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ABSTRACT 

Cholera toxin (CT), secreted from Vibrio cholerae, causes a massive fluid and electrolyte 

efflux in the small intestine that results in life-threatening diarrhea and dehydration which 

impacts 3-5 million people per year.  CT is secreted into the intestinal lumen but acts within the 

cytosol of intestinal epithelial cells. CT is an AB5 toxin that has a catalytic A1 subunit and a cell 

binding B subunit. CT moves from the cell surface to the endoplasmic reticulum (ER) by 

retrograde transport. Much of the toxin is transported to the lysosomes for degradation, but a 

secondary pool of toxin is diverted to the Golgi apparatus and then to the ER. Here the A1 

subunit detaches from the rest of the toxin and enters the cytosol.  The disordered conformation 

of free CTA1 facilitates toxin export to the cytosol by activating a quality control mechanism 

known as ER-associated degradation. The return to a folded structure in the cytosol allows CTA1 

to attain an active conformation for modification of its Gsα target through ADP-ribosylation. 

This modification locks the protein in an active state which stimulates adenylate cyclase and 

leads to elevated levels of cAMP. A chloride channel located in the apical enterocyte membrane 

opens in response to signaling events induced by these elevated cAMP levels.  The osmotic 

movement of water into the intestinal lumen that results from the chloride efflux produces the 

characteristic profuse watery diarrhea that is seen in intoxicated individuals.  

The current model of intoxication proposes only one molecule of cytosolic toxin is 

required to affect host cells, making therapeutic treatment nearly impossible. However, based on 

emerging evidence, we hypothesize a threshold quantity of toxin must be present within the 

cytosol of the target cell in order to elicit a cytopathic effect. Using the method of surface 

plasmon resonance along with toxicity assays, I have, for the first time, directly measured the 

efficiency of toxin delivery to the cytosol and correlated the levels of cytosolic toxin to toxin 
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activity. I have shown CTA1 delivery from the cell surface to the cytosol is an inefficient process 

with only 2.3 % of the surface bound CTA1 appearing in the cytosol after 2 hours of 

intoxication.  I have also determined and a cytosolic quantity of more than approximately .05ng 

 of cytosolic CTA1 must be reached in order to elicit a cytopathic effect. Furthermore, CTA1 

must be continually delivered from the cell surface to the cytosol in order to overcome the 

constant proteasome-mediated clearance of cytosolic toxin. When toxin delivery to the cytosol 

was blocked, this allowed the host cell to de-activate Gs, lower cAMP levels, and recover from 

intoxication. Our work thus indicates it is possible to treat cholera even after the onset of disease. 

These findings challenge the idea of irreversible cellular toxicity and open the possibility of post-

intoxication treatment options.  
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CHAPTER ONE: INTRODUCTION  

Vibrio cholerae   

Vibrio cholerae is a Gram negative, waterborne pathogen transmitted through a fecal-oral 

route. Infection occurs from ingesting food or water contaminated with the bacterium which 

subsequently colonizes the small intestine and releases a toxin. The resulting disease affects 3-5 

million people and causes 100,000–120,000 deaths per year [1]. Although cases have been rare 

in industrialized nations, it is still prevalent in various areas with inadequate sanitation measures. 

WHO reports recent outbreaks of cholera in Haiti, Pakistan, and Central Africa and highlight the 

ever present presence of this disease worldwide. Infected individuals exhibit massive fluid and 

electrolyte efflux in the small intestine that results in life-threatening diarrhea and dehydration. 

One in twenty infected individuals has a severe reaction and can exhibit profuse watery diarrhea, 

losing up to 6 liters of fluid per day. Without proper treatment, dehydration and shock resulting 

in death can occur within hours [2]. Current treatment for the deadly symptoms of this disease 

included rehydration in the form of an oral rehydration salt solution or, in more serious cases, 

administration of intravenous Ringer's lactate [3]. Recovery from cholera occurs after the 

intoxicated enterocytes, which have a 3-5 day life span [4], are sloughed from the intestinal 

epithelium. Antibiotics aimed to kill the bacteria are effective but seldom available in affected 

areas, and emerging antimicrobial resistance to various strains is of concern [5]. As the disease 

results from a toxin secreted by V. cholerae, the toxin directly could be a potential target for 

therapeutic development.  

Cholera Toxin  

 Cholera toxin (CT), secreted from V. cholerae, causes a massive fluid and electrolyte 
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efflux in the small intestine that results in life-threatening diarrhea and dehydration. V.choerae 

colonizes the lining of the small intestine and begins to produce CT once it has safely passed the 

acidic pH of the stomach. CT is the main virulence factor of V. choerae and is released from the 

bacterium into the extracellular environment [6].CT in the medium must bind to and enter the 

host cell in order reach its Gsα target within the cytosol of the cell. In order to reach the cytosol, 

translocation from the endoplasmic reticulum (ER) is required. This occurs after CT has been 

transported in a retrograde manner from the cell surface to this location [7]. 

 CT is an AB5 toxin which has a catalytic A1 subunit and a homopentameric cell binding 

B subunit. The A chain is proteolytically nicked to produce a disulfide-linked A1/A2 

heterodimer.  The A2 subunit and B pentamer also maintain non-covalent interactions with 

CTA1 which secure the A1 subunit to the rest of the toxin [8].   

Retrograde Transport 

Retrograde transport is a normal cellular process that moves cargo from the plasma 

membrane to the ER with the aid of vesicle carriers. CT uses this retrograde transport to move 

from the cell surface to the ER on the path to its target in the cytosol. CT, due to its lack of pore 

forming ability, must utilize channels in the ER to move into the cytosol. The toxin first binds to 

the GM1 ganglioside receptors on the surface of intestinal epithelial cells and is subsequently 

internalized by a clathrin-independent pathway. The toxin is directed to the early endosomes, 

with a majority of internalized toxin transported to the lysosomes for degradation. A lesser 

amount moves to the Golgi apparatus and then to the ER. The resident redox state of the ER 

leads to reduction of the CTA1/CTA2 disulfide bond.  As determined by reduction of the 

CTA1/CTA2 disulfide bond which occurs in the ER, only 3-10% of surface bound toxin reaches 
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the ER after 1-2 hours of exposure [9-12]. Dissociation of reduced CTA1 from CTA2/CTB5 does 

not occur spontaneously but requires the aid of chaperones. Once freed from the rest of the toxin, 

the CTA1 polypeptide can pass through an ER translocation pore to the cytosol. The efficiency 

of this delivery to the cytosol has never been determined.  

Toxin Translocation from the ER to the Cytosol 

The isolated CTA1 subunit is a disordered, thermally unstable protein. It assumes a 

disordered conformation after separation from the holotoxin in the ER, and regains an ordered 

conformation after entry into the cytosol. The disordered tertiary conformation of free CTA1 

facilitates toxin export to the cytosol by activating a quality control mechanism known as ER-

associated degradation (ERAD).  This pathway is generally used to expel misfolded or 

misassembled secretory proteins from the ER for degradation in the cytosol. Unfolded CTA1 

mimicks an unfolded substrate and is able to thus reach the cytosol using ERAD to move through 

a protein-conducting channel in the ER membrane. Terminally misfolded proteins are targeted to a 

translocon by a complex of chaperones [13]. 

Drugs with known functions such as sodium 4-phenylbutyrate (PBA), glycerol, and 

geldanamycin (GA) have been used to block defined steps in the CTA1 intoxication [4,14,33]. 

PBA and glycerol both block the unfolding of dissociated CTA1 to a translocation competent 

state and thus prevent CTA1 export from the ER to the cytosol, while GA prevents the chaperone 

mediated refolding of CTA1 once in the cytosol. Since PBA is an FDA-approved drug for the 

treatment of urea cycle disorders and GA is being used in clinical trials as an anti-cancer agent, 

they could possibly be used to treat cholera [14].   
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Toxin Extraction from the ER by Hsp90 

Unfolded or misfolded ERAD substrates are exported out of the ER via protein-

conducting channels [16-17]. Host cytosolic factors must produce the driving force for substrate 

extraction from these ER-specific channels.  ERAD processing involves multiple host 

chaperones, proteins that assist in protein folding and/or unfolding and the assembly or 

disassembly of macromolecular structures. These chaperones prevent the aggregation of 

misfolded proteins in the ER and can direct ERAD substrates to the proteasome for degradation. 

In the case of CTA1, chaperones assist the refolding of CTA1 into an active conformation once it 

has entered the cytosol. Chaperones are required to stabilize and/or refold the toxin because its 

thermal instability at physiological temperature leaves it in a disordered state. Most ERAD 

substrates are extracted from the ER through a pathway that involves p97 [18]. However, p97 has 

been determined not to play any role in CTA1 dislocation [19,20].The cytosolic chaperone Hsp90 

helps extraction from the ER [21] and it has been shown that it is required for CTA1 passage into 

the cytosol. Hsp90 bound to CTA1 in an ATP-dependent manner was blocked by geldanamycin 

(GA), an established Hsp90 inhibitor. GA has been shown to inhibit the chaperone Hsp90-

mediated refolding of CTA1 in the ER as well as block intoxication in cultured cells and fluid 

accumulation when used in rabbit ileal loop studies. GA is currently in clinical trials as an anti-

cancer agent.  GA thus represents a promising therapeutic for the treatment of cholera.  

Toxin Degradation in the Cytosol 

The cell itself has a multitude of mechanisms, such as the previously mentioned 

lysosome, to reduce the level of waste proteins.  Within the cytosol, the proteasome is in place to 

reduce the level of misfolded proteins.  After export to the cytosol, ERAD substrates are 
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ubiquitinated to target them for degradation by the 26S proteasome [15-16, 22-23]. The 

proteasome is a cylindrical complex containing central barrel shaped pore known as the 20S 

“core” and two 19S "cap" that recognizes the polyubiquitin tags and initiates the degradation 

process with ATP-depending unfolding [24]. CTA1 avoids degradation by the 26S proteasome 

because it contains only two lysine residues that are normally the sites of ubiquitin conjugation 

[25]. However, when CTA1 is unfolded it is susceptible to ubiquitin-independent degradation by 

the 20S proteasome. This variant of the proteasome consists of only the catalytic core of the 26S 

proteasome, thus lacking the ubiquitin recognition and ATP-dependent activities of the 19S cap 

seen in the 26S proteasome [26]. The Teter lab has further shown that the cytosolic pool of 

CTA1 is degraded by this mechanism with a half-life of 2 hours, and the use of proteasome 

inhibitors increased this time. These results suggest the amount of cytosolic toxin is proportional 

to the amount of toxicity.  

Toxin Activity in the Cytosol 

Once in the cytosol, CTA1 attains an active refolded conformation with the aid of 

chaperones such as Hsp90. Refolded CTA1 activates the stimulatory  subunit of the 

heterotrimeric G protein which is located in lipid rafts at the cytoplasmic face of the eukaryotic 

plasma membrane [27].  CTA1 modifies its Gsα target by ADP-ribosylation. Gsα is a molecular 

switch that is regulated by GTP binding and hydrolysis. Catalytically active CTA1 fixes Arg
201

 

of Gs with ADP-ribose which prevents its ability to hydrolyze bound GTP and thus locks it in 

an active state. This results in overstimulation of adenylate cyclase, causing an increase in the 

production of the secondary messenger cAMP above normal levels. If CT intoxication is not 

halted, the subsequent dysregulation of cAMP levels leads to the opening of the cystic fibrosis 
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transmembrane conductance regulator (CFTR) channel in the apical plasma membrane of the 

intestinal epithelial cell. This, in turn, stimulates chloride secretion and ultimately leads to an 

efflux of water into the lumen of the small intestine [28]. The osmotic movement of water 

produces a diuretic response which is responsible for the rapid and extreme dehydration that is 

seen in intoxicated individuals.  

Reversal of Toxin Activity 

 In addition to the ability to degrade CTA1 directly, the cell has mechanisms in place to 

reverse the toxin-activated signaling pathway. The host cell has a multitude of mechanisms in 

place to regulate and degrade common cytosolic events and components. The host ADP-

ribosyl(arginine)protein hydrolase will catalyze the removal of the ADP-ribose moiety from the 

locked, active G protein [29]. This will allow Gsα to turn off by hydrolyzing its bound GTP.  

There is also a rapid turnover of ADP-ribosylated Gsα by the proteasome [30]. This substantially 

reduces the amount of ADP-ribosylated Gsα in the cell. Phosphodiesterases are able to degrade 

cAMP and can reduce concentrations back to basal level. With these mechanisms in place, we 

hypothesize CTA1 must be continually delivered to the cytosol in order to overcome the constant 

cellular pressures which degrade CTA1 and reverse its activity. This is contrary to the current 

paradigm, described below, that only one molecule of cytosolic toxin is required to irreversibly 

affect host cells [31-32]. The cell’s ability to degrade CTA1 and reverse toxin activity is 

indicative of the requirement of more than one molecule for intoxication and consistent with 

results that show levels of cytosolic toxin proportional to the level of toxicity.  Current 

treatments do not sufficiently block translocation of CTA1 to the cytosol and the fight between 

entry and degradation favors toxicity over reversal by the cell. New therapeutics that may more 
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efficiently block translocation may be able to lower the quantity of toxin to a level at which the 

balance may favor the cell’s innate mechanisms. Thus, it is theoretically possible to reverse 

effects of cholera intoxication.  

Current Model 

It is widely thought that AB toxins such as CT are essentially so potent that it only takes 

one to a few molecules of cytosolic toxin to generate a toxic effect. Furthermore, the cellular 

effects of CT are still considered irreversible. Thus, the dominant model views the diarrhea from 

cholera as an irreversible event.  It is thought that individuals only recover from cholera when 

the intoxicated cells are sloughed from the epithelial monolayer. This model of intoxication 

implies the idea of a post-intoxication therapeutic treatment is nearly impossible.  

Hypothesis 

We hypothesize a threshold quantity of toxin must be present within the cytosol of the 

target cell in order to elicit a cytopathic effect. Our model contradicts the currently accepted 

theory that one molecule of toxin is enough to induce toxicity in the cell. Previous studies 

provided only indirect measures of cytosolic toxin with a high level of error and did not address 

the relationship between toxin quantity and toxin activity within the cytosol [39-40]. With recent 

advances in technology, we can now detect cytosolic CTA1 using surface plasmon resonance 

(SPR) [4,14,33-35].  This SPR assay is an innovative way to look at precise CTA1 cellular 

content at levels too low to be previously detected. This assay will allow us to draw correlations 

between the levels of cytosolic CTA1 to the extent of intoxication and could change the 

paradigm of how we view the intoxication process. Using this method we have been able to 

measure the efficiency of toxin delivery to the cytosol and correlated the levels of cytosolic toxin 
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to toxin activity. I have shown only 2.3 % of the surface bound CTA1 appeared in the cytosol 

after 2 hours of intoxication.  I have also determined and a cytosolic quantity of more than .05ng 

of cytosolic CTA1 must be reached and maintained in order to elicit a cytopathic effect and 

overcome the constant proteasome-mediated clearance of cytosolic toxin. Blocking toxin 

trafficking allowed the host cell to de-activate Gs, lower cAMP levels, and recover from 

intoxication. Our work thus indicates it is possible to treat cholera even after the onset of disease 

and challenges the idea of irreversible cellular toxicity while opening the possibility of post-

intoxication treatment options.  
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CHAPTER TWO: METHODOLOGY 

Chemicals and Reagents 

Sigma Aldrich (St. Louis, MO) 

 Ethylenediaminetetraacetic Acid (EDTA) 

 Protease Inhibitor Cocktail 

 Tetramethylethylenediamine (TEMED) 

 Monosialoganglioside GM1 from bovine brain,  

 3-Isobutyl-1-Methylxanthine (IBMX)  

 Digitonin  

 Brefeldin A 

 ALLN 

 Glycerol 

Fisher Scientific (Pittsburgh, PA)  

 2-Mercaptoethanol (β-ME)  

 Ethanol 200 proof (EtOH) 

 Gel Code Blue Stain Reagent 

 Glycerol 

 Methanol (MeOH) 

 Sodium Chloride (NaCl) 

 Sodium Hydroxide (NaOH) 

 Sodium Phosphate Dibasic Anhydrous (Na2HPO4) 
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 Sodium Phosphate Dibasic Heptahydrate (Na2HPO4·7H2O)  

 Sodium Phosphate Monobasic Anhydrous (NaH2PO4) Sodium  

 Phospate Monobasic Monohydrate (NaH2PO4·H2O) Tris Base 

 Tryptone 

 Tween-20 

Stressgen (Farmingdale, NY) 

 Geldanamycin 

Invitrogen (Carlsbad, CA) 

 Antibiotic-Antimycotic 

 Dulbecco’s Modified Eagle Medium (DMEM) 

 Ham’s F-12 

 Trypsin/EDTA 

Amresco (Solon, OH) 

 Ammonium Persulfate (APS) 

 Bromophenol Blue 

 Glycine 

 HEPES 

 Methionine 

 Sodium Dodecyl Sulfate (SDS) 

 Tris-Cl 

 Triton X-100 
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Calbiochem (La Jolla, CA) 

 Digitonin 

 Sodium 4-phenylbutyrate (PBA) 

Bio Rad (Hercules, CA) 

 40% Acrylamide /Bis Solution 

 Extra Thick Filter Paper 

Atlanta Biologicals (Lawrenceville, GA) 

 Fetal Bovine Serum 

Pierce Biotechnology, Inc (Rockford, IL) 

 N-hydroxysuccinimide (NHS)  

Thermo Scientific (Waltham, MA)  

 1-Ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride (EDC)  

Gibco (Grand Island, NY) 

 DMEM  

 Antibiotic-Antimycotic  

GE Healthcare (Piscataway, NJ) 

 ELISA cAMP kit  

 Western blotting detection reagents  
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Toxins 

List Biological Laboratories (Campbell, CA) 

 Cholera Toxin, Holotoxin 

Calbiochem (La Jolla, CA) 

 Cholera Toxin, A subunit 

Antibodies 

Stressgen (Ann Arbor, MI) 

 Rabbit α-Hsp90 

 Rabbit α-PDI 

Sigma Aldrich (St. Louis, MO) 

 Rabbit α-CTA 

Jackson Immunoresearch (West Grove, PA) 

 Goat anti-Rabbit IgG conjugated to HRP 

Equipment 

Bio Rad (Hercules, CA) 

 Bio Rad Power Pac Basic 

 Bio Rad Power Pac HC 

 Trans-Blot SD Semi-Dry Transfer Cell 
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BioTek Instruments (Winooski, VT) 

 Synergy 2 Plate Reader 

Other Materials 

Grenier Bio One 

 6-well flat-bottom tissue culture plates 

 24-well flat-bottom tissue culture plates 

American Type Culture Collection 

 Chinese Hamster Ovary (CHO) cells 

 HeLa cells 

Buffers 

Phosphate Buffered Saline (PBS), 10x 

 82.3 g Na2HPO4  (0.58M) 

 23.5 g NaH2PO4  (0.17M) 

 40 g NaCl (0.69M) 

 H2O to 1 liter 

Tris-Buffered Saline (TBS)  

 10x 24.24 g Tris-Cl 

 5.56 g Tris Base 

 80.1 g NaCl  

 H2O to 1 liter 
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Transfer Buffer 

 100 ml 10x SDS-Electrophoresis Running Buffer 

 200 ml MeOH 

 600 ml H2O 

SDS-Electrophoresis Running Buffer, 10x 

 30.2 g Tris Base 

 144 g Glycine 

 10 g SDS H2O to 1 liter 

SDS Sample Buffer, 4x 

 50 ml 4x Tris-Cl/SDS pH 6.8 

 40 ml Glycerol 

 8 g SDS 

 2 mg bromophenol blue 

 100 mM 2-mercaptoethanol (7µl of 14.3 M ß-ME /ml of 4x buffer) 

HCN Buffer 

 50 mM HEPES, pH 7.5 

 150 mM NaCl 

 2 mM CaCl2 

 10 mM N-ethyl maleimide (NEM) 

 1:20 dilution of Protease Inhibitor Cocktail 
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Cell Culture 

HeLa cells were grown in DMEM media supplemented with 10% fetal bovine serum 

(FBS) and 1% antibiotic-antimycotic at 37°C and 5% CO2 unless otherwise indicated. 

Detection of Cytosolic CTA1    

HeLa cells were seeded in triplicate to 6-well plates in complete DMEM medium to 

achieve an 80% confluent monolayer after an overnight incubation. Cells were incubated in 

serum free DMEM containing 100 ng/mL of ganglioside GM1 for 1 h at 37°C. GM1 receptor is 

added to the medium because HeLa cells do not normally express this receptor but will 

incorporate it from the medium into the plasma membrane. After washing with phosphate 

buffered saline (PBS) to remove excess GM1, the cells were subsequently incubated for 30 min 

at 4°C with DMEM containing 1 µg/ml of CT. After this incubation, the cells were washed twice 

with PBS to remove unbound CT.  At this point, surface bound CT can be determined via 

digitonin permeabilization and SPR analysis (as described below) of the pellet fraction 

containing surface bound CT.  The washed cells were placed in toxin-free/serum-free media and 

returned to 37°C for various time points and treatments as indicated. Only when the plates are 

moved to the 37°C incubator is the toxin internalized; at this stage the chase interval begins.  

After washing with PBS at the end of each chase point, digitonin permeabilization was 

performed to separate cytosolic and outermembrane fractions to be used to analyze the cytosolic 

content of CTA1 by SPR. This process was begun at the end of each chase interval as well as at 

the end of the 4°C pulse labeling by lifting cells from the 6-well plate using a 5 minute 4°C 

incubation with 400 µl of 0.5 mM ethylenediaminetetraacetic acid (EDTA) in PBS. Triplicate 

wells were collected into a single microcentrifuge tube and spun at 5,000× g for 5 min. The 
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supernatant was discarded and the cell pellet was incubated on ice for 10 minutes. The cell pellet 

was subsequently resuspended in 100 μl of 0.04% digitonin in HCN buffer (50 mM HEPES, pH 

7.5, 150 mM NaCl, 2 mM CaCl2, 10 mM N-ethylmaleimide, and a protease inhibitor cocktail) 

for 10 minutes at again on ice.  The digitonin-permeabilized cells were then spun at 16,000 × g 

for 10 min at room temperature, after which the supernatant (i.e., cytosolic fraction) was 

collected and placed in a fresh microcentrifuge tube for SPR analysis. The membrane pellet was 

collected from the pulse sample to determine total CTA1. Well specific cell counts were 

recorded for each experiment with the use of a hemocytometer.  

SPR Analysis 

Experiments were performed with a Reichert (Depew, NY) SR7000 surface plasmon 

resonance (SPR) refractometer.  The flow rate for all steps was 41 μl/min. For experiments 

involving antibody-coated plates, an EDC-NHS activation buffer with 0.08 mg/ml of 1-ethyl-3-

[3-dimethylaminopropyl]carbodiimide hydrochloride (EDC) and 0.02 mg/ml of N-

hydroxysuccinimide (NHS) mixed in a 1:1 ratio was perfused over a Reichert gold-plated glass 

slide for 5 min. A 5 min wash with 10 mM PBS containing 0.05% Tween 20 (PBST) pH 7.4 was 

used to remove the activation buffer, after which an monoclonal anti-CTA1 antibody at 1:2000 

dilution in 20 mM sodium acetate, (pH 5.2) was perfused over the slide for 5 min. Unbound 

antibody was removed with a 5 min PBST wash, and the remaining active groups on the sensor 

slide were deactivated with a 5 min exposure to 1 M ethanolamine (pH 8.5). PBST was perfused 

over the slide for 5 to 10 min to establish a stable baseline signal corresponding to the mass of 

the sensor-bound antibody. Supernatant samples from the digitonin-permeabilized cells were 

brought to a final volume of 1 ml in PBST pH 7.4, and pellet samples were brought to final 
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volume of 1ml in PBST containing 1% Triton X-100. These samples were then perfused over the 

sensor slide coated with an anti-CTA1 antibody. To establish a standard curve CTA standards 

were diluted in PBST pH 7.4 to appropriate concentrations (500, 100, 10, 1, 0.1, 0.01, 0.001 

ng/ml) and flowed over the CTA1 sensor slide for 5 min each, followed by a 5-min PBST wash. 

The association rate constants for the CTA standards were plotted as a function of protein 

concentration, and the slope of the resulting standard curve was then used to calculate the 

quantity of CTA1 in experimental samples. Reichert LabView software was used for data 

collection. The BioLogic (Campbell, Australia) Scrubber 2 software and WaveMetrics (Lake 

Oswego, OR) Igor Pro software were used to analyze the data and generate figures. Binding 

affinities between CTA1 and the antibody bound plate were calculated in the Scrubber 2 

software.  

Western Blot   

For Western blot analysis, pellet and supernatant fractions were produced for digitonin-

permeabilized as described above. 120 µl of 1× sample buffer was added to the pellet and 20 µl 

of 4× sample buffer was added to the supernatant. Equivalent 25 ul volumes of each sample were 

resolved by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) with 15% 

polyacrylamide gels and transferred to polyvinylidene difluoride (PVDF) membrane. The rabbit  

anti-Hsp90 antibody was used at a 1:5,000 dilution and the rabbit anti-PDI antibody was used at 

a 1:5,000 dilution for an overnight incubation at 4°C. The secondary horseradish peroxidase-

conjugated goat anti-rabbit IgG antibody was used at a 1:20,000 dilution for a 30 minute room 

temperature incubation. ECL Plus Western blotting detection reagents were used for protein 
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detection according to the manufacturer's instructions. A blot was run to detect the presence of 

the previously mentioned target proteins. 

Toxicity Assay   

HeLa cells as described in the above CT detection assay were also seeded and treated in 

parallel to SPR and were used to detect cytotoxicity as values of cAMP. 6-well plates were 

incubated overnight until 80% confluent. Cells were pretreated with GM1 and exposed to CT as 

described above. At the end of the chase interval, the cells were washed with PBS and incubated 

with 0.5 ml of ice-cold HCl-ethanol (1:100) for 15 min at 4°C. Supernatants were placed in 

microcentrifuge tubes and allowed to air dry. cAMP levels were then determined using an 

ELISA cAMP competition assay kit as per manufacturer instructions. The basal level of cAMP 

from equivalent numbers of unintoxicated cells was also determined. All conditions were 

performed in triplicate. 

Calculation of Cytosolic CTA1 Levels 

To calculate the precise amount of cytosolic CTA1 observed in the cell, CTA standards 

were perfused over each SPR plate used to detect cytosolic CTA1. Using the Ka values from 

these standards in comparison to the Ka values from out experimental samples, we could back-

calculate the amount of CTA1 within the cytosol. With the use of a hemocytometer, cells counts 

from each corresponding experiment were carried out and used to determine the amount of 

CTA1 per cell.  
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CHAPTER THREE: RESULTS 

To determine the efficiency of CTA1 transport to the cytosol, we used digitonin 

permeabilization to collect and SPR to quantify the amount of CTA1 in the cytosol.  

HeLa cells treated with GM1 were exposed to toxin 1 µg/ml of CT at 4°C.Toxin can bind 

to the cell surface at 4°C but is not endocytosed. At this point, the total cell-associated amount of 

CT can be determined via digitonin permeabilization and SPR analysis of the pellet fraction 

containing surface bound CT. For quantification of cytosolic CTA1, cells placed at 37°C for 

various time points with or without drug treatments. Only when the plates are moved to the 37°C 

incubator is the toxin internalized; at this stage the chase interval begins.  After each chase point, 

digitonin permeabilization was performed to separate cytosolic and membrane fractions to be 

used to analyze the cytosolic content of CTA1 by SPR. 0.5 mM ethylenediaminetetraacetic acid 

(EDTA) in PBS was used to collect cells from the plate. The cell pellet was subsequently 

resuspended in 100 μl of 0.04% digitonin in HCN buffer for 10 minutes on ice.  The digitonin-

permeabilized cells were then spun at after which the supernatant (i.e., cytosolic fraction) was 

collected and placed in a fresh microcentrifuge tube for SPR analysis. PBS was used to bring the 

final volume of each cytosolic fraction to 1ml. Cell counts were recorded for each experiment 

with the use of a hemocytometer.  

To verify proper digitonin permeabilization generated clean cytosolic and organelle 

fractions, both supernatant and pellet fractions collected from HeLa cells were run on SDS-

PAGE gels. Western blots against known cytosolic (Hsp90) and ER lumen (PDI) proteins were 

used to confirm the reliability of the fractionation process by determining the distribution of 

these proteins. Due to their known localization, Hsp90 should only be detected within the 

supernatant fraction and PDI within the pellet fraction if fractionation was successful. 
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Supernatant and pellet fractions from two independent experiments were used to demonstrate 

reproducibility. Anti-Hsp90 and anti-PDI blots each detected only a single band at the 

corresponding molecular mass and in the respective supernatant and pellet fraction indicating 

accurate fractionation.  

SPR can be used to detect protein-protein interactions as well as test for the presence of a 

particular protein within a sample. For these experiments, a protein of interest is perfused in 

microliter quantities over a gold and glass sensor slide that is coated with either a second protein 

of interest or an antibody to the first protein. An interaction between the two proteins increases 

the mass on the sensor slide, and this generates a change in the angle of reflected light which is 

recorded as a refractive index unit (RIU) [35].  

Cytosolic fractions from intoxicated cells were run over an anti-CTA1 SPR slide as 

described previously. The cytosolic fractions from unintoxicated and 5ug/ml BFA-treated cells 

were used as negative controls to ensure the fractionation procedure did not rupture the collected 

organelles. BFA causes deregulation of membrane traffic through disassembly of the Golgi 

complex and thus prevents toxin delivery to the ER translocation site. If contamination was 

present, CTA1 would be detected in the cytosolic fraction of the unintoxicated or BFA treated 

cells. However, Figure 2 shows no detection of CTA1 in these control cells. There is also no 

detectable CTA1 within the cytosol of intoxicated cells after 15 minutes of toxin treatment 

indicating that delivery from the cell surface to the cytosol takes a greater period of time to 

occur. CTA1 was clearly seen within the cytosol after a 30 minute intoxication, with increasing 

amounts of toxin appearing in the cytosol at later 60 and 120 minute chase intervals.  CTA1 

standards were also perfused over the anti-CTA1 SPR slide. The Ka values determined for these 

standards were then plotted as a function of protein concentration (Fig 3). The slope of the 
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resulting standard curve was then used to calculate the quantity of CTA1 in experimental 

samples in Table 1. It was determined that after 30, 60 and 120 minutes .07ng, .12ng and .65ng 

of CTA1 is present within the cytosol respectively. Furthermore, hemacytometer counts for each 

experiment documented the number of collected cells and allowed us to determine the average 

number of CTA1 molecules inside the cytoplasm of an individual cell. This was determined to be 

9450, 16136, and 87832 molecules after 30, 60, and 120 minutes of chase respectively. This was 

then compared to the amount of surface bound-CT at the beginning of the experiment and is 

presented as a percentage of the initial cell-associated toxin and determined to be .25%, .43% 

and 2.3% respectively. This work represents both the first direct calculation of toxin levels in the 

cytosol of a host cell as well as the first calculation of efficiency of transport to the cytosol where 

the toxin is active.  
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Figure 1. Proper collection of membrane and cytosolic bound fractions  
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Figure 2. CTA1 is detected within the cytosol at after 30 minutes.  
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Figure 3. Ka’s plotted as a function of protein concentration can be used to determine cytosolic 

CTA1 quantities. 
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Table 1.  Efficiency of toxin delivery to the cytosol 

Chase condition ng cytosolic CTA1 CTA1 molecules per cell % surface-associated CTA1 

30 min 0.07 ± 0.03 9,454  0.25% 

60 min 0.12 ± 0.06 16,137 0.43% 

120 min 0.65 ± 0.16 87,832 2.3% 
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The next step was to correlate the level of toxin in the cytosol with toxin activity by 

examining intracellular cAMP levels in a time-dependent manner. Pulse-chase experiments were 

carried out as described in the aforementioned translocation assay. Pulse sample with no chase 

were used to determine background resting levels of cAMP activity. Intoxicated cells were 

treated with acidic ethanol to lyse the cells. cAMP levels were then determined using an ELISA 

cAMP competition assay kit as per manufacturer instructions (Figure 4). Cells were exposed to 

CT in the absence (circles) or presence (squares) of 3-isobutyl-1-methylxanthine (IBMX), a 

cAMP phosphodiesterase inhibitor that prevents the degradation of cAMP. IBMX- treated cell 

had greater levels of cAMP then untreated cells at 60 and 120 minutes of chase, although there 

was still no response above background at 30 minutes for either untreated or IBMX- treated 

cells. This indicated those host cAMP phosphodiesterases can partially limit the cytopathic effect 

of CT. Results shown in Figure 4 demonstrate a cAMP response is not present at the 30 minute 

chase even though toxin is seen in the cytosol at 30 minutes (Fig 2, Table 1). This result suggests 

the amount of toxin in the cytosol at 30 minutes of chase was not sufficient for a cAMP 

response. We see here the suggestion of a threshold quantity of cytosolic CTA1 may be required 

to elicit a toxic effect.            
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Figure 4. Toxin activity lags behind toxin appearance in the cytosol 
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This delay between CTA1 appearance in the cytosol and CTA1 activity in the cytosol 

could reflect a kinetic requirement for cytosolic CTA1 to reach and activate its Gsα target. To 

examine this possibility, we repeated our pulse-chase translocation assay with drug-treated cells. 

.1uM GA and .1mM PBA were used to restrict CTA1 access to the cytosol by disrupting the ER-

to-cytosol export of CTA1. GA inhibits the Hsp90-driven extraction of CTA1 from the ER, 

while PBA prevents the unfolding of CTA1 to a translocation-competent state, while neither 

drug inhibits toxin transport to the ER. Figure 5 and 6 show PBA and GA treatment are sufficient 

to inhibit toxin entry to the cytosol after 60 and 120 minutes respectively. Both GA and PBA are 

in parallel able to reduce cAMP levels in intoxicated cells even after 60 and greatly after 120 

minutes.  PBA and GA were then used in combination and indicate co-treatment also inhibits 

toxin entry to the cytosol in Figure 8.  The addition of a 100uM ALLN, a known proteasome 

inhibitor, was then used to determine the proteasomes role in intoxication. ALLN increases 

CTA1 presence in the cytosol and thus plays a role in clearing the toxin from the cytosol. A 

combination of GA and PBA reduces cAMP levels while the addition of a proteasome inhibitor 

increases this level in intoxicated cells in Figure 9. The differing quantities and resulting cAMP 

activity are then used to hone in on the threshold quantity of toxin required to elicit cytopathic 

activity in the cell. Using these quantities and activity levels it is approximated that quantities 

above .05 ± .02 ng would be sufficient to induce cytopathic activity. 
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Table 2.  A threshold quantity of cytosolic CTA1 is required to generate a cAMP response. 

Chase condition ng cytosolic CTA1 CTA1 molecules per cell cAMP response 

60 min 

     No treatment 0.25 ± 0.18  26,390 + 

     + GA 0.03 ± 0.01 3,673 - 

     + PBA 0.07 ± 0.02 7,652 - 

120 min 

     No treatment 0.63 ± 0.32 66,577 + 

     + ALLN 0.38 ± 0.06 40,198 + 

     + GA 0.02 ± 0.01 2,032 - 

     + PBA 0.04 ± 0.01 4,423 - 

     + GA/PBA 0.02 ± 0.01 2,043 - 

     + GA/PBA & ALLN 0.05 ± 0.02 5,655 + 
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Figure 5. PBA and GA treatment are sufficient to inhibit toxin entry to the cytosol after 60 

minutes.  
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Figure 6. PBA and GA treatment greatly inhibit toxin entry to the cytosol after 120 minutes. 
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Figure 7. Both GA and PBA reduce cAMP levels in intoxicated cells after 60 and 120 minutes.  
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Figure 8. PBA/GA treatment inhibits toxin entry to the cytosol while the addition of a 

proteasome inhibitor increases its presence. 
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Figure 9. A combination of GA and PBA reduces cAMP levels while the addition of a 

proteasome inhibitor increases this level in intoxicated cells.  
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Figure 4 demonstrated that cAMP phosphodiesterases could limit the cAMP response to 

CT.  We examined whether host proteasome function could also limit the cAMP response to CT. 

After 30 minutes of chase in our pulse-chase translocation assay, we prevented additional CTA1 

from reaching the cytosol using 10% glycerol (Figure 10). This chemical chaperone prevents the 

unfolding and ER-to-cytosol translocation of CTA1. Using this approach, we were able to 

control toxin translocation. We labeled the cell surface with CT and allowed trafficking from the 

cell surface through the cell for 30 minutes before adding glycerol.  Again, ALLN, a proteasome 

inhibitor, was added to a subset of glycerol-treated cells to examine the proteasome’s potential 

role in toxin clearance from the cytosol. The amount of cytosolic toxin in untreated cells was 

determined after 30 and 120 minutes. The amount of cytosolic toxin in glycerol-or 

glycerol/ALLN- treated cells was determined after 120 minutes (drugs were applied 30 minutes 

into chase). Unintoxicated cells and BFA-treated cells were used as negative controls. The 

increase in cytosolic toxin from 30 to 120 minutes is comparable to what we have seen in that 

there is an increasing accumulation of CTA1 in the cytosol over time. Treatment with glycerol 

showed lower amounts of cytosolic toxin from 30 to 120 minutes in comparison to the untreated 

sample at 120 minutes. This difference was due to the block of CTA1 entry to the cytosol. If this 

glycerol induced block was the only factor contributing to toxicity the cytosolic quantity of toxin 

would be steady and equivalent to that seen at 30 minutes, but we observe a loss of signal with 

glycerol treatment.  The loss of signal in these samples is due to toxin clearance by the 

proteasome. This observation is validated by the use of ALLN along with glycerol treatment. 

Glycerol- and ALLN-treated samples contained more cytosolic CTA1 than cells exposed to 

glycerol alone which indicated clearance of cytosolic toxin from glycerol-treated cells was due to 

proteasomal degradation. This again demonstrated proteasomal degradation has the ability to 



36 

limit the accumulation of cytosolic toxin. Proteasomal activity can lower the quantity of CTA1 

when translocation to the cytosol is blocked after exposure. Overall, this suggests that CTA1 

must be continuously delivered to the cytosol to overcome proteasomal degradation.  

Next, we again used toxicity assays to directly correlate the level of cytosolic toxin to the 

extent of intoxication at 120 minutes. Figure 7 shows cells treated with glycerol treatment at 30 

minutes after toxin exposure produced a cAMP response at 120 minutes chase that was barely 

above the basal cAMP level from unintoxicated cells. This non-response corresponded to .01 ng 

CTA1 present in the cytosol (Table 3). A greater quantity of .06 ng of cytosolic toxin was 

obtained from cells exposed to both glycerol and ALLN, which resulted in a strong cAMP 

response and is constant with the results seen with the cellular quantity derived from the previous 

data (Figure 11).  However, less CTA1 was in the cytosol of glycerol/ALLN-treated cells at 120 

minutes of total chase than was present in the cytosol of untreated cells at 30 minutes post-

intoxication (Table 3).  The lack of cAMP response after 30 minutes of chase thus indicated 

there is a kinetic barrier, as well as a threshold requirement, for productive intoxication.  

The need to reach a threshold quantity of cytosolic toxin for a cAMP response implied 

that intoxication could be reversed if the level of cytosolic toxin dropped below the threshold 

quantity. Our data further indicated the cytosolic toxin can be removed by proteasomal activity.  
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Table 3.  Glycerol prevents further CTA1 translocation and proteasomal activity removes CTA1 

from the cytosol. 

Chase condition ng cytosolic CTA1 CTA1 molecules per cell cAMP response 

30 min    

     No treatment 0.02 ± 0.005 2,103 - 

120 min    

     No treatment 0.66 ± 0.19 93,249 + 

     + glycerol after 30 min 0.01 ± 0.006 1,683 - 

     + glycerol & ALLN after 30 min 0.056 ± 0.03 7,899 + 
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Figure 10. Glycerol prevents further translocation of CTA1 to the cytosol. 
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Figure 11. Glycerol prevents cAMP activation. 
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 We have now established that a threshold quantity of cytosolic toxin must be reached in 

order to elicit a cytopathic effect, and CTA1 must be continually delivered to the cytosol in order 

to overcome the constant proteasome-mediated clearance of cytosolic toxin.  We also have 

established the use of multiple drugs to block this delivery of CTA1 to the cytosol. We next 

looked into the possibility of recovery with the idea that post-exposure inhibition of toxin 

translocation could reverse the effects of intoxication. If a there is a threshold of CTA1 required 

to be present in the cytosol of a cell, there is the possibility of blocking translocation, after CTA1 

has entered the cytosol and cAMP response to the intoxication has begun, allowing the cell to 

degrade the toxin already present and reverse the response initiated by that quantity of toxin. 

Table 4 shows data of a lengthier intoxication with and without treatment of glycerol after 1 hour 

of intoxication for an additional 2, 4, or 8 hours at 37°C.  The quantity of cytosolic CTA1 and 

the levels of intracellular cAMP were recorded at each chase interval.  Glycerol-treated cells 

contained less cytosolic CTA1 at 3, 5, and 9 hours of chase than untreated cells at the time of 

drug treatment.  
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Table 4.  A post-exposure block of toxin translocation results in the time-dependent clearance of 

CTA1 from the cytosol. 

Chase condition ng cytosolic CTA1 CTA1 molecules per cell 

No treatment   

     1 hr 0.05 ± 0.01 7,164 

     3 hr 0.39 ± 0.17 60,110 

     5 hr 7.6 ± 3.8 1,169,661 

     9 hr 102 ± 27 15,712,156 

+ glycerol after 1 hr   

     3 hr 0.02 ± 0.007 3,264 

     5 hr 0.04 ± 0.02 6,602 

     9 hr 0.06 ± 0.03 9,390 
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CHAPTER FOUR: DISCUSSION 

We have shown a correlation between cytosolic CTA1 quantity and toxin activity through 

breakthrough research techniques. The ability to determine the quantity of cytosolic CTA1 with 

the use of SPR and cytosolic CTA1 activity through the use of direct cAMP measurements 

makes this research pivotal to the future development of toxin research and post-exposure toxin 

therapeutics. We have for the first time directly calculated toxin levels in the cytosol of a host 

cell and the cellular response it elicits. This data supports the idea that there is a minimal quantity 

of CTA1 that must persist in the cytosol to induce the cAMP response and resulting toxicity to 

the cell. We have determined the threshold quantity of cytosolic CTA1 is required to elicit a 

toxic effect is.05ng. A kinetic requirement of greater than 30 minutes of toxin exposure also 

appears necessary for active intoxication.  

CTA1 must be continually delivered from the cell surface to the cytosol in order to 

overcome the constant proteasome-mediated clearance of cytosolic toxin, and we believe this is 

direct evidence of the presence of this threshold requirement. A threshold model is contrary to 

the current idea that only one molecule of cytosolic toxin is required to affect host cells 

irreversibly. Using various drug treatments that block CTA1 translocation to the cytosol, we 

have documented a decrease in the amount of CTA1 that was in the cytosol prior to drug 

treatment due to degradation of CTA1 by the proteasome. Thus, proteasomal activity could 

lower the quantity of cytosolic CTA1 below the threshold when translocation to the cytosol is 

blocked even after toxin exposure. By blocking ER to cytosol translocation the cell is able to 

reduce toxin levels in the cytosol below the required threshold quantity.  Treatment with glycerol 

at 1 hour post exposure and carried out to chase intervals outward to 9 hours support this 

possibility.  
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We have also shown decreased toxin activity with drug treatment that we attribute to 

regulatory factors native to the cell reducing and reversing toxin activity. This would refute the 

idea that only one molecule of cytosolic toxin is sufficient to generate a toxic effect.  ADP-

ribosylation of G proteins as well as cAMP levels are regulated events that can be reversed by 

cellular mechanisms. This implies it is possible to reverse these effects of intoxication and fully 

recover from intoxication. When CTA1 passage from the ER to the cytosol was blocked after 

exposure to the toxin, proteasomal activity lowered the amount of toxin already in the cytosol 

below the threshold quantity. This post-exposure block of toxin translocation will both allow the 

intoxicated cell to clear the cytosol of toxin and reverse the effects of intoxication. 

Glycerol does not represent an administrable drug but is used for proof-of-principal. 

However, PBA is an FDA-approved drug used for disorders involving the urea cycle. GA is 

being used in clinical trials against cancer. PBA and GA block by different mechanisms. Due to 

the fact that they act on different sites of intoxication, we can use them together for an additive 

effect of preventing intoxication. In future work we will establish the therapeutic utility of these 

drugs using Caco-2 cells, a polarized intestinal epithelial cell line. We also will be adding much 

longer chase times, carried out to 48 hours, in efforts to monitor intoxication and the reversal of 

intoxication over the life-span of an intestinal epithelial cell in vivo.  We will also establish the 

minimal effective dose of these drugs as they are a novel use for both PBA and GA. CTA1 

translocation has not been previously targeted as a method for intoxication treatment or reversal, 

but our results indicate it to be a promising target.  

We believe with this data we have shown cholera is a reversible process that could be 

treated after the onset of symptoms. The research of cholera specific entry will bring more light 

to research of AB toxins as a whole. There are many AB toxins such as diphtheria, pertussis, and 
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shiga toxin that cause a variety of life threatening diseases and have similarities amongst their 

cellular mechanisms. CT is secreted into the intestinal lumen, but moves in a retrograde manner 

through the vesicles of the cell to act within the cytosol of host cells, a common trend among AB 

toxins., Ricin, shiga toxin, pertussis toxin, and Escherichia coli type I heat-labile enterotoxin also 

move in this retrograde fashion from the cell surface and exploit ERAD to gain entry to the 

cytosol where there A subunits are functional. This makes research on cholera especially 

significant and relevant as a model for other AB toxin research and treatment. The threshold and 

reversible nature of CT intoxication may be present for other toxins. Research of cholera specific 

entry will bring more light to research of related toxin-mediated diseases as a whole. 

CTA hijacks the normal cellular mechanism of ERAD, a quality control system in place 

to rid the cell of misfolded proteins. It is understood that using these drugs to inhibit ERAD in 

order to prevent CTA1’s export to the cytosol may also interfere with the cell’s necessity to 

export misfolded proteins for degradation. This may lead to cell toxicity directly. However 

Hsp90 and PBA are already administered therapeutics with low toxicity during the required short 

term treatment. Both drugs are also effective at relatively lower concentrations then what is 

normally used. The localized delivery of therapeutics directly to the intestine that does not 

require a systemic administration also aids in reducing side effects.  In future work we hope to 

see over the longer time course of drug treatment, once cells have shown recovery from 

intoxication, no adverse side effects. The cells may be able to cope with certain steps in the 

ERAD system being suspended for certain periods of time. These experiments will be carried out 

once again in CaCo2 cells, a polarized epithelial cell line, to show the clinical relevance in a 

more cholera intoxication-specific cell type. 
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These experiments have stringently established a method for cholera toxin research. We 

have for the first time determined and precisely quantified the threshold quantity of cytosolic 

toxin that must be reached in order to elicit a cytopathic effect. Furthermore, the cytosolic pool 

of toxin must be maintained at this level for active intoxication. With this data we intend to 

further our understanding of cholera toxin’s mechanism within the human body and be able to 

continue with more educated drug discovery concerning how cholera intoxication can be treated 

and reversed once a person is intoxicated. Our research suggests it is possible to both treat and 

reverse the effects of cholera even after the onset of disease, which opens the door to new 

therapeutic strategies.  
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