 

Whether SGCs and SCs have similar developmental stages and the signals that lead to their 

specification has not been investigated. 

Plasticity of SGCs 

SGCs have been proposed to be highly plastic, giving rise to a range of cells that includes 

oligodendrocytes (Fex Svenningsen, Colman, & Pedraza, 2004; M. Hanani et al., 2002b; Weider 

et al., 2015). SGCs have also been shown to undergo enhanced proliferation in response to nerve 

injury (A. Humbertson, Jr., E. Zimmermann, & M. Leedy, 1969). Their plastic nature and the fact 

that elevated levels of the Sox 10 transcription factor promote the conversion of SGCs into an 

oligodendrocyte type cell, suggest that SGCs may not represent a fully differentiated cell type 

(Weider et al., 2015), an idea supported by the expression of the transcription factor Sox 2, which 
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has been described as a stem cell marker, in the nuclei of SGCs (Koike, Wakabayashi, Mori, 

Hirahara, & Yamada, 2015).  

In this study, we provide data to support the hypothesis that SGCs in the DRG represent a 

population of cells arrested in the SC lineage progression. We observed that SGCs did not associate 

with neuronal soma, until after birth, and SGCs expressed the SC precursor marker CDH19 along 

with other markers of the early SC lineage are then expressed by these cells through adulthood. 

Using a novel purification technique, we observed that purified cultures of SGCs are almost 

transcriptionally identical to adult SC cultures. Finally, we showed that coculturing SGCs with 

pure populations of embryonic DRG neurons allowed them to myelinate DRG axons in the same 

manner similar to the adult SCs. These observations raise new questions about the DRG 

microenvironment as a stem cell niche and the hierarchy of glial cell development in the PNS.    

Materials and Methods 

Reagents and Antibodies 

All cell culture media and the supplements were purchased from Gibco and Invitrogen 

respectively. The culture media formulation for neurons and cocultures were previously described 

(Callizot, Combes, Steinschneider, & Poindron, 2011).  
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Culture media 

NB media: Neurobasal with 2% B27, 1X GlutaMax, 1X penicillin-streptomycin (P/S) and 50ng/ml 

NGF (Harlan).  

D10M media: DMEM with 10% heat-inactivated FBS (Hyclone), 2µM forskolin (Sigma), 20 

µg/ml bovine pituitary extract (Biomedical technologies) and 1X P/S. D10M culture media was 

used for SCs and SGCs when cultured in the absence of neurons (Sparrow et al., 2012).  

Antibodies 

Primary antibodies against mouse TUBB3 (1:300), rabbit MBP (1:200), collagen (1: 200), and 

Ki67 (1:50) were purchased from Abcam. Rabbit GS (1:10,000) was purchased from Sigma. 

Rabbit, S100 (1:200) from purchased from Dako. Rabbit CDH19 (1:100) and mouse TRPV1 (1:50) 

were from Santa Cruz. The secondary antibodies goat, donkey-Alexa Fluor, and DAPI were 

purchased from Invitrogen. HRP-conjugated goat secondary antibodies were purchased from 

Jackson ImmunoResearch. 

Animal Use 

All animal protocols were approved by the University of Central Florida Institutional Animal Care 

and Use Committee (IACUC). Cervical DRGs were harvested from embryos at 15 days of 

gestation (E15), two days after birth (P2) or from 90 day old (P90) Sprague-Dawley rats (Charles 

River Laboratories). 
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Isolation of DRGs 

Embryonic DRG 

For embryonic dissection, a standard procedure was followed (Fex Svenningsen, Shan, Colman, 

& Pedraza, 2003; Pacifici & Peruzzi, 2012). Briefly, the pregnant rats were euthanized by CO2 

asphyxiation after which a secondary physical means was used ensure euthanization. The abdomen 

was sterilized with 70% isopropanol. The lower abdominal skin was cut to expose the muscles, 

and a transverse incision was made using a pair of sterile scissors to expose the uterus. The fetuses 

were removed using sterile curved forceps and placed into sterile Hibernate E media. The embryos 

were released aseptically from the amniotic sac and transferred to a 100mm dish with fresh 

Hibernate E media. Under a dissection microscope, the embryos were laid on the side, and the 

head was removed using microdissection scissors. The embryos were positioned dorsal side up, 

and nicks were made on either side of the spinal cord from the rostral to the caudal end. The 

vertebral column was then gently and carefully teased apart to release the spinal cord with the 

attached DRGs. The DRGs were isolated using fine dissecting forceps and placed directly on to a 

coated coverslip for organotypic cultures or into a 15mL conical tube for further processing. 

P2 and P90 DRG 

Previously published procedures were followed for the isolation of P90 DRG (Malin, Davis, & 

Molliver, 2007; Sleigh, Weir, & Schiavo, 2016) with minor modifications. 90-day old rats were 

euthanized as mentioned earlier and the skin was doused with 70% isopropanol and the head 

removed. The animal was then placed dorsal side up, and the skin was gently lifted using a curved 
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forceps and was cut to expose the muscles of the vertebral column. Using sterile forceps to lift the 

spinal column, cuts were made along either side of the column all the way to the sacral region 

ensuring the viscera and the internal organs were not punctured. The ribs were detached close to 

the spinal column on both sides, and a deep medial cut at the sacral region was made to release the 

spinal column. The spinal column was transferred to 70% isopropanol for a few seconds to wash 

off any contaminating hair and was quickly moved to a dish containing L15 media. Under aseptic 

conditions, the spinal column was transferred to a dissecting board with the ventral side up. The 

spinal column is secured using pins on the board, and a cut was made in the middle of the spinal 

column at the rostral end. The spinal cord was then removed using forceps to expose the cervical 

DRGs. The meninges were removed using fine dissecting forceps to reduce cellular contamination. 

DRGs can be seen with long white axon bundles projecting into the spinal column, and each DRG 

was carefully removed by tugging and lifting up the axon bundle close to the DRG in the column. 

The isolated DRGs were transferred to cold L15 media in a 60mm dish. Under a dissecting scope, 

the axon bundles were then carefully trimmed to minimize SC contamination and myelin debris. 

The same procedure was adapted for DRG isolation from P2 rat pups. 

Preparation of Dissociated Embryonic DRG Neurons 

DRGs were isolated from E15 embryos as stated above and were collected in a centrifuge tube 

containing L15 media. The tube was centrifuged at 1500rpm for 5 minutes at 4°C to remove the 

L15 media. The cells were incubated with 0.25% trypsin (Life Technologies) for 20-30 minutes. 

At the end of the incubation, the suspension was homogenized by pipetting. The activity of trypsin 

was inhibited by the addition of 10% FBS. Trypsin solution was removed by discarding the 
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supernatant after centrifuging (Fex Svenningsen et al., 2003; Hall, 2006). The pellet was 

resuspended in NB media and was plated on acid-washed coverslips coated with 0.01% poly-L-

ornithine and 50µg/ml laminin. 50% media was exchanged every 2-3 days.  

Isolation of SGCs and Preparation of Dissociated Adult DRG Neurons 

P90 DRGs were isolated as described and special care was taken to ensure that the axon bundles 

attached to the DRGs were trimmed and the epineurium covering the DRG was removed. DRGs 

were transferred to a 15mL tube containing L15 media and centrifuged at 1500 rpm for 5 minutes 

at 4°C. The supernatant was discarded and the pelleted DRGs was incubated at 37°C for about an 

hour with 5mg/mL type 2 collagenase (Worthington). The suspension was agitated by vortexing 

every 15 minutes. At the end of the incubation, the DRGs were further homogenized by tituration 

using a fire-polished glass pipette rinsed with FBS. The cell suspension was spun at 1500 rpm at 

4°C to remove the enzyme. The pellet was resuspended in NB media and extensively titurated to 

ensure complete dissociation. 10% and 5% BSA (Amresco) solutions were freshly prepared in 

neurobasal media and the dense 10% BSA solution was first transferred to a 15mL tube and equal 

volume of 5% BSA solution was layered on top.  The homogenized cell suspension was then 

carefully layered on top of the BSA cushion and was centrifuged at 115g for 4 minutes at a low 

brake. The myelin debris and the lighter non-neuronal cells settled at the interface between the 10 

and 5% BSA whereas, the heavier neurons enveloped with SGCs were pelleted down. The 

supernatant was discarded and the BSA cushion separation was repeated to remove any remaining 

contaminating cells and debris. The pellet which contains neurons with tightly adhered SGCs were 

referred to as fraction 1. To separate SGCs from the neurons, fraction 1 was treated with 0.25% 
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trypsin at 37°C for 45 minutes. After incubation, the activity of trypsin was inhibited by the 

addition of 10% FBS and the cell suspension was centrifuged and the supernatant was discarded. 

The pellet was resuspended to obtain a homogenous solution and was layered on top of the BSA 

cushion, and the separation was performed as mentioned previously. The heavy neurons settle at 

the bottom (fraction 2), and this time, SGCs that were released from the neurons were captured at 

the interface of the cushion. This enriched population of SGCs is referred to as fraction 3. SGCs 

were carefully aspirated from the BSA cushion interface to a fresh tube containing NB media. BSA 

was then removed by centrifugation at 1500rpm. The cells from each fraction were plated on 

0.01% poly-L-ornithine (Sigma) and 50µg/ml laminin (Invitrogen). 50% media exchanges were 

made 2-3 days. Pictorial representation of the isolation process is shown in Figure 5. 
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Image by author 

Figure 5: BSA cushion separation for the isolation of SGCs 

 

Generation of Adult SCs 

SCs were isolated from P90 rat sciatic nerve. The animal was placed dorsal side up, and the legs 

were splayed and pinned down. The skin was disinfected with 70% isopropanol. The skin along 

the posterior face of the thigh was retracted and using sterile forceps and scissors, a superficial 

incision was made, and the muscles of the posterior thigh were split to expose the sciatic nerve. 
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Using curved forceps, the sciatic nerve was gently lifted to release it from the muscles. The sciatic 

nerve was released by making two cuts, one at the proximal and the other at the distal end (Bala, 

Tan, Ling, & Cheah, 2014; Savastano et al., 2014). The harvested sciatic nerve was transferred to 

a dish containing L15 media, and the outer epineurium was removed using sterile forceps. SCs 

were generated as described previously by Morrissey et al. (Morrissey, Kleitman, & Bunge, 1991) 

with modifications. Briefly, the sciatic nerve was trimmed into 1mm long segments and was 

transferred to uncoated 24 well culture plates. A successive series of plating was done to facilitate 

migration of fibroblasts from the segments and their attachment to the culture plate, as these cells 

are the major contaminants in the preparation of SCs. Fibroblast can be easily distinguished from 

SCs based on their morphology as they appear as large flat irregular cells whereas SCs appear as 

phase bright, bipolar spindle-shaped cells. Once a confluent layer of fibroblast was observed, the 

segments were transferred to new uncoated wells. This process of cell migration and re-plating 

was repeated about 3-7 times until the migrating cells appeared to resemble an SC morphology. 

The segments were then incubated in a solution of 0.05% stemzyme (Worthington Biochemical 

Corp, 25mM HEPES (Sigma) supplemented with 15% FBS in DMEM at 37°C for about 16-18 

hours. After the incubation period, the segments were homogenized by tituration with a fire-

polished pipette. The cell suspension was centrifuged at 235g for 5 minutes. The pellet which 

contains SCs is also abundant in myelin debris. To remove the myelin debris, laminin selection 

was performed (Pannunzio et al., 2005). Briefly, the cell pellet is resuspended in D10M media and 

the cells were plated on coverslips coated with 50µg/ml Poly-L-Lysine (Sigma) and 10µg/ml 

laminin for about 10 minutes. After the initial seeding, media from the coverslip containing cells 

(well 1) was aspirated and re-plated on a newly coated coverslip (well 2) and fresh media was 
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added to well 1. Myelin debris settles on to the coated coverslips and so, at each successive re-

plating, less debris were observed. Laminin selection was repeated three to four times to effectively 

remove the myelin debris.  

Coculture of Neuron/SC and Neuron/SGCs 

Dissociated E15 DRG neurons were used for coculture experiments. To remove the endogenous 

cells from the dissociated neurons, the culture was treated with one three-day pulse of 10µM FUdR 

(Wood, 1976) one day after seeding. A full media change was made after the treatment, to remove 

any residual FUdR and half changes of media were made every two days. Seven days after the 

removal of FUdR (12DIV), pure neurons were seeded with either SGCs or SCs at a density of 

100,000 cells/coverslip. SCs were grown in media containing FBS and a complete withdrawal of 

FBS from the growth media leads to apoptosis. Therefore, to prevent apoptosis, SCs were weaned 

off FBS containing media by decreasing the concentration of FBS over a week’s time. At 19DIV, 

the cocultures were switched to myelin permissive media. To induce myelination, 50µg/ml 

ascorbic acid is added fresh to the media. Cultures were maintained for another 21 days in myelin 

permissive media after which the cultures were fixed for analysis (40DIV). Myelin segments were 

quantified using Volocity® 6.3 software.  

Endogenous Myelination of Embryonic DRGs and Adult DRGs 

To induce endogenous myelination of E15 DRG, the dissociated DRGs were prepared as described 

in the previous section and at 7DIV, 50µg/ml of ascorbic acid was added. Cells were maintained 

in myelin permissive media for 14 days (21DIV) (Callizot et al., 2011).  
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Adult DRGs were maintained either as an organotypic explant culture or a dissociated culture. For 

explant cultures, to facilitate attachment, the media was kept low. Fraction 1 from the BSA cushion 

separation was used for endogenous myelination of adult neurons. Both explant and dissociated 

cultures were allowed to grow for 14 days in NB media before being switched to myelin permissive 

media for another 21 days (35DIV). 

Immunohistochemistry and Immunocytochemistry 

DRGs were fixed in 4% paraformaldehyde (PFA, Electron Microscopy Sciences) for 30 minutes 

on ice, rinsed and transferred to 30% sucrose (Sigma) with 0.02% sodium azide (Fisher Scientific) 

solution overnight at 4°C. Tissues were embedded in OCT (Sakura) compound in plastic molds, 

frozen on dry ice and stored at -80°C. Using a cryostat, 10µm sections were made and collected 

on positively charged microscopic slides (Medline Industries). 

For cells, the media was removed and the cells were fixed in 4% PFA for 10 minutes on ice. After 

this step, the procedure was the same for both immunohistochemistry and immunocytochemistry. 

The samples were permeabilized with 0.3% Triton X-100 in 4% PFA for 10 minutes. The samples 

were then washed with PBS and 10% normal goat serum was used as an agent to block non-specific 

epitopes. Samples, where myelin was induced or expected, were incubated in 10% goat serum with 

0.1% Triton X-100 to facilitate penetration of the antibody. After 30 minutes of incubation with 

the block solution, primary antibodies prepared in block solution were added to the samples for 

overnight incubation at 4°C. After removing the primary antibodies, the samples were rinsed with 

PBS and secondary antibodies were added and incubated for 45 minutes at room temperature. 
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After washing out the secondary antibodies, the samples were mounted using fluoro-gel (Electron 

Microscopy Sciences).  

Image Acquisition and Analysis 

All fluorescent images were acquired with Zeiss LSM710 confocal microscope and ZEN 2.1 

software. Antibody concentrations were optimized and a no primary control and negative controls 

were used to confirm the specificity of the antibodies. Image acquisition was also optimized and 

fluorescence was recorded using 488nm and 568nm excitation lasers on separate channels. Each 

image shown for comparison is acquired using the same optimized settings. 

Western Blot Analysis 

E15, P2 and P90 DRGs were homogenized in cold RIPA buffer (25mM Tris-HCl (pH 7.4), 1% 

NP-40, 150mM NaCl, 1% sodium deoxycholate, 0.2% SDS and 1X protease inhibitor cocktail) 

using a tissue grinder. The homogenate was collected into a microfuge tube and was centrifuged 

at 14,000g for 15 minutes at 4°C. The supernatant was carefully transferred to a chilled microfuge 

tube. The proteins were prepared for quantification using DC protein assay (Biorad Laboratories) 

and were read using a microplate reader at an absorbance of 750nm. The protein samples were 

prepared for SDS-PAGE by dissolving the proteins in laemmli buffer (300mM Tris-HCl (pH 6.8), 

10% SDS, 50% glycerol and 0.05% bromophenol blue) and DTT at 95°C for 5 minutes. Equal 

amounts of proteins (20µg) were loaded onto the 10% mini-protean TGX pre-cast gel (Biorad 

Laboratories) and were samples run at 40V for 30 minutes and which was then increased to 100V 

until the samples reached the bottom of the gel. The samples were transferred to PVDF Immobilon 
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membranes overnight at 10V. Non-specific protein binding sites on the membrane were blocked 

using 5% milk for 1 hour at room temperature before the membrane is incubated overnight with 

primary antibodies. HRP-conjugated secondary antibodies and SuperSignal West Pico (Pierce 

Biotechnology) chemiluminescent substrate were used for the detection of signals. ImageJ was 

used to measure the signal intensity and the signals obtained were normalized to an internal 

GAPDH control. Statistical analysis was performed using one-way ANOVA followed by 

Bonferroni’s post hoc test (n = 2 for all experiments). 

Transcriptome Analysis 

SGC passage 1 cells obtained by performing the BSA cushion separation, along with early 

passages of adult SCs were plated on 60mm dishes coated with poly-L-Lysine. Both cell types 

were maintained in D10M media for 7 days till they were about 90% confluent. RNAeasy mini kit 

(Qiagen) was used to isolate RNA from both cell types. Manufacturer’s instructions were followed. 

The concentration and purity of RNA were measured using 2100 Bioanalyzer (Agilent 

Technologies).  Affymetrix Rat Gene ST 2.0 was used for the transcriptome analysis and only 

main category probe-sets were used (29,489) (Affymetrix, Santa Clara, CA). Transcripts that are 

log2 fold change ≥ 2, p ≤ 0.05 and FDR ≥ 0.05 were identified as differentially expressed 

transcripts. 
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Results 

SGCs Develop Postnatally 

Previous studies have utilized both embryonic and adult DRGs as potential sources of SGCs. 

Figure 6 shows dissociated embryonic (E15) and adult (P90) DRGs at 1DIV. The DRGs are stained 

with antibodies to -3 tubulin (TUBB3) to recognize neurons and glutamine synthase (GS) for 

SGCs. There were several non-neuronal cells in the E15 culture (indicated by arrows) but they 

neither enveloped the neuronal soma nor expressed GS, the unique marker for SGCs (Figure 6A).  

In addition to clear increases in neuronal volume (Lawson, Caddy, & Biscoe, 1974), SGCs 

ensheathing the cell bodies of DRG neurons (indicated by asterisks) were observed only in the 

adult cultures (Figure 6B), suggesting that SGCs might arise later in the development of the PNS. 

To investigate this idea more closely we examined cervical DRGs from a series of developmental 

time points for the presence of GS-positive cells ensheathing neuronal cell bodies. As can be seen 

(Figure 6C-E), GS expressing cells appear predominantly in the postnatal period and can be seen 

surrounding neurons. Analysis by western blot showed a significant increase in the expression of 

GS in the postnatal DRGs (Figures. 6F-G). This window follows the disappearance of proliferating 

cells from the developing ganglia as determined by Ki67 staining of the nucleus. Most of the non-

neuronal cells of E15 DRG were Ki67 positive (Figure 6H) as shown previously by Lawson et al., 

(Lawson et al., 1974) and these proliferative cells are absent in P2 and P90 DRGs (Figure 6I-J).  
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Figure 6. Postnatal development of SGCs 



35 

 

(A) Dissociated embryonic (E15) and (B) dissociated adult (P90) DRGs at one day in culture 

showed the presence of several SGCs around the adult neuron (indicated by asterisks) while no 

SGCs are seen enveloping the embryonic neuron. Arrows point to non-neuronal cells. (C-E) 10µm 

sections of E15, P2 and P90 cervical DRGs. (A-E) Cultures were immunostained for GS, TUBB3 

and DAPI to identify SGCs, neurons and nuclei respectively. (F) Western blot showing GS 

expression at the different developmental stages and (G) the quantification of GS expression 

normalized with GAPDH expression (n = 2) showed a significant increase in GS expression in the 

postnatal developmental stages. Data are presented as mean (�̅�) ± SEM. *p < 0.05. (H-J) 10µm 

sections of cervical DRGs identifying proliferative cells by Ki67 staining in E15, P2 and P90 

female rats. 

 

We also observed that we could recapitulate the time course of SGC development in vitro.  

Dissociated E15 DRG cultures were monitored over time for the appearance of GS-positive SGCs, 

ensheathing the neuronal cell bodies (Figure 7A-C).  When we maintained dissociated E15 DRGs 

for about 5 days, non-neuronal cells started to associate with the neuronal soma (Figure 7A). By 

12DIV, the number of cells enveloping the neurons increased (Figure 7B) and GS positive cells 

were clearly visible by 18DIV (Figure 7C), correlating with our observations in vivo. Interestingly, 

dissociated E15 DRG cultures have been commonly utilized as a model for PNS myelination 

(Callizot et al., 2011) where SCs were observed throughout the culture that could be stimulated to 

form myelin sheaths (identified by myelin basic protein (MBP) upon the addition of ascorbate 

(Figure 7D-E). Here, we also see SGCs around the neuronal soma (indicated by asterisks). The 
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generation of both SGCs and SCs from E15 DRG support the idea of a common lineage for SC 

and SGCs in the developing ganglia. 

 

Figure 7. Non-neuronal cells within the embryonic DRG are glial precursors 

Dissociated embryonic (E15) at (A) 5DIV (B) 12DIV and (C) 18DIV showed an increase in the 

number of glial cells around the neuron and expression of GS only at later time point. (D-E) 

Dissociated embryonic culture grown in myelinating conditions (21DIV) show formation of 

myelinating SC which is identified by MBP and the cells associating with the neuronal cell body 

which is indicated by the asterisks. Scale bar represents 20µm. 
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SGCs Exhibit Characteristics of Early SCs 

To further examine lineage commonalities between SCs and SGCs, we stained cryosections of 

cervical DRGs with antibodies to markers associated with the SC lineage (Jessen & Mirsky, 2005; 

Liu et al., 2015).  As shown in Figure 8A-E, we observed that adult SGCs expressed CDH19, 

previously described as a unique marker for SC precursors (Takahashi & Osumi, 2005). 

Expression of this marker paralleled the development of SGCs observed in Figure 6. We also 

utilized dissociated adult DRGs at 1DIV and noted the expression of GAP43 and BFABP (Figure 

8F), which have also been associated with the SC precursor stage of development (Britsch et al., 

2001; Curtis et al., 1992).  
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Figure 8. SGCs express CDH19 

(A-C) 10µm sections of E15, P2 and P90 cervical DRGs stained for CDH19, TUBB3 and DAPI. 

(D) Western blot showing CDH19 expression at the different developmental stages (E) the 
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quantification of CDH19 expression normalized with GAPDH expression (n=2) showed a 

significant increase in CDH19 expression in mature SGCs. Data are presented as �̅� ± SEM. **p < 

0.01. (F) Dissociated P90 SGCs at 24 hours after plating stained for CDH19, BFABP, GAP43, 

Nestin and S100.  

 

We set out to purify SGCs from adult rat cervical DRGs and developed a method utilizing BSA 

cushions. Briefly, we harvested the adult DRGs, trimmed the nerve roots and dissociated the 

ganglia in collagenase. Figure 9A shows the dissociated DRG culture with the several GS negative 

cells (indicated by arrows). Once a uniform suspension was obtained, the solution was separated 

twice on a BSA cushion. The myelin debris and SCs were effectively removed at the end of this 

separation, leaving neurons with closely adhered SGCs (fraction 1; Figure 9B). This cell 

suspension was further treated with trypsin solution to further dissociate SGCs from the neurons. 

BSA cushion separation was performed again to obtain an enriched population of SGCs (fraction 

3; Figure 9D) leaving the pellet containing neurons   (fraction 2; Figure 9C). SGC population was 

identified by the expression of GS (we have observed that although the smaller neurons have SGCs 

ensheathing the cell body, these SGCs do not express GS (Figure 10)) and the neurons were 

identified by TUBB3 staining.  The other non-neuronal cells were identified by DAPI and the 

absence of both TUBB3 and GS. SGCs were released from the neurons following trypsin treatment 

(Figure 9F) and as seen in Figures 9D and E, this protocol generated SGCs of greater than 90% 

purity. When initially cultured, these cells exhibited a flattened fibroblastic morphology (Figure 

11A and B).  However, after a single passage, the cells appear as bipolar spindles, similar to the 

shape of a SC (Figure 11C). We see significant differences in cell surface area between passage 0 
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and passage 1 at 7 days (Figure 11D). Glial marker S100 was used to identify these cells and it is 

important to note that this morphological change occurred in the absence of axons. Previous studies 

have also reported that SGCs appear to take on a SC morphology in prolonged culture (V. Belzer 

et al., 2010; Poulsen et al., 2014). We isolated mRNA and performed an analysis of the 

transcriptome of passage 1 SGCs (Figure 12A) grown in culture for 7DIV and compared it with 

the transcriptome of purified passage 5 adult SCs (Figure 12B). As shown in Figure 12C and D, 

there was a high degree of correlation between the two transcriptomes with less than a 0.2% 

difference in transcripts analyzed. The expression levels of only 59 transcripts out of the 28,407 

analyzed were observed to be significantly different (Figure 12D). The corresponding gene 

description and the fold change in expression levels between the two cell types are shown in table 

1 and table 2.  
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Figure 9. Isolation of SGCs 

(A) P90 DRGs treated with collagenase and plated prior to BSA separation. Arrows identify glial 

cells that are GS negative. (B) The pellet after separation on BSA cushion. (C) Pellet and (D) 

supernatant after further treatment with trypsin followed by separation on BSA cushion. SGCs are 
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identified by GS, neurons by TUBB3 and other glial cells are identified by the absence of both 

markers. (E) Percentage of different cell types in whole dissociated ganglia and in each of the 

fractions (n = 3). (F) Effect of trypsin on SGC separation from the neurons. Data are presented as 

�̅�  ± SEM, *p < 0.05.  
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Figure 10. TRPV1 positive neurons do not express GS 

(A) Immunohistochemistry of P90 DRG shows SGCs around larger neurons expressing GS 

whereas the smaller TRPV1 positive neurons do not have GS positive SGCs. (B-C) Inset is a 

magnified image of the section. (B) Arrows point to DAPI showing the presence of SGCs 

surrounding the neuron (N) (C) Neuron (N) is TRPV1 positive and lacks GS positive glia. 
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Figure 11. Morphological changes of SGCs 

(A) 1 day after plating (B) 7 days after plating and (C) 7DIV after one passage (P1). (D) 

Quantification of the cell surface area between P0 (1DIV, 7DIV) and P1 (7DIV) 100 cells were 

measured from each condition. Data are presented as �̅� ± SEM ***p < 0.001. Cells are identified 

by S100 staining and nuclei by DAPI. Images indicate a morphological change from a flattened 

fan shape to a bipolar spindle shape after passaging.  
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Figure 12. SGCs and SCs are closely related cell types 

(A) Isolated passage 1 SGCs and (B) passage 5 adult SCs grown in similar conditions at 7DIV. 

(C) Dendrogram of Affymetrix Rat Gene 2.0 array comparison between the replicates of each cell 

type and between the two different cell types show a high degree of correlation. (D) Illustration 

showing the number of transcripts that are differentially expressed between the two cell types.  
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Table 1. Transcripts with higher expression levels in SGCs 

 

Gene Description SGC  SGC  SC  SC  
Log2FC 

(SC/SGC) 
p value 

Fatty acid binding protein, brain 10.24095 7.598433 3.922492 4.171316 -4.873 0.00294 

Protein phosphatase1, regulatory (inhibitor) subunit 1C 10.12096 8.543543 5.42678 6.099573 -3.569 0.0018 

Carbonic anhydrase 5b, mitochondrial 10.57911 10.75434 7.278402 7.222755 -3.416 0 

Zinc finger protein 658B-like 6.480721 4.31133 2.31878 1.822333 -3.325 0.00693 

Transmembrane protein 176B 12.17163 9.177574 7.8796 7.715805 -2.877 0.03447 

LIM domain binding 2 10.28695 7.278443 5.874477 6.300641 -2.695 0.04434 

Interaction protein for cytohesin exchange factors 1 8.175984 8.125478 5.467092 5.477365 -2.679 0 

Homeo box A2 6.787416 7.452611 4.483123 4.807213 -2.475 0.00031 

Synuclein, gamma 12.2291 10.9459 9.379388 8.903334 -2.446 0.0036 

ELOVL fatty acid elongase 2 9.083694 6.536357 5.848471 4.889462 -2.441 0.04304 

Leucine rich repeat containing G protein coupled receptor 5 10.52314 8.392814 7.265714 6.939879 -2.355 0.02258 

Phospholipase A2, group XVI 8.641899 6.065925 5.216479 4.804748 -2.343 0.04291 

Leucine rich repeat neuronal 3 8.346226 6.370303 5.087136 5.005742 -2.325 0.0179 

Solute carrier family 16 (monocarboxylate transporter), member 7 8.6614 8.262614 5.91989 6.525473 -2.239 0.00045 

Netrin G1 6.76474 7.436815 4.638986 5.265791 -2.148 0.00133 

Fibulin 2 8.868303 10.11878 7.04572 7.70642 -2.117 0.00735 

Interleukin 33 6.50084 6.466847 4.31787 4.540732 -2.055 0.00003 

Plexin domain containing 2 11.24584 11.18015 8.867145 9.461807 -2.049 0.00034 

Midkine 9.72899 7.770844 6.77838 6.666795 -2.027 0.02763 

Zinc finger protein 521 7.519093 8.091207 5.583355 5.983865 -2.022 0.00062 

Myosin Vb 7.513097 6.950174 5.365945 5.057861 -2.02 0.00046 
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Table 2. Transcripts with higher expression levels in SCs 

 

 

Gene Description SGC SGC SC SC 
Log2FC 

(SC/SGC) 
p value 

Glutamate receptor, ionotropic, AMPA 1 4.339376 5.049667 7.993583 8.371711 3.488 0.00009 

Secretogranin II 3.745154 4.010756 7.05478 7.550909 3.425 0.00003 

Transforming growth factor, beta induced 6.320231 7.427352 9.814057 10.7823 3.424 0.00114 

Meis homeobox 2 5.518019 8.213129 10.15273 10.09727 3.259 0.01543 

Leucine rich adaptor protein 1-like 6.018113 5.734979 9.299845 8.806058 3.176 0.00004 

Peripheral myelin protein 2 8.47366 6.665875 10.66794 10.05507 2.792 0.00767 

MicroRNA 19b-2 3.032256 2.603317 5.751867 5.397797 2.757 0.00007 

Somatomedin B and thrombospondin, type 1 domain containing 8.163711 8.86568 11.50944 10.91121 2.696 0.00049 

mab-21-like 1 (C. elegans) 4.437928 4.119211 7.160288 6.692215 2.648 0.00009 

Homeobox protein Hox-D8-like 4.912837 6.919669 8.527472 8.532732 2.614 0.01196 

BTB (POZ) domain containing 16 6.048716 6.048716 8.796915 8.528403 2.614 0.00001 

POU class 3 homeobox 1 6.825703 6.805931 9.570774 9.179165 2.559 0.00003 

Fibroblast growth factor 1 (acidic) 5.721413 6.718378 8.996104 8.534381 2.545 0.00127 

Thrombospondin 2 10.01996 10.40276 12.84675 12.5542 2.489 0.00007 

Muscular LMNA-interacting protein 5.580262 5.355801 8.064244 7.799314 2.464 0.00003 

SH3-domain GRB2-like 3 7.314805 8.039347 10.17944 9.846105 2.336 0.00053 

Protease, serine, 12 neurotrypsin (motopsin) 6.818745 7.013252 9.489999 8.992291 2.325 0.00013 

Phosphodiesterase 4D, cAMP-specific 8.490598 8.309664 11.06317 10.36349 2.313 0.00038 

Palmdelphin 6.171412 7.945516 9.427964 9.304221 2.308 0.01231 

Carboxypeptidase A4 4.572556 4.623984 6.759602 6.798272 2.181 0.00001 

Membrane metallo-endopeptidase 7.936572 8.678213 10.57476 10.35108 2.156 0.00068 

Chimerin 2 5.222805 6.79949 8.227407 8.04189 2.124 0.01116 

Chemokine (C-X-C motif) ligand 14 8.40965 8.343615 10.75215 10.24149 2.12 0.00018 

Calcium/calmodulin-dependent protein kinase IV 5.570234 7.129077 8.47983 8.444214 2.112 0.01066 

SH3-domain GRB2-like (endophilin) interacting protein 1 5.495108 6.92895 8.601629 8.034436 2.106 0.01035 

ATP-binding cassette, subfamily G (WHITE), member 3-like 3 9.191216 9.489748 11.54186 11.28379 2.072 0.00009 

Ribosomal protein S16 7.902252 6.025511 9.012001 9.050374 2.067 0.02228 

Claudin 19 5.572169 5.672629 7.958853 7.389347 2.052 0.0003 

Macrophage activation 2 like 5.504892 6.589047 8.266476 7.923917 2.048 0.00368 
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SGCs and SCs Share Similar Functional Properties 

Given the striking similarities between SGCs and SCs we evaluated whether purified SGCs were 

functionally similar to SCs, by evaluating whether they were capable of myelinating sensory 

axons.  Initially we utilized adult cervical DRGs, as an intact explant (Figure 13A). Switching this 

culture to a myelin permissive feed for 21 days (35 DIV) allowed the formation of multiple myelin 

segments as evidenced by staining for MBP. To our knowledge this is the first time that adult 

axons have been myelinated in culture. As it is possible that the explant contains a number of SCs 

that could be responsible for the observed myelin segments, we carried out the same experiments 

using neurons, with their ensheathing SGCs intact, that have been purified on a BSA cushion 

(fraction 1, Figure 9B). As is observed in figure 9B and E, this process significantly reduces the 

numbers of non SGC cells (defined as (TUBB3-, GS-)) present in the preparation.  Again, multiple 

myelin segments were observed when the preparation was switched to myelin feed (Figure 13B).  

Finally, we used a classic myelinating coculture, utilizing E15 DRG neurons that have been 

purified to remove non-neuronal cells.  After developing extensive axonal processes, BSA cushion 

purified SGCs (fraction 3, Figure 9D) and adult rat SCs purified from the sciatic nerve, were added 

to the neurons and cocultured as mentioned before being switched to a myelin permissive media. 

As is seen in Figures 13C and 13D, both SGCs and adult SCs were capable of forming myelin 

segments on these axons. Interestingly, although SGCs produced collagen, they failed to assemble 

it into arrays along the axon (Figure 14).  
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Figure 13. SGCs can myelinate both embryonic and adult axons 

(A) P90 DRG maintained as an explant and (B) dissociated P90 DRG (fraction 2) at 35 DIV in 

myelin permissive conditions. Purified E15 neurons cocultured with (C) SGCs and (D) adult SCs 
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at 40 DIV. Myelin segments are identified by MBP and neurons by TUBB3. Scale bar represents 

100µm. (E) The number of segments formed by SGCs and SCs normalized with DAPI count. Data 

were analyzed by unpaired t test (n=3) and presented as mean ± SEM. 

 

 

Figure 14. Difference in collagen assembly between SCs and SGCs 

(A) Collagen assembly appeared to be more diffuse when SGCs were co-cultured on embryonic 

axons in similar conditions. (B) Collagen was assembled into arrays when SCs were co-cultured 

with purified embryonic axons in myelinating conditions. Cultures were grown for 21 days and 

immunostained for collagen and DAPI. Scale bar represents 50µm. 

 

Discussion 

In this study we have examined the development of SGCs, cells that ensheathe sensory neuronal 

soma. We have shown that these cells arise postnatally and express early SC markers such as 
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CDH19, which has previously been described as a unique marker for SC precursors (Takahashi & 

Osumi, 2005).  To examine the relationship between SGCs and SCs, we developed a novel method 

for the purification of SGCs and showed that these cells are transcriptionally and morphologically 

similar to SCs even in the absence of axonal contacts.  Finally, we were able to assess how 

functionally similar SGCs are to SCs by demonstrating that purified SGCs were able to myelinate 

sensory axons in both organotypic and mixed cocultures. Based on these observations we 

hypothesize that SGCs represent a population of SC precursors whose further development has 

been arrested as a result of the ganglia microenvironment and/or contact with neuronal soma. 

CDH19 has been described as the only unique marker for SC precursors (Takahashi & Osumi, 

2005) and this marker is down regulated as these precursors differentiate into immature SCs in 

response to axonal contact.  In this study we show that ‘adult’ SGCs that surround neuronal cell 

bodies also express CDH19 and that, when purified, these cells adopt the characteristic bipolar 

spindle cell shape of the SC, even in the absence of axonal contact, to become functional 

myelinating cells.  Recent studies indicate that in addition to SCs, SC precursors can also give rise 

to parasympathetic neurons (Dyachuk et al., 2014; Espinosa-Medina et al., 2014b), suggesting that 

these cells exhibit a degree of plasticity outside of the SC lineage.  SGCs have also been described 

as being potentially plastic and have been proposed to give rise to a number of different cell types 

including sensory neurons and even oligodendrocytes (Fex Svenningsen et al., 2004).  It has been 

proposed that SGCs may represent a reservoir of multipotent cells that could replenish damaged 

neurons within the ganglia. Our study supports this idea by demonstrating that SGCs exhibit 

properties of SC precursors.  
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The differentiation of SC precursors to immature SCs and finally myelinating SCs has been well 

characterized in the context of the developing peripheral nerve (Jessen & Mirsky, 2005; Mirsky et 

al., 2008). In those studies the SC precursor has been shown to require the neuregulin growth factor 

for its survival, propagation and differentiation into an immature SC. In vivo, this is provided by 

contact of the SC precursor with the axonal bound neuregulin.  In our studies we note that markers 

such as CDH19 are quickly downregulated once SGCs are no longer in contact with neuronal soma 

and that SGCs quickly adopt a SC morphology when placed in culture. There these cells can be 

propagated in the absence of neuregulin or axonal contact and can be added to DRG neurons to 

form myelin segments. It should also be noted that they exhibit a different pattern of ECM 

deposition, and appear less organized than their counterparts derived from purified adult rat SCs.  

We believe that this may reflect differences in the differentiation of SGCs to a myelinating cell 

type compared with SC precursors or simply technical differences resulting from the preparation 

of SGCs. 

It is well-established that the embryonic DRG is a source for the generation of viable population 

of SCs (Wood, 1976), and several previous studies (Fex Svenningsen et al., 2004; Maro et al., 

2004; Wakamatsu, Maynard, & Weston, 2000; Weider et al., 2015) have referred to non-neuronal 

cells within the embryonic DRG as SGCs. Although these cells lie within the DRG (where 

neuronal cell bodies are clustered), we have shown that these cells in the embryonic DRG are not 

yet mature SGCs as they neither envelope the neuronal cell body nor express characteristic SGC 

markers such as GS. This observation suggests that these non-neuronal embryonic cells might 

represent an earlier neural crest derivative. In the first two weeks of the postnatal period, Ki67 
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staining suggests that most cells in the ganglia have ceased proliferation and are starting to 

differentiate into SGCs in close proximity with the neuronal soma.  

The role of CDH19 in SGC function remains to be determined.  When adult DRGs, complete with 

their ensheathment of SGCs are placed into culture, CDH19 is quickly downregulated, 

concomitant with the migration of SGCs away from the neuronal cell body (unpublished 

observations), suggesting a potential role for CDH19 in maintaining SGC-somal/SGC-SGC 

interactions. In support of this idea, it is interesting to note that the distance between the neuronal 

surface and SGCs is 20nm (E. Pannese, 1981) which is comparable with the distance between cells 

in the cadherin-based adherens junction.  

In this study we purified SGCs from adult rat DRGs and demonstrated their ability to myelinate 

purified sensory neurons. We were aware of the presence of contaminating cells (including SCs) 

within the harvested adult ganglion. However, in the method used to isolate SGCs, we typically 

obtained about 90% SGCs and a small percentage of neurons. The neurons failed to attach and 

thrive on PLL coated surfaces and passaging resulted in their complete loss. We also observed SCs 

(GS negative, TUBB3 negative) but noted a fivefold reduction in SC numbers when the separation 

was performed, with the total percentage of SCs in fraction 3 less than five percent. It is unlikely 

that this small percentage of SCs in culture contribute to the formation of myelin segments 

observed in the cocultures experiments.  

SGCs have been proposed to regulate the electrical activity of DRGs and have been shown to 

undergo several changes during nerve injury that are thought to underlie the recruitment of 

additional neurons to an injury response (M. Hanani et al., 2002b; Ohara, Vit, Bhargava, & Jasmin, 
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2008; E. Pannese, Ledda, Cherkas, Huang, & Hanani, 2003; Siemionow, Klimczak, Brzezicki, 

Siemionow, & McLain, 2009; Stephenson & Byers, 1995; Vit, Jasmin, Bhargava, & Ohara, 2006).  

Recent progress has been made in understanding the signaling exchange between the SGC and the 

neuronal soma as well as between adjacent SGCs, with the idea that perturbing these pathways can 

lead to the development of novel therapeutics for dealing with neuropathic pain. Greater 

understanding of the differentiation of the SGC as proposed in this study could facilitate the 

development of such therapeutics. 
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CHAPTER THREE: DEVELOPMENT AND CHARACTERIZATION OF A 

FUNCTIONAL MODEL OF THE DRG TO STUDY NEUROPATHIC PAIN 

Introduction 

Gap in Knowledge 

One of the easiest and direct methods of investigating the contribution of SGCs towards the activity 

of neurons is by measuring the electrical activity of the neurons they ensheathe. 

Neurophysiological measurements are a direct readout of the function of neurons, and this is 

valuable in understanding the changes that occur in disease conditions. Unfortunately, 1) there are 

no in vitro models that successfully mimic the SGC-neuronal interaction for long-term monitoring 

and 2) soma of the neurons are usually the sites where electrical readings are routinely recorded, 

and this site is not ideal for the acquisition of electrical information as the axonal terminals that 

innervate the sensory targets are the sites where the stimulus is received. Also, correct 

ensheathment of the soma by the SGCs would inhibit functional recordings. Here we describe the 

functional characterization of an in vitro model that can preserve the SGC-somal contacts as well 

as acquire spontaneous and evoked electrical activity from the axons. We integrate an in vitro 

three-dimensional nerve model with a microelectrode array (MEA) to obtain electrical recordings 

from axonal bundles. We report here the overall design and culture of DRGs using a three-

dimensional capillary alginate gel (Capgel™) and its comparison with two-dimensional cultures. 

We highlight the advantage of the system by performing long-term electrophysiological 

monitoring of the same bundle of axons. Finally, we show sensitization of nociceptive neurons to 
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capsaicin and utilize this three-dimensional system to further investigate the role of SGCs in 

neuropathic pain. 

Electrophysiological Readings and their Significance 

Neurophysiological assessments provide a wealth of information about the activity of neurons in 

normal and in disease conditions, as well as their response to drug treatments. The current approach 

relies heavily on neurophysiological endpoints in animal models and is limited by the cost, time 

and low throughput (Irons et al., 2008). As the electrical data obtained from in vivo and in vitro 

are comparable, in vitro systems are beneficial with respect to the cost, reproducibility, and ease 

of use. The Patch-clamp method is used to assess the electrical activity of individual neurons, but 

this technique is time-consuming and is restricted by the number of neurons that can be studied at 

once, thus limiting its use for studying neuronal networks. Planar MEAs overcome these 

limitations by enabling long-term recording of electrical activity from a population of neurons in 

culture (Obien, Deligkaris, Bullmann, Bakkum, & Frey, 2014).  

Microelectrode array and neural recordings 

Planar MEAs are devices that contain a grid of electrodes on which cells can be directly grown. 

The electrodes are usually about 10-40µm in diameter and are typically made with metallic 

conductors. The impedance of the electrodes is lowered by increasing the surface area using a 

conductive material. MEAs offer a non-invasive method of measuring electrical information by 

detecting electrical changes in the extracellular field around the electrodes in comparison to the 

ground electrode (Obien et al., 2014).  
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The use of this system facilitates recording of the action potentials (spikes) that can be analyzed 

based on characteristics such as spike height and spike width. The polarity of the spike has a strong 

correlation with the location of the cell on the electrode. The shape of a spike is characteristic of 

the size and shape of the cell, and can vary depending on the structure/part of the cell that interfaces 

with the electrode (Nam & Wheeler, 2011). Somatic spikes are typically wide when compared 

with axonal spikes (Deligkaris, Bullmann, & Frey, 2016). Larger cell structures like the DRG soma 

(14-75µm) have greater capacitance and generate stronger field potentials. Usually, the action 

potentials are recorded from the large-sized soma as opposed to the small diameter axon (typically 

less than 1µm) on an MEA in a two-dimensional culture (Nam & Wheeler, 2011). This necessitates 

the need for culturing neurons at high densities (Newberry et al., 2016) or patterning the MEA 

surfaces (John C. Chang, Brewer, & Wheeler, 2000; J. C. Chang, Brewer, & Wheeler, 2001; 

Griscom, Degenaar, LePioufle, Tamiya, & Fujita, 2002; Ravenscroft et al., 1998; Stenger et al., 

1998) to ensure the neuronal cell bodies are in contact with the MEA electrode.  

The current in vitro models that study peripheral nerve disease are two-dimensional in nature and 

lack the necessary spatial arrangements of the glial cells, ion channel expression, and extracellular 

matrix organization to faithfully represent the in vivo microenvironment (Breslin & O'Driscoll, 

2013; Irons et al., 2008). Moreover, glial cells are often referred to as contaminants and the cultures 

are treated with antimitotics to prevent glial growth and interference (Newberry et al., 2016). The 

need for an accurate representation of the in vivo cellular behavior is more pronounced in the 

context of electrophysiological activity and more so in the context of understanding pain. A three-

dimensional model is a better platform for investigation of neurophysiological measurements than 

the traditional two-dimensional cultures. 
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The Use of Three-Dimensional Systems 

Extrapolating two-dimensional observations may not be accurate, as it is now evident that cells 

exhibit different characteristics in a monolayer system. A three-dimensional system allows a close 

approximation of the cell-cell, and cell-extracellular matrix (ECM) interactions. Castillon et al., 

have shown that Na+/H+ exchangers polarize correctly in three-dimensional culture and others 

have shown that two-dimensional cultures have a non-physiological calcium dynamic when 

compared with the three-dimensional counterparts (Castillon et al., 2002; Desai, Kisaalita, Keith, 

& Wu, 2006; Mao & Kisaalita, 2004).  

There are several commonly used approaches to study cells in a three-dimensional aspect: 

organotypic explant cultures, microcarrier cultures, micromass cultures, microgravity bioreactors 

and gel-based culturing, etc. (Edelman & Keefer, 2005). Gel-based matrices offer several 

advantages over the other methodologies mentioned. Here, cells are embedded within different 

substrates like matrigel which function as scaffolds to support their growth. The scaffolds can then 

be engineered to mimic the properties of the ECM. 

Capillary Alginate Gel (Capgel™) as a biomaterial for neuronal growth 

Capillary Alginate Gel (Capgel™) is a hydrogel that is engineered to have a continuous 

microtubular architecture (Willenberg, Hamazaki, Meng, Terada, & Batich, 2006). This particular 

organization is ideal for the growth of DRG neurons as it resembles the organization of fascicles 

within a nerve. Capgel™ are self-assembled alginate gels that are crosslinked with Cu2+ 

(Willenberg et al., 2006). The diameter of the lumen of the capillaries that are formed can easily 

be manipulated by altering the Cu2+ concentrations or by altering the pH of the system (Thumbs 
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& Kohler, 1996). Laminin derivatization of the capillary lumen has been previously described by 

our laboratories (Anderson et al., under review) and it was shown that laminin promotes the growth 

of neuronal axons within the 50µm diameter channels. The laminin coated Capgel™ was used to 

grow DRG neurons and it was shown that neurons extend axons through the capillaries forming a 

nerve fascicle like structure. The axon bundles were surrounded by perineurial glia and the mature 

myelinating SCs formed myelin sheaths around about 20% of the axons which is similar to the 

percentage of myelinated axons in the sural nerve. Overall, our previous work promotes the use of 

Capgel™ as an ideal biomaterial for studying the peripheral nerve (Anderson et al., under review). 

We integrated DRGs cultures with a microelectrode array using this biomaterial to study the 

electrical properties of the DRG neurons in a three-dimensional environment. As mentioned in 

chapter one, the major limitation in measuring the contribution of SGCs to the electrical activity 

of neurons is the lack of an in vitro model that sufficiently mimic the in vivo organization. 

Additionally, in a two-dimensional culture system, SGCs migrate away from the DRG soma they 

envelop (Figure 15). Here, we have designed a model where we can not only study SGCs in their 

native environment but also offers advantages such as the long-term monitoring of electrical 

signals from these neurons. To further substantiate its use as a neuropathic pain model, we use 

capsaicin to evoke activity of the nociceptors. 
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Figure 15. SGCs migrate away from the cell body 

Live imaging of adult DRG neuron with SGCs indicates the migration of SGCs away from the cell 

body with time. The red asterisk follows the migration of a single SGC from the cell body. Three 

frames were imaged at 36 hours apart. 

 

Capsaicin as an Agent of Neuropathic Pain 

Capsaicin (8-methyl N-vanillyl 6-noamide) is found commonly in plants of the capsicum family 

and is used in animals and in cell culture to model neuropathic pain. It causes a wide variety of 

physiological changes including effects on the cardiovascular and respiratory system. The effect 

of capsaicin in inducing pain responses and evoking electrical activity is well described (J. N. 

Wood et al., 1988). Short-term treatment with capsaicin leads to an increase in the firing rate of 

neurons followed by a period of desensitization to other noxious stimuli. Long-term effects of 

capsaicin include changes in neuropeptide levels, desensitization, and toxicity leading to neuronal 

apoptosis. Although the cellular basis of the action of capsaicin is unknown, capsaicin specifically 

exerts its effects on the nociceptive neurons. The effect of capsaicin is dose-dependent and studies 

have shown that capsaicin binds to a nonselective cation channel known as the transient receptor 
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potential cation channel subfamily V member 1 (TRPV1). This receptor is part of the vanilloid 

family of receptors and TRPV1 is activated by various stimuli like non-physiological temperature 

and low pH.  

While other groups have attempted to model neuropathic pain in vitro using capsaicin, we have 

designed a system that is far more superior than the existing models in terms of recapitulating the 

in vivo organization of neurons and glia, while enabling detection of electrical signals from axons.  

Materials and Methods 

Animal Use 

All animal protocols were reviewed and approved by the University of Central Florida Institutional 

Animal Care and Use Committee (IACUC). Timed pregnant rats were purchased from Charles 

River Laboratories (Wilmington, MA) and thoracic DRGs from 15-day old embryos were 

harvested for culture.  

Surface Preparation of MEA 

64 electrode single well MEAs (M64-GLx, Axion BioSystems, Atlanta, GA) were treated with 

0.01% poly-L-ornithine (Sigma, St. Louis, MO) at room temperature for an hour followed by an 

overnight treatment of 50µg/ml natural mouse laminin (Invitrogen, Carlsbad, CA) at 37°C.  

Capgel™ Block Preparation and Laminin Derivatization 

Capgel™ blocks were synthesized as previously described (Willenberg et al., 2011) and 

derivatized with laminin as previously described (Anderson et al., under review). 5mm by 3mm 
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by 2.5mm Capgel™ blocks used were large enough to cover the electrode grid area. The blocks 

were submerged in 0.01% poly-L-ornithine solution for two hours at room temperature on a shaker 

followed by two hours at 4°C with shaking. Blocks were then submerged in 50µg/ml natural mouse 

laminin solution for 48 hours with shaking at 4°C, after which the Capgel™ blocks were then 

transferred to an incubator at 37°C/5% CO2 for six hours. Immunostaining was performed to 

confirm the uniform coating of laminin along the length of the capillary channels (Anderson et al., 

under review). 

 Media Preparation  

Standard neurobasal media was used for maintaining the cultures as previously established 

(Callizot et al., 2011). Briefly, neurobasal media (Gibco, Waltham, MA) was supplemented with 

2% B27 (Invitrogen), 1% GlutaMax (Invitrogen), 1% penicillin-streptomycin (Invitrogen) and 

50ng/ml NGF (Harlan Laboratories). Laminin was removed from the MEA surface and about 

50µL of media was added. The volume of the media was maintained around 50µL throughout the 

entire period of culture as this low volume of media facilitates the anchoring of the Capgel™ 

blocks to the electrode surface.  The cultures were fed with 50% change of the media volume every 

two days after the readings were recorded. 

Experimental Design 

Four thoracic DRGs explants were placed on top of the derivatized Capgel™ blocks. The Capgel™ 

blocks were carefully placed and oriented directly on top of the electrode grid such that the blocks 

covered all 64 electrodes and the capillary channels were perpendicular to the electrode grid. The 

capillary channels were at a density of around 40channels/mm2 and no effort was made to align 
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the capillary channel directly with the electrode. DRG neurons extend their axons through the 

entire length of the capillaries and make contact with the electrode surface around day 11- day 15. 

For the two-dimensional cultures, four thoracic DRGs explants were placed either directly on the 

four quadrants of the electrode grid such that the DRG cell bodies came in direct contact with the 

electrodes or, they were placed outside the electrode grid so that the DRG cell bodies never made 

any contact with the electrodes and instead, only the single axons that extend from the DRG made 

contact with the electrodes. The experimental set-up is outlined in Figure 2. The first day where 

electrical activity was designated as Day 1 of Firing (DF) for all conditions. 

Data Acquisition and Analysis 

Readings were recorded using the 2.1.1.16 Axion Integrated Studio (AxIS) software for 10 minutes 

every two days with the heating element set to 37°C. Adaptive threshold crossing at six standard 

deviation (STD) and pre-spike 0.84ms and post-spike of 2.16ms was used. Raw data from all 64 

electrodes were recorded. Axion spike files were analyzed using the 2.0.4 Neural Metric Tool 

(Axion Biosystems). Electrodes with a firing rate of ≥ 5spikes/min were included in the analysis. 

Using 11 different characteristics of the waveform, each spike was analyzed and clustered as the 

same or distinct population of the waveform using a custom MATLAB script.(Enright et al., 2016; 

Narula et al., 2017) Mean firing rate was calculated as the average firing rate across 64 electrodes 

and weighted firing rate was calculated as the average firing rate of the active electrode.  

Capsaicin Treatment 

1µM capsaicin (Sigma) in dimethyl sulfoxide (DMSO, Sigma-Aldrich, St. Louis, MO) was 

directly added to the Capgel™ blocks on day 21 and the readings were acquired immediately after 
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its addition. An equivalent volume of DMSO was added to the culture to obtain comparable 

basal/control readings.  

Capgel™ Processing and Histology 

Thoracic DRGs grew through the Capgel™ blocks for 35 days. Blocks were fixed with 4% 

paraformaldehyde (Electron Microscopy Sciences, Hatfield, PA) for 18 hours. After fixing, blocks 

were washed in PBS for 24 hours and transferred to a solution of 30% sucrose with 0.02% sodium 

azide overnight at 4°C. 30% sucrose solution was replaced with 20% OCT (Sakura) in 30% 

sucrose/PBS solution at 37°C for about 24 hours after which it was then replaced with 50% OCT 

in 30% sucrose/PBS solution for 24 hours at 37°C. Capgel™ blocks were embedded carefully in 

OCT compound. 10µm cross sections of the blocks were collected and processed with 

immunostaining. Briefly, the tissue sections were permeabilized using 0.3% Triton X-100 in 4% 

PFA for 10 minutes on ice. Tissue samples were then blocked using 10% normal goat serum and 

incubated overnight at 4°C with primary antibodies (mouse TUBB3 (1:300 Abcam)), followed by 

addition of secondary antibodies (goat anti-mouse Alexa Flour, 1:1000, Invitrogen) and 4, 6- 

diamidino-2-phenylindole (DAPI, 1:200, Invitrogen).   

Microscopy 

A Zeiss LSM 710 confocal microscope was used to acquire images. Acquisition settings were 

optimized using Zen 2.1 software and the optimal setting was used to obtain identically captured 

images for comparison. 
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Cleaning and Re-use of MEAs 

Instructions from the manufacturer were followed for cleaning. After the Capgel™ blocks were 

removed, 0.5% trypsin (Life Technologies, Carlsbad, CA) was added to the MEA well for about 

30 minutes at 37°C. Trypsin was removed and the surface was washed with 200 proof ethanol. 

The surface was then rinsed with sterile water and the MEAs were baked for about 12-16 hours at 

55 °C. The MEA wells were viewed under a phase microscope to ensure the surface was clean 

before they were used again. MEAs were re-used up to two times. 

Statistics 

Data for the well-wide mean firing rate for soma (n = 6), single axons (n = 8) and bundled axons 

(n = 6) between DF1 to DF11 were compared using one-way ANOVA with Tukey’s multiple 

comparisons test. DF11 was chosen as the cut-off time period, as the explants in the soma and 

single axonal conditions detached beyond this time point. The width of the spikes and voltages of 

soma (n = 42), single axons (n = 8) and bundled axons (n = 91) were also compared by one-way 

ANOVA with Tukey’s multiple comparison test. Weighted mean firing rate and the voltage 

comparison between control and capsaicin treatment were both analyzed using a paired t test (n = 

4). Data are reported as the mean (�̅�) ± standard error of the mean (SEM). 

Results 

Culture of DRG Explants on Capgel™ Block Facilitates the Separation of DRG Cell Bodies 

from the Bundles of Axon 

Previous work has shown the generation of a three-dimensional in vitro nerve model using 

Capgel™ (Anderson.et al., under review). We observed that placing DRG explants on top of the 
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Capgel™ block restricted the migration of DRG neuronal cell bodies (Figure 16C) hence, four 

thoracic DRG explants were placed on top of the derivatized Capgel™ blocks. The block with 

explants on top was then carefully placed on the MEA, such that the capillaries were perpendicular 

to the electrode grid and made direct contact with the electrodes (Figure 16A). The culture was 

maintained for about 35 DIV after which the Capgel™ block was serially sectioned. An 

immunostained cross-section close to the DRG explant site (Figure 16B) showed several 

capillaries were infiltrated with cells and further examination at higher magnification revealed 

several neuronal cell bodies (identified by β-3 tubulin (TUBB3)) with associated satellite glia 

(nuclei identified by bright DAPI staining) threading the capillaries (Figure 16C). The maximum 

distance travelled by the cell bodies within these capillaries was seen to be around 400µm from 

the explant site (data not are shown). Beyond this distance, we see several axons (TUBB3) with 

glial cells (nuclei identified by bright DAPI staining) bundled together (Figure 16D and E). The 

axon bundles grew through the entire length of Capgel™ (2-2.5mm) and the capillary diameter 

was around 100µm (�̅� 102.12 ± 22.10µm, n = 5, Figure 16F). As the bundles exited the capillaries, 

they were around 8µm (�̅� 8.02 ± 0.57µm, n = 5) in diameter (single axons are typically less than 

1µm in diameter) and make contact with the electrode (Figure 16F). Different waveform 

populations on each individual electrode were analyzed using clustering criteria as described in 

the materials and methods section. The waveforms that result from the action potentials of each 

neuron will be characteristic and so, the number of waveform populations on each electrode will 

indicate the number of neurons contributing to the electrical activity on that electrode. Figure 16G 

shows that only about 8% of the electrodes had a single waveform and 92% of the electrodes 
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analyzed had two or more waveforms and suggesting that multiple different axons within the same 

bundle are contributing to the firing observed at a single electrode.   
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Figure 16. Characterization of bundles within Capgel™ 

(A) Capgel with DRG explants (on top) interfaced with the MEA (B) A 10µm section of Capgel™ 

block near the explant implant site showing several capillaries infiltrated with cells (C) Image of 

a single capillary channel indicates the organization of neuronal soma with closely associated 
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SGCs (D) 10µm section of Capgel™ block at the MEA interface site and (E) Image of a single 

capillary channel shows the compact organization of axons and glia. Axons are identified in green 

and the neuronal and glial nuclei are identified by DAPI. (F) Characterization of the capillary 

channel diameter and bundle diameter at the MEA interface. (G) Distribution of waveform 

numbers (WF) on each electrode. 

 

We placed four thoracic DRG explants directly on top of the electrodes in the absence of a 

Capgel™ block with a single explant being large enough to completely cover one quadrant of the 

electrode grid (Figure 17A). This design allows us to measure electrical activity generated from 

the soma of the DRG neurons. Similarly, to determine the electrical properties of individual single 

axons, four thoracic DRGs were carefully placed along the circumference of the ground electrode 

(which is about 2.2mm away from the electrode grid center). As shown in the schematic and phase 

image (Figure 17B), DRG explants extended their axons radially and around three days in culture 

we can see axons with glia along the electrode grid. Although some neuronal cell bodies migrated 

away from the explant they were not observed to migrate distances large enough to reach the 

electrode grid. This experimental set-up facilitates the measurement of extracellular electrical 

currents largely from populations of axons. Similarly, the phase contrast image of Capgel™ block 

on the electrode grid (Figure 17C) shows that the block covers the electrode grid and several of 

the capillaries appear darker suggesting that these capillaries are infiltrated with cells and axons. 

The spontaneous activity of the two-dimensional cultures was then compared with the three-

dimensional axonal bundles generated using Capgel™. 
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Figure 17. Schematic and phase images of the experimental set-up  

Top down view of (A) DRG explants placed directly on top of the electrode grid (B) DRG explants 

placed outside of the electrode grid and (C) Capgel™ blocks with DRG explants are placed on top 

of the electrode grid 

 

Bundling of Axons Using Capgel™ Lead to Detectable Action Potentials and Higher Firing 

Rates 

Extracellular recordings from axons are challenging as they do not generate signals large enough 

to pass the threshold settings (van Pelt, Wolters, Corner, Rutten, & Ramakers, 2004). Single axons 

extending across the electrode do not achieve sufficient sealing with electrodes and instead form 

a loose meshwork across the MEA surface. We were curious to know whether bundling the axons 

in a manner similar to what is seen in vivo would generate detectable signals. Comparison of the 
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well-wide mean firing rate between the somatic (�̅� 0.02, n = 6), single axons (�̅� 0.01, n = 8), and 

bundled axons (�̅�  0.18, n = 6) (using Capgel™) from the first day of firing (1DF) to 11DF revealed 

that bundled axons have a firing rate that is significantly higher than the soma (p = 0.03) and single 

axons (Figure 18A, p = 0.01). There is negligible electrical activity seen where single axons makes 

contact with the electrodes but bundling of axons generated consistently higher readings when 

compared with the two-dimensional cultures. The bundle of axons started off with low well-wide 

firing rate, as fewer bundles made contacts with the electrodes. This is reflected in the small 

number of active electrodes during early time points (data not shown). With time, there is an 

increase in the well-wide firing rates that peaks between 9DF and 13DF (Figure 18B).  

Figure 18C shows a representative image of waveform populations that were recorded on a single 

electrode in the three different experimental designs. We see distinct waveforms in the soma and 

the bundled axons and single axons. Single axons have waveforms that are typical of noise (these 

populations have the same shape in both positive and negative directions and these spikes were 

not considered for further analysis) and less than ten data points were available for axonal 

measurements. Somatic spikes are known to be wider than axonal spikes (Buitenweg, Rutten, & 

Marani, 2002; van Pelt et al., 2004) and our analysis of the waveform indicated a significant 

difference in the width of spikes between the soma (�̅� 0.24 ± 0.01ms, n = 42) and single axons  (�̅�  

0.21 ± 0.01ms, n = 8, p = 0.02) as well between soma and bundled axons (�̅� 0.19 ± 0.00ms, n = 

91, p  < 0.01). No significant difference were observed between the single and bundled axons (p 

= 0.33) further establishing the idea that the cell bodies did not contribute to the detected signals 

and that only axons were present at the interface of Capgel™ block and the MEA (Figure 18D). 

Interestingly, we did not see an amplification of the voltage in the bundled axons (Figure 18E, �̅� 
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31.99 ± 1.22µV, n = 93) as reported by other groups that attempted to acquire axonal readings 

using microtunnels (Dworak & Wheeler, 2009; Lewandowska, Bakkum, Rompani, & Hierlemann, 

2015; Narula et al., 2017).
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Figure 18. Comparison of firing rates and waveform populations between soma, single axons and bundled axons. 
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(A) Well-wide mean firing rate comparison between the experimental designs. Data represented 

as an average across all 64 electrode (data analyzed by using one-way ANOVA with Tukey’s 

multiple comparisons test; error bars represent SEM, *p ≤ 0.05).  (B) Analysis of well-wide mean 

firing rate of bundled axons over time. (C) Representative waveforms from each condition. Each 

line represents a population of spikes that have consistently fired and clustered as a distinct 

waveform. (D) Comparison of the width of spikes and (E) voltage between soma, single and 

bundled axons. (D and E) Data analyzed by using one-way ANOVA followed by Tukey’s multiple 

comparisons test; error bars represent SEM, ***p ≤0.01.  

 

In our three-dimensional system, the bundle of axons that make contact with an electrode 

continued to maintain the same connections with time because the Capgel™ block was stationary. 

This was advantageous as we could monitor the electrical activity of the same bundle of axons 

long-term. We show in Figure 19, the same electrode tracked for over 20 days. Two distinct 

populations of waveforms that consistently appeared over this period and the firing rate of each of 

the populations is shown. The spike shapes were remarkably consistent and reproducible each day 

but changes in the waveform were observed over time. Changes in the spike shape could be a result 

of developmental or maturation differences as previously reported (Lewandowska et al., 2015). 

This model can be used as a tool to study and understand these changes.  
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Figure 19. Long term monitoring of population of waveforms 

Waveplots of the same electrode and the same population of waveforms from 11DIV to 31DIV. 

The frequency of firing of each of these population is indicated.  

 

The Bundle of Axons within the Capgel™ Blocks are a Heterogeneous Population of Axons 

Similar to an In Vivo Nerve 

DRG are composed of several different types of neurons – nociceptive, mechanoreceptive and 

proprioceptive, which are involved in transmitting different types of sensory inputs to the CNS 
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(Marmigere & Ernfors, 2007; Montano, Perez-Pinera, Garcia-Suarez, Cobo, & Vega, 2010; Scott, 

1992). To further study the composition of the axon bundles formed within the Capgel™ 

capillaries, we added capsaicin, a TRPV1 receptor agonist, to the culture, in order to model pain 

(Caterina et al., 2000; Caterina et al., 1997; Heinricher, Cheng, & Fields, 1987; Tominaga et al., 

1998). Figure 20A shows the weighted firing rate for the DMSO control and after the addition of 

capsaicin at 21DIV. We see here that the addition of capsaicin led to an overall increase in the 

mean firing rate (control �̅� 3.01 ± 0.33, n = 4; capsaicin �̅� 10.49 ± 2.23, n = 4, p = 0.02). This 

augmentation in firing rate in response to capsaicin treatment is well documented (Caterina et al., 

2000; Newberry et al., 2016; B. J. Wainger et al., 2015). Analysis of the waveforms indicated a 

change in the firing rates with no changes in the voltage (Figure 20B, control �̅� 24.32 ± 1.60, n = 

4; capsaicin �̅� ± SEM 25.49 ± 1.69, n = 4, p = 0.63)  

 

Figure 20. Analysis of activity metrics in response to capsaicin treatment  
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(A) Weighted mean firing rate (B) voltage comparison between control and capsaicin treated 

sample. Data analyzed using unpaired t-test, error bars represent SEM, *p ≤0.05.   

 

Electrode level analysis was then performed to further understand the composition of the bundles. 

In figure 21A, a representative graph shows changes in firing rate in response to capsaicin 

treatment (silent electrodes have been omitted) on each electrode and we see that several of the 

electrodes shown exhibited an increase in firing rate in response to capsaicin. We know that 

capsaicin elicits a response exclusively from TRPV1 expressing nociceptive neurons (Caterina et 

al., 2000) and so we wanted to investigate how individual axons within a bundle responded to 

capsaicin treatment.  

For this, we further teased out each population of waveforms on individual electrodes. Analysis of 

electrode 36 is shown in figure 21B and C. Here, we see two distinct waveforms from two separate 

axons, a negative monophasic and a negative biphasic waveform which we refer to as population 

1 and population 2. The firing rate of each of these populations is shown in figure 21C and it 

suggests that both these waveforms were consistent and reproducible. Interestingly, we see here 

that population 1 has no change in the firing rate in response to capsaicin whereas population 2 

showed a significant increase in firing rates in response to the capsaicin. This suggested that 

population 2 is sensitive to capsaicin indicating that it is nociceptive in nature, whereas population 

1 could be a different subclass of DRG neurons lacking the TRPV1 receptors. We see that about 

64% of the waveforms analyzed showed a doubling of firing rates and about 35% (Figure 21D, n 

= 42) did not show any change to the addition of capsaicin.  



78 

 

 

Figure 21. Analysis of firing rates of individual electrodes and populations of waveforms  
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(A) Firing rate of individual electrodes in response to capsaicin treatment (B) Analysis of 

waveforms on individual electrodes (C) Analysis of individual population of waveforms (D) 

Overall percentage of waveforms that respond to capsaicin treatment (n = 42) 

Discussion 

In this study, we have integrated an in vitro cultured three-dimensional ‘nerve’ on a microelectrode 

array. We have shown that this design and integration is a better model for investigating electrical 

activity from axons compared to traditional two-dimensional systems in terms of the ability to 

detect axonal activity. Moreover, by simply bundling the axons through Capgel™, we greatly 

improved our ability to record the spontaneous activity of DRG. We have also successfully shown 

that, this system facilitates the long-term monitoring of electrical activity of the same bundle of 

axons. Finally, we show here that the axon bundle composition within the capillaries is strikingly 

similar to an in vivo nerve.  

There has been a renewed interest in acquiring axonal electrophysiological readings (Dworak & 

Wheeler, 2009; FitzGerald, Lacour, McMahon, & Fawcett, 2009; Lewandowska et al., 2015) but, 

these approaches required either patterning (Erickson, Tooker, Tai, & Pine, 2008; Nam, Chang, 

Khatami, Brewer, & Wheeler, 2004) or complex modification of the MEA surface (Dworak & 

Wheeler, 2009; Lewandowska et al., 2015; Musick, Khatami, & Wheeler, 2009; Wheeler & 

Brewer, 2010). The model we described here requires no modification to the commercially 

available MEAs and instead, we use a cheap and easily synthesizable biomaterial to generate the 

bundles of axons which can then be simply placed on top of the electrodes. Furthermore, most of 

the established models involving patterning lack the structural three-dimensional complexity that 
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is observed in vivo. Using Capgel™, we were able to generate a three-dimensional structure which 

offers a more realistic milieu in which the functional properties of neurons can be observed.  

Capsaicin was used to chemically stimulate and sensitize DRG neurons in an attempt to show that 

heterogeneity with respect to the neuronal subtypes also exists within the bundles. Other groups 

have shown that 1µM concentration of capsaicin was sufficient to depolarize nociceptors (J. N. 

Wood et al., 1988). The growth media used in our experiments was supplemented with 50ng/ml 

NGF for axonal growth and survival of the nociceptive neurons. Interestingly, NGF is known to 

increase sensitization of the capsaicin receptor TRPV1 (Zhang, Huang, & McNaughton, 2005). 

Our analysis of waveforms whose frequency doubled or more in response to capsaicin treatment 

was shown to be around 64% which is similar to the reported percentage of nociceptor neurons 

within the DRG (Bautista et al., 2006). Overall, this supported the idea that we were able to recreate 

a functional model which closely resembled an in vivo nerve.  

The microtunnel technology to detect axonal readings is based on the idea of increasing resistance 

to amplify the voltage of the axonal signals. Here, we showed that there is no increase in the voltage 

when axons were bundled and yet, we had improved firing rates. We speculate that this high rate 

of firing could be a result of ephaptic coupling of axons. Typical axonal bundles shown in figure 

16D and E reveal the organization of the axonal bundles. We see several axons identified by 

punctate β-3-tubulin staining along with glial cells identified by DAPI and these are compact 

structures. Because of the tightness and the close proximity of the axons within the bundle, it is 

possible that a single depolarization event could induce an action potential in another axon within 

the same bundle and contribute to the high firing rates observed. Interestingly, this arrangement 

was similar to the structure of the early developing nerve seen in vivo (Jessen & Mirsky, 2005). 
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Around embryonic day 14-18 in rats, the nerve remains as a compact structure with early Schwann 

cells within and outside the bundles of axons with no connective tissue space. The process of 

myelination is initiated shortly after birth and the organization of the nerves drastically change, 

which includes segregation of axons for radial sorting necessary for myelination and the formation 

of connective tissue. We have previously shown that we can induce myelination in the DRG axons 

grown within Capgel™ (Anderson et al., under review) and it would be interesting to determine 

whether induction of myelination would affect this ephaptic phenomenon. Alternatively, we also 

consider the possibility that the improved firing rates could be a result of how tightly the bundles 

interface with the electrode (Buitenweg et al., 2002). It is possible the alginate component of the 

biomaterial acts as an uptake reservoir for cations such as sodium and potassium which may 

influence ephaptic coupling by altering local osmotic and electrochemical pressure and thus 

membrane charge (L. Mongar & Wassermann, 1949; Silva, Manso, Rodrigues, & Lagoa, 2008; 

Tveito et al., 2017).  

The model described here offers the structural complexity that allows us to directly investigate 

these observations and further evaluate the DRG excitability especially in the context of pain. The 

development of this functional artificial nerve and integration with an MEA offers high 

throughput, non-invasive measurement of electrical properties, which can be used as a platform 

for modeling neuropathic pain. 
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CHAPTER FOUR: CONCLUSIONS 

This project provides insight into the development and differentiation potential of the elusive SGCs 

and promotes the idea of the regenerative potential within the DRG. We describe here, for the first 

time, a detailed description of the isolation of SGCs which could be highly valuable for the field 

in general. Further, we also show the development and characterization of an in vitro model where 

SGC-somal contacts are retained, and this facilitates the use of this model as a tool to study SGCs 

especially in the context of neuropathic pain. These findings are highly exciting, and this work 

opens up new avenues that warrant further investigation. 

Questions remain about the signals that are involved in the specification of SCGs. It remains to be 

determined whether a simple removal of these signals results in the differentiation of SGCs to SCs 

or whether the spatial expression of signals (soma vs. axonal signals) are important in this 

differentiation pathway. Neuregulins are an obvious candidate that could be playing an important 

role in SGC differentiation. Neuregulins are a family of proteins that are important in SC 

differentiation. Neuregulin isoforms are differentially expressed on the axon and the soma, SMDF 

being the major axonal form. It was shown that knockdown of SMDF affected only SC numbers 

and not SGCs numbers (Garratt, Britsch, & Birchmeier, 2000) which suggested that the SMDF 

signal was not crucial for SGC specification. It also invites the question whether it is a lack of this 

axonal neuregulin signal that leads to the formation of SGCs.  

Notch is another important signal that could be involved in SGC development and maintenance. 

We know that Notch signaling is vital for glial specification of neural crest cells, and moreover, it 

was shown that ablation of the effectors of Notch signaling impairs SGC development (Woodhoo 



83 

 

et al., 2009). Expression of Notch on the DRG soma could possibly arrest SGCs in their native 

state. But much remains to be explored, including determining whether the components of notch 

are present in the adult ganglia. 

Cadherin-19 (CDH19) is a type II classic calcium-dependent cell adhesion molecule and 

Takahashi et al. have shown a temporal expression of CDH19 in the SC developmental pathway 

by exclusive expression in the SC precursor state. But, the significance of this expression and the 

role it plays in the developmental pathway has not been explored (Takahashi & Osumi, 2005). 

Similarly, although we identified the expression of CDH19 in SGCs within the adult DRG, we 

were not any closer to identifying the role of this signaling molecule. We noted a downregulation 

in the expression of CDH19 as soon as SGCs migrated away from the soma, and based on this 

observation, it is likely that expression and downregulation might be essential signals specifying 

the maintenance and differentiation of SGCs respectively.  

Adding to the complexity of these observations is that adult SCs, which do not appear to express 

CDH19, are capable of ensheathing mature DRG soma (unpublished observations, Figure 22) 

suggesting that, other unidentified adhesion molecules may also play a role in the SGC/neuronal 

cell body interaction. Although these SCs can ensheathe the neuronal cell body they do not express 

SGC markers such as GS. Figure 22 identifies SCs ensheathing purified neurons using P0 marker, 

a marker expressed in SC precursors and immature SCs. 
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Figure 22. SCs ensheathing neurons 

(A, B) FUdR treated E15 DRG neurons where SCs isolated from postnatal day 2 rats were added 

at 10 DIV. 

 

We observed in our two-dimensional cultures an increase in the number of SGCs that expressed 

Ki67 after 48 hours of capsaicin treatment (unpublished data, Figure 23) but, our efforts to 

investigate the mechanism underlying this change was thwarted by the fact that SGCs migrated 

away from the neurons. We had previously determined that this increase in Ki67 expression was 

a neuron-specific effect as SGCs (fraction 3) when treated with capsaicin in the absence of neurons 

showed no changes to Ki67 expression. Interestingly, contact inhibition of proliferation is a 

downstream signaling effect of cadherins (Klezovitch & Vasioukhin, 2015) and it would be 

interesting to see if these signals are at play here.  

TUBB3 
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P0 

DAPI 
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Alternatively, ATP signaling is known to promote proliferation, and combining the fact that SGCs 

expresses the receptor for ATP (P2X7) and that an increase in gap junction-mediated coupling is 

observed in response to injury (Menachem Hanani, 2012), we hypothesize that neuronal ATP 

released via gap junctions modulate the proliferation of SGCs (Figure 24). Again, the significance 

of proliferation can only be speculated. Studies have implicated SGCs as the source of cells that 

replenish the neurons that have undergone apoptosis in response to capsaicin treatment (Z. 

Gallaher, T. Johnston, & Czaja, 2014). Considering the expression of Sox2 in SGCs, a factor 

important in the regulation of pluripotency (Koike et al., 2015) and our work that establishes the 

plasticity of SGCs, it would be within reason to predict that given the right cues, SGCs could 

differentiate to neurons. 
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Figure 23. Ki67 staining in response to capsaicin treatment in fraction 1 and fraction 3 

Images show fraction 1 and fraction 3 identified using TUBB3, Ki67 and DAPI. Data compared 

using student’s t-test. 

NS 
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Figure 24. Proposed model 

Dotted cells indicate the newly formed cells that arise in response to the ATP signaling after 

neuropathic injury 

 

We can now start to uncover the mechanism by which this expression change occurs using our 

three-dimensional model. Our overall motivation was to design a system wherein we could study 

changes that occur in SGCs under neuropathic pain conditions. Although we successfully 

developed and characterized the novel model described, we were not able to directly assess the 
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changes in SGCs that contributed to the capsaicin-evoked hyperexcitability of the neurons because 

we ran out of time. The potential for further studies in this area is promising.  

DRGs do not undergo synchronous firing as these neurons lack dendrites. But, studies have shown 

that increased coupling occurs between SGCs surrounding different neurons in response to injury. 

When we added capsaicin to our three-dimensional model, we were able to detect network 

burst/synchrony in firing across many electrodes (Figure 25). It would be important to determine 

whether this bursting activity is a mediated via SGCs. Participation of SGCs in this manner could 

explain the underlying basis of neuronal hyperexcitability that is observed in injury. 

 

Figure 25. Raster plot showing spike trains 

Network burst criteria min # spikes 10, max interspike interval 100ms, min electrodes (%) 30 

  

One way to determine their contribution would be to use drugs like carbenoxolone that block gap 

junctions and measure changes in network bursts. An alternate approach would be to utilize 

fractions of neurons with and without SGCs directly placed on top of Capgel™ blocks to assess 

activity differences. In line with the idea that SGCs may be involved in inducing this sort of 
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network synchrony, it would be interesting to electrically stimulate axonal bundles to determine 

the changes in firing rates in the axonal bundles apposed on different electrodes. 

As shown in figure 16, the Capgel™ blocks can be sectioned near the explant implant site to study 

the structure and organization of SGCs around the DRG soma. For example, we can specifically 

examine SGCs that surround nociceptive neurons by using specific markers like TRPV1 and 

determine the changes that occur in response to capsaicin treatment including the expression of 

Ki67. Although the three-dimensional model is discussed here only in the perspective of a 

neuropathic pain model, the system itself has enormous potential applications and can be used as 

a tool to study electrical properties during development.  
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