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ABSTRACT 
 

Mitochondria play important roles in neuronal function and survival, including ATP 

production, Ca2+ buffering, and apoptosis. Mitochondrial dysfunction is a common event in the 

pathogenesis of neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS) and 

Huntington's disease (HD); however, what causes the mitochondrial dysfunction remains 

unclear. Mitochondrial fission is mediated by dynamin-related protein 1 (DRP1) and fusion by 

mitofusin 1/2 (MFN1/2) and optic atrophy 1 (OPA1), which are essential for mitochondrial 

function. Mutations in the mitochondrial fission and fusion machinery lead to 

neurodegeneration. Thus, whether defective mitochondrial dynamics participates in ALS and 

HD requires further investigation. 

ALS is a fatal neurodegenerative disease characterized by upper and lower motor 

neuron loss. Mutations in Cu/Zn superoxide dismutase (SOD1) cause the most common familiar 

form of ALS by mechanisms not fully understood. Here, a new motor neuron-astrocyte co-

culture system was created and live-cell imaging was used to evaluate mitochondrial dynamics.  

Excessive mitochondrial fission was observed in mutant SOD1G93A motor neurons, correlating 

with impaired axonal transport and neuronal cell death. Inhibition of mitochondrial fission 

restored mitochondrial dynamics and protected neurons against SOD1G93A-induced 

mitochondrial fragmentation and neuronal cell death, implicating defects in mitochondrial 

dynamics in ALS pathogenesis. 
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HD is an inherited neurodegenerative disorder caused by glutamine (Q) expansion in the 

polyQ region of the huntingtin (HTT) protein. In the current work, mutant HTT caused 

mitochondrial fragmentation in a polyQ-dependent manner in both primary cortical neurons 

and fibroblasts from human patients. An abnormal interaction between DRP1 and HTT was 

observed in mutant HTT mice and inhibition of mitochondrial fission or promotion of 

mitochondrial fusion restored mitochondrial dynamics and protected neurons against mutant 

HTT-induced cell death. Thus, mutant HTT may increase mitochondrial fission by elevating DRP1 

GTPase activity, suggesting that mitochondrial dynamics plays a causal role in HD. 

In summary, rebalanced mitochondrial fission and fusion rescues neuronal cell death in 

ALS and HD, suggesting that mitochondrial dynamics could be the molecular mechanism 

underlying these diseases. Furthermore, DRP1 might be a therapeutic target to delay or prevent 

neurodegeneration. 
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CHAPTER ONE: GENERAL REVIEW 
 

1.1 Overview of Neurodegeneration 
 

Neurodegeneration describes the progressive loss of neuronal structure or function, 

including neuronal cell death.  Millions of people worldwide currently suffer from 

neurodegenerative diseases including Alzheimer's disease (AD), Parkinson's disease (PD), 

Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS).  

The greatest risk factor of neurodegenerative diseases is thought to be aging because 

these diseases are late-onset in most cases. Although the causes of neurodegenerative diseases 

are different, the intracellular mechanisms are strikingly similar. First, protein aggregation, such 

as amyloid plaques in AD, Lewy bodies in PD, mutant huntingtin (HTT) aggregation in HD, and 

mutant Cu/Zn superoxide dismutase (SOD1) aggregation in ALS (Selkoe, 2003), is associated 

with disease progression.  The aggregates are believed to block the ubiquitin-proteasome or 

macroautophagy pathways and may be involved in the pathology of the neurodegenerative 

diseases. Second, oxidative stress, as a contributor to aging, is a common phenomenon in 

neurodegenerative disorders (Lin and Beal, 2006). Oxidation of proteins, DNA, and lipids leads 

to cellular malfunction. Furthermore, increased intracellular levels of reactive oxygen species 

(ROS) up-regulate pro-apoptotic proteins, including BAX (Bcl2-associated protein X) and PUMA 

(P53 up-regulated modulator of apoptosis), which leads to apoptosis. Third, mitochondrial 

dysfunction is an early event during disease progression and is known to play a key role in 

neurodegeneration (Knott et al., 2008). Mitochondria-mediated ATP production (see 1.2.3.2) 
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and Ca2+ buffering (see 1.2.3.3) are crucial for neuronal function and survival (see detailed 

discussion later).  

Although the impaired intracellular signaling pathways appear similar among different 

neurodegenerative diseases, it is important to identify how a single gene mutation interferes 

with signaling pathways and contributes to neuronal dysfunction and cell death. Furthermore, 

the specificity of the affected cell type during neurodegeneration is also a mystery worthy of 

investigation. 

 

 

1.2 Mitochondrial Structure and Function 
 

1.2.1 Mitochondrial structure 

Mitochondria are double-membrane-bound organelles with diameters of about 0.5 µm 

and lengths of 1–10 µm located within the cytoplasm of most eukaryotic cells (Detmer and 

Chan, 2007). The two membranes are composed of phospholipid bilayers and different 

proteins, which divide a single mitochondrion into four distinct compartments (Figure 1).  
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Figure 1 Structure model of a single mitochondrion. 
 

 

 

1) Protein import machineries, such as Tom 20, and mitochondrial permeability 

transition pore components, such as voltage-dependent anion channel (VDAC), are located on 

the OMM. Proteins involved in important mitochondrial functions are also found on the outer 

mitochondrial membrane (OMM). For example, the mitochondrial fission and fusion proteins, 

such as dynamin related protein 1 (DRP1), mitochondrial fission 1 protein (FIS1), mitofusin1/2 
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(MFN1/2), and proteins involved in apoptosis, including BAX and B-cell lymphoma 2 (BCL2) are 

all located on the OMM.  

2) The intermembrane space (IMS) is the area between the OMM and the inner 

mitochondrial membrane (IMM). One important function of the IMS is to provide the ions, ADP, 

and electrochemical proton gradient required for mitochondrial oxidative phosphorylation 

(OXPHOS) through the electron transport chain (ETC).  

3) The IMM is more complex in structure than the OMM. The IMM is only permeable to 

oxygen, carbon dioxide, and water. The OXPHOS complexes, located within the IMM, pump H+ 

ions from the matrix into the IMS to generate a proton gradient, with the resulting flow of ions 

returning to the matrix and driving ATP production by ATP synthase.  In addition, the 

mitochondrial fusion protein optic atrophy 1 (OPA1) and the protein import machinery Tim 

complex are also located in the IMM.  

Cristae is the term for inner mitochondrial membrane folds, which are thought to 

expand IMM surface area and enhance mitochondrial OXPHOS. It is also worth noting that 

cytochrome c is usually sequestered here. The release of cytochrome c into the cytoplasm is an 

early signal of apoptosis.  

4) The matrix is the space within the IMM that is important for OXPHOS. In addition, the 

matrix contains mitochondrial ribosomes, tRNA, and mitochondrial DNA (mtDNA). It should be 

noted that mtDNA encodes 13 peptides, all of which are components of the electron transport 

chain. Thus, mtDNA is very important for mitochondrial function. 

 



5 
 

1.2.2 Mitochondrial dynamics 

Historically, mitochondria were thought to be immobile inside cells; in fact, 

mitochondria have been shown to be highly dynamic organelles (Bereiter-Hahn and Voth, 1994; 

Chan, 2006; Nunnari et al., 1997). Mitochondria can divide by fission, fuse by fusion, move 

along microtubules, and turn-over by mitophagy. Mitochondrial movement is "saltatory"―stop 

and go―in response to intracellular energy demands. 

 

1.2.2.1 Mitochondrial fission 

Mitochondrial fission is mediated by a large GTPase, DRP1, in mammals (Dnm1 in yeast). 

DRP1 is primarily located in the cytoplasm, and its recruitment to the OMM is required for 

mitochondrial fission (Bleazard et al., 1999; Smirnova et al., 2001). DRP1 is composed of four 

domains: an N-terminal GTPase domain, a middle and a B domain in the central region, and a C-

terminal GTP effector domain (GED) (Figure 2). The GTPase domain is highly conserved through 

yeast to mammals, suggesting its function is important. Purified Dmn1 forms helical rings and 

spirals in vitro, which is consistent with the function of its related protein, dynamin, in 

endocytosis (Ingerman et al., 2005). Accumulated Dnm1 oligomers form a highly ordered ring 

structure around mitochondria. Interruption of GTP binding prevents spiral formation and 

mitochondrial fission, suggesting that GTP binding is required for Dmn1 assemblage. Hydrolysis 

of GTP to GDP results in disassembly of Dnm1 oligomers and mitochondrial fission (Smirnova et 

al., 2001).   
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Figure 2 Illustration of DRP1-mediated mitochondrial fission.  
 

A) Domain model of DRP1 (accession number: NP_036192). B) Scheme of mitochondrial fission 
mediated by DRP1. In the presence of GTP, DRP1 oligomerizes and forms a ring structure 
around the mitochondrion. Mitochondrial fission occurs when GTP hydrolyzes to GDP, and then 
the DRP1 oligomer disassembles. Depolarized mitochondria are further degraded by 
mitophagy. 
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In yeast, Dnm1 translocates from the cytoplasm to mitochondria through an indirect 

interaction with an OMM protein, Fis1, via one of two molecular adaptors, Mdv1 or Caf4 

(Cerveny and Jensen, 2003; Griffin et al., 2005; Naylor et al., 2006). However, no mammalian 

homologs of Mdv1 or Caf4 have been identified to date. In addition, FIS1 in mammals seems to 

play a different role during mitochondrial fission. Knockdown of hFIS1 blocks mitochondrial 

fission, but does not prevent DRP1 recruitment to the OMM (Lee et al., 2004). Therefore, hFIS1 

is not required for DRP1 translocation to mitochondria in mammals. On the other hand, 

knockdown of hFis1 inhibits mitochondrial fission, suggesting that hFis1 is down-regulated by 

DRP1. A recent study identified a new OMM protein, Mff, which is involved in mitochondrial 

fission (Gandre-Babbe and van der Bliek, 2008). However, Mff and hFis1 reside in different 

complexes, suggesting independent machineries for mitochondrial fission.  

Recent studies have revealed that DRP1 GTPase activity can be regulated by post-

translational modifications, including phosphorylation, SUMOylation, and ubiquitylation. 

Protein kinase A (PKA) phosphorylates DRP1 at S637, causing a decrease in GTPase activity and 

inhibition of mitochondrial fission (Chang and Blackstone, 2007; Cribbs and Strack, 2007). 

However, cyclin-dependent kinase 1 (CDK1)/cyclin B phosphorylation of DRP1 stimulates DRP1 

activity and mitochondrial fission (Kashatus et al., 2011; Taguchi et al., 2007). Thus, it seems 

that DRP1-mediated mitochondrial fission is involved in different cell signaling pathways. DRP1 

has also been shown to be SUMOylated by small ubiquitin-related modifier 1 (SUMO1), 

promoting mitochondrial fission by protecting DRP1 against degradation (Harder et al., 2004; 

Wasiak et al., 2007). Furthermore, membrane-associated RING-CHV (MARCH 5) ubiquitinates 
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DRP1 and promotes mitochondrial fission (Karbowski et al., 2007), although the mechanism of 

how MARCH5 influences mitochondrial morphology remains unclear. 

In sum, DRP1 is required for mitochondrial fission, which can be regulated directly 

through post-translational modification of DRP1 and probably also through its interaction with 

other proteins. 

 

1.2.2.2 Mitochondrial fusion 

Mitochondrial fusion involves two steps: OMM fusion and IMM fusion.  

1) In mammals, OMM fusion is mediated by two large transmembrane GTPases, MFN1 

and MFN2 (only one protein, Foz1, in yeast), located at the OMM (Chen et al., 2003). The N-

terminal GTPase domains and C-terminal coiled-coil structure are highly conserved in MFNs 

throughout evolution (Figure 3). Mutations in either of these two domains in Foz1 inhibit 

mitochondrial fusion in yeast (Griffin and Chan, 2006). MFN1 and 2 are required to form both 

homo-oligomeric and hetero-oligomeric complexes between opposing mitochondria during 

OMM fusion (Chen et al., 2003; Koshiba et al., 2004; Meeusen et al., 2004). In addition, both 

mammalian MFN1 and the bacterial form, BDLP, have been shown to form an anti-parallel 

coiled coil, promoting membrane tethering and fusion (Koshiba et al., 2004; Low and Lowe, 

2006). 

2) In yeast, IMM fusion is mediated by Mgm1 (Meeusen et al., 2006). The mammalian 

homolog, OPA1, is also essential for IMM fusion, with its localization in the IMS and association 
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with the IMM (Chen et al., 2005b; Cipolat et al., 2004). Compared to DRP1 and MFNs, both 

Mgm1 and OPA1 contain a N-terminal mitochondrial targeting sequence that mediates 

mitochondrial import (Figure 3). A transmembrane domain is adjacent to the mitochondrial 

targeting sequence, which anchors Mgm1 and OPA1 to the IMM. Mgm1 and OPA1 also contain 

GTPase and GED domains, similar to DRP1. It has been revealed that Mgm1 interacts with itself 

to tether the IMM and mediate mitochondrial fusion (Meeusen et al., 2006). In addition, both 

Mgm1 and OPA1 have been shown to have different isoforms (Delettre et al., 2001; Sesaki et 

al., 2003). Both long-isoform and short-isoform proteins are important for mitochondrial fusion 

(Hoppins et al., 2007). 

 



10 
 

 

 

Figure 3 MFNs and OPA1 mediate mitochondrial fusion. Domain models of MFN2 
(accession number: NP_001121132) and OPA1 (accession number: NP_056375). 
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1.2.2.3 Mitochondrial transport 

In addition to fission and fusion, mitochondria also move along microtubules and 

myosins in cells. Microtubule-based mitochondrial transport is responsible for long-distance 

and fast transport, while actin-based transport is used for short-range and slow movement 

(Ligon and Steward, 2000).  

Myosin-mediated mitochondrial transport along myosins occurs only in areas devoid of 

microtubules (Ligon and Steward, 2000). In mammalian cells, mitochondrial transport mainly 

relies on microtubules (Hollenbeck and Saxton, 2005). Microtubules are organized with their 

plus (+) end towards the periphery of the cell (nerve terminals of the neuron) and minus (-) end 

towards the nucleus. Anterograde transport is a term that describes movement towards the 

plus (+) end of the microtubule, while movement in the other direction is known as retrograde 

transport (Figure 4).  
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Figure 4 Model of mitochondrial transport machinery. 
 

 

 

Recent studies have revealed that Kinesin family and Dynein/Dynactin complexes are 

involved in mitochondrial anterograde and retrograde transport, respectively (Hollenbeck and 

Saxton, 2005). Three Kinesin-1 family members have been found to be associated with 

mitochondria, including Kinesin superfamily protein 1B (KIF1B), KIF5B, and Kinesin light chain 3 

(KLC3) (Nangaku et al., 1994; Tanaka et al., 1998; Zhang et al., 2004). Silencing Kinesin heavy 

chain KIF5B results in inhibition of mitochondrial transport in mouse neurons (Tanaka et al., 

1998). Kinesin activity has been found to be regulated by phosphorylation at KLC (De Vos et al., 

2000; Lee and Hollenbeck, 1995). The p38-dependent phosphorylation of KLC by glycogen 
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synthase kinase 3  (GSK3 ) releases Kinesin-1 from its cargo and thus inhibits its activity (De 

Vos et al., 2000). In addition, GSK3  can also be regulated by phosphorylation through the AKT 

pathway, suggesting that mitochondrial anterograde transport occurs in response to cellular 

signaling (Jope and Johnson, 2004). Furthermore, mutations in Kinesin-1 inhibit both 

anterograde and retrograde transport in Drosophila motor neurons, suggesting the existence of 

an interaction between Kinesin-1 and Dynein (Pilling et al., 2006). 

Two cargo adaptor proteins, Miro-1 and Milton, both of which are required for 

anterograde mitochondrial transport in neurons, have been identified as the link between 

mitochondria and Kinesin-1, (Guo et al., 2005; Stowers et al., 2002). Mitochondrial rho-like 

GTPase, Miro-1, is thought to be anchored on the OMM by its C-terminal transmembrane 

domain (Guo et al., 2005). Miro-1 also contains a GTPase domain and a Ca2+ binding EF-hand 

domain, indicating that Miro-1 might function in regulation of mitochondrial transport and Ca2+ 

sensing (Glater et al., 2006). Mutations in either domain result in abnormal mitochondrial 

distribution, indicating the importance of both domains in regulating mitochondrial transport 

(Fransson et al., 2006). Milton acts as an adaptor protein that mediates binding of Miro-1 to 

Kinesin-1 heavy chain (Glater et al., 2006). However, a recent study indicated that Miro-1 

directly interacts with Kinesin-1 in response to intracellular Ca2+, preventing Kinesin from 

attaching to microtubules (Wang and Schwarz, 2009). Because Ca2+ acts as an important 

signaling molecule, Ca2+-mediated regulation of mitochondrial transport is implicated in 

multiple biological functions. 
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Dynein/Dynactin complexes mediate retrograde mitochondrial transport and there is an 

interesting link between Dynein and DRP1 (Varadi et al., 2004). Varadi et al found that Dynein 

recruits DRP1 to the OMM during mitochondrial retrograde transport. Dynein dysfunction not 

only causes abnormal subcellular distribution of mitochondria, but also results in elongated 

mitochondrial morphology. Thus, mitochondrial morphology and transport are tightly regulated 

by each other.  

There is also a "brake" in the regulation mechanism of mitochondrial transport. 

Syntaphilin (SNPH), an OMM protein, controls docking of mitochondria (Kang et al., 2008). 

SNPH deletion results in abnormal mitochondrial positioning and cellular dysfunction. 

 

1.2.2.4 Mitophagy 

Mitophagy is a type of autophagy that involves selective degradation of mitochondria. 

Recently, mitophagy has been found to selectively degrade defective mitochondria (Kim et al., 

2007b). Mitochondrial fission can yield two uneven daughter mitochondria, with one 

depolarized and one hyper-polarized (Figure 2). The depolarized daughter mitochondrion fails 

to fuse and is eventually degraded by autophagocytosis which appears to be a mitochondrial 

quality control mechanism (Twig et al., 2008). Although mitochondrial fission is required for 

mitophagy, it is not sufficient for induction of mitophagy. 
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1.2.3 Biological functions and dynamics of mitochondria 

Mitochondria play key roles in multiple cellular events, including ATP production, Ca2+ 

buffering, and apoptosis. Normal mitochondrial dynamics, acting in a housekeeping role, are 

required to maintain these functions. 

 

1.2.3.1 Role of fission and fusion in mitochondrial maintenance 

As mentioned above, mitochondrial fission can result in two uneven daughter 

mitochondria (Barsoum et al., 2006), and the depolarized one is further recycled by mitophagy 

(Twig et al., 2008). Such a process is important for mitochondrial quality control and 

maintenance of a healthy mitochondrial population. 

Mitochondrial fusion is also essential for maintenance of mitochondrial functions. 

Mitochondrial fusion mediates the exchange of mitochondrial contents, including proteins, 

lipids, and mtDNA. Sometimes, non-functional mitochondria are formed due to the loss of 

essential components resulting from no fusion. Thus, content exchange through mitochondrial 

fusion is the most efficient way to restore mitochondrial components and functions.  

In the same vein, mitochondrial DNA is a key factor in mitochondrial function. As 

described before, mtDNA encodes essential subunits of OXPHOS complexes, which are required 

for maintenance of mitochondrial membrane potential and ATP production (see below). 

Inhibition of mitochondrial fusion increases the mitochondrial population without mtDNA, 

which in turn leads to mitochondrial dysfunction (Chen et al., 2007a).  
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In sum, mitochondrial fission, fusion, and mitophagy are involved in mitochondrial 

quality control. Mitochondrial transport distributes mitochondria in response to cellular 

demands. The dynamics of mitochondria support their maximum functioning in cells. 

 

1.2.3.2 ATP production 

One of the major roles of mitochondria is ATP production through oxidative 

phosphorylation driven by oxidation of pyruvate and nicotinamide adenine dinucleotide 

(NADH). There are four complexes that span the IMM, called Complex I–IV. Electrons flow 

through this ETC, pump H+ ions across the IMM from the matrix to the IMS, and generate an 

electrochemical proton gradient.  The energetically unfavorable generation of ATP is driven by 

protons flowing back from the IMS into the matrix (Wallace and Fan, 2009).  

ATP is the main energy source for most cellular functions and helps drive cellular 

processes, such as 1) synthesis of macromolecules, including DNA, RNA, and proteins; 2) 

synaptic transmission, such as endocytosis and exocytosis; and 3) maintenance of cell 

structures by assembly or disassembly of the cytoskeleton. In addition, ATP is also the source of 

phosphate groups during signaling transduction processes (e.g., phosphorylation) and 

conversion of ATP to cAMP by adenylate cyclase produces a second messenger molecule in 

intracellular signaling. 

Thus, due to the important roles of ATP, its production is fundamental to maintenance 

of normal cellular function. In neurons, the importance of ATP production by mitochondrial 
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oxidative phosphorylation is even more profound, because glycolysis is down-regulated in 

neurons. In addition, neurons have high energy demands, requiring huge amounts of energy to 

deliver vesicles from the cell body to the nerve terminal. It has been reported that 

mitochondria accumulate where neurons need more energy, including synapses, growth cones, 

and nodes of Ranvier. Moreover, ATP-dependent neurotransmission plays a fundamental role 

in neurons, requiring mitochondrial transport to synapses and providing ATP.  

Recent studies have revealed that defects in mitochondrial dynamics lead to 

bioenergetic failure. Either inhibition of fission by blockage of DRP1 activity or inhibition of 

fusion by MFN1/2 knock-out, results in reduced respiratory activity and decreased ATP 

production (Benard et al., 2007; Chen et al., 2005b). Furthermore, inhibition of mitochondrial 

transport to synapses results in spine loss, while stimulation of mitochondria in synapses 

increases spine number (Verstreken et al., 2005). Although the mechanism of this relationship 

remains unclear, mitochondrial dynamics and the bioenergetic functions of mitochondria, 

which are essential to neuronal function, are tightly linked.  

 

1.2.3.3 Ca2+ homeostasis 

Ca2+ is the most abundant ion in the human body and plays an essential role in signal 

transduction, muscle contraction, neuronal transmission, cell growth, and synaptic plasticity. 

The concentration of Ca2+ is usually in the range of 10–100 nM. Mitochondria and endoplasmic 

reticulum (ER) are the main sites for storage of excess cytoplasmic Ca2+ and the main sources of 
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Ca2+ release in response to stimuli. Dysregulation of intracellular Ca2+ levels leads to cellular 

malfunction and even cell death (see further discussion in Section 1.2.3.4). 

Mitochondria-mediated Ca2+ uptake relies on membrane potential. Failure of 

mitochondrial fission and fusion disrupts membrane potential and results in more depolarized 

mitochondria. In addition, Ca2+ directs mitochondrial transport in order to buffer the 

concentrated Ca2+ (Glater et al., 2006). Therefore, mitochondrial dynamics is required for 

maintenance of Ca2+ homeostasis.  

Ca2+ buffering capacity is one of the important functions of mitochondria and is also 

regulated by mitochondrial dynamics. 

 

1.2.3.4 Apoptosis 

Mitochondrial permeability transition pore (MPTP) opening is the first sign of apoptosis, 

which leads to release of pro-apoptotic proteins from the IMS to the cytoplasm, including 

cytochrome c and second mitochondria-derived activator of caspase (SMAC/Diablo). 

Cytochrome c is sequestered inside the cristae by the IMM protein Cardiolipin. In response to 

nitration of Cardiolipin or cristae structure remodeling, cytochrome c is released from crista 

junctions into the cytoplasm, where it interacts with apoptotic protease activating factor 1 

(APAF1) to facilitate apoptosome formation, and in turn activates Caspase-9, which executes 

the apoptotic program (Youle and Karbowski, 2005). 
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Two pro-apoptotic regulators, BAX and Bcl2 homologous killer (BAK), have been shown 

to form foci with DRP1 and MFN2 during apoptosis (Karbowski et al., 2002; Yuan et al., 2007). 

Interestingly, inhibition of DRP1 or use of dominant-negative DRP1K38A, decreases mitochondrial 

fragmentation and blocks or delays cell death in different cell types (Abdelwahid et al., 2007; 

Cribbs and Strack, 2007; Frank et al., 2001; Goyal et al., 2007; Karbowski et al., 2002). Clearly, 

mitochondrial dynamics is involved in the apoptotic pathway.   

 

 

1.3 Defective Mitochondrial Dynamics in Neurodegeneration 
 

As discussed above, mitochondria have several critical functions in cells, particularly 

neurons. Since mitochondrial dynamics are important to the maintenance of mitochondrial 

function, defective mitochondrial dynamics may be responsible for neurodegenerative 

diseases. A number of studies to date have revealed the relationship between mitochondrial 

dynamics and neurodegeneration. 

 

1.3.1 OPA1 and autosomal dominant optic atrophy 

Mutations in OPA1 cause autosomal dominant optic atrophy (ADOA), an optic 

neuropathy characterized by degeneration of retinal ganglion cells (Alexander et al., 2000; 

Delettre et al., 2000). Most OPA1 mutations found in patients occur in the GTPase domain, 

suggesting that defective mitochondrial fusion plays a role in the pathogenesis (Ferre et al., 
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2005). In non-neuronal cells from human patients, fragmented mitochondria have been 

observed. OPA1 mutations are associated with decreased ATP production and reduced mtDNA 

content, suggesting a relationship between defective mitochondrial fusion and mitochondrial 

dysfunction in ADOA (Kim et al., 2005; Lodi et al., 2004). In experimental cells with depleted 

OPA1, fragmented mitochondria, defective respiration, aberrant cristae structure, and 

increased sensitivity to apoptosis have been observed (Chen et al., 2005b; Griparic et al., 2004; 

Naylor et al., 2006; Olichon et al., 2003). Moreover, a heterozygous mouse model with OPA1 

mutations exhibited a similar phenotype as ADOA patients, marked by degeneration of retinal 

ganglion cells (Chung et al., 2006). Interestingly, homozygous mice with OPA1 mutations exhibit 

embryonic lethality, indicating mitochondrial dynamics play a vital role in embryonic 

development (Davies et al., 2007).  

Although the mechanism of how OPA1 mutations lead to ADOA remains unclear, ADOA 

provides a link between mitochondrial dynamics and neurodegeneration. 

 

1.3.2 MFN2 and Charcot-Marie-Tooth Type 2A 

Charcot-Marie-Tooth Type 2A (CMT-2A) is a neurodegenerative disease characterized by 

peripheral neuropathy. More than 40 mutations in MFN2 that cause CMT-2A have been 

identified, most of which occur in or near the GTPase domain (Zuchner et al., 2004). Thus, loss 

of MFN2 fusion activity may result in neuronal loss in CMT-2A. Mitochondrial swelling and 

aggregation were observed in the sural nerve of CMT-2A patients (Verhoeven et al., 2006). In 
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addition, mutant MFN2 causes mitochondrial aggregation and defective transport in 

experimental neurons (Baloh et al., 2007). Interestingly, CMT-2A and ADOA patients have some 

overlapping symptoms, which probably result from defective mitochondrial fusion (Chung et 

al., 2006). All of this evidence indicates that defects in mitochondrial dynamics are the primary 

cause of CMT-2A, although the disease mechanism remains to be elucidated. 

 

1.3.3 Mitochondrial dynamics in Alzheimer’s disease 

AD is the most common neurodegenerative disease, characterized by cognitive 

dysfunction and memory loss. Unlike ADOA and CMT-2A, which are caused by mutations in the 

mitochondrial fusion machinery, most of AD cases are sporadic, marked by neurofibrillary 

tangles and extracellular amyloid plaques. The mechanism of AD pathology remains unknown, 

but mitochondrial dysfunction has been implicated. 

Amyloid plaques are mainly composed of A . Although amyloid plaques are located in 

the extracellular matrix, it has been revealed that A  is also localized on mitochondria, 

suggesting mitochondria are involved in A -mediated toxicity in AD (Lustbader et al., 2004). 

Experimental neuronal cells exposed to A  exhibit increased mitochondrial fission, spine loss, 

and eventually cell death (Cho et al., 2009). The increased mitochondrial fission has been 

shown to result from increased DRP1 activity, which results from S-nitrosylation of DRP1 (SNO-

DRP1) (Cho et al., 2009). Expression of DRP1 (C664A), a mutant resistant to S-nitrosylation, 

prevents neurons from A -induced mitochondrial fission and neuronal cell death. Importantly, 
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increased levels of SNO-DRP1 have been observed in both AD mice and patients, confirming the 

hypothesis that A  induces neuronal injury through increased mitochondrial fission. However, a 

recent paper demonstrated that SNO-DRP1 has no impact on either DRP1 GTPase activity or 

DRP1 oligomerization (Bossy et al., 2010). Instead, nitrosative stress induces DRP1 

phosphorylation at S616, which triggers mitochondrial fragmentation (Bossy et al., 2010). More 

recently, the abnormal interaction between A  and DRP1 was found in AD patients, suggesting 

that mitochondrial dynamics is implicated (Manczak et al., 2011). Although these results are 

controversial, there is no doubt that defective mitochondrial dynamics participates in AD. 

 

1.3.4 Mitochondrial dynamics in Parkinson’s disease 

PD is the second most common neurodegenerative disease, characterized by tremor 

and rigidity. Sufficient evidence has confirmed the involvement of mitochondria in PD 

pathogenesis.  

The majority of PD cases are sporadic and only about 10% of cases are familial. 

Mitochondrial involvement in PD was first suggested by a study that showed that inhibition of 

Complex I in the ETC leads to PD-like symptoms in a mouse model (Betarbet et al., 2000). Many 

genes have been linked to PD, including PTEN-induced putative kinase 1 (PINK1) and Parkin 

(Dodson and Guo, 2007). PINK1 is a serine/threonine kinase localized in both the cytoplasm and 

mitochondria with an N-terminal mitochondrial targeting sequence, while Parkin is an E3-ligase. 

Although mutations in PINK1 and Parkin failed to produce PD symptoms in mouse models, 
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there have been observations of mitochondrial defects in respiration and increased sensitivity 

to oxidative stress (Gautier et al., 2008; Palacino et al., 2004). Genetic ablation of PINK1 results 

in mitochondrial elongation in COS-7 cells, which can be re-balanced by DRP1 or hFis1 

overexpression (Yang et al., 2008). In HeLa cells, PINK1 inhibition leads to mitochondrial 

fragmentation, which can be rescued by Parkin over-expression (Exner et al., 2007). Moreover, 

mitochondrial dysfunction was observed in flies with PINK1 or Parkin knock-down. The 

phenotypes in these mutant flies become even more exaggerated by DRP1 over-expression or 

inhibition of MFN1, MFN2, and OPA1, suggesting mitochondrial dynamics are involved in the 

PINK1/Parkin pathway (Deng et al., 2008). More recently, Parkin has been found to be recruited 

to impaired mitochondria and participate in mitophagy (Narendra et al., 2008). PINK1 is 

required for maintenance of mitochondrial function (Clark et al., 2006). The functions of PINK1 

and PARKIN are so closely related to mitochondrial dynamics and function it is hard to believe 

that mitochondrial dynamics are not involved in PD pathogenesis. 

 

In sum, mitochondrial dysfunction is a common phenomenon in neurodegeneration. 

Mitochondrial dynamics is important for maintenance of mitochondrial function, which is 

essential for neuronal function and survival. In some neurodegenerative diseases, defects in 

mitochondrial dynamics appear to be the primary cause; however, it remains unknown what 

triggers these defects in mitochondrial dynamics. Here, the mechanism of mitochondrial 

fission/fusion in two neurodegenerative diseases, ALS and HD, will be further investigated. 
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Ultimately, the results may lead to better detection, diagnosis, and even treatment strategies 

for patients affected by ALS and HD. 
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CHAPTER TWO: MITOCHONDRIAL DYNAMICS DEFECTS IN ALS 
 

2.1 Overview of ALS 
 

2.1.1 Symptoms and mutations in ALS 

ALS is a progressive neurodegenerative disease characterized by the selective 

degeneration of upper and lower motor neurons in the spinal cord, brainstem, and motor 

cortex. Dysfunction and death of these motor neurons causes muscle weakness and atrophy 

leading to paralysis and death within 3–5 years (Shaw, 2005). Respiratory failure is the most 

common cause of death. The typical age of onset is 45–60, with a life time risk of 1 in 1000 and 

a male to female ratio of 2:1. Approximately 10% of ALS cases are familial (autosomal dominant 

in most cases) and the remaining 90% are sporadic.  

To date, several proteins have been identified that cause familial ALS, including SOD1, 

TAR DNA-binding protein (TDP-43), and fused in sarcoma (FUS) (Deng et al., 1993; Kwiatkowski 

et al., 2009; Neumann et al., 2006; Rosen, 1993; Vance et al., 2009). The cause of sporadic ALS 

remains unknown; however, we do know that 20% of familial ALS (FALS) cases are linked to 

mutations in SOD1 (Deng et al., 1993; Rosen, 1993). The hope is that studies of these rare 

hereditary ALS cases will lead to a better understanding of the mechanisms underlying the 

more common sporadic disease. 



26 
 

2.1.2 Mutant SOD1-mediated toxicity in ALS 

SOD1 is a 154 amino acid homo-dimeric soluble protein found in the cytoplasm that is 

known to neutralize superoxide radicals. SOD1 converts superoxide, most of which is generated 

as a by-product of mitochondrial OXPHOS, into hydrogen peroxide. Thus, SOD1 plays an 

essential role in cytoplasmic 

antioxidant defense.  

To date, more than 

150 SOD1 mutants have been identified in ALS patients (Turner and Talbot, 2008). Due to its 

important cellular function, it was initially proposed that SOD1-linked FALS results from radical 

damage caused by decreased SOD1 activity. However, in vitro studies showed that different 

FALS-linked SOD1 mutant proteins have different enzymatic activities, and at least some FALS 

mutants retain full enzyme activity (Borchelt et al., 1994). Moreover, SOD1 null mice live to 

adulthood and do not develop motor neuron disease (Reaume et al., 1996). Although these 

mice are vulnerable to motor neuron loss after axonal injury, this study showed that loss of 

SOD1 is not required for development of motor neuron disease. In addition, transgenic mice 

expressing FALS mutants exhibit motor neuron disease with normal SOD1 activity (Bruijn et al., 

1997), indicating that mutant SOD1 toxicity is not triggered by a loss of enzymatic activity, but 

by an unknown gain-of-function.  

Previous studies have suggested that mSOD1 causes various cellular events, including 

glutamate-induced excitotoxicity, ER stress, proteasome inhibition, alteration of gene 
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expression, abnormal protein interactions, activation of caspases, mitochondrial dysfunction, 

and cytoskeletal abnormalities (Figure 5) (Ilieva et al., 2009). However, the causal relationship 

between these events and motor neuron death remains unclear. 

 

 

 

 
Figure 5 Proposed mechanisms of ALS pathogenesis. 
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2.1.2.1 Proteasome inhibition 

Most SOD1 mutants are misfolded and form aggregates in the cells. Aggregation of 

mutant SOD1 has been proposed to block and inhibit proteasome-mediated protein 

degradation. Dorfin, a RING finger type E3 ubiquitin ligase, has been found to specifically bind 

to mutant SOD1, but not WT SOD1, suggesting that mutant SOD1 is specifically targeted for 

proteasome (Niwa et al., 2002). In spinal cords of mutant SOD1 mice, decreased proteasome 

activities were observed (Kabashi et al., 2004). Thus, mutant SOD1 may trigger dysfunction of 

the proteasome and increases aggregation of misfolded proteins, leading to damage in the 

cells. 

 

2.1.2.2 Glutamate-induced excitotoxicity 

Glutamate-induced excitotoxicity has been observed in ALS patients (Shaw and Ince, 

1997). Failure to remove glutamate from synaptic clefts results in repetitive activation of 

glutamate receptors in motor neurons, which in turn causes Ca2+ influx and intracellular Ca2+ 

dyshomeostasis. GluR2 receptors are known to be impermeable to Ca2+ and thus regulate Ca2+ 

influx during glutamate stimulation. Unfortunately, motor neurons have a lower expression of 

GluR2 than other type of cells and have mostly 2-amino-3-(5-methyl-3-oxo-1,2- oxazol-4-yl) 

propanoic acid (AMPA) receptors. Moreover, mutant SOD1 interacts with AMPA receptors and 

increases their expression and function, leading to increased sensitivity to glutamate-induced 

toxicity (Spalloni et al., 2004). On the other hand, accumulation of excessive glutamate is also a 
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result of reduced expression of the glutamate transporter excitatory amino acid transporter 2 

(EAAT2) in astrocytes (Bruijn et al., 1997; Howland et al., 2002; Rothstein et al., 1995). Mutant 

SOD1 has been shown to be responsible for disrupting the translation of EAAT2 (Bendotti et al., 

2001). In addition, caspase 3 activation is responsible for reduced EAAT2 expression and activity 

(Boston-Howes et al., 2006). 

 

2.1.2.3 Non-cell autonomous mechanism in ALS 

In addition to research on motor neurons, more recent studies began to implicate non-

neuronal cells and non-cell-autonomous pathways in ALS pathogenesis. For example, 

transplantation of mSOD1 microglia into mice is not sufficient to cause motor neuron disease. 

On the other hand, WT microglia in mSOD1 mice had a protective effect, slowing down ALS-like 

disease progression (Beers et al., 2006). The same study also shows that activated mSOD1 

microglia release more neurotoxins, such as nitric oxide (NO), than do WT microglia. Moreover, 

reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase from glial cells is the 

main source of reactive oxygen species during inflammation. Therefore, mSOD1-induced 

microglia malfunction leads to reduced neuron survival, because microglia serve as 

macrophages in the central nervous system (CNS). 

Astrocytes are also potentially poisonous neighbors of motor neurons. A study by the 

Przedborski lab indicated that mSOD1 present only in motor neurons was not sufficient for 

development of motor neuron degeneration, while mSOD1 expression in astrocytes selectively 
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killed spinal cord primary motor neurons, but not interneurons, GABAergic neurons, or dorsal 

root ganglion neurons, by a soluble toxic factor acting through a Bax-dependent mechanism 

(Nagai et al., 2007). Unfortunately, they failed to identify the soluble toxic factor in the medium 

conditioned by mSOD1-expressing astrocytes, but researchers are suspect three potential 

substances: glutamate, NO, and nerve growth factor (NGF). 

Astrocytes play an essential role in the rapid recovery of synaptic glutamate, the primary 

excitatory neurotransmitter (Lobsiger and Cleveland, 2007). Therefore, with mSOD1 expression, 

glutamate uptake is reduced in astrocytes and leads to glutamate-driven excitotoxicity in motor 

neurons (Lobsiger and Cleveland, 2007). On the other hand, some studies have shown that 

reactive astrocytes up-regulate NO production and NGF expression, which induces motor 

neuron death through p75 receptor signaling (Cassina et al., 2005; Cassina et al., 2002; Pehar et 

al., 2004). Furthermore, elevated NO levels induce mitochondrial defects and mitochondrial-

targeted antioxidants are able to prevent its dysfunction in SOD1G93A astrocytes and restore 

motor neuron survival (Cassina et al., 2008). These studies not only indicate the importance of 

mutant astrocytes in the disease progression, but also suggest that mitochondria might be an 

important target in ALS. 

 

2.1.2.4 Mitochondrial dysfunction in ALS 

Experimental evidence indicates that mitochondrial dysfunction is involved in ALS and 

begins prior to the clinical and pathological onset of the disease. SOD1 has been considered to 
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be cytosolic protein, while mSOD1 is concentrated inside vacuolated mitochondria (Liu et al., 

2004). The aggregates affect protein import, which results in mitochondrial dysfunction (Liu et 

al., 2004). It has been proposed that mitochondrial dysfunction triggers motor neuron death by 

at least four pathways. 

 1) Apoptosis. Mutant SOD1 has been shown to bind mitochondrial Bcl-2 specifically 

(Pasinelli et al., 2004). Mutant SOD1 binds to Bcl-2 and promotes Bcl-2 conformational change, 

which leads to toxic BCL2 homology (BH) 3 domain exposure, and finally, apoptosis. Moreover, 

BAX-induced motor neuron death mediated by astrocytes is strong evidence that mSOD1-

mediated toxicity triggers activation of the mitochondrial apoptotic pathway (Nagai et al., 

2007).  

2) Excitotoxicity. Previous studies indicated that mitochondrial dysfunction reduces Ca2+ 

loading capacity and impairs rapid calcium transient buffering, leading to increased sensitivity 

to glutamate toxicity from the astrocytes, which results in synaptic malfunction (Damiano et al., 

2006). 

3) Impaired protein import. Mutant SOD1 has been found to be misfolded and to form 

aggregates on the cytoplasmic face of the OMM (Liu et al., 2004; Vande Velde et al., 2008). 

Recently, VDAC1 has been found to be directly bound by mutant SOD1 (Israelson et al., 2010). 

VDAC1 is an integral membrane protein located in the OMM, which modulates ATP/ADP flux 

across the OMM. This abnormal interaction results in reduced VDAC1 activity, and thus, 

reduced ATP generation. 
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4) Oxidative stress. Mutant SOD1 binds to the IMM and disrupts the redox state of 

mitochondria (Ferri et al., 2006). This more oxidizing environment impairs ETC, which increases 

ROS generation (Ferri et al., 2006). Both decreased respiratory activities of Complexes I, II, III, 

and IV and increased ROS levels have been found in the spinal cords of ALS patients (Murata et 

al., 2008; Wiedemann et al., 2002). Increased concentration of 3-nitrotyrosine, which is formed 

by protein nitration through peroxynitrite, was observed in the CSF of human patients, (Tohgi 

et al., 1999). Peroxidation of Cardiolipin, an anionic IMM component, disrupts its interaction 

with cytochome c and leads to its release into the IMS, which ultimately results in apoptosis 

(Kirkinezos et al., 2005; Paradies et al., 2009). 

In addition, impaired axonal transport has been proposed to participate in ALS 

pathogenesis (Magrane and Manfredi, 2009). Due to the long processes of motor neurons, fast 

axonal transport is crucial for maintenance of ATP supply to maintain synaptic function, 

neurotransmitter release, vesicle recycling, and mitochondrial Ca2+ buffering. Slowing of 

mitochondrial axonal transport has been proposed to be a very early event in the toxicity of 

ALS-linked SOD1 mutants in motor neurons (Williamson and Cleveland, 1999). Given these 

findings, mitochondria appear to be central players in ALS pathogenesis. 
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2.1.3 Mitochondrial dynamics and ALS 

As previously discussed, mitochondrial dynamics are essential for maintenance of 

mitochondrial function, which is required for cellular function and cell survival. Abnormal 

mitochondrial dynamics have been observed in different models of ALS. 

 

2.1.3.1 Mitochondrial dysmorphology in ALS 

Vacuolated mitochondria and their fragmented network have been observed in both 

ALS patients and mutant SOD1G93A mice (Gurney et al., 1994; Sasaki and Iwata, 2007). A number 

of studies have indicated that mitochondrial vacuolation occurs at the pre-symptomatic stage 

and increases with disease progression (Jaarsma et al., 2001; Kong and Xu, 1998). It has been 

speculated that mutant SOD1 accumulation in the mitochondrial IMS initiates expansion of the 

IMS and eventually triggers mitochondrial degeneration (Jaarsma et al., 2000; Jaarsma et al., 

2001).  

Mitochondrial fragmentation is indicative of an imbalance in mitochondrial fission and 

fusion. Fragmented mitochondria have been reported in transgenic mice and neuronal cell lines. 

Components of the mitochondrial fission and fusion machinery might be involved in ALS 

pathogenesis. DRP1, MFN2, and OPA1 are all involved in not only mitochondrial fission and 

fusion, but as described above, also play important roles in maintenance of mitochondrial 

function. Most importantly, mutations in MFN2 result in motor defects (Baloh et al., 2007). 
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Thus, defective mitochondrial fission and fusion balance might be the primary cause of ALS, and 

mitochondrial dysfunction may be a secondary effect of defective mitochondrial dynamics. 

 

2.1.3.2 Defective mitochondrial axonal transport in ALS 

Motor neurons contain long axons, which may be up to 1 meter in length. Such a unique 

feature requires effective axonal transport to deliver different components synthesized in the 

soma to the synapses and nerve terminals. 

In ALS patients and mice, motor neuron loss begins with distal axonal degeneration 

(Fischer et al., 2004). Defects in axonal transport of mitochondria and vesicles have been well 

studied in ALS mice (Warita et al., 1999; Williamson and Cleveland, 1999). Because defective 

axonal transport is an early sign of the disease, it could be the mechanism of the axonal 

degeneration characteristic of ALS. 

Mutations in the trafficking machinery have been found to be associated with motor 

neuron degeneration. A point mutation in KIF1B, a member of the Kinesin-3 family, has been 

identified in CMT-2A patients who suffer from muscle weakness and atrophy (Zhao et al., 2001). 

This point mutation is conserved in its ATP-binding domain and causes impaired axonal 

transport of synaptic vesicles. KIF5A mutants have been identified in another motor neuron 

disease, hereditary spastic paraplegia (Reid et al., 2002). These mutants inhibit anterograde 

axonal transport, and thus, cause axonal degeneration. In addition, mutations in Dynein affect 

sensory neurons rather than motor neurons (Chen et al., 2007b). One of the most promising 
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pieces of evidence is that a mutation in the p150 subunit of Dynactin is involved in FALS cases 

(Puls et al., 2003). This Dynactin mutant has lower affinity to microtubules and in turn disrupts 

Dynein/Dynactin function. Although the reason why defective axonal transport affects different 

types of neurons is unclear, these findings support the notion that defects in axonal transport 

could be the mechanism underlying ALS. 

How might mutant SOD1 interfere with mitochondrial axonal transport in motor 

neurons? First, mutant SOD1 may interact with motor proteins and impair axonal transport. A 

number of mutations in motor complexes have been found to cause motor atrophy, including 

KIF5B and Dynactin mutations (Puls et al., 2003; Zhao et al., 2001). Because mutant SOD1 

specifically accumulates on mitochondria, it is not surprising that the abnormal interactions 

between mutant SOD1 and motor proteins impair axonal transport of mitochondria. To date, 

the only report about the interaction between mutant SOD1 and motor proteins is of the 

Dynein complex, which is responsible for retrograde transport (Zhang et al., 2007). Although 

there was no other interaction detected, it is possible that the abnormal interaction between 

mutant SOD1 and motor proteins interferes with mitochondrial transport. 

Second, mutant SOD1 may reside on or inside mitochondria and cause mitochondrial 

dysfunction. It has been reported that 1–2% of WT SOD1 is localized to mitochondria, while 

mutant SOD1 preferentially accumulates in mitochondria of the spinal cord (Liu et al., 2004). A 

number of proteins in mitochondria have been found to interact with mutant SOD1 specifically, 

including heat shock proteins (HSPs), Lysyl-tRNA synthetase, and Bcl2 (Kunst et al., 1997; 

Okado-Matsumoto and Fridovich, 2001; Pasinelli et al., 2004). Recently, Magrane et al. found 
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that mitochondrial-targeted SOD1 is sufficient to cause cell death in NSC-34 cells (Magrane et 

al., 2009). Moreover, enrichment of SOD1 in mitochondria by copper chaperone for SOD1 (CCS) 

leads to abnormal mitochondrial dynamics and accelerates disease progression (Son et al., 

2007). Thus, it is possible that the abnormal interaction between mutant SOD1 and 

mitochondrial proteins interferes with normal mitochondrial function and thus impairs 

transport. 

Finally, mutant SOD1 may interfere with regulation of the cytoskeleton and molecular 

motors through cell signaling pathways. Abnormal activation of p38, c-Jun N-terminal kinases 

(JNKs), and cyclin-dependent kinase 5 (CDK5) has been observed in the transgenic mouse model 

of ALS, which could directly result in phosphorylation of neurofilaments and disruption of 

mitochondrial transport (Ackerley et al., 2004).  Moreover, p38 can also phosphorylate the 

Kinesin-1 light chain, preventing Kinesin-1-mediated mitochondrial transport (De Vos et al., 

2000). In addition, activation of JNK results in Kinesin-1 heavy chain phosphorylation and 

inhibits Kinesin-1 microtubule-binding activity (Morfini et al., 2006).  

Collectively, mutant SOD1-mediated defective mitochondrial dynamics could be the 

primary cause of ALS, although the manner by which mutant SOD1 mediates this impairment is 

unknown. Here, our lab proposes that imbalance of mitochondrial fission and fusion is 

implicated in ALS, and restoration of this balance might rescue mitochondrial transport and 

mutant SOD1-induced neuronal cell death. 
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2.1.4 Motor neuron and astrocyte co-culture system 

Several previous studies suggested defects in mitochondrial dynamics in a model of ALS 

(De Vos et al., 2007; Magrane et al., 2009; Magrane et al., 2012). The first report identified a 

decrease in anterograde mitochondrial transport in pure motor neuron cultures isolated from 

mutant SOD1 rats (De Vos et al., 2007). To visualize mitochondria, the authors used 

MitoTracker Red, a fluorescent membrane potential sensitive dye. This probe is not 

incorporated in depolarized mitochondria. Therefore, it predominantly stains mitochondria 

with high membrane potential. In addition, this fluorescent probe tends to lack specificity, as it 

does not label only mitochondria, and can be neurotoxic. A second report demonstrated a 

decrease in both anterograde and retrograde transport, increased mitochondrial 

fragmentation, and a tendency toward increased cell death in NSC34 cells expressing mutant 

SOD1 targeted to the mitochondrial IMS (Magrane et al., 2009). However, this study was 

carried out only in a cell line and not primary motor neurons. The most recent study on 

defective mitochondrial transport used pure motor neuron cultures as the experimental model 

(Magrane et al., 2012). Defective mitochondrial axonal transport was well described, but little 

retrograde transport was observed. While these reports suggest a role for defective 

mitochondrial dynamics in SOD1-mediated motor neuron dysfunction, further studies are 

needed to resolve discrepancies in the findings.  

To reconcile this apparent controversy and to improve the experimental model, we set 

out to investigate whether mitochondrial dynamics is impaired in primary motor neurons 
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expressing mutant SOD1G93A. We chose this SOD1 mutation because it is among the most 

frequently observed SOD1 mutations in humans and is commonly used in experimental models. 

To visualize mitochondria, we co-expressed DsRed2-Mito, a red fluorescent protein, which 

exhibits no toxicity in primary neurons. In addition, we co-cultured motor neurons on top of a 

spinal cord astrocyte monolayer. Astrocytes play a pivotal role in motor neuron physiology, and 

both cell-autonomous and non-autonomous pathways have been proposed to account for ALS 

pathogenesis. Therefore, an astrocyte and motor neuron co-culture system is a good model for 

ALS study. These key modifications make this experimental system of greater physiological 

relevance compared to cell lines and pure neuronal cultures, and because we use fluorescent 

fusion proteins that have no toxicity, our study provides an important step forward in the 

exploration of mitochondrial dynamics defects in ALS.  
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2.2 Materials and Methods 
 

In the experiments in this section, three systems have been used:  

1. Primary motor neuron cultures: astrocytes co-cultured with isolated motor neurons 

from E15 rat spinal cords.  

2. Spinal cord tissue isolated from pre-symptomatic (2 month) and symptomatic (5 

month) mSOD1G93A transgenic mice. The transgenic mice exhibit the first signs of motor neuron 

disease, hyperflexia, after day 91, and reduced locomotor activity and weight loss after day 115.  

3. Human embryonic kidney (HEK) 293 cell line. 

 

2.2.1 Reagents 

The pDsRed2-Mito vector was obtained from Clontech. The pcDNA3.1-SOD1WT and -

SOD1G93A were obtained from Dr. Alvaro G. Estevez (University of Central Florida, Orlando, FL, 

USA). The pcDNA3-DRP1K38A was obtained from Dr. Alexander M. van der Bliek (David Geffen 

School of Medicine at UCLA, Los Angeles, CA, USA). The p -actin-Map2c/EGFP was obtained 

from Dr. Doll (Novartis Institute for Biomedical Research, Basel, Switzerland). All plasmids were 

purified using the Endotoxin-free Marligen Maxiprep Kit (Diagnostic technology, Belrose, 

Australia). 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) was purchased from 

Omega Scientific (Tarzana, CA, USA). Poly-L-lysine, bovine serum albumin (BSA), DNase I, Opti-

prep, phenol-red, Penicillin-streptomycin (Pen/Strep), formaldehyde, glutamine, pyruvate, F-12 

HAM, sucrose and rabbit antibodies to MFN2 (M6444) were all obtained from Sigma-Aldrich (St. 
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Louis, MO, USA). Custom-made phenol-free  Dulbecco's Modified Eagle Medium (DMEM)/high 

glucose, phosphate buffered saline (PBS), and bovine calf serum (BCS) were obtained from 

Thermo Scientific (Rockford, IL, USA). Trypsin (2.5%, 10×), L-15, glutamax, and Earle’s Balanced 

Salt Solution (EBSS) were purchased from Gibco (Carlsbad, CA, USA). Lipofectamine 2000, 

Hoechst 33342, and neurobasal medium were purchased from Invitrogen (Carlsbad, CA, USA). 

Protease inhibitor cocktails were purchased from Roche (Indianapolis, IN, USA). D-mannitol was 

obtained from J.T. Baker (Austin, TX, USA). Ethylenediaminetetraacetic acid (EDTA) and mouse 

antibodies to actin were purchased from Calbiochem (Darmstadt, Germany). Alexa 488-

conjugated goat anti-mouse secondary antibodies were obtained from Molecular Probes 

(Grand Island, NY, USA). The Amaxa Nucleofector kit for rat neurons was purchased from Lonza 

(Basel, Switzerland). Mouse anti-rat p75 antibody MC-192 and mouse monoclonal anti 

neurofilament H non-phosphorylated (SMI-32) were obtained from Abcam (Cambridge, MA, 

USA). Rat anti-mouse IgG1 microbeads and MACS separation columns were obtained from 

Miltenyi Biotec (Auburn, CA, USA). Mouse antibodies to DRP1 (clone8/DLP1) and OPA1 were 

obtained from BD Biosciences (San Jose, CA, USA), MFN2 (XX-1) and MFN2 (50331) from Santa 

Cruz Biotechnology (Santa Cruz, CA, USA), and heat shock protein 60 (HSP60) was obtained 

from Stressgen (Farmingdale, NY, USA). Rabbit antibodies to pDRP1 (S616) were obtained from 

Cell Signaling (Danvers, MA, USA). 

 

http://www.invitrogen.com/site/us/en/home/Products-and-Services/Applications/Cell-Culture/Mammalian-Cell-Culture/Classical_Media/D-MEM_F12.html
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2.2.2 Mice and rats 

SOD1G93A transgenic mice (B6.Cg-Tg (SOD1-G93A) 1Gur/J) were purchased from Jackson 

Laboratory. Here, mSOD1G93A mice at pre-symptomatic (2 month) and symptomatic stages (5 

month) were used. Heterozygous mSOD1G93A mice develop hind limb paralysis at 4 months with 

rapid progression, and thereafter, resemble human ALS neuropathology.  

Timed-pregnant Sprague Dawley rats were purchased from Charles River. All 

experiments were approved by the Institutional Animal Care and Use Committee of University 

of Central Florida College of Medicine. 

 

2.2.3 Isolation of astrocytes 

Astrocytes were prepared from E18 rat embryos. Spinal cords were isolated and then 

incubated for 40 min at 37°C in 0.025% Trypsin in EBSS with frequent agitation. Tissues were 

transferred into a new tube with 1 ml L15 supplemented with 0.4% BSA and 0.1mg/ml DNase I 

and triturated about 10 times using a P1000 pipette. The fragments were allowed to settle for 2 

min and trituration was repeated until cells were well dissociated. Cells were then spun down 

through 2 ml 4% BSA cushion at 470 rpm and room temperature for 5 min using a centrifuge 

with swing-out rotor (Eppendorf 5810R). The cell pellet was resuspended in medium 

supplemented with 10% FBS, Pen/Strep, and 15 mM HEPES and cultured at 37°C, 5% CO2 for 

one week. After reaching confluence, the astrocyte cultures were placed on a shaking platform 

and 300 rpm shaking was applied to eliminate microglia for 24 h at 37°C. Supernatant with 
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floating cells was removed and shaking was repeated for another 24 h. After removing the 

supernatant, the last shaking was applied with 10 M cytosine arabinoside in the medium for 

48 h. The remaining cells comprised of astrocytes were trypsinized and plated onto Lab-Tek II 

(#1.5 German coverglass) 8-chamber slides (Thermo Fisher Scientific, Pittsburgh, PA, USA) at a 

density of 2×106 cells/cm2 in phenol-free DMEM medium supplemented with 10% BCS, 2 mM 

glutamine, 25 mM HEPES, 10% F-12 HAM, and 0.25% Pen/Strep. Motor neurons were seeded 

on top after 5 days and grown in culture. 

 

2.2.4 Motor neuron isolation and transfection 

The following motor neuron isolation protocol was established by Dr. Henderson and Dr. 

Estevez with some modifications. 

Briefly, Motor neurons were prepared from one litter of E15 rat embryos.  Spinal cords 

were isolated, separated into two 15 ml polystyrene tubes, and then incubated for 10 min at 

37°C in 1 ml 0.025% Trypsin (2.5%, 10×) in EBSS under frequent agitation. The fragments of the 

spinal cords were transferred into a new 15 ml tube with 1 ml L-15 supplemented with 0.4% 

BSA and 0.1mg/ml DNase I.  The tissues were then dissociated using a p1000 Gilson blue tip by 

triturating 8 times and allowed to settle for 2 min at room temperature. The supernatant was 

then centrifuged at 470 g at room temperature for 5 min on top of a 2 ml 4% BSA cushion in L-

15. After removing the supernatant, cell pellet was resuspended in Amaxa Nucleofector buffer 

(for rat neurons) and 4 g DNA was added, followed by electroporation using the 



43 
 

electroporator device (Amaxa) and G13 program (Basel, Switzerland). The transfected cells 

were then diluted in 4 ml L-15 and layered on top of 2 ml solution containing 12% OptiPrep, 

88% L-15, and 0.4% Phenol red followed by gradient centrifugation for 15 min at 830 g, room 

temperature. Motor neurons, located at the interface between the clear and red phases, were 

collected into 1 ml using a P1000 pipette, and pelleted by centrifugation at 470 g at room 

temperature for 5 min through a 2 ml 4% BSA cushion. After removing the supernatant, cell 

pellets were resuspended in 98 l PBS with 0.5% BSA. Two microliter mouse monoclonal anti-

rat p75 MC-192 antibodies were added to the motor neurons and incubated for 10 min at 4 ⁰C. 

Cells were washed with 10 ml 0.5% BSA in PBS followed by centrifugation for 15 min at 470 g, 

room temperature through a 2 ml 4% BSA cushion. Pellets were resuspended in 80 l 0.5% BSA 

in PBS and 20 l rat anti-mouse IgG1 microbeads were added to the motor neuron-p75 

antibody mix. After 15 min incubation at 4 ⁰C, cells were washed with 10 ml 0.5% BSA in PBS 

followed by centrifugation for 15 min at 470 g, room temperature through a 2 ml 4% BSA 

cushion. Cell pellets were resuspended in 500 ml 0.5% BSA in PBS and applied onto MACS 

separation columns, which were already placed in the mini MACS magnet and pre-washed with 

500 l 0.5% BSA in PBS. The columns were rinsed 3 times with 500 l 0.5% BSA in PBS and then 

removed from the magnet. One ml 0.5% BSA in PBS was applied onto the column and the 

positive fraction was collected as the purified motor neuron fraction. The purified motor 

neurons were seeded  on top of an astrocyte monolayer in 50% conditioned medium from 

astrocyte culture and 50% fresh neuronal medium composed of DMEM medium supplemented 
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with 10% BCS, 2 mM glutamine, 25 mM HEPES, 10% F-12 HAM, and 0.25% Pen/Strep. Analysis 

was performed at 2 DIV. 

 

2.2.5 Cortical neuron isolation and transfection 

Pure cortical neuronal cultures were prepared from embryonic day E-18 rat embryos 

(Barsoum et al., 2006). Cells were placed on poly-L-lysine (1mg/ml) coated coverslips at 40,000 

cells per well in 24-well plates. Transfection was performed on 5 DIV using Lipofectamine 2000.  

 

2.2.6 Live-cell time-lapse imaging and quantification 

Time-lapse imaging was performed using an Axiovert Zeiss 100M inverted fluorescence 

microscope equipped with a Plan-Apochromat 63×1.4 NA oil objective, a DG-4/Lambda 10-2 

combo Xe-arc illumination unit (Sutter), and a Sensicam QE cooled CCD camera (PCO AG, 

Germany) and controlled by MetaMorph 7.5 software (Molecular Devices). Motor neurons 

were grown on Lab-Tek II 8-chamber slides (#1.5 German coverglass) in DMEM medium 

supplemented with 10% BCS, 2 mM glutamine, 25 mM HEPES, 10% F-12 HAM, and 0.25% 

Pen/Strep without phenol red. Time-lapse images were acquired in a controlled environment 

using Axiovert Incubator XL 100/135 (37°C, humidified 5% CO2). To visualize DsRed2-Mito, the 

excitation filter was S555/28× (Chroma) and the emission filter was S617/73m (Chroma). To 

visualize EGFP, the excitation filter was S490/20× (Chroma) and the emission filter was 

S528/38m (Chroma). 3D images were acquired with the Multi-Dimensional Acquisition module 
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in MetaMorph 7.5. For the mitochondrial movement experiments, one neurite (~ 100 µm in 

length) was selected for 10 neurons per group at 2 DIV (Song et al., 2011). The mitochondrial 

movement was recorded for 5 min at 5 second intervals (5 planes, 1 m step size). The 

kymographs generated were of 25 µm in width by average projections of all planes without 

background subtraction using MetaMorph 7.5. The measurements of mitochondrial velocity 

and moving distance were exported to Microsoft Excel for further analysis. 

 

2.2.7 Imaging of fixed samples 

Two days after transfection, the cortical neurons were fixed with 3.7% formaldehyde 

and 5% sucrose in PBS for 15 min at 37 °C. Three-dimensional images were acquired (2×2 

binning, 0.2 m step size, 20-25 z-planes) with the Multi-Dimensional Acquisition module in 

Metamorph 7.5. Images were surface rendered using Metamorph 4D-viewer and exported as 

TIFF files. Mitochondrial numbers and length were measured as previously described (Song et 

al., 2008).  

 

2.2.8 Immunocytochemistry of motor neurons and cell death 

Two days after transfection, neuronal cultures were fixed with 3.7% formaldehyde and 

5% sucrose in PBS for 15 min at 37 °C. After fixation, the cultures were permeabilized with 0.1% 

Triton X-100 in PBS, pH 7.4, for 10 min at room temperature. Unspecific binding was blocked 

with 3% BSA, 3% FBS in PBS, pH 7.4, for 1 h at room temperature. Mouse monoclonal anti- SMI-



46 
 

32 antibodies (Abcam) were used for motor neuron staining at 1:5000 dilution in blocking 

solution and incubated overnight at 4°C. After washing three times with PBS, the cultures were 

incubated with Alexa 488-conjugated goat anti-mouse secondary antibodies (Molecular Probes) 

at 1:200 dilution in blocking solution (1 h, room temperature). After washing three times with 

PBS, nuclei were stained using Hoechst 33342 (1:10,000 in PBS) at room temperature for 10 

min. 

 

2.2.9 Cell death and mitochondrial fragmentation counts 

Two days after transfection, the cortical neurons were fixed and nuclei were stained 

using Hoechst 33342 (1:10,000 in PBS) at room temperature for 10 min. Neuronal cell death 

was scored by microscopy. Neurons with reduced soma size, retracted processes, fragmented 

mitochondria, and condensed nuclei were scored as dead.  

Cell death scoring was performed on triplicate coverslips from three independent 

experiments (Barsoum et al., 2006; Song et al., 2011).  

 

2.2.10 Cell lysate and western blot 

HEK293T cells were grown in DMEM supplemented with 10% FBS, Pen/Strep, and 1 mM 

pyruvate. Two days after seeding, cells were transfected with different plasmids using 

Turbofect according to manufacturer’s instructions. 36 or 48 hours later, cells were harvested 

using lysis buffer (50 mM Tris, 150 mM NaCl, 1 mM MgCl2, 5 mM EDTA, 1% NP40, 1 mM NaF, 1 
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mM Na3VO4, 10 mM NAM with protease inhibitor), and centrifuged at 22,000 g, 4°C, for 15 min, 

followed by BCA test (Piece) to determine protein concentration. Twenty micrograms of protein 

were used for western blot using 4–12% Bis-Tris SDS PAGE (Invitrogen). After transferring to 

ECL nitrocellular membrane (GE healthcare), overnight blocking was applied using Odyssey 

blocking buffer (Li-Cor Biosciences), followed by incubation with DRP1 (BD Biosciences), Actin 

(Calbiochem), GFP (Abcam), MFN2 (Sigma), OPA1 (BD Biosciences), and phospho-DRP1 Ser616 

(Cell Signaling) antibodies. Protein signals were detected using the Li-Cor infrared imaging 

system. Data were further quantified by Image J. 

 

2.2.11 Protein extractions in mice 

Spinal cords were isolated and homogenized in the medium containing 225 mM 

mannitol, 75 mM sucrose, 1 mM EGTA, and 10 mM HEPES, pH 7.4 in a dounce-type 

homogenizer. Homogenates were centrifuged at 12,000 g for 10 min and supernatants were 

kept as cellular fractions. Pellet were re-suspended in T-PER buffer (Thermo Scientific) with 

protease inhibitors (Roche) and centrifuged at 22,000 g, 4°C, for 15 min. Supernatants were 

kept as mitochondrial fractions and BCA tests (Piece) were performed to determine protein 

concentration. Twenty micrograms of protein were used for western blot in each sample. 
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2.2.12 Statistics 

Data from populations or velocity of mitochondria are represented as means ± S.E.M. 

Student’s t-test was used to compare groups. Statistical analyses were performed using 

Microsoft Excel. 
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2.3 Results 
 

2.3.1 Motor neurons in the co-culture system 

To investigate the effects of mutant SOD1G93A on mitochondrial morphology, we first 

isolated rat spinal cord motor neurons using the new motor neuron and astrocyte co-culture 

system (described in Methods). In addition, motor neurons were transfected with DsRed2-Mito 

by electroporation to visualize mitochondrial morphology. Mitochondria exhibited elongated 

morphology and neurites of 7 DIV motor neurons could grow up to a length of several hundred 

microns, indicating that the motor neuron was in good condition and well differentiated (Figure 

6).  

 

Figure 6 Motor neuron and astrocyte co-culture. 

A representative fluorescence wide-field microscopic image of 7 DIV rat motor neurons co-
cultured with astrocytes. The motor neurons were transfected with DsRed2-Mito. Scale bar: 
100 µm. 
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2.3.2 Mitochondrial fragmentation in SOD1G93A motor neurons 

Abnormal mitochondrial dynamics have been previously reported in “pure” motor 

neurons, “pure” cortical neurons, and motor neuron-like NSC-34 cells (De Vos et al., 2007; 

Magrane et al., 2009; Magrane et al., 2012). However, the results are partially controversial, 

which may be due to different experimental models.  

To investigate if mitochondrial morphology is altered by SOD1G93A in our new motor 

neuron-astrocyte co-culture system, DsRed2-Mito and SOD1WT or SOD1G93A were transfected by 

electroporation in motor neurons. Mitochondria of SOD1WT motor neurons exhibited normal 

elongated and tubular morphology, while mutant SOD1G93A motor neurons contained smaller 

and more rounded mitochondria. The reduced size may result from either increased 

mitochondrial fission or an inhibition of mitochondrial fusion (Figure 7A). Further quantitative 

analysis revealed that the mean length of mitochondria was decreased in SOD1G93A motor 

neurons (Figure 7B). Excessive fission led to increased mitochondrial number in the neurites of 

SOD1G93A motor neurons compared to SOD1WT neurons (Figure 7C). To further quantify the 

reduced mitochondrial length, we scored individual motor neurons. The percentage of neurons 

exhibiting short, round mitochondria was significantly greater in SOD1G93A motor neurons 

compared to SOD1WT neurons (Figure 7D). In addition, the change in mitochondrial morphology 

was associated with elevated motor neuron cell death (Figure 7E). In summary, these results 

indicate that mutant SOD1G93A triggers an increase in round mitochondria in spinal cord motor 

neurons, suggesting that mitochondrial fragmentation may occur.  
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Figure 7 Mitochondrial fragmentation occurs in mutant SOD1G93A motor neurons.  

A) Fluorescence micrographs (top panels) and close up views (bottom panels) of mitochondria 
in 2 DIV motor neurons expressing DsRed2-Mito and either SOD1WT or SOD1G93A co-cultured 
with astrocytes. Scale bar: 50 µm. B) Mean length of mitochondria in motor neurons expressing 

DsRed2-Mito and either SOD1WT or SOD1G93A (n = 10). C) Number of mitochondria in 100 m 
neurites of motor neurons expressing DsRed2-Mito and either SOD1WT or SOD1G93A (n = 10). D) 
Mitochondrial fragmentation of motor neurons expressing DsRed2-Mito and either SOD1WT or 
SOD1G93A in mixed cultures. E) Cell death of 2 DIV motor neurons expressing DsRed2-Mito and 
either SOD1WT or SOD1G93A. P value: two-tail paired Student’s t-test. 
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2.3.3 Abnormal mitochondrial axonal transport in SOD1G93A motor neurons 

Mitochondrial morphology and transport are tightly linked. To investigate how changes 

in SOD1G93A-induced mitochondrial morphology affect mitochondrial axonal transport in our 

motor neurons and astrocyte co-culture system, fast acquisition fluorescence time-lapse 

imaging was used to measure mitochondrial directional (anterograde and retrograde) 

movement and mean velocity over a period of 5 minutes. To better present the results, 

kymographs were generated from the original time-lapse images to illustrate mitochondrial 

mobility and directional movement (Figure 8A). Kymographs are 2D representations of 3D 

movies, and the horizontal lines indicate either anterograde or retrograde movement of 

mitochondria, while the vertical lines represent stationary mitochondria. A representative 

kymograph of SOD1WT motor neurons contains both vertical and horizontal lines, indicating that 

mitochondria are mobile and exhibit substantial movement in both anterograde and retrograde 

directions (Figure 8A, top panel). By contrast, a representative kymograph of mutant SOD1G93A 

motor neurons contains mostly vertical lines, indicating very little mitochondrial movement and 

axonal transport (Figure 8A, bottom panel). Quantitative analysis demonstrated that both 

anterograde and retrograde movement of mitochondria were decreased in SOD1G93A neurons 

(Figure 8B). In addition, the velocity of mitochondrial transport and mitochondrial mobility 

were also decreased in SOD1G93A motor neurons (Figure 8C and D). These results demonstrate 

that SOD1G93A triggers defects in bi-directional axonal transport of mitochondria in motor 



53 
 

neurons co-cultured with astrocytes. In addition, it suggests that changes in mitochondrial 

morphology may cause the observed decrease in axonal transport.  
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Figure 8 Mutant SOD1G93A triggers a decrease in axonal anterograde and retrograde 
transport of mitochondria in 2 DIV motor neurons.  
 
A) Kymographs of motor neurons expressing DsRed2-Mito and either SOD1WT or SOD1G93A. B) 
Mitochondrial directional movement in motor neurons expressing DsRed2-Mito and either 
SOD1WT or SOD1G93A. C) Mean velocity of mitochondria in the axons of motor neurons 
expressing DsRed2-Mito and either SOD1WT or SOD1G93A. D) Mitochondrial mobility in motor 
neurons expressing DsRed2-Mito and either SOD1WT or SOD1G93A. P value: two-tail paired 
Student’s t-test, n = 10. 

 

 

 

2.3.4 Defective neuronal development in SOD1G93A motor neurons 

To investigate whether the defects in mitochondrial transport impact neuronal 

differentiation, we transfected spinal cord motor neurons with SOD1WT or SOD1G93A plus 

DsRed2-Mito and MAP2-GFP to allow visualization of both mitochondria and neurites. In 

SOD1WT motor neurons, mitochondria were elongated and evenly distributed along neurites 

(Figure 9A, left). By contrast, more fragmented mitochondria in mutant SOD1G93A motor 

neurons accumulated in growth cones (Figure 9A, right). Furthermore, the average neurite 

length of 1655 m in SOD1WT motor neurons (n = 10) was significantly decreased to 1057 m in 

mutant SOD1G93A motor neurons (n = 10) (Figure 9B). To further characterize the apparent 

developmental defect caused by SOD1G93A, we quantified the number of neurite branches. The 

neuronal extensions were grouped into primary, secondary, and tertiary arbors as illustrated 

(Figure 9C). Quantification revealed that the number of secondary and tertiary arbors was 

significantly decreased in SOD1G93A motor neurons, suggesting a reduced complexity in neurite 
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branching (Figure 9D). Thus, SOD1G93A-induced mitochondrial fragmentation and defects in 

axonal trafficking were accompanied by altered neuronal morphology and differentiation. 
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Figure 9 Mutant SOD1G93A triggers defective neurite branching and abnormal 
mitochondrial accumulation in growth cones.  
 
A) Representative 3D fluorescence wide-field microscopic images, and close up views below, of 
motor neurons expressing DsRed2-Mito, MAP2-EGFP, and either SOD1WT or SOD1G93A. Scale 
bar: 50 µm. B) Total neurite length of motor neurons expressing DsRed2-Mito, MAP2-GFP, and 
either SOD1WT or SOD1G93A. C) Scheme for neurite branching quantification. D) Number of 
branches of motor neurons expressing DsRed2-Mito, MAP2-GFP, and either SOD1WT or 
SOD1G93A. P value: two-tailed paired Student’s t-test, n = 10. 

 

 

 

2.3.5 DRP1K38A restores mitochondrial morphology in SOD1G93A neurons 

Altered mitochondrial morphology has been demonstrated in both ALS patients and cell 

culture models (Kong and Xu, 1998; Magrane and Manfredi, 2009; Sasaki and Iwata, 2007). 

Therefore, impaired mitochondrial dynamics may play a causal role in ALS pathogenesis. 

Dominant-negative DRP1K38A harbors an inactive GTPase domain and thus inhibits 

mitochondrial fission activity (Smirnova et al., 2001; Smirnova et al., 1998; van der Bliek et al., 

1993).  It has been reported that DRP1K38A restores mitochondrial fission and fusion balance 

and provides protection against cell death in neurodegenerative models (Song et al., 2011). 

However, the effect of DRP1K38A on mitochondrial dynamics in ALS has yet to be examined. To 

test whether blocking excessive mitochondrial fission by Drp1K38A could rescue SOD1G93A-

induced mitochondrial fragmentation and neuronal cell death, we co-transfected primary 

cortical neurons with SOD1WT or SOD1G93A, DsRed2-Mito, and DRP1K38A. Co-expression of 

SOD1G93A and DRP1K38A produced elongated mitochondria similar to those in neurons 
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expressing SOD1WT (Figure 10A).  To validate these observations, we scored the neurons and 

found that SOD1G93A neurons had 61% mitochondrial fragmentation, which was decreased to 

48% by DRP1K38A co-expression (Figure 10B). The mitochondrial fragmentation scheme was also 

correlated with neuronal cell death (Figure 10C). In summary, these results indicate that 

DRP1K38A is able to rescue mitochondrial fragmentation and neuronal cell death caused by 

SOD1G93A. Moreover, they suggest that imbalanced mitochondrial fission and fusion might be 

the mechanism implicated in ALS, providing the basis for future studies investigating whether 

decreasing DRP1 activity protects against motor neuron death in vivo in animal models of ALS.  
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Figure 10 Inhibiting mitochondrial fission with the GTPase-defective DRP1K38A mutant 

rescues mitochondrial fragmentation and neuronal cell death caused by mutant SOD1G93A.  
 

A) Fluorescence micrographs and close up views of cortical neurons expressing DsRed2-Mito 
and either SOD1WT or SOD1G93A alone or in combination with DRP1K38A introduced at day 2 post 

transfection.  Scale bar, 50 m. Mitochondrial length (Lmito) is indicated as mean ± S.E.M. (n = 
10). B) Mitochondrial fragmentation of cortical neurons expressing DsRed2-Mito and either 
SOD1WT or SOD1G93A alone or in combination with DRP1K38A.  C) Cell death of cortical neurons 
expressing DsRed2-Mito and either SOD1WT or SOD1G93A alone or in combination with DRP1K38A. 
P value: two-tailed paired Student’s t-test. 
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2.3.6 DRP1K38A rescues mitochondrial trafficking defects in SOD1G93A neurons 

To determine whether restoration of mitochondrial fission and fusion balance can also 

rescue mitochondrial axonal transport, we co-expressed SOD1WT or SOD1G93A and DsRed2-Mito 

either alone or in combination with dominant-negative DRP1K38A in cortical neurons. As the 

kymographs show (Figure 11A), there were more horizontal lines in neurons expressing both 

SOD1G93A and DRP1K38A than SOD1G93A alone, which indicates that DRP1K38A expression 

increased mitochondrial bi-directional movement. Quantitative analysis indicates that both 

mitochondrial anterograde and retrograde movement were rescued by Drp1K38A co-expression 

(Figure 11B). Moreover, both mitochondrial velocity (Figure 11C) and motility (Figure 11D) were 

significantly increased by about three-fold in neurons co-expressing SOD1G93A and DRP1K38A.  

Collectively, our data show that mitochondrial transport is rescued by dominant-negative 

DRP1K38A
.  
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Figure 11 DRP1K38A rescues neurons from mitochondrial trafficking defects.  
 

A) Kymographs of mitochondrial transport in cortical neurons expressing DsRed2-Mito and 
either SOD1WT or SOD1G93A alone or in combination with DRP1K38A. B) Mitochondrial directional 
movement in cortical neurons expressing DsRed2-Mito and either SOD1WT or SOD1G93A alone or 
in combination with DRP1K38A. C) Mitochondrial velocity in cortical neurons expressing DsRed2-
Mito and either SOD1WT or SOD1G93A alone or in combination with DRP1K38A.  D) Mitochondrial 
mobility in cortical neurons expressing DsRed2-Mito and either SOD1WT or SOD1G93A alone or in 
combination with DRP1K38A. P value: two-tailed paired Student’s t-test, n = 10. 
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2.3.7 MFN2 cleavage in SOD1G93A transgenic mice 

Previous results indicate that impairment of the mitochondrial fission and fusion 

machinery might interfere with axonal transport and jeopardize cell survival. Mitochondrial 

fragmentation results from either excessive fission or inadequate fusion. By chance, abnormal 

MFN2 cleavage has been observed in SOD1G93A transgenic mice.  

As an OMM protein, full-length MFN2 is slightly decreased in the mitochondrial fraction 

of SOD1G93A transgenic mice (Figure 12). Interestingly, there is a significant increase in the signal 

in the cytoplasmic fraction of transgenic mice. Using different MFN2 antibodies (Santa Cruz 

50331 and Sigma M6664), which recognize different domains in MFN2, two different fragments 

(60 KD and 45 KD) were observed. Coincidently, both of the fragments were located in the 

cytoplasm with a stronger signal in SOD1G93A transgenic mice, suggesting the cleaved fragments 

were released from the mitochondria. 

Although it has not been proven that these fragments were part of MFN2, these findings 

suggest that MFN2 was cleaved by abnormal protease activation in SOD1G93A transgenic mice. 

Such cleavage may directly impair mitochondrial fission and fusion balance, and thus, 

mitochondrial dysfunction in ALS mice. 
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Figure 12 MFN2 cleavage in ALS mice. 
 

Western Blot of MFN2, ACTIN, and HSP60 in 5-month-old control or SOD1G93A mice spinal cords 
with MFN2 antibody recognition domains. 
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2.3.8 Disruption of mitochondrial dynamics in response to SNOC treatment 

Elevated NO levels have been implicated in ALS pathogenesis. NO reacts with 

superoxide and forms peroxynitrite, which causes oxidative stress (Bossy-Wetzel et al., 2004). 

Nitrosative stress is known to trigger mitochondrial fragmentation and neuronal cell death 

(Barsoum et al., 2006). To investigate whether NO causes mitochondrial fragmentation by 

negatively regulating the mitochondrial fission and fusion machinery, time course experiments 

were performed using S-nitrosocysteine (SNOC) treatment in HEK cells. 

As expected, NO directly interferes with expression of mitochondrial fission and fusion 

machinery proteins. Two hours after 100 M SNOC treatment, DRP1 expression level starts to 

increase (Figure 13), suggesting more mitochondrial fission might occur. In addition to DRP1 

protein levels, it is known that posttranslational modifications also regulate DRP1 GTPase 

activities, such as phosphorylation, SUMOylation, and ubiquitination. Therefore, it will be 

worthwhile in the future to investigate whether NO induces mitochondrial fragmentation 

through direct enhancement of DRP1 activity by posttranslational modification.  

In addition to increasing DRP1 expression levels, SNOC triggers cleavage of the OPA1 

long-isoform into the short-isoform, resulting in a loss of mitochondrial fusion (Figure 13). OPA1 

has different isoforms resulting from both alternative mRNA splicing and proteolytic cleavage 

(Akepati et al., 2008; Song et al., 2007). Further studies revealed that only the long-isoform of 

OPA1 is required for mitochondrial fusion, because only long-isoform OPA1 was able to protect 
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against mitochondrial fragmentation (Ishihara et al., 2006). Thus, cleavage of the long-isoform 

results in loss of fusion activity, and in turn, mitochondrial fragmentation.  

Moreover, full-length MFN2 (86 KD) protein levels decreased while fragment (64 KD and 

46 KD) levels increased (Figure 13). Fragments were of the same molecular weight as those 

observed in ALS transgenic mice (Figure 12). Although it remains to be confirmed that these 

fragments belong to MFN2, full-length MFN2 was definitely degraded in response to SNOC 

treatment. 

Collectively, these data suggest that NO impairs protein expression and proteolytic 

cleavage of the mitochondrial fission and fusion machinery, including DRP1, OPA1, and MFN2, 

which in turn shifts the balance of mitochondrial dynamics toward fission. 
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Figure 13 Alteration of protein levels in mitochondrial fission and fusion machinery. 
 

Western blots of DRP1, OPA1, MFN2, and Actin in HEK cells after 300 M SNOC time-course 
treatment. 
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2.4 Discussion 
 

Mitochondrial dysfunction occurs in both ALS patients and animal models of ALS 

(Damiano et al., 2006; Mattiazzi et al., 2002; Wiedemann et al., 2002). Altered mitochondrial 

morphology has been reported in ALS patients, mice, and cell culture models (Kong and Xu, 

1998; Magrane et al., 2009; Sasaki and Iwata, 2007). Thus, abnormal mitochondrial dynamics 

may participate in ALS pathogenesis.  

DRP1 mediates mitochondrial fission and its overexpression increases vulnerability to 

mitochondrial fragmentation and neuronal cell death (Barsoum et al., 2006). In addition, we 

recently reported that DRP1 is activated in HD and decreasing DRP1 activity by expression of 

dominant-negative DRP1K38A mutant restores mitochondrial dynamics, and in turn, rescues 

neuronal cell death (Song et al., 2011).  However, the role of DRP1 in ALS has not been studied. 

In the current work, we report the presence of defective axonal mitochondrial dynamics in 

motor neurons expressing mutant SOD1G93A (Figures 7-9). We also demonstrate that DRP1K38A 

expression restores mitochondrial dynamics (Figure 10). Similarly, neuronal cell death is 

inhibited by decreasing DRP1 activity (Figure 11). Therefore, aberrant mitochondrial dynamics 

might play a causal role in ALS-linked motor neuron degeneration. Recently, Magrane et al. 

reported impaired mitochondrial fusion using photo-switchable fluorescent MitoDendra in 

"pure" motor neuron cultures, which correlated with fewer mitochondria at synapses and 

synaptic loss (Magrane et al., 2012). Fission and fusion are not independent events and impact 

each other. Defects in mitochondrial fusion may result from increased fission rates, which is 



67 
 

consistent with our observations. This provides the basis for future studies using animal models 

of ALS to investigate if decreasing DRP1 activity might mediate neuroprotection in vivo. 

One important consideration in the types of experiments described here is that motor 

neurons are among the most difficult neuronal types to culture in vitro. Recently published 

work has shown abnormal mitochondrial dynamics in ALS models in vitro using either “pure” 

motor neurons, “pure” cortical neurons, or motor neuron-like NSC34 cells (De Vos et al., 2007; 

Magrane et al., 2009; Magrane et al., 2012). However, the reported defects in mitochondrial 

movement are in part inconsistent, which may be due to different experimental models. It is 

our experience that "pure" motor neuron cultures, without astroglial support, are stressed and 

therefore require ample amounts of neurotrophic factors in the culture medium for cell 

survival. An artificial excess of neurotrophins may obfuscate the physiological response of 

motor neurons, and result in conflicting experimental findings. The characteristics of motor 

neurons make analysis a laborious and technically challenging task.  Here, we report an 

improved motor neuron-astrocyte co-culture system. Astrocytes, as supportive cells, are 

important for motor neuron development and functioning (Sidoryk-Wegrzynowicz et al., 2011; 

Walz, 2002). In our system, medium supplementation with neurotrophins is not required for 

motor neuron survival in vitro, providing an advantage. Thus, our motor neuron-astrocyte co-

culture system might represent an improved experimental model for motor neuron studies, 

one which may mimic more closely in vivo conditions. We grew an astrocyte mono-layer and 

seeded the DsRed2-Mito electroporated purified motor neurons on top of the established 

mono-layer (Figure 6). The neurites of these motor neurons not only grew up to several 
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hundred microns in length, but also connected to their astrocyte or motor neuron targets. 

Previous studies have shown that disease progression in ALS might not be cell-autonomous 

(Beers et al., 2006; Harraz et al., 2008; Nagai et al., 2007). There are also several studies 

indicating that mutant SOD1 astrocytes have significant effects on motor neuron degeneration 

in ALS models (Nagai et al., 2007; Yamanaka et al., 2008). Therefore, we believe it is better not 

to omit astrocytes in any study of motor neurons.  Future investigations will test the effects of 

mutant SOD1G93A astrocytes on the mitochondrial dynamics of wild-type motor neurons.  

Mitochondrial fragmentation may result from either excessive fission or inhibition of 

fusion. Although defective mitochondrial dynamics have been shown to be causal events in ALS 

pathogenesis, what causes these defects and how they are caused remain to be illustrated. A 

reduction in MFN protein level was observed in ALS mice with several small fragments (Figure 

12), suggestive of a novel cleavage of MFN2. Further studies are required to prove novel 

protein processing of MFN2. To date, no direct interaction between SOD1 and MFN2 has been 

identified, but it is possible that SOD1G93A-induced reduction of MFN2 may be mediated by ROS 

signaling. Previous reports have already indicated that nitrosative/oxidative stress triggers 

mitochondrial fragmentation by a mechanism that is not fully understood (Barsoum et al., 

2006). Of note, nitrosative/oxidative damage has also been implicated in ALS pathogenesis 

(Mattiazzi et al., 2002). Recently, Bosco et al. reported that purified oxidized SOD1WT from 

sporadic ALS patient tissues can induce defects in fast axonal transport (Bosco et al., 2010). 

These findings not only suggest an SOD1-dependent mechanism in sporadic ALS, but also 

highlight the critical role of nitrosative/oxidative stress. Here, levels of proteins involved in 
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mitochondrial fission and fusion changed in response to SNOC treatment (Figure 13). DRP1 

levels increased after 4 h SNOC treatment, while both OPA1 and MFN2 were cleaved (Figure 13). 

Therefore, ROS may mediate an increase in mitochondrial fragmentation in ALS by enhancing 

DRP1 protein stability and inducing cleavage of MFN2 and OPA1. 

In summary, we generated a novel astrocyte-motor neuron co-culture system, which 

provides an improved model for studies of mutant SOD1G93A-induced toxicity in vitro. 

Moreover, we found that defects in the mitochondrial fission and fusion equilibrium play a 

functional role in mutant SOD1G93A-induced defects in mitochondrial trafficking and neuronal 

cell death. Although the precise underlying mechanisms require further investigation, our study 

suggests that ROS signaling may be involved in the regulation of proteins mediating 

mitochondrial fission and fusion. Agents that modulate DRP1 activity may hold potential to slow 

motor neuron neurodegeneration linked to ALS. 
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CHAPTER THREE: MITOCHONDRIAL DYNAMICS DEFECTS IN HD 
 

3.1 Overview of HD 
 

3.1.1 Mutant HTT and HD 

HD is a fatal dominant inherited neurodegenerative disorder characterized by 

involuntary movements and cognitive defects (Burns et al., 1990; Lin and Beal, 2006; Vonsattel 

et al., 1985). The ratio of HD occurrence is 1 in 10,000 and patients usually die within 10–15 

years of disease onset. Usually HD onset occurs between the ages of 35 and 50 and 10% of 

patients develop symptoms before age 20. Common symptoms of HD include weight loss and 

disturbances in emotion, memory, and movement. Most HD patients die from aspiration 

pneumonia.  Medium spiny neuronal loss has been reported in the striatum of basal ganglia, 

and further MRI studies revealed a significant reduction in the cortex and hippocampus of HD 

patients (Byers et al., 1973; Vonsattel et al., 1985). 

 Nearly 20 years ago, the IT-15 gene with abnormal CAG trinucleotide repeats in its 

exon-1 was identified as the cause of this inherited disease (Group, 1993). IT-15 is also called 

the HTT gene, which encodes the HTT protein. Because CAG codes for glutamine (Q), the CAG 

repeat region is named the polyglutamine (PolyQ) domain. In normal persons, PolyQ repeats 

range from 6 to 35, while expansion to 40–120 repeats leads to HD. Persons carrying 36 to 40 

repeats may or may not develop HD. However, due to the instability of CAG repeats, an 

increase in the length of the PolyQ expansion can occur from generation to generation. 
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Therefore, descendants may be at risk of getting the disease even if the parents were healthy 

(Ranen et al., 1995). Disease onset correlates with the number of polyQ repeats with more 

repeats generally resulting in earlier onset (Reddy et al., 1999a; Reddy et al., 1999b). In 

particular, an expansion of more than 60 polyQ is usually associated with juvenile HD. 

 

3.1.2 Huntingtin 

3.1.2.1 Huntingtin structure 

HTT is a 348 KD scaffold protein with 3144 amino acids, which is mostly located in the 

cytoplasm (Figure 14).  The PolyQ domain is found in the N-terminal portion of HTT and has 

been proposed to form a polar zipper structure, binding other PolyQ regions in transcription 

factors to regulate transcription (Perutz et al., 1994). In addition, the PolyQ region has been 

found to bind directly with a number of partners (Harjes and Wanker, 2003). Depending on the 

binding partner, the PolyQ stretch undergoes a conformational change, forming an -helix, 

random coil, and extended loop (Kim et al., 2009). Furthermore, the structure of the PolyQ is 

stabilized by a polyproline region (PolyP) directly adjacent to the PolyQ towards the C-terminus.  

The HEAT domain, which favors protein-protein interactions, repeats several times in 

HTT (Andrade and Bork, 1995). Such a feature further supports protein interactions between 

PolyQ and its binding partners, which might be the physiological function of HTT.  

HTT also contains sequences for a nuclear export signal (NES) and nuclear localization 

signal (NLS), indicating that HTT shuttles between the nucleus and cytoplasm (Cornett et al., 
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2005; Xia et al., 2003). In addition, sequences involved in the association with other organelles 

have been identified, including mitochondria, Golgi, and ER (Kegel et al., 2002; Rockabrand et 

al., 2007; Strehlow et al., 2007). 

 

 

 

Figure 14 Domain model of HTT. 
 

 

 

 

3.1.2.2 Huntingtin function 

 HTT is a ubiquitous protein expressed in all types of tissues. Neurons have the highest 

expression levels of HTT, particularly in cortical pyramidal neurons that project to striatal 

neurons (Fusco et al., 1999). Because both cortical and striatal neurons are the major targets of 
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mutant HTT in HD, it is possible to speculate that HTT plays an extremely important role and 

mutant HTT may lose its normal function in these two neuronal types. Thus, the question 

remains, what function does HTT play in neurons? 

The evolution of the HTT gene provides some hints about its function in neurons. HTT is 

highly conserved in vertebrates; however, little HTT is found in invertebrates, which contain 

fewer conserved regions (Li et al., 1999). The evolution of the HTT sequence is aligned with the 

development of the nervous system, suggestive of a specific role in neuronal functions 

(Candiani et al., 2007; Gissi et al., 2006; Tartari et al., 2008). In particular, the N-terminus of HTT, 

which contains a PolyQ tract, is a region newly acquired during evolution, indicating its 

importance (Tartari et al., 2008). 

Recently, more detailed functions of HTT have been identified. HTT is essential for 

embryonic development, as embryonic death occurs in double HTT knock-out mice (Nasir et al., 

1995). Further studies revealed that HTT is important in development and neuronal survival of 

the forebrain (Reiner et al., 2003).  Degeneration is specific to Hdh-/- cells (HTT homolog in 

mouse) in the cortex and striatum, the regions most affected in HD (Reiner et al., 2003). Thus it 

is clear that HTT normally functions in neuronal development and survival in the cortex and 

striatum, suggesting that mutant HTT disrupts the normal function of WT HTT, which leads to 

HD. 

Studies of the role of HTT in neuronal survival have revealed an anti-apoptotic function 

of HTT. Both in vitro and in vivo studies have proved that WT HTT protects neurons from 

apoptosis in response to different toxins, while HTT depletion increases caspase-3 activity (Ho 
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et al., 2001; Rigamonti et al., 2000; Zhang et al., 2006). The mechanism of WT HTT protection 

may be involved in the blockage of apoptosome formation (Rigamonti et al., 2000). In addition, 

HTT directly interacts with caspase-3, inhibits its proteolytic activity, and protects cells from 

further apoptosis (Zhang et al., 2006). Therefore, loss of HTT directly increases caspase activity 

and cell death. 

Another important activity of HTT is its association with brain-derived neurotrophic 

factor (BDNF) transcription, transport, and synaptic secretion. BDNF is highly expressed in the 

cerebral cortex, where it is secreted and induces synaptic growth of medium spiny neurons 

(Zuccato and Cattaneo, 2007). WT HTT up-regulates transcription of BDNF, while loss of HTT 

leads to 50% reduction in BDNF transcription (Zuccato et al., 2001). The mechanism of how HTT 

regulates BDNF transcription has been well defined. Neuron-restrictive silencer element (NRSE) 

is located in the promoters of a number of neuron-specific genes including BDNF and regulates 

gene expression during neuronal development through recognition by neuron-restrictive 

silencer factor (NRSF) (Ooi and Wood, 2007). WT HTT has been shown to interact with NRSF 

through Huntingtin-associated protein 1 (HAP1) and Rab-interacting lysosomal protein (RILP) in 

the cytoplasm, preventing NRSF recruitment to the NRSE in the nucleus, which in turn activates  

gene transcription (Shimojo, 2008). Thus, it is clear that HTT participates in the regulation of 

BDNF gene transcription during neuronal development. 

After transcription, BDNF gets translated in the ER and moves to the synapses via 

vesicular transport along microtubules. HTT has been shown to regulate vesicular transport 

through interaction with the p150 subunit of Dynactin via HAP1 (Gauthier et al., 2004). The 
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Dynactin/Dynein motor complex is responsible for both vesicular and mitochondrial transport, 

suggesting that mitochondrial transport is also regulated by HTT. There is evidence indicating 

that loss of HTT causes defective axonal transport of both vesicles and mitochondria (Trushina 

et al., 2004). In addition, phosphorylation of HTT at S421 mediates anterograde transport, 

further suggesting a role of HTT in regulation of axonal transport (Colin et al., 2008). Thus, HTT 

appears to be involved in the vesicular transport of BDNF, as well as mitochondria. 

Synaptic activity is one of the most important functions of neurons. HTT has been shown 

to regulate synaptic activity via interactions with both vesicles and cytoskeletons (Smith et al., 

2005). Therefore, in addition to BDNF transcription and transport, HTT is also involved in its 

transmission, which in turn regulates the survival and development of other neurons. Of course, 

HTT could also participate in synaptic functions other than BDNF release. 

Collectively, HTT seems to be involved in multiple functions, including transcription 

regulation, axonal transport, and synaptic activity. Multiple studies suggest that HTT plays an 

essential role in neuronal survival and development. Thus, it is not surprising that loss of HTT 

function results in neurodegeneration. 

 

3.1.3 Mutant HTT-mediated toxicity in HD 

Although the exact function of HTT is not fully understood, abnormal polyQ expansion 

has been thought to interfere with normal HTT function and produce a toxic gain of function. 
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Several underlying mechanisms have been proposed to explain HD pathogenesis, including 

transcriptional dysregulation, excitotoxicity, and mitochondrial dysfunction (Figure 15). 

 

 

 

 

 

Figure 15 Proposed mechanisms for HD. 
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3.1.3.1 Transcriptional dysregulation 

HTT is a large scaffold protein that interacts with more than 200 proteins (Li and Li, 2004; 

Sugars and Rubinsztein, 2003). The PolyQ region is an important domain involved in protein 

interactions. Thus, abnormal PolyQ expansion can either interfere with normal protein-protein 

bindings or promote abnormal interactions to mediate mutant HTT toxicity.  

Abnormal PolyQs interact with the nuclear pore protein TPR, resulting in mutant HTT 

accumulation in the nucleus (Cornett et al., 2005). Several transcriptional factors have been 

identified that bind to mutant HTT, including the cAMP response element binding protein 

(CREB), specificity protein 1 (Sp1), TAFII130, p53, and the nuclear scaffold protein NAKAP (Bae 

et al., 2005; Huang et al., 1998; Sayer et al., 2005; Shimohata et al., 2000; Sugars and 

Rubinsztein, 2003). Such abnormal interactions may disrupt gene transcription, expression, and 

in turn, activity. For example, mutant HTT interacts with Sp1, interfering with its binding to DNA 

and reducing transcriptional activity (Dunah et al., 2002; Li et al., 2002). Moreover, less binding 

affinity between mutant HTT and NRSF enhances NRSE recognition by NRSF, which decreases 

gene transcription (Zuccato and Cattaneo, 2007). Thus, by transcriptional regulation, mutant 

HTT can directly interfere with multiple signaling pathways in neurons. Several important 

signaling pathways have been identified.  

1) Apoptosis. Mutant HTT binds to p53, up-regulates p53, and increases p53 activity, 

which in turn up-regulates transcription of BAX and PUMA and mediates mitochondrial damage 

(Bae et al., 2005). BAX and PUMA, members of Bcl-2 family, are both known to be pro-
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apoptotic proteins. Up-regulation of BAX and PUMA triggers apoptosis by releasing 

mitochondrial apoptogenic proteins, such as cytochrome c, SMAC, and apoptosis inducing 

factor (AIF). Silencing of p53 by RNAi protects against mitochondrial depolarization and 

neuronal cell death (Bae et al., 2005).  

2) Neuronal survival. BDNF is a crucial neurotrophin for neuronal survival, whose 

transcription is also regulated by mutant HTT through enhanced recruitment of REST/NRSF to 

its promoter (Zuccato et al., 2003). Mutant HTT impairs BDNF expression, and thus, neurons are 

more vulnerable in response to toxic stressors (Zuccato et al., 2001; Zuccato et al., 2003).   

BDNF -/- mice are phenotypically similar to HD mice, suggesting that BDNF loss could be a 

critical contributor to HD pathogenesis (Baquet et al., 2004).  

3) Mitochondrial biogenesis and ROS suppression. Peroxisome proliferator-activated 

receptor-  co-activator 1  (PGC-1 ) is a transcriptional co-activator involved in mitochondrial 

biogenesis, oxidative defense, and thermogenesis (Puigserver and Spiegelman, 2003). PGC-1  

binds to transcription factor nuclear respiration factor-1 and -2 (NRF-1, 2), which regulate 

transcription of mitochondrial proteins, including cytochrome c and components of the ETC 

complexes. In addition, PGC-1  participates in ROS suppression by up-regulating antioxidant 

enzymes, such as SOD1, manganese superoxide dismutase (SOD2), catalase, and glutathione 

peroxidase (St-Pierre et al., 2006). It is well known that the PGC-1  pathway is impaired in HD 

(Cui et al., 2006; St-Pierre et al., 2006; Weydt et al., 2006). Mutant HTT interferes with the 

formation of CREB/TAF4 complexes at the PGC-1  promoter, causing a decrease in PGC-1  

transcription (Cui et al., 2006). Reduced PGC-1  expression has been observed in both HD 
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transgenic mice and HD postmortem brains. Therefore, this reduction by mutant HTT directly 

mediates mitochondrial dysfunction and cellular oxidative stress. 

 

3.1.3.2 Impaired axonal transport 

As discussed above, WT HTT interacts with the p150 subunit of Dynactin via HAP1 and 

mediates its association with microtubules. However, mutant HTT has an abnormally increased 

binding affinity with HAP1, which leads to a reduced association between the p150 subunit of 

Dynactin and the microtubules. Such reduction directly causes defective axonal trafficking (Zala 

et al., 2008). In addition, phosphorylation of HTT S421 has been shown to regulate directional 

axonal transport. A reduction in phosphorylated HTT S421 has been observed in both HD 

animal models and human post mortem tissues (Colin et al., 2008; Warby et al., 2005). The 

aberrant post-translational modification further impairs vesicular and mitochondrial 

distribution in neurons. For example, mutant HTT not only interferes with BDNF transcription, 

but also impairs its vesicular trafficking (del Toro et al., 2006). The impaired axonal anterograde 

transport further reduces BDNF release and abolishes BDNF-mediated neuronal protection in 

the brain. It has been shown that hyperphosphorylation of HTT at S421 restores vesicular 

transport and BDNF release (Zala et al., 2008). Other organelles, such as mitochondria, might 

also be affected by mutant HTT-induced defective transport (discussion later).  



80 
 

3.1.3.3 Excitotoxicity 

Synapses are the functional sites in neurons. Excitotoxicity has been proposed to be a 

pathogenic mechanism that results in synaptic dysfunction and cell death, which is a common 

phenomenon in neurodegeneration characterized by the “dying back” pattern. As the major 

excitatory neurotransmitter, glutamate over-stimulation is associated with excessive ion influx, 

resulting in excitotoxicity and neuronal cell death. There are three contributors to glutamate 

receptor overstimulation: increased glutamate release from cortical neurons, reduced 

glutamate up-take by astrocytes, and altered sensitivity of NMDA receptors (Fan and Raymond, 

2007). 

As one of the first mechanisms proposed for HD, decreased NMDA receptor levels were 

first observed in human HD patients more than 20 years ago (Albin et al., 1990; Young et al., 

1988). Striatal neurons usually have high expression levels of NMDA and NMDA receptors, and 

loss of NMDA receptors makes them vulnerable to glutamate stimulation.  

Along the cortico-striatal track, pre-synaptic activities of cortical neurons directly 

interfere with survival and growth of their downstream targets, striatal neurons. Increased 

glutamate release has also been observed in HD patients, resulting in excitotoxicity in striatal 

neurons (Reilmann et al., 1994). Excessive calcium influx is accompanied by glutamate over 

stimulation. The elevated intracellular Ca2+ levels may cause mitochondrial Ca2+ overload and 

trigger apoptosis. 
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Decreased glutamate up-take by astrocytes further induces excitotoxicity. Mutant HTT 

impairs not only transcription of the glutamate transporter (GLT1), but also glutamate up-take 

activity in astrocytes, resulting in glutamate accumulation in the synaptic clefts (Arzberger et al., 

1997; Hassel et al., 2008). Up-regulating GLT1 expression attenuated neuropathy in a HD mouse 

model, suggesting the glutamatergic pathway plays a role in HD pathogenesis (Miller et al., 

2008). 

In sum, excitotoxicity by glutamate over stimulation causes high levels of intracellular 

Ca2+, which in turn leads to apoptosis through impaired mitochondrial buffering. 

 

3.1.3.4 Mitochondrial dysfunction 

 As previously discussed, transcriptional dysregulation and excitotoxicity can indirectly 

impair mitochondrial function and mediate apoptosis caused by mutant HTT through 

transcriptional regulation of PGC1-  and p53. There is also strong evidence indicating that 

mutant HTT can directly bind to mitochondria and cause mitochondrial dysfunction.  

1) Decreased glucose metabolism. Increased lactate has been reported in the striatum 

of HD patients, suggestive of decreased glucose utilization (Jenkins et al., 2005) and reflective of 

altered mitochondrial metabolism that occurs in HD patients. Such defects have been 

demonstrated to correlate with impaired recall memory and verbal learning in HD patients 

(Hayden et al., 1986; Kuhl et al., 1982; Kuwert et al., 1990; Young et al., 1986).  
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2) Decreased ETC complex activity. The decreased mitochondrial metabolism may be 

associated with decreased mitochondrial respiration. Severe impairments in Complexes II and 

III and minor defects in Complex IV have been observed in postmortem brain samples of HD 

patients (Brennan et al., 1985; Browne et al., 1997; Butterworth et al., 1985; Gu et al., 1996). 

Moreover, in transgenic HD mouse models, impairment of Complexes I, II, III, and IV was 

observed (Pandey et al., 2008). The decrease in respiratory complex activity might result from 

both impaired transcription in the nucleus and mitochondrial DNA deletion (Horton et al., 1995). 

In addition, reduced OXPHOS activity can lead to decreased ATP production, which directly 

impairs all ATP-dependent cell signaling pathways (Lodi et al., 2000).  

One good example of the relationship between mitochondrial respiration and HD is the 

OXPHOS complex II inhibitor 3-NP that mimics HD pathogenesis. Inhibition of Complex II results 

in ROS induction and oxidative damage, which is crucial for mutant HTT-mediated neuronal cell 

death (Browne and Beal, 2006).  

3) Reduced Ca2+ buffering and depolarized mitochondrial membrane potential. Mutant 

HTT might directly interact with the OMM, forming aggregates and impairing mitochondrial 

functions, including Ca2+ buffering capacity and mitochondrial membrane potential (Choo et al., 

2004). Reduced Ca2+ buffering capacity has been observed in HD transgenic mice and in 

lymphocytes from HD patients (Panov et al., 2002). One piece of convincing evidence is that 

incubation of mutant HTT and mitochondria in vitro results in impaired Ca2+ up-take capacity 

(Choo et al., 2004; Panov et al., 2002). Moreover, this effect is tissue specific and mitochondria 

in the striatum appear to be more sensitive (Brustovetsky et al., 2005). 
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4) Impaired mitochondrial trafficking. HTT has been shown to interact with several 

molecular motors and regulate microtubule-based transport, including Kinesin and Dynein 

(Gauthier et al., 2004; McGuire et al., 2006). Phosphorylation of HTT determines the direction 

of vesicular transport (Colin et al., 2008). Because mitochondria and vesicles share similar 

molecular motors for transport, HTT might play an important role in regulation of mitochondrial 

trafficking. Loss of WT HTT or expression of mutant HTT results in defective transport of 

mitochondria in Drosophila (Gunawardena et al., 2003). On the other hand, aggregates of 

mutant HTT are believed to physically block mitochondrial transport (Chang et al., 2006; 

Trushina et al., 2004). Due to the importance of mitochondria, mutant HTT-mediated defective 

mitochondrial trafficking may directly result in neurodegeneration and eventual cell death. 

 

3.1.4 Mitochondrial dynamics and HD 

Mitochondrial dynamics, including fission, fusion, and transport, are essential for 

maintenance of normal mitochondrial function. As described previously, mitochondrial 

dysfunction is implicated in HD; however, the molecular mechanism by which mutant HTT 

causes mitochondrial dysfunction requires further investigation. Here, we propose that mutant 

HTT-mediated imbalance in mitochondrial fission and fusion is the mechanism involved in HD.  

Much evidence indicates that altered mitochondrial fission and fusion balance directly 

leads to neurodegeneration. Mutations in MFN2, a GTPase that mediates OMM fusion, cause 

CMT-2A (Kijima et al., 2005; Zuchner et al., 2004). In addition, mutations in OPA1, the IMM 
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fusion protein, lead to ADOA (Alexander et al., 2000; Delettre et al., 2000). Mutations in these 

two proteins not only cause mitochondrial fragmentation, but also affect mitochondrial 

trafficking and respiration (Chan, 2006; Kang et al., 2008). DRP1, the mitochondrial fission 

GTPase, is recruited to mitochondria by Dynein (Varadi et al., 2004). Disruption of the 

Dynactin/Dynein complex results in lack of DRP1 recruitment to mitochondria, and in turn, 

abnormal mitochondrial morphology and distribution. In sum, mitochondrial fission and fusion 

are tightly coupled to mitochondrial transport. Moreover, disruption of this balance clearly 

leads to neuronal dysfunction. 

As described above, mutant HTT causes mitochondrial dysfunction, including impaired 

Ca2+ buffering, mitochondrial DNA deletion, and decreased respiration. All these defects may 

result from an imbalance in mitochondrial fission and fusion. Thus, we hypothesize here that an 

imbalance in mitochondrial dynamics causes mitochondrial dysfunction, which in turn may be 

the primary mechanism implicated in HD.  

Interestingly, mutant HTT has been observed to form aggregates, which localize to the 

mitochondrial membrane in a DRP1-like pattern around the mitochondria, suggesting that 

mutant HTT may be involved in the mitochondrial fission complex and regulation of 

mitochondrial fission (Panov et al., 2002). In addition, HTT has been shown to bind to Dynamin, 

which is involved in synaptic transmission (Kaltenbach et al., 2007; Qin et al., 2004).  As the 

homolog of Dynamin, it is reasonable to speculate that DRP1 interacts with mutant HTT and 

enhances mitochondrial fission. Moreover, it has been shown that DRP1, MFN2, and BAX are 

co-localized in the foci during apoptosis (Karbowski et al., 2002). Mutant HTT may interfere 
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with this complex formation, mediating mitochondrial fission and inducing apoptosis. In 

addition, it has been found that HTT interacts with Dynactin through HAP1, thus regulating 

mitochondrial trafficking (McGuire et al., 2006). DRP1 is most likely also involved in this 

complex, because the Dynein/Dynactin complex recruits DRP1 during mitochondrial transport. 

In sum, mutant HTT may interact with DRP1, induce mitochondrial fission and defective 

transport, mediate mitochondrial dysfunction, and eventually lead to neuronal cell death. 
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3.2 Materials and Methods 
 

3.2.1 Reagents 

The pDsRed2-Mito was purchased from Clontech. The plasmids pGW1-htt exon1-Q17-

EGFP, pGW1-htt exon1-Q46-EGFP, and pGW1-htt exon1-Q97-EGFP were obtained from Dr. S. 

Finkbeiner (University of California-San Francisco). The pcDNA3.1-Q25-GFP and pcDNA3.1-Q97-

GFP were provided by Dr. L. Thompson (University of California-Irvine). The YFP-DRP1 plasmid 

was obtained from Dr. R. Youle (US National Institutes of Health (NIH)). The pcDNA3-DRP1K38A 

plasmid was obtained from Dr. A. van der Bliek (University of California-Los Angeles). The MFN2 

(p82-FzoRV12pECFP-C1) was obtained from Dr. R. Slack (University of Ottawa). The pcDNA3.1 -

shRNA-DRP1 and pcDNA3.1 -scramble were obtained from Dr. S. Strack (University of Iowa). All 

plasmids were purified using the Endotoxin-free Marligen Maxiprep Kit (Diagnostic technology, 

Belrose, Australia). 

HEPES was purchased from Omega Scientific (Tarzana, CA, USA). Poly-L-lysine, BSA, 

Penicillin-streptomycin (Pen/Strep), formaldehyde, pyruvate, and F-12 HAM were all obtained 

from Sigma-Aldrich (St. Louis, MO, USA). Custom-made phenol-free DMEM/high glucose and 

bovine calf serum (BCS) were obtained from Thermo Scientific (Rockford, IL, USA). Glutamax 

was purchased from Gibco (Carlsbad, CA, USA). Lipofectamine 2000, Hoechst 33342, and 

neurobasal medium were purchased from Invitrogen (Carlsbad, CA, USA). Protease inhibitor 

cocktails were purchased from Roche (Indianapolis, IN, USA). EDTA was purchased from 

Calbiochem (Darmstadt, Germany). Mouse antibodies to HTT (MAB2166) were obtained from 
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Millipore (Billerica, MA, USA). Rabbit antibodies to DRP1 (H300) were obtained from Santa Cruz 

(Santa Cruz, CA, USA). Sheep anti-mouse IgG-HRP was purchased from GE Healthcare 

(Pittsburgh, PA, USA). 

 

3.2.2 Mice and rats 

YAC18 (line 212) and YAC 128 (line 53) mice in FVB/N background were used for co-

immunoprecipitation experiments. These mice were generated to express full-length human 

huntingtin with 18 and 128 glutamines, respectively.  

Pregnant rats of the Sprague-Dawley background (Charles River) were used for primary 

cortical cultures. 

All experiments were approved by the Institutional Animal Care and Use Committee of 

University of Central Florida College of Medicine. 

 

3.2.3 Human fibroblasts 

Untransformed fibroblasts from HD patients GM05539 (onset at 2 year-old), GM04693 

(onset at 41 year-old), and normal subject I91L17, were purchased from the Coriell Institute for 

Medical Research and cultured following their instructions. 
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3.2.4 Primary cortical neurons and transfection 

Cortical neurons (400,000 cells/ml) were prepared from E18 rat embryos (Barsoum et 

al., 2006; Song et al., 2011) and transfected at 5 DIV with Lipofectamine 2000 (Invitrogen). Cells 

were cultured in neurobasal medium (Gibco) supplemented with 2% Neuronal Supplement 21, 

1× Pen/Strep, 2 mM GlutaMAX. Neuronal Supplement 21 was prepared according to Chen et al. 

(Chen et al., 2008). Experiments were carried out two days after transfection. 

 

3.2.5 Fluorescence microscopy 

Both fixed and live-cell imaging of neurons was performed using an Axiovert Zeiss 100M 

inverted fluorescence microscope equipped with a Plan Apochromat 63×1.4 NA oil objective, a 

DG-4/Lambda 10-2 combo Xe-arc illumination unit (Sutter), and a Sensicam QE cooled CCD 

camera (PCO AG, Germany) controlled by MetaMorph 7.1 software (Molecular Devices) as 

previously described (Song et al., 2008).  The excitation filter for DsRed2-Mito was S555/28× 

(Chroma) and the emission filter was S617/73m (Chroma). The excitation filter for EGFP was 

S490/20× (Chroma) and the emission filter was S528/38m (Chroma). Images were acquired 

using the Multi Dimensional Acquisition module in MetaMorph 7.1 (2×2 binning, 0.2 m step 

size, and 15-20 z-planes). The z-series were processed by de-hazing followed by Fast Fourier 

Transform. Images were saved and exported as TIFF files after surface rendering using 

MetaMorph 4D-viewer. 
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For live-cell imaging, cortical neurons were plated on Lab-Tek II (#1.5 German 

Coverglass) 8-chamber slides (Thermo Fisher) at a density of 150,000 to 200,000 cells per 

chamber in neurobasal medium without phenol red (see detail in 3.2.4). A region containing 

100 m neurites in 10 neurons were selected and recorded for 5 min with 5 sec intervals at 37 

°C under a humidified 5% CO2 atmosphere. To limit photobleaching and phototoxicity, a 5 m z-

stack was acquired with 1 m step size (2×2 binning) for each time point. Each z-stack was de-

hazed and maximum projected in MetaMorph 7.1. To quantify mitochondrial movement, 

kymographs were generated with all planes, 25 m line width, and average projected without 

background subtraction. The parameters of mitochondrial velocity and moving distance were 

exported from MetaMorph 7.1 into Excel for further analysis. Mitochondrial velocity ≥ 20 

m/min was classified as motile, while velocity < 20 m/min was classified as stationary. 

 

3.2.6 Confocal microscopy 

Images of fibroblasts were acquired using a Leica TCS SP5 confocal microscope with a 

40× oil HCXPLAPO objective controlled by LAS AF software. Z-stacks with 0.3 m step size (1024 

× 1024 dpi) were obtained using a 543 HeNe laser. The stacks of the representative images 

were processed by surface rendering using MetaMorph 4D-viewer. 

Images of the co-localization were acquired using a NikonA1R VAAS Laser Point- and 

Resonant-Scanning confocal microscope equipped with a 32-channel spectral detection, 

deconvolution, ultra-sensitive VAAS detector, Perfect Focus (PFS), and a CFI Plan Apochromat 
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VC 60× WI NA 1.20, W.D. 0.27 mm objective. Single photon Ar-ion laser was emitted at 488 nm 

and 514 nm; diode laser, emitting at 561 nm. Both image acquisition and processing were 

performed using Nikon Elements. 

 

3.2.7 Scoring of mitochondrial fragmentation and neuronal cell death 

Two days after transfection, the primary cortical neurons were fixed with 3.7% 

formaldehyde and 5% sucrose in PBS for 15 min at 37 °C. Nuclei were stained by Hoechst 33342 

(1:10,000 in PBS) at room temperature for 10 min.  

Fibroblasts were seeded at a density of 10,000 cell/ml and analyzed at 6 DIV. 

Mitochondria were stained with MitoTracker Red CMXRos (100 nM).  

Scoring was performed by two individuals independently. Statistics: ANOVA post-hoc 

test. 

 

3.2.8 Immune precipitation and western blotting 

Brain tissues from 2 month old YAC18 and YAC128 mice were lysed in T-PER buffer 

(1:10) (Thermo Scientific) with protease inhibitors (Roche). Protein concentrations were 

determined by BCA test (Pierce). Lysates (500 g) were used to perform immune precipitation 

by incubating with 30 l monoclonal mouse-anti-DRP1 antibodies (Santa Cruz) at 4 °C, 

overnight, and then incubating with 50 l protein G sepharose (GE Healthcare) at 4 °C for 2 h. 

Unbound proteins were removed by washing 3 times with ice-cold lysis buffer and the 
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remaining proteins were then loaded onto NuPAGE 3-8% Tris-Acetate gels (Invitrogen) under 

reduced conditions and transferred to nitrocellulose membranes (Hybond-ECL Nitrocellulose, 

0.22 m, GE Healthcare). The membranes were blotted with monoclonal mouse-anti-HTT 

antibodies at 1:1,000 (Millipore) followed by sheep-anti-mouse IgG-HRP at 1:10,000 (GE 

Healthcare). 

 

3.2.9 Statistics 

Results are expressed as means ± S.E.M. Data from two populations were compared 

using a Student’s t-test, paired, two-sided. Data from multiple populations were analyzed with 

ANOVA post-hoc test. 
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3.3 Results 
 

3.3.1 Mutant HTT triggers mitochondrial fragmentation and neuronal cell death 

Mitochondrial dynamics are important for neuronal function and survival, and defects in 

mitochondrial dynamics have been implicated in neurodegeneration. To investigate whether 

mutant HTT triggers defective mitochondrial dynamics, primary cortical neurons were 

transfected with vectors encoding HTT exon1-EGFP with variable length polyQ repeats and 

DsRed2-Mito to visualize mitochondrial morphology.  

Neurons expressing HTT exon1-Q17 exhibited tubular and elongated mitochondrial 

morphology (Figure 16A, top), while in neurons expressing HTT exon1-Q46 some mitochondria 

had elongated morphology, but others had rounded morphology, suggesting that excessive 

mitochondrial fission might have occurred (Figure 16A, middle). By contrast, neurons 

expressing HTT exon1-Q97 exhibited only round mitochondria, suggestive of profound 

mitochondrial fragmentation (Figure 16A, bottom). Further quantification indicated that the 

percentage of mitochondrial fragmentation increased in neurons expressing HTT exon1-Q46 

and -Q97, in a polyQ dependent manner (Figure 16B). To evaluate whether mitochondrial 

fragmentation results from excessive fission or inhibition of fusion, each single mitochondrion 

was tracked for 5 minutes using time-lapse imaging. Quantitative analysis revealed an increase 

in the number of mitochondrial fission events relative to total fission and fusion events (Figure 

16C). Moreover, mitochondrial fragmentation was correlated with neuronal cell death and was 
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dependent on polyQ length (Figure 16D). Thus, mutant HTT exon1 triggers mitochondrial 

fragmentation and cell death in primary cortical neurons.  
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Figure 16 Mutant HTT triggers mitochondrial fragmentation and neuronal cell death, 

dependent on polyQ length.  
 
A) Three-dimensional fluorescent micrographs and 6x zooms of boxed regions of neurons 

expressing HTT exon1-Q17, -Q46, or -Q97 and DsRed2-Mito. Scale bar, 50 m. B) Mitochondrial 
fragmentation of neurons expressing HTT exon1-Q17, -Q46, or -Q97 and DsRed2-Mito. C) Trend 
of excessive mitochondrial fission in Q97-HTT cortical neurons. Percentage of mitochondrial 
fission events over total fission and fusion events in cortical neurons expressing DsRed2-mito, 
and HTT exon1-Q17, -Q46, or -Q97 in 5 min. n=10, 10, 5, for HTT exon1-Q17, -Q46, and -Q97, 
respectively. D) Cell death of neurons expressing HTT exon1-Q17, -Q46, or -Q97 scored by 
chromatin condensation. ANOVA one-way test. 

 

 

 

3.3.2 Mutant HTT triggers mitochondrial fragmentation in human fibroblasts 

To investigate whether full-length mutant HTT also triggers mitochondrial 

fragmentation, human fibroblasts from HD patients were used. As expected, mitochondria 

exhibited a tubular network in fibroblasts expressing WT full-length HTT (Figure 17A, top). In 

contrast, mitochondria appeared fragmented in fibroblasts expressing mutant full-length HTT 

(Figure 17A, bottom). Further quantitative analysis revealed that the percentage of fragmented 

mitochondria increased in fibroblasts from HD patients, with fibroblasts from juvenile onset 

fibroblasts exhibiting the most profound fragmentation. Therefore, mutant full-length HTT 

triggers mitochondrial fragmentation in human HD patients, which results from polyQ toxicity. 

Moreover, both mutant HTT exon1 (Figure 16B) and full length HTT cause mitochondrial 

fragmentation, suggesting that HTT exon1 can be used instead of full-length HTT for studies in 
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vitro. Moreover, the result confirms our previous data that mitochondrial fragmentation occurs 

in neurons expressing mutant HTT, which is not due to overexpression. 

 

 

 

 

 
Figure 17 Mutant HTT triggers mitochondrial fragmentation in human fibroblasts.  
 

A) Three-dimensional fluorescent micrographs and 3x zoom of boxed regions of human 
fibroblasts from a normal individual (top panel) and an HD patient with adult onset (bottom 
panel) visualized by MitoTracker Red CMXRos staining. Scale bar, 25 µm. B) Mitochondrial 
fragmentation in human fibroblasts from a normal individual, an HD patient with adult onset, 
and an HD patient with juvenile onset. 
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3.3.3 Mutant HTT impairs mitochondrial transport in neurons 

Mitochondrial transport is closely linked with mitochondrial morphology. To investigate 

whether mitochondrial fragmentation is associated with defects in mitochondrial transport, 

live-cell imaging was used to track single mitochondria. Primary cortical neurons were 

transfected with HTT exon1-Q17, -Q46, -Q97, and DsRed2-Mito.  

To analyze mitochondrial movement, kymographs were generated to illustrate velocity, 

mobility, and directional trafficking. Kymographs are 3D representations of movies acquired 

from time-lapse imaging. The horizontal lines represent mitochondrial movement in either the 

anterograde or retrograde direction, while vertical lines represent stationary mitochondria. In 

neurons expressing HTT exon1-Q17, a substantial number of horizontal lines are evident in the 

kymograph, demonstrating that mitochondria were very dynamic (Figure 18A, top). In contrast, 

fewer horizontal lines are evident in neurons expressing HTT exon1-Q46, suggestive of 

decreased mitochondrial movement (Figure 18A, middle). More strikingly, kymographs of 

neurons expressing HTT exon1-Q97 exhibited mostly vertical lines, suggestive of stalled 

mitochondrial movement (Figure 18A, bottom). To better illustrate mitochondrial movement, 

scatter plots of mitochondrial velocity and distances traveled were performed for anterograde 

and retrograde movement. Mitochondria in neurons expressing HTT exon1-Q17 had the highest 

speed and traveled the longest distance (Figure 18B, top). However, both anterograde and 

retrograde mitochondrial velocity and distance traveled was reduced in neurons expressing HTT 

exon1-Q46 (Figure 18B, middle), with the lowest values observed in neurons expressing HTT 
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exon1-Q97 (Figure 18B, bottom). Thus, it is evident that mutant HTT impairs mitochondrial 

movement in a polyQ-dependent manner. Furthermore, quantitative analysis revealed that 

directional movement, mobility, and velocity of mitochondria were impaired dependent in a 

polyQ-dependent manner (Figure 18C-E). In sum, mutant HTT causes defective mitochondria 

dynamics, including fission/fusion balance and transport, in primary cortical neurons. 
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Figure 18 Mutant HTT triggers a decrease in mitochondrial anterograde and retrograde 
transport in a polyQ-dependent manner.  

 
A) Kymographs of mitochondrial transport in neurons expressing HTT exon1-Q17, -Q46, or -Q97 
and DsRed2-Mito. See also Movies S1, S2, S3. B) Scatter plots of mitochondrial velocity in the 
retrograde or anterograde directions as a function of distance traveled in 5 minutes in neurons 
(n = 10) expressing HTT exon1-Q17, -Q46, or -Q97 and DsRed2-Mito. C-E) Anterograde and 
retrograde movement, motility, and mean velocity of mitochondria in the same neurons 
analyzed in B). Data are means ± S.E.M. of triplicate samples of representative experiments. 
Results are representative of three or more independent experiments. Statistics: one-way 
ANOVA test. 

 

 

 

3.3.4 Mutant HTT aggregates on mitochondria 

A previous immune-EM study reported that mutant HTT forms aggregates and localizes 

on mitochondria (Panov et al., 2002), which implied that mutant HTT might directly impair 

mitochondrial function. To confirm whether mutant HTT co-localizes with mitochondria in 

cortical neurons, bright field fluorescence microscopy was used. HTT exon1-Q25 or -Q97-GFP 

and DsRed2-Mito were co-transfected to visualize HTT and mitochondria.  

In neurons expressing HTT exon1-Q25, HTT was evenly distributed and diffused along 

the neurites (Figure 19A, left). Higher magnification images demonstrated that there is no 

specific co-localization of HTT and mitochondria; however, HTT exon1-Q97 formed large and 

bright spots in cortical neurons, suggestive of aggregation (Figure 19A, right). Moreover, 

mutant HTT aggregates were localized either on the fissioning mitochondrion or nearby right 

after fission, suggesting that mutant HTT participates in mitochondrial fragmentation. Further 
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quantification confirmed that mutant HTT was co-localized to mitochondria in cortical neurons 

(Figure 19B). 

 

 

 

 
Figure 19 Mutant HTT aggregates in cortical neurons.  

 
A) Three-dimensional fluorescent confocal micrographs and 8x zoom of boxed regions of 

neurons expressing HTT exon1-Q25 or -Q97 and DsRed2-Mito. Scale bar, 50 m. B) Co-
localization of mitochondria and HTT in neurons co-expressing HTT exon1-Q25 or -Q97 and 
DsRed2-Mito. 
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3.3.5 Mutant HTT interacts with DRP1 in cortical neurons 

DRP1 plays an important role in both mitochondrial morphology and transport. In 

addition, the pattern of the localization of mutant HTT on the mitochondria is similar to DRP1. 

Thus, it is interesting to determine whether mutant HTT interacts with DRP1 and regulates 

mitochondrial fission. 

To investigate whether mutant HTT interacts with DRP1 on mitochondria, three-channel 

co-localization was performed here. DsRed2-Mito, DRP1-YFP, and HTT exon1-Q25 or -Q97-GFP 

were co-transfected into primary cortical neurons. As the image shown, HTT exon1-Q25 was 

evenly distributed in the entire neuron, while mitochondria formed tubular network (Figure 20, 

top left). DRP1 was located either in the cytoplasm or forms spots on the mitochondria (Figure 

20, top left). Further analysis using linescan indicated that no specific interaction between DRP1 

and HTT exon1-Q25 was observed (Figure 20, top right). However, in the neuron expressing HTT 

exon1-Q97-GFP, both mutant HTT and DRP1 form aggregations and were localized on the 

mitochondria (Figure20, bottom left). Analysis using linescan revealed that mutant HTT and 

DRP1 co-localized at where mitochondrion was going to divide (Figure20, bottom right).  

Collectively, mutant HTT may have higher affinity binding to DRP1, which in turn induces 

mitochondrial fragmentation. 
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Figure 20 Mutant HTT interacts with DRP1 in cortical neurons.  
 

Three-dimensional fluorescent confocal micrographs with line scan and 3x zoom of boxed 
regions of co-localization of HTT, DRP1, and mitochondria in neurons expressing DsRed2-Mito, 

DRP1-YFP, and HTT exon1-Q25 or -Q97. Scale bar, 10 m. 
 

 

 

 

3.3.6 Mutant HTT interacts with DRP1 in mice 

To confirm this abnormal interaction between mutant HTT and DRP1, mice brains from 

non-transgenic mice and transgenic mice expressing HTT with 128 polyQ repeats (YAC 128) 

were used for analysis. Co-immunoprecipitation (CoIP) of protein lysates from 2-month-old 

mice brains was performed with anti-DRP1 antibodies followed by western blot with anti-HTT 

antibodies. The intensity of the signal for YAC 128 mice was about 50% stronger than that of 

control mice (Figure 21), suggesting that mutant HTT has higher affinity for DRP1. 
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Figure 21 HTT interacts with DRP1 in mice.  
 

Immune precipitation of lysates from 2-month-old mice brains with anti-DRP1 antibodies and 
western blot using anti-HTT antibodies. 

 
 

   

 

 

 



104 
 

3.3.7 DRP1K38A and MFN2p82 rescue mitochondrial fragmentation and neuronal cell death 

As the above results suggest, DRP1 over-activation is proposed to be the primary cause 

of HD. To confirm this hypothesis, we restored mitochondrial fission and fusion balance using 

primary neuronal cultures. Dominant-negative DRP1K38A and constitutively active  MFN2p82 were 

co-transfected with HTT-Q17, -Q46, and -Q97 into cortical neurons to reduce mitochondrial 

fission and promote mitochondrial fusion, respectively.  

The percentages of mitochondrial fragmentation in neurons expressing both DRP1K38A 

and mutant HTT (-Q46 and -Q97) were significantly decreased compared with neurons 

expressing mutant HTT alone, suggesting that decreased mitochondrial fission restores 

mitochondrial morphology (Figure 22A, left). The restoration of mitochondrial morphology was 

even more profound when DRP1K38A and MFN2p82 were co-expressed (Figure 22A, right). 

Neurons expressing HTT-Q97 do not respond as well as neurons expressing HTT-Q46 to 

DRP1K38A and MFN2p82 co-expression (Figure 22A, right). The phenotype resulting from HTT-Q97 

expression is more severe and more difficult to rescue than that of HTT-Q46. Neuronal cell 

death was also rescued by expressing either DRP1K38A alone or in combination with MFN2p82 in 

a similar pattern as mitochondrial morphology (Figure 22B). Therefore, rebalancing of 

mitochondrial fission and fusion by expression of DRP1K38A and MFN2p82 restores mitochondrial 

morphology and is correlated with neuronal survival. 
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Figure 22 Restoring mitochondrial fusion by expressing DRP1K38A alone or in 

combination with MFN2p82 rescues neurons from cell death.  
 

A) Mitochondrial fragmentation of neurons expressing either HTT exon1-Q17, -Q46, or -Q97 
alone or in combination with either DRP1K38A alone or DRP1K38A and MFN2p82. B) Cell death of 
neurons expressing either mutant HTT exon1-Q17, -Q46, or -Q97 and DsRed2-Mito alone or in 
combination with either DRP1K38A alone or DRP1K38A and MFN2p82. 
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3.3.8 DRP1 knockout does not prevent mutant HTT-mediated mitochondrial fragmentation  

Reducing mitochondrial fission restores mutant HTT-induced fragmentation in cortical 

neurons. Thus, the next logical question to ask is whether deleting DRP1 can also protect 

against mutant HTT-induced toxicity. DRP1shRNA was co-transfected with HTT-Q17, -Q46, or -

Q97.  Unexpectedly, neurons expressing DRP1shRNA exhibited abnormal morphology (Figure 

23). Even neurons expressing HTT-Q17 alone exhibited uneven and unsmooth neurites, 

correlating with fragmented mitochondria (Figure 23A). In addition, neurites far from the soma 

demonstrated an abnormal disc shape with mitochondrial accumulation (Figure 23B). In some 

cases, neurons expressing DRP1shRNA did not grow very big in size and exhibited flattened 

processes containing few mitochondria (Figure 23C). In sum, DRP1shRNA expression causes 

abnormal neuronal morphology and disturbs neuronal development, which correlates with 

abnormal mitochondrial morphology and distribution in neurons. 
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Figure 23 Neuronal morphology of primary cortical cultures expressing DRP1shRNA. 
 

A) Abnormal morphology (arrow, arrow head) with fragmented mitochondria in primary 
cortical neurons expressing DsRed2-mito, HTT exon1-Q17, and DRP1shRNA during neuronal 
development. B) Blobby morphology of neuronal processes (arrow head) in primary cortical 
neurons expressing DsRed2-mito, HTT exon1-Q17, and DRP1shRNA. C) Flattened processes 
without mitochondria (arrow) in primary cortical neurons expressing DsRed2-mito, HTT exon1-

Q17, and DRP1shRNA. Scale Bar: 10 m. 
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3.3.9 DRP1K38A and MFN2p82 rescue mitochondrial transport 

Mitochondrial transport is tightly linked with mitochondrial morphology. To investigate 

whether restoration of the mitochondrial fission and fusion balance also rescues mitochondrial 

transport, live-cell imaging was performed to monitor mitochondrial movement. 

Representative kymographs exhibited more horizontal lines in neurons co-expressing 

HTT-Q46 and DRP1K38A (Figure 24B) than in HTT-Q46 neurons (Figure 24A). Neurons either 

expressing DRP1K38A alone or in combination with MFNp82 exhibited improved mitochondrial 

movement in the anterograde and retrograde directions (Figure 25A). Further analysis revealed 

that DRP1K38A and MFNp82 expression improved both mitochondrial mobility and mean velocity 

(Figure 25B, C). In sum, mitochondrial transport can be rescued by reducing DRP1 activity using 

dominant-negative DRP1K38A.  
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Figure 24 DRP1K38A rescues mitochondrial transport defects in cortical neurons.  
 

A) Representative kymograph of neurons transfected with HTT exon1-Q46 and DsRed2-Mito. B) 
Representative kymograph of neurons transfected with HTT exon1-Q46, DsRed2-Mito, and 
DRP1K38A. 
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Figure 25 Restoration of mitochondrial fusion with DRP1K38A or DRP1K38A and MFN2p82 
rescues neurons from neuritic trafficking defects.  

 
A) Anterograde and retrograde movement of mitochondria in neurons expressing either HTT 
exon1-Q17, -Q46, or -Q97 alone or in combination with DRP1K38A alone or DRP1K38A and 
MFN2p82. B) Motility of mitochondria in neurons expressing either HTT exon1-Q17, -Q46, or -
Q97 alone or in combination with either DRP1K38A alone or both DRP1K38A and MFN2p82.  C) 
Mean velocity of mitochondria in neurons expressing either HTT exon1-Q17, -Q46, or -Q97 
alone or in combination with DRP1K38A alone or DRP1K38A and MFN2p82. Results are 
representative of three or more independent experiments. Statistics: Two-way ANOVA with 
post-hoc test. 
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3.4 Discussion 
 

Mitochondrial dysfunction has been implicated in HD pathogenesis (as introduced in 

Section 3.1.3.4). Mitochondrial dynamics is fundamental for support and maintenance of 

mitochondrial function (Detmer and Chan, 2007). Imbalanced mitochondrial dynamics (fission, 

fusion, and transport) results in reduced ATP synthesis, elevated ROS production, and impaired 

Ca2+ buffering capacity, which in turn leads to failure in the maintenance of neuronal function 

and eventual neuronal death. Thus, defective mitochondrial dynamics might be the mechanism 

underlying mitochondrial dysfunction in HD pathogenesis. 

Here, we showed that mitochondrial fragmentation occurs in mutant HTT-expressing 

primary neurons in a polyQ-dependent manner (Figure 16). An increased ratio of the frequency 

of mitochondrial fission to fusion implies that mitochondrial fragmentation may result from 

either excessive fission or insufficient fusion (Figure 16C). HTT is highly expressed in neurons 

and plays an essential role in neuronal development and survival. Mutant HTT-induced cell 

death seems to be specific to neurons, because HeLa cells expressing mutant HTT exon1 did not 

exhibit round and fragmented mitochondria. Rather, mitochondria became fragmented only 

when cells were treated with hydrogen peroxide (Wang et al., 2009), indicating a specific role of 

mutant HTT in neurons.  

Due to its large molecular weight, full-length HTT is difficult to transfect into the cells. 

Therefore, HTT exon1, which contains the polyQ region, is always used in HD studies in vitro. 

However, whether full-length mutant HTT causes the same toxic effect as HTT exon1 in neurons 
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remained to be illustrated. Our data of human fibroblasts from HD patients demonstrated that 

full-length mutant HTT induces mitochondrial fragmentation (Figure 17), which confirms that 

mutant HTT-induced mitochondrial fragmentation in neuronal cultures is not an artifact of HTT 

exon1 overexpression. In addition to the neuronal culture data, we also investigated 

mitochondrial morphology in striatal neurons using YAC mice (data not shown) and our findings 

further confirmed that mutant HTT triggers mitochondrial fragmentation in vivo.  

In addition to mitochondrial morphology, mitochondrial transport is also impaired in 

mutant HTT exon1-expressing neurons (Figure 18). Defects in mitochondrial directional 

movement, mean velocity, and overall mobility are all polyQ-dependent, which is in agreement 

with disease onset in HD patients, suggesting that defects in mitochondrial dynamics are 

implicated in HD progression. PolyQ length determines the consequences of defects in 

mitochondrial dynamics; however, whether defective mitochondrial dynamics is the primary 

cause of HD remains unclear. More importantly, how mutant HTT impairs mitochondrial 

dynamics also remains to be determined.  

HTT is known to associate with mitochondria; however, the exact role of this interaction 

remains unclear. A previous study revealed that mutant HTT localized on mitochondria (Panov 

et al., 2002), and our findings that mutant HTT formed aggregates and co-localized with 

mitochondria are consistent with this report (Figure 19). As suggested by combined analysis of 

the data presented here and the findings of Panov et al., it is possible that mutant HTT induces 

mitochondrial fragmentation by its abnormal interaction with certain mitochondrial proteins 

involved in mitochondrial dynamics. 
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As previously reported, mutant HTT forms a ring-like structure around the 

mitochondrion (Panov et al., 2002), which is similar to the patterns of DRP1 localization onto 

mitochondria. Moreover, HTT interacts with Dynamin, which is the structural homolog of DRP1, 

through HAP1 and regulates membrane fission during endocytosis (McGuire et al., 2006). Thus, 

it is no surprise that HTT interacts with DRP1 and mediates mitochondrial fission. As 

hypothesized, mutant HTT binds to DRP1 more strongly than WT (Figures 20, 21). Because DRP1 

plays in a role in both mitochondrial morphogenesis and distribution, the abnormal interaction 

between HTT and DRP1 may alter DRP1 function, which in turn could lead to defects in 

mitochondrial dynamics and eventual cell death. 

Although there are more interactions between mutant HTT and DRP1 in YAC 128 mice 

(Figure 21), these interactions may result from artifacts of mutant HTT overexpression.  To 

exclude such a possibility, both lymphoblasts and postmortem tissues from HD patients were 

used for analysis in our lab (Song et al., 2011). We found that mutant HTT binds much more 

strongly to DRP1 in physiological conditions, and this increased binding strength is not caused 

by protein overexpression.  

The structural homolog of DRP1, Dynamin, interacts with HTT through HAP1. 

Experiments utilizing tissues from both YAC mice and HD patients are not sufficient to 

determine whether HTT directly or indirectly binds to DRP1. Thus, DRP1 and HTT recombinant 

proteins were used to perform CoIP assays in order to examine the direct interaction between 

HTT and DRP1 (Song et al., 2011). My colleague Jin Chen demonstrated a high binding affinity 

between DRP1 and Q53 using purified recombinant protein at different concentrations. In 
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addition, she observed a higher DRP1 GTPase activity in the presence of HTT-Q53 than in the 

presence of HTT-Q20. Taken together, our data confirmed that mutant HTT binds to DRP1 and 

increases its GTPase activity. 

Previous studies have revealed that DRP1 is not only required for mitochondrial fission 

and distribution (Pitts et al., 1999; Smirnova et al., 2001), but also interferes with neuronal 

function and even embryonic viability (Ishihara et al., 2009; Li et al., 2004; Wakabayashi et al., 

2009). DRP1 activity must be balanced, as either loss of DRP1 or DRP1 overexpression 

jeopardizes neuronal survival (Barsoum et al., 2006; Uo et al., 2009). In HD, the elevated DRP1 

GTPase activity induced by mutant HTT disrupts this balance and mediates neuronal cell death, 

which might be the mechanism of the disease. 

Decreasing DRP1 activity by expressing dominant-negative DRP1K38A re-balances 

mitochondrial fission and fusion and transport in neurons expressing mutant HTT (Figures 22, 

24). However, it is interesting that DRP1 knockdown does not rescue mutant HTT-induced 

mitochondrial fragmentation and neuronal cell death (Figure 23), which is consistent with a 

previous report that DRP1 knockdown leads to neuronal cell death (Uo et al., 2009). A possible 

explanation for this apparent discrepancy is that DRP1K38A expression does not interfere with 

endogenous DRP1WT expression, while DRP1shRNA knocks down most endogenous DRP1 

expression. Therefore, the balance shifts toward mitochondrial fusion completely when 

DRP1shRNA is expressed, which in turn results in an opposite, but equally lethal, imbalance in 

mitochondrial dynamics.  However, this explanation cannot account for the abnormal neuronal 

structure observed in DRP1shRNA expressing neurons. It is known that DRP1 knockout leads to 
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embryonic lethality (Ishihara et al., 2009; Wakabayashi et al., 2009), which implies that DRP1 

plays a role in embryonic development. Because DRP1K38A does not disturb neuronal 

development, it would seem that DRP1 has other functions independent of DRP1 GTPase 

activity.  

Although abnormal binding of mutant HTT and DRP1 has been revealed, how and where 

this interaction occurs need to be further investigated. As previously discussed, DRP1 may play 

multiple roles in neuronal cells including development and survival functions. Inhibition of DRP1 

using pharmacological chemicals might prevent excessive mitochondrial fission by disturbing 

the interaction between DRP1 and mutant HTT in vivo; however, inhibition might not 

necessarily protect against cell death, because the DRP1 inhibitor might also interfere with 

normal DRP1 functions. Thus, simply applying DRP1 inhibitors may not work well as a 

therapeutic treatment and further characterization of DRP1 and mutant HTT is required. 

In sum, mutant HTT triggers excessive mitochondrial fission in a polyQ-dependent 

manner. The aberrant interaction between mutant HTT and DRP1 on mitochondria increases 

DRP1 GTPase activity and therefore induces mitochondrial fragmentation, which in turn results 

in elevated neuronal cell death. Decreasing DRP1 GTPase activity by expression of dominant-

negative DRP1K38A or active MFN2p82 restores the mitochondrial fission and fusion balance and 

rescues cell death. Thus, we conclude that defective mitochondrial dynamics is a mechanism 

underlying HD pathogenesis and DRP1 might be a molecular target for therapeutic treatment of 

HD. 
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CHAPTER FOUR: MITOCHONDRIAL DYNAMICS AND SIRT3 
 

4.1 Introduction 
 

4.1.1 Caloric restriction and aging 

Caloric restriction (CR) has long been known to increase life span in rodents (Weindruch 

and Walford, 1988). Dietary restriction is characterized by a 30–40% reduction in food in-take. 

More recently, CR-mediated retardation of aging has been well recognized in a number of 

animal models, including yeast, mice, rats, and monkeys (Colman et al., 2009; Lee et al., 2000; 

Migliaccio et al., 1999; Weindruch and Walford, 1988). In addition to extending life span, CR has 

also been shown to delay brain function decline and prevent age-related diseases (Mattson, 

2003; Patel et al., 2005; Wang et al., 2005; Weindruch and Walford, 1988).  

Originally, the mechanism of CR-mediated protection was a mystery. Several hypotheses 

were raised, including ROS suppression. CR mice appear to be more resistant to oxidative stress 

(Sohal and Weindruch, 1996). This is in agreement with the "Free Radical Theory of Aging" put 

forth by Dr. Harman in 1956 (Harman, 1956). Recently, a microarray analysis confirmed this 

idea at the molecular level by demonstrating that CR up-regulates genes involved in oxidant 

defense in the brains of aging mice (Lee et al., 2000). Another study in p66(shc)-/- mice further 

indicated that resistance to oxidative stress contributes to life span extension (Migliaccio et al., 

1999). Oxidants mediate phosphorylation of p66, which in turn inhibits expression of 

antioxidant genes (Purdom and Chen, 2003). Ablation of p66 in mice and cells resulted in more 
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resistance to stress and less apoptosis in response to H2O2 and UV exposure (Migliaccio et al., 

1999).  These p66-/- mice exhibit a 30–40% extension in life span, which is similar to CR mice. 

Thus, CR may increase life span through ROS suppression. 

In the past decade, silent information regulator 2 (Sir2) was identified as a key player in 

CR-mediated life span expansion and protection against age-related diseases (Cohen et al., 

2004). Since then, the number of studies focusing on sirtuins has dramatically increased and has 

helped to elucidate their roles in CR-mediated longevity. 

 

4.1.2 Sirtuins 

Sir2 was the first sirtuin gene found in Saccharomyces cerevisiae (Rine and Herskowitz, 

1987; Shore et al., 1984), and is a class III histone deacetylases. Seven human homologs (SIRT1-

7) have been identified with different subcellular localizations, suggestive of diverse cellular 

functions (Figure 26A). 

Sirtuins are nicotinamide adenine dinucleotide (NAD+)-dependent deacetylases  which 

directly remove the acetyl group from lysine residues and transfer it to ADP-ribosomes, 

resulting in deacetylated substrates and formation of nicotinamide (NAM) (Figure 26B) (Imai et 

al., 2000). NAM is an inhibitor of the deacetylase reaction, while it can also be recycled to form 

NAD+. As an activator, NAD+ levels directly regulate sirtuin deacetylase activity and directly link 

sirtuins to the metabolic state of the cell. To date, SIRT4 is the only sirtuin for which deacetylase 

activity has not been identified.  
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Figure 26 Sirtuins in a eukaryotic cell.  
 

A) Illustration of localization of mammalian sirtuins. B) Schematic of the sirtuin-mediated 
deacetylase reaction. 
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4.1.3 Sirtuins, aging, and neuroprotection 

As a post-translational modification, acetylation/deacetylation has been shown to 

modulate protein activity, stability, and subcellular localization, and thus allow adaptations to 

metabolic alterations and stress.  

Sir2 was first identified as a longevity gene in yeast (Imai et al., 2000). Subsequent 

studies revealed that Sir2 was necessary for CR-mediated life span extension (Lee et al., 2000). 

An increase in Sir2 expression extends life span in C. elegans (Tissenbaum and Guarente, 2001). 

SIRT1 is the closest mammalian homolog to Sir2 and has been shown to be required for CR-

mediated longevity in mice (Chen et al., 2005a). In addition to life span, sirtuins also play an 

essential role in many age-related diseases, including cancer, diabetes, and neurodegenerative 

diseases (Araki et al., 2004; Kim et al., 2007a; Mostoslavsky et al., 2006; Someya et al., 2010). 

To date, SIRT1 and SIRT3, which are involved in up-regulating a number of different cell 

signaling pathways, are the most extensively studied sirtuins in mammals. Because sirtuins are 

involved in so many pathways, it is difficult to isolate which pathway is responsible for sirtuin-

mediated longevity.  

Mitochondrial dysfunction has been implicated in neurodegeneration. In particular, its 

role in HD and ALS was extensively discussed in the previous two chapters. There is little doubt 

that mitochondria could play an important role in CR-mediated neuronal protection. In 

addition, more than 20% of mitochondrial proteins are acetylated, further supporting the idea 

that mitochondrial function may be regulated by sirtuin-mediated deacetylation (Kim et al., 
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2006). Indeed, most mitochondrial functions, including apoptosis, ATP production, and ROS 

regulation, have been found to be regulated by sirtuins (Figure 27). 

 

 

 

 
 
Figure 27 Pathways linking sirtuins and mitochondria. 
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4.1.3.1 Apoptosis in response to stress 

Tumor suppressor p53, a key transcription factor in the response to DNA damage and 

oxidative stress, up-regulates DNA repair, cell cycle exit, and apoptosis. SIRT1 has been shown 

to negatively regulate p53 through deacetylation, protect against p53-mediated apoptosis, and 

promote cell survival (Luo et al., 2001; Vaziri et al., 2001).  

Forkhead (FOXO) proteins, another family of transcription factors, trigger apoptosis in 

response to stress. FOXO1, 3, and 4 are SIRT1 substrates. Similar to p53, SIRT1 deacetylates 

FOXO proteins and represses FOXO-mediated apoptosis (Motta et al., 2004; Purdom and Chen, 

2003).  

Moreover, SIRT1 protects cells from apoptosis by deacetylating ku70, allowing it to 

sequester the pro-apoptotic protein BAX from mitochondria (Cohen et al., 2004).  

Furthermore, SIRT3 promotes cell survival by deacetylating cyclophilin D (CypD), which 

opens the MPTP during apoptosis (Hafner et al., 2010). Deacetylation of CypD is beneficial for 

cardiac hypertrophy.   

In sum, SIRT1 promotes cell survival against apoptosis by negatively regulating apoptosis 

through Bcl-2 family proteins, while SIRT3 inhibits MPTP opening through CypD, which might be 

the mechanism involved in CR-mediated cell survival. 
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4.1.3.2 Mitochondrial ROS regulation 

The “Free Radical Theory of Aging” espoused by Dr. Harmon in 1956 emphasized the 

role of ROS in aging (Harman, 1956). Indeed, there is strong evidence suggesting a correlation 

between oxidative stress and life span. Mitochondria are the main source of ROS, which is a by-

product of OXPHOS. To balance this highly oxidized environment, a number of anti-oxidant 

enzymes reside in the mitochondrial matrix. It has been proposed that either inhibition of 

mitochondrial OXPHOS or a reduction in the oxidative defense results in ROS induction and 

oxidative damage to DNA, proteins, and lipids (Wallace, 2005).  

Overexpression of catalase targeted to mitochondria reduces oxidative stress and 

extends lifespan in mice, further suggesting that ROS plays a role in longevity and maintenance 

of mitochondrial function is important (Schriner et al., 2005). Put simply, increased 

mitochondrial ROS contributes to aging, while decreased mitochondrial ROS may participate in 

CR-mediated lifespan extension. 

PGC-1 , a transcriptional co-activator of genes that encode mitochondrial proteins, 

plays a role in up-regulating mitochondrial biogenesis and ROS suppression in 

neurodegeneration (St-Pierre et al., 2006). Deacetylation of PGC-1  by SIRT1 has been shown 

to activate the transcription of its target genes (Rodgers et al., 2005). Thus, ROS suppression is 

implicated in CR-mediated protection because it up-regulates mitochondrial biogenesis through 

the SIRT1-PGC-1  pathway. Indeed, increased SIRT1 levels associated with increased 

mitochondrial proteins and reduced ROS have been observed in humans undergoing a 6-month 
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CR trial (Civitarese et al., 2007). Furthermore, resveratrol, a SIRT1 activator, up-regulates 

mitochondrial biogenesis through the SIRT1-PGC1  pathway in mice (Lagouge et al., 2006).  

PGC-1  also up-regulates SIRT3 at the transcription level and has been shown to directly 

participate in mitochondrial ROS suppression during CR (Bell and Guarente, 2011). The most 

convincing evidence for this phenomenon comes from a recent paper on hearing loss (Someya 

et al., 2010). Oxidative accumulation caused death of spiral ganglia neurons in the inner ear 

cochlea, resulting in hearing loss, which is commonly associated with aging. SIRT3 was shown to 

be required for CR protection against oxidative stress and hearing loss. Isocitrate 

dehydrogenase 2 (IDH2), which is involved in ROS regulation, was identified as the substrate of 

SIRT3. Deacetylation of IDH2 leads to an increase in reduced glutathione and protection against 

oxidative stress. Taken together, the results of the Someya et al. study not only confirmed the 

“Free Radical Theory of Aging,” but also suggested that mitochondria are important in the aging 

process. 

Along this line of reasoning, SOD2, a critical antioxidant enzyme in the mitochondrial 

matrix, is also a substrate of SIRT3 (Qiu et al., 2010; Tao et al., 2010). SIRT3-mediated 

deacetylation of SOD2 results in increased anti-oxidant activity. Furthermore, SIRT3 directly 

regulates ROS by enhancing mitochondrial respiration through deacetylation of complexes I and 

II in addition to ROS suppression (discussion later) (Ahn et al., 2008; Cimen et al., 2010).  

In sum, SIRT3 negatively regulates mitochondrial ROS production and participates in 

ROS suppression, which is required for CR-mediated neuroprotection. 
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4.1.3.3 Mitochondrial respiration and ATP production 

A decline in intracellular ATP levels is commonly associated with aging and apoptosis 

(Tsujimoto, 1997). Decreased ATP levels were observed in SIRT3-/- mice (Ahn et al., 2008), 

suggesting that SIRT3 plays a role in OXPHOS and ATP production. Inhibition of mitochondrial 

respiration by a mutation in a subunit of complex II induces oxidative stress and decreases 

lifespan in nematodes (Ishii et al., 1998), suggesting an important role of mitochondrial 

OXPHOS in longevity.  Recently, some subunits of the mitochondrial ETC have been found to be 

deacetylated by SIRT3 (Ahn et al., 2008; Cimen et al., 2010). Deacetylation by SIRT3 increases 

the activities of the respiratory complexes, which may further increase ATP production. 

Moreover, ATP synthase is modified by lysine acetylation and the interaction between SIRT3 

and ATP synthase was identified by a proteomic study (Law et al., 2009). Although no 

deacetylation has been found, it is possible that SIRT3 directly regulates ATP synthesis through 

ATP synthase deacetylation. 

In sum, SIRT3 regulates mitochondrial respiration and ATP production, which 

contributes to protective effects against aging. 

 

4.1.4 Sirtuins and mitochondrial dynamics 

As previously discussed, sirtuins are involved in virtually all mitochondrial-related 

processes including mitochondrial biogenesis, anti-oxidant defense, OXPHOS, and ATP 

production. Mitochondrial fission and fusion balance is crucial for maintaining these 
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fundamental functions in neurons. Because mutations in OPA1 and MFN2 cause ADOA and 

CMT-2A, respectively, there is no doubt that defects in mitochondrial fission and fusion 

machinery can cause neurodegeneration. Moreover, a previous study revealed that a decrease 

in DRP1 activity extended lifespan in yeast, further indicating that mitochondrial dynamics 

participates in longevity (Yang et al., 2011). Thus, it is interesting to investigate whether sirtuins 

can directly regulate components of the mitochondrial fission and fusion machinery, such as 

DRP1 and OPA1, and may represent a more bioenergetically efficient way to up-regulate 

mitochondrial function and promote cell survival. 

Recently, a proteomic study revealed that both DRP1 and OPA1 are acetylated 

(Choudhary et al., 2009), which is worth further investigation to verify if these two proteins can 

be regulated by sirtuins (Figure 28). The acetylation site of DRP1 (K283) is located in the GTPase 

domain, suggesting an important role in GTPase activity regulation. More strikingly, a yeast 

hybrid assay revealed a direct interaction between DRP1 and SIRT3 (Stelzl et al., 2005). 

Therefore, we hypothesize that mitochondrial machinery may be regulated by sirtuins, 

indicating potential involvement in sirtuin-mediated longevity. 
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Figure 28 Domain models of the acetylation sites in DRP1 and OPA1. 
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4.2 Materials and Methods 
 

4.2.1 Reagents 

The pDsRed2-Mito vector was obtained from Clontech. The pcDNA3.1-SOD1WT and -

SOD1G93A were obtained from Dr. Alvaro G. Estevez (University of Central Florida, Orlando, FL, 

USA). The pEGFP-C2-SOD1WT and -SOD1G93A were provided by Dr. Kurt J. De Vos (King's College 

London, London, UK). The pcDNA3.1-SIRT3-HA vector was provided by Dr. Eric M. Verdin 

(Gladstone Institute of Virology and Immunology at UCSF, San Francisco, CA, USA). The pcDNA-

EGFP-DRP1S616A, pcDNA-EGFP-DRP1S616D, pcDNA-EGFP-DRP1S637A, and pcDNA-EGFP-

DRP1S637D were made by my colleague Dr. Bossy. All plasmids were purified using the 

Endotoxin-free Marligen Maxiprep Kit (Diagnostic technology, Belrose, Australia). HEPES was 

purchased from Omega Scientific (Tarzana, CA, USA). Poly-L-lysine, Penicillin-streptomycin 

(Pen/Strep), NAM, N-ethylmaleimide (NEM), trichostatin A (TSA), formaldehyde, pyruvate, 

resveratrol, and F-12 HAM were all obtained from Sigma-Aldrich (St. Louis, MO, USA). Custom-

made phenol-free DMEM/high glucose and BCS were obtained from Thermo Scientific 

(Rockford, IL, USA). DMEM/high glucose for MEFs was obtained from ATCC (Manassas, VA, USA). 

Glutamax and HBSS were purchased from Gibco (Carlsbad, CA, USA). Lipofectamine 2000, 

Hoechst 33342, and neurobasal medium were purchased from Invitrogen (Carlsbad, CA, USA). 

Protease inhibitor cocktails were purchased from Roche (Indianapolis, IN, USA). EDTA and 

mouse antibodies to Actin were purchased from Calbiochem (Darmstadt, Germany). 3-[(3-

cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS) was purchased from G-
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biosciences (Maryland Heights, MO, USA). Dithiothreitol (DTT) was purchased from GE 

Healthcare (Piscataway, NJ, USA). FBS was obtained from Atlanta Biologicals (Lawrenceville, GA, 

USA). SIRT2/3 Fluorimetric Drug Discovery Kit was purchased from Enzo Life Sciences 

(Farmingdale, NY, USA). TurboFect was obtained from Fermentas (Glen Burnie, MD, USA). 

Mouse antibodies to DRP1 (clone8/DLP1) and OPA1 were obtained from BD Biosciences (San 

Jose, CA, USA) and VDAC and  SUMO1 were obtained from Cell Signaling (Danvers, MA, USA). 

Rabbit antibodies to pDRP1 (S616), pDRP1 (S637), acetylated-lysine, and SIRT3 were obtained 

from Cell Signaling (Danvers, MA, USA). Rabbit antibodies to GFP were obtained from Abcam 

(Cambridge, MA, USA). Costumed rabbit antibodies to acetylated DRP1 (K283) were generated 

from YenZym (South San Francisco, CA, USA). 

 

4.2.2 Mice and rats 

SIRT3-/- mice (129-SIRT3tm1.1Fwa/J) were purchased from Jackson Lab and fasted for 16 h 

before performing the experiments.  

Pregnant rats of a Sprague-Dawley background (Charles River) were used for primary 

cortical cultures. 

All experiments were approved by the Institutional Animal Care and Use Committee of 

University of Central Florida College of Medicine. 
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4.2.3 Primary cortical neurons and transfection 

Cortical neurons (400,000 cells/ml) were prepared from E18 rat embryos (Barsoum et 

al., 2006)and transfected at 5 DIV with Lipofectamine 2000 (Invitrogen). Cells were cultured in 

neurobasal medium (Gibco) supplemented with 2% Neuronal Supplement 21, 1× Pen/Strep, 2 

mM GlutaMAX. Neuronal Supplement 21 was prepared according to Chen et al. (Chen et al., 

2008). Experiments were carried out two days after transfection. 

 

4.2.4 MEFs and HEK cells 

HEK293T cells were grown in DMEM supplemented with 10% FBS, Pen/Strep, and 1 mM 

Pyruvate. Two days after seeding, cells were transfected with different plasmids using 

Turbofect according to manufacturer’s instructions. 36 or 48 hours later, cells were harvested 

using lysis buffer containing 50 mM HEPES (pH 7.4), 2 mM MgCl2, 1 mM EDTA, 2% CHAPS, 2 mM 

DTT, 10 mM NAM, 1 µM TSA, 10 mM NEM, and protease inhibitor cocktails (Roche), and 

centrifuged at 22,000 g, 4°C, for 15 min, followed by BCA test (Pierce) to determine protein 

concentrations.  

 

4.2.5 Fluorescence microscopy 

Both fixed and live-cell imaging of neurons were performed using an Axiovert Zeiss 

100M inverted fluorescence microscope equipped with a Plan Apochromat 63×1.4 NA oil 

objective, a DG-4/Lambda 10-2 combo Xe-arc illumination unit (Sutter), and a Sensicam QE 
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cooled CCD camera (PCO AG, Germany) controlled by MetaMorph 7.1 software (Molecular 

Devices) as previously described (Song et al., 2008).  The excitation filter for DsRed2-Mito was 

S555/28× (Chroma) and the emission filter was S617/73m (Chroma). The excitation filter for 

EGFP was S490/20× (Chroma) and the emission filter was S528/38m (Chroma). Images were 

acquired using the Multi Dimensional Acquisition module in MetaMorph 7.1 (2×2 binning, 0.2 

m step size, and 15-20 z-planes). The z-series were processed by de-hazing followed by Fast 

Fourier Transform. Images were saved and exported as TIFF files after surface rendering using 

MetaMorph 4D-viewer. 

For live-cell imaging, cortical neurons were plated on Lab-Tek II (#1.5 German 

Coverglass) 8-chamber slides (Thermo Fisher) at a density of 150,000 to 200,000 cells per 

chamber in neurobasal medium without phenol red (see detail in 3.2.5). A region containing 

100 m neurites in 10 neurons were selected and recorded for 5 min with 5 sec intervals at 37 

°C under a humidified 5% CO2 atmosphere. To limit photobleaching and phototoxicity, a 5 m z-

stack was acquired with 1 m step size (2×2 binning) for each time point. Each z-stack was de-

hazed and maximum projected in MetaMorph 7.1. To quantify mitochondrial movement, 

kymographs were generated with all planes, 25 m line width, and average projected without 

background subtraction. The parameters of mitochondrial velocity and moving distance were 

exported from MetaMorph 7.1 into Excel for further analysis. Mitochondrial velocity ≥ 20 

m/min was classified as motile, while velocity < 20 m/min was classified as stationary. 

 

 



131 
 

4.2.6 Scoring of mitochondrial fragmentation and neuronal cell death 

Two days after transfection, the primary cortical neurons were fixed with 3.7% 

formaldehyde and 5% sucrose in PBS for 15 min at 37 °C. Nuclei were stained by Hoechst 33342 

(1:10,000 in PBS) at room temperature for 10 min.  

Scoring was performed in three different experiments independently. Statistics: 

Student’s t-test. 

 

4.2.7 Immune precipitation and western blotting 

Brain tissues from SVB and SIRT3-/- mice were lysed in lysis buffer containing 50 mM 

HEPES (pH 7.4), 2 mM MgCl2, 1 mM EDTA, 2% CHAPS, 2 mM DTT, 10 mM NAM, 1 µM TSA, 10 

mM NEM, and protease inhibitor cocktails (Roche). Protein concentrations were determined by 

BCA test (Pierce). Lysates (500 g) were used to perform immune precipitation by incubating 

with 7 l polyclonal rabbit-anti-AcK antibodies (Cell signaling) at 4 °C, overnight, and then 

incubating with 50 l protein G sepharose (GE Healthcare) at 4 °C for 2 h. Unbound proteins 

were removed by washing 3 times with ice-cold lysis buffer and the remaining proteins were 

then loaded onto NuPAGE 4–12% Bis-Tris gels (Invitrogen) under reducing conditions and 

transferred to nitrocellulose membranes (Hybond-ECL Nitrocellulose, 0.22 m, GE Healthcare). 

The membranes were blotted with monoclonal mouse-anti-OPA1 (BD Bioscience), mouse-anti-

DRP1 (BD Bioscience), mouse-anti-Actin (Calbiochem), SUMO1 (Cell Signaling), rabbit-anti-GFP 

(Abcam), rabbit-anti-SIRT3 (Cell Signaling), rabbit-anti-pDRP1S616 (Cell Signaling), and rabbit-
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anti-pDRP1S637 (Cell Signaling) antibodies followed by sheep-anti-mouse IgG-HRP at 1:10,000 

(GE Healthcare) or donkey-anti-rabbit at 1: 5000 (GE Healthcare).  

Some membranes were overnight blocked using Odyssey blocking buffer (Li-Cor 

Biosciences), followed by incubation with Actin (Calbiochem), OPA1 (BD Biosciences), and SIRT3 

(Cell Signaling) antibodies. Protein signals were detected by Li-Cor infrared imaging system. 

Data were further quantified by Image J. 

 

4.2.8 Sirtuin activity assay 

Spinal cord tissues from control littermates or SOD1G93A transgenic mice (5–7 months 

old) were lysed with buffer containing 50 mM HEPES (pH 7.4), 2 mM MgCl2, 1 mM EDTA, 2% 

CHAPS, 2 mM DTT, 10 mM NAM, 1 µM TSA, 10 mM NEM, and protease inhibitor cocktails 

(Roche). Eight micrograms of protein was used to perform the deacetylase activity assay using 

the SIRT2/3 Fluorimetric Drug Discovery Kit (Enzo Life Sciences). The data were collected using 

2104 EnVision Multi-label Plate Reader (PerkinElmer) with the excitation set at 355 nm and the 

emission set at 435 nm.  

 

 

  



133 
 

4.3 Results 
 

4.3.1 Fasting and resveratrol induce SIRT3 expression 

CR is known to promote longevity in mammals by up-regulating sirtuins. Fasting is a 

procedure used to mimic CR effects in animal models. To investigate whether SIRT3 is up-

regulated, mice were fasted for 24 h and analyzed. As expected, SIRT3 expression levels were 

significantly induced in liver tissues after 24 h fasting (Figure 29A). 

In addition, resveratrol is a sirtuin activator which has been shown to extend life span in 

several organisms (Howitz et al., 2003; Kim et al., 2007a; Lagouge et al., 2006). We used MEFs 

as a cell culture model in vitro to examine if SIRT3 is regulated by resveratrol. As expected, 

elevated SIRT3 levels were observed in MEFs after resveratrol treatment (Figure 29B). 

Thus, SIRT3 responds to fasting in mice and resveratrol treatment in cell culture models. 
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Figure 29 SIRT3 is up-regulated in response to fasting and resveratrol.  
 

A) Western blot of cell lysates from mice with and without 24 h fasting. B) Western blot of cell 
lysates from MEFs with and without 5 mM resveratrol treatment for 24 h. 

 

 

 

 

4.3.2 Resveratrol and nutrient depletion promote mitochondrial fusion 

Having confirmed that CR/fasting and resveratrol extend life span and SIRT3 is up-

regulated during this process, we next examined mitochondrial dynamics. Mitochondrial 

dynamics play an essential role in aging and neurodegeneration. Because SIRT3 is located inside 
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mitochondria, whether increased SIRT3 expression has any effect on mitochondrial dynamics in 

response to CR/fasting and resveratrol is an interesting question for investigation.  

Primary cortical neurons treated with 100 nM resveratrol exhibited extremely long 

mitochondrial morphology (Figure 30A, bottom) compared with untreated neurons (Figure 30A, 

top).  In addition, MEFs after 2 h nutrient depletion exhibited a more tubular network (Figure 

30B). Thus, mitochondrial dynamics was affected by resveratrol and nutrient depletion, which 

might be through SIRT3 regulation. 

 

 

 

Figure 30 Resveratrol and nutrient depletion promotes mitochondrial fusion.  
 

A) Fluorescence micrographs and close up views of cortical neurons transfected with DsRed2-

Mito treated with and without 100 nM resveratrol for 24 h. Scale bar, 50 m. B) Fluorescence 
micrographs and close up view of MEFs transfected with DsRed2-Mito with and without 2 h 

nutrient depletion. Scale bar, 25 m. 
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4.3.3 Resveratrol alters post-translational modification of DRP1 

Having determined that resveratrol affects mitochondrial dynamics, the next question 

we addressed was which protein is the target. We first examined if there was any alteration in 

the mitochondrial fission machinery.  

Western blot was performed using MEFs treated with 5 M resveratrol for 24 h. No 

change in DRP1 protein levels was observed (Figure 31); however, several post-translational 

modifications of DRP1 changed in response to resveratrol treatment (Figure 31). 

Phosphorylation of DRP1 at S616 decreased, while phosphorylation at S637 site tended to 

increase, suggestive of a reduction in mitochondrial fission. In addition, both acetylation and 

SUMOylation of DRP1 decreased, indicating that DRP1 is less stable and has faster turnover. 

In sum, resveratrol induced phosphorylation of DRP1 at S637 and decreased 

phosphorylation at S616, acetylation, and SUMOylation. All of these changes result in 

decreased DRP1 activity, implying that mitochondrial fission is inhibited in response to 

resveratrol treatment. 
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Figure 31 Western blot of lysates from MEFs treated with 5 M resveratrol. 
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4.3.4 DRP1 post-translational modification directly interferes with mitochondrial dynamics  

To confirm that phosphorylation of DRP1 directly regulates the mitochondrial fission 

and fusion balance, phospho-mimetic and phospho-resistant mutants were created and 

transfected into MEFs. DsRed2-Mito was also transfected and mitochondrial morphology was 

evaluated. 

As expected, DRP1S616A MEFs exhibited elongated mitochondrial morphology, while 

DRP1S616D MEFs exhibited fragmented mitochondria (Figure 32 top), confirming that S616 

phosphorylation induces mitochondrial fission. On the other hand, DRP1S637A MEFs exhibited 

short mitochondria, while DRP1S637D MEFs exhibited tubular mitochondrial shape (Figure 32, 

bottom). In sum, phosphorylation of DRP1 directly regulates DRP1 fission activity and interferes 

with mitochondrial morphology. 
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Figure 32 Fluorescence micrographs of MEFs transfected with DsRed2-Mito and 

different DRP1 mutants. 
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4.3.5 SIRT3 regulates OPA1 acetylation levels 

Having established that resveratrol inhibits mitochondrial fission by altering DRP1 post-

translational modifications, it is worthwhile to test if proteins mediating mitochondrial fusion 

are also regulated. SIRT3-/- mice were used here under 16 h fasting conditions. 

Interestingly, OPA1 acetylation levels increased more than three fold in SIRT3-/- mice 

compared with WT mice (Figure 33). In particular, acetylation levels of the OPA1 long-isoform 

increased about 5 fold compared to a 2-fold increase in the short-isoform. Because the OPA1 

long-isoform is more active in mediating mitochondrial fusion, we hypothesized that 

acetylation of OPA1 might be involved in mitochondrial fusion. In sum, OPA1 is a target of SIRT3 

and may be implicated in mitochondrial fusion in response to CR/fasting. 
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Figure 33 Immune precipitation and quantification of lysates from WT and SIRT3-/- mice 

using acetylation antibodies. 
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4.3.6 OPA1 acetylation directly interferes with mitochondrial dynamics 

To evaluate if OPA1 acetylation level directly interferes with mitochondrial morphology, 

OPA1 plasmids with single nucleotide mutations in the acetylation site (Lys 228) were 

generated. To visualize mitochondria, DsRed2-Mito in combination with OPA1WT or OPA1K228R 

was transfected into MEFs. 

WT MEF exhibited a tubular mitochondrial network, while SIRT3-/- MEFs exhibited more 

short and intermediate-sized mitochondrial morphology (Figure 34A, top), suggesting that 

SIRT3 is required for mitochondrial morphogenesis. SIRT3-/- MEFs expressing OPA1WT exhibited 

more tubular mitochondria than did SIRT3-/- MEFs (Figure 34A, bottom left), indicating that 

OPA1WT restored the mitochondrial fission and fusion balance. More strikingly, OPA1K228R  

SIRT3-/- MEFs exhibited the most tubular mitochondrial network, similar to WT MEFs (Figure 

34A, bottom right). Further quantification confirmed the observations of mitochondrial 

morphology in these conditions (Figure 34B). 

Therefore, SIRT3 plays an essential role in mitochondrial fusion, and acetylation-

resistant mutant OPA1K228R is able to restore mitochondrial dynamics in SIRT3-/- MEFs. 
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Figure 34 SIRT3 promotes mitochondrial fusion by deacetylating OPA1.  
 

A) Fluorescence micrographs of WT and SIRT3-/- MEFs transfected with DsRed2-Mito and 

OPA1WT or OPA1K228R. Scale bar, 50 m. B) Percentage of mitochondrial fragmentation in WT 
MEFs and SIRT3-/- MEFs transfected with OPA1WT or OPA1K228R. 
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4.3.7 SIRT3 is down-regulated by SOD1G93A expression 

As shown above, SIRT3 is the key protein that regulates mitochondrial fission and fusion. 

To investigate whether defective mitochondrial dynamics characteristic of neurodegeneration 

results from SIRT3 down-regulation, HEK cells were transfected with DsRed2-Mito and either 

SOD1WT or SOD1G93A. 

Western blot analysis using anti-SIRT3 antibodies revealed a weak band in SOD1G93A HEK 

cells, indicating that SIRT3 expression level decreased in HEK cells expressing SOD1G93A (Figure 

35A). In addition to protein expression level, SIRT3 activity was also measured using control 

mice and SOD1G93A mice. Tissue lysates from mice spinal cords demonstrated a reduction in 

sirtuin activity. 

Thus, SOD1G93A causes a decrease in both protein expression and activity of SIRT3, which 

could be the cause of defective mitochondrial dynamics. 



145 
 

 

Figure 35 SOD1G93A triggers a decrease in SIRT3 expression and activity.  
 

A) Western blot of lysates from HEK cells expressing pcDNA, SOD1WT, or SOD1G93A. B) Sirtuin 
deacetylase activity of spinal cord tissue lysates isolated from non-transgenic and transgenic 
mutant SOD1G93A mice. 
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4.3.8 SIRT3 restores mitochondrial dynamics in SOD1G93A neurons 

Defects in mitochondrial dynamics may be due to SIRT3 inhibition in SOD1G93A neurons. 

To test whether SIRT3 is able to rescue this imbalance, DsRed2-Mito and SIRT3 were co-

transfected into SOD1WT and SOD1G93A neurons.  

As expected, both SOD1WT neurons and SOD1WT neurons expressing SIRT3 exhibited 

normal mitochondrial morphology, while SOD1G93A neurons exhibited fragmented mitochondria 

(Figure 36A).  Strikingly, SOD1G93A neurons expressing SIRT3 appeared to have restored 

mitochondrial morphology (Figure 36B), suggesting that SIRT3 re-balanced SOD1G93A-induced 

mitochondrial dynamics defects.  

In addition to mitochondrial morphology, time-lapse imaging was also used to track 

mitochondrial transport. Only vertical lines were observed on kymographs of SOD1G93A neurons, 

indicating that mitochondria were all stalled (Figure 36C, left). However, more horizontal lines 

on kymographs of SOD1G93A neurons with SIRT3 co-expression were observed, suggesting that 

more anterograde and retrograde mitochondrial movement occurred (Figure 36C, right). 

Quantitative analysis confirmed that mitochondrial mean velocity increased in SOD1G93A 

neurons expressing SIRT3 (Figure 36D). Further analysis revealed a decrease in the percentage 

of SOD1G93A neurons with fragmented mitochondria when SIRT3 was co-expressed (Figure 36), 

correlating with neuronal cell death (Figure 36E). 

Thus, SIRT3 not only restored mitochondrial dynamics including fission and fusion 

balance and velocity, but also rescued SOD1G93A-induced neuronal cell death. 
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Figure 36 SIRT3 restores mitochondrial dynamics by SOD1G93A.  
 

A) Fluorescence micrographs and close up views of neurons expressing DsRed2-Mito and 
SOD1WT or SOD1G93A either alone or in combination with SIRT3. B) Percentage of mitochondrial 
fragmentation in neurons expressing DsRed2-Mito and SOD1WT or SOD1G93A either alone or in 
combination with SIRT3. C) Kymographs of neurons expressing DsRed2-Mito and SOD1G93A 
either alone or in combination with SIRT3. D) Mitochondrial mean velocity of neurons 
expressing DsRed2-Mito and SOD1G93A either alone or in combination with SIRT3 (n=10). E) 
Percentage of cell death in neurons expressing DsRed2-Mito and SOD1WT or SOD1G93A either 
alone or in combination with SIRT3.  
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4.4 Discussion 
 

Longevity has been pursued throughout human history and since the last century, CR 

has been believed to be an anecdote against aging and a tool for life span extension 

(Weindruch and Walford, 1988).  In the past ten years, Sir2 was identified as a master protein 

regulating multiple cell signaling pathways that promote longevity (Imai et al., 2000; 

Tissenbaum and Guarente, 2001). Sirtuins have been revealed to be up-regulated during CR or 

fasting. A number of scientists then focused on studying sirtuin-mediated life extension in 

different organisms (Haigis and Guarente, 2006; Tissenbaum and Guarente, 2001).                     

Mitochondria are key organelles in cells that are involved in cell survival and 

proliferation (described in 1.2.3). It has been extensively discussed in the previous chapters that 

mitochondrial dynamics are essential for maintenance of mitochondrial function. Mutations in 

genes that mediate mitochondrial dynamics, such as MFN2 and OPA1, result in 

neurodegenerative diseases including CMT-2A and ADOA (described in 1.3). Moreover, 

mitochondrial dynamics have been shown to play a role in life extension as DRP1-/- increases 

life span in yeast (Yang et al., 2011). Therefore, it is no doubt that mitochondrial dynamics and 

life span are related and both sirtuins and balanced mitochondrial dynamics contribute to 

longevity. However, whether mitochondrial dynamics are involved in sirtuin-mediated longevity 

remains unknown. In addition, SIRT3 is one of the sirtuins located in the mitochondrial matrix 

and whether SIRT3 regulates mitochondrial dynamics is an interesting question that is worthy 

of investigation. 
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 Resveratrol, a sirtuin activator, has been commonly used to promote longevity (Howitz 

et al., 2003). Here, we observed elevated SIRT3 levels in cell cultures after resveratrol 

treatment (Figure 29), which correlated with mitochondrial elongation in primary cortical 

neurons (Figure 30). Thus, it seems that mitochondrial dynamics is regulated by resveratrol. 

Further investigation focused on specifically how mitochondrial dynamics responded to 

resveratrol. Interestingly, several post-translational modifications of DRP1 were altered in MEFs 

treated with resveratrol, including phosphorylation at S616 and S637, acetylation, and 

SUMOylation (Figure 31). DRP1 phosphorylation was thought to affect its GTPase activity and 

subcellular translocation. Phosphorylation at the DRP1 S637 site was reported to inhibit DRP1 

and reduce mitochondrial fission (Cribbs and Strack, 2007), while DRP1 phosphorylation at S616 

site directly induces DRP1 GTPase activity (data not shown). Post-translational modification is a 

fast way to regulate down-stream cellular events. How resveratrol or sirtuins alter DRP1 

phosphorylation remains unclear. One possibility is sirtuins may regulate kinases, which further 

phosphorylate/dephosphorylate DRP1. Alterations of DRP1 acetylation may directly result from 

sirtuin regulation. Although what acetylation does to DRP1 is unclear, my colleague proved that 

SIRT3 directly deacetylates DRP1 (data not shown), suggesting that mitochondrial dynamics 

could be the direct target of SIRT3 in resveratrol-mediated longevity. Interestingly, OPA1 was 

hyper-acetylated in SIRT3-/- mice, indicating that OPA1 is also the target of SIRT3 (Figure 33).  

That both DRP1 and OPA1 are acetylated by SIRT3 further supports the idea that SIRT3 

regulates mitochondrial dynamics by deacetylating DRP1 and OPA1. Thus, mitochondrial 

dynamics could be the downstream target of SIRT3-mediated protective effects.  
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Defective mitochondrial dynamics was observed in ALS and it may be the mechanism of the 

disease. A reduction in sirtuin deacetylase activity was observed in spinal cord extracts of 

mutant SOD1G93A transgenic mice (Figure 35). We cannot exclude the possibility that SIRT1 

activity or the activity of other sirtuins is decreased, because the substrate may not be entirely 

specific. In addition, previous studies have revealed that SIRT1 up-regulates SIRT3 transcription 

through PGC-1  (Giralt et al., 2011; Kong et al., 2010; Rodgers et al., 2005). Thus, a decrease in 

SIRT1 may also lower SIRT3. SIRT3 overexpression protects against mutant SOD1G93A-induced 

mitochondrial fragmentation and neuronal cell death (Figure 36). SIRT3 also protects against 

apoptosis linked to aging in mice and excitotoxic insults in cultured neurons (Hafner et al., 

2010; Kim et al., 2011; Someya et al., 2010). The exact mechanism underlying SIRT3-mediated 

protection against mutant SOD1G93A-induced toxicity remains elusive.  

Nitrosative stress triggers mitochondrial fragmentation (Barsoum et al., 2006; Liot et al., 

2009). SIRT3 lowers ROS by directly deacetylating SOD2 and IDH2 and increases their enzymatic 

activities (Qiu et al., 2010; Someya et al., 2010; Tao et al., 2010). Thus, it is possible that SIRT3 

maintains mitochondrial dynamics by keeping oxidative stress in check. A decrease in SIRT3 

activity might increase ROS, which in turn could lead to mitochondrial fragmentation and 

neuronal cell death. Another potential mechanism might involve CypD, a component of the 

MPTP. Reduction in CypD delays motor neuron cell death and extends the lifespan of SOD1G93A 

mice (Martin et al., 2009). Interestingly, CypD is a SIRT3 substrate. Deacetylation by SIRT3 

inhibits CypD function and prevents mitochondrial permeability transition and age-related 
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cardiac hypertrophy (Hafner et al., 2010). Irrespective of the underlying mechanism, SIRT3 may 

represent a novel therapeutic target to combat ALS.  

In sum, mitochondrial are elongated in response to resveratrol and nutrient 

depletion/fasting. SIRT3 may directly interact with DRP1 and OPA1 to promote mitochondrial 

fusion. In ALS, defective mitochondrial dynamics may result from decreased SIRT3 activity. 

SIRT3 expression restored balanced mitochondrial fission and fusion and also rescued SOD1G93A-

induced neuronal cell death. Therefore, SIRT3 represents a potential target for treatment of ALS. 
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CHAPTER FIVE: GENERAL DISCUSSION 
 

Balanced mitochondrial dynamics are fundamental for maintenance of mitochondrial 

function. Because mitochondria are intricately involved in multiple cellular signaling pathways, 

mitochondrial dynamics contributes to cell functioning and even survival. Mitochondrial 

dysfunction is a common phenomenon in most neurodegenerative diseases, including ALS and 

HD (Knott et al., 2008). Due to the unique feature of neurons, e.g., long neurites, mitochondrial 

dynamics play a much more important role in these cells. Thus, it is not surprising that impaired 

mitochondrial dynamics lead to neurodegeneration. However, whether defects in 

mitochondrial dynamics are the primary or secondary cause of neurodegenerative diseases has 

yet to be determined.  

Here, mitochondrial fragmentation and defective mitochondrial transport were 

observed in SOD1G93A motor neurons (Figures 7 and 8). Decreasing DRP1 activity using 

dominant-negative DRP1K38A blocks SOD1G93A-induced mitochondrial fragmentation, defective 

axonal transport, and neuronal cell death (Figures 10 and 11), suggesting that defective 

mitochondrial dynamics could be the primary cause of ALS. Similarly, DRP1K38A and MFN2P82 

restored HTT-Q97-induced mitochondrial defects and rescued cell death in primary cortical 

neurons of HD models in vitro (Figures 22 and 24). Therefore, blocking mitochondrial 

fragmentation protects against disease-specific protein-induced toxicity in ALS and HD, 

suggesting that mitochondrial dynamics are not simply a symptom of, but rather a mechanism 

behind, neurodegenerative diseases. Currently, the only FDA approved drug for ALS is riluzole, 
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which blocks glutamate receptors by reducing Ca2+ influx and protects motor neurons against 

Ca2+-induced excitotoxicity. Ca2+ buffering is one of the most important mitochondrial functions. 

Mitochondrial dysfunction directly results in elevated intracellular Ca2+ levels, while enhanced 

mitochondrial Ca2+ buffering capacity protects cells against excitotoxicity. Thus, reducing Ca2+ 

influx using riluzole may compensate for impaired Ca2+ buffering capacity resulting from 

defective mitochondrial dynamics. To date, no drugs targeting mitochondrial dynamics have 

been studied, despite their integral role in neuroprotection. 

Mitochondrial fission is mediated by a large GTPase, DRP1, and fusion is mediated by 

GTPases MFN2 and OPA1. Altered activity of these GTPases directly interferes with the 

mitochondrial fission and fusion balance. Changes in either protein expression levels or post-

translational modifications produce imbalanced mitochondrial fission and fusion, which further 

induces neuronal cell death. However, what interferes with mitochondrial dynamics remains 

elusive and it is possible that the underlying molecular mechanisms differ among various 

neurodegenerative diseases. 

In the current work, abnormal interactions between mutant HTT and DRP1 were 

observed (Figures 20 and 21). Mutant HTT has a higher affinity for DRP1 and induces elevated 

DRP1 GTPase activity. These observations help clarify the pathway of mutant HTT-mediated 

mitochondrial fragmentation. Of course, this is just a starting point and many questions remain 

about this pathway. For example, in which domain does DRP1 interact with mutant HTT, why 

does mutant HTT have a higher affinity for DRP1, and how does mutant HTT stimulate DRP1 

GTPase activity? In addition to the DRP1-HTT interaction, other mechanisms have also been 
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proposed, including defects in the BDNF and PGC-1  pathways (described in 3.1.3). Whether 

these pathways are dependent or independent of mitochondrial dynamics remains to be 

determined. In addition, mutant HTT-induced defects in cellular functions may not solely result 

from these molecular mechanisms. Only by answering these questions can therapeutic targets 

be made more specific and HD patients benefit more from HD research.  

Distinct from mutant HTT in HD, SOD1G93A may not directly bind DRP1 or other 

mitochondrial fission and fusion proteins in ALS. Although more studies are required to solidify 

this conclusion, preliminary data demonstrated a reduction in SIRT3 expression levels and 

enzymatic activity in ALS (Figure 35). SIRT3 is known to be a critical enzyme that regulates ROS 

by deacetylating IDH2 and SOD2 inside mitochondria (Qiu et al., 2010; Someya et al., 2010; Tao 

et al., 2010). Nitrosative/oxidative stress has been previously shown to induce mitochondrial 

fragmentation. Thus, ROS dysregulation may be implicated in ALS, although how SOD1G93A 

contributes to impaired SIRT3 signaling requires further investigation. Data presented here 

from SIRT3-/- mice and resveratrol treated cells are the first to reveal that post-translational 

modifications of DRP1 including phosphorylation, acetylation, and SUMOylation interfere with 

mitochondrial dynamics (Figures 30–32).  

In sum, our findings represent a milestone and first step toward proving that 

mitochondrial dynamics play a causal role in the pathogenesis of neurodegenerative diseases. 

However, it will be important to determine the molecular mechanisms that underlie defects in 

mitochondrial dynamics caused by disease-specific proteins. Studies of familial forms of 
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neurodegenerative diseases will continue to provide a better understanding of the sporadic 

cases, which will ultimately be beneficial for development of therapeutic treatments.  
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APPENDIX I: PERMISSION FOR REPRINT   
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Ownership of copyright in the article "Mutant huntingtin binds the mitochondrial fission 

GTPase dynamin-related protein-1 and increases its enzymatic activity" published in Nature 

Medicine remains with the authors. Thus, the figures which have been published are allowed to 

reproduce in this dissertation.  
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