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ABSTRACT 

Amyotrophic Lateral Sclerosis (ALS) is an always lethal motor neuron disease with 

unknown pathogenesis.   Inhibitors of the molecular chaperone heat shock protein 90 

(Hsp90) have limited neuroprotection in some models of motor neuron degeneration.  

However the direct effect of Hsp90 inhibition on motor neurons is unknown.  Here we 

show that Hsp90 inhibition induced motor neuron death through activation of the P2X7 

receptor.  Motor neuron death required phosphatase and tensein homolog (PTEN)-

mediated inhibition of the PI3K/AKT pathway leading to Fas receptor activation and 

caspase dependent death.  The relevance of Hsp90 for motor neuron survival was 

investigated in mutant Cu/Zn superoxide dismutase (SOD) transgenic animal models for 

ALS. Nitrated Hsp90, a posttranslational modification known to induce cell death 

(Franco, Ye et al. 2013), was present in motor neurons after intracellular release of zinc 

deficient (Zn, D83S) and the SOD in which copper binding site was genetically ablated 

(Q) but not after copper deficient (Cu) wild type SOD.  Zn deficient and Q mutant SOD 

induced motor neuron death in a peroxynitrite mediated and copper dependent 

mechanism.  Nitrated Hsp90 was not detected in the spinal cord of transgenic animals for 

ALS-mutant SOD animal models until disease onset.  Increased nitrated Hsp90 

concentrations correlated with disease progression.  Addition of Zn or Q SOD to 

nontransgenic brain homogenate treated with peroxynitrite led to an increase level of 

nitrotyrosine in comparison to wild type controls.  However, in the same samples there 

was a 2 to 10 time increase in Hsp90 nitration as compared to nitrotyrosine.  The 

selective increase is likely due to the binding of Hsp90 to Zn deficient and Q SOD as 
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oppose to wild type SOD.  These results suggest that Hsp90 nitration facilitated by 

mutant SOD may cause motor neuron degeneration in ALS.  Targeted inhibition of 

nitrated Hsp90 may be a novel therapeutic approach for ALS.  An alternative therapeutic 

strategy is to target the production of survival factors by glial cells.  Riluzole is the only 

FDA approved drug for the treatment of ALS and it shows a small but significant 

increase in patient lifespan.  Our results show that acute riluzole treatment stimulated 

trophic factor production by astrocytes and Schwann cells.  However long-term exposure 

reversed and even inhibited the production of trophic factors, an observation that may 

explain the modest increase in patient survival in clinical trials.  Discontinuous riluzole 

treatment can maintain elevated trophic factor levels and prevent trophic factor reduction 

in spinal cords of nontransgenic animals.  These results suggest that discontinuous 

riluzole administration may improve ALS patient survival.  In summary, we 

demonstrated that Hsp90 has an essential function in the regulation of motor neuron 

survival.  We have also shown that Hsp90 was nitrated in the presence of mutant SOD 

and was present during symptom onset and increases as disease progresses, which may 

explain the toxic gain of function of mutant SOD.  Finally we demonstrate a biphasic 

effect of riluzole on trophic factor production and propose changes in administration to 

improve effects in ALS patients.  
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CHAPTER 1:  GENERAL INTRODUCTION 

Amyotrophic Lateral Sclerosis is an always-fatal neurodegenerative disease characterized 

by the loss of motor neurons in the motor cortex, brain stem and ventral spinal cord 

(Rossi, Franco et al. 2013).  It affects 2-3 in 100,000 people, with an average lifespan of 

2-5 years following diagnosis.  Approximately 10% of ALS cases are hereditary, or 

familiar, with an unknown pathological cause.  20-30% of the familiar form of ALS is 

linked to mutations in the superoxide dismutase (SOD) gene (Rosen, Siddique et al. 

1993; Wang, Sharma et al. 2008).  The identification of mutation in the gene of SOD 

allowed for the development of early transgenic mouse and rat models of ALS (Berthod 

and Gros-Louis 2012). 

The contribution of ALS-linked mutant SOD to disease onset and progression remains 

highly controversial.  Animals expressing mutant SOD in neuronal (Jaarsma, Teuling et 

al. 2008) or glial cells develop the disease phenotype (Papadeas, Kraig et al. 2011).  

Genetic deletion of SOD does not lead to disease (Reaume AG 1996) while cell-specific 

SOD knockout either delays disease onset or slows disease progression (Clement, 

Nguyen et al. 2003).  On the other hand, overexpression of wild type SOD has no effect, 

or accelerates disease progression (Bruijn, Houseweart et al. 1998; Deng, Shi et al. 2006). 

These seminal discoveries led to the hypothesis that mutant SOD contributes to ALS 

pathology by a toxic gain-of-function.  However the mechanism behind mutant SOD 

toxicity is still unknown.  
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Disease progression in a G93A mutant SOD transgenic mouse model is well described.  

Muscular denervation of fast twitch muscle is detected by postnatal day 30 (p30) 

(Vinsant, Mansfield et al. 2013; Vinsant, Mansfield et al. 2013), but the animals are still 

considered asymptomatic by p60.  At p60, SOD aggregates can be observed and there is 

some compromised motor function (Bruijn, Becher et al. 1997).  During the early 

symptomatic stage (p90) there is extensive motor neuron death and dysfunction (Gurney, 

Pu et al. 1994; Bruijn, Becher et al. 1997).  Astrocytes (Barbeito, Pehar et al. 2004) and 

microglia (Liao, Zhao et al. 2012) are activated and nitrated proteins (Casoni, Basso et al. 

2005) are observed in both motor neurons and glial cells.  By end stage (p120), massive 

motor neuron loss is observed, slow twitch muscle are denervated and the myelin sheath 

is compromised (Vinsant, Mansfield et al. 2013; Vinsant, Mansfield et al. 2013).  In vivo, 

cell-specific SOD knockout in oligodendrocytes (Kang, Li et al. 2013), astrocytes 

(Yamanaka, Chun et al. 2008), and microglia slows disease progression where as 

neuronal specific knockout delays disease onset (Boillee, Yamanaka et al. 2006).  In 

vitro, conditioned media and co-culture experiments utilizing astrocytes overexpressing 

mutant SOD is toxic to motor neurons (Nagai, Re et al. 2007; Basso, Pozzi et al. 2013; 

Re, Le Verche et al. 2014).  This suggests a switch from secretion of pro-survival trophic 

factors to toxic factors from astrocytes.  Importantly, delivery of mutant SOD to pure 

motor neurons cultured in the presence of trophic factors induces cell death in a 

peroxynitrite and copper dependent mechanism (Estévez, Crow et al. 1999; Sahawneh, 

Ricart et al. 2010).  These findings reveal that both cell autonomous and non-cell 

autonomous mechanisms contribute to the pathology. 
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Riluzole is currently the only FDA approved drug for the treatment of ALS.  Riluzole has 

been shown to slightly extend lifespan of mutant SOD transgenic mice and ALS patients.  

However, it only extends lifespan in patients for three months to one year (Bensimon, 

Lacomblez et al. 1994; Gurney, Cutting et al. 1996; Lacomblez, Bensimon et al. 1996; 

Lacomblez, Bensimon et al. 1996; Gurney, Fleck et al. 1998).  Riluzole has been shown 

to stimulate glutamate reuptake, block sodium channels and stimulate trophic factor 

production by glial cells (Doble 1997; Peluffo, Estévez et al. 1997; Meininger, 

Lacomblez et al. 2000; Cheah, Vucic et al. 2010; Bellingham 2011; Dennys, Armstrong 

et al. 2015).  The primary mechanism of action was thought to be by preventing 

glutamate toxicity, but the development of other antiglutamates had no effect on ALS 

patient survival (Miller, Moore et al. 2001).  Consequently, the primary mechanism of 

action remains unknown.  Understanding the primary therapeutic effect of riluzole in 

ALS may lead to the development of new drugs or enhanced effectiveness of current 

therapies. 

The unknown underlying cause of ALS limits the development of therapeutically 

effective treatments.  This dissertation aims to advance the field of ALS in three ways:  

1. Identify critical molecular targets in the regulation of motor neuron survival  

2. Identify toxic gain of function of mutant SOD 

3. Improve effectiveness of current therapeutic strategies and identify novel 

therapeutic targets 
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CHAPTER 2: HSP90 IS CRITICAL FOR MOTOR NEURON 

SURVIVAL 

Introduction 

Heat shock protein (Hsp90) is a ubiquitous molecular chaperone that totals approximately 

1-2% of cytosolic proteins (Didelot, Schmitt et al. 2006).  Hsp90 participates in the 

regulation of a variety of pro-survival cellular processes through interactions with more 

than 200 client proteins, including numerous transcription factors and kinases such as 

phosphatidyl inositol-3 kinase (PI3K), phosphoinositide-dependent kinase-1 (PDK1) and 

Akt (Pearl and Prodromou 2000; Richter and Buchner 2001; Picard 2002; Pratt and Toft 

2003; Whitesell and Lindquist 2005; Zhao, Davey et al. 2005; Gaestel 2006; Pearl and 

Prodromou 2006; Pratt, Morishima et al. 2008; Mollapour and Neckers 2011; Li and 

Buchner 2013). In most cells, alteration of the interaction of Hsp90 with the transcription 

factor heat shock factor 1 (HSF1) results in the expression of stress proteins such as heat 

shock protein 70 and 40 (Hsp70 and Hsp40) (Richter, Haslbeck et al. 2010; Robinson, 

Gifondorwa et al. 2010).  However, motor neurons do not have a typical stress response 

and fail to induce the expression of Hsp70 (Newbern, Taylor et al. 2005), a condition that 

is reversed by HSF1 overexpression (Batulan, Taylor et al. 2006).  These results suggest 

that motor neurons have a higher threshold for the induction of the heat shock response 

(Batulan, Shinder et al. 2003; Batulan, Taylor et al. 2006).  In contrast, in the same 
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conditions astrocytes induce and release Hsp70, which is a survival factor for motor 

neurons (Robinson, Tidwell et al. 2005; Taylor, Gifondorwa et al. 2007).  

The benzoquinone ansamycin antibiotic geldanamycin, is a specific inhibitor of Hsp90 

that binds to the unusual ATPase binding site within the N-terminus domain of the 

chaperone inhibiting its ATPase activity (Prodromou, Roe et al. 1997; Stebbins, Russo et 

al. 1997).  Inhibition of Hsp90 using geldanamycin in dissociated spinal cord cultures 

stimulates the expression of Hsp40 and Hsp70 by motor neurons and prevents mutant 

SOD-dependent motor neuron death (Batulan, Taylor et al. 2006). Hsp90 inhibition 

prevents also glutamate toxicity in a mouse hippocampal cell line (Xiao, Callaway et al. 

1999).  However, inhibition of Hsp90 also activates the heat shock response in astrocytes, 

leading to the release of Hsp70 and subsequent uptake by motor neurons, which improves 

motor neuron survival (Taylor, Gifondorwa et al. 2007). Therefore it remains to be 

determined whether the protection afforded by Hsp90 inhibitors is due to direct effects on 

motor neurons. Here, we investigated the direct effects of Hsp90 inhibition on purified 

motor neurons cultures. Pure motor neurons were 10-1000 times more susceptible to 

inhibition of Hsp90 by geldanamycin than any other cell type tested. Inhibition of Hsp90 

triggered motor neuron death by the P2X7 receptor-dependent activation of PTEN, 

leading to inhibition of the pro-survival PI3K/Akt pathway and activation of the Fas 

death pathway. 
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Materials and Methods 

Motor neuron cell culture:  Motor neurons were prepared as previously described 

(Henderson, Bloch-Gallego et al. 1995; Raoul, Henderson et al. 1999; Franco, Ye et al. 

2013).  Briefly, isolated ventral spinal cords from E15 rat embryos were trypsinized and 

the tissue disaggregated by trituration.  The cell suspension was centrifuged on top of a 

6% OptiPrep cushion (Sigma, Saint Louis, MO) and the motor neurons were removed 

from the interface.  Motor neurons were further purified by magnet-assisted cell 

separation (Miltenyi Biotec, Auburn CA) using an antibody against p75 low-affinity 

neurotrophin receptor (Chemicon-Milliport, Billerica, MA).  Motor neurons were plated 

on 96 well plates (750 cells per well), 35 mm plates (20,000 cells per plate, with the 

exception of 100,000 cells per plate for western blots for FOXO3a), 4-well plates (3,000 

cells per well), or 8-well chamber slides (30,000 cells per well) coated with poly-DL-

ornithine and laminin (Sigma). Motor neurons were maintained in neurobasal media 

supplemented with B27, heat inactivated horse serum, glutamine, glutamate, 3-

mercaptoethanol (all from Gibco/Invitrogen, Carlsbad, CA) and trophic factors (1 ng/ml 

BDNF, 0.1 ng/ml GDNF, 10 ng/ml cardiotrophin-1), and incubated in a 5% CO2 

humidified atmosphere at 37°C. 

Cortical neuron cell culture:  Cortical neurons were obtained from the cerebral cortex of 

fetal Sprague Dawley rats (E17) by a papain dissociation method as described previously 

(Gonzalez-Zulueta, Ensz et al. 1998). Cultures were plated on poly-D-lysine (Sigma-
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Aldrich)-coated cell culture dishes and maintained in minimum essential medium (MEM) 

(Invitrogen, Grand Island, NY) containing 5.5 g/L glucose, 2 mM glutamine, 100 µM 

cystine, and supplemented with 10% fetal bovine serum (FBS; Invitrogen) and 1% 

penicillin/streptomycin (Invitrogen).  Cultures plated at a low density (10,000 cells/ml) 

were maintained in MEM containing 10% horse serum (HS; Invitrogen) instead of FBS 

and 10 M BHA (Invitrogen). All experiments were initiated 24 h after plating. 

NSC34 cell culture:  NSC34 motor neuron hybrid line was maintained in DMEM 

containing 10% FBS and 1% Penicillin/Streptomycin at 37◦C during the growth stage.  

To differentiate the cells, 10% HS was substituted for FBS and 1 µM retinoic acid was 

added.  The cells were differentiated for a period of one week prior to treatments.   

Motor neuron survival:  Motor neuron survival was determined either by counting by 

hand in four well plates (Nunc) or by calcein staining (Molecular Probes, Invitrogen) for 

45 minutes in black 96-well plates (Greiner Bio-One, Monroe, NC) as previously 

described (Franco, Ye et al. 2013). Extracellular calcein was quenched with 100 mg/mL 

hemoglobin and the images were captured using the RUNNER (Trophos, Marseilles, 

France).  Cell counts were obtained using the Tina software (Trophos). Cell counts are 

represented as percent survival relative to the survival of neurons in the presence of 

neurotrophic factors alone. 
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Immunofluorescence:  Motor neurons were plated in 4-well chamber slides and fixed in 

paraformaldehyde and processed for immunofluorescence (Franco, Ye et al. 2013).  Cells 

were briefly prefixed with 4% paraformaldehyde (PFA) and 0.1% glutaraldehyde in same 

volume of original media for 2 minutes on ice.  Cells were rinsed 3 times with PBS 

containing magnesium and calcium and incubated for 20 minutes with 4% PFA and 0.1% 

glutaldehyde.  Cells were then incubated with anti-mouse in 4% goat serum for 1 hr to 

block the purification antibody and fixed with 4% PFA and 0.1% glutaldehyde for 15 

minutes.  After rinsing with PBS, cells were incubated with 50 mM glycine and 0.2% 

Triton X-100 in PBS for 30 minutes at room temperature.  Cells were then incubated with 

signal enhancer (Invitrogen) for 30 minutes room temperature.  Cells were blocked using 

4% goat serum and 0.2% Triton X-100 at room temperature for 1 hour.  Primary 

antibodies, FoxO3a (Cell Signaling) and MAP2 (Sigma) were incubated in blocking 

solution in a humidified chamber at 4C overnight and then rinsed 3 times with PBS.  

Cells were incubated with fluorescent secondary antibodies [AlexaFluor 594 donkey anti-

mouse IgG and AlexaFluor 488 donkey anti-rabbit (Invitrogen)] for 1 hour at room 

temperature protected from light.  Cells were then stained with DAPI and rinsed three 

times with PBS and once with water once before being mounted using ProLong Gold 

(Molecular Probes, Invitrogen, Eugene, OR). 

Microscopy: Immunoflourescence was imaged using Carl Zeiss Observer A1 with 

AxioVision 2010 acquisition software.  All images were taken using a Zeiss oil 

immersion, 63X/1.40 Plan Apochromat objective (#420781-9910). Image acquisition for 
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each channel (exposure, brightness, contrast and gamma) was taken at the same settings 

for each image.  Brightness was adjusted in the Zen software post-acquisition to produce 

the best image possible and was set to the same levels across experimental groups. 

Immunoblotting:  Cells were lysed using a NP-40 lysis buffer (1% NP-40, 40 mM Tris, 

pH 7.4, 0.15 M NaCl, 10% glycerol, 0.1% SDS, 0.1% deoxycholate) or RIPA buffer 

(25mM Tris-HCl (pH 7.6), 150mM NaCl, 1% NP-40, 1% sodium deoxycholate, 0.1% 

SDS) containing protease and phosphatase inhibitors.  Cells were subjected to sonication 

or freeze-thaw and then centrifuged to collect supernatant.  Lysate was separated by SDS-

PAGE before transfer to PVDF membrane.  After blocking with Odyssey Blocking 

Buffer (LI-COR Biosciences), membranes were incubated with primary antibodies 

overnight at 4C, washed, incubated with secondary antibodies for 1 h at room 

temperature, washed, and scanned. The LI-COR Biosciences Odyssey Infrared Imaging 

system was used to visualize blots.  Secondary antibodies were obtained from LI-COR 

Biosciences (IR 680 goat anti-rabbit IgG and IR 800 goat-anti-mouse IgG or 680 donkey 

anti-rabbit and 700 donkey anti goat).  Primary antibodies were the following:  Akt, pAkt 

(Ser473), pAKT (thr308), FoxO3a, pPDK1 (Ser 241) and Myc from Cell Signaling, FasL 

(N-20) from Santa Cruz, and PDK1 from BD Biosciences.  Bands were quantified using 

ImageJ software. 

Quantitative RT-PCR:  RNA was extracted and purified using the Trizol-based PureLink 

RNA kit (Invitrogen).  The cDNA was synthesized using SuperScript First-Strand 
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Synthesis (Invitrogen).  Real-time PCR was performed using the 7500 Fast Real-Time 

PCR System and SDS software (Applied Biosystems).  TaqMan Fast Universal PCR Mix 

and TaqMan fluorescent probes for Fas ligand, Fas receptor, GAPDH, and -actin were 

obtained from Applied Biosystems.   

Adenoviral vectors construction:  The p110-CAAX subunit of PI3K, A280V PDK1 and 

N-term myristolyation AKT1 were cloned separately into pAdTrack-CMV using 

restriction enzymes SalI and EcoRV (Genscript Corporation, Piscataway, NJ).  The 

adenoviral vectors were prepared and amplified as previously described (He, Zhou et al. 

1998). Briefly, the linear vectors were electroporated in chemically competent cells 

containing pAdEasy1. The resulting adenoviral vector co-expressing GFP was digested 

with Pac1 and transfected into HEK293A cells using Lipofectamine 2000 (Invitrogen).  

The infected cells were cultured until all cells were GFP positive, at which time cells 

were lifted and lysed by freeze/thaw.  The viral stock was then amplified to a titer of 

1x10
-8

. 

Motor neuron transduction:  Purified motor neurons (80 motor neurons/μl) were 

incubated with the adenoviral vectors at a multiplicity of infection of 120 for 2 hours at 

4°C in transduction media (1% heat inactivated fetal bovine serum, 20 μM glucose, 0.5 

μg/mL insulin, 10 μM putrescine, 10 μg/mL conalbumin, and 0.3 nM sodium selenite, 20 

nM progesterone).  Motor neurons were then plated at a density of 3,000 cells/well in a 4 

well plate and cultured for 72 h at 37°C, 5% CO2/air prior to experimentation.                                            
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Luciferase assay:  Motor neurons were plated for 2 hours before being transduced (MOI 

160) with a lentivirus producing luciferase under the control of the forkhead responsive 

element (Qiagen).  The following day, motor neurons were treated with 0.5 nM 

geldanamycin for 16 hours.  Cells were lysed with the Promega One-Glo luciferase kit 

and luminescence was measured on a microplate reader for 10 seconds.  

Statistical analysis: Graphing and statistical analysis was performed using Prism software 

(Graphpad).  Multiple comparisons were performed using one or two-way ANOVA, 

followed by the Bonferroni multiple comparison test or student T-test.  Survival and dose 

response data were fit to a sigmoidal curve.  Values were considered significantly 

different when p < 0.05.  All experiments were performed in triplicate.  

Results 

Motor neurons are highly sensitive to inhibition of Hsp90.  The effect of Hsp90 inhibition 

on motor neuron survival was assessed in pure motor neuron cultures incubated with 

increasing concentrations of the Hsp90 inhibitor geldanamycin and in the presence or 

absence of trophic factors. Motor neurons cultured in the presence of trophic factors with 

geldanamycin for 24 h were 10 times more sensitive to Hsp90 inhibition than the motor 

neurons that survived without trophic factors and incubated with geldanamycin for 24 h 

(Fig. 1A and B).  The sensitivity of pure motor neurons to Hsp90 inhibition was 

investigated by comparing the EC50 of geldanamycin-induced motor neuron death to that 
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of cultures of dissociated embryo ventral spinal cord and cortical neurons at low and high 

density (Fig. 1C and D), and undifferentiated and differentiated cultures of the hybrid 

motor neuron cell line NCS34 (Fig. 1E).  The EC50 of purified motor neurons cultured in 

the presence of trophic factors was between 10-10,000 times lower than the equivalent 

value for all other cell types (Table 1).  This sensitivity was not due to variations in 

overall levels of Hsp90 in motor neurons (Fig. 1F and G).  Thus, inhibition of Hsp90 

induces motor neuron death and the vulnerability of motor neurons to Hsp90 inhibition is 

enhanced by activation of trophic signaling pathways. These results suggest that motor 

neurons are more sensitive to inhibition of Hsp90 due to activation of a specific cell 

death-signaling pathway not present in other cell types or because motor neurons are 

more sensitive to the inhibition of a critical pro-survival pathway. 

Inhibition of Hsp90 activates the Fas receptor/FasL pathway.  Motor neurons cultured in 

the presence of trophic factors were an order of magnitude more sensitive to inhibition of 

Hsp90 than motor neurons deprived of trophic factors (Table 1), suggesting that 

inhibition of Hsp90 may activate the same cell death pathway induced by trophic factor 

deprivation. Trophic factor deprivation leads to the activation of the Fas pathway and 

subsequent motor neuron apoptosis (Raoul, Henderson et al. 1999; Raoul, Estévez et al. 

2002). Indeed, incubation of motor neurons with 0.5 nM geldanamycin in the presence of 

the Fas ligand (FasL) decoy Fas:FC completely prevented motor neuron death (Fig. 2A). 

However, Fas:Fc only shifted the EC50 for geldanamycin toxicity to values comparable to 

those of trophic factor deprivation (EC50: 4.8 nM, 95% CI: 3.5 nM
 
to 6.5 nM, Fig. 2B). 
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This observation reveals the existence of a Fas-independent cell death pathway triggered 

at higher concentrations of geldanamycin were Fas:FC is only partially protective. 

Transcription and translation of FasL is necessary for the activation of Fas-mediated 

apoptosis in trophic factor deprived motor neurons or motor neuron carrying amyotrophic 

lateral sclerosis (ALS)-linking mutant superoxide dismutase (SOD) in the presence of 

nitric oxide (Raoul, Henderson et al. 1999; Raoul, Estévez et al. 2002).  Inhibition of both 

transcription and translation prevented geldanamycin-induced apoptosis (Fig. 2C), 

suggesting that geldanamycin-induced motor neuron death required de novo protein 

synthesis.  Indeed, the expression of the FasL messenger RNA was stimulated 18 h after 

Hsp90 inhibition (Fig. 2D), without affecting the expression of Fas receptor (Fig. 2E).  

These results suggest that in the presence of trophic factors, Hsp90 activity is essential to 

motor neuron survival. 

In motor neurons, stimulation of the DAXX component of the Fas pathway leads to 

activation of p38-MAP kinase, expression of neuronal nitric oxide synthase (nNOS) and 

production of peroxynitrite (Raoul, Estévez et al. 2002).  To investigate the role of the 

DAXX component of the Fas pathways in the induction of apoptosis, motor neurons were 

incubated with geldanamycin and the NOS inhibitor, L-NAME.  Inhibition of NOS did 

not prevent geldanamycin-induced motor neuron death, but it did prevent cell death 

stimulated by trophic factor deprivation (Fig. 3A).  Production of 80-120 nM steady state 

concentrations of nitric oxide did not affect geldanamycin-induced motor neuron death 

(Fig. 3B).  Similarly, incubation of motor neurons with 0.5 nM geldanamycin in the 
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presence of the SOD mimetic, MnTBAP, and the superoxide and peroxynitrite scavenger, 

FeTCPP, did not prevent motor neuron death. However, MnTBAP and FeTCPP at the 

same concentrations prevented apoptosis induced by trophic factor deprivation (Fig. 3C).  

Inhibition of p38 also failed to prevent motor neuron death induced by inhibition of 

Hsp90 (Fig. 3D).  Motor neuron death downstream of Fas receptor activation may also 

occur independently of peroxynitrite production by stimulation of the FADD component 

of the Fas pathway involving the activation of caspases (Raoul, Estévez et al. 2002; 

Franco, Ye et al. 2013). Indeed, the pan caspase inhibitor z-VAD and selective inhibitors 

for caspases 3, 8, and 9 prevented geldanamycin-induced motor neuron death (Fig. 2F).  

Together, these results reveal that inhibition of Hsp90 stimulates motor neuron apoptosis 

by a Fas-dependent and peroxynitrite-independent mechanism. 

Hsp90 inhibition induces FOXO3a dependent transcription.  FasL expression in motor 

neurons is mediated by the activation of forkhead box 03 (FOXO3a) (Barthelemy, 

Henderson et al. 2004). Activation of FOXO3a is stimulated by dephosphorylation of 

ser253 (Brunet, Bonni et al. 1999; Tang, Nunez et al. 1999).  Incubation of motor neurons 

with geldanamycin reduced the phosphorylation levels of FOXO3a, with no change in 

total levels of the transcription factor (Fig 4A-C).  Consequently, FOXO3a translocated 

to the nucleus after inhibition of Hsp90 (Fig. 4D).  The activity of FOXO3a was 

measured by transducing motor neurons with a reporter construct carrying luciferase 

under the control of the forkhead responsive element (FHRE).  There was a two fold 

increase in the luciferase activity of motor neurons incubated with geldanamycin for 16 h 
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compared to untreated controls (Fig. 4E). No changes in cell number were detected after 

16 h incubation with geldanamycin (Fig. 4F), revealing that inhibition of Hsp90 activates 

FOXO3a-dependent transcription.  

Hsp90 inhibition leads to PTEN-mediated inhibition of the PI3K/Akt pathway upstream 

of Fas receptor activation.  Inhibition of the PI3K pathway leads to translocation of 

FOXO3a to the nucleus (Mojsilovic-Petrovic, Nedelsky et al. 2009).  Downstream of 

PI3K, PDK1 and Akt are Hsp90 clients (Sato, Fujita et al. 2000; Basso, Solit et al. 2002; 

Fujita, Sato et al. 2002).  To investigate whether inhibition of the PI3K pathway led to the 

induction of Fas-dependent apoptosis, motor neurons were incubated with the PI3K 

inhibitors LY294002 and wortmannin in the presence or absence of Fas:Fc and in the 

presence of trophic factors.  Fas:Fc prevented LY294002 and wortmannin-induced motor 

neuron death (Fig. 5), suggesting that in the presence of trophic factors, activation of the 

PI3K pathway prevents Fas-induced motor neuron death. Incubation of motor neurons 

with geldanamycin reduced phosphorylation of Akt at Ser 473 after 18 and 24 hours (Fig. 

6A) with a smaller but faster decrease in phosphorylation at Thr 308 (Fig. 6B) and no 

change in total Akt (Fig. 6C).  These results suggest that geldanamycin does not affect 

the formation of the complex Hsp90/Akt, which will result in a decrease in total Akt 

(Sato, Fujita et al. 2000).  In addition, inhibition of Hsp90 did not affect PDK1 

intracellular levels (Fig. 6D).  Expression of constitutively active Akt1, PDK1, and PI3K 

in motor neurons using adenoviral vectors prevented geldanamycin-induced motor 

neuron death (Fig. 7A and B). These results suggest that inhibition of Hsp90 prevents the 
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activation of the PI3K/Akt pro-survival pathway upstream of PI3K activation, ultimately 

leading to activation of the Fas/FasL pathway.   

The phosphatase and tensin homolog (PTEN) inhibits the PI3K/Akt pathway by 

dephosphorylating phosphatidyl-inositol,3,4,5 triphosphate (PIP3) to 

phosphatidylinositol-3,4-diphosphate (PIP2), thus preventing the activation of PDK1 

(Weng, Brown et al. 2001; Jiang and Liu 2008). Pharmacological inhibition or down-

regulation of PTEN prevented induction of motor neuron death by geldanamycin (Fig. 7C 

and 7D).  These results reveal that stimulation of PTEN by inhibition of Hsp90 prevents 

activation of PDK1, decreasing Akt activity and triggering motor neuron death. 

Hsp90 inhibition activates P2X7 receptor.  Hsp90 is a negative regulator of the P2X7 

ionotropic ATP-gated receptor (Adinolfi, Kim et al. 2003). Activation of P2X7 receptor 

stimulates an influx of calcium that triggers motor neuron death through the activation of 

the Fas pathway (Franco, Ye et al. 2013; Gandelman, Levy et al. 2013). Inhibition of the 

P2X7 receptor with brilliant blue G or down-regulation using siRNA prevented motor 

neuron death stimulated by Hsp90 inhibition. The intracellular calcium chelator BAPTA-

AM also prevented motor neuron death stimulated by inhibition of Hsp90 (Fig. 8). To 

determine whether Hsp90 inhibition was derepressing P2X7 receptor or stimulating the 

release of ATP, motor neurons were incubated with geldanamycin in the presence of the 

ATP-degrading enzyme apyrase.  Incubation with apyrase did not affect geldanamycin-
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induced motor neuron death (Fig. 8), suggesting that inhibition of Hsp90 activates P2X7 

receptor independently of its ligand ATP.   

Discussion 

P2X7 receptor stimulates motor neuron apoptosis by a Fas-dependent pathway (Franco, 

Ye et al. 2013; Gandelman, Levy et al. 2013).  Furthermore, phosphorylated Hsp90 is a 

negative regulator of P2X7 receptor (Adinolfi, Kim et al. 2003).  In agreement with a 

negative role on P2X7 receptor activation, motor neuron death induced by Hsp90 

inhibition was prevented by both P2X7 receptor inhibition and down regulation of its 

expression.  The Hsp90 associated to the P2X7 receptor complex seems to be very 

sensitive to inhibition by geldanamycin. Concentrations of geldanamycin in the 

picomolar range were sufficient to stimulated motor neuron death.  In contrast, activation 

of the heat shock response in motor neurons requires higher concentrations of 

geldanamycin (Batulan, Shinder et al. 2003; Robinson, Tidwell et al. 2005).  In fact 

motor neurons have an atypical heat shock response (Batulan, Shinder et al. 2003; 

Robinson, Tidwell et al. 2005).  In normal conditions, HSF1 is kept in the cytoplasm by a 

complex that includes Hsp90 and Hsp70 (Richter, Haslbeck et al. 2010; Robinson, 

Gifondorwa et al. 2010).  As a consequence of protein unfolding or inhibition of Hsp90 

the complex dissociates releasing HSF1, which migrates to the nucleus and activates the 

expression of proteins associate with the stress response (Richter, Haslbeck et al. 2010; 

Robinson, Gifondorwa et al. 2010).  Motor neurons have a high threshold for the 
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activation of the HSF1, which leads to a deficient stress response (Batulan, Shinder et al. 

2003; Batulan, Taylor et al. 2006; Robinson, Gifondorwa et al. 2010). We found that 

highly purified motor neuron cultures incubated with trophic factors are abnormally 

sensitive to Hsp90 inhibition.  The high sensitivity was not due to differential expression 

of Hsp90 respect to other cell types or tissues, but rather it seems to be characteristic of 

motor neurons.  The affinity of geldanamycin and ATP for Hsp90 depends on post-

translational modifications and the interaction with client proteins and co-chaperones 

(Fiskus, Rao et al. 2008; Rao, Fiskus et al. 2008; Mahalingam, Swords et al. 2009; 

Walton-Diaz, Khan et al. 2013).  Post-translational modifications and co-chaperons affect 

also the affinity of Hsp90 for client proteins (Pearl and Prodromou 2006; Mollapour, 

Tsutsumi et al. 2010; Li and Buchner 2013; Walton-Diaz, Khan et al. 2013).  The 

combination of post-translational modifications and protein interactions of Hsp90 in the 

P2X7 complex in motor neurons may provide the conditions that make the chaperone 

exceptionally sensitive to geldanamycin inhibition. It is also possible that the same 

conditions that conferred a high threshold for the activation of the stress response are 

responsible for the high sensitivity to Hsp90 inhibition in motor neurons.  However, there 

are clear differences on the effects of geldanamycin previously reported and our results, 

which can be explained by the different condition used to culture the motor neurons.  The 

presence of other cells like astrocytes in the culture can mask direct effects of Hsp90 

inhibition on motor neurons (Robinson, Tidwell et al. 2005; Robinson, Gifondorwa et al. 

2010).   
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Motor neurons are highly dependent on the supply of trophic factors for survival both in 

culture and in vivo (Sendtner, Arakawa et al. 1991; Oppenheim, Yin et al. 1992; 

Henderson, Camu et al. 1993). The protection provide by trophic factors is due to 

activation of the PI3K/Akt pathway.  Indeed, motor neurons are highly dependent on the 

activity of the PI3K/Akt pathway and inhibition of this pathway stimulates death by 

apoptosis (Milligan, Prevette et al. 1995; Li, Prevette et al. 1998; Dolcet, Egea et al. 

1999; Raoul, Henderson et al. 1999; Soler, Dolcet et al. 1999; Garces, Haase et al. 2000).  

PDK1 and Akt are known clients of Hsp90.  Hsp90 has the double function of preventing 

the degradation of the activated kinase, and through the binding of co-chaperones 

participates in directing the kinases to their targets (Basso, Solit et al. 2002; Fujita, Sato 

et al. 2002).  Inhibition of Hsp90 in motor neurons down-regulated the PI3K/Akt 

pathway as determined by decreased Akt phosphorylation (Fig 6).  Consistent with this 

interpretation, overexpression of constitutive active PDK1 and Akt prevented motor 

neuron death induced by inhibition of Hsp90.  However, overexpression of the p110 

constitutive active catalytic subunit of the PI3K also prevented motor neuron apoptosis 

induced by inhibition of Hsp90 (Fig. 7).  To the best of our knowledge, PI3K is not a 

client of Hsp90, suggesting that Hsp90 inhibition is acting upstream of this kinase.  

Inhibition of PTEN, a well-known down regulator of the PI3K/Akt pathway has recently 

been shown to improve motor neuron survival and function in cell culture and in vivo 

models of motor neuron degeneration (Ning, Drepper et al. 2010; Kirby, Ning et al. 2011; 

Yang, Wang et al. 2014). PTEN inhibits PDK1 activation by catalyzing the 

dephosphorylation of phosphatidylinositol 3,4,5 triphostate (PIP3) to phosphatidylinositol 
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3,4 biphosphate (PIP2) (Fig. 9).  Low levels of PIP3 prevent the activation of PDK1, 

inhibiting the activation of Akt and its down-stream cell signaling (Jiang and Liu 2008).  

In addition, PTEN is activated downstream of P2X7 (Mistafa, Ghalali et al. 2010; 

Miraglia, Hogberg et al. 2012; Ghalali, Wiklund et al. 2014).  Consistent with activation 

of PTEN downstream of P2X7, inhibition of the phosphatase blocked geldanamycin 

toxicity (Fig. 7). In normal conditions, the over-activation of PI3K probably overwhelms 

the capacity of PTEN to decrease the levels of PIP3, keeping the pathway active and the 

motor neurons alive.   

Trophic factor deprivation triggers Fas-dependent motor neuron apoptosis through the 

activation of two different pathways downstream of Fas receptor, a DAXX-dependent 

and a FADD-dependent pathway (Raoul, Henderson et al. 1999; Raoul, Estévez et al. 

2002).  While the DAXX-dependent pathway induces peroxynitrite production, the 

FADD-dependent component ultimately activates the cell death effector caspase 3. Our 

results show that depending on the concentration of inhibitor, inhibition of Hsp90 

stimulated two different cell death mechanisms.  In the presence of trophic factors, low 

concentrations of geldanamycin stimulated Fas-dependent apoptosis, while high 

concentrations also triggered Fas-independent motor neuron death (Fig. 2). The EC50 for 

the induction of motor neurons death by geldanamycin in the presence of trophic factors 

and Fas:Fc, a condition in which the Fas pathway is inhibited, was the same as the EC50 

for the induction of death of trophic factor-deprived motor neurons. This observation 

provides further support to the conclusion that trophic factor deprivation and low 



 21 

concentrations of geldanamycin stimulate the same death pathways in motor neurons. 

However, inhibition of Hsp90 did not require peroxynitrite production, as is the case for 

trophic factor deprivation (Estevez, Spear et al. 1998; Estevez, Sampson et al. 2000; 

Raoul, Estévez et al. 2002). Inhibitors of nitric oxide production and scavengers of 

superoxide and peroxynitrite had no effect on geldanamycin-induced motor neuron death 

(Fig. 3).  We have recently identified Hsp90 as a target for peroxynitrite nitration. 

Nitrated Hsp90 triggers motor neuron apoptosis through the activation of the FADD 

component of the Fas pathway that is independent of peroxynitrite formation (Franco, Ye 

et al. 2013). Indeed, activation of the DAXX component of the pathway leads to 

peroxynitrite formation, nitration of Hsp90 and subsequent activation of the FADD-

dependent pathway, inducing motor neuron apoptosis (Franco, Ye et al. 2013). The 

results showed here support the notion that both nitrated Hsp90 and inhibition of Hsp90 

act downstream of peroxynitrite formation in the motor neuron death pathway.  Both 

pathways are mediated by P2X7 and Fas activation.  However, there are some differences 

between both mechanisms; while nitrated Hsp90-induced apoptosis is independent of 

gene expression and protein synthesis, geldanamycin-induced motor neuron death 

requires de novo synthesis of Fas ligand, as previously described for trophic factor 

deprivation (Raoul, Henderson et al. 1999; Barthelemy, Henderson et al. 2004). One very 

important difference between the two models is that nitrated Hsp90 stimulates cell death 

by a gain-of-function, while induction of motor neuron death by geldanamycin is due to a 

loss-of-function, which may explain the differences in the activation of the pathways. In 

spite of the differences, the requirement for P2X7 activation in both conditions suggests 
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that the inhibition of the purine receptor by Hsp90 is key for motor neuron survival.  This 

inhibition seems to be easily perturbed by post-translational modifications or inhibition of 

the chaperone. 

The nuclear factor FOXO3a regulates the expression of Fas ligand and several other pro-

apoptotic proteins, including Bim (Barthelemy, Henderson et al. 2004; Behzad, Jamil et 

al. 2007). The activity of FOXO3a is negatively regulated by Akt activation, which 

results in retention of the factor in the cytoplasm (Brunet, Bonni et al. 1999; Tang, Nunez 

et al. 1999; Barthelemy, Henderson et al. 2004). Inactivation of the PI3K/Akt pathway by 

inhibition of Hsp90 prevented the phosphorylation of FOXO3a, allowing its activation, 

translocation to the nucleus (Fig. 4) and expression of Fas ligand. However, translocation 

of FOXO3a to the nucleus can also be neuroprotective in mixed spinal cord cultures. 

Overexpression of a constitutively active FOXO3a or treatment of motor neurons with 

psammaplysene, which reduces phospho-FOXO3a levels with no effect on AKT 

phosphorylation, effectively prevent motor neuron death induced by a number of noxious 

stimuli.  However, direct inhibition of PI3K does not improve survival of motor neurons 

containing mutant SOD (Mojsilovic-Petrovic, Nedelsky et al. 2009). Our results are in 

agreement with a number of previous publications showing that inhibition of the PI3K 

pathway, which stimulates FOXO3a nuclear translocation, stimulates motor neuron death 

(Milligan, Prevette et al. 1995; Dolcet, Egea et al. 1999; Soler, Dolcet et al. 1999; Garces, 

Haase et al. 2000).  In addition, the EC50 for cell death in dissociated cultures of spinal 

cord were 300 times higher than those necessary to trigger the death of 50% of the motor 
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neurons in pure cultures (Table 1), which can explain the absence of protective effect and 

the corroboration of the results using similar cultures (Barthelemy, Henderson et al. 

2004).  

In summary, the results reveal that Hsp90 inactivation of the purine P2X7 receptor is 

critical to prevent motor neuron apoptosis induced by activation of PTEN followed by 

inactivation of the Akt, dephosphorylation of FOXO3a and expression of Fas ligand.    
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CHAPTER 3: MUTANT SOD FACILITATES HSP90 NITRATION 

Introduction 

Mutations in the superoxide dismutase gene are associated with the development of 

Amyotrophic Lateral Sclerosis (ALS) (Deng, Hentati et al. 1993; Rosen, Siddique et al. 

1993; Gurney, Pu et al. 1994; Wong, Pardo et al. 1995; Bruijn, Beal et al. 1997; Bruijn LI 

1997; Martin, Price et al. 2000; Wong, Cai et al. 2002; Wang, Sharma et al. 2008; Wang, 

Deng et al. 2009).  Under normal conditions, SOD converts superoxide to hydrogen 

peroxide and oxygen preventing oxidative stress (McCord and Fridovich 1969).  

However, mutant SOD induces neurodegeneration by an unknown and highly 

controversial toxic gain of function (Reaume, Elliott et al. 1996; Bruijn, Houseweart et al. 

1998).  Wild type SOD contains zinc and copper, which is responsible for enzyme 

stability and catalytic function.  Mutant forms of SOD have reduced zinc affinity yet still 

retain copper (Lyons, Liu et al. 1996) suggesting a role for copper in the disease state. 

Immunohistochemistry of spinal cords from mutant SOD transgenic animals show 

intense nitrotyrosine immunoreactivity (Ferrante, Shinobu et al. 1997), a posttranslational 

modification associated with the production of reactive nitrogen species such as 

peroxynitrite.  However transgenic animals expressing a SOD in which the residues that 

coordinate the copper were mutated (Quad SOD), still develop disease but with a slower 

progression (Subramaniam, Lyons et al. 2002).  Extensive biochemical analysis of the 
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quad mutant SOD catalytic activity has yet to be performed.  Consequently, the role of 

copper in the development of mutant SOD related toxicity is highly controversial.   

Peroxynitrite is a powerful oxidant associated with the nitration of protein tyrosine 

residues.  Peroxynitrite is formed by the diffusion limiting reaction between superoxide 

and nitric oxide (Beckman, Beckman et al. 1990; Padmaja and Huie 1993; Beckman and 

Koppenol 1996; Spear, Estévez et al. 1997; Nauser and Koppenol 2002).  Nitration of 

Hsp90 by peroxynitrite has been shown to induce motor neuron cell death by a Fas 

dependent mechanism (Franco, Ye et al. 2013).  Nitrated Hsp90 is present in a variety of 

neurological pathologies including spinal cord injury and ALS (Franco, Ye et al. 2013).  

However it remains unknown whether there is a link between SOD mutations and Hsp90 

nitration in ALS. 

More than 20 years after the original reports linking mutations on the gene of the SOD 

and ALS, the mechanism mutant SOD toxicity and the contribution of copper to the 

development of ALS remain unknown and highly controversial.  Here we investigated 

the hypothesis that mutant SOD facilitates Hsp90 nitration, which in turn stimulates 

motor neuron death.  Nitrated Hsp90 immunoreactivity was found in spinal cord motor 

neurons from patients and the G93A transgenic mouse model of ALS. Nitrated Hsp90 

was present only in motor neurons at symptom onset and levels increase as disease 

progresses in the transgenic mouse model.  Zinc deficient SOD and quad mutant SOD 
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bound Hsp90 and selectively facilitated the nitration of Hsp90.  These results suggest that 

mutant SOD facilitate Hsp90 nitration within motor neurons. 

Materials and Methods 

Animal procedures:  All procedures using laboratory animals were performed in 

accordance with the Guide for the Care and Use of Laboratory Animals of the National 

Institutes of Health. Male hemizygous NTac:SD-TgN(SOD1
G93A

)L26H rats (Taconic), 

were bred crossing with wild-type Sprague-Dawley female rats. Rats were housed with a 

12-h light-dark cycle with ad libitum access to food and water. Symptomatic disease 

onset was determined by periodic clinical examination for abnormal gait, typically 

expressed as subtle limping or dragging of one hind limb. Rats were euthanized when 

reached disease end stage. All surgery was performed under 90% ketamine – 10% 

xylazine anesthesia, and suffering, discomfort or stress was minimized.  

Histology:  Animals were deeply anesthetized and transcardial perfusion was performed 

with 0.9% saline and 4% paraformaldehyde in 0.1 M PBS (pH 7.2–7.4) at a constant flow 

(1 mL/min). Fixed spinal cord was removed, post-fixed by immersion for 24 h, and then 

transverse sectioned serially (30–40 μm) on a vibrating microtome. Serial sections were 

collected in 100 mM PBS for immunohistochemistry. Free-floating sections were 

permeabilized for 30 min at room temperature with 0.3% Triton X-100 in PBS and 

passed through washing buffered solutions.  Sections were blocked with 5% BSA:PBS 
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for 1 hour at room temperature, and incubated at 4 °C overnight with primary antibodies 

in 0.3% Triton X-100 and PBS [rabbit anti-Hsp90 (1:100, Santa Cruz Biotechnology), 

mouse-anti Hsp90 (1:200, Abcam)  mouse anti-nitrated Hsp90 (1:200, Franco 2013), 

rabbit anti-GFAP (1:500, Sigma), rabbit anti-ChAT (1:300, Millipore), rabbit anti-

humanSOD1 (1:500), and mouse anti-NO2Tyr (1:200, (Franco, Ye et al. 2013))].  

Immunoreactivity of nitrotyrosine was completely blocked by pre-incubation of the 

primary antibody with free nitrotyrosine (10 mM). After washing, sections were 

incubated in 1:1,000-diluted secondary antibodies conjugated to Alexa Fluor 488 and/or 

Alexa Fluor 633 (Invitrogen). Antibodies were detected by confocal microscopy using a 

confocal Olympus FV300 microscope. 

Motor neuron isolation:  Motor neurons were prepared as previously described 

(Henderson, Bloch-Gallego et al. 1995; Estevez, Spear et al. 1998; Raoul, Henderson et 

al. 1999).  Motor neurons were plated on 96 well plates (1,000 cells per well), 4 well 

plates (2,000 cells per well), 8 well chamber (10,000 cells/well) or 4 well chamber 

(20,000 cells/well) coated with poly-DL-ornithine and laminin (Sigma).  Motor neurons 

were maintained in motor neuron media [B27, heat inactivated horse serum, glutamine, 

glutamate, 3-mercaptoethanol (all from Gibco – Invitrogen, Carlsbad, CA) and trophic 

factors (1 ng/ml BDNF, 0.1 ng/ml GDNF, 10 ng/ml cardiotrophin-1) in neurobasal], and 

incubated in a 5% CO2 humidified atmosphere at 37°C. 
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SOD delivery:  SOD was delivered to motor neurons in suspension or after three days in 

culture.  Recombinant protein was delivered as previously described [(Estévez, Crow et 

al. 1999), 1/265 dilution of chariot]. 

Immunoflourescence:  Immunofluorescence was performed as previously described 

(Estevez, Spear et al. 1998).  Cells were incubated with signal enhancer (Invitrogen) for 

30 minutes before blocking.  Primary antibodies for NO2Hsp90, NO2Tyr, and Hsp90 

were incubated in blocking solution in a humidified chamber at 4C overnight.  

Secondary AlexaFluor antibodies were incubated for 1 hour at room temperature, before 

staining with DAPI and mounting using ProLong Gold (Molecular Probes, Invitrogen, 

Eugene, OR). 

Nitration assay:  Recombinant protein (1 mg/mL in PBS) was added to brain homogenate 

(1 mg/ml in PBS) before the addition of peroxynitrite (0.5 mM) while vortexing.  

Samples were then diluted in lamelli buffer and processed as described previously 

(Franco, Ye et al. 2013).  Western blots were performed using primary antibodies against 

NO2Hsp90 (1/1,000, mouse), Hsp90 (1/1,000 rabbit), NO2tyrosine (1/2,000, rabbit) and 

GAPDH (1/50,000, mouse).  Secondary antibodies were obtained from Licor (1/25,000, 

anti-mouse and anti-rabbit). 

Western blot analysis of tissue: For spinal cord protein extraction, spinal cords were 

completely dissected and embedded in lysis buffer [50 mM Hepes (pH 7.5), 50 mM 
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NaCl, 1% Triton X-100, and complete protease inhibitor cocktail (Sigma)] and sonicated 

six times for 3 s. Protein concentration was measured with Bicinchoninic Acid (BCA) kit 

(Sigma). Protein extracts were diluted in loading buffer (15% SDS, 0.3 M Tris (pH 6.8), 

25% glycerol, 1.5 M β-mercaptoethanol, and 0.01% bromophenol blue).  Protein samples 

(40 μg) were resolved on 12% SDS-polyacrylamide gel and transferred to PVDF 

membrane (Amersham). Membranes were blocked for 1 h in Tris-buffered saline (TBS), 

0.1% Tween-20, and 5% non-fat dry milk, followed by overnight incubation with 

primary antibody [rabbit anti-Hsp90 (1:1,000, Santa Cruz), mouse anti-nitrated Hsp90 

and mouse anti-β-actin (1:4,000, Sigma)] diluted in the same buffer. The membrane was 

incubated with peroxidase-conjugated secondary antibodies, Goat anti-mouse-HRP and 

Goat anti-rabbit-HRP (1:5000, Thermo) for 1 h and washed and developed using the ECL 

chemiluminescent detection system (Thermo). NO2Hsp90 and Hsp90 (~90 kDa) bands 

were used to quantify the data. The intensities of all protein bands were normalized with 

the housekeeping gene, β-actin, using the ImageJ software. 

Results 

Nitrated Hsp90 was present in ALS patients.  We have previously shown that nitration 

Hsp90 at residues 33 and 56 is necessary and sufficient to stimulate motor neuron 

apoptosis (Franco, Ye et al. 2013).  Immunoreactivity for Hsp90 nitrated in tyrosine 56 

(Ye, Quijano et al. 2007; Franco, Ye et al. 2013) was present in the spinal motor neurons 

from postmortem tissue of ALS patients, but could not be detected in the spinal cord of 
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age matched controls (Fig. 10).  The immunoreactivity was prominent in motor neurons 

and could not de detected in other cell type.  These results suggest that nitrated Hsp90 is 

present in spinal cord motor neurons of ALS patients before the cells die.  These results 

suggest that nitrated Hsp90 can cause motor neuron degeneration in ALS.   

Nitrated Hsp90 immunoreactivity was detected in motor neurons from symptom onset 

and increased with disease progression in the G93A mouse model of ALS.  The time 

course of Hsp90 nitration in the spinal cord of G95A transgenic mouse model of ALS 

was determined to correlate the presence of nitrated Hsp90 with disease onset and 

progression.   Nitrated Hsp90 was detected in ventral motor neurons during early 

symptomatic (90 days) and symptomatic stages (120 days) of the disease but not in 

presymtomatic (60 days), nontransgenic or mice transgenic for wild type SOD (Fig. 

11A). The increase in glial fibrillary acidic protein (GFAP) immunoreactivity correlated 

with disease progression as previously reported (Schiffer, Cordera et al. 1996; Hall, 

Oostveen et al. 1998; Jaarsma, Teuling et al. 2008).   Western blotting analysis of ventral 

spinal cord from transgenic mouse reveal significant increase in nitrated Hsp90 in 

symptomatic mice in comparison to nontransgenic animals, without changes in total 

Hsp90 (Fig. 11B).  The results suggest that nitrated Hsp90 immunostaining represents an 

increase in the oxidative modification of Hsp90 rather than an increase in the amount of 

chaperone.    
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In addition, the GFAP and nitrated Hsp90 co-localize only in the late symptomatic phase, 

when significant motor neuron death already occurred (Fig. 11A).  The presence of 

nitrated Hsp90 in astrocytes during the end stage of the disease could be due to nitration 

of astrocytic Hsp90 or to astrocyte phagocytosis of the motor neuron nitrated chaperone.  

To determine whether Hsp90 could be nitrated in the astrocyte, purified cortical and 

spinal astrocyte cultures were treated with peroxynitrite.  Nitrated Hsp90 was not 

detected in cultured astrocytes 1 min or 24 hour after 5 min incubation with 1 mM 

peroxynitrite (Fig. 11C).  Nitrated Hsp90 was in astrocyte homogenate incubated with 

peroxynitrite at the same concentration (Fig. 11C), suggesting that in astrocytes Hsp90 is 

protected from nitration.  In aggregate, the results reveal that Hsp90 is nitrated in motor 

neurons during the symptomatic phase of ALS, which can explain symptom onset in 

ALS. 

Mutant SOD increases protein nitration in vitro.  Mutant SOD has reduced affinity to 

bind zinc, which is associated with increased protein nitration (Ischiropoulos, Zhu et al. 

1992; Beckman, Carson et al. 1993; Crow, Strong et al. 1997).   The role of zinc deficient 

SOD on nitration of Hsp90 was investigated by incubating nontransgenic spinal cord 

homogenate with peroxynitrite in the presence of zinc deficient SOD or wild type SOD.  

The nitrated homogenates were analyzed for nitrotyrosine and nitrated Hsp90.  The 

addition of BSA was added to control for the effect of peroxynitrite alone on nitration of 

proteins.  Zn deficient SOD produced an 8 fold increase in nitration as compared with the 

control or wild type SOD (Fig. 12A).  These results corroborated previous reports 
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showing that zinc deficient SOD enhances peroxynitrite-mediated nitration (Crow, Strong 

et al. 1997).  However, the relevance of copper in SOD toxicity is highly controversial.  

Transgenic animals for a SOD where the copper binding site has been deleted (Quad 

mutant) develop motor neuron disease (Wang, Slunt et al. 2003).  This suggests that 

copper may not be required for mutant SOD toxicity.  The presence of oxidative stress in 

this transgenic model animal was not tested.  Incubation of spinal cord homogenates with 

peroxynitrite in the presence of quad mutant SOD increased protein nitration to levels 

comparable to Zn deficient SOD.   

When the same samples were analyzed for nitrated Hsp90, both zinc and quad mutant 

SOD increased the levels of nitrated Hsp90 by 79 and 13 fold, which represents an 

increase of 10 and two fold respect to total nitration. In addition, wild type SOD had no 

effect on Hsp90 nitration (Fig. 12B).  These results reveal that mutant SOD selectively 

enhances Hsp90 nitration by peroxynitrite.   

Surface plasmon resonance was used to characterize the kinetics of the interactions of 

Hsp90 and SOD.  Both Zn deficient, quad mutant SOD and APO C111S bound Hsp90, in 

contrast, no binding of fully metallated wild type SOD to Hsp90 was detected (Table 2).  

These findings suggest that Hsp90 bind partially and unmetallated SOD, which 

selectively increases the nitration of the chaperone. 
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Mutant SOD induce motor neuron cell death requires copper and peroxynitrite 

formation.  The nitration of Hsp90 in the presence of quad mutant SOD suggests that this 

enzyme facilitate Hsp90 nitration because it has redox properties or due to a 

conformation change in the chaperone.  To determine if quad mutant SOD induced motor 

neuron death in culture, recombinant protein was intracellularly delivered to motor 

neurons using the cell permeant agent, Chariot.  Delivery of zinc deficient and quad 

mutant SOD stimulates motor neuron death (Fig. 13A).  Similar treatment with copper 

deficient SOD did not affected motor neuron survival (Fig. 13A).  The copper chelator, 

bathocuproine, prevented cell death induced by both zinc deficient and quad mutant SOD 

suggesting copper is required for the induction of cell death (Fig. 13B).   

The delivery of both zinc deficient or quad mutant SOD to motor neurons resulted in 

increased immunoreactivity for nitrated Hsp90 (Fig. 13C).  Protein nitration requires 

nitric oxide and peroxynitrite formation (Estevez, Spear et al. 1998; Estévez, Crow et al. 

1999; Estevez, Sampson et al. 2000) therefore, the effect of nitric oxide synthase 

inhibitors on motor neuron survival was investigated.  The nNOS inhibitor, L-NAME, 

prevented mutant SOD mediated motor neuron cell death indicating that production of 

nitric oxide is required for the induction of death (Fig. 13D).  The superoxide dismutase 

mimetic, MnTBAP, and superoxide and peroxynitrite scavenger, FeTCCP, also prevented 

motor neuron death stimulated by Zn deficient and Q mutant SOD (Fig. 13D).  These 

results suggest the zinc deficient and quad mutant SOD induce motor neuron death by a 
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similar copper dependent mechanism involving peroxynitrite formation and nitration of 

Hsp90. 

The in vitro results suggest that the spinal cord of transgenic mice for the Q SOD should 

have nitrotyrosine.  Indeed, the spinal cord of the mice transgenic for the quad mutant 

SOD showed intense immunoreactivity for nitrotyrosine (Fig. 14).   However, the 

nitrotyrosine immunoreactivity was not as intense as that of aged matched transgenic 

animals for the G93A SOD mutation suggesting the rate of nitration is slower in the quad 

mutant animal (Fig. 14).  These observations are in agreement with a slower development 

and progression of the disease in the quad mutant.   

Discussion 

Metal deficient SOD has reduced stability leading to protein unfolding (Rakhit, Crow et 

al. 2004; Rumfeldt, Lepock et al. 2009; Sahawneh, Ricart et al. 2010).  The absence of 

nitrated Hsp90 in wild type samples suggests that SOD protein unfolding may increase 

Hsp90 susceptibility to nitration.  Chaperone such as Hsp90 bind unfolded protein to 

prevent degradation and facilitate refolding.  

The presence of nitrotyrosine in the spinal cord of ALS patients and animal models of the 

disease is well established (Abe, Pan et al. 1995; Beal, Ferrante et al. 1997; Ferrante, 

Shinobu et al. 1997; Duda, Giasson et al. 2000).  However, the role that nitrotyrosine and 

oxidative stress play in the pathology of the disease is still highly controversial.  Our 
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results reveal that the zinc deficient and quad mutant SOD induce motor neuron death by 

a similar copper dependent mechanism involving peroxynitrite formation and nitration of 

Hsp90 (Fig. 13A-D).  We have previously shown that nitration of Hsp90 in tyrosine 33 or 

56 is necessary and sufficient to make the chaperone toxic (Franco, Ye et al. 2013).  We 

develop a monoclonal antibody against Hsp90 nitrated in tyrosine 56, which was fully 

characterized for specificity (Ye, Quijano et al. 2007; Franco, Ye et al. 2013).  Using this 

antibody, we found that Hsp90 nitration occurs during the symptomatic phase of ALS 

and is found only within the motor neurons (Fig. 10).  Nitrated Hsp90 immunoreactivity 

appears at symptom onset and coincides with motor neuron death.  

Nitrated Hsp90 immunoreactivity was restricted to motor neurons in postmorterm spinal 

cord samples from ALS patients (Fig. 10) and in early stages of the disease in the spinal 

cord of the G93A mouse models of the disease (Fig. 11A and B).  The inability of 

peroxynitrite to nitrate Hsp90 in cultured astrocytes (Fig. 11C) suggests that Hsp90 is 

protected from nitration in these cells.  These results also suggest that nitrated Hsp90 in 

astrocytes at end stages of the disease is likely due to the removal of motor neuron debris 

by astrocytes rather than nitration of the astrocyte Hsp90.  The specific formation of 

nitrated Hsp90 in motor neurons may explains how glial cell specific knockdown of 

mutant SOD has no effect on disease onset and why neuron specific expression of mutant 

SOD is enough to produce disease (Boillee, Yamanaka et al. 2006; Jaarsma, Teuling et al. 

2008; Yamanaka, Chun et al. 2008).   
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Peroxynitrite nitration can by catalyzed by SOD and the catalysis is enhanced in zinc 

deficient SOD (Ischiropoulos, Zhu et al. 1992; Crow, Sampson et al. 1997; Adams, 

Franco et al. 2015).  Although original reports on the Q mutant showed that the enzyme 

has no superoxide dismutase activity, the metal content of the enzyme or other redox 

properties were not investigated (Wang, Slunt et al. 2003).  Our result show enhanced 

tyrosine nitration by peroxynitrite in the presence of quad mutant, suggesting that the 

protein possess redox activity. In fact the increase in nitration was similar to the nitration 

catalyzed by Zn-deficient SOD (Fig. 12A). Furthermore, motor neuron death stimulated 

by Q mutant, and Zn-deficient SOD were prevented by inhibition of nitric oxide 

production, and scavenging of superoxide and peroxynitrite (Fig. 13D). This provides 

further support for a redox mechanism mediated by Q SOD in the pathogenesis of the 

transgenic mouse.   In addition, quad mutant SOD induced motor neuron death in culture 

was preceded by the nitration of Hsp90.  In fact, both Zn-deficient and Q mutant 

selectively facilitated the nitration of Hsp90 (Fig. 13C).  The enhanced nitration could be 

caused by increase catalysis, but it can also be caused by changing the conformation of 

Hsp90 to become more favorable to nitration.  Metal deficient SOD has reduced stability 

leading to protein unfolding (Rakhit, Crow et al. 2004; Rumfeldt, Lepock et al. 2009; 

Sahawneh, Ricart et al. 2010).  The absence of nitrated Hsp90 in wild type samples 

suggests that SOD protein unfolding may increase Hsp90 susceptibility to nitration.  

However, wild type SOD did not bind Hsp90 (table 2), suggesting that the interaction 

with Hsp90 may be due to the unfolding of SOD, or a specific SOD conformation 

provided by partially metillated proteins.  ALS linked mutations in SOD have been 
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shown to have a reduced zinc affinity (Lyons, Liu et al. 1996; Crow, Sampson et al. 

1997) that leads to destabilization of the dimer and protein unfolding (Rumfeldt, Lepock 

et al. 2009; Sahawneh, Ricart et al. 2010). As a consequence, there is increased 

aggregation of the mutant SOD monomers (Rakhit, Crow et al. 2004; Rumfeldt, 

Stathopulos et al. 2006; Rumfeldt, Lepock et al. 2009).  These mutants favor a zinc 

deficient monomer, where copper remains bound (Rumfeldt, Lepock et al. 2009; 

Sahawneh, Ricart et al. 2010).  Mutant SOD unfolding leads to the interaction with 

chaperones such as Hsp70 (Shinder 2001).  Interestingly, the degree of instability of the 

APO state of SOD correlates to length of survival (Sato 2005) and this relationship may 

be due Hsp90 binding to mutant SOD and subsequent nitration.  The direct interactions of 

mutant SOD to heat shock chaperones such as Hsp70 and Hsp90 may facilitate nitration.  

However, only Hsp90 is responsible for induction of motor neuron death (Franco, Ye et 

al. 2013).  Nitrated Hsp90 stimulates motor neuron death by a P2X7 receptor/Fas 

dependent pathway that is consistent with a downstream effector of mutant SOD 

stimulated motor neuron death (Raoul, Estévez et al. 2002).  

Our results demonstrate that quad mutant SOD toxicity is dependent on copper (Fig. 

13B). These results are contrary to previous findings where transgenic mutant SOD 

animals crossbred with animals containing a genetic deletion of the copper chaperone for 

SOD (CCS) still developed motor neuron disease (Subramaniam, Lyons et al. 2002).  

These animals had a 90% reduction of copper incorporation into mutant SOD, however 

the remaining copper containing SOD may be enough for the animal to develop the 
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disease (Beckman, Estévez et al. 2001).  The dependency of the quad mutant SOD to 

bind copper suggests the presence of an alternative binding site.  Since this site is a 

secondary binding site it is possible that the copper binding changes the enzyme’s 

confirmation reducing its ability to facilitate protein nitration leading to slower disease 

progression.  Many of the argument against the role of redox properties of SOD playing a 

role in the pathogenesis of ALS come from genetic studies in which the biochemistry of 

the enzyme was not investigated at all or poorly characterized.  The presence of markers 

of oxidative damage such as nitrotyrosine in all animal models of the disease and post 

mortem samples of ALS patients coupled with a number of studies showing how these 

markers stimulate motor neuron death, provide the best rounded hypothesis for ALS 

pathogenesis.  The presence of nitrated Hsp90 in motor neurons of both animal models 

and human patients provide the first complete pathway explaining ALS pathology. 

Our findings demonstrate that mutant SOD facilitates Hsp90 nitration in motor neurons in 

a copper and peroxynitrite dependent mechanism.  Hsp90 nitration occurs at disease 

onset and increases during disease progression in a G93A transgenic animal.  In contrast, 

astrocytes are not nitrated during disease onset nor do they become nitrated in vivo.  

These results suggest that mutant SOD induce cell autonomous neuronal cell death 

through nitrated Hsp90. 
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CHAPTER 4: CHRONIC INHIBITORY EFFECT OF RILUZOLE ON 

TROPHIC FACTOR PRODUCTION
1
 

Introduction 

Amyotrophic lateral sclerosis (ALS) is a devastating and incurable neurological disease, 

characterized by the degeneration of pyramidal neurons in the motor cortex and motor 

neurons in the brain stem and spinal cord.  ALS patients live without medical 

intervention an average of one to five years following diagnosis.  Riluzole is the only 

drug that shows a small but consistent protective effect both in patients and transgenic 

mice models of ALS (Bensimon, Lacomblez et al. 1994; Gurney, Cutting et al. 1996; 

Lacomblez, Bensimon et al. 1996; Lacomblez, Bensimon et al. 1996; Gurney, Fleck et al. 

1998; Orrell 2010; Miller, Mitchell et al. 2012).  Riluzole has been shown to block 

sodium channels, activate G-proteins and reduce glutamate toxicity (Doble 1997; 

Meininger, Lacomblez et al. 2000; Cheah, Vucic et al. 2010; Bellingham 2011).  

However, the primary mechanism by which riluzole exerts its protective effects in ALS 

remains unknown.  

 Astrocytes and other glial cells produce trophic factors that support motor neuron 

                                           

1
 Dennys, C. N., J. Armstrong, et al. (2015). "Chronic inhibitory effect of riluzole on 

trophic factor production." Exp Neurol.271:301-307. 
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survival (Schnaar and Schaffner 1981; Eagleson, Raju et al. 1985; Eagleson and Bennett 

1986; Ang, Bhaumick et al. 1993; Arce, Pollock et al. 1998). Riluzole enhances the 

astrocytic production of these factors in cell culture (Peluffo, Estévez et al. 1997).   The 

incubation of cortical astrocytes with riluzole stimulates the production of brain derived 

neurotrophic factor (BDNF), glia derived neurotrophic factor (GDNF) and nerve growth 

factor (NGF) (Mizuta, Ohta et al. 2001).  Schwann cells also produce trophic factors that 

promote axon regeneration following exercise and nerve injury (Wilhelm, Xu et al. 2012; 

Xu, Rosen et al. 2013).  Cardiotrophin-1 (CT-1) is a potent motor neuron trophic factor 

that prevents motor neuron death after axotomy and delays death in animal models of 

ALS produced by muscle (Pennica, Arce et al. 1996; Bordet, Lesbordes et al. 2001).  

Initial studies on the effect of riluzole lead us and others to postulate that riluzole may 

exert at least in part its protective effects on motor neurons indirectly, by promoting 

trophic factor production by astrocytes and other glial cells (Peluffo, Estévez et al. 1997; 

Mizuta, Ohta et al. 2001).  Here we investigated the effects of short and long time 

incubation with riluzole on trophic factor production by Schwann cells and astrocytes. 

Both cell types play an important role in cellular maintenance of motor neurons.  We 

investigated also concentrations of trophic factors produced in brain, spinal cord, and 

sciatic nerve of C57BL/6J mice at different time points after continuous or discontinuous 

riluzole administration and correlated the in vivo results to specific glial cell responses.  

Our findings provide new insights on the potential mechanism of action of riluzole as a 

therapeutic treatment for ALS and possibly spinal cord injury. 
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Materials and Methods 

Astrocyte cell culture:  Spinal cords from one to three days old Sprague Dawley rats were 

used to prepare astrocytes as described previously (Saneto and Vellis 1987; Peluffo, 

Estévez et al. 1997). Once confluent (approximately 5-8 days), cells were shaken at 300 

RPM for 2 days then treated with 10 μM arabinose C.  Following a couple days recovery, 

cells were split and seeded on a 60mm dish at a density of one million cells or half a 

million for a 35mm dish.  Cells were maintained in culture for no more than 22 days. 

Motor neuron cell culture:  Rat embryo motor neurons were purified using 6% OPTI 

prep and further purified using immunoaffinity.  Cells were cultured in neurobasal 

medium containing glutamine, glutamate, β-mercaptoethanol, and B27 supplement 

(Gibco-Invitrogen) as previously described (Estevez, Spear et al. 1998; Pettmann and 

Henderson 1998; Raoul, Henderson et al. 1999) in the presence or absence of brain-

derived neurotrophic factor (BDNF, 1 ng/mL), glial-derived neurotrophic factor (GDNF, 

0.1 ng/mL), and cardiotrophin 1 (CT-1, 10 ng/mL).  Motor neuron survival was 

determined by counting by hand in four well plates (Nunc) or by calcein staining 

(Molecular Probes, Invitrogen) according to manufacturer’s instruction.  Extracellular 

calcein was quenched with 100 µg/mL hemoglobin and the images were captured using 

the RUNNER (Trophos, Marseilles, France).  Data was analyzed using Tina software 

(Trophos). 
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Schwann Cell culture:  Primary Schwann cells were isolated from the sciatic nerves of 

newborn Sprague Dawley rats with modifications as previously described (Brockes, 

Fields et al. 1979; Thaxton, Bott et al. 2011).  250,000 cells (35 mm dish) or 500,000 

cells (60 mm dish) were grown in D10M (10% FBS, 20 μg/ml pituitary extracts and 2μM 

forskolin in DMEM) on poly-L-lysine coated plates (200 μg/mL) until confluency. Media 

was changed three days before the experiment was started.  Experiments were conducted 

on Schwann cells that were passaged no more than four times.   

Conditioned Media:  Astrocytes or Schwann cells were treated with 1 µM riluzole for 

indicated time period.  For chronic treatments, media was changed with fresh riluzole 

every 2-3 days.  Media was removed and cells were washed with DPBS prior to addition 

of conditioning media (L15 supplemented with sodium bicarbonate (22 mM), 

conalbumin (0.1 mg/ml), putrescine (0.1 mM), insulin (5 µg/ml), and sodium selenite (31 

nM). Astrocytes or Schwann cells conditioned this media for 24 hours prior to collection.  

Conditioned media was further diluted in motor neuron media prior to plating motor 

neurons.  Motor neurons were cultured in the presence of conditioned media for three 

days then counted. 

PCR Analysis:  RNA was extracted from Schwann cells plated on a 35 mm dish using 

Trizol.  1 μg RNA was used to synthesize cDNA using Superscript III (Invitrogen) 

according to manufacturer’s instruction.  2 μl of cDNA product was used as template for 
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qPCR analysis.  CT-1, BDNF, and GDNF levels were measured using Taq Man probes 

and master mix according to manufacturer’s instruction. 

Animal Studies:  Male C57BL/6J mice were given riluzole treated water (100 μg/ml) for 

given time points.  Water was replaced with freshly prepared riluzole every 2-3 days.  

Brain, spinal cord, and sciatic nerve were removed for subsequent analysis.  Untreated 

mice were sacrificed for control. 

ELISA:  Brain, spinal cord, and sciatic nerve were homogenized in PBS containing 

PMSF, and protease inhibitor cocktail.  Samples were diluted to a concentration of 175 

μg/mL and analyzed using ELISA [CT-1 (R & D Systems), BDNF and GDNF 

(Abnova)].  ELISA was performed according to manufacturer’s instructions. 

Results 

Riluzole treatment stimulates glial cells to produce CT-1.  Riluzole stimulates trophic 

factor production by astrocytes (Peluffo, Estévez et al. 1997; Mizuta, Ohta et al. 2001).  

Incubation of motor neurons with media that was previously conditioned by astrocytes in 

the presence of 1-10 μM riluzole significantly increases motor neuron survival when 

compared to cells cultured in conditioned media from untreated astrocytes (Peluffo, 

Estévez et al. 1997).  Since the trophic factors BDNF, GDNF and CT-1 are critical to 

motor neuron survival, we investigated the effect of riluzole on production of these 

trophic factors by astrocytes using conditions previously described (Peluffo, Estévez et 
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al. 1997).  There was a small, but statistically significant change in CT-1 mRNA levels 

with no change in mRNA levels of BDNF, and GDNF of riluzole treated astrocytes when 

compared to untreated controls (Fig. 15A).  Since mRNA levels do not reflect protein 

levels, neutralizing antibodies to BDNF, GDNF and CT-1 were used to determine the 

effect of each trophic factor present in conditioned media on motor neuron survival. 

Motor neurons were cultured in the absence of trophic factors and survival was assessed 

after 24 h in culture. Incubation of motor neurons with media that was previously 

conditioned by astrocytes for 24 h partially protected motor neurons from trophic factor 

deprivation-induced cell death (Fig. 15B). This protection was significantly increased by 

conditioned media from astrocytes that were incubated in the presence of riluzole for 24 h 

prior to media conditioning (Fig. 15B). Antibodies against CT-1 had no effect on motor 

neuron survival in the presence of conditioned media from untreated astrocytes, but 

blocked the additional protection afforded by the media from riluzole-treated astrocytes 

(Fig. 15A), suggesting that CT-1 production is stimulated by riluzole. As expected, 

addition of antibodies against GDNF or BDNF also reversed the protection provided by 

riluzole treated astrocyte conditioned media (Fig. 15B) since these factors are basally 

secreted by astrocytes (Schaar, Sieber et al. 1993; Dougherty, Dreyfus et al. 2000; Jean, 

Lercher et al. 2008; Fulmer, VonDran et al. 2014). These results imply that in addition to 

stimulate the production of BDNF and GDNF by cortical astrocytes (Mizuta, Ohta et al. 

2001), riluzole also induces the synthesis and release of CT-1 by spinal astrocytes.  
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Schwann cells provide trophic factor support for motor neurons under stress conditions 

(Wilhelm, Xu et al. 2012; Xu, Rosen et al. 2013).  Therefore we investigated if riluzole 

could also stimulate trophic factor production in these cells at the same concentrations of 

drug used for astrocytes. Initial experiments were conducted to determine the dilution of 

riluzole-treated and untreated Schwann cell conditioned media that would provide 

discernable differences in trophic factor support.  Due to a higher level of trophic support 

in Schwann cell conditioned media, a 1:25 dilution was selected to perform subsequent 

experiments compare to the 1:10 dilution applied to conditioned media from astrocytes 

(Sup. Fig. 1A). Incubation of Schwann cells with riluzole for 24 h prior to conditioning 

the media significantly increased the protection provided to motor neurons in comparison 

to media from untreated cells (Fig. 15C). Neutralizing antibodies against CT-1 

completely abolished the protection afforded by conditioned media from riluzole-treated 

Schwann cells (Fig. 15C).  In the same conditions, neutralizing antibodies against BDNF 

and GDNF had no effect on motor neuron survival (Sup. Fig. 1B).  In contrast, 

neutralizing antibodies against GDNF but not BDNF, reduced motor neuron survival in 

untreated conditioned media (Sup. Fig. 1B).  In agreement with these observations, the 

levels of CT-1 messenger RNA were significantly increased after 24 h incubation with 

riluzole, while no changes were detected for GDNF and BDNF messenger RNAs (Fig. 

15D).  These results reveal that Schwann cells in culture produce CT-1 and that the 

production and release of CT-1 is enhanced by riluzole.  Incubation of astrocytes and 

Schwann cells with riluzole had no effect on cellular morphology or number (Sup. Fig. 

1A and B). Together, these results show that riluzole treatment increases trophic factor 
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deprived-motor neuron survival by inducing release of CT-1 by both astrocytes and 

Schwann cells. 

Chronic riluzole treatment decreases trophic factor production by glial cells:  Since 

incubation of astrocytes and Schwann cells with riluzole for 24 h showed an increase in 

trophic factor production, we investigated whether longer incubation periods would 

results on higher and more stable production of trophic factors by glial cells.  

Surprisingly, incubation of astrocytes with riluzole for up to 6 days prior to media 

conditioning resulted in a significant reduction of the protection provided to motor 

neurons when compared with conditioned media from astrocyte cultures incubated with 

riluzole for 24 h (Fig. 16A).  To determine if the loss of the astrocytes response to 

riluzole was the result of the chronic incubation with riluzole or astrocyte senescence, 

parallel astrocyte cultures were maintained in the same conditions, but in the absence of 

riluzole.  These cultures were then treated with riluzole for 24 h prior to conditioning the 

media (5U1R, as described in Fig. 16A). Conditioned media from these cultures had a 

motor neuron trophic activity comparable to that of conditioned media from acute 

riluzole treated astrocyte (1R, Fig. 16A) and increases motor neuron survival above six 

days untreated astrocytes.  These results reveal that conditioned media derived from 

astrocytes after chronic incubation with riluzole had reduced trophic support.   

When the same experimental design was applied to Schwann cells, after 5 days in culture 

followed by 24 h incubation with riluzole the cells failed to respond to the drug (5U1R). 
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However, conditioned media from acute treatment (1R, Sup. Fig. 1C) was indeed 

protective. Quantitative RT-PCR showed a significant reduction in CT-1 levels after 3 

days of continuous incubation with riluzole while after 6 days in culture the cells became 

senescent. Therefore, conditioned media from Schwann cells incubated with riluzole for 

3 days was considered a long-term treatment with the drug. In agreement, this 

conditioned media showed reduced motor neuron trophic factor support (Fig. 16B), while 

the control riluzole treatment, 2 days in culture followed by 24 h incubation with the drug 

(2U1R, Fig. 16B) maintained motor neuron survival to levels comparable to acute 

riluzole incubation (1R, Fig. 16B) and increased motor neuron survival above 3 day 

untreated cells.  Long-term incubation of astrocytes and Schwann cell produced no 

change on the morphology or proliferation of the cells (Sup. Fig. 2A-C). These 

observations revealed that the long-term effects of riluzole were not due to loss of cell 

responsiveness to the drug.  In addition, the expression of CT-1 and BDNF messenger 

RNA in Schwann cells was decreased after long-term incubation with riluzole compared 

with one-day incubation, with the expression of BDNF mRNA lower than untreated 

control (Fig. 16D).  In astrocytes, long-term incubation with riluzole decreased 

expression of CT-1 compared with cultures treated for one day with the drug. 

Interestingly, BDNF and GDNF, but not CT-1 mRNA expression was below untreated 

control in astrocytes after 6 days riluzole incubation (Fig. 16C). These results suggest that 

the effect of riluzole on the regulation of trophic factors mRNA expression is trophic 

factor and cell type specific. Together these findings suggest that chronic exposure to 



 48 

riluzole significantly reduces trophic factor production by glial cells, abolishing the 

protective effect observed on trophic factor deprived-motor neurons.   

Acute and chronic riluzole treatment has opposite effects on trophic factor production in 

vivo:  The effects of riluzole on trophic factor production were investigated in spinal 

cord, whole brain and sciatic nerve of C57BL/6J male mice after treatment with riluzole 

in the drinking water for various time periods.  In the spinal cord, riluzole significantly 

increased CT-1 levels after 15 days of continuous treatment.  However, the increase was 

only transitory since CT-1 production was reduced to basal levels after 30 days of 

treatment (Fig 17A).  In contrast, riluzole did not stimulate BDNF production at any time, 

but induced a significant decrease of BDNF levels after 30 days of treatment (Fig. 17A).  

GDNF production was significantly increased after 3 days of riluzole treatment and 

returned to basal levels after 6 days of continuous administration of the drug.  

Surprisingly, GDNF production decreased below control levels after 15 and 30 days of 

continuous treatment (Fig. 17A). These observations cannot be attributed to differences 

in drug intake since there were no changes in the water consumption by the mice 

throughout the study (6.5-7.5 ml/animal/day, independently of the treatment).  Thus, 

these findings are consistent with the repressive effects on BDNF, GDNF, and CT-1 

production observed in cell culture after long-term incubation of astrocytes with riluzole.   

In the sciatic nerve, treatment with riluzole increased CT-1 levels at 3 and 15 days.  

However, CT-1 levels were significantly decreased below control levels after 30 days of 
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continuous treatment with the drug (Fig. 17B).  Riluzole did not increase GDNF or 

BDNF concentration in the sciatic nerve but BDNF level was significantly decreased 

after 30 days of riluzole treatment. These findings are consistent with the repressive 

effects on BDNF and CT-1 production observed in Schwann cells following chronic 

treatment of riluzole in culture.  

In the brain, CT-1 levels increased only at 6 days, returning to basal levels at 15 and 30 

days of continuous riluzole administration.  Riluzole did not stimulate significant changes 

in GDNF concentration at any time, but increased BDNF concentrations in the brain after 

6 and 15 days treatment.  After 30 days of continuous riluzole administration, the BDNF 

concentration was reduced below control levels (Fig.  17C).  These results reveal that 

acute riluzole treatment activated the production of distinct combinations of CT-1, GDNF 

and BDNF in spinal cord, sciatic nerve and brain at different times.  However, the 

chronic treatment with riluzole led to a significant reduction of trophic factor production, 

in some cases below the control levels.   

Discontinuous riluzole treatment increases long-term CT-1 production in spinal cord:  

The opposite effects of the chronic and acute administration of riluzole in the animals 

lead us to investigate 1) whether the acute stimulatory effect could be maintained by 

discontinuous administration of the drug, and 2) whether the chronic inhibitory effect 

could be reversed.  As shown in Fig. 3, trophic factor levels were elevated between 3 and 

15 days then reduced by 15 or 30 days depending on the trophic factor and the tissue.  
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Based on these results, animals were continuously administered riluzole for 15 and 30 

days then riluzole was removed for 15 days. The treatment was then reinitiated for 

additional 6 or 15 days to avoid the chronic inhibitory effect (Fig. 18A).  Trophic factor 

levels were studied in spinal cord from treated animals. After the second period of 

riluzole administration, CT-1 concentration was significantly increased as compared to 

the untreated control independently of whether the drug was given for 15 or 30 days 

during the initial period (Fig. 18B). In the case of GDNF, continuous treatment with 

riluzole for 15 or 30 days decreased the trophic factors levels. This decrease could not be 

reverted by discontinuing the treatment for 15 days and treating with the drug for 

additional 6 or 15 days (Fig. 18C). Moreover, treatment of animals for 30 days with 15 

days resting period and 15 additional days with riluzole showed significantly more 

reduction in GDNF concentrations than animal continuously treated with riluzole for 30 

days (Fig. 18C). The concentration of BDNF was not increase respect to the control in 

any condition (Fig. 18D).  Similar to GDNF, BDNF levels in the spinal cord were 

significantly reduced after treatment of animals with riluzole for 30 days with a 15 days 

rest period than after 30 days of continuous administration (Fig. 18D). In combination, 

these observations suggest a complex regulation of the expression of trophic factors by 

riluzole. 
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Discussion 

Riluzole is the only FDA approved drug for the treatment of ALS.  However, the primary 

mechanism by which riluzole offers protection remains unknown.  In both spinal cord 

organotypic and enriched motor neuron cultures riluzole protects motor neurons from 

glutamate receptor hyperstimulation-induced death (Estevez, Stutzmann et al. 1995; 

Rothstein and Kuncl 1995).  These original observations are supported by new evidence 

of the anti-excitotoxic effect of the drug in ALS patients (Bellingham 2011; Cifra, 

Mazzone et al. 2013; Foerster, Pomper et al. 2013; Vucic, Lin et al. 2013).  However, 

these same reports conclude that the effects of riluzole on glutamate metabolism are not 

sufficient to explain its protective effects in ALS.  After the failure of the gabapentin 

clinical trial, riluzole was postulated to act on pathways other than the glutamatergic 

transmission (Meininger, Lacomblez et al. 2000). Riluzole stimulates trophic factor 

production by astrocytes (Peluffo, Estévez et al. 1997; Mizuta, Ohta et al. 2001).  

However, the effect of riluzole on trophic factor production in other cell types was not 

investigated.  Motor neuron survival is supported by trophic factors released by Schwann 

cells during development (Henderson, Phillips et al. 1994) and nerve regeneration (Xu, 

Rosen et al. 2013) but whether Schwann cells supported motor neuron survival in adult 

normal conditions remained unknown.  Here, we show for the first time that Schwann 

cells produce CT-1 in these conditions.  Although Schwann cell production of BDNF and 

GDNF contribute also to motor neurons survival in culture, CT-1 was the only factor 

induced in Schwann cells following riluzole treatment.  Results using conditioned media 
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from riluzole-treated Schwann cells support CT-1 as the major trophic factor induced by 

riluzole, since neutralizing antibodies against CT-1 reduced motor neuron survival to 

levels comparable to those of untreated conditioned media.  Similar findings were 

obtained with conditioned media from riluzole-treated astrocytes (Fig. 15). Previous 

reports shows that riluzole induces secretion of NGF, BDNF, and GDNF by cultured 

cortical astrocytes (Mizuta, Ohta et al. 2001). In contrast with these observations, acute 

incubation of spinal cord astrocytes with riluzole led to a significant increase in secretion 

of CT-1 but not BDNF or GDNF (Fig. 17).  However, in the brain of mice after acute 

treatment with riluzole, CT-1 and BDNF production was induced, without affecting 

GDNF levels.  These discrepancies between the cell culture and in vivo tissue effects may 

be due to direct or indirect effects of riluzole on other cell types. The difference in trophic 

factor production in the examined tissue suggests that responses to riluzole depend on the 

cell specific population within the corresponding tissue.  Surprisingly, long-term riluzole 

treatment of Schwann cells and astrocytes with riluzole resulted in a significant reduction 

of trophic activity (Fig. 16), suggesting a biphasic stimulatory-inhibitory effect of riluzole 

on the production of trophic factors.  

The regulation of the concentration of different trophic factors by oral administration of 

riluzole to mice was tissue and time dependent (Fig. 17).  While some trophic factors 

were initially increased over basal concentrations, all trophic factors concentrations 

dropped to basal levels and in some cases below basal levels after longer treatment with 

riluzole.   In agreement with the cell culture results, CT-1 was the only trophic factor 
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consistently induced after acute treatment of mice with riluzole in spinal cord, sciatic 

nerve and brain (Fig. 17).  BDNF and GDNF concentrations were initially increased in 

some tissues, but not others.  However, chronic treatment reversed to basal or below 

control levels for all three trophic factors (Fig. 17).  The half-life of riluzole in vivo is 

measured in hours.  In the nervous system, riluzole is removed at the level of the blood-

brain barrier by the P-glycoprotein (Milane, Fernandez et al. 2007; Milane, Vautier et al. 

2009; Milane, Fernandez et al. 2010; Dulin, Moore et al. 2013).  In patients and models 

of ALS both drug efflux transporters, P-glycoprotein and breast cancer-resistant protein 

(BCRP) are increased.  Gene deletion of P-glycoprotein or pharmacological inhibition of 

these transporters provides a small protective effect when riluzole is administer at disease 

onset in the G93A mouse model of ALS (Jablonski, Markandaiah et al. 2014).  This 

enhanced protection by riluzole is consistent with our observation of acute effects 

increasing trophic factor production.  However, decreased concentrations of riluzole in 

the nervous system could explain the return of the trophic factor concentrations to basal 

control levels, but not below those levels, suggesting there is a secondary inhibitory 

effect mediated by riluzole itself or by a metabolic product of riluzole that remains to be 

identified.   

Riluzole is undergoing clinical trials for the treatment of spinal cord injury and repair.  In 

order to maximize its therapeutic effects riluzole must be administered within hours of 

injury (Nogradi, Szabo et al. 2007). Thus, riluzole may be effective for treatment in 

spinal cord injury and repair in these conditions because trophic factor production by 
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astrocytes is induced locally at the critical time to prevent neuronal death and to facilitate 

axonal regeneration and growth (Li, Oppenheim et al. 1994; Bergerot, Shortland et al. 

2004).  These findings suggest that induction of the specific trophic factors in the right 

cells could be critical to achieve the desired beneficial therapeutic effect in spinal trauma. 

Most animal studies were conducted using continuous administration of riluzole for 2-3 

weeks (Nogradi and Vrbova 2001; Bergerot, Shortland et al. 2004; Nogradi, Szabo et al. 

2007; Dennys, Franco et al. 2014), which could result in a decreased of the potential 

beneficial effects.  However, it is also possible that the long-term treatment with riluzole 

induces an initial increase in trophic support, which helps axon regenerate through the 

affected area. Conversely, the chronic effect of riluzole could also be beneficial in this 

context, by decreasing the local production of trophic factors, which allows axons to 

leave the affected area to interact with the right targets.  

Trophic factors have shown to be protective in animal models of ALS.  However, the 

translation to clinical trials resulted in failure.  Most trophic factors investigated in 

clinical trials for ALS have been unsuccessful at extending patient survival (Group 1996) 

These trials used invasive delivery methods to ensure the trophic factor of interest would 

cross the blood brain barrier (Kastin, Akerstrom et al. 2003; Dennys, Franco et al. 2014).  

In summary, there are multiple factors that can explain trophic factors failure in clinical 

trails, including secondary effects due to systemic administration (Gould and Oppenheim 

2011).  The success of riluzole may be due to the stimulation of the local production of 

trophic factor by motor neuron associated cells.  However, independently of the 
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mechanism of riluzole action, here we show that riluzole regulates protein expression and 

it has opposite effects on the production of trophic factors.  Early stimulation of trophic 

factor production is followed by a decrease, in some cases below basal levels, which 

strongly suggest the second phase is not a consequence of loss of activity or habituation 

but inhibition of trophic factor production. Modifying the dosing regimen of riluzole may 

maximize the protective effects of the glial-derived trophic activity necessary to improve 

treatment of patients with ALS. We showed that discontinuous administration of riluzole 

maintained elevated CT-1 levels in the spinal cord in vivo (Fig. 18).  However, these 

same protocols of discontinuous riluzole treatment did not prevent down regulation of 

BDNF or GDNF.  In the case of GDNF, after 15 days treatment with riluzole with a 15 

days rest period, the concentrations of the trophic factor were not affected by further 

administration of the drug. In contrast, when the initial period of riluzole administration 

was 30 days, the additional treatment with riluzole further decreased the concentrations 

of GDNF, suggesting that some of the chronic effects of riluzole could be irreversible or 

take a very long time to reverse.  

Riluzole readily crosses the blood brain barrier and in addition to stimulate trophic factor 

production in glial cells, it has direct effects on motor neurons and maybe other yet 

unknown protein synthesis-dependent effects. Optimizing the administration protocols 

could avoid potential negative chronic effects such as the decrease of trophic factors 

levels described here.  In addition, it is possible that the modest effects of riluzole in ALS 

are due to a combination of acute protective effects and chronic negative effects. 
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However, this biphasic effect may be actually beneficial in other conditions such as 

spinal cord injury.  The initial protective effect of riluzole could help neuronal survival 

and axon growth through the damaged area. The secondary inhibition of trophic factor 

production might allow axons to leave the damaged area and reach their targets, thus 

reversing the damage. Optimizing the administration conditions for riluzole would 

depend on the pathology to be treated and the development of good peripheral markers of 

riluzole action in the central nervous system to adjust dosage according to the response of 

the patient.  
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CHAPTER 5: GENERAL DISCUSSION 

The inability of neurons to replicate makes their loss particularly devastating to the 

nervous system as new cells cannot be generated to replaced lost ones.  Therefore the 

nervous system has unique mechanisms to maintain motor neuron survival.   The inability 

of motor neurons to initiate a stress response appears counter intuitive in this context.  

Consequently, the role of heat shock chaperones has been extensively studied as a 

potential therapeutic target in neurodegeneration (Bruening, Roy et al. 1999; Batulan, 

Shinder et al. 2003; Robinson, Tidwell et al. 2005; Batulan, Taylor et al. 2006; 

Gifondorwa, Robinson et al. 2007; Robinson, Gifondorwa et al. 2010).  We have shown 

that Hsp90 plays a critical role in motor neuron survival due to its repressive effects on 

the purine receptor P2X7 (P2X7R).  Activation of P2X7R leads to inhibition of the 

PI3K/AKT pathway and Fas mediated apoptosis.  The atypical stress response may be 

due to the repressive effects of Hsp90 on P2X7R.  Removal of Hsp90 from this 

repressive complex under conditions of stress, would lead to motor neuron death.   

Significant motor neuron death is found at disease onset and increases as disease 

progresses in transgenic mutant SOD animals models (Bruijn, Becher et al. 1997) 

(Vinsant, Mansfield et al. 2013).  However the mechanism behind mutant SOD toxicity 

remains to be identified.  We show that mutant SOD facilitates nitration of Hsp90.  

Nitrated Hsp90 has been shown to activate P2X7 leading to cell surface expression of 

FasL and subsequent activation of FasR without transcriptional activation of Fas (Franco, 
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Ye et al. 2013). This suggests that mutant SOD facilitated Hsp90 nitration may be 

inducing motor neuron cell death by the same mechanism.  These findings explain why 

P2X7R inhibitors are protective in animal models for ALS (Apolloni, Amadio et al. 

2014).  However motor neuron cell death induced following inhibition of Hsp90 involves 

a slightly different mechanism.  Inhibition of Hsp90 leads to inhibition of the PI3K/AKT 

pathway and subsequently induces FasL expression.  This difference provides evidence 

for a toxic gain of function for nitrated Hsp90. 

ALS pathology has been attributed to both a cell autonomous and non-cell autonomous 

processes.  Transgenic animals containing genetic deletion of neuronal mutant SOD still 

develop the disease (Boillee, Yamanaka et al. 2006).  This suggests a glial contribution to 

disease pathology.  Conditioned media and co-culture experiments indicate that 

astrocytes secrete a soluble factor that induces motor neuron death (Pehar, Cassina et al. 

2004; Nagai, Re et al. 2007; Aebischer, Cassina et al. 2010; Diaz-Amarilla, Olivera-

Bravo et al. 2011; Basso, Pozzi et al. 2013; Re, Le Verche et al. 2014).  Therapeutic 

targeting of these cells to secrete trophic factors is a potential therapeutic treatment for 

ALS.  We show that acute treatment with riluzole induces trophic factor production in 

astrocytes and Schwann cells.  Therefore, treatment with riluzole could prevent the toxic 

effects observed of glial cells in ALS.  However, long-term treatment with riluzole 

reduces trophic factor levels to equal or below untreated cell types.  Therefore the current 

dosing regimen of twice a day for ALS patients could be detrimental in the long-term.  

Discontinuous riluzole treatment in animals can maintain elevated levels for trophic 
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factors and prevent trophic factor reduction in a factor specific manor.  This suggests that 

optimizing a discontinuous riluzole treatment in ALS patients may extend lifespan in 

ALS patients. 

Nitrated Hsp90 has been implicated in other disease states including spinal cord injury 

(Franco, Ye et al. 2013).  The ability of a normal cell to induce nitration of Hsp90 

suggests a signaling capability of this modification.  Therefore it could be possible for 

Hsp90 to be nitrated in circumstances that does not involve mutant SOD.  One such 

instance is in cases of sporatic ALS, where the cause of motor neuron disease is unrelated 

to genetics.  Certain stress related triggers, such as metal depleted wild type SOD 

(Rotunno and Bosco 2013), may induce Hsp90 nitration leading to motor neuron death 

and ALS pathology.  Therefore nitration of Hsp90 may explain disease pathology in ALS 

cases with unknown cause. 

In summary, we have identified Hsp90 and P2X7R as critical proteins in the regulation of 

motor neuron survival and cell death.  Mutant SOD facilitates Hsp90 nitration, which is 

known to induce P2X7R mediated cell death, an effect that may explain mutant SOD 

toxicity.  Selective therapeutic targeting of nitrated Hsp90, and not the form of Hsp90 

responsible for P2X7R repression, is a potential therapeutic target for drug development 

for the treatment of ALS.  Finally we have provided proof of principle that changes in the 

administration frequency of riluzole may improve therapeutic efficacy of the drug.  We 

have provided significant advances in causality of ALS and new therapeutic approaches. 
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APPENDIX A: FIGURES 
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Figure 1:  Effect of Hsp90 inhibition on neuronal survival.  

Cells were plated in the presence or absence of trophic factors for 24 h prior to geldanamycin treatment.  

Cell survival was measured using calcein-AM staining. (A) Motor neurons were treated with geldanamycin 

(GA, 0.01 nM - 500 nM) in the presence (, +TF) or absence of trophic factors (, -TF) for 24 h. (B) 

Representative images of motor neuron cultured in the presence of trophic factors 24 h after addition of 

geldanamycin (0.1 to 10 nM). The motor neurons were stained with calcein-AM and the images were 
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captured with a Plate Runner HD (Trophos). (C) Cells from whole embryo ventral spinal cords () and 

isolated cortical neurons (CN) at high (Δ) or low () density were treated with geldanamycin (0.1 nM – 10 

uM) for 24 h. (D) Representative images of cortical neurons 24 h after addition of geldanamycin (0.1 to 10 

nM). (E) Undifferentiated () and differentiated cells () NSC34 cells were treated with geldanamycin (0.1 

M - 100 M) for 24 h. (F) Levels of Hsp90 were compared in rat tissue including adult liver (Li), adult 

(Ad) and embryonic (Em) brain (Br), spinal cord (Sc), plated (Pl) and unplated (UN) motor neurons (MN) 

and the NSC34 motor neuron hybrid cell line (CL) by infrared western blot.  (G) Quantitation of Hsp90 

levels respect to β-actin.  (A-C) Data was fit to a sigmoidal curve, p < 0.0001.  Columns represent the mean 

 SD of at least 3 independent experiments. 

 

Figure 2:  Hsp90 inhibition induces Fas-dependent motor neuron apoptosis.  

(A) Cells were treated with 0.5 nM geldanamycin and 1 g/ml Fas:Fc, and compared to corresponding 

control (CTL).  The data was analyzed using 2-way ANOVA followed by Bonferroni post-hoc test, *p < 

0.05 versus CTL, **p < 0.05 versus CTL+TF. (B) Motor neurons cultured in the presence of trophic factors 

were treated with geldanamycin (0.01 nM – 500 nM) in the absence () or presence of 1 g/ml Fas:Fc () 

for 24 hours and then stained with Calcein-AM.  Data was normalized to control and fit to sigmoidal 
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curves.  The R
2
 for the curves was 0.87 for geldanamycin and 0.76 for geldanamycin + Fas:Fc. The EC50 

values for the curves (0.4 nM and 5nM respectively) were significantly different with p<0.0001.  (C) Motor 

neurons were treated with 0.5 nM geldanamycin and either 10 g/ml actinomycin D or 10 g/ml 

cycloheximide for 24 h. Motor neuron survival was assessed by calcein-AM staining and normalized to the 

control (CTL). *p < 0.05 versus control by 2-way ANOVA followed by Bonferroni post-hoc test. (D, E) 

Quantitative RT-PCR for Fas L (D) and Fas receptor (E) normalized to -actin. Messenger RNA was 

extracted from motor neurons treated with 0.5 nM geldanamycin for 18 h. Expressed as relative expression 

to untreated control (n=3). *p < 0.05 versus control by 1-way ANOVA followed by Bonferroni post-hoc 

test. (F) Motor neurons were treated with 0.5 nM geldanamycin and 50 M of the following caspase 

inhibitors: NCTL (negative control), Z-VAD (pan), Z-DEVD (caspase 3), Z-IETD (caspase 8), and Z-

LEHD (caspase 9) and compared to corresponding control (CTL).  Motor neuron survival was assessed by 

calcein-AM staining and normalized to the control. Statistical analysis was performed using 2-way 

ANOVA followed by Bonferroni post-hoc test, *p < 0.05 versus CTL, **p<0.05 versus TF+GA CTL. 

Columns represent the mean  SD of at least 3 independent experiments. 

 

Figure 3:  Geldanamycin (GA) induced cell death is independent of oxidative stress. 

Motor neurons were cultured in the presence of trophic factors and 0.5 nM geldanamycin or in media 

without trophic factors (TFD, positive control) and in the presence or absence of either 100 M L-NAME 

(A), 50 M MnTBAP or 50 M FeTCPP (C), or 5 M of the p38 MAPK inhibitor SB203580 (D) for 24 h. 

(B) Motor neurons were cultured in the presence of trophic factors and geldanamycin (0.001-100 nM) and 

in the absence () or presence () of 20 M DETANONOate for 24 h.  Data was fit to a sigmoidal curve, 

and values represent the mean  95% CI.  Motor neuron survival was assessed by calcein-AM staining and 

normalized to control. Statistical analysis was performed using 2-way ANOVA followed by Bonferroni 

post-hoc test, *p<0.05 versus control, **p<0.001 versus TFD. Columns represent the mean  SD of at least 

3 independent experiments.   
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Figure 4:   Inhibition of Hsp90 induces FOXO3a transcription factor activation and 

nuclear translocation.  

(A) Representative infrared western blot for total Foxo3a and phosphorylated FOXO3a(S253) from motor 

neurons treated with 0.5 nM geldanamycin (GA) for 16 hours. Band intensity was quantified and ratios of 

FOXO3a(Ser253) versus total FOXO3a (B) and FOXO3a versus GAPDH (C) were calculated. (D) 

Representative inmmunofluorescence of motor neurons transduced with an adenoviral vector expressing 

FOXO3a. Cells were cultured for 72 h and then cultured in the presence of 0.5 nM geldanamycin for 

additional 16 h. (E-G) Motor neurons were transduced with lentiviral particles expressing luciferase under 

the control of fork head response element (FHRE) for 24 h.  Cells were then cultured with 0.5 nM 

geldanamycin for 16 h prior to assessing luciferase activity (E) and motor neuron survival with calcein-AM 

staining (F). Columns represent the mean  SD of at least 3 independent experiments. Statistical analysis 

was performed using a student t-test, *p < 0.05 vs CTL. 
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Figure 5: Inhibition of PI3K/AKT pathway induces cell death via FAS. 

Motor neurons were treated with either 10 M LY294002, 10 M Wortmannin or 0.5 nM geldanamycin  in 

the presence or absence of Fas:Fc for 24 hours and stained with Calcein-AM. Data was normalized to the 

corresponding control (CTL). Values are the mean ± SD of at least 3 independent experiments performed 

by triplicate.  The results were analyzed using 2-way ANOVA followed by Bonferroni multiple comparison 

test. *p<0.001 versus control.  

 
Figure 6: Hsp90 inhibition reduces AKT phosphorylation. 
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(A-D) Representative infrared western blots for total Akt, phospho-Akt(Ser 473), phospho-Akt(Thr 308), 

PDK1 and GAPDH from motor neurons treated with 0.5 nM geldanamycin for 24 h.  Band intensity was 

quantified and ratios of pAkt(Ser473) vs. total Akt (A), pAkt(Thr308) vs. total Akt (B), total Akt vs. 

GAPDH (C), and PDK1 vs. GAPDH (D) were calculated.  Values are the mean ± SD of at least 3 

independent experiments.  Results were analyzed by 1-way ANOVA followed by Bonferroni post-hoc test. 

*p<0.05 versus respective control. 

 

Figure 7:  Hsp90 inhibition induces apoptosis by PTEN mediated inhibition of the 

PI3K/AKT pathway.  

(A) Motor neurons were transduced with adenoviral vectors expressing GFP alone, or co-expressing GFP 

and either constitutive active PI3K, PDK1 or constitutive active Akt.  Seventy-two hours later GFP positive 

cells were counted (t=0) prior to media replacement with either 0.5 nM geldanamycin (GA) or trophic 

factors alone for additional 24 h.  Data was normalized to t=0.  Values are the mean ± SD of at least 3 

independent experiments performed by quadruplicate. Results were analyzed by 2-way ANOVA followed 

by Bonferroni post-hoc test. *p < 0.001 versus GA-treated GFP, **p < 0.05 versus GFP. (B) Expression of 

the recombinant proteins PI3K, PDK1 and Akt was confirmed by infrared western blot for myc-tag. (C) 

Motor neurons were incubated with 0.5 nM geldanamycin for 24 h in the absence or presence of the PTEN 

inhibitor, VO-OH(pic) (VOOH, 2 μM) or 48 h after transducing with PTEN or scrambled shRNA lentiviral 

particles. Cells were counted and normalized to control. *p < 0.05 versus respective control, **p<0.05 

versus respective control+GA by 1-way ANOVA followed by Bonferroni post-hoc test.  (D) 

Downregulation of PTEN expression by PTEN shRNA was confirmed by infrared western blot 48 h after 

motor neuron transduction and normalized to p75 receptor. Columns represent the mean  SD of at least 3 

independent experiments. 
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Figure 8:  Hsp90 inhibition activates P2X7 receptor. 

Motor neurons were incubated with 0.5 nM geldanamycin (GA) in the absence or presence of either P2X7 

inhibitor Brilliant Blue G (BBG, 10 μM), apyrase (APY, 1 U/mL) or the calcium chealator BAPTA-AM (1 

μM) for 24 h (left). Alternatively, cells were transduced with P2X7 receptor or scrambled shRNA lentiviral 

particles for 48 h and then cultured in the presence of 0.5 nM geldanamycin for additional 24 h (right). 

Survival was assessed by calcein-AM staining and normalized to control. *p < 0.05 versus GA by 1-way 

ANOVA followed by Bonferroni post-hoc test. Columns represent the mean  SD of at least 3 independent 

experiments.  

 

Figure 9:  Inhibition of Hsp90 induces motor neuron cell death via P2X7/PTEN 

dependent pathway. 
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Figure 10:  Spinal motor neurons of ALS patients contain NO2Hsp90 

Transverse section of post mortem spinal cord from control and ALS patient immunostained for glial 

fibrillary acidic protein (GFAP, red) and nitrated Hsp90 (NO2Hsp90, green).  Images were obtained using 

confocal microscopy.  Dotted lines correspond to motor neurons. 
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Figure 11: NO2Hsp90 is detected in G93A mice spinal cord during symptomatic 

phase. 

(A) Nontransgenic (NonTg), wild type SOD transgenic (wt hSOD1), asymptomatic (p60), early 

symptomatic (p90), and symptomatic (p120) mutant G93A transgenic animals (hSOD1
G93A

) were 

transcardial perfused. 30-40 μm transverse sections of ventral spinal cord were immunostained for glial 

fibrillary acidic protein (GFAP, red) and nitrated Hsp90 (NO2Hsp90, green) and imaged using confocal 

microscopy (dotted lines).  (B) Spinal cord homogenate (40 μg) was separated by SDS-PAGE and 

immunoblotted for nitrated Hsp90 (NO2Hsp90) and Hsp90.  Band intensities were quantified and normalize 

to B-actin.  (C) Cortical and spinal astrocytes were treated with peroxynitrite for 1 min and 24 hours.  Cell 

lysate were then prepared and separated by SDS-PAGE and immuoblotted for NO2Hsp90 and β-actin.  

Peroxynitrite-treated cell lysate (in vitro) was included as a control. 
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Figure 12:  Zinc deficient and Quad mutant SOD. 

Peroxynitrite (0.5 mM) was added to brain homogenate (1 mg/ml) in the presence or absence of either wild 

type (Wt, blue), zinc deficient (Zn-, green) or quad (Q, purple) SOD (1 mg/mL).  Following brief 

vortexing, samples were separated on a SDS-PAGE and immunoblotted for nitrotyrosine (NO2Tyr, green), 

nitrated Hsp90 (NO2Hsp90, red), Hsp90 (green) and GAPDH (red). (A) Lane intensity of NO2Tyr was 

normalized to GAPDH and (B) band intensity of NO2Hsp90 was normalized to Hsp90. Statistical analysis 

was performed using 1-way ANOVA followed by Bonferroni multiple comparison’s test. * p<0.05 vs Wt. 
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Figure 13: Quad mutant SOD-induced motor neuron death requires copper-

mediated oxidative signaling.  

(A and B) Wild type (Wt, blue), zinc deficient (Zn, green), quad mutant (Q, purple) and copper deficient 

(Cu) SOD was delivered to motor neurons using the cell permeant agent chariot in the absence (A) or 

presence (B) of  50 μM bathocuprione.  After 24 h in culture motor neurons were counted by hand or 

stained using Calcein AM.  Data normalized to chariot control. Statistical analysis was performed using one 

way ANOVA followed by Bonferroni multiple comparison’s test. * p<0.05 vs Wt. ** p<0.05 vs Q. *** 

p<0.05 vs Zn.  (C) Motor neurons were fixed 16 h following Wt, Zn, and Q SOD intracellular delivery and 

immunostained for NO2Hsp90 (red) and Hsp90 (green). DAPI was used as nuclear staining. (D) Motor 

neurons were treated as described in A in the presence or absence of 100 M L-NAME, 50 M FeTCPP, or 

50 M MnTBAP immediately following chariot delivery.  After 24 h in culture motor neurons were 

counted by hand or stained using Calcein AM.  Data normalized to chariot control. Statistical analysis was 

performed using one way ANOVA followed by Bonferroni multiple comparison’s test. * p<0.05 vs Wt. ** 

p<0.05 vs Q. *** p<0.05 vs Zn. 
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Figure 14:  Nitrotyrosine is detected in spinal cord from Quad mutant SOD 

transgenic mice. 

Quad and G93A transgenic mice were transcardial perfused. 30-40 μm transverse ventral spinal cord 

sections were immunostained for human SOD (hSOD), glial fibrillary acidic protein (GFAP), nitrotyrosine 

(NO2Tyr, green) and Nissl (blue) and imaged using confocal microscopy. 
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Figure 15:  Riluzole induces cardiotrophin-1 production in astrocytes and Schwann 

cells.   

Confluent astrocytes (A) were treated with riluzole for 24 h, RNA was extracted and the levels of CT-1, 

BDNF and GDNF were quantified, normalized against -actin and expressed as relative levels respect to 

untreated cells.  Conditioned media from astrocytes (B) and Schwann cells (C) was obtained by incubating 

the cells in the presence or absence of riluzole for 24 h, replacing the media and leaving the cells to 

condition the fresh media in the absence of riluzole for additional 24 h. Motor neurons were plated in the 

presence of the trophic factors BDNF, GDNF, and CT-1 (TF) or in the absence of trophic factors (trophic 

factor deprivation, TFD). When indicated, trophic factor-deprived motor neurons were plated in the 

presence of 1/10 dilution (A) or 1/25 dilution (C) of either untreated conditioned media (CM) or riluzole-

conditioned media (RCM) and in the presence or absence of neutralizing antibody against CT-1 (Anti CT-

1), BDNF (Anti BDNF) and GDNF (Anti GDNF). Motor neurons were cultured for 3 d then counted by 

hand or using Calcein AM. Confluent Schwann cells (D) were treated with riluzole for 24 h, RNA was 

extracted and the levels of CT-1, BDNF and GDNF were quantified as described in A.  Values are the 

mean of at least 3 experiments. For B and C, *p<0.05 vs TFD, **p<0.05 vs RCM,  *** p<0.05 vs CM.  For 

A and D, *p<0.05 vs BDNF or GDNF. Statistical analysis was performed using one-way ANOVA 

followed by Bonferroni post-test. 
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Figure 16:  Chronic riluzole treatment reduces trophic factor production in 

astrocytes and Schwann cells.  

Motor neurons were plated in the presence (TF) or absence of trophic factors (TFD), or with media 

conditioned by astrocytes (A) or Schwann cells  (B) for the indicated periods of time (white arrows).  

Riluzole was then replaced with new media without riluzole and 24 h later conditioned media was collected 

(black arrows).  (A) Motor neurons were plated with conditioned media from astrocytes cultured in the 

absence of riluzole for one (UN) or 6 days (6U) or presence of riluzole for 24 h (1R) or 6 days (6R), or 

cultured for 5 days prior to 24 h incubation with riluzole (5U1R).  Motor neurons were cultured for 3 days 

in the conditioned media then counted by hand or using Calcein AM.  (B) Motor neurons were plated in 

conditioned media from Schwann cells and cultured in the absence of riluzole for one day (UN) or 3 days 

(3U) or presence of riluzole for 24 h (1R), 3 days  (3R), and for 2 days and then treated with riluzole for 24 

h (2U1R).  Motor neurons were cultured for 3 days in described conditioned media then counted by hand or 

using Calcein AM.  (C) Astrocytes were incubated without (0) or with riluzole for 24 h (1) and 6 days (6) 

before RNA was extracted.  The relative changes in mRNA expression of CT-1 (red) BDNF (yellow) and 

GDNF (green) were determined using -actin to normalize.  (D) Schwann cells were incubated without (0) 

or with riluzole for 24 h (1) and 3 days (3) before determining the relative changes in mRNA expression of 

CT-1 (red) BDNF (yellow) and GDNF (green) were determined as described in C.  Values are the mean ± 

SD of at least 3 independent experiments.  For A and B, statistical analysis was performed using ANOVA 

followed by Bonferroni multiple comparison’s test, *p<0.05 vs TFD, **p<0.05 vs 1R, *** p<0.005 vs UN. 

# p<0.05 vs 6U.  For C and D, *p<0.05 vs. 0 day riluzole, **p<0.05 vs. 1 day riluzole. 
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Figure 17:  Effects of riluzole on the trophic factor levels in vivo.   

Male C57BL/6J mice were treated with riluzole (100 µg/ml) in the drinking water for the periods indicated 

in the figures.  At the indicated times the mice were sacrificed, the tissues harvested and stored at -80°C.  

Spinal cord (A) sciatic nerve (B) and brain (C) were homogenized and CT-1 (red), GDNF (green) and 

BDNF (red) protein levels were quantified by ELISA.  Values are the mean of at least three animals from at 

least two independent studies performed by duplicate.  Statistical analysis was performed using 1-way 

ANOVA followed by Bonferroni multiple comparison’s test, * p<0.001 vs control **p<0.05 vs 15 days 

 

 

Figure 18:  Discontinuous treatment of riluzole maintains higher levels of trophic 

factors.   

(A) Riluzole treatment schedule. Animals were administered riluzole (grey arrows) in their drinking water 

(100 µg/ml) continuously for 15 or 30 days then riluzole was removed for another 15 days before receiving 

a second dose of riluzole for additional 6 or 15 days. At the indicated time points the mice were sacrificed 

(x), the tissues  were harvested and stored at -80°C.  Spinal cord was homogenized and CT-1 (B), GDNF 

(C) and BDNF (D) concentrations were quantified by ELISA.  Values are the mean of at least 4 mice with 
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the determinations performed by duplicate.  Statistical analysis was performed using ANOVA followed by 

Bonferroni post-test. * p<0.001 vs control **p<0.05 vs 15 days, #p<0.05 vs 3 days, ## p<0.05 vs 30 days. 
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APPENDIX  B: TABLES 
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Table 1:  EC50 of different cell types treated with geldanamycin 

Cells were treated with geldanamycin (0.01 nM to 100 µM) for 24 hours.  Cell survival was measured 

using calcein-AM staining as described in material and methods. Values represent the mean and 95% CI of 

at least 3 independent experiments.  Data was fit to a sigmoidal curve, p < 0.0001. 

  

Cell Type EC50  

(95% CI) 

Ratio to Motor 

Neurons + TF 

R
2 

Motor Neuron +TF 0.5 nM  

(0.4 nM to 0.6 nM) 

1 0.89 

Motor Neuron - TF 3.4 nM  

(2.4 nM to 4.8 nM)  

7 0.74 

Embryo Ventral 

Spinal Cord 

146 nM  

(118.3 nM to 180.3 nM) 

292 0.84 

High Density Cortical 

Neurons 

5.9nM  

(4.95 nM to 7.1 nM) 

12 0.94 

Low Density Cortical 

Neurons 

497.6 nM  

(404.8 nM to 611.7 nM) 

995 0.80 

NSC34 

undifferentiated 

7.75 µM  

(6.1 µM to 9.8 µM) 

15500 0.82 

NSC34 

differentiated 

0.70 µM  

(0.4 µM to 1.2 µM)  

1400  0.65  
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Table 2:  Metal deficient SOD binds Hsp90. 

Dissociation constants (KD) for wild type (Wt), zinc deficient (Zn), copper deficient 

(Cu), and copper/zinc deficient SOD (APO) binding to Hsp90 were determined using 

surface plasmon resonance (SPR). Increasing concentrations of wild type and mutant 

SOD were passed over immobilized Hsp90 to calculate the KD (nM). 

 

 

KD 

WT 0.0 

Zn 80.5 

Cu 75.0 

APO C111S 70.3 
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APPENDIX C: SUPPLEMENTAL FIGURES 
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Supplemental Figure 1:  Optimization of experiments conducted in Schwann Cells 

Conditioned media from Schwann cells (A) was obtained by incubating the cells in the presence or absence 

of riluzole for 24 h, replacing the media and leaving the cells to condition the fresh media in the absence of 

riluzole for additional 24 h.  Motor neurons were plated in the presence of the trophic factors BDNF, 

GDNF, and CT-1 (TF) or in the absence of trophic factors (trophic factor deprivation, TFD). When 

indicated, trophic factor-deprived motor neurons were plated in the presence of indicated dilution of either 

untreated conditioned media (CM) or riluzole-conditioned media (RCM) for three days.  Motor neuron 

survival was determined by counting by hand. B) Motor neurons were cultured in the presence of a 1/25 

dilution of untreated and riluzole treated conditioned media with or without neutralizing antibody against 

BDNF (Anti BDNF) and GDNF (Anti GDNF). Cells were cultured for 3 d then counted by hand.  C) Motor 

neurons were plated with conditioned media from Schwann cells incubated in absence (UN) or with 

riluzole for 24 h (1R), 6 days (6R), or cultured for 5 d the before incubation with riluzole for 24 h 

(5U1RD). D)  Schwann cells were treated with riluzole for one, three and six days.  RNA was extracted and 

relative levels of CT-1, BDNF and GDNF were quantified (normalized using -actin). 
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Supplemental Figure 2:  Riluzole treatment does not affect cell morphology. 

Confluent astrocytes and Schwann cells cultured in the absence (A) or presence of riluzole for 24 h (B) or 3 

days for Schwann cells (C) or 6 days for astrocytes (C).  

  

Schwann Cells Astrocytes

A

B

C



 83 

REFERENCES 

Abe, K., L. H. Pan, et al. (1995). "Induction of nitrotyrosine-like 
immunoreactivity in the lower motor neuron of amyotrophic lateral 
sclerosis." Neurosci. Lett. 199: 152-154. 

Adams, L., M. C. Franco, et al. (2015). "Reactive nitrogen species in cellular 
signaling." Exp Biol Med (Maywood) 240(6): 711-717. 

Adinolfi, E., M. Kim, et al. (2003). "Tyrosine phosphorylation of HSP90 
within the P2X7 receptor complex negatively regulates P2X7 
receptors." The Journal of biological chemistry 278(39): 37344-
37351. 

Aebischer, J., P. Cassina, et al. (2010). "IFNgamma triggers a LIGHT-
dependent selective death of motoneurons contributing to the non-
cell-autonomous effects of mutant SOD1." Cell Death Differ 18(5): 
754--768. 

Ang, L. C., B. Bhaumick, et al. (1993). "Neurite promoting activity of insulin-
like growth factor I and nerve growth factor on spinal motoneurons is 
astrocyte dependent." Brain Res Dev Brain Res 74(1): 83-88. 

Apolloni, S., S. Amadio, et al. (2014). "Spinal cord pathology is ameliorated 
by P2X7 antagonism in a SOD1-mutant mouse model of amyotrophic 
lateral sclerosis." Dis Model Mech 7(9): 1101-1109. 

Arce, V., R. A. Pollock, et al. (1998). "Synergistic effects of schwann- and 
muscle-derived factors on motoneuron survival involve GDNF and 
cardiotrophin-1 (CT-1)." J Neurosci 18(4): 1440-1448. 



 84 

Barbeito, L., M. Pehar, et al. (2004). "Role of astroglia in the pathogenesis 
of amyotrophic lateral sclerosis." Brain Res Rev 47: 263-274. 

Barthelemy, C. C., C. E. Henderson, et al. (2004). "Foxo3a induces 
motoneuron death through the Fas pathway in cooperation with 
JNK." BMC neuroscience 5(1): 48. 

Basso, A. D., D. B. Solit, et al. (2002). "Akt Forms an Intracellular Complex 
with Heat Shock Protein 90 (Hsp90) and Cdc37 and Is Destabilized by 
Inhibitors of Hsp90 Function." J. Biol. Chem. 277(42): 39858-39866. 

Basso, M., S. Pozzi, et al. (2013). "Mutant copper-zinc superoxide dismutase 
(SOD1) induces protein secretion pathway alterations and exosome 
release in astrocytes: implications for disease spreading and motor 
neuron pathology in amyotrophic lateral sclerosis." J Biol Chem 
288(22): 15699-15711. 

Batulan, Z., G. A. Shinder, et al. (2003). "High threshold for induction of the 
stress response in motor neurons is associated with failure to 
activate HSF1." J Neurosci 23(13): 5789-5798. 

Batulan, Z., D. M. Taylor, et al. (2006). "Induction of multiple heat shock 
proteins and neuroprotection in a primary culture model of familial 
amyotrophic lateral sclerosis." Neurobiology of Disease 24(2): 213-
225. 

Beal, M. F., L. J. Ferrante, et al. (1997). "Increased 3-nitrotyrosine in both 
sporadic and familial amyotrophic lateral sclerosis." Ann Neurol 42: 
644-654. 



 85 

Beckman, J. S., T. W. Beckman, et al. (1990). "Apparent hydroxyl radical 
production by peroxynitrite: implications for endothelial injury from 
nitric oxide and superoxide." Proc Natl Acad Sci U S A 87(4): 1620-
1624. 

Beckman, J. S., M. Carson, et al. (1993). "ALS, SOD and peroxynitrite." 
Nature 364(6438): 584. 

Beckman, J. S., A. G. Estévez, et al. (2001). "Superoxide dismutase and the 
death of motoneurons in ALS." TINS 24(11): S15-S20. 

Beckman, J. S. and W. H. Koppenol (1996). "Nitric oxide, superoxide, and 
peroxynitrite: the good, the bad, and ugly." Am J Physiol 271(5 Pt 1): 
C1424-1437. 

Behzad, H., S. Jamil, et al. (2007). "Cytokine-mediated FOXO3a 
phosphorylation suppresses FasL expression in hemopoietic cell lines: 
investigations of the role of Fas in apoptosis due to cytokine 
starvation." Cytokine 38(2): 74-83. 

Bellingham, M. C. (2011). "A review of the neural mechanisms of action and 
clinical efficiency of riluzole in treating amyotrophic lateral sclerosis: 
what have we learned in the last decade?" CNS Neurosci Ther 17(1): 
4-31. 

Bensimon, G., L. Lacomblez, et al. (1994). "A controlled trial of riluzole in 
amyotrophic lateral sclerosis. ALS/Riluzole Study Group." The New 
England journal of medicine 330(9): 585-591. 



 86 

Bergerot, A., P. J. Shortland, et al. (2004). "Co-treatment with riluzole and 
GDNF is necessary for functional recovery after ventral root avulsion 
injury." Exp Neurol 187(2): 359-366. 

Berthod, F. and F. Gros-Louis (2012). In Vivo and In Vitro Models to Study 
Amyotrophic Lateral Sclerosis. Amyotrophic Lateral Sclerosis. M. H. 
Maurer. http://www.intechopen.com/books/amyotrophic-lateral-

sclerosis/in-vivo-and-in-vitro-models-to-study-amyotrophic-lateral-

sclerosis, InTech. 

Boillee, S., K. Yamanaka, et al. (2006). "Onset and Progression in Inherited 
ALS Determined by Motor Neurons and Microglia." Science 
312(5778): 1389-1392. 

Bordet, T., J. C. Lesbordes, et al. (2001). "Protective effects of 
cardiotrophin-1 adenoviral gene transfer on neuromuscular 
degeneration in transgenic ALS mice." Hum Mol Genet 10(18): 1925-
1933. 

Brockes, J. P., K. L. Fields, et al. (1979). "Studies on cultured rat Schwann 
cells. I. Establishment of purified populations from cultures of 
peripheral nerve." Brain Res 165(1): 105-118. 

Bruening, W., J. Roy, et al. (1999). "Up-regulation of protein chaperones 
preserves viability of cells expressing toxic Cu/Zn-superoxide 
dismutase mutants associated with amyotrophic lateral sclerosis." J 
Neurochem 72(2): 693-699. 

Bruijn, L. I., M. F. Beal, et al. (1997). "Elevated free nitrotyrosine levels, but 
not protein-bound nitrotyrosine or hydroxyl radicals, throughout 
amyotrophic lateral sclerosis (ALS)-like disease implicate tyrosine 



 87 

nitration as an aberrant in vivo property of one familial ALS-linked 
superoxide dismutase 1 mutant." Proc Natl Acad Sci USA 94: 7606-
7611. 

Bruijn, L. I., M. W. Becher, et al. (1997). "ALS-Linked SOD1 Mutant G85R 
Mediates Damage to Astrocytes and Promotes Rapidly Progressive 
Disease with SOD1-Containing Inclusions." Neuron 18(2): 327-338. 

Bruijn LI, B. M., Lee MK, Anderson KL, Jenkins NA, Copeland NG, Sisodia SS, 
Rothstein JD, Borchelt DR, Price DL, Cleveland DW. (1997). "ALS-
linked SOD1 mutant G85R mediates damage to astrocytes and 
promotes rapidly progressive disease with SOD1-containing 
inclusions." Neuron 18(2): 327-338. 

Bruijn, L. I., M. K. Houseweart, et al. (1998). "Aggregation and Motor 
Neuron Toxicity of an ALS-Linked SOD1 Mutant Independent from 
Wild-Type SOD1." Science 281: 1851-1854. 

Brunet, A., A. Bonni, et al. (1999). "Akt promotes cell survival by 
phosphorylating and inhibiting a Forkhead transcription factor." Cell 
96(6): 857-868. 

Casoni, F., M. Basso, et al. (2005). "Protein nitration in a mouse model of 
familial amyotrophic lateral sclerosis: possible multifunctional role in 
the pathogenesis." J Biol Chem 280(16): 16295-16304. 

Cheah, B. C., S. Vucic, et al. (2010). "Riluzole, neuroprotection and 
amyotrophic lateral sclerosis." Current medicinal chemistry 17(18): 
1942-1199. 



 88 

Cifra, A., G. L. Mazzone, et al. (2013). "Riluzole: what it does to spinal and 
brainstem neurons and how it does it." Neuroscientist 19(2): 137-
144. 

Clement, A. M., M. D. Nguyen, et al. (2003). "Wild-type nonneuronal cells 
extend survival of SOD1 mutant motor neurons in ALS mice." Science 
302(5642): 113-117. 

Crow, J. P., J. B. Sampson, et al. (1997). "Decreased zinc affinity of 
amyotrophic lateral sclerosis-associated superoxide dismutase 
mutants leads to enhanced catalysis of tyrosine nitration by 
peroxynitrite." J. Neurochem. 69(4): 1936-1944. 

Crow, J. P., M. J. Strong, et al. (1997). "Superoxide dimutase catalyzes 
nitration of tyrosines by peroxinitrite in the rod and head domains of 
neurofilament L." J Neurochem 69(5): 1945-1953. 

Deng, H.-X., Y. Shi, et al. (2006). "Conversion to the amyotrophic lateral 
sclerosis phenotype is associated with intermolecular linked insoluble 
aggregates of SOD1 in mitochondria." PNAS 103(18): 7142-7147. 

Deng, H. X., A. Hentati, et al. (1993). "Amyotrophic lateral sclerosis and 
structural defects in Cu,Zn superoxide dismutase." Science 
261(5124): 1047-1051. 

Dennys, C. N., J. Armstrong, et al. (2015). "Chronic inhibitory effect of 
riluzole on trophic factor production." Exp Neurol. 271:301-307. 



 89 

Dennys, C. N., M. C. Franco, et al. (2014). "Trophic factor production by glial 
cells in the treatment of amyotrophic lateral sclerosis." J Biomed Eng 
1(5): 8. 

Diaz-Amarilla, P., S. Olivera-Bravo, et al. (2011). "Phenotypically aberrant 
astrocytes that promote motoneuron damage in a model of inherited 
amyotrophic lateral sclerosis." Proceedings of the National Academy 
of Sciences of the United States of America 108(44): 18126-18131. 

Didelot, C., E. Schmitt, et al. (2006). Heat shock proteins: endogenous 
modulators of apoptotic cell death. Molecular Chaperones in Health 
and Disease. M. Gaestel. Berlin, Springer. 172: 171-198. 

Doble, A. (1997). "Effects of riluzole on glutamatergic neurotransmission in 
the mammalian central nervous system, and other pharmacological 
effects." Reviews in Comtemporary Pharmacology 8: 213-225. 

Dolcet, X., J. Egea, et al. (1999). "Activation of phosphatidylinositol 3-kinase, 
but not extracellular-regulated kinases, is necesary to mediate brain-
derived neurotrophic factor-induced motoneuron survival." J 
Neurochem 73: 521-531. 

Dougherty, K. D., C. F. Dreyfus, et al. (2000). "Brain-derived neurotrophic 
factor in astrocytes, oligodendrocytes, and microglia/macrophages 
after spinal cord injury." Neurobiol Dis 7(6 Pt B): 574-585. 

Duda, J. E., B. I. Giasson, et al. (2000). "Widespread nitration of pathological 
inclusions in neurodegenerative synucleinopathies." Am. J. Pathol. 
157(5): 1439-1445. 



 90 

Dulin, J. N., M. L. Moore, et al. (2013). "The dual cyclooxygenase/5-
lipoxygenase inhibitor licofelone attenuates p-glycoprotein-mediated 
drug resistance in the injured spinal cord." J Neurotrauma 30(3): 211-
226. 

Eagleson, K. L. and M. R. Bennett (1986). "Motoneurone survival 
requirements during development: the change from immature 
astrocyte dependence to myotube dependence." Developmental 
Brain Research 29(2): 161-172. 

Eagleson, K. L., T. R. Raju, et al. (1985). "Motoneuron survival is induced by 
immature astrocytes from developing avian spinal cord." Dev Brain 
Res 17: 95-104. 

Estévez, A. G., J. P. Crow, et al. (1999). "Induction of nitric oxide-dependent 
apoptosis in motor neurons by zinc-deficient superoxide dismutase." 
Science 286: 2498-2500. 

Estevez, A. G., J. B. Sampson, et al. (2000). "Liposome-delivered superoxide 
dismutase prevents nitric oxide-dependent motor neuron death 
induced by trophic factor withdrawal." Free Radic Biol Med 28(3): 
437-446. 

Estevez, A. G., N. Spear, et al. (1998). "Nitric oxide and superoxide 
contribute to motor neuron apoptosis induced by trophic factor 
deprivation." J Neurosci 18(3): 923-931. 

Estevez, A. G., J.-M. Stutzmann, et al. (1995). "Protective effect of riluzole 
on excitatory amino acid-mediated neurotoxicity in motoneuron-
enriched cultures." European Journal of Pharmacology 280(1): 47-53. 



 91 

Ferrante, R. J., L. A. Shinobu, et al. (1997). "Increased 3-nitrotyrosine and 
oxidative damage in mice with a human copper/zinc superoxide 
dismutase mutation." Ann Neurol 42: 326-334. 

Fiskus, W., R. Rao, et al. (2008). "Molecular and biologic characterization 
and drug sensitivity of pan-histone deacetylase inhibitor-resistant 
acute myeloid leukemia cells." Blood 112(7): 2896-2905. 

Foerster, B. R., M. G. Pomper, et al. (2013). "An imbalance between 
excitatory and inhibitory neurotransmitters in amyotrophic lateral 
sclerosis revealed by use of 3-T proton magnetic resonance 
spectroscopy." JAMA Neurol 70(8): 1009-1016. 

Franco, M. C., Y. Ye, et al. (2013). "Nitration of Hsp90 induces cell death." 
Proc Natl Acad Sci U S A 110(12): E1102-1111. 

Fujita, N., S. Sato, et al. (2002). "Involvement of Hsp90 in Signaling and 
Stability of 3-Phosphoinositide-dependent Kinase-1." J. Biol. Chem. 
277(12): 10346-10353. 

Fulmer, C. G., M. W. VonDran, et al. (2014). "Astrocyte-derived BDNF 
supports myelin protein synthesis after cuprizone-induced 
demyelination." J Neurosci 34(24): 8186-8196. 

Gaestel, M. (2006). "Molecular chaperones in signal transduction." 
Handbook of Experimental Pharmacology 172: 93-109. 

Gandelman, M., M. Levy, et al. (2013). "P2X7 receptor-induced death of 
motor neurons by a peroxynitrite/FAS-dependent pathway." J 
Neurochem 126(3): 382-388. 



 92 

Garces, A., G. Haase, et al. (2000). "GFRalpha 1 is required for development 
of distinct subpopulations of motoneuron." J Neurosci 20(13): 4992-
5000. 

Ghalali, A., F. Wiklund, et al. (2014). "Atorvastatin prevents ATP-driven 
invasiveness via P2X7 and EHBP1 signaling in PTEN-expressing 
prostate cancer cells." Carcinogenesis 35(7): 1547-1555. 

Gifondorwa, D. J., M. B. Robinson, et al. (2007). "Exogenous Delivery of 
Heat Shock Protein 70 Increases Lifespan in a Mouse Model of 
Amyotrophic Lateral Sclerosis." J. Neurosci. 27(48): 13173-13180. 

Gonzalez-Zulueta, M., L. M. Ensz, et al. (1998). "Manganese superoxide 
dismutase protects nNOS neurons from NMDA and nitric oxide-
mediated neurotoxicity." J Neurosci 18(6): 2040-2055. 

Gould, T. W. and R. W. Oppenheim (2011). "Motor neuron trophic factors: 
therapeutic use in ALS?" Brain Res Rev 67(1-2): 1-39. 

Group, A. C. T. S. (1996). "A double-blind placebo-controlled clinical trial of 
subcutaneous recombinant human ciliary neurotrophic factor 
(rHCNTF) in amyotrophic lateral sclerosis. ALS CNTF Treatment Study 
Group." Neurology 46(5): 1244-1249. 

Gurney, M. E., F. B. Cutting, et al. (1996). "Benefit of vitamin E, riluzole, and 
gabapentin in a transgenic model of familial amyotrophic lateral 
sclerosis." Ann Neurol 39(2): 147-157. 



 93 

Gurney, M. E., T. J. Fleck, et al. (1998). "Riluzole preserves motor function in 
a transgenic model of familial amyotrophic lateral sclerosis." 
Neurology 50(1): 62-66. 

Gurney, M. E., H. Pu, et al. (1994). "Motor neuron degeneration in mice 
that express a human Cu,Zn superoxide dismutase mutation." 
Science 264(5166): 1772-1775. 

Hall, E. D., J. A. Oostveen, et al. (1998). "Relationship of microglial and 
astrocytic activation to disease onset and progression in a transgenic 
model of familial ALS." Glia 23(3): 249-256. 

He, T. C., S. Zhou, et al. (1998). "A simplified system for generating 
recombinant adenoviruses." Proc Natl Acad Sci U S A 95(5): 2509-
2514. 

Henderson, C. E., E. Bloch-Gallego, et al. (1995). Purified embryonic 
motoneurons. Neural cell culture: A practical approach. J. Cohen and 
G. Wilkin. Oxoford, England, IRL Press: 69-81. 

Henderson, C. E., W. Camu, et al. (1993). "Neurotrophins promote motor 
neuron survival and are present in embryonic limb bud." Nature 
363(6426): 266-270. 

Henderson, C. E., H. S. Phillips, et al. (1994). "GDNF: a potent survival factor 
for motoneurons present in peripheral nerve and muscle." Science 
266(5187): 1062-1064. 

Howland, D. S., J. Liu, et al. (2002). "Focal loss of the glutamate transporter 
EAAT2 in a transgenic rat model of SOD1 mutant-mediated 



 94 

amyotrophic lateral sclerosis (ALS)." Proc Natl Acad Sci U S A 99(3): 
1604-1609. 

Ischiropoulos, H., L. Zhu, et al. (1992). "Peroxynitrite-mediated tyrosine 
nitration catalyzed by superoxide dismutase." Archives of 
Biochemistry and Biophysics 298(2): 431-437. 

Jaarsma, D., E. Teuling, et al. (2008). "Neuron-Specific Expression of Mutant 
Superoxide Dismutase Is Sufficient to Induce Amyotrophic Lateral 
Sclerosis in Transgenic Mice." J. Neurosci. 28(9): 2075-2088. 

Jablonski, M. R., S. S. Markandaiah, et al. (2014). "Inhibiting drug efflux 
transporters improves efficacy of ALS therapeutics." Ann Clin Transl 
Neurol 1(12): 996-1005. 

Jean, Y. Y., L. D. Lercher, et al. (2008). "Glutamate elicits release of BDNF 
from basal forebrain astrocytes in a process dependent on 
metabotropic receptors and the PLC pathway." Neuron Glia Biol 4(1): 
35-42. 

Jiang, B. H. and L. Z. Liu (2008). "PI3K/PTEN signaling in tumorigenesis and 
angiogenesis." Biochim Biophys Acta 1784(1): 150-158. 

Kang, S. H., Y. Li, et al. (2013). "Degeneration and impaired regeneration of 
gray matter oligodendrocytes in amyotrophic lateral sclerosis." Nat 
Neurosci 16(5): 571-579. 

Kastin, A. J., V. Akerstrom, et al. (2003). "Glial cell line-derived neurotrophic 
factor does not enter normal mouse brain." Neurosci Lett 340(3): 
239-241. 



 95 

Kirby, J., K. Ning, et al. (2011). "Phosphatase and tensin homologue/protein 
kinase B pathway linked to motor neuron survival in human 
superoxide dismutase 1-related amyotrophic lateral sclerosis." Brain 
134(Pt 2): 506-517. 

Lacomblez, L., G. Bensimon, et al. (1996). "Dose-ranging study of riluzole in 
amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis/Riluzole 
Study Group II." Lancet 347(9013): 1425-1431. 

Lacomblez, L., G. Bensimon, et al. (1996). "A confirmatory dose-ranging 
study of riluzole in ALS. ALS/Riluzole Study Group-II." Neurology 47(6 
Suppl 4): S242-250. 

Li, J. and J. Buchner (2013). "Structure, function and regulation of the hsp90 
machinery." Biomed J 36(3): 106-117. 

Li, L., R. W. Oppenheim, et al. (1994). "Neurotrophic agents prevent 
motoneuron death following sciatic nerve section in the neonatal 
mouse." J Neurobiol 25(7): 759-766. 

Li, L., D. Prevette, et al. (1998). "Involvement of specific caspases in 
motoneuron cell death in vivo and in vitro following trophic factor 
deprivation." Mol Cell Neurosci 12(3): 157-167. 

Liao, B., W. Zhao, et al. (2012). "Transformation from a neuroprotective to a 
neurotoxic microglial phenotype in a mouse model of ALS." Exp 
Neurol 237(1): 147-152. 

Lyons, T. J., H. Liu, et al. (1996). "Mutations in copper-zinc superoxide 
dismutase that cause amyotrophic lateral sclerosis alter the zinc 



 96 

binding site and the redox behavior of the protein." Proc Natl Acad 
Sci U S A 93(22): 12240-12244. 

Mahalingam, D., R. Swords, et al. (2009). "Targeting HSP90 for cancer 
therapy." Br J Cancer 100(10): 1523-1529. 

Martin, L. J., A. C. Price, et al. (2000). "Mechanisms for neuronal 
degeneration in amyotrophic lateral sclerosis and in models of motor 
neuron death (Review)." Int J Mol Med 5(1): 3-13. 

McCord, J. M. and I. Fridovich (1969). "Superoxide dimutase: an enzymic 
function for erythrocuprein (hemocuprein)." J Biol. Chem. 244(22): 
6049-6055. 

Meininger, V., L. Lacomblez, et al. (2000). "What has changed with 
riluzole?" Journal of neurology 247 Suppl 6: VI/19-22. 

Milane, A., C. Fernandez, et al. (2010). "P-glycoprotein expression and 
function are increased in an animal model of amyotrophic lateral 
sclerosis." Neurosci Lett 472(3): 166-170. 

Milane, A., C. Fernandez, et al. (2007). "Minocycline and riluzole brain 
disposition: interactions with p-glycoprotein at the blood-brain 
barrier." J Neurochem 103(1): 164-173. 

Milane, A., S. Vautier, et al. (2009). "Interactions between riluzole and 
ABCG2/BCRP transporter." Neurosci Lett 452(1): 12-16. 



 97 

Miller, R. G., J. D. Mitchell, et al. (2012). "Riluzole for amyotrophic lateral 
sclerosis (ALS)/motor neuron disease (MND)." Cochrane Database 
Syst Rev 3: CD001447. 

Miller, R. G., D. H. Moore, 2nd, et al. (2001). "Phase III randomized trial of 
gabapentin in patients with amyotrophic lateral sclerosis." Neurology 
56(7): 843-848. 

Milligan, C. E., D. Prevette, et al. (1995). "Peptide inhibitors of the ICE 
protease family arrest programmed cell death of motoneurons in 
vivo and in vitro." Neuron 15(2): 385-393. 

Miraglia, E., J. Hogberg, et al. (2012). "Statins exhibit anticancer effects 
through modifications of the pAkt signaling pathway." Int J Oncol 
40(3): 867-875. 

Mistafa, O., A. Ghalali, et al. (2010). "Purinergic receptor-mediated rapid 
depletion of nuclear phosphorylated Akt depends on pleckstrin 
homology domain leucine-rich repeat phosphatase, calcineurin, 
protein phosphatase 2A, and PTEN phosphatases." J Biol Chem 
285(36): 27900-27910. 

Mizuta, I., M. Ohta, et al. (2001). "Riluzole stimulates nerve growth factor, 
brain-derived neurotrophic factor and glial cell line-derived 
neurotrophic factor synthesis in cultured mouse astrocytes." 
Neuroscience letters 310(2-3): 117-120. 

Mojsilovic-Petrovic, J., N. Nedelsky, et al. (2009). "FOXO3a is broadly 
neuroprotective in vitro and in vivo against insults implicated in 
motor neuron diseases." J Neurosci 29(25): 8236-8247. 



 98 

Mollapour, M. and L. Neckers (2011). "Post-translational modifications of 
Hsp90 and their contributions to chaperone regulation." Biochimica 
et biophysica acta. 

Mollapour, M., S. Tsutsumi, et al. (2010). "Swe1Wee1-dependent tyrosine 
phosphorylation of Hsp90 regulates distinct facets of chaperone 
function." Mol Cell 37(3): 333-343. 

Nagai, M., D. B. Re, et al. (2007). "Astrocytes expressing ALS-linked mutated 
SOD1 release factors selectively toxic to motor neurons." Nat 
Neurosci 10(5): 615-622. 

Nauser, T. and W. H. Koppenol (2002). "The rate constant of the reaction of 
superoxide with nitrogen monoxide: Approaching the diffusion limit." 
Journal of Physical Chemistry A 106(16): 4084-4086. 

Newbern, J., A. Taylor, et al. (2005). "Decreases in phosphoinositide-3-
kinase/Akt and extracellular signal-regulated kinase&nbsp;1/2 
signaling activate components of spinal motoneuron death." Journal 
of Neurochemistry 94(6): 1652-1665. 

Ning, K., C. Drepper, et al. (2010). "PTEN depletion rescues axonal growth 
defect and improves survival in SMN-deficient motor neurons." Hum 
Mol Genet 19(16): 3159-3168. 

Nogradi, A., A. Szabo, et al. (2007). "Delayed riluzole treatment is able to 
rescue injured rat spinal motoneurons." Neuroscience 144(2): 431-
438. 



 99 

Nogradi, A. and G. Vrbova (2001). "The effect of riluzole treatment in rats 
on the survival of injured adult and grafted embryonic 
motoneurons." Eur J Neurosci 13(1): 113-118. 

Oppenheim, R. W., Q. W. Yin, et al. (1992). "Brain-derived neurotrophic 
factor rescues developing avian motoneurons from cell death." 
Nature 360(6406): 755-757. 

Orrell, R. W. (2010). "Motor neuron disease: systematic reviews of 
treatment for ALS and SMA." British medical bulletin 93: 145-159. 

Padmaja, S. and R. E. Huie (1993). "The reaction of nitric oxide with organic 
peroxyl radicals." Biochem. Biophys. Res. Commun. 195: 539-544. 

Papadeas, S. T., S. E. Kraig, et al. (2011). "Astrocytes carrying the superoxide 
dismutase 1 (SOD1G93A) mutation induce wild-type motor neuron 
degeneration in vivo." Proc Natl Acad Sci U S A 108(43): 17803-
17808. 

Pearl, L. H. and C. Prodromou (2000). "Structure and in vivo function of 
Hsp90." Current Opinion in Structural Biology 10(1): 46-51. 

Pearl, L. H. and C. Prodromou (2006). "STRUCTURE AND MECHANISM OF 
THE HSP90 MOLECULAR CHAPERONE MACHINERY." Annual Review 
of Biochemistry 75(1): 271-294. 

Pehar, M., P. Cassina, et al. (2004). "Astrocytic production of nerve growth 
factor in motor neuron apoptosis: implications for amyotrophic 
lateral sclerosis." J Neurochem 89(2): 464-473. 



 100 

Peluffo, H., A. G. Estévez, et al. (1997). "Riluzole promotes survival of rat 
motoneurons in vitro by stimulating trophic activity produced by 
spinal astrocyte monolayers." Neurosci Lett 228(3): 207-211. 

Pennica, D., V. Arce, et al. (1996). "Cardiotrophin-1, a cytokine present in 
embryonic muscle, supports long-term survival of spinal 
motoneurons." Neuron 17(1): 63-74. 

Pettmann, B. and C. E. Henderson (1998). "Neuronal cell death." Neuron 
20(4): 633-647. 

Picard, D. (2002). "Heat-shock protein 90, a chaperone for folding and 
regulation." Cell Mol Life Sci 59(10): 1640-1648. 

Pratt, W. B., Y. Morishima, et al. (2008). "The Hsp90 Chaperone Machinery 
Regulates Signaling by Modulating Ligand Binding Clefts." J. Biol. 
Chem. 283(34): 22885-22889. 

Pratt, W. B. and D. O. Toft (2003). "Regulation of Signaling Protein Function 
and Trafficking by the hsp90/hsp70-Based Chaperone Machinery." 
Experimental Biology and Medicine 228(2): 111-133. 

Prodromou, C., S. M. Roe, et al. (1997). "Identification and structural 
characterization of the ATP/ADP-binding site in the Hsp90 molecular 
chaperone." Cell 90(1): 65-75. 

Rakhit, R., J. P. Crow, et al. (2004). "Monomeric Cu,Zn-superoxide 
dismutase is a common misfolding intermediate in the oxidation 
models of sporadic and familial amyotrophic lateral sclerosis." J Biol 
Chem 279(15): 15499-15504. 



 101 

Rao, R., W. Fiskus, et al. (2008). "HDAC6 inhibition enhances 17-AAG--
mediated abrogation of hsp90 chaperone function in human 
leukemia cells." Blood 112(5): 1886-1893. 

Raoul, C., A. G. Estévez, et al. (2002). "Motoneuron death triggered by a 
specific pathway downstream of Fas: potentiation by ALS-linked 
SOD1 mutations." Neuron 35: 1067-1083. 

Raoul, C., C. E. Henderson, et al. (1999). "Programmed cell death of 
embryonic motoneurons triggered through the Fas death receptor." J 
Cell Biol 147(5): 1049-1062. 

Re, D. B., V. Le Verche, et al. (2014). "Necroptosis drives motor neuron 
death in models of both sporadic and familial ALS." Neuron 81(5): 
1001-1008. 

Reaume AG, E. J., Hoffman EK, Kowall NW, Ferrante RJ, Siwek DF, Wilcox 
HM, Flood DG, Beal MF, Brown RH Jr, Scott RW, Snider WD. (1996). 
"Motor neurons in Cu/Zn superoxide dismutase-deficient mice 
develop normally but exhibit enhanced cell death after axonal 
injury." Nat Genet 13(1): 43-47. 

Reaume, A. G., J. L. Elliott, et al. (1996). "Motor neurons in Cu/Zn 
superoxide dimutase-deficient mice develop normally but exhibit 
enhanced cell death after axonal injury." Nature Genetics 13: 43-47. 

Richter, K. and J. Buchner (2001). "Hsp90: chaperoning signal transduction." 
J Cellular Physiol. 188(3): 281-290. 



 102 

Richter, K., M. Haslbeck, et al. (2010). "The heat shock response: life on the 
verge of death." Mol Cell 40(2): 253-266. 

Robinson, M. B., D. J. Gifondorwa, et al. (2010). Mechanisms of the 
Motoneuron Stress Response and Its Relevance in 
Neurodegeneration. Neurodegeneration: Theory, Disorders and 
Treatments. A. S. McNeill, Nova Science Publishers, Inc. 

Robinson, M. B., J. L. Tidwell, et al. (2005). "Extracellular Heat Shock Protein 
70: A Critical Component for Motoneuron Survival." J. Neurosci. 
25(42): 9735-9745. 

Rosen, D. R., T. Siddique, et al. (1993). "Mutations in Cu/Zn  superoxide 
dimutase gene are associated with familial amyotrophic lateral 
sclerosis." Nature 362(6415): 59-62. 

Rossi, F. H., M. C. Franco, et al. (2013). Pathophysiology of Amyotrophic 
Lateral Sclerosis. Rejeka, Croatia, InTech. 

Rothstein, J. D. and R. W. Kuncl (1995). "Neuroprotective strategies in a 
model of chronic glutamate-mediated motor neuron toxicity." J 
Neurochem 65(2): 643-651. 

Rotunno, M. S. and D. A. Bosco (2013). "An emerging role for misfolded 
wild-type SOD1 in sporadic ALS pathogenesis." Front Cell Neurosci 7: 
253. 

Rumfeldt, J. A., J. R. Lepock, et al. (2009). "Unfolding and folding kinetics of 
amyotrophic lateral sclerosis-associated mutant Cu,Zn superoxide 
dismutases." J Mol Biol 385(1): 278-298. 



 103 

Rumfeldt, J. A., P. B. Stathopulos, et al. (2006). "Mechanism and 
thermodynamics of guanidinium chloride-induced denaturation of 
ALS-associated mutant Cu,Zn superoxide dismutases." J Mol Biol 
355(1): 106-123. 

Sahawneh, M. A., K. C. Ricart, et al. (2010). "Cu,Zn superoxide dismutase 
(SOD) increases toxicity of mutant and Zn-deficient superoxide 
dismutase by enhancing protein stability." J Biol Chem 285(44): 
33885-33897. 

Saneto, R. P. and J. D. Vellis (1987). Neuronal and glial cells: cell culture of 
the central nervous system. Neurochemistry a practical approach. A. 
J. Turner and H. S. Brachelard. Washington, D.C., IRL Press Oxford: 
27-63. 

Sato, S., N. Fujita, et al. (2000). "Modulation of Akt kinase activity by 
binding to Hsp90." PNAS 97(20): 10832-10837. 

Sato, T., Nakanishi, T., Yamamoto, Y., Andersen, PM, Ogawa, Y, Fukada, K, 
Zhou, Z, Aoike, F., Sugai, F., Nagano, S., Hirata, S., Ogawa, M., 
Nakano, R., Ohi, T., Kato, T., Nakagawa, M., Hamasaki, T., Shimizu, A., 
and Sakoda, S. (2005). "Rapid disease progression correlates with 
instability of mutant SOD1 in familial ALS." Neurology 65(12): 1954-
1957. 

Schaar, D. G., B. A. Sieber, et al. (1993). "Regional and cell-specific 
expression of GDNF in rat brain." Exp Neurol 124(2): 368-371. 

Schiffer, D., S. Cordera, et al. (1996). "Reactive astrogliosis of the spinal 
cord in amyotrophic lateral sclerosis." J Neurol Sci 139: 27-33. 



 104 

Schnaar, R. I. and A. E. Schaffner (1981). "Separation of cell types from 
embryonic chicken and rat spinal cord: characterization of 
motoneuron-enriched fractions." J Neurosci 1(2): 204-217. 

Sendtner, M., Y. Arakawa, et al. (1991). "Effect of ciliary neurotrophic factor 
(CNTF) on motoneuron survival." J Cell Sci Suppl 15: 103-109. 

Shinder, G., Lacourse, M., Minotti, S., and Durham, HD (2001). "Mutant 
Cu/Zn-Superoxide Dismutase Proteins Have Altered Solubility and 
Interact with Heat Shock/Stress Proteins in Models of Amyotrophic 
Lateral Sclerosis." Journal of Biological Chemistry 276(16): 12791-
12796. 

Soler, R. M., X. Dolcet, et al. (1999). "Receptors of the glial cell line-derived 
neurotrophic factor family of neurotrophic factors signal cell survival 
through the phosphatidylinositol 3-kinase pathway in spinal cord 
motoneurons." J Neurosci 19(21): 9160-9169. 

Spear, N., A. G. Estévez, et al. (1997). Peroxynitrite and Cell signalling. 
Oxidative Stress and Signal Transduction. H. J. Forman and E. 
Cadenas. New york, Chapman&Hall: 32-51. 

Stebbins, C. E., A. A. Russo, et al. (1997). "Crystal structure of an Hsp90-
geldanamycin complex: targeting of a protein chaperone by an 
antitumor agent." Cell 89(2): 239-250. 

Subramaniam, J. R., W. E. Lyons, et al. (2002). "Mutant SOD1 causes motor 
neuron disease independent of copper chaperone-mediated copper 
loading." Nature Neurosci 5(4): 301-307. 



 105 

Tang, E. D., G. Nunez, et al. (1999). "Negative regulation of the forkhead 
transcription factor FKHR by Akt." J Biol Chem 274(24): 16741-16746. 

Taylor, A. R., D. J. Gifondorwa, et al. (2007). "Astrocyte and Muscle-Derived 
Secreted Factors Differentially Regulate Motoneuron Survival." J. 
Neurosci. 27(3): 634-644. 

Thaxton, C., M. Bott, et al. (2011). "Schwannomin/merlin promotes 
Schwann cell elongation and influences myelin segment length." Mol 
Cell Neurosci 47(1): 1-9. 

Vinsant, S., C. Mansfield, et al. (2013). "Characterization of early 
pathogenesis in the SOD1(G93A) mouse model of ALS: part I, 
background and methods." Brain Behav 3(4): 335-350. 

Vinsant, S., C. Mansfield, et al. (2013). "Characterization of early 
pathogenesis in the SOD1(G93A) mouse model of ALS: part II, results 
and discussion." Brain Behav 3(4): 431-457. 

Vucic, S., C. S. Lin, et al. (2013). "Riluzole exerts central and peripheral 
modulating effects in amyotrophic lateral sclerosis." Brain 136(Pt 5): 
1361-1370. 

Walton-Diaz, A., S. Khan, et al. (2013). "Contributions of co-chaperones and 
post-translational modifications towards Hsp90 drug sensitivity." 
Future Med Chem 5(9): 1059-1071. 

Wang, J. J., H. H. Slunt, et al. (2003). "Copper-binding-site-null SOD1 causes 
ALS in transgenic mice: aggregates of non-native SOD1 delineate a 
common feature." Human molecular genetics 12(21): 2753. 



 106 

Wang, L., H. X. Deng, et al. (2009). "Wild-type SOD1 overexpression 
accelerates disease onset of a G85R SOD1 mouse." Hum Mol Genet 
18(9): 1642-1651. 

Wang, L., K. Sharma, et al. (2008). "Restricted expression of mutant SOD1 in 
spinal motor neurons and interneurons induces motor neuron 
pathology." Neurobiol Dis 29(3): 400-408. 

Weng, L., J. Brown, et al. (2001). "PTEN induces apoptosis and cell cycle 
arrest through phosphoinositol-3-kinase/Akt-dependent and -
independent pathways." Hum Mol Genet 10(3): 237-242. 

Whitesell, L. and S. L. Lindquist (2005). "Hsp90 and the chaperoning of 
cancer." Nature Reviews Cancer 5(10): 761-772. 

Wilhelm, J. C., M. Xu, et al. (2012). "Cooperative roles of BDNF expression in 
neurons and Schwann cells are modulated by exercise to facilitate 
nerve regeneration." J Neurosci 32(14): 5002-5009. 

Wong, P. C., H. Cai, et al. (2002). "Genetically engineered mouse models of 
neurodegenerative diseases." Nat Neurosci 5(7): 633-639. 

Wong, P. C., C. A. Pardo, et al. (1995). "An Adverse Property of a Familial 
Als-Linked Sod1 Mutation Causes Motor-Neuron Disease 
Characterized by Vacuolar Degeneration of Mitochondria." Neuron 
14(6): 1105-1116. 

Xiao, N., C. W. Callaway, et al. (1999). "Geldanamycin Provides 
Posttreatment Protection Against Glutamate-Induced Oxidative 



 107 

Toxicity in a Mouse Hippocampal Cell Line." Journal of 
Neurochemistry 72(1): 95-101. 

Xu, P., K. M. Rosen, et al. (2013). "Nerve injury induces glial cell line-derived 
neurotrophic factor (GDNF) expression in Schwann cells through 
purinergic signaling and the PKC-PKD pathway." Glia 61(7): 1029-
1040. 

Yamanaka, K., S. J. Chun, et al. (2008). "Astrocytes as determinants of 
disease progression in inherited amyotrophic lateral sclerosis." Nat 
Neurosci 11(3): 251-253. 

Yang, D. J., X. L. Wang, et al. (2014). "PTEN regulates AMPA receptor-
mediated cell viability in iPS-derived motor neurons." Cell Death Dis 
5: e1096. 

Ye, Y., C. Quijano, et al. (2007). "Prevention of peroxynitrite-induced 
apoptosis of motor neurons and PC12 cells by tyrosine-containing 
peptides." J. Biol. Chem. 282: 6324-6337. 

Zhao, R., M. Davey, et al. (2005). "Navigating the Chaperone Network: An 
Integrative Map of Physical and Genetic Interactions Mediated by the 
Hsp90 Chaperone." Cell 120(5): 715-727. 

 

 


