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ABSTRACT 

Both genetic pre-disposition and potential environmental triggers are shared between 

Rheumatoid arthritis (RA) and Crohn’s disease (CD). We hypothesized that single nucleotide 

polymorphisms (SNPs) in the negative T-cell regulators Protein Tyrosine Phosphatase Non-

receptor type 2 and 22 (PTPN2/22) lead to a dysregulated immune response as seen in RA and 

CD. To test the hypothesis, peripheral leukocytes samples from 204 consented subjects were 

TaqMan genotyped for 9 SNPs in PTPN2/22. The SNPs effect on PTPN2/22 and IFN-y 

expression was determined using RT-PCR. Blood samples were analyzed for the Mycobacterium 

avium subspecies paratuberculosis (MAP) IS900 gene by nPCR. T-cell proliferation and 

response to phytohematoagglutonin (PHA) mitogen and MAP cell lysate were determined by 

BrdU proliferation assay. Out of 9 SNPs, SNP alleles of PTPN2:rs478582 occurred in 79% RA 

compared to 60% control (p-values ≤ 0.05). SNP alleles of PTPN22:rs2476601 occurred in 29% 

RA compared to 6% control (p-values ≤ 0.05). For the haplotype combination of 

PTPN2:rs478582/PTPN22rs2476601, 21.4% RA had both SNPs (C-A) compared to 2.4% 

control (p-values ≤ 0.05). PTPN2/22 expression in RA was decreased by an average of 1.2 fold. 

PTPN2:rs478582 upregulated IFN-y in RA by an average of 1.5 fold. Combined 

PTPN2:rs478582/PTPN22:rs2476601 increased T-cell proliferation by an average of 2.7 fold 

when treated with PHA. MAP DNA was detected in 34% RA compared to 8% controls (p-values 

≤ 0.05), where samples with PTPN2:rs478582 and/or PTPN22:rs2476601 were more MAP 

positive. PTPN2:rs478582/PTPN22:rs2476601 together with MAP infection significantly 

increased T-cell response and IFN-y expression in RA samples. The same experimental approach 

was followed on blood samples from CD patients. Both PTPN2:rs478582/PTPN22:rs2476601 
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affected PTPN2/22 and IFN-y expression along with T-cell proliferation significantly more than 

in RA. MAP DNA was detected in 64% of CD. This is the first study to report the correlation 

between SNPs in PTPN2/22, IFN-y expression and MAP in autoimmune disease. 
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CHAPTER ONE: INTRODUCTION  

Note: This section has been published in part and the citation link is: Sharp, R.C., Abdulrahim, 

M., Naser, E.S., Naser, S.A. (2015). Genetic variations of PTPN2 and PTPN22: role in the 

pathogenesis of type 1 diabetes and Crohn's disease. Front. Cell. Infect. Microbiol, 5: 95. doi: 

https://doi.org/10.3389/fcimb.2015.00095  

Autoimmune Diseases 

Crohn’s Disease (CD) 

Crohn's disease (CD) is an inflammatory bowel disease (IBD) that is characterized by transmural 

inflammation of the intestinal wall, which may occur at different sites of the gastrointestinal tract 

[1]. IBD prevalence is rapidly increasing at an alarming rate. In a recent epidemiologic study in 

the State of Florida, United States, it was estimated that the prevalence of CD is 222 per 100,000 

persons [2]. The prevalence of CD was higher among people ages 30–80 years old, non-Hispanic 

Whites and females [2]. The literature is enriched with reports suggesting that CD is caused by 

multiple factors including genetic anomalies, environmental factors, and immune system 

malfunctions. The latter has significant impact on the pathophysiology of the disease including 

gut microbiota [3]. Genome-wide association studies (GWAS) have shown that several single 

nucleotide polymorphisms (SNPs) in specific genes may cause an increase in the susceptibility to 

developing CD [9]. These genes include NOD2, ATG16L1, IL23R, IRGM, CCR6, PTPN2, and 

PTPN22 [9]. Environmental factors that have been associated with CD include pathogenic 

Escherichia coli strains, Mycobacterium avium subspecies paratuberculosis (MAP), and others 

[5]. Naser et al. has shown that MAP was found in the blood and breast milk of patients with CD 

[6][7]. Excessive secretion of pro-inflammatory cytokines and aberrant T-cell differentiation 

have also exacerbated CD, resulting in loss of tolerance, and intestinal dysbiosis [8]. 
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Rheumatoid Arthritis (RA) 

Rheumatoid arthritis (RA) is a deliberating autoimmune disease that affects synovial joints of 

individuals, where an increase of inflammation that leads to cartilage damage and bone erosion 

occurs [9]. The prevalence of RA in the United States alone is estimated to be at 1.36 million 

adults, where it continues to rise each year [10]. Diagnosis of RA begins with examination of the 

effected joints on the body and then with a serological blood test that examine autoantibodies 

such as rheumatoid factor (RF) and anti-cyclic citrullinated proteins (anti-CCP) [9][11].  

 

As with other autoimmune diseases, such as type 1 diabetes (T1D) and CD, RA is multifactorial 

autoimmune diseases that has both genetic predisposition and environmental triggers. When 

examining GWAS, there are many SNPs that have been associated with RA including HLA 

genes, such has HLA-DRB1 and non-HLA genes, such as CD40, PTPN2, and PTPN22 

[12][13][14]. Environmental elements along with these genetic mutations have also been 

examined in RA. Both chemical pressures, such as smoking tobacco or drinking alcohol, and 

biological pressures, such as viral and bacterial infections, have been linked to RA [15][16]. 

When examining biological triggers for RA, some of the viruses and bacterial species that have 

been associated with this disease include Rubella virus, Porphyromonas gingivalis, and 

Mycobacterium species [16]. Both the genetic factors and the environmental triggers together in 

RA patients will lead to an excess production of pro-inflammatory cytokines, such as TNF-α, IL-

6, and IFN-γ [17]. This excess amount of pro-inflammatory cytokines will lead to the intense 

inflammation and overall destruction of the joints in RA patients [17].  
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Common Genes Associated with Autoimmune Diseases 

GWAS have identified many genes to be involved in the development of autoimmune diseases 

such as T1D, CD, and RA. Most often, the mutation is due to a SNP resulting in immune system 

impairment and ultimately increased susceptibility to disease. The potential role of some of these 

genetic mutations have been examined in previous studies, but the mechanisms by which these 

mutated genes play a role in autoimmune diseases is still unclear and requires further research. 

 

Recently, two possible candidate genes that are involved with T1D, CD, and RA have been 

examined. These genes are PTPN2 (protein tyrosine phosphatase non-receptor type 2) and 

PTPN22 (protein tyrosine phosphatase non-receptor type 22) [1][4][12][13][18][19][20][21]. 

PTPN2/22 genes both encode for protein tyrosine phosphatases (PTPs) signaling molecules that 

modulate and regulate a variety of cellular processes such as cell growth, differentiation, mitotic 

cycle, oncogenic transformation, and survival [22][23]. Studies have shown that PTPs in general 

are key regulators of signaling transduction. Most cells of the immune system show high 

expression of tyrosine phosphorylation and express more PTP genes than other tissues in the 

body. In fact, a distinct phenotype exists among PTP-knockout mice having deficient or 

hyperactive immune status with severe abnormalities in hematopoiesis. This suggests a crucial 

role of PTP in maintaining a balanced immune system [23]. Predisposing variants in these genes 

can potentially lead to a less efficient suppression of inflammatory response due to a reduced 

amount of negative regulation, which may contribute to autoimmune diseases.  
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Genetic Variations of PTPN2/22 

PTPN2 Role in Autoimmune Diseases 

The PTPN2 gene is located on chromosome 18 and is a member of the PTP family, which 

dephosphorylates receptor protein tyrosine residues and regulates many signaling pathways and 

processes [20]. The protein has two major isoforms—one in the endoplasmic reticulum (48 kD) 

and the other in the nucleus (45 kD) [20]. PTPN2 is produced by alternative splicing and share a 

highly conserved PTP catalytic domain but different C-terminus [20]. PTPN2 expression plays 

an important role in regulating signal transduction and it is of pivotal importance to the 

pathogenesis of many autoimmune diseases. 

 

The involvement of the PTPN2 gene in autoimmune diseases is complex due to its ubiquitous 

expression which may play a role in tissue cell apoptosis [24]. This modulation occurs after 

exposure to type I (IFN-α and IFN-β) and type II interferon (IFN-γ), which leads to destruction 

of a variety of tissue cells including beta cells, intestinal tissues, and synovial joints [24][25][26]. 

Moreover, studies indicated that local IFN production interacts with PTPN2 expression and 

induces a malfunctioning pro-apoptotic activity of Bim, a BH3-only protein [24][25][26]. Bim is 

a member of the B-cell lymphoma two protein family (Bcl-2) that mediates apoptosis by 

activating Bax and Bak. This ultimately results in an increase of cell death via JNK activation 

and intrinsic apoptotic pathways [24]. PTPN2 is a negative regulator of the JAK-STAT signaling 

pathway, which is activated downstream by IFN receptors [24][25][26]. Studies have shown that 

the PTPN2 gene knockdown exacerbates type I and II IFN-induced cell death by inducing BAX 

translocation to the mitochondria after subsequent exposure to type I and II IFNs [24][25][26]. 

This occurs because when PTPN2 is mutated or knockdown, there is less of a negative regulation 
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of apoptotic processes, thus, increasing the signaling of the destruction of cells. Along with these 

reactions, there is an increase of Bim phosphorylation, which is regulated by JNK1 that also 

induces apoptosis of the tissue cells. 

 

Recently, the role of PTPN2 in chemokine producing cells, such as pancreatic beta cells, have 

shown to control endocrine function and insulin secretion. In a study by Xi et al. the deficiency 

in PTPN2 expression by knockout affected beta cell function in mice [27]. The reduced insulin 

secretion was associated with a decreased insulin content and glucose sensing, which showed 

that STAT3 could be a relevant target for the PTPN2 phosphatase regulation in the pancreas 

[27]. PTPN2 regulates insulin signaling by inactivating its receptor through de-phosphorylation 

of the insulin receptor β-chain in conjunction with the PTP1B phosphatase. This regulates 

gluconeogenesis in the liver by attenuating STAT3 signaling, which decreases glucose levels 

[20][28]. A deficiency of PTPN2 expression will lead to a cytokine-induced beta cell apoptosis 

of the pancreatic cells after inducing the mitochondrial apoptotic pathway along with impacting 

glucose homeostasis/utilization [24][28]. With these two systems out of control, T1D could 

occur in patients who have a mutation in the PTPN2 gene. This evidence shows that adequate 

PTPN2 expression is required for STAT dimer regulation during chemokine production in 

various cell types.  

 

With the help of CD4+ helper T cells, CD8+ cytotoxic T-cells are the primary mediators of cell 

destruction via secretory (perforin/granzyme) or Fas mediated pathways. Wiede et al. showed 

that a variant in PTPN2 (rs1893217) in mice greatly increases T cell receptor signaling, which 

can lead to reduced self-antigen tolerance due to decreased negative regulation [29]. With this 
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occurring, the response after self-antigen presentation could cause destruction of a variety of cell 

types [29]. Moreover, the risk variant rs1893217 in the PTPN2 gene is associated with a 

reduction in the receptor signaling of IL-2, which alters expression of FOXP3+ T regulatory cells 

(Tregs) in autoimmune disease patients [20]. Tregs are a group of T-cells that modulate the 

immune system homeostasis by maintaining tolerance to self-antigens. They also prevent 

autoimmune diseases by acting as suppressors to the immune response. This dysregulation of 

FOXP3+ Tregs leads to both T-cells and B-cells being unregulated due to FOXP3+ Treg cells 

suppressing their activation [20]. With these altered FOXP3+ Tregs, over reactivity of both T-

cells and B-cells could cause self-antigens to be recognized as foreign [20]. It explains how 

genetic variations in PTPN2 could lead to the development of autoimmunity due to the 

deregulation of Tregs homeostasis [20].  

 

When examining the effect of PTPN2 in cell regulation, the epithelial barrier of CD patients is a 

good model to look into. It is a fact that epithelial barrier dysfunction coincides with immune 

response dysregulation in CD, where PTPN2 regulates intestinal epithelial barrier function and is 

activated by IFN-γ which is up regulated by TNF-α in intestinal epithelial cells 

(IEC)[25][30][31]. IFN-γ is an effector cytokine for Th-1 and potentially Th17-propagated 

immune responses [25][31]. Scharl et al. showed that PTPN2 gets activated by IFN-γ and in turn, 

it limits the pro-inflammatory cytokine-induced signaling and barrier defects [3]. IFN-γ plays a 

role in CD pathogenesis and is noted to increase the permeability of intestinal epithelial barrier 

[3]. IFN-γ is involved in tissue destruction and possibly, in reduction of barrier functions as a 

result of reconfigured tight junctions [3]. PTPN2 usually protects the barrier by reducing its 

permeability and prevent induction of pore forming protein claudin-2 [3]. Claudin-2 is part of a 
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family of proteins that regulates paracellular permeability and functions as sealer-like in tight 

junctions [3]. Expressions or localization changes in claudins result in increased barrier 

permeability [3]. Recent study showed that claudin-2 upregulation in CD increased number of 

tight junction strand breakages [25]. PTPN2 expression plays a role in the regulation of 

inflammatory response, as loss of it leads to a severe IFN-γ signaling cascade, leading to 

problems in the intestinal epithelial barrier function [3][25]. PTPN2 has an important role in 

cytokine signaling of immune cells by inactivating STAT1 and STAT3; where the loss of PTPN2 

gene expression enhances STAT phosphorylation [3]. This evidence shows the importance in 

how a mutation altering function of the PTPN2 gene could lead to deleterious effects and may 

explain the pathogenesis of associated diseases. 

 

Loss of PTPN2 expression is associated with increased expression and secretion of pro-

inflammatory cytokines [1][3][31][32]. As previously stated, there is an aberrant T-cell 

differentiation and tissue cell destruction in autoimmune diseases, which PTPN2 seems to play a 

role in. It is very important to regulate T helper (Th)-cell differentiation into effector T-cell 

populations to maintain tolerance toward self-antigens. There is a potential role of the PTPN2 

protein in regulating differentiation of CD4+ Th-cells into its subset population. A loss of the 

PTPN2 protein in T-cells results in a disease promoting state. Loss of PTPN2 in T-cell 

compartments leads to enhanced induction of Th1 and Th17 cells while having an impaired 

induction of regulatory T-cells [31]. In several mouse models as shown by Spalinger et al., 

increased inflammation occurred as a result of high numbers of Th1 and Th17 cells due to the 

loss of the PTPN2 protein function, where higher amounts of pro-inflammatory cytokine 

production was examined [31].  
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PTPN2 also plays a role in autophagosome formation in tissue cells. Autophagy is an essential 

process for maintaining cell homeostasis, survival, and modulating inflammation. Studies have 

shown that knockdown of PTPN2 caused impaired autophagosome formation and dysfunctional 

autophagy resulting in response to TNF-α and IFN-γ [19][32][33][34]. Moreover, silencing 

PTPN2 in vitro exacerbates intestinal epithelial barrier dysfunction when exposed to IFN-γ [33]. 

Impairment in this gene shows that the pathway that leads to the perpetual tissue inflammation is 

associated with autoimmune diseases. Loss of PTPN2 expression can also lead to an increase in 

cytokine-induced mTOR phosphorylation, which leads to a decrease in autophagy 

[19][32][33][34]. It was reported that PTPN2 deficiency leads to a reduction of expression of 

autophagy genes that include: beclin 1, ATG7, ATG5, ATG12 conjugates, and ATG16L1 

[20][32][33][34]. Consequently, this leads to low amounts of autophagy proteins that create an 

abnormal autophagosome in the intestinal cells [25]. 

 

PTPN2 expression is very important in immune regulation as can be noted with PTPN2 deficient 

mice that suffer severe inflammation and die swiftly after birth. A balance between inflammatory 

and regulatory T-cells should be maintained for optimal tolerance and protection against 

pathogens. The mutation in PTPN2 could not only cause T1D, CD, or RA, but could also have 

comorbidity with each other due to the presence of this mutation in both disease states. With this 

unregulated immune system due to the loss of PTPN2 function, cytokines that play a role in 

inflammation are substantially increased, and T-cells/B-cells begin to react to self-antigens. 

These changes will affect major tissue areas of the body, such as pancreatic beta cells, intestinal 
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tissues, or synovial joints, of these genetically susceptible patients and lead to T1D, CD, and/or 

RA.  

PTPN22 Role in Autoimmune Diseases 

The PTPN22 gene is located on chromosome 1p13, which is a member of the PTPs that 

negatively regulate T-cell activation [20]. The encoded protein is a lymphoid specific 

intracellular phosphatase that associates with the molecular adapter protein CBL [20]. PTPN22 

has alternatively spliced transcript variants encoding several distinct isoforms [20]. It is located 

in the cytoplasm, and consists of an N-terminal phosphatase domain and a long non-catalytic C 

terminal with several proline rich motifs [20]. PTPN22 dephosphorylates kinases Lck, Fyn, and 

ZAP70, which are all involved in T-cell signaling [20]. A SNP mutation (rs2476601) in PTPN22 

is associated with autoimmune diseases [4][18][35]. Variants within these genes lead to the 

development of an abnormal immune response [4][18][35]. The PTPN22 rs2476601 SNP causes 

a single substitution of arginine for tryptophan in the encoded protein (R620W) leading to 

problems in T-cell receptor and B-cell receptor signaling [36]. This may ultimately result in an 

unbalanced establishment of tolerance in both T-cells and B-cells [36]. 

 

In B-cells, PTPN22 SNPs prevent the removal of developing auto-reactive B-cells [36]. Menard 

et al. showed that new mature naive B-cells from carriers of this variant had higher frequencies 

of auto-reactive clones as opposed to non-carriers [36]. This demonstrates defective central and 

peripheral B-cell tolerance checkpoints leading to the development of the previously mentioned 

auto-reactive B-cells. To be noted, there are essentially two methods to removing autoreactive B-

cells. First, a central tolerance checkpoint is done to remove most of the developing B-cells 
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expressing polyreactive antibodies in the bone marrow [37]. Second, a peripheral tolerance 

checkpoint is done in order to counter select autoreactive new B-cells before entering 

compartments designed for mature naive B-cell [37]. This shows that a single risk allele would 

have a dominant effect of changing auto-reactive B-cell counter-selection before onset of any 

autoimmunity. Menard et al. also performed gene array experiments on mature naive B-cells 

with the risk variant and found an upregulation of genes such as CD40, TRAF1, and IRF5 [36]. 

These genes encode proteins promoting B-cell activation and are susceptibility genes of many 

deregulated immune diseases [36]. They concluded that the association of the PTPN22 gene with 

autoimmunity is due to impaired removal of auto-reactive B-cells and the upregulation of the 

genes mentioned above [36]. 

 

In T-cells, PTPN22 is directly involved in threshold setting for T-cell receptor signaling [38]. 

Recent studies on PTPN22 knockout mice suggested that the increase risk of developing 

autoimmune diseases could occur through alterations of the periphery Treg cells while PTPN22 

knockout increases the thymic selection of Treg cells [39]. Both Wu et al. and Zheng et al. 

reported a “gain-of-function” model of Treg cell selection, where even though PTPN22 knockout 

did have reduced TCR signaling, they did not have an impairment of their ability to negatively 

select autoreactive T-cells in the thymus [40][41]. Overall, this shows that the PTPN22 SNP does 

not necessarily affect Treg cells, but could possibly affect other T-cells once they leave out of the 

thymus or even have other effects on the immune system. With the “loss-of-function” model, it 

shows that if PTPN22 is knocked out or mutated, then there is a loss of self-tolerance earlier on 

in the T-cell life, which can then be activated by self-antigens. This also leads to a higher 

amounts of T-cell activity and pro-inflammatory cytokine production due to loss of negative 



11 

 

regulation. Even though the role of PTPN22 mutation is still debatable, both models (“gain-of-

function”) and (“loss-of-function”) can still play a role in the development of autoimmune 

diseases.  

 

PTPN22 expression could potentially influence immuno-receptors, which could explain how it 

contributes to the development of diseases. Immuno-receptor signaling is governed by Src and 

Syk kinases, which are substrates of the PTPN22 protein [42]. A function of PTPN22 is to 

downregulate T-cell signaling by interacting with its negative regulatory kinase, C-terminal Src 

tyrosine kinase or Csk. A mutation of the PTPN22 gene ends up encoding products with different 

Csk binding affinities [42]. The R620W (rs2476601) substitution in PTPN22 decreases the 

ability of the phosphatase to bind to the SH3 domain of Csk, thus, showing how PTPN22 

expression is associated with T-cell signaling pathways [42]. This can be used as a marker for 

disease progression by the noted appearance of autoantibodies and increased pro-inflammatory 

cytokine levels when examining autoimmune diseases [20][35].  

 

When examining the PTPN22 rs2476601 SNP in CD, for example, the alteration in PTPN22 

expression levels and its dysfunction can have deleterious effects depending on the mechanism 

involved [4]. Normally, the intestinal immune system is usually tightly controlled by an existing 

balance of pro-inflammatory and anti-inflammatory cytokines. Patients suffering from IBD have 

a disturbed balance with more pro-inflammatory cytokines present. CD have a reduced 

expression of PTPN22 in intestinal tissues [32][34]. Spalinger et al. showed that PTPN22 

expression regulates intracellular signaling as induced by IFN-γ in human monocytes [32]. 

Studies have shown that knocking down the PTPN22 gene alters the activation of inflammatory 
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signal transducers and increases the secretion of Th17-related inflammatory mediators [32]. By 

this mechanism, genetic variants may induce pathogenesis of CD by prompting Th17 vs Th1 

differentiation [32]. Spalinger et al. also found that the loss of PTPN22 protein function results in 

increased p38-MAPK but reduces STAT1 and STAT3 signaling [32]. This leads to increase 

levels of IL-6 and IL-17 secretion, and decrease expression and secretion of T-bet, ICAM-1, 

MCP-1, IL-2, IL-8, and IL-12p40 [32]. The reduced PTPN22 levels contribute to increased 

levels of IL-6 found in CD [32]. Also, p38 activation and IL-6 secretion by antigen presenting 

cells play a huge role in differentiation of CD4+ T cells into Th17 cells, which induces CD 

pathogenesis [32]. The mechanism behind how PTPN22 genetic variants are associated with CD 

is an example on what happens in other autoimmune pathogenesis as well. 

 

PTPN22 plays an important role in cytokine secretion balance, which is crucial for activation and 

regulation of the immune system [32]. Mutations of PTPN22 not only will lead to cytokine 

imbalance, but it can also lead to T-cells and B-cells losing their ability to recognize self-

antigens from foreign antigens. These imbalances can lead to the destruction of tissues, which 

can lead to autoimmune diseases like T1D, CD, and RA. 

PTPN2/22 and Environmental Triggers in Autoimmune Diseases 

 SNPs and Environmental Triggers Associated with Autoimmune Diseases 

Although autoimmune diseases have always been established to be associated with genetic 

mutations in specific immunoregulatory genes, recent literature has shown that certain 

environmental triggers (chemical, bacterial, or viral) have also been investigated to be involved 

in the pathophysiology of these diseases. The interplay between genetic mutations and 
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environmental triggers is a topic of research in autoimmune etiology that is beginning to become 

more relevant in the field [43][44][45][46][47][48]. For CD patients, SNPs found in NOD2 have 

shown to increase susceptibility to bacterial infections [44][45]. The prevalence of an increase of 

SNPs found in HLA genes together with smoking tobacco has been found more so in RA patients 

than other autoimmune diseases as well [46][47]. Overall, the literature shows that when SNPs 

are involved in these autoimmune diseases, there appears to be some connection to an 

environmental trigger that goes with the pathophysiology of the diseases. This proposes the 

hypothesis that genetic factors and an environmental trigger need to be present together to 

produce an autoimmune response.  

SNPs in PTPN2/22 and Infections in Autoimmune Disease 

When examining SNPs in PTPN2/22 along with environmental triggers in autoimmune disease, 

it is shown that these two factors could be related to each other [24][25][48][49]. SNPs in 

PTPN2/22 have shown to possibly increase the susceptibility and the impact of viral and 

bacterial infections in T1D, CD, and RA [24][25][48][49]. This is due to the dysregulation of the 

immune system, where the viral and bacterial infections exacerbate inflammation 

[24][25][48][49]. For example, loss of function or poor activity of PTPN2/22 has shown to 

increase type 1 and type 2 IFN production, which leads to higher amounts of apoptosis in beta 

cells, intestinal tissues, and synovial joints [24][25][48][49]. With a viral or bacterial infection in 

these genetically susceptible individuals, this should significantly increase IFN production, thus 

further advancing the apoptotic processes in the specific tissue areas [24][25][48][49]. 

 



14 

 

When examining T1D, CD, and RA, it is shown that infections with Mycobacterium species 

could be associated with the pathophysiology of these diseases [6][7][47]. However, correlation 

between SNPs in PTPN2/22 and mycobacterial infection have not been fully established. In this 

dissertation, exploration of SNPs in PTPN2/22 along with mycobacterial infection is investigated 

in autoimmune disease patient samples. We hypothesized that SNPs in PTPN2/22 lead to a 

dysregulated immune response, susceptibility to environmental triggers, and continued apoptosis 

as seen in chronic inflammation in autoimmune disease patients. 

 

Our hypothesis is based on our earlier finding as shown in Figure 1 that since SNPs in PTPN2/22 

are proposed to cause an increase of pro-inflammatory cytokines, there will be a higher 

activation of both CD4+ helper T-cells and CD8+ cytotoxic T-cells 

[20][29][32][36][38][40][41]. With this higher levels of pro-inflammatory cytokines, there will 

be a higher increase of cellular death of macrophages from CD8+ cytotoxic T-cells and a higher 

amount of macrophage activation from CD4+ helper T-cells [50][51][52][53]. Since MAP can 

avoid phagosome-lysosome fusion and can survive in the macrophages, higher amounts of 

macrophage activation from overactive CD4+ helper T-cells will lead to a higher chance of MAP 

to thrive in the macrophages [54][55][56]. Moreover, overactive CD8+ cytotoxic T-cells will 

increase overall cell death in MAP infected macrophages, thus releasing the MAP bacterium that 

survive the apoptosis or necrosis process in the macrophages [54][55][56]. Overall, chronic 

inflammation and destruction of tissue cells in autoimmune diseases could potentially occur due 

to the increase of overactive T-cells and increased tissue apoptosis by both SNPs in PTPN2/22 

and the constant cycle of MAP infecting macrophages (Figure 1).  
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The second part of this dissertation will be focused on confirmation that MAP is found more 

readily in CD patients than in other IBD groups, such as ulcerative colitis (UC). There have been 

many different pathogenic bacterial infections that have been associated with IBD including not 

only MAP, but also Klebsiella pneumoniae (K. pneumoniae) and pathogenic adherent-invasive 

Escherichia coli (AIEC) [5][6][7][57][58][59]. The hypothesis proposed is that MAP is found in 

the CD patients more so than the other bacterial pathogens examined, where MAP should not be 

found in the UC patients. To elucidate this hypothesis, a development of a multiplex polymerase 

chain reaction (multiplex PCR) and a fluorescent in situ hybridization (FISH) visualization 

method was designed to examine the presence of MAP, K. pneumoniae, and AIEC together in 

one clinical sample.
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Figures 

 

Figure 1. Single Nucleotide Polymorphisms (SNPs) in Protein Tyrosine Phosphatase Non-Receptor Type 2 and 22 

(PTPN2/22) and Mycobacterium avium subspecies paratuberculosis (MAP) Interaction in Autoimmune Disease 
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The proposed hypothesis suggests that when SNPs in PTPN2/22 is present along with a MAP infection, chronic inflammation 

occurs leading to autoimmune diseases such as type 1 diabetes (T1D), Crohn’s disease (CD), and rheumatoid arthritis (RA). SNPs 

in PTPN2/22 will make CD8 + cytotoxic and CD4+ helper T-cells overactive, thus producing high amounts of pro-inflammatory 

cytokines. These cytokines will activate more macrophages and induce more cell destruction in infected macrophages. MAP 

infection exacerbates the disease since MAP survives in the macrophage and able to re-infect new macrophages, thus causing 

more pro-inflammatory cytokines production, more inflammation and worsening the disease. 
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CHAPTER TWO: POLYMORPHISMS IN PROTEIN TYROSINE 

PHOSPHATASE NON-RECEPTOR TYPE 2 AND 22 (PTPN2/22) ARE 

LINKED TO HYPER-PROLIFERATIVE T-CELLS AND 

SUSCEPTIBILITY TO MYCOBACTERIA IN RHEUMATOID ARTHRITIS 

Note: This chapter has been published in part and the citation link is: Sharp, R.C., Beg, S.A., and 

Naser, S.A. (2018). Polymorphisms in protein tyrosine phosphatase non-receptor type 2 and 22 

(PTPN2/22) are linked to hyper-proliferative T-cells and susceptibility to Mycobacteria in 

rheumatoid arthritis. Front. Cell. Infect. Microbiol., 8:11. doi: 

https://doi.org/10.3389/fcimb.2018.00011  

Introduction 

In RA, several SNPs have been reported in HLA class 2 histocompatibility antigen, DRB1 beta 

chain (HLA-DRB1), PTPN22, cytotoxic T-lymphocyte-associated protein 4 (CTLA4), and cluster 

of differentiation 40 (CD40) [1][2][3]. SNPs in these genes alter or stimulate the activation and 

regulation of major components of the immune system (T-cells, B-cells, macrophages, etc.) and 

osteoclasts which could lead to immune-dysregulation [1][3][4]. Consequently, this leads to 

accumulation of immune cells in and around synovial joints and excessive production of anti-

CCP, RF, and various pro-inflammatory cytokines such as TNF-α, IFN-γ, IL-1, and IL-6 

[1][3][4]. Specifically, SNPs in immune regulatory genes such as PTPN2/22 could potentially 

cause these problems in RA. We agree that the prevalence of SNPs in PTPN2/22 may vary and 

we support the possibility that the effect on gene expression may be significant which ultimately 

may void their functions as negative regulators (Figure 2). Consequently, T-cells remain 

constantly active, leading to hypersecretion of pro-inflammatory cytokines and inflammation 

along with tissue damage [5][6].  
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RA is an idiopathic autoimmune disease with suspected genetic predisposition and 

environmental triggers association. Due to intense inflammation, hyperplasia of the joints occurs 

along with cartilage and bone destruction, which leads to extreme pain and deformity of the 

extremities [1][3][7]. RA symptoms include joint swelling and pain of three or more joints, 

morning stiffness lasting 30 min and subcutaneous rheumatoid nodules [8]. Anti-CCP along with 

RF have also been useful to diagnose RA, more so than erythrocyte sedimentation rate (ESR) 

and C-reactive protein serum levels [7][9][10][11][12]. Although, anti-CCP seems to be more 

specific, but less sensitive than RF in RA diagnosis. Overall, ~30% of patients with RA are 

negative for anti-CCP [9][10][11]. RF, on the other hand, seems to have lower specificity but 

higher sensitivity compared to anti-CCP test. Overall, ~30–40% of patients with RA are negative 

for rheumatoid factor [9][10][11]. The limitation in early and accurate diagnosis of RA affects 

many patients who are left with continued pain and debilitating suffering. It is imperative that 

new and improved methods of testing for RA (i.e., genetic testing or identification of potential 

environmental antigens) is discovered to not only better diagnose RA, but to also find better 

treatments for the disease as well. 

 

Treatment of inflammatory diseases such as RA and CD includes non-steroid anti-inflammatory 

drugs (NSAIDs), glucocorticoids, and disease-modifying anti-rheumatic drugs (DMARDs) 

[3][8][13]. NSAIDs and glucocorticoids are used for RA patients to help reduce overall pain and 

stiffness [3][8][13]. However, these medications have a wide-variety of long-term side effects 

such as ulceration, osteoporosis, hypertension, weight gain, etc., thus NSAIDs and 

glucocorticoids need to be paired with other medications to reduce the side effects [3][8][14]. 

DMARDs includes synthetic products such as methotrexate, sulfasalazine and 



29 

 

hydroxychloroquine and includes biologics such as adalimumab/infliximab (anti-TNF-α), 

tocilizumab (anti-IL-6 receptor), abatacept (T-cell co-stimulator), and rituximab (B-cell 

deactivator) [3][8]. Using multi-therapy or mono-therapy of different DMARDs is controversial 

and is continued to be argued among clinicians due to conflicting side effects of each medication. 

Problems with both synthetic and biological DMARDs continue to be the high risk of developing 

sides effects including GI intolerance, hypersensitivity to the medication, production of 

antibodies against the medication, and increasing the risk of developing opportunistic infections 

such as Mycobacterium tuberculosis infection [3][15][16]. DMARDs and synthetic DMARDs 

are re-classified as DMAIDs when used in inflammatory bowel treatment such as CD [17]. 

Infliximab is most commonly prescribed medication for both RA and CD [17][18]. RA and CD 

patients share the same treatments, thus it is possible that both RA and CD pathogenesis share 

common factors involved in disease pathogenesis [17][18][19][20][21] 

 

Environmental triggers involved in RA include cigarette smoking, air pollutants, and bacteria 

including Porphyromonas ginivalis (P. gingivalis) and Proteus mirablis (P. mirablis) 

[3][22][23]. Molecular mimicry between a haemolysin protein sequence (ESRRAL) produced by 

P. mirablis and a RA susceptibility sequence (EQRRAA) was reported, thus showing possible 

connections to genetic pre-disposition and an environmental trigger synergistic threat [24]. Most 

recently, MAP has been associated with other autoimmune diseases including CD, T1D, and 

possibly in RA [6][25][26][27]. The association of MAP with these inflammatory diseases was 

based on shared genetic predisposition and molecular mimicry with environmental antigens 

[6][25][26][27]. MAP infection in a genetically predisposition patient should trigger, exacerbate 

and possibly dysregulate the immune system by stimulating the production of pro-inflammatory 
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cytokines and, through molecular mimicry, production of autoantibodies [6][25][26][27]. This is 

the first study designed to explore the effect of an environmental trigger, such as MAP, and 

SNPs in PTPN2/22 on gene expression and the consequent effect on T-cells reactivity and 

inflammation. We hypothesize that SNPs in PTPN2/22 and, along with MAP infection, causes 

hyper-proliferative T-cells and overexpression of IFN-γ, leading to possible inflammation in RA 

patients. 

Materials and Methods 

Clinical Samples 

Three 4.0-mL K2-EDTA coded blood tubes were obtained from 132 consented RA and healthy 

control subjects that were acquired from the University of Central Florida Health Center. The 

study was approved by the University of Central Florida Institutional Review Board 

#IRB00001138. Each subject completed and signed a written consent form before samples were 

collected. The average age of healthy controls was 30.7 ± 13.4 with a gender ratio of 41.9% male 

and 58.1% female subjects. The average age of RA patients was 49.9 ± 13.7 with a gender ratio 

of 11.4% male and 88.6% female subjects. Many factors including the higher prevalence of RA 

in older females than in males (3:1 ratio) found in other studies, the preference of a female 

rheumatologists by female RA patients, and the selection of rheumatologists around the area has 

been noted and considered in this study [28][29]. Table 1 lists age, gender and other 

demographic information and current medications for all RA subjects participating in this study. 

One tube of blood sample was processed for detection of MAP IS900 DNA. Another tube of 

blood sample was processed for PTPN2/22 genotyping and gene expression experiments, 

whereas the third tube of blood sample was utilized in T-cell proliferation study.
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Table 1. Demographics, Treatment History, and Results of MAP and Allele Frequency of rs478582/rs2476601 in RA 

Samples Used in Study 

SAMPLE CODE DIAGNOSIS GENDER AGE MEDICATIONS 

CURRENTLY TAKEN 

MAP 

STATUS 

PTPN2: 

rs478582* 

PTPN22: 

rs2476601** 

MAP-1000 RA F 60 Hydroxychloroquine - CC GG 

MAP-1001 RA M 75 Methotrexate, 

Prednisone 

- TT GG 

MAP-1003 RA F 68 Humira®, Methotrexate, 

Prednisone 

- TC GG 

MAP-1004 RA F 37 Methotrexate - TC GG 

MAP-1002 RA F 62 Methotrexate + TC GA 

MAP-1005 RA M 30 Methotrexate, 

Prednisone 

- TC GG 

MAP-1006 RA F 55 Methotrexate - CC GG 

MAP-1007 RA F 59 Methotrexate, 

Hydroxychloroquine 

- TC GG 

MAP-1008 RA F 68 Methotrexate - TC GG 

MAP-1009 RA F 33 Methotrexate, 

Prednisone 

- TC GG 

MAP-1010 RA F 62 Methotrexate, 

Prednisone, Humira®, 

Sulfasalazine 

- CC GG 

MAP-1011 RA F 45 Humira® + TC GA 

MAP-1012 RA F 76 Hydroxychloroquine + CC GG 

MAP-1013 RA F 52 Enbrel®, Methotrexate + CC GG 

MAP-1014 RA F 43 Methotrexate + TC GG 

MAP-1015 RA F 47 Enbrel®, Methotrexate + TC GG 

MAP-1016 RA M 48 Methotrexate, 

Prednisone 

+ TC GG 

MAP-1017 RA F 22 Methotrexate, Simponi® - CC GA 
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SAMPLE CODE DIAGNOSIS GENDER AGE MEDICATIONS 

CURRENTLY TAKEN 

MAP 

STATUS 

PTPN2: 

rs478582* 

PTPN22: 

rs2476601** 

MAP-1019 RA F 52 Enbrel® - TC GG 

MAP-1020 RA F 60 Orencia®, Methotrexate - CC GA 

MAP-1021 RA F 57 Methotrexate, Simponi® - TC GG 

MAP-1023 RA F 51 Methotrexate, 

Prednisone 

- CC GG 

MAP-1024 RA F 62 Methotrexate, Humira® - CC GA 

MAP-1022 RA F 62 Hydroxychloroquine, 

Methotrexate 

- CC GG 

MAP-1025 RA F 49 None - CC GG 

MAP-1026 RA F 64 None - TC GG 

MAP-1027 RA+IBD F 56 Prednisone, Xeljanz® + CC GG 

MAP-1028 RA+IBD F 61 Methotrexate, Humira® - CC GA 

MAP-1029 RA F 25 Orencia®, Prednisone - CC GG 

MAP-1300 RA F 39 Orencia®, Methotrexate - TC GA 

MAP-1031 RA F 58 Enbrel®, Leflunomide + TT GG 

MAP-1032 RA F 30 Humira® - TC GG 

MAP-1033 RA F 56 Hydroxychloroquine + TC GG 

MAP-1034 RA F 43 Humira®, 

Hydroxychloroquine 

- TC GG 

MAP-1035 RA F 28 Humira®, Methotrexate, 

Hydroxychloroquine 

- TT GG 

MAP-1036 RA F 49 Methotrexate, 

Hydroxychloroquine 

+ CC GA 

MAP-1037 RA F 53 Enbrel® - TT GA 

MAP-1039 RA F 56 Hydroxychloroquine - CC GA 

MAP-1040 RA F 56 Enbrel®, Methotrexate - TT GG 

MAP-1041 RA F 30 Humira®, Prednisone, 

Leflunomide 

- TC GG 

MAP-1042 RA F 44 Methotrexate + CC GG 
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SAMPLE CODE DIAGNOSIS GENDER AGE MEDICATIONS 

CURRENTLY TAKEN 

MAP 

STATUS 

PTPN2: 

rs478582* 

PTPN22: 

rs2476601** 

MAP-1043 RA+UC+T1D F 28 Sulfasalazine, 

Budesonide 

+ TT GA 

MAP-1044 RA F 39 Hydroxychloroquine + TC GA 

MAP-1046 RA F 54 Hydroxychloroquine - CC GA 

MAP-1047 RA F 65 None - TC GG 

MAP-1048 RA M 65 Methotrexate + TT GA 

MAP-1049 RA F 59 Stelara® - TC GA 

MAP-1050 RA F 73 Humira® + TC GG 

MAP-1051 RA F 34 Prednisone - TC GG 

MAP-1052 RA F 20 Hydroxychloroquine - CC GG 

MAP-1053 RA F 63 Cimzia®, Methotrexate, 

Predenisone 

- CC GA 

MAP-1054 RA F 36 Methotrexate + TC GA 

MAP-1057 RA F 51 Methotrexate, 

Predenisone 

- TC AA 

MAP-1055 RA F 63 Methotrexate, 

Hydroxychloroquine, 

Predenisone 

+ TT GG 

MAP-1056 RA F 47 None + TT GG 

MAP-1058 RA M 42 Methotrexate, Humira® - TT GG 

MAP-1059 RA F 51 Humira® - TT GG 

MAP-1060 RA M 47 Prednisone + TC GG 

MAP-1061 RA F 52 Hydroxychloroquine + TC GG 

MAP-1062 RA+T1D F 50 None - TT GG 

MAP-1063 RA+SLE F 29 Orenseia®, 

Methotrexate, 

Predenisone 

- TC GG 

MAP-1064 RA+UC F 40 None - CC GG 

MAP-1065 RA F 42 Methotrexate, Humira® - TT GA 

MAP-1066 RA F 65 None - TC GG 
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SAMPLE CODE DIAGNOSIS GENDER AGE MEDICATIONS 

CURRENTLY TAKEN 

MAP 

STATUS 

PTPN2: 

rs478582* 

PTPN22: 

rs2476601** 

MAP-1068 RA+CD F 28 Humira® - CC GG 

MAP-1069 RA M 56 Enbrel®, Methotrexate - TC GG 

MAP-1070 RA F 48 Enbrel® - TT GA 

MAP-1067 RA M 70 Methotrexate, Cimzia® + TT GG 

MAP-1071 RA F 32 Methotrexate + TC GG 

MAP-1072 RA F 58 None + TC GG 

        

RA: Rheumatoid Arthritis 

IBD: Inflammatory Bowel Disease 

UC: Ulcerative Colitis 

T1D: Type 1 Diabetes 

SLE: Systemic Lupus Erythematosus 

CD: Crohn’s Disease 

*: TT = Homozygous Major Allele/No SNP 

TC = Heterozygous Allele 

CC = Homozygous Minor Allele 

**: GG = Homozygous Major Allele/ No SNP 

GA = Heterozygous Allele 

AA = Homozygous Minor Allele 
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Detection of MAP IS900 DNA in Peripheral Leukocytes 

Blood sample tubes designated for MAP IS900 detection were centrifuged at 3,000 RPMs for 10 

min at room temperature. A 1.0 mL sample of plasma was transferred to sterile 1.5 mL 

microcentrifuge tube and was stored at −20°C for further analysis. Buffy coat layer containing 

peripheral leukocytes were also transferred into new sterile 1.5 mL microcentrifuge tube 

containing double volume of red cell lysis buffer (ammonium chloride solution, G-

Biosciences®). Tubes were then incubated by rocking on a gentle shaker for 10 min, which then 

were centrifuged at 5,000 RPMs for 5 min at room temperature. The supernatant was removed 

and purified buffy coat pellets were stored in Tris-EDTA (TE) buffer and subjected to genomic 

DNA extraction using a modified DNAzol® extraction protocol as follows. Fresh or thawed 

buffy coat pellets suspended in 1.0 mL DNAzol® reagent was mixed with 400 μL of 100% 

isopropanol. Tubes were then incubated for 15 min at room temperature followed by 

centrifugation at 8,000 RPMs for 6 min. The supernatant was discarded and DNA pellets were 

washed once with 500 μL DNAzol® reagent and centrifuged at 8,000 RPMs for 5 min. Genomic 

DNA pellets were washed again with 1.0 mL of 75% ethanol and centrifuged at 8,000 RPMs for 

5 min. DNA pellets were then dried in a speedvac for 5 min. Dried DNA pellets were dissolved 

in 20 μL molecular biological grade sterile H2O and stored at −20°C for analysis by nest 

polymerase chain reaction (nPCR). Detection of MAP IS900 DNA was done following our 

nPCR protocol and nucleotide primers as described previously [30]. The presence of a 298 bp 

band on a 2% agarose gel was indicative of presence of MAP in patient sample. Positive MAP 

DNA control originated from our UCF4, a culture of clinical strain isolated from CD patient. 
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Negative control tube for each PCR step contained all PCR ingredients except DNA template 

was used. 

PTPN2/22 Genotyping 

Genotyping of PTPN2/22 for 9 SNPs were performed on DNA from peripheral blood. 

Genotyping was done at the University of Florida Pharmacotherapy and Translational Research 

Department (Gainesville, FL) using the TaqMan™ SNP Genotyping Assays (Applied 

Biosystems™). We investigated 4 SNPs specific to PTPN2 including rs1893217, rs2542151, 

rs7234029, and rs478582 along with 5 SNPs specific for PTPN22 including rs2476601, 

rs2488457, rs33996649, rs34209542, and rs2476599. Table 2 summarizes SNPs allele mutations 

and amino acid mutations used in this study. Briefly, 1 mL blood was stored at −20°C until all 

samples were collected. DNA extractions were performed on whole blood samples using 

QIAamp® DNA Blood Mini Kit (Qiagen™) following the manufacturer's protocol. Similarly, 

TaqMan™ genotyping assays for PTPN2/22 were performed on DNA samples following 

manufacturer protocol (Applied Biosystems™). Briefly, reaction mixtures consisted of 2x 

TaqMan™ Master Mix and 20x Assay Working Stock (primers with VIC and FAM fluorophore 

attachment) were transferred into a 384-well microtiter plate. DNA samples and controls were 

then added to the plate which then was subjected to RT-PCR using Applied Biosystems™ 

QuantStudio™ RT-PCR System. The protocol consisted of 95°C for 10 min for 1 cycle, 92°C for 

15 s and 58°C for 1 min for 50 cycles. The plate was read for VIC and FAM fluorophores for 

each sample at 551 and 517 nm, respectively. Fluorescence of VIC or FAM alone determined 

that the sample had allele 1 or allele 2, while VIC and FAM together determined that the sample 

is heterozygous for each allele. 
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Table 2. List of SNPs in PTPN2/22 Examined in this Study  

GENE RS# MUTATION LOCATION MUTATION PHENOTYPE 

PTPN2 rs2542151 T>G 5.5 kb Upstream 

(Espino-Paisan et 

al., 2011) 

High Susceptibility to CD, UC, 

T1D, T2D, RA, and Juvenile 

Idiopathic Arthritis 

 

rs1893217 T>C Intron 7 

(Espino-Paisan et 

al., 2011) 

High Susceptibility to CD, T1D, 

MS, RA, and Celiac Disease 

 

rs7234029 A>G Intronic Section 

(Zhang et al., 

2014) 

High Susceptibility to CD, UC, 

RA, and Juvenile Idiopathic 

Arthritis 

 

rs478582 T>C Intron 3 

(Espino-Paisan et 

al., 2011) 

High Susceptibility to T1D, MS, 

RA, and Celiac Disease 

PTPN22 rs2476601 G>A R620W 

(Qu et al., 2005) 

High Susceptibility to CD, T1D, 

MS, RA, SLE, and Celiac 

Disease 

 

rs2488457 C>G Promoter Region 

(Fan et al., 2015) 

High Susceptibility to UC, T1D, 

RA, SLE, and Juvenile 

Idiopathic Arthritis 

 

rs33996649 C>T R263Q 

(Rodriguez et al., 

2011) 

High Susceptibility to CD, UC, 

and RA 

 

rs34209542 A>G Intronic Section 

(Skinningsrud et 

al., 2008) 

High Susceptibility to T1D, RA, 

and Juvenile Idiopathic Arthritis 

 

rs2476599 G>A Intron 19 

(Taniyama et al., 

2010) 

High Susceptibility to RA 

 

PTPN2/22 and IFN-γ Gene Expression 

A total of 1 mL of fresh whole blood was transferred into 2.0 mL RNA-ase free microcentrifuge 

tube and was immediately processed for RNA extraction. RNA was isolated from peripheral 
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leukocytes and then used to synthesis cDNA for determining gene expression of PTPN2/22 and 

IFN-γ via RT-PCR. RNA extraction was performed following the TRIzol® Reagent (Invitrogen) 

manufacturer's instruction. Briefly,1.0 mL of whole blood was transferred into 2.0 mL RNase 

free microcentrifuge tubes and centrifuged at 3,000 RPMs for 15 min. Plasma was discarded and 

buffy coat layer containing peripheral leukocytes were transferred to new RNA-ase free 

microcentrifuge tubes with double volume of red cell lysis buffer (ammonium chloride solution, 

G-Biosciences®). Tubes were incubated by rocking on gentle shaker for 10 min which then was 

centrifuged at 5,000 RPMs for 5 min at room temperature. Supernatant was then removed and 

peripheral leukocyte pellets were suspended in 1.0 mL of TRIzol®. Tubes were then incubated 

by rocking on a gentle shaker for 15 min. A volume of 0.2 mL of chloroform was then added to 

each tube. The mixture was then incubated at room temperature for 3 min. Tubes were then 

centrifuged at 11,400 RPMs for 15 min at 4°C. The colorless, upper aqueous phase containing 

RNA was transferred into new 2.0 mL RNA-ase free microcentrifuge tubes. A volume of 0.5 mL 

of 100% isopropanol was added followed by incubation at room temperature for 10 min. Tubes 

were then centrifuged at 11,400 RPMs for 10 min at 4°C. RNA pellets were washed in 1 mL of 

75% ethanol and then centrifuged at 8,700 RPMs for 5 min at 4°C. RNA pellets were air-dried 

for 15–30 min and then suspended in 20 μL of RNase free H2O and heated at 60°C for 10 min. 

 

cDNA synthesis was performed following the iScript™ Reverse Transcription (Bio-Rad®) 

manufacturer's instruction. Briefly, 600 ng of RNA from each sample was added to PCR reaction 

tubes containing 0.2 mL PCR reaction, 4 μL of iScript™ Reverse Transcription (Bio-Rad®), and 

up to 20 uL RNase free H2O. Tubes were then placed in a thermal cycler (MyGene™ Series 
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Pelteir Thermal Cycler) and ran for 5 min at 25°C, 20 min at 46°C, and 1 min at 95°C. Final 

concentration of cDNA for each sample was 30 ng/μL. 

 

RT-PCR reactions in a 96-well microamp plate consisted of 1 μL of cDNA (30 ng), 10 μL of 

Fast SYBR Green Mastermix (Thermofisher Scientific®), 1 μL of either PTPN2, PTPN22, or 

IFN-γ PrimePCR SYBER Green Assay mix (Bio-Rad®). and 8 μL of molecular biological grade 

sterile H2O. Oligonucleotide primers for 18s RNA gene (forward primer: 5′-GTA ACC CGT 

TGA ACC CCA TT-3′; reverse primer: 5′-CCA TCC AAT CGG TAG TAG CG-3′) were used 

as a control and to obtain baseline CT readings. RT-PCR reaction was performed using the 7500 

Fast Real-Time PCR System (Applied Biosystems®). Relative mRNA expression levels were 

calculated using ΔCT (Sample RT-PCR CT reading–18s CT baseline) and using the equation 

(2−ΔCT × 1,000). 

Isolation of Peripheral Lymphocytes and Proliferation Assay 

Isolation of peripheral lymphocytes was performed using Lymphoprep™ reagent (Axis-Shield®) 

as described previously [31]. A stock of 2X freezing media containing 10.0 mL of 25% human 

serum albumin (Gemini®), 10.0 mL of sterile RPMI-1640 (Sigma-Aldrich®), and 5.0 mL 

DMSO was made for the use of preserving lymphocytes for storage at −80°C. Isolated 

lymphocytes were transferred into 1.0 mL cryogenic vials (Nalgene®) with double the amount of 

2x freezing media added to samples and stored at −80°C for future use. Lymphocytes were 

thawed and washed with cRPMI, which contained 10% sterile heat-inactivated FBS (Sigma-

Aldrich®) and 1% sterile antibiotic/antimycotic solution (Sigma-Aldrich®) added to RPMI-1640 

before T-cell isolation. T-cell isolation from lymphocyte samples were done using EasySep™ 
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Human T-cell Isolation Kit (Stemcell™) following manufacturer's instruction. Briefly, isolated 

lymphocytes were transferred into a 2.0 mL round-bottom microcentrifuge tubes. The Isolation 

Cocktail mixture was added at 50 μL/mL to sample tubes and was incubated at room temperature 

for 5 min. The RapidSpheres™ mixture was added to the tubes at 40 μL/mL and were placed in 

the EasySep™ magnet for 3 min. Isolated T-cells were poured from the tubes in the magnet to 

new 2.0 mL microcentrifuge tubes. T-cells were then counted using trypan blue solution (0.4%, 

Sigma®) cell viability assay. 

 

T-cell proliferation assay was done using bromodeoxyuridine (BrdU) labeling proliferation 

ELISA kit (Roche Molecular Biochemicals®) as described previously [31]. 

Phytohematoagglutunin (PHA) was used to evaluate T-cell response. Purified Protein 

Derivative-like (PPD-like) from MAP was prepared by purification of supernatant from 

sonicates of protein extract obtained from clinical strain UCF4 culture pellet. It was used to 

determine T-cell response and prior exposure to MAP antigens. Briefly, 1 × 105 of isolated T-

cells were transferred in triplicates onto a 96-well culture plate and were incubated in either 

RPMI only, PHA (10 μg/mL, Sigma-Aldrich®) or PPD-like (5 μg/mL) along with respected 

patients' plasma for 72 h at 37°C and 5% CO2. T-cells were then labeled with BrdU and 

incubated for 24 h at 37°C and 5% CO2. Cell proliferation was measured through Roche BrdU 

proliferation ELISA kit as described previously [31]. Relative T-cell proliferation levels of 

samples were compared to blanks (RPMI only) and controls (isolated T-cells in RPMI only) by 

examining fold change in absorbance reading of each well at 450 nm. 
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Statistical Analysis  

Samples were analyzed for significance using unpaired, two-tailed t-tests; unpaired, two-tailed z-

score; and odds ratio. GraphPad Prism 7 was used for statistical analysis and creation of graphs. 

P-values ≤ 0.05 were considered significant. Relative mRNA gene expression was determined by 

the use of ΔCT of the gene of interest found in each sample and the equation 2−ΔCT × 1,000 [32]. 

Results 

Mycobacterium avium subspecies paratuberculosis IS900 DNA Detected in RA Frequency of 

SNP Alleles in PTPN2/22 in RA 

Purified DNA from peripheral leukocytes of 118 subjects (70 RA and 48 healthy controls) was 

analyzed by nPCR using oligonucleotide primers specific to MAP IS900. MAP DNA was 

detected in blood samples from RA subject as illustrated in Figure 3A. The 298 bp PCR product 

purified from representative gels was sequenced and BLAST analysis confirmed the identity of 

MAP, which has previously been used to confirm if patient samples are considered having the 

MAP infection [25][[26][30]. As shown in Figure 3B, out of 70 blood samples from RA subjects, 

24 (34.3%) were positive for MAPbacteremia compared to only 4 out 48 (8.3%) healthy controls 

(p-value ≤ 0.05). The odds ratio (OR) value was determined to be 5.74 (95% CI: 1.84–17.9; p-

value ≤ 0.05), where the presence of MAP DNA is most likely to occur in RA patients. MAP 

bacteria has been successfully re-cultured from at least one RA buffy coat sample (MAP-1015, 

see Table 1) via BD Bactec™ MGIT™ Para-TB medium (Becton, Dickinson and Company). 

The cultured sample was confirmed to be MAP positive by way of nPCR as previously 

mentioned. Culturing of MAP bacteria from other RA patient samples is still ongoing. 
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Frequency of SNP Alleles in PTPN2/22 in RA 

TaqMan™ genotyping was done on purified DNA from 132 subjects (70 RA and 62 healthy 

controls). DNA from each subject was analyzed for 4 SNPs specific to PTPN2 (rs1893217, 

rs2542151, rs7234029, rs478582) and 5 SNPs specific to PTPN22 (rs2476601, rs2488457, 

rs33996649, rs34209542, rs2476599). Data referred to as homozygous major allele is considered 

normal/no SNP, while heterozygous allele and homozygous minor allele were considered 

abnormal and designated as SNP positive. As shown in Figure 4, Out of 4 SNPs specific to 

PTPN2, rs478582 was significant in RA since heterozygous (TC) or minor (CC) alleles were 

detected in 55/70 (78.6%) RA samples compared to 36/60 (60.0%) healthy controls (p-value ≤ 

0.05, Figure 4A). Specifically, 22/70 (31.4%) minor (CC) alleles were detected in RA compared 

to 9/60 (15.0%) healthy controls (p-value ≤ 0.05), whereas heterozygous (TC) alleles were 

detected in 33/70 (47.1%) RA compared to 28/60 (46.7%) healthy controls. Out of 5 SNPs 

specific to PTPN22, rs2476601 was significant in RA since heterozygous (GA) or minor (AA) 

alleles were detected in 20/70 (28.6%) RA samples compared to only 4/62 (6.45%) healthy 

controls (p-values ≤ 0.05, Figure 4B). Specifically, heterozygous alleles (GA) were detected in 

19/70 (27.1%) RA compared to 4/62 (6.45%) healthy controls (p-value ≤ 0.05). There was rare 

minor (AA) alleles detected in all samples. The OR value for the significance of 

PTPN2:rs478582 was 2.28 (95% CI: 1.05–4.93; p-value ≤ 0.05) whereas OR value for 

PTPN22:rs2476601 was 5.90 (95% CI: 1.89–18.4; p-value ≤ 0.05). 

 

For determination of haplotype combinations, we examined the significant SNPs 

PTPN2:rs478582 and PTPN22:rs2476601 allele combinations to confirm the allele distribution 

among samples (Figure 4C). Examination of the following haplotype combinations were 
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determined in the samples, where PTPN2:rs478582 and PTPN22:rs2476601 allele types were 

combined respectively: T-G, C-G, T-A, and C-A. T-G haplotype (major/major) was found more 

significantly in healthy controls (21/59 = 35.6%) than in RA samples (10/70 = 14.3%, p-value ≤ 

0.05). C-G haplotype (heterozygous or minor/major) was found in 40/70 (57.1%) RA samples 

compared to healthy 34/59 (57.6%). T-A haplotype (major/heterozygous or minor) was found 

more in RA samples (5/70 = 7.14%), compared to healthy controls (2/59 = 3.39%), while C-A 

(heterozygous or minor/heterozygous or minor) was found significantly more in RA samples 

(15/70 = 21.4%) than in healthy controls (2/59 = 2.39%, p-value ≤ 0.05). When examining the 

haplotypes in more detail, CC-GA haplotype was found more significantly (p-value ≤ 0.05) in 

RA patients (8/70 = 11.4%) than in healthy controls (1/59 = 1.69%). 

Effect of PTPN2:rs478582 and PTPN22:rs2476601 on PTPN2/22 Expression 

Gene expression of PTPN2/22 in 37 RA and 31 healthy controls were reported. The overall 

relative mRNA expression of PTPN2 was lower in RA compared to healthy controls (8.22 ± 5.33 

and 10.3 ± 6.95, respectively). Similarly, relative mRNA expression of PTPN22 was also lower 

in RA compared to healthy controls (2.55 ± 1.74, and 3.24 ± 1.84, respectively). Examination of 

relative mRNA expression of PTPN2/22 in relationship with samples with either 

PTPN2:rs478582 or PTPN22:rs2476601 was examined as seen in Table 3. 
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Table 3. Effect of PTPN2:rs478582 and PTPN22:rs2476601 on PTPN2/22 Expression 

DIAGNOSIS PTPN2 EXPRESSION OF 

SAMPLES WITH PTPN2:RS478582 

(2(-∆CT) X 1000) 

PTPN22 EXPRESSION OF 

SAMPLES WITH 

PTPN22:RS2476601 

(2(-∆CT) X 1000) 

TT TC CC TC + 

CC 

GG GA AA GA + 

AA 

RA 7.38 ± 

4.91 

(N=13) 

 

7.42 ± 

4.01 

(N=15) 

10.7 ± 

7.33 

(N=9) 

8.67 ± 

5.59 

(N=24) 

2.41 ± 

1.98 

(N=24) 

2.77 ± 

1.28 

(N=12) 

3.16 

(N=1) 

2.79 ± 

1.23 

(N=13) 

HEALTHY 9.49 ± 

5.13 

(N=8) 

10.3 ± 

7.01 

(N=18) 

11.9 ± 

9.73 

(N=5) 

10.6 ± 

7.47 

(N=23) 

3.24 ± 

1.91 

(N=27) 

3.40 ± 

1.19 

(N=4) 

NA 3.40 ± 

1.19 

(N=4) 

 

The effect of PTPN2:rs478582 on gene expression was evaluated. The average relative mRNA 

expression in RA with heterozygous (TC) or minor (CC) allele was 8.67 ± 5.59 (N = 24) 

compared to 10.6 ± 7.47 (N = 23) in healthy controls with similar SNPs and lower than healthy 

controls without SNPs (TT) (9.49 ± 5.13; N = 8). Specifically, the average relative mRNA 

expression in RA with heterozygous (TC) allele was 7.42 ± 4.01 (N = 15) which is much lower 

than healthy control with the heterozygous (TC) allele (10.3 ± 7.01; N = 18) and normal (TT) 

healthy controls (9.49 ± 5.13; N = 8). The effect of minor (CC) allele on PTPN2 expression in 

RA was 10.7 ± 7.33 (N = 9) and lower than healthy controls with minor (CC) allele (11.9 ± 9.73; 

N = 5). The effect of PTPN2:rs478582 on mRNA expression in each subject group was not 

significant. Among healthy controls, the average relative mRNA expression in samples with 

heterozygous (TC) or minor (CC) allele was 10.6 ± 7.47 (N = 23) compared to 9.49 ± 5.13 (N = 
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8) in normal (TT) samples. The average relative mRNA expression with only heterozygous (TC) 

allele was 10.3 ± 7.01(N = 18), whereas samples with minor (CC) allele had 11.9 ± 9.73 (N = 5) 

compared to normal (TT) healthy controls (9.49 ± 5.13 N = 8). Among RA samples, the average 

relative mRNA expression in samples with the heterozygous (TC) or minor (CC) allele was 8.67 

± 5.59 (N = 24) compared to 7.38 ± 4.91 (N = 13) in normal (TT) samples. The average relative 

mRNA expression samples with only heterozygous (TC) allele was 7.42 ± 4.0 (N = 15), whereas 

samples with the minor (CC) allele had 10.7 ± 7.33 (N = 9) compared to RA normal (TT) 

samples (7.38 ± 4.91; N = 13). The overall average relative mRNA expression in all samples 

with heterozygous (TC) or minor allele (CC) was 9.63 ± 6.58 (N = 47) compared to 8.19 ± 4.98 

(N = 21) in samples without any SNP. Specifically, the average relative mRNA expression in all 

samples with only heterozygous (TC) allele was 8.99 ± 5.94 (N = 33) and with only the minor 

(CC) allele was 11.2 ± 7.91 (N = 14) compared to the samples without any SNP (8.19 ± 4.98; N 

= 21). 

 

Correlation analyses were also performed to determine if PTPN22:rs2476601 alters PTPN22 

expression. The average relative mRNA expression in RA with heterozygous (GA) or minor 

allele (AA) was 2.79 ± 1.23 (N = 13) compared to 3.40 ± 1.19 (N = 4) in healthy controls with 

similar SNP and normal (GG) healthy control (3.24 ± 1.91, N = 27). Specifically, the average 

relative mRNA expression in RA with only heterozygous (GA) allele was 2.77 ± 1.28 (N = 12) 

compared to 3.40 ± 1.19 (N = 4) in healthy controls with similar SNP and normal (GG) healthy 

controls (3.24 ± 1.91; N = 27). There was rare occurrence of minor (AA) allele in all samples. 

Among each group, there was not any significance. Among healthy controls, the average relative 

mRNA expression in samples with heterozygous (GA) or minor (AA) allele was 3.40 ± 1.19 (N 
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= 4) compared to 3.24 ± 1.91 (N = 27) normal (GG) samples. The average relative mRNA 

expression with only heterozygous (GA) allele was 3.40 ± 1.19 (N = 4), where there were no 

samples with minor (AA) allele. Among RA samples, the average relative mRNA expression in 

samples with the heterozygous (GA) or minor (AA) allele was 2.79 ± 1.23 (N = 13) compared to 

2.41 ± 1.98 (N = 24) in normal (GG) samples. The average relative mRNA expression samples 

with heterozygous (GA) allele only was 2.77 ± 1.28 (N = 12) compared to 3.16 in minor (AA) 

allele. There was no significant difference in the overall average relative mRNA expression in all 

samples with heterozygous (GA) or minor allele (AA) and samples without any SNP. 

Specifically, the average relative mRNA expression in all samples with only heterozygous (GA) 

allele was 2.92 ± 1.25 (N = 16) and with only the minor (AA) allele was 3.16 (N = 1) compared 

to the samples without any SNP (2.85 ± 1.97, N = 51). 

Effect of PTPN2:rs478582 and PTPN22:rs2476601 on T-cell Response 

To evaluate the effect of PTPN2:rs478582 and/or PTPN22:rs2476601 on T-cell function, we 

treated purified T-cells from RA (N = 25) and healthy controls (N = 15) with PHA and MAP 

PPD-like and measured T-cell proliferative response (Figure 5). T-cells were isolated and 

purified from clinical samples, which tested positive for heterozygous and/or homozygous minor 

alleles for PTPN2:rs478582 and/or PTPN22:rs2476601. 

Effect of PTPN2:rs478582 on T-cell Response 

Unlike T-cells from RA subjects, there was an increase in T-cell proliferation response between 

healthy controls with heterozygous (TC) allele (2.1± 0.3-fold increase, N = 5) and those without 

SNP (TT) (1.7 ± 0.5-fold increase, N = 5) when induced with PHA (Figure 5A). On the contrary, 
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there was 2.0 ± 0.4-fold increase (N = 5) in T-cells response in RA samples with minor (CC) 

allele compared to a 1.8 ± 0.3-fold increase (N = 5) in RA normal (TT) T-cells. There was no 

difference in T-cell response in healthy controls with (N = 3) and without (N = 5) minor allele. 

The effect of heterozygous (TC) allele on T-cell proliferation response from healthy controls 

treated with MAP PPD-like (Figure 5D) resulted in a 1.9 ± 0.3-fold increase (N = 5) compared to 

only 1.4 ± 0.2-fold increase (N = 5) in normal (TT) T-cells from healthy control (p-value ≤ 0.05). 

T-cells from healthy controls with minor (CC) allele responded to MAP PPD-like with 1.6 ± 0.2-

fold increase (N = 3) compared to 1.4 ± 0.2 (N = 5) in normal T-cells from healthy controls. RA 

samples with heterozygous (TC) allele had a significantly higher T-cell proliferation response 

fold increase to MAP PPD-like (1.9 ± 0.2, N = 5) compared to healthy controls with normal (TT) 

(1.4 ± 0.2, N = 5, p-value ≤ 0.05). 

Effect of PTPN22:rs2476601 on T-cell Response 

The effect of heterozygous (GA) allele on T-cell proliferation response from healthy controls 

treated with PHA (Figure 5B) resulted in a 2.0-fold increase (N = 1) compared to only 1.7 ± 0.5-

fold increase (N = 5) in normal (GG) T-cells from healthy controls. Similarly, T-cells from RA 

subjects with heterozygous (GA) allele responded with a 2.2 ± 0.1 (N = 5) fold increase 

compared to a 1.8 ± 0.3-fold increase (N = 5) in normal (GG) T-cells from RA subjects (p-value 

≤ 0.05). There were no patient samples with just the minor (AA) allele to do T-cell proliferation. 

The effect of heterozygous (GA) allele on T-cell proliferation response from healthy controls 

treated with MAP PPD-like (Figure 5E) resulted in a 2.2 (N = 1) fold increase compared to only 

1.4 ± 0.2 (N = 5) fold increase in normal (GG) T-cells from healthy controls. T-cells from RA 

samples with heterozygous (GA) allele responded lower (2.3 ± 0.2-fold increase, N = 5) to MAP 
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PPD-like than normal T-cells (3.4 ± 1.8-fold increase, N = 5). RA samples with normal (GG) T-

cells had a significantly higher response to MAP PPD-like (3.4 ± 1.8, N = 5) compared to 

healthy controls with normal (GG) (1.4 ± 0.2, N = 5, p-value ≤ 0.05). RA samples with 

heterozygous (GA) allele had a significantly higher T-cell proliferation response to MAP PPD-

like (2.3 ± 0.2, N = 5) compared to healthy controls with normal (GG) (1.4 ± 0.2, N = 5, p-value 

≤ 0.05). 

Effect of Combined PTPN2:rs478582 and PTPN22:rs2476601 on T-cell Response 

Response of T-cells from RA samples with both SNPs treated with PHA was 2.7 ± 2.2-fold 

increase (N = 5) compared to a 1.8 ± 0.3-fold increase (N = 5) in T-cells from RA samples 

without SNP (Figure 5C). There was no difference in T-cells response against PHA in samples 

from healthy controls with (N = 1) and without combined SNPs (N = 5). T-cells from RA 

samples with both SNPs responded to MAP PPD-like with a 7.4 ± 6.7-fold increase (N = 5) 

compared to a 3.4 ± 1.8-fold increase (N = 5) in normal RA samples (Figure 5F). Similarly, T-

cells from healthy controls with combined SNPs resulted in 1.7-fold increase (N = 1) when 

treated with MAP PPD-like compared to only 1.4 ± 0.2-fold increase (N = 5) in T-cells from 

healthy control without SNPs. 

Effect of PTPN2:rs478582 and PTPN22:rs2476601 on IFN-γ Expression 

The effect of PTPN2:rs478582 and PTPN22:rs2476601 on IFN-γ expression was determined on 

35 RA and 24 healthy controls (Figure 6). The average relative mRNA expression of IFN-γ in all 

samples with PTPN2:rs478582 heterozygous (TC) or minor (CC) allele, regardless of disease, 

was 0.39 ± 0.31 (N = 38) compared to 0.28 ± 0.16 (N = 21) in normal (TT) samples. 
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Specifically, the average relative mRNA expression of IFN-γ in all samples with 

PTPN2:rs478582 minor (CC) allele was 0.48 ± 0.39 (N = 12). In RA samples, the average 

relative mRNA expression of IFN-γ in samples with PTPN2:rs478582 heterozygous (TC) or 

minor (CC) allele was 0.33 ± 0.32 (N = 22), compared to 0.22 ± 0.16 in 13 normal (TT) RA 

samples (Figure 6A). Surprisingly, the effect of the PTPN2:rs478582 minor (CC) allele on IFN-γ 

expression in RA samples was more significant (0.43 ± 0.41; N = 8). However, the average 

relative mRNA expression of IFN-γ in healthy control samples with and without 

PTPN2:rs478582 heterozygous (TC) or minor (CC) allele was similar [0.47 ± 0.28 (N = 16), 

0.39 ± 0.12 (N = 8), respectively (Figure 6A)]. As observed in RA samples, the effect of 

PTPN2:rs478582 minor (CC) allele on IFN-γ expression in healthy controls was elevated (0.58 ± 

0.39; N = 4). Correlation analyses were also performed to determine if PTPN22:rs2476601 alters 

IFN-γ expression (Figure 6B). In healthy controls, the average relative mRNA expression of 

IFN-γ in samples with the heterozygous (GA) or minor allele (AA) for PTPN22:rs2476601 was 

0.67 ± 0.28 compared to 0.40 ± 0.21 in normal (GG) samples (p-value ≤ 0.05). There was no 

significant effect for PTPN22:rs2476601 heterozygous (GA) or minor allele (AA) on IFN-γ 

expression in RA samples. 

Effect of PTPN22:rs478582 and PTPN22:rs2476601 on Susceptibility to MAP Expression 

Correlation analyses were performed to determine if PTPN2:rs479592 in RA may affected 

susceptibility to MAP infection (Figure 7A). Out of 55 RA samples with either heterozygous 

(TC) or minor (CC) allele for PTPN2:rs478582, 18/55 (32.7%) were positive for 

MAPbacteremia compared to only 2/31 (6.5%; p-value ≤ 0.05) in healthy controls. The OR value 

was 7.05 (95% CI: 1.51–32.9). Specifically, MAP presence in RA samples with only 



50 

 

heterozygous (TC) allele was 13/33 (39.3%) compared to none in 23 healthy controls samples 

(p-value ≤ 0.05). 

 

Similarly, correlation analyses were performed to determine if PTPN22:rs2476601 in RA may 

affected susceptibility to MAP infection (Figure 7B). Out of 20 RA samples with either the 

heterozygous or minor allele for PTPN22:rs2476601, 7/20 (35.0%) had MAPbacteremia 

compared to none in healthy controls. OR value of significance was 5.00 (95% CI: 0.23–106.1). 

Specifically, MAP presence in RA samples with heterozygous allele was 7/19 (36.8%) compared 

to none in healthy controls. MAP was absent in all samples with minor allele. 

 

We also investigated the PTPN2/22 expression in MAP positive samples. Overall, samples with 

MAPbacteremia had an average relative PTPN2 mRNA expression of 10.0 ± 6.31 (N = 15) 

compared to 9.00 ± 6.16 (N = 52) in MAP-free samples, regardless of disease. In RA samples 

with MAP, the average relative mRNA expression of PTPN2 was 9.53 ± 5.42 (N = 12) compared 

to 7.59 ± 5.28 (N = 25) in MAP-free samples. Only three healthy controls samples were positive 

for MAP and they had average relative mRNA expression of PTPN2 11.9 ± 10.57 compared to 

10.3 ± 6.71 (N = 27) in MAP-free samples. There was no change in PTPN22 expression in 

samples with or without MAP. 

Effect of Combined PTPN2:rs478582, PTPN22:rs2476601, and MAP on PTPN2/22 Expression 

The correlation of PTPN2/22 expression in samples with either PTPN2:rs478582 or 

PTPN22:rs2476601 that had MAP presence was examined as seen in Tables 4, 5. The overall 

relative mRNA expression of PTPN2 was lower in RA compared to healthy controls (8.22 ± 5.33 
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and 10.3 ± 6.95, respectively). The effect of PTPN2:rs478582 on PTPN2 gene expression in RA 

with heterozygous (TC) or minor (CC) allele was 8.67 ± 5.59 (N = 24) compared to 10.6 ± 7.47 

(N = 23) in healthy controls with similar SNPs and lower than healthy controls without SNPs 

(TT) (9.49 ± 5.13; N = 8). In MAP positive RA samples with PTPN2:rs478582, the average 

relative mRNA expression of PTPN2 was 9.49 ± 6.15 compared to 6.01 ± 4.70 (N = 8) in normal 

(TT) MAP-free samples. Only one healthy control sample was positive for MAP and had 

heterozygous (TC) allele had an average relative mRNA expression in PTPN2 of 24.1 compared 

to 8.36 ± 4.42 (N = 4) in healthy controls without MAP presence and without the SNP. 

 

Table 4. Effect of Combined PTPN2:rs478582 and MAP Presence on PTPN2 Expression 

DIAGNOSIS PTPN2 EXPRESSION OF SAMPLES 

WITH PTPN2:RS478582 AND MAP 

NEGATIVE 

(2(-∆CT) X 1000) 

PTPN2 EXPRESSION OF 

SAMPLES WITH 

PTPN2:RS478582 AND MAP 

POSITIVE 

(2(-∆CT) X 1000) 

TT TC CC TC + 

CC 

TT TC CC TC + 

CC 

RA 6.0 ± 

4.7 

(N=8) 

 

7.78 ± 

4.67 

(N=10) 

9.14 ± 

6.84 

(N=7) 

8.33 ± 

5.5 

(N=17) 

9.59 ± 

4.89 

(N=5) 

6.73 ± 

2.57 

(N=5) 

16.4 ± 

8.17 

(N=2) 

9.49 ± 

6.15 

(N=7) 

HEALTHY 10.7 ± 

5.44 

(N=6) 

10.3 ± 

7.0 

(N=18) 

11.9 ± 

9.73 

(N=5) 

10.6 ± 

7.47 

(N=23) 

5.86 ± 

0.75 

(N=2) 

NA 24.1 

(N=1) 

24.1 

(N=1) 

 

 

 



52 

 

Table 5. Effect of Combined PTPN22:rs2476601 and MAP Presence on PTPN22 Expression 

DIAGNOSIS  PTPN22 EXPRESSION OF SAMPLES 

WITH PTPN22:RS2476601 AND MAP 

NEGATIVE 

(2(-∆CT) X 1000) 

PTPN22 EXPRESSION OF 

SAMPLES WITH 

PTPN22:RS2476601 AND MAP 

POSITIVE  

(2(-∆CT) X 1000) 

GG GA AA GA + 

AA 

GG GA AA GA + 

AA 

RA 2.27 ± 

1.72 

(N=16) 

2.51 ± 

1.57 

(N=7) 

3.16  

(N=1) 

2.59 ± 

1.47 

(N=8) 

2.8 ± 

2.49 

(N=8) 

3.12 ± 

0.7 

(N=5) 

NA 3.12 ± 

0.7 

(N=5) 

HEALTHY 3.22 ± 

1.94 

(N=26) 

3.4 ± 

1.19 

(N=4) 

NA 3.4 ± 

1.19 

(N=4) 

2.83 ± 

1.95 

(N=3) 

NA NA NA 

 

Similarly, relative mRNA expression of PTPN22 was also lower in RA compared to healthy 

controls (2.55 ± 1.74, and 3.24 ± 1.84, respectively). The average relative mRNA expression in 

RA with heterozygous (GA) or minor allele (AA) was 2.79 ± 1.23 (N = 13) compared to 3.40 ± 

1.19 (N = 4) in healthy controls with similar SNP and normal (GG) healthy control (3.24 ± 1.91, 

N = 27). Overall, samples with MAP presence and the PTPN22:rs2476601 heterozygous (GA) 

or minor (AA) allele had an average relative mRNA expression of 3.12 ± 0.70 (N = 5) compared 

to 2.85 ± 1.89 (N = 41) in normal MAP free samples. In MAP positive RA samples with 

PTPN22:rs2476601, the average relative mRNA expression of PTPN22 was 3.12 ± 0.70 (N = 5) 

compared to normal MAP-free (2.24 ± 1.67; N = 17). None of healthy control samples has both 

MAP presence and PTPN22:rs2476601. 

 

Only 3 RA samples had PTPN2:rs478582, PTPN22:rs2476601 and were positive for MAP. 

PTPN2/22 expression and T-cell response were not significantly different from early 

observation. 
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Effect of Combined PTPN2:rs478582, PTPN22:rs2476601, and MAP on IFN-γ Expression 

Overall, there was no significant difference in IFN-γ mRNA expression in 59 samples with or 

without MAP presence. The average relative mRNA expression in IFN-γ was 0.35 ± 0.26 in 

samples with MAP present, while samples without MAP presence (N = 45) was 0.35 ± 0.28. 

Similar data was observed when gene expression was evaluated in RA and healthy control 

samples. 

 

Correlation analyses were performed to determine if MAP presence with PTPN2:rs478582 

heterozygous (TC) or minor (CC) allele changes gene expression of IFN-γ (Figure 8). Overall, 

samples with MAP presence and PTPN2:rs478582 (N = 7) had an average relative mRNA 

expression in IFN-γ of 0.43 ± 0.32, while samples without MAP presence and the SNP (N = 14) 

was 0.29 ± 0.17. In RA samples, the average relative mRNA expression in IFN-γ in samples with 

MAP presence and PTPN2:rs478582 (N = 6) was 0.39 ± 0.33 compared to 0.21 ±0.18 (N = 8) in 

RA samples without MAP presence and without the SNP. In healthy controls, the average 

relative mRNA expression in IFN-γ in samples with MAP presence and PTPN2:rs478582 (N = 

1) was 0.67 compared to 0.39 ± 0.10 in healthy controls without MAP presence and without the 

SNP (N = 6). 

 

Correlation analyses were also performed to determine if MAP presence with 

PTPN22:rs2476601 heterozygous (GA) or minor (AA) allele changes gene expression of IFN-γ. 

Overall, samples with MAP presence and PTPN22:rs2476601 (N = 5) had an average relative 

mRNA expression in IFN-γ of 0.15 ± 0.07, while samples without MAP presence and the SNP 

(N = 34) was 0.32 ± 0.22. In healthy controls, there were no samples with both MAP presence 
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and PTPN22:rs2476601 together. In RA patients, the average relative mRNA expression in IFN-

γ in samples with MAP presence and the PTPN22:rs2476601 SNP (N = 5) was 0.15 ± 0.07 

compared to 0.27 ± 0.24 in RA patients without MAP presence and without the SNP (N = 17). 

 

Only 3 RA samples had PTPN2:rs478582, PTPN22:rs2476601 and were positive for MAP. IFN-

γ expression and T-cell response were not significantly different from early observation. 

Effect of Medication to Susceptibility to MAPbacteremia  

The effect of the medications taken by RA participants, as shown in Table 1, were evaluated for 

the susceptibility of MAP. Four different medication groups were studied for MAP 

susceptibility: hydroxychloroquine (TLR repressor), methotrexate (anti-folate), prednisone 

(steroid), and anti-TNF-α medications (Humira®, Enbrel®, Simponi®, and Cimzia®). Out of 14 

RA patients on hydroxychloroquine, 6 (42.9%) were positive for MAPbacteremia, while 12 out 

of 37 (32.4%) of RA patients on methotrexate also were positive for MAPbacteremia. For RA 

patients on prednisone, 4 out of 16 (25.0%) of RA patients were positive for MAPbacteremia, 

while 6 out of 23 (26.1%) RA patients on anti-TNF-α medications (Humira®, Enbrel®, 

Simponi®, and Cimzia®) also were positive for MAPbacteremia. 

Discussion 

Extensive efforts are ongoing to investigate pathogenesis and effective treatment for 

inflammatory diseases. Current medications are expensive and the side effects are lengthy. For 

example, RA etiology remains unknown, but there are established protocols for diagnosis of and 

management of symptoms. However, the side effects of all RA medications are serious and 
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undesirable [3][8][16]. Therefore, it is imperative that the pathogenesis of RA is deciphered in 

order to develop protocols for accurate and early detection and treatment of the disease. RA 

patients suffer from elevation of pro-inflammatory cytokines such as IFN-γ and TNF-α and their 

impact on apoptosis and development of chronic inflammation [1][3][8]. Only environmental 

factors and genetic predisposition mutations have been linked to RA [2][3][22][23]. This study is 

focused on investigating the effect of SNPs on key negative regulators genes such as PTPN2/22 

expression and their impact on upregulation of pro-inflammatory cytokines, apoptosis and 

inflammation. We hypothesized that heterozygous and/or homozygous minor allele mutation(s) 

in health-keeping genes such as PTPN2/22 in RA lead to elevated IFN-γ, TNF-α, apoptosis, and 

development of inflammation. To our knowledge, this is the first study designed to elucidate the 

molecular cause of inflammation in RA in association with environmental triggers such as MAP. 

The latter has been associated with similar inflammation in CD, T1D, multiple sclerosis, and 

others [6][25][26][27][31]. This study is first to report the detection of MAP DNA in more than 

of one third of RA patients (Figure 3B). The data is significant, intriguing, and should be a 

motive to expand future investigations to include a larger pool of samples. As well-advertised, 

the incidence of M. tuberculosis infection in RA, is among the most accepted side effect of the 

treatment [1][3][16]. Therefore, detection of MAP infection in RA patients should be 

investigated further as to whether it is a complication of the treatment or a possible culprit of the 

disease. Although MAP IS900 DNA is good in detecting MAP presence in patient samples, it 

does not provide information about the MAP bacteria viability. This in turn does not show 

accurate status of either active or previous infection in the patient sample. Thus, culturing of the 

blood from RA patients is necessary to determine if an active MAP infection is present in the 

patients. 
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Genetic predisposing is key for susceptibility to disease, severity of inflammation and possible 

ability to respond to treatment. Due to the large number of published SNPs in PTPN2/22, we 

selected 9 SNPs in this study based on shared occurrence in other diseases with similar approved 

treatment protocol [1][2][3][6]. Specifically, we focused on SNPs in PTPN2/22, which increase 

susceptibility to RA and CD. The latter is well-investigated in our laboratory in association with 

MAP [6][30][31]. This study identified PTPN2:rs478582 to be significant in RA (p-values ≤ 

0.05, OR = 2.28) compared to healthy controls (Figure 4A). Similarly, PTPN22:rs2476601 was 

significant in RA (p-values ≤ 0.05, OR = 5.90) compared to healthy controls (Figure 4B). The 

data specifically linked PTPN2:rs478582 minor (CC) allele to be more significantly associated 

with RA (p-values ≤ 0.05). In short, our data suggest to clinicians that minor (CC) allele in 

PTPN2 increases the risk of acquiring RA by a fold of 2.1. Moreover, PTPN22:rs2476601 

heterozygous (GA) allele in PTPN22 was more significant in RA (p-values ≤ 0.05), indicating 

that patients with this SNP are at risk of acquiring RA by a fold of 4.3. Further examination of 

RA genotyping showed that patient samples with both PTPN2:rs478582 and PTPN22:rs2476601 

alleles (regardless of heterozygous or minor alleles) showed to be more significant (p-values ≤ 

0.05) compared to healthy controls, showing a 6.5-fold increased risk of developing RA. Some 

of the limitations of looking into SNPs in a diverse population, such as from this study, is that it 

is difficult to determine the alterations of allelic distribution between different population groups. 

Thus, it is important that further population studies that focus on examining PTPN2/22 SNPs 

from other subpopulation groups, such as race, country of origin, and age/gender in RA patients 

should be done. 
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The effect of SNPs on PTPN2/22 gene expression and function have been debated heavily in the 

literature [6][33][34][35]. This study demonstrated that RA samples with either 

PTPN2:rs478582/PTPN22:rs2476601 heterozygous or minor alleles could potentially alter the 

PTPN2/22 gene or the protein activity of PTPN2/22 in T-cells, thus could possibly void the 

negative regulatory function of PTPN2/22. The effects of PTPN2:rs478582/PTPN22:rs2476601 

in PTPN2/22 were also examined further to determine the effect on T-cell and production of 

IFN-γ. 

 

Since PTPN2/22 is found in all T-cell types, we decided not to segregate the T-cell 

subpopulations and instead look into total T-cell activity. However, further studies need to be 

done on the effects of SNPs in PTPN2/22 in different subpopulations of T-cells. Stimulation of 

T-cells from RA samples associated with PTPN2:rs478582 and induced with PHA led marked 

increase in T-cell proliferation. T-cells from RA patients associated PTPN22:rs2476601 had 

even more significant increase in T-cell proliferation (p-values ≤ 0.05). Moreover, it was 

shockingly surprising to see T-cell reactivity response treatment with MAP PPD-like. 

Specifically, T-cells, isolated from the blood of RA patients associated with 

PTPN2:rs478582/PTPN22:rs2476601 combined SNPs, proliferated by several folds more than 

those cells from health controls. Thus, T-cells from RA samples associated with SNPs in 

PTPN2/22 seem to demonstrate three characteristics: first, they are hyperactive, second they 

seem to lack a negative feedback control, and third they reacted to MAP PPD-like significantly 

indicating prior exposure to MAP antigens. Hyperactive T-cells with lack of negative feedback 

control may explain the marked increase in pro-inflammatory cytokines such as TNF-α and IFN-

γ in RA. The examination of T-cells in this study has been an exploratory study, thus it is 
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necessary to examine bigger populations of RA and health control subjects in the future. Along 

with this, further investigation on the outcome of the other immune cells, such as B-cells, NK 

cells, and macrophages, need to be examined in RA patients with SNPs in PTPN2/22 to conclude 

how the hyper-proliferative T-cells react to other immune cells. 

 

The hyperactivity to MAP PPD-like in the RA T-cells may be correlated to presence of MAP in 

RA samples and possibly activation of M. tuberculosis in some RA patients with biologic drugs 

treatments. The study provided more evidence that SNPs in PTPN2/22 may have increased 

susceptibility to MAP infection as shown in Figure 7. Specifically, PTPN2:rs478582 correlated 

with MAP infection in 32.7% (OR = 7.05) RA patients. Similarly, PTPN22:rs2476601 

correlated with MAP infection in 35.0% (OR = 5.00) RA patients (p-values ≤ 0.05). The data 

also demonstrated that presence of MAP did not alter PTPN2/22 expression. 

 

To elucidate whether medications may have any effect on the outcome of this study, we 

examined the effect of current medications taken by the RA participants on the risk of 

susceptibility to MAP infection. As shown in Table 1, out of all the DMARDs 

(hydroxychloroquine, methotrexate, prednisone, Humira®, Enbrel®, etc.) that the RA patients 

were on, hydroxychloroquine was found to increase MAP susceptibility the most in RA patients 

by a 1.3-fold change compared to RA patients not on hydroxychloroquine and had 

MAPbacteremia. These findings suggest that more investigation is needed by testing larger 

number of patients with RA. We also discovered that IFN-γ expression was lower in RA patients 

who are on DMARDs treatment compared to RA patients who are on different treatments (Table 

1). Specifically, blood samples from RA patients treated with Humira® expressed lower IFN-γ 
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(0.15 ± 0.10, N = 11) compared to blood samples from other RA patients (0.29 ± 0.27; p-values 

≤ 0.05) or even healthy controls (0.44 ± 0.24; p-values ≤ 0.05). Moreover, RA samples 

associated with PTPN2:rs478582/PTPN22:rs2476601 heterozygous or minor alleles had higher 

IFN-γ expression than RA group without (Figure 6). These finding demonstrates that SNPs in 

PTPN2/22 may led to elevated IFN-γ levels and inflammation in RA patients. However, since we 

focused only on PTPN2/22 on the control of IFN-γ expression in this study, we did not examine 

the other cytokines that control IFN-γ production. Further investigation is needed to examine the 

effects of both pro-inflammatory cytokines, such as TNF-α, and anti-inflammatory cytokines, 

such as IL-6, in subjects with SNPs in PTPN2/22. 

 

Overall, the data supports our hypothesis that SNPs in PTPN2/22 leads to loss functions of these 

genes resulting in hyper-proliferative T-cells and increase susceptibility to Mycobacteria 

including MAP. Along with genetic testing for SNPs and proper treatment, personalized 

treatment for RA is plausible. More studies are encouraged to explore the incidence and impact 

of these SNPs on health keeping genes and susceptibility to infection in RA.  
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Figures 

 

Figure 2. Effect of SNPs in PTPN2/22 on T-cell Response 
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Figure 3. Detection of Mycobacterium avium subspecies paratuberculosis (MAP) in blood 

samples from RA 

Nested PCR was performed on genomic DNA from blood samples from RA subjects (A) and 

healthy controls (B). DNA from MAP strain UCF4 was used as a positive control (+); a negative 

control (without DNA template) was also included (−). M corresponds with molecular weight 

marker. *:P-values ≤ 0.05.
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Figure 4. Genotyping of 9 SNPs in PTPN2/22 in RA  
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(A) Represents the allele frequency in PTPN2: rs1893217, rs2542151, rs7234029, rs478582. (B) Represents the allele frequency 

in PTPN22: rs2476601, rs2488457, rs33996649, rs34209542, rs2476599. (C) Represents haplotype combinations between 

PTPN2:rs478582 and PTPN22:rs2476601 including T-G (major/major), C-G (heterozygous or minor/major), T-A 

(major/heterozygous or minor), and C-A (minor/minor). *:P-values ≤ 0.05. 
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Figure 5. T-cell Response in RA Associated with PTPN2:rs478582 and PTPN22:rs2476601 

(A,B) Against Phytohematoagglutonin (PHA). (D,E) Against MAP Purified Protein Derivative-

Like (PPD-Like). PTPN2:rs478582- heterozygous allele (TC), minor allele (CC), and wild type 

(TT). PTPN22:rs2476601-heterozygous allele (GA), minor allele (AA), and wild type (GG). The 
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effect of combined SNPs in PTPN2/22 in T-cells induced with either PHA or MAP PPD-like is 

illustrated in (C,F). *: P-values ≤ 0.05. 
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Figure 6. Effect of PTPN2:rs478582/PTPN22:rs2476601 on IFN-γ Expression in RA  

(A) IFN-γ expression in RA and healthy control subjects with PTPN2:rs478582. (B) IFN-γ 

expression in RA and healthy control subjects with PTPN22:rs2476601. *: P-values ≤ 0.05. 
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Figure 7. Effect of PTPN2:rs478582 and PTPN22:rs2476601 on Susceptibility to MAP 

Infection  

(A) MAP in the blood from RA and healthy samples associated with PTPN2:rs478582 

[heterozygous allele (TC), minor allele (CC) and combined alleles (TC + CC)]. (B) MAP in the 

blood from RA and healthy samples-associated with PTPN22:rs2476601 [heterozygous allele 

(GA), minor allele (AA), and combined alleles (GA + AA)]. *: P-values ≤ 0.05. 
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Figure 8. Combined Effect of MAP and PTPN2:rs478582 on IFN-γ Expression in RA. 
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CHAPTER THREE: ROLE OF PTPN2/22 POLYMORPHISMS IN 

PATHOPHYSIOLOGY OF CROHN’S DISEASE 

Note: This chapter has been published in part and the citation link is: Sharp, R.C., Beg, S.A., and 

Naser, S.A. (2018). Role of PTPN2/22 polymorphisms in pathophysiology of Crohn’s disease. 

World J. Gastroenterol., 24: 657-670. doi: 10.3748/wjg.v24.i6.657 

Introduction 

With a majority of autoimmune diseases sharing the SNPs with each other in immune regulatory 

genes, such as PTPN2/22, it is possible that the pathogenesis of these disorders could also share 

some of the same common environmental triggers with each other as well (Figure 9) 

[1][2][3][4][5]. Recent studies have shown that MAP infections have been associated with a 

variety of different inflammatory disorders including CD [6][7][8][9][10]. Mycobacterial 

infections causes problems in these autoimmune disease patients when the patient is genetically 

predisposed, causing the immune system to become dysregulated [6][7][8][9][10]. This 

dysregulation will lead to high amounts of pro-inflammatory cytokines, production of 

autoantibodies, and high amounts of apoptosis occurring in a variety of cell types, thus leading to 

chronic inflammation [6][7][8][9][10]. 

 

In addition to sharing the same genetic predispositions and environmental triggers, many 

autoimmune diseases share the same medical treatments as well. For instance, anti-TNF-α 

therapeutics such as adalimumab and infliximab are used for RA and CD [1][2]. However, anti-

TNF-α medications along with NSAIDs, glucocorticoids, and other disease-modifying drugs 

cause several side effects [1][2][3][4][5]. These side effects include osteoporosis, hypertension, 

GI intolerance, autoantibodies against medications, and increased risk of developing 
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opportunistic infections, especially mycobacterial infections [1][2][3][4][5]. With the undesirable 

side effects of these medications, it is important that the pathophysiology of autoimmune 

diseases, such as CD, are thoroughly examined in order to develop more accurate detection of 

disease and to develop more personal treatment with little side effects. 

 

In this study, we focus on the pathogenesis of CD, where we explore the effect of both the 

genetic predisposition of SNPs in PTPN2/22 and the environmental trigger of MAP infection. 

We hypothesize that SNPs in PTPN2/22 lead to loss of negative regulation in T-cells and, with a 

MAP infection, increases production of pro-inflammatory cytokines such as IFN-γ. This leads to 

an increase inflammation and apoptosis in the intestinal tissues of CD patients. 

Materials and Methods 

Clinical Samples 

A total of 133 consented CD subjects and healthy controls donated two to three 4.0 mL K2-

EDTA coded blood tubes for us in this study. The study was approved by the University of 

Central Florida Institutional Review Board #IRB00001138. Each subject completed and signed a 

written consent form before samples were collected. Healthy control subjects completed a survey 

that question if said subjects had any medical abnormality (CD, T1D, RA or “other diseases”). 

No healthy control subjects had any type of medical conditions to the best of their knowledge. 

The severities of the CD subjects’ symptoms were scored from moderate to severe symptoms. 

The average age of CD subjects was 39.6 ± 14.3 with a gender ratio of 48.6% male and 51.4% 

female. The average age of healthy controls was 30.7 ± 13.4 with a gender ratio of 41.9% male 

and 58.1% female subjects. Table 6 lists age, gender and other demographic information for all 
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CD subjects in this study. From the blood tubes, the following procedures were done to the 

samples: PTPN2/22 genotyping, gene expression profiling, MAP IS900 nPCR detection, and T-

cell proliferation assays.
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Table 6. Demographics and Results of MAP Presence and Frequency of PTPN2:rs478582/PTPN22:rs2476601 in CD 

Subjects  

SAMPLE CODE GENDER  AGE DIAGNOSIS MAP +/- PTPN2:rs478582 PTPN22:rs2476601 

RCS1 M 50 CD - TC GA 

RCS2 F 25 CD - TC GA 

RCS3 F 68 CD + TC GG 

RCS4 M 26 CD + CC GG 

RCS5 F 56 CD + CC GG 

RCS6 NA NA CD + TC GG 

RCS7 M 60 CD + TC GG 

RCS8 M 43 CD + TC GG 

RCS9 F 54 CD - CC GG 

RCS10 F 31 CD NA TC GG 

RCS11 M 21 CD + NA GG 

RCS12 M 25 CD + CC GG 

RCS13 F 40 CD + TC GG 

RCS14 M 36 CD + TC GG 

RCS15 NA NA CD - CC GA 

RCS16 F 25 CD + TC GG 

RCS17 F 27 CD + TC GG 

RCS18 M 20 CD - TT GG 

RCS19 M 25 CD + CC GA 

RCS20 F 41 CD - TC GG 

RCS21 M 20 CD - TT GG 

RCS22 M 40 CD - TC GG 

RCS23 M 30 CD - TC GG 

RCS24 F 60 CD + TC GG 

RCS25 F 39 CD + TT GG 
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SAMPLE CODE GENDER  AGE DIAGNOSIS MAP +/- PTPN2:rs478582 PTPN22:rs2476601 

RCS26 F 30 CD + CC GA 

RCS27 F 43 CD + CC GG 

RCS28 M 30 CD + TC GA 

RCS29 M 28 CD + TC GG 

RCS30 M 66 CD + TT GG 

RCS31 M 53 CD - TT GG 

RCS32 M 28 CD - TC GA 

RCS33 F 38 CD + CC GG 

RCS34 M 44 CD - CC GA 

RCS35 M 53 CD - TC GG 

RCS36 M 24 CD + TC GG 

RCS37 F 51 CD + TC GG 

RCS38 F 46 CD + TC GG 

RCS39 M 24 CD - CC GG 

RCS40 F 63 CD + TC GG 

RCS41 F 25 CD - TC GG 

RCS42 F 66 CD - TC GG 

RCS43 F 27 CD + TC GG 

RCS44 F 25 CD + TC GG 

RCS45 F 38 CD + TC GG 

RCS46 F 26 CD - CC AA 

RCS47 M 54 CD + TT GA 

RCS48 F 31 CD + TC GG 

RCS49 M 56 CD - CC GG 

RCS50 F 53 CD - TC GG 

RCS51 F 51 CD - TT GA 

RCS52 F 23 CD + TC GG 

RCS53 M 26 CD + TC GG 

RCS54 M 38 CD - TT GG 

RCS55 F 31 CD + TC GG 

RCS56 M 61 CD + TC GG 
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SAMPLE CODE GENDER  AGE DIAGNOSIS MAP +/- PTPN2:rs478582 PTPN22:rs2476601 

RCS57 F 24 CD + TC GG 

RCS58 M 57 CD - CC GG 

RCS59 F 30 CD + TT GG 

RCS60 M 51 CD - CC GG 

RCS61 F 55 CD - CC GG 

RCS62 F 61 CD - TT GG 

RCS63 F 31 CD + TC GG 

RCS64 F 56 CD NA TC GG 

RCS65 M 25 CD + NA NA 

RCS66 F 53 CD + NA NA 

RCS67 M 30 CD - TC GG 

RCS68 F 49 CD - CC GG 

RCS69 M 28 CD + TT GG 

RCS70 M 26 CD + TT GG 

RCS71 M 26 CD + CC GG 

RCS72 M 58 CD + CC GG 

CD: Crohn’s Disease 

*: TT = Homozygous Major Allele/No SNP 

TC = Heterozygous Allele 

CC = Homozygous Minor Allele 

**: GG = Homozygous Major Allele/ No SNP 

GA = Heterozygous Allele 

AA = Homozygous Minor Allele 
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PTPN2/22 Genotyping 

TaqMan™ SNP Genotyping Assays (Applied Biosystems™) were used to genotype nine SNPs 

in PTPN2/22 from the isolated DNA from subjects’ blood samples. Samples and reagents were 

sent to the University of Florida Pharmacotherapy and Translational Research Department 

(Gainesville, FL) to perform genotyping assays. Out of the nine SNPs, four SNPs were specific 

to PTPN2 that includes rs1893217, rs2542151, rs7234029, rs478582 along with five SNPs that 

were specific to PTPN22 that includes rs2476601, rs2488457, rs33996649, rs34209542, 

rs2476599. Briefly, DNA was extracted from whole blood samples using QIAamp® DNA Blood 

Mini Kit (Qiagen™) following manufacturer’s protocol. TaqMan™ genotyping assays for 

PTPN2/22 SNPs were performed on DNA samples following manufacturer protocol (Applied 

Biosystems™). Briefly, DNA samples and the TaqMan™ SNP Genotyping Assays mixtures 

(primers with Vic and Fam fluorophore attachment) were transferred into a 384-well plate along 

with 2 × TaqMan™ Master Mix and 20 × Assay Working Stock in each well. Plates were treated 

to an RT-PCR protocol consisting of 95 °C for 10 min for 1 cycle, 92 °C for 15 s and 58 °C for 1 

min for 50 cycles. The plates were then read for VIC (551 nm) and FAM (517 nm) fluorescence, 

where VIC or FAM alone determined allele 1 or allele 2 in the samples, while VIC and FAM 

together determined heterozygous for each allele in the samples. 

PTPN2/22 and IFN-γ Gene Expression 

Gene expression of PTPN2/22 and IFN-γ was performed by converting RNA from subjects’ 

whole blood samples to cDNA and performing RT-PCR. RNA from the subjects’ blood samples 



81 

 

were isolated from peripheral leukocytes via TRIzol® Reagent (Invitrogen) per manufacturer’s 

instruction. Briefly, 1.0 mL of whole blood from subjects’ samples were transferred into a 

microcentrifuge tubes and centrifuged for 3,000 rpm for 15 min until the leukocytes formed a 

buffy coat layer, which was then transferred to new 2.0 mL RNase free microcentrifuge tubes. 

Tubes containing the leukocytes from subjects’ samples were then suspended in 1.0 mL of 

TRIzol®, where the tubes were incubated and gently rocked for 15 min at room temperature. 

Next, 0.2 mL of chloroform was then mixed in each tube and then incubated at room temperature 

for 3 min. Tubes were then centrifuged at 11,400 rpm for 15 min at 4 °C, where afterwards the 

upper aqueous phase containing RNA was transferred to new 2.0 mL RNase free microcentrifuge 

tubes. Next, 0.5 mL of 100% isopropanol was added to the tubes containing subjects’ RNA 

samples, where they were incubated at room temperature for 10 min. Tubes were then 

centrifuged at 11,400 rpm for 10 min at 4 °C, where afterwards the RNA pellets were washed in 

1 mL of 75% ethanol. Washed RNA pellets were then centrifuged for 8700 rpm for 5 min at 4 °C 

and then air-dried until fully dried. Dried RNA pellets were then suspended in 20 μL of RNase 

free H2O and boiled to 60 °C for 10 min. 

 

Conversion of RNA to cDNA was done following the iScript™ Reverse Transcription (Bio-

Rad®) manufacturer’s instruction. RNA concentration from each subjects’ samples were first 

quantified via NanoDrop ND-1000 Spectrophotometer (ThermoFisher Scientific®) and then 

diluted to 600 ng of total RNA. Next, diluted RNA samples were then added to PCR reaction 

tubes that contained 0.2 mL PCR reaction, 4 μL of iScript™ Reverse Transcription (Bio-Rad®), 

and up to 20 μL RNase free H2O. The PCR reaction tubes then underwent a PCR protocol 
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consisting of 5 min at 25 °C, 20 min at 46 °C and 1 min at 95 °C, where the final concentration 

of cDNA for each sample was 30 ng/μL. 

 

For the RT-PCR reaction, 1 μL of cDNA (30 ng) was added to a 96-well microamp plates along 

with 10 μL of Fast SYBR Green Mastermix (ThermoFisher Scientific®), 1 μL of PrimePCR 

SYBR Green Assay mix (Bio-Rad®) specific to target gene, and 8 μL of sterile H2O. For the 

positive control for the RT-PCR reactions, the 18s RNA gene was the target to determine if the 

reaction work and to obtain baseline CT readings. The oligonucleotide primers for the 18s RNA 

gene that were used for the RT-PCR reaction was the following: forward primer: 5’-GTA ACC 

CGT TGA ACC CCA TT-3’ and reverse primer: 5’-CCA TCC AAT CGG TAG TAG CG-3’. 

RT-PCR reactions were performed using the 7500 Fast Real-Time PCR System (Applied 

Biosystems®), where relative gene expression levels were calculated using ∆CT (sample gene 

CT reading-18s RNA gene CT baseline reading) and using the equation (2(-∆CT) × 1,000). 

Detection of MAP IS900 DNA 

MAP IS900 DNA was detected via nPCR from cultured peripheral leukocytes that were isolated 

from the subjects’ blood samples as described previously [11]. Briefly, subjects’ blood sample 

tubes were centrifuged for 3,000 rpm for 10 min at room temperature, where the buffy coat layer 

containing peripheral leukocytes was present and transferred to new sterile 2.0 mL 

microcentrifuge tubes. The peripheral leukocytes were then washed twice by adding double the 

volume of red cell lysis buffer (ammonium chloride solution, G-Biosciences®) to each tube and 

incubating/gently rocking for 10 min and then centrifuged at 5,000 rpm for 5 min at room 

temperature. The supernatant from each subjects’ samples were then removed and the isolated 
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peripheral leukocyte pellets were re-suspended in TE buffer. The isolated pellets were then 

cultured in BD Bactec™ MGIT™ Para-TB medium (Becton, Dickinson and Company©) tubes 

supplemented with 800 uL of Bactec™ MGIT™ Para-TB Supplement (Becton, Dickinson and 

Company©) for six months at 37 °C in a BD Bactec™MGIT™ 320 Analyzer (Becton, 

Dickinson and Company©). 

 

After six months of culturing, subjects’ cultured samples underwent DNA extraction by using a 

modified DNAzol® (ThermoFisher Scientific®) extraction protocol as follows. A 2.0 mL 

sampling of culture from each subjects’ tubes were obtained and pipetted into new sterile 2.0 mL 

microcentrifuge tubes. The tubes were then centrifuged at 13,000 rpm for 2.5 min, where 

afterwards the supernatant was discarded from the tubes and the culture pellets were saved. The 

subjects’ culture pellet tubes were then mixed with 1.0 mL DNAzol® reagent and then mixed 

with 400 μL of 100% isopropanol. The tubes were then incubated for 15 min at room 

temperature followed by centrifugation at 8,000 rpm for 6 min, where afterwards the supernatant 

was discarded, leaving a DNA pellet. DNA pellets from the subjects’ samples were then washed 

once with 500 μL DNAzol® reagent and centrifuged at 8,000 rpm for 5 min. Supernatant was 

then discarded from the tubes and the DNA pellets were then washed again with 1.0 mL of 75% 

ethanol, where they were centrifuged at 8,000 rpm for 5 min. DNA pellets were then dried after 

supernatant was removed via speedvac for 5 min. The dried DNA pellets were then dissolved in 

50 μL of TE buffer. 

 

MAP IS900 DNA was then detected in each subjects’ samples by the use of our nPCR protocol 

and nucleotide primers as described previously [11]. Subjects were considered to have MAP 
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presence when a 298 bp band on a 2% agarose gel is shown after nPCR reaction. The positive 

MAP DNA control that was used originated from our laboratory cultured clinical strain UCF4, 

which was isolated from a CD patient. The negative controls for each PCR step that was used 

contained all PCR reagents except for the DNA template used in the reactions. 

T-cell Isolation and Proliferation Assay 

T-cells were fully isolated from subjects’ whole blood samples by the use of RosetteSep™ 

Human T-cell Enrichment Cocktail (StemCell™ Technology) as per manufacture’s instruction. 

For the T-cell isolation and proliferation assays, the entire T-cell populations were examined in 

this study and were not segregated by subpopulations. Briefly, 50 μL/mL of RosetteSep™ 

Human T-cell Enrichment Cocktail was added to each subjects’ whole blood samples and was 

incubated at 20 min at room temperature. Samples were then diluted with equal volumes of PBS 

with 2% fetal bovine serum (FBS, Sigma-Aldrich®) and mixed gently. The mixtures from each 

subjects’ samples were then layered on top of a Lymphoprep™ (Axis-Shield®) density medium 

in a separated tube and centrifuged for 20 min at 2,500 rpm at room temperature. Separated T-

cells from each subjects’ samples were then found on top of the density medium layer and were 

collected into new sterile 2.0 mL microcentrifuge tubes and washed twice with PBS with 2% 

FBS. 

 

Subjects’ isolated T-cells were then plated on a 96-well plate, where T-cell proliferation assays 

were done using bromodeoxyuridine (BrdU) labeling proliferation ELISA kit (Roche Molecular 

Biochemicals®) as described previously [12]. To stimulate the subjects’ isolated T-cells, 

phytohematoagglutunin (PHA) was used as a positive control mitogen. The test mitogen used in 
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the T-cell proliferation assays was purified protein derivative-like (PPD-like) from UCF4 MAP 

bacterial cultures that were prepared by purification of supernatant from sonicated protein 

extract. Briefly, 1 × 105 isolated T-cells from each subjects’ samples were transferred in 

triplicates to 96-well plates and incubated in the following conditions: RPMI-1640 (Sigma-

Aldrich®) only, PHA (10 μg/mL, Sigma-Aldrich®) or MAP PPD-like (5 μg/mL) along with 

respected subjects’ plasma. The plates were then incubated for 72 h at 37 °C and 5% CO2 and 

then labeled with 20 μL/well of BrdU and incubated again for 24 h at 37 °C and 5% CO2. The T-

cell proliferation assay was done through the Roche BrdU proliferation ELISA kit as described 

previously [12]. Relative T-cell proliferation levels of samples were compared to the control 

group (isolated T-cells in RPMI only) by examining the fold change in the absorbance reading of 

each well at 450 nm. 

Statistical Analysis  

Samples were analyzed for significance using unpaired, two-tailed t-tests; unpaired, two-tailed z-

scores; and odds ratio. GraphPad Prism 7 was used for statistical analysis and creation of graphs. 

P-values < 0.05 were considered significant. 

Results 

PTPN2/22 SNP Allele Frequency in CD 

Allele frequency of the nine SNPs examined in PTPN2/22 found in both CD subjects and healthy 

controls are shown in Figure 10. All genotyped samples were found in Hardy-Weinberg 

equilibrium. Out of the four SNPs found in PTPN2 (rs1893217, rs2542151, rs7234029, and 

rs478582), rs478582 was significant in the CD, where heterozygous (TC) or minor (CC) alleles 
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when examined together were detected in 57/69 (82.6%) in CD compared to 36/59 (61.0%) 

healthy controls (OR = 3.03, 95% CI: 1.35-6.84, P-values < 0.05, Figure 10A). Specifically, the 

heterozygous (TC) alleles were detected in 38/69 (55.1%) CD compared to the 28/59 (47.5%) of 

healthy controls, while homozygous (CC) alleles were detected in 19/69 (27.5%) CD compared 

to 8/59 (13.6%) healthy controls. SNPs rs1893217, rs2542151, and rs7234029 were found to be 

not significant in CD compared to the healthy controls. Out of the five SNPs specific to PTPN22 

(rs2476601, rs2488457, rs33996649, rs34209542, and rs2476599), none of SNPs were 

considered significant in CD compared to the healthy controls (Figure 10B). However, since 

PTPN22:rs2476601 is found significantly in various inflammatory autoimmune diseases, we 

continued to investigate the SNP in more detail along with PTPN2:rs478582 

[6][13][14][15][16][17]. For PTPN22:rs2476601, CD with either heterozygous (GA) or minor 

(AA) alleles were detected in 11/70 (15.7%) subjects, while 4/62 (6.45%) was detected in 

healthy controls (OR = 2.7, 95% CI: 0.81-8.98, P-values > 0.05). Specifically, the heterozygous 

(GA) alleles were detected in 10/70 (14.3%) CD compared to the 4/62 (6.45%) of healthy 

controls, while homozygous (AA) alleles were rare in all samples. 

 

For confirmation that CD subjects were significant in having SNP alleles for PTPN2:rs478582 

and PTPN22:rs2476601, determination of haplotype combinations were done (Figure 10C). 

Examination of the following haplotype combinations between PTPN2:rs478582 and 

PTPN22:rs2476601 were examined: T-G, C-G, T-A, and C-A. The T-G haplotype (major/major) 

was found more significantly in the healthy controls (21/59 = 35.6%) than in CD (10/69 = 

14.5%, P-values < 0.05). The C-G haplotype (heterozygous or minor/major) and the C-A 

(heterozygous or minor/heterozygous or minor) were found more in CD (48/69 = 69.6%; 9/69 = 
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13.0%, respectively) than in healthy controls (34/59 = 57.6%; 2/59 = 3.39%, respectively). The 

C-A haplotype was found more significantly in CD than the healthy controls (P-values < 0.05). 

Relationship of PTPN2:rs478582 and PTPN22:rs2476601 on Expression on PTPN2/22 and 

IFN-γ in CD 

The average relative gene expression (2(-∆CT) × 1,000) of PTPN2, regardless of SNPs, in CD was 

significantly lower (5.27 ± 2.68, n = 38) than in healthy controls (10.5 ± 6.95, n = 30, P-values < 

0.05, Figure 11A). Similarly, the average relative gene expression of PTPN22, regardless of 

SNPs, was also significantly lower in CD (1.76 ± 1.12, n = 38) than in healthy controls (3.24 ± 

1.84, n = 30, P-values < 0.05, Figure 11B). The evaluation of the effect of PTPN2:rs478582 and 

PTPN22:rs2476601 on expression of PTPN2/22 and IFN-γ was determined. 

 

For subjects with either heterozygous (TC) or minor (CC) alleles in PTPN2:rs478582, regardless 

of disease, expression of PTPN2 did not change when compared to the normal (TT) subjects. 

However, when examining the CD and healthy control subjects in each allele group, CD overall 

had a lower average relative gene expression of PTPN2. The average relative gene expression in 

CD with heterozygous (TC) or minor (CC) alleles in PTPN2:rs478582 was significantly lower 

(5.34 ± 2.77, n = 31) compared to 10.2 ± 7.15 (n = 21) in healthy controls with similar SNPs (P-

values < 0.05). Specifically, when examining subjects with heterozygous (TC) alleles in 

PTPN2:rs478582, CD average relative gene expression was 5.22 ± 2.57 (n = 22), which was 

significantly lower than the healthy controls with heterozygous (TC) alleles (10.5 ± 7.15, n = 17, 

P-values < 0.05). When examining subjects with homozygous (CC) alleles in PTPN2:rs478582, 

CD average relative gene expression was 5.64 ± 3.37 (n = 9), which was lower than the healthy 

controls with homozygous (CC) alleles (8.89 ± 8.03, n = 4). 
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For subjects with either heterozygous (GA) or minor (AA) alleles in PTPN22:rs2476601, 

regardless of disease, expression of PTPN22 did not change when compared to the normal (GG) 

subjects. However, when examining the CD and healthy control subjects in each allele group, 

CD overall had a lower average relative gene expression of PTPN22. The average relative gene 

expression in CD with heterozygous (GA) or minor (AA) alleles in PTPN22:rs2476601 was 

significantly lower (1.58 ± 0.93, n = 6) compared to 3.40 ± 1.19 (n = 4) in healthy controls with 

similar SNPs (P-values < 0.05). Specifically, when examining subjects with heterozygous (GA) 

alleles in PTPN22:rs2476601, CD average relative gene expression was 1.48 ± 1.00 (n = 5), 

which was significantly lower than the healthy controls with heterozygous (GA) alleles (3.40 ± 

1.19, n = 4, P < 0.05). Minor (AA) alleles in PTPN22:rs2476601 was rare in all subjects. 

 

Correlation analyses were performed to determine if expression of relative gene expression of 

IFN-γ changed in subjects with PTPN2:rs478582 or PTPN22:rs2476601 (Figure 11C and 11D, 

respectively). The average relative gene expression of IFN-γ in CD subjects with the 

PTPN2:rs478582 heterozygous (TC) or minor (CC) allele was 0.41 ± 0.31 (n = 38), which was 

significantly higher compared to the CD subjects with normal (TT) alleles (0.21 ± 0.22, n = 12, P 

< 0.05). Specifically, CD subjects with the heterozygous (TC) allele had significantly higher 

(0.41 ± 0.31, n = 24, P < 0.05) IFN-γ relative gene expression than CD subjects with normal 

(TT) alleles, while CD subjects with the minor (CC) alleles had higher gene expression as well 

(0.40 ± 0.31, n = 14). There was no significant change in IFN-γ relative gene expression in the 

CD subjects with the PTPN22:rs2476601 heterozygous (GA) or minor (AA) alleles. However, in 

healthy controls, subjects with the heterozygous (GA) or minor (AA) alleles had a significantly 
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higher gene expression (0.67 ± 0.28, n = 4, P < 0.05) than healthy controls with normal (GG) 

alleles (0.40 ± 0.21, n = 20). 

Effect of PTPN2:rs478582 and PTPN22:rs2476601 on Susceptibility of MAP Infection in CD 

Overall detection of MAP IS900 DNA was found in CD and healthy control subjects and were 

correlated with PTPN2:rs478582 and PTPN22:rs2476601 (Table 7). Out of 70 CD subjects, 43 

(61.4%) were positive for MAPbacteremia compared to only 4/48 (9.33%) of healthy controls (P 

< 0.05, OR = 17.5, 95% CI: 5.65-54.3). 
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Table 7. MAP IS900 nPCR Presence and Correlation with 

PTPN2:rs478582/PTPN22:rs2476601 in Clinical Subjects 

MAP Presence 
 

Healthy CD OR (95% CI) 

Overall 4/48= 9.33% 43/70= 61.4% * 17.5 (5.65–54.3) * 

rs478582    

TT 2/17= 11.8% 6/12= 50% * 7.5 (1.17-48.2) * 

TC 0/22= 0.00% 25/37= 67.6% * 91.8 (5.14-1604.3) * 

CC 2/8= 25% 9/19= 47.4% 2.7 (0.43-16.9) 

TC + CC 2/30 = 6.67% 34/56 = 60.7% * 21.6 (4.68-100.1) * 

rs2476601 
   

GG 4/59 = 6.78% 33/59 = 55.9% * 17.6 (5.59-54.4) * 

GA 0/4 = 0.00% 3/10 = 30.0% 4.2 (0.17-101.5) 

AA 0/1 = 0.00% 0/1 = 0.00% 1.00 (0.02-92.4) 

GA + AA 0/5 = 0.00% 3/11 = 27.3% 4.53 (0.19-105.8) 

Haplotypes 
   

T-G 2/15 = 13.3% 5/10 = 50.0% * 6.5 (0.94-45.1) * 

C-G 2/29 = 6.90% 31/46 = 67.4% * 30.0 (6.3-142.6) * 

T-A 0/2 = 0.00% 1/2 = 50.0% 5.00 (0.11-220.6) 

C-A 0/2 =0.00% 3/9 = 33.3% 2.69 (0.1-73.2) 

   [*] = P-value < 0.05 

Correlation analyses with PTPN2:rs478582 and PTPN22:rs2476601 along with MAP infection 

was done on CD and healthy controls to see if these SNPs increase MAP susceptibility (Table 7). 

For CD subjects with heterozygous (TC) or minor (CC) alleles in PTPN2:rs478582, 34/56 

(60.7%) had MAPbacteremia presence compared to only 2/30 (6.67%) in healthy controls with 

similar SNPs (P < 0.05, OR = 21.6, 95% CI: 4.68-100.1). Specifically, CD subjects with 

heterozygous (TC) alleles in PTPN2:rs478582 was 25/37 (67.6%) compared to 0/22 (0.00%) in 
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healthy controls with heterozygous (TC) alleles (P < 0.05, OR = 91.8, 95% CI: 5.14-1640.3). 

The CD subjects with heterozygous (TC) or minor (CC) alleles group (34/56 = 60.7%) and CD 

subjects with heterozygous (TC) allele group (25/37 = 67.6%) in PTPN2:rs478582 had higher 

MAPbacteremia compared to CD subjects with normal (TT) alleles (6/12 = 50%). 

 

For CD subjects with heterozygous (GA) alleles in PTPN22:rs2476601, 3/10 (30.0%) had 

MAPbacteremia compared to 0/4 (0.00%) in healthy controls with heterozygous (GA) alleles 

(OR = 4.2, 95% CI: 0.17-101.5). Presence of MAPbacteremia was rare in all subjects with the 

minor (AA) allele. 

 

Correlation of haplotype combinations of PTPN2:rs478582 and PTPN22:rs2476601 alleles on 

susceptibility to MAPbacteremia was analyzed, where CD subjects with the C-G haplotype 

(heterozygous or minor/major) had 31/46 (67.4%) with MAPbacteremia presence compared to 

2/29 (6.90%) of healthy controls with the C-G haplotype (P-values < 0.05, OR = 30.0, 95%CI: 

6.3-142.6). The T-A haplotype (major/heterozygous or minor) and the C-A haplotype 

(heterozygous or minor/heterozygous or minor) was rare in all samples. However, CD subjects 

with the T-A haplotype had 1/2 (50.0%) with MAPbacteremia presence compared to the 0/2 

(0.00%) in healthy controls with the T-A haplotype, while CD subjects with the C-A haplotype 

had 3/9 (33.3%) with MAPbacteremia presence compared to the 0/2 (0.00%) in healthy controls 

with the C-A haplotype. 
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Relationship of Combined MAP Presence with PTPN2:rs478582 and PTPN22:rs2476601 on 

Expression of PTPN2/22 and IFN-γ in CD 

When examining CD and healthy control subjects with or without MAPbacteremia presence 

alone, there was no change in PTPN2/22 and IFN-γ relative gene expression when examining 

correlation data. However, PTPN2/22 was significantly lower in CD subjects than in the health 

control subjects regardless of MAPbacteremia presence or not. CD subjects who had 

MAPbacteremia presence had an average relative gene expression of 5.25 ± 2.58 (n = 21) in 

PTPN2 compared to the healthy controls with MAPbacteremia presence (11.9 ± 10.5, n =3, P < 

0.05). CD subjects who had an absence of MAPbacteremia presence had an average relative gene 

expression of 5.28 ± 2.87 (n = 17) in PTPN2 compared to the healthy controls without 

MAPbacteremia presence (10.3 ± 6.71, n = 27, P < 0.05). For PTPN22 average relative gene 

expression, CD subjects with MAPbacteremia presence had 1.73 ± 0.97 (n = 21) compared to 

healthy controls with MAPbacteremia presence (2.83 ± 1.94, n = 3). CD subjects without 

MAPbacteremia presence had an average relative gene expression of 1.81 ± 1.31 (n = 17) in 

PTPN22 compared to the healthy controls without MAPbacteremia presence (3.29 ± 1.86, n = 

27, P-values < 0.05). 

 

The effect of combined MAPbacteremia presence and either PTPN2:rs478582 or 

PTPN22:rs2476601 did not significantly change PTPN2/22 expression in all CD and healthy 

control samples. However, when examining the combined effects of MAPbacteremia presence 

and either PTPN2:rs478582 or PTPN22:rs2476601, the average relative gene expression of IFN-

γ does increase in subjects compared to subjects without MAPbacteremia presence and no SNPs. 

For CD subjects with both MAPbacteremia and heterozygous (TC) or minor (CC) alleles in 
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PTPN2:rs478582, the average relative gene expression of IFN-γ was higher (0.40 ± 0.29 n = 22) 

compared to the CD subjects without MAPbacteremia and PTPN2:rs478582 (0.23 ± 0.31, n = 5, 

Figure 12). For CD subjects with both MAPbacteremia and heterozygous (GA) or minor (CC) 

alleles in PTPN22:rs2476601, the average relative gene expression of IFN-γ was higher (0.42 ± 

0.32, n = 4) compared to the CD subjects without MAPbacteremia and PTPN22:rs2476601 (0.37 

± 0.31, n = 18). 

T-cell Proliferation Response in CD 

T-cell functionality when SNPs and MAPbacteremia was presented in subjects was determined 

in five CD and five healthy control subjects. All five CD subjects that had their T-cell response 

tested had SNPs in either PTPN2:rs478582 and/or PTPN22:rs2476601, while the five healthy 

control subjects had no observed SNPs present. Overall, when the subjects’ T-cells were treated 

with PHA, the average overall fold change in the CD subjects was 2.22 ± 1.36 (n = 5) fold 

increase compared to the healthy controls (1.67 ± 0.51 fold increase, n = 5). Similarly, when the 

same T-cells were treated with MAP PPD-like, the average overall fold change in CD subjects 

was 2.01 ± 0.79 (n = 5) compared to the healthy controls (1.39 ± 0.24 fold increase, n = 5). 

 

Out of the five CD subjects, 3/5 were tested for having MAPbacteremia presence. When 

examining T-cells treated with PHA from CD subjects tested positive for MAPbacteremia 

presence, the average overall fold change was 2.7 ± 1.65 (n = 3) compared to the CD subjects’ T-

cells that were absence of MAPbacteremia presence and treated with PHA (1.51 ± 0.51 fold 

increase, n = 2). Similarly, when the same T-cells were treated with MAP PPD-like, the average 
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overall fold change in CD subjects with MAPbacteremia was 2.5 ± 0.59 (n = 3) compared to the 

CD subjects’ T-cells without MAPbacteremia presence (1.27 ± 0.12 fold increase, n = 2). 

Discussion 

The pathogenesis of CD, as with other autoimmune diseases, involves both genetic pre-

disposition leading to higher immune responses and an environmental trigger that exacerbates 

the immune response. However, with current diagnosis and treatment, it has been difficult to 

treat CD symptoms due to loss of treatment response and many side effects [1][2][3][4][5]. Thus, 

understanding the key elements of CD pathogenesis (genetic SNPs and environmental triggers), 

it is possible to find new treatment targets for the disease and new diagnosis techniques as well. 

CD pathogenesis is very dependent on the overproduction of pro-inflammatory cytokines such as 

TNF-α and IFN-γ, which promote chronic inflammation, increased granuloma formation, and 

increased apoptosis of intestinal tissues [3][4][18][19]. Since the majority of CD medications are 

blocking pro-inflammatory cytokines such as TNF-α and IFN-γ, other types of targets has been 

ignored [1][2][3][4][5] [18][19]. This study is focused on finding new targets for both diagnosis 

and treatment of CD, where we looked into the SNPs of negative regulatory genes PTPN2/22 

and their impact on: increased production of pro-inflammatory cytokines, apoptosis, 

mycobacterial susceptibility, and inflammation. To our knowledge, this is the first study to look 

into SNPs in both PTPN2/22 together along with correlation with gene expression and MAP 

susceptibility in CD. 

 

The effect of SNPs in PTPN2/22 in CD pathogenesis has been highly debated in the literature, 

thus we selected nine SNPs that not only was found associated with CD, but with other diseases 
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as well [6][14][15][16][17][20][21][22]. Out of the nine SNPs examined in this study, 

PTPN2:rs478582 was found to be significant in CD (P-values < 0.05, OR = 3.03) compared to 

the healthy controls (Figure 10A). Although PTPN22:rs2476601 was found to not be significant 

to CD (P > 0.05, OR = 2.7) compared to the healthy controls, we continued to study the effects 

of the SNP along with PTPN2:rs478582 due to PTPN22:rs2476601 being associated with 

autoimmune diseases in general (Figure 10B) [6][13][14][15][16][17][20][21][22]. Since a 

diverse population (no restriction on race, place of origin, age, or gender) was used in this study, 

alterations of allele distribution in the SNPs could possibly happen due to SNPs overall 

fluctuating between different population groups[6][13][14][15][16][17][20][21][22]. Further 

isolated population studies on PTPN2/22 SNPs in CD subjects need to be investigated more. 

Knowledge of which SNP is more associated with CD could possibly be used as a diagnosis tool 

for clinicians when examining patients with CD like symptoms. 

 

Gene expression of PTPN2/22 correlated with the SNPs PTPN2:rs478582 and 

PTPN22:rs2476601 was also done to determine if the SNPs did change PTPN2/22 levels. 

Although overall PTPN2/22 expression was significantly decreased in CD subjects (P < 0.05, 

Figure 11A and 11B), the SNPs PTPN2:rs478582 and PTPN22:rs2476601 did not change gene 

expression between normal, heterozygous, or minor alleles. However, IFN-γ gene expression 

was found significantly higher in both CD and healthy controls (P < 0.05) along with an overall 

increased T-cell activity in subjects that had heterozygous/minor alleles in either 

PTPN2:rs478582 and/or PTPN22:rs2476601 (Figure 11C and 11D). These correlation analyzes 

shows that the SNPs PTPN2:rs478582 and PTPN22:rs2476601 may not necessarily change the 

regulation of the PTPN2/22 gene, but could possible disrupt the protein activity of PTPN2/22. 



96 

 

For the PTPN2:rs478582 SNP, a base change (T > C) in intron 3 occurs, where it is theorized 

that splicing problems could occur during the RNA splicing [23][24][25][26]. This could lead to 

loss of activity in the protein once fully translated [23][24][25][26]. The PTPN22:rs2476601 

SNP is a base change (G > A) that occurs in exon 14, which physically changes the amino acid 

arginine (R) to a tryptophan (W) on the 620 amino acid residue on the catalytic portion of the 

PTPN22 protein [17][24][25][26]. It has been highly debated what the R620W does to the 

PTPN22 protein, but it is suspected to cause the protein to be less active [17][24][25][26]. 

Overall, the SNPs PTPN2:rs478582 and PTPN22:rs2476601 seem to cause a loss of function in 

PTPN2/22, thus leading to less negative regulated T-cells. This will lead to a high production of 

pro-inflammatory cytokines, which will lead to increased inflammation/apoptosis in intestinal 

tissues in CD subjects. Other SNPs in PTPN2/22 will need to be studied further to see if those 

SNPs will alter gene expression of PTPN2/22 instead of PTPN2:rs478582 and 

PTPN22:rs2476601 just altering protein activity. Although we only examined the effect of 

PTPN2/22 on the expression of IFN-γ, other factors do control IFN-γ expression and production. 

These include cytokines, such as TNF-α and IL-12, which stimulate T-cell production of IFN-γ 

and cytokines, such as IL-6 and IL-10, which decrease T-cell production of IFN-γ [27]. 

However, since CD and other inflammatory autoimmune disorders are T-cell mediated, we 

focused only on PTPN2/22 regulation on IFN-γ expression. This is due to PTPN2/22 ultimately 

acting as negative regulators of T-cell activity and thus controlling IFN-γ production from T-

cells. Further investigation of the effect of these other regulatory IFN-γ production cytokines in 

subjects with SNPs in PTPN2/22 is needed. 
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Although the role MAP has been studied in CD pathogenesis extensively, correlation studies 

with SNPs in PTPN2/22 and MAP susceptibility have not been done before until this study 

[4][6][7][8][9][10][11][12][18]. Overall, the correlation analyzes of SNPs in PTPN2/22 and 

MAPbacteremia presence showed that the SNPs might have increased susceptibility in CD 

subjects (Table 7). Specifically, 60.7% (OR = 21.6, P < 0.05) of CD subjects with 

PTPN2:rs478582 SNP (heterozygous or minor group) had MAPbacteremia presence, while 

27.3% (OR = 4.53) subjects with the PTPN22:rs2476601 SNP (heterozygous or minor group) 

had MAPbacteremia. Limitations however in the detection of MAP IS900 DNA from the blood 

of subjects’ samples do not provided the information that the MAP bacteria is alive or dead, thus 

does not show active infection or previous infection. Further culturing of the blood from the 

subjects is necessary to determine live MAP infection in the subjects examined. The findings 

found in this study suggest that SNPs in PTPN2/22 increases susceptibility to MAPbacteremia, 

which is possible due to the lack of negative regulation in the T-cells. Since T-cells control 

macrophage activity and mycobacterial species such as MAP can survive in infected 

macrophages, it is important that the T-cells are regulated correctly in order to prevent MAP 

infection [28][29][30][31][32]. If problems involving the PTPN2/22 gene regulation or function 

the PTPN2/22 protein occurs, T-cells will be overactive and in turn will make macrophages 

overactive as well (Figure 13) [28][29][30][31][32]. This increased activity of macrophages will 

not only lead to increased pro-inflammatory cytokines like TNF-α, but could allow MAP and 

other intracellular pathogens to survive and grow faster due to the increased activation of newer 

macrophages [28][29][30][31][32].This is why SNPs in PTPN2/22 and the hyperactivity of T-

cells should increase susceptibility to intracellular pathogens such as MAP. 
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To further test if T-cells from the CD subjects with the PTPN2:rs478582 and the 

PTPN22:rs2476601 were overactive, we induced isolated T-cells from CD subjects with either 

PHA or MAP PPD-like. Although we did not isolate out total T-cell populations from mucosal 

intestinal tissues and instead from peripheral blood draws, we believe that T-cell proliferation 

will be the same regardless of the source of origin. This is possible due to PTPN2/22 being found 

in every T-cell population, regardless of the site of isolation, thus SNPs in PTPN2/22 should 

affect all T-cells in the body in the same way. Overall, CD subjects with the SNPs proliferated 

more than healthy controls without the SNPs. In addition, CD subjects who had MAPbacteremia 

presence and SNPs in PTPN2/22 proliferated more than CD subjects who did not have 

MAPbacteremia presence. These analyzes showed that for T-cells to become overactive, both 

SNPs in PTPN2/22 and the presence of MAPbacteremia is required to induce the pathogenesis 

process of CD. This is further evidence that for the pathogenesis of any autoimmune disease, 

both genetic predisposition and an environmental trigger are needed to cause disease. Further 

investigation in gene expression of pro-inflammatory cytokines produced (IFN-γ for example) by 

T-cells after being induced with antigens need to be examined. Along with this, further 

investigation of subpopulations of T-cell activity is needed to determine which T-cell population 

is more active in subjects with SNPs in PTPN2/22. 

 

Overall, SNPs in PTPN2/22 lead to overactive T-cell activity and increased susceptibility to 

intracellular pathogens such as MAP. With genetic testing for SNPs and detection/treatment for 

mycobacterial infections such as MAP, it is possible for personalized treatment of CD to be an 

option. Further studies in SNPs in PTPN2/22 and other immunity specific genes need to be 

researched and correlated with bacterial infections to improve CD diagnosis and treatment.  
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Figures 

 

Figure 9. Shared Genetic Predispositions and Environmental Triggers between Common 

Autoimmune Diseases 

For autoimmune diseases, many share the same treatments and some of the same genetic single 

nucleotide polymorphisms in specific immunity genes. Thus, it is possible that these disorders 

share the same environmental triggers as well, such as Mycobacterium avium subspecies 

paratuberculosis (MAP) bacterial infection.  
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Figure 10. Allele Frequency in Nine Single Nucleotide Polymorphisms in Crohn’s Disease and Healthy Control Subjects  
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A: Represents allele frequency of PTPN2 SNPs: rs1893217, rs2542151, rs7234029, rs478582; B: Represents allele frequency of 

PTPN22 SNPs: rs2476601, rs2488457, rs33996649, rs34209542, rs2476599; C: Represents haplotype combinations 

PTPN2:rs478582 and PTPN22:rs2476601. *: P < 0.05, healthy vs CD. T-G: Major/major; C-G: SNP/major; T-A: Major/SNP; C-

A: SNP/SNP.  
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Figure 11. Relative mRNA Expression (2(-∆CT) × 1000) of PTPN2, PTPN22 and IFN-γ 

Relative mRNA expression of PTPN2 (A) and PTPN22 (B) in CD and healthy control subjects. 

Relative mRNA expression of IFN-γ was correlated with CD and healthy control subjects with 

either PTPN2:rs478582 (C) or PTPN22:2476601 (D). *: P < 0.05. 
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Figure 12. The Effect of Both Mycobacterium avium subspecies paratuberculosis and 

PTPN2:rs478582 on IFN-γ Gene Expression in Crohn’s Disease and Healthy Control 

Subjects 
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Figure 13. Complex Interaction of Crohn’s Disease Pathophysiology 

The effect of single nucleotide polymorphisms (SNPs) in protein tyrosine phosphatase non-

receptor type 2 and 22 (PTPN2/22) and Mycobacterium avium subspecies paratuberculosis 

(MAP) in a dysregulated immune response in Crohn’s disease (CD). 

  



105 

 

References 

[1]. Cheifetz, A.S. and Feuerstein, J.D. (2017). Treatment of Inflammatory Bowel Disease with 

Biologics. Springer International Publishing. doi: https://doi.org/10.1007/978-3-319-60276-9 

[2]. Smolen, J.S., Aletaha, D., and McInnes, I.B. (2016). Rheumatoid arthritis. Lancet, 388:2023-

2038. doi: 10.1016/S0140-6736(16)30173-8 

[3]. Kuek, A., Hazleman, B.L., and Ostör, A.J. (2007). Immune-mediated inflammatory diseases 

(IMIDs) and biologic therapy: a medical revolution. Postgrad Med. J., 83:251-260. doi: 

10.1136/pgmj.2006.052688 

[4]. Qasem, A., Naser, A.E., and Naser S.A. (2017). The alternate effects of anti-TNFα 

therapeutics and their role in mycobacterial granulomatous infection in Crohn’s disease. Expert 

Rev. Anti. Infect. Ther., 15:637-643. doi: https://doi.org/10.1080/14787210.2017.1328276 

[5]. Allen, P.B., Olivera, P., Emery, P., Moulin, D., Jouzeau, J.Y., Netter, P., Danese, S., Feagan, 

B., Sandborn, W.J., Peyrin-Biroulet, L. (2017). Review article: moving towards common 

therapeutic goals in Crohn’s disease and rheumatoid arthritis. Aliment Pharmacol Ther., 

45:1058-1072. doi: 10.1111/apt.13995 

[6]. Sharp, R.C., Abdulrahim, M., Naser, E.S., and Naser, S.A. (2015). Genetic Variations of 

PTPN2 and PTPN22: Role in the Pathogenesis of Type 1 Diabetes and Crohn’s Disease. Front 

Cell Infect Microbiol., 5:95. doi: 10.3389/fcimb.2015.00095 

[7]. Naser, S.A., Thanigachalam, S., Dow, C.T., and Collins, M.T. (2013). Exploring the role of 

Mycobacterium avium subspecies paratuberculosis in the pathogenesis of type 1 diabetes 

mellitus: a pilot study. Gut Pathog., 5:14. doi: 10.1186/1757-4749-5-14 



106 

 

[8]. Naser, S.A., Collins, M.T., Crawford, J.T., and Valentine, J.F. (2010). Culture of 

Mycobacterium avium subspecies paratuberculosis (MAP) from the Blood of Patients with 

Crohn’s disease: A Follow-Up Blind Multi Center Investigation. Open Inflamm J., 3:22-23.  

[9]. Masala, S., Paccagnini, D., Cossu, D., Brezar, V., Pacifico, A., Ahmed, N., Mallone, R., and 

Sechi, L.A. (2011). Antibodies recognizing Mycobacterium avium paratuberculosis epitopes 

cross-react with the beta-cell antigen ZnT8 in Sardinian type 1 diabetic patients. PLoS One., 

6:e26931. doi: 10.1371/journal.pone.0026931 

[10]. Sechi, L.A. and Dow, C.T. (2015). Mycobacterium avium ss. paratuberculosis Zoonosis - 

The Hundred Year War - Beyond Crohn’s Disease. Front Immunol., 6:96. doi: 

10.3389/fimmu.2015.00096 

[11]. Naser, S.A., Ghobrial, G., Romero, C., and Valentine, J.F. (2004). Culture of 

Mycobacterium avium subspecies paratuberculosis from the blood of patients with Crohn’s 

disease. Lancet, 364:1039-1044. doi: 10.1016/S0140-6736(04)17058-X 

[12]. Naser, S.A., Romero, C., Elwasila, S., Ghonaim, M., Naser, N., and Valentine, J,F. (2009). 

Functional Dysregulation of PBMC and PMN in Crohn’s Disease. Open Inflamm. J., 2:24-33. 

doi: 10.2174/1875041900902010024 

[13]. Hewagama, A. and Richardson, B. (2009). The genetics and epigenetics of autoimmune 

diseases. J Autoimmun., 33:3-11. doi: 10.1016/j.jaut.2009.03.007 

[14]. Gurzov, E.N., Stanley, W.J., Brodnicki, T.C., and Thomas, H.E. (2015). Protein tyrosine 

phosphatases: molecular switches in metabolism and diabetes. Trends Endocrinol Metab., 26:30-

39. doi: 10.1016/j.tem.2014.10.004 



107 

 

[15]. Serrano, A., Márquez, A., Mackie, S.L., Carmona, F.D., Solans, R., Miranda-Filloy, J.A., 

Hernández-Rodríguez, J., Cid, M.C., Castañeda, S., and Morado, I.C. (2013). Identification of 

the PTPN22 functional variant R620W as susceptibility genetic factor for giant cell arteritis. 

Ann. Rheum. Dis., 72:1882-1886. doi: 10.1136/annrheumdis-2013-203641 

[16]. Spalinger, M.R., Lang, S., Weber, A., Frei, P., Fried, M., Rogler, G., and Scharl, M. (2013). 

Loss of protein tyrosine phosphatase nonreceptor type 22 regulates interferon-γ-induced 

signaling in human monocytes. Gastroenterology, 144:978-988.e10. doi: 

10.1053/j.gastro.2013.01.048 

[17]. Qu, H., Tessier, M.C., Hudson, T.J., and Polychronakos, C. (2005). Confirmation of the 

association of the R620W polymorphism in the protein tyrosine phosphatase PTPN22 with type 

1 diabetes in a family based study. J. Med. Genet., 42:266-270. doi: 10.1136/jmg.2004.026971 

[18]. Naser, S.A., Sagramsingh, S.R., Naser, A.S., and Thanigachalam, S. (2014). 

Mycobacterium avium subspecies paratuberculosis causes Crohn’s disease in some 

inflammatory bowel disease patients. World J. Gastroenterol., 20:7403-7415. doi: 

10.3748/wjg.v20.i23.7403 

[19]. Manuc, T.E., Manuc, M.M., and Diculescu, M.M. (2016). Recent insights into the 

molecular pathogenesis of Crohn’s disease: a review of emerging therapeutic targets. Clin. Exp. 

Gastroenterol., 9:59-70. doi: 10.2147/CEG.S53381 

[20]. Glas, J., Wagner, J., Seiderer, J., Olszak, T., Wetzke, M., Beigel, F., Tillack, C., Stallhofer, 

J., Friedrich, M., and Steib, C. (2012). PTPN2 gene variants are associated with susceptibility to 



108 

 

both Crohn’s disease and ulcerative colitis supporting a common genetic disease background. 

PLoS One., 7:e33682. doi: 10.1371/journal.pone.0033682 

[21]. Barrett, J.C., Hansoul, S., Nicolae, D.L., Cho, J.H., Duerr, R.H., Rioux, J.D., Brant, S.R., 

Silverberg, M.S., Taylor, K.D., Barmada, M.M., and et al. (2008). Genome-wide association 

defines more than 30 distinct susceptibility loci for Crohn’s disease. Nat Genet., 40:955-962. doi: 

10.1038/ng.175 

[22]. Waterman, M., Xu, W., Stempak, J.M., Milgrom, R., Bernstein, C.N., Griffiths, A.M., 

Greenberg, G.R., Steinhart, A.H., and Silverberg, M.S. (2011). Distinct and overlapping genetic 

loci in Crohn’s disease and ulcerative colitis: correlations with pathogenesis. Inflamm. Bowel 

Dis., 17:1936-1942. doi: 10.1002/ibd.21579 

[23]. Espino-Paisan, L., de la Calle, H., Fernández-Arquero, M., Figueredo, M.A., de la Concha, 

E.G., Urcelay, E., and Santiago, J.L. (2011). A polymorphism in PTPN2 gene is associated with 

an earlier onset of type 1 diabetes. Immunogenetics, 63:255-258. doi: 10.1007/s00251-010-0500-

x 

[24]. Hendriks, W.J. and Pulido, R. (2013). Protein tyrosine phosphatase variants in human 

hereditary disorders and disease susceptibilities. Biochim. Biophys. Acta., 1832:1673-1696. doi: 

10.1016/j.bbadis.2013.05.022 

[25]. Vang, T., Miletic, A.V., Bottini, N., and Mustelin, T. (2007). Protein tyrosine phosphatase 

PTPN22 in human autoimmunity. Autoimmunity, 40:453-461. doi: 10.1080/08916930701464897 



109 

 

[26]. Zikherman, J. and Weiss, A. (2011). Unraveling the functional implications of GWAS: how 

T cell protein tyrosine phosphatase drives autoimmune disease. J. Clin. Invest., 121:4618-4621. 

doi: 10.1172/JCI60001 

[27]. Schoenborn, J.R. and Wilson, C.B. (2007). Regulation of interferon-gamma during innate 

and adaptive immune responses. Adv. Immunol., 96:41-101. doi: 10.1016/S0065-2776(07)96002-

2 

[28]. Janeway Jr, C.A., Travers, P., Walport, M,, and Shlomchik, M.J. (2001). Macrophage 

activation by armed CD4 TH1 cells. Immunobiology: The Immune System in Health and 

Disease, 5th edition 

[29]. Prezzemolo, T., Guggino, G., La Manna, M.P., Di Liberto, D., Dieli, F., and Caccamo, N. 

(2014) Functional Signatures of Human CD4 and CD8 T Cell Responses to Mycobacterium 

tuberculosis. Front Immunol., 5:180. doi: 10.3389/fimmu.2014.00180 

[30]. Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., and Walter, P. (2002). Helper T 

Cells and lymphocyte activation. Molecular Biology of the Cell, 4th edition 

[31]. Bermudez, L.E., Danelishvili, L., and Early, J. (2006). Mycobacteria and macrophage 

apoptosis: complex struggle for survival. Microbe Wash. D.C., 1:372-375. 

[32]. Early, J., Fischer, K., and Bermudez, L.E. (2011). Mycobacterium avium uses apoptotic 

macrophages as tools for spreading. Microb. Pathog., 50:132-139. doi: 

10.1016/j.micpath.2010.12.004 

  



110 

 

CHAPTER FOUR: MULTIPLEX PCR AND FLUORESCENT IN SITU 

HYBRIDIZATION (FISH) COUPLED PROTOCOL FOR DETECTION OF 

PATHOGENS INVOLVED IN INFLAMMATORY BOWEL DISEASE 

PATHOGENESIS  

Introduction 

IBD, which consists of UC and CD, share a variety of different genetic factors, environmental 

triggers, and treatment plans [1-5]. Multiple recurring reports from us and others provided 

evidence that environmental triggers, including enteric pathogens, may cause IBD pathogenesis. 

Specifically, MAP, AIEC strain LF82, and K. pneumoniae have been implicated as causative 

agents in CD [5-12].  

 

For instance, MAP was first isolated as the causative agent for Johne’s disease, a CD-like 

enteritis in cattle [8,9,13,14]. MAP is an intracellular acid-fast pathogen that infects macrophages 

and dendritic cells and inhibits phagosome-lysosome fusion [15,16]. Interestingly, MAP was 

detected in the blood, milk and intestinal biopsies from patients with CD and most recently RA 

[5,6,8,9]. AIEC strain LF82 is a gram-negative bacillus pathogen that has also been isolated from 

intestinal tissue from patients with CD [10,12,17,18]. The LF82 strain of AIEC has been studied 

intensely due to its ability to infiltrate intestinal tissue and increase pro-inflammatory cytokines 

level in CD patients [10,12,17,18]. Like MAP, AIEC strain LF82 resists phagosome-lysosome 

fusion and acidification [10,12,17,18].  K. pneumoniae is a gram-negative, facultative anaerobic 

bacillus pathogen that causes pneumonia in immunocompromised patients [11,19]. Recent 

studies showed that K. pneumoniae is also associated with IBD pathogenesis [11,19]. K. 

pneumoniae colonizes the intestine of IBD patients with an imbalance in gut flora leading to 

elevated humoral immune response [11,19]. 
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Although there are numerous studies investigating these pathogens individually in association 

with IBD, none of them has envisioned or examined the co-occurrence multiple pathogens in 

clinical samples obtained from CD or UC patients nor did they have a reliable, time saving 

diagnostic tool to attempt such endeavor. This limitation in the current literature prompted our 

group to develop a protocol to evaluate clinical samples for the presence of co-infection. We 

developed a multi-color FISH protocol, using pathogen-specific nucleotide probes and confocal 

scanning laser microscopy (CSLM).  Additionally, we also developed a multiplex PCR technique 

based on a rapid modified DNAzol® extraction protocol and pathogens-based oligonucleotide 

primers. The multiplex PCR assay is coupled with the FISH protocol in order to verify results 

obtained from CSLM images. More importantly, multiplex PCR is evaluated for possible use in 

rapid testing of clinical samples for the presence of multiple pathogens in same tissue section. 

Materials and Methods 

Bacterial Cultures 

A total of ten MAP strains, five other Mycobacterium species, and four non-Mycobacterium 

species were used in this study (Table 8). Mycobacterium species including MAP were cultured 

in BD Bactec™ MGIT™ Para-TB medium (Becton, Dickinson and Company©) tubes 

supplemented with 800 uL of Bactec™ MGIT™ Para-TB Supplement (Becton, Dickinson and 

Company©) at 37°C until optimal growth was achieved. E.coli, Staphylococcus aureus and K. 

pneumoniae were cultured in Luria broth (LB broth, Fisher Scientific®) at 37°C. Listeria 

monocytogenes was cultured in brain heart infusion broth (BHI broth, Fisher Scientific®) at 

37°C.   
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Table 8. Bacteria Cultures Used in Study 

Bacteria Species Source 

MAP Strain 1 Milk 

MAP Strain 3 CD Tissue 

MAP Strain 8B CD Blood 

MAP Para 18 ATCC 19698 

MAP UCF3 CD Tissue 

MAP UCF4 CD Tissue 

MAP UCF5 CD Tissue 

MAP UCF7 CD Tissue 

MAP Linda ATCC 43015 

MAP MS137 CD Tissue 

Mycobacterium smegmatis (M. smegmatis) ATCC 27199 

Mycobacterium avium subspecies avium (M. avium) ATCC 25291 

M. avium JF7 HIV Blood 

Mycobacterium xenopi (M. xenopi) ATCC 19971 

Mycobacterium fortuitum subspecies fortuitum (M. 

fortuitum) 

ATCC 23031 

Escherichia coli (E.coli) ATCC 8739 

Staphylococcus aureus (S.aureus) ATCC 25932 

Klebsiella pneumoniae (K. pneumoniae) ATCC 13883 

Listeria monocytogenes (L. monocytogenes) ATCC 19112 



113 

 

Bacteria Species Source 

MAP: Mycobacterium avium subspecies paratuberculosis 

 

Intestinal Tissue 

Intestinal tissue from one UC (RS1) and from five CD (RS2, RS3, RS4, RS5, RS6) patients were 

used in this study. Tissue samples were stored at -80°C in Dr. Saleh A. Naser’s laboratory and 

were obtained following the University of Central Florida Institutional Review Board 

#IRB00001138 approval. 

DNA Extraction 

Preparation of Cell Pellets/Intestinal Tissue Lysate for DNA Extraction 

A volume of 1 mL of bacterial culture in 1.5 mL microcentrifuge tube was centrifuged at 13,000 

RPMs for 2.5 min at room temperature. Supernatant was discarded and bacterial cell pellet was 

re-suspended in 500 uL of tris-EDTA buffer (TE buffer). For intestinal tissue, approximately 1 g 

tissue block was placed in tissue grinder (Precision™) with 1 mL of saline solution and was 

homogenized for 15 min. The tissue homogenate was then added to a lysing matrix B tubes (MP 

Biomedicals©) and was subjected to sonication using FastPrep FP120 Cell Disrupter at 6.0 

m/sec for 30 sec in a (Thermo Savant™). The lysate was then centrifuged at 13,000 RPMs for 20 

min. The supernatant was then removed from each tube and stored at -20°C until further use.   
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DNA extractions of both bacterial cell pellets and intestinal tissue lysate were performed 

following our modified DNAzol® (ThermoFisher Scientific®) DNA extraction protocol and our 

traditional phenol/chloroform/isoamyl DNA extraction method as described previously [5,6,8].  

Modified DNAzol® DNA Extraction Protocol 

Each tube containing bacterial culture pellet or intestinal tissue lysate in 500 uL of TE was 

subjected to DNA extraction by a protocol that utilizes DNAzol® as previously described [5,6]. 

Briefly, a total of 1.0 mL of DNAzol® was added to bacterial culture pellets or intestinal tissue 

lysates suspended in 500 uL TE. After mixing, a 400 uL of 100% isopropanol was added to each 

tube and then incubated for 15 min at room temperature. Following centrifugation at 8,000 

RPMs for 6 min, the supernatant was discarded and DNA pellets were then washed with 500 uL 

of DNAzol® at 8,000 RPMs for 5 min. DNA pellets were then washed again in 1.0 mL of 75% 

ethanol at 8,000 RPMs for 5 min and then dried via a speedvac for 5 min.  Dried DNA pellets 

were then dissolved in 50 uL of TE buffer and stored at -20°C until further use. 

Phenol/Chloroform/Isoamyl DNA Extraction Protocol 

Each tube containing bacterial culture pellet or tissue lysate in 500 uL of TE was subjected to 

DNA extraction by a protocol that utilizes phenol/chloroform/isoamyl alcohol as previously 

described [8]. Briefly, tubes were incubated in a heat block for 30 min at 100°C and then placed 

on ice for 15 min. Tubes were then centrifuged at 12,000 RPMs at 4°C for 10 min. Supernatants 

were transferred into 2.0 mL Phase Lock Gel™ tubes (Fisher Scientific®) and then mixed with 

200 uL of Phenol/Chloroform/Isoamyl-Alcohol (Fisher Scientific®). Tubes were centrifuged at 

12,000 RPMs at 4°C for 5 min, where supernatants transferred into new 1.5 mL microcentrifuge 
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tubes containing 100% chilled ethanol and stored at -20°C overnight. Next day, tubes are thawed 

and centrifuged at 12,000 RPMs at 4°C for 10 min and the supernatants discarded. DNA pellets 

were washed with 80% chilled ethanol, dried in a speedvac for 15 min and re-suspended in 50 uL 

TE buffer for storage at -20°C until further use.  

Validation of DNAzol® Extraction Method by MAP IS900 nPCR 

MAP-specific nPCR based on IS900 derived oligonucleotide primers (Table 9) was used to 

evaluate the efficiency of the modified DNAzol® protocol compared to the 

phenol/chloroform/isoamyl alcohol protocol. In the first round, the PCR reaction consisted of 25 

uL master mix (2x solution containing Taq DNA polymerase, dNTPs, MgCl2 and reaction 

buffers, Promega©), 5 uL betaine (Sigma-Aldrich©), 1 ul of P90 and 1 ul of P91 oligonucleotide 

primers, 8 uL of millipore H2O, and 10 ul of DNA. The PCR cycling conditions were: 95°C for 5 

min; 35 cycles of 95°C for 60 sec, 58°C for 90 sec, and 72°C for 90 sec; and a final extension of 

72°C for 10 min. For the second round of PCR, the same reagents were used from the first round 

with 5 uL of P90/P91 product and AV1/AV2 oligonucleotide primers. The PCR cycling 

conditions were: 95°C for 5 min; 35 cycles of 95°C for 30 sec, 60°C for 30 sec, and 72°C for 60 

sec; and a final extension of 72°C for 10 min. Amplified DNA was then analyzed on a 2% 

agarose gel, and a 298 bp band was considered positive for MAP.  DNA from MAP clinical 

strain UCF4 was used a positive control. The negative control consisted of all reagents except 

DNA.  
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Table 9. Nucleotide Primers Used in IS900 nPCR, Multiplex PCR and FISH Probes 

Bacterial 

Gene Target 

 

nPCR Primers Multiplex PCR Primers FISH Probe 

 

Mycobacteriu

m avium 

subspecies 

paratuberculos

is 

(MAP) 

 

IS900 

 

P90: 5’-

GTTCGGGGCCGTCGCTTAGG

-3’ 

(BLAST E-value: 2e-04) 

 

P91: 5’-

GAGGTCGATCGCCCACGTG

A-3’ 

(BLAST E-value: 2e-04) 

 

AV1: 5’-

ATGTGGTTGCTGTGTTGGAT

GG-3’ 

(BLAST E-value: 1e-05) 

 

AV2: 5’-

CCGCCGCAATCAACTCCAG-

3’ 

(BLAST E-value: 5e-04) 

 

 

 

AV1: 5’-

ATGTGGTTGCTGTGTTGGATGG-

3’ 

(BLAST E-value: 1e-05) 

 

AV2: 5’-

CCGCCGCAATCAACTCCAG-3’ 

(BLAST E-value: 5e-04) 

 

 

 

5’-AF488 

ATGTGGTTGCTGTGTTGGAT

GG-3’ 

(BLAST E-value: 1e-05) 
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Bacterial 

Gene Target 

 

nPCR Primers Multiplex PCR Primers FISH Probe 

Mycobacteriu

m avium 

complex 

(MAC) 

 

IS1311 

 

 

 

NA 

Forward: 5’-

AAACGACCAAGGATCACTACCG

AG-3’ 

(BLAST E-value: 1e-06) 

 

Reverse: 5’-

GTCGAGGAACACATACGGGAA

GT-3’ 

(BLAST E-value: 4e-06) 

 

 

 

NA 

 

Non-

pathogenic 

E.coli 

 

18s 

 

 

 

NA 

 

Forward: 5’-

CCGCATAACGTCGCAAGACC-3’ 

(BLAST E-value: 6e-04) 

 

Reverse: 5’-

CGTAGGAGTCTGGACCGTGTC-

3’ 

(BLAST E-value: 2e-04) 

 

 

 

5’-AF647 

GGTCTTGCGACGTTATGCGG

-3’ 

(BLAST E-value: 6e-04) 

 

AIEC strain 

LF82 

 

GipA 

 

 

 

NA 

 

 

 

Forward: 5’-

GCTGTGTGCGCTTCGTCTAC-3’ 

(BLAST E-value: 4e-08) 

 

Reverse: 5’-

GATGGTAATTCTCGACTCCAGC

GA-3’ 

(BLAST E-value: 2e-07) 

 

 

 

5’-AF565 

GTAGACGAAGCGCACACAG

C-3’ 

(BLAST E-value: 4e-08) 
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Bacterial 

Gene Target 

 

nPCR Primers Multiplex PCR Primers FISH Probe 

 

K.pneumoniae 

 

23s 

 

 

NA 

 

 

 

Forward: 5’-

TGGCAGTCAGAGGCGATGAAG-

3’ 

(BLAST E-value: 1e-04) 

 

Reverse: 5’-

CTTTCCCTCACGGTACTGGTTCA

-3’ 

(BLAST E-value: 0.002) 

 

 

 

5’-AF546 

CTTCATCGCCTCTGACTGCC

A-3’ 

(BLAST E-value: 0.001) 

BLAST E-value: Basic Local Alignment Search Tool Expected Value 
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Development of Multiplex PCR 

All oligonucleotide primers were designed and then purchased from Eurofins Genomics© (Table 

9). Briefly, 10 uL of DNA containing 17 ng/uL of bacterial DNA or 50 ng/uL tissue DNA were 

added into a 200 uL-microcentrifuge tube containing 25 uL of PCR Master Mix (2x solution 

containing Taq DNA polymerase, dNTPs, MgCl2 and reaction buffers, Promega©), 5 uL of 

betaine (Sigma-Aldrich©), and 1 uL of each oligonucleotide primer (10 uM forward and 10 uM 

reverse primer for each bacterial species (MAP, MAC, non-pathogenic E. coli, AIEC strain 

LF82, and K. pneumoniae).  The PCR cycling conditions were: 95°C for 5 min; 35 cycles of 

95°C for 30 sec, 60°C for 30 sec, and 72°C for 60 sec; and a final extension of 72°C for 10 min. 

The products of the multiplex PCR were analyzed on a 3% agarose gel, where the following base 

pairs bands are considered positive for the bacterial species tested: 171 bp (non-pathogenic 

E.coli), 298 bp (MAP), 357 bp (AIEC strain LF82), 493 bp (K. pneumoniae), and 543 bp 

(MAC). For the bacterial DNA positive controls, all tested bacterial species were first separated 

into individual tubes and underwent DNA extraction/multiplex PCR. Once successful multiplex 

PCR was done on the bacterial DNA positive controls individually, all tested bacterial species 

were then added into one tube and then underwent DNA extraction/multiplex PCR. The negative 

control for the multiplex PCR step that was used had all of the necessary PCR reagents except 

for the DNA.  
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Development of Fluorescent in situ Hybridization (FISH) for Imaging for Gut Bacteria 

Preparation of Bacterial Slides for FISH 

A volume of 1 mL of bacterial culture in 1.5 mL microcentrifuge tube was centrifuged at 13,000 

RPMs for 2.5 min at room temperature. The supernatant was removed and the culture pellet was 

washed with 500 uL of TE and then centrifuged again at 13,000 RPMs for 2.5 min at room 

temperature. After centrifugation, the supernatant was removed and the culture pellet was re-

suspended in 100 uL of TE. Of which, 20 uL suspension was placed on each slide, air dried and 

then heat fixed. Slides were then incubated in 4% paraformaldehyde (PFA, Fisher Scientific®) 

overnight at 4°C on a shaker at 50 rpm. 

Preparation of Intestinal Tissue Slides for FISH 

Intestinal tissue sections were obtained using previously established protocols [20,21]. In brief,  

PFA fixed tissue specimens (1 g each) were placed in perforated cassettes and immersed in 

ascending concentrations of ethanol (70%, 90%, and 100%) on a Leica processing system (TP 

1020) for dehydration followed by clearing in (Xylene 50:Ethanol 50), and 100%  Xylene 

solutions. Next, intestinal tissue was embedded in melted paraffin (60oC) and allowed to solidify 

to 4oC. Solidified blocks were then cut using tissue microtome (HM 325 Microm; Medical 

Equipment Source) into consistent 5 um thickness serial tissue sections and placed on Colorfrost 

Plus microscope slides (Fisher Scientific®). Before histology evaluation, sections were put in 

60oC incubator for 30 minutes, and immersed into in xylene solution (Sigma-Aldrich©) for 10 

min to remove extra wax and three separate washes with 100% ethanol, 95% ethanol, and 70% 

ethanol for 10 min each to rehydrate the tissue section. The tissue slides were air-dried after 
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removal of paraffin, and incubated overnight at 4°C with 4% PFA (Fisher Scientific®) on a 

shaker.  

Bacterial FISH on Bacterial Slides and IBD Patient’s Biopsy Slides 

After fixation with 4% PFA, the slides were then washed three separate times in 1x phosphate 

buffer saline (PBS) for 10 min each on a shaker. Next, a solution comprising of 100 uL of 1% 

sodium dodecyl sulfate (SDS) with 2 uL of 20 mg/mL of Proteinase K (Thermo Scientific™) 

was added directly to the slides in hybridization chambers (Corning®). The slides in the 

hybridization chambers were then incubated at 55°C for 30 min. Inactivation of the Proteinase K 

was done by adding 200 uL of 0.2% glycine (Sigma-Aldrich©) to each slide and incubated for 3 

min on a shaker. After inactivation, the slides were then washed three separate times in 1x PBS 

for 5 min each on a shaker. The slides were washed again in the following solutions for 1 min 

each on a shaker: 50% ethanol, 80% ethanol, 100% ethanol and then xylene. Next, the slides 

were washed once again with the following solutions for 1 min each on a shaker: 100% ethanol, 

80% ethanol, and 50% ethanol. After the ethanol/xylene washes, the slides are then incubated in 

1x PBS for 60 min on a shaker. The slides were then incubated in a pre-hybridization solution 

consisting of 2x saline-sodium citrate (SSC, Sigma-Aldrich©), 20% dextran sulfate (Fisher 

Scientific®), 50% formamide (Sigma-Aldrich©), 50 mM NaH2PO4 (Sigma-Aldrich©), and 1 

mM EDTA (Fisher Scientific®) for 10 min at 50°C. After incubation in the pre-hybridization 

solution, the slides are then placed in hybridization chambers and 20 uL of hybridization solution 

(pre-hybridization solution without the 20% dextran sulfate) was added directly to the samples. 

The hybridization solution also included 3 uL of the 1 ug/uL oligonucleotide fluorescent probe 

per slide for the bacterial species being detected. Oligonucleotide probes used in this study are 
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listed in Table 9 and were purchased from Eurofins Genomics©. All FISH oligonucleotide 

probes were prepared by diluting probes to 1 ug/uL in TE buffer. After the hybridization solution 

was added to the slides in the hybridization chambers, the slides were then incubated for 60°C 

for 60 min and then 37°C overnight. After incubation overnight, the slides were then washed 

with the following solutions for 15 min each on a shaker: 2x SSC, 1x SSC, 0.3x SSC in 40°C 

water bath, and 0.3x SSC in room temperature in the dark. The slides were then washed three 

separate times with H2O for 15 min each on a shaker and then air-dried in the dark. A solution of 

DAPI/mounting medium (Vectashield®) was added to the slides and were sealed with a slide 

cover. The slides were analyzed using confocal scanning laser microscopy (CSLM). The images 

created were analyzed on ImageJ (National Institute of Health).   

Results 

Specificity and Sensitivity between DNAzol® and Phenol/Chloroform/Isoamyl-Alcohol DNA 

Extraction Protocols 

Comparison between DNAzol® and phenol/chloroform/isoamyl-alcohol DNA extraction 

techniques was done by examining the specificity and sensitivity of IS900 nested PCR (nPCR) 

on various bacterial cultures. This was done in order to evaluate the new, modified DNAzol® 

DNA extraction protocol. Specificity of the techniques wase done by comparing both DNA 

extraction protocols on a variety of different bacterial species and MAP strains after IS900 

nPCR. Based on the analysis of the 2% agarose gel and the 298 bp target sequence shown in 

Figure 1A and 1B, the IS900 nPCR is confirmed to be specific to the MAP strains and not to the 

other bacterial species. When examining the specificity of the IS900 nPCR between the two 

DNA extraction protocols, the modified DNAzol® (Figure 14A, Gel II) showed more intense 
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DNA bands than the phenol/chloroform/isoamyl-alcohol DNA protocol did after the nPCR was 

done (Figure 14B, Gel I).  

 

Sensitivity of both the IS900 nPCR and the DNA extraction techniques was done by comparing 

between the protocols on serial dilutions of MAP UCF4 culture and MAP UCF4 isolated DNA 

(Figure 14C and 14D). Based on the analysis of the 2% agarose gel and the 298 bp target 

sequence shown in Figure 14C, the IS900 nPCR shows that the technique can detect a minimum 

of 2-3 colony forming units (CFU) of MAP culture. In addition, the IS900 nPCR can detect MAP 

DNA at a minimum of up to 3.17 fg/uL-317 ag/uL (Figure 14D). When comping the IS900 

nPCR sensitivity between the two DNA extraction protocols, the modified DNAzol® protocol 

(Figure 14C, Gel II) detected lower amounts of MAP UCF4 CFU culture, while the 

phenol/chloroform/isoamyl-alcohol DNA extraction protocol (Figure 14D, Gel 1) detected lower 

amounts of pure MAP UCF4 DNA.   

Multiplex PCR on Bacterial Species and IBD Patient Biopsy Samples 

We engineered an all in one multiplex PCR protocol that facilitates the detection of multiple 

bacterial species in one single biopsy sample. For the positive controls, a tube with all of the 

tested bacteria species (E.coli, K. pneumonia, and MAP) were mixed and DNA was extracted for 

multiplex PCR. All positive controls had successful multiplex PCR reactions with either single 

set of bacterial gene primers alone or with all bacterial gene primers together in one tube (Figure 

15). Due to laboratory biosafety level restrictions, a positive control bacterial culture for AIEC 

strain LF82 could not be obtained. In lieu of this, primers for AIEC strain LF82 that did not bind 
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onto the other bacterial cultures, such as non-pathogenic E.coli, should thus theoretically only 

amplify AIEC strain LF82 DNA. Mycobacterium avium complex (MAC) primers were used to 

confirm presence of Mycobacterial species in either positive controls or IBD patient samples.  

 

After the establishment of the positive controls, two IBD biopsy tissues (RS1: UC patient and 

RS2: CD patient) were used for multiplex PCR (Table 10). As seen in Table 10 and Figure 16, 

both non-pathogenic E.coli (171 bp) and K. pneumoniae (493 bp) were detected in both RS1 and 

RS2 samples. MAP (298 bp) was only detected in RS2 and not RS1. AIEC strain LF82 (357 bp) 

was not detected in either of the samples. 
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Table 10. Multiplex PCR and FISH Results for IBD Patient Samples 

Bacterial Species Detected Patient Sample 

 RS1 RS2 

Multiplex PCR   

Non-pathogenic E.coli + + 

AIEC strain LF82 - - 

MAP - + 

K. pneumoniae + + 

MAC - - 

FISH   

Non-pathogenic E.coli + + 

AIEC strain LF82 - - 

MAP - + 

K. pneumoniae + + 

 

AIEC: Adherent-invasive Escherichia coli 

MAP: Mycobacterium avium subspecies paratuberculosis 

MAC: Mycobacterium avium complex 

FISH: Fluorescent in situ hybridization 
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FISH Procedure on Bacterial Species and IBD Patient Biopsy Samples 

A FISH protocol was created in order to visually identify multiple bacterial species in a single 

biopsy sample. Different probes were used for detecting four different bacterial species: non-

pathogenic E.coli (AF647 fluorophore, blue fluorescence), AIEC strain LF82 (AF568 

fluorophore, yellow fluorescence), MAP (AF488 fluorophore, green fluorescence), and K. 

pneumoniae (AF546 fluorophore, magenta fluorescence) (Figure 17). For positive controls, 

bacterial cultures were heat-fixed on microscope slides and were treated with their respected 

FISH probes. Since no positive control could be used for the AIEC strain LF82 bacterial 

cultures, non-pathogenic E.coli was used to determine negative binding of the probes. Gram 

stains (Figure 17, a-d) and acid-fast stains (Figure 17, e-h) were done to confirm bacteria were 

heat-fixed on microscope slide. Overall, all FISH probes were successful in binding onto their 

respective bacterial species and did not have any cross-reactivity with each other (Figure 17 i-l).  

 

For the IBD patient biopsy samples (RS1 and RS2), individual FISH probes were used along 

with DAPI (red fluorescence) to stain both the targeted bacteria and the tissue (Figure 18). As 

with the multiplex PCR, FISH for non-pathogenic E.coli and K. pneumoniae showed positive 

signaling in RS1 and RS2 tissue biopsies (Table 10, Figure 18A, a and e; Figure 5D, d and h), 

while only MAP was found in the RS2 sample (Table 10, Figure 18C, c and g). The AIEC strain 

LF82 bacterial species was not detected in either RS1 or RS2 tissue biopsies (Table 10, Figure 

18B, b and f). 
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Detection of Both Non-Pathogenic E.coli and MAP Coinfection in CD Patient Biopsy Samples 

Using FISH 

After optimization of the FISH protocol, we used two set of probes together to attempt to 

identify the presence of multiple bacterial species in individual CD patient biopsy samples (RS3, 

RS4, RS5, RS6). As seen in Figure 19, the tissues were stained with DAPI (blue fluorescence, 

Figure 19, a, e, i, m) and treated with both non-pathogenic E.coli (AF657 fluorophore, red 

fluorescence, Figure 19, b, f, j, n) and MAP (AF488 fluorophore, green fluorescence, Figure 19, 

c, g, k, o) FISH probes on four different CD patient biopsy slides. For RS3 and RS4, both non-

pathogenic E.coli and MAP bacteria were successfully found together in the patient biopsy slides 

(Figure 19A and Figure 19B). Both images (Figure 19A, d and Figure 19B, h) showed positive 

signals from both bacterial probes coincide with each other along with DAPI signaling in a 

single section of the biopsy samples. For RS5 and RS6, only one bacterial signal was detected in 

each of the biopsies. RS5 (Figure 19C, l) had only positive signaling for MAP, while RS6 

(Figure 19D, p) had only positive signaling for non-pathogenic E.coli.  

Discussion 

Recent studies have strongly supported the role of microbial infection in IBD development  

[7-12].  It is still unclear which pathogen is found more readily in either UC or CD patients, 

where recent studies are more focused on detecting one pathogen at a time [8,10,11,18,19].  In 

this study, the investigation of the presence of multiple pathogens including MAP, E. coli strains, 

and K. pneumoniae, was done to fully understand IBD pathogenesis. 

 

The development of a multiplex PCR protocol coupled with a FISH detection protocol was done, 

which together can detect multiple bacterial pathogens in a single sample. Along with this, a 
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newly modified DNA extraction protocol was used in order to process the samples faster (~1 

hour) than previously used techniques (2-3 days) [5,6,8]. Overall, combining all three protocols 

has produced a faster, more efficient way into detecting multiple bacterial species in one test 

sample. 

 

The effectiveness of the two DNA extractions techniques that were used in this study was 

established, where the modified DNAzol® technique showed similar specificity and sensitivity 

to the “traditional” phenol/chloroform/isoamyl-alcohol DNA extraction technique (Figure 14). 

The modified DNAzol® DNA extraction technique however has the advantage over the 

“traditional” DNA extraction due to the simplistic and the less time consuming protocol. This 

can lead to more samples being processed and could potentially be used in a clinical setting due 

to the cost-effectiveness of the modified protocol. 

 

The multiplex PCR was able to detect multiple bacterial DNA individually and when they were 

all mixed in one sample tube (Figure 15 and Figure 16). Overall, the data shows that all the 

bacterial culture positive controls did have positive multiplex PCR reactions with both respected 

individual bacterial DNA primers in separate tubes or with all bacterial DNA primers in one tube 

(Figure 15). This demonstrated that the multiplex PCR protocol that was created was successful 

and thus was used on IBD patient samples (Table 10 and Figure 16). The use of the FISH probes 

derived from the multiplex PCR primers confirmed the results of the both the positive controls 

and the IBD patient biopsy samples’ results (Figure 17 and Figure 18).  
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The IBD patients multiplex PCR and FISH analysis showed that both RS1 (UC patient) and RS2 

(CD patient) had both non-pathogenic E. coli and K. pneumoniae, but, RS1 was not positive for 

MAP, unlike RS2 (Table 10, Figure 16, Figure 18C). For the MAP multiplex PCR and FISH 

results for RS1 and RS2, it has been previously shown that a majority of CD patients do have a 

higher association with MAP infections than UC patients, which was confirmed again in this 

study [5,6,8,9,13,22]. Astonishing, both multiplex PCR and FISH did not detected the AIEC 

strain LF82 in the two IBD patients samples, where previous studies have shown that this 

bacteria has been associated with IBD pathogenesis (Table 10, Figure 16 and Figure 18B) 

[7,10,12,18]. This could be due to the small sample size in this study, but also could be due to the 

possibility that the gipA gene being amplified in the AIEC strain LF82 could be a low copy gene 

target [23,24]. The virulent gene gipA was chosen as the target gene for amplification in AIEC 

strain LF82 is due to its association with AIEC infection in Peyer’s patches of CD patients 

[23,24]. 

 

When comparing the multiplex PCR DNA bands and the FISH signaling of non-

pathogenic E.coli with the K.pneumoniae in both patient samples, it is evident that the influx of 

commensal E.coli does play a role in K.pneumoniae presence (Figure 16 and Figure 18A and 

18D). The data suggests that the more K.pneumoniae is present in a patient sample, the less non-

pathogenic E.coli is present. This could suggest and confirm that K.pneumoniae infections can 

occur if there is a dysfunction of the microbiome in IBD patients [11,19,25,26]. With the 

increasing influx of K.pneumoniae in the CD patient more so in the UC patient, it could be a 

potential pathogen to investigate for CD pathogenesis studies.  
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The FISH assay with the four other CD patients (RS3-RS6) that were examined in this study 

showed that it is possible to visualize multiple bacterial species in a single biopsy sample (Figure 

19). When FISH probes for both non-pathogenic E.coli and MAP were used together on the 

biopsy samples, it was evident that signaling from both bacterial species was shown. Further 

testing with different combinations of FISH probes for different bacterial species together on 

individual biopsy samples need to be done to finally elucidate which bacterial pathogen is more 

predominant in IBD pathogenesis.  

 

This study was done as a pilot study in order to verify and examine these newly developed 

protocols, and as such, more IBD patient samples are required for future examination. Overall, 

this study shows that the protocols created to detect multiple pathogens was successful and that 

the data suggest that bacterial presence is potentially different among UC and CD pathogenesis.  
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Figures 

 

Figure 14. Comparison of Specificity and Sensitivity of IS900 nPCR between DNAzol® and 

Phenol/Chloroform/Isoamyl-Alcohol DNA Extraction Protocols  

Gel images comparing between the specificity and sensitivity of the Mycobacterium avium 

subspecies paratuberculosis (MAP) IS900 nested polymerase chain reaction (nPCR) after DNA 

extraction from either phenol/chloroform/isoamyl-alcohol DNA extraction (Gel I.) or modified 

DNAzol® DNA extraction (Gel II.). Figure 1A shows specificity of the nPCR: M: DNA marker; 

N: Negative control; 1: E.coli; 2: S.aureus; 3: L. monocytogenes; 4: K. pneumoniae; 5: M. 

smegmatis; 6: M. avium; 7:  M. xenopi; 8: M. fortuitum; 9: M. avium JF7; +: MAP UCF4. Figure 

1B shows further specificity of the nPCR: M: DNA marker; N: Negative control; 1: MAP Strain 

1; 2: MAP Strain 3; 3: MAP Strain 8B; 4: MAP Para 18; 5: MAP UCF3; 6: MAP UCF5; 7: MAP 

UCF7; 8: MAP Linda; 9: MAP MS137; +: MAP UCF4. Figure 1C shows sensitivity of the 

nPCR on serial dilutions of MAP UCF4 CFU: M: DNA marker; N: Negative control; 1: 5.42 x 
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106 CFU; 2: 5.42 x 105 CFU; 3: 5.42 x 104 CFU; 4: 5.42 x 103 CFU; 5: 5.42 x 102 CFU; 6: ~50 

CFU; 7: ~5 CFU; 8 & 9: ~2-3 CFU. Figure 1D shows sensitivity of the nPCR on serial dilutions 

of MAP UCF4 DNA: M: DNA marker; N: Negative control; 1: 31.7 ng/uL; 3.17 ng/uL; 3: 317 

pg/uL; 4: 31.7 pg/uL; 5: 3.17 pg/uL; 6: 317 fg/uL; 7: 31.7 fg/uL; 8: 3.17 fg/uL; 9: 317 ag/uL; 10: 

31.7 ag/uL. 
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Figure 15. Multiplex PCR for Bacterial Positive Controls 

Multiplex polymerase chain reaction (PCR) was done on a tube of bacterial cultures mixed 

together (Escherichia coli (E.coli), Klebsiella pneumoniae (K. pneumoniae), Mycobacterium 

avium subspecies paratuberculosis (MAP)). M: DNA Marker; 1: E.coli primers only (171 bp); 2: 

MAP primers only (298 bp); 3: K. pneumoniae primers only (493 bp); 4: Mycobacterium avium 

complex (MAC) primers only (534 bp); 5: all primers together (171 bp, 298 bp, 493 bp, 534 bp). 
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Figure 16. Multiplex PCR for IBD Patient Biopsy Samples 

Multiplex polymerase chain reaction (PCR) was done on two inflammatory bowel disease (IBD) 

patients (RS1 and RS2). RS1: ulcerative colitis (UC) patient; RS2: Crohn’s disease (CD) patient; 

M: DNA Marker; 1: Escherichia coli (E.coli) primers only (171 bp); 2: Mycobacterium avium 

subspecies paratuberculosis (MAP) primers only (298 bp); 3: adherent-invasive Escherichia coli 

(AIEC) strain LF82 primers only (357 bp); 4: Klebsiella pneumoniae (K. pneumoniae) primers 

only (493 bp); 5: Mycobacterium avium complex (MAC) primers only (534 bp); 6: all primers 

together (171 bp, 298 bp, 357 bp, 493 bp, 534 bp). 
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Figure 17. Gram Stain, Acid-Fast Stain and FISH for Bacterial Cultures 

Gram stain (a-d), Acid-Fast stain (e-h), and fluorescent in situ hybridization (FISH) (i-l) images 

of the following bacterial cultures: A: Escherichia coli (E.coli) with non-pathogenic E.coli FISH 

probe; B: E.coli with adherent-invasive Escherichia coli (AIEC) strain LF82 FISH probe; C:  



136 

 

Mycobacterium avium subspecies paratuberculosis (MAP) with MAP FISH probe; D: Klebsiella 

pneumoniae (K. pneumoniae) with K. pneumoniae FISH probe.   
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Figure 18. Detection of Bacterial Species via FISH in IBD Patient Biopsy Samples 

Fluorescent in situ hybridization (FISH) images for two IBD patient biopsy samples (RS1: 

ulcerative colitis (UC) patient; RS2: Crohn’s disease (CD) patient) stained with DAPI (red 

fluorescence) and treated with FISH bacterial probes. A: Non-pathogenic Escherichia coli 

(E.coli) FISH probe (a and e); B: adherent-invasive Escherichia coli (AIEC) strain LF82 FISH 
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probe (b and f); C: Mycobacterium avium subspecies paratuberculosis (MAP) FISH probe (c 

and g); D: Klebsiella pneumoniae (K. pneumoniae) FISH probe (d and h). 
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Figure 19. Detection of Multiple Bacterial Species via FISH in CD Patient Biopsy Samples 

Fluorescent in situ hybridization (FISH) images for four CD patient biopsy samples: A: RS3, B: 

RS4, C: RS5, and D: RS6. DAPI (a, e, i, m), non-pathogenic Escherichia coli (E.coli) FISH 

probe (b, f, j, n), and Mycobacterium avium subspecies paratuberculosis (MAP) FISH probe (c, 

g, k, o) were used together on single CD patient biopsy samples. Merged images were created (d, 
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h, l, p) that overlapped the DAPI with the E.coli and MAP FISH probes signaling into a single 

image for each CD patient biopsy sample. 
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CHAPTER FIVE: CONCLUSION/FUTURE DIRECTIONS 

Knowledge of the pathophysiology of autoimmune diseases, such as RA and CD, is vital in the 

development of new diagnosis techniques and new treatment options for these diseases. In this 

study, the examination of SNPs found in the negative immunoregulatory genes PTPN2/22 and 

their effects on the immune system when introduced to a mycobacterial infection with MAP was 

done in order to investigate future targets for diagnosis/treatment for autoimmune diseases. With 

the significant SNPs (PTPN2:rs478582 and PTPN22:rs2476601) that were found more prevalent 

in the autoimmune disease patients than the healthy controls, these SNPs could potentially be 

used as biomarkers for diagnosis of these diseases. This could also be said about the significance 

of MAP infection found in the autoimmune disease patients than the healthy controls.  

 

SNPs in PTPN2/22 and MAP infection could also be used as treatment targets due to both factors 

together showing immunoregulatory problems in autoimmune disease patients. Eradication of 

MAP with antibiotics, such as RHB-104, could potentially be used in patients that are found to 

be MAP positive via the IS900 nPCR [1][2]. With the removal of the MAP infection with these 

antibiotics, there will be no environmental trigger that could potentially start the dysregulation of 

the immune response in genetically predisposed individuals, thus providing relieve of symptoms 

and possible remission in these patients. Also, with the knowledge that PTPN2/22 proteins could 

potentially be non-functional or have lower activation in patients with SNPs in the PTPN2/22 

genes, the ability to alieve the effects of these SNPs is crucial for treatment.  
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For both treatment for SNPs in PTPN2/22 and MAP infection in autoimmune disease patients, a 

new type of treatment needs to found. Potentially, the use of exogenous polyamines or 

polyamine derivatives can be used to not only help with removing MAP infection in the body, 

but could also be used to alleviate the effects of SNPs in PTPN2/22 [3][4][5][6][7][8]. 

Polyamines, which consist of mainly putrescine, spermidine, and spermine (Figure 20) are found 

in a majority of living tissues, microorganisms, and certain foods [6]. Naturally, polyamines are 

produced in a variety of cell types, where they play a role in cell growth and survival [6][7][8]. 

These polyamines have also been found to increase susceptibility to antibiotics in a variety of 

microorganisms when used at a high amount [3][4][5]. More specifically, polyamines have 

shown to enhanced susceptibility to antibiotics, such as rifampicin, to Mycobacteria species [5]. 

For polyamine studies on PTPN2/22, it is shown that these compounds enhance the effect of the 

phosphatase activity of PTPN2/22, where there is an increase in anti-inflammatory activity in 

tested cell lines [7][8].  

 

With the promise of an anti-microbial effect on mycobacterial infections and the anti-

inflammatory effect on the immune system, polyamine treatment could be a possibility for RA 

and CD patients with both SNPs in PTPN2/22 and MAP infection (Figure 21). Future studies on 

the effect of polyamines on T-cell activity and tissue apoptosis from patient samples with SNPs 

in PTPN2/22 need to be done in order to examine if polyamines can alleviate the effect of these 

SNPs. Along with this, examination of the increase of susceptibility to antibiotics like RHB-104 

to MAP when paired with polyamines need to be examined as well.  
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Figures 

 

Figure 20. Role of Polyamines in Humans 

Polyamines are found in a majority of living tissues, where they have a wide variety of effects on 

the body. These effects range from immune modulation, autophagy inducing, and cardio 

protection.  
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Figure 21. Potential Use of Polyamines in Autoimmune Disease Patients 

Future directions for the use of polyamines on patient samples with SNPs in PTPN2/22 is to 

induce T-cells and tissue cells from these patients with putrescine, spermidine, and spermine to 

see potential decrease in PTPN2/22 activity. This should lead to decrease activity of the T-cells 

and decrease apoptosis occurring in the patient samples. Also, MAP cultures will be treated with 

both RHB-104 and the polyamines together to see if there is an increase of antibiotic 

susceptibility to MAP than with RHB-104 alone.  
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