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ABSTRACT 

Staphylococcus aureus nasal carriage (SANC) is largely asymptomatic, but presents a risk of 

autoinfection and dissemination to new immunocompromised hosts.  SA disease states range 

from mild cutaneous infections to life-threatening bacteremia.  Historically utilized rodent 

models do not naturally carry SA in the nose, are insufficient in longitudinal SANC 

experimentation, and lack immune factors that are vital in human clearance of SA.  The nasal 

passages of non-human primates are similar anatomically and histologically, and reproductive 

mucosal studies have shown similar immune responses to pathogens and human-relevant 

microbial profiles.  Seventeen captive pigtailed macaques (Macaca nemestrina) were found to 

naturally carry SA in the nose and pharynx, while topical mupirocin ointment effectively 

decolonized SA, similar to humans.  Colonization was established with a human-relevant 

inoculum of 104 SA CFUs per nostril in four independent experiments, including with a human 

isolate (ST398).  Autologous and non-autologous macaque strains were carried similarly in load 

and duration, each surviving over 40 days.  Animals that cleared SA showed a rapid neutrophilic 

innate response, with up-regulation of IL-8, MCP-1, and IL-1β following inoculation, as 

observed in human hosts.  Assessment of the nasal microbiome of pigtailed macaques and 

humans demonstrated similar relative abundance of the most prevalent genera: Staphylococcus, 

Corynebacterium, and Acinetobacter.  Collectively, these multidimensional analyses provide 

evidence that the pigtailed macaque is a novel physiological model of human SANC that may be 

useful for testing novel SA decolonization strategies. 
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CHAPTER 1: INTRODUCTION 

Staphylococcus aureus Nasal Carriage and Population Dynamics 

Staphylococcus aureus (SA) is a gram-positive, coagulase-positive, clustered cocci that is 

a part of normal skin flora of a wide range of mammalian hosts, including humans [1, 2].  SA 

transiently colonizes healthy human skin; however, a myriad of common SA disease states put 

pressure on our healthcare system, ranging from mild skin and soft tissue infections (SSTIs), like 

furuncles, boils, and impetigo, to life-threatening infections, like toxic shock and scalded skin 

syndromes, endocarditis, and bacteremia [3].  These are more likely to occur in those who have 

weakened immune systems, such as the elderly, newborns, those with preexisting 

immunocompromising conditions, and in close-contact populations with less than ideal 

sanitation, like prisons, military bases, nursing homes, hospitals, and schools [4, 5].  Since the 

widespread, and often unnecessary use of antibiotics began, SA has rapidly evolved resistance to 

the majority, like penicillin, methicillin, and vancomycin, as well as evolution of multi-drug 

resistant strains [6].  Antibiotic susceptible and resistant strains of SA are recognized as the most 

relevant nosocomial pathogen, easily spread through passive contact, often from healthcare 

worker to patient [7, 8].  This increases the duration of hospital stays, co-morbidities, and deaths 

[9, 10], driving up the cost of healthcare.  Staphylococcus aureus alone accounts for 

approximately 25% of nosocomial infections, with a great majority of these post-operative 

infections [11], which places a heavy burden on the healthcare field, increased costs of medical 

treatment, and extended hospital stays. 

The main ecological niche of SA in the human host is the moist mucosa of the anterior 

nares, surviving well in low-nutrient and increased salinity of nasal fluids.  Introduction to the 



2 
 

nose is typically through fomite-hand-nose, due to the ability of SA to survive long-term on 

inanimate surfaces [12].  Staphylococcus aureus nasal carriage (SANC) is a largely 

asymptomatic state, even in many cases of methicillin-resistant strains, only creating a problem 

when the host becomes immunocompromised due to illness or defect.  At any point in time, 

Staphylococcus aureus persistently colonizes the nasal passage of 25-30% of healthy adults on a 

world-wide scale [13, 14], and up to 80% intermittently [15].  Nasal carriage is associated with 

increased rates of carriage at extranasal sites, such as the pharynx, hands, perineum, etc. through 

passive contact of the hands with the face [8].  Also colonized are many companion animals like 

dogs [16], and large domesticated livestock such as cattle and pigs [2, 17], and humans can 

acquire the same strains through associating with animal carriers.  SA nasal carriers have 

historically been categorized into one of three groups based on frequency of SA detection during 

longitudinal studies: persistent, intermittent, and non-carriers [18].  Categorization of carrier 

types is inconsistent between studies, especially from different countries, due to differences in 

protocols and in experimental limitations.  Determined through longitudinal nostril swabs of 

human subjects, the nostrils of persistent carriers constantly contain detectable levels of SA when 

cultured, intermittent carriers will clear SA to undetectable levels and recover it, and rare non-

carriers will not swab positive for SA at all [2].  It has been recently suggested that only two 

categories really exist, persistent and intermittent [2, 19], since it is expected that those that are 

classified as non-carriers are harboring SA below culturable detection limits.  SA is ubiquitous, 

and humans are colonized on the skin at birth from the mother [20], so the likelihood for a 

person to never nasally carry SA is slim.  Current knowledge has not fully explained why some 

healthy humans carry SA persistently, intermittently, or seemingly not at all, but what is known 
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is that SANC is influenced by highly complex interactions between SA genetics, host innate and 

adaptive immunity, environmental factors, and nasal microbiome biodiversity and interference. 

Bacterial Determinants of Staphylococcus aureus Nasal Carriage 

Staphylococcus aureus is very adept at persisting in the nostrils, regardless of its low iron 

and nutrient availability and high salt concentration, and despite the presence of antimicrobial 

peptides produced by nasal epithelial cells and commensal bacteria.  The nasal passage is 

complex, with epithelium that transitions from the moist anterior portion characterized by 

keratinized stratified squamous cells, hair follicles and various glands, to pseudostratified 

columnar cells and a heavy mucous layer that is rapidly turned over by cilia and replaced [21].  

Prior studies have determined that in human SA nasal carriers, the heaviest concentrations are 

localized in the distal portion of the anterior nares lacking cilia [21, 22].  Colonization of SA in 

the anterior nares relies upon very specific interactions between several SA surface proteins and 

protein components synthesized by keratinized cells [23].  Clumping factor B (ClfB) is a 

Staphylococcal surface adhesin that is mainly responsible for SA colonization, specifically 

binding to loricrin, a protein expressed by keratinocytes to protect the exterior-most barrier of the 

nasal mucosa [17].  Most disease states of SA involve these extracellular interactions with cells 

or biofilm formation, but evidence has accumulated that suggests that SA can evade the host 

immune system by inducing its own internalization by a zipper-type mechanism [24].  This 

internalization allows SA to persist and multiply, or induce host cell death through production of 

pore-forming toxins [24], releasing cellular contents and further increasing inflammation at the 

site of infection. 
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Staphylococcus aureus possesses 200-300 virulence factors, but few mechanisms are 

understood, especially when it comes to nasal carriage, as nasal carriage strains are rarely 

virulent.  Once SA has adhered to the exterior surface of keratinized stratified squamous cells, it 

has to evade neutrophils recruited by the host’s innate immunity as the first line of defense [25].   

Staphylococcal protein A (SpA) is a multifunctional surface protein that binds Immunoglobulin 

G (IgG) across the bacterial surface in an incorrect orientation to prevent recognition as another 

method of evading neutrophil recognition, among other inflammatory functions [26].  Specific G 

protein-coupled receptors on the surface of neutrophils recognize concentration gradients of 

various small proteins that are released during SA opsonization or protein synthesis byproducts 

[27].  These concentration gradients in addition to pro-inflammatory proteins produced by host 

cells recruit resident neutrophils from surrounding tissues to the site of infection, however 

diapedesis can be inhibited at several points along the neutrophil’s route by several virulence 

factors that block interactions between receptors on the neutrophil and endothelial cells [27].  

Clearance of SA from the nasal mucosa relies on a rapid and robust neutrophilic response, and 

recent studies suggest that the nasal environment and host innate responses are primarily 

responsible for allowing nasal carriage rather than bacterial factors [28]. 

Host and Environmental Determinants of Staphylococcus aureus Nasal Carriage 

Prior studies have suggested that nasal carriage is determined less by strain characteristics 

of the bacterium itself, but influenced heavily by host and environmental factors [28, 29].  SA is 

highly adept at rapidly adapting to fluctuations in the nasal environment due external influences 

such as change in climate, diet and health of the host, AMP concentration in the nasal fluid, 

oxygen availability, and more.  SANC risk factors like HIV, Type II diabetes, cancer, prolonged 
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hospital stays, and many others alter the nasal mucosal environment and decrease the ability of 

the host’s immune system to respond appropriately to SA, increasing the likelihood for SA to 

establish colonization in the nose and lengthen duration of carriage [5, 30]. 

Mucosal innate immunity is a group of processes involving receptors and effector 

proteins that within minutes to hours of a detected threat activates to protect the host from a 

potential infection.  Keratinocytes on the epithelial surface of the anterior nares synthesize the 

keratinous protective layer in the skin and act as immunological surveyors, producing pro-

inflammatory proteins such as cytokines and chemokines, and up-regulating their constitutive 

production of β-defensins when SA is sensed [31], representing the first line of defense against 

pathogen invasion [32].  Adherence to nasal epithelial cells allows detection of SA through 

pattern recognition receptors (PRRs) on the cell surface, principally Toll-like Receptor-2 (TLR-

2) in conjunction with additional TLRs [33].  TLR-2 forms heterodimers with TLR-6, 

recognizing a conserved gram-positive bacterial cell wall component, lipoteichoic acid (LTA), 

triggering an intracellular cascade that results in mitogen-activated protein kinase and nuclear 

factor kappa-light-chain-enhancer of activated B cells (MAPK, NF-κB) mediated transcription of 

pro-inflammatory cytokines and co-stimulatory molecules to further activate innate and adaptive 

immunity [34, 35].  The release of these molecules leads to development of the characteristics of 

inflammation, such as increased fluid retention at the site of infection, promotion of blood-

clotting, proliferation of host cells, and neutrophil influx from the bloodstream to tissue [36, 37].  

An influencing factor of SA pathogenicity is its ability to invade host cells as a 

subversion tactic to avoid phagocytosis [36].  Once SA has gained endosomal entry into the host 

cell, it can take several paths, dependent upon toxin or enzymatic gene presence and may be 

phagosomally destroyed, proliferate within endosomes or in the cytoplasm following escape, or 
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induce intrinsic or extrinsic apoptosis [24].  A cytoplasmic PRR, nucleotide-binding 

oligomerization domain-containing protein 2 (NOD2) is stimulated by a peptidoglycan 

monomer; muramyl dipeptide (MDP) to further activate NF-κB mediated transcription of 

cytokine and chemokines to promote neutrophil diapedesis from the bloodstream [38].  

Extracellular and intracellular PRRs play a crucial role in the innate immune response, further 

demonstrated in TLR-2 and NOD2 gene knock-out mice, which cleared less SA and developed 

more serious skin lesions when compared to wild-type after subcutaneous injection with SA [39]. 

When stimulated with staphylococcal proteins, antimicrobial ability of nasal secretions 

varies among individuals from differences in regulation of gene expression of AMPs and pro-

inflammatory proteins due to host genetics or environmental factors, however persistent human 

carriers generally have been found to have low antimicrobicidal activity in nasal fluid compared 

with non-carriers [21, 29, 40]. There are documented associations of polymorphisms in innate 

immune genes, defensins for example, resulting in a lowered constitutive threshold of well-

functioning AMPs in the nasal epithelia, leaving them susceptible to various infections [29], 

including opportunistic SA strains.  The immunocompromised are at especially high risk of 

infection, and with roughly a third of the human population asymptomatically colonized; there 

exists high risk of dissemination in healthcare facilities and within communities [41]. 

Microbiome Interference has an Antagonistic Effect on Staphylococcus aureus Colonization 

Human host pro-inflammatory responses and SA genetics are not the only factors in the 

establishment of SA colonization, but the variety and abundance of non-SA microbiota has also 

been demonstrated to prevent or remove SA from the nares and is at least partially influenced by 

sex and host genetics [42].  The human nasal microbiome is under-explored, mainly due to low 
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comparative microbial population and few serious disease states associated with the upper 

respiratory system, while the majority of microbiome analyses have been focused on the gut due 

to serious illnesses such as Crohn’s disease [43].  Limitations of microbial culturability and 

subsequent error in determining species-level identification of a total sample have proven 

difficult as nutrient-poor nasal passages contain folds less microbes as compared to the nutrient-

rich gut. 

There are many significant relationships that have been identified between SA and other 

nasal commensal species that have been determined to be an additional factor of carriage outside 

of the host immune response [44, 45].  Biological and niche interferences between SA and other 

coagulase-negative staphylococci, Streptococcus pneumoniae, and members of phylum 

Actinobacteria (Corynebacterium, Propionibacterium), have been analyzed and determined to 

have a role in SA carriage duration, however the complexities of the relationships have been 

limited by microbacterial culture techniques [44].  Interaction with Corynebacterium species in 

particular have been observed to cause a shift toward commensalism through inhibition of the 

accessory gene regulator (agr) system which is responsible for regulating quorum sensing, thus 

decreasing translation of virulence factors associated with that system [45].  Another common 

nasal inhabitant, Staphylococcus lugdunensis, is associated with inhibition of SA colonization 

through production of a novel antibiotic that has been commercialized since to decolonize SA 

and a wide range of other gram-positive microbes [46].  Diversity of species in the nares is also 

correlated with decreased ability for SA to establish persistent nasal carriage.  Hospital patients 

persistently colonized with MRSA have been found to generally have less diversity of species in 

the nares than non-colonized controls, but the presence of Streptococcus and Lactobacillus 

species were found to have a protective effect [47], with Streptococcus also reported to compete 
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with SA in neonatal units [47, 48].  This shift observed in SA from a pathogenic to a commensal 

phenotype may be explained by interference from other nasal commensals and would be 

important to further characterize in humans to understand the dynamics of nasal carriage and 

clearance in persistent, intermittent, and non-carriers.  The pigtailed macaque nasal microbiome 

has not been characterized thus far, however benefit would be had in making comparisons in 

determining its use as a human-relevant model and in uncovering any relationships between SA 

and inhibitors that could lead to future development of novel antibiotics. 

Rodent Models of Staphylococcus aureus Nasal Carriage Translate Poorly to the Human 
Condition 

Historically, rodents have been extensively utilized in cancer, HIV, microbial, and many 

other areas if study because they are relatively economical, easily and inexpensively maintained, 

docile in handling, and can be genetically modified in ways to fit the study in question, allowing 

researchers great insight to mammalian biological mechanisms.  Mice have been implemented in 

experimental models for SA induced cutaneous infections, sepsis, endocarditis, and others and 

have identified key SA virulence factors and mechanisms of adhesion [49].  These studies have 

greatly added to the scientific knowledge of SA, however failures in progression of therapies 

from rodents into human trials have led to the question as to whether mice are acceptable models 

for human responses to SA infection [49]. 

The nasal anatomical and histological differences between mice and humans are 

significant, since mice are obligate nose breathers [50].  The nares contain the same epithelial 

cell types, transitioning from stratified squamous in the anterior to pseudostratified columnar in 

the posterior, but in dissimilar ratios and with a five-fold increase in complex turbinate surface 

area in mice [51].  Rodents live with their faces about an inch off the ground, and the primary 
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function of the murine nasal passage is olfaction, which is reflected in the differences in anatomy 

and cell-type striations as compared to humans where the function of the nasal passage is 

respiration [50, 52].  They are quadrupedal, and humans and non-human primates are mostly 

bipedal, therefore the head and nasal cavities evolved differently to reflect this, and rodents have 

a more pronounced backward tilt to the head that likely affects rate of sinus drainage.  Another 

important factor, rodent nasal openings are devoid of hair follicles, a major niche occupied by 

SA and its competitors in the human nose, likely a main reason that SA is not naturally supported 

[22, 50].  When using mice for intranasal SA studies, longitudinal studies are impossible as their 

noses are too small to be swabbed.  Monitoring for SA carriage leads to sacrifice of subjects at 

varying time points and surgical removal of noses for excision of nasal tissue and quantification 

of total nasal flora by plate counts [50, 52].  These aspects are less than ideal for tracking SA 

carriage rate and correlating individual innate responses with bacterial load over time as can be 

done with human studies. 

Another undesirable aspect of utilizing mice as SANC models is that their host defense is 

dissimilar to humans in pronounced ways, therefore, rodents respond to the presence of SA 

differently and are resistant to nasal colonization [53].  In the human innate response, host nasal 

epithelial cells sense SA cell wall constituents and rapidly release chemokines to attract 

neutrophils to the site of infection [54].  Once neutrophils arrive and mature, they clear 

extracellular bacteria through release of oxidative bursts and phagosomal destruction of cells by 

the release of defensins, an important mechanism that is absent in mouse neutrophils [54].  

Human blood contains approximately 70% circulating neutrophils, while mouse blood is more 

leukocyte-laden, with only about 20% neutrophils [52].  The innate response to nasal SA in 

rodents is primarily T helper cell mediated, with a corresponding up-regulation of IL-17 [55].  
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Further discrepancies include variances in B- and T-cell signaling pathways, cytokines and their 

receptors, expression of co-stimulatory molecules, PRRs, balance of leukocyte subsets, among 

many other inconsistencies [52]. 

Previous research has shown that most animals, including mice, implemented in studying 

SA pathogenesis are not natural nasal carriers of SA, a feature beneficial in mimicking human 

nasal carriage [56].  This contributes to establishing only transient SANC in the majority of study 

subjects for only a span of a few days, even when up to a billion SA CFUs are inoculated into 

each nostril and streptomycin antibiotic is provided in drinking water to reduce non-SA 

competition in the nose [1, 50, 57].  Human carriers readily support SA nasal inoculations over 

periods of weeks and months with no outside intervention to force nasal carriage [28, 58].  A 

new model is needed that also readily supports human physiologically relevant inoculations of 

SA without enormous inoculums and antibiotic knockdown of the non-SA commensal 

microbiome, as this is not true to the human condition. 

The cotton rat (Sigmodon hispidus) model has been used for identifying bacterial 

determinants of SANC [10, 59], as its anatomy and histological striations are more comparable 

to human nasal passages than typical mouse models [60], however, in terms of the nasal 

microbiome, very different bacterial profiles are supported and longitudinal studies are still 

impossible in this model due to its small size.  As discussed previously, the human nasal 

microbiome is dominated by Staphylococcal species and can be highly variable, while 

implementation of next-generation sequencing (NGS) showed that the cotton rat nasal 

microbiome is comprised of roughly half Campylobacter species, and the rest are potential 

gastrointestinal and oral pathogens, all not found in human noses [61].  These differences in 

supported species are likely due to the absence of hair follicles in the nostrils of the cotton rat, 
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which is an important ecological niche occupied by SA and its competitors in the human nose.  

The interactions between SA and the rodent nasal microbiome must therefore be dissimilar to 

those in the human nose and compounded with the immune response differences already 

discussed presents additional motivation for an improved model for human SANC. 

Regardless of these points, implementation of rodent models for SANC studies is not 

ideal for a simple fact that longitudinal correlations between the presence or absence of SA with 

immune factors is impossible because rodent noses are too small to be swabbed, leading to the 

sacrifice of several animals every few days.  Measuring the individual rodent’s response to SA 

inoculation is impossible and knowing that the human response to SA is very personalized, a 

human-relevant model is needed that can be easily monitored over a long period of time to make 

similar distinctions as we can in humans to determine the mechanisms explaining why healthy 

people asymptomatically carry SA while others seemingly do not. 

The Pigtailed Macaque (Macaca nemestrina) as a Potential Human-Relevant Model of SANC 

 Ideally, research on human SANC would be performed in the most accurate model, the 

human, however, in the US, there are strict ethical and procedural limitations to human 

experimentation.  SANC is largely asymptomatic, so there is little pressure in recruitment of 

subjects from clinical settings since most nasal carriers are unaware that they are carrying, and 

retention of subjects is not always maintained due to the absence of symptoms and the presence 

of human free-will.  For participation in SANC studies, subjects are required to apply antibiotic 

to their own nostrils to clear SA and complete the full regimen, and it is difficult to ensure 

completion, which can lead to skewed results.  A study cannot inoculate human subjects with 

potentially virulent or antibiotic resistant strains, in fact, the only SA strains acceptable for 
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human nasal inoculations are isolates from each subject’s own nostril, and must be self-applied 

[28, 58].  This prevents the increase in knowledge of colonization mechanisms and the immune 

response to virulent strains, which would be beneficial in understanding progression of SA 

disease states.  Human study subjects are typically required to longitudinally return to the 

laboratory for nasal swabs, nasal fluid collections, etc. and the free-will factor can cause 

procedural limitations when subjects fail to return.  Removing the free-will element and 

eliminating as many factors as possible (environmental changes, diet, stress, illnesses) that have 

been seen in humans to impact SANC in creation of a reliable model that will be present for all 

follow-up visits will be useful in circumventing the ethical and procedural limitations in human 

research. 

The pigtailed macaque (Macaca nemestrina) is a medium-sized monkey found in 

Indonesia, Malaysia, and southern Thailand, with a captive life-span of 27-35 years [62].  

Females and males have very different temperaments; females are typically docile unless 

threatened and can be trained to easily cooperate in certain treatments or interactions, while 

males are aggressive and are maintained for breeding purposed in a research setting [63].  Sexual 

maturity for females is about 3 years of age, and their yearly hormone fluctuations and 28-day 

menstrual cycle resemble the human female condition, including the ability to breed year-round 

(unlike other monkey models) [64].  Hormonal fluctuations have been shown to influence the 

human female immune response [65]; therefore to use an animal model with very different 

hormonal cycles (such as rodents) is erroneous in translation to the human condition.  

Collaborators of this study at the Washington National Primate Research Center (Seattle, WA.) 

primarily house the pigtailed macaque due to their similarities to humans, and have implemented 

this model for years in research centered on reproductive and rectal mucosa and potential 
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microbicides to treat or prevent sexually transmitted infections (STIs) like HIV and chlamydia 

[64-66].  Similarities in mechanisms and acquisition of human-relevant STI’s, clinical 

presentation of infection, innate responses and microbiome in the reproductive mucosa, fetal 

development of the respiratory system, and more have been determined through increasing use of 

this model over the past 10 years [67-71]. 

There are many similarities between human and rodent systems, but it cannot be assumed 

that what is true in murine immunology is true in the human, as these differences lead to billions 

of dollars in wasted funding in failed clinical trials every year, driving up the cost of drug 

development.  Rodent models have uncovered many SA adhesion and virulence factor 

mechanisms that were once a mystery, however colonization and clearance mechanisms of 

SANC are still not understood due to the differences in systems.  Why do so many healthy 

humans persistently carry millions of SA cells in the nose without symptoms, while others do not 

seem to ever carry or only intermittently?  Nasal carriers are not suffering from a neutrophilic 

disorder and have just as many circulating in the blood as non-carriers.  The lack of a human-

relevant model has essentially brought SANC studies to a stand-still, and development of a 

model in which many subjects can be easily and simultaneously decolonized and recolonized 

with a variety of SA strains would circumvent limitations in murine and human experimentation.  

The cost of non-human primate research is considerably higher than murine studies, however, 

further development of an improved model may yield results with improved translation to the 

human condition, prevent the loss of funds in the transition from pre-clinical to clinical human 

trials for new therapies, and balance out the cost of maintaining the model. 

This study implements the pigtailed macaque (Macaca nemestrina) in a series of 

independent decolonization and recolonization SA inoculation experiments with a variety of SA 
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strains, including one human isolate.  Development of this potential model for human SANC 

includes: observation of nasal and extranasal acquisition and carriage patterns following safe and 

appropriate nasal inoculations, innate responses to SA presence in the nasal mucosa, and 

comparisons between components of human and pigtailed macaque nasal microbiomes. 
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CHAPTER 2: LONGITUDINAL ASSESSMENT OF STAPHYLOCOCCUS 
AUREUS NASAL CARRIAGE DYNAMICS IN A HEALTHY COHORT OF 

PIGTAILED MACAQUES  

Introduction  

Staphylococcus aureus is a transient part of the normal flora of human skin, but 

preferentially occupies the moist nasal vestibule of approximately 30% on a world-wide scale.  

Longitudinal human studies have elucidated three accepted categories of nasal carriage: 

persistent (always SA-positive), intermittent (periodically clears SA from the nares), and non-

carriers (always SA-negative by standard culture methods).  Human SANC studies have also 

elucidated that nasal colonization is not solely reliant upon the bacterial strain but is also 

impacted by a myriad of other factors, such as host genetics, the speed and effectiveness of 

immune responses, and environmental factors.  A study from the Netherlands, where fewer 

procedural limitations exist, discovered that intermittent and non-carriers share similar anti-

staphylococcal antibody profiles, and that persistent carriers tend to preferentially select their 

autologous, or self-isolated strain from a mixed inoculum [2].  Procedural and ethical limitations 

in the US prevent human studies of this type since only autologous strains are allowed for 

inoculation studies, however following development of a human-relevant model this and other 

limitations could potentially be circumvented.  The pigtailed macaque has been well-established 

as a suitable model for the female reproductive system and has many advantages over using 

common rodent and other small animal models.  The tissue structure and immune responses in 

the reproductive mucosa of pigtailed macaques has proven similar to that of human females and 

support similar vaginal flora, and both have similar 28- to 30-day menstrual cycles and hormonal 

fluctuations [66, 72].  Implementation of the pigtailed macaque reproductive model has been 
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useful in studying sexually transmitted infections like HIV, trichomoniasis, and chlamydia [64, 

72], and several potential microbicide trials have resulted [66, 73]. 

An effective model for SANC would require the possibility for many subjects to be 

simultaneously decolonized of SA and recolonized again with a variety of strains to 

longitudinally follow carriage patterns and immune responses.  This study over the course of 18-

months validated six female pigtailed macaques as natural SA carriers, then follows their 

carriage patterns and their innate immune response to SA presence through a series of various 

autologous and non-autologous strain inoculations, one of which was a human nasal SA isolate. 

Materials and Methods 

Study Participants and Ethics. 

This study was performed with pigtailed macaques (Macaca nemestrina) housed at the 

Washington National Primate Research Center (WaNPRC), in accordance with all institutional 

and federal guidelines for the care and use of laboratory animals.  Housing and care conditions at 

the WaNPRC facilities meet AAALAC accreditation standards for non-human primates and 

follow NIH guidelines for ABSL-2 containment facilities.  Ambient temperature in the animal 

rooms was between 22.2° to 25.6° C with relative humidity between 30-50%, and maintained on 

12 hour light and dark cycles [74].  The study-specific protocol was reviewed and approved by 

the Institutional Animal Care and Use Committee of the University of Washington.  On days 

where mupirocin ointment was applied only, animals received a light dose of 0.8-mg/kg 

ketamine, with antibiotic applied while still in their cages.  For screening and sample collections 

(nasal and extranasal swabs, nasal fluid collection, and blood draws), animals were sedated with 

1.2-mg/kg ketamine and moved from their cages to a procedure room.  Six healthy, sexually 
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mature female pigtailed macaques were selected from a colony of 17 healthy individuals whose 

nasal and pharyngeal SA carriage status was monitored for two months.  Subjects were chosen 

based on ability to naturally acquire and carry SA at mid-high SA loads in the nasopharynx as 

well as availability for participation in the study for the approximate 18-month duration.  There 

were no clinical adverse effects of nasal SA inoculation reported during the duration of the study.  

The study subjects were monitored for changes in temperature and body weight at each weekly 

sedation, with no changes in behavior or diet noted. Previous human nasal carriage studies 

performed by the Cole Laboratory that are referenced were previously described [58, 75] and 

were performed under guidelines of the Institutional Review Board of the University of Central 

Florida. 

Animal Screening for SA Carriage and Sample Processing 

To screen pigtailed macaques for SA carriage, the nostrils and pharynx were sampled 

using flocked Copan Diagnostics Eswab mini-tips and stored immediately in 1 ml of Eswab 

(liquid Amies) medium in transport tubes (Fisher Scientific #23600901).  Samples were shipped 

overnight on ice packs to the Cole Laboratory and processed immediately upon arrival.  

Transport tubes were vortexed, and swabs were streaked onto BBL CHROMagar plates for 

colorimetric rapid validation of SA presence.  Swab tips from each sample were reserved in a 

labeled cryotube and stored at -80°C for any further downstream use.  Eswab media was diluted 

into Hank’s Balanced Salt Solution (HBSS) at 1:10, 1:100, and an additional 1:1000 for pharynx 

and vaginal samples.  These dilutions along with a straight (undiluted) sample were plated on 

Tryptic Soy Agar with 5% sheep’s blood (TSA II, Fisher Scientific cat# B21261X) to quantify 

SA and non-SA colony-forming units (CFUs).  Leftover Eswab sample was stored as 
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representative “early” glycerol stocks (500 μL sample + 500 μL 70% TSB/30% glycerol) at -

80°C, and any leftover swab liquid (~100 μL) was cultured overnight (18 hrs/37°C/250rpm) in 2 

mL TSB and stored at -80°C as a “late” glycerol stock (500 μL sample + 500 μL 70% TSB/30% 

glycerol).  SA colonies were identified as phenotypic β-hemolytic colonies on TSA II and 

confirmed with Staphyloslide Latex Agglutination Test (Fisher Scientific cat# B4340953), which 

identifies presence of SA-specific protein A.  Then the colony was plucked with a sterile pipette 

tip for overnight subculturing in TSB to reserve SA colony glycerol stocks for any future use.  

Following subject selection, this identical protocol was followed for all sample sites (left and 

right nostrils, pharynx, left and right axillae, left and right palms, and vagina) each week for ~18-

months. 

MLST and Spa Typing of SA Isolates   

The nasal SA strains isolated from these animals were characterized using multilocus 

sequence typing (MLST), which exploits conserved genes that encode essential housekeeping 

enzymes within a species [76].  These are amplified with PCR, followed by analysis of the 

resulting DNA sequences of the MLST loci, then are assigned allele numbers, the combination of 

which identify the strain as a strain type (ST).  USA300-0114 (NRS384) was obtained through 

the Network on Antimicrobial Resistance in Staphylococcus aureus (NARSA) program, 

supported under NIAID, NIH Contract No. HHSN272200700055C and used as a positive control 

for PCR reactions.  Human nasal isolates were collected as described previously [28], and 

processed identically to pigtailed macaque isolates described herein. SA colonies from each 

animal’s nostril were plucked from TSA II plates used to enumerate SA and non-SA, and 

subcultured overnight in 5 mL TSB (18 hrs/37°C/250rpm).  Genomic DNA was extracted from 
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these isolates using UltraClean Microbial DNA Isolation Kit (MO Bio Laboratories, West 

Carlsbad, California, USA) according to manufacturer's instructions, except instead of using 1.8 

mL of sample, 800 μL were extracted unless bacterial pellet was insufficient.  Resulting genomic 

DNA was placed in seven separate PCR conditions with the appropriate primers (Table 1) to 

amplify the seven MLST genes (arcC, aroE, glpF, gmk, pta, tpi, and yqiL) in adherence with the 

described protocol [77] with the remaining DNA numerically coded and reserved at -20° C until 

further use.  PCR amplicon sizes were verified with negative (no DNA) and positive (USA300 

amplicons) by gel electrophoresis, then sent to Eton Biosciences (Research Triangle Park, NC) 

for Sanger sequencing using the same primers as used in PCR.  Mega7 was used to form a 

contiguous sequence using forward and reverse sequences.  The Staphylococcus aureus MLST 

database (http://pubmlst.org/saureus/) was utilized to assign allele numbers and identify 

sequence types (STs) for each of the seven alleles and SA isolates respectively.  SA genomic 

DNA was used in a similar manner for staphylococcal A protein (spa) typing according to 

previously described procedures [78].  Spa types were determined using Ridom StaphType 

software (http://www.spaserver.ridom.de/) after receiving spa sequence data from Eton 

Biosciences.  Newly identified sequence types were synchronized with the RIDOM server, and 

were used throughout the study to validate nasal and extranasal SA detections as identical to the 

inoculated strain. 

Comparative Genetic Analyses of Macaque and Human Nasal Isolates 

Eight SA strains isolated from previous human study donors [75] were genetically 

compared to the three SA strains isolated from the six pigtailed macaques in this study.  Multi-

locus sequence typing (MLST) was performed initially for seven housekeeping genes (arc, aroE, 

http://pubmlst.org/saureus/
http://www.spaserver.ridom.de/
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glpF, gmk, pta, tpi, and yqil) to characterize the isolates, and numerical identifications were 

obtained from the Staphylococcus aureus MLST database (http://pubmlst.org/saureus/).  The 

seven MLST allele sequences were concatenated for the eight human and three macaque SA 

strains, aligned with each other, and analyzed using MrBayes v3.2 Bayesian analyses to form a 

phylogeny to view evolutionary relationships.  Human SA isolate from donor (D) 579, which 

was previously identified as ST398 was found similar to macaque strains ST3814 and ST3815 

while other human isolates were further diverged. 

Verification of Methicillin-Susceptibility of Implemented SA Strains 

It was important to ensure that the SA strains chosen for nasal inoculation studies in the 

chosen cohort of healthy pigtailed macaques were not methicillin resistant, as we wanted to 

avoid infecting the animals with difficult to eradicate virulent strains.  The mecA gene encodes 

the penicillin binding protein, PBP2A, which is responsible for disrupting the lactam ring in 

several antibiotics and is present in methicillin resistant strains of SA.  For validation of 

methicillin susceptibility, the PCR amplification of mecA was performed for each human and 

pigtailed macaque SA isolate using MR1 and MR2 primers (Table 1) under PCR conditions 

adopted from a previous study [79].  The absence of a corresponding 1.3 Kb band after gel 

electrophoresis was indicative of the lack of the mecA gene (as compared to USA300 MRSA 

strain as a positive control).  These were further validated as mecA negative by plating 

corresponding bacterial samples on MRSASelect chromogenic agar plates (Bio-Rad, Hercules, 

CA, USA) according to manufacturer’s instructions.  When plated, the USA300 MRSA strain 

control presented as pink colonies, indicative of methicillin resistance, while all other susceptible 

strains grew as white colonies. 

http://pubmlst.org/saureus/
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Verification of Mupirocin Susceptibility of Implemented SA Strains  

Macaque strain types 3813, 3814, 3815 and human strain D579/ST398 were verified 

susceptible to mupirocin antibiotic application through multiple liquid turbidity (growth) assays 

[80].  Snap frozen cultures were thawed on ice, vortexed vigorously, and 50 μL was proliferated 

in 5 mL TSB in a shaking incubator (2.5 hrs/37°C/250rpm) to log phase growth.  Optical density 

(OD) of a 1-mL sample of each was measured at 550 nm to achieve a desired absorbance reading 

of 0.8, indicative of approximately 108 SA CFU/mL.  Depending upon the OD measurement, 

approximately 100μL of each log phase SA culture was serially diluted in pre-warmed (37° C) 

Mueller-Hinton broth (MHB) (BD, cat# 275730) with 5% sucrose to achieve approximately 104 

CFU in 90μL SA/well of a 96-well clear-bottom plate (TPP/ Midsci, cat# TP92096).  Input 

CFUs were also verified through back calculating two serial dilutions of each strain on TSA II 

agar plates.  A 1-mg/mL mupirocin (Sigma-Aldrich, cat# M7694) stock was prepared in 

dimethyl sulfoxide (DMSO), then diluted in HBSS to 80, 40, 20, and 10 μg/mL.  These working 

solutions were diluted 1:10 in SA on a 96-well plate to achieve 1, 2, 4, and 8 μg/mL final 

concentrations of mupirocin.  Controls for the assay included an aminoglycoside antibiotic, 

tobramycin, a known SA inhibitor; an antibiotic-free growth control with DMSO to ensure that 

the vehicle was not inhibitory to bacterial growth; and a negative control of MHB/5% sucrose to 

ensure sterile media.  Once loaded, the plate was sealed with ThermoSeal A Film (Excel 

Scientific, Inc., cat# TSA-100) and placed into a pre-warmed (37°C) SpectraMax 190 microplate 

reader (Molecular Devices, Sunnyvale, CA).  Over the course of the 16-hour kinetic assay, 

turbidity as indication of bacterial growth at OD 550nm was measured every five minutes 

following brief 15-second agitations.  OD 550nm measurements for all wells were exported and 

resulting growth curves were plotted against time (hourly time points) using GraphPad Prism 7 
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software.  Following the 16-hour assay, 10 μL of each strain per treatment was plated on TSA II 

agar and β-hemolytic colonies were enumerated the next day following incubation.  Each strain 

proliferated to approximately 108 CFU/90μL in antibiotic-free wells as back calculating CFU 

counts from serial dilutions on TSA II plates, and each strain was susceptible to mupirocin 

concentrations as low as 1 μg/mL. 

Experimental Nasal SA Inoculation of Pigtailed Macaques.   

Prior to experimental inoculations, the pigtailed macaques were decolonized of 

endogenous SA by the application of a pea-sized amount of 2% topical mupirocin ointment 

(Bactroban, GlaxoSmithKline, Philadelphia, PA) to each nostril followed by a brief massage of 

the exterior nostrils.  This was performed under light anesthesia while remaining in their cage 

twice a day for five days to clear the body of SA.  Following the fifth day of mupirocin 

application, the nasal microbiome was allowed to normalize over a four-week period prior to 

experimental SA inoculations.  During this recovery period, the nostrils, pharynx, axillae, palms, 

and vagina were monitored for SA and to enumerate non-SA as an indication that the commensal 

population had replenished by inoculation day.  During the fourth week of post-mupirocin 

commensal normalization, experimental strains were prepared and enumerated for inoculation as 

follows: SA colonies were proliferated in 50mL TSB (18 hrs/37°C/250rpm), after which 1-mL 

was subcultured in 50 mL TSB (2 hrs/37°C/250rpm).  Liquid culture was added to a conical 

tube, centrifuged five minutes at 3000 xg, after which supernatant was removed and the bacterial 

pellet reserved.  Pellets were resuspended in 35mL HBSS with 1% bovine serum albumin (BSA), 

spun down again, and the pellet resuspended in another 35mL HBSS/1% BSA.  This suspension 

was well-mixed, transferred to 1.5mL microtubes and snap-frozen in liquid nitrogen for 3 hours, 
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then kept at -80°C until future application.  The concentration of each SA strain (CFU/mL) was 

verified through dilution plating five aliquots of each snap culture on TSA II agar, enumerating 

SA colonies, and back calculating to determine the average original concentration of each strain.  

These back counts were used to design a dilution scheme per strain for the WaNPRC to deliver 

103 or 104 CFUs in an inoculation of 20µL per nostril.  Under ketamine anesthesia, a 

micropipette was used to administer the inoculum to both nostrils of the subjects, and the exterior 

of the nostrils were massaged for 30 seconds to distribute throughout the nasal passage.  The first 

experimental inoculation implemented each individual pigtailed macaque’s SA strain to 

determine an appropriate inoculum to successfully establish nasal and extranasal colonization 

with the least CFUs as possible in 20µL, beginning with 103 CFU/nostril.  This inoculum was 

not successful in establishing carriage in most nostrils and extranasal sites as indicated through 

dilution plating methods, therefore two weeks following the first inoculation, a second 

inoculation was performed with 104 CFU SA in 20µL per nostril.  This inoculum was successful 

in establishing carriage through day 70 post-inoculation, therefore 104 CFU per nostril was 

continued throughout the remaining three experimental inoculations of ST3813, ST3814, and 

human isolate ST398 applied to all subjects, with nasal carriage established in each inoculation 

for 63, 93, and 22 days respectively.  Throughout each of the nasal microbiome normalization 

periods and four experimental SA inoculation studies, nasal and extranasal swabs, nasal fluids, 

and blood were collected at days 0 and 3 post-inoculation, then weekly until the end of follow-

up. 
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Statistical Analyses  

All screening, turbidity assays, and carriage data were analyzed using GraphPad Prism 7 

software (GraphPad Software, La Jolla, CA).  Analyses of natural SA levels by body site (Fig. 

3B) were log-transformed and compared using one-way ANOVA with Tukey’s multiple 

comparisons test.  Recovery of the non-SA nasal commensal population (Fig. 4) was determined 

by averaging the nostrils per individual, log-transforming them, and comparing the weekly 

results using paired t-tests.  Autologous and non-autologous positive nostril SA CFU counts 

(Fig. 7A) were found not significantly different through unpaired t-test (two-tailed).  Survival 

curves comparing autologous and non-autologous macaque inoculations (Fig. 7B) were found 

not significantly different using both the Log-rank (Mantel-Cox) test and the Gehan-Breslow-

Wilcoxon test.  Human and pigtailed macaque nasal SA isolates were genetically compared (Fig. 

8) using Mr. Bayes v3.2 phylogenetic analyses. 

Results 

Pigtailed Macaques (Macaca nemestrina) are Natural Carriers of S. aureus (SA) Strains at 
Bacterial Loads Within Human Carriage Range 

As previously mentioned, rodents are not natural carriers of SA in the nostrils and this 

presents issues in maintaining carrier status even when inoculated with a billion SA CFUs or 

more per nostril [1, 57, 59].  A natural nasal carrier of SA would be ideal for colonization 

studies; therefore, 17 pigtailed macaques were assessed for nasopharyngeal SA carriage by a 

two-month screening process.  Each subject was swabbed in the nasal vestibule of both nostrils 

and the pharynx at two screening visits eight weeks apart.  Thirteen animals were colonized in 

one or both nostrils at both visits, with all seventeen presenting positive for SA in either the nose 
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and/or pharynx in at least one screening (Fig. 1).  Six healthy females of reproductive maturity 

were assigned to participate in a series of independent SA inoculation studies (red-boxed 

identifications in Fig. 1) based upon mid-to-high SA CFU carriage and availability to participate. 

 

 

Figure 1: Pigtailed Macaques are Natural Carriers of SA in the Nose and Throat. 

Seventeen pigtailed macaques at the WaNPRC were screened for SA in the nostrils and the 
pharynx twice, eight weeks apart and swabs were plated on TSA II to quantify SA.  Boxed 
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animal identification codes (Animal ID) indicate the six animals chosen to participate in a series 
of inoculation studies.  Error bars indicate mean±SD, the x-axis begins at the limit of SA 
detection as plated on TSA II (10 SA CFU/swab). 

 
Once subjects were assigned to this study, animals were maintained in separate enclosures, and 

collected nasal isolates were genotyped by spa typing and multi-locus sequence typing (MLST) 

implementing primers described in Table 1.  Characterization of the macaque strain genotypes 

was not only for the benefit of comparing the genetics to each other and to prior human SA 

isolates, but to also provide a method to longitudinally validate that any SA colonies detected 

nasally and at extranasal sites over the course of each individual experimental inoculation were 

genetically indistinct from the SA strain placed into the nostrils. 
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Table 1: Primers Implemented in this Study 

Primers: Primer Name abbr Forward (5' - 3') Reverse (5' - 3')
SA MLST: arcC A TTGATTCACCAGCGCGTATTGTC AGGTATCTGCTTCAATCAGCG

aroE B ATCGGAAATCCTATTTCACATTC GGTGTTGTATTAATAACGATATC
gLpF C CTAGGAACTGCAATCTTAATCC TGGTAAAATCGCATGTCCAATTC
gmk D ATCGTTTTATCGGGACCATC TCATTAACTACAACGTAATCGTA
pta E GTTAAAATCGTATTACCTGAAGG GACCCTTTTGTTGAAAAGCTTAA
tpi F TCGTTCATTCTGAACGTCGTGAA TTTGCACCTTCTAACAATTGTAC

yqiL G CAGCATACAGGACACCTATTGGC CGTTGAGGAATCGATACTGGAAC
spa  typing: 1095F-1517R spa AGACGATCCTTCGGTGAGC GCTTTTGCAATGTCATTTACTG
MecA (-/+): MR1/MR2 (F/R) mecA TAGAAATGACTGAACGTCCG TTGCGATCAAATGTTACCGTAG

16S: 27F-1492R AGAGTTTGATCMTGGCTCAG GGTTACCTTGTTACGACTT
341F-785R CCTACGGGNGGCWGCAG GACTACHVGGGTATCTAATCC  
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Sequence analyses showed that animals A10023, K05139, T04293, and Z08064 carried an 

indistinguishable sequence type (ST) 3813; A11236 carried ST3814; and Z08202 carried 

ST3815, each characterized as new SA strains (Table 2). 

 

Table 2: Human and Macaque Staphylococcus aureus Isolate Characterizations 

SA Strain ID Origin MLST SpA Type mecA (+/-) mupR (+/-)
ST3813 Pigtailed macaque 3813 t15866 - -
ST3814 Pigtailed macaque 3814 t15867 - -
ST3815 Pigtailed macaque 3815 t15868 - -

*USA300 Human wound 8 t008 + -
D528 Human nose 8 t008 - -
D547 Human nose 5 t688 - -
D20 Human nose 30 t12255 - -
D579 Human nose 398 t571 - -
D502 Human nose 105 t056 - -
D812 Human nose 716 t008 - -
D566 Human nose 30 t037 - -  

SA: Staphylococcus aureus; MLST: multi-locus sequence type; SpA Type: Staphylococcal 
protein A gene Ridom type; mecA: mecA gene presence (+) or absence (-); mupR: mupirocin 
resistance presence (+) or absence (-).  *USA300 strain isolated from wound, acquired from 
NARSA program.  *USA300-0114 (NRS384) was obtained through the Network on 
Antimicrobial Resistance in Staphylococcus aureus (NARSA) program: supported under NIAID, 
NIH contract No. HHSN272200700055D. 
 

SA Strains Implemented in this Study are Mupirocin-susceptible 

Each strain isolated from the pigtailed macaques lacked the mecA gene encoding 

methicillin resistance; however, it was desired to implement a topical antibiotic other than 

methicillin to prevent the rapid acquisition of methicillin resistance in the pigtailed macaque 

colony once the study ended.  All three macaque SA isolates and the single human SA 

implemented in this study were validated as mupirocin sensitive with liquid turbidity assays prior 
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to use in the animals.  This study implements 2% mupirocin antibiotic ointment, applied twice-a-

day for five days to each nostril of the pigtailed macaques, which is the same concentration and 

protocol used to eradicate nasal SA prior to surgery and clear skin infections in humans.  Upon 

challenging 104 CFUs of each strain with a low-level range of mupirocin concentrations, from 1-

8 μg/mL, SA was inhibited with as low as 1 μg/mL as compared to the antibiotic-free growth 

curve (Fig. 2A).  Each curve is the result of averaging hourly OD (550 nm) measurements (as 

indication of growth) of the three macaque SA isolates and the one human strain over the course 

of the 18-hour assay.  For each strain per treatment, 10 μL from post-assay wells were plated on 

TSA II/5% sheep’s blood and any resulting SA colonies were enumerated and compared to input 

and antibiotic-free SA CFU counts (Fig. 2B).  Antibiotic-free/DMSO (vehicle) treatments of all 

four SA isolates proliferated to 108 CFUs from an approximate input of 104 CFUs (error bars 

indicate mean±SEM).  Mupirocin concentrations of 1-8 μg/mL were inhibitory for all strains; 

post-assay SA colony growth from the 8 μg/mL treatments occurred only twice and only with 

macaque isolates ST3814.  Post-assay growth for the 1 μg/mL occurred often and with all tested 

strains, suggesting that these low concentrations used in turbidity assays are bacteriostatic rather 

than bactericidal.  In vivo application of mupirocin ointment delivers concentrations estimated 

between 5000-10,000 μg in a pea-sized amount (estimated as a fourth to a half of a gram) of 2% 

mupirocin ointment, twice-a-day, for five days and not only in one application as in the in vitro 

turbidity assay. 
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Figure 2: Nasal SA Isolates Implemented in Experimental Inoculations were Susceptible to 
Mupirocin Application 

A) Liquid turbidity assays with low-level range of mupirocin concentrations (1-8 µg/mL) were 
applied to four SA isolates (three macaque, one human).  Growth curves (OD plotted against 
time) were generated for each treatment versus an antibiotic-free growth curve (blue) for 
comparison.  B) One well per each strain was plated on TSA II per treatment (including 
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antibiotic-free) following the 16-hour assay.  Resulting SA colonies were counted and compared 
to input CFUs (indicated through pre-assay plate counts).  n=15 (5 experiments, 3 replicates per 
strain), error bars indicate mean ± SEM. 
 

The Nasal Vestibule is the Primary Reservoir of SA in the Pigtailed Macaque 

Screening SA CFU counts prior to any manipulation revealed that pigtailed macaques 

naturally support SA in the nose and pharynx within range of human nasal carriers.  To 

determine if the nose is also the reservoir for SA in the macaque, animals were swabbed in the 

left and right nostrils, pharynx, left and right axillae, left and right palms, and vagina to 

enumerate the comparative SA loads of these sites that are observed in humans to have increased 

SA during heavy nasal carriage.  Immediately following, application of 2% topical mupirocin 

ointment to the nostrils was continued twice-a-day for five days, then these same sites were 

followed for four weeks.  Figure 3A shows the average SA load at eight swab sites at “Pre-

Mupirocin”, and Weeks 1-4 “Post-Mupirocin” for 6 macaques during four independent 

experimental inoculations.  Pre-mupirocin counts show that the nostrils contained significantly 

higher SA loads compared to all other extranasal sites, and the pharynx contained the most SA 

out of the six extranasal sites but less than the nostrils.  Mupirocin ointment was only applied to 

the nasal vestibule, but by week one post-mupirocin, all sites were cleared.  Out of 24 total 

weekly swabs per site over the post-mupirocin periods, ≥21 samples were negative for SA once 

the nostrils were cleared. 



32 
 

 

Figure 3: The Nasal Vestibule is the Predominant Reservoir of SA in the Pigtailed Macaque 

A) The nostrils and each extranasal site were swabbed prior to antibiotic treatment, then weekly 
after the five-day course of 2% mupirocin ointment applied to the nostrils only.  The nostrils and 
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rest of the body were effectively cleared of SA. Error bars indicate mean±SEM, n=24 (6 animals, 
4 experiments).  B) Detection of natural SA carriage (i.e. not due to experimental inoculation of 
the nostrils) collected over an 18-month period shows elevated SA load in the nares (double 
asterisk).  Single asterisk indicates an elevated SA load when compared to extranasal swab sites. 
n= 19-115 swabs depending on anatomical site.  Error bars indicate mean±SEM.  
 
 

To further demonstrate that the nostrils are the primary reservoir, natural SA levels of the 

six extranasal sites were analyzed concurrently alongside the nostrils of the six animals: the 

pharynx, left and right axillae, left and right palms, and the vagina.  Figure 3B displays natural 

SA positive swabs, excluding nasal SA CFU counts resulting directly from experimental 

inoculations of SA.  Nostril swabs included in this figure are screening CFU counts, pre-

inoculation samplings, or when clearance of experimentally inoculated SA was observed for two 

consecutive samplings before detection.  All SA positive swabs were included for the six 

extranasal sites as these never received any experimental inoculations and naturally acquired SA 

from the individual’s own nose.  Natural SA carriage in the nostrils significantly outnumbered all 

other extranasal sites for frequency of positive swabs as well as SA load as indicated by double 

asterisks.  Considering the extranasal sites only, the pharynx swabbed positive for SA at a higher 

frequency with a higher density of SA, however again, lower in positive swab frequency and SA 

load than the nostrils indicated by a single asterisk (Fig.3B).  Taken together, these data suggest 

that like human SANC, the primary reservoir of SA in the pigtailed macaque is the nasal 

vestibule and is spread to extranasal sites through passive hand-face-body contact. 

Nasal Non-SA Commensal Population Recovers Prior to Experimental Inoculation 

To validate an animal model of SA nasal carriage, multiple animals need to be 

simultaneously cleared of SA, nasally inoculated with strains of choice, and followed up together 

easily.  For each of the four individual experimental inoculations, all six subjects were cleared of 
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nasal SA successfully with mupirocin antibiotic ointment and swabbed for four weeks to validate 

SA clearance and monitor the non-SA commensal population using dilution plating on TSA II 

agar.  Other gram positive non-SA commensals are susceptible to mupirocin, so it was expected 

that the non-SA CFU counts would decrease at least temporarily, but recovery should occur by 

inoculation day so that SA can be introduced to as close to a normal environment as possible for 

each individual.  Figure 4 displays that the mupirocin regimen significantly decreases the non-

SA nasal population as demonstrated by week one TSA II plate counts. 

 

 

Figure 4: The Non-SA Nasal Commensal Population Recovers Prior to Experimental Nasal 
Inoculations 

Macaque nostrils were swabbed prior to the first nasal mupirocin application, then weekly for 
four weeks afterwards, and the non-SA population was enumerated on TSA II blood agar plates.  
Paired non-SA CFU enumerations show the commensal population is significantly decreased one 
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week after mupirocin application (p=0.0481), however recovers by Week 3 Post-Mupirocin.  
Experimental inoculations occurred following the Week 4 swab collection.  Error bars indicate 
mean±SEM, n=36 at each time point (6 animals, 2 nostrils each, 3 inoculation studies). 
 
 
By Week 3 Post-Mupirocin, the nasal commensal population appeared to be fully restored, and 

the animals remained SA negative except for one individual (data shown Fig 3A).  Experimental 

SA nasal inoculations took place immediately after the Week 4 Post-Mupirocin samples were 

collected. 

A Human-relevant Inoculum of Staphylococcus aureus Establishes Asymptomatic Nasal and 
Extranasal Carriage in all Subjects 

As this is the first study of this type, there is no prior knowledge on how much SA is 

required to establish carriage with a nasal inoculum of SA in the pigtailed macaque.  The first 

inoculation was designed to identify the lowest nasal inoculum of SA to not only establish nasal 

and extranasal carriage in most subjects within the first two weeks of follow-up, but also prevent 

erroneously overloading the nasal mucosa and microbiome with SA.  The first inoculation 

experiment involved clearing the nares and re-introducing the strain of SA isolated from each 

individual.  Figure 5 is a heat map generated from log-transformed carriage data to give a quick 

visual representation of relative SA density in the nose and extranasal sites over ten weeks of 

follow-up.  Green is indicative of an SA count at or below the limit of detection based on 

dilution plating methods (LOD≤10), and ranges from yellow (low SA load, >10) to brick red 

(highest SA load, ≥106).  For paired sites (nostrils, axillae, palms), SA detections are averaged.  

Six animals were first inoculated with 103 CFU/20 µL of their own individual isolate in each 

mupirocin-cleared nostril (Inoc. 1), and followed at day 2, then for two weeks by swabbing the 

nares and extranasal sites for detection of SA on TSA II agar.  SA detection on day 2 post-
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inoculation one showed that 5 of 6 subjects were positive for SA in at least one nostril, and few 

extranasal sites.  Day 7 post-inoculation one SA quantification indicated that 3 of 6 subjects had 

cleared both nostrils, and only 6 of 36 extranasal sites were detectable for SA.  After sample 

collection on day 14, each subject received another nasal inoculation (Inoc. 2) of approximately 

104 SA CFU in each nostril (same self-strain).  Sample dilution plating of day 14 samples 

revealed that 3 of 6 animals remained nasally colonized and only 5 of 36 extranasal sites were 

still detectable for SA.  Following the second inoculation, day 21 of follow-up showed that SA 

established colonization in all nostrils, and then subjects were followed for an additional 8 weeks 

of nasal and extranasal swabs, nasal fluid, and serum collections for a total of 70 days.  Most 

extranasal sites were eventually colonized during this time in subjects with high nasal SA loads, 

importantly Z08064 and Z08202, both of which reached levels from 105-106 CFUs/swab and 

tended to carry higher when positive for SA over the course of the study.  One animal (T04293) 

cleared the nostrils of SA by day 56 and remained clear until the last sample before mupirocin 

clearance, important to note as this shows that the inoculum was adequate in establishing 

carriage but was not so high to prevent clearance. 
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Figure 5: Long-term Nasal and Extranasal SA Carriage is Established with a Human-relevant Nasal Inoculation of 104 SA 
CFUs/nostril 

Animals were cleared with a regimen of mupirocin ointment and recolonized with their own SA isolate. After 4 weeks of 
microbiome normalization, 103 SA CFUs were delivered to both nostrils.  CFU counts as detected on TSA II plates are shown as 
log-transformed, and paired sites are averaged and shaded according to SA load, legend on the right.  By day 7, 3 of 6 subjects had 
cleared both nostrils, and only 6 of 36 extranasal sites contained detectable SA.  Immediately following day 14 swabs, all nostrils 
received 104 CFUs of their own isolate again, which was sufficient in establishing carriage in all nostrils, and animals were 
followed for another 8 weeks.  Most extranasal sites were eventually detectable for SA, especially in animals that achieved high 
SA load in the nose. 
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Autologous and Non-autologous SA Strains Were Supported Similarly During Longitudinal 
Pigtailed Macaque SANC  

Once an appropriate inoculum was determined with each of the subjects’ own strains, two 

cycles were performed of mupirocin clearance of the nostrils, a 4-week normalization period, 

and inoculation of 104 SA CFUs into each of the pigtailed macaques’ nostrils.  Carriage of 

autologous versus acquisition of non-autologous SA strains has been implicated in influencing 

duration of human nasal carriage and bacterial load [2]; therefore it was desired to determine if 

the pigtailed macaques are similar.  Two macaque SA isolates were implemented in separate 

inoculation studies, ST3813 and ST3814, applied to all animals’ left and right nostrils, then 

followed for 63 and 93 days respectively.  Inoculation of ST3813 to all six animals was 

autologous (indistinguishable from original nasal strain) to four, and non-autologous to two 

macaques.  Inoculation of ST3814 was autologous to only one animal, non-autologous to the 

other five.  These were administered to each animal regardless of whether it was autologous or 

not to the originally detected strain to determine if strains are carried differently if they were 

originally residing in that individual’s nostril or completely new to the environment.  Animals 

were swabbed in the nostrils and at each extranasal site (pharynx, axillae, palms, vagina), nasal 

fluids were collected, and blood drawn each week throughout.  Nasal and extranasal SA and non-

SA were enumerated weekly through dilution plating swab samples on TSA II plates.  Each dot 

on Figure 6A represents one animal’s log-transformed averaged nostril, separated by autologous 

(left) or non-autologous (right) positive SA loads.  There was a total of 5 autologous and 7 non-

autologous inoculations, with most of the non-autologous inoculations occurring in the 

independent study with the longer duration (93 versus 63 days).  The supported SA load was not 

significantly different between autologous and non-autologous groups as determined through a 
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two-tailed unpaired t-test (p=0.1281).  Importantly, the mean averaged nostril detection for both 

autologous and non-autologous macaque strains was approximately 104 SA CFUs/ swab, while 

the median SA load in human nasal carriage is 9.8 x 104 SA CFUs/swab [58].  Additionally, 

there was no significant difference in duration of survival between autologous and non-

autologous SA strains.  Survival curves were generated using the same longitudinal CFU counts 

from day 2 or 3 post-inoculations, then weekly over the duration of both inoculation studies (Fig. 

6B).  All nostrils received identical treatments; therefore, detectable SA in at least one nostril 

was considered survival in that animal.  Autologous and non-autologous SA strains both 

persisted over 40 days, autologous with a median survival of 43 days and non-autologous with a 

median of more than 57 days, and the generated survival curves were statistically similar 

(p=0.3668). 
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Figure 6: Autologous and Non-autologous Pigtailed Macaque Nasal SA Strains may be 
Implemented in Successful Nasal Carriage Studies 

Animals’ nostrils were inoculated with 104 CFUs of SA in two independent inoculations with 
either genetically distinct (non-autologous) or indistinct (autologous) from their screening isolate 
as determined through MLST and spa typing.  Nasal swab samples were plated on TSA II 
weekly to quantitate SA CFUs longitudinally.  A) Positive nasal SA counts were averaged per 
individual and separated based on if the SA present was autologous or non-autologous to that 
animal’s original nasal strain, with statistically similar (p=0.1281) supported SA loads.  
Autologous n=31, non-autologous n=54, as most of the non-autologous data was collected 
during an extended follow-up duration, ~4 weeks longer than the inoculation including most of 
the autologous data collections.  B) Percent survival was determined from these same 
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longitudinal carriage data points, with SA detection in one nostril considered survival as all 
nostrils were treated with the same inoculum in the two independent studies.  Autologous and 
non-autologous strains survived statistically similar (p=0.3668) for over 40 days. 

Pigtailed Macaque SA Strains are Genetically Similar to Several Human Isolates  

The final inoculation was a short pilot study in which it was desired to determine if the 

nostrils and immunity of the pigtailed macaques would allow the colonization of a human SA 

strain.  The three pigtailed macaque SA strains isolated in this study were genetically compared 

to seven prior human study nasal isolates as well as prototypical human wound MRSA isolate, 

USA300 (wound isolate NRS384, ST8/t008) [75] to determine if the lab already possessed a 

suitable human strain as similar to the macaque’s strains as possible to establish carriage.  All 

nasal SA strains (Table 2), whether human or pigtailed macaque (other than USA300), were 

lacking the mecA gene that codes for methicillin resistance as determined through the absence of 

a band in a DNA gel following PCR amplification using mecA primers.  At the beginning of this 

study, multi-locus sequence typing (MLST) was performed for seven housekeeping genes for 

every strain to identify each isolate’s sequence type.  These seven MLST DNA sequences were 

concatenated per strain, aligned against each other, and arranged into a phylogeny tree according 

to sequence similarity using MrBayes v3.2 phylogenetic analyses (Fig. 7).  Human donor (D) 

579 carried ST398 and was found to be genetically similar to macaque strains ST3814 and 

ST3815 (based solely on MLST gene sequences).  It was desired for the last pilot study to 

implement a non-virulent, antibiotic susceptible human strain with similarity to the SA detected 

in this cohort to avoid harm to the animals and to yield as much information as possible.  These 

comparisons heavily influenced the selection of which human nasal SA isolate was implemented 

in the pilot trial involving experimental inoculation of a human SA nasal isolate into the nostrils 

of the pigtailed macaques. 
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Figure 7: Nasal SA Isolates from Six Captive Pigtailed Macaques are Genetically Related to 
Human Nasal Carriage Strains 

Evolutionary relationships between 8 human and 3 macaque nasal SA isolates in were analyzed 
using Bayesian analyses.  Seven MLST loci per strain were concatenated, then aligned together 
and arranged into a phylogeny according to sequence similarity using MrBayes v3.2 
phylogenetic analysis.  Human isolate D579 (ST398) was chosen for experimental pilot 
inoculum based on genetic MLST similarity to macaque isolates ST3814 and ST3815.  The 
average standard deviation of similarity between samples was 0.00157.  Scale bar of 0.002 
indicates number of substitutions per site.  Numbers at each node are indicative of posterior 
probability support. 
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Nasal Colonization of Human Isolate ST398 was Successful and Comparable to Human SANC 

Following the autologous and non-autologous inoculations of pigtailed macaque SA 

isolates ST3813 and ST3814, animals were cleared of SA with mupirocin and the nasal 

microbiome was allowed to normalize over four weeks.  Sufficient funding remained for a 22-

day pilot study implementing human SA isolate ST398 using identical protocols and inoculum 

size as previous macaque inoculations.  Figure 8A displays that nasal colonization was 

successful in all six subjects, as indicated by log-transformed averages of each animals’ left and 

right nostrils (animal ID in legend on the right) over the duration of the study period.  Two 

animals (A10023 and A11236) naturally cleared the SA within 2 weeks, while the remaining 

four animals maintained carriage until force-cleared with mupirocin on day 22.  Animals were 

returned to the colony after all sites were verified cleared on day 28 post-inoculation.  This study 

was abbreviated and did not allow determination of the possible duration of carriage of the four 

that maintained carriage, or if the two that cleared would eventually swab positive again.  The 

preceding macaque strain inoculations were each at least 63 days, and most extranasal sites 

eventually swabbed positive for SA within that time.  Figure 8B shows the SA load days 2-22 

for the nostrils and all extranasal sites, each dot representing a log-transformed CFU count for 

one animal (6 animals, 4 swab dates).  As seen previously, the nostrils carried significantly 

higher than all other sites (p<0.0001), indicated by a double asterisk.  The pharynx supported 

higher SA loads than the other extranasal sites (p<0.005) but not close to the nostrils, indicated 

by a single asterisk.  This is indicative that the shortened study duration was not conducive to 

establishment of extranasal acquisition of the inoculum, however like previous inoculation 

studies, the pharynx acquired carriage of the same strain once the nostrils were detectable. 
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Figure 8: Experimental Inoculation of Human Nasal Isolate ST398 Established Nasal Carriage in 
all Subjects 

Macaques were cleared of SA as described in Materials and Methods and reinoculated with 104 

CFU/nostril of human isolate ST398.  Nasal and extranasal swabs were collected weekly for SA 
quantification.  A)  Averaged nostril SA CFU/swab for each animal shows carriage was 
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established in each subject with two animals clearing within 22 days, while the remaining four 
subjects carried until cleared by mupirocin.  Legend to the right indicates Animal IDs.  B)  SA 
load days 2-22 in the nostrils and extranasal sites.  Double asterisks indicate elevated SA load 
compared to all other sites (p<0.0001).  Single asterisk indicates elevated SA load compared to 
axillae, palms, and vagina (p<0.005).  Error bars indicate mean±SEM, n= 24 (6 animals, 4 swab 
days).  A, B) y-axis begins at the limit of SA detection (10 CFUs/swab). 
 
 

Discussion 

Prior to any experimental inoculations, the first step of this study was determining 

whether pigtailed macaques (Macaca nemestrina) at the Washington National Primate Research 

Center (WaNPRC) naturally carry SA in the nose, as this is a major drawback to attempting the 

use of rodent models for SANC.  Thirteen of seventeen animals were found to carry SA in at 

least one nostril in the first screening visit, and fourteen were positive two months later (Fig. 1).  

Most animals were also positive in the pharynx at one or both visits.  An important finding to 

note is that macaques carry nasal SA at a significantly higher rate than humans, with 14 of 17 

(82%) screened pigtailed macaques in this study and 82% of 48 rhesus macaques in a 

longitudinal study [56], compared to an approximate third of healthy adults carrying worldwide 

at any given time [14, 15].  Previous human studies have attributed increased carriage rates in 

close quarter populations that may have less than ideal sanitation like prisons, retirement homes, 

daycares, and schools [4,5], and captive monkeys live in close contact and their hygiene is 

lacking.  Access to wild pigtailed macaques is extremely outside of our scope, as they are native 

to Thailand, Malaysia, and Indonesia, therefore it cannot be said definitively that all pigtailed 

macaques are natural nasal carriers of SA.  The likelihood, however, that nasal carriage in this 

population is a result of living in captivity and being cared for by human handlers is low, as the 

caregivers go to extreme measures to prevent the transmission of microbes by wearing personal 
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protective equipment including: full-coverage garments, face masks, face guards, and double-

glove their hands.  Each strain isolated from the chosen subjects was identified as new, with new 

MLST and spa types (Table 2), which is suggestive that natural SA carriage of this cohort of 

macaques is not likely transmitted through human handling.  Prior clinical evaluations have 

shown that most babies are colonized with SA within hours after birth, and usually identical to 

the mother’s nasal strain [81, 82], but husbandry records at the WaNPRC validate that the four 

animals sharing an autologous strain are not related and are not all housed together, with SA 

negative animals co-inhabiting with SA positive animals according to animal housing charts 

(records not shown). 

In humans, the anterior nares have been accepted as the site of predominant SA carriage 

since SA is extremely adaptive to that low nutrient, high saline environment.  Prior to invasive 

surgical procedures, 2% mupirocin antibiotic ointment is applied to the nostrils to prevent 

autoinfection, and this is sufficient to also eradicate SA from the rest of the body, as the nose 

serves as a reservoir to spread SA through passive hand to face contact.  This study implemented 

the same antibiotic ointment with an identical regimen, identical to what is applied to humans 

pre-surgery.  The three pigtailed macaque isolates were susceptible to mupirocin in vitro (Fig. 2) 

and in vivo (Fig. 3A), and just like pre-surgical humans, mupirocin cleared not only the nostrils, 

but also the rest of the body as indicated through the observable absence of β-hemolytic colonies 

on blood agar plates.  This suggests that in the pigtailed macaque, the nostrils also serve as a 

reservoir for SA, spread to the rest of the body through casual hand-to-face contact.  It was not 

determined how long the subjects would retain SA negative status in the absence of experimental 

inoculation, but the nostrils, pharynx, axillae, palms, and vagina remained mostly clear of SA for 

four weeks prior to each separate inoculation.  This demonstrates that a common human 
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antibiotic is effective in clearing the primary reservoir of SA in the pigtailed macaque, also 

clearing the body similar to humans. 

Development of a protocol for SA eradication and recolonization like prior human studies 

was a main goal, with a giant step forward in the introduction of a variety of strains to the 

nostrils of the pigtailed macaque.  Once subjects were cleared of SA, recolonization was required 

implementing an appropriate inoculum that would introduce just enough SA to establish nasal 

and extranasal carriage in most subjects, while also avoiding the abrupt introduction of an 

excessive inoculum that may erroneously overload the nasal mucosa.  A human-relevant 

inoculation of 104 SA CFUs delivered in 20uL to both nostrils was sufficient in re-colonization 

of each subject after mupirocin clearance. (Fig. 5).  This is an important finding, as a prior Cole 

laboratory survey of 30 healthy human carriers in 2016 determined a range of SANC from 101 to 

106 CFUs per nostril, with a median of 9.8 x 104 SA CFU per nostril [58].  This same human-

relevant inoculum was successful in establishing nasal and extranasal carriage in all subjects for 

a total of four independent experiments (Figs. 5 & 8), significantly not requiring millions of SA 

CFUs like rodent models. 

A significant limitation to human SANC research in the U.S. is the inability to implement 

SA inoculations other than the subject’s own nasal isolate, which prevents understanding 

adhesion and virulence mechanisms of potentially virulent or antibiotic resistant strains.  The 

possibility of inoculation studies with a variety of strains would present a means to longitudinally 

observe colonization and pathogenesis of non-autologous strains in a human-relevant model.  In 

two independent studies, 104 SA CFUs of a macaque isolate (3813 and 3814) was introduced to 

the nostrils of all animals regardless of whether it was autologous or not to the nostril and 

followed for several weeks.  Autologous and non-autologous macaque strains were supported 
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similarly, with both approximate means of 104 SA CFUs (Fig. 6A).  Autologous and non-

autologous strains also survived similarly in the macaque nostrils for over 40 days (Fig. 6B), 

determined from SA-positive status in at least one nostril (considered survival as all nostrils were 

treated with the same inoculum).  This implicates the usefulness of the pigtailed macaque in a 

variety of SANC strain inoculation studies with a physiologically relevant inoculum. 

A concluding three-week pilot study that was designed to determine if there was potential 

for a human SA isolate to establish carriage in the pigtailed macaque with the same 

physiologically relevant inoculum that was sufficient in the macaque strain inoculations.  Human 

donor 579 (D579) carried ST398, a strain implicated as a host-species-adaptable methicillin-

susceptible SA that can acquire resistance [84, 85].  ST398 is commonly associated with 

livestock (cattle, pigs) and meat-processing and is often transmitted to humans in these lines of 

work [86, 87], and was determined genetically similar to two macaque isolates through 

comparisons of concatenated MLST sequences (Fig. 7).  Two animals naturally cleared the 

nostrils by day 22, while the remaining four subjects carried an average of 2.7x105 SA CFUs per 

swab until to mupirocin clearance.  The 22-day duration of this pilot study was not sufficient for 

the majority of extranasal sites to acquire SA from the nose, but as seen in prior macaque 

inoculations, the nostrils were the primary reservoir with significantly higher SA loads, and the 

pharynx contained the highest of the extranasal sites (Fig. 8B).  Prior inoculation durations were 

for at least eight weeks of follow-up, so given more time the extranasal sites would acquire 

increased SA loads.  This data demonstrates that the pigtailed macaque can acquire and maintain 

carriage of clinically-relevant human strains in addition to non-autologous pigtailed macaque 

isolates, which has major future SANC research implications. 
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Throughout each of the four inoculation studies, MLST and spa typing for sequencing 

analysis was performed periodically to ensure that the SA colonies detected were identical to the 

inoculated strain and not a genetically distinct strain.  At least two MLST loci and the spa type 

were required to match to be considered “genetically indistinct”.  These analyses were performed 

at times when i) an animal swabbed positive for several consecutive weeks, ii) times when the 

nostrils swabbed positive after extended periods of undetectable SA, and iii) the last positive 

swab on each extranasal site for each study.  Detection of a strain genetically distinct from the 

inoculum was rare, however did occur in the first study in which the appropriate inoculum was 

determined.  This was a rare occurrence, with extranasal SA matching the inoculum in 105 of 

110 (95.5%) of the analyzed swab samples, and this did not occur in any of the other three 

independent inoculations.  These animals were housed in separate cages, with only visual contact 

with each other, suggesting that this alternate SA strain may have been introduced in their food 

supply, as these animals were not housed together prior to this study. 

 Longitudinal analysis of SANC in Macaca nemestrina elucidated patterns of carriage 

observed in prior healthy human studies.  Most human carriers are intermittent, with the ability 

to clear SA to undetectable levels, then swab positive again.  Some human carriers are persistent 

and never appear to clear, and some appear to not carry at all, and the reasons and mechanisms 

for healthy carriers to support SA in the nares and the body asymptomatically are not fully 

understood.  Similar carriage patterns were seen in the macaque subjects over several weeks of 

follow-up over the course of the 18-month study, therefore it will be highly beneficial to analyze 

the immune response during times of SA nasal carriage and clearance. 
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CHAPTER 3: ANALYSIS OF THE PIGTAILED MACAQUE NASAL 
RESPONSE TO SANC REVEALS SIMILARITIES TO THE HUMAN 

CONDITION 

Introduction 

Until now, the nasal innate immune response to SA has not been characterized for the 

pigtailed macaque.  The majority of pigtailed macaque research has centered on potential 

microbicides, HIV, and other human sexually transmitted diseases, with tissue structure, clinical 

presentations, and immune responses similar to the human condition [66, 72].  Previous research 

implementing this model found similarities in fetal development of the respiratory system and 

immune function in pigtailed macaques [67, 68] therefore parallels are expected in innate 

responses in the nasal mucosa in the presence of SA.  In humans, however, the pro-inflammatory 

response to SA in the nose has been well documented, although the mechanisms are not fully 

elucidated due to the complexities of the associated relationships.  Dual PRRs, TLR-2 on the 

surface of phagocytic nasal mucosal cells and cytoplasmic NOD2 sense the presence of 

conserved gram-positive cell wall proteins either through direct contact or protein turnover 

during biosynthesis.  This mounts an immune response that either effectively clears the invasion 

or further promotes inflammation that potentially damages the tissue [88].  Recognition of SA by 

nasal cell PRRs in the skin elicits redundant pathways to the nucleus to up-regulate expression of 

AMPs and contributes to rapid innate activation.  Various pro-inflammatory cytokines and 

chemokines are up-regulated in response to SA presence; acting to recruit neutrophils through 

diapedesis to infected tissue and maturation once they arrive [89].  Once matured, neutrophils 

release oxidative bursts, sequester nutrients, produce more AMPs, and use phagocytosis to digest 

SA cells encountered in the tissue [25, 90, 91], thus, defects in pro-inflammatory proteins, 
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receptors, mechanisms, or decreased neutrophil volume can allow for SA persistence in the 

nares. 

 Previous studies in the Cole laboratory centered on host factors contributing to SANC 

have elucidated significant relationships between several key pro-inflammatory mediators and 

the introduction of SA to the nose.  In humans, enhanced expression of IL-8, IL-1β, macrophage 

inflammatory protein (MIP-1β), monocyte chemoattractant protein-1 (MCP-1), granulocyte 

colony-stimulating factor (G-CSF), and a decreased IL-1 receptor antagonist to IL-1β (IL-

1RA:IL-1β) ratio detected in nasal fluids at post-inoculation time points as compared to pre-

inoculation were associated with SA clearance groups only [28, 58].  IL-1β is a significant 

inflammatory marker that first exists as a precursor that requires cleavage into mature IL-1β by 

caspase-1, induced through inflammasome activity [92] and heightens the inflammatory state 

once secreted into infected tissues.  Inhibition of IL-1β signaling occurs through non-productive 

competition due to high levels of the IL-1β receptor antagonist binding at the cell surface IL-1 

receptor [91].  Interestingly, dysregulation of IL-1β has been implicated as the primary cause of 

inflammation in pancreatic islet cells, leading to progression of Type II diabetes [93], which is 

known as a major risk factor of SANC.  Rapid up-regulated transcription of the IL-8 gene results 

in chemotaxis of neutrophils to the site of infection and induces phagocytosis once they reach 

infected tissue, clearing SA more quickly than a delayed reaction [58].  MCP-1 and MIP-1β are 

monocyte and leukocyte chemoattractants produced by activated macrophages that further 

induce pro-inflammatory pathways in response to presence of SA [94, 95].  Examination of the 

pigtailed macaque innate response will focus on these pro-inflammatory mediators as well as a 

few others implicated as relevant to the SA response or lack there-of in other studies.  Rodent 

SANC studies have shown that IL-17 deficiency is responsible for decreased AMP production 
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and increased carriage duration of SA as compared to wild type animals [55].  Induction of pro-

inflammatory cytokines IL-6 and TNF-α has been observed in humans to be elevated in obesity 

[96], which is an additional risk factor for SANC.  Addition of SA peptidoglycan to 

keratinocytes in vitro triggers up-regulation of vascular endothelial growth factor (VEGF), which 

has been observed in vivo to be associated with SA-associated psoriasis [97].  Highly expressed 

in the nasal environment, VEGF increases permeability of capillaries, increasing fluid influx into 

inflamed tissues, which facilitates influx of white blood cells [98]. 

Previously shown, the pigtailed macaque is easily decolonized of SA in the nose and 

body with a common human antibiotic often applied to pre-operative humans, and they remained 

decolonized through four weeks of nasal microbiome equilibration.  Re-colonization of several 

animals is easily established and reproducible with autologous and non-autologous strains using 

a human-relevant inoculum of 104 SA CFUs per nostril.  Nasal carriage of SA inoculations in 

this cohort of six pigtailed macaques was followed longitudinally over 18 months, and this data 

will be implemented in comparing subsequent detection of the 10 pro-inflammatory mediators 

just discussed to the presence or absence of SA in the nasal mucosa.  This will allow further 

comparison of this proposed model to the human condition based on importance of certain 

proteins in the innate response, as well as differences in expression in the nasal mucosa of 

animals that were successful in clearance of SA from the nares to those that maintained carriage. 

Materials and Methods 

Blood and Nasal Fluid Collection and Processing. 

Each week, 3-5 mL of blood was collected into serum separating tubes to acquire 1-2 mL 

serum, stored at -80°C until use.  Nasal fluid was also collected each week by inserting two 
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Whatman 540 low-ash filter paper strips (0.3 x 2.4 cm) into each nostril and massaging the 

exterior of the nose for 30 seconds.  Paired left and right nostril strips were stored in separate 

tubes at -80°C.  Frozen serums and nasal strips were batch-shipped at the end of each inoculation 

study on dry ice to the Cole laboratory for subsequent processing and analysis.  Nasal fluid 

proteins were extracted from paper nasal strips by vigorously vortexing for 20 minutes in 900 μL 

of 10% glacial acetic acid (in molecular grade water), transferring the supernatant containing 

soluble proteins to a fresh tube (on ice), then an additional vortex of strips with 500 μL acetic 

acid for 10 minutes.  The supernatants were combined per animal nostril, balanced in a SPD1010 

Speedvac (ThermoFisher), and vacuum dried ≤100 μL using consistent 45° C heat.  Two washes 

were performed with molecular grade water and re-evaporating to a ring of moisture.  Dried 

samples were resuspended in nine parts Dulbecco’s Modified Eagle Media (DMEM) with 1% 

BSA and one-part RIPA buffer (50mM Tris, 150mM NaCl, 1% NP-40, 0.5% sodium 

deoxycholate, 0.1% SDS), and then neutralized to approximately a pH of 7 using 1N or 10N 

sodium hydroxide as needed in 1μL increments.  Samples were standardized to 130μL per 

extract, then insoluble debris was clarified by centrifugation (10,000 x g for 1 min) and stored in 

65μL aliquots at -80°C until protein analysis.  Total protein was quantified with an average of 9 

mg/mL with consistency between subjects.  Six of 188 extracts were eliminated from Luminex 

analysis due to unreadable protein quantifications, either due to insufficient collection or blood 

content. 

Total Protein Quantification Assays.  

Select nasal protein extracts were chosen to validate the acid extraction process and 

quantify total proteins by implementing the bicinchoninic acid assay (Micro BCA Protein Assay 
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Kit, Thermo Scientific, Rockford, IL Lot #PD199651).  Standards were made by diluting 

2mg/mL bovine serum albumin (BSA) stock with DMEM/BSA/RIPA diluent 1:10 for 200 

μg/mL, which was then diluted 1:1 to create 100, 50, 25, 12.5, and 6.25 μg/mL BSA standards.  

BCA working reagent was mixed according to manufacturer’s directions, and 150 μL of 

samples/standards was combined with 150 μL working reagent on a 96-well clear-bottom plate 

(TPP/ Midsci, cat# TP92096), with standards ran in duplicate.  Controls included were molecular 

grade water and any buffers used to ensure no protein contamination.  The plate was covered and 

incubated for 2 hours at 37°C, then removed from heat and allowed to cool to room temperature 

while setting up the SpectraMax 190 microplate reader (Molecular Devices, Sunnyvale, CA).  

Protein content is directly proportional to the intensity of purple color created in a two-step 

reaction between copper and proteins in the solution, which is measured in absorbance.  

Absorbance was read at 562nm according to manufacturer’s instructions, and protein content 

was determined by correlating absorbance of samples with absorbances of known concentrations 

of a duplicated standard curve. 

Multi-plex Bead Immunodetection Assays.  

Nasal protein extracts and serum aliquots corresponding to sample date were thawed on 

wet ice prior to multiplex bead assay.  A custom ProcartaPlex non-human primate 10-plex 

cytokine assay (Life Technologies Corporation, Carlsbad, CA) was performed for detection of 

G-CSF, IL-1β, IL-1RA, IL-6, IL-8, IL-17α, MCP-1, MIP-1β, TNF-α, and VEGF.  Manufacturer 

instructions were followed step-by-step for preparing standard curves, serum dilution, incubation 

times, and instrument settings.  Left nostril extracts were analyzed for 3 of 4 inoculation 

experiments (n=6 each) and right extracts were used for the other to best utilize observed 
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transitional negative to positive SA detections.  Nasal protein extracts (54μL) were mixed with 

6μL of DMEM/5% BSA so both the standards and samples were diluted in a nearly equivalent 

mixture of DMEM, RIPA, and .5% BSA to create a protein background and to prevent 

aggregation of target proteins and non-specific adherence to the wells of the 96-well plate.  A 

final volume of 50μL per well of prepared standards and samples was combined with antibody-

conjugated beads and washed using a Bio-Rad Bio-Plex Pro II wash system.  Completion of 

washes and samples readings were performed using a compatible high-throughput Bio-Plex 200 

reader (Luminex xMap technology).  All standard curves exhibited good fit down to 0.5-4 pg/mL 

with detection limits included in figures.  Data is presented as log-transformed pg/mL for both 

nasal fluid extracts and serums as they were processed by equal volumes. 

Statistical Analyses. 

BCA and Luminex multi-plex bead protein detection assays were analyzed using 

GraphPad Prism 7 software (GraphPad Software, La Jolla, CA).  Prior to analyzing all extracted 

nasal fluids, reproducibility of analyte detection was validated in nasal fluids by pooling four 

animals’ nasal fluid extracts from one sample date and dividing into four wells for detection. 

Validation of low-level detection reproducibility in serum was determined through running one 

animal’s serum from one sample date in triplicate for detection of analytes.  Both were found to 

be highly accurate and reproducible.  SA-negative to SA-positive transitional cytokine 

comparisons per individual were analyzed for significance using paired t-tests (two-tailed) (Fig. 

12).  Carriage durations for noses with different peaks of inflammatory proteins detected in nasal 

fluids were compared using ordinary one-way ANOVA with Tukey’s multiple comparisons test 

(Fig. 13). 
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Results 

The Nasal Fluids of Humans and Pigtailed Macaques Contain Comparable Total Protein Levels 

Six pigtailed macaques were sampled for nasal SA beginning with pre-mupirocin time 

points, for four weeks post-mupirocin, inoculation day zeros, day 2 or 3, then for several weeks 

following inoculation.  After nasal swabbing with flocked swabs, nasal proteins were collected 

through wicking nasal fluid onto paper strips (Whatman 540) and blood was drawn to separate 

out approximately 1mL serum.  Adsorbed nasal fluid proteins were extracted in 10% glacial 

acetic acid, concentrated with a total of three desiccations (with molecular water as a diluent in 

between), and neutralized in a pH buffer compatible with protein quantification assays and 

Luminex-based multi-plex bead assay of pro-inflammatory cytokines, chemokines, and growth 

factors.  Human nasal secretions (14 humans, 1 collection each) were self-collected via suction 

catheter, and total protein as measured through bicinchoninic acid assay (BCA) averaged 5.5±2.5 

mg/mL (mean±SEM).  Pigtailed macaque nasal secretions (6 macaques, average of 14 

collections each) were comparable to human nasal fluid protein content at an average of 9.9±3.1 

mg/mL total protein (Fig. 9).  For the macaque data, only the extractions of non-bloody are 

included, as bloody strips yielded 2 to 4-fold higher protein detections as detected through BCA.  

Nasal fluids collected from animal Z08202 had frequent visibly bloody strips, therefore had the 

fewest data points, but strips consistently contained higher amounts of protein than other 

animals. 
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Figure 9: The Nasal Fluids of Humans and Pigtailed Macaques Contain Comparable Total 
Protein Levels 

Following acid extraction of macaque nasal strips, soluble nasal fluid proteins were quantified 
and compared to human nasal fluid protein content in mg/mL (mean±SEM) collected through 
self-applied suction catheter.  For the macaque data, these were the extractions marked “non-
bloody”, as bloody strips yielded 2-4-fold higher protein values as detected through BCA 
colorimetric assay, n=14 human nasal fluids, n=7-28 macaque nasal fluids per individual 
depending on blood content of strips. 
 

SANC is Asymptomatic in Both Humans and the Pigtailed Macaque 

 In healthy human hosts, SANC is mostly asymptomatic, unless the host at some point 

becomes immunocompromised, which increases the risk for dangerous invasive skin infections 

leading to systemic infections like bacteremia.  Systemic responses to an infection cause signs of 

illness such as fever, malaise, and behavioral changes like loss of appetite.  Throughout this 18-

month study, the cohort of six pigtailed macaque subjects were monitored daily for any adverse 

changes in condition or behavior.  Body weight and temperature remained within a normal range 

as they were measured each week as the animals were sedated for mupirocin applications or 
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sample collections.  Appetites and thirst remained constant as indicated through daily protein 

biscuit counts reported by the animal husbandry staff.  There were no discernible changes in 

behavior throughout the study, nor any reports of malaise or illness, suggesting that SANC in the 

pigtailed macaque is asymptomatic.  Other than observable signs of illness caused by a systemic 

inflammatory response, increased expression of pro-inflammatory proteins would be detected in 

the blood following experimental inoculations.  Figure 10 displays detection of IL-8 and IL-1β 

in the nasal fluid compared to serum, as these were two key pro-inflammatory mediators in the 

human innate response to SA inoculation.   

 

 

Figure 10: Asymptomatic SANC does not Elicit a Systemic Response in the Pigtailed Macaque 

Pigtailed macaque nasal fluids and serums were collected on day 0 directly prior to inoculations, 
day 3, then weekly until the end of follow-up periods.  Nasal fluids and serums for each of the 
four independent experiments were assayed for ten analytes using multi-plex bead assays and 
flow-based enumerations, with IL-8 and IL-1β detections shown in closed circles (nasal fluid 
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detection) and open circles (serum detection).  Values are shown for paired transitions from 
times at which SA was not detected on TSA II agar plates either prior to inoculation or if the 
animal naturally cleared the assayed nostril (neg SA), to the next sample corresponding to SA 
positivity on TSA II plates (pos SA).  Error bars represent mean±SEM. 
 
 
These are paired comparisons of expression from samples transitioning from SA-negativity to 

SA-positivity from days 0-14 of each study.  Absence was either prior to experimental 

inoculation or if the animal had naturally cleared SA, and presence was the first sample at which 

SA was detected on TSA II agar.  IL-8 and IL-1β were both significantly up-regulated in the 

nasal fluid when SA was present (p=0.0098 and p=0.0350 respectively), but not in the serum 

which indicated a local innate immune response rather than a systemic response.  In fact, there 

was no up-regulation of any of the ten analytes in the serum (data not shown), and animals did 

not display any visible symptoms of illness over the course of the 18-month study.  which 

strongly suggests that the response in the pigtailed macaque to SANC is local to the nasal 

mucosa only as it is in the human condition. 

Clearance of Experimentally Introduced SA is Reliant on Appropriate Shifts in Nasal Mucosal 
Expression of Neutrophil-associated Inflammatory Mediators 

 Nasal fluids were assayed with a 10-plex non-human primate-specific antibody profile to 

simultaneously measure the presence of IL-8, IL-1β, IL-1RA, MCP, MIP-1β, IL-17A, G-CSF, 

VEGF, IL-6, and TNF-α.  Previously discussed, human studies have elucidated relationships 

between the local innate response indicated by levels of detection of several key inflammatory 

mediators and the SA load present in the nostrils.  When SA is present, more neutrophil-

associated proteins are produced by the nasal mucosal cells than when SA is absent for the 

purpose of recruiting neutrophils to the site of infection to aid in clearance.  For four total 

independent inoculation studies, pigtailed macaques were cleared of SA by a five-day mupirocin 
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regimen, the nasal microbiome was allowed four weeks to normalize, and on “Day 0” animals 

were swabbed, and nasal proteins were collected, followed immediately by inoculation of SA.  

All animals were confirmed clear of SA on inoculation day by the absence of both β-hemolytic 

colonies on TSA II and purple colonies on CHROMagar.  Figure 11 shows paired transitional 

detections of analytes in individual animals’ nostrils as they transitioned from SA-negative (neg 

SA) to SA-positive (pos-SA).  These data points were further striated depending on whether the 

animal cleared SA (open red circles) from the analyzed nostril or carried consistently (green 

open circles) until conclusion of the follow-up period.  Like the human condition, up-regulation 

of IL-8, MCP-1, and IL-1β corresponded to the individuals that cleared SA from the analyzed 

nostril.  In addition to the increase in IL-1β expression in SA clearers, expression of the IL-1 

receptor antagonist (IL-1RA) did not significantly change, resulting in an approximate 10-fold 

decrease in the IL-1RA:IL-1β ratio in the clearance group (Fig. 11C).  IL-1β expression was a 

bit higher at baseline in the carriers than the clearance group, but SA carriers lacked the up-

regulation of IL-1β; however nasal mucosal cells significantly up-regulated the IL-1RA, with no 

change in the IL-1RA:IL-1β ratio.  Expression of MIP-1β increased when nostrils transitioned 

from SA-negative to positive regardless of whether that nostril cleared or not, and detection of 

both TNF-α and IL-17A remained low in most samples (<10pg/mL) (data not shown).  IL-17A 

has been implicated as a key cytokine in murine SANC experiments, but it does not appear to be 

important in the human or pigtailed macaque response to SA inoculation in the nose.  These data 

together are suggestive that like human SANC, dysregulation of neutrophil-associated pro-

inflammatory protein expression and the IL-1 pathway in pigtailed macaque nasal mucosa lends 

to sustained carriage of SA in the nose, likely due to decreased neutrophil influx and decreased 

production of antimicrobial peptides. 
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Figure 11: Clearance of Experimentally Inoculated SA from the Nares is Reliant on Appropriate 
Shifts in Nasal Mucosal Expression of Neutrophil-associated Inflammatory Mediators 
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Macaques were cleared of endogenous SA and reinoculated with various strains as described in 
Materials and Methods.  Nasal swabs and nasal fluids were collected at days 0 and 3, then 
weekly following nasal inoculation with SA.  Luminex multi-plex bead assays were used to 
detect pro-inflammatory mediators in nasal fluids.  Cytokines A) IL-8, B) MCP-1, and C) 
relationships between IL-1β and its receptor antagonist, IL-1RA are shown as paired transitions 
from times at which animals were negative for SA (neg SA) to positive for SA (pos SA).  Data 
was further striated into groups of those that naturally cleared the assessed nostril of SA (SA 
Clearers, red open circles) or maintained carriage for the duration of the study (SA Carriers, 
green open circles).  Error bars represent mean±SEM. 
 

Duration of SANC in Pigtailed Macaques Associates with Peaks in Expression of Inflammatory 
Markers 

 The Cole laboratory has previously conducted human SANC experiments in which 43 

healthy adults self-applied mupirocin ointment to clear the nostrils of SA, then self-applied their 

own isolate again into each nostril [28, 58].  Subjects were swabbed in the nostrils, followed by 

nasal fluid collection via suction catheter on days 0 and 3, then weekly for a month of follow-up 

to compare SANC with nasal mucosal expression of pro-inflammatory proteins.  Peak expression 

of IL-8 and IL-1β within 7 days correlated with shortened duration of SA nasal carriage, an 

average of 19±3 (mean±SEM) days, while a delayed response of ≥16 days correlated with longer 

carriage or no clearance at all [58].  Seen over the course of three independent inoculations, 

pigtailed macaques displaying peak expression within the first 7 days post-inoculation cleared 

SA within an average of 11±3 days, and the absence of peak expression or a delayed response of 

16 days or more resulted in nasal carriage of at least 40 days (Fig. 12).  Three animals with peak 

expression at 16 days post-inoculation or later maintained carriage until the final day of follow-

up (red circles) and would have likely continued nasal carriage in the absence of antibiotic 

clearance.  These points together suggest that IL-8 and IL-1β function similarly in humans and 

the pigtailed macaque, and appropriate up-regulations of these key inflammatory mediators in 

the nasal mucosa drive duration of Staphylococcus aureus nasal carriage. 
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Figure 12: Duration of SANC in Pigtailed Macaques Associates with Peaks in Expression of Pro-
inflammatory Mediators 

For each of the 18 macaque inoculations, peak nasal expression of pro-inflammatory proteins IL-
8 and IL-1β was assessed by Luminex multi-plex bead assays of extracted nasal fluids.  
Occurrence of peak detections (x-axis) per individual was plotted against duration of SANC in 
days (y-axis), error bars indicate mean±SEM.  Red-filled circles indicate individuals that were 
still positive for SA in the assessed nostril on the final day of follow-up (thus SA carriage was 
likely longer). 
 

Discussion  

 Previous human SANC studies have proven that human local responses to SA inoculation 

in the nose are neutrophilic in nature with observations of rapid and robust up-regulations of IL-

8, IL-1β, and a decrease in the ratio between IL-1β and its competitive receptor antagonist (IL-
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1RA) in human hosts with the ability to clear SA from the nose [28, 29, 58].  Human IL-8 is a 

chemokine that recruits neutrophils to the site of infection, and its increased expression is 

correlated with increased detection of SA CFUs [32], also observable in pigtailed macaque 

sample detections.  The quick up-regulation of expression of the IL-8 gene is vital to human 

clearance of SA, and if it is not correctly regulated, SANC will likely persist.  This aspect of 

human SANC is not modeled in rodents, not even in the more physiologically relevant cotton rat 

as the IL-8 gene is absent, however in the pigtailed macaque it is not only present, but functions 

similarly as it does in human SANC (Fig. 11A). 

Staphylococcus aureus nasal carriage in humans is typically asymptomatic, even when 

SA is detected in the millions of CFUs per swab in healthy hosts [58].  Although the reasons and 

mechanisms behind this asymptomatic state is not well understood, the human innate response to 

SA presence is heavily neutrophilic, with local up-regulations of IL-8 and IL-1β in nasal fluid, 

among others [28, 29, 58].  Pigtailed macaque nasal mucosal cells also significantly up-regulate 

expression of IL-8 and IL-1β (p=0.0098 and 0.0350 respectively), with no systemic up-

regulations detected in the serum (Fig. 10).  Macaques also showed no changes in body 

temperature, appetite, body weight, behavior, and no other outward signs of illness were 

observed over the course of the 18-month study.  Together, these data show that SANC is also an 

asymptomatic state in the pigtailed macaque. 

 Elucidations of the pigtailed macaque responses to nasal inoculations of SA were 

obtained through simultaneous detections of 10 pro-inflammatory mediators in the nasal fluid: 

IL-1β, IL-1RA, IL-6, IL-8, IL-17A, MIP-1β, MCP-1, G-CSF, VEGF, and TNF-α.  Prior human 

SANC research showed that IL-1β, IL-8, MIP-1β, MCP-1 and G-CSF were significantly up-

regulated in nasal fluids of the subjects that cleared SA from the nose [28, 58].  TNF-α and IL-6 
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are well-known pro-inflammatory cytokines; VEGF maintains homeostasis and remodeling of 

mucosal barriers damaged by inflammation [28, 98]; and IL-17A up-regulation is the primary 

response to nasal SA inoculation in rodents [15, 55].  For four independent inoculations, nasal 

fluids from one nostril per individual was analyzed as they transitioned from SA-negative status 

(day 0 or after natural clearance) to the next sample obtained when SA was detectable (SA-

positive), then further striated based upon the individuals’ ability to clear SA from the analyzed 

nostril or maintain carriage (Fig 11).  These paired transitions elucidate that Macaca nemestrina 

accurately models the human neutrophilic response to SANC.  The SA clearance group showed 

significant up-regulations of IL-8 (Fig. 11A), MCP-1 (Fig. 11B), and IL-1β with a 10-fold 

decrease in the IL-1RA:IL-1β ratio (Fig. 11C), indicating that like human SANC, dysregulation 

of expression of these neutrophil-associated pro-inflammatory mediators in the pigtailed 

macaque disrupts neutrophil diapedesis and SA clearance to allow persistence.  IL-17A, VEGF, 

IL-6, G-CSF, and TNF-α expression were not significantly up-regulated when SA was present, 

and MIP-1β was up-regulated whether the animal cleared or carried SA (data not shown).  This 

data aligns with previous studies implementing this species for human sexually transmitted 

infections and fetal respiratory development, each concluding that the pigtailed macaque is 

currently the most-human relevant model for mucosal interface structure and immune responses 

[64, 67, 99, 100]. 

Examining the detections of these pro-inflammatory mediators longitudinally over the 

course of each of the four independent SA inoculations revealed an important correlation 

between when expression of neutrophil-associated proteins and the resulting duration of SA 

carriage.  A peak in IL-8 and IL-1β expression within the first 7 days corresponds to 9.8±4.6 

days until SA clearance, significantly shorter than 47.5±9.5 days when the peak was at 16+ days 
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or not at all (p=0.0071) (Fig. 12).  Three individuals indicated as red-filled circles were still 

positive for SA at the end of follow-up periods and would likely continue carriage in the absence 

of mupirocin application.  IL-1β signaling is vital for induction of neutrophilic killing of SA by 

phagocytosis, oxidative bursts, and the release of neutrophil extracellular traps (NETs), and 

dysregulation of this cytokine and its non-productive receptor antagonist (IL-1RA) has been 

implicated to allow persistent carriage of SA [39].  The IL-1 axis is often dysregulated in 

diabetes and obesity; two risk factors for persistent SA nasal carriage that often lead to 

autoinfection [101] and nosocomial comorbidities.  These significant observations in this model 

indicate that like human SANC, dysregulation of these pathways also leads to extended duration 

of SANC. 
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CHAPTER 4: THE NASAL MICROBIOME AS AN UNDEREXPLORED 
DETERMINANT OF STAPHYLOCOCCUS AUREUS NASAL CARRIAGE 

Introduction 

 Nasal microbiota structure is temporally variable and is reactive to hygiene, stress, 

climate, environment, and interpersonal relationships [102], and not fully elucidated or 

understood.  Displaying potentially extensive diversity, commensal microflora are an additional 

source of protection from pathogens through release of various protein products, and niche 

competition.  Disturbances in a commensal population possibly contribute to inflammation, 

problematic in determining whether microbiome shifts act as the cause or the effect of SA 

infection, or both [103].  Numerous studies on human nasal commensal relationships have 

revealed specific species that at least partially inhibit persistent SA colonization through various 

mechanisms that alter the nasal environment [104].  An inverse relationship has been observed 

between SA and notable microbes like Corynebacterium spp. [45], Propionibacterium spp. 

[105], Staphylococcus epidermidis, [42, 102], and S. lugdunensis [46], likely through production 

of various bacteriocins [46, 102], niche competition, or competition for nutrients and surface area 

for attachment [48].  These associations affect SA colonization ability, presumed to be at least 

partially responsible for allowing persistent carriage in some individuals and not others in human 

studies, however most of these studies have used culturable methods.  It has been shown recently 

through next-generation sequencing (NGS) methods that the most human-relevant rodent model 

for SANC, the cotton rat, do not support any of these important bacterial species that are found 

in human nostrils, but instead contain primarily Campylobacter species and potential human oral 

and gastrointestinal pathogens [61].  Prior research implementing this model did not consider the 

constituents of the nasal microbiome, however to validate the pigtailed macaque as a human-
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relevant model of human SANC, these comparisons must be made.  Prior studies have 

determined the pigtailed macaque as a physiologically relevant model for human reproductive 

and rectal mucosa, and through culturable methods determined that the mucosal normal flora 

endogenous to the vaginal tract is like humans in frequency of colonization with Lactobacilli 

[106, 107]. 

Analyses of the human microbiome composition has been limited because using Sanger 

sequencing requires streaking a series of different agar types, plucking colonies to incubate 

overnight, extracting DNA, running 16S PCR, sending samples for Sanger sequencing, and 

BLAST analysis of the results, which proves to be slow and expensive with low turnout [108].  

Comparatively few species of bacteria will grow on plates, some are fastidious and require 

special additions, and some proliferate more rapidly than others, leading to overrepresentation of 

species with underrepresentation of others or missing them completely.  Another aspect to 

consider is that culturable methods only allow detection of viable cells and it would be beneficial 

to determine if SA is present in the nostrils of those categorized as non-carriers either as free-

DNA, dead cells, or viable but nonculturable cells (VBNC).  SA frequently exists in a VBNC 

state in the low nutrient environment of the nasal mucosa [109] and is likely also present in non-

carriers. 

Significant advancements in NGS technologies and databases in recent years have 

improved acquisition of metagenomic information and have allowed this long and problematic 

process to be circumvented, and instead analyze all DNA present in a sample.  Illumina MiSeq 

Sequencing System is a cost-effective, high-throughput system used for targeted gene 

sequencing, gene expression analyses, and metagenomics that has a maximum read length of 

2x300 base pairs of the 16S rRNA gene [110].  The 16S gene is 1500 base pairs that encode the 
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constituent of the bacterial small ribosome that binds to the Shine-Dalgarno sequence when the 

ribosome is recruited to bacterial mRNA.  The gene is made up of conserved and hypervariable 

regions, conserved regions being identical between bacterial species, and the hypervariable 

regions being species-specific, an aspect that is exploited in improvements in next-generation 

sequencing technologies [111].  The ability to identify down to genus or species level of a 

population sample relies on the hypervariable region(s) of the 16S gene chosen for amplification 

and the methods used, especially when several species are closely related, like those in genus 

Staphylococcus [109].  For this study, the V3-V4 hypervariable regions were chosen for 

amplification as it has been seen in prior research to provide the most accurate genus/species 

representation [111].  A positive feature of the advancements in sequencing is that upwards of 

200 samples can be combined together into one library to analyze on the same microchip by 

adding a unique “barcode” not found in nature to each strand in an individual sample, so even 

after combination with many other samples, the microbial species detection data can be 

identified and separated apart [111]. 

Importantly, prior in vitro and in vivo methods in this study have shown the absence of 

both mupirocin and methicillin resistance in the three nasal macaque strains and the human 

isolate implemented, and all animals were successfully cleared of SA for several weeks while 

allowing the nasal commensal microbiome to normalize.  The six healthy pigtailed macaques 

enrolled in this study are fed the same diet, treated identically, and live in climate and humidity 

controlled individual enclosures, which eliminates some of the free-will factors that contribute to 

fluctuations of the nasal microbiome in humans.  It was evident through longitudinal plate counts 

on TSA II agar plates that mupirocin application temporarily decreased the non-SA commensal 

population in the nose, but by week three of the post-mupirocin normalization period that 
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population numbers were restored.  Although population numbers were restored by week three, 

there was no way to know what commensal species were represented and what resulting 

environment was created by the post-mupirocin nasal microbiome.  Since mupirocin inhibits a 

wide range of gram-positive bacteria, determination of the affected nasal commensal species 

other than Staphylococcus aureus and observation of any microbial shifts that occur following 

mupirocin application would be a beneficial addition to scientific knowledge and further 

understanding of the dynamics of SANC.  This study seeks to i) compare culturable components 

of the human and pigtailed macaque nasal microbiomes, ii) determine culturable species affected 

in one pigtailed macaque’s nose over three weeks and any microbial shifts once mupirocin opens 

the niche that SA occupies, iii) compare these culturable affected species to MiSeq detections in 

the same animal’s nose, and iv) compare MiSeq detections of nasal commensals in select 

pigtailed macaque and human samples.  This will broaden scientific knowledge as the pigtailed 

macaque nasal microbiome has not been described thus far, and the use of next-generation 

sequencing may provide insight to what culturable microbes are missed in plating methods.  

Comparisons between the relative abundance of human and pigtailed macaque nasal inhabitants 

will also provide another level of evaluation of the potential of this species as an improved model 

for human SANC. 

Materials and Methods 

Culturable Microbiome Analyses 

The natural nasal microbiome of fourteen human and six pigtailed macaque nostrils were 

analyzed prior to any experimental manipulation.  Representative aliquots over the course of 

both human [58] and macaque studies were reserved in sterile glycerol stock at -80°C until 
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further use.  Selected samples were kept on dry ice to keep stock as a mostly frozen “slush”, 

mixed with a sterile spatula, and approximately 100 μL of frozen slush removed and allowed to 

fully thaw.  This was diluted 1:10 in HBSS, and plated on an array of six agars: nutrient agar 

(NA), plate count agar (PCA), CHROMagar, tryptic soy agar (TSA), tryptic soy agar/ 5% 

sheep’s blood (TSA II), and mannitol salt agar (MSA).  Each plate received 100 μL of sample 

and was incubated 24-48 hour.  Colony morphology was recorded and plucked for overnight 

subculturing in 5 mL TSB (18 hrs/37°C/250rpm). Genomic DNA was extracted from these 

isolates using UltraClean Microbial DNA Isolation Kit (MO Bio Laboratories, West Carlsbad, 

California, USA) according to manufacturer's instructions, except instead of using 1.8 mL of 

sample, 800 μL were extracted unless bacterial pellet was insufficient.  16S PCR was performed, 

verified by gel electrophoresis, then sent for Sanger sequencing at Eton BioSciences (Research 

Triangle Park, NC).  Sequencing files were analyzed using Mega7.0.20 software to align 16S 

sequences in preparation for BLAST analysis for prospective species identification.  These 

identifications were analyzed using GraphPad Prism 7 software. 

To analyze fluctuations in the culturable nasal microbiome due to 2% mupirocin 

application, the right nostril of animal Z08202 was chosen and three time points were chosen: i) 

the natural balance of the nasal microbiome at the first pre-mupirocin nasal swab (prior to any 

experimental manipulation), ii) week one post-mupirocin, and iii) week three post-mupirocin to 

determine the natural balance of species compared to the time point at which the population was 

decreased the most and when the population was restored.  Early glycerol “slush” was removed 

from each sample, and the remainder was quickly returned to -80°C for future use.  Fully thawed 

sample was serial diluted in HBSS at 1:10 and 1:100 and plated on Hoyle’s agar, TSA II, plate 

count agar, and nutrient agar.  These were incubated at 37°C for 24 hours (TSA II) and 48 hours 
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for growth.  Plates were counted, twenty colonies per plate type were documented for colony 

growth morphology, plucked with a pipette tip, and each propagated in 5mL TSB overnight at 

37°C in a shaking incubator.  DNA extraction of each colony stock was performed and reserved 

at -20°C, with subsequent PCR to amplify the 16S rRNA gene.  The presence of 16S rRNA 

amplification was verified through visualization of a distinct band corresponding to 1500 base 

pairs after gel electrophoresis.  Successful amplifications were then sent for Sanger sequencing at 

Eton BioSciences (Research Triangle Park, NC).  Sequencing files were analyzed using 

Mega7.0.20 software to align 16S sequences in preparation for BLAST analysis for prospective 

species identification.  These identifications were analyzed using GraphPad Prism 7 software. 

DNA Preparation for Comprehensive Microbiome Analyses 

 To analyze fluctuations in the comprehensive nasal microbiome due to mupirocin 

application, total DNA extractions were performed of representative “early” glycerol stocks of 

Z08202 left nostril corresponding to sample dates analyzed using culturable methods.  These 

were fully thawed on wet ice, vortexed well, and 800 μL was transferred per sample into a 

1.5mL microcentrifuge tube, reserving the remainder at -80°C for future applications.  800 μL of 

each sample was spun down at 14000 xg for 10 minutes at 4°C, then 500 μL of the supernatant 

was spun through a MWCO 3 Amicon Ultra filter for 20 minutes at 14000 xg to obtain a 

concentrated super for inclusion in the DNA extraction process.  We modified the 

ZymoBIOMICS DNA Microprep kit (Zymo Research, Irvine, CA Lot #ZRC201522) protocol to 

include a heated enzymatic incubation step by resuspending each pellet in 41 μL Tris/EDTA 

(TE) buffer, 50 μL (10mg/mL) lysozyme, 3 μL (4KU/mL) lysostaphin, and 6 μL (25 KU/mL) 

mutanolysin and incubating at 37°C/1hr/350-400 rpm.  This enzymatic incubation and additional 
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spin of supernatant was to promote lysis of any hardier gram-positive cell walls present and 

prevent exclusion of smaller microbes that may not have been pelleted.  200 μL of combined 

pellet and retentate was DNA extracted following instructions provided.  Resulting DNA 

concentrations were determined using Quant-iT PicoGreen dsDNA Assay Kit (Invitrogen, 

P11496) in a 96-well format with fluorescence read by SpectraMax i3X to ensure adequate DNA 

extractions of at least 5 ng/µL.  Data was exported to Excel to determine dilution schemes to 

input 5ng/μL of each sample into DNA library preparation for Illumina MiSeq sequencing of the 

V3-V4 hypervariable region of the 16S rRNA gene. 

 Using longitudinal carriage data, six human and six pigtailed macaque samples were 

extracted implementing this same protocol for inclusion in this preliminary MiSeq run to 

determine similarities and differences in comparative carrier and non-carrier/clearer nasal 

microbiomes.  Macaque samples were analyzed at days 0 and 3, weekly until day 22, then at time 

points when individual animals naturally cleared SA, swabbed positive again, and either cleared 

again naturally or at the last day of follow-up.  Human persistent, intermittent, and non-carrier 

samples were collected at less consistent time points than the macaques, but samples with at least 

a 2-week period in between collections were chosen, if possible. 

Illumina MiSeq Library Preparation 

For this project, the taxonomic compositions of 15 samples were analyzed to determine 

comparative microbiomes of healthy pigtailed macaque and human SA nasal carriers versus non-

carriers/clearers.  5 ng/μL of total microbial DNA extractions from representative nasal swab 

glycerol stocks were each individually entered into a first stage PCR to amplify the V3-V4 

hypervariable region of the 16S gene out of genomic DNA following protocols and using 
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primers and kits provided by Illumina MiSeq.  This was done using previously described 341F, 

785R primers [112] with universal overhang adapters upstream and downstream of the V3-V4 

region.  Quality control of PCR products were run on a TapeStation system to verify the 

approximate 550 bp size of the amplicon plus the two ~50 bp adapters.  A cleanup step followed 

using beads graciously provided by Dr. Anna Forsman at the University of Central Florida to 

eliminate free primers, primer dimers, and any amplicons that were not the approximate 550 bp 

size.  These were then entered into a second round of PCR to add unique indices to each 

amplicon in each individual sample, followed by an additional beaded cleanup to purify the final 

library prior to another quantification by PicoGreen assay, and finally pooling samples into an 

equimolar library.  This resulting library made up of approximately 255 individually barcoded 

samples in equimolar representations was sent to the University of Florida’s Interdisciplinary 

Center for Biotechnology Research (ICBR), then processed using MiSeq v3 reagent kit for 

optimal kinetics.  Prior to cluster generation and sequencing, a denaturation process using buffers 

and heat must be done, then the library is diluted, transferred to the flow cell, and run on the 

MiSeq system. 

Taxonomic Analyses 

Percent representations of Sanger sequencing detections of human and macaque nasal 

microbiome species/genera were analyzed using GraphPad Prism 7 and calculated as part of a 

whole (Figs. 13-15A).  Dr. Shibu Yooseph of the University of Central Florida kindly analyzed 

resulting Illumina MiSeq sequence data using the USEARCH/UPARSE program suite 

algorithms to rapidly search global databases and cluster sequences with a reported ≤1% 

incorrect base error rate [113, 114] (Figs. 15B-17).  Taxonomy was assigned to sequences 
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implementing a naïve Bayesian classifier in mothur [115, 116] to define the relative abundance 

of taxa present in each analyzed nostril, mostly represented at the genus level. 

Results 

Humans and Pigtailed Macaques Support Similar Culturable Nasal Commensals 

Fourteen human and six pigtailed macaque swab fluids were diluted in HBSS and plated 

on an array of agars to analyze comparative culturable natural nasal microbiomes.  A total of 83 

colonies were plucked from human plated samples, and a total of 182 colonies were plucked 

from macaque sample plates.  The relative abundance of species detected through plucking 

colonies and Sanger sequencing of the full-length 16S rRNA gene revealed a majority of species 

in common between humans and macaques (Fig. 13).   

 

 

Figure 13: Humans and Pigtailed Macaques Support Similar Culturable Nasal Commensals 
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Representative glycerol stocks from 14 human and 6 macaque nostrils were dilution plated on an 
array of agars and incubated 24-48 hours, then colonies were described and proliferated 
overnight in TSB for DNA extraction.  16S rRNA gene was amplified for each colony and sent 
for Sanger sequencing to identify each.  These preliminary investigations into the natural nasal 
inhabitants of human and captive pigtailed macaques show a predominance of Staphylococcal 
species in the culturable population, mainly S. aureus and S. epidermidis, as well as many 
additional microbial species in common.  n= 83 human and 182 macaque colony identifications. 
 
 
Staphylococcal species represented the majority of 16S species identifications, with humans 

supporting 72.3%, and pigtailed macaques supporting 92.9% including: S. aureus, S. 

epidermidis, S. hominis, S. capitis, S. haemolyticus, S. warneri, S. pasteuri, S. simulans, and S. 

patrasii.  In terms of Staphylococcus aureus representation specifically, pigtailed macaque 

nostrils contained 20.3%, while humans supported 24.1%.  Roughly 100 more colonies grew on 

macaque dilution plates with the same dilution scheme as the human samples, indicating that as 

expected, these animals support more bacteria as they lack the basic hygiene of humans.  Two 

major Staphylococcal species comprised roughly half of both human and pigtailed macaque total 

species identifications, S. aureus and S. epidermidis, however further analyses should be 

explored to determine if this is true due to competition of these common skin flora for the same 

niche, or due to the bias created by using culturable methods as Staphylococcal species are hardy 

and proliferate well on a wide variety of media. 

Mupirocin Significantly Reduces the Nasal Staphylococcal Population Causing a Microbial Shift 

 To determine the effect of nasal application of mupirocin ointment to the microbiome, 

one animal’s natural microbial balance in one nostril prior to any experimental procedures was 

compared to weeks one and three post-mupirocin application in the same nostril (Fig. 14).  These 

representative glycerol stock samples were dilution plated on Hoyle’s, nutrient, plate count, and 

TSA II agars, with 20 colonies per plate type (if present) identified by Sanger sequencing of the 
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16S gene.  Supporting prior observations of the original weekly longitudinal carriage counts, 

week one post-mupirocin dilution plates showed that along with SA eradication, there was also a 

significant decrease in non-SA population CFU counts that recovered by week 3 (pre-mupirocin 

n=83 colony identifications, week 1 post-mupirocin n=57, and week 3 post-mupirocin n=73).  

Figure 14 shows the colony species identifications that are shared between the three analyzed 

time points with any identifications not shared compiled into an “other” category for clarity. 

 

 

Figure 14: Application of 2% Mupirocin to the Nares Causes a Microbial Shift 

Representative glycerol stocks from one individual at pre-mupirocin and weeks one and three 
post-mupirocin were each individually plated on an array of agars and incubated 24-48 hours, 
then colonies were described and proliferated overnight in TSB for DNA extraction.  The 16S 
rRNA gene was amplified for each colony and sent for Sanger sequencing to identify each at the 
species level.  Eradication of SA and significant inhibition of S. pasteuri provides a niche for 
other less inhibited species to shift into. 
 
 
In this individual’s right nostril, the natural culturable microbiome contained 6% SA (in black), 

12% S. epidermidis, 6% S. hominis, 20.4% S. pasteuri, 17% Corynebacterium ulcerans, and 

26.5% other species prior to any manipulation.  By week one post-mupirocin, SA was eradicated, 

S. pasteuri decreased by 19%, and C. ulcerans decreased by 10%, allowing a 5% increase of S. 

epidermidis, a 15% increase in S. hominis, and detection of “other” species increased by 7%.  
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This indicates that eradication of SA and significant inhibition of S. pasteuri and C. ulcerans by 

mupirocin application, allows other species, including Streptococcus, Bacillus, Psychrobacter, 

and other Staphylococcal species to proliferate into the unoccupied niche.  By week three post-

mupirocin, S. epidermidis and S. hominis made up more than half of the species identifications, 

S. pasteuri increased by 17% and the “other” species decreased by 22%, indicating a decrease in 

biodiversity as Staphylococcal species flourish and outcompete other less-represented nasal 

commensals.  Again, these associations were made through implementation of culturable 

methods and as such are likely biased toward Staphylococcal species, however are still useful in 

comparisons NGS detections. 

Comparison of Nasal Microbiome Determined from Culturable Bacteria Versus a DNA-based 
MiSeq Approach 

The Illumina MiSeq platform was used to sequence the V3/V4 hypervariable regions of 

the 16S gene of total microbial DNA extracted from Z08202’s representative glycerol stocks of 

the left nostril that correspond to the same days as prior culturable analyses of the right nostril in 

which the 16S gene in its entirety was sequenced from colonies grown on an array of agar plates.  

Figure 15 shows genera detections through both Sanger sequencing of the full 16S gene (Fig. 

15A) and MiSeq sequencing of V3/V4 (Fig. 15B).  In comparing the resulting detections of 

individual strands of DNA present in representative samples, it is evident that Staphylococcal 

species are over-represented when using culturable methods.  Corynebacterium species are 

under-represented through culturable methods, especially seen in weeks one and three post-

mupirocin where culturable methods only allowed detection of 22.8% and 6.8% respectively, 

while in the relative abundance detected through MiSeq sequencing were approximately 55% 

and 72% respectively.  Week one detections using MiSeq showed very low Staphylococcal 
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species representation, and approximately 50% Corynebacterium, which is very different than 

culturable detections.  MiSeq allowed detection of Dolosigranulum, a genus that only has one 

known species, D. pigrum, which was not detected on any agar plate at any time.   

 

 

Figure 15: Comparison of Nasal Microbiome Determined from Culturable Bacteria Identification 
Versus a DNA-based MiSeq Approach 

Comparisons of relative abundance of genera present in the nose of one individual macaque 
detected through:  A) Sanger sequencing of the full-length 16S rRNA gene of plated colonies 
(right nostril), and B) Illumina MiSeq detection of the V3-V4 hypervariable region of all 
microbial DNA present in representative samples (left nostril).  The three bars in both A and B 
from left to right represent pre-mupirocin, week 1, and week 3 genera detections respectively.   
 
 
MiSeq also detected an unclassified Moraxellaceae family member at about 40% relative 

abundance prior to mupirocin treatment, which was eradicated with mupirocin treatment.  A 

member of this family was identified in the pre-mupirocin culturable Sanger identifications, 
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Psychrobacter pulmonis, so this is likely at least part of the unclassified Moraxellaceae detected 

along with another member, genus Acinetobacter.  The genus Acinetobacter was not specifically 

detected in this animal’s nostrils but was detected with MiSeq in other pigtailed macaques at 

many times throughout the study as well as many human samples.  Comparisons between Sanger 

and MiSeq showed that mupirocin treatment increased biodiversity at least temporarily as 

indicated by increased detection of “other” species, indicated more clearly in Fig. 15B, as well as 

the limitation of culturability that creates bias when plating samples. 

MiSeq Detected Similar Nasal Microbiome Profiles in Pigtailed Macaque and Human Nasal 
Samples 

 Illumina MiSeq sequencing of V3/V4 hypervariable regions of the 16S gene was used to 

analyze the comprehensive nasal microbiome following extraction of total DNA from 

representative glycerol stocks reserved over the course of a prior human study [28] and one 

independent SA inoculation in the nostrils of the six pigtailed macaques.  Samples were analyzed 

at days 0 and 3, weekly until day 22, then at time points when individual animals naturally 

cleared SA, swabbed positive again, and either cleared again naturally or at the last day of 

follow-up.  Human persistent, intermittent, and non-carriers were analyzed for future 

determinations of differences in nasal microbiome components, if any.  Comparisons of the 

relative abundance of genus-level identifications were made between three human and three 

macaque samples from individuals that maintained persistent nasal carriage of SA (Fig. 16).  

Staphylococcus and Corynebacterium represented more than 75% of the genus make-up of the 

nasal microbiome of SA carriers, with few other genera represented in the remaining 10-20% 

detections.  Dolosigranulum, Acinetobacter, Streptococcus, and others were represented in much 

smaller abundance in both human and pigtailed macaque samples. 
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Figure 16: Pigtailed Macaque and Human Persistent SA Carriers Support Similar Genera in 
Nasal Microbiome as Detected Through Illumina MiSeq 

V3-V4 amplicons of the 16S rRNA gene of extracted DNA from representative sample glycerol 
stocks from three human and macaque persistent carriers were sequenced implementing the 
Illumina MiSeq platform.  Comparative relative abundances (y-axis) of the ten most represented 
genera (legend on the right) are shown, with Staphylococcal and Corynebacterium species 
predominating at an approximate 80% of the detections in both human and macaque carrier 
groups. 
 
 

Comparisons of the relative abundance of genus-level identifications were made between three 

human non-carriers and three macaques that quickly cleared SA from the nose using longitudinal 

carriage data in selection of subjects to include in comparisons (Fig. 17).  These samples 

contained considerably less Staphylococcal, Corynebacterium, and Dolosigranulum genera than 
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the relative abundances found in nasal SA carriers (Fig. 16), but interestingly had noticeably 

increased representation of Acinetobacter in both human and macaque samples at about 30%, 

also with more biodiversity in most samples. 

 

 

Figure 17: The Nasal Microbiomes of Pigtailed Macaques that Clear SA from the Nose 
Compared with Human Non-carriers Contain a Significant Percentage of Acinetobacter 

V3-V4 amplicons of the 16S rRNA gene of extracted DNA from representative sample glycerol 
stocks from three human non-carriers and three macaque clearers were sequenced implementing 
the Illumina MiSeq platform.  Comparative relative abundances of the ten most represented 
genera (legend on the right) are shown, with significant detections of Acinetobacter in each, 
which was not observed in persistent carriers. 
 



83 
 

Discussion 

The components of the pigtailed macaque nasal microbiome have not been characterized 

prior to this investigation into the suitability of this proposed model for human Staphylococcus 

aureus nasal carriage, however previous studies have shown that the vaginal mucosal 

microbiome is similar to human females [66, 71, 99, 107].  The human nasal microbiome is 

underexplored due to low pressure from disease states, but it is known to vary between 

individuals with many factors contributing to the species supported in the nose as well as SANC.  

Initial preliminary investigations were limited by culturability on an array of agars, but did allow 

determination that both macaque and human nares support Staphylococcus aureus, a feature 

lacking in historic rodent models.  Culturable methods also showed that representative swab 

fluids contained mostly Staphylococcal species in both humans and macaques, with SA, S. 

epidermidis, S. hominis, S. warneri, S. capitis, and S. haemolyticus in similar proportions in both 

(Fig. 13).  Application of mupirocin antibiotic ointment in the nose significantly affects the 

culturable nasal microbiome, as many other gram-positive nasal commensals are inhibited along 

with SA eradication.  S. pasteuri and C. ulcerans were significantly decreased by week one post-

mupirocin, allowing S. epidermidis, S. hominis, and several “other” genera like Bacillus and 

Streptococcus to temporarily flourish and occupy the niche left open in an increase in 

biodiversity (Fig. 14).  By week three post-mupirocin, the population counts had restored, and S. 

epidermidis, S. hominis, and S. pasteuri overtook most of the culturable nasal microbiome, 

decreasing biodiversity by displacing the “other” species by a 20% decrease in detection. 

Realizing that culturability of microbes is a limiting factor for microbial identification, 

the Illumina MiSeq sequencing platform was implemented to detect each piece of bacterial DNA 

in representative samples frozen in glycerol rather than only what will grow on an array of 
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plates.  Comprehensive detections of representative samples using NGS methods are reliant on 

the chosen method, as well as several other factors.  The nasal mucosa has a relatively low 

bacterial biomass as compared to the lower respiratory system and the gut, and is made up 

mostly of difficult to lyse gram positive microbes.  Without an enzymatic step, many cell walls 

will fail to lyse, and misrepresentation of inhabitants is likely.  All analyzed samples were treated 

with identical enzymatic treatments and library preparation steps to maintain consistency and 

prevent wasting irreplaceable representative samples. 

Comparing the percentages of genera detected on plates against what was detected 

through MiSeq when analyzing the effect of mupirocin on the same animal’s nose, it is evident 

that Staphylococcal species are highly overrepresented using culturable methods, by 40% or 

more between each of the three days analyzed (Fig. 15).  The MiSeq platform allowed for a 

wider range of microbial identifications that were not detected on agar plates, however culturable 

methods allowed identification of Psychrobacter species, while MiSeq detected the family it 

belongs to, Moraxcellaceae.  MiSeq data represents a roughly even relative abundance of the 

natural balance of Staphylococcal and Corynebacterium species detected in the pre-mupirocin 

sample (Fig. 15B), as well as detection of Dolosigranulum, which was never detected on agars.  

Week one post-mupirocin showed an increase in biodiversity, which was also reflected in 

culturable identifications, but week 3 post-mupirocin MiSeq detections show that 

Corynebacterium overtook the rebounded population, conflicting with culturable methods, which 

showed primarily Staphylococcal species (Fig 15).  Using these sequencing methods in 

conjunction with each other is beneficial to acquire additional information than either one singly 

can provide. 
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Preliminary comparisons between the nasal microbiomes of human and pigtailed 

macaques were made implementing the MiSeq platform to determine if the nasal environment is 

similar in terms of commensal factors in addition to the similarities in carriage patterns and 

resulting pro-inflammatory protein expression that we have already observed.  Microbial 

profiling of human and macaque persistent carrier samples revealed that the nasal microbiome is 

made up of approximately 75% Staphylococcal and Corynebacterium genera (Fig. 16), which 

aligns with prior findings [118, 119].  In addition, we observed a trend of similar profiles with 

significant representations of Acinetobacter and decreased Corynebacterium and Staphylococcal 

identifications in samples collected from pigtailed macaque clearers compared with human non- 

and intermittent carriers (Fig. 17).  Interestingly, gram-negative Acinetobacter baumannii has 

previously been implicated as a major human pathogen with the propensity to acquire drug-

resistance and maintain long-term concomitant persistent nasal carriage with MRSA in 

healthcare settings that can become invasive and life threatening [120, 121].  There are at least 

46 species within the Acinetobacter genus, and since the MiSeq did not resolve down to the 

species level, we cannot assume that this detection is A. baumannii, but this genus was detected 

in similar relative abundances in both human and macaque non-carrier nasal microbiomes.  This 

data suggests that whichever Acinetobacter species detected in these samples competes for niche 

occupancy with Staphylococcal and Corynebacterium species as these were found in less relative 

abundance in noses containing increased abundance of Acinetobacter.  With respect to bacterial 

diversity in general, it appears that the clearers/non-carriers support a more diverse microbiome 

in most samples than persistent carriers in both the pigtailed macaque and human samples (Fig. 

16 and 17).  As previously discussed, the nasal microbiome of the most relevant rodent model 

for SANC has been previously characterized as primarily Campylobacter species [61] through 
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next-generation sequencing methods.  Importantly, similar methods implemented in this study 

did not detect any of the species identified in the cotton rat model in either human or pigtailed 

macaque samples. 

Prior human studies have suggested that Corynebacterium is a major inhibitor of SA 

colonization in the nares [48]; however, Corynebacterium was found in all nostrils whether 

positive or negative for SA, and was detected in a greater relative abundance in persistent nasal 

carriers.  These findings likely support other groups that have suggested that interactions with 

Corynebacterium species causes a shift in SA fitness that promotes commensalism over 

virulence [45], allowing prolonged persistence in the nares with decreased immune detection. 

This nasal microbiome data, paired with prior research that identified similarity in the 

reproductive system microbiome, supports the pigtailed macaque as a better model than rodents 

for the dynamic interplay between SA and the non-SA nasal commensal population during 

Staphylococcus aureus inoculation experiments.  Comparisons between human and macaque 

nasal microbiomes have never been made, and elucidations of the similarities between 

taxonomic compositions of carriage groups will prove valuable in future applications of this 

model.  Illumina MiSeq detections of V3-V4 amplicons of the 16S rRNA gene only allowed for 

mostly genus-level identifications, therefore future inquiries into the pigtailed macaque and 

human nasal microbiomes should implement a more sensitive method that can acquire species-

level identifications. 
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CHAPTER 5: CONCLUSIONS AND FUTURE DIRECTIONS 

Staphylococcus aureus nasal carriage is prevalent in at least 30% of the healthy world 

population and presents a risk of autoinfection to the host and dissemination to new 

immunocompromised hosts in nosocomial and at-risk communities.  SANC is a dynamic state, 

and is influenced by SA strain genetics, host immune responses, and the nasal mucosal 

environment, which is impacted by factors like climate, health of the host, and non-SA 

commensals.  The mechanisms that impact SANC are not fully understood as it results from 

complex interactions, and the lack of a human-relevant model prevents further study due to the 

ethical and procedural limitations set for human research.  Historically implemented rodent 

models for SANC do not translate well to the human condition as they resist enormous nasal 

inoculations, resulting in only transient carriage.  Murine immune responses lack key 

components that play primary roles in the human’s heavily neutrophilic response to SA 

inoculations, and instead clear the nostrils through T cell mediation.  Longitudinal studies are 

impossible with rodent models due to their small size, however SANC is very individualized, 

and longitudinal sampling is necessary to understand immune and nasal commensal responses to 

inoculations.  Transitions of potential therapeutics to clinical trials from rodent models often fail, 

therefore development of an improved model is necessary for future research and clinical trials 

of novel antibiotics to combat the rapid evolution of SA antibiotic resistance. 

Unlike rodents, pigtailed macaques naturally carry SA in the nose and throat and are 

easily decolonized of SA with 2% mupirocin topical antibiotic following an identical protocol 

used to clear the nostrils and subsequently the body of pre-surgical humans.  Nasal and 

extranasal carriage was established in all six animals with a human-relevant inoculation of 104 



88 
 

CFUs per nostril of a variety of strains, with the nasal environment serving as a suitable reservoir 

for passive transmission of the same strain to the rest of the body.  This important aspect 

provides a route around a significant limitation to human SANC studies, as in human SANC 

studies, only self-strains are ethically permitted for inoculation and must be self-applied by the 

subject.  Acquisition and retention of human hosts for SANC studies has proven difficult as 

humans have free-will and are unpredictable, and in the absence of symptoms, the return to a 

laboratory for nasal swabs and nasal fluid collections becomes a burden and subjects are 

frequently lost from studies.  This cohort of captive pigtailed macaques are maintained in 

individual enclosures with climate and humidity control, and are treated and fed the same, which 

eliminates the free-will aspect of study subjects as well as many environmental factors that can 

impact SANC.  Additionally, this sufficient low inoculum size of 104 CFUs per nostril is a 

significant finding because in rodent models, only transient carriage of only a few days is 

established with enormous inoculations in a much smaller nose, even when antibiotics are added 

to drinking water to inhibit competition from nasal microbiome inhabitants.  Further modeling 

the human condition of SANC, pigtailed macaque nostrils maintain the highest density of SA, 

which is an aspect not observed in rodent models of carriage.  A three-week pilot study found 

that a human SA isolate shared genetic similarity to macaque isolates and nasal colonization was 

just as easily accomplished with the same inoculum size in this model as inoculations with 

various macaque SA strains.  Once established, SANC in the pigtailed macaque is easily 

followed longitudinally with a simple nasal swab, a convenience that is lacking in rodent models, 

which results in the sacrifice of a large number of rodents, often without any benefit as many will 

clear SA rapidly from the nose.  Carriage patterns in healthy pigtailed macaques model the 
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human well, and present as mostly intermittent with some individuals able to clear SA from the 

nostrils naturally while others maintain persistent carriage. 

Macaques that were able to clear the nostrils of SA displayed up-regulations of key pro-

inflammatory mediators once SA was detected as compared to its absence.  These proteins are 

also up-regulated in the human response to SA and are associated with neutrophil recruitment 

and maturation as well as exacerbation of the inflammatory response in the nasal mucosa.  Key 

neutrophil-associated pro-inflammatory proteins implicated in prior human research to mediate 

clearance of SA from the nasal mucosa were found to play important roles in the pigtailed 

macaque as well, also not modeled in even the most relevant rodent model.  In macaques that 

were able to clear SA from the nose, IL-8, IL-1β, and MCP-1 were significantly up-regulated in 

the nasal mucosa as detected through multi-plex bead assays of nasal fluids, as well as a 10-fold 

decrease in the IL-1RA: IL-1β ratio.  These up-regulations were not detected in the serum, and 

when paired with husbandry charts indicate that SANC in the pigtailed macaque is asymptomatic 

as it in the human condition.  Animals that maintained persistent carriage failed to establish this 

required shift in pro-inflammatory expression similar to human persistent carriers.  Carriage 

duration correlated with temporal peaks in IL-8 and IL-1β expression, the earlier the peak the 

more quickly clearance occurred.  Animals that failed to accomplish a peak in expression or the 

peak occurred at 16 days or later maintained carriage for significantly longer or were 

unsuccessful in clearance of SA.  This data suggested that as in humans, dysregulation of factors 

involved in neutrophil recruitment and function in the pigtailed macaque nasal mucosa leads to 

prolonged duration of carriage and/or inability to clear SA from the nose. 

Pigtailed macaques and humans host similar microbes in the nose as determined through 

both culturable methods and MiSeq analysis of representative swabs samples collected 



90 
 

longitudinally, with similar relative abundance of taxa, namely Staphylococcal, 

Corynebacterium, Dolosigranulum, and Acinetobacter.  Species in the Acinetobacter genus may 

correlate to a shortened duration of SANC rather than previously implicated Corynebacterium, 

which was present in all samples.  Like humans, pigtailed macaques support diverse genera in 

the nose, and the nasal microbiome appears to act as an additional major factor of SANC 

observed by notable differences in abundances observed between carrier and non-carrier groups. 

This is the first study of its type to implement the pigtailed macaque in SA nasal 

inoculation studies, and these significant findings reveal great future potential applications for 

this model.  Since these animals naturally carry SA in the nose and throat, they would be useful 

as a decolonization model for newly developed antimicrobials against SA that would not 

necessarily require inoculations of SA, but a simple screening process to determine carriage 

status.  Through a series of directed inoculation studies, it was found that a variety of SA strains 

could establish carriage and persist in the nostrils, including a human nasal isolate.  This 

indicates the likelihood for a wide variety of SA strains to successfully establish carriage, 

including potentially antibiotic resistant and virulent strains, providing a potential way to 

circumvent this limitation placed on human SANC studies.  Longitudinal follow-up of SANC 

would be useful in conjunction with pro-inflammatory protein detections of corresponding days 

to observe human-relevant immune responses to virulent SA.  In addition to SANC, considering 

the MiSeq analysis of the nasal microbiome revealed similarities in bacterial species and their 

relative abundances, proposed inhibitors of SA like Corynebacterium and Acinetobacter species 

could be introduced into the nostrils to correlate not only to duration of carriage, but also 

changes in SA gene expression in a living model as these kinds of studies have mostly taken 

place in vitro. 
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In terms of possibilities for future application of this project specifically, the second 

aliquot of nasal fluids analyzed through multi-plex bead assays are reserved, with potential for 

future detections of additional factors of SANC, such as defensins that could be correlated to the 

data already discussed herein.  The acid extracted nasal fluids of only one nostril were assayed 

for ten potential mediators in the inflammatory response, therefore the protein laden nasal strips 

corresponding to the opposite nostril are still reserved at -80°C and could be extracted and 

assayed for the analytes found significant in this study in addition to others.  Also remaining at -

80°C are representative glycerol stocks of the swab samples collected from the nostrils not 

implemented in the Illumina MiSeq microbiome analyses that could be analyzed using more 

sensitive metagenomic detections to identify down to the species level.  With this model, knock 

out studies of adhesion proteins, virulence factors, and more could be performed, and elucidate 

mechanisms that have not been available for in vivo study thus far.  Future directions of this 

laboratory in implementation of the pigtailed macaque as a human-relevant model for SANC aim 

to specifically focus on longitudinal analyses including: internalization of SA in nasal mucosal 

cells, SA genome evolution, and alterations in SA protein expression as it progresses from 

establishing adhesion and colonization to once prolonged nasal carriage is established.  These 

analyses will increase understanding of other factors that may allow SA to persist through 

multiple methods of evading the immune system. 

Together, these multi-dimensional analyses of the potential for the pigtailed macaque, 

Macaca nemestrina, as a model for human SANC demonstrate that they are much improved as 

compared to historic rodent models.  As Staphylococcus aureus continues its rapid evolution of 

antibiotic resistance to every medication used to combat infections, a new model is crucial for 

discovery and development of novel therapies with the hopes of increased potential for success 
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in clinical trials.  SANC is a highly dynamic and individualized state impacted by a multitude of 

factors that are not fully understood yet.  In terms of human studies, the science has progressed 

as far as it can to elucidate dynamics between SA and the host immune system.  Further 

understanding of the relationship between SA and the resident nasal microbiome, elucidating 

methods of immune evasion, and identifying shifts in SA protein expression is necessary for 

progressive intervention strategies.  Circumvention of experimental and ethical limitations 

placed on human SANC research implementing the pigtailed macaque would better scientific 

knowledge on this multifactorial state and ease the burden on healthcare with improved 

decolonization strategies in nosocomial and at-risk community settings. 
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