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ABSTRACT 

Over the past few years the number of deaths caused due to cardiovascular 

diseases has been increasing and is of major concern. In the United States, 75% of 

cardiovascular-related deaths have been attributed to atherosclerosis. Western diets 

containing large quantities of peroxidized lipids are considered atherogenic. Heated oil 

in the form of fried food brings high levels of peroxidized fat and its decomposition 

products in the diet. Peroxidized lipids are known to increase the susceptibility of serum 

lipoproteins to undergo oxidation, thereby contributing to the progression of 

atherosclerosis. The intestinal cells are responsible for the absorption of dietary fatty 

acid peroxides (FAOOH) which has been reported to enhance anti-atherosclerotic 

effects by inducing apolipoprotein A1 (apoA1) gene and protein levels. Therefore, there 

is a void in the knowledge of when to expect “harmful” or “beneficial” effects of dietary 

lipid peroxides. The formation of toxic products like aldehydes from the decomposition 

of FAOOH is well documented. On the other hand, carboxylic acids particularly azelaic 

acid, formed as an end product of FAOOH decomposition has been reported to have 

anti-atherosclerotic effects. Hence, we hypothesize that intestinal cells may decompose 

FAOOH to aldehydes, which might get converted to carboxylic acids that can be 

transported across the intestine. Linoleic acid is the most abundant polyunsaturated 

fatty acid (PUFA) present in the diet. So, we will use peroxidized linoleic acid (13-

HPODE) and incubate with intestine derived cells or Caco-2 cells as an in-vitro model 

for determining its decomposition to aldehydes and carboxylic acids.  We propose that 

the decomposition products of FAOOH in the presence of intestinal cells might be 
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responsible for causing an increase in apoA1 levels, which might suggest that lipid 

peroxidation derived products might actually be beneficial for reducing the progression 

of atherosclerosis as compared to the absorption of intact FAOOH. 
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CHAPTER-1: INTRODUCTION 

1.1 Cardiovascular diseases- statistical update  

Over several decades, there has been an increasing concern to control the 

number of deaths caused due to heart diseases. The center for disease control and 

prevention (CDC) has reported that about 600,000 people die of heart diseases every 

year, and is the leading cause of death for both men and women. The most common 

one is coronary heart disease (CHD), which is responsible for killing more than 385,000 

people annually (Minino, Murphy et al. 2011). 75% of all cardiovascular related deaths 

in the US is caused due to atherosclerosis (Lewis 2009). The figures below have been 

taken from the American Heart Association (AHA) journal depicting the number of 

deaths due to heart diseases. 

 

 

  

 

 

 

 

 

Figure 1-1: Number of deaths caused by cardiovascular diseases from 1900 to 2008.  

Although there is a decline in the number of deaths after 1970 till 2008, the numbers still 
remain very high. 
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Figure 1-2: Pie chart depicting various causes of cardiovascular related deaths.     

Source: National center for health statistics (Roger, Go et al. 2012) 

1.2 Atherosclerosis 

Atherosclerosis is a chronic inflammatory disease caused by the accumulation of 

cholesterol and its esters in the sub-endothelial macrophages of the artery. It is 

currently the leading cause of death in the western world societies (Lusis 2000). Several 

risk factors such as hypercholesterolemia, hyperlipidaemia, hypertension, diabetes 

mellitus, smoking etc. are associated with this disease. Over the past decade, many 

studies have been carried out to understand the molecular mechanisms in the 

development of atherosclerotic plaque in genetically modified mouse models. Our 

laboratory has previously demonstrated that the major cholesterol carrying lipoprotein, 

low-density lipoprotein (LDL), undergoes oxidative modification which results in the 

uptake of modified LDL by macrophages leading to foam cell formation (Parthasarathy, 

Steinberg et al. 1992). Atherosclerosis begins during childhood and progresses with 
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age. The earliest lesions are called ‘fatty streak’ lesions which can be reversible 

(Massin, Vandoorne et al. 2002, Michaelsen, Dyerberg et al. 2002). These lesions are a 

precursor for advanced lesions that can grow sufficiently large enough to occlude the 

blood flow by formation of thrombus or blood clot resulting in myocardial infraction or 

heart attack (Lusis 2000).     

Inflammation is a major factor in the development of atherosclerosis and 

inflammatory cells such as monocytes, macrophages and T-lymphocytes play an 

important role in the process (Ross 1999). Under conditions of oxidative stress/damage 

to the endothelium, LDL enters into the arterial wall and undergoes oxidative 

modification. The oxidized LDL (Ox-LDL) can stimulate an inflammatory response by 

inducing cytokines/chemokines. Adhesion molecules such as intercellular adhesion 

molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1) are also induced 

in the endothelium which can bind to leukocytes and play specific roles in causing 

rolling, tight adhesion and entry in to the arterial wall in response to chemo-attractant 

cytokines such as monocyte chemotactic protein 1 (MCP-1). Monocytes enter in to the 

walls of arteries and differentiate into macrophages. The latter can effectively take up 

Ox-LDL resulting in the formation of lipid rich foam cells, ultimately giving rise to fatty 

streak lesions (Lusis 2000, Plutzky 2003, Rader and Daugherty 2008). Vascular smooth 

muscle cells (VSMC) further migrate towards the intima and begin proliferating, giving 

out large amounts of collagen resulting in fibrous cap formation under the endothelial 

cells (figure-1-3). Inflammation is thus enhanced by this process which causes necrotic 

core formation within the atherosclerotic plaque. VSMC and macrophages are known to 
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secrete matrix degrading enzymes such as matrix metalloproteinases (MMP) that 

decrease the stability of plaques making them more prone to rupture. Eventually, plaque 

rupture leads to the exposure of thrombogenic materials causing thrombus formation, 

occlusion of blood flow and ultimately resulting in myocardial infraction or stroke.   

Figure 1-3: Initiation and progression of atherosclerosis. 

Early lesions known to develop are called ‘fatty streak’ lesions (a) which can further 
advance to ‘intermediate’ lesions (b) and then into a lesion vulnerable to rupture (c) and 
finally leading to occlusion of the arteries (d). (Adapted from Rader et al. 2008 (Rader 
and Daugherty 2008). 

1.3 Dietary lipid peroxides and intestinal absorption 

Western diets are known to be rich in oxidized fatty acids. Studies have shown 

that peroxidized lipids enhance atherogenicity of high fat diets (Beltowski, Wojcicka et 

al. 2000). Existing evidences suggest that oxidized lipids present in the diet can 

contribute to the pool of oxidized lipoproteins that are atherogenic (Steinberg 1997, 

Staprans, Pan et al. 2005). Intestine plays a major role in the absorption of fats present 

in the diet, by microscopic cell membrane protrusions called microvilli or brush borders. 

Western diets are rich in polyunsaturated fatty acids (PUFA) that are more susceptible 
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to undergo oxidation as compared to monounsaturated fatty acids (MUFA). Linoleic acid 

is the most abundant PUFA present in western diets, which can easily undergo 

oxidation when subjected to various degrees of processing such as heating, frying and 

storage of food. This poses a major health risk for individuals. Studies by Staprans et al. 

(1994) have shown that dietary oxidized lipids can be absorbed by the small intestine, 

transported to the liver via chylomicrons, and further get secreted as VLDL, thereby 

contributing towards the development of atherosclerosis (Staprans, Rapp et al. 1994). 

Chylomicrons are the lipoproteins that transport ingested fat from the gut to other 

tissues of the body. Our laboratory has previously demonstarted that intestinal villus 

cells can take up oxidized fatty acids similar to unoxidized fatty acids and reesterify 

them by acyltransferases into lipids that constitute the chylomicrons (Penumetcha, Khan 

et al. 2000). Figure-1-4 shows the scheme of events leading to the absorption of 

triglycerides by the intestine to form chylomicrons (Penumetcha, Khan et al. 2000).   
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Figure 1-4: Absorption of triglycerides by the intestine. 

During the absorption process, triglycerides are acted upon by pancreatic lipase in the 
presence of bile salts to generate 2-monoacyl glycerol (2-MAG) and free fatty acids. 
These together with lysophopholipids produced by the action of pancreatic 
phopholipase on phospholipids present in the diet form mixed micelles favoring efficient 
absorption into the enterocytes by passive diffusion. Further, acyltransferases reesterify 
the fatty acids and monoglycerides to generate triglycerides which along with 
phospholipids constitute a chylomicron. (Adapted from Penumetcha et al. 2000 
(Penumetcha, Khan et al. 2000))        

At present, there is a growing need to control the epidemic of obesity and 

diseases associated with it in the United States and other developed countries. 

According to the CDC and national health and nutrition examination survey, more than 

one-third of adults and almost 17% of youth were obese in 2009-10 (Ogden, Carroll et 

al. 2012). Therefore, it is of interest to explore the process of absorption of dietary fat 

within the enterocytes and its release by the chylomicrons which is well described in a 

review by Mansbach et al. (2010) (Mansbach and Siddiqi 2010). 
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Upon ingestion of dietary lipids, the fat travels through the esophagus into the 

stomach where it gets converted into chyme which is further released into the 

duodenum of the small intestine. Bile acid is then released from the gall bladder that 

aids in the emulsification of larger fat molecules into smaller droplets that can efficiently 

be absorbed by the epithelial cells of the gut. The absorption takes place by passive 

diffusion of the mixed micelles that comprises of lysophosphatidylcholine, cholesterol, 

free fatty acid (FA), mono-acyl glycerol (MAG) and bile salts. After entering the 

enterocytes, FA and MAG are transported to the endoplamsic reticulum (ER) with the 

help of fatty acid binding protein. Within the ER, fatty acid is acylated into its coenzyme 

A (CoA) derivative that further results in esterification with MAG with the help of an 

enzyme called monoacylglycerol acyltransferase (MGAT) to form diacylglycerol (DAG). 

Acetylation of DAG to form triacyl glycerol (TAG) is carried out by an enzyme called 

acyl-CoA:diacylglycerol acyltransferase (DGAT). Cholesterol also gets esterified to form 

cholesterol esters (CE) with the help of acyl-CoA cholesterol acyltranferase (ACAT). 

Further, TAG and CE along with phophatidylcholine get packaged into chylomicrons, 

and are released to the basolateral membrane for exocytosis into the lamina propria. 

Finally, they travel into the mesenteric lymph  and are released into the circulatory 

system at the thoracic duct. In the blood stream, chylomicrons acquire two new 

peripheral apoproteins called apoprotein C (apoC) and apoprotein E (apoE) which are 

required to bind to the surface of the cell (adipocytes or hepatocytes) for the delivery of 

triglycerides. Adipocytes express lipoprotein lipase that bind to apoC and cleave 

triglycerides present in the chylomicrons to FA and MAG which are taken up by the cell. 
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When the level of triglycerides fall below 20%, apoC gets removed resulting in the 

formation of chylomicron remnant. These are recognized for uptake by the chylomicron 

remnant receptor present in the hepatocytes. Fatty acids taken up by the liver are then 

incorporated into the newly formed very low density lipoprotein (VLDL) and released in 

circulation.  

1.4 Intestinal cells or Caco-2 cells 

Caco-2 cells are intestine derived cells obtained from human colon 

adenocarcinoma that are used as a model system for human intestinal barrier and to 

study lipid peroxide metabolism. Enterocytes are the main type of cells that are present 

in differentiated small intestine (Buhrke, Lengler et al. 2011). The differentiation is 

induced by cell-to-cell contact when cultured for 2-3 weeks post confluence. Upon 

differentiation, these cells develop certain microscopic cell membrane protrusions called 

microvilli or brush borders (figure-1-5) that participate in the absorption of food and 

dietary lipid peroxides. Caco-2 cells that are cultured for 14 to 21 days gradually 

develop brush borders and are hence considered fully differentiated. Whereas, cells 

cultured for only 4 days or until they become confluent are considered as poorly 

differentiated cells as they lack brush borders. These are proliferating colon cancer cells 

that are highly tumorigenic (Buhrke, Lengler et al. 2011). The presence or absence of 

the microvilli is often associated with the increase or decrease in the intestinal alkaline 

phosphatase (IAP) activity respectively that acts as a marker for differentiation. High 

expression and activity of IAP is reported in the duodenum (Calhau, Hipolito-Reis et al. 
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1999). Caco-2 cells often grow as a monolayer of cells with tight junctions that indicate 

a polarized cell layer (Buhrke, Lengler et al. 2011). In the human body, cells present at 

the villus are constantly renewed after 4-8 days by migration of cells along the crypt-

villus axis. Hence there exists a fine balance between the cell proliferation, 

differentiation and apoptosis (Buhrke, Lengler et al. 2011). 

 

 

 

 

 

 

 

 

 
 

Figure 1-5: Microvillus structure from the cross section of the small intestine. 

The outer layer consists of epithelial cells that give rise to brush borders. On the other 
hand, crypt comprises of proliferating cells present at the base of the villus. Each villus 
has capillaries into which the nutrients (glucose and amino acids) are absorbed and a 
lacteal, which absorbs lipids (fats and oils) and drains into the lymph ducts.    

 
Our laboratory has previously shown that cultured cells such as endothelial cells, 

smooth muscle cells and macrophages take up very little lipid peroxides as compared to 

unoxidized fatty acids (Auge, Santanam et al. 1999). On the other hand, differentiated 

intestinal cells take up large amounts of oxidized linoleic acid (18:2) which is similar to 
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unoxidized linoleic acid and oleic acid (Penumetcha, Khan et al. 2000). Experiments 

using radioactive oxidized linoleic acid were done to confirm its uptake by Caco-2 cells 

is dependent on the presence of brush borders as shown in figure-1-6. 

 

 

 

 

 

 

 
 

Figure 1-6: Uptake of oxidized and unoxidized fatty acids by Caco-2 cells. 

Oxidized linoleic acid ([1-14C]ox-18:2), unoxidized linoleic acid ([1-14C]unox-18:2), and 
oleic acid ([1-14C]oleic acid 18:1) uptake was measured by 4-day and 16-day old Caco-
2 cells upon treatment of 50 nmoles of the three types of fatty acids for 30 minutes. 
After the incubation, cells were solubilized in deoxycholic acid and an aliquot was taken 
to determine the radioactivity present in the cell lysate (Adapted from Penumetcha et al. 
2000 (Penumetcha, Khan et al. 2000)).      

 
Linoleic acid present in the diets can form hydroperoxy linoleic acid (13-HPODE: 

13-hydroperoxy-9,11-octadecadienoic acid and 9-HPODE: 9-hydroperoxy-10,12-

octadecadienoic acid) when oxidized. Previously, our laboratory has demonstrated 

increased atherosclerosis in oxidized linoleic acid and cholesterol fed LDL-receptor 

deficient animals (Khan-Merchant, Penumetcha et al. 2002). 

Recently, studies on understanding lipid peroxidation in association with dietary 

lipids have gained importance. Our in-vitro studies showed that lipid peroxidation leads 
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to the formation of both aldehydes and their corresponding carboxylic forms 

(Raghavamenon, Garelnabi et al. 2009). Toxic effects of aldehydes like 4- 

hydroxynonenal (4-HNE) and malondialdehyde (MDA) have been well documented 

(Devasagayam, Boloor et al. 2003). Aldehydes are known to be pro-atherogenic and 

may induce proliferation of cells at lower concentrations (Aizenshtadt, Burova et al. 

2011). There is evidence to state that aldehydes can cause covalent modification of the 

ԑ-amino groups of the lysine residues of low density lipoprotein (LDL) generating its 

oxidized form (Haberland, Olch et al. 1984, Jurgens, Lang et al. 1986, Raghavamenon, 

Garelnabi et al. 2009). On the other hand, some aldehydes like oxo-nonanoic acid 

(ONA) can get oxidized to dicarboxylic acids like azelaic acid (AZA) that has been 

shown to inhibit atherosclerosis (Litvinov, Selvarajan et al. 2010). 

Decomposition of lipid peroxides to aldehydes has been extensively reported, but 

aldehyde oxidation to carboxylic acids is poorly established. Specifically, aldehyde 

formation from the ω-end of the fatty acid has gained more attention as compared to the 

carboxyl end. Our recent studies have shown that 13-HPODE can easily get 

decomposed to simple aldehydes and carboxylic acids (figure-1-7) when incubated at 

37ºC even without cultured cells for up to 72 hours (Raghavamenon, Garelnabi et al. 

2009).  
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Figure 1-7: Decomposition of 13-HPODE into azelaic acid and 4-hydroxy-nonenoic acid. 

(Adapted from Raghavamenon et al. 2009 (Raghavamenon, Garelnabi et al. 2009))   

 

As mentioned earlier, lipid peroxides can be absorbed by fully differentiated cells, 

but very poorly absorbed by cells lacking brush borders (Penumetcha, Khan et al. 

2000).  Hence based on this, we hypothesize that since intestinal cells are constantly 

exposed to free fatty acid peroxides (FFAOOH) of dietary origin, aldehydes and 

carboxylic acids resulting from its decomposition might undergo a different metabolic 

fate. In the absence of microvilli, cells may breakdown peroxidized fatty acids to 
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aldehydes, whereas differentiated intestinal cells containing microvilli might either 

breakdown 13-HPODE to aldehydes which can be converted to carboxylic acids, or 

absorb the intact fatty acid peroxides. The products may then be transported across the 

intestine resulting in the generation of anti-atherogenic players such as apolipoprotein 

A1 (apoA1) in order to combat the toxic effects of dietary lipid peroxides.     

1.5 High density lipoprotein, apolipoprotein A1 and reverse cholesterol transport 

High density lipoprotein (HDL), also known as “good cholesterol”, is the major 

lipoprotein responsible for transporting cholesterol from the body tissues to the liver for 

excretion in the bile (Barter 2000). The process is known as reverse cholesterol 

transport and is inversely associated with the risk for development of atherosclerosis. 

The most predominant HDL protein is apoA1 which plays a major role in reverse 

cholesterol transport and is principally synthesized in the liver and small intestine. 

Studies by Rubin et al. (1991) have demonstrated that cholesterol-fed transgenic mice 

engineered to produce high levels of human apoA1 develop less atherosclerotic lesions 

as compared to the wild type mice (Rubin, Krauss et al. 1991).  

Reverse cholesterol transport involves metabolic pathways for exporting excess 

cholesterol from foam cells located in the arterial intima for subsequent removal from 

the body (Brufau, Groen et al. 2011, Bandeali and Farmer 2012). In humans, 

cholesterol can be returned to the liver for excretion by two pathways. Firstly, HDL-

cholesterol (HDL-C) can directly bind to the scavenger receptor B1 (SR-B1) expressed 

on the surface of hepatocytes for a direct hepatic uptake. Secondly, cholesterol esters 
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can be transferred to apolipoprotein B (apoB) containing lipoproteins, present in 

circulation by cholesterol ester transfer protein (CETP), followed by hepatic uptake by 

the low density lipoprotein-receptor (LDL-R) (Fisher, Feig et al. 2012). Standard mouse 

models of atherosclerosis (LDL r-/-, apoE-/-) when engineered to produce high levels of 

HDL particles, have resulted in a decreased content of macrophage derived foam cells 

(Fisher, Feig et al. 2012). Apart from carrying out reverse cholesterol transport, several 

other functions have been ascribed to HDL including anti-inflammatory activity, 

modification of coagulation parameters, alteration of platelet function and antioxidant 

activity (Assmann and Gotto 2004, Florentin, Liberopoulos et al. 2008, Navab, Reddy et 

al. 2011, Bandeali and Farmer 2012). The structure of HDL (figure-1-8) consists of a 

monolayer of phospholipids and free cholesterol along with apolipoproteins that function 

in recognition of receptors, activation of enzymes and conferring structural stability. 

ApoA1 also serves as a cofactor for the enzyme lecithin cholesterol acyltransferase 

(LCAT) which is responsible for generating cholesterol esters within the vasculature 

(Bandeali and Farmer 2012).  
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Figure 1-8: Various components present in the mature spherical HDL. 

The major apolipoprotein is apoA1 which is present on the surface along with apoC, 
apoE and apoA-II. Phospholipids and unesterified cholesterol also form a part of the 
surface. The core mainly consists of triglycerides and cholesterol esters. HDL also 
contains antioxidant enzymes such as Paraoxonase-1 (PON-1)/Arylesterase-1.  

 

HDL exists in various subforms while present in circulation. Nascent HDL being 

the precursor, forms a disc like structure and consists of phospholipids and apoA1. 

These exhibit the capacity to accumulate cholesterol from macrophages by interaction 

with ATP binding cassette transporters ABCA1 and ABCG1. As the content of 

cholesterol and phospholipids associated with apoA1 increases, the nascent HDL starts 

to become more spherical (Navab, Reddy et al. 2011). HDL remodeling is also done 

with the help of phospholipid transfer protein (PLTP) present in the human plasma, that 

functions to transfer phospholipids from triglyceride rich lipoproteins to HDL (Navab, 

Reddy et al. 2011). In order to be cleared from the plasma, HDL has been known to 
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acquire apoE which is recognized by the LDL-R (apoB/apoE receptor) present on the 

hepatocytes for its internalization (Bandeali and Farmer 2012).      

Reverse cholesterol transport has been implicated as one of the major pathways 

to reduce the progression of atherosclerosis by promoting cholesterol efflux. ApoA1 

plays a major role in the cholesterol efflux by surface interaction with ABCA1 and 

ABCG1. It also functions to reduce the oxidative stress in the plasma as shown by 

overexpression of human apoA1 in apoE knockout mice, which decreased ICAM-1 and 

VCAM-1 expression, and also decreased the monocyte recruitment into the arterial wall 

(Theilmeier, De Geest et al. 2000, Assmann and Gotto 2004). ApoA1 was also shown to 

reduce the lipid peroxide levels of phospholipids and cholesterol esters, and also to 

remove oxidized forms of arachidonic acid and linoleic acid from native LDL, thereby 

inhibiting the inflammatory response (Navab, Hama et al. 2000, Navab, Berliner et al. 

2001, Assmann and Gotto 2004).  

Our laboratory has previously demonstrated that dietary oxidized linoleic acid can 

induce gene expression and protein levels of plasma apoA1 in intestinal cells in a dose 

dependent manner (Rong, Ramachandran et al. 2002). The induction of apoA1 as 

measured by ELISA was significantly higher when cells were incubated with oxidized 

linoleic acid as compared to unoxidized linoleic acid (figure-1-9). This was tested with 

both poorly differentiated as well as fully differentiated cells of the intestine. The 

differentiated or 16-day old Caco-2 cells showed a higher dose dependent induction of 

apoA1 as compared to 4-day old Caco-2 cells. The mechanism of induction of apoA1 
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might include PPAR-γ with oxidized fatty acid serving as a ligand (Rong, 

Ramachandran et al. 2002).   

 

 

 

 

 

 

 

 

Figure 1-9: Effect of unoxidized and oxidized linoleic acid on the induction of apoA1 
protein levels in the cell culture media as measured using ELISA. 

Day 4 and day 14 Caco-2 cells were incubated for 20 hours with 25 μM unoxidized 
linoleic acid (unox-18:2) and 5 μM, 10 μM, and 25 μM oxidized linoleic acid (ox-18:2), 
with control cells treated with PBS. A: shows the effect of oxidized linoleic acid and B: 
compares the effect of unox-18:2 with ox-18:2. (Adapted from Rong et al. 2002 (Rong, 
Ramachandran et al. 2002)).  

1.6 Rationale for the study 

Fatty acid peroxides (FAOOH) present in the diets can undergo decomposition to 

produce aldehydes that can be further oxidized to carboxylic acids (figure-1-10). 

Oxidation can take place in the presence of free radicals or certain aldehyde oxidizing 

enzymes such as aldehyde oxidase, aldehyde dehydrogenase and xanthine oxidase. 

 

 

 

A B 

A B 
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Figure 1-10: Decomposition of fatty acid peroxides. 

The results obtained from our laboratory are summarized as follows: 

 Peroxidized free fatty acids can be efficiently taken up by Caco-2 cells and their 

uptake was dependent on the presence of brush borders (Penumetcha, Khan et 

al. 2000). 

 In the presence of peroxidized linoleic acid, differentiated intestinal cells (14-day 

old) showed increased apoA1 levels as compared to poorly differentiated 

intestinal cells (4-day old) (Rong, Ramachandran et al. 2002). 

 Decomposition of peroxidized linoleic acid can generate short chain aldehydes 

and carboxylic acids (Raghavamenon, Garelnabi et al. 2009). 

Hence we hypothesize that FAOOH can be either decomposed or transported by 

intestinal cells and this difference may be determined by the differentiation status of the 

cells. Poorly differentiated intestinal cells may breakdown FAOOH to aldehydes, 

whereas differentiated intestinal cells may either breakdown or absorb FAOOH which 

may in turn induce apoA1, resulting in reduced atherogenesis. 

Here we are interested in understanding the decomposition of peroxidized 

linoleic acid in the presence of Caco-2 cells as well as the effect of its decomposition 

products on apoA1. We also propose a question whether intact peroxides are absorbed 

or the aldehydes generated by the decomposition of FAOOH are metabolized by the 

FAOOH Aldehydes Carboxylic acids 
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intestinal cells that may induce apoA1. Based on evidences, we expect to observe an 

increase in atherosclerosis, if Caco-2 cells absorb intact 13-HPODE. On the other hand, 

breakdown of 13-HPODE might be beneficial resulting in increased apoA1 levels.   
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CHAPTER-2: MATERIALS AND METHODS 

2.1 Cell culture and experimental conditions 

Caco-2 cells (HTB-37) were purchased from American Type Culture Collection 

(Rockville, MD). These were cultured in Dulbecco’s Modified Eagle Medium (DMEM, 

Invitrogen #11995-065) supplemented with 15% Fetal Bovine Serum (FBS, Invitrogen 

#10437-028), 2 mM L-Glutamine (Invitrogen #25030-081), 1% Penicillin-Streptomycin 

(Invitrogen #15140-122) and 1% Non-Essential Amino Acids (NEAA, Invitrogen #11140-

050). After attaining confluence, cells were cultured in the same medium supplemented 

with 7.5% Fetal Bovine Serum (FBS) while keeping the other constituents same. 

Confluent cells were trypsinized using 0.25% Trypsin-EDTA solution (Invitrogen 

#25200-072). Cells were maintained in a 5% CO2 atmosphere at 37⁰C, under sterile 

conditions.  

Caco-2 cells were seeded in 6 well plates and experiments were carried out on 

days 3-5 and 14-21. In order to ascertain confluence on days 3-5, cells were seeded at 

a higher density.    

2.2 Reagents and antibodies  

All routine chemicals were purchased from Sigma (St. Louis, MO). PCR primers 

and TrizolTM reagent were obtained from Invitrogen (Carlsbad, CA). Human anti-

apolipoprotein A1 (Goat) antibody (#600-101-109) was purchased from Rockland 

Immunochemicals (Gilbertsville, PA). Human anti-β-actin (Mouse) antibody (#A2228-

200UL) was obtained from Sigma Aldrich (St. Louis, MO). Horse Radish Peroxidase 
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(HRP) conjugated rabbit anti-goat antibody (#HAF 017) was purchased from R&D 

Systems (Minneapolis, MN). HRP conjugated goat anti-mouse antibody (#Sc-2061) was 

obtained from Santa Cruz Biotechnology (Dallas, TX).      

2.3 Preparation of linoleic acid hydroperoxide  

Linoleic acid (Sigma #W338001-25G), 200 µM in phosphate-buffered saline 

(PBS, pH 7.4), was oxidized with the addition of 10 U soybean lipoxygenase (Sigma 

#L6632-1MU). The oxidation reaction was allowed to complete at room temperature 

over a period of 1 hour. The formation of conjugated dienes (HPODE) was monitored 

spectrophotometrically by scanning the absorption between 200 and 300 nm (Uvikon 

XL, Biotek Instruments, El Cajon, CA), using PBS as the reference. The conversion of 

linoleic acid into its oxidized form was observed as an increase in the optical density at 

234 nm. The freshly prepared 13-HPODE was used immediately in all the experiments. 

2.4 Detection of peroxide content using LMB assay 

Caco-2 cells were incubated with 25 µM 13-HPODE for 0, 15, 30, 60 and 120 

minutes to determine the peroxide uptake by cells. On the day of the experiment, cells 

were washed and incubated in serum-free medium for 2-3 hours. 13-HPODE was 

incubated with cells in hanks balanced salt solution (HBSS, Invitrogen #14025-092). 

After incubation, the medium was harvested and the peroxide levels were determined 

using leuco-methylene blue (LMB) assay (Auerbach, Kiely et al. 1992). Briefly, 200 μL 

of the LMB reagent was added to 800 μL of the medium and incubated at room 

temperature for 15-20 minutes. 200 μL sample was aliquoted in triplicates to a 96-well 
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microtiter plate and absorbance was measured at 660 nm using a microtiter plate 

reader (Bio-Rad Benchmark Plus). The amount of peroxides were quantitated and 

plotted on a 2-D bar graph.            

2.5 Alkaline phosphatase activity assay   

Caco-2 cells cultured in T-75 flasks were harvested gently by adding 1 ml of cold 

saline and Phenylmethylsulfonyl fluoride (PMSF, Sigma #P-7626) at 40 μg/5 ml and 

cells were scraped and transferred into a 1.5 ml eppendorf tube. Saline was aspirated 

after centrifugation of the samples at 700 rpm for 5 minutes at 4°C. The cell pellet was 

then resuspended in 1 ml of 2 mM Tris (Bio-Rad #161-0716), 50 mM D-Mannitol (Sigma 

#M9546-250G) containing PMSF at 40 μg/5 ml. Cells were further homogenized using a 

tissue homogenizer for 15 seconds on ice. The homogenized cell suspension was then 

centrifuged at 1,000 rpm for 10 minutes at 4°C in order to remove the nuclear 

membrane. The supernatant was transferred to a 1.5 ml eppendorf tube and protein 

estimation was carried out using Lowry’s assay (Lowry, Rosebrough et al. 1951). 100 

μg of total cellular protein was incubated with 500 μL of freshly prepared substrate, 7 

mM p-nitrophenyl phosphate (Sigma #N3254-5G) in 0.1 M sodium bicarbonate (Fisher 

Scientific #S233-500), 5 mM magnesium chloride (Sigma #M8266-100G) buffer for 20 

minutes at 37°C. The reaction was then quenched by adding 1 ml of 0.1 M solution of 

sodium hydroxide and read by the UV-spectrophotometer at a wavelength of 410 nm. 

The absorbance readings obtained were plotted on a 2-D bar graph to compare the 
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activity of alkaline phosphatase in poorly differentiated and fully differentiated Caco-2 

cells.        

2.6 Aldehyde dehydrogenase activity assay 

Aldehyde dehydrogenase activity assay was performed as described by Guru et 

al (1990) (Guru and Shetty 1990).  Growth medium from Caco-2 cells cultured in T-25 

flasks at day 4 and day 14 was aspirated and cells were rinsed with 1 ml PBS three 

times. Cells were then incubated with 1 ml of radio-immunoprecipitation assay (RIPA, 

Sigma #R0278) buffer at 4°C for 10 minutes for cell lysis to take place. After incubation, 

cells were scraped off using a cell scraper and the contents were transferred to a 1.5 ml 

eppendorf tube on ice. The lysate was then centrifuged at 10,000 rpm for 10 minutes at 

4°C to pellet the cellular debris and the supernatant was transferred to a new 1.5 ml 

eppendorf tube on ice. Lowry’s assay was then carried out to determine the 

concentration of proteins in the supernatant. 100 μg of total cellular protein was then 

added to freshly prepared substrate solution consisting of 0.1 M phosphate buffer at pH 

7.2, 10 mM Nonanal (Sigma #76310) and 2 mM β-Nicotinamide adenine dinucleotide 

hydrate (NAD, Sigma #N1636-100MG). The incubation with the substrate solution was 

performed for 40 minutes at 30°C. Absorbance was recorded using a microtiter plate 

reader (Bio-Rad Benchmark Plus) at a wavelength of 340 nm. The absorbance readings 

obtained were plotted on a 2-D bar graph to compare the activity of aldehyde 

dehydrogenase enzyme in poorly differentiated and fully differentiated Caco-2 cells.         
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2.7 RNA isolation 

RNA was isolated using TRIzol reagent (Invitrogen #15596018). 1 ml of TRIzol 

reagent was added to each well of a 6-well plate of Caco-2 cells. Cells were lysed by 

pipetting the solution up and down several times and the lysate was transferred to a 1.5 

ml eppendorf tube. Incubation for 5 minutes at room temperature was performed to 

ensure complete homogenization and dissociation of the nucleoprotein complex. 200 μL 

of chloroform was then added to the tubes. The tubes were tightened securely followed 

by vigorous shaking for 15 seconds. Tubes were allowed to stand for 3 minutes at room 

temperature followed by centrifugation at 12,000 x g for 15 minutes at 4°C. The 

aqueous phase was removed carefully and transferred to a new 1.5 ml eppendorf tube, 

while the lower organic phase was stored at -80°C for isolating proteins. 500 μL of 

100% isopropanol was added to the aqueous phase for precipitating RNA. The tubes 

were incubated at room temperature for 10 minutes. They were then centrifuged at 

12,000 x g for 10 minutes at 4°C. The supernatant was aspirated and 1 ml of 75% 

ethanol was added to the RNA pellet for washing. The sample was vortexed briefly and 

centrifuged at 7,500 x g for 5 minutes at 4°C. This wash step was carried out three 

times. RNA was then air dried for 10 minutes and resuspended in 50 μL of RNase free 

water. RNA concentration was determined using a nanodrop instrument (Thermo 

Scientific) and was scaled to use exactly 1 µg of RNA for cDNA synthesis. 
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2.8 cDNA synthesis 

cDNA synthesis was carried out using SuperScript III First-Strand Synthesis 

SuperMix for qRT-PCR kit from Invitrogen (Life Technologies #11752-050). The 

reagents were thawed and mixed well prior to making the master mix. The following kit 

components were combined together in a tube on ice: 

Table 2-1: cDNA synthesis mix preparation. 

Component Amount per Reaction 

2X RT Reaction Mix 10 μL 

RT Enzyme Mix 2 μL 

RNA (1 μg) x μL 

DEPC-treated water Volume made upto 20 μL 

Total Volume 20 μL 

 

The RT Enzyme Mix includes SuperScript III RT and RNaseOUT. 2X RT 

Reaction Mix includes oligo(dT)20(2.5 μM), random hexamers (2.5 ng/μL), 10 mM 

MgCl2, and dNTPs. The contents of the tube were mixed gently and incubated at 25°C 

for 10 minutes followed by incubation at 50°C for 30 minutes. Further, the reaction was 

terminated at 85°C for 5 minutes and the tubes were allowed to be chilled on ice. These 

cycles were carried out in a thermo cycler (VWR). 1 μL (2 U) of E.coli RNase H was 

then added and tubes were further incubated for 20 minutes at 37°C.  Finally, samples 

were stored at -20°C until use. 



26 
 

2.9 Real-Time PCR 

For setting up Real-Time PCR, SYBR GreenER qPCR SuperMix for iCycler 

(Invitrogen #11761-500) was used. The run was carried out on a Bio-Rad iQ5 Multicolor 

Real-Time PCR Detection System using a 96 well PCR plate (Bio-Rad #2239441). The 

following components were mixed together to create a master mix for each gene that 

was analyzed. 

Table 2-2: PCR components master mix preparation. 

Component Amount per reaction tube 

2X SYBR GreenER Supermix 10 μL 

Forward Primer, 10 µM 1 μL 

Reverse Primer, 10 µM 1 μL 

DEPC-treated water 7 μL 

Total Volume 19 μL 

 

19 μL of master mix was loaded in each well of the PCR plate followed by 1 μL of 

cDNA. The PCR plate was sealed using a microseal optical adhesive film (Bio-Rad 

#MSB1001) and centrifuged at 1,200 rpm for 10 minutes at 4°C. The PCR plate was 

then placed in the iCycler instrument and the PCR was programmed for 1 cycle of 50°C 

for 2 minutes followed by 1 cycle of 95°C for 8 minutes, 30 seconds. Further, 40 cycles 

each of 95°C for 15 seconds and 60°C for 1 minute was carried out. Melt curve analysis 

was performed at 95°C for 1 minute, 55°C for another minute followed by 80 cycles of 

55°C ± 0.5°C/cycle for 10 seconds until the temperature reached 95°C. After the run, Ct 

values and melt curves were analyzed using iQ5 Optical System Software provided by 

Bio-Rad. The following primers for human targets were used:  
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Table 2-3: Primer sequences for Real-Time PCR. 

Primer Sequence (5’ to 3’) 

ApoA1 
Forward: TGGGATCGAGTGAAGGACCT 

Reverse: CTCCTCCTGCCACTTCTTCTG 

Alkaline Phosphatase (ALP) 
Forward: CTCACTGAGGCGGTCATGTT 

Reverse: TAGGCTTTGCTGTCCTGAGC 

GAPDH 
Forward: AGTCAACGGATTTGGTCGTA 

Reverse: GGAACATGTAAACCATGTAGTTGAG 

 

The mRNA levels were normalized with respect to corresponding GAPDH gene 

expression levels.     

2.10 Protein precipitation for western blotting 

Proteins were precipitated from the phenolic phase of TRIzol harvested cells. 

DNA precipitation was performed first followed by protein precipitation from the phenol-

ethanol supernatant layer. For precipitating DNA, the remaining aqueous phase 

overlying the interphase was aspirated and 300 μL of absolute ethanol was added. The 

tubes were capped and mixed several times. The samples were incubated at room 

temperature for 2-3 minutes. The tubes were then centrifuged at 2,000 x g for 5 minutes 

at 4°C to pellet the DNA. The phenol-ethanol supernatant was removed and transferred 

to a new 1.5 ml eppendorf tube. For protein precipitation, 1 ml of isopropanol was added 

to the phenol-ethanol supernatant and the samples were incubated for 10 minutes at 
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room temperature. The samples were then centrifuged at 12,000 x g for 10 minutes at 

4°C in order to pellet the proteins and the supernatant was discarded. To the protein 

pellet, 1 ml of wash solution consisting of 0.3 M guanidine hydrochloride (Sigma 

#50940) in 95% ethanol was added and incubated for 20 minutes at room temperature. 

The samples were then centrifuged at 7,500 x g for 5 minutes at 4°C and the 

supernatant was discarded. This wash step was carried out three times. 1 ml of 

absolute ethanol was then added to the protein pellet and vortexed to dislodge the 

pellet. The samples were then incubated for 20 minutes at room temperature and 

centrifuged at 7,500 x g for 5 minutes at 4°C. The supernatant was removed and 

discarded. The protein pellet was air dried for 5-10 minutes and resuspended in 200 μL 

of 1% SDS solution. In order to dissolve the pellet completely, samples were incubated 

overnight at 50°C in a water bath. Next day, the samples were centrifuged at 10,000 x g 

for 10 minutes at 4°C to sediment any insoluble material. The supernatant containing 

proteins was transferred to a new 1.5 ml eppendorf tube and protein concentration was 

determined using Lowry’s assay.           

Proteins were also isolated using radio-immunoprecipitation assay (RIPA) buffer 

(Sigma #R0278). This buffer was constituted with protease inhibitor cocktail, PMSF and 

sodium orthovanadate (Santa Cruz #Sc-24948) by adding 10 µl of each per 1 ml of 

RIPA on ice immediately prior to use. The growth medium from the cells was gently 

aspirated and cells were washed twice with 1X PBS to remove minor contaminants. To 

each well of the 6-well plate, 200 µl of RIPA buffer was added and the plate was 

incubated on ice for 10 minutes for lysis to take place. The cells were then gently 



29 
 

scraped and the lysate was transferred to a 1.5 ml eppendorf tube on ice. The samples 

were then centrifuged at 10,000 rpm for 10 minutes at 4⁰C and the supernatant 

containing proteins was transferred to a new 1.5 ml eppendorf tube. Protein 

concentration was determined using Lowry’s assay.       

2.11 Western blot analysis 

Western Blot was carried out for detecting apolipoprotein A1. 12% SDS-

polyacrylamide gel was prepared freshly. 15 µg of protein samples were mixed in a 1:1 

ratio with Laemmli sample buffer (Biorad #161-0737) constituted with 2-

mercaptoethanol (Fisher Scientific #03446-100) and placed in boiling water for 5 

minutes. The samples were then allowed to snap cool on ice for 5 minutes, followed by 

a quick spin down and were loaded along with precision plus protein standard (Bio-Rad 

#161-0375). Electrophoresis was carried out in 1X running buffer (10X Tris-Glycine-

SDS Running Buffer, pH 8.3, 30.2 g Tris base, 144 g Glycine and 10 g SDS for 1 L 

volume) at 100 V for 2 hours at room temperature. After the run was completed, the 

proteins were transferred to a PVDF membrane (Bio-Rad #162-0177). Transfer was 

carried out at 100 V for 2 hours at 4°C in transfer buffer (10X Tris-Glycine-SDS Running 

Buffer (80 ml), 20% methanol and de-ionized water (720 ml) for a total volume of 1 L). 

After completion of transfer, membrane was kept for blocking in an orbital shaker at 

room temperature for 1 hour. 5% non-fat dry milk (Bio-Rad #170-6404) in Tris Buffer 

Saline-Tween 20 (TBS-T: 12.11 g Tris, 9 g NaCl, 0.1% Tween-20, pH 7.5 for 1 L 

volume) was used as blocking reagent. After blocking, the membrane was rinsed twice 
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with TBS-T followed by washing three times for 10 minutes each. The membrane was 

incubated with apolipoprotein A1 primary antibody (1:4000, vol/vol in blocking reagent) 

overnight on a shaker at 4°C. Next day, the membrane was washed three times with 

TBS-T for 10 minutes each and incubated with secondary antibody (anti-goat IgG 

conjugated to HRP, 1:5000, vol/vol in blocking reagent) for 1 hour on a shaker at room 

temperature. After 3 washes in TBS-T for 10 minutes each, the signal was detected with 

a chemiluminescence kit (Bio-Rad Immun-Star Western Kit #170-5070). The membrane 

was first exposed to this solution, dried and then exposed to an X-ray film (CL-XPosure 

Film, ThermoScientific #34090). The film was developed using an AFP image film 

processor and finally the protein bands were identified. The membrane was then 

stripped in mild stripping buffer (1.5% Glycine, 0.1% SDS, 1% Tween-20, pH 2.2) by 

washing three times for 10 minutes each on a shaker at room temperature. The 

membrane was then reprobed with anti-β-actin antibody (1:2000, vol/vol dilution in 

blocking reagent) for 2 hours shaking at room temperature followed by washing with 

TBS-T. Secondary antibody was then incubated with the membrane (Goat anti-mouse 

antibody conjugated to HRP, 1:5000, vol/vol in blocking reagent) for 1 hour on a shaker 

at room temperature. β-actin was used as a loading control.   

2.12 Determination of linoleic acid hydroperoxide breakdown products using thin layer 
chromatography (TLC) 

Linoleic acid hydroperoxide was allowed to decompose in the presence of Caco-

2 cells as determined by loss of peroxide content and conjugated dienes measurement. 

After incubating Caco-2 cells with 13-HPODE for 4 hours, 2 ml of the cell culture 
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medium was harvested into 13x100 mm glass tubes. The media was acidified with 100 

µL of 1N HCl followed by extraction of lipids using 2 ml of diethyl ether (Sigma #296082-

1L). The mixture was briefly vortexed and centrifuged at 500 x g for 5 minutes at 4°C. 

The upper organic phase containing lipids was transferred to a new glass tube and 

evaporated under nitrogen gas. The resultant residue was dissolved in 15 µL of 

chloroform twice followed by vigorous vortexing each time, and loaded onto silica G 

TLC plates (Sigma #Z122777-25EA) using chloroform: methanol (90: 8, vol/vol) as the 

solvent system. Visualization of the components was carried out with a brief exposure to 

iodine vapors for unsaturated compounds followed by immersing the chromatogram in 

bromocresol green reagent (0.2% in ethanol) for detecting organic acids.  

Similar experiments were carried out with the radioactive form of linoleic acid 

(14C-LA, 500 dpm/nmol in ethanol) to determine counts per minute (cpm) in the products 

formed after incubation with Caco-2 cells. Cells were treated with 50 nmoles of 14C-

HPODE per well of a 6 well plate for 4 hours at 37⁰C. After incubation, media and cells 

were harvested separately and lipids were extracted using diethyl ether and chloroform-

methanol respectively. Chloroform and methanol were used for extracting cellular lipids 

according to the method described by Bligh and Dyer (Bligh and Dyer 1959). Briefly, 

cells were scraped gently in 0.9 ml PBS and homogenized in a dounce homogenizer for 

5 minutes. 1 ml of methanol was then added to the homogenate and mixed gently 

followed by addition of 1 ml of chloroform. This suspension was taken in a glass tube, 

vortexed and centrifuged at 500 x g for 5 minutes at 4°C. The mixture separates into 

lower organic phase and upper aqueous phase. The organic phase containing the lipids 
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was transferred to a new glass tube and evaporated under nitrogen. The resultant 

residue was dissolved in 15 µL of chloroform twice followed by vigorous vortexing each 

time, and loaded onto silica G TLC plates. The solvent system used for running TLC 

was chloroform: methanol: water: acetic acid (65: 25: 3.4: 0.1 vol/vol). Visualization of 

the components was carried out with brief exposure to iodine vapors for unsaturated 

compounds, and radioactivity counts were determined by immersing the sections of the 

TLC plate in scintillation cocktail fluid (Perkin Elmer #6013329) and counts were read 

overnight in microbeta 2 scintillation counter (Perkin Elmer). Radioactive counts were 

also determined in the original medium without incubation with cells.       

2.13 Saponification of cellular lipids 

After incubating 14C-HPODE to Caco-2 cells in a 6-well plate for 4 hours, cellular 

lipids were extracted and subjected to saponification. The extract was hydrolyzed by 

adding 0.5 ml of 3 M methanolic potassium hydroxide (KOH) solution and heated at 

80ᵒC for 1 hour in a water bath. The solution was then cooled to room temperature and 

non-saponifiables were extracted with 2 washings of 1 ml diethyl ether. The lower 

aqueous phase was then acidified using 300 μL of 6 M HCl. Extraction of free fatty acids 

was carried out with 3 washings of 1 ml diethyl ether. Care must be taken to avoid 

evaporating the ether phase too extensively in order to prevent loss of fatty acids. 

These fatty acids were then allowed to run on the TLC plate using chloroform: 

methanol: acetic acid (90: 10: 1 vol/vol) as the solvent system for separating neutral 

lipids. Visualization of the components was carried out with brief exposure to iodine 
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vapors and radioactivity counts were determined by microbeta 2 scintillation counter 

(Perkin Elmer).  
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CHAPTER-3: RESULTS 

3.1 Alkaline phosphatase activity and gene expression in intestinal cells 

 Alkaline phosphatase (ALP) is a hydrolase enzyme whose activity and 

expression is largely associated to the gut, especially to the brush borders of 

enterocytes. In order to determine whether 14-day old cells are well differentiated as 

compared to 4-day old cells, ALP activity and gene expression was compared. As 

shown in figure-3-1, increased ALP enzyme activity and gene expression was observed 

in 14-day old cells suggesting that these cells were well differentiated (more brush 

borders) as compared to 4-day old cells. 

 

 

 

 

 

 

 

 
 

Figure 3-1: Alkaline phosphatase activity and gene expression in Caco-2 cells. 

(A) ALP activity in Caco-2 cells. The activity was determined in 100 μg of the total 
protein lysate from cells by incubating it with the substrate for 10 minutes at 37ºC. The 
activity in 14-day old cells was significantly higher as compared to 4-day old cells. This 
experiment was conducted in duplicates with mean ± SE as shown in the figure. 
*P<0.01. (B) ALP mRNA levels in Caco-2 cells. RNA was harvested and analyzed. Fold 
expression was normalized by using glyceraldehyde 3-phosphate dehydrogenase 
(GAPDH).  
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3.2 Aldehyde dehydrogenase activity in Caco-2 cells 

 Aldehyde dehydrogenase is an enzyme that is responsible for oxidizing 

aldehydes to their corresponding carboxylic forms. The activity of this enzyme was 

compared in 4-day and 20-day old Caco-2 cells to determine whether aldehydes 

resulting from lipid peroxide decomposition could be converted in to carboxylic acids. As 

seen in figure-3-2, fully differentiated cells showed higher enzyme activity as compared 

to poorly differentiated cells.  

 

 

Figure 3-2: Aldehyde dehydrogenase activity in Caco-2 cells. 

4-day and 20-day old cells were lysed and 100 μg of total protein lysate was incubated 
with the substrate at 30ºC for 40 minutes. After incubation, the absorbance was 
observed at 340 nm to determine enzyme activity. 

3.3 Loss of peroxides and conjugated dienes in the presence of intestinal cells 

Caco-2 cells were incubated with 50 nmoles of 13-HPODE for various time 

intervals (0 to 120 minutes) at 37ºC in order to determine the decrease in peroxide 

content using LMB assay. A 6-well plate without cells (no cells) containing 50 nmoles of 
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13-HPODE was used to compare the loss of peroxides in the presence of poorly 

differentiated cells (UND) and fully differentiated cells (DIFF). It was observed that the 

peroxide content in the cell culture medium gradually decreased with time only in the 

presence of Caco-2 cells (figure-3-3). This decrease was significant at time points of 30, 

60 and 120 minutes. 

  

 

 

 

 

 

 

 
 

Figure 3-3: Loss of peroxides in the presence of intestinal cells. 

The peroxide content in the presence of poorly differentiated (UND) and fully 
differentiated (DIFF) cells was significantly reduced at 30 minutes, 60 minutes and 120 
minutes as compared to no cells. This experiment was conducted in duplicates with 
mean ± SE as shown in the figure. *P<0.05. 

In order to confirm the breakdown of 13-HPODE in the presence of cells, 

conjugated diene levels were observed at the above mentioned time intervals by 

performing wavelength scans using a UV spectrophotometer. Immediately after 

incubation, medium was collected and wavelength spectrums were observed between 

200 and 300 nm as shown in figure-3-4. We observed a decrease in conjugated dienes 

with time only in the presence of cells. Arrows indicate the decrease in absorbance at 
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234 nm in the presence of cells as compared to no cells. All wavelengths are 

represented in nm. 
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Figure 3-4: Decrease in the levels of conjugated dienes in the presence of intestinal 
cells. 

Figures (A) to (E) represent the conjugated diene levels from 0 to 120 minutes 
respectively. 

 Hence, it is clear that 13-HPODE might be either directly absorbed or 

decomposed in the presence of Caco-2 cells to generate various products. We are 

particularly interested in the decomposition products generated by Caco-2 cells and 

whether they would have any impact on apoA1. For this, we used thin layer 

chromatography (TLC) and radioactive form of 13-HPODE as a means to quantitatively 

detect the presence of decomposition products in the cells.   
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3.4 Decomposition products of 13-HPODE in the presence of intestinal cells  

 Using radioactive counts per minute (cpm) obtained on the TLC plate, the 

decomposition products of 14C-HPODE were quantified (as percentage cpm) when 

incubated with Caco-2 cells. In the first experiment, 16-day old cells were incubated with 

50 nmoles of 14C-HPODE (in duplicates) for 4 hours followed by lipid extraction from the 

cell culture medium using diethyl ether. Cellular lipids were extracted as described in 

methods. As observed in figure-3-5, most of the radioactive counts from cellular sample 

were obtained at the top most section of the iodine stained TLC plate, indicating the 

presence of non-polar lipids. We anticipate the presence of triglycerides (TG) that may 

contain ONA, AZA or 13-HPODE as esterified products (figure-3-5).     
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Figure 3-5: Detection of 13-HPODE breakdown products by differentiated Caco-2 cells 
using thin layer chromatography. 

After incubating 14C-HPODE with Caco-2 cells for 4 hours, lipids extracted from the 
medium and cells (each in duplicates) were loaded on to the TLC plate with following 
standards: (1) LA- linoleic acid, (2) ONA- oxo-nonanoic acid, (3) AZA- azelaic acid, (4) 
PC- phosphatidylcholine, and (5) 13-HPODE. (A) Iodine stained section of the TLC 
plate with appropriate standards and samples. Red arrows indicate 
phosphatidylethanolamine. (B) Bar diagram showing the percentage radioactive 
distribution of 13-HPODE breakdown products in the medium (blue bars) and cells (red 
bars) as determined from the mobility of standards. (C) Cpm values in 13-HPODE 
breakdown products. The following solvent system was used: chloroform: methanol: 
water: acetic acid (65: 25: 3.4: 0.1 vol/vol).        

 In order to determine which free fatty acid is esterified to triglycerides, 

saponification of cellular lipids was carried out in a separate experiment. Fully 

differentiated Caco-2 cells cultured in 6-well plate were incubated with 50 nmoles of 14C-

HPODE for 4 hours followed by extraction of lipids from the cells and medium (each in 
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duplicates). Cellular lipids from 2 wells were saponified, and free fatty acids obtained 

from the hydrolysis of triglycerides and phospholipids were extracted using diethyl ether. 

Finally, all samples were loaded on the TLC plate and iodine stained spots were 

identified from the mobility of standards. Cpm values and percentage radioactivity 

distribution was also quantified (figure-3-6).  

 

 

 

 

 

 

 

 

 

 

 

Figure 3-6: Detection of 13-HPODE breakdown products and free fatty acids obtained 
after saponification of cellular lipids by differentiated Caco-2 cells. 

Samples were loaded on the TLC plate after extraction of lipids from cells and media 
(each in duplicates) along with standards in lanes 1 to 5. (1) Bromocresol green stained 
section of AZA. (A) Iodine stained TLC plate with appropriate standards and samples. 
Red arrows indicate phosphatidylethanolamine. (B) Bar diagram showing the 
percentage radioactivity distribution of 13-HPODE breakdown products in the medium 
(blue bars), non-saponified cells (red bars) and saponified cells (green bars) as 
determined from the mobility of standards. (C) Cpm values in 13-HPODE breakdown 
products. The following solvent system was used: chloroform: methanol: water: acetic 
acid (65: 25: 3.4: 0.1 vol/vol).    



42 
 

 As seen from figure-3-6, the free fatty acid obtained after saponification of 

cellular lipids was not well characterized due to the appearance of a huge dark spot on 

the iodine stained TLC plate. Therefore, we chose to use a solvent system that could 

separate neutral lipids: chloroform: methanol: acetic acid (9: 1: 0.1 vol/vol). Saponified 

lipids from the cells of the previous batch of fully differentiated Caco-2 cells were again 

loaded (in duplicates) on the TLC plate along with 13-HPODE and ONA standards 

(figure-3-7). Iodine stained spots were identified from the mobility of standards, and 

percentage radioactivity distribution was also quantified as done previously.  

 

 

 

 

 

 

 
 

Figure 3-7: Detection of free fatty acids obtained after saponification of cellular lipids by 
differentiated Caco-2 cells. 

(A) Iodine stained TLC plate with appropriate standards and samples. (B) Bar diagram 
showing the percentage radioactivity distribution of ONA and 13-HPODE in the 
saponified lipids from the cells as determined from the mobility of standards. The 
following solvent system was used: chloroform: methanol: acetic acid (9: 1: 0.1 vol/vol).  

  

According to the percentage of radioactive label seen in figure-3-7(B), ONA and 

13-HPODE are likely to be esterified to triglycerides when 13-HPODE is incubated with 
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fully differentiated Caco-2 cells. Since ONA shows higher radioactive counts as 

compared to 13-HPODE, we anticipate the presence of more ONA molecules getting 

esterified to triglycerides. In order to determine whether the fate of decomposition 

products of 13-HPODE by poorly differentiated cells might be any different than that of 

fully differentiated cells; similar experiment was carried out in the presence of 4-day old 

Caco-2 cells.    

 4-day old Caco-2 cells were cultured in a 6-well plate and incubated with 50 

nmoles of 14C-HPODE for 4 hours followed by extraction of lipids from the cells and 

medium (each in duplicates). Cellular lipids from 2 wells were saponified, and free fatty 

acids were extracted using diethyl ether. Finally, all samples were loaded on the TLC 

plate and iodine stained spots were identified from the mobility of standards. Cpm 

values and percentage radioactivity distribution was also quantified (figure-3-8).       
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Figure 3-8: Detection of 13-HPODE breakdown products and free fatty acids obtained 
after saponification of cellular lipids by poorly differentiated Caco-2 cells. 

Samples were loaded on the TLC plate after extraction of lipids from cells and media 
(each in duplicates) along with the previous standards (1 to 5). (1) Bromocresol green 
stained section of AZA. (A) Iodine stained TLC plate with appropriate standards and 
samples. Red arrows indicate phosphatidylethanolamine. (B) Bar diagram showing the 
percentage radioactivity distribution of 13-HPODE breakdown products in the medium 
(blue bars), non-saponified cells (red bars) and saponified cells (green bars) as 
determined from the mobility of standards. (C) Cpm values in 13-HPODE breakdown 
products. The following solvent system was used: chloroform: methanol: acetic acid (9: 
1: 0.1 vol/vol).  

 This shows the existence of ONA as the major esterified product when 13-

HPODE is incubated with 4-day old cells (figure-3-8(B)). However, there exists a 

possibility that linoleic acid (remaining as unoxidized fraction in 13-HPODE preparation) 

might also be incorporated as esterified lipids in the cells. So in a separate experiment, 
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14C-HPODE was freshly prepared and was allowed to separate from linoleic acid on the 

TLC. Further, 14C-HPODE was scraped off from the TLC plate and extracted using 

chloroform and methanol (9: 1 vol/vol). The isolated 14C-HPODE was assumed to have 

no traces of linoleic acid. Fully differentiated Caco-2 cells cultured in 6-well plate were 

incubated with 50 nmoles of purified 14C-HPODE for 1 hour followed by extraction of 

lipids from the cells and medium (each in duplicates). Cellular lipids from 2 wells were 

saponified, and free fatty acids obtained from the hydrolysis of triglycerides and 

phospholipids were extracted using diethyl ether. Finally, all samples were loaded on 

the TLC plate and iodine stained spots were identified from the mobility of standards. 

Cpm values and percentage radioactivity distribution was also quantified (figure-3-9). 
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Figure 3-9: Detection of 13-HPODE breakdown products and free fatty acids obtained 
after saponification of cellular lipids in the presence of pure 13-HPODE by fully 
differentiated Caco-2 cells. 

Samples were loaded on the TLC plate after extraction of lipids from cells and media 
(each in duplicates) along with the previous standards (1 to 6). (1) Bromocresol green 
stained section of AZA. (6) Freshly prepared 14C-HPODE. (A) Iodine stained TLC plate 
with appropriate standards and samples. Red arrows indicate 
phosphatidylethanolamine. (B) Bar diagram showing the percentage radioactivity 
distribution of 13-HPODE breakdown products in the medium (blue bars), non-
saponified cells (red bars) and saponified cells (green bars) as determined from the 
mobility of standards. (C) Cpm values in 13-HPODE breakdown products. The following 
solvent system was used: chloroform: methanol: acetic acid (9: 1: 0.1 vol/vol).  

 This confirms the presence of ONA as the major esterified product that is formed 

in the cells when 13-HPODE is incubated in the presence of fully differentiated Caco-2 

cells (figure-3-9(B)).   
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3.5 ApoA1 protein levels in Caco-2 cells following incubation with 13-HPODE 
decomposition products  

 In order to determine whether 13-HPODE breakdown products may induce 

apoA1, Caco-2 cells were incubated with LA, ONA and AZA along with controls: no 

treatment and 13-HPODE. 100 nmoles of each of these components were used to treat 

the cells in serum free medium for 24 hours. Protein was isolated from the cells and 

apoA1 levels were determined by western blotting. Figure-3-10 shows the band 

intensities of apoA1 with respect to β-actin, which was used as a loading control.  

 

 

 

 

 

 

 

Figure 3-10: Western Blot for apoA1 in Caco-2 cells after incubating with 13-HPODE 
decomposition products. 

Poorly differentiated (UND) and fully differentiated (DIFF) Caco-2 cells were pre-
incubated in serum free medium for 2 hours. Cells were then treated with 13-HPODE 
decomposition products for 24 hours in serum free medium. Western blot analysis was 
performed with 10 µg of total protein from cell lysates. (A) and (B): Representative 
polyacrylamide gel of two independent experiments with intensity of bands as seen on 
the X-ray film after exposure of the PVDF membranes containing proteins to ECL 
reagents.       

 Western blot analysis showed that ONA increased apoA1 protein levels in both 

poorly differentiated and fully differentiated Caco-2 cells.   
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CHAPTER-4: DISCUSSION 

Many studies in the past have suggested that peroxidized lipids present in the 

diet might be atherogenic (Staprans, Pan et al. 1993, Staprans, Rapp et al. 1993). 

Western diets contain large quantities of PUFA that can give rise to peroxidized lipids 

when subjected to heating at elevated temperatures. This poses a major health risk for 

individuals who mainly rely on fast food. The small intestine plays a major role in the 

absorption of dietary lipids and transports them to various tissues in the form of 

chylomicrons. Evidence from our laboratory suggests that diets containing oxidized 

linoleic acid can be absorbed by intestinal cells in a similar manner as that of unoxidized 

linoleic acid (Penumetcha, Khan et al. 2000). Since intestinal cells are constantly 

exposed to dietary ox-FFA, we anticipated whether cells can absorb it directly or break 

down to generate aldehydes and carboxylic acids.   

 At present, not much information is available about the fate of peroxidized lipids 

when exposed to intestinal cells. Some studies suggest that dietary peroxidized lipids 

can be absorbed by the small intestine, transported to the liver by chylomicrons and 

further get secreted as VLDL. VLDL is further metabolized to LDL in the plasma and 

LDL carrying peroxidized lipids could contribute to atherogenesis (Staprans, Rapp et al. 

1994). On the other hand, studies from our laboratory have shown induction of apoA1 

by 4-day and 14-day old Caco-2 cells when incubated with oxidized linoleic acid (13-

HPODE) (Rong, Ramachandran et al. 2002). These two conflicting evidences might 

support the fact that if peroxidized linoleic acid is absorbed intact by the intestinal cells, 

it may be atherogenic. On the other hand, its decomposition to aldehydes and 
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carboxylic acids in the presence of intestinal cells might actually be beneficial in 

upregulating apoA1 as a measure to reduce atherosclerotic effects. Thus in the current 

project, we attempt to determine the decomposition of 13-HPODE in the presence of 

Caco-2 cells and also pose a question whether its decomposition products may induce 

apoA1.  

 In order to study the decomposition of 13-HPODE by intestinal cells, we 

incubated cells with freshly prepared 13-HPODE and measured the peroxide levels and 

conjugated dienes at various time intervals. Our preliminary data demonstrated a time-

dependent decrease in the peroxide content of 13-HPODE in the cell culture medium 

when incubated with intestinal cells.  We also observed a decrease in the levels of 

conjugated dienes in the medium with time, indicating that 13-HPODE may either be 

absorbed by the cells or might undergo breakdown. The possibility of uptake is well 

established from our current results showing that 14-day old cells are rich in brush 

borders as compared to 4-day old cells (figure-3-1), and also from previous studies with 

radioactivity (Penumetcha, Khan et al. 2000). The breakdown of 13-HPODE to 4-HNE 

and ONA (figure-1-7) may be responsible for its loss of conjugated dienes as observed 

by a decrease in the absorbance at 234 nm (figure-3-4). Since absorption of lipid 

peroxides takes place through brush borders, we expect that 14-day old cells might 

readily absorb or breakdown 13-HPODE whereas 4-day old cells may only break it 

down.  

 Further, we chose to use radioactive form of 13-HPODE for quantitative 

measurement of 13-HPODE breakdown products in the presence of cells. 13-HPODE 
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can be decomposed to generate ONA and 4-HNE which can further get oxidized to AZA 

and 4-hydroxy nonenoic acid (4-HNA) respectively (Raghavamenon, Garelnabi et al. 

2009). Since the carboxylic end of 13-HPODE is radiolabeled, radioactivity in the 

decomposition products can only suggest the presence of either ONA or AZA. As seen 

by TLC, cells incubated with 14C-HPODE for 4 hours showed the presence of 

radioactive products in the lipids extracted from medium as well as cells. After several 

trials to identify the radioactive products, we found the presence of non-polar 

triglycerides in the cellular lipids that showed the highest radioactive counts. We also 

observed high radioactive counts in 13-HPODE spot present in lipids extracted from the 

medium. Although we have shown that the peroxide content is significantly reduced in 

the presence of cells (figure-3-3), this might indicate the appearance of conjugated 

trienes or 13-HODE (13-hydroxyoctadecadienoic acid), a reduced form of 13-HPODE. 

For the first time we established the existence of esterified products in the cells that are 

expected to contain free fatty acids generated from 13-HPODE breakdown. This idea 

was supported by saponifying the cellular lipids in order to identify the free fatty acids 

formed by hydrolysis of triglycerides and phospholipids. As seen from figures 3-7 and 3-

8, high radioactive counts for 13-HPODE and ONA were observed after saponifying the 

cellular lipids. These products were identified from the mobility of standards under the 

same solvent system using TLC.   

 Fully differentiated cells showed almost equal presence of 13-HPODE and ONA 

as esterified lipids (figure-3-7(B)), whereas poorly differentiated cells showed the 

presence of more ONA as compared to 13-HPODE (figure-3-8(B)). Thus, the possibility 
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exists that 14-day old cells may absorb as well as decompose 13-HPODE to ONA 

which can be further esterified to triglycerides. On the other hand, 4-day old cells may 

not absorb 13-HPODE as they lack brush borders, but may generate ONA 

extracellularly that might be incorporated as esterified lipids. It should also be noted that 

4-day old cells did not completely lack brush borders and therefore some absorption of 

intact 13-HPODE was observed. 

 After determining the presence of decomposition products of 13-HPODE, 

experiments were conducted to observe their effect on the levels of apoA1. Previous 

results from our laboratory have shown a dose dependent increase in apoA1 mRNA 

and protein levels when Caco-2 cells were treated with 13-HPODE. Although fold 

induction in apoA1 mRNA levels was very less, protein expression was increased as 

compared to control (Rong, Ramachandran et al. 2002). Therefore, we chose to 

determine apoA1 protein levels by western blotting after treating Caco-2 cells with each 

of these products. 

 As seen from figure-3-10, ONA was able to induce apoA1 in both poorly 

differentiated and fully differentiated cells as compared to control. This suggests that 

ONA might play a role in reducing atherosclerotic effects by upregulating apoA1 protein 

levels. Previously, studies from our laboratory have attributed anti-atherosclerotic 

effects to AZA, suggesting that conversion of lipid peroxidation derived aldehydes to 

carboxylic acids might be a possible way to prevent oxidative stress (Litvinov, 

Selvarajan et al. 2010). Hence, one may anticipate that ONA might be eventually 

converted to AZA which may be responsible for anti-atherogenic effects. The oxidation 
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of aldehydes to carboxylic acid is a common bio-chemical reaction that can occur 

enzymatically or non-enzymatically. Enzymes such as aldehyde dehydrogenase, 

aldehyde oxidase, and xanthine oxidase etc. can oxidize aldehydes to carboxylic acids. 

However, in this study there is no evidence to suggest that ONA might be converted to 

AZA which may further induce apoA1, this is merely an assumption. 

The preliminary data obtained in this study needs to be further confirmed by 

mass spectrometry. This would give a general idea of the products generated by 13-

HPODE decomposition in the presence of intestinal cells which may also strongly 

support our hypothesis. Overall, the results in this study are intriguing and have wide 

clinical implications for the treatment of patients with advanced atherosclerosis. At this 

point, it is premature enough to suggest that patients in advanced atherosclerosis stage 

can be administered short chain carboxylic acids as a means to induce apoA1, which 

might eventually help in reducing atherosclerosis by promoting reverse cholesterol 

transport. Further studies are warranted to confirm the current findings.  
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