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ABSTRACT 

Neurofibromatosis type 2 (NF2) is a benign tumor disease of the nervous system. 

Development of bilateral vestibular schwannomas is characteristic of NF2; however 

patients frequently present schwannomas on other nerves, as well as meningiomas and 

ependymomas. Currently, there are no drug therapies for NF2. There is an urgent need 

for development of NF2 therapeutics and this dissertation presents two independent 

potential therapeutic targets. 

The disease is caused by mutations in the NF2 gene that encodes a tumor 

suppressor called merlin. Loss of merlin function is associated with increased activity of 

Rac and p21-activated kinases (PAK) and deregulation of cytoskeletal organization.  

LIM domain kinases (LIMK1 and 2) are substrates for Cdc42/Rac-PAK, and modulate 

actin dynamics by phosphorylating cofilin, an actin severing and depolymerizing agent.  

LIMKs also translocate into the nucleus and regulate cell cycle progression. Here we 

report that mouse Schwann cells (MSCs) in which merlin function is lost as a result of 

Nf2 exon2 deletion (Nf2Ex2) exhibited increased levels of LIMK1, LIMK2, and active 

phospho-Thr508/505-LIMK1/2, as well as phospho-Ser3-cofilin, compared to wild-type 

normal MSCs. Similarly, levels of LIMK1 and 2 total protein and active phosphorylated 

forms were elevated in human vestibular schwannomas compared to normal human 

Schwann cells (SCs). Reintroduction of wild-type NF2 into Nf2Ex2 MSC reduced LIMK1 

and LIMK2 levels. Pharmacological inhibition of LIMK with BMS-5, decreased the 

viability of Nf2Ex2 MSCs in a dose-dependent manner, but did not affect viability of 
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control MSCs. Similarly, LIMK knockdown decreased viability of Nf2Ex2 MSCs. The 

decreased viability of Nf2Ex2 MSCs was due to inhibition of cell cycle progression as 

evidenced by accumulation of cells in G2/M phase. Inhibition of LIMKs arrest cells in 

early mitosis by decreasing Aurora A activation and cofilin phosphorylation. 

To increase the search for NF2 therapeutics, we applied an alternative approach 

to drug discovery with an unbiased pilot high-throughput screen of the Library of 

Pharmacologically Active Compounds. We assayed for compounds capable of reducing 

viability of Nf2Ex2 MSC as a cellular model for human NF2 schwannomas.  AGK2, a 

SIRT2 (sirtuin 2) inhibitor, was identified as a candidate compound. SIRT2, a 

mammalian sirtuin, is a NAD+-dependent protein deacetylase. We show that Nf2Ex2 

MSC have higher expression levels of SIRT2 and lower levels of overall lysine 

acetylation than wild-type control MSC. Pharmacological inhibition of SIRT2 decreases 

Nf2Ex2 MSC viability in a dose dependent manner without substantially reducing wild-

type MSC viability. Inhibition of SIRT2 activity in Nf2Ex2 MSC causes cell death 

accompanied by release of the necrotic markers lactate dehydrogenase and high 

mobility group box 1 protein into the medium in the absence of significant apoptosis, 

autophagy, or cell cycle arrest. 

Overall this work uncovered two novel potential therapeutic targets, LIMK and 

SIRT2 for NF2 and tumors associated with merlin deficiency.  
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CHAPTER ONE: INTRODUCTION 

Neurofibromatosis Type 2 

Neurofibromatosis type 2 (NF2) is a genetic disorder that causes multiple tumors 

to form in the nervous system. Because the incidence rate for NF2 is one in 25,000, it is 

considered a rare disease. NF2 is inherited in an autosomal dominant manner, however 

more than half of the patients present with no family history and have de novo 

mutations. The distinctive feature of NF2 is the formation of bilateral vestibular 

schwannomas, tumors arising from Schwann cells on the vestibular branch of the eighth 

cranial nerve, the auditory nerve. Patients frequently develop schwannomas in other 

cranial, spinal and peripheral nerves. Other occurring nervous system tumors are 

meningiomas and ependymomas [1]. Common initial and progressive symptoms are 

hearing loss, tinnitus and dizziness. Other symptoms depend on the location of the 

tumors and include headaches, seizures, pain, paraesthesia, skin plaques and ocular 

manifestations such as lens opacities and cataracts. The majority of patients will 

develop axonal neuropathy and present for example facial palsy, foot drop, and 

muscular weakness that can progress to severe muscle wasting. Although tumors are 

benign; their growth may compress essential structures such as the brainstem carrying 

more serious complications including death [1, 2]. The onset of symptoms in NF2 is at a 

young age, generally between the ages of 18 to 30 years, but children as young as 2 

years have manifested with the disease. The diagnosis relies on clinical features, the 

most widely used is the Manchester diagnostic criteria, which modifies the NIH criteria, 
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including patients without family history who develop multiple schwannomas and/or 

meningiomas but have not yet developed bilateral vestibular schwannomas. The NIH 

original criteria involved patients with bilateral vestibular schwannomas or family history 

of NF2 plus unilateral vestibular schwannoma or two of any schwannoma, meningioma, 

glioma, neurofibroma, or lenticular opacities [2, 3]. Currently, microsurgery and 

stereotactic radiosurgery are the only treatments available to NF2 patients. Surgical 

removal of the tumors results in deafness and very frequently facial paralysis as well, 

whereas radiotherapy carries the associated risk of radiation-induced malignant 

transformation. Additionally some patients are poor surgical candidates; therefore NF2 

patients are in need of alternative drug treatment [1, 2]. 

The work described in this dissertation is focused on validating two targets for 

development of treatments for NF2. One target, LIMK emerged from knowledge of 

signaling pathways deregulated in Schwann cells with loss of merlin function. The 

second target, SIRT2 emerged from an unbiased chemical genomic approach using an 

Nf2∆Ex2 mouse Schwann cell line in a high throughput screen (HTS) of a compound 

library. 

Merlin 

Twenty years ago the NF2 gene was cloned and mutations in the gene are 

responsible for NF2 [4, 5]. The tumor suppressor gene NF2 is located on chromosome 

22q12.2 and encodes for a protein called merlin or schwannomin. Merlin is a 

cytoskeleton associated protein, member of the ERM (ezrin, radixin, moesin) family of 
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proteins. Merlin regulates cell size, morphology, motility, proliferation, and survival [6, 7]. 

There are multiple isoforms of human merlin but two alternative isoforms are the most 

abundant and studied: merlin isoform 1, a 595 amino acids protein that lacks exon 16 

from the 17 potential exons and merlin isoform 2, a 590 amino acid protein that includes 

exon 16 but lacks exon 17. Phosphorylation of merlin at various serine and threonine 

residues regulates its conformation (growth-permissive or -inhibitory conformation), 

interaction with binding partners, and sub-cellular localization [7]. Work from Dr. 

Fernandez-Valle’s laboratory has shown that activation of the β1-integrin and ErbB2 

receptors with laminin and neuregulin promotes protein kinase A- and p-21-activated 

kinase (PAK)-dependent phosphorylation of merlin at serine-518, respectively in normal 

Schwann cells [8]. Years of research from multiple groups have shown merlin’s 

involvement in numerous signaling cascades (Figure 1) including: RasGTPase, the 

PI3K/AKT/mTOR pathway, mitogenic and cell adhesion receptors (EGFR, ErbB2, 

CD44, E-cadherin), extracellular matrix receptors (β1 integrins), and the newly-

described MST1/2-YAP pathway (Hippo pathway) that controls organ development and 

homeostasis [5-7, 9, 10]. Merlin also translocates into and accumulates in the nucleus. 

There merlin inhibits the E3 ubiquitin ligase CLR4 (DCAF1) inducing growth 

suppression [11].  

Merlin negatively regulates Rac1 signaling via inhibition of p21-activated kinases 

(PAK) [12]. Conversely, activated Rac/cell division cycle protein 42 (Cdc42) binds PAK 

that phosphorylates and inactivates merlin tumor suppressor activity [12, 13]. 

Importantly, increased levels of activated Rac and its downstream effector PAK were 
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reported in primary human schwannoma cells [14]. Studies of PAK inhibitors as 

potential NF2 therapeutics have shown them capable of reducing schwannoma cell 

proliferation; however, the vast numbers of PAK substrates reduces its likelihood in 

clinical applications. Thus selectively targeting a key downstream PAK effector would be 

more desirable [15]. Among PAK substrates are the LIM domain kinases, terminal 

kinases in the Rac/Cdc42/PAK/LIMK/cofilin pathway and as such potential targets for 

NF2 therapy. 

LIM Domain Kinases 

The LIM domain kinases (LIMK) are serine/threonine protein kinases that contain 

two LIM domains at their N-terminus, which each contain two zinc fingers, followed by a 

PDZ domain and the kinase domain at the C-terminus. The LIMK family has two 

members, LIMK1 and LIMK2 that are highly related and encoded by separate genes. 

Human LIMK1 gene is located on chromosome 7q11.23, and human LIMK2 gene is on 

chromosome 22q12.2 [16].  

LIM kinases, like other kinases, when phosphorylated in the activation loop 

increase their enzymatic activity despite the presence of other regulatory 

phosphorylation sites. LIMK1 is activated by Thr-508 phosphorylation and LIMK2 by 

Thr-505 phosphorylation. Both LIMK can be phosphorylated by Cdc42/Rac effectors-

PAK1, 2 and 4 to become active serine/threonine kinases (Figure 1). LIMK are also 

activated by other small GTPase downstream effectors including the Rho effectors Rho-

associated kinases 1 and 2(ROCK1 and 2) and the Cdc42 effector myotonic dystrophy 
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kinase-related Cdc42-binding kinase (MRCK) [16, 17]. Conversely, LIMK are inactivated 

by the phosphatase slingshot (SSH) that also dephosphorylates cofilin and by ubiquitin-

induced proteosomal degradation by the E3 ubiquitin ligases Rnf6 and parkin [18-20]. 

The most study and characterized LIMK substrate is the actin depolymerizing 

and severing protein, cofilin. Here, the general term cofilin refers to cofilin1(alternatively 

called non-muscle cofilin), as opposed to cofilin2 (muscle cofilin) and destrin (commonly 

known as actin depolymerization factor ADF). LIMK phosphorylation of cofilin at Ser-3 

inactivates its actin depolymerizing and severing function. Thus, cofilin Ser-3 

phosphorylation promotes stabilization of the actin cytoskeleton [21]. Although cofilin is 

the major LIMK substrate, more recently other substrates have been identified. The 

cAMP response element-binding protein (CREB) transcriptional factor is phosphorylated 

at Ser-133 by LIMK1 upon fibroblast growth factor-2 stimulation via the 

Rac/Cdc42/PAK1 pathway in hippocampal neuron progenitor cells during differentiation 

[22]. Additionally, among the multiple signaling pathways that regulate the 

transcriptional activity of the orphan nuclear receptor Nurr1, LIMK1 directly interacts 

with Nurr1 and negatively regulates its activity [23]. Lastly, LIMK1 phosphorylates and is 

a substrate for Aurora A to promote its activation and autophosphorylation at Thr-288 

[24] whereas LIMK2 is an Aurora A substrate and stabilizes it depending on both its 

kinase and scaffolding actions [25]. 

Reorganization of the actin cytoskeleton by LIMK actions on cofilin in the 

cytoplasm and in focal adhesions modulates cell morphology and motility. LIMK’s role in 

morphology was extensively studied in neurons and its importance is revealed by the 
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abnormal morphology of spines and greatly reduced growth cones in hippocampal 

neurons of the Limk1 knockout mice, consequently presenting abnormalities in the 

synaptic function [26]. Moreover, in the Limk1- Limk2 double knockout mice, long term 

potentiation and synaptic response were more severely altered [27]. 

 LIM domain kinases also have a role in cell cycle and cytokinesis. Through 

progression of the cell cycle LIM kinases show distinctive subcellular localization, they 

translocate to the nucleus and centrosome regulating mitotic spindle organization, 

centrosome division and chromosome segregation, and to the cleavage furrow 

influencing cytokinesis [16]. During mitosis LIMK activity varies from prophase to 

metaphase the level of LIMK1 activity increases to favor phosphorylation of cofilin; while 

during anaphase and telophase LIMK1 activity gradually returns to basal levels [28-30]. 

Interestingly, both LIM kinases functionally interact with aurora A kinase that regulates 

centrosome dynamics, spindle assembly and chromosome alignment and segregation 

[31, 32]; In early mitosis phospho-LIM kinases co-localize with γ-tubulin in the 

centrosomes, in metaphase LIMK1 is found at the spindle poles and later redistributes 

to the cleavage furrow. In contrast, LIMK2 localizes along the spindle and at the 

cleavage furrow of post-mitotic cells [24, 25]. 

 Both LIM kinases are widely expressed in tissues of embryonic and adult mice 

showing a temporal dynamics and with similar distribution except for the testis where 

their expression is complementary. LIMK1 was expressed at higher levels in the 

spermatocytes, Sertoli cells and early spermatids than in mature spermatids. LIMK2 

was found only in the mature elongated spermatids [33-35]. Microdeletion of several 
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genes on chromosome 7q11.23 including LIMK1 is associated with a mental disorder 

called Williams syndrome. Williams syndrome patients present severe visuospatial 

cognition impairment, moderate mental retardation or learning disabilities. Importantly, 

LIMK are implicated in other diseases, including cancer. Several reports show LIMK 

overexpression in various cancers, including breast, lung, skin, liver and prostate, as 

well as various tumor cell lines [36-39]. Therefore, LIMKs are emerging potential targets 

for cancer therapy [40]. 

 SIRT2 

SIRT2 or sirtuin2 is one of the seven identified mammalian sirtuins. Sirtuins are 

deacetylases that remove the acetyl group from the epsilon-amine of lysines from 

proteins and belong to the class III histone deacetylases (HDACs). HDAC proteins are 

now also called lysine deacetylases (KDAC) to more appropriately describe their 

function instead of their target, because they also deacetylate non-histone proteins [41].  

Based on their homology to yeast proteins, mammalian HDACs are classified into three 

groups. Class I and II include HDACs with homology to the yeast RPD3 and HDA1 

respectively. The class III includes the sirtuins that are homologous to the yeast Sir2 

(silent information regulator 2) [42]. Class I and II HDACs contain zinc in their catalytic 

site and are inhibited by trichostatin A. Sirtuins instead are NAD(+) dependent 

deacetylases that do not contain zinc in the catalytic site and are not inhibited by 

trichostatin A. The seven known mammalian sirtuins differ in their subcellular 

localization and acetylated substrate specificity. The most studied SIRT1, as well as 
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SIRT6 and SIRT7 are predominantly nuclear, SIRT2 is mainly cytoplasmic and SIRT3, 

SIRT4 and SIRT5 are mitochondrial; the seven sirtuins were found across all the 

studied tissues [43, 44]. 

The list of SIRT2 substrates is continuously growing as research uncovers new 

SIRT2 biological functions. The first identified substrate was acetylated Lys40 of α-

tubulin both in vivo and in vitro, and SIRT2 was reported to co-localize with the 

microtubule network [45]. Interestingly, α-tubulin can also be deacetylated by HDAC6 

[46]. 

SIRT2 also regulates differentiation of various cells types for example the 

differentiation of adipocytes through Foxo1 (forkhead Box O1) deacetylation [47]. 

Interestingly, SIRT2 was shown to promote [48] as well as to inhibit [49] oligodendrocyte 

differentiation. In Schwann cells, SIRT2 promotes myelin formation by deacetylating 

partitioning defective 3 homolog (PAR-3), a regulator of cell polarity [50]. The 

expression of SIRT2 in mice Schwann cells is concordant with peripheral myelination. In 

mouse postnatal nerves, SIRT2 relative expression increases from P1 to P14 and then 

remains stable. 

In neurodegenerative diseases such as Parkinson’s disease (PD) and 

Huntington’s disease (HD), SIRT2 inhibition shows beneficial effects. SIRT2 inhibitors 

rescued α-synuclein toxicity in a Parkinson’s disease cellular model as well as protected 

cells from dopaminergic cell death in vitro and in vivo in a Drosophila PD model [51]. 

Moreover, Inhibition of SIRT2 in a mouse model of Parkinson’s disease suggested that 

it might be protective against the disease because SIRT2 deacetylated Foxo3a, 
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activated Bim, and induced apoptosis only in mouse brains injected with a dopaminergic 

neurotoxin and in toxin-treated cells [52]. In two different HD mouse models, SIRT2 

inhibitors were validated as potential therapeutic targets because they were able to 

extend survival, improve motor function and reduced the aggregation of the mutant 

huntingtin in their brain that  is a hallmark of the disease [53]. 

The role of SIRT2 in cancer development is emerging. Although controversial, 

SIRT2 was initially reported as a tumor suppressor because of its role in cell cycle 

regulation. It was described that in response to stress SIRT2 released the mitotic arrest 

in critically damaged cells, allowing them to undergo apoptosis [54]. Recent reports 

show up-regulation of SIRT2 during the G2/M transition in Saos2 cells. SIRT2 is 

phosphorylated during late G2, M phase and then as the cells exit mitosis, SIRT2 levels 

decrease via ubiquitination and the 26S proteosomal pathway. Mitosis associated 

SIRT2 phosphorylation was later identified at Ser-368 by cdk1.[55, 56]. Moreover, 

SIRT2 is also phosphorylated at Ser-332 by CyclinE-Cdk2, CyclinA-Cdk2 and p35-Cdks 

and this phosphorylation inhibits SIRT2 enzymatic activity. However, experiments in 

HeLa and HEK293 cells with wild-type SIRT2 and SIRT2 phosphorylation mutants 

showed no effect on cell cycle progression or proliferation, although there was an effect 

on cell adhesion [57]. Additional involvement of SIRT2 in normal mitotic progression 

was demonstrated. SIRT2 appears to control the activity of the anaphase promoting 

complex/cyclosome (APC/C) by deacetylating the APC/C co-activators CDH1 and 

cdc20, which enhance their binding to the complex and hence prevent chromosomal 

instability during mitosis [58]. Further evidence of a potential role of SIRT2 as a tumor 
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suppressor in some tissue types is found in SIRT2 knockout mouse models that despite 

presenting normal development, aged SIRT2-deficient mice developed spontaneous 

and gender-specific tumors. The females mainly developed mammary tumors whereas 

the males developed hepatocellular carcinomas [58].  

Conversely, the role of SIRT2 in control of cellular responses to stress and 

tumorigenesis led to testing of the antitumor activity of SIRT2 inhibitors. Both SIRT2 and 

SIRT1 emerged as attractive targets because they deacetylate major regulatory 

proteins, such as p53 and histone H4K16. Their inhibition with cambinol decreased 

viability of Burkitt lymphoma cells [59, 60]. Additionally, SIRT2 and HDAC6 deacetylate 

Lys104 of K-RAS that increases K-Ras transforming activity [61]. In the same line of 

evidence, SIRT2 was shown to stabilize Myc oncoproteins. In neuroblastomas and 

pancreatic cancer cells SIRT2 was upregulated and promoted cell proliferation by 

inhibiting the ubiquitin-protein ligase NEDD4 gene expression. SIRT2 binds the NEDD4 

promoter repressing its activity and deacetylates Lys16 of histone H4; therefore 

inhibition of SIRT2 resulted in reactivation of the NEDD4 and reduced N-Myc and c-Myc 

expression stopping the CHP134 neuroblastoma cells and MiaPaca-2 pancreatic cancer 

cell proliferation [62]. Additional support to the benefit of SIRT2 inhibition in cancer is 

found in human gliomas. Despite that SIRT2 was reported down-regulated in several 

samples of human gliomas, SIRT2 activity was proven essential for survival of glioma 

cells [63, 64]. He et al. reported in 2012 that SIRT2 pharmacological inhibition and 

silencing induced both apoptosis and necrosis response of C6 glioma cells. Other 

cancer cells were also selectively killed by the small molecule SIRT2 inhibitor AC-
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93253. In four different cancer cell lines, DU145 (prostate), MiaPaca2 (pancreas), A549 

and NCI-H460 (lung) inhibition of SIRT2 was dramatically more cytotoxic than to the 

counterpart human control cells. Live cell imaging with HeLa cells suggested that AC-

93253 induced primarily apoptosis with the presence of some necrotic cells [65]. In 

microglial cells, inhibition of SIRT2 with another selective small molecule SIRT2 

inhibitor, AGK2, resulted in decreased BV2 microglial cells viability by inducing both 

necrosis and late-stage apoptosis [66]. Of note, in program necrosis, specifically when 

activated by death ligands such as tumor necrosis factor-alpha (TNF-α), SIRT2 was 

essential for the formation of the receptor-interacting protein 1 (RIP1) and receptor-

interacting protein 3 (RIP3) complex in L929. Upon TNF-α stimulation, association of 

RIP1 with the RIP3 bound to SIRT2 can occur because SIRT2 is able to deacetylate 

RIP1 Lys-530 and allow a stable RIP1-RIP3 complex to proceed in the necroptotic 

program [67].  

Despite opposing reports exhibiting a dual role of SIRT2 in both promoting and 

suppressing tumor formation, pharmacological inhibition of SIRT2 in age-related 

disorders including various types of cancer is attractive [68]. Yet, there are no highly 

potent and specific inhibitors for SIRT2. Specificity was not completely tested because 

most of the available SIRT2 inhibitors have only been screened against SIRT1 and 

SIRT3 and not the other sirtuins [69].  

Overall, the two proposed NF2 therapeutic targets LIM domain kinases that 

emerged from an over-activated merlin pathway in NF2, and SIRT2 identified in an 

unbiased screen have been associated with tumorigenesis. Hence, both are currently 
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attracting the interest of pharmaceutical companies to target them for cancer 

therapeutics.  
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Figures 

 

 

Figure 1. Merlin Signaling Pathways 

Diagram summarizes the pathways modulated by merlin. Depicted are the RasGTPase, the 
PI3K/AKT/mTOR pathway, mitogenic receptors (e.g. EGFR, ErbB2), extracellular matrix 
receptors (β1 integrins), nuclear ubiquitination cascades, and the most recently-described Mst-
YAP pathway. Diagram by Dr. Fernandez-Valle.  
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CHAPTER TWO: LIM DOMAIN KINASES AS POTENTIAL 
THERAPEUTIC TARGETS FOR NEUROFIBROMATOSIS TYPE 2 

Introduction 

Mutations in the tumor suppressor gene NF2 cause neurofibromatosis type 2 

(NF2), an autosomal dominant disorder with an incidence of about one in 25,000 

individuals [4].  The characteristic feature of NF2 is the development of bilateral 

vestibular schwannomas that typically cause deafness, facial paralysis and 

disequilibrium following surgical removal to prevent life-threatening complications. 

Frequently, NF2 patients also develop multiple schwannomas in other nerves as well as 

meningiomas and ependymomas [1]. Mutations in the NF2 gene are also common in 

malignant mesothelioma [70]. Currently, the standard treatment for NF2 schwannomas 

is microsurgery or stereotactic radiosurgery. Unfortunately, limited operability, poor 

preservation of hearing, diminished functionality of facial nerves and the small risk of 

radiation-induced malignant transformation later, compromise good clinical outcomes. 

Only a handful of NF2 pre-clinical and clinical trials are ongoing, all of which utilize 

existing anti-cancer drugs [9, 71].  

The NF2 gene encodes a tumor suppressor called merlin or schwannomin. 

Merlin regulates a number of processes in Schwann cells (SCs) [7, 72]. Normal SCs 

usually proliferate slowly and adopt a bipolar morphology, however, merlin-deficient 

human schwannoma cells exhibit abnormalities in proliferation, motility and morphology 

in vitro [73]. Merlin’s mechanism of action remains poorly understood, but appears to 

involve regulation of surface receptor activity and turnover by modulation of their 
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interactions with the actin cytoskeleton and transduction of downstream signals [7]. A 

potential pathway through which merlin regulates the actin cytoskeleton involves 

Cdc42/Rac-PAK-LIMK-cofilin [13, 74, 75]. Loss of merlin function is associated with 

elevated levels of active Rac and p21-activated kinase (PAK), suggesting that merlin is 

a negative regulator of Rac and PAK-dependent pathways. Conversely, PAK 

phosphorylates and inactivates merlin’s tumor suppressor activity [12, 76].  Work from 

our laboratory has shown that activation of β1-integrin in normal SCs promotes PAK-

dependent phosphorylation of merlin at serine-518  [8]. While PAK has been studied as 

a potential therapeutic target for NF2, its large number of substrates confounds its 

usefulness [15].   

The LIM kinase (LIMK) family has two members, LIMK1 and LIMK2, which can 

be phosphorylated by Cdc42/Rac-PAK1, 2 and 4 at threonine-505/508 and converted 

into active serine/threonine kinases. LIMKs are also regulated by Rho-associated 

kinases (ROCK) and the myotonic dystrophy kinase-related Cdc42-binding kinase 

(MRCK). The major LIMK substrate is the actin depolymerizing and severing protein 

cofilin/ADF [17].  LIMK-dependent phosphorylation of cofilin at serine-3 inactivates 

cofilin and promotes stabilization of the actin cytoskeleton [21]. LIMKs also translocate 

from the cortical cytoplasm and focal adhesions, where they modulate cell morphology 

and motility, to the centrosome and nucleus, where they regulate mitosis and 

cytokinesis [16, 28, 29, 77-80].  LIMKs interact with Aurora A, a serine/threonine kinase 

involved in centrosome dynamics, spindle assembly and chromosome alignment and 

segregation during mitosis [31, 32]. Aurora A is found on duplicated centrosomes and 
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mitotic spindle microtubules. During early mitosis phospho-LIMKs co-localize with γ-

tubulin in the centrosomes. In metaphase LIMK1 is found at the spindle poles and later 

redistributes to the cleavage furrow. LIMK2 is located along the spindle and at the 

cleavage furrow of post-mitotic cells.  LIMK1 is a substrate for, and phosphorylates 

Aurora A to promote its autophosphorylation at Thr288 [24]. LIMK2 is an Aurora A 

substrate and stabilizes it by kinase and scaffolding actions [25]. LIMKs are 

overexpressed and implicated in various cancers, such as breast, lung, skin, liver and 

prostate, and several tumor cell lines [36-39]. Hence, LIMKs are emerging cancer 

targets yet, few inhibitors have been identified [17]. 

We show that the levels of total and phosphorylated LIMK and its phosphorylated 

substrate are elevated in sporadic vestibular schwannomas (VS) compared to normal 

human SCs. Utilizing Nf2∆Ex2 mouse Schwann cells (MSCs) as a cellular model of NF2, 

we show that pharmacological inhibition or genetic silencing of LIMK significantly 

reduces proliferation of Nf2∆Ex2 MSCs, but does not substantially affect control 

Nf2flox2/flox2 MSCs. The decreased proliferation is due to cell cycle arrest in the G2/M 

phase. Pharmacological inhibition of LIMKs with BMS-5 slows mitotic progression by 

decreasing phosphorylation of cofilin and Aurora A. These studies suggest that LIMKs 

are potential therapeutic targets for NF2 and other merlin-deficient tumors. 
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Materials and Methods 

Inhibitors  

LIMK1/2 inhibitor, BMS-5 (CAS name N-(5-(192,6-dichlorophenyl)-3-

(difluoromethyl)-1H-pyrazol-5-yl)thiazol-2-yl)isobutyramide) was from SynKinase 

(Shanghai, China). Rapamycin and staurosporine were from Santa Cruz Biotechnology 

(Santa Cruz, CA, USA).  

Antibodies  

Antibodies used were purchased from the following sources: phospho-Cofilin 

Ser3 (77G2), Merlin (D1D8), phospho-LIMK1(Thr508)/LIMK2(Thr505) (used in cell 

lines),  LIMK1, phospho-Histone3(Ser10) (D2C8), α-Tubulin (DM1A), phospho-

AuroraA(Thr288)(D13A11) and  β-Actin (8H10D10) from Cell Signaling (Danvers, MA, 

USA); LIMK1 (clone42) mouse monoclonal antibody from BD Biosciences (San Jose, 

CA, USA); LIMK2, phospho-LIMK1 (pThr-508), and phospho-LIMK2 (pThr-505) rabbit 

antibodies from Sigma-Aldrich (St. Louis, MO, USA); S-100 rabbit antibody from Dako 

Cytomation (Glostrup, Denmark); Cofilin rabbit antibody from Novus Biologicals 

(Littleton, CO, USA);Centrin-1 rabbit antibody from Abcam (Cambridge, MA, USA); 

Aurora A rabbit antibody from Bethyl Laboratories (Montgomery, TX, USA); Peroxidase-

conjugated goat anti-rabbit-IgG from Pierce, Thermo Fisher Scientific (Rockford, IL, 

USA); Highly cross-adsorbed Alexa Fluor® 488 goat anti-rabbit IgG (H+L) antibody from 

Invitrogen (Grand Island, NY, USA). 
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Generation of Nf2∆Ex2 MSCs  

Nf2∆Ex2 MSCs were generated in vitro by transducing Nf2flox2/flox2 Schwann cells 

with an Adeno-Cre virus (University of Iowa Gene Transfer Vector Core) as previously 

described [81]. The Nf2∆Ex2 MSCs were used up to passage 20. All protocols are in 

accordance with guidelines of and approved by the AAALAC International-certified UCF 

Institutional Animal Care and Use Committee.  

Human Schwann Cell Cultures 

Vials of frozen purified human SCs received from Dr. Patrick Wood at the 

University of Miami School of Medicine (Miami, FL, USA) were thawed and cultured on 

Corning dishes coated with 200 µg/ml  poly-L-lysine (PLL) hydrobromide (Sigma-

Aldrich) and 50 µg/ml  Laminin (Invitrogen) containing D10M growth media: DMEM 

(Gibco) plus 10%  heat inactivated fetal bovine serum (HIFBS) (HyClone, Logan, UT, 

USA), 2 µM Forskolin (Sigma), 0.02 mg/ml Pituitary Extract (Biomedical Tech. Inc) and 

1% Penicillin/Streptomycin (Gibco). Frozen vials from the stock bank of HSC were 

prepared by the Life Alliance Organ Recovery Agency at the University of Miami School 

of Medicine and cannot be traced to the specific donor. HSC were prepared from 10 cm 

biopsy of sural nerve/cauda equine from cadaveric adult human donors. Nerve 

fragments were incubated several days, dissociated and plated. SCs were purified by 

immunopanning with NGFR p75 antibodies. Culture purity based on S100 

immunostaining was 96-99%. HEI-193 cells were purchased from ATCC (Manassas, 

VA, USA) and grown in DMEM plus 10% HIFBS and 1% Penicillin/Streptomycin.  
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Human Schwannoma Samples 

Frozen specimens of human sporadic vestibular schwannomas with different 

types of NF2 mutations were procured with patient informed consents at The Ohio State 

University according to Institutional Review Board regulations. 

Western Blot Analysis 

Cultured cells were lysed in modified RIPA buffer (25 mM Tris-HCl pH 7.6; 150 

mM NaCl: 1% Triton X-100, 1% Sodium dodecyl sulfate with protease inhibitor cocktail 

and phosphatase inhibitor cocktails 2 and 3, Sigma-Aldrich). VS specimens (0.1–0.2 gr) 

were homogenated in 900 µl of modified RIPA buffer with 25–30 strokes in a Wheaton 

Micro Tissue Grinder glass set # 528 (Wheaton Scientific, Millville, NJ, USA) on ice. 

Lysates were rotated for 10 min at 4°C and centrifuged for 10 min at 4°C, 15,000 rpm. 

Protein concentration was determined by DC Assay (BioRad, Hercules, CA, USA), and 

10–20 µg of protein in Laemmli buffer was resolved in 10% or 4–20% polyacrylamide 

gels (Pierce/Fisher Scientific), transferred to PVDF membrane (Immobilon-P, Millipore, 

Bedford, MA) and analyzed by western blotting with anti-LIMK1, (1:500) from BD for 

human samples and (1:500) from Cell Signaling for mouse samples, LIMK2 (1:500), P-

cofilin-Ser3 (1:1,500), cofilin (1:70,000), merlin (1:500), S-100 (1:300), P-LIMK1-Thr508 

(1:1,000), P-LIMK2-Thr505 (1:1,000), P-LIMK1(Thr508)/LIMK2(Thr505)  (1:200) used in 

mouse and HEI193 cell lines, P-Aurora (1:1,000), AuroraA  (1:500) and β-Actin 

(1:15,000) followed by corresponding secondary antibodies (1:20 000). Western blots 
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were quantified by densitometry using NIH ImageJ software. Intensities were 

normalized to β-actin loading controls. 

LIMK1 and LIMK2 Knockdown in Nf2∆Ex2 MSCs  

Nf2∆Ex2 MSCs were plated onto PLL-coated (200 µg/ml) 6-well dishes, cultured at 

37ºC, 7% CO2, in medium containing DMEM/F12 (Invitrogen/Life Technologies, Grand 

Island, NY, USA) plus N2 supplement (Invitrogen: Burlington, ONT, Canada) and 1% 

Penicillin/Streptomycin .  When cultures reached 40% confluence, lentiviral transduction 

particles were added at 5 multiplicity of infection (MOI) in growth medium plus 8 µg/ml 

hexadimethrine bromide (Sigma). MISSION shRNA lentiviral particles for mouse gene 

silencing were from Sigma-Aldrich. LIMK1 clone IDs: NM_010717.1-1546s1c1 (named 

construct #44); NM_010717.1-1414s1c1 (#47) and LIMK2 clone IDs: NM_010718.1-

1409s1c1 (#73); NM_010718.3-827s21c1 (#95).  Negative control was pLKO.1-puro 

non-mammalian shRNA (SHC002V). Optimum MOI determined empirically with 

pLKO.1-puro-CMV-TurboGFP transduction lentiviral particles (SHC003V) titer.  After 

18–20 hours, infection medium was replaced with fresh medium for 24 hours and 

subsequently replaced with growth medium containing 1µg/ml puromycin (Sigma-

Aldrich) to select transduced cells. The puromycin concentration was determined 

performing a toxicity curve.   

Reintroduction of NF2 into Nf2∆Ex2 MSCs 

To reintroduce merlin into Nf2∆Ex2 MSCs, 1.5–2 million cells were resuspended in 

100 µl of basic Nucleofector solution for mammalian glial cells with supplements (Lonza, 



21 
 

Cologne, Germany) plus 1 µg of pFC15K HaloTagCMVd1-NF2 using an Amaxa 

Nucleofector II device and Program A-033. 1 ml of warm growth medium was added 

and 50 µl of cell suspension was seeded on coated 11mm round German glass 

coverslips (Carolina Biol., Burlington, NC, USA) containing 100 µl of equilibrated growth 

medium and incubated 40 hours at 37°C, 7% CO2 before analysis. 

Immunofluorescence 

Cells were plated on coated German glass coverslips and immunostained as 

previously described [81]. Labeling of Halo-Tag-NF2-transfected cells was done in vivo 

with HaloTag® TMR Ligand (Promega, Madison, WI, USA) following manufacturer’s 

rapid labeling protocol. Confocal images were acquired with a Zeiss LSM710 

microscope with 3 spectral detection channels, 5 laser lines - 458, 488, 514,543 & 633 

nm, FL filter set 49 DAPI, EX G365 shift free, FL filter set 43 CY 3 shift free, FL filter set 

38 Endow GFP, shift free, Plan-Apochromat 63x/1.40 Oil DIC M27 and EC Plan-

Neofluar 40x/1.3 DIC WD=0.21 M27 objective lenses on an AxioObserver Z1 Stand and 

ZEN2009 software. Fluorescence was collected from a single plane on separate 

channels maintaining the same acquisition parameters for each labeled protein. Images 

from each experiment were processed identically with ZEN2011 software. For spindle 

images, Z-stacks were collected with the 63xOil objective and 3.5 zoom factor. 2-D 

images were obtained by median filter and maximum intensity projection with ZEN2011. 
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Cell Viability Assay 

Cell viability was assessed by CellTiter-Fluor assay (Promega) following 

manufacturer’s specifications. Cells were seeded in 384-well format, centrifuged 1 min 

at 500 rpm and incubated at 37ºC, 7% CO2. After cell attachment (2.5–3.5 hrs), 5 

µl/well of compound/vehicle solution was added and plates were quick spinned and 

incubated for 24 hrs. Fluorescence was measured with a Synergy H1 Hybrid plate 

reader (BioTek, Winooski, VT, USA). 

Caspase Activity Assay 

Caspase activity was assessed by the Apo-ONE homogeneous Caspase-3/7 

assay (Promega) following manufacturer’s specifications.  Fluorescence was measured 

with a plate reader.  

Membrane Asymmetry Assay 

Cell membrane asymmetry was measured with the Violet Ratiometric Membrane 

Asymmetry Probe/Dead Cell Apoptosis Kit (Invitrogen/Life Technologies). Cells were 

seeded in 200 µg/ml PLL-coated 6-well plates and incubated with BMS-5/vehicle for 24 

hrs. Cell were harvested and assayed following manufacturer’s instructions. Samples 

were analyzed on a BD Canto-II (Becton, Dickinson and Co, Franklin Lakes, NJ, USA) 

flow cytometer setting excitation and collection emission wavelength recommended by 

the manufacturer. The ratio parameter was established using BD FACSDiva™ 6.1.3 

software as recommended by the manufacturer. 
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Proliferation Assays 

Cell proliferation was studied with two different techniques. Nf2∆Ex2 MSCs seeded 

in a 24-well format, had cell numbers assessed with the Crystal Violet Assay as 

previously described [82]. Absorbance at 595 nm was measured with a µQuant plate 

reader (BioTek). 

Rate of DNA synthesis was evaluated at 24 hrs with the Click-iT EdU Microplate 

Assay (Invitrogen/ Life Technologies). The assay was carried out in 96- and 384-well 

plate formats following manufacturer’s instructions without the Amplex® UltraRed 

amplification steps. DAPI stain was included in the wash after the reaction cocktail 

incubation step. Oregon green-488 and DAPI fluorescence was quantified by a plate 

reader. 

Cell Cycle Analysis 

The cell cycle was analyzed by flow cytometry with propidium iodine (PI) staining 

and BrdU/7AAD. 106 ethanol fixed cells were PI stained using 500 µl PI/RNase staining 

buffer (Beckton-Dickinson). Samples were examined on a BD Canto-II flow cytometer 

and histograms were analyzed using ModFit LT software (Verity Software House, 

Topsham, ME, USA). For each sample, 10,000 events were collected.  

The BrdU/7AAD assay kit was from Beckton-Dickinson. Cells were seeded in 6-

well plates and treated with inhibitor/vehicle overnight. Next day, cultures were 

incubated with 10 µM BrdU for 3 hrs, and the assay performed according to 

manufacturer’s instruction. Samples were analyzed with a BD Canto-II flow cytometer 
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using the BD FACSDiva™ 6.1.3 software.  FlowJo software (Tree Star, Inc, Ashland, 

OR, USA) was used for analysis of acquired data.  

Statistical Analysis  

GraphPad Prism version 5.0 for Windows (GraphPad, La Jolla, CA, USA) was 

used for statistical analysis and graph generation of experimental data from three 

independent experiments. Dose response experiments were analyzed by non-linear 

regression (four parameters).  Statistical analysis is indicated for each experiment. 

Results 

LIMK and Phospho-Cofilin Levels are Elevated in Nf2∆Ex2 MSCs Compared to Controls 

Using two complementary techniques, we assessed the levels of LIMK and 

phospho-Ser3-cofilin in Nf2-deficient (Nf2∆Ex2) MSC lines developed by in vitro ad-Cre 

deletion of Nf2 exon2 from Nf2flox2/flox2 MSCs [83].  By immunostaining Nf2∆Ex2 MSCs 

were confirmed to be merlin-deficient and expressed the SC marker S100 (Figure 2a). 

Merlin-deficient Schwann cells were larger than control Nf2flox2/flox2 MSCs and had 

increased levels of F-actin revealed by phalloidin staining. The intensity of LIMK1 and 

LIMK2 immunofluorescence was higher in Nf2∆Ex2 MSCs than in controls and was 

detected throughout the cell.  Consistent with increased LIMK activity, the intensity of 

phospho-Ser3-cofilin immunofluorescence was also higher in Nf2∆Ex2 MSCs than in 

controls (Figure 2 a, b).  
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We also assessed merlin expression in control Nf2flox2/flox2 and Nf2∆Ex2 MSCs by 

western blotting using an N-terminal merlin antibody.  Merlin was detected in Nf2flox2/flox2 

MSCs but not in Nf2∆Ex2 MSCs (Figure 2 c). The status of the Nf2 gene was also 

confirmed by PCR analysis of DNA and revealed deletion of exon 2 in Nf2∆Ex2 as 

evidenced by a 338-bp band (Figure 2 d) [83].  

In addition, western blotting confirmed that levels of both LIMK1 and LIMK2 

protein were higher in Nf2∆Ex2 MSCs than in Nf2flox2/flox2 MSCs (Figure 2 e).  We 

detected a coordinate increase in the level of phospho-Ser3-cofilin in Nf2∆Ex2 MSCs with 

respect to control consistent with high levels of LIMK activity (Figure 2 f).  

Reintroduction of Wild-type NF2 Normalizes LIMK Protein Levels 

To assess whether elevated LIMK levels were linked to merlin inactivation, we 

reintroduced a halo-tagged wild-type human NF2 into Nf2∆Ex2 MSCs by nucleofection.  

This method yielded ~10% transfection rate, determined by halo-tag fluorescence 

labeling. Re-expression of merlin in cultured Nf2∆Ex2 MSCs generally decreased LIMK1, 

LIMK2 and phospho-Ser3-cofilin levels (Figure 3 a, b).  This result supports a 

relationship between merlin inactivation and increased LIMK expression and activity. 

Pharmacological Inhibition of LIMK1/2 by BMS-5 or Genetic Silencing of LIMK1/2 
Reduces Nf2∆Ex2 MSC Viability 

We next sought to determine whether LIMK was a potential drug target for NF2. 

We tested the efficacy of BMS-5, a highly selective small molecule inhibitor of LIMK1/2, 

on reducing phosphorylation of cofilin on Ser3 [84]. BMS-5 inhibited cofilin-Ser3 
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phosphorylation in a dose-dependent manner in Nf2∆Ex2 MSCs with an IC50 of ~ 2 µM 

(Figure 4 a, b).  We next tested the ability of BMS-5 to reduce viability of Nf2∆Ex2 MSCs.  

The 100% viability control was 0.1% DMSO and a positive cell death control was 

obtained with 50 µM rapamycin (RM) that caused approximately 80% cell death in 24 

hours.  BMS-5 reduced Nf2∆Ex2 MSC viability in a dose-dependent manner with an IC50 

of 3.9 µM (Figure 4 c), but did not significantly reduce the viability of control Nf2flox2/flox2 

MSCs at equivalent BMS-5 concentrations (Figure 4 d).  At 10µM BMS-5, Nf2∆Ex2 MSC 

viability was 40% compared to 83% for controls.  

To confirm the validity of LIMK as a drug target, we knocked down LIMK1 and 

LIMK2 in Nf2∆Ex2 MSCs using lentiviral shRNA transduction (Supplementary Figure 1). 

Consistent with the BMS-5 results, LIMK1 and LIMK2 knockdown reduced viability of 

Nf2∆Ex2 MSCs compared to scrambled shRNA controls in a 24 hour assay (Figure 4 e).  

These results suggest that LIMK inhibition or silencing in merlin-deficient cells reduces 

their viability either by promoting cell death or hindering proliferation. 

Decreased Viability of Nf2∆Ex2 MSCs in Response to BMS-5 or LIMK Silencing is 
Independent of Apoptosis. 

To determine if BMS-5 promoted Nf2∆Ex2 MSCs apoptosis, we measured 

caspase 3/7 activity. We found that BMS-5 did not activate caspase3/7, whereas the 

positive control, staurosporine, promoted dose-dependent activation of caspase 3/7 

(Figure 5 a). To determine if BMS-5 promoted caspase-independent apoptosis, we 

analyzed BMS-5-treated Nf2∆Ex2 MSCs by flow cytometry using a ratiometric membrane 

asymmetry probe that detects loss of membrane phospholipid asymmetry associated 
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with apoptosis. We observed only a small increase (3.5%) of apoptotic cells after 7 

hours of BMS-5 treatment (Figure 5 b).  Consistent with pharmacological LIMK 

inhibition, knockdown of LIMK1 or LIMK2 was not associated with caspase 3/7 activity 

increase compared to scrambled shRNA controls examined 24 hours after plating 

(Figure 5 c). Similarly, caspase-independent apoptosis was not observed in Nf2∆Ex2 

MSCs transduced with either LIMK1 or LIMK2 shRNA (Figure 5 d).  These results 

suggest that pharmacological inhibition and genetic silencing of LIMK affect Nf2∆Ex2 

MSC viability through an apoptosis-independent mechanism.   

Pharmacological Inhibition of LIMK1/2 by BMS-5 Reduces DNA Synthesis and Cell-
Cycle Progression  

We next assessed the ability of BMS-5 to interfere with proliferation of Nf2∆Ex2 

MSCs.  The cells were incubated with 1 and 2 µM BMS-5 for 24, 48 and 72 hours and 

cell numbers were measured using crystal violet staining. We observed fewer BMS-5 

treated Nf2∆Ex2 MSCs than DMSO-treated controls (Figure 6 a).  In addition, we found 

that BMS-5 decreased DNA synthesis in Nf2∆Ex2 MSCs in a dose-dependent manner 

(Figure 6 b). 

To test the possibility that the decrease in proliferation was a consequence of 

cell-cycle inhibition, we performed flow cytometry analysis of cells stained with 

propidium iodine (PI). BMS-5 interfered with Nf2∆Ex2 MSCs cell-cycle progression as 

evidenced by an increase in the percentage of diploid cells trapped in the G2/M phase 

(Figure 7 a). We further analyzed the distribution of cells among the cell-cycle phases 

using a BrdU/7AAD assay. There was a significant increase in the number of cells 



28 
 

accumulating in the G2/M phase in samples treated with 5 µM BMS-5 as compared to 

vehicle control (20% vs. 42%). This was accompanied by a decrease in the number of 

BMS-5 treated cells in G1 as compared to control (41% vs. 26%). This is consistent with 

the results obtained by analysis of PI staining (Figure 7 b-c).  Overlay of the 7AAD-area 

histograms clearly demonstrated a significant increase in the G2/M population in BMS-5 

compared to DMSO treated cells (Figure 7 d). Furthermore, the increase in the G2/M 

population was accompanied by an increase in the number of cells with higher DNA 

content consistent with a polyploidy or multinucleated cell population.  There was also a 

smaller but substantial change in number of cells detected in the S-phase of cell cycle in 

samples treated with BMS-5 as compared to DMSO control.  Lastly, the population of 

cells in the S phase decreased with increasing BMS-5 concentration (Supplementary 

Figure 2).  These results taken together suggest that inhibition of LIMK activity in Nf2∆Ex2 

MSCs interferes with progression of the G2/M phase of the cell cycle, thereby 

decreasing the number of viable Nf2∆Ex2 MSCs. 

BMS-5 Inhibition of LIMK1/2 Activity Decreases Aurora A Phosphorylation and Causes 
Formation of Abnormal Mitotic Spindles  

To identify additional down-stream effects of BMS-5 (beyond inhibition of cofilin-

Ser3 phosphorylation) that could cause a G2/M arrest, we tested the levels of Aurora A 

phosphorylation. Aurora A interacts with both LIMK1 and 2 and is a major regulator of 

mitotic spindle assembly and chromosomal alignment and segregation. We found that 

Nf2∆Ex2 MSCs treated with increasing concentrations of BMS-5 had a dose dependent 

decrease in phosphorylation of Aurora A at Thr288 (Figure 8 a, b). 
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We next studied the effect of BMS-5 on the spindle assembly visualizing the 

mitotic nuclei and spindle machinery by immunostaining. We found that Nf2∆Ex2 MSCs 

had normal spindle assembly and BMS-5 treated Nf2∆Ex2 MSCs showed abnormal 

spindle structure (Figure 9 a).  Analyzing the centrosome positioning by immunostaining 

for centrin-1, we found that BMS-5 treated cells were not able to organize the 

centrosomes and generally had more than two with different sizes (Figure 9 b). We 

conducted cell cycle analysis and found that the percentage of cells in late G2/M, 

visualized by positive immunostaining for the mitotic marker phospho-Ser10-histone3 

(pH3), significantly increased from 5% to 17%  in the BMS-5 treated Nf2∆Ex2 MSCs 

compared to DMSO controls (Figure 9 c, d). We observed a highly significant decrease 

in the percentage BMS-5 treated Nf2∆Ex2 MSCs that advanced to late mitotic phases 

(anaphase/telophase).  Moreover, BMS-5 treated Nf2∆Ex2 MSCs had abnormal spindles 

and chromosomes did not align at the center as occurs in metaphase (Figure 9 a-e). 

These results suggest that LIMK inhibition exerts its anti-proliferative effect not only by 

altering organization of the actin cytoskeleton through inhibition of cofilin 

phosphorylation but also by decreasing LIMK dependent activation of Aurora A. 

LIMKs Levels are Elevated in Representative Samples of Human Vestibular 
Schwannoma Compared to Human SCs  

To examine the relevance of LIMK inhibition to NF2, we compared LIMK1 and 

LIMK2 protein and phosphorylation levels in a small number of samples of HSCs from 

normal individuals and sporadic human vestibular schwannomas (VSs). We observed a 

significant increase (P<0.05 determined using unpaired t-test of HSC vs. VS 
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populations, two-tailed) in both the protein and phospho-Thre508 levels of LIMK1 in VSs 

compared to HSCs (Figure 10 a, b).  Similarly, both LIMK2 and phospho-Thr505-LIMK2 

levels showed a tendency to be higher in VSs compared to HSCs (Figure 10 c, d). 

Interestingly, the proportion of phospho-Ser3-cofilin to the total cofilin was higher in VSs 

than in HSCs (Figure 10 e).  

 We also measured LIMK protein and phosphorylation levels in a human 

schwannoma cell line, HEI-193, developed from a NF2 patient by immortalization with 

HPV E6-E7 genes [85]. Although the phospho-Thr508/Thr505 LIMK1/2 antibody 

recognized multiple bands, the relative intensities of the most prominent phospho-LIMK 

1/2 (Thr508/Thr505) bands were also higher in HEI-193 cells than in control HSCs 

(Figure 10 f). 

Discussion 

LIMK Expression and Activity are Elevated in Merlin-deficient SCs Compared to Normal 
SCs 

Here we document an association between loss of merlin function and increased 

levels of LIMK1 and LIMK2 expression and activity.  The increased LIMK activity in Nf2-

deficient MSCs is consistent with its activation by Cdc42/Rac-PAK1, 2 and 4 [17], which 

have been well-documented to be increased in schwannomas [12, 15]. Importantly, 

reintroduction of merlin into Nf2∆Ex2 MSCs reduced LIMK and phospho-Ser3-cofilin 

levels, further supporting an association between loss of merlin function and inactivation 

of cofilin’s actin-severing and depolymerizing activity downstream of activation of the 

Rac/PAK/LIMK pathway.  In agreement with previous studies of human schwannoma 
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cells, we found that Nf2∆Ex2 MSCs exhibited an abnormal actin cytoskeleton compared 

to control MSCs [73].  Interestingly, similar cytoskeleton characteristics, indicative of F-

actin stabilization, have been reported in C2C12 and HeLa cells overexpressing LIMK 

[21, 86]. We propose that phosphorylation and inactivation of cofilin downstream of 

elevated Rac/PAK/LIMK activity could account for the reported increased cell size and 

abundance of actin filaments observed in Nf2∆Ex2 MSCs and human schwannoma cells 

[87].  

Inhibition of LIMK Activities Causes Cell-Cycle Arrest of Nf2∆Ex2 MSCs by Preventing 
Aurora A Activation 

We recently demonstrated using BMS-5 that LIMK-dependent phosphorylation of 

cofilin is necessary for stable alignment of SC processes along sensory neuron axons in 

culture [88].  Here we showed that BMS-5 decreased Nf2-deficient MSCs viability in a 

dose-dependent manner while having little effect on controls. These results suggest a 

potential therapeutic window for treatment of schwannomas with LIMK inhibitors. 

Studies using shRNA knockdown of LIMK1 and LIMK2 in Nf2∆Ex2 MSCs confirmed the 

specificity of BMS-5 on LIMK activity. Intriguingly, during LIMK silencing in Nf2∆Ex2 

MSCs, we found that these cells did not sustain long-term LIMK knockdown and were 

able to restore their original expression levels. Thus, we only used cells within their first 

two passages after puromycin selection. We speculate that Nf2∆Ex2 MSCs silence LIMK 

shRNA by a methylation-dependent mechanism as shown for PAK shRNAs in 

schwannoma cells [15]. 
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Inhibition of LIMK activity with BMS-5 reduced Nf2∆Ex2 MSCs viability by causing 

their arrest at the M phase of the cell cycle. Others have shown that LIMK’s localization 

and activity changes during the cell cycle and that cofilin phosphorylation dynamics are 

necessary for successful cytokinesis [28, 29, 79]. Importantly, LIMK1 knockdown in 

HeLa cells or treatment with a LIMK inhibitor peptide resulted in delayed mitotic 

progression and irregular spindle orientation [78]. These reports support our conclusion 

that inhibition of LIMK activity with BMS-5 arrested Nf2-deficient cells in the M phase 

thereby decreasing the number of cells in S phase, and increasing the number of 

polyploid cells.  

The reported interaction and functional cooperation of LIMK1 and 2 with Aurora A 

led us to explore the effect of LIMK inhibition with BMS-5 on Aurora A 

autophosphorylation [32].  In agreement with the observations made with LIMK1 

knockdown in PC-3 cells, we found that BMS-5 reduced Aurora A phosphorylation at 

Thr288 [24]. It is important to note that BMS-5 does not directly inhibit Aurora A kinase 

activity, because BMS-5 (compound 3 in ref.[84]) was tested in vitro against a panel of 

kinases and Aurora A retained 100% activity when tested with 10 µM BMS-5 [84]. 

Interestingly, the abnormal spindle and centrosome organization observed here 

resembles the abnormal metaphase spindles with multipolar and/or wheel-barrel shape 

and non-assembled chromosomes observed in a LIMK2 knockdown in SH-EP 

neuroblastoma cells [79]. The integrity of the mitotic spindle is required for progression 

from metaphase to anaphase, and any abnormality in the spindle assembly checkpoint 

delays or hinders the onset of anaphase. Hence, inhibition of LIMKs activity by BMS-5 
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leads to inhibition of Aurora A kinase activity, and thus provides a molecular pathway for 

the G2/M block of merlin deficient SCs treated with BMS-5. 

Recently, LIMK has been show to promote tumor neovascularization through the 

VEGF/p38/MK2/LIMK1/annexin1 pathway [89].  This finding may potentially connect 

LIMK inhibition with the observed reduction in angiogenesis in vivo following treatment 

with Bevacizumab, which reduces tumor volumes and, in some patients, restores some 

hearing [90]. Thus, we speculate that inhibition of LIMK might halt tumor progression not 

only by interfering with cell-cycle progression in schwannoma cells, but also by inhibiting 

angiogenesis.  

In conclusion, our studies suggest a potential therapeutic target for NF2, the 

LIMKs, which are recognized substrates of Cdc42/Rac-PAK1,2,4. We show enhanced 

LIMK expression and activity in merlin-deficient MSCs and as well as VS as opposed to 

controls.  Reduction in LIMK activity or protein levels decreases Nf2-deficient MSC 

viability by arresting cells in the prometaphase stage of the cell-cycle in association with 

decreased activation of Aurora A necessary for centrosome and mitotic spindle 

organization.  Future studies addressing whether LIMK inhibition is an effective 

treatment for schwannomas in mouse models of NF2 are warranted. 
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Figures 

Figure 2. Elevated Levels of LIMK and Phospho-Ser3-Cofilin in Nf2Ex2 MSCs 
Compared to Control MSCs. 

(a) Representative confocal images of Nf2Ex2 MSCs and Nf2flox2/flox2 MSCs grown overnight on 
glass coverslips, fixed and immunostained with the indicated antibodies (green). F-actin was 
visualized with phaloidin-Alexa633 (white) and the nucleus was visualized by DAPI stain (blue). 
Scale bar: 20 µm. (b) Quantitation of the immunofluorescence for the indicated proteins in three 

independent experiments was performed with Volocity software. ***P<0.001; *P<0.05 
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determined by two-way ANOVA using Bonferroni post-tests. (c) Characterization of Nf2flox2/flox2 

and Nf2Ex2 MSCs. Control Nf2 with the exon2 flanked by loxP sites, Nf2flox2/flox2 and Nf2Ex2 
MSCs analyzed by western blotting for N-terminus merlin and (d) PCR analysis of genomic 
DNA. Primers P4/P5 amplified a 305-bp band for wild type Nf2 FVB/N and a 442-bp band for 

Nf2flox2/flox2 and primers P6/P5 amplified a 338-bp band for Nf2Ex2. (e) Nf2Ex2 MSCs and control 
Nf2flox2/flox2 MSCs analyzed by western blotting for LIMK1, LIMK2, phospho-LIMK1/2 
(Thr508/505), and (f) phospho-Ser3-cofilin and cofilin. Anti-β-actin was used as a loading 
control. 
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Figure 3. Reintroduction of Wild-type Merlin Normalizes LIMK Expression Levels.  

(a) Nf2Ex2 MSCs were transfected with Halo-tag-NF2 and incubated for 40 hrs on glass 
coverslips coated with 200 µg/ml PLL and 10 µg/ml Laminin. Transfected cells were identified by 

halo-tag TMR labeling (red). Cells were fixed and immunostained for the indicated proteins 
(green).  F-actin was visualized with phaloidin-Alexa633 (white) and the nucleus with DAPI 
(blue). Confocal images are representative of three independent experiments. Scale bar: 20 µm. 

(b) Quantitation of (a). Measurements of the mean pixel intensity fluorescence in the green 
channel of 2 experiments for the indicated proteins were performed with Volocity software. 
*P<0.05 determined by two-way ANOVA using Bonferroni post-tests. 
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Figure 4. LIMK Inhibition by BMS-5 or Silencing by shRNA in Nf2Ex2 MSCs 
Decreases Cell Viability. 

(a) BMS-5 dose-response western blot.  Nf2Ex2 MSCs were plated in 12-well plates. Cultures 
were treated the next day as indicated for 30 min. Cells were harvested, lysed and analyzed by 
western blotting for phospho-Ser3-cofilin and total cofilin. β-actin levels were used as loading 
controls for normalization. Representative blot of three independent experiments. (b) BMS-5 

dose-response curve of cofilin phosphorylation in Nf2Ex2 MSCs. Analyzed as log [inhibitor] vs. 

response, variable slope (four parameters). (c) BMS-5 dose viability-response curve.  Nf2Ex2 

MSCs were seeded at 5 000 cells/well in 20 µl growth medium phenol-red free in a 384-well 

plate and after attachment were incubated with BMS-5 for 24 hrs. Cell viability was measured 
with the CellTiter-Fluor assay. Graph represents the mean ± SEM of 3 independent experiments 
analyzed together (n=96) log [inhibitor] vs. response, variable slope (four parameters).  (d) 
BMS-5 viability response of control MSCs. Cell viability was measured as in (c). Graph 
represents the mean ± SEM (n=16). DMSO control was considered 100% viability. Rapamycin 
(RM) (50 µM) was a positive control for cell death. ***P<0.001 determined by one-way ANOVA 

using Dunnett’s multiple comparison test. (e) Viability of Nf2Ex2 MSCs expressing LIMK 1 or 
LIMK2 shRNAs were compared to cells expressing scrambled shRNA untreated or treated with 
5 µM BMS-5 or 50 µM rapamycin (RM) for 24 hrs in a 384-well format. Cell viability was 

measured with the CellTiter-Fluor assay.  Nf2Ex2 MSCs expressing scrambled shRNA 
represented 100% viability, and the 50 µM RM treated cells were a positive control for cell 

death. Graph represents the mean ± SEM of 4 independent experiments analyzed together 
(n=128).  ***P<0.001determined by one-way ANOVA using Dunnett’s multiple comparison test.   
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Figure 5. Inhibition or Silencing of LIMK does not Induce Apoptosis.   

(a) Caspase 3/7 activity assay. Nf2Ex2 MSCs were seeded at 5 000 cells/well in 20 µl growth 

media, phenol-red free in a 384-well plate and incubated for 16 hrs at 37ºC, 7% CO2. Next, 5 
µl/well of the indicated solution was added and incubated for 8 hrs. Caspase 3/7 activity was 

measured with the ApoONE Homogeneous assay. Staurosporine curve was used as positive 
control. Histogram represents 3 independent experiments (n=96) normalized to untreated and 
analyzed together. **P<0.01; ***P<0.001determined by one-way ANOVA using Dunnett’s 

multiple comparison test.  (b)  Nf2Ex2 MSCs plated in a 6-well format were incubated with 2 µM 

BMS-5 or DMSO vehicle for 24 hrs. Plasma membrane asymmetry was evaluated with the 
Violet ratiometric assay by flow cytometry. Densitometry graph illustrates the following 
quadrants: apoptotic (Q3), dead (Q1), live (Q4) and dual label (Q2). (c) Caspase 3/7 activity 

measured with the ApoONE assay of Nf2Ex2 MSCs uninfected or infected with control 
scrambled or the indicated constructs for LIMK1/2 shRNA silencing.  Cells were incubated 24 
hrs in a 384-well format and in the presence of inhibitors for 8 hrs where indicated. 
Staurosporine response was used as positive control. Histogram represents 5 independent 
experiments normalized to scrambled control and analyzed together (n=160). 

***P<0.001determined by one-way ANOVA using Dunnett’s multiple comparison test. (d) Nf2Ex2 
MSCs infected with scrambled shRNA or shRNAs targeting LIMK1/2 constructs were plated in a 
6-well format and incubated for 24 hrs. Plasma membrane asymmetry was assessed with the 
Violet ratiometric assay by flow cytometry in three independent experiments. Densitometry plots 
show the quantification of the population distribution into the four quadrants as in (b).  
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Figure 6. BMS-5 Decreases Nf2Ex2 MSC Proliferation and DNA Synthesis in a 
Dose-Dependent Manner. 

(a) Nf2Ex2 MSCs were grown in 24-well plates. Cell proliferation was measured at 0; 24; 48 and 
72 hrs time points after incubation with BMS-5 or DMSO vehicle.  The number of cells at each 
time point was assessed with the crystal violet assay. Graph combines 3 independent 

experiments in triplicates (mean ± SEM, n=9). (b)  Nf2Ex2 MSCs were treated with the indicated 
BMS-5 concentrations for 24 hrs. EdU was added to the culture for the last 6 hours.  
Incorporation of EdU into S-phase cells was assessed with the EdU Click-It microplate assay 
and fluorescence was measured on a plate reader. Graph combines 3 independent experiments 
(mean ± SEM, n=44).  
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Figure 7. Inhibition of LIMK Interferes with Cell Cycle Progression of Nf2Ex2 
MSCs.   

(a) Nf2Ex2 MSCs were grown in a 6-well format and treated with 5 µM BMS-5 for 7 hours prior 
to labeling. Cells were analyzed by flow cytometry. Propidium iodide labeling profile of the 
diploid cell population analyzed with the ModFit program. Tabulation of the distribution of cell 

cycle phases of 3 independent experiments (mean± SEM, n=3). (b)  Nf2Ex2 MSCs were treated 
with 5 µM BMS-5 or DMSO control overnight prior to 3 hr BrdU labeling and analysis by flow 
cytometry. Distribution of BrdU- and 7-AAD-labelled cells analyzed with FlowJo software. These 
distribution plots are representative of 4 independent experiments (n=4). (c) Graph of the 
distribution of the cell cycle phases of all the experiments as mean ± SEM, *P<0.05 determined 
by two-way ANOVA and Bonferroni multiple comparisons post-test. (d)  Overlay of histograms 
of 7-AAD content comparing the vehicle and BMS-5 treated cells shown in (b). 
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Figure 8. Inhibition of LIMKs Decreases Aurora A Autophosphorylation.  

(a) Representative western blot of three independent BMS-5 dose-response experiments.  

Nf2Ex2 MSCs were plated in half of a 12-well plate and  treated the next day with increasing 
BMS-5 concentrations or DMSO for 8 hr. Cells were harvested, lysed and 10 µg of protein were 

analyzed by western blotting for phospho-Thr288-Aurora A and Aurora A. β-actin levels were 
used as loading controls. (b)  Quantification of BMS-5 effect-response on Aurora A 
phosphorylation. Graph represents the mean ± SEM (n=3), **P<0.01; *** P<0.001 determined 
by one-way ANOVA using Dunnett’s multiple comparison test.  

  



42 
 

 

Figure 9. Inhibition of LIMKs Produce Abnormal Spindle and Centrosome 
Assemblies. 

 Representative confocal images of Nf2Ex2 MSCs grown overnight on glass coverslips and 
treated with 4 µM BMS-5 or 0.04% DMSO for 8 hrs , fixed and immunostained with α-tubulin 

(green) and  (a)  P-H3(ser10) or  (b) centrin1 (red). Nuclei were visualized with DAPI (blue). (c) 

Representative confocal images of DMSO treated Nf2Ex2 MSCs depicting the cell cycle phases 
considered for analysis. (d) Quantification of the percentage of cells in late G2/M phase 
assessed by positive p-H3 immunostaining. **** P<0.0001 determined by unpaired t test, two-
tailed, from triplicate coverslips of three independent experiments (n=9). (e) Quantification of the 
percentage of mitotic cells in early (pro/metaphase) and late (ana/telophase) mitosis. *** 
P<0.001 determined by two-way ANOVA and Bonferroni multiple comparisons post-test. Scale 
bar: 5 µm. 
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Figure 10. LIMKs are Overexpressed in Human Vestibular Schwannomas. 

 Lysed cultured human Schwann cells (HSC) cultured in 100-mm dishes and homogenized 
frozen human sporadic vestibular schwannomas (VS) were resolved by SDS-PAGE and 
analyzed by western blot. Quantitation of the western blots was done by densitometry analysis 
with ImageJ software, normalized to β-actin and is plotted below. Western blots for (a) LIMK1, 
(b) phospho-Thr508-LIMK1, (c) LIMK2, (d) phospho-Thr505-LIMK2 and (e) phospho-Ser3-
cofilin and cofilin. β-actin was used as a loading control. *P<0.05 determined using unpaired t-
test of HSC vs. VS populations, two-tailed. (f) HSCs from normal individuals (control) and 
HEI193 cells at P43 and P52 were cultured in 60-mm dishes and analyzed by western blotting 
for phospho-Thr508/505-LIMK1/2. β-actin was used as a loading control. 
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CHAPTER THREE: INHIBITION OF SIRT2 ACTIVITY SELECTIVELY 
REDUCES VIABILITY OF Nf2∆Ex2 MOUSE SCHWANN CELLS 

 

Introduction 

Neurofibromatosis type 2 (NF2) is a benign tumor disorder of the nervous system 

caused by mutations in the NF2 gene that encodes a tumor suppressor called 

schwannomin or merlin. The hallmark of NF2 is the formation of bilateral schwannomas 

in the vestibular branch of the auditory nerve. Patients frequently develop additional 

schwannomas in other cranial, spinal and peripheral nerves as well as meningiomas 

and ependymomas. Common initial symptoms include hearing loss, dizziness or 

imbalance; however life-threatening compression of the brainstem also occurs [2]. The 

choices for NF2 schwannoma treatments are surgical resection or stereotactic 

radiosurgery. Many schwannomas however are inoperable and surgery often causes 

complete loss of nerve function, while radiosurgery carries an increased risk of a future 

secondary malignancy [1]. Currently, a few clinical trials of anti-cancer drugs are 

underway for NF2 [71, 91].  Molecular studies of merlin’s mechanism of action have 

revealed that merlin regulates signaling from mitogenic, adhesion and extracellular 

matrix receptors through many essential signaling pathways [7, 72]. However, the 

pleiotropic effect of merlin has made it difficult to identify the most relevant drug targets. 

As an alternative approach to drug discovery, we conducted an unbiased high-

throughput screen of the library of Pharmacologically Active Compounds (LOPAC) 

using viability of Nf2∆Ex2 mouse Schwann cells (MSC) as a phenotypic assay to identify 
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potential compounds and pathways relevant to NF2 schwannoma treatment. One 

compound identified in the screen was AGK2, a SIRT2 inhibitor.  SIRT2 is one of seven 

mammalian sirtuins, also known as class III HDACs (histone deacetylases). Sirtuins are 

NAD(+) dependent deacetylases, that remove the acetyl group from the lysine’s epsilon-

amine in a multi-step reaction[44, 92]. SIRT2 is mainly cytoplasmic and its known 

substrates include: α-tubulin, partitioning defective 3 homolog (PAR3), p53, K-RAS, 

histone H4K16,  forkhead Box O1 and 3a (FOXO1 and 3a) and RIP1 [45, 50, 52, 60, 61, 

67]. While beneficial effects of SIRT2 inhibition was shown in neurodegenerative 

diseases such as Parkinson’s and Huntington’s disease, the role of SIRT2 in cancer 

remains controversial [51, 53].  SIRT2 has been reported to function as a tumor 

suppressor that is down-regulated in some human gliomas; however, its function has 

also been reported as essential for survival of C6 glioma cells. Small molecule SIRT2 

inhibitors have in some cases selectively induced tumor cells death [58, 63-66]. 

Here we validate AGK2 as a compound that selectively reduces viability of 

Nf2∆Ex2 MSC compared to normal MSCs. Moreover we demonstrate differential 

expression levels of SIRT2 in Nf2∆Ex2 versus normal MSCs that are associated with a 

general reduction in lysine acetylation. Phenotypic mechanism of action studies 

suggests that inhibition of SIRT2 in Nf2∆Ex2 SCs triggers a necrotic pathway. 
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Materials and Methods 

Inhibitors 

The SIRT2 inhibitors AGK-2; CAS name 2-Cyano-3-[5-(2,5-dichlorophenyl)-2-

furanyl]-N-5-quinolinyl-2-propenamide and AK1; CAS name 3-(azepan-1-ylsulfonyl)-N-

(3-nitrophenyl) benzamide were purchased from Sigma-Aldrich and Cayman Chemicals. 

Rapamycin and Staurosporine were from Santa Cruz Biotechnology (Santa Cruz, CA).  

Antibodies 

β-Actin (8H10D10) and α-tubulin (DM1A) mouse mAb, Merlin (D1D8), acetylated-

lysine (A-K2-100), Acetyl-α-tubulin (Lys40) (D20G3)XP, SIRT1(D1D7), SIRT3(D22A3), 

SIRT5(D8C3), SIRT7(D3K5A) and LC3B(D11)XP rabbit mAb, HMGB1 rabbit Ab were 

purchased from Cell Signaling (Danvers, MA).  GAPDH mAb was from Millipore.  SIRT2 

rabbit Ab was from Sigma-Aldrich. S-100 rabbit Ab was purchased from Dako 

Cytomation (Glostrup, Denmark). Secondary antibodies, peroxidase-conjugated goat 

anti-mouse IgG and goat anti-rabbit-IgG, were purchased from Pierce, Thermo Fisher 

(Rockford, IL). Goat anti-rabbit-IgG Alexa -Fluor488 and -Fluor546 conjugated 

antibodies were purchased from Invitrogen (Grand Island, NY). 

Mouse Schwann Cell Culture 

MSC were cultured on 200 µg/ml poly-L-lysine hydrobromide (PLL, Sigma-

Aldrich), and 10 µg/ml Laminin (Invitrogen) coated 60 or 100-mm Corning dishes. MSC 
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growth medium: DMEM:F12 1:1 (Gibco) plus 1X-N2 supplement (Gibco), 2µM forskolin, 

10 ng/ml neuregulin and 1% Penicillin/Streptomycin (Gibco). 

 Nf2∆Ex2 Mouse Schwann Cell Culture 

Nf2∆Ex2 MSC generated in the lab were cultured in CellBIND-Corning 100 mm 

dishes.  Nf2∆Ex2 MSC growth medium was DMEM/F12 1:1 (Gibco); 1X-N2 supplement 

(Invitrogen) and 1% Penicillin/Streptomycin. All protocols are in accordance with 

guidelines of and approved by the University of Central Florida (UCF) Institutional 

Animal Care and Use Committee (IACUC). UCF vivarium is International-certified by the 

Association for Assessment and Accreditation of Laboratory Animal Care. 

Human Schwann Cell and HEI193 Cell Cultures 

Vials of frozen human SCs were thawed and seeded on coated 60 mm Corning 

plates (200 µg/ml PLL and 50 µg/ml  Laminin) containing D10M growth medium: DMEM 

(Gibco) plus 10%  heat inactivated fetal bovine serum (HIFBS, HyClone, Logan, UT), 2 

µM Forskolin (Sigma), 0.02 mg/ml Pituitary Extract (Biomedical Tech. Inc) and 1% 

Penicillin/Streptomycin (Gibco). HEI193 cells were purchased from ATCC (Manassas, 

VA). HEI193 growth medium: DMEM plus 10% HIFBS, 1% Penicillin/Streptomycin.  

Western Blot Analysis 

SCs were lysed in modified RIPA buffer (25 mM Tris-HCl pH 7.6; 150 mM NaCl: 

1% Triton X-100, 1% Sodium dodecyl sulfate (SDS) with protease inhibitor cocktail and 

phosphatase inhibitor cocktails 2 and 3, Sigma-Aldrich). To remove cell debris, lysates 
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were centrifuged at 15,000 rpm for 10 min at 4°C. Protein concentration of the 

supernatant was determined with the DC Assay (BioRad, Hercules, CA). 10–15 µg of 

sample protein was resolved in 4–20% polyacrylamide gels (Pierce), transferred to a 

polyvinylidene fluoride (PVDF) membrane (Immobilon-P, Millipore, Bedford, MA), 

blocked with 5% BSA and incubated overnight at 4°C with anti- acetylated-lysine 

(1:500), Acetyl-α-tubulin (Lys40) (1:1,000), α-tubulin (1:1,500), SIRT1(1:500), SIRT2 

(1:500), SIRT3(1:500), SIRT5(1:500), SIRT7(1:500), HMGB1 (1:500) for cell lysates and 

at (1:250) for concentrated medium, GAPDH (1:10,000), LC3B (1:500) and β-Actin 

(1:15,000) primary antibodies, followed by their corresponding secondary antibodies at 

1:20,000. Quantification of western blots was done by densitometry using NIH ImageJ 

software. 

Immunofluorescence 

Control and Nf2∆Ex2 MSC were plated on coated German glass coverslips (200 

µg/ml PLL and 10 µg/ml Laminin) and immunostained as previously described 

[81](Thaxton, Bott et al. 2011). Images were acquired using a Zeiss LSM710 Confocal 

microscope with 3 spectral detection channels, 5 laser lines - 458, 488, 514,543 & 633 

nm, FL filter set 49 DAPI, EX G365, FL filter set 43 CY 3, FL filter set 38 Endow GFP, 

all shift free, EC Plan-Neofluar 40x/1.3 DIC WD=0.21 M27 objective lens, with the 

ZEN2009 software. Fluorescence signals were acquired on separate channels with 

identical parameters for each labeled protein from a single plane. Fluorescence intensity 



49 
 

of the green channel was done using Volocity software. Pictures were processed with 

the ZEN2011 software in the same manner. 

Cell Viability Assay 

Viability of dose-response assays was assessed with the CellTiter-Fluor cell 

viability assay (Promega) following manufacturer’s specifications. Normal MSC and 

Nf2∆Ex2 MSC were seeded at 5,000 cells/well in 20 µl of phenol-red free growth medium 

in 384-well plates (black with clear bottom, CellBIND-Corning) and centrifuged 1 min at 

500 rpm. Cultures were incubated at 37ºC, 7% CO2 until attachment (2.5–3.5 hours), 

then 5 µl of compound/vehicle solution was added to each well. Plates were quick spun 

again and returned to the incubator for 24 hours. Fluorescence was read with a Synergy 

H1 Hybrid plate reader (BioTek, Winooski, VT). 

Proliferation Assays 

For the 72 hours cell proliferation study, cell numbers were assessed with the 

Crystal Violet Assay as previously described [82]. Equal number of Nf2∆Ex2 MSC were 

seeded in 24-well plates and cell number was evaluated at 0; 24; 48 and 72 hour time 

points. Absorbance at 595 nm was measured with a µQuant plate reader (BioTek). 

Rate of DNA synthesis was evaluated at 24 hours with the Click-iT EdU 

Microplate Assay (Invitrogen/ Life Technologies) as previously described [93]. Oregon 

green-488 and DAPI fluorescence was measured with a Synergy H1 hybrid plate 

reader. 
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Cell Cycle Analysis 

The cell cycle was analyzed by flow cytometry with propidium iodine (PI) staining 

and BrdU/7AAD. PI staining was performed on ethanol fixed cells using PI/RNase 

solution from Beckton-Dickinson and studied on a BD Canto-II flow cytometer. 

Histograms were analyzed with ModFit LT software (Verity Software House, Topsham, 

ME). For each sample, 10,000 events were collected and the diploid population was 

distributed across G0/G1, S and G2/M phases.  

The BrdU/7AAD assay kit was purchased from Beckton-Dickinson. Cells were 

seeded in 6-well plates and treated overnight with inhibitor/vehicle.  On the next day, 10 

µM BrdU was added to the cultures for 3 hours, cells were harvested, fixed and 

analyzed following manufacturer’s instruction. The BD Canto-II flow cytometer with the 

BD FACSDiva™ 6.1.3 software was use for acquisition and Kaluza 1.2 (Beckman 

Coulter) software for data analysis. 

Apoptosis Assays 

For caspases dependent apoptosis the caspase activity was assessed by the 

Apo-ONE homogeneous Caspase-3/7 assay (Promega) following manufacturer’s 

specifications. For caspases dependent and/or independent apoptosis the membrane 

asymmetry was measured with the Violet Ratiometric Membrane Asymmetry 

Probe/Dead Cell Apoptosis Kit (Invitrogen/Life Technologies). Both assay were 

previously described [93]. 
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Cytotoxicity Assays 

Cytotoxicity was assayed in a 384 well plate format with 5,000 cells/well after 24 

hours incubation with the inhibitors/vehicle with the CellTox Green assay (Promega), 

following the express, no-step addition at seeding method described by the 

manufacturer.  Cells treated with 27 µg/ml digitonin were considered 100% cytotoxicity 

control.  Fluorescence (Ex= 510nm/Em= 532 nm) was measured on a Synergy H1 

Hybrid plate reader. 

LDH Release Assay 

LDH released into the culture medium was measured with the CytoTox-ONE 

assay (Promega).  Nf2∆Ex2 MSC were seeded at 4,000 cell/well in 384 well plates and 

were treated on the next day with increasing doses of inhibitor/vehicle and incubated for 

4 hours. Positive 100% cytotoxicity control was 27 µg/ml digitonin. Plate and assay 

reagent were equilibrated to room temperature for 25 min and after addition of 25 µl of 

assay reagent, the plate is incubated at room temperature in the Synergy H1 Hybrid 

plate reader. No stop solution was used. Fluorescence (Ex=560 nm/Em= 590nm) was 

measured 5 min after the first column received reagent. 

HMGB1 Release Assessment 

Equal number of Nf2∆Ex2 MSC per well in CellBIND 6-well plates were cultured 

overnight. On the next day the medium was replaced with 2 ml treatment medium 

containing SIRT2 inhibitors/vehicle in duplicate wells and incubated for 6 hours at 37ºC, 
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7% CO2. Then working on ice, media from duplicates were pooled and transferred to 

cold 15 ml conical tubes, centrifuged for 5 min at 800g, 4 ºC. The supernatant (~4ml) 

was syringe filtered with 0.45 µm filter (Fisher), transferred to cold 7 ml 9K MWCO 

Pierce concentrators (Thermo Scientific) and centrifuged for 30 min at 4,000g, 4 ºC. 

From 120 to 150 µl of concentrated proteins were obtained and prepared for SDS-

PAGE. When media was removed from cultures, the plates were washed once with ice 

cold PBS and cell were lysed with the modified RIPA buffer mentioned above; protein 

concentration was measured with the DC assay (BioRad).  Equal volume of 

concentrated proteins from medium and 10 µg of protein of cell lysates were analyzed 

by western blotting for HMGB1. 

Statistical Analysis 

GraphPad Prism version 5.0 for Windows (GraphPad, La Jolla, CA, USA) was 

used for statistical analysis and graph generation. AGK-2 and AK1 dose-response 

experiments were analyzed by non-linear regression (four parameters).  Experimental 

data from three independent experiments were statistically analyzed by one or two-way 

ANOVA with post-tests, as indicated for each experiment. 
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Results 

Nf2∆Ex2 MSC have Higher SIRT2 Levels and Lower Lysine Acetylation Levels than 
Control MSC. 

Nf2∆Ex2 mouse Schwann cells (MSC) contain a deletion of exon 2 of the Nf2 gene 

that replicates a documented patient mutation. Nf2∆Ex2 MSC were created by in vitro 

adeno-Cre transduction of mouse Schwann cells isolated from sciatic nerves of 

homozygous Nf2flox2/flox2 mice as previously described [81, 83, 93]. Using this NF2 cell 

model, we screened the Library of Pharmacologically Active Compounds (LOPAC, 

Sigma-Aldrich) searching for compounds capable of reducing their viability. One of the 

initial hits we chose to investigate was AGK2, a small molecule SIRT2 inhibitor. The 

sirtuin family of deacetylases has not been examined heretofore in NF2.  

To visualize the lysine acetylation patterns in Nf2∆Ex2 MSC and control MSC, we 

performed a western blot using an ε-acetyl-Lysine antibody. Control MSC had a higher 

number of and more intensely acetylated bands than Nf2∆Ex2 MSC (Figure 11 a, and 

Supplementary Figure 3). Because the Nf2∆Ex2 MSC presented fewer bands, we asked 

whether SIRT2, the target of AGK2 had altered expression levels. Indeed we found that 

Nf2∆Ex2 MSC expressed SIRT2 at higher levels than control MSC (Figure 11 b). The 

acetyl-lysine blot differed greatly around the 50 kDa molecular weight marker. Because 

SIRT2 is a recognized acetyl-α-tubulin deacetylase, we investigated if any of those 

bands were α-tubulin. Nf2∆Ex2 MSC have highly deacetylated tubulin levels compared to 

control MSC (Figure 11 b). We confirmed these differences with several independently 

derived Nf2∆Ex2 MSC lines (Figure 11 c).  We next immunoblotted for glyceraldehyde-3-
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phosphate dehydrogenase (GAPDH) because tumor cells have altered metabolism and 

sirtuins can influence metabolic and energetic regulation. We found higher levels of 

GAPDH in Nf2∆Ex2 MSC compared to MSC consistent with higher glycolytic activity in 

Nf2∆Ex2 MSC than controls (Figure 11 c). In order to validate the results in our cellular 

model, we measured SIRT2 and acetyl-α-tubulin levels in a human NF2 cell line created 

by immortalization of schwannoma cells from a NF2 patient with the E6 and E7 genes of 

the papillomavirus [85]. Similarly, we found higher levels of SIRT2 in HEI-193 cells than 

in control human Schwann cells which correlated with lower acetylated tubulin levels in 

HEI-193 compared to control cells (Figure 11 d). 

We localized SIRT2 in control and mutant cells using immunofluorescence 

staining followed by confocal microscopy. Both cells types expressed the Schwann cell 

marker S100 and control MSC immunoreacted with the N-terminal merlin antibody 

whereas the Nf2∆Ex2 MSC did not. Both cell types expressed SIRT2 in the cytosol and 

nuclei, however, Nf2∆Ex2 MSC in general had higher levels of fluorescence intensity than 

controls. Control MSC showed significantly higher levels of acetylated tubulin compared 

to Nf2∆Ex2 MSC and in the latter, the weak immunofluorescence signal for acetylated 

tubulin was mostly perinuclear (Figure 11 e). 

Lastly, we examined the expression of other sirtuin family members by western 

blotting. SIRT5 was expressed in control and Nf2∆Ex2 MSC at similar levels, whereas 

SIRT1, SIRT3 and SIRT7 were expressed at higher levels in Nf2∆Ex2 MSC than MSC 

(Figure 11 f). 
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SIRT2 Inhibition Selectively Reduces Nf2∆Ex2 MSC Viability in a Dose-Dependent 
Manner 

To evaluate selectivity of SIRT2 inhibition for Nf2∆Ex2 MSC viability, we conducted 

a dose response study of AGK2 using CellTiter-Fluor assay. We found that a 24 hour 

exposure to AGK2 decreased Nf2∆Ex2 MSC viability in a dose-dependent manner with 

an IC50= 9.0 µM (Figure 12 a). In contrast, AGK2 did not decrease control MSC viability 

as effectively as for Nf2∆Ex2 cells (Figure 12 b). At 10 µM AGK2, Nf2∆Ex2 cells retained 

45.8 ± 0.7 % viability compared to control MSC that retained 70.9 ± 1.8 % viability. 

Although AGK2 is a highly selective SIRT2 inhibitor, it does minimally inhibit 

SIRT1 and SIRT3 at ten times the SIRT2 IC50 level when tested in vitro [51]. To 

corroborate that SIRT2 was specifically inhibited by AGK2 and associated with loss of 

Nf2∆Ex2 MSC viability, we tested the effect of an alternative SIRT2 inhibitor, AK1. This 

benzylsulfonamide also inhibits SIRT2 enzymatic activity by targeting the nicotinamide 

binding site but with less potency for SIRT1 and SIRT3 than AGK2. We found that AK1 

decreased Nf2∆Ex2 MSC viability in a dose-dependent manner with an IC50= 26.1 µM 

(Figure 12 c). AK1 minimally reduced control MSC viability which retained 82.8 ± 2.1% 

viability at 25 µM (Figure 12 d). These results suggest that pharmacological inhibition of 

SIRT2 selectively reduced Nf2∆Ex2 MSC viability. 

SIRT2 Inhibition Reduces Nf2∆Ex2 MSC Proliferation without Interfering with Cell Cycle 
Progression or DNA Synthesis 

We next assessed the ability of AGK2 to decrease cell viability for longer 

incubation times. We treated Nf2∆Ex2 MSC with vehicle or inhibitor and assessed the cell 
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number by crystal violet staining at 24, 48 and 72 hours.  We found that at 72 hours 

AGK2 significantly reduced the number of Nf2∆Ex2 MSC compared to vehicle control 

(Figure 13 a).  We also measured EdU incorporation in AGK2-treated Nf2∆Ex2 MSC and 

found that it did not decrease DNA synthesis compared to vehicle treated controls 

(Figure 13 b). 

To determine if the decrease in cell number caused by AGK2 was associated 

with inhibition of cell cycle progression, we performed flow cytometry analysis of 

propidium iodine (PI) labeled cells. We found that AGK2 did not significantly alter the 

distribution of diploid cells in the cell cycle, although there was a tendency to slightly 

increase the percentage of cells in the G2/M phase (Figure 13 e). To further analyze the 

effect of AGK2 on cell cycle progression, we performed a BrdU/7-AAD assay. There 

was no significant change in the distribution of treated and untreated cell populations 

during the cell cycle after 24 hours (Figure 13 f). These results suggest that SIRT2 

inhibition decreased Nf2∆Ex2 MSC proliferation by mechanisms independent of 

interfering with cell cycle progression. 

SIRT2 Inhibition Induces Nf2∆Ex2 MSC Cell Death 

To determine if SIRT2 inhibition reduced Nf2∆Ex2 MSC viability by inducing 

apoptosis, we tested caspase 3/7 activity following AGK2 treatment. We found that 

AGK2 moderately increased caspase 3/7 activity at 10 µM compared to the positive 

control, staurosporine, that increased caspase 3 and 7 activity to much higher levels in 

a dose-dependent manner (Figure 14 a). To further analyze if SIRT2 inhibition induced 
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caspase independent apoptosis, we studied the effect of AGK2 on Nf2∆Ex2 MSC 

membrane asymmetry using the violet ratiometric flow cytometry assay. We found 

AGK2 only moderately increased apoptosis from 3.5 ± 1.2 % in Nf2∆Ex2 MSC treated 

with DMSO to 6.1 ± 2.8 % when treated with AGK2. This increase however was not 

statistically significant (Figure 14 b,c). These results suggest that even though AGK2 

slightly induced apoptosis it is not the main mechanism responsible for the decreased 

viability of Nf2∆Ex2 MSC.  

Next, we assessed whether SIRT2 inhibition decreased Nf2∆Ex2 MSC viability by 

inducing cell death by inducing cell necrosis. We measured cytotoxicity with a 

fluorescence plate format assay that uses a cyanine dye impermeant to live cells that 

stains DNA from dead cells and increases its fluorescence. We found that both, AGK2 

and AK1, significantly increased the number of dead Nf2∆Ex2 MSC in dose-dependent 

manners (Figure 15 a, b). To further analyze the mechanism of cell death, we measured 

the release of lactate dehydrogenase (LDH) from cells with damaged membranes into 

the medium with the CytoTox-ONE homogeneous membrane integrity assay. We found 

that both SIRT2 inhibitors, AGK2 and AK1 increased the levels of LDH released to the 

medium in a dose dependent manner. This is typically associated with cell necrosis 

(Figure 15 c,d). We also measured release from cells of the necrosis marker high 

mobility group box 1 protein (HMGB1) by western blot [94]. We found that AGK2 and 

AK1 induced release of significant amounts of HMGB1 into the medium that 

corresponded with a decrease in intracellular HMGB1 levels (Figure 15 e). To further 

characterize Nf2∆Ex2 MSC cell death, we assessed the induction of autophagy by 
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immunoblotting for lipidated microtubule-associated protein 1 Light Chain 3 B (LC3B-II). 

Cytosolic LC3B-I during autophagy is lipidated by Atg 7 and 3 and is converted in LC3B-

II that associates with autophagic vesicles [95]. We found that although DMSO slightly 

activates autophagy, neither AGK2 nor AK1 induced it (Figure 15 f). 

These results suggest that SIRT2 inhibition decreased Nf2∆Ex2 MSC viability by 

triggering cell death characterized by release of LDH and HMGB1. 

Discussion 

SIRT2 and Schwann Cells 

SIRT2 was identified as a potential NF2 drug target from a pilot LOPAC screen. 

We confirmed that SIRT2 protein levels were higher in cultured Nf2∆Ex2 MSC compared 

to cultured control MSC and that SIRT2 activity was essential for survival of Nf2∆Ex2 

Schwann cells but not wild type MSC. SIRT2 inhibition by AGK2 and AK1 selectively 

decreased viability of Schwann cells lacking functional merlin.  The AGK2 and AK1 

dose-dependent loss of cell viability correlated with a dose-dependent cell death that 

was further characterized as associated with release of the necrotic markers LDH and 

HMGB1 without induction of autophagy, cell cycle arrest or significant caspase 3/7 

dependent or independent apoptosis. 

Although SIRT2 has been considered a potential regulator of cell cycle 

progression [54-56, 96], we did not find evidence for that mechanism of action in this 

study.  SIRT2 was reported to associate with mitotic structures and to increase in 

abundance and phosphorylation during mitosis.  It has been reported to prevent 
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chromosome condensation and entry into M phase in response to mitotic stress. 

Additionally, overexpression of catalytically inactive SIRT2 increased the number of 

multinucleated HeLa cells. However in the absence of stressors, SIRT2 activity was not 

required for cell cycle progression in HeLa and HEK293 cells [57]. In Schwann cells, 

selective inactivation of Sirt2 during early embryogenesis did not reduce the number of 

Schwann cells produced during the period of rapid cell proliferation that occurs at post-

natal days 1-5. This supports the conclusion that cell cycle progression in Schwann 

cells is independent of SIRT2 activity [50] in agreement with our finding that SIRT2 

inhibition did not decrease Nf2∆Ex2 MSC viability by arresting cell cycle progression but 

rather by inducing cell necrosis. There is evidence for a role of SIRT2 in necrosis. Nie et 

al. reported that AGK2 treatment of PC12 cells decreased intracellular ATP levels and 

increased necrosis without affecting autophagy [97]. Additionally, tumor necrosis factor 

alpha (TNF-α) was shown to activate necroptosis via deacetylation of receptor-

interacting protein 1 (RIP1) by receptor-interacting protein 3 (RIP3) bound SIRT2 

allowing the formation of a stable complex in L929 and Jurkat T cells [67]. Due to the 

prominent role of cytokines in SC development and repair others have shown that while 

a low concentration of TNF-α induced SC proliferation, a high concentration of TNF-α 

induced SC growth arrest and apoptosis [98-100]. We have not studied TNF-α in Nf2∆Ex2 

Schwann cells and additional studies are needed to identify the pathway by which 

inhibition of SIRT2 activity leads to cell necrosis. 
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SIRT2 in Cancer 

Similar to our findings in Schwannoma and control Schwann cells, upregulation 

of SIRT2 mRNA and protein levels has been reported in some cancer cells such as 

primary acute myeloid leukemia blasts compared to control hematopoietic progenitor 

cells from healthy individuals [101]. In glioma cells, however, it has been reported that 

several human glioma samples had reduced SIRT2 mRNA compared to normal brain 

tissue and that overexpression of SIRT2 decreased HTB14 glioma cells colony 

formation [64]. Notably, inhibition of SIRT2 activity decreased C6 glioma cells viability 

[63]. Additionally, aged mice with inactivation of the Sirt2 gene by deletion of exons 5-8 

developed different types of tumors depending on their gender [58]. Treatment of C6 

glioma cells with 10 µM AGK2 for 24 hours caused a 60% loss of viability due to both 

apoptosis and necrosis [63]. Similarly, another SIRT2 inhibitor, compound AC-93253 

showed selectively decreasing viability of several human cancer cell lines over their 

human primary cells controls [65]. The panel included cell lines from prostate, pancreas, 

cervical and lung cancer. AC-93253 was also selectively cytotoxic to HeLa cells by 

inducing apoptosis and necrosis. Discrepancies in the positive and negative 

associations of SIRT2 with tumor development are likely due to differences in cell type, 

developmental activation patterns for SIRT2 and substrate preferences [50, 102]. For 

instance histone H4 is a principal substrate for SIRT2 in various cell types but not in 

oligodendrocytes  [60, 103].   



61 
 

Inhibition of SIRT2 and other Deacetylases 

Although AGK2 and AK1 selectively inhibit SIRT2, at higher concentrations they 

can also inhibit SIRT1 and SIRT3 in vitro [51]. Therefore it is possible that at the IC50 

concentrations used in this study, the compounds could have also slightly decreased 

SIRT1 and 3 activity. Interestingly, treatment of BCL6-expressing Burkitt lymphoma 

cells and Burkitt lymphoma xenograft mice with a dual SIRT1 and SIRT2 inhibitor, 

cambinol, produced a potent antitumor effect [59]. Hence, there may be value to SIRT2 

and SIRT1 combinatorial inhibition in schwannoma treatment. A recent study showed 

that acetylation of K-RAS at lysine104 attenuates its transforming activity in cancer cells 

and both SIRT2 and HDAC6 deacetylate K-RAS [61]. Moreover, α-tubulin and cortactin 

acetylation are regulated by SIRT2 and HDAC6 [45, 46, 104]. Due to the increasing 

interest of HDAC inhibitors in cancer, a new pan-HDAC inhibitor AR42 was tested on 

merlin null schwannoma and meningioma cells. Both in vitro and in vivo treatment 

showed a selective anti-proliferative effect on schwannoma and meningioma cells 

warranting further clinical evaluation for NF2 related tumors [105-107]. AR42, similar to 

other HDAC inhibitors also decreased Akt phosphorylation, a pathway upregulated in 

many cancers and NF2. Chen et al. have shown that AR42 targets HDAC1 and HDAC6 

by disrupting their HDAC-protein phosphatase 1 (PP1) complexes, which leads to 

increased PP1-Akt association, and facilitates PP1-mediated dephosphorylation of Akt 

[108]. Therefore combinatorial inhibition of SIRT2 and HDAC6 could be evaluated when 

considering modulation of acetylation signaling for NF2 treatment. 
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We speculate that SIRT2 pharmacological inhibition may have some therapeutic 

value for NF2-associated schwannomas by promoting necrosis. However, additional 

research is needed to understand the relationship between merlin and SIRT2 in normal 

Schwann cells and the effect of merlin inactivation on protein acetylation and cell 

survival. 
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Figures 

 

Figure 11. Nf2∆Ex2 MSC Have Lower Levels of Lysine Acetylation and Higher 
Levels of SIRT2 Compared to Control MSC.  

 Control Nf2flox2/flox2 MSC and Nf2∆Ex2 MSC were analyzed by western blotting for: a) Acetyl-
lysine, b) SIRT2, acetyl-α-tubulin, α-tubulin and c) SIRT2, GAPDH. Anti-β-actin was used as a 
loading control. d) Cultured control human Schwann cells (HSCs) from normal individuals and 
HEI193 cells were analyzed by western blotting for SIRT2, acetyl-α-tubulin, α-tubulin. Anti-β-
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actin was used as a loading control. e) Representative confocal images of control MSC and 
Nf2∆Ex2 MSC grown overnight on glass coverslips and immunostained with the indicated 
antibodies (green). The nucleus was visualized with DAPI stain (blue) and F-actin with 
phalloidin-Alexa633  (white). Scale bar: 20 µm. Quantitation of the immunofluorescence from 
three independent experiments was performed with Volocity software. ****P<0.0001 determined 
by two-way ANOVA using Bonferroni post-tests. f) Control Nf2flox2/flox2 MSC and Nf2∆Ex2 MSC 
were analyzed by western blotting for SIRT1, SIRT2, SIRT3, SIRT5, SIRT7 and β-actin. 
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Figure 12. SIRT2 Inhibition with AGK2 and AK1 Selectively Decreases Nf2∆Ex2 MSC 
Viability. 

a) AGK2 dose response curve for cell viability. Nf2∆Ex2
 MSC were seeded at 5,000 cells/well in 

384-well dishes and were incubated with increasing concentrations of AGK2 for 24 hours. Cell 
viability was assessed with the CellTiter-Fluor assay. DMSO control was considered 100% 
viability. Rapamycin (RM) (50 µM) was used as positive control for cell death. Graph represents 
the mean ± SEM of 3 independent experiments analyzed together (n=96), IC50=9.01µM, log 
[inhibitor] vs. response, variable slope (four parameters).  b) AGK2 dose response for control 
MSC viability. Cell viability was measured as in (a). Graph represents the mean ± SEM (n=36). 
**P<0.01; ***P<0.001;****P<0.0001 determined by one-way ANOVA using Turkey’s multiple 

comparison test. c) AK1 dose response curve for Nf2∆Ex2
 MSC viability. Cell viability assessed 

as in (a). Graph represents the mean ± SEM of 3 independent experiments analyzed together 
(n=96), IC50=26.1µM, log [inhibitor] vs. response, variable slope (four parameters).  d) AK1 dose 
viability response for control MSC. Cell viability was measured as in (a). Graph represents the 
mean ± SEM (n=20). ***P<0.001; ****P<0.0001 determined by one-way ANOVA using Turkey’s 
multiple comparison test. 
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Figure 13. AGK2 Decreases Nf2∆Ex2
 MSC Proliferation without Interfering with Cell 

Cycle Progression. 

 a) Nf2∆Ex2 MSC were incubated with AGK2 or DMSO for the indicated times and the number of 
cells was assessed using a crystal violet assay. Graph combines 3 independent experiments in 
triplicates (mean ± SEM, n=9). b)  Nf2∆Ex2 MSC were treated with increasing AGK2 
concentrations for 24 hours. For the last 6 hours 10 µM EdU was added to the culture.  
Incorporation of EdU into S-phase cells was assessed with the EdU Click-It microplate assay. 
Graph combines 3 independent experiments (mean ± SEM, n=44). c) Nf2∆Ex2 MSC were 
treated with 5 µM AGK2 for 8 hours prior to propidium iodide labeling. Cells were analyzed by 
flow cytometry and the diploid cell population was evaluated with the ModFit program. d) 
Nf2∆Ex2 MSC were treated with AGK2 or DMSO control overnight and with 10 µM BrdU for the 
last 3 hr of incubation. Cells were analyzed by flow cytometry. Plot of the distribution of BrdU- 
and 7-AAD-labelled cells analyzed with Kaluza software. These distribution plots are 
representative of 3 independent experiments (n=3). Bar graph of the distribution of the cell 
cycle phases of the experiments as mean ± SEM. 
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Figure 14. SIRT2 Inhibition with AGK2 Does Not Induce Significant Apoptosis.  

 a) Caspase 3/7 activity assay. Nf2∆Ex2 MSC were seeded in 384 well plates at 5,000 cells/well 
in 20 µl phenol-red free medium. After 16 hours 5 µl/well of inhibitor/vehicle was added and 
incubated for an additional 8 hours. Activity of the Caspase 3/7 was measured with the ApoONE 
Homogeneous assay. Staurosporine curve was used as positive control. Histogram represents 
3 independent experiments (n=96) normalized to untreated and analyzed together. **P<0.05; 
***P<0.001determined by one-way ANOVA using Dunnett’s multiple comparison test to DMSO 
control.  b) Plasma membrane asymmetry was evaluated with the Violet ratiometric assay by 
flow cytometry. Nf2∆Ex2 MSC were incubated with AGK2 or DMSO vehicle for 24 hours and 
analyzed by flow cytometry. Densitometry graph: apoptotic (Q3), dead (Q1), live (Q4). Below, 
bar graph represents mean ± SEM of 3 independent experiments (n=3). 
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Figure 15. SIRT2 Inhibition Causes Release of LDH and HMGB1 from Nf2∆Ex2 MSC. 

Nf2∆Ex2 MSC were seeded in 384 well-plates at 5,000 cell/well with cellTox-Green dye in phenol-
red free medium. After attachment cells were treated with increasing concentrations of a) AGK2 
and b) AK1 and incubated for 24 hours. Cytotoxicity was measure in a plate reader. Digitonin 
treatment was considered 100% cytotoxicity control. *P<0.05; ***P<0.001; 
****P<0.0001determined by one-way ANOVA using Bonferroni’s multiple comparison test.  c) 
Nf2∆Ex2 MSC (5,000 cells/well in a 384-well plate) were treated for 4 hours with increasing 
concentrations of AGK2 and release of LDH into the medium was measured with a fluorogenic 
assay, the CytoTox-ONE homogenous membrane integrity assay in a plate reader; digitonin 
was considered as control for maximum LDH release. *P<0.05 determined by one-way ANOVA 
using Dunnett’s multiple comparison test d) Assessment of LDH released to the medium by 
Nf2∆Ex2 MSC treated 4 hours with increasing concentrations of AK1 as in (c), *P<0.05; 
***P<0.001 determined by one-way ANOVA using Dunnett’s multiple comparison test.  e) 
Nf2∆Ex2 MSC were seeded in 6-well plates and treated for 6 hours with inhibitors/vehicle. 
HMGB1 release into the medium and cellular content of HMGB1 was assessed by western blot 
with anti-HMBG1 antibody. Anti-β-actin was used as loading control. f) Induction of autophagy 
was assessed by LC3B-II immunobloting. Nf2∆Ex2 were treated for 3 hours with AGK2 or AK1 
plus and minus 10 µg/ml acidic lysosomal proteases inhibitors (E64-d and pepstatin-A). Cell 
were lysed in 1% SDS buffer and resolved by western blot for anti-LC3B. Anti-β-actin was used 
as loading control. 

  



69 
 

CHAPTER FOUR: CONCLUSION 

The results described in the previous chapters address an urgent need for 

effective NF2 therapy. The overall survival rate in NF2 patients estimated at 20 years 

from the diagnosis is 38%, but the consequences of the tumors greatly decrease the 

quality of life from diagnosis.  Despite the identification of several potential targets by 

the investigation of causal molecular mechanisms of the tumorigenesis in NF2 mutated 

cells, currently there is no drug indicated by the Food and Drug Administration (FDA) for 

NF2 therapy [109]. The work described in this dissertation validates two independent 

target enzymes, the LIM domain kinases, identified as downstream kinases of the 

Rac/Cdc42-PAK over-activated signaling pathway in NF2 deficient schwannoma cells, 

and the SIRT2 deacetylase identified in an unbiased HTS of the LOPAC library. 

Merlin’s capability to act as a tumor suppressor was initially related to its ability to 

suppress Rac1 recruitment, preventing loss of contact inhibition associated with 

tumorigenesis [110]. We validated LIMK, a Rac1 pathway related downstream kinase as 

a target for NF2 therapeutics; inhibition of LIMK effectively decreased merlin-inactivated 

MSC proliferation by blocking the cell cycle progression at the G2/M phase. Confocal 

microscopy showed that the LIMK inhibitor BMS-5 arrested cells at pro-metaphase by 

causing abnormal mitotic spindle and centrosome organization, two major effects 

molecularly linked and explained by the inhibition of the cofilin and aurora A 

phosphorylation. Therefore, the pharmacological inhibition of LIMK with BMS-5 falls in 

the category of chemotherapeutics with its mechanism of action being interference with 

cell division. Several cancer chemotherapies are based on the premise that 
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cancer/tumor cells proliferate at faster rate than the healthy cells, therefore drugs that 

interfere with cell proliferation have increased effect on cancer cells and offer a 

therapeutic window. However, other fast dividing cells such as cells in the bone marrow, 

digestive tract, and hair follicles are affected and cause side effects.  The most common 

side effects are: decreased production of blood cells and immunosuppression [111], 

inflammation of the lining of the digestive tract accompanying nausea, vomiting, 

diarrhea and anorexia  [112] and hair loss (alopecia) [113]. LIMK inhibitors might have 

similar side effects. Undoubtedly, more studies are needed to determine LIMK inhibitors 

systemic effect and if tumor cells will be able to develop resistance. Currently, LIMK 

inhibitors have only been tested topically to treat elevated optic pressure in glaucoma 

patients, which was reported using a specific LIMK2 inhibitor [114]. However the 

increasing knowledge of their involvement in various cancers placed LIMK as emerging 

cancer targets. Hence, pharmaceutical companies and researchers are developing new 

highly potent and specific candidate drugs that may prove valuable for the treatment of 

NF2. Despite the benign nature of the NF2-related tumors, NF2 deficient cells share 

major characteristics of cancer cells making it appealing to test new cancer therapies in 

NF2-related tumors. Cancer and NF2 tumor cells present sustainability of proliferative 

signaling, defense against cell death, ability to silence growth suppressors, replicative 

immortality, stimulation of angiogenesis, reprogramming of energetic metabolism and 

evasion of immune attack, whereas the main difference is that NF2 tumors do not 

invade other tissues or metastasize [115].  
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Contrary to the classical cell-cycle related kinases, SIRT2 is a more recent class 

of target enzyme uncovered in the tumorigenesis field. Chronologically, the sirtuin family 

came to light when research identified these enzymes as regulators of lifespan in the 

yeast Saccharomyces cerevisiae [116, 117]. In mammals, SIRT1 was the first one 

discovered 13 years ago and has been the most extensively studied, and it is related to 

metabolic regulation; since then, seven sirtuins were discovered. Identification of SIRT2 

led to a vast number of publications that shed light on its function [118]. The 

involvement of SIRT2 in cancer/tumors is currently unclear and seems to be heavily 

dependent on the molecular pathways de-regulated in different tumors. Moreover, 

plenty remains to be elucidated about the sirtuins biology. The appeal of a new 

therapeutic avenue keeps the scientific field working relentlessly to identify more 

specific and potent SIRT2 inhibitors to study their effect on tumor growth. Based on our 

studies, SIRT2 inhibitors such as AGK2 and AK1, contrary to LIMK inhibitors, fall into a 

different chemotherapeutical mechanism of action, drugs that induce tumor cell death. 

 A classic chemotherapy principle is that combinatorial regimens provide 

maximum benefits because treatments with two drugs within their therapeutic dose 

range afflict a maximum tumor cytotoxic effect with minimum systemic toxicity. 

Additionally, because the tumor might have a heterogeneous cell population, two 

compounds with independent targets improve the chances to prevent or slow the rise of 

a drug-resistant subpopulation. It is recommended to combine compounds with different 

mechanism of action because it leads to a synergic effect on tumor cells with minimum 

general toxicity [119]. Therefore, the LIMK inhibitors cell cycle interference and the 
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SIRT2 inhibitors tumor cell death are two types of drugs that might be of a benefit to 

combine. Not only the mechanisms of action are different, one drug halts cell division 

and the other kills tumor cells, but also their targets are completely independent, in 

pathways and enzymatic activity. One drug affects the phosphorylation status of 

proteins and the other drug affects their acetylation status. As of today, LIMK and SIRT2 

inhibitors still need to be tested in pre-clinical and clinical studies before formulating 

conclusions on their therapeutic use or potentiality as combinatorial drugs for NF2 and 

NF2 mutation-related tumors. 

To conclude, this dissertation presents to the NF2 field the validation of two 

potential drug targets. Further research is needed to determine the clinical value 

through in vivo pre-clinical testing and clinical trials.  
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APPENDIX A: CHAPTER TWO SUPPLEMENTARY FIGURES 
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Supplementary Figure 1. Effective LIMK Knockdown. 

Nf2∆Ex2 MSCs were transduced with lentiviral vectors with various shRNA constructs targeting 
LIMK1 and LIMK 2.  Western blotting of Nf2∆Ex2 MSC whole cell extracts treated with scrambled 
shRNA control and various constructs targeting LIMK1 (a) and LIMK2 (b). Plots of densitometry 
analysis of the immunoblots by ImageJ software are shown below each panel. The red 
rectangles mark the constructs chosen for the experiments. 
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Supplementary Figure 2. Inhibition of LIMK with BMS-5 Interferes with Nf2∆Ex2 
MSCs Cell Cycle Progression in a Dose-Dependent Manner.   

Nf2∆Ex2 MSCs were grown in a 6-well format and treated for 24 hrs with 2 and 5 µM BMS-5 prior 
to 3 hr BrdU labeling and analysis by flow cytometry with a BD Cantos II flow cytometer 

controlled by BD FACSDiva™ 6.1.3 software. Distribution of BrdU- and 7-AAD-labelled cells into 

dying cells, G0/G1, S, and G2/M phase was analyzed with FlowJo software. At higher BMS-5 
dose Nf2∆Ex2 MSCs were trapped in higher proportion in the G2/M phase and evidenced a 
decrease in the number of cells in S phase. 
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APPENDIX B: CHAPTER THREE SUPPLEMENTARY FIGURE 
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Supplementary Figure 3. Nf2∆Ex2 MSC have Lower Levels of Lysine Acetylation 
Compared to Control MSC.  

Cell lysates of control Nf2flox2/flox2 MSC and Nf2∆Ex2 MSC were analyzed by western blotting for 
acetyl-lysine; β-actin was used as loading control. The right panel shows a longer exposure of 
the blot and reveals multiple differentially acetylated bands. 
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