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ABSTRACT

The brewing industry generates $350 billion in the US annually, representing 1.9% of the

gross domestic product. Spoilage is a persistent problem throughout production and distribution

that causes untold economic loss, and is therefore meticulously avoided. Contrarily, artisanal

sour beers are necessarily produced by a diverse variety of these spoilage organisms metabolically

interacting in symbiosis as a microbial ecosystem. We sought to gain insight into factors driving

spoilage and souring by investigating a long-debated Darwinian hypothesis.

Darwin’s competition-relatedness hypothesis predicts that closely related species in ecosys-

tems will tend to compete. We isolated a consortium of bacteria and yeast from spoiled and sour

beer, then subjected them to co-culture screening in microtiter plates under a variety of controlled

abiotic conditions. Competition was measured by comparison of biological output of individuals

and co-cultures. Relatedness was quantified from whole genome data using multiple levels of an-

notation, which allowed for meaningful comparisons to be made between distantly related taxa,

such as Bacteria and Eukarya (yeasts).

We found that statistical support for Darwin’s hypothesis is dependent upon on both culture

conditions and measures of relatedness. Strong positive and negative relationships observed in

co-culture screening are the subjects of deeper study, where pathway-level annotations provide

insight into potential mechanisms for biotic interactions. A fundamental understanding of these

relationships is paramount for both preventing spoilage as well as the controlled production of

sour beer. Furthermore, this work sets a precedent for thorough culture-based studies of microbe-

microbe interactions in complex communities.
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CHAPTER 1: INTRODUCTION

In recent years, astonishing advances have been made in gene sequencing technology.

Whole genome sequences have been published for hundreds of thousands of bacteria in just a few

decades. Metagenomics have revealed previously unobserved complexity of microbial communi-

ties. Microbes which had never been cultured in the laboratory were found to be quite ubiquitous

both in nature and in the body [18]. These observations have led renewed interest in understanding

the functional role of microbial communities, for example in the human microbiome where they

may directly influence health [23].

Microbiologists are now well aware of a great disparity between complex microbial com-

munities and isolated laboratory cultures. Much effort has been directed toword utilizing available

metabolomic data from annotated genomes to make predictions about the nature of microbial in-

teractions [17]. Unfortunately, genomic data is being generated at a rate that exceeds the scientific

community’s ability to validate annotations or predictions with scrutiny, and the majority of an-

notations lack experimental evidence [46]. Furthermore, computationally-derived predictions of

these microbial interactions remain largely unverified [35].

In the present work, the complex problem of verifying predictions of microbial interac-

tions is approached by testing a simple ecological hypothesis in a tractable microbial ecosystem.

Following recent publications that seek to predict interactions within the human microbiome, Dar-

win’s competition-relatedness hypothesis is tested. Inspired by Pasteur, who helped revolutionize

medicine and microbiology through studies of spoilage, beer seemed an intuitive choice of medium

for this investigation. It is hoped that data generated is useful to both the scientific research com-

munity as well as brewing industry specialists.
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CHAPTER 2: LITERATURE REVIEW

2.1 Historical scientific advancements from beer

Brewing is the first biological engineering process to be utilized by humans and pre-dates

written history. The earliest evidence of brewing comes from chemical tests of 7000 year old pot-

tery discovered in what is now Iran. Some of the oldest writings discovered were ancient Sumerian

beer receipts. It has been suggested that brewing spawned the agricultural revolution, catalyzing

the development human civilization. The process has been invented independently several times

and every major civilization has developed unique brewing practices [15].

Louis Pasteur’s studies of beer spoilage provided irrefutable evidence for germ theory,

which had a revolutionary effects in medicine. This medium, relatively simple with comparisons

to the human body, allowed for testing of hypotheses that helped disprove spontaneous generation.

As a result aseptic practices became commonplace in medical treatment, vastly reducing mortality

from infection [56].

A natural result of advancements aseptic practices was a revolution in food and beverage

production. Starter cultures that were cultivated by back-slopping of previous batches began to be

produced by growth of pure cultures of singular isolated strains [19]. Such practices in brewing

permeated the food industry. Many modern fermented foods and beverages are produced using

pure cultures, with some notable exceptions.

The study of beer has not only had far reaching effects in microbiology, but molecular

biology as well. The first observation of enzymatic activity was the fermentation of sugar to alcohol

using yeast lysate by Eduard Buchner, for which he was awarded the Nobel Prize in Chemistry in

1907 [42].
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2.2 Beer industry economic impact

Given the rich humanistic heritage in brewing, it seems unsurprising that brewing is a

pervasive practice in modern times. Beer remains the most popular alcoholic beverage in the

world by production volume. 189,060 kL (∼$50 million gallons) were consumed in 2014 globally

[29]. In the United States the beer industry generates over $350 billion in economic output and

represents 1.9% of the gross domestic product. This number includes the economic contribution

from breweries, distributors, and retailers [16].

$68 billion of this is from craft beer, defined as breweries that produce less than 6 million

barrels per year. While the number of large breweries has remained relatively steady in recent

history, the number of craft breweries has been explosive. There were only 124 breweries in 1986

in the United States. By 2006 that number had increased two orders of magnitude. In 2016 there

were 5,301 breweries; all but 50 were craft breweries. Craft beer has come to encompass an

increasing share of the US beer market and in 2016 craft sales increased by 6.2% [8].

2.3 Beer spoilage

Beer spoilage is persistent threat in modern beer production, and contamination is strin-

gently avoided by most brewers. The process of brewing requires aseptic movement of raw ma-

terials between large vessels before being packaged and consumed. With each step in the process

there exists risk of contamination. A single fermentation vessel could contain tens or hundreds of

thousands of dollars in product, and occupy valuable brewing space for weeks or months.

Spoilage organisms in brewery environments have been extensively studied [5]. In an

American craft brewery that produces both modern monoculture beers in addition to sour beers, it

was found that substrate and surface contact were key factors in distribution of spoilage microbes.

They also found raw materials likely to be contributors of spoilage microbes [6].
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Detection of spoilage organisms in modern breweries is often performed by taste or by off-

site third parties. Breweries equipped with laboratories may cultivate contaminants on selective and

differential media [25]. Newer detection methods include ATP luminescence, which is both cost

effective and highly sensitive, but non-specific to spoilage organisms [24]. Other commercially

available options for large breweries include the proprietary qPCR-based GeneDisc R© (Pall) that

is sensitive and allows for identification of specific microbes. Methods that utilize PCR or next-

generation sequencing are of great value to researchers. However, due to price restraints and the

necessity for specialized training, these techniques are not often viable options to brewers routine

use [20].

Beyond packaging, distribution and handling practices at retailers can be variable. Vinyl

beer lines that run from kegs to taps provide an opportunity for contamination that is often beyond

control of breweries. Beer lines at proactive retailers are regularly cleaned, but rarely replaced.

Other retailers may rarely clean and never replace lines. Beer lines are typically a minimum of one

meter in length, but may span great lengths depending on the layout of the establishment. Beer

lines can harbor bacteria and yeast that produce off flavors. By serving beer through infected lines,

it is possible to harm a brewers reputation. This effect can be especially damaging in the case of

fledgling craft breweries in an increasingly competitive market [9].

Spoilage organisms in draft dispense systems are less extensively studied than those of

brewing environment. Both draft lines and taps are thought to harbor biofilms that may drastically

change beer flavor [43]. The Brewers Association recently issued a $120,000 grant to NSF Interna-

tional Applied Research Center (ARC) and Center for Biofilm Engineering (CBE) to assess factors

that lead to biofilm formation and assess efficacy of cleaning methods to combat this process. The

Brewers Association describes this research as the first of its kind and the grant to be the largest

issued by the trade group to date, reflective of the magnitude of the problem for craft brewers [7].
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2.4 Sour beer

Sour beers are a heterogeneous collection of beer styles with one unifying feature, the use

of multiple microbes in the fermentation process which produce lactic or acetic acid. The use of

microbes that otherwise may spoil beer are utilized in such a way that is considered pleasing to the

palate. Examples include the yeast B. bruxellensis and bacteria P. damnosus that are marketed for

commercial and home-brewing use in specialty beers [54]. While little data has been generated

regarding the economic impact of specific beer styles, Google Trends indicates increased interest

in recent years (Figure 2.1).

Figure 2.1: Recent social interest in sour beer.
Relative frequency of searches worldwide for the term “sour beer” from Google Trends from Jan.
2004 to Oct. 2017. Numbers represent search interest relative to the highest point on the chart for
the given region and time.

The fermentation process of historical Belgian styles such as lambic has traditionally been

referred to as “spontaneous” although it is well understood by studies of germ theory that this

is not the case. These beverages are produced without stringent microbial control processes or

starter cultures and are contrasted with modern beers in this way. On the other hand, sour beers

like German Berlinerweisse may be produced by a controlled two-step fermentation process with

a lactic acid fermentation preceding the primary ethanol fermentation. Brewers of such beers may

utilize pure cultures to achieve desired flavor profile. American wild ale is an emerging style with

little historical pedigree. Brewing practices are highly variable. Some brewers follow traditional
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“spontaneous” fermentation practices while others exhibit tight control using a number of pure

cultures [4]. To this end, only a few strains of bacteria and yeast are commercially available and

little is known of their effects on each other..

Comprehensive studies of sour beer fermentation date back to at least 1977 [55]. It is well

understood that the traditional “spontaneous” fermentation process is the result of a succession of

a diverse array of species which contribute the flavor profile of the final product. The fermentation

process begins with bacteria of the family Enterobacteriaceae which are rapidly displaced, fol-

lowed by Lactobacillaceae, then Acetobacteraceae. Yeast populations are initially quite diverse,

with little consensus between studies as to which taxa are dominant. Primary fermentation oc-

curs by Saccharomyces yeast over the first few months and a secondary fermentation occurs by

Brettanomyces over several years [50, 51].

Recent studies recapitulate most observations of succession in traditional sour beer in ear-

lier works, with the exception of the initial yeast population. These yeast are short-lived and their

contribution to the flavor profile is poorly understood. Early studies that based identification on

microscopic observations claimed Kloeckera apiculata to be dominant initially in the fermentation

process. More recent studies that use genetic techniques to make taxonomic assignments, how-

ever found Pichia spp. and Candida spp. to be abundant in the initial fermentation and found no

evidence of Kloeckera spp. The cause of the discrepancy is not clear at this time [49].

A common shortcoming of previous studies of sour beer is that their experimental design

places little emphasis on the functional role of individuals in the fermentation process, let alone

interactions between members of the community. Such observational studies lay a ground work

for understanding the traditional fermentation process, but yield little knowledge that is useful to

crafting modern sour beers with starter cultures.
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2.5 Fermented foods and beverages as microbial ecosystems

Fermented foods and beverages have gained recent attention for the use as model microbial

ecosystems. Their value lies in understanding the mechanisms of microbial community formation.

There is little consensus about the mechanisms that lead to establishment of persistent communities

found in the human microbiome, at least with regard to bacterial species.

A recent review article summarizes numerous studies on fermented foods as microbial

ecosystems that have been conducted recently. The article describes that a great challenge in

understanding microbial communities lies in determining function, due to vast complexity. The

authors suggest a pragmatic approach to simulating the structure of the community is to utilize a

subset of representative organisms for deeper study [59].

2.6 Co-cultures

Co-cultures are of great importance in the food industry where cooperative metabolic in-

teractions are regularly employed. A well studied example is yogurt produced by starter cultures

consisting of Streptococcus thermophilus and Lactobacillus bulgaricus. The combined metabolism

of these two bacteria are shown to interact positively to produce the desired flavor and aroma com-

pounds of the finished product [2].

While the importance of co-culture cannot be understated, comprehensive study of co-

cultures from ecosystems is labor intensive. The number of co-cultures increases exponentially

with the number strains investigated. This has led researchers to use robotics in co-culture screen-

ing and other labor intensive tasks. Such techniques are known as “culture-omics” and are intended

to complement other bioinformatic “-omics” techniques [22].
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2.7 Reverse ecology

Making use of whole genome data to explain metagenomic observations would seem a

natural goal of systems biology. Numerous so-called reverse-ecology tools have been developed

which take different computational approaches [36]. Of particular significance to the present work

is a collection of tools that attempt to predict competitive and cooperative interactions in metabolic

networks named NetSeed, NetCmpt, and NetCooperate. NetSeed uses Kosaraju’s algorithm al-

gorithm to define metabolic “seeds” defined as the minimum reactants required to generate all

other products in a network. NetCmpt and NetCooperate compares lists of seeds and non-seeds to

generate an asymmetric matrix of competitive and cooperative interactions respectively [34].

2.8 Competition relatedness hypothesis

The group that developed NetCmpt and NetSeed algorithms used these tools and found

support for a controversial Darwinian hypothesis known as competition-relatedness or limiting-

similarity. This hypothesis makes two logically equivalent predictions about the nature of species

interacting in ecosystems; closely related species will compete and more distantly related species

will cooperate. While predicted competition and cooperation data are well correlated well with

observations of co-occurrence in human microbiome metagenomes, experimental evidence of pre-

dicted interactions remains arguably scarce [33]. Despite the intuitive nature of these predictions,

recent evaluations produced mixed results [1].
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CHAPTER 3: METHODOLOGY

3.1 Sample collection and strain isolation

Sampling sources included contaminated packaged beer from local craft breweries, con-

taminated tap lines at local bars, sour beer from local crafter brewers and home brewers. Some

pure strains of bacteria and yeast for brewing were also purchased from a national supplier. Sam-

ples were collected as aseptically as possible using sterile equipment, then kept on ice during

transportation and storage.

Samples were plated within 24 hours of collection on modified yeast malt agar (YMA)

containing bromophenol blue (BPB) and a selective agent [58, 32]. Either 10 µg/mL cyclohex-

imide or 100 µg/mL chloramphenicol were added to select against the growth of yeast or bacteria

respectively [48, 40]. A variety of techniques were employed to effectively isolate microbes from

samples with varying concentrations of microbes. These include serial dilution and spot plating,

spread plating, and streak isolation. Approximately 100 strains were isolated in total.

3.2 Taxonomic assignment and phylogenetic analysis

Isolated strains were identified on the basis of genetic barcoding. Genomic DNA was

extracted from 1 mL liquid cultures using a rapid two-step technique. First, cells from a 1 mL

culture (ideally OD 1.0) were pelleted and lysed using zirconia-silica bead beating in 200 µL

lysis buffer consisting of 10 mM Tris-Cl pH 8.0, 5 mM EDTA, 1 mM sodium dodecyl sulfate

(SDS), and 10 µg/mL RNase A [39]. 100µL of lysate was then purified by silica column binding

in 500µL 5 M guianidine solution thiocyanate pH 5.0 with 100 µL isopropanol [11]. Previous

reports demonstrate RNase A unfolding to prevail above 1 mM SDS concentration [41]. To our

knowledge, this is the first time this technique has been employed, which uses RNase A during

lysis with SDS at sub-inhibitory concentrations with resect to enzyme activity.
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Hypervaribale regions of ribosomal RNA genes were amplified using polymerase chain re-

action (PCR). Bacterial primers (S-D-Bact-0341-b-S-17/S-D-Bact-0785-a-A-21) targeted the V3/V4

region of the 16S ribosomal RNA genes [31]. Fungal primers (ITS1F KYO1/ITS4 KYO1) tar-

geted the ITS region [53]. Alternative fungal primers (LR0R/LR3) targeting D1/D2 of the large

ribosomal subunit RNA genes were also used [45]. Amplicons were purified by gel extraction and

then Sanger sequenced commercially. Sequences were used to query Silva using BLAST [44, 12].

Taxonomic assignments were made based on ≥98% sequence homology to known specimens.

Bacterial and yeast sequences were aligned separately in MEGA 7 software using the Mus-

cle algorithm [38]. These alignments were used to generate independent phylogenetic reconstruc-

tions via the Maximum Likelihood method [52]. Since sequences were trimmed, all gap sites were

used, increasing resolution of the reconstruction [57]. Alignments in MEGA were also used to

generate relatedness data for our initial analysis with bacteria only. A distance matrix based on the

homology of these alignments was exported from MEGA, and ribosomal relatedness was defined

as 1 - Distance. Measures of relatedness can be literally interpreted as homology between two

ribosomal genetic sequences.

3.3 Bioninformatic analyses using representative whole-genome data

Representative whole genome data were obtained from GenBank type specimens, having

been identified by ribosomal taxonomic assignments [10]. FASTA formatted lists of proteins were

downloaded for calculations of protein relatedness. GenBank formatted files were downloaded for

metabolic competition modeling. Python scripts used in this study are included in Appendix B.

A python script was written to compute the relatedness of organisms on the basis of protein

homology. This script uses protein sequences of a given genome as BLAST queries against protein

sequences of another genome. Functionally equivalent “positives” are tallied and protein related-

ness is reported as the weighted average of positives returned divided by the number of amino
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acids queried between two proteomes. Protein relatedness representative of the average functional

homology between two proteomes. This approach allowed meaningful comparison to be made

between two distantly related genomes, such as between prokaryotes and eukaryotes.

To more accurately predict competition between organisms, higher levels of annotation

were required. GenBank formatted sequence files were loaded into Pathway Tools and PathoLogic

was used to generate a metabolic network reconstruction [26, 27]. The reconstructed reaction

network was then exported into SBML format [28]. The SBML files were loaded into the NetSeed

online webtool which generated a list of “seed” compounds for each organism [13]. Seeds are

defined as the minimum reactants required to generate all other reactions within a network [33]. A

python script was written to compare lists of seeds between organisms. Metabolic seed relatedness

is reported as the number of common seeds divided by the total number of non-redundant seeds of

two organisms.

3.4 Co-culture experimental setup

All co-cultures were grown in filter sterilized malt extract broth (MEB). Malt extract broth

is similar to what brewers refer to as “wort”, the precursor to beer. It is derived from the enzymatic

conversion of starch from malted barley to sugar and is composed mostly of the disaccharide

maltose. Other components include larger sugars such as maltotriose and dextran, and to a lesser

extent components such as protein, lipids, and tannins [37]. Malt extract is generated by drying the

liquid wort into a powdered product that can be rehydrated at a later time. Brewers typically boil

the rehydrated malt extract for one hour, then cool the wort as rapidly as possible before adding

pure yeast cultures.

Great effort was taken in the aseptic preparation of growth media to generate a product

qualitatively similar to brewers wort that was transparent and thus suitable for optical analyses.

Malt extract was added to deionized water at a rate of 10-15% w/v. Once fully dissolved, it was
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boiled for 30 minutes allowing steam to escape. The malt extract broth was cooled rapidly by

copper coil, then the vessel was transferred to an ice bath overnight to promote the precipitation

of haze-forming proteins. The broth was centrifuged twice at 4000 RCF at 0◦C to remove insol-

uble proteins which interfere with filtration. The centrifuged broth was then filtered by 0.2 µm

nitrocellulose membrane in a HEPA laminar flow cabinet. Finally, the filtered broth was stored

refrigerated in autocalved bottles prior to use.

Cells used as inoculum for co-cultures were washed and “snap” frozen. Individual isolates

were grown in MEB for one to five days, depending on growth rate. Cells were centrifuged and

washed with 50 mM phosphate buffered saline (PBS), then resuspended in a cell storage buffer

consisting of 50 mM PBS with 12.5% glycerol for storage. Cells were homogenized, and sub-

samples were distributed into multiple microcentrifuge tubes and rapidly frozen in dry ice ethanol

slurry. Tubes were stored at -80◦C and thawed only once. For each batch of snap frozen cultures,

one tube was sacrificed for plate counting. This was thawed serially diluted, then spotted onto agar

plates. Colony forming units (CFUs) were enumerated after incubation at 25◦C. This was done in

an effort to ensure consistent inoculation of co-cultures.

Setup for co-culture screening took place entirely in a HEPA laminar flow hood to prevent

contamination. Snap frozen cells were thawed, then normalized in the cell storage buffer. Normal-

ized cells were added to aliquots of MEB resulting in approximately 500 CFU per 100 µL. These

100 µL aliquots were added to microtiter plates pairwise in a quasi-randomized configuration.

Plate configurations were generated using a random number generator, then selected for satisfying

certain criteria. Plate configurations were chosen where exposure to edge effects was equal and

such that like cultures were not adjacent. After addition of inoculated media, microtiter plates were

sealed with sterile breathable film to prevent cross contamination, minimize evaporation, and allow

for out-gassing of cultures. All co-cultures were incubated in microtiter plates for two weeks at

25◦C.
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Abiotic conditions varied were media concentration, the addition of hops in media prepara-

tion, and atmospheric conditions. Media concentrations was measured by hydrometer and reported

as specific gravity (SG), which was varied between SG = 1.040 and 1.060. Concentration of hop

compounds in growth media was measured by spectrophotometric absorbance of iso-alpha-acids

at 275 nm following solvent extraction in iso-octane [3].

Atmospheric conditions were varied using an in-house high-pressure anaerobic chamber

crafted from home-brewing equipment (Figure 3.1). This consists of two soda kegs turned on their

side, allowing for the insertion or removal of microtiter plates. The outlet of the soda kegs are

attached to a mason jar with an air-lock housing a Resazurin anaerobic indicator strip. The soda

kegs are supplied by a CO2 tank with a pressure regulator. For low pressure anaerobic incubation,

one psi of pressure was maintained while allowing outgassing through the air-lock until anaero-

bic condition was confirmed by indicator strip, then the outlet was sealed and CO2 supply was

turned off. High pressure incubation followed the same initial purging protocol, but pressure was

increased to 15 psi for the remainder of the incubation.

Figure 3.1: High pressure anaerobic incubation chamber.
The anaerobic chamber, adapted from home-brewing equipment, allows for stationary incubation
of microtiter plates in high pressure. Anaerobic condition is indicated by test strips in airlock.
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3.5 Co-culture data collection and analysis

Following two weeks of incubation, the two measurements of biotic output were growth,

measured by light scattering, and acidification, measured by a colorimetric assay. It should be

noted that, while light scattering increases with cell density, it is not consistent across cell types

as a reliable metric of biomass. In this sense, reported measurements are merely an estimate of

biomass. Alternative evaluations would include CFU counting and direct biomass measurement.

Given the large number of samples, these methods were determined to be too laborious for practical

application in the present work.

Acidification of media was measured using a colorimetric method developed in-house.

Bromophenol blue (BPB) is added to supernatant from cultures, which changes color within a

range of pH 3.0 - 6.0. Following light scattering readings of OD 600 nm, plates were centrifuged

at 1000 RCF for 30 minutes to pellet cells. 100 µL of supernatant was aspirated from each well

and transferred to fresh microtiter plate. 20 µL of 0.5 mg/mL BPB in 10% ethanol was added to

each well. Peak optical absobances of BPB are observed at 440 nm and 590 nm. As pH shifts

from basic to acidic, absorbance at 440 nm increases 590 nm peak decreases. Using the ratio of

absorbance of the two peaks, the pH of the media was reliably determined for a large number of

samples relatively rapidly. Spectral scan and standard curve of blank-subtracted absorbances of

BPB in growth media are seen in Figure 3.2.
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Figure 3.2: Spectral scan of bromophenol blue in media of variable pH.
Spectral scan of BPB in growth media shows two local peak absorbances at 440 and 590 nm that
vary inversely with pH (A). Semi-log fit of OD 590/440nm ratio is well correlated (R2 = 0.9984)
with pH of growth media (B).

Analysis of data was primarily performed using LibreOffice (OpenOffice.org) spreadsheet

software to determine averages and variances, then Prism R© (GraphPad) was used for statisti-

cal analyses. First, corrections were made to account for pipetting errors. Next, data were de-

randomized to a common intuitive configuration. Measurements were blank corrected by subtract-

ing the average measurements of un-inoculated media. For each co-culture and isolated culture,

the average growth and coefficient of variation was calculated. Competition and cooperation are

calculated as the difference between co-culture growth and average growth of isolates, weighted

by the average of the isolates. Co-acidification is measured as an unweighted difference between

acidification co-cultures and the average acidification of the isolates.
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CHAPTER 4: RESULTS

4.1 DNA extraction, PCR, and sequencing

DNA samples extracted from bacterial and yeast isolates were of sufficient quantity and

quality for downstream use in PCR. The DNA extraction technique used here allowed for reliable

cell lysis and purification of sufficient quantities of high quality genomic DNA. Genomic DNA

extraction using this method was effective for all cell types used in this study including bacteria

and yeast. Several samples can be processed in less than one hour and minimal hazardous chemical

waste is produced. Ethidium bromide gel electrophoresis indicates that samples are free of RNA

that may impede downstream analyses (Figure 4.1).

Figure 4.1: Genomic DNA extracted from beer spoilage and souring isoaltes.
Agarose gel electrophoresis of nucleic acid samples visualized with ethidium bromide UV transil-
lumination. RNase A treatment is effective in lysis buffer with 1 mM SDS but not 15 mM SDS.
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For bacteria, PCR amplification of V3/V4 from 16S RNA encoding genes produced con-

sistently sized ∼500 bp amplicons that generated high-quality Sanger sequence data. For fungi,

primers targeting the ITS region generated products of variable size, dependent upon the fungal

species (Figure 4.2). A notable problem in the case of brewing yeast Saccharomyces cerevisae

and S. pasteurianus was the production of heterogeneous ITS amplicons, which obfuscated inter-

pretation of Sanger sequencing [60]. Further investigation of WGS data for S. cerevisiae strain

QA23 revealed two unique species of ribosomal operons, one with 13 base pair deletions inter-

spersed throughout the ∼1kb diagnostic sequences. For S. pasteurianus strain W34/70 the WGS

data was lacking complete ITS sequences, implying such heterogeneity is indeed problematic for

next-generation sequencing as well. Primers targeting the D1/D2 region of the large ribosomal

subunit (LSU) were used to generate sequences of acceptable quality for taxonomic analyses of

yeast.

Figure 4.2: Purified PCR products from beer spoilage and souring isoaltes.
Agarose gel electrophoresis of purified PCR products visualized with ethidium bromide UV tran-
sillumination. Bacterial V3/V4 amplicons (A) are of relatively consistent size (∼500bp), while
fungal ITS amplicons (B) are of variable size (500-1000bp).
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4.2 Taxonomic assignment and phylogenetic analysis

All isolates collected were identified on the basis of sequence homology to Silva specimens

[44]. Taxonomic assignment of yeast by ITS and LSU yielded qualitatively similar results. From

approximately 100 isolated strains, 16 were selected for inclusion in co-culture experiments and

bioinformatic analyses. Both Candida sp. and Pichia sp. yeast were identified in beer samples

used in this project, and no evidence was found for Kloeckera spp. yeast. Numerous isolates of

Brettanomyces bruxellensis were found in aged sour beer exhibiting an array of colony morpholo-

gies. Some strains marketed as B. anomalus were indistinguishable from B. bruxellensis by Sanger

sequencing, therefore a single B. bruxellensis isolate was chosen for further study.

Figure 4.3: Phylogenetic reconstruction of bacteria and yeast isoaltes.
Figures are generated in MEGA 7 software using ∼500 bp V3/V4 16S ribosomal sequences of
bacteria (A) and D1/D2 26S ribosomal sequences of yeast (B). The tree is drawn to scale, with
branch lengths measured as the number of base substitutions per site.
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4.3 Validation of bioinformatic tools for relatedness metrics

Assignment of WGS data from type specimens was unproblematic for bacterial strains used

in this study. Each strain had a well-annotated counterpart on GenBank that could be readily used

for proteomic BLAST-based analysis or metabolomic analysis via PathwayTools. Yeast WGS data

however, proved to be much more elusive and certain exceptions needed to be made to continue

with bioinformatic analyses. In the case of C. mesenterica WGS data has yet been published,

so data from closely related C. dublinensis was used to serve as a “surrogate”. For the yeasts S.

pasteurianus and T. delbruckii, the available WGS data were not functionally annotated, and could

be used only for proteomic analyses, but not metabolomic analyses. A summary of the strains used

in co-cultures along with the representative WGS strains is provided below in Table 4.1.

Linear regression of ribosomal relatedness derived from ribosomal sequence homology is

significantly correlated (p < 0.0001) with both protein relatedness and seed competition among

bacterial isolates (Figure 4.4). Protein relatedness was found to be significantly correlated to seed

competition, and both metrics allow for pairwise analysis of relatedness between bacteria and eu-

karyotic yeast (Figure 4.5). This validates the use of these tools for further investigation. Metrics

of protein relatedness and seed competition have a more uniform distribution than ribosomal relat-

edness, which may allow for greater resolution of taxonomic and functional differences.
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Table 4.1: Bacteria and yeast isolated from spoiled and sour beer used for co-cultures.
The species listed here were isolated from sour and spoiled beer, then used for co-culture screening.
Bioninformatic analyses were performed using the WGS reference type specimens listed here.
AAB = Acetic acid bacteria, LAB = Lactic acid bacteria.
† = Not functionally annotated , * = Candida dublinensis “surrogate” data used.

Group Species Isolation Source Date WGS Reference
Enteric Enterobacter aerogenes Sour beer 09-30-2016 KCTC 2190
Enteric Enterobacter cloacae Sour beer 09-30-2016 ATCC 13047
Enteric Klebsiella pneumoniae Sour beer 07-24-2016 HS11286
Enteric Raoultella ornithinolytica Sour beer 09-30-2016 B6
AAB Acetobacter fabarum Sour beer 09-30-2016 LMG 1590
AAB Acetobacter malorum Draft line 01-06-2015 LMG 1746
AAB Gluconobacter cerinus Draft line 01-06-2015 CECT 9110
LAB Lactobacillus brevis Canned beer 11-03-2014 ATCC 367
LAB Lactobacillus buchneri Purchased 01-10-2017 CD034
LAB Pediococcus damnosus Purchased 01-10-2017 TMW 2.1535
Yeast Saccharomyces cerevisiae Sour beer 07-24-2016 S288c
Yeast Saccharomyces pasteurianus Purchased 01-10-2017 CBS 1513†
Yeast Torulaspora delbrueckii Draft line 01-06-2015 CBS 1146†
Yeast Candida mesenterica Draft line 01-06-2015 CD36*
Yeast Pichia kudriavzevii Sour beer 07-24-2016 Strain 129
Yeast Brettanomyces bruxellensis Sour beer 09-30-2016 AWRI1499
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Figure 4.4: Validation of bioinformatic relatedness metrics.
For bacteria only, linear regression of ribosomal relatedness determined from alignement of ribo-
somal sequences compared with proteomic relatedness determined by Python BLAST script (A)
and metabolic seed relatedness determined using NetSeed (B).
R2 = 0.8935 and 0.7241 respectively (p < 0.0001 for both).

Figure 4.5: Comparison of bioinformatic relatedness metrics.
Linear regression of proteomic relatedness and metabolic seed relatedness including bacteria,
fungi, and inter-domain bacterial-fungal comparisons. R2 = 0.7714 and p < 0.0001.
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4.4 Results of co-cultures not reliant on distance metrics

Data from co-cultures are displayed in the form of heat maps found in Appendix A. Both

cooperation index and co-acidification data provide useful insight to industrial microbiologists

such as brewers and future researchers intending to exploit of study relationships among individual

species. There were stark differences between aerobic and anaerobic co-cultures. For example, a

strict patterning is seen for co-acidification among low pressure anaerobic cultures in Figure A.5

that is not seen in other physiological conditions.

These analyses indicate a high prevalence of metabolic cooperativity among pairs of mi-

crobes shown in Figure 4.6. Co-cultures tend to grow to a significantly greater optical density than

the average of their isolates. Co-cultures tend to acidify media to a greater extent than the average

of their isolates. By paired t-test p < 0.0001 for all data sets (not shown). It is reasoned that relat-

edness is maximal among the clonal individuals in isolation, and that relatedness for co-cultures is

arbitrarily less. These data support the competition-relatedness hypothesis under this assumption.

Figure 4.6: Overall comparisons of co-cultures with average of isolates.
Dot plot of averaged results from 12 replicates (microaerobic, SG=1.040). Co-cultures tend to
grow to a greater optical density than the average of their isolates (A), and acidify media more than
isolates (B). In all growth conditions tested p < 0.0001 by paired t-test.
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4.5 Independent analyses of bacterial and yeast co-cultures using ribosomal data

The following data are included for comparison of competition-relatedness analyses using

conventional relatedness metrics with bioinformatic analyses. Using conventional taxonomic relat-

edness metrics based on ribosomal homology, analyses of the competition-relatedness hypotheses

were limited to a single domain (Bacteria or Eukarya). Figure 4.7 shows the analysis of bacterial

co-cultures under micro-aerobic conditions. A statistically significant positive trend (p = 0.0004)

is observed for linear regression of ribosomal relatedness and competition, supporting the central

hypothesis. Linear regression of co-acidification with ribosomal relatedness also produces a posi-

tive trend line, but with weak statistical support (p = 0.1293).

Figure 4.7: Analysis of bacterial co-cultures by ribosomal relatedness.
Linear regression of ribosomal relatednesss, determined from alignment of V3/V4 16S sequences,
with competition index (A) and co-acidification (B) for microaerobic (SG = 1.040 and n = 12)
bacterial isolates and co-cultures only. Error bars represent the standard error of the mean (SEM).
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4.6 Analysis of co-cultures using representative whole-genome data

Proteomic data from type specimens allowed for inclusion of all co-cultures in analyses of

the competition-relatedness hypothesis. Results of the analyses of the CRH using this proteomic

relatedness metric are shown in Figure 4.8 for co-cultures in malt extract broth of SG=1.040 under

microaerobic atmospheric conditions. In this case, linear regression of growth based competition

generates a positive trend but with weak statistical support (p = 0.0620) while statistical support for

the co-acidification model is higher (p = 0.0029). Similar results are seen for other microaerobic

co-cultures when media conditions were varied (see Section 4.7).

Figure 4.8: Analysis of co-cultures using proteomic relatedness metric.
Linear regression of protein relatedness, determined using a BLAST-based Python script, with
competition index (A) and co-acidifcation (B). Bacteria and yeast are included in the same analysis.
Shown here are the results for microaerobic experiments (SG = 1.040 and n = 12). Error bars
represent the SEM.
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Metabolic modeling of competition for nutrient seeds (dependencies) also allowed for anal-

ysis of bacteria-yeast co-cultures. Results of linear regression (Figure 4.9) are similar to proteomic

analyses. Growth based metrics show a positive trend with weak statistical support (p = 0.1596)

while the co-acidification model is more strongly supported (p = 0.0103). Similar to the results

using proteomic relatedness metrics, these trends are fairly consistent among microaerobic co-

cultures. A more even distribution is seen among the metabolic seed relatedness data here than

protein relatedness. It should be noted that these results do not include S. pasteurianus or T. del-

bruckii due to a lack of annotated WGS data.

Figure 4.9: Analysis of co-cultures using metabolic seed relatedness metric.
Linear regression of metabolic seed-relatedness, determined by NetSeed derived algorithm, with
competition index (A) and co-acidication (B). Bacteria and yeast are included in the same analysis
(SG = 1.040 and n = 12). Error bars represent the SEM.

25



Atmospheric conditions drastically changed the growth of individuals and co-cultures. In

high-pressure anaerobic experiments linear regression of competition index with proteomic re-

latedness and metabolic seed relatedness result in a negative trend with weak statistical support

(Figure 4.10). Contrarily, the co-acidification model is statistically supported for both protein and

metabolic seed relatedness (p = 0.0003 and p = 0.0050 respectively). In low pressure anaerobic

experiments (1 psi), a positive trend is observed for linear regression of competition with weak

statistical support. Curiously, a negative trend is observed for the co-acidification model. This is

the only growth condition tested where this was the case (Table 4.2).

Figure 4.10: Analysis of 15 psi anaerobic co-cultures by proteomic relatedness.
Linear regression of protein relatedness with competition (A) and co-acidification (B) for high-
pressure anaeobic co-cultures (15 psi, SG = 1.040, n=8). Bacteria and yeast are included in the
same analysis. Error bars represent the SEM.
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4.7 Meta-analysis of growth conditions and relatedness metrics

The following data were generated to summarize the results of various analyses of the

competition relatedness hypothesis. The slope and p-value are provided for both optical density

and co-acidification for each culture condition using each metric of relatedness. These data are

found in Table 4.2. The results of all aerobic cultures are averaged, weighted by the number of

replicates used in the analysis, then summarized in Table 4.3.

Table 4.2: Summary of collected data.
Linear regression statistics are summarized for competition and co-acidification analyses of beer
microbes from this study. Results of 1 psi and 15 psi anaerobic co-cultures are listed at the bottom.

Growth
condition

Relatedness
Metric

Competition
Index Slope

Competition
Index p-value

Acidification
slope

Acidification
p-value

Reps
(n)

SG = 1.04 Protein 0.3638 0.0620 0.4905 0.0029 12
SG = 1.04 Pathway 0.4608 0.0705 0.4479 0.0369 12
SG = 1.04 Seed 0.4620 0.1596 0.6700 0.0103 12
SG = 1.05 Protein 0.2170 0.2648 0.6794 0.0001 4
SG = 1.05 Pathway 0.2597 0.2968 0.6432 0.0022 4
SG = 1.05 Seed 0.2719 0.3845 0.9002 0.0006 4
SG = 1.06 Protein 0.2816 0.1746 0.6485 0.0001 4
SG = 1.06 Pathway 0.4432 0.0940 0.6490 0.0031 4
SG = 1.06 Seed 0.3645 0.2744 0.9035 0.0010 4

40 IBU Protein 0.6025 0.0690 0.6691 0.0001 4
40 IBU Pathway 0.9561 0.0242 0.6482 0.0004 4
40 IBU Seed 1.0110 0.0585 0.9700 0.0001 4

1 psi Protein 0.2024 0.4422 -0.1198 0.5227 8
1 psi Pathway 0.1820 0.5774 -0.4882 0.0336 8
1 psi Seed 0.2910 0.4775 -0.6546 0.0229 8

15 psi Protein -0.3909 0.2586 0.7030 0.0003 8
15 psi Pathway -0.1942 0.6623 0.8103 0.0013 8
15 psi Seed -0.3927 0.4814 0.8929 0.0050 8
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Table 4.3: Comparison of relatedness metrics in micro-aerobic co-cultures.
Linear regression statistics are summarized for competition and co-acidification analyses of beer
microbes from this study. Average slopes and p-values shown are weighted by number of co-
culture replicates for each growth condition. Results of 15 psi and 1 psi anaerobic co-cultures are
omitted.

Relatedness
Metric

Competition
Index Slope

Competition
Index p-value

Acidification
slope

Acidification
p-value

Protein 0.3654 0.1157 0.5781 0.0015
Pathway 0.5069 0.1044 0.5474 0.0194

Seed 0.5056 0.1994 0.7973 0.0054
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4.8 Rare and common pathways

Annotated WGS data provide information with additional utility beyond taxonomic anal-

ysis that is pertinent to microbe-microbe interactions. These data can be readily mined to better

qualitatively or mechanistically understand the nature of these interactions and the influence of in-

dividuals within the community. As an example, the pathway-level annotations generated via Path-

wayTools were analyzed using the in-house Python script called “Ubique” (Chapter B.4). Analysis

of pathway frequency among genomes revealed the abundance of rare pathways among beer iso-

lates (Figure 4.11). Over one hundred uniquely occurring pathways exist among these genomes,

demonstrating the substantive influence that individual members may have in a community. Only

twenty pathways occur in all genomes and are listed in Table 4.4.

Figure 4.11: Frequency of pathway occurrence among genomes of beer isolates.
All pathways identified in bacteria and yeast WGS data by Python script ‘Ubique’ are binned by
the number of genomes in which they occur.
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Table 4.4: Pathways common to all genomes of beer isolates.
Pathways listed were identified using ‘Ubique’ from WGS sequences. These pathways were found
to be present in all strains used in this analysis, including bacteria and yeast.

Common Pathways
Adenosine deoxyribonucleotides de novo biosynthesis
Adenosine ribonucleotides de novo biosynthesis
CMP phosphorylation
Glutathione-glutaredoxin redox reactions
Glycine biosynthesis I
Guanine and guanosine salvage
Guanosine deoxyribonucleotides de novo biosynthesis I
L-glutamine degradation I
PRPP biosynthesis I
Pyrimidine deoxyribonucleotide phosphorylation
Pyrimidine nucleobases salvage I
S-adenosyl-L-methionine biosynthesis
Tetrahydrofolate biosynthesis
Thioredoxin pathway
tRNA charging
UDP-alpha-D-glucose biosynthesis I
UTP and CTP de novo biosynthesis
Xanthine and xanthosine salvage
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4.9 Measurable sources of error in co-culture screening

In the early stages of analysis of co-culture data it became apparent that well-to-well influ-

ence was an inevitable confounding factor. Breathable films were used that allow the out-gassing

resultant of fermentation. An unintended side-effect is that such films also allow gas exchange into

wells. Evidence for this is seen in Figure 4.12 where the pH of un-inoculated media is correlated

with the average pH of cultures within plates. These observations affirm the necessity of random-

ization in co-culture experimental design.

Figure 4.12: Acidification of un-inoculated growth media.
Linear regression of the average final pH of cultures after two weeks of incubation with the average
pH of un-inoculated growth media from microtiter plate. R2 = 0.78 and p < 0.0001.
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CHAPTER 5: CONCLUSIONS

5.1 Beer is a robust medium for studies of microbial ecology

This work demonstrates the value of beer as a tractable microbial ecosystem. The majority

of microbes found in both sour and spoiled beer by metagenomic studies are readily cultivable.

These include a wide variety of both closely and distantly related prokaryotes and eukaryotes.

This property was of particular interest in this study by allowing for a somewhat even spread of

relatedness among co-culture pairs. Results of these co-culture experiments reflect the importance

of inclusion of multiple species within genera in studies of microbial communities.

Physical properties of the growth media made beer an ideal system for co-culture studies.

The in situ growth medium of brewer’s wort can be readily replicated in the lab. Malt extract

broth once filtered is transparent and suitable for optical measurements. This was critical for our

experiments where spectrophotometry was the primary method of data collection. Experiments

were scalable to a 96-well microtiter format and allowed for screening of many unique co-culture

combinations. The enumeration of many replicate co-cultures made proper statistical analyses

possible. Culture conditions were readily manipulated and shown to have a strong influence on

growth of individuals, co-culture interactions, and analysis of the central hypothesis.

5.2 Bioinformatic tools improve measurements of relatedness

Proteomic and metabolomic analyses were developed that allowed for genome-wide com-

parisons to be made between prokaryotes and eukaryotes. Both bioinformatic metrics of related-

ness were well correlated with conventional relatedness based on homology of bacterial riboso-

mal sequences validating the efficacy of these tools. These comparisons offer better resolution

of genome-wide differences between recently diverged species that are not apparent by ribosomal

sequences. This can be seen in Figure 4.7 where points tend to cluster into three main groups
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with respect to the X-axis (based on ribosomal sequence homology) but not the Y-axis (protein

relatedness or seed competition).

These tools provide more functional information about the nature of microbial interactions

as well. Data generated by these scripts includes results BLAST hits from each protein-protein

comparison as well lists of common ”seed” nutrients between each organism. These data can be

mined in deeper investigations of individual relationships or used to better understand the commu-

nity as a whole, as seen in Figure 4.11 and Table 4.4.

5.3 Key inter-relationships among brewing microbiota are identified

Regardless of the evaluation of competition-relatedness hypothesis, this investigation al-

lowed for the observation of interactions among brewery microbes at large. This information

should assist brewers in exhibiting greater control of fermentation processes. For example the

growth of the yeast Brettanomyces bruxellensis was found to be detrimentally effected by yeast

Pichia kudriavzevii and the bacterium Gluconobacter cerinus. An obscure yeast Candida mesen-

terica exhibited strong interactions among many members of the community and in co-cultures in

some cases grew to greater optical density than the sum of isolated strains (see Figure A.1). Such

relationships provide leads for development of starter cultures or possibly bio-control agents.

5.4 Support for Darwin’s competition-relatedness hypothesis is circumstantial

A consortium of representatives from the microbial ecosystem of sour beer were vetted for

a measurable trend between relatedness and competition. Evidence supporting this hypothesis was

dependent primarily on culture conditions and measurements of biological output and relatedness.

Large differences in growth rates and co-culture interactions were observed between aerobic and

anaerobic experiments. In micro-aerobic conditions, there exists strong statistical support for a

relationship between co-acidification and relatedness. A positive trend is a consistent feature of
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linear regression comparing co-culture competition evidenced by light scattering (OD 600 nm) and

relatedness, but statistical support is not strong enough to accept the hypothesis. Under anaerobic

conditions there is little support for the competition relatedness hypothesis (see Figure 4.2).

As microbes used in this study were isolated under aerobic conditions, it could be argued

that co-cultures conducted in similar conditions are most appropriate to evaluate the hypothesis.

Isolated cultures and co-cultures alike grew to substantially higher OD 600 nm in micro-aerobic

conditions than in anaerobiosis indicating this is the preferred growth condition for these organ-

isms. On the other hand, the rationale for experimentation inside anaerobic chambers was to

replicate in situ brewing micro-environemnts, which are primarily anaerobic.

These highly contradictory observations make outrightly accepting or rejecting the strict

interpretation of the competition-relatedness hypothesis categorically impossible. Relatedness was

certainly not a definitive predictor of competitive interactions, yet more observations were recorded

in favor of a positive correlation than were contradictory. Darwin postulated that such a trend

would “by no means invariably” predict interactions [14]. Under this premise, evidence does seem

to corroborate Darwin’s statement in the case of the sour beer microbial ecosystem.

5.5 Present limitations are subjects for technological refinement

The simultaneous culture of microbes with diverse physiology proved to be technically

challenging. Many microbes used in this study produce generous amounts of carbon dioxide dur-

ing fermentation and may also produce various volatile organic compounds. We observed pH

changes of un-inoculated growth media resultant of cross-talk between wells of microtiter plates.

While many innovative co-culture techniques have been developed in recent years, none address

the specific need to allow for out-gassing while remaining environmentally isolated [21]. This sit-

uation is not unique to beer microbes and future studies, for example of the human microbiome,

will be wrought with similar challenges.
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Efforts to determine relatedness among highly divergent microbial taxa led to develop-

ment of some powerful bioinformatic tools. Still, these metrics only crudely estimate interactions

between microbes. More elegant approaches such as flux-balance analyses may prove to more

accurately predict such interactions [30]. The implementation of these tools was beyond the scope

of this project. The refinement of predictive bioinformatic algorithms is an important but relatively

new challenge in the growing field of systems biology.
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APPENDIX A: COOPERATIVE INDEX AND CO-ACIDIFICATION

HEAT MAPS
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A.1 SG = 1.040

Figure A.1: Co-culture cooperation and co-acidification: SG = 1.040.
Data shown are averaged from 12 replicates grown in malt extract broth (MEB) with density of
SG = 1.040 with no hop compounds under micro-aerobic conditions. Cooperative index is defined
as the difference between the growth of co-cultures and the average growth of respective isolates,
weighted by the average growth of the isolates (A). Co-acidification is defined as the difference
between the pH of co-cultures and respective isolates (B).
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A.2 SG = 1.050

Figure A.2: Co-culture cooperation and co-acidification: SG = 1.050.
Data shown are averaged from 4 replicates grown in MEB with density of SG = 1.050 with no
hop compounds under micro-aerobic conditions. Cooperative index is defined as the difference
between the growth of co-cultures and the average growth of respective isolates, weighted by the
average growth of the isolates (A). Co-acidification is defined as the difference between the pH of
co-cultures and respective isolates (B).
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A.3 SG = 1.060

Figure A.3: Co-culture cooperation and co-acidification: SG = 1.060.
Data shown are averaged from 4 replicates grown in MEB with density of SG = 1.060 with no
hop compounds under micro-aerobic conditions. Cooperative index is defined as the difference
between the growth of co-cultures and the average growth of respective isolates, weighted by the
average growth of the isolates (A). Co-acidification is defined as the difference between the pH of
co-cultures and respective isolates (B).
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A.4 40 IBU

Figure A.4: Co-culture cooperation and co-acidification: 40 IBU.
Data shown are averaged from 4 replicates grown under micro-aerobic conditions in MEB with
density of SG = 1.050 with hop compounds measured at 40 IBU. Cooperative index is defined
as the difference between the growth of co-cultures and the average growth of respective isolates,
weighted by the average growth of the isolates (A). Co-acidification is defined as the difference
between the pH of co-cultures and respective isolates (B).
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A.5 Anaerobic 1 psi

Figure A.5: Co-culture cooperation and co-acidification: Anaerobic 1 psi.
Data shown are averaged from 8 replicates grown under anaerobic conditions with atmospheric
pressure of 1 psi in MEB with density of SG = 1.040 with no hop compounds. Cooperative index
is defined as the difference between the growth of co-cultures and the average growth of respective
isolates, weighted by the average growth of the isolates (A). Co-acidification is defined as the
difference between the pH of co-cultures and respective isolates (B).
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A.6 Anerobic 15 psi

Figure A.6: Co-culture cooperation and co-acidification: Anaerobic 15 psi.
Data shown are averaged from 8 replicates grown under anaerobic conditions with atmospheric
pressure of 15 psi in MEB with density of SG = 1.040 with no hop compounds. Cooperative index
is defined as the difference between the growth of co-cultures and the average growth of respective
isolates, weighted by the average growth of the isolates (A). Co-acidification is defined as the
difference between the pH of co-cultures and respective isolates (B).
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APPENDIX B: PYTHON SCRIPTS FOR BIOINFORMATIC ANALYSES
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B.1 Pairwise Protein BLAST

# P a i r w i s e P r o t v 0 . 1 by Andrew K e t t r i n g

# Runs on Python v . 2 . 7 . 6
# T e s t e d i n L inux Mint 1 7 . 3

# i n p u t i s f a a f a s t a p r o t e i n f i l e
#wgs b r o s e r −> b i o p r o j e c t −> p r o t e i n # ( bo t tom ) −> send t o f i l e

import os , csv , sys , re , s u b p r o c e s s
import pandas as pd
import numpy as np
from Bio import SeqIO
from Bio . B l a s t . A p p l i c a t i o n s import Ncbib las tpCommandl ine
from Bio . B l a s t import NCBIXML
from m u l t i p r o c e s s i n g import Pool
from Bio . Seq import Seq
from Bio . SeqRecord import SeqRecord
import s h u t i l

t h r e a d z = 4

#make l i s t o f i n f i l e s and s o r t
i n f i l e s = [ ]
i n d i r = ’ . / i n f i l e s / ’
f o r f i l e in os . l i s t d i r ( i n d i r ) :

i f f i l e . e n d s w i t h ( ’ . f a a ’ ) :
i n f i l e s . append ( os . p a t h . j o i n ( f i l e ) )

i n f i l e s . s o r t ( )
#make a l i s t w i t h o u t f i l e e x t e n s i o n s
f i l e n a m e s = [ k . r e p l a c e ( ’ . f a a ’ , ’ ’ ) f o r k in i n f i l e s ]

#make o u t i f i l e s d i r e c t o r y
o u t d i r = ’ . / o u t f i l e s / ’
i f not os . p a t h . e x i s t s ( o u t d i r ) :

os . mkdir ( o u t d i r )
#make f a s t a d i r e c t o r y
f a s d i r = o u t d i r + ’ f a s t a / ’
i f not os . p a t h . e x i s t s ( f a s d i r ) :
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os . mkdir ( f a s d i r )
#make b l a s t db d i r e c t o r y
d b d i r = o u t d i r + ’ b l a s t d b / ’
i f not os . p a t h . e x i s t s ( d b d i r ) :

os . mkdir ( d b d i r )
#make p a i r w i s e b l a s t d i r e c t o r y
b l a s t d i r = o u t d i r + ’ b l a s t / ’
i f not os . p a t h . e x i s t s ( b l a s t d i r ) :

os . mkdir ( b l a s t d i r )

p r i n t ’ Trimming i n p u t f i l e s . . . ’
def t r i m ( fasname ) :

og = i n d i r + fasname + ’ . f a a ’
ng = f a s d i r + fasname + ’ new . f a a ’
t g = f a s d i r + fasname + ’ tmp . f a a ’
s h u t i l . copy ( og , ng )
n = 1
n t o t = 0
whi le n > 0 :

wi th open ( ng , ” rU ” ) as i n p u t h a n d l e , open ( tg , ”w” ) as
o u t p u t h a n d l e :

n=0
f o r s e q r e c o r d in SeqIO . p a r s e ( i n p u t h a n d l e , ’ f a s t a ’ )

:
l e n g t h = l e n ( s e q r e c o r d . seq )
l a s t = s e q r e c o r d . seq [−1: ]
i f ’X’ in l a s t :

new seq = s t r ( s e q r e c o r d . seq [ : −1 ] )
o l d i d = s e q r e c o r d . id
old name = s e q r e c o r d . name
o l d d e s c = s e q r e c o r d . d e s c r i p t i o n
r e c = SeqRecord ( Seq ( new seq ) , id = o l d i d , name

=old name , d e s c r i p t i o n = o l d d e s c )
SeqIO . w r i t e ( rec , o u t p u t h a n d l e , ’ f a s t a ’ )
n += 1

e l s e :
# p r i n t s e q r e c o r d . seq
SeqIO . w r i t e ( s e q r e c o r d , o u t p u t h a n d l e , ’ f a s t a

’ )
n t o t += n

s h u t i l . copy ( tg , ng )
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os . remove ( t g )
p r i n t ’ Trimmed ’ , n t o t , ’ t e r m i n a l Xs from ’ , fasname

f o r f i l e in f i l e n a m e s :
t r i m ( f i l e )

p r i n t ’ ’

p r i n t ’ Making BLAST d a t a b a s e s . . . ’
cmds = [ ]
f o r f i l e in f i l e n a m e s :

bashCommand = ’ m a k e b l a s t d b −i n ’ + f a s d i r + f i l e + ’ new . f a a
−db ty pe p r o t −o u t ’ + d b d i r + f i l e

cmds . append ( bashCommand )
FNULL = open ( os . d e v n u l l , ’w’ )
def d a t e r ( cmd ) :

p r i n t cmd
p = s u b p r o c e s s . Popen ( cmd , s h e l l =True , s t d o u t =FNULL, s t d e r r =

s u b p r o c e s s .STDOUT)
p . w a i t ( )

poo l = Pool ( t h r e a d z )
f o r cmd in cmds :

poo l . a p p l y a s y n c ( d a t e r , [ cmd ] )
poo l . c l o s e ( )
poo l . j o i n ( )
p r i n t ’ ’

p r i n t ’ P a i r w i s e BLAST . . . ’
#make c s v f o r p a i r s
o = o u t d i r + ’ p a i r s . c sv ’
wi th open ( o , ’w’ ) a s f :

w r i t e r = csv . w r i t e r ( f )
f o r x , y in [ ( x , y ) f o r x in f i l e n a m e s f o r y in f i l e n a m e s ] :

z = [ x , y ]
w r i t e r . w r i t e r o w ( z )

# a p p r o p r i a t e b l a s t commands
cmds = [ ]
p1 = o u t d i r + ’ p a i r s . c sv ’
wi th open ( p1 , ’ r ’ ) a s f1 :

r e a d e r = csv . r e a d e r ( f1 )
f o r row in r e a d e r :

i = f a s d i r + row [ 0 ] + ’ new . f a a ’
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d = d b d i r + row [ 1 ]
o = b l a s t d i r + row [ 0 ] + ’ ’ + row [ 1 ] + ’ . xml ’
b l a s t y = Ncbib la s tpCommandl ine ( que ry = i , db=d , o u t =o ,

o u t f m t =5 , m a x h s p s p e r s u b j e c t =1 , num a l ignmen t s =3)
cmds . append ( s t r ( b l a s t y ) )

# run them i n p a r a l l e l
def b l a s t e r ( cmd ) :

p r i n t cmd
p = s u b p r o c e s s . Popen ( cmd , s h e l l =True )
p . w a i t ( )

poo l = Pool ( t h r e a d z )
f o r cmd in cmds :

poo l . a p p l y a s y n c ( b l a s t e r , [ cmd ] )
poo l . c l o s e ( )
poo l . j o i n ( )

#make c s v f o r p a i r s
#o = o u t d i r + ’ p a i r s . c s v ’
# w i t h open ( o , ’w ’ ) as f :
# w r i t e r = c s v . w r i t e r ( f )
# f o r x , y i n [ ( x , y ) f o r x i n f i l e n a m e s f o r y i n f i l e n a m e s ] :
# z = [ x , y ]
# w r i t e r . w r i t e r o w ( z )

p r i n t ’ ’
p r i n t ’ Ana lyz ing BLAST r e s u l t s . . . ’
q l i s t = [ ]
p l i s t = [ ]
w i th open ( ’ . / o u t f i l e s / p a i r s . c sv ’ , ’ r ’ ) a s f :

r e a d e r = csv . r e a d e r ( f )
f o r row in r e a d e r :

p f = b l a s t d i r + row [ 0 ] + ’ ’ + row [ 1 ] + ’ . xml ’
p r i n t pf
h = open ( p f )
q u e t o t = 0
p o s t o t = 0
f o r b l a s t r e c o r d s in NCBIXML. p a r s e ( h ) :

b l a s t r e c o r d s . a l i g n m e n t s . s o r t ( key = lambda a l i g n : max
( hsp . p o s i t i v e s f o r hsp in a l i g n . h sps ) , r e v e r s e =
True )

que = b l a s t r e c o r d s . q u e r y l e t t e r s
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q u e t o t += que
a l i g n z = i t e r ( b l a s t r e c o r d s . a l i g n m e n t s )
i f b l a s t r e c o r d s . a l i g n m e n t s != [ ] :

a l i g n y = next ( a l i g n z )
hspz = i t e r ( a l i g n y . h sps )
hsp = next ( hspz )
e s c o r e = hsp . e x p e c t
i f e s c o r e < 0 . 0 1 :

pos = hsp . p o s i t i v e s
p o s t o t += pos

q l i s t . append ( q u e t o t )
p l i s t . append ( p o s t o t )

#make a d a t a f r a m e
r = o u t d i r + ’ p a i r s . c sv ’
d f = pd . r e a d c s v ( r , names =[ ’Bug 1 ’ , ’Bug 2 ’ , ’AAs Quer i ed ’ , ’

P o s i t i v e s ’ ] )
#dump da ta
df [ ’AAs Quer i ed ’ ] = q l i s t
d f [ ’ P o s i t i v e s ’ ] = p l i s t
# w r i t e t o f i l e
o = o u t d i r + ’ p a i r w i s e . c sv ’
d f . t o c s v ( o , i n d e x = F a l s e )

# Find and add i n v e r s e p a i r s
pw = o u t d i r + ’ p a i r w i s e . c sv ’
ps = [ ]
qs = [ ]
ds = [ ]
w i th open ( pw , ’ r ’ ) a s f1 :

r e a d e r = csv . r e a d e r ( f1 )
next ( f1 )
f o r row in r e a d e r :

a1 = row [ 0 ]
a2 = row [ 1 ]
q1 = f l o a t ( row [ 2 ] )
p1 = f l o a t ( row [ 3 ] )
w i th open ( pw , ’ r ’ ) a s f2 :

r e a d e r = csv . r e a d e r ( f2 )
next ( f2 )
f o r row in r e a d e r :

b1 = row [ 0 ]
b2 = row [ 1 ]
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q2 = f l o a t ( row [ 2 ] )
p2 = f l o a t ( row [ 3 ] )
i f a1==b2 and b1==a2 :

qs . append ( q2 )
ps . append ( p2 )
dd = 1− ( p1 + p2 ) / ( q1 + q2 )
ds . append ( dd )

#make a d a t a f r a m e
r = o u t d i r + ’ p a i r w i s e . c sv ’
d f = pd . r e a d c s v ( r )
#dump da ta
df [ ’AAs 2 ’ ] = qs
d f [ ’ Pos 2 ’ ] = ps
d f [ ’ D i s t a n c e ’ ] = ds
# r e w r i t e p a i r w i s e f i l e
o = o u t d i r + ’ p a i r w i s e . c sv ’
d f . t o c s v ( o , i n d e x = F a l s e )

# p a i r w i s e t o d i s t a n c e m a t r i x
df = pd . DataFrame ( f i l e n a m e s )
num= l e n ( f i l e n a m e s )
d i s t x = ds [ : ]
f o r p in f i l e n a m e s :

d i s t y = d i s t x [ : ]
# d e l e t e up t o f i r s t 3

d e l d i s t y [ num : ]
d f [ p ] = d i s t y

# d e l e t e f i s t t h r e e
d e l d i s t x [ : num ]

o = o u t d i r + ’ m a t r i x . c sv ’
d f . t o c s v ( o , i n d e x = F a l s e )

p r i n t ’ ’
p r i n t ’ A l l done ! ’
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B.2 Pairwise Paths

# P a i r w i s e P a t h s v 0 . 1 by Andrew K e t t r i n g

# Runs on Python v . 2 . 7 . 6
# T e s t e d i n L inux Mint 1 7 . 3

import os , csv , sys , re , s u b p r o c e s s
import pandas as pd

#make l i s t o f f i l e s and s o r t
i n f i l e s = [ ]
f o r f i l e in os . l i s t d i r ( ” . / i n f i l e s ” ) :

i f f i l e . e n d s w i t h ( ” . p a t h s ” ) :
i n f i l e s . append ( os . p a t h . j o i n ( f i l e ) )

i n f i l e s . s o r t ( )

#make a l i s t w i t h o u t f i l e e x t e n s i o n s
f i l e n a m e s =[ k . r e p l a c e ( ” . p a t h s ” , ’ ’ ) f o r k in i n f i l e s ]

#make d i r e c t o r y i f needed
d i r e c t o r y = ’ . / o u t f i l e s ’
i f not os . p a t h . e x i s t s ( d i r e c t o r y ) :

os . mkdir ( d i r e c t o r y )

# e x t r a c t pa thways from f i l e s t o new f i l e
f o r p in i n f i l e s :

n = ’ . / i n f i l e s / ’ + p
m = ’ . / o u t f i l e s / ’ + p

# s p l i t a t t a b and keep second h a l f
wi th open ( n ) a s f :

w i th open (m, ’w’ ) a s f1 :
f o r l i n e in f :

l i n e 2 = l i n e . s p l i t ( ”\ t ” , 1 ) [−1]
l i n e 3 = r e . sub ( ”\ t ” , ’ ’ , l i n e 2 )
f1 . w r i t e ( l i n e 3 )

# remove f i r s t l i n e
wi th open (m, ’ r ’ ) a s f i n :

d a t a = f i n . r e a d ( ) . s p l i t l i n e s ( True )
wi th open (m, ’w’ ) a s f o u t :

f o u t . w r i t e l i n e s ( d a t a [ 1 : ] )
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# s o r t v i a bash
bashCommand = ’ s o r t −u ’ + m + ’ > . / o u t f i l e s / p a t h s . tmp ’
s u b p r o c e s s . c a l l ( bashCommand , s h e l l =True )
bashCommand = ’mv . / o u t f i l e s / p a t h s . tmp ’ + m
s u b p r o c e s s . c a l l ( bashCommand , s h e l l =True )

# P a i r w i s e Comparisons

# w r i t e p a i r s from f i l e n a m e s t o a f i l e
wi th open ( ” . / o u t f i l e s / p a i r s . c sv ” , ’wb ’ ) a s f :

w= csv . w r i t e r ( f )
f o r x , y in [ ( x , y ) f o r x in f i l e n a m e s f o r y in f i l e n a m e s ] :

z =[ x , y ]
w. w r i t e r o w ( z )

#make l i s t s
combined = [ ]
common = [ ]
d i s t a n c e s = [ ]

w i th open ( ’ . / o u t f i l e s / p a i r s . c sv ’ , ’ r ’ ) a s f :
r e a d e r = csv . r e a d e r ( f )
f o r row in r e a d e r :

# combine v i a s o r t v i a bash
bashCommand = ’ s o r t −u . / o u t f i l e s / ’ + row [ 0 ] + ’ . p a t h s . /

o u t f i l e s / ’ + row [ 1 ] + ’ . p a t h s > . / o u t f i l e s / combined ’
+ row [ 0 ] + ’ ’ + row [ 1 ] + ’ . p a t h s ’

s u b p r o c e s s . c a l l ( bashCommand , s h e l l =True )

#comm v i a bash
bashCommand = ’comm . / o u t f i l e s / ’ + row [ 0 ] + ’ . p a t h s . /

o u t f i l e s / ’ + row [ 1 ] + ’ . p a t h s −1 −2 > . / o u t f i l e s /
common ’ + row [ 0 ] + ’ ’ + row [ 1 ] + ’ . p a t h s ’

s u b p r o c e s s . c a l l ( bashCommand , s h e l l =True )

# c o u n t number o f l i n e s
f i l e c o m b = ’ . / o u t f i l e s / combined ’ + row [ 0 ] + ’ ’ + row

[ 1 ] + ’ . p a t h s ’
f l e n c o m b = sum (1 f o r l i n e in open ( f i l e c o m b ) )
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combined . append ( f l e n c o m b )

f i l e comm = ’ . / o u t f i l e s / common ’ + row [ 0 ] + ’ ’ + row [ 1 ]
+ ’ . p a t h s ’

f len comm = sum (1 f o r l i n e in open ( f i l e comm ) )
common . append ( f len comm )

#do math
d i s t = 1 − ( f len comm / f l o a t ( f l e n c o m b ) )
d i s t a n c e s . append ( d i s t )

#make a bamf f i l e
df = pd . r e a d c s v ( ’ . / o u t f i l e s / p a i r s . c sv ’ , names =[ ’Bug 1 ’ , ’Bug 2 ’ ,

’Common ’ , ’ Combined ’ , ’ D i s t a n c e s ’ ] )

# da ta dump
df [ ’Common ’ ] = common
df [ ’ Combined ’ ] = combined
df [ ’ D i s t a n c e s ’ ] = d i s t a n c e s

# w r i t e t o f i l e
df . t o c s v ( ’ . / o u t f i l e s / p a i r w i s e . csv ’ , i n d e x = F a l s e )
# p r i n t d f
# p r i n t ’ ’

# P a i r w i s e t o d i s t a n c e m a t r i x
df = pd . DataFrame ( f i l e n a m e s )

num= l e n ( f i l e n a m e s )
d i s t x = d i s t a n c e s [ : ]
f o r p in f i l e n a m e s :

d i s t y = d i s t x [ : ]
# d e l e t e up t o f i r s t 3

d e l d i s t y [ num : ]
d f [ p ] = d i s t y

# d e l e t e f i s t t h r e e
d e l d i s t x [ : num ]

df . t o c s v ( ’ . / o u t f i l e s / m a t r i x . csv ’ , i n d e x = F a l s e )

# p r i n t d f
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B.3 Pairwise Seeds

# P a i r w i s e S e e d s v 0 . 1 by Andrew K e t t r i n g

# Runs on Python v . 2 . 7 . 6
# T e s t e d i n L inux Mint 1 7 . 3

import os , csv , sys , re , s u b p r o c e s s
import pandas as pd

i n d i r = ’ . / i n f i l e s / ’

#make d i r e c t o r i e s i f needed
o u t d i r = ’ . / o u t f i l e s / ’
i f not os . p a t h . e x i s t s ( o u t d i r ) :

os . mkdir ( o u t d i r )
t m p d i r = o u t d i r + ’ tmp / ’
i f not os . p a t h . e x i s t s ( t m p d i r ) :

os . mkdir ( t m p d i r )

#make l i s t o f bugs from i n f i l e s
bugs = [ ]
f o r f i l e in os . l i s t d i r ( i n d i r ) :

i f f i l e . e n d s w i t h ( ’ s e e d s . t x t ’ ) :
bug = f i l e . r e p l a c e ( ’ s e e d s . t x t ’ , ’ ’ )
i f bug not in bugs :

bugs . append ( os . p a t h . j o i n ( bug ) )
e l i f f i l e . e n d s w i t h ( ’ n o n s e e d s . t x t ’ ) :

bug = f i l e . r e p l a c e ( ’ n o n s e e d s . t x t ’ , ’ ’ )
i f bug not in bugs :

bugs . append ( os . p a t h . j o i n ( bug ) )
bugs . s o r t ( )

# w r i t e p a i r s from f i l e n a m e s t o a f i l e
wi th open ( t m p d i r + ’ p a i r s . c sv ’ , ’wb ’ ) a s f :

w= csv . w r i t e r ( f )
f o r x , y in [ ( x , y ) f o r x in bugs f o r y in bugs ] :

z =[ x , y ]
w. w r i t e r o w ( z )

p r i n t ’ P r e p a r i n g i n f i l e s . . . ’
f o r bug in bugs :
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i n s e e d = i n d i r + bug + ’ s e e d s . t x t ’
i n n o n s e e d = i n d i r + bug + ’ n o n s e e d s . t x t ’
o u t s e e d = t m p d i r + bug + ’ s e e d s . t x t ’
o u t n o n s e e d = t m p d i r + bug + ’ n o n s e e d s . t x t ’
tmpseed = t m p d i r + bug + ’ s e e d s t m p ’

# v e r i f y complementary i n f i l e s e x i s t
i f os . p a t h . e x i s t s ( i n s e e d ) and os . p a t h . e x i s t s ( i n n o n s e e d ) :

pass
e l s e :

p r i n t ’ Mis s ing a complementa ry i n f i l e f o r ’ , bug
s y s . e x i t ( )

# s o r t v i a BASH
bashCommand = ’ s o r t −u ’ + i n s e e d + ’ > ’ + tmpseed
s u b p r o c e s s . c a l l ( bashCommand , s h e l l =True )
bashCommand = ’ s o r t −u ’ + i n n o n s e e d + ’ > ’ + o u t n o n s e e d
s u b p r o c e s s . c a l l ( bashCommand , s h e l l =True )

# t r i m c o n f i d e n c e s c o r e s from seed l i s t
wi th open ( tmpseed ) a s f :

w i th open ( o u t s e e d , ’w’ ) a s f1 :
f o r l i n e in f :

# s p l i t a t t a b and f i r s t h a l f + a r e t u r n
l i n e 2 = l i n e [ :−3] + ”\n ”
f1 . w r i t e ( l i n e 2 )

os . remove ( tmpseed )
p r i n t bug

p r i n t ’ ’
p r i n t ’ Computing c o m p e t i t i o n . . . ’
#make l i s t s
combined = [ ]
common = [ ]
c o m p e t i t i o n = [ ]
# d e f i n e p a r i w i s e f i l e s
wi th open ( t m p d i r + ’ p a i r s . c sv ’ , ’ r ’ ) a s f :

r e a d e r = csv . r e a d e r ( f )
f o r row in r e a d e r :

i n s e e d 1 = t m p d i r + row [ 0 ] + ’ s e e d s . t x t ’
i n s e e d 2 = t m p d i r + row [ 1 ] + ’ s e e d s . t x t ’
outcomb = t m p d i r + ’ combined ’ + row [ 0 ] + ’ ’ + row [ 1 ] +

’ s e e d s . t x t ’
outcomm = t m p d i r + ’ common ’ + row [ 0 ] + ’ ’ + row [ 1 ] + ’

s e e d s . t x t ’
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# combine v i a s o r t v i a bash
bashCommand = ’ s o r t −u ’ + i n s e e d 1 + ’ ’ + i n s e e d 2 + ’ >

’ + outcomb
s u b p r o c e s s . c a l l ( bashCommand , s h e l l =True )

#comm v i a bash
bashCommand = ’comm −1 −2 ’ + i n s e e d 1 + ’ ’ + i n s e e d 2 + ’

> ’ + outcomm
s u b p r o c e s s . c a l l ( bashCommand , s h e l l =True )

# c o u n t number o f l i n e s
f l e n c o m b = sum (1 f o r l i n e in open ( outcomb ) )
combined . append ( f l e n c o m b )
flen comm = sum (1 f o r l i n e in open ( outcomm ) )
common . append ( f len comm )

#do math
comp = ( flen comm / f l o a t ( f l e n c o m b ) )
c o m p e t i t i o n . append ( comp )

#make a d a t a f r a m e
df = pd . r e a d c s v ( t m p d i r + ’ p a i r s . c sv ’ , names =[ ’Bug 1 ’ , ’Bug 2 ’ , ’

Common ’ , ’ Combined ’ , ’ C o m p e t i t i o n ’ ] )
# da ta dump
df [ ’Common ’ ] = common
df [ ’ Combined ’ ] = combined
df [ ’ C o m p e t i t i o n ’ ] = c o m p e t i t i o n
# w r i t e t o f i l e
df . t o c s v ( o u t d i r + ’ c o m p e t i t i o n p a i r s . c sv ’ , i n d e x = F a l s e )
# p r i n t d f
# P a i r w i s e c o m p e t i t i o n m a t r i x
df = pd . DataFrame ( bugs )
num= l e n ( bugs )
compx = c o m p e t i t i o n [ : ]
f o r b in bugs :

compy = compx [ : ]
d e l compy [ num : ]
d f [ b ] = compy
d e l compx [ : num ]

df . t o c s v ( o u t d i r + ’ c o m p e t i t i o n m a t r i x . c sv ’ , i n d e x = F a l s e )
p r i n t ’ Done . ’

# compare s e e d s and non−s e e d s
p r i n t ’ ’
p r i n t ’ Computing c o m p l e m e n t a r i t y . . . ’
#make l i s t s
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s e e d z = [ ]
commonsns = [ ]
c o m p l e m e n t a r i t y = [ ]
# d e f i n e p a i r w i s e f i l e s
wi th open ( t m p d i r + ’ p a i r s . c sv ’ , ’ r ’ ) a s f :

r e a d e r = csv . r e a d e r ( f )
f o r row in r e a d e r :

i n s e e d = t m p d i r + row [ 0 ] + ’ s e e d s . t x t ’
i n n o n s e e d = t m p d i r + row [ 1 ] + ’ n o n s e e d s . t x t ’
outcomm = t m p d i r + ’ common ’ + row [ 0 ] + ’ ’ + row [ 1 ] + ’

s n s . t x t ’
#comm v i a bash

bashCommand = ’comm −1 −2 ’ + i n s e e d + ’ ’ + i n n o n s e e d +
’ > ’ + outcomm

s u b p r o c e s s . c a l l ( bashCommand , s h e l l =True )
# c o u n t number o f l i n e s

f l e n s e e d s = sum (1 f o r l i n e in open ( i n s e e d ) )
s e e d z . append ( f l e n s e e d s )
f len comm = sum (1 f o r l i n e in open ( outcomm ) )
commonsns . append ( f len comm )

#do math
comp = ( flen comm / f l o a t ( f l e n s e e d s ) )
c o m p l e m e n t a r i t y . append ( comp )

#make a d a t a f r a m e
df = pd . r e a d c s v ( t m p d i r + ’ p a i r s . c sv ’ , names =[ ’Bug 1 ’ , ’Bug 2 ’ , ’

Seeds ’ , ’Common SNS ’ , ’ Asymmetric ’ ] )
# da ta dump
df [ ’ Seeds ’ ] = s e e d z
d f [ ’Common SNS ’ ] = commonsns
d f [ ’ Asymmetric ’ ] = c o m p l e m e n t a r i t y
# w r i t e t o f i l e
df . t o c s v ( o u t d i r + ’ c o m p l e m e n t a r i t y p a i r s . c sv ’ , i n d e x = F a l s e )

# Append complementary c o m p l e m e n t a r i t y s c o r e s
pw = o u t d i r + ’ c o m p l e m e n t a r i t y p a i r s . c sv ’
s s = [ ]
c s = [ ]
sc = [ ]
w i th open ( pw , ’ r ’ ) a s f1 :

r e a d e r = csv . r e a d e r ( f1 )
next ( f1 )
f o r row in r e a d e r :

56



a1 = row [ 0 ]
a2 = row [ 1 ]
s1 = f l o a t ( row [ 2 ] )
c1 = f l o a t ( row [ 3 ] )
w i th open ( pw , ’ r ’ ) a s f2 :

r e a d e r = csv . r e a d e r ( f2 )
next ( f2 )
f o r row in r e a d e r :

b1 = row [ 0 ]
b2 = row [ 1 ]
s2 = f l o a t ( row [ 2 ] )
c2 = f l o a t ( row [ 3 ] )
i f a1==b2 and b1==a2 :

s s . append ( s2 )
c s . append ( c2 )
symcom = ( c1 + c2 ) / ( s1 + s2 )
sc . append ( symcom )

#make a d a t a f r a m e
r = o u t d i r + ’ c o m p l e m e n t a r i t y p a i r s . c sv ’
d f = pd . r e a d c s v ( r )
#dump da ta
df [ ’ Seeds S2 ’ ] = s s
d f [ ’SNS 2 ’ ] = cs
d f [ ’ Symmetr ic ’ ] = sc
# r e w r i t e p a i r w i s e f i l e
df . t o c s v ( r , i n d e x = F a l s e )

# P a i r w i s e a s y m m e t r i c m a t r i x
df = pd . DataFrame ( bugs )
num= l e n ( bugs )
compx = c o m p l e m e n t a r i t y [ : ]
f o r b in bugs :

compy = compx [ : ]
d e l compy [ num : ]
d f [ b ] = compy
d e l compx [ : num ]

df . t o c s v ( o u t d i r + ’ c o m p l e m e n t a r y a s y m m a t r i x . c sv ’ , i n d e x = F a l s e )

# P a i r w i s e s y m m e t r i c m a t r i x
df = pd . DataFrame ( bugs )
num= l e n ( bugs )
compx = sc [ : ]
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f o r b in bugs :
compy = compx [ : ]
d e l compy [ num : ]
d f [ b ] = compy
d e l compx [ : num ]

df . t o c s v ( o u t d i r + ’ c o m p l e m e n t a r y s y m m a t r i x . c sv ’ , i n d e x = F a l s e )

p r i n t ’ Done . ’
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B.4 Ubique

# Ubique v 0 . 1 by Andrew K e t t r i n g

# Runs on Python v . 2 . 7 . 6
# T e s t e d i n L inux Mint 1 7 . 3

import os , csv , sys , re , s u b p r o c e s s
import pandas as pd
from pandas . i o . p a r s e r s import c o u n t e m p t y v a l s

i n d i r = ’ . / i n f i l e s / ’

#make d i r e c t o r i e s i f needed
o u t d i r = ’ . / o u t f i l e s / ’
i f not os . p a t h . e x i s t s ( o u t d i r ) :

os . mkdir ( o u t d i r )

t m p d i r = o u t d i r + ’ tmp / ’
i f not os . p a t h . e x i s t s ( t m p d i r ) :

os . mkdir ( t m p d i r )

#make l i s t o f bugs from i n f i l e s
bugs = [ ]
f o r f i l e in os . l i s t d i r ( i n d i r ) :

i f f i l e . e n d s w i t h ( ’ . p a t h s ’ ) :
bug = f i l e . r e p l a c e ( ’ . p a t h s ’ , ’ ’ )
i f bug not in bugs :

bugs . append ( os . p a t h . j o i n ( bug ) )
bugs . s o r t ( )

e n t r i e s = [ ]
p r i n t ’ P r e p a r i n g i n f i l e s . . . ’
f o r bug in bugs :

inbug = i n d i r + bug + ’ . p a t h s ’
tmpbug = t m p d i r + bug + ’ . tmp . p a t h s ’
ou tbug = o u t d i r + bug + ’ . s o r t e d . p a t h s ’
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# s p l i t a t t a b and keep second h a l f
wi th open ( inbug ) as f :

w i th open ( tmpbug , ’w’ ) a s f1 :
f o r l i n e in f :

l i n e 2 = l i n e . s p l i t ( ”\ t ” , 1 ) [−1]
l i n e 3 = r e . sub ( ”\ t ” , ’ ’ , l i n e 2 )
f1 . w r i t e ( l i n e 3 )

# remove f i r s t l i n e
wi th open ( tmpbug , ’ r ’ ) a s f i n :

d a t a = f i n . r e a d ( ) . s p l i t l i n e s ( True )
wi th open ( tmpbug , ’w’ ) a s f o u t :

f o u t . w r i t e l i n e s ( d a t a [ 1 : ] )

# s o r t v i a bash
bashCommand = ’ s o r t −u ’ + tmpbug + ’ > ’ + ou tbug
s u b p r o c e s s . c a l l ( bashCommand , s h e l l =True )

f o r bug in bugs :
bugy = o u t d i r + bug + ’ . s o r t e d . p a t h s ’

# f i n d u n i qu e e n t r i e s
wi th open ( bugy , ’ r ’ ) a s b :

f o r e n t r y in b :
e n t r z = e n t r y [ :−1]
i f e n t r z not in e n t r i e s :

e n t r i e s . append ( e n t r z )
e n t r i e s . s o r t
p r i n t e n t r i e s
p r i n t ’ ’

p r i n t ’ Coun t ing . . . ’
r e t u r n s = [ ]
f o r e n t r y in e n t r i e s :

co un ty =0
f o r bug in bugs :

bugy = o u t d i r + bug + ’ . s o r t e d . p a t h s ’
w i th open ( bugy , ’ r ’ ) a s b :

f o r l i n e in b :
l i n e y = l i n e [ :−1]
i f e n t r y == l i n e y :

co un ty += 1
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r e t u r n s . append ( co un t y )
p r i n t r e t u r n s
p r i n t ’ ’

d f = pd . DataFrame ( columns =[ ’ E n t r y ’ , ’ Count ’ ] )
d f [ ’ E n t r y ’ ]= e n t r i e s
d f [ ’ Count ’ ]= r e t u r n s

d f . t o c s v ( o u t d i r + ’ u b i que . csv ’ , i n d e x = F a l s e )
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