
University of Central Florida

Electronic Theses and Dissertations Masters Thesis (Open Access)

Functional Identification of Nucleus Tractus
Solitarius (NTS) Barosensitive Neurons: Effect of
Chronic Intermittent Hypoxia (CIH)
2015

Jenya Kolpakova
University of Central Florida

Find similar works at: https://stars.library.ucf.edu/etd

University of Central Florida Libraries http://library.ucf.edu

Part of the Biotechnology Commons, and the Molecular Biology Commons

This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for inclusion in Electronic Theses and
Dissertations by an authorized administrator of STARS. For more information, please contact lee.dotson@ucf.edu.

STARS Citation

Kolpakova, Jenya, "Functional Identification of Nucleus Tractus Solitarius (NTS) Barosensitive Neurons: Effect of Chronic
Intermittent Hypoxia (CIH)" (2015). Electronic Theses and Dissertations. 1381.
https://stars.library.ucf.edu/etd/1381

https://stars.library.ucf.edu?utm_source=stars.library.ucf.edu%2Fetd%2F1381&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu?utm_source=stars.library.ucf.edu%2Fetd%2F1381&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd?utm_source=stars.library.ucf.edu%2Fetd%2F1381&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd
http://library.ucf.edu
http://network.bepress.com/hgg/discipline/111?utm_source=stars.library.ucf.edu%2Fetd%2F1381&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/5?utm_source=stars.library.ucf.edu%2Fetd%2F1381&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd/1381?utm_source=stars.library.ucf.edu%2Fetd%2F1381&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:lee.dotson@ucf.edu
https://stars.library.ucf.edu?utm_source=stars.library.ucf.edu%2Fetd%2F1381&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu?utm_source=stars.library.ucf.edu%2Fetd%2F1381&utm_medium=PDF&utm_campaign=PDFCoverPages


FUNCTIONAL IDENTIFICATION OF NUCLEUS TRACTUS SOLITARIUS (NTS) 

BAROSENSITIVE NEURONS: EFFECTS OF CHRONIC INTERMITTENT HYPOXIA (CIH)  

 

 

by 

 

JENYA KOLPAKOVA 

B.S. University of Central Florida, 2013 

 

 

A thesis submitted in partial fulfillment of the requirements 

for the degree of Master of Science 

in the Burnett School of Biomedical Sciences  

in the College of Medicine  

at the University of Central Florida 

Orlando, Florida 

 

 

Fall Term 

2015 

 

 

Major Professor: Jack (Zixi) Cheng  



ii 

 

 

 

 

 

 

 

 

© 2015 Jenya Kolpakova 

  



iii 

 

ABSTRACT 

Chronic Intermittent Hypoxia (CIH) is a model used to study obstructive sleep apnea 

(OSA). Previously, we showed that baroreflex control of heart rate (HR) (baroreflex sensitivity) 

is reduced in CIH rats. While afferent function and HR in response to vagal efferent stimulation 

are enhanced, the effect of CIH on the central components, in particular NTS, is still not 

completely understood. F344 rats (3-4 mo) were exposed either to CIH or room air (RA) for 35-

50 days. Following CIH exposure, rats were anaesthetized with Ket/Ace. Using single-unit 

extracellular recording technique, we recorded NTS barosensitive neurons in response to arterial 

pressure (AP) changes induced by descending aorta occlusion. Our data indicated that 1) the 

mean arterial pressure and HR were similar in RA control and CIH groups. 2) The majority of 

neurons from RA and CIH NTS neurons increased firing rate, whereas other neurons decreased 

firing upon AP elevation. 3) In 27 RA and 31 CIH NTS neurons with increased firing rate, 15 

RA and 15 CIH neurons were activated at a low ∆MAP at the early phase of AP increase (early 

neurons); whereas 12 RA neurons and 16 CIH neurons were activated at a late phase of AP 

increase (late neurons). The early neurons rapidly increased their firing during the rising phase of 

MAP, whereas late neurons did not increase their firing until the ∆MAP reached its peak.  4) 

Early neuron activity-∆MAP relationship was further characterized by the logistic sigmoid 

function curve. CIH significantly increased the maximal gain of the neuron activity-∆MAP curve 

and the range of the response.  In addition, CIH early neurons had a significantly higher firing 

rate than RA early neurons, whereas CIH did not change the firing rate in late neurons.  5) For 

late neurons, HR reduction correlated with neuronal activity. HR reduction-neuronal activity 

increase curve was shifted to the right in CIH neurons, indicating that CIH decreased HR control 
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in response to NTS firing increase. Collectively, our data suggest that NTS barosensitive neurons 

have both early and late neurons, CIH selectively enhances neuron activity in response to AP 

changes in NTS early neurons and attenuate the baroreflex bradycardia. Along our previous work 

that CIH-induced the cell loss in the nucleus ambiguus (NA), we conclude that CIH attenuates 

the functions of NA, whereas enhances the NTS functions to compensate for the loss of function 

in NA.   
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PART I: FUNCTIONAL IDENTIFICATION OF NUCLEUS TRACTUS 

SOLITARIUS (NTS) BAROSENSITIVE NEURONS 

Chapter one: Introduction 

The nucleus tractus solitarius (NTS) is a complex integrating center for cardiovascular 

regulation. Damage to the NTS effectively eliminated baroreflex control of heart rate (HR) and 

direct stimulation of the NTS decreased HR (Andresen and Kunze, 1994).  NTS barosensitive 

neurons receive direct synaptic inputs from primary baroreceptor fibers that convey static and 

dynamic information for cardiovascular regulation (Andresen and Kunze, 1994).  NTS output 

neurons send axons to other brainstem nuclei, such as the nucleus ambiguus and pre-sympathetic 

nuclei in paraventricular, caudal and rostral ventrolateral medulla, modulating the activity of 

these nuclei in order to control the heart rate and arterial pressure (Andresen and Kunze, 1994; 

Potts, 2006).  

Functionally, Seagard et al. (1995) found two types of NTS neurons in mongrel dogs 

responding to pressure ramp increase: sudden-onset rapid-adapting neurons and slow onset non-

adapting neurons. Paton et al. (2001) found the adaptive, non-adaptive neurons, and prolonged 

excitation NTS neurons responding to AP changes in rats. Morphologically, different types of 

neurons may have different structures in terms of soma size and axonal trajectory (Deuchars et 

al. 2000; Kawai and Senba, 1999). In addition, different NTS sensory neurons may use different 

neurotransmitters (Riche et al, 1990; Andresen and Kunze, 1994).  The quantitative 

characterization of NTS barosensitive neurons indicates that NTS neurons not only encode mean 

arterial blood pressure (MAP), but are sensitive to the rate of AP change (Rogers et al. 1993, 
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1996). It was later confirmed by Zhang and Mifflin (2000) that the different rates of AP change 

may result in different neuronal responses in the same NTS neurons: a faster AP increase may 

lead to a higher response. However, the quantitative relationship of NTS barosensitive neuronal 

activity vs. the dynamic change of AP has not yet been well characterized. 

In order to study the functional changes of different populations of barosensitive NTS 

neurons in disease models, it is important to define the subpopulations of NTS neurons, 

quantitatively characterize the NTS neuron activity (NA)-AP relationship, and examine the time-

course of NTS NA upon AP changes. In this study, multiple groups of NTS neurons were 

identified, which responded the AP elevation differently: excitatory (majority), inhibitory or 

biphasic (minority).  In the excitatory group, the neurons were further divided into early and late 

neuron subgroups according to their activation time delay. The early NA-MAP relationship, but 

not the late NA, was quantitatively characterized by the logistic sigmodal function. Using the 

time course measurement, we found that the early neurons have significantly higher firing rate in 

response to the late neurons. Finally, we assessed the relative contribution of early and late 

neurons to heart rate (HR) reduction. 
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Chapter two: Methodology 

Animals 

Fischer 344 (F344; 3–4 month) male rats were used. Procedures were approved by the 

University of Central Florida Animal Care and Use Committee and followed the guidelines 

established by the National Institutes of Health.  

Surgical procedure  

The procedure has been previously described in detail (Wang et al.   Wang et al. 2006, 

2007 and 2008; Gu et al. 2007, 2008). Briefly, rats were initially anesthetized with sodium 

pentobarbital (50 mg/kg i.p.). Body temperature was monitored and controlled by a rectal probe 

and maintained at 37 ± 1°C with a homeostatic blanket (Harvard, Holliston, MA). Supplemental 

doses (5 mg/kg i.v.) of sodium pentobarbital were administered (i.v) as needed to prevent eye 

blink and withdrawal reflexes to toe-pinch.  When the animals were no longer responsive to toe-

pinch, we performed the following surgical procedures. Animals were given a tracheal intubation 

and oxygen-enriched room air was provided through ventilation. The femoral vein was 

cannulated for intravenous injections of the anesthetic agent. The left common carotid artery was 

cannulated, and the AP was recorded and measured using a PowerLab Data Acquisition System 

(PowerLab/8 SP) that was connected to a pressure transducer (CB Sciences, BP100) for 

measurement of arterial pressure (AP). Heart rate (HR) was calculated from pulse pressure 

waves with the ratemeter function of LabChart 5.3 software provided with the PowerLab system. 

A circular arterial balloon-occluder was secured around the descending thoracic aorta which was 
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used to elevate AP as needed. Animals were placed in a stereotaxic instrument equipped with a 

head holder adapted to permit the neck to be sharply flexed. A dorsal incision was made over the 

neck muscles, which were retracted to expose the atlantooccipital membrane. This membrane 

was opened with an incision, exposing the cisterna magna and the dorsal medulla. The rostral 

end of the area postrema was used as a rostrocaudal reference for stereotaxic coordinates (Wang 

et al. 2006).  

Extracellular recording of the NTS barosensitive neurons   

Extracellular recording of the NTS barosensitive neurons was similar to our previous 

studies (Wang et al. 2006, 2007, 2008, Zhang et al, 2003, a,b). Briefly, A single-unit 

extracellular recording was obtained using a beveled glass micropipette (resistance 5–12 MΩ) 

filled with KCl (1M). With respect to calamus scriptorius, the dorsal medial NTS was located 

300 μm–600 μm rostral, 300 μm–500 μm lateral, and 300 μm–500 μm ventral. The electrode was 

advanced using a microdrive into the dorsal medial NTS at a speed of 1–2 µm/s until single-unit 

activity was recorded. The spontaneous action potentials (APs) were amplified using a high 

impedance preamplifier (band pass 100–3,000 Hz) and fed into a window discriminator (Mentor 

N-750 spike analyzer), which generates a standard pulse for each spike. Potentials were 

visualized on an oscilloscope (model 121N; Tektronix). The pulse output of the discriminator 

was then fed into a rate/interval monitor (HFC) whose analog output is proportional to the 

number of spikes per unit time. These signals were displayed online on the computer and 

recorded on the data acquisition system. The sampling rate was 10,000 measurements per second 

(Wang et al. 2006). 
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Heart rate  

The blood pressure catheter was connected to a blood pressure transducer (AD 

instruments). The transducer was positioned at the heart level. AP was measured using a 

PowerLab Data Acquisition System (PowerLab/8 SP) and displayed on the first channel (Fig 1A, 

PAP). The HR was calculated from pulse pressure in the first channel using the ratemeter 

function and displayed on the second channel (Fig 1A, HR). Baroreceptors were activated by the 

descending thoracic aortic occluder to evoke NTS barosensitive neuron response (Wang et al. 

2006, 2007, 2008). Basal MAP and HR were recorded by averaging AP values and pulses for 2 

min before elevation of AP. The NTS barosensitive neurons were identified by their increased 

activity (frequency of action potential or discharge rate) in response to transient AP elevation 

(24–47 mmHg) by occlusion for about 12 s. Some NTS barosensitive neurons that were inhibited 

by aortic occlusion were also encountered in the present study. Since our goal is mainly to study 

the barosensitive neurons with excitatory response to AP elevation, we did not further analyze 

barosensitive neurons with inhibitory or biphasic responses.  

Logistic sigmoidal function curve   

During aortic occlusion, mean arterial pressure (MAP), heart rate (HR) and NTS neuronal 

activity changes were measured. The NTS barosensitive neurons activity (NA)-∆MAP 

relationship curve was fitted by logistic sigmoidal function (Kent et al. 1972).  NA in response to 

MAP elevation was reported as the percent change relative to basal discharge using  SigmaPlot 

11: Y = A/{1 + exp [ -B(X - X50)]} + Ymin. where Ymin is the minimum value of % NTS neuronal 

activity relative to the basal activity, A is the range of %NTS neuronal activity (maximum - 
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minimum), X50 is the pressure at the midpoint of the range, and B is the slope coefficient. The 

peak slope [or Max gain (Gainmax)] was determined by: Gainmax = (A)(B)/4 and was used to 

evaluate the sensitivity of the NTS neural response to changes in MAP. Pressure threshold Xth 

was calculated as X50 - (1.317/B), and pressure saturation Xsat was calculated as X50 + (1.317/B), 

respectively. For late neurons, HR reduction-NA relationship was fitting by the logistic 

sigmoidal function: Y = A/{1 + exp[ -B (X - X50)]} + Ymax, where Ymax is the maximum 

reduction of the HR (bpm), A is the range of HR response (minimum - maximum), X50 is the % 

NA at the midpoint of the curve,  and B is the slope coefficient. Max gain (Gainmax) = (A)(B)/4 

and was used to evaluate the sensitivity of the HR reduction to NA changes. NTS NA threshold, 

Xth was calculated as X50 + (1.317/B) and NTS NA saturation, Xsat was calculated as X50 - 

(1.317/B), respectively. 

Statistical Analysis  

The average of MAP, HR, firing rate and the four parameters in the logistic function were 

calculated. The data are presented as mean ± SE.  Comparisons between groups were made using 

Student’s t-test or Two-way ANOVA repeated measures, Student-Newman-Keuls post hoc 

analysis. P < 0.05 was considered significant. 
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Chapter three: Results 

Classification of NTS neurons  

Data were collected from 18 animals. The baseline level mean arterial pressure (MAP) 

and heart rate (HR) were measured before occlusion. They were 99.6 ± 2.2 mmHg and 397.2 ± 

6.4 bpm, respectively. 46 barosensitive NTS neurons were analyzed. 35 of them increased firing 

upon MAP increase, and were thus considered excitatory (Fig. 1A, 1B). 4 excitatory neurons 

were pulmonary-related barosensitive neurons. These neurons had regular basal burst activity 

before AP increase which was synchronized with the artificial ventilation rate (Fig. 1B). The 

regular basal burst activity was seen more clearly in Fig. 1B’. When we suspended ventilation 

for 3 s, the neuron in Fig 1B’ stopped exhibiting respiratory pattern and irregular spontaneous 

firing appeared. After ventilation was resumed, the regular basal burst activity reappeared, which 

indicates the respiratory nature of the neuron. 7 other neurons decreased firing upon MAP 

increase and returned to basal firing rate when MAP was reduced to baseline level, and were thus 

described as inhibitory (Fig. 1C). The additional 4 neurons were biphasic: they decreased firing 

upon MAP increase, but then increased firing rate as MAP decreased to a level which was 

significantly higher than the basal firing rate (Fig. 1D). For some of this type of neuron, we 

further injected sodium nitroprusside (SNP) to decrease AP and verified that they indeed 

increased the firing rate concomitant with a decrease in MAP (Fig. 1E). 
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Excitatory neurons: ΔMAP, ΔHR and firing rate 

The 35 excitatory neurons that responded with increase to AP elevation were 

characterized. The average MAP increase in these neurons was 37.5 ± 0.9 mmHg at a rate of 8.4 

± 0.3 mmHg/s and baroreflex bradycardia was averaged to 22.3 ± 2.6 bpm.  The baroreflex 

sensitivity was 0.60±0.07 bpm/mmHg (ΔHR/ΔMAP). Mean baseline firing activity was 7.1 ± 0.8 

spikes/s and NA had an average peak increase of 295.6 ± 35.3% relative to baseline. 

Early and late activation of excitatory neurons 

The majority of NTS barosensitive excitatory neurons did not increase firing rate 

simultaneously with MAP increase. 14 neurons increased discharge rate during the early phase of 

the MAP ramp increase that ranged about 3-5 s (Fig. 2A), while 21 other neurons did not 

significantly increase discharge rate until the MAP reached its peak plateau, which lasted for 

about 5-7 seconds (Fig. 2D). For the early neurons, the NA-∆MAP relationship could be well 

fitted by logistic sigmodal curve (R2 > 0.90) (see below). The neurons that increased firing at the 

later stage and could not be fitted by logistic sigmodal curve were called the late neurons.  All 

neurons decreased firing rate during the release of the occlusion of the descending aorta. 

Excitatory neurons increased firing rate in response to MAP increase at different times. 5% MAP 

increase relative to basal pressure was defined as the reference starting time point.  A 30% 

increase of NTS neuron firing rate relative to basal firing rate was defined as the ΔMAP-induced 

threshold response of NTS neuron (Wang et al. 2006).  For 14 early neurons, the average ΔMAP 

threshold was 14.12 ± 1.65 mmHg which evoked a 30% increase of NTS neuronal firing rate 

relative to basal rate. For 21 late neurons, the average ΔMAP threshold was 34.07 ± 1.72 mmHg.  
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Early neurons were activated during MAP increase ramp and their activation delay was 

average within 0-2.5 s (Fig. 2B.).   In contrast, the late neurons had the activation delay of 4-14 s 

(Fig. 2E). The distribution of peak delay from the first MAP peak to the first NA peak firing rate 

for the early neuron (range: -3 to 2 s) is shown in Fig. 2C, whereas the distribution of peak delay 

for the late neurons (range 4 to 12)  is shown in Fig. 2F.  

The time-course of NTS barosensitive neuronal activity 

To compare the differences of NTS barosensitive neuronal activity (NA) in early and late 

neurons, we measured the time-course of NTS neuronal activity in response to ΔMAP. NA was 

calculated as the percent (%) change relative to basal discharge.  ΔMAP and NA were sampled 

every second for up to 12 seconds during aorta occlusion-induced MAP elevation. The sec 1 and 

sec 2 were defined at the first data point which was <5% ΔMAP and > 5 % ΔMAP, respectively. 

As shown in Fig. 3A, ΔMAP was very similar in early and late neurons within 12 s. The rate of 

ΔMAP to the peak was also similar (early: 8.49 ± 0.6 mmHg/s, late:  8.48 ± 0.4 mmHg/s). 

The basal NA of the early and late neurons was comparable (6.1 ± 1.3 vs 7.7 ± 1.1 

spikes/s, p > 0.05).  Since the rate of ΔMAP to the peak was also similar, we compared NA 

increase (%) and found that the early had a significantly higher increase of NA than the late 

neurons at 3-10 s. Noticeably, there was a trend of decline of NA within 8-12 s.  The maximum 

NA % increases of early and late neurons were 400.2 ± 63.3% (early) and 225.8 ± 34.6% (late) 

(p < 0.05), respectively.  
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NTS neuronal activity (NA) – ΔMAP Relationship  

To characterize the NA-∆MAP relationship, we used the logistic sigmodal function 

curve. For early neurons, the NA increase-ΔMAP curve was well fitted by the logistic sigmoidal 

function curve (R2= 0.90). Fig. 4A shows the original recording of an early NA in response to 

MAP elevation. Fig. 4A’ shows a representative NA increase-ΔMAP curve of this neuron. The 

Table 1 included the 6 averaged parameters of the logistic function curve. Fig. 4A’’ is the 

composite curve from the averaged parameters in Table 1 from 14 early neurons.  The inset of 

Fig. 4A’’ shows the gain distribution curve that has a Gainmax of 29.3 %/mmHg. For the late 

neurons, we could not obtain NA increase-ΔMAP curve because the NA did not change until the 

ΔMAP reached the peak (Fig. 4B and 4B’). A 3-D plot in Fig. 4C shows the difference of the 

characteristic firing pattern of the two different representative early and late neurons.  The early 

neurons increased firing to 30% at 9 mmHg of ΔMAP at 2 s, but the late neurons increased firing 

to 30% at 30 mmHg of ΔMAP at 4 s.  

NTS neuronal activity – HR Relationship  

For early neurons, the NA increase in the early phase of ΔMAP linearly correlated to the 

HR reduction (Fig. 5A and 5A’). Since this early neuron showed some adaption during the 

sustained MAP elevation (Fig. 5A), NA decreased during the late phase of ΔMAP, while the HR 

continued to decrease (Fig. 5A’).  To show the HR reduction correlation with NA more clearly, a 

3-D plot in Fig. 5B shows the HR reduction-NA relationship during a 12 s aortic occlusion from 

the two representative neurons shown in Fig. 4C. The early neuron correlated to the HR 

reduction during 12 s occlusion, whereas HR reduction did not correlate with the late NA in the 
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initial phase of ΔMAP, but correlated well the HR decrease in the late phase of ΔMAP (Fig. 5B). 

Fig. 5C was another late neuron which also shows that the HR decrease correlated with late NA. 

HR reduction-late NA relationship curve was well fitted using the logistic sigmoidal function. 

The curve of this representative late neuron is shown in Fig. 5C’. The composite curve of the 21 

late neurons is shown in Fig. C’’ using the averaged parameters in Table 2. The inset of Fig. 5C’’ 

shows the Gain distribution curve with a Gainmax of -0.23 ± 0.04. Thus, both early and late 

neurons contribute to HR reduction.  

Chapter four: Discussion  

In this study, different populations of NTS neurons were identified. The majority of the 

neurons increased their firing rate in response to AP elevation, whereas other neurons decreased 

firing rate or had biphasic responses. The heterogeneous firing patterns are consistent with other 

reports (Seagard et al 1995, Paton, 2001, Zhang and Mifflin, 2000).  The neurons with the 

increased firing rate were further classified into early and late neurons according to their increase 

of firing rate either during the MAP elevation ramp (early) or near/after MAP reached peak 

(late). Using the time-course comparison, we found that the early neurons had a significantly 

higher firing rate than the late neurons.  For the early neurons, but not for the late neurons, the 

NA-∆MAP relationship curve could be fitted and characterized by six parameters of the logistic 

sigmodal function. Finally, the relationship of early and late neurons activity with heart rate 

reduction was characterized. Apparently, the early neurons contributes to HR reduction overall in 

the period of AP elevation (<12 s). In contrast, the late neurons activity did not contribute to the 

initial HR reduction but contributed to the long-lasting sustained AP elevation-induced HR 
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reduction after MAP reached to the plateau. It should be pointed out that the early neurons in our 

study showed a trend of firing adaptation to sustained AP elevation (see below discussion). But 

the late neurons did not show firing adaptation.  The contribution of the HR reduction of the 

early neurons in our current study was higher than the late neurons because the early NA was 

higher than the late NA during the entire 12 s of occlusion (Figs. 3 and 5B).   If early NA further 

adapts to a larger, prolonged MAP elevation, the late neurons might contribute more the 

baroreflex bradycardia. This assumption should be tested in the future.  

Classification of NTS barosensitive neurons 

Majority of neurons (35 out of out of 46, including 4 pulmonary-related neurons) 

increased firing upon AP elevation. In contrast, 7 neurons decreased firing. Additionally, 4 

neurons appeared to have a bi-phasic response: decreased firing rate upon AP elevation but 

increased firing rate following AP decrease. We also found some neurons increased firing rate 

during SNP-induced decrease of MAP (Fig. 1F). Similar types of NTS barosensitive neurons 

were reported by Zhang and Mifflin (2000), who also found that the NTS neurons increase 

discharge rate, decreased discharge rate or are bi-phasic in response to MAP elevation, as well as 

other neurons which increased or decreased firing rate in response to a SNP-induced MAP 

depression. Seagard et al. (2001) also reported some neurons with decrease in firing rate in 

response to carotid MAP elevation. 

In our study, after the MAP reached the threshold, the excitatory neurons had a sudden-

onset activity which reached the peak within 3-5 sec. This rapid increase of firing is similar to 

the sudden-onset neurons as reported by Seagard et al (1995, 2001).  But our neurons only show 
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small adaptation as shown in Fig. 1A. In contrast, Seagard’s sudden-onset neurons showed much 

more significant adaptation to a large pressor ramp increase. This difference could be due to the 

difference in methodology: our MAP was first increased by 30-50 mmHg from the baseline 

MAP and then held relatively constant at 130-150 mmHg. In contrast, Seagard et al (1995) had a 

ramp carotid sinus pressure (CSP) increase from 0 to 250 mmHg and the neurons were silent up 

to a given CSP (67.8-98.1 mmHg) in dogs, and then responded with burst of activity which 

immediately decreased as the ramp continued. Therefore, our NTS neurons only showed the 

trend but did not show as much as adaptation possibly due to our relatively small increase of 

MAP compared to the large increase CSP in Seagard et al (1995, 2001).  Interestingly, some 

excitatory neurons displayed evoked hyperpolarization after MAP return to its baseline as 

reported by Paton et al. (2001) (Fig. 1A, and Fig. 4A). 

Early and late NTS neurons 

We observed that 14 neurons (out of 35) increased firing rate during the early phase of 

AP increase (early neurons; Fig. 2A and Fig. 4A), whereas the remaining 21neurons increased 

firing rate only later near/after AP elevation reached its peak (late neurons; Fig. 2D and Fig 4B). 

The early and late neurons had similar basal firing rate, ΔMAP and rate of MAP increase (Fig. 

3A). Interestingly, the early neurons had higher firing rate increase in response to the MAP 

elevation compared to the late neurons during the period of AP elevation (<12 s) before the 

occlusion was released.  Our early and late activation NTS neurons are consistent with Zhang 

and Mifflin (2000) who reported that in response to MAP increase, the peak discharge of NTS 

barosensitive neurons  occurred either near/ after MAP reached the peak in both monosynaptic  
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(before/during  5 vs. after 19 neurons) and polysynaptic neurons (near 5 vs. after 14 neurons). 

For the late NTS neurons, the delay from the point where the MAP reached the maximum to the 

peak of discharge was 4-12 seconds, which was similar to the reported delay in Zhang and 

Mifflin (2000).  The differences in activation could not simply be due to monosynaptic vs 

polysynaptic inputs to NTS neurons, since Zhang and Mifflin (2000) found that NTS neurons 

with both monosynaptic vs. polysynaptic inputs had similar early and delayed firing patterns to 

the early and late neurons in our study.  Additionally, it is not likely that the conduction velocity 

difference between myelinated and non-myelinated baroreceptor primary fibers could determine 

the early and delayed response time, as the time from the activation of the baroreceptor depressor 

A- or C-nerve fiber terminals in the aortic arch and carotid body to the NTS would be less than a 

second. Previously, we labeled aortic depressor nerve innervation of the aortic arch and observed 

that there are much less large aortic depressor nerve fibers than small ones (Cheng et al. 1997; Li 

et al. 2010). This observation is consistent with Brown (1980), who reported that there are less 

A-fibers than C-fibers in the depressor nerve.  In our study, we had less early neurons than late 

neurons. Since C-type axons have much higher threshold than A-fibers (Brown, 1980), we 

suggest that the early neurons may receive A-fiber inputs and late neurons may receive C-fiber 

inputs. However, this hypothesis should be tested in a future experiment. 

The early neurons may have low threshold neurons in the sense that they can be rapidly 

activated by a small increase of MAP. In contrast, the latest neurons did not even start to increase 

their firing rate from the baseline until the MAP increases reached its’ plateaus. We postulated 

that these late neurons may have had a high threshold because they could not be activated until 

they were stimulated by a large MAP increase for a certain amount of time. For example, some 
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late neurons started to increase discharge rate only after the MAP reached the plateaus for 

several seconds. Therefore, late neurons might have used temporal summation of the sustained 

MAP elevation.  

Previously, Seagard et al., (1990) reported that there are two types of baroreceptors, 

which have either a sigmoidal or a hyperbolic relationship with increases in carotid sinus 

pressure and have different activation thresholds. Later, two types of NTS barosensitive neurons 

were identified (Seagard et al., 2001): rapidly adapting neurons which have a sudden onset firing 

after the pressure reaches the threshold and begin to adapt in firing as the pressure continues to 

increase up to 250 mmHg, whereas the slow-onset non-adapting neurons have a higher threshold 

than the other type and continuously and slowly increase their firing rate as the pressure 

increases to 250 mmHg. Again, Seagard et al., (1990) used a continuous ramp pressure increase 

as the stimulus, whereas we used a transient increase of MAP changes with a much lower range, 

therefore, adaptation of NTS neurons in our study might not be as obvious as the one shown in 

Seagard et al., (1990) study.    

Andresen and Peters (2008) found that NTS neurons have single distinct threshold 

intensities, responses which are activated by a single-afferent axon, and no additional contacts 

were recruited by stimulus intensity increases. Recently, Chen et al., (2014) reported that there 

was actually a continuum of activation thresholds of aortic baroreceptors. In our study, we found 

that there is a continuous activation delay for early and late neurons (Fig. 2A). Therefore, our 

report of NTS neurons which increase firing at different pressure thresholds may echo the 
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distribution of activation thresholds of primary baroreceptor depressor nerves (Chen et al., 

(2014). 

Time-course of NTS barosensitive neuronal activity (NA)-ΔMAP increase 

To further characterize the functional NTS NA, we examined the time-course of NA-

ΔMAP increase.  Time-course depicts the relationship between NTS neuronal activity and MAP 

increase even after the MAP reaches the plateau and neurons continue to increase discharge 

frequency. In contrast to the sigmoidal logistic function which only applied to the early neurons, 

time-course measurement was applied to both early and late neurons. As shown in Fig. 3B, the 

time-course can be used to compare NTS neurons activity between two types of neurons. Early 

neurons did not only have a rapid activation, but also showed a significantly higher firing rate in 

response to MAP increase.  

NTS neuronal activity and heart rate reduction 

Whether and how the firing of early and late neurons may contribute to the decreased 

heart rate is an issue. Apparently, rapid firing of early neurons during MAP increase correlates 

nicely with the initial drop of the heart rate. As shown in the time-course measurement, MAP 

reached the plateau at about 5 s (Fig. 3A), but the firing of the early neurons reached the peak at 

5-6 s, and began to adapt at 8-12 s (Fig. 3B), whereas the heart rate continued to drop till 12 s 

when the occluder was released and AP started to drop (Fig. 5A). Therefore, in the initial stage 

of MAP elevation, the firing rate of the early neurons increased in correlation with HR reduction 

linearly (Fig. 5A’). But at the later stage of MAP elevation, the firing rate of early neuron went 
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down in general whereas HR still decreased as shown in Fig. 5A’ with arrows. In contrast, in the 

initial stage of MAP elevation, the late neurons did not increase their firing significantly, but 

they increased firing, as shown with arrows in Fig. 5B. To further expose the relationship of the 

firing of late neurons with the heart rate reduction, we used the sigmodal logistic function to fit 

the data. In contrast to the early neurons, the late neurons were not related to the initial heart rate 

drop, but strongly correlated with the later heart rate reduction of the fitting curve (Fig. 5C’). We 

suggest that the early neurons contribute to both the initial and late stages of HR reduction, 

whereas the late neurons contributed mainly to the late stages of HR drop. Compared to the 

firing rate as shown in Fig. 3, it appears that the early neurons may contribute to heart rate 

reduction more than the late neurons. However, it should be pointed out that if the MAP 

elevation had lasted even longer, then the adaptation of early neurons could have become more 

significant and the firing rate of the early neurons would be less than the late neurons, which may 

not adapt. In our study, we found more late neurons than early neurons, which was consistent 

with the finding by Zhang and Mifflin (2000). If the NTS uses population coding to regulate the 

HR, then we would speculate that the early neurons play the major role in the initial control of 

the heart rate and may reduce their contribution to long-lasting sustained high arterial pressure 

elevation. In contrast, the late neurons may not be activated to contribute to the initial control of 

the heart rate, but are likely to be more responsive to long-lasting sustained high arterial pressure 

elevation.   
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Chapter five: Conclusion  

In Part I, we have identified serval types of neurons that have different properties in firing 

patterns in response to arterial pressure changes. The majority of these neurons are early and late 

neurons which increase the fringe rate in response to arterial pressure elevation.  Using the 

activation and peak delay, logistic sigmodal function and time-course, we have differentiated, 

characterized and compared the early and late neurons. The correlation of the early and late 

neurons activity with the heart rate reduction suggest that these neurons may contribute to HR 

reduction differently.  Our data will provide a further understanding of NTS barosensitive neuron 

function. Previously, we used the sigmoidal logistic curve to characterize and compare aortic 

baroreceptor depressor nerve function and renal sympathetic nerve function in normal and 

chronic intermittent hypoxia and diabetic animals (Gu et al., 2007, 2008, 2009). However, the 

functional changes in the NTS barosensitive neurons have not yet been fully characterized. 

Therefore, we have applied these methods to elucidate the functional difference of the NTS 

barosensitive neurons in disease models, such as Chronic Intermittent Hypoxia (CIH; Kolpakova 

et al., 2015) as shown in Part II. 
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PART II: EFFECTS OF CHRONIC INTERMITTENT HYPOXIA (CIH) ON 

NTS BAROSENTIVE NERUONS 

Chapter six: Introduction  

Obstructive sleep apnea (OSA) affects up to 24% of males and 9% of females (Bradley 

and Floras, 2009) and is associated with substantial morbidity in the central nervous system and 

cardiovascular systems (Young et al., 1997; Roux et al., 2000). Baroreflex control of heart rate is 

significantly impaired in OSA patients and can lead to heart failures and hypertension (Parati et 

al., 1997; Bonsignore et al., 2006; Monahan et al., 2006). Chronic intermittent hypoxia (CIH) has 

been used as a common animal model for sleep apneas because of the recurring hypoxic episodes 

associated with OSA (Gozal et al., 2001). Similarly to OSA, CIH-treated animals have reduced 

baroreflex sensitivity (Lai et al., 2006). Therefore, a thorough understanding is required for 

improvement and treatment strategies of OSA and its associated symptoms.  

Previously, we have demonstrated that following CIH exposure of Fischer 344 (F344) 

young adult rats, the baroreflex control of heart rate (HR) was significantly attenuated (Gu et al., 

2007; Lin et al., 2007; Yan et al., 2008; Yan et al., 2009). The impairment of baroreflex response 

is not due to the deficit of aortic depressor nerve function, which was actually found to be 

augmented in rats and mice (Gu et al., 2007).  Neither was CIH-attenuated baroreflex response 

due to vagal efferent cardiac nerve degeneration in the heart because direct vagal efferent 

stimulation actually resulted in an enhanced heart rate response (Lin et al., 2007). The evidence 

that a decrease in bradycardic response to ADN stimulation implies that the central component is 

responsible for CIH-induced impairment of baroreflex control of heart rate (Gu et al., 2007). 
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Baroreceptive afferent fibers make their first synapses onto Nucleus tractus solitarius 

(NTS) neurons. Therefore NTS is the utmost important integrating site of baroreceptive stimuli 

(Andresen and Kunze, 1994). Nucleus ambiguus (NA) have been largely characterized in terms 

of its contribution to CIH-induced impairments (Lin et al., 2008; Yan et al., 2008; Yan et al., 

2009), however, NTS role has not been well established. Several studies point to an altered 

function of NTS neurons (Reeves et al., 2006b; de Paula et al., 2007b; Kline et al., 2007; Zhang 

et al., 2008; Almado et al., 2012).  However, whether CIH alter NTS activity in response to 

arterial pressure changes have not yet been examined. Here, we report that CIH increases 

barosensitive NTS neurons’ activity in response to arterial pressure changes in anesthetized rats.  

Chapter seven: Methodology 

Animals  

Fischer 344 (F344; 3–4 month) male rats were used. Procedures were approved by the 

University of Central Florida Animal Care and Use Committee and followed the guidelines 

established by the National Institutes of Health.  

Intermittent Hypoxia exposure  

F344 rats were exposed to room air or intermittent hypoxia for 35-50 days. The 

intermittent hypoxia (IH) profile consisted of alternating 21% (90s) and 10% oxygen (90s) every 

6 min for the duration of the light cycle and maintained at 21% oxygen for the night period 
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(12h:12h). The room air (RA) control animals were housed in room air under the same 

conditions as CIH-exposed animals, except the concentration of oxygen was maintained 

throughout the duration of exposure. 

Surgical procedure 

The procedure has been previously described in detail (Wang et al, 2006, 2007 and 2008; 

Gu et al. 2007, 2008). Briefly, rats were initially anesthetized with Ketamine/Acepromazine (50 

mg/kg i.p.). Body temperature was monitored and controlled by a rectal probe and maintained at 

37 ± 1°C with a homeostatic blanket (Harvard, Holliston, MA). Supplemental doses (5 mg/kg 

i.v.) of sodium pentobarbital were administered (i.v) as needed to prevent eye blink and 

withdrawal reflexes to toe-pinch.  When the animals were no longer responsive to toe-pinch, we 

performed the following surgical procedures. Animals were given a tracheal intubation and 

oxygen-enriched room air was provided through ventilation. The femoral vein was cannulated 

for intravenous injections of the anesthetic agent. The left common carotid artery was 

cannulated, and the AP was recorded and measured using a PowerLab Data Acquisition System 

(PowerLab/8 SP) that was connected to a pressure transducer (CB Sciences, BP100) for 

measurement of arterial pressure (AP). Heart rate (HR) was calculated from pulse pressure 

waves with the ratemeter function of LabChart 5.3 software provided with the PowerLab system. 

A circular arterial balloon-occluder was secured around the descending thoracic aorta which was 

used to elevate AP as needed. Animals were placed in a stereotaxic instrument equipped with a 

head holder adapted to permit the neck to be sharply flexed. A dorsal incision was made over the 

neck muscles, which were retracted to expose the atlantooccipital membrane. This membrane 
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was opened with an incision, exposing the cisterna magna and the dorsal medulla. The rostral 

end of the area postrema was used as a rostrocaudal reference for stereotaxic coordinates (Wang 

et al. 2006).  

Extracellular recording of the NTS barosensitive neurons   

Extracellular recording of the NTS barosensitive neurons was similar to our previous 

studies (Wang et al. 2006, 2007, 2008, Zhang et al, 2003, a,b). Briefly, A single-unit 

extracellular recording was obtained using a beveled glass micropipette (resistance 5–12 MΩ) 

filled with KCl (1M). With respect to calamus scriptorius, the dorsal medial NTS was located 

300 μm–600 μm rostral, 300 μm–500 μm lateral, and 300 μm–500 μm ventral. The electrode was 

advanced using a microdrive into the dorsal medial NTS at a speed of 1–2 µm/s until single-unit 

activity was recorded. The spontaneous action potentials (APs) were amplified using a high 

impedance preamplifier (band pass 100–3,000 Hz) and fed into a window discriminator (Mentor 

N-750 spike analyzer), which generates a standard pulse for each spike. Potentials were 

visualized on an oscilloscope (model 121N; Tektronix). The pulse output of the discriminator 

was then fed into a rate/interval monitor (HFC) whose analog output is proportional to the 

number of spikes per unit time. These signals were displayed online on the computer and 

recorded on the data acquisition system. The sampling rate was 10,000 measurements per second 

(Wang et al. 2006). 
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Heart Rate  

The blood pressure catheter was connected to a blood pressure transducer (AD 

instruments). The transducer was positioned at the heart level. AP was measured using a 

PowerLab Data Acquisition System (PowerLab/8 SP) and displayed on the first channel (Fig 1A, 

PAP). The HR was calculated from pulse pressure in the first channel using the ratemeter 

function and displayed on the second channel (Fig 1A, HR). Baroreceptors were activated by the 

descending thoracic aortic occluder to evoke NTS barosensitive neuron response (Wang et al. 

2006, 2007, 2008). Basal MAP and HR were recorded by averaging AP values and pulses for 2 

min before elevation of AP. The NTS barosensitive neurons were identified by their increased 

activity (frequency of action potential or discharge rate) in response to transient AP elevation 

(24–47 mmHg) by occlusion for about 12 s. Some NTS barosensitive neurons that were inhibited 

by aortic occlusion were also encountered in the present study. Since our goal is mainly to study 

the barosensitive neurons with excitatory response to AP elevation, we did not further analyze 

barosensitive neurons with inhibitory or biphasic responses.  

Logistic sigmoidal function curve   

During aortic occlusion, mean arterial pressure (MAP), heart rate (HR) and NTS neuronal 

activity changes were measured. The NTS barosensitive neurons activity (NA)-∆MAP 

relationship curve was fitted by logistic sigmoidal function (Kent et al. 1972).  NA in response to 

MAP elevation was reported as the percent change relative to basal discharge using  SigmaPlot 

11: Y = A/{1 + exp [ -B(X - X50)]} + Ymin. where Ymin is the minimum value of % NTS neuronal 

activity relative to the basal activity, A is the range of %NTS neuronal activity (maximum - 
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minimum), X50 is the pressure at the midpoint of the range, and B is the slope coefficient. The 

peak slope [or Max gain (Gainmax)] was determined by: Gainmax = (A)(B)/4 and was used to 

evaluate the sensitivity of the NTS neural response to changes in MAP. Pressure threshold Xth 

was calculated as X50 - (1.317/B), and pressure saturation Xsat was calculated as X50 + (1.317/B), 

respectively. For late neurons, HR reduction-NA relationship was fitting by the logistic 

sigmoidal function: Y = A/{1 + exp[ -B (X - X50)]} + Ymax, where Ymax is the maximum 

reduction of the HR (bpm), A is the range of HR response (minimum - maximum), X50 is the % 

NA at the midpoint of the curve,  and B is the slope coefficient. Max gain (Gainmax) = (A)(B)/4 

and was used to evaluate the sensitivity of the HR reduction to NA changes. NTS NA threshold, 

Xth was calculated as X50 + (1.317/B) and NTS NA saturation, Xsat was calculated as X50 - 

(1.317/B), respectively. 

Statistical Analysis  

The average of MAP, HR, firing rate and the four parameters in the logistic function were 

calculated. The data are presented as mean ± SE.  Comparisons between RA and CIH groups 

were made using Student’s t-test or Two-way ANOVA repeated measures, Student-Newman-

Keuls post hoc analysis. P < 0.05 was considered significant. 
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Chapter eight: Results 

Classification of NTS neurons 

Data were collected from 10 RA and 11 CIH animals. The baseline level mean arterial 

pressure (MAP) and heart rate (HR) were measured for RA and CIH animals before occlusion. 

The baseline MAP for RA and CIH animals were not significantly different: 99.5±2.9 vs 

104.3±2.4 vs mmHg. Baseline HR for RA and CIH animals were 324.27±4.5 and 334.71±6.0 

bpm, respectively. 34 RA and 39 CIH neurons were analyzed. 27 of RA neurons and 31 CIH 

neurons increased firing upon MAP increase, and were thus considered excitatory (Fig. 6A). 4 

RA and 5 CIH excitatory neurons were pulmonary-related barosensitive neurons. These neurons 

had regular basal burst activity before AP increase which was synchronized with the artificial 

ventilation rate (Fig. 6B). Other neurons decreased firing rate upon MAP increased and returned 

to the basal firing rate when MAP went back to baseline level and were thus described as 

inhibitory: 3 RA and 6 CIH inhibitory neurons (Fig. 6C) were found. Still other neurons 

increased firing upon MAP decrease, and we found 4 RA and 2 CIH neurons of this type (Fig. 

6D). For some of this type of neurons, we further injected sodium nitroprusside (SNP) to 

decrease AP and verified that they indeed increase the firing rate with the decrease in MAP (Fig. 

6E). 

The time-course of NTS excitatory RA and CIH neuronal activity (NA).   

To compare the differences in NTS barosensitive neuronal activity (NA) between RA and 

CIH neurons, we determined not only whether maximum NTS response was affected by CIH, 
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but how the NTS neuronal response differed every second during MAP elevation. Thus we 

constructed a time-course of only early NTS neuronal activity % increase relative to baseline in 

response to MAP elevation measured and averaged at 1 s interval. We measured the time-course 

of NTS neuronal activity in response to ΔMAP (Fig. 7). NA was calculated as the percent (%) 

change relative to basal discharge.  ΔMAP and NA were sampled every second for up to 12 

seconds during aorta occlusion-induced MAP elevation. The sec 1 and sec 2 were defined at the 

first data point which was between <5% ΔMAP and >5 % ΔMAP, respectively. As shown in Fig. 

7A, ΔMAP was very similar in RA and CIH neurons within 12 s. The average MAP increased in 

RA neurons was 27.5±1.4 mmHg and 27.7±1.1 mmHg for CIH neurons. The rate of ΔMAP to 

the peak was also similar (RA: 6.94±0.82 mmHg/s, CIH: 6.73±0.80 mmHg/s).  

The basal NA of the early and late neurons was comparable (7.23±1.30 spikes/s for RA 

and 6.67±1.13 spikes/s for CIH neurons, P > 0.05).  Since the rate of ΔMAP to the peak was also 

similar, we compared NA increase (%) and found that the CIH neurons had a significantly higher 

increase of NA than the RA neurons at 7-12 s. The maximum NA % increases was significantly 

higher for CIH neurons than for RA: 189.4± 24.8 % for CIH vs 131.8 ± 11.2% for RA (P < 

0.05). 

Early and late activation of excitatory neurons  

The NTS barosensitive excitatory neurons did not increase firing rate simultaneously 

with MAP increase. 15 RA and 15 CIH neurons increased discharge rate (30% relative to 

baseline; Wang et al. 2006) during the early phase of the MAP ramp increase that ranged about 

3-5 s (Fig. 8A, B), while the remaining 12 RA and 16 CIH excitatory neurons did not 
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significantly increase discharge rate until the MAP reached its peak plateau, which lasted for 

about 5-7 seconds (Fig. 8C, D). For the early neurons, the NA-∆MAP relationship could be well 

fitted by logistic sigmodal curve (R2>0.88) (see below). The neurons that increased firing at the 

later stage and could not be fitted by logistic sigmodal curve were thus called the late neurons.  

All neurons decreased firing rate during the release of the occlusion of the descending aorta. 

CIH increased early neurons’ response to arterial blood pressure elevation 

To characterize the NA increase-∆MAP relationship of early RA and CIH neurons, we 

used the time-course and logistic sigmodal function curve. Fig. 9A shows the original recordings 

of early NA in response to MAP elevation in RA and CIH neurons. As described above, for the 

time-course of NTS neuronal activity, NA was calculated as the percent (%) change relative to 

basal discharge. ΔMAP and NA were sampled every second for up to 12 seconds during aorta 

occlusion-induced MAP elevation. As shown in Fig. 9B, ΔMAP was very similar in RA and CIH 

neurons within 12 s. The average MAP increased in RA neurons was 26.6± 1.4 mmHg at a rate 

of 5.6± 0.6 mmHg/s and for CIH neurons was 26.8±1.4 mmHg at a rate of 6.3± 1.1 mmHg/s. 

Since the basal NA of the early was also comparable (7.2± 1.9 spikes/s for RA and 6.7± 1.8 

spikes/s for CIH neurons, P > 0.05), we compared NA increase (%) and found that the CIH 

neurons had a significantly higher increase of NA than the RA neurons at 5-12 s, 2 seconds faster 

than when early and late neurons were combined (Fig. 7B). The maximum NA % increases was 

also significantly higher for CIH neurons than for RA: 203.3± 34.8% for CIH vs 122.5± 16.4% 

for RA (P < 0.05).  
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Fig. 9D shows a representative NA increase-ΔMAP curve and the six averaged 

parameters of the logistic function curves for 15 RA and 15 CIH neurons are summarized Table 

3. Fig. 9E is the composite curve from the averaged parameters in Table 3 from 15 early RA and 

CIH neurons. As can be seen from the composite curves in Fig. 9E and exemplified in single 

neurons curve in Fig. 9D, CIH neurons had significantly higher NA increase (% relative to 

baseline; range) and Gainmax. The inset of Fig. 9E shows the gain distribution curve that has a 

Gainmax of 19.1±4.2 %/mmHg for RA and 47.7±12.6 %/mmHg for CIH. 

CIH did not alter the response of late barosensitive neurons to MAP increase, but induced 

changes in NTS neuronal activity – HR relationship  

Similarly to the data above, we characterized the NA increase-∆MAP relationship of 12 

RA and 16 CIH late neurons. Fig. 10A shows the original recordings of NA in response to MAP 

elevation in RA and CIH late neurons. The basal NA of the early was comparable (7.0± 1.6 

spikes/s for RA and 6.6± 1.4 spikes/s for CIH neurons, P > 0.05). Maximum ΔMAP increase and 

rate was comparable between the two groups: 26.0±2.3 mmHg increase at a rate of 8.6±1.5 

mmHg/s for RA neurons and 26.9± 1.3 mmHg increase at a rate of 7.1±1.2 mmHg/s for CIH 

neurons. In contrast to early neurons, the maximum NA% increase was not significantly different 

between two groups (170.2±37.2% increase for CIH compared to 151.7±18.2 % increase in RA 

neurons). Moreover, time-course of NTS NA over 12 s of MAP increase (Fig. 10B) revealed no 

significant difference at any time-point of NA response (Fig. 10C). Therefore, the significant 

increase that was seen in all neurons (early and late; Fig. 7B), was mostly due to early neurons’ 

increase in firing rate.  
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For the late neurons, we could not obtain NA increase-ΔMAP curve because the NA did 

not increase until the ΔMAP reached the peak. Interestingly, although the ΔMAP reached the 

peak, heart rate (HR) continued to decrease for several seconds longer. Consequently, the late 

neurons showed correlation with baroreflex bradycardia in the late phase of ΔMAP. To examine 

HR-NA relationship, we construction HR reduction-NA increase curve was well fitted using the 

logistic sigmoidal function for RA and CIH neurons. The curves of these representative late 

neurons are shown in Fig. 10D. The composite curves of 12 RA and 16 CIH late neurons are 

shown in Fig. 5E using the averaged parameters in Table 2. Interestingly, we found that X50, 

mid-point NTS neuronal activity value of the curve, was significantly shifted to the right: 

64.9±11.9% for CIH neurons compared to 35.1±6.2% for RA neurons (Fig. 10E & Fig. 10E 

inset). Additionally, NTS NA saturation value (Xsat) was significantly higher for CIH neurons. 

Chapter nine: Discussion 

Previously, our work implied that the central components of the baroreflex loop is 

impaired in CIH rats (Gu et al., 2007, Yan et al. 2008, 2009). However, the effect of CIH on 

NTS which is the first integration center and directly receives baroreceptor input has not yet been 

well elucidated. Here, we examined the effect of CIH on firing rate of barosensitive NTS 

neurons. The majority of neurons recorded were excitatory for CIH and RA groups, which 

responded to MAP elevation with an increase in firing rate. These excitatory neurons can be 

further classified into early and late neurons according to whether the increased the firing rate 

during the MAP elevation ramp (early neurons) or near/after MAP reached peak (late neurons). 

Using the maximum response and time-course comparison, we found that early CIH neurons had 
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a significantly higher firing rate than early RA neurons, whereas late CIH neurons showed no 

significant difference in firing rate compared to late RA control. For early neurons, the neuronal 

activity (NA)-∆MAP relationship curve was well fitted and characterized using the six 

parameters of the logistic sigmodal function curve. In CIH, neuronal response range (% baseline) 

and a maximum slope of the curve (Gainmax) were significantly enhanced. Finally, the 

relationship of late neuronal activity-HR reduction was characterized using logistic function 

curve. CIH right-shifted HR reduction-NTS neuronal activity increase curve, suggesting that 

CIH decreases NTS control over the heart rate. 

CIH did not alter baseline activity and the activation time of the NTS early and late neurons in 

response to MAP elevation 

In this study, we found that the majority of neurons in RA (27 out of 34) and CIH (31 out 

of 39) groups, including a few pulmonary-related neurons, increased firing upon MAP elevation. 

In contrast, 3 RA and 6 CIH neurons decreased firing rate during MAP elevation. Additionally, 4 

RA and 2 CIH neuron increased firing rate following MAP decrease. We also found some 

neurons increased discharge rate during SNP-induced decrease of MAP (Fig. 5E). Similar types 

of NTS barosensitive neurons were previously reported by Zhang and Mifflin (Zhang and 

Mifflin, 2000).   

 We also observed that 15 RA neurons (out of 27) and 15 CIH neurons (out of 31) 

increased firing rate during the early phase of MAP increase (early neurons), whereas the 

remaining 12 RA and 16 CIH neurons increased firing rate only later near/after MAP elevation 

reached its peak (late neurons). The early and late neurons had similar basal firing rate, ΔMAP 
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and MAP increase rate in RA and CIH groups. Our finding of early and late NTS neurons are 

consistent with Zhang and Mifflin (Zhang and Mifflin, 2000), who reported that in response to 

MAP increase, the peak discharge of NTS barosensitive neurons occurred either before/during, 

or after MAP reached its peak in both monosynaptic (5 ‘before/during’ vs. 19 ‘after’ neurons) 

and polysynaptic neurons (5 ‘before/during’ vs. 14 ‘after’ neurons; (Zhang and Mifflin, 2000). It 

is not likely that the conduction velocity difference between myelinated and non-myelinated 

baroreceptor primary fibers could completely determine the early and delayed response time, as 

the time from the activation of the baroreceptor depressor A- or C-nerve fiber terminals in the 

aortic arch and carotid artery to the NTS would be less than a second (Brown, 1980; Paton, 1998; 

Striedter, 2014). Our data indicated CIH did not affect the baseline activity of barosensitive NTS 

early and late neurons, and the activation time of the NTS response to MAP elevation for early 

and late neurons were also similar. 

CIH significantly increased NTS Barosensitive Early Neuron Function 

To characterize NTS neuronal activity, we examined the time-course of neuronal activity-

ΔMAP relationship. The time-course depicts the relationship between NTS neuronal activity and 

MAP elevation from the time when neuron activity increased 30% above the basal activity till 12 

seconds when MAP started to decline due to the release pressure of descending aorta occlutor. 

First, we measured the time-course response of all excitatory neurons (both early and late 

neurons), and found that CIH induced significant increase firing rate during 12 sec aortic 

occlusion. Next, we examined the effect of CIH in early and late neurons separately. 

Interestingly, only the early CIH neurons showed a significantly higher increase in firing 



32 

 

compared to RA, whereas late CIH neuron response was similar to RA control. To further 

understand CIH-induced increase in early neurons discharge rate, we used the sigmoidal logistic 

function to construct the early NA-∆MAP curves for CIH and RA NTS early neurons.  For late 

neurons, however, we could not construct a NTS NA-∆MAP relationship curve because the 

MAP had almost or already reached the plateau before NTS neurons started to increase firing. 

Consistent with time-course measurements, we found that CIH significantly increased the range 

of the neuronal activity and maximum gain (Gainmax) compared to RA control. Thus, CIH 

significantly increased NTS early neuron baroreceptive function. 

For the late neurons, they could not be activated until they were stimulated by a large 

MAP increase for a certain amount of time (up to 5 s). Therefore, they might be neurons with a 

higher threshold activation (Andresen and Peters, 2008), or they might receive the input from 

high threshold baroreceptor afferent (Chen et al., 2014). Since depressor A-fibers have low 

activation threshold and C-fibers have a much higher activation threshold than A-fibers (Brown, 

1980), it is likely that A-fibers and C-fibers may contribute to NTS early and late neruons, 

respectively. Further experiments are needed to identify the differential pathways from 

baroreceptor afferent nerves to early and late neurons in NTS as well as their roles in controlling 

the heart.  In our study, CIH appears to affect the two pathways differently. 

It is difficult to offer the exact cause for the difference in CIH effect on early vs. late 

neurons at this moment.  Further study is needed to elucidate the cause. However, NTS are 

composed of many different neuron, neurotransmitter and receptor types (Andresen and Kunze, 

1994; Kline, 2008), and it is likely that CIH may affect NTS subpopulations differently. 
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Previously, it has been demonstrated that CIH enhances response to AMPA receptor activation, 

whereas decreased the response of NMDA receptors in the same NTS chemosensitive neurons 

(de Paula et al., 2007a). Chemoreceptor afferent from carotid body projects to commissural 

nuclei of NTS and baroreceptor afferent from carotid sinus and aortic arch projects to dorsal 

medial nuclei of NTS.  CIH clearly increased chemoreceptor afferent activity inputs to NTS 

chemosenstive neurons (Kline 2010).  Within NTS, there are different populations of neurons: 

chemosenstive and barosensitive among many other senses. In addition, one NTS neuron may 

employ multiple receptors for different neurotransmitters. Currently, the issue of whether CIH 

increases or decrease NTS neuron response to electrical and chemical stimulation is 

controversial, depending upon different receptors and population of neurons. De Paula et al 

(2007) reported that CIH increased AMPA-evoked current but decreased NMDA-evoked 

currents of the same NTS neurons which directly receive carotid body chemoreceptor inputs in in 

vitro brain slice.  Kline et al. (2007) found that CIH induces an increase in NTS postsynaptic cell 

activity initiated by spontaneous presynaptic transmitter release that is accompanied by an 

increase in firing rate of secondary NTS neurons in response to electrical stimulation of the 

solitary tract in brain slices (see Kline 2010 for a review).   In contrast, Almado et al. (2012) 

reported that CIH depresses afferent neurotransmission in NTS neurons by a reduction in the 

number of active synapses. While the differences of different studies are not easy to interpret, it 

appears that Kline et al. (2007) and Almado et al. (2012) recorded different publications of 

neurons in the NTS and CIH has different effects on different NTS neurons.  

Thus far, the effect of CIH-induced changes of chemoreceptor afferent and NTS 

chemosensitive neurons have been examined in numerous studies, whereas the studies aimed at 
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CIH-induced changes of baroreceptor afferent and NTS barosensitive neurons were much less 

studied (see Kline et al 2010; 2014 review). Previously, we have studied CIH-induced changes of 

multiple neuronal components in the baroreflex arc in a series of studies (Gu et al. 2007, Lin et al 

2007, 2008, Ai et al. 2008, 2009, Yan et al. 2008, 2009, see Kline et al 2010; 2014 review of our 

work). Along this line of study, our current data suggest that CIH has differential effects on 

different population of NTS neurons: CIH increases early barosensitive neurons activity in 

response to AP elevation, whereas does not change late barosensitive neurons activity. 

Late NTS neurons activity and heart rate reduction  

To illustrate the relationship of the late neuron activity with HR reduction, we used the 

sigmoidal logistic function curve to fit the HR reduction-late neuron activity relationship. The 

discharge rate of the late neurons correlated well with HR decrease in both RA and CIH groups. 

Interestingly, CIH significantly increases X50, indicating that CIH shifted the relationship curve 

rightward. These findings suggest that NTS late neurons activity may significantly contribute to 

the heart rate reduction in addition to the early neurons.  Very importantly, CIH significantly 

reduced the NTS regulation of baroreflex bradycardia. Since CIH enhanced NTS early neurons 

and did not change late neuron function, this data suggests that the later neural components in the 

baroreflex loop after NTS (such as the nucleus ambiggus) may be responsible for the baroreflex 

impairment.   
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Chapter ten: Conclusion 

Previously, we have established that CIH impairs baroreflex control of the heart rate 

(HR).  In baroreflex arc, there are multiple neural components, including baroreceptor afferent 

neurons, NTS barosensitive neurons, vagal motor neurons from nucleus ambiguus, and cardiac 

ganglia. To test which components were altered by CIH, we have systematically examined aortic 

depressor afferent nerve, vagal efferent nerve and central components.  Our previous data 

indicate that CIH impairs the central components (possibly NTS and/or nucleus ambiguus), 

whereas the peripheral components are enhanced, i.e., aortic depressor afferent nerve function 

and HR responses to vagal efferent nerve stimulation are increased (Gu et al., 2007, Lin et al., 

2007). Associated with the functional enhancement of the peripheral components, CIH increases 

baroreceptor afferent nerve innervation of the aortic arch and vagal efferent projection to cardiac 

ganglia (Lin et al. 2008, Ai et al. 2009). Along with the functional impairment of the central 

components, CIH decreases the HR responses to the excitatory neurotransmitter L-glutamate 

microinjection into the nucleus of ambiguus to activate cardiac motor neurons to control the 

heart which is associated with the cell loss of glutamatergic receptors (AMPA and NMDA) –

immunoreactive and Nissl-Stained vagal cardiac motor neurons in the nucleus of ambiguus (Yan 

et al., 2008, 2009). However, the functional changes of NTS barosensitive neurons had  never 

been tested in our previous studies.  

In this study, we examined the effect of CIH on the firing rate of barosensitive NTS early 

and late neurons. CIH significantly increased barosensitive NTS early neuron function but did 

not change barosensitive NTS late neuron function. It appeared that the early neuron activity 

contributes to the initial phase of HR reduction (before the MAP elevation reaches plateau) as 
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well as a later phase of the HR reduction (after the MAP elevation reaches plateau) (see Project 

I). For late neurons, the activity of the late neurons and HR reduction relationship can be well 

correlated and fitted using the logistic function curve. CIH significantly shifted the relationship 

curve rightward and hence decreased the NTS control over the HR. Since CIH increases NTS 

early neuron function and does not change NTS late neuron function as shown in this study, and 

since CIH increases the vagal efferent nerve control over HR but decreases the control of vagal 

cardiac motor neurons in the nucleus ambiguus over the HR (Gu et al. 2008; Lin et al. 2007, Yan 

et al. 2008, 2009), we now can draw a clear conclusion: CIH impairs baroreflex control of HR 

mainly due to the degeneration of nucleus ambiguus in the baroreflex arc. Therefore, targeting 

the nucleus ambiguus will lead to a focused direction to develop effective medical interventions 

for sleep apnea-induced cardiac neuropathy. 
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APPENDIX: FIGURES 
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Figure 1. NTS barosensitive neuronal activity in response to arterial pressure changes.  

A) A representative excitatory neuron increased discharge rate in response to AP elevation. HR 

decreases in response to AP elevation.  B) A pulmonary-related neuron. A representative 

excitatory neuron increased discharge rate during AP elevation. B’) The same neurons as in 

panel B. The basal burst discharge of this neuron had a firing pattern which was synchronized 

with the rhythmic ventilation. When the ventilator was turned off for 3 s, this neuron lost the 

burst activity and instead the spontaneous activity appeared. The burst activity reappeared as the 

ventilator was turned back on.  C) A representative NTS neuron decreased discharge rate during 

AP elevation.  D) A representative NTS neuron had a bi-phasic response: first a decrease in 

discharge rate during AP elevation, then an increase in discharge rate during the descending 

phase of AP. E) A representative neuron was i.v. injected with sodium-nitroprusside (SNP) to 

decrease AP.  SNP induced an excitatory response. HR: heart rate, PAP: pulse arterial pressure.  
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Figure 2. Activation and peak delays of NTS early and late neuronal activity (NA).  

AP increase (%) relative to baseline and NA increase (%) relative to the basal activity during AP 

elevation are superimposed on each other. 5% of MAP increase (ΔMAP) was defined as the 

MAP threshold. 30% of NA increase was defined as the NA activation threshold. The time 

period from 5% of MAP increase to 30% of NA increase was defined as NA activation delay. 

The period from the ΔMAP peak to NA peak increase was defined as the peak delay.  A) A 

representative early neuronal activity (NA). The NA activation delay for this neuron was 1.8 s 

and the peak delay was 0.2 s.  B) The distribution of the NA activation delay of the early 

neurons. C) The distribution of the peak delay of the early neurons. D) A representative NTS late 

NA. The NA activation delay for this neuron was 3.6 s and the peak delay was 7.0 s.  E) The 

distribution of the NA activation delay of the late neurons. F) The distribution of the peak delay 

of the late neurons. The negative NA delay indicates the NA peak was before the ΔMAP peak. 
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Figure 3. The time-course of NTS barosensitive neuronal activity (NA) increase in response to 

ΔMAP.  

A) During 12 s descending aorta occlusion, early and late neurons had similar ΔMAP (p>0.05). 

B) During 12 s descending aorta occlusion, NA increase (%, relative to baseline) in early 

neurons had a significantly larger response in response to MAP increase than late neurons. 

(*P<0.01, #P <0.05) 
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Figure 4. NTS neurons activity and ΔMAP relationship.  

A) Original recordings of a representative early NA during MAP increase. A’) The early NA- 

ΔMAP relationship curve was fitted using the the logistic sigmodal function. A’’) The composite 

early NA - ΔMAP relationship curve was reconstructed using the averaged parameters of the 

logistic sigmodal function curves of 14 neurons as shown in Table 1.  B) Original recordings of a 

representative late NA during MAP increase. B’) This late neuron activity in reponse to MAP 

increase could not be fitted with the logistic sigmodal function curve because it did not increase 

firing rate until ΔMAP reached the peak (about 40 mmHg).  C) A 3-D plot shows the different 

charateristic firing patterns of these two representative early and late neruons.   

 

Table 1. Parameters defining the early neuronal activity (% baseline)-ΔMAP logistic function 

curve  

R2 A (range; 

mmHg) 

B (slope 

coficient) 

X50 

(mmHg) 

Ymin  

(%) 

Gainmax  

(%/mmHg) 

Xth 

(mmHg) 

Xsat 

(mmHg) 

0.90±0.01 352.5±55.4 0.39±0.05 32.4±3.5 5.7±5.8 29.3±3.7 28.2±3.7 36.6±3.4 

Values are means ± SE.  n=14. R: correlation coefficient; A, maximum − minimum (range); X50: 

slope coefficient; X50, MAP at 50% of neuronal activity range; Ymin, mininal neruonal activity; 

Gmax, maximum early neruonal activity gain (slope); Xth, pressure threshold, X50 − (1.317/ B); 

Xsat, pressure saturation, X50 + (1.317/ B). 
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Figure 5. Heart rate and NTS neurons activity relationship.   

A) Original recordings of a representative early neuron activity and the HR reduction during 

MAP increase. A’) The initial HR reduction was linearly correlated with the increase of this 

early NA till the peak firing (about 200% relative to the baseline). After the peak firing, this 

neuron activity declined while the HR was still decreasing.  B) A 3-D plot shows the difference 

of the HR reduction- NA between two representative early and late neurons as shown in Fig.4. 

Whereas the early neuron contributed to the initial HR reduction, the late neuron did not 

contribute to HR reduction until a late time.  C) Original recordings of a representative late 

neuron activity and the HR reduction during MAP increase. C’) The HR and this late NA 

relationship curve was fitted using the logistic sigmodal function. C’’) The composite HR-late 

NA relationship curve was reconstructed using the averaged parameters of the logistic sigmodal 

function curves of 21 neurons as shown in Table 2.   

 

 

Table 2. Parameters defining heart rate reduction (ΔHR)-late neuronal activity (NA, % baseline)- 

logistic function curve. 

R2 A (range; 

%) 

B (slope 

coefficient) 

X50 (%) Ymax 

(bpm) 

Gainmax 

(bpm/%) 

Xth (%) Xsat (%) 

0.75 

±0.01 

18.9 

±1.2 

-0.04 

±0.006 

111.8 

±18.4 

-21.2 

±1.3 

-0.23 

±0.04 

67.3 

±12.9 

156.3 

±24.3 

Values are means ± SE.  n=21. R: correlation coefficient; A, minimum- maximum (range); X50: 

slope coefficient; X50, NA at 50% of HR reduction range; Ymax, maximum neruonal activity; 

Gmax, maximum HR reduction gain (slope); Xth, NA threshold, X50 + (1.317/ B); Xsat, NA 

saturation, X50 - (1.317/ B).  
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Figure 6. NTS barosensitive neuronal activity in response to arterial pressure changes in 

Ketamine-anesthetized rats.  

A) A representative excitatory neuron increased discharge rate in response to AP elevation. HR 

decreases in response to AP elevation.  B) A pulmonary-related neuron that increased discharge 

rate during AP elevation. The basal burst discharge of this neuron had a firing pattern which was 

synchronized with the rhythmic ventilation. C) A representative NTS neuron decreased discharge 

rate during AP elevation.  D) A representative NTS neuron increased discharge during AP 

decrease. E) A representative neuron was i.v. injected with sodium-nitroprusside (SNP) to 

decrease AP: SNP induced an excitatory response. HR: heart rate, PAP: pulse arterial pressure. 
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Figure 7. The time-course of RA and CIH NTS barosensitive neuronal activity (NA) in response 

to ΔMAP.  

A) During 12 s descending aorta occlusion, 27 room air (RA) and 31 chronic intermittent 

hypoxia (CIH) neurons had similar ΔMAP (p>0.05). B) During 7-12 s of descending aorta 

occlusion ΔMAP in 2A, CIH NA increase (% relative to baseline, n = 31) was significantly 

larger than RA NA increase (n = 27, *P <0.05) 
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Figure 8. Activation delay of NTS early and late neuronal activity (NA) in RA and CIH neurons.  

PAP increase (mmHg, max response-baseline) and NA increase (%) relative to the basal activity 

during AP elevation are superimposed on each other. 30% of NA increase was defined as the NA 

activation threshold. A representative original recordings of RA (A) and CIH (B) neurons which 

increased NA simultaneously with MAP increase. A representative original recordings of RA (C) 

and CIH (D) late neurons which increased NA only at or after AP maximum.  
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Figure 9. Early NTS neurons’ activity and ΔMAP relationship in RA and CIH neurons. 

A) Original recordings of a representative early RA and CIH NAs during MAP increase. B) The 

time-course of ΔMAP during 12 s descending aorta occlusion. C) The time-course of 15 RA and 

15 CIH NA increase (% relative to baseline) in response to ΔMAP in (B). During 5-12 s of 

ΔMAP, CIH NA increase (n = 15) was significantly larger than RA NA increase (n = 15, *P 

<0.05). D) The early NA-ΔMAP relationship curve was fitted using the the logistic sigmodal 

function. E) The composite early NA-ΔMAP relationship curves were reconstructed using the 

averaged parameters of the logistic sigmodal function curves of 15 RA and 15 CIH neurons as 

shown in Table 1.   

 

Table 3. Parameters defining the early neuronal activity (% baseline)–ΔMAP logistic function 

curves for RA and CIH neurons. 

 

 A (range; 

mmHg) 

B (slope 

coefficient) 

X50 

(mmHg) 

Ymin 

(%) 

Gainmax 

(%/mmHg) 

Xth 

(mmHg) 

Xsat 

(mmHg) 

R2 

RA 

n = 15 

118.4 

±21.6 

0.63 

±0.08 

16.6 

±1.8 

5.3 

±7.9 

19.1 

±4.2 

14.0 

±1.6 

19.2 

±1.9 

0.90±

0.01 

CIH 

n =15 

246.8 

±55.5 

0.77 

±0.15 

18.2 

±1.8 

-6.8 

±17.6 

47.7 

±12.6 

15.2 

±2.3 

21.2 

±1.4 

0.88±

0.01 

  P<0.05 N.S. N.S. N.S. P<0.05 N.S. N.S.   

 

Values are means ± SE. R2, correlation coefficient; A, maximum − minimum (range); B, slope 

coefficient; X50, MAP at 50% of neruonal activity range; Ymin, mininal neruonal activity; 

Gainmax, maximum early neruonal activity gain (slope); Xth, X50 − (1.317/ B); Xsat, X50 + (1.317/ 

B). 
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Figure 10. Late NTS neurons’ activity–ΔMAP and late NTS neurons’ activity–ΔHR 

relationships for RA and CIH neurons.  

A) Original recordings of a representative late RA and CIH NAs and the HR reduction during 

MAP increase. B) The time-course of ΔMAP during 12 s descending aorta occlusion. C) The 

time-course of 12 RA and 16 CIH NA increase (% relative to baseline) in response to ΔMAP in 

(B). During 12 s of ΔMAP there was no difference between CIH (n = 16) and RA (n = 12) NA 

increase (P>0.05). D) The HR-late NA relationship curve from RA and CIH neurons was fitted 

using the logistic sigmodal function. E) The composite HR-late NA relationship curves were 

reconstructed using the averaged parameters of the logistic sigmodal function curves of 12 RA 

and 16 CIH neurons as shown in Table 2.   

 

Table 4. Parameters defining heart rate reduction (ΔHR)–late neuronal activity (NA, % 

baseline)–logistic function curves for RA and CIH neurons. 

 A (range; 

%) 

B (slope 

coefficient) 

X50 (%) Ymax 

(bpm) 

Gainmax 

(bpm/%) 

Xth (%) Xsat (%) R2 

RA  

n = 12 

16.3 

±1.6 

-0.082 

±0.027 

35.1 

±6.2 

17.0 

±1.0 

-0.33 

±0.061 

61.9 

±8.0 

8.3 

±9.5 

0.74 

±0.02 

CIH  

n =16 

14.9 

±1.5 

-0.085 

±0.021 

64.9 

±11.9 

15.9 

±1.0 

-0.30 

±0.060 

87.6 

±12.6 

42.2 

±12.6 

0.76 

±0.03 

 N.S. N.S. P<0.05 N.S. N.S. N.S. P<0.05  

Values are means ± SE. R2, correlation coefficient; A, minimum-maximum (range); B, slope 

coefficient; X50, NA at 50% of HR reduction range; Ymax, maximum neruonal activity; Gainmax, 

maximum HR reduction gain (slope); Xth, X50 + (1.317/ B); Xsat, X50 - (1.317/ B).  
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